
DOCTORAL THESIS

Approaches to Extra-Functional
Verification of Security and
Reliability Aspects in Hardware
Designs

Xinhui Lai

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2022

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

29/2022

Approaches to Extra-Functional
Verification of Security and Reliability

Aspects in Hardware Designs

XINHUI LAI

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems
The dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Computer and Systems Engineering on 20 May 2022

Supervisor: Prof. Maksim Jenihhin, PhD
Department of Computer System, School of Information Technologies,
Tallinn University of Technology
Tallinn, Estonia

Co-supervisor: Prof. Jaan Raik, PhD
Department of Computer System, School of Information Technologies,
Tallinn University of Technology
Tallinn, Estonia

Opponents: Prof. Zainalabedin Navabi
University of Tehran
Tehran, Iran
Worcester Polytechnic Institute
Worcester, Massachusetts, United States

Prof. Maria K. Michael
University of Cyprus
Nicosia, Cyprus

Defence of the thesis: 17 June 2022, Tallinn
Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Xinhui Lai
signature

Copyright: Xinhui Lai, 2022
ISSN 2585–6898 (publication)
ISBN 978-9949-83-851-6 (publication)
ISSN 2585–6901 (PDF)
ISBN 978-9949-83-852-3 (PDF)
Printed by Koopia Niini & Rauam

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

29/2022

Riistvaraprojektide turva- ja
töökindlusaspektide

ekstrafunktsionaalse verifitseerimise
lähenemisviisid

XINHUI LAI

Contents
List of Publications . 8

Author’s Contributions to the Publications . 9

Abbreviations . 10

1 Introduction . 13
1.1 Motivation . 13
1.2 Research Objectives . 14
1.3 Contributions . 15
1.4 Thesis Organization . 16

2 Background . 19
2.1 Hardware Verification. 19
2.2 Functional vs Extra-functional . 21

2.2.1 Functional and Extra-functional Requirements 21
2.2.2 Functional and Extra-functional Aspects’ Verification 22

2.3 Verification Methodology . 22
2.3.1 Simulation-Based Verification . 22
2.3.2 Formal Verification . 24

3 Multidimensional Verification . 27
3.1 Introduction. 27
3.2 Taxonomy of Multidimensional Verification Aspects . 28
3.3 Trends in Extra-functional Verification. 29

3.3.1 Security Aspects . 29
3.3.2 Reliability Aspects . 32
3.3.3 Timing Aspects . 33
3.3.4 Power Aspects . 35
3.3.5 Machine Learning Based Techniques . 35

3.4 The Challenges of Multidimensional Verification . 36
3.4.1 Motivational Example . 37

3.5 Machine Learning to Tackle the Challenges of Multidimensional Verification 40
3.5.1 Proposed Methodology . 40
3.5.2 Prediction Results . 41

3.6 Chapter Conclusions . 44

4 Security Aspect Verification . 45
4.1 Introduction. 45
4.2 PASCAL: Timing SCA Resistant Design and Verification Flow 46

4.2.1 Information Flow Tracking and Timing Side-Channels 46
4.2.2 Related Works . 48
4.2.3 Methodology. 48
4.2.4 Timing SCA Secure Design Flow . 52
4.2.5 Experimental Results . 54
4.2.6 Conclusions . 55

4.3 Early RTL Analysis for SCA Vulnerability in Fuzzy Extractors of Memory-
Based PUF Enable Devices. 55
4.3.1 Background and Related Works. 56

5

4.3.2 Attack Model . 57
4.3.3 Proposed Methodology . 59
4.3.4 Case Study . 63
4.3.5 Conclusions . 64

4.4 Chapter Conclusions . 65

5 Reliability Aspect Verification . 67
5.1 On Antagonism Between Side-Channel Security and Soft-Error Reliability

in BNN Inference Engine . 67
5.2 Related Works . 68

5.2.1 Binarized Neural Network . 68
5.2.2 Power Side-Channel Attacks on BNNs. 68
5.2.3 BNN Power Side-Channel Masking Techniques 69

5.3 Soft-Error Reliability Assessment for HW BNN Implementations 69
5.3.1 De-Rating Based Soft-Error Reliability Assessment 69
5.3.2 Reliability Assessment for the HW BNN Implementations 70
5.3.3 BNN-level Fault-Injection Simulation Campaign 71

5.4 Reliability Analysis of Secured BNN Hardware Inference Engine 71
5.4.1 Implementation of Power Side-Channel Masking in BNNs 71
5.4.2 Security-Masked BNN-Based Case Study Design 73
5.4.3 Reliability Assessment Setup . 73

5.5 Experimental Results . 74
5.5.1 LDR Analysis of the Masked Full Adder . 74

5.6 Fault-Injection Simulation Campaign . 75
5.7 Chapter Conclusions . 76

6 Conclusions . 79

List of Figures . 81

List of Tables . 82

References . 83

Acknowledgements. 97

Abstract . 98

Kokkuvõte . 100

Appendix 1 . 103

Appendix 2 . 113

Appendix 3 . 129

Appendix 4 . 135

6

Elulookirjeldus . 153

7

Appendix 5 . 143

Curriculum Vitae 151

List of Publications
The present PhD. thesis is based on the following publications that are referred to in
the text by Roman numbers.

I M. Jenihhin, X. Lai, T. Ghasempouri, and J. Raik, “Towards multidimensional
verification: Where functional meets non-functional,” in 2018 IEEE Nordic Circuits
and Systems Conference (NORCAS): NORCHIP and International Symposium of
System-on-Chip (SoC), pp. 1–7, IEEE, 2018

II X.Lai, A.Balakrishnan, T.Lange, M.Jenihhin, T.Ghasempouri, J.Raik, and
D.Alexandrescu, “Understanding multidimensional verification: Where functional
meets non-functional,” Microprocessors and Microsystems, vol.71, 2019

III X.Lai, M.Jenihhin, J.Raik, and K.Paul, “PASCAL: Timing SCA resistant design
and verification flow,” in 2019 IEEE 25th International Symposium on On-Line
Testing and Robust System Design (IOLTS), pp. 239–242, IEEE, 2019

IV X.Lai, M.Jenihhin, G.Selimis, S.Goossens, R.Maes, and K.Paul, “Early RTL analysis
for SCA vulnerability in fuzzy extractors of memory-based PUF enabled devices,”
in 2020 IFIP/IEEE 28th International Conference on Very Large Scale Integration
(VLSI-SOC), pp.16–21, IEEE, 2020

V X.Lai, T.Lange, A.Balakrishnan, D.Alexandrescu, and M.Jenihhin, “On antagonism
between side-channel security and soft-error reliability in BNN inference engines,”
in 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration
(VLSI-SoC), pp. 1–6, 2021

8

Author’s Contributions to the Publications
I In publication I, the author participated in the research problem formulation,

performed the literature review, and carried out the case study. The author also
contributed to the manuscript writing and presented the research work at the
conference.

II Publication II is an extension of publication I. The author participated in the
development of the idea involving collaboration with researchers from a partner
company, and was in charge of the whole paper integration, revision and submission.

III In publication III, the author took part in the idea generation and was responsible
for the development of the research idea. The author analyzed the potential side-
channels in the design, developed the code for assertions and scripts to run the
formal tool JasperGold Security Path Verification. Then the author developed the
final experimental environment and conducted the experiment. The author wrote
and finalized the manuscript and presented the research work at the conference.

IV In publication IV, the author participated in the research idea generation and
established a new cross-sectoral collaboration. The author elaborated and developed
the research idea and then was responsible for hardware design modification and
proceeded with the experiment. Finally, the author wrote, finalized the manuscript,
and presented the research work at the conference.

V In publication V, the author organized the collaborative research discussions with
the partner company, was involved in the research idea generation and development,
and carried out the analysis of the state of the art. The author analyzed the power
side-channel attack mitigation techniques, applied the mitigation techniques to
the case-study Binarized Neural Network, and contributed to the fault injection
experiment. The author structured the manuscript, contributed to writing and
finalized the manuscript, and presented the research work at the conference.

9

Abbreviations

AADL Architecture Analysis and Design Language
AES Advanced Encryption Standard
AI Artificial Intelligence
ASIL Automotive Safety Integrity Level
BCH Bose–Chaudhuri–Hocquenghem
BMA Berlekamp Massey Algorithm
BNN Binarized Neural Network
BTI Bias Temperature Instability
CART Classification and Regression Trees
CMOS Complementary Metal-Oxide Semiconductor
CPF Common Power Format
CPS Cyber-Physical System
CTL Computation Tree Logic
DAQ Data Acquisition
DNN Deep Neural Network
DPA Differential Power Analysis
DUV Design Under Verification
EA Euclidean Algorithm
ECC Error Correction Code
EDA Electronic Design Automation
ERT Energy-aware Real-Time
FE Fuzzy Extractor
FDR Functional De-Rating
FEM Finite Element Method
FIT Failures In Time
FME(C)A Failure Mode and Effects (Criticality) Analysis
FPGA Field-Programmable Gate Array
HLS High-Level Synthesis
HW Hardware
IC Integrate Circuit
IFT Information Flow Tracking
IoT Internet-of-Things
IP Intellectual Property
JG SPV JasperGold Security Path Verification
K-NN K-Nearest Neighbors
LFM Latent Fault Metric
LDR Logical De-Rating
LTL Linear Temporal Logic
LTR Life-Time Reliability
LUT Look-Up Table
ML Machine Learning
MPSoCs Multi-Processor System on Chips
MSB Most Significant Bit
NoC Network on Chip
NVM Non-Volatile Memory
PASCAL PAth based Side Channel AnaLysis
PSL Property Specification Language

10

PUF Physical Unclonable Function
RAS Reliability, Availability and Serviceability
RBF Radial Basis Function
RCA Ripple-Carry Adder
RIIF Reliability Information Interchange Format
RS Reed-Solomon
RSA Rivest–Shamir–Adleman
RSN Reconfigurable Scan Network
RTL Register Transfer Level
SAT Satisfiability
SCA Side-Channel Attack
SEE Single-Event Effect
SER Soft-Error Reliability
SET Single-Event Transient
SEU Single-Event Upset
SNR Signal-to-Noise Ratio
SOTA State-of-the-Art
SPFM Single-Point Failure Metric
SRAM Static Random Access Memory
SVA System Verilog Assertion
SVR Support Vector Regression
TDR Temporal De-Rating
TLM Transaction-Level Modeling
UPF Unified Power Format
UVM Universal Verification Methodology

11

1 Introduction
The next generation of computing, targeting an order of magnitude in performance
improvement, is driving the development of electronic systems based on emerging
nanoelectronic devices [2]. Benefiting from the evermore shrinking transistor technology,
increasingly sophisticated electronic systems can be built on small-size chips, yet contain
powerful functionalities. While this trend makes electronic systems suitable to many
applications, it also increases their sensitivity to the environment, making these systems
error-prone.

Electronic systems are used in applications ranging from commodity smartphones
to advanced and expensive earth-orbiting satellites. These sophisticated and volatile
scenarios are driving the evolution of the design of nanoelectronic systems. The latter
is based on requirements for complex functional operations while guaranteeing non-
functional (or extra-functional) requirements such as power-efficiency, reliability, and
high levels of security. Unlike functional requirements, extra-functional requirements
describe important constraints on the behavior of the system and specify certain qualities
of the design [3].

For advanced nanoelectronic systems, maintaining specific extra-functional require-
ments is fundamental to successful implementation. For example, Internet-of-Things,
which is featured by collecting and handling massive data from different devices through
networks, implies exchanges of sensitive information and has created significant security
concerns [4]. Here, ensuring the confidentiality and integrity of the data becomes
the system’s priority. On the other hand, for electronic devices used in high-radiation
environments, such as in outer space, or for soft-error sensitive devices, such as memories
and registers, relevant reliability considerations are brought to the front. As chip density
increases, the rate of errors caused by cosmic rays increases significantly. The functional
failures caused by soft errors are not negligible anymore, and soft-error reliability has
become a limiting factor in design [5]. The prior facts have brought up the demand
for novel design strategies used to improve the design implementation’s quality (power,
security, reliability, etc.).

The mentioned new requirements for design implementation have forced an evolution
in design verification methodology. As indicated in [6], fulfilling designs’ extra-functional
requirements is critical to the success of the target product. However, there is no
consensus in the community about their definition, and how one should elicit, document
and validate the extra-functional requirements. Unlike functional verification, which has
an established methodology, extra-functional verification is a relatively new challenge.
Since the contained extra-functional aspects are abstract, defining the related behavior
from the design implementation is obscure and not sufficiently supported by the
established state-of-the-art tools and methodologies.

This thesis provides a study of the verification of extra-functional aspects with an
emphasis on critical aspects such as security and reliability.

1.1 Motivation
Modern electronic technology has propelled the extensive usability and high complexity
of electronic devices. Over the years, the functionality of electronic design has always
been the main concern for engineers [7]. However, with safety-critical applications
and cyber-physical systems being widely adopted, extra-functional aspects of security,
reliability, and power have been frequently addressed in the research. Thus, verification
of extra-functional aspects is getting to the front.

13

For a specific extra-functional aspect, the related behavior is normally composed of
measurements of the sequences of functional behavior and there is no straightforward way
to obtain complete and correct functional sequences. Therefore, manual or supervised
analysis of the targeted extra-functional aspect and extraction of related functional
sequences has become a challenge for the verification process. In addition, the complexity
of the involved functional behaviors increases alongside the design abstraction levels and
design complexity, thus introducing compounded difficulties. Furthermore, tools and
methods applicable for extra-functional verification are limited [8]. Due to the increased
complexity of the current designs, the corresponding extra-functional behaviors tend
to be sophisticated. It is even more difficult to extract the extra-functional behavior
through existing methods or tools. Although the extra-functional behavior is extracted
from the functional behavior, the established metrics used in functional verification can
not be applied in extra-functional verification.

Facing the new paradigm for design verification, there is a lack of systematic study
of the extra-functional aspects and the related design verification techniques while these
are well-defined in software disciplines. Unfortunately, the definition and classification
for extra-functional aspects in software can not be directly reused for hardware design
due to the rather distinctive design description concepts. Therefore, there is a need
to understand the extra-functional aspects from the hardware perspective and explore
novel hardware verification methodologies to address different extra-functional aspects.

Hardware security is one of the most critical extra-functional aspects. It is featured
to protect the secret information stored in physical devices or the hardware designs’
information from being stolen and corrupted during different design stages. It has
attracted notable attention in the advanced electronic systems discipline [9,10]. However,
vulnerabilities causing security problems that originate from design flaws are rarely
considered during design space exploration. A novel type of attack, named side-channel
attack, has proven efficient for inferring sensitive information by exploiting unintended
information leakage of the crypto core implementation. Most of the works for side-
channel attack verification mentioned in the literature address side-channel vulnerability
only after manufacturing, since the exploitable side-channel information (timing, power,
and electromagnetic) is acquired by measuring the real devices. Such methods imply
a huge expense for re-design and re-production for the electronic systems. Therefore,
identifying the side-channel vulnerability at the early design stage would be of great
value for the time-to-market production as well as for reducing design costs.

Along with the requirements for security, today’s critical systems are required to
be capable of providing correct results even in the presence of hardware-level faults.
Therefore, during the design stages, engineering tends to apply additional security and
reliability mechanisms to the design separately. However, for the whole system, there is
no guarantee that the introduced security mechanism does not influence the system’s
reliability and vice versa. It is hard for the designer to identify the intersection between
applied security and reliability at the design phase. Overall, there is still a lack of
methodologies for multiple extra-functional aspects verification.

1.2 Research Objectives
Considering the above problems, the research objectives of this PhD thesis are as
follows:

• Providing a systematic study of extra-functional aspects in hardware design and
understanding the challenges in this research area.

14

• Proposing novel methodologies to support verification of the security and reliability
aspects at early design phases. The goal is to reduce the time to market and cost
for nanoelectronic systems manufacturing.

• Exploring the mutual influence of extra functional aspects in practice, considering
the security and reliability aspects as a case study.

1.3 Contributions
Targeting the above research objectives, the contributions of this PhD thesis are
summarized as follows.

• Addressing the systematic study for extra-functional aspects verification, this PhD
thesis has proposed the first systematic review on extra-functional verification
for hardware designs. The study is based on a review of the existent research
works and has the following contributions:

– proposes an up-to-date taxonomy for extra-functional aspects’ classification
from the hardware perspective;

– presents a state-of-the-art survey addressing different extra-functional aspects
and summarizing the detailed information about the related verification
methods;

– identifies the research challenges for today’s extra-functional aspects’ verifi-
cation and proposes an initial approach towards multiple extra-functional
aspects verification relying on machine learning techniques.

• Targeting the security aspect, this thesis focuses on timing side-channel attacks
and brings identification of relevant design vulnerability up to the early RTL
design level instead of the physical design level addressed in the literature. In
particular, this work:

– provides an early RTL analysis to identify the timing side-channel vulnerability,
which is normally addressed after manufacturing in the literature;

– presents both simulation-based and formal verification methods to analyze
the vulnerability;

– indicates the limitation of the two verification methods regarding early-stage
analysis of timing side-channel attack;

– provides a lightweight and effective mitigation technique for the timing
side-channel vulnerability identified for a Rivest–Shamir–Adleman (RSA)
crypto core implementation.

• Focusing on the reliability, the thesis is the first time (to the best of our knowledge)
to address the mutual influence between security and reliability of the Binarized
Neural Network (BNN) network applied to a critical system. This work:

– presents an analysis for the soft-error reliability jeopardy by the side-channel
related security mitigation;

– provides in-depth reasoning about how the security mechanism influences
the entire system’s reliability;

– emphasizes the interdependency of the design’s reliability and security as-
pects.

15

Figure 1: Thesis Contributions and Organisation

1.4 Thesis Organization
This thesis has six chapters. The first chapter presents the introduction of the thesis.
Chapter 2 discusses the background. In this chapter, the basic knowledge of hardware
verification, functional and extra-functional requirements and methods used for verifica-
tion are introduced. The main contributions of the thesis are depicted in Figure 1. As
shown in the figure, Chapter 3 targets the study of extra-functional aspects’ verification.
This chapter provides a study of the state of the art for extra-functional aspects and
proposes a taxonomy of the extra-functional aspects from the hardware point of view.
Then it identifies the trends and challenges for the methodology used for extra-functional
aspects’ verification. In order to have an in-depth understanding of the methodology
used for the extra-functional aspects, this thesis focuses on security and reliability
aspects for further study, which are presented at Chapter 4 and Chapter 5 separately.
For the study of security verification, Chapter 4, it focuses on the side-channel attack
and provides an early RTL analysis. It includes the timing analysis of a crypto core and

16

the subblock of the system containing a security mechanism, i.e., an error-correction
decoder used in a memory-based Physical Unclonable Function (PUF) scenario. In this
work, both formal and simulation-based verification approaches are provided. Chapter 5
studies the reliability aspect verification of a hardware BNN implementation that is
resistant to power side-channel attacks. As shown at the bottom of Figure 1, it explores
the impact of a security-enhanced design on its reliability. The main purpose of this
study is to explore the design space considering both reliability and security. Chapter
6 summarizes and concludes this PhD thesis. Additionally, the possible future work
towards a holistic verification method for multiple extra-functional aspects is outlined.

17

2 Background
2.1 Hardware Verification
The design process of digital Integrated Circuit (IC) is usually refined through the
top-down design abstraction levels to deal with the design complexities. The traditional
design flow is shown in Figure 2. In the design flow, the verification process takes
the role of checking whether a given design is correctly implemented according to the
specification. And it has the highest impact on the essential business drivers, i.e.,
quality, schedule and cost. However, the verification process is very time-consuming.
As the statistical data shows, 70% of the development cycle is used for the verification
step [11].

Figure 2: Digital IC Design Flow

As illustrated in Figure 2, the general design flow can be divided into four stages,
which are marked in the blue boxes: System Level, Register Transfer Level, Gate Level
and Physical Layout Level. For each design stage, the verification process, marked in a
light green color at the same design level, is performed after the design step and aims
to ensure the implementation is designed as specified. If any design bugs are found
during verification, it will result in modification or redesigning of the implementation at
the current abstraction level or even the previous design levels. After modification, the
corrected design needs to repeat the verification procedure all over again. Therefore, it
is critical to ensure that all the design bugs are caught at each stage completely.

19

Along the abstraction spectrum of the design, more design details are added through-
out the implementation process, which makes the design behavior closer to the real
circuit but also more complex. Methods and tools also vary at different design stages.
Figure 3 indicates the design objectives and design verification at different abstraction
levels.

• System Level: The design objective for the system level is design partitions.
It focuses on the functional implementation of different blocks as well as the
interconnect infrastructure of the system. Thus, for the system-level verification,
besides the functional verification for each individual IP blocks, it also needs to
verify the interconnection between blocks. However, some of the IP blocks and
interconnection infrastructures are reusable. Thus the verification solution for
these blocks can be reused.

• RTL: At RTL, microarchitecture blocks implemented by VHDL/Verilog/System
Verilog are filled into the design to provide hardware details. Hardware verification
starts from this stage. There are well-defined verification strategies for functional
verification such as coverage-driven verification targeting structural coverage
metrics (statements, branches, conditions, etc.) and functional coverage modelled
by asserted functional properties.

Figure 3: Design and Verification for Different Abstraction Levels

• Gate Level: At this stage, the technology library is used to map the functional
behavior to the Boolean equation. It contains the static timing, area, and
power consumption details of each logic gate. Therefore, besides the functional
verification, it is also possible to provide preliminary power and area analysis and
static timing analyses.

• Physical Layout Level: The last design stage is at the Physical Layout Level. At

20

this stage, the behavior of logic gates is translated to a transistor-based structure.
At this level, circuit details like floorplan, place and route, etc. become available.

Design complexity increases with descending the design abstraction levels, and the
verification time is increasing as well since the tools and methods used for design
verification need to go through additional design details. Therefore, it is cheaper to
eliminate design bugs related to functional and extra-functional aspects at RTL and
Gate-Level while the cost of verification grows at the lower levels, such as the physical
layout level. Thus, it is preferred to find design bugs at the earlier design stage. In this
thesis, the research work focuses on hardware design verification at RT and Gate levels.

2.2 Functional vs Extra-functional
2.2.1 Functional and Extra-functional Requirements
The design specification defines both the functional and extra-functional requirements.
Functional requirements describe the targeted functional tasks that should be imple-
mented, while the extra-functional requirements describe the important constraints
upon the functional behavior of the system and specify a range of design qualities [3].

Rapid technology development has fuelled ever-increasing complexity in functional
as well as extra-functional requirements of electronics, which in return enables its
usability to diverse applications and hostile environments. The requirements for modern
nanoelectronics system designs tend to be complex and rigorous. The systems are
required to realize correct functions while maintaining the qualities defined by the
extra-functional requirements. In the software discipline, extra-functional aspects affect
the overall architecture of the system rather than the individual components and they
can be categorized into product requirements, organizational requirements and external
requirements [12]. In hardware design, each extra-functional aspect strongly depends
on the design type, targeted applications and users’ requirements. Following the design
paradigm shifts, several extra-functional aspects have received significant academic
research attention and are loosely summarized as follows.

• Security [13]: Hardware security lies essential in ensuring trust, integrity and
authenticity of the integrated circuit and electronic systems [13]. The related
research fields combine multiple knowledge domains, which include discrete
math, algorithm design and transformation, digital architecture design with
analog twists and controlled production technologies [9]. Based on different
hardware implementations, the related security issues are 1) implementation-
independent vulnerability in cryptographic chips, which can lead to information
leakage; 2) distributed supply chain for manufacturing and distribution of electronic
components, which might lead to malicious modification of IC in an untrusted
design house or foundry and also referred as Hardware Trojan attacks; 3) side-
channel attacks, aimed at secret information extraction through measurement
and analysis of side-channel information such as power, signal propagation delay
(timing) and electromagnetic emission; 4) security issues related to hardware
designs that are used to provide an appropriate level of isolation between secure
and insecure data in order to protect sensitive assets stored in hardware from
malicious software and network.

• Reliability: The reliability defines the ability of the design to function correctly in
the field over a certain period of time under predefined conditions [14]. The key
drivers for the reliability aspect in today’s designs are recent industrial standards

21

(IEC61508, ISO26262, etc.) in different applications like the self-driving car,
space-based electronic system, etc. The dominant reliability issues for a nanoscale
integrated circuit are 1) the aging issue, e.g., by Bias Temperature Instability,
that lead to delays and, ultimately, to permanent faults; 2) soft errors related
single event upset or single event transient faults when ionized particles from
cosmic rays or terrestrial sources strike on sensitive regions of the semiconductor
devices. These faults may hamper the proper functionalities of the circuit [15,16].
However, the vulnerability of each IC design to the reliability issues can be verified
already at the design phase.

There are also other extra-functional aspects like power, timing, etc. that are discussed
in detail in Chapter 3.

2.2.2 Functional and Extra-functional Aspects’ Verification
Mapping to the design phase, the corresponding functional and extra-functional require-
ments should be verified before manufacturing. The objective of functional verification
is to check whether the hardware design conforms to the functional specification, and it
is fundamental to successful design implementation. Typically, verification engineers
work on functional verification predominantly at the RTL of the design rather than lower
levels like Gate Level or Physical Layout Level. At this stage, functional requirements are
either translated into test input/output stimuli pairs or properties for further verification.
Methods used for functional verification can be formal or simulation-based approaches,
and the details are indicated in Section 2.3. But either the stimuli or the properties
are explicit and easy to be extracted from the specifications. For the simulation-based
method, there are also well-established metrics to quantify the verification completeness.
However, for extra-functional aspects, the related design verification methods are still
under development.

There is a rising number of research works exploring the identification and verification
methods for extra-functional aspects. Unlike explicit functional behavior, extra-functional
behavior is implicit and relies on sequences of correct functional behavior. As the side-
channel attack of security aspect, the side-channel information (timing, power, or
electromagnetism) extracted from the design is based on the measurements of the
correct functional sequences of the implementation during the normal workloads. For
different functional aspects, there is no uniform guidance to define their behaviors, which
means all of them need to be studied individually. However, for some extra-functional
aspects like reliability, the methodology and evaluation are well-defined by the fault
injection method.

2.3 Verification Methodology
All verification methods can fall into the following two categories: formal and simulation-
based verification. The main difference between formal and simulation-based verification
is the rigorous mathematical proof. The simulation-based verification method relies on
the defined input stimuli and therefore, it can not guarantee verification completeness.
However, the formal method is supported by a mathematical model and it is proven
complete.

2.3.1 Simulation-Based Verification
Simulation-based verification is the most commonly used verification approach and is
widely used for functional verification. A general flow of simulation-based verification

22

is illustrated in Figure 4. Starting from a hardware design, there are three procedures
running in parallel [11]:

• Linting: Before simulation, the design needs to go through the linter program,
which basically runs programmatic and stylistic error check for the source code
and help remove coding style violations. It is a static check and does not need
any input stimulus.

• Test bench design: The test bench design is used to mimic the environment, in
which the design will reside, and it will not be assembled to the final design. As for
functional verification at RTL, the test bench is written in HDL, and its purpose
is to apply input waveforms to the design and monitor the output changes under a
defined working environment during the simulation and verification step. Normally,
it has by far fewer coding style constraints and might include pre-analysis of the
results.

• Test Plan: The test plan helps with the input vector stimulus generation. The
input vectors targeted at specific functionalities and features are called directed
tests. The ultimate goal for the test plan is to generate the test vectors, which
can cover the entire input spaces, evoke all the functionalities and then expose
the misbehavior of the design. It is applicable to small-size designs but infeasible
for a larger design since the input design space grows exponentially with the size
of design input.

The linting process purely depends on the compiler and normally is embedded in the
simulation tools like Modelsim and Questasim. But the test bench design and test
plan are designed and written by the designer based on specification and knowledge of
verification methodology.

The simulation quality of a design can be measured by the coverage metrics. The
coverage measures how much the design is simulated and verified. As mentioned
previously, it is impractical to simulate all tests, and the coverage metrics like code
coverage, statement coverage, functional coverage, etc., which are used to quantify the
influences to the designs by applying the test stimulus. The idea of coverage metrics is
to provide certain level of confidentiality of the executed verification for design under
verification, provide feedback for the current input vectors and then guide the engineers
to generate better stimuli.

Figure 4: Simulation-Based Verification Flow

23

2.3.2 Formal Verification
Unlike simulation-based verification, formal verification does not require test vectors
and is based on mathematical analysis, which ensures complete behavior exploration.
Thus it is in favor of completeness of design space exploration, which generally can not
be covered by simulation-based verification. However, practically, formal verification
is only suitable for moderate-size designs like blocks or modules rather than complex
electronic systems. Because the software used for formal verification commonly costs
extensive memory and needs long runtime sometimes before making a final verification
decision [11].

Figure 5: Formal Verification Flow

The general formal verification flow is shown in Figure 5. The verification process
starts with the design specification. Formal methods can be classified into property
checking and equivalence checking.

• Equivalence Checking is the process of determining whether the two implementa-
tions are functionally equivalent. Two approaches are widely used here. The first
is SAT (satisfiability). It searches the input space systematically in order to find
at least one input vector that could distinguish two implementations. The other
one distinguishes the two designs by comparing their canonical representations
since the canonical representation has the characteristic property that the two
logical functions are equivalent if and only if their respective representations are
isomorphic.

• Property Checking takes properties extracted from design specification to prove
or disprove the correctness of the regarding properties. Normally, the checking
procedure is done inside a model checker, which refers the related design as a
computational model. The principle of property checking is to search the entire
state space and try to address the failure point of the property. If such a point is
found, the property is proven to be failed, and a countermeasure will be provided.
Otherwise, the property is satisfied. In practice, the model checker can have

24

another time-out situation, which means the property could not be defined within
the defined checking time. Usually, these cases can happen when the selected
design is too complex for the tool, or the defined property does not hold.

As mentioned, the formal method is efficient for small-sized designs. When applying
equivalence checking, the input space for the block design is not limited, and it should
have constraints regarding the former connected circuit. Thus, related constrains should
be added manually. Property checking is akin to equivalence checking. The process is
not automatic, and the engineers need to understand the tool and define the proper
constrains for the property.

Equivalence checking and property checking can be both used for functional verifica-
tion. However, as for extra-functional aspect verification, property checking still can be
easily applied. E.g., in this thesis, the research work shown in Chapter 4 applies formal
verification.

25

3 Multidimensional Verification
In this chapter, state of the art of multidimensional verification is studied. Based
on the analysis, a taxonomy of multidimensional hardware verification aspects and
a survey classifying the research works is proposed. Additionally, trends in different
extra-functional aspects of verification are summarized to show the verification methods’
diversity. Finally, a machine learning based method for possible multidimensional
aspects’ verification is proposed and demonstrated on a case study.

This chapter is based on the following publications:

• I M. Jenihhin, X. Lai, T. Ghasempouri, and J. Raik, “Towards multidimensional
verification: Where functional meets non-functional,” in 2018 IEEE Nordic Circuits
and Systems Conference (NORCAS): NORCHIP and International Symposium of
System-on-Chip (SoC), pp. 1–7, IEEE, 2018

• II X. Lai, A. Balakrishnan, T. Lange, M. Jenihhin, T. Ghasempouri, J. Raik, and
D. Alexandrescu, “Understanding multidimensional verification: Where functional
meets non-functional,” in Microprocessors and Microsystems, vol. 71, 2019.

3.1 Introduction
Several recent prominent trends in electronic systems design can be observed. Safety-
critical applications in the automotive domain set stringent requirements for electronics
certification, the Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) devices
are immersed in physical environments, significantly constrained in resources and
expected to provide levels of security and privacy [17], ultra-low power feature or
high performance. Very complex electronic systems, including those built from the
non-certified for reliability commercial-off-the-shelf components, are used for safety- and
business-critical applications. These trends along with gigascale integration at nanoscale
technology nodes and multi-/many-processor based systems-on-chip architectures have
ultimately brought to the front various extra-functional aspects like security, reliability,
timing, power consumption, etc., of the electronic systems’ design at the chip design
level.

Accordingly, for proper design model verification, it is necessary to detect design
errors not only affecting functional but also extra-functional aspects of the target
electronic system. Such aspects are also interchangeably referred to as non-functional.
Theoretically, the sole task of extra-functional verification of a design model is to
detect deviations that could cause violations of extra-functional requirements. However,
in practice, it often intersects with the task of functional verification [18, 19] and is
challenging to extract complete behaviors from the target design model.

This chapter is organized as follows. Section 3.2 presents a taxonomy of multidi-
mensional verification aspects. Sections 3.3 proposes a state-of-the-art survey with the
key trends in verification for the main extra-functional aspects. Section 3.4 discusses
the multidimensional verification challenges and presents a motivational example for
the functional and power verification dimensions. Section 3.5 proposes adoption of
machine learning techniques for support of design’s multi-aspect features extraction
and verification. Finally, Section 3.6 draws the conclusions for the chapter.

27

3.2 Taxonomy of Multidimensional Verification Aspects

Figure 6: Taxonomy of Multidimensional Verification Aspects
28

In practice, relevance of each functional and extra-functional aspect strongly depends on
the design type, target system application and specific user requirements. Following the
design paradigm shifts, a number of extra-functional aspects have recently received sig-
nificant academic research attention e.g., security. At the same time, there already exist
established industrial practices for measuring and maintaining particular design qualities,
e.g., the RAS (Reliability-Availability-Serviceability) aspect introduced by IBM [20]. In
the software engineering discipline, the taxonomy of extra-functional requirements has
a comprehensive coverage by the literature [6, 21–25]. However, it cannot be directly
re-used for the HW verification discipline because of significant differences in the design
models. Thus, we have proposed a taxonomy of multidimensional verification aspects in
hardware perspective derived from the performed literature review and indicated in Fig 6.
The conventional functional concerns are safety and liveness properties, combinational
and temporal dependencies along with data types, however this list can be extended for
particular designs. The extra-functional aspects can be strictly categorized into two
groups: System Qualities and System Resources and Requirements (in bold). The main
system qualities for extra-functional verification are manufacturability of the design,
security, in-field safety, reliability during the operational lifespan and a set of timing
aspects. The second group embraces the power and architectural resources as well as
design constraints set by the operational environment.

Compared with software engineering discipline, several extra-functional aspects such
as manufacturability, i.e., primarily yield and testability against manufacturing defects,
fault-tolerance, reliability (subject to transient, intermittent and permanent hardware
faults) and several aspects from the System Resources and Requirements group do not
have a direct correspondence because of the distinct nature of faults and specification
violations. Other aspects such as real-time constraints are very similar between the two
domains.

3.3 Trends in Extra-functional Verification
Table 1 presents a survey of recent publications targeting extra-functional and multidi-
mensional verification. Here, along with the specific extra-functional aspects details
about the design model and verification approach are outlined, i.e., the design under
verification type, verification engine, the level of abstraction, design representation
language, compute model and the tool operated in the research. Then we focus on
understanding trends for the extra-functional aspects that have the strongest attention
in literature, i.e., security, in-field reliability, timing and power.

3.3.1 Security Aspects
Security is difficult to quantify as today there are no commonly agreed metrics for
this purpose [17]. The key targeted security services [26] commonly represented as
extra-functional aspects for verification are confidentiality, integrity and availability.
Verifying security aspects is highly dependent on the type of attack and the attacker
model assumed.

Many of the existing works in security verification (e.g., [27–31]) are focusing
on the integrity attribute, mostly addressing hardware trojan detection. There also
exist works that additionally target [32–36] or are exclusively considering [37, 38]
the confidentiality aspect. Several solutions in security verification are restricted to
specific target architectures or types of modules such as Reconfigurable Scan Networks
(RSNs) [34,37] or macro-asynchronous micro-synchronous pipelines [31]. To that end,
for complex hardware architectures (e.g., large IEEE1687 Reconfigurable Scan Networks

29

or MPSoCs) the specific on-chip security features to be verified also tend to be very
sophisticated. These may include on-chip mechanisms for attack prevention (firewalls,
user management, communications’ isolation), attack protection (traffic scrambling,
encryption) and attack resilience (checkers for side-channel attacks, covert channel
detection, attack recovery mechanisms). Several works consider security verification for
NoC-based MPSoCs. [39] proposes a method to formally verify the correctness and the
security properties of a NoC router. Some solutions in the security verification of NoCs
do indirectly address reliability due to the fact that they implement hardware monitors
that allow avoiding both, attacks and in-field faults [27,33].

According to recent surveys [40] and [41], cache access driven side-channel attacks
have become a major concern in hardware security. In modern processors, deep hierarchy
of cache memory is implemented to increase system performance. However, this makes
modern computing systems, including IoT devices, vulnerable to cache side-channel
attacks. There exist several works addressing verification of the cache security. In [42],
the authors propose Computation Tree Logic (CTL) based modeling of timing-driven
and access-driven cache attacks. This work concentrates on formally describing the
attack types. Zhang and Lee [43] model cache as a state machine and propose a metric
based on the non-interference condition to evaluate the access-based cache vulnerability.
Canones et al. [44] propose a model to formally analyze the security of different cache
replacement policies. None of the above-mentioned works consider multiple dimensions,
or aspects.

An approach that is designed for modeling a multitude of extra-functional aspects is
the model-based engineering example of Architecture Analysis and Design Language
(AADL) [32]. While, in principle, AADL allows representing several extra-functional
aspects (called quality attributes in AADL), Hansson et al. [32] only concentrate on
analysis of confidentiality as a part of verifying security in a system with multiple levels
of security. The authors in [45] have targeted a general Uppaal Timed Automata based
multiview hardware modeling and verification approach taking into consideration of the
security view.

Table 1: Survey of the SOTA Solutions for Extra-Functional and Multidimensional Verification

Pub. Year Extra-functional aspecta DUVe Ver. Eng.f Abst. Levelg DRLh Comp.
Modeli Toolk

Sj Rb Tc Pl Od

[32] 2009 2 1 - - - - HW/SW
system

formal,
correct-by-
construction

SL AADL - OSATE

[39] 2018 1 - - - - NoC
unbounded
model-
checking

RTL
VHDL/
Verilog,
PSL

- -

[33] 2016 2 1 ◦ - - - NoC simulation,
HW monitors RTL VHDL/

Verilog - -

[27] 2014 2 ◦ - - - NoC formal GL VHDL/
Verilog - SurfNoC

[34] 2017 1 2 - - - - RSN model check RTL ICL
Craig
interpo-
lation

CIP
solver

[28] 2015 2 - - - - SoC simulation RTL VHDL/
verilog - -

[35] 2016 2 1 - - - - ALU equivalence
check GL - OBF-

SAT -

[29] 2017 2 - - - - SoC Semi. GL - - JasperGold
SPV

[37] 2016 1 - - - - RSN model check RTL ICL
Craig
interpo-
lation

CIP
Solver

[38] 2017 1 - - - - control sys-
tem formal SL ASLan++- CL-AtSe

Continued on next page

30

Table1 – continued from previous page

Pub. Year Extra-functional aspecta DUVe Ver. Eng.f Abst. Levelg DRLh Comp.
Modeli Toolk

Sj Rb Tc Pl Od

[30] 2017 2 - - - - IP cores semi. GL VHDL - Mini-
SAT

[31] 2015 2 - - - - ISA,
Pipeline model check RTL - CTL,

LTL
nuXmv
SMV

[42] 2018 1 - - - - cache model check SL - CTL -
[43] 2014 1 - - - - cache model check RTL/SL - FSM Murphi
[44] 2017 1 - - - - cache model check RTL/SL - FSM CacheAudit
[36,46] 2013 2 1 - - - - IPs and

SoCs formal RTL, GL Verilog - JasperGold
SPV

[45] 2018 • • - - - MPSoC model check SL, RTL -
Timed
Au-
tomata

UPPAAL

[47] 2017 - • - - - CPS model check SL AADL
Timed
Au-
tomata

UPPAAL

[48] 2015 - 4 - - - IP cores formal GL/RTL LDDL LDDL Coq
[49] 2010 - 4 - - 8 9 processor fault inject GL verilog - IBM in-

house
[50] 2016 - • - - 8 9 SoC fault inject RTL - - -

[51,52] 2016 - ◦(3) - ◦ 13
smart
system simulation SL

IP-
XACT,
systemC-
AMS

- -

[53] 2018 - • - - - CPS
formal/ sim-
ulation, HW
monitors

RTL VHDL - -

[54] 2014 - 4 - - - IPs SAT Solver RTL VHDL - -
[55] 2010 - 4 - - - IPs, proces-

sor Simulation RTL VHDL/
Verilog - -

[56] 2014 - 4 - - - memory circuit-level
simulation circuit level - - INFORMER

[57,58] 2018 - - 6 ◦ - NoC fault injection RTL VHDL - QoSinNoC
[59] 2011 - - 5 - - memoory model check RTL REAL/

AADL - Ocarina

[60] 2014 - - 5 - - Scheduler of
RT. system model check - Promela Time

Petrinet SPIN

[61] 2010 - - 12 - - RT
emb.system model check SL AADL - YICES

[62] 2017 - - 7 ◦ -
NoC,
HW/SW
architecture

simulation SL

Graph
As-
sembly
Lan-
guage

Conne.
Graphs ArchOn

[63] 2012 - - - • - IPs simulation SL SystemC - -
[64] 2016 - - - • - DSP cores simulation SL, GL, RTL SystemC - Powersim

[65] 2017 - - 5 ◦ - automotive
CPS model check SL C, EAST-

ADL
Timed
Au-
tomata

UPPAAL,
SDV

[66] 2016 - - - • - IPs Semi., ABV RTL
VHDL/
Verilog,
SystemC

Hidden
Markov
Model

-

[67] 2012 - - 11 ◦ - distributed
emb.system simulation SL SystemC - -

[68] 2016 - - 7 5 ◦ 13
HW/SW
platform semi. RTL, TLM,

SL

UML,
C++,
VHDL,
SystemC-
AMS

HIF HIFSuite

[69] 2009 - - 10 - - SoC/FPGA simulation RTL Verilog/
VHDL - Modelsim

[70] 2018 - - 10 - - NoC simulation RTL System
Verilog - UVM

[71] 2014 - - - - 14 SoC
symbolic
model check-
ing

RTL, TLM Verilog -
Incisive
Formal
Verifier

[72] 2016 - - - - 15 processor simulation ISA ruby - McVerSi

[73] 2011 - - - • 13 SoC simulation SL, GL, RTL SystemC -
Power-
Mixer,
-Depot,
-Brick

Continued on next page

31

Table1 – continued from previous page

Pub. Year Extra-functional aspecta DUVe Ver. Eng.f Abst. Levelg DRLh Comp.
Modeli Toolk

Sj Rb Tc Pl Od

[74] 2015 - - - • - - simulation SL,TLM SystemC -
Power
Kernel
Tool

[75] 2011 - - - • - SoC simulation SL SystemC - Powersim

a • - this aspect is the main focus in the paper; ◦ - this aspect is partially addressed.
b R: Reliability (3 - lifetime reliability; 4 - soft-error reliability.)
c T: Timing (5 - real-time constraints; 6 - communication time constrain; 7 - performance.)
dO: Other Aspects (8 - availability; 9 - serviceability; 13 - Thermal; 14 - Connectivity; 15 - Memory Consistency.)
e DUV - Design Under Verification.
f Ver. Eng - Verification Engine; Semi. - semi-formal.
g Abst. Level - Abstract Level;GL - gate level; SL - system level; ISA - instruction set architecture level; TLM -
transaction level model.
h DRL - Design Representation Language.
i Comp. Model - Compute Model; Conne. Graphs - connectivity graphs.
j S: Security (1 - confidentiality; 2 - integrity.)
k SDV - simulink design verifier
l P - Power

3.3.2 Reliability Aspects
The key drivers for the reliability aspect in today’s designs are the recent industrial
standards in different application domains such as IEC61508, ISO26262, IEC61511,
IEC62279, IEC62061, RTCA/DO-254, IEC60601, etc. Integrated circuits used in high
reliability applications, e.g., complying with high (Automotive) Safety Integrity Level -
(A)SIL, must demonstrate low failure rates (modelled by FIT –Failures in Time) and
high fault coverage (e.g., Single-Point Failure Metric (SPFM) and Latent Fault Metric
(LFM)). These requirements ultimately mandate extra-functional validation efforts for
reliability analysis, such as Failure Mode and Effects (Criticality) Analysis - FME(C)A
and imply generalized use of methods and features, such as safety mechanisms, for error
management. Functional safety is a property of the complete system rather than just
a component property because it depends on the integrated operation of all sensors,
actuators, control devices, and other integrated units. The goal is to reduce the residual
risk associated with a functional failure of the target system below a threshold given by
the assessment of severity, exposure, and controllability.

The dominant threats for reliability are, first, random hardware faults such as tran-
sient faults by radiation-induced single event effects or soft errors [76], i.e., a subject
for Soft-Error Reliability (SER). Second, these are extreme operating conditions, elec-
tronic interference and intermittence of permanent faults by process or time-dependent
variations, such as aging induced by Bias Temperature Instability (BTI) [77], where the
latter is a subject for Life-Time Reliability (LTR). Reliability verification challenge is
emphasized by the adoption of advanced nanoscale implementation technology nodes
and high complexity of systems, utilizing tens or hundreds of complex microelectronic
components and embedding large quantities of standard logic and memory. Moreover,
these designs integrate IP cores from multiple design teams making reliability evaluation
task to be scattered and complex. Initiatives such as RIIF (Reliability Information Inter-
change Format) [78], allow the formalization, specification and modeling of reliability
properties for technology, circuits and systems.

Similar to other aspects, reliability in large complex electronic systems, e.g., safety-
critical CPSs, may be tackled starting at high level of abstraction. System’s fault
tolerance is formally checked by using UPPAAL and timed automata models generated
from AADL specifications [47]. HW design models and tools at such a level also
enable verification of interference of several extra-functional design aspects [45]. There

32

are research works relying on design soft-error reliability verification by fault-injection
campaigns, e.g., [55], or formal analysis, e.g., error-correction code (ECC) based
mechanisms against single-bit errors in memory elements [54]. Burlyaev and Fradet [48]
propose a general approach to verify gate-level design transformations for reliability
against single-event transients by soft errors that combines formal reasoning on execution
traces. Thompto and Hoppe [49] and Kan et al. [50] focus on the RAS (Reliability,
Availability and Serviceability) group of extra-functional aspects outlined by IBM for
complex processor designs where embedded error protection mechanisms and designs
intrinsic immunity (due to various masking) to errors is evaluated by fault injection.
Vinco et al. [51, 52] propose extensions to system descriptions in the IP-EXACT format
to enable multi-layer representation and simulation of several mutually influencing
extra-functional aspects of smart system designs such as lifetime reliability, power and
temperature. A complex approach to verification of multiple reliability concerns (soft
errors, BTI, etc.) across layers in industrial CPS designs is proposed in [53] as a
collaborative research result in the IMMORTAL project. Last but not least, addressing
the need for reliability verification automation tools, in [56], authors propose a fully
automated tool INFORMER to estimate memory reliability metrics by circuit-level
simulations of failure mechanisms such as soft-errors and parametric failures.

The survey clearly shows that currently there is a very small number of works
considering verification of reliability together with other aspects.

3.3.3 Timing Aspects
Functional temporal properties are essential part of sequential designs’ specification that
are often modelled for functional verification by Computational Tree Logic (CTL), applied
for formal approaches, and Linear Temporal Logic (LTL) temporal assertions expressed
arbitrarily, e.g., in Property Specification Language (PSL), System Verilog Assertion
(SVA) or systematically, e.g., in Universal Verification Methodology (UVM). In the
extra-functional context, these can be extended to specific requirements and properties
such as: real-time (RT), performance, throughput, latency, on-chip communication
time constraint, worst-case execution time constraints, etc. Several works have been
widely studying these timing properties. Some researchers are mainly focused on
generating timing properties to reduce the verification efforts, for example, state space
and cost [60,62,68]. Instead, other works use the timing properties to assess whether
the system under verification is correctly functioning or not [61,65,67]. In the following,
we discuss state of the art for each timing aspect.

• A real-time system describes hardware and software systems subject to a real-time
constraint, that ensures response within a specified time. The correctness of the
function depends both on the correctness of the result and also the timeliness of
the periods. In [60], an approach to verify the timed Petri-Net model is proposed.
A non-instantaneous model is abstracted from the timed Petri-Net model in
a hierarchical structure. The non-instantaneous model which is verified with a
model-checking tool is used to reduce the state space of the timed Petri-Net model
for verification with a satisfiability modulo theories solver [79, 80]. The timed
Petri-Net is used to model the interacting relations of the software components
and the binding relations between software and hardware in a certain period
of time. Görgen et al. [68] introduce a tool called CONTREX to complement
current activities in the area of predictable computing platforms and segregation
mechanisms with techniques to compute real-time properties. CONTREX enables
energy-efficient and cost-aware design through analysis and optimization of real-

33

time constraint. The authors in [65] propose a method to combine real-rime
constraint aspect of a model with Energy-aware Real-Time (ERT) behaviors of
the model into UPPAAL for formal verification.

• Throughput is a measure of how many units of information a system can process
in a given amount of time. In [69], a verification environment has been proposed
to estimate the throughput of a SoC. The intention of the paper is to judge
whether the verification system can handle SOC verification and provide the
necessary performance in terms of speed and throughput. Khamis et al. [70]
introduce a Universal Verification Methodology (UVM) environment to measure
throughput of a NoC. UVM is a SystemVerilog class library explicitly designed to
help and build modular reusable verification components and test-benches. It is
an industry standard, so it is possible to acquire UVM IP from other sources and
reuse them.

• Performance refers to the amount of work which is done during a process, for
instance, executing instructions per second. In [62], a framework has been
developed to analyze performance of a system design. The framework is based on
stochastic modeling and simulation and it is applied on a set of NoC topologies.
The methodology uses a selective abstraction concept to reduce complexity.

• When referring to hardware, latency is the time required for a hardware component
to respond to a request made by another component. However, in the case of
hardware, latency is sometimes referred to as the access time . In [61], an analysis
tool is developed to work with the AADL models [81] to assure the correctness of
a scheduling model that binds the relation of different components in a model.

• On-chip communication time constraints refer to the requirements on the start
and end times of each task in a system critical path, which is the sequence of
tasks that cannot be delayed. For instance, in [57] and [58], a framework has been
proposed, which is based on a set of quality of service aware NoC architectures
along with the analysis methodology including selected relevant metrics that
enable an efficient trade-off between guarantees and overheads in mixed-criticality
application scenarios. These architectures overcome the notion of strictly divided
regions by allowing non-critical communication pass through the critical region,
providing they do not utilize common router resources. Such problem formulation
is relevant to facilitate the usage of NoC technology by safety-critical industries
such as avionics.

• The worst-case execution time of a computational task is the maximum length of
time the task could take to execute on a specific hardware platform. The designer
of a system can employ techniques such as schedulability analysis to verify that the
system responds fast enough [82]. For instance, Zimmermann et al. [67] present
an approach to generate a virtual execution platform in SystemC to advance the
development real-time embedded systems including early validation and verification.
These virtual execution platforms allow the execution of embedded software with
strict consideration of the underlying hardware platform configuration in order
to reduce subsequent development costs and to allow a short time-to-market by
tailoring and exploring distributed embedded hardware and software architectures.

• Last but not least, a few works also take into account dependencies between
several extra-functional aspects. For instance, the works in [65,68] and [62] present

34

the effect of optimizing timing properties (performance and latency) on power
consumption and the study in [67] performs the effect of decreasing execution time
on power consumption. Such analysis is mostly limited to two extra-functional
aspects or neglected at all [59–61,83], while design timing constraints can strongly
influence not only power consumption but reliability, security, availability, etc. as
well as functional properties.

3.3.4 Power Aspects
In commercial flows, verification of the power aspect can be addressed relatively
independently from the functional verification dimension. The power intent and detailed
power modelling can be done starting at TLM or RTL with minimal interference with
the HDL functional description, e.g., using the Accellera introduced Unified Power
Format (UPF) employed for power-aware design verification automation by commercial
tools especially with the latest UPF3.0 [84] or Cadence/Si2 Common Power Format
CPF [85]. For the advanced device implementation technologies, power specification
implies multi-voltage design with up to tens of power domains and may consider dynamic
and adaptive voltage scaling.

In the recent research works, design verification against the power aspect is performed
at different abstraction levels with a trade-off between speed and accuracy. Some works
such as [63, 64, 74, 75] perform power analysis at system level targeting high simulation
speed and the similar accuracy achievable at lower levels. In [63], the authors apply
their approach to SRAM and AES encryption IPs and obtained a significant simulation
speed-up in comparison to gate-level simulation with a high fidelity of the system-level
power simulation. A promising software tool for power simulation in SystemC designs is
the Powersim framework [64,75]. In [64], a methodology to estimate the dissipation
of energy in hardware at any level of abstraction is proposed. In [75], the authors
propose a SystemC class library aimed at calculation of energy consumption of hardware
described at system level. The work in [73] introduces a series of tools (PowerBrick
(construct power library for standard cell library), PowerMixer (for RTL/gate-level
estimator), PoweMixer ip (IP- based model builder), PowerDepot (estimate system-level
power consumption)) which can be tightly linked and enable the power analysis from
layout, gate-, RT-, IP- to system level with a good simulation speed while retaining
high accuracy. The power aspect verification could benefit from a holistic multi-level
modelling, e.g., [86] available for functional verification. Rafiev et al. [62] , Vinco et
al. [51, 52] , Kang et al. [65] , Zimmermann et al. [67] , Görgen et al. [68] , are aiming
at methodologies suitable for specific applications (such as cyber-physical system [65]).

This extra-functional aspect has a tight relation to the implementation technology
assumed for the synthesis of the design model under verification. With planar bulk
MOSFET technology known for exponential growth of the static leakage power for
smaller device geometries and employment of FinFET and Tri-Gate-Transistors in
the advanced technology nodes, the CMOS device parameters are essential for this
analysis [87] .

3.3.5 Machine Learning Based Techniques
Machine learning has been efficient in solving classification, detection and design space
exploration problems. For Electronic Design Automation (EDA), machine learning also
shows potential to accelerate EDA procedures and problem-solving. As mentioned
in [88], researchers have applied machine learning techniques to improve an EDA
method, which can cover almost all abstraction levels in the integrate circuit design flow

35

including design space reduction and exploration, logic synthesis, verification, etc. The
machine learning discipline has shown the potential ability to solve the complex problem
of multidimensional verification. This type of approach (along with e.g., evolutionary
algorithms) is particularly suitable for multi-aspect optimization problems where formal
deterministic approaches may lack scalability.

Machine Learning (ML) is the concept of a learning from examples and making
predictions based on its experience, without being explicitly programmed [89]. Therefore,
it can extract features or patterns from the target dataset. When applying ML for a
design description, it can be used to extract circuit features at a high level and then
use for other abstraction levels. Previous works have shown that ML can be used for
verification purposes at different levels. In [90], machine learning is introduced in physical
design analysis. The feasibility of ML in physical design verification (e.g., lithography
hotspot detection) has been investigated, and a reference model for application has
been presented. Based the work in [91], the applied machine learning method increases
the speed of the performance evaluation (power and area) of a circuit design after
physical design by a factor of 40. In [92], ML is used to predict the timing behavior
of the final floor-plan of a circuit during the Place & Route routine and thus, shifting
the analysis to an earlier design stage. In [93], the analysis is moved even to a higher
design abstraction level. The High-Level Synthesis (HLS) resource usage and timing
estimation are improved by training ML models with data from real implementations.
Thus, the design flow can be assisted by machine learning and then predict accurate
values even in very early design stages. Afterwards, Machine learning has been further
applied for security verification in [94–96], where it is used to detect hardware Trojans
based on features extracted from the gate level netlist. In Section 3.5, we propose
an approach to assist the multidimensional verification flow by using machine learning
techniques to estimate a reliability metric, as well as timing metric.

3.4 The Challenges of Multidimensional Verification
The performed analysis of the state of the art has outlined a gap in methodologies and
tools for holistic multidimensional verification of hardware design models.

Different from functional verification, approaches for extra-functional hardware
design aspects’ verification remain underdeveloped even when tackled in isolation.
Here, one of the key issues is a lack of established metrics for verification confidence.
For a particular functional verification plan, the functional dimension usually includes
conventional structural (code) coverage metrics, functional coverage [97] in form of
asserted and assumed properties and design parameters along with stimuli quality
assessment by model mutations [98]. The metrics for confidence in extra-functional
dimension verification results may be challenging as in practice the requirements are
subjective and can be specified as a mixture of quantitative and qualitative constraints.
Accurate hardware verification in a particular dimension requires both sufficient design
modeling and the targeted extra-functional aspects modeling [45]. There is a limited
number of dedicated commercial tools and common standards for extra-functional
verification flows. In particular, for the security dimension, the JasperGold SPV [46]
is one of the few such commercial tools that stands out from the academic research
frameworks. However, it only targets the specific security problems (sensitive information
leakage and taints propagation through information flow in SoC design). Finally, the
issue of eliciting the extra-functional requirements [99, 100] is a challenging task as
ambiguity and (sometimes conflicting) inter-dependency of the extra-functional aspects
in the specifications increase complexity of designing a general model to verify all the

36

(a)

(b)

Figure 7: Multidimensional Verification Campaigns (Radar-Chart n-Dimensional Visualization)

aspects and may leave gaps in the multidimensional verification plans.
Unfortunately, there is no established hardware design methodology supporting mul-

tidimensional verification plans for mutually influencing functional and extra-functional
aspects. A very limited number of research works go beyond the analysis of one
extra-functional verification aspect under constraints of another one, as the complexity
of the problem grows extremely fast with the number of dimensions (interdependent
constraints) and the size of the related electronic system. Research works in this
direction are presented in Vinco et al. [52] and Vain et al. [45].

Ultimately, results of multidimensional verification campaigns proposed in this work
are subject to be represented in a multidimensional space which needs to take into
consideration different aspects both individually and interactively. The primitive concept
of multidimensional verification is illustrated in Figure 7a. Here is shown an illustration
of six hypothetical independent verification campaigns in a three-dimensional verification
space. A verification campaign in this example shows the level of confidence in the
different dimensions - (F)unctionality, (P)ower and (S)ecurity. In this illustrative
example, only three aspects are taken into consideration. Obviously, on the demand
of design requirements, the verification engineers can involve different dimensions.
In the figure, the different colors of the lines represent different multi-dimensional
spaces e.g., as Campaign_1 in blue lines stand for the verification result considering
three extra functional aspects i.e., functional, power and security aspects at the same
time. Subsequently, Compaign_2 represents the combination of functional and security
aspects, Compaign_3 demonstrates the combination of functional and power aspect,
etc. Thus the Radar-charts, as shown in Figure 7b, are an instrument for summarizing
multidimensional verification results for a large number of dimensions, (where the
dimensions can be ordered to emphasize correlation or inter-dependencies between
adjacent dimensions).

3.4.1 Motivational Example
Single-dimensional verification campaigns, which ignore interdependencies among the
dimensions, may lead to gaps in the overall electronic system quality. In order to
shown the importance and necessity of the multi-dimensional verification, in this

37

section we consider an actual verification campaign of an open-source NoC framework
Bonfire [101,102] as an example.

The design under verification is a 2 × 2 NoC infrastructure (processing elements
excluded) implemented in RTL VHDL. It applies the open-source framework, which
considers dependability constraints and is guided by a system health status monitor
unit in the NoC in order to deal with task mixed-critical and non-critical application
deployment. The verification plan considers 2-dimensional verification campaign target-
ing functionality and power consumption requirements. For the former, assertion-based
functional verification by simulation is employed targeting statement, branch, condition
and toggle coverage metrics and satisfaction of a set of temporal simple-subset Property
Specification Language (PSL) assertions. For the latter, a set of power targets are
extracted for the targeted silicon implementation assuming a particular switching activity
(set to 12 mW in this example).

Among documented design errors in the Bonfire project, the bug f1, as shown in
Listing. 1, is an example of a functional misbehavior due to improper usage of write
and read pointers in the FIFO. The figure represents the code errors in the red line and
the corrected versions of the code lines in blue. The bug f1 and the bug p1 demonstrate
the error in Listings.1 and 2, respectively. The bug p1 causes violations of specified
power consumption targets because of unnecessary excessive use of a fault-tolerance
structure related counter.

The report of such a power consumption is described in Table 2. The power
consumption is shown in the cell Total Power which is composed of the dynamic power,
i.e., the Switching Power in the interconnects and the Internal Power in the logic
cells, and the insignificant (for the target technology) static leakage power Leak Power.
As summarized in the first row, for the bug f1 the Total Power is equal to 10.211
(consistence with the power consumption requirement). Similarly, in the third row,
which represents the power consumption for the correct version of the code, the total
power is equal to 10.184. It shows that even if there is a bug (bug f1) in the code
but still the power consumption requirement is met. This fact indicates the design
dependencies between functional and power aspects. However, when looking at bug p1
solo, the overall power consumption, which is 22.137, is about one time higher than
the power requirement and thus it violates the power targets in the specification. But
for functional requirement, there are no functional errors. In this sense, it is really
difficult to locate the bug since it is really difficult to trace back. Thus, it is critical to
know how and where the code should be modified to reduce the power consumption as
well as maintain functional correctness. This fact shows the design inter-dependence
between power and functional aspects. In general, the above simple motivation example
demonstrates the challenge of inter-dependency of different aspects when requirements
for more than one dimension are present.

Table 2: Power Consumption of the Bonfire System Implementation: corrected and with bugs
f1 and p1

Bonfire system Imple-
mentation

Interconnects
Power (mW)

Internal
Power (mW)

Leak Power
(pW)

Total Power
(mW)

with f1 bug 0.783 9.427 7.50e+05 10.211
with p1 bug 0.757 21.379 6.93e+05 22.137
corrected 0.666 9.518 7.43e+05 10.184

38

1 process(write_en, write_pointer) begin --write pointer bug
2 if write_en = '1' then
3 write_pointer_in <= write_pointer(0) & write_pointer(3 downto 1); -- Bug f1!
4 else
5 write_pointer_in <= write_pointer;
6 end if;
7 end process;
8

9 process(read_en, empty, read_pointer) begin --read pointer bug
10 if (read_en = '1' and empty = '0') then
11 read_pointer_in <= read_pointer(0)&read_pointer(3 downto 1); -- Bug f1!
12 else
13 read_pointer_in <= read_pointer;
14 end if;
15 end process;

1 process(write_en, write_pointer)begin --write pointer
2 if write_en = '1' then
3 write_pointer_in <= write_pointer(2 downto 0)&write_pointer(3);
4 else
5 write_pointer_in <= write_pointer;
6 end if;
7 end process;
8

9 process(read_en, empty, read_pointer) begin --read pointer
10 if (read_en = '1' and empty = '0') then
11 read_pointer_in <= read_pointer(2 downto 0)&read_pointer(3);
12 else
13 read_pointer_in <= read_pointer;
14 end if;
15 end process;

Listing 1: Bug f1 and Its Correction

39

1 process(Healthy_packet, reset_counters,
healthy_counter_out,faulty_counter_out) begin↪→

2 if reset_counters = '1' then
3 healthy_counter_in <= (others => '0');
4 elsif Healthy_packet = '1' and faulty_counter_out /= std_logic_vector(

to_unsigned(0, faulty_counter_out'length)) then --Bug p1!↪→

5 healthy_counter_in <= healthy_counter_out + 1;
6 else
7 healthy_counter_in <= healthy_counter_out;
8 end if;
9 end process;

1 process(Healthy_packet, reset_counters, healthy_counter_out) begin
2 if reset_counters = '1' then
3 healthy_counter_in <= (others => '0');
4 elsif Healthy_packet = '1' then
5 healthy_counter_in <= healthy_counter_out + 1;
6 else
7 healthy_counter_in <= healthy_counter_out;
8 end if;
9 end process;

Listing 2: Bug p1 and Its Correction

3.5 Machine Learning to Tackle the Challenges of Multidimensional
Verification

As proven in the previous sections, the verification problem is much more complex
when the design under verification has more than one aspect requirements. In fact the
complexity of verification, grows exponentially because of the interdependencies among
the involved aspects.

Machine learning algorithms are known to be able to learn complex relationships
and have been used for several optimization problems. Section 3.3.5 has shown that
machine learning techniques has been already successfully used for estimating several
different single verification metrics. This enables the assumption that machine learning
can be also used for solving multidimensional verification problem. Therefore, in this
section, we propose an initial machine learning based technique used for tackling
the multidimensional verification challenge and show one possible solution toward
multidimensional verification.

3.5.1 Proposed Methodology
The proposed approach targets at predicting two different verification metrics, timing
and reliability aspects, based on the same feature set extracted from the gate level
netlist of a given circuit.

These two different metrics are targeting at the design’ de-rating and path delay

40

prediction. The first metric to predict is the de-rating or vulnerability factor, which is
related to the reliability verification flow and it is a major metric of the failure analysis.
The second metric is the path delay and related to the timing analysis. This metric is
usually obtained during the synthesis or place and route stage of the design development
which can shift the timing aspect verification to the earlier design stages.

A possible application scenario consists of two steps. The first step is to extract a set
of design features from the circuit. Then in the second step, it uses these limited set of
reference input (the values of the selected circuit features) to train a ML model until the
model can generate expected outputs (in this case, the output should be reliability and
timing metrics). Depending on the exhaustiveness of the training campaign, the trained
ML inference engine can provide actual reliability and time metrics from a limited list
of circuit features while spending far less resources (CPU time, EDA tools licenses,
man-power) than using classical methods.

3.5.2 Prediction Results

The proposed idea is implemented and evaluated on a practical example. The first step
is to extract targeted design features. We select flip-flop instances in the circuit as
the carriers of the targeted features. Then we focus on the behaviors of these flip-flop
instances during simulation, and try to extract the feature-set based on the analysis of
the behavior. The feature-set is composed of static elements (cell properties, circuit
structure, synthesis attributes) and dynamic elements (signal activity). After extracting
the features for the full list of circuit instances, reference data is obtained. For the
second step, we use the reference data to train the machine learning models in order
to get the correct prediction of the timing and reliability of the circuit. The reliability
related functional de-rating for each flip-flop is determined through first-principles fault
simulation approaches while the timing related path delay is extracted through a classical
static timing analysis.

For the design under verification, the RTL design of the Ethernet 10GE MAC Core
from OpenCores is used. The circuit consists of control logic, state machines, FIFO
controllers, and memory interfaces. Then we synthesize the design with NanGate
FreePDK45 Open Cell Library. In total, 1054 flip-flops are identified from the design.
Afterwards, we have run the mentioned two steps to obtain the corresponding features.

For the first step, we simulate all the input references and collect the de-rating and
timing information as input data sets for machine learning models. Among all the data
sets, we have used part of the data sets as training data to train the machine learning
networks and the other part as evaluating data to evaluate the correctness of the model.
For the training procedure, several machine learning models have been used, such as
the Linear Least Squares, Ridge (with linear and non-kernels), k-Nearest Neighbors
(k-NN), Classification and Regression Trees (CART) and Support Vector Regression
(SVR, with linear and non-linear kernels). The final result proves that the linear model
is not suitable to predict the reliability metrics while the non-linear models perform
much better. But the Support Vector Regression with Radial Basis Function (RBF) as
kernel functions is among the best.

Therefore, the SVR model with RBF kernel function is used for the following
presentation of the prediction results. The Figures 8 and 9 show the prediction of the
two metrics. 50% (527 flip-flops) of the data are used to train the model and the
remaining 50% are used to evaluate the model.

41

Figure 8: Prediction of Functional De-Rating Factors of the Test Data Set by Using A Support
Vector Machine Regression Model (Training Size = 50%, Coefficient of Determination R2 =
0.844).

Figure 9: Prediction of Path Delays of the Test Data Set by Using A Support Vector Machine
Regression Model (Training Size = 50%, Coefficient of Determination R2 = 0.975).

42

Figure 10: Learning Curve for the Functional De-Rating Prediction by Using A Support Vector
Machine Regression Model with Different Training Sizes.

Figure 11: Learning Curve for the Path Delay Prediction by Using A Support Vector Machine
Regression Model with Different Training Sizes.

The performance of regression models is evaluated by the Coefficient of Determination
(R2) score. For the reliability related functional de-rating, the model reaches a score of

43

R2 = 0.844 while for timing related path delay, it reaches a score of R2 = 0.975.
For Figure 10 and 11, it shows the learning curve of the model. This curve describes

the performance of the model for different sizes of training and evaluation data set. The
learning curves suggest that it doesn’t significantly improve the prediction performance
by using more than 50% of the available data for training . However, it can also be
seen that by using less than 50% of the data set, a valuable prediction still can be
performed. Thus, by allowing a slight reduction of accuracy, the cost of an exhaustive
analysis can still be reduced.

The practical example has shown that machine learning can be successfully applied
for different verification purposes. In order use ML to support the multidimensional
verification problem, features from different design stages need to be extracted and
used to train a unified model or several separated models. These can be used to predict
the required verification metrics.

3.6 Chapter Conclusions
In recent years, numerous extra-functional aspects of electronic systems are brought to
the front and imply verification of hardware design models in multidimensional space
along with the functional concerns. In this chapter, targeting at understanding of this
new verification paradigm, we have performed a comprehensive analysis of the state
of the art and presented a taxonomy of extra-functional aspects for hardware design
verification, an up-to-date survey of related research works and trends towards enabling
the multidimensional verification concept and investigated the potential approach of
machine learning based techniques to support the concept. As the result of the performed
analysis of the state of the art, we have outlined gaps in methodologies and tools for
holistic multidimensional verification for hardware design models and the key challenges.

44

4 Security Aspect Verification
As presented in Chapter 3, the security aspect plays an essential role in ensuring the
trust, integrity, and authenticity of modern electronic systems. For hardware security,
the secure cryptographic primitives which have brought a new paradigm in secure
communication in the electronic system, and PUF which uses the device’s inherent
variability during the manufacturing process as electronic fingerprints to protect IP or as
key generation, are widely used security mechanisms. The existing literature on hardware
security is considering ad hoc threat models, defenses and metrics for evaluation [10].
As proved by Table 1 in Chapter 3, methods used for attacking and protecting the
systems are diverse when targeting different electronic systems and security scenarios.

This chapter focuses on the timing side-channel vulnerability analysis, as one of
the most popular security topics, for both the cryptographic IP core and PUF involved
electronic systems. Specifically, in Section 4.1, it provides a brief introduction of
side-channel related hardware security. Then Section 4.2 and Section 4.3 address
the study of timing side-channel vulnerability analysis of hardware designs of RSA
crypto core and fuzzy extractors used in memory-based PUF enabled devices respectively.

This chapter is based on the following publications:

• III X.Lai, M.Jenihhin, J.Raik, and K.Paul, “PASCAL: Timing SCA resistant design
and verification flow,” in 2019 IEEE 25th International Symposium on On-Line
Testing and Robust System Design (IOLTS), pp. 239–242, IEEE, 2019

• IV X.Lai, M.Jenihhin, G.Selimis, S.Goossens, R.Maes, and K.Paul, “Early RTL
analysis for SCA vulnerability in fuzzy extractors of memory-based PUF enabled
devices,” in 2020 IFIP/IEEE 28th International Conference on Very Large Scale
Integration (VLSI-SOC), pp.16–21, IEEE, 2020

4.1 Introduction
Security is not a first-class citizen in (hardware) design and is rarely considered during
design space exploration. Bugs or vulnerabilities can originate from design flaws, some
of which can be fully eliminated after a complete verification. The goal of the adversary
in a security-critical application, is to learn or corrupt the secret information that one has
no legitimate access to, e.g., the classified data or secret keys. Novel attack vectors like
side-channel analysis rely on design features, to build efficient exploits that undermine
assumptions regarding the accessibility of internal secret or exploitable information in a
computing system.

The side-channel attacks can efficiently pose security threats to a system with
integrated cryptography. Most of the side-channel vulnerability analyses for hardware
designs presented in literature tend to break robust cryptography operations algorith-
mically through physical parameters like power, electromagnetic and execution time.
For example, timing driven side-channel attacks exploit timing differences in execution
traces.

As opposed to physical Side-Channel Attacks (SCAs) like differential power attacks,
etc., that require physical access to the computer system, timing SCA can be launched
(relatively) easily on general purpose compute environments that contain a memory
hierarchy or performance-enhanced microarchitecture features like speculative execution.
One exploits the difference in timing that arises because of a micro architectural artifact
(e.g., the difference in access times between a cache hit and a cache miss) to create a

45

timing side channel. The key invariant in these attacks is that there are different timing
paths that provide out of band information.

4.2 PASCAL: Timing SCA Resistant Design and Verification Flow
Encryption algorithms and techniques for securing data continue to be an active domain
of research in academia and on industrial fronts. They are fundamental in ensuring secure
communication among electronic systems. Hardware implementations of encryption
algorithms are being increasingly applied as the security mechanism in electronic system
since they are regarded as a more effective root of trust.

Rivest-Shamir-Adleman (RSA) is a public-key cryptography algorithm and widely
used in practice for secure communication, both as software libraries and the hardware
security mechanism [103]. The RSA algorithm is asymmetric and is typically used for
specific security cases such as sending sensitive data over to an open network. One of
the examples of RSA used for secure communication scenarios is shown in Figure 12.
The two users presented in the figure have their own secrets keys and public keys. The
public key is publicly accessible whereas the private key is kept only by the user. When
the sender wants to send the private (secret) data to the receiver, the private data need
to be encrypted with the receiver’s public key. Then the encrypted text, ciphertext,
can be transmitted to the open network where everyone especially the attacker has the
access. Then as the receiver, when he receives the ciphertext, he can use his private key
to decrypt it and then get the private data. However, other illegitimate users can not.

Figure 12: RSA for Secured Communication

As a public-key cryptographic algorithm, the RSA algorithm uses one-way function
that is easy to compute in one direction but hard in the reverse direction. As mentioned
before, the RSA algorithm involves two keys, the public key and the private key, which
are mathematically linked. The generation of the RSA’s public key includes a big number
N generated by the multiplication of two large prime numbers. The security of RSA
algorithm depends on the hackers’ ability to factorize the big number N [104]. However,
the reverse computation, factoring their products is difficult and time-consuming. Many
researchers have studied the vulnerability of RSA system since its initial publication [105].
The best-known factoring attack is proven invalid for a typical key of more than 1024
bits in length for the conventional computer. However, recent research works present
an efficient method, timing side-channel attack, to recover RSA private keys indirectly
by observing its running time of the cryptographic algorithm and deducing the secret
information.

4.2.1 Information Flow Tracking and Timing Side-Channels
Denning et. al. introduced the concept of secure information flow in a computer
system whereby it can be shown that no unauthorized flow of information is possible

46

due to control and data flow [106]. Consequently, Information Flow Tracking (IFT)
has evolved and has been used as a formal methodology for modeling and reasoning
about security properties related to integrity and confidentiality of side channels. The
problem becomes more interesting and hard because high-level architecture abstractions
are translated into transparent micro architecture implementations. While the hardware
behavior in the micro-architecture can cause additional information flows which can be
gainfully exploited to form these side channels.

One of the examples to merge IFT with timing side channels is the security path
verification which addresses a specific, important aspect of overall security verification
by checking access to the secure data in the hardware implementation to verify whether
attackers can access the secure (secret) data through illegal logic paths. For example,
in Figure 13, paths from A to B are controlled by the secret node S. Tools do taint
propagation (i.e., taint analysis), which is a conservative approximation of secure
information flow analysis, to find such paths [107]. A timing side channel exists if the
contents of S can be derived/deduced by analyzing the arrival time of A at B. We
call the two or more paths with unequal transit time as Timing Disparate Security
Paths. Once we identify the set of Timing Disparate Security Paths, re-timing or
balancing the paths for time can be undertaken to make the design robust with respect
to timing SCA. Using Formal methods, it is possible to identify paths that allow taint
propagation leading to information leakage. However, all such paths may not create a
timing channel. We apply a commercial tool Cadence JasperGold SPV [46], to identify
possible Timing Disparate Security Path candidates and then discard those paths that
have equal execution traces. This helps us to enumerate all paths that could form a
timing side channel and potentially be a vulnerability for a timing side-channel exploit.

Figure 13: Timing Disparate Paths

The primary contribution of this research work is a secure automated digital design
flow – PAth based Side Channel AnaLysis (PASCAL) – that can help to create a secure
IP core or contribute to the system-on-chip security. The proposed flow starts from the
RTL design and the threat model then uses a state of the art Security Path verification
tool to identify potential timing side-channel vulnerabilities and last proposes a method
to remove them by enforcing uniform timing to remove data-dependent instruction cycle
count variations in the timing side channels.

The rest of this research work is organized as follows. Section 4.2.2 summarizes the
state of the art in this area. Then Section 4.2.3 details the approach and presents the
key algorithmic contribution in this work for identifying Timing Disparate Security Paths
while Section 4.2.4 presents a lightweight method for Timing SCA Resistant Design

47

using the results of the method proposed in the previous section. Section 4.2.5 describes
the implementation results on a widely used crypto core and also demonstrates the
efficacy of the proposed mitigation method. Section 4.2.6 summarises the contributions
of the research work.

4.2.2 Related Works
Timing side channel attacks are known to be a hard and very important problem in
modern systems. They have been used to extract cryptographic secrets from running
systems [108]. Even differential privacy systems are not immune to these attacks [109].
And these are possible using both remote [110] and local adversaries [111]. Koeune et.
al present an in-depth tutorial on side-channel attacks in [112].

A popular approach for defending against both local and remote timing attacks is
to ensure that the low-level instruction sequence does not contain instructions whose
performance depends on secret information. This can be enforced by manually re-writing
the code, as was done in OpenSSL or by changing the compiler to ensure that the
generated code has this property [113].

While methods for high-performance design or low power are available, design for
security is still ad hoc. Only recently, systematic methods support design for trust
and security have been described in literature [114,115]. Menichelli et. al present an
exploration approach centered on high level simulation based on SystemC to suggest
improvements in the knowledge and identification of the weaknesses in cryptographic
algorithm implementations [116]. Ardeshiricham et. al. have proposed an information
flow based method for secure hardware design [117] by analyzing all logical code flows
of the RTL code. In contrast, VeriCoq-IFT converts designs from HDL to Coq to
analyze formal security properties [118]. SecVerilog requires explicit annotating each
variable in the design with a security label — this is similar to using a type system to
track information flow in the code [119]. Deng et. al have proposed a Computation
Tree Logic to model execution paths of the processor cache logic and derive formulas
for paths that can lead to timing side-channel vulnerabilities [120].

Most of the mitigation techniques that have been proposed try to remove data-
dependent instruction cycle count variations by balancing timing or do a power flattening
to remove power peaks/anomalies [121]. In some cases, Pipeline randomization for
power and timing is also attempted. Alternatively, packet route randomization as a
mechanism to increase NoC resilience has also been proposed [122]. Recently, Jiang
et. al. have proposed a High-Level Synthesis (HLS) infrastructure that incorporates
static information flow analysis to remove timing channels in a verifiable manner on
HLS-generated hardware accelerators [123].

The methodology proposed in this work is based on a formal method that can
identify all Timing Disparate Security Paths at RT level and improve the state of the
art with a simple mitigation scheme for potential SCA vulnerable timing channels.

4.2.3 Methodology
The RSA algorithm has been shown to be vulnerable to timing SCAs and related
mitigation techniques have also been proposed. However, the major focus continues
to rely on verifying the correctness of encryption algorithms and their implementation
in software and hardware. We present an approach based on RT level analysis that
allows a precise understanding of possible flows for side channels based on timing.
The methodology relies on a formal analysis tool Cadence JasperGold Security Path
Verification App (JG SPV) [46]. The original objective of the tool is for security

48

verification by checking access or leak of the secure data on the hardware to make
certain that the attacker cannot breach the authentication logic and seek the secure
data through illegal paths.

Based on a formal method of path sensitization from the secret information to the
output observable points, we propose a method that detects possible Timing Disparate
Paths in RTL designs that could be exploited as Timing Side Channel(s). As a result of
this analysis, a simple and effective re-timing of timing SCA sensitive paths is proposed
to make the design immune to the threats under the chosen threat model. We illustrate
this on standard RSA RTL Verilog code.

Algorithm 1: Example: RSA Modulus Code
Input: Cm,Kn; // C is the m bits cipher text, K is the n bits private key
Output: Om; // O is the m bits output plain text

1 R0 = Montgomery(Cm) and R1 = Montgomery(1) ;
2 j = 0 ;
3 while j ≤ n−1 do
4 R0 = Montgomery_Reduction(R1 ∗R1) ;
5 if Km == 1[j] then
6 R0 = Montgomery_Reduction(R0 ∗R1) ;
7 end
8 end
9 Om = Montgomery−1(R0) ;

The decryption of the RSA modulus in Algorithm 1 uses Montgomery modular
multiplication with the square-and-multiply algorithm. Here, we only focus on explaining
the unintended timing channels in RSA, which attackers can use to reverse the private
key. The details about how to choose the key or how the Montgomery algorithm works
are out of this research’s scope. In Algorithm 1, n, the bit number of Kn, decides total
loop times while the value of single bit of Kn: Kn[j] determines the operations for
each single loop – only when Kn[j] equals 1, statements at line 5 ,6, 7 will be executed
while Kn[j] equals to 0 will not. For the decryption of RSA, the total operations that
need to be executed might be different with different private keys due to the above
reasons. Assuming the time for single bit Kn[j] is tKn[j], the final execution time will be
ttotal =

∑n
j=0 tKn[j]. Thus, keys with a different number of ’1’s will cause a different

execution time. This will open a timing side-channel for the attackers. Therefore, by
doing a timing analysis, recovery of the value of K can be facilitated. The security of
the RSA encryption scheme depends on the secrecy of the RSA modulus factors and,
hence, this attack is potentially dangerous. It can be easily seen that there are potential
n different timing classes that the observer will see at the output.

In order to verify this timing SCAs, we have proposed the verification flow: Timing
Disparate Security Path Identification Flow (PASCAL) is shown in Figure 14 and the
related algorithm is shown in Algorithm 2 separately. The tool used in this work to verify
the secured IP is Cadence JasperGold Security Path Verification App (JG SPV) [46].
It is a commercial tool-set Cadence JasperGold Formal Verification applications and
applied to RTL designs. It uses path sensitization technology and introduces a new
type of property, path cover, which covers all the paths between the defined source
and destination signals. This property addresses a specific, essential security scenario
whether there is any unintentional path from/to the secured area, and this property
can not be described by the conventional assertion-based formal method. It can be

49

used to check the security information leakage and taint propagation in the system.
Algorithm 2: PASCAL Algorithm

Input: Design Under Verification (DUV)
Output: List of timing disparate Paths (P)

1 cex1 = Execute JG SPV with DUV;
2 Append Path P1 to P;
3 i = 1;
4 while cexi! = 0 do
5 Add cexi as new constraint ;
6 Initialize Counter;
7 cexi+1 = Execute JG SPV with modified DUV;
8 Append Path Pi to P;
9 i = i+1;

10 end

Figure 14: PASCAL Graphical Representation

In this work, we use JG SPV to analyze if there is one or several paths from a
variable deemed to be secure and unobservable to the output. JG SPV uses a special
path sensitization technology implying taint analysis to find if private key K can be
propagated to the output O. As a first step, it generates a connected graph containing

50

the states and variables and corresponding paths as shown in Figure 15. Next, the tool
proves if there is a functional (i.e., sensitive) path among the ones in the initial set
and if the path exists, JG SPV gives a counterexample as shown in Figure 16. The
example shows the waveform of related signals along the path. We use the command
"[get_property_info -list{max_length} property_exponent_to_finish]" to get the total
execution time X (clock cycle based) of an existing path for this specified secure signal
pair. Here it needs 44 clock cycles (additional 2 clock cycles are for set-up) to propagate.

Figure 15: JG SPV Generated Connected Graph

After that, JG SPV is used to find another functional path (if it exists) from K to
the output O with a time length different from X cycles. This is achieved by invoking
JG SPV on a modified design, shown in Figure 17. A counter is added which drives the
multiplexer to select the situation where the DUV both finishes the decryption AND
also the length of the execution trace Y is not equal to X. If JG SPV finds another path
with an execution trace length not equal to X and Y, it is added to the Union Clause P
of the multiplexer select condition and the process is repeated until they find all the
timing classes.

Figure 16: Counter Example and Execution Trace

51

Figure 17: Modified DUV

4.2.4 Timing SCA Secure Design Flow
Considering the above timing side-channel vulnerability in RSA hardware implementation,
this work also proposes a method that aims to achieve timing-sensitive noninterference
for the synthesized design, via which it is ensured that confidential or secret values
cannot be revealed by observing/measuring the timing of events at observable ports.

As explained earlier, the attacker can infer the value of the secret key by measuring
the execution time of the RSA core. This is because of the existence of a strong
correlation between the secret and the decryption time. An intuitive method to remove
this Timing SCA vulnerability is to insert additional registers in the faster paths using
path-balanced scheduling [124]. For example, if the two possible paths differ by 1 cycle,
then a single register inserted in the slower path equalizes the timing and hence the
timing sensitive vulnerability at the output port is removed.

However, as shown in Figure 18, there could be many paths t1, t2, · · · , tn in the same
basic block. Assuming there are n/2 paths each differing by one cycle, a path balanced
scheduling synthesis procedure would insert 1+2+3+ · · ·+n/2 or O(n2) registers.

Figure 18: IP Core with Many Timing Disparate Security Paths

It may be noted that Timing Disparate Security Paths result in a Timing SCA
vulnerability only if they are observable at user interfaces (output ports). This fact
enables us to relax the constraints in the path balanced scheduling approach and enforce
indistinguishable timing behaviors at the observable points in the design. Clearly, for
the basic block or the core to be timing insensitive at the observable points, the output
should be observable modulo tmax cycles where tmax = Maximum(t1, t2, · · · , tn). As

52

shown in Figure 19, we enable the output port/interface every tmax cycles using a
counter and an AND gate. This small additional circuitry acts as the compensator

Figure 19: Proposed Mitigation Scheme

or balancing/compliance FSM and provides the (read) enable signal for observable
interface. The contribution of the work is the automatic generation of the tm parameter
for the if statement in lightweight compensator from the Timing SCA Security Path
Verification flow of the previous section.

This, therefore, leads to a very simple synthesis technique for ensuring a path
balanced design with a single lightweight Compensator Block at the observable points
of interest in the design. The additional circuit has a very small overhead counter which
counts up to tm to generate the control input for the AND gate which provides the
enable signal to the observable register. The counter is reset every time a new input
enters the basic block. This additional logic incurs no penalty in the critical path of
the system — it has a performance impact because of path balancing as all paths now
have the same latency. Algorithm 3 formally describes the method below. This method
avoids resource duplication by having a uniform counter where the results from the
different Timing Disparate Security Paths are delivered to the observable interface with
the same latency.

Algorithm 3: Timing Channel Removal
Input: Design Under Verification (DUV)
Output: Secure Design Under Test (SDUV)

1 P ← Output of PASCAL(DUV) ;
2 tm← MaxExecutionLength(P);//Algorithm 2
3 Compensator Logic Block ← Counter(tm) + ResetLogic;
4 SDUV ← Compensator Logic Block + DUV

53

4.2.5 Experimental Results
The Montgomery modular multiplication with square-and-multiply algorithm based RSA
cryptographic RTL implementation is vulnerable to timing SCA. This is because for
different keys the time differences are dependent on the number of ’1s’ in the key
as explained in Algorithm 1. In Figure 20, the time required to generate the timing
disparate classes for 32-bits RSA, 64-bits RSA and 128-bits RSA are shown. For different
RSA, the time needed to identify timing cases is varying: for the initial few time classes,
they are obtained quickly while for the last few time classes they need a very long time.

Our method can correctly identify all timing classes using formal methods. i.e., for
the 32-bits RSA verilog implementation, it identifies all the timing classes with cycle
times from 33 to 64. As for the mitigation method mentioned in Figure 17. Since the
counter needs to count to 64, we only need a 7 bits counter which incurs an approximate
area penalty of 7 flops. In contrast, the path-balanced scheduling strategy would require
about 512 flip flops. Clearly, with a 64-bit RSA, the savings are more significant. As
mentioned earlier, the Compliance State Machine is not in the critical path and incurs
no penalty in the operational speed of the circuit.

Since the counter has to count to 64, we need a 7 bit counter which incurs an
approximate area penalty of 7 flops. In contrast, the path-balanced scheduling strategy
would require about 512 flip flops. Clearly, with a 64-bit RSA, the savings are more
significant. As mentioned earlier, the Compliance State Machine is not on the critical
path and incurs no penalty in the operational speed of the circuit. The time required to
generate the timing disparate classes for designs is shown in Table 3.

Table 3: Verification Time

Benchmark No. of Classes CPU Time (sec)
32 bit RSA 32 162
64 bit RSA 64 2565
128 bit RSA 128 38115

The initial timing classes are obtained quickly and as expected, it takes longer to find
the last few classes as shown in Figure 20. The initial timing classes are obtained quickly
and as expected, it takes longer to find the last few classes as shown in Figure 20.

RSA-128

1500 180 30

1250 150 25

1000 120 20

750 90 15

500 60 10

250 30 5

0 0 0

RSA-64

RSA-32

1 8 16 24 32
1 8 16 24 32 40 48 56 64
1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Identified disparate timing classes

C
P

U
 t

im
e

fo
r

a
n

ex
t

d
is

p
ar

at
e

ti
m

in
g

cl
as

s
id

en
ti

fi
ca

ti
o

n
 (

se
co

n
d

s)

Figure 20: Normalized Execution Times

54

4.2.6 Conclusions
This section proposed a novel approach to discover timing SCA vulnerabilities in
hardware designs and a lightweight mitigation technique to automatically eliminate
the information leakage caused by the timing side channels. The proposed approach
combines the information flow tracking with a formal method by using a commercial
formal verification tool, Jasper Gold SPV. Compared with the state of the art in which
the timing SCA is mostly addressed after manufacturing, this work is able to identify
the timing SCA of the hardware design at the early design level and make it easier
to fix, therefore reducing the design cost and the time-to-market. For the mitigation
technique, the lightweight Compensator Block removes the timing side-channels with
minimum modifications to the design and no impact on the combinational delay of
the critical path in the circuit. The proposed approach and mitigation technique are
demonstrated on a case study crypto core RSA hardware implementation.

4.3 Early RTL Analysis for SCA Vulnerability in Fuzzy Extractors
of Memory-Based PUF Enable Devices

This section addresses the timing side-channel vulnerability analysis of the fuzzy extractor
for memory-based PUF enabled integrated circuits.

Physical Unclonable Functions (PUFs) are hardware primitives which derive identifiers
and cryptographic keys from the random variations of the silicon manufacturing process.
PUFs provide a significantly higher security assurance as the generated keys are volatile
and derived only when required. Thus, PUFs can be easily attached or embedded into the
cryptographic implementation for authentication and identification [125]. PUF-enabled
devices are also efficient alternatives to the expensive Non-Volatile Memory (NVM) to
store the key because the keys generated by PUFs are derived by measurements in the
field during the run time and don’t need to be stored permanently.

However, PUFs are known to be sensitive to environmental factors such as the am-
bient temperature, the supply voltage noise, etc., which may affect the reliability of the
response measurement, and ultimately, reduce the reproducibility of the cryptographic
key. Along with the external factors, the internal factors of the PUF’s manufactur-
ing technology prevent it from guaranteeing a constant response all the time. This
nondeterminism poses issues for applying a PUF as a key generator or identifier [126].
Therefore, for the post-processing, a Fuzzy Extractor (FE) is an essential component
to help a PUF generate a reliable key by correcting the errors caused internally or by
environmental variations.

Different types of PUF structure and the environmental conditions imply different
requirements for the FE and the corresponding Error Correction Code (ECC). An
example of a silicon PUF is the memory-based PUF, which is widely used in chip-level
authentication. ECCs such as the Bose–Chaudhuri–Hocquenghem (BCH) [126] or
Reed-Solomon [127] are usually used in memory-based PUF enabled devices. While
FEs with ECCs significantly raise reliability, they can lead to new exploits such as
allowing an attacker to extract sensitive information by studying the behavior of ECC.
In recent research works, Side-Channel Attacks (SCAs) on ECC implementations have
attracted particular attention of the research community. In [128], the authors extract
the information about the key by non-invasive measurement of electromagnetic radiation
together with a differential power analysis of the BCH decoder. In [129], the authors
study the simple power analysis of both BCH and Reed-Solomon code and manage to
recover the PUF response from the collected power traces.

However, there is no research work that refers to attacks that combine timing SCA

55

and fault attacks for FEs, namely targeting to the execution time of the error-correcting
code of FE in combination with the insertion of faults to PUF. So in this work, we
address this gap by a study on BCH and Reed-Solomon RTL designs execution time
differences as a reaction to intentionally triggered faults inserted into PUF. Specifically,
the contributions of this study include:

• Definition of an attack model based on fault injection and timing analysis of ECC
execution that may lead to the secret PUF values extraction.

• An early design stage RTL methodology for verification of an ECC design invulner-
ability against the proposed attack by employing both structural and simulation-
based analysis steps.

• Case studies of Reed-Solomon and BCH based ECC with vulnerabilities identifica-
tion and exploitation.

The rest of the section is organized as follows. Subsection 4.3.1 reviews the back-
ground and related works of the FE architecture and ECC decoders. The attack model
is discussed in Subsection 4.3.2. Subsection 4.3.3 presents the proposed methodology
for verifying invulnerability against the proposed attack. Subsection 4.3.4 presents a
case study for ECC implementations and Subsection 4.3.5 concludes the section.

4.3.1 Background and Related Works
The Fuzzy Extractor [130] is a secure method to generate cryptographic keys from
noisy sources. The FE serves as a post-processing unit in memory-based PUF-enabled
cryptographic schemes. It is used both in the Generation and Reconstruction Procedures,
as illustrated in Figure 21 and Figure 22 correspondingly.

In the Generation Procedure case, the fuzzy data from the PUF response W and
a random secret S are used to generate the Helper Data by XOR operation on W
and E(S0) which is encoded S0. The generated helper data is stored in a non-volatile
memory. In memory-based PUF-enabled devices, the Generation Procedure happens
only once at the first-time power-on of the memory-based PUF.

Figure 21: Generation Procedure in A PUF Fuzzy Extractor

On the contrary to this, the Reconstruction Procedure is executed many times during
the product lifetime. Due to the noise and PUF manufacturing randomness, it is difficult
to generate the same response consistently. To reproduce the correct cryptographic
key, the Helper Data, stored in an NVM, is used in conjunction with the measured
PUF response W ′. Then with the help of the ECC decoder to detect and correct the
divergent bits, the correct W is reproduced. After applying the Hash Function, the
expected correct cryptographic key is reconstructed.

The FE guarantees that the resulting key is consistent while the publicly accessible
Helper Data does not leak any information related to the secret of the key. To ensure

56

Figure 22: Reconstruction Procedure in A PUF Fuzzy Extractor

consistent generation of the correct key, the hamming distance between the measured
PUF response W ′ with the originally measured W in the Generator Procedure should
be smaller or equal to the correction capability of the ECC decoder, represented as
a constant value t. In this work, we assume that the measured responses of the
memory-based PUF are within this hamming distance constraint.

Recent research works have identified potential attacks on FEs [131]. Most of
them target the Reconstruction Procedure. In [132], the authors report on a method
to extract the PUF secret by manipulating the Helper Data in the Reconstruction
Procedure. In [133], Delvaux et al. provide an in-depth analysis of the Helper Data
algorithms and identify new threats for leaking the Helper Data and the soft-decision
coding.

The ECC Decoder is the main component in a FE. Binary BCH and Reed-Solomon
are the two types of ECC that are widely used in PUF-enabled devices. Both codes
are cyclic and capable of detecting up to 2t and correcting up to t errors by adding 2t
check bits or non-binary values (symbols) to the data. Binary BCH is used for binary
error correction, and Reed-Solomon is used for symbol error correction. While both
software and hardware implementations of these codes exist, the hardware ones are more
adopted. First, this is because the complex algorithms of the decoders require significant
computational power along with the real-time constraints. The second difficulty for
software implementations is the limited support of the Galois Fields Arithmetic operation
in the general-purpose processors [134]. The hardware implementations of binary BCH
and Reed-Solomon decoders are discussed in more detail in Section 4.3.4.

4.3.2 Attack Model
In this work, we assume an attack combining 1) fault injection to the memory-based
PUF with 2) a timing SCA for observing and comparing the different decoding execution
times of the ECC unit that is aimed at revealing the correct memory-based PUF data. In
case of success, the attack explicitly compromises the core function of the PUF-enabled
cryptographic devices, because the attacker can clone the PUF and can steal the secret.

Fault Injection Parameters For the physical fault injection to the memory-based
PUF the following fault parameters are assumed.

(a) Granularity: each fault injection results in exactly one fault in one-bit data.

(b) Modification (fault type): after the fault injection, the manipulated data is set to
a specified logic value, i.e., either ’1’ or ’0’.

57

(c) Control: the attacker has a bit-wise precise control of fault injection to the
memory-based PUF bits.

(d) Effect of the fault: the injected faults have a transient nature, i.e., the injected
values are overwritten by the normal functionality of the device (e.g., the next
measurement of the PUF on power-on).

Several studies on laser fault injection [135] have demonstrated similar attack parameters
and, therefore, the feasibility of the above assumptions. Technical details of the fault
injection attack implementation are out of the scope of this study.

Attack Assumptions The following set of assumptions must be satisfied for the
success of the attack. The feasibility of the assumptions (iii)-(vi) is supported by several
research works in state of the art.

(i) The output of a memory-based PUF measurement in the cryptographic device is
processed by a FE with a binary BCH or Reed-Solomon based ECC.

(ii) The ECC implementation leaks exploitable information through the timing-side
channel. Comment: The methodology for identifying the vulnerability enabling this
assumption is the core contribution of this study and is presented in Section 4.3.3.

(iii) The memory-based PUF is noise-free under stable environmental conditions. The
errors in the memory-based PUF are caused by the environment. Comment: While
an ideal noise-free memory-based PUF would not require the FE at all, we assume
that the noise is caused by the variations in the external environment while the
internal noise is negligible. [136] demonstrates that the external environmental
conditions like the ambient temperature, supply voltage, etc. have a significant
impact on the error rate of the PUF.

(iv) The generated Helper Data is stored in NVM or the flash memory of the crypto-
graphic devices and remains constant during the Reconstruction Procedure.
Comment: As an added value, this assumption creates an advantage for the
proposed attack, compared to alternatives (e.g. [132,133]), because it does not
rely on the attacker being able to modify the Helper Data.

(v) The fault injection parameters (a) to (d) hold (see 4.3.2).
Comment: Several research works proposed bit-wise fault injection in SRAM
and other on-chip memories. E.g., in [137], bit-wise faults were successfully
injected into a PIC microcontroller through a semi-invasive method and without
mechanical damage to the silicon.

(vi) The attacker has controlled access to measure the decoding execution time.
Comment: The physical measurement of the ECC decoding execution time can
exploit the reflection of timing by the power traces. In [138], the authors analyze
the use of the AES execution power traces for the SCA. The power traces are
represented by changes of power over time, with the timing information embedded.
A similar approach is used in [139] for RTL verification of RSA designs against
vulnerability to timing SCAs.

58

Attack Procedure The proposed attack is a combination of fault injection with
timing side channel analysis and represented by the following 4 steps. The procedure is
illustrated in Figure 23.

1. Power on the device. Measure the initial PUF data. With the above assumptions,
this memory value should be error-free, i.e., the same as W generated in the
Generation Procedure. Measure and record the reference time T as the number
of clock cycles for the execution of the ECC decoding.

Figure 23: An Illustration of the Proposed Attack Procedure

2. Inject a fault f at the mth bit of memory-based PUF following the (a) to (d)
parameters and generate the new memory data Wm_f . Wm_f has a one-bit
difference value compared to W . E.g, if the f is a set to logic “1” value and
m = 1 then W and W1_f can be either equal or can be different by exactly one
bit at the first position. Then execute the Reconstruction Procedure, measure
the decoding execution time T (m).

3. The relation between these two decoding times T and T (m) contains only two
possible cases. The PUF’s secret single bit m can be revealed by comparing the
two decoding times as follows:

• if T ! = T (m), then a different value at the mth bit was injected. E.g., for
f = 1, the original value of the mth bit in memory is ’0’;

• if T = T (m) then the value at the mth bit was equal to the injected one.
E.g., for f = 1, the original value of the mth bit in memory is ’1’;

4. Repeat the steps 1) to 3) of the procedure until the last mth bit of memory-based
PUF. The memory-based PUF’s secret value is revealed.

4.3.3 Proposed Methodology
The precondition for the introduced attack is the non-constant decoding execution
time in case of different input data for the ECC unit of the memory-based PUF Fuzzy

59

Extractor. In this work, we propose a methodology to identify this vulnerability in an
ECC implementation already at the RTL design phase. The methodology employs both
structural and simulation-based analysis for binary BCH and Reed-Solomon algorithms
based hardware ECC implementations. In practice, these two algorithms are widely used
by the industry in memory-based PUF-enabled devices.

Structural Analysis of ECC Decoder

1. Binary BCH Decoder: A general binary BCH decoder hardware implementation
has three stages, as shown in Figure 24. The divergent (error) bits are identified
by the Syndrome Calculator, Key Equation Solver and the Chien Search. Next,
the decoder corrects the error bits by the XOR operation on the stored input with
the identified error bits to recover the correct codeword. Let r(x), c(x) and e(x)
be the received polynomial, codeword polynomial and error polynomial, i.e., r(x)
= c(x) + e(x). Assume the binary BCH decoder can correct t errors. As the
structural analysis of the binary BCH, we consider the following reasoning.

Figure 24: Binary BCH Decoder Structure

(a) Syndrome Calculator: It is the first stage in the decoder generates 2t
syndromes as defined in (1).

Si = r(xi) = r0 + r1xi + r2x2i ++ rn−1x(n−1)i (1)

where 1≤ i≤ 2t−1. An important feature of the syndromes is that they
do not depend on transmitted information but only on error locations. If
at position i there is an error then Si has a non-zero value and it is equal
to zero otherwise. For all possible inputs, the decoder always generates 2t
syndromes. Therefore, the time for the syndrome calculation is constant for
the BCH decoder with a fixed error correction capability.

(b) Key Equation Solver: In the second stage, the error location polynomial
σ(x) is generated. Berlekamp Massey Algorithm (BMA) is one known
iterative procedure that determines polynomial equation (2) out of a set of
linear equations for the 2t syndromes calculated in the first stage.

σ(x) = 1+σ1x+σ2x2 + ...σtx
t (2)

BMA can be implemented in parallel or serially. In [140], it is demonstrated
that a parallel implementation for errors correction BMA needs 2t iterations.
A serial implementation implies a significant increase in the number of
iterations. According to [141], it needs 2t2 iterations. However, for both
cases, the total number of iterations is determined only by t, which is the
maximum number of errors the decoder can correct.

60

(c) Chien Search: This stage searches for error locations by checking the roots
of σ(x). It is a simple trial-and-error procedure. All nonzero elements of the
Galois Fields for a binary BCH decoder are generated in sequence and only
capture the condition when σ(xi) is equal to zero which is the error position.
Therefore, in this stage, the total number of nonzero elements depends only
on the Galois Field GF(2m) where n = 2m−1 and n is the size of codeword.

To conclude, for different binary BCH decoder implementations, the error correc-
tion bits and the size of the codeword are the factors which lead to the different
decoding execution time. However, for a specific binary BCH decoder, these
parameters are fixed at the design phase. Therefore, the structural analysis has
not identified timing channels in binary BCH decoder structures.

2. Reed-Solomon Decoder: Reed-Solomon (RS) decoder aims at non-binary (symbol)
error correction. Different from the binary BCH, which only needs to generate
error locator polynomial σ(x), RS also needs to generate an error value polynomial.
Therefore, some RS implementations replace BMA with Euclidean Algorithm
(EA) for the Key Equation Solver to calculate the error location polynomial and
error value polynomial and add a new component Forney to calculate the error
value. The Reed-Solomon decoder structure is illustrated in Figure 25. Here,
the differences with the BCH decoder structure are highlighted in red. In the
following structural analysis, we focus only on these two different components.

Figure 25: Reed-Solomon Decoder Structure

(a) Euclidean Algorithm (EA): It is an iterative procedure to generate the error
locator polynomial and the error value polynomial with the 2t syndromes
generated by the Syndrome Calculator stage. Particular implementations
of EA may prefer a pipelined version with the objective of performance
optimization [142]. In EA procedure [142], the error locator polynomial σ(x)
and the error value polynomial ω(x) are acquired by solving the equation (3).
Equation (3) can be represented in the form of equation (4). The extend
Euclidean Algorithm can find a series polynomial by (5). From (4) and
(5), Ai(x) = σ(x), Ri(x) = ω(x) and Bi(x) = −Q(x). To solve the Key
Equation the EA procedure starts with initiating the values R0(x) = x2t,
Q0(x) = S(x), L0(x) = 0, U0(x) = 1 and then it is followed by interactions
of four equations used to calculate Ri(x), Qi(x), Li(x) and Ui(x), based
on the values from the previous stage, until the degree of Ri(x) gets smaller
than the degree of Li(x) or t. When the iteration is finished, the equation
(3) is solved. Because the R(x) starts at the degree 2t, and the iteration
can finish at the degree of R(x) equal to t or smaller. Therefore, the EA

61

stage may require a different number of iterations for the different codewords
which may introduce different execution times.

ω(x) = S(x)σ(x) mod x2t (3)

σ(x)S(x) = Q(x)x2t +ω(x) (4)
Ai(x)S(x)+Bi(x)xt = Ri(x) (5)

(b) Forney: By using the Forney algorithm, the error value e(x) can be acquired
by the equation (6).

ej =− ω(Xj)
σ′(Xj)

(6)

Normally, it is implemented in combinational logic because ω(X) and σ(x)
are available. The execution time of this stage is constant.

To conclude, the structural analysis has not identified the timing channel in the
other stages of the Reed-Solomon structure but the second stage. Based on the
implementation, the Key Equation Solver stage in the Reed-Solomon based ECC
decoder can introduce the vulnerability.

Simulation-Based Analysis of ECC Decoder In an RTL simulation of an ECC
decoder implementation, a number of stimuli data parameters may have an impact on
the execution time of a decoding iteration. For the proposed simulation-based analysis
step, the following parameters are identified:

• codewordvalue: the encoded codeword value

• errorvalue: the error value is relevant only for a non-binary (symbol) ECC
decoders

• errorposition: the error bit position for a binary ECC decoder or the error symbol
position for a non-binary ECC decoder

• errornumber : the number of error bits or symbols for binary or non-binary ECC
decoder correspondingly

The structural analysis of binary BCH and RS decoders and the defined attack model
allows reducing the search space. Table 4 presents the relationship of the execution
time variation introduced by manipulating a particular decoding parameter and the
vulnerability to the proposed attack. The notations C and NC represent constant
and non-constant decoding execution time, while V and NV represent vulnerability or
invulnerability. In particular, manipulation of the codewordvalue parameter does not

Table 4: ECC Execution Time Variability and the SCA Vulnerability

ECC Decoding Execution Time/Vulnerability
Parameters RS decoder Binary BCH decoder

codewordvalue C/NV C/NV
errorvalue C/V

errorposition C/V C/V
errornumber NC/V C/V

62

identify the vulnerability of the target decoder. The attacker does not have access to
manipulate the predefined correct codeword and can only manipulate the input codeword
to cause an error. Based on the structural analysis, it is already known that different
codewords do not introduce different decoding time neither in binary BCH nor in RS
structures. The errorvalue and errorposition parameters can be manipulated by the
attacker by injecting faults to the input codeword. However, the constant decoding time
will not leak information through the timing channel. From Table 4, we can conclude
that the binary BCH decoder structures are secure with regards to the information
leakage through the timing channel. An RS decoder implementation can be vulnerable
if the attacker injects a different number of error symbols, i.e., the errornumber. The
table guides the designer which simulation campaigns are required to verify a particular
implementation against vulnerability to the proposed SCA.

4.3.4 Case Study
The feasibility of the proposed methodology was validated by running an exhaustive
simulation campaign on 3 case study ECC designs for memory-based PUF Fuzzy
Extractors, i.e., 2 binary BCH and a Reed-Solomon ECC implementations.

Binary BCH Decoder The implementation of the binary BCH decoder is an open-
source design in RTL Verilog accessible from Github [143]. Its general architecture is
illustrated in Figure 24. The decoder was configured for a 12-bit codeword, 8-bit message
and supports two types of BMA, i.e., serial BMA_serial and parallel BMA_parallel
versions. The configuration was set to correct up to two errors, i.e., t = 2. Both versions
were simulated with an exhaustive set of test vectors to identify the timing information
leakage. Only valid values for the 12-bit binary codeword were extracted by running the
encoder with all possible inputs. The input for the encoder is 4-bit message and 2-bit
error correction capability. Since the number of errors correctable for a given polynomial
is sparse, the encoder has the selection algorithm to select a suitable polynomial function
to meet the provided requirements. Thus the actual message bit might be changed.
In our case, the encoder pads 4-bit zeros and makes the input message bit 8-bit. We
input all possible 4-bit value into the encoder. Then each encoded message value was
merged with all possible error combinations considering the injection of 0, 1 or 2 errors
at a time, i.e., all combinations of errornumber and errorposition were simulated. This
means Ttest_vectors = 24 ∗ (

(12
0

)
+

(12
1

)
+

(12
2

)
)=1,264 ECC decoding executions were

analyzed for the each design, and the decoding time was measured.

Reed-Solomon Decoder The case-study Reed-Solomon decoder implementation is
also an open-source design accessible from Github [144] and illustrated in Figure 25. The
design was configured for 8-symbol codewords, 4-symbol messages and 8-bit symbols.
The error correction capacity was also set to 2 errors, i.e., t = 2. By default, the
design is pipelined by using registers to extend the execution time for each stage to
the worst execution-time case. In practice, for memory-based PUF enabled devices
where execution time is a critical factor, a configuration aimed at the decoder speed
optimization is often used. This was also applied for the current case study. Different
from the binary BCH, the Reed-Solomon decoder uses symbol-based error correction.
While the parameter errorposition represents the position of the error symbol, the
errorvalue can take one of the 28 = 256 possible values for an error in each symbol.
The number of all combinations for the valid codewords merged with all possible errors
for each symbol is Ttestvector =

(8
1
)
∗ (28−1) +

(8
2
)
∗ (28−1) +

(8
0
)
= 1,822,741 that

63

represents the number of executions to simulate and analyse per codeword. In the
simulation campaign, we limited the analysis to one random valid codeword. Based on
the architecture analysis, the other codewords provide the same results.

4.3.4.1 Experiment Results Analysis Experiment results are shown in Table 5. In the
list of parameters identified for manipulation by the proposed methodology, the symbols
" " and "-" represent the varied and constant parameters correspondingly. Td denotes
the number of different decoding execution times identified and the corresponding values
in clock cycles. For the Binary BCH, the experimental results confirm the conclusions
of the structural analysis and do not identify any variations in the execution times. For
the Reed-Solomon decoder, the red cells highlight the cases with the varying decoding
time. In this experiment, Td:3 {38, 66, 72} denotes different timing cases in case of
the different number of errors to be corrected, i.e., 38, 66 or 72 clock cycles for 0, 1
or 2 errors correspondingly. As shown in the first three rows, different errorposition

and errorvalue can not affect the decoding time, and it remains constant (but can be
equal to different values) Td : 1 {38}∥{66}∥{72}.

Table 5: ECC-based FE Decoding Timing Analysis
Varied Parameters Decoding time by ECC Implementations (clock cycles)

co
d
ew

or
d

v
a

lu
e

er
ro

r n
u

m
b
e
r

er
ro

r p
o

s
it

io
n

er
ro

r v
a

lu
e

Binary BCH(BMA_serial) Binary BCH(BMA_parallel) Reed-Solomon-4-8-8

- - - Td:1 {38}∥{66}∥{72}
- - - Td:1 {28} Td:1 {21} Td:1 {38}∥{66}∥{72}
- - Td:1 {38}∥{66}∥{72}
- - - Td:1 {28} Td:1 {21} Td:3 {38,66,72}
- - Td:1 {28} Td:1 {21} Td:3 {38,66,72}
- - Td:3 {38,66,72}
- Td:3 {38,66,72}

- - - Td:1 {28} Td:1 {21}
- - Td:1 {28} Td:1 {21}

- Td:1 {28} Td:1 {21}
- - Td:1 {28} Td:1 {21}

4.3.5 Conclusions
The application of Fuzzy Extractors for error correction may enable opportunities to
break the secure PUFs if no countermeasures are taken. This work considers a combined
attack model based on fault injection and timing analysis of ECC execution. In the
worst case, such an attack may lead to the secret PUF value extraction. An early design
stage RTL methodology was developed to verify the ECC design invulnerability against
such or a similar SCA.

The methodology involves structural and simulation-based analysis parts. In our
study, we targeted at two ECC architectures most widely used in FEs. The structural
analysis has not identified vulnerabilities in the considered binary BCH architectures,
while the architecture of Reed-Solomon based ECC may be vulnerable in particular
implementations. A set of simulation-based experimental results have confirmed the
findings and demonstrated the timing information leakage. Under the specified assump-
tions, the proposed attack procedure is able to exploit this vulnerability and reveal the
secret.

The results of the early RTL analysis can guide in the selection of suitable ECC

64

implementation or in the application of design-level countermeasures. To remove the
leakage, e.g., a register can be added at the output of the Euclidean Algorithm stage to
equalize the timing to the worst-case execution, or optimizations at the ECC algorithm
may be applied. The efficiency of the mitigation solutions can be explored by the
proposed methodology at a low cost.

4.4 Chapter Conclusions
In recent research works, the side-channel attacks are widely addressed and have been
proven to be effective in posing security threats to electronic systems with integrated
cryptography. Compared to conventional attack methods, side-channel attacks indirectly
break robust cryptography operations through IC operation parameters like power,
electromagnetic and execution time. Therefore, most of the research work has to
carry out the side-channel attack’ study after manufacturing which in return introduces
additional design cost and increases the time-to-market.

This chapter discussed the timing side-channel attacks related security aspect
verification of hardware designs with the focus on timing side-channel vulnerability
analysis at the early design level. The work proposed both simulation-based and formal
verification methods. The proposed hardware verification approaches are evaluated by
case studies of timing side-channel vulnerability analysis for an RSA crypto core and a
fuzzy extractor used in the PUF devices.

For the timing side-channel vulnerability analysis of RSA crypto core in 4.2, this
work proposed a novel formal approach that combines information flow tracking with
the formal verification method by using the formal verification tool JasperGold SPV.
The proposed approach is able to automatically identify the exploitable timing side-
channels for hardware designs and is evaluated by the case study of RSA crypto core.
It successfully finds all the timing side-channels in the RSA hardware implementation.
Then accordingly, a lightweight and efficient mitigation technique was proposed. The
mentioned mitigation method introduces a small-overhead counter to the baseline design
to equalize all the different timing paths at the observable output point and has no
penalty in the critical path of the design.

For the analysis of fuzzy extractor used in the PUF devices in 4.3, this work firstly
proposed a novel attack model which combines fault injection method and timing
side-channel analysis of ECC used in fuzzy extractor. Then accordingly, it introduced
a simulation based verification method to identify this vulnerability of the hardware
design at RTL and the introduced method involves structural and simulation analyses.
Validation of the proposed method has been carried out on three ECC decoders. The
final results have demonstrated there is timing information leakages which can lead to
the reveal of the secret PUF data in the hardware implementation of the Reed-Solomon
decoder.

The above studies brought the timing side-channel vulnerability identification up to
an early design level. The results of the early RTL analysis can reveal related design
bugs in design phases which enable the design bugs to be fixed at the design level,
therefore reducing the design cost and time-to-market.

65

5 Reliability Aspect Verification
In this chapter, the research work studies a Binarized Neural Network (BNN) hardware
inference engine used in critical applications with certain levels of reliability and security
requirements. The analysis focuses on the reliability study of the security enhanced
BNN inference engine and explores the interdependent design space between security
and reliability aspects.

This chapter is based on the following publication:

• V X.Lai, T.Lange, A.Balakrishnan, D.Alexandrescu, and M.Jenihhin, “On antag-
onism between side-channel security and soft-error reliability in BNN inference
engines,” in 2021 IFIP/IEEE 29th International Conference on Very Large Scale
Integration (VLSI-SoC), pp. 1–6, 2021

5.1 On Antagonism Between Side-Channel Security and Soft-Error
Reliability in BNN Inference Engine

Deep Neural Networks (DNNs) are designed to classify objects after training and have
been proven effective in many Artificial Intelligence (AI) applications. To improve
the energy efficiency and throughput, a trained DNN model can be mapped to a
hardware inference engine [145]. As a rule, generating an industrial DNN model implies
a significant amount of training data, computing resources as well as human efforts.
Therefore, it is essential to protect a DNN model against data and functionality integrity
violations, intellectual property rights and potential illegitimate reproduction [146].
On the other hand, the DNN inference engines are increasingly adopted for critical
applications demanding high levels of functional safety and reliability to in-field faults.

A Binarized Neural Network (BNN) is a particular class of DNNs proposed in [147]
and characterized by binary weights and activation functions that require less storage
and computational resources compared to full-precision DNN models. Therefore,
BNN hardware inference engines are efficient for applications in critical embedded
systems [148], e.g., autonomous robotic vehicles and ML-powered edge devices. However,
recent research works have discovered that the simpler binary operations in BNN have
accidentally created power side-channels. In a recent research work [149], Anuj Dubey et
al. show that the Differential Power Analysis (DPA) [150] on a running BNN hardware
inference engine can extract the secret model parameters such as weights. Using the
methodology described in [151], the authors repeatedly apply the DPA method on
a BNN with 4-bit weight values. Based on 100k measurements, they compute the
corresponding power consumption of the intermediate computation for all the 16 possible
values and discover a significant correlation between the power measurements and the
correct weight values, which can be exploited for information leakages. To address DPA
in BNN hardware inference design, data masking techniques are proposed in [152]. In
the paper, the authors propose a fully-masked BNN hardware inference engine design
by masking all the linear and non-linear operations presented in the implementation
and validate the effectiveness of the method on an FPGA with 2M power traces.

Recently, BNN hardware implementations are increasingly employed for critical
applications with the requirement for in-field lifetime reliability even in the presence of
hardware-level faults [153]. Unfortunately, the described above security enhancements
modifying the logic structure of the design may negatively affect the soft-error reliability
of the BNN. To the best of our knowledge, the effects of such side-channel masking
techniques on soft-error reliability of the hardware design are not duly addressed in the

67

literature.
In this work, we propose a soft-error reliability analysis of the security-enhanced BNN.

We apply an existing masking technique to the BNN hardware implementation and prove
that the reliability of the DPA-resistant HW BNN inference engine is compromised.

This research work makes the following main contributions:

• Establishing a novel discussion for reliability jeopardy introduced by side-channel
security countermeasures in the HW BNN inference engines.

• Proposing a soft-error reliability analysis flow for HW BNN inference engines
based on logical and functional de-rating factors evaluation.

• Proving a significant increasing of the soft-error vulnerability in a representative
case-study open-source BNN design, specifically, up to 1000× output bitwise
failure rate increase or up to 350× neural network functional failure rate increase.

The rest of this chapter is organized as follows. Section 5.2 reviews the background
of BNNs, the relevant power side-channel attacks and the corresponding mitigation
techniques. In section 5.3, the soft-error reliability assessment is discussed. Section 5.4
explains the case-study BNN architecture and the performed reliability analysis, followed
by experimental results in Section 5.5. Section 5.7 concludes this chapter.

5.2 Related Works
5.2.1 Binarized Neural Network
Generally, a BNN contains an input layer with input vectors, several hidden layers
composed of internal operational neurons, and an output layer that computes the final
result (see Figure 26a). In BNNs, the arithmetic computations use binarization, i.e., the
most extreme form of network quantization [154]. Therefore, the weight multiplication
can be replaced by a simple bitwise operation XNOR operation. The summation can
be simplified by using a population count (or popcount) that calculates the number of
’1’ in a bit vector (see Figure 26b).

(a) (b)

Figure 26: Binarized Neural Network

5.2.2 Power Side-Channel Attacks on BNNs
However, the simple structure of such a neural network has its drawbacks. Recent
research works have demonstrated that BNN model can be exploited by physical side
channels such as time, power and electromagnetic emanations [155–157]. Notably, the

68

work in [149] presents an impressive Differential Power Analysis side-channel attack
that can reveal the secret weights of a fully connected BNN. Considering that the
weight value is binary, the summation is usually implemented by a pipelined adder
tree composed of several stages that need additional registers in the middle to store
intermediate values. The adversary can target any stage of the adder tree, primarily
focusing on the switching activities of the registers in the adder tree to extract the
power traces. With the power traces at hand, it is feasible to steal the weights and
biases values of the trained model. In the mentioned example, the authors apply the
DPA method [151] on the second stage registers of the adder tree and succeed in
extracting the values of the weights and the biases for all nodes by analyzing the
Pearson correlation coefficient of the power traces.

5.2.3 BNN Power Side-Channel Masking Techniques
To address the above vulnerability, [152] proposes techniques for the power side-channel
masking aiming at enhancing the HW BNN inference engine’s resistance to DPA. In
the paper, the authors analyze the neural network specific computation and propose
the following masking techniques:

• For the weighted summations, build a protected AND operation by adopting the
glitch-resistant Trichina’s AND gate for the Ripple-Carry Adders (RCA) to replace
them with the security-masked N-bit RCA;

• For multiplexers, use Look-Up Table (LUT) as a replacement, e.g., an 1-bit
multiplexer is replaced with a 4-input 2-output security-masked LUT.

• For the activation functions, perform the NOT operation by inverting one of the
two Boolean shares of MSB received from the previous security-masked adder.

• For the output layer, transform the problem of the masked comparison to masked
subtraction and reuse the masked adder as a subtractor.

Among the four mitigation techniques, only the first one, i.e., the RCA masking,
introduces numerous extra registers, depending on the size of the adder. This particular
technique creates an important case study for our analysis. Intuitively, the introduced
massive sequences of flip flops behave as "magnets" to additional soft errors to be
caught by the BNN in the field. According to our hypothesis, a BNN protected
against security side-channels with this or a similar technique becomes significantly
more vulnerable to the soft-error reliability issues. Interestingly, the adopted Trichina
AND gates structure [158] is also known in the literature for its application to AES
co-processors and similar cryptocores to protect them from power side-channel attacks.
This fact potentially extends the impact of our analysis.

5.3 Soft-Error Reliability Assessment for HW BNN Implementa-
tions

5.3.1 De-Rating Based Soft-Error Reliability Assessment
With the technology feature size shrinking, the probability of electronic systems to
experience Single Event Effects (SEEs) is increasing and the overall vulnerability to the
radiation-induced transient faults, i.e., soft errors, is becoming more prominent [159].
To evaluate the reliability to soft errors for a circuit, the analysis of sensitivity of the
underlying cell’s technology is used. However, not all faults occurring in the cells lead
to failures, i.e., observable effects at the application level, but can be masked on the

69

way. De-rating factors are used to quantify the masking effects of soft-errors. At
logic level, the de-rating analysis relies on logic-level models for SEE, i.e., a Single
Event Upset (SEU) for sequential cells and a Single Event Transient (SET) for the
gates. Moreover, in an RTL analysis, the SET faults, can be modeled with a reasonable
accuracy by a subset of SEUs. The overall Soft-Error Reliability (SER) for SEUs in a
system circuit can be expressed by Equation (8), where SERSEU,i is the rate of SEUs
in a sequential cell i (a flip-flop). SERSEU,i is calculated by Equation (7) [160, 161],
where the Failure In Time FITSEU,i denotes the rate of soft errors for the sequential
element and depends on the underlying technology and the operating environment.
The considered de-rating factors are Temporal De-Rating (TDRi), Logical De-Rating
(LDRi), Functional De-Rating (FDRi), respectively.

SERSEU,i = FITSEU,i ·TDRi ·LDRi ·FDRi (7)
SERSEU =

∑
i∈flip-flops

SERSEU,i (8)

5.3.2 Reliability Assessment for the HW BNN Implementations
Recent research works [153,162–166] have demonstrated the significance of the soft-
error reliability study for machine learning systems in safety-critical applications like
autonomous unmanned robotic vehicles and AI-powered edge devices. One of the
interesting questions in the DNN reliability research is related to understanding the
resilience of particular layers to transient and permanent faults. The conclusion in [167]
considering faults in registers of a RTL model is that permanent faults in inner layers
cause less inference errors than the permanent faults in the first layers. This is in line
with the studies of permanent faults in [159] and [168]. However, according to [167],
the later layers are more vulnerable to transient faults compared to the first layers. Also
the research in [169] and [170] demonstrates that the random bit flips in weights for the
early layers has less impact on the inference accuracy compared to the faults injected
to the last layers. In our current analysis, as discussed in next section, we follow the
arguments that the last layers of a DNN are the most critical for the SER assessment.

The studies for DNN reliability assessment include frameworks, e.g., Fidelity [165],
for abstracting the level of or optimizing the fault analysis for DNN hardware inference
engines such as fixed-/floating point CNNs generated by NVDLA, Eyeriss, MAERI,
FINN, CAFFEINE, ISAAC and similar generators. Frameworks for automated generation
of binarized NN HW inference accelerators from established DNN evaluation and
training platforms such as Tensorflow, PyTorch or Caffe are limited. Therefore, the
SER analysis flow for the BNN designs (initial ones and the ones containing the security
enhancements) employed in our work relies on a two-step approach. First, we perform de-
rating evaluation for the critical parts of the case-study BNN, e.g., the security-masked
ripple carry adder. Second, we execute a fault injection simulation campaign.

For the first step we rely on the SoCFIT tool by IROC. It is a reliability-focused
design characterization tool that predicts various de-rating factors and calculates the
failure rate of digital circuits. The tool computes the SEU logic de-rating by analyzing
the structure of the RTL description of the circuit. Therefore, all paths from the
sequential cell to any end point (primary output) are considered and the LDR for each
found paths is evaluated, by multiplying the intrinsic LDR for each gate along the path.
The overall LDR for the sequential cell can then be computed by either selecting the
value of the path with the maximum path or averaging the results of the individual
paths.

70

5.3.3 BNN-level Fault-Injection Simulation Campaign
In this work, the reliability analysis for HW BNN inference engine implementations
is performed by statistical fault injection simulations on the RT level of the design.
The BNN circuit is simulated with a logic-level simulator by running a corresponding
inference testbench. With the testbench the correct behaviour of the BNN circuit can
be verified. This can be achieved by monitoring and recording all outputs of the neural
network or testing the functional behaviour of the inference engine. First, a simulation is
run without any faults injected to create a reference golden run. Afterwards, a random
target flip-flop is chosen where the fault is injected at a random time. The SEU in a
flip-flop can be emulated in the simulator by inverting the value of the target flip-flop.
This procedure is automated by using a standard state-of-the-art simulator and its
routines and commands. In the presence of a fault, the simulation run is compared with
the golden run and any differences at the output or any differences in the functional
behaviour of the circuit can be observed and recorded.

5.4 Reliability Analysis of Secured BNN Hardware Inference Engine
5.4.1 Implementation of Power Side-Channel Masking in BNNs
As mentioned previously, several power side-channel masking techniques are proposed in
the state of the art, e.g., [152]. In our analysis, we focus on the weighted summations
for the soft-error reliability study according to our hypothesis.

Instead of an adder tree, which is used for the popcount implementation and is
vulnerable to power side-channel attack [149], a ripple-carry style adder is recommended.
For the normal 1-bit RCA, the logic functions for the summation and the carry-out bit
are provided in (9) (10) respectively, where a, b, c, C and S are the two one-bit inputs,
one-bit carry-in, carry-out and summation.

S = a⊕ b⊕ c; (9)
C = a · b⊕ b · c⊕a · c; (10)

Based on these equations, the complete addition computations are expressed as a
sequence of XOR and AND operations. As indicated in [171], only the AND operation
in the summation needs to be masked since it is a non-linear operation, while the
XOR operation is a linear operation and, therefore, can be left unmasked. Among
the recent related masking styles [172], the Trichina method is chosen for AND gate
masking because of its simplicity and efficiency [152]. However, the straightforward
adoption of Trichina’s AND gate causes glitches in the circuit [173], which can lead to
information leakage. Thus additional registers are introduced to stabilize the signals
in the design. The glitch-resistant Trichina’s AND gate is shown in Figure 27, where
the secret variables (a and b) are split into different shares (a0, a1, b0, b1), r is a fresh
random bit, and the additional registers are marked in red. The equations used for sum
bits and carry bits are shown respectively in (11), (12), (13) and (14)).

S0 = a0⊕ b0⊕ c0; (11)
S1 = a1⊕ b1⊕ c1; (12)

C0 = Tri0(a0, b0, r0)⊕Tri1(b0, c0, r1)⊕Tri2(c0,a0, r2) (13)
C1 = Tri0(a1, b1, r1)⊕Tri1(b1, c1, r1)⊕Tri2(c1,a1, r2) (14)

71

Figure 27: Trichina AND Gate

Figure 28 shows the 1-bit ripple-carry style security-masked adder with the Trichina
AND gate used in the RCA.

Figure 28: 1-bit Security-Masked Adder

For the final 1-bit security-masked adder, 12 more registers (marked in red) com-
plement the Trichina AND gate to address the introduced delay in the Trichina AND
gate. In total, for 1-bit security-masked adder, 54 (14∗3+12 = 54) registers are added.
Generally, an N-bit ripple carry adder is formed by N 1-bit full adders, as shown in
Figure 29. Therefore, for one N-bit security-masked adder, the total number of registers
introduced to the design is 54 ·N . Depending on the adder’s size N and the number of
summation resources instantiated in the BNN, a significant number of registers may be
introduced that increase the susceptibility of the design to soft-errors.

Figure 29: N-bit Masked Adder

72

Figure 30: A Case-Study Security-Masked BNN Design

5.4.2 Security-Masked BNN-Based Case Study Design
In order to study how the weighted summation masking technique influences the soft-error
reliability of the BNN hardware implementation, we apply the above masking technique
on a case-study ultra-low power near-sensor binarized neural network implementation
proposed in [174]. There are six layers in total which include three convolutional
layers, one flattening layer and two fully connected layers. The DPA countermeasure
target masking technique is initially applied to the fully connected layers [152] and the
last two layers of the BNN hardware implementation influence the output the most,
therefore we apply the masking technique to the last two fully connected layers in the
BNN. We replace the weighted summation operation (i.e., popcount) with the N -bit
security-masked adder explained in section 5.4.1: 8-bit security-masked adder and 7-bit
security-masked adder for layers 5 and 6 separately. Due to the number of summation
resources, the security-masked design introduces around 5 million flip-flops. The final
design is shown in the Figure 30 and the security-masked layers are marked in red.

5.4.3 Reliability Assessment Setup
Replacing an original adder with the security-masked adder introduces many additional
flip-flops to the circuit. Each additional flip-flop, in turn, increases the probability of
SEU faults. However, soft-error effects can be masked as discussed in Section 5.3.
To evaluate the actual reliability jeopardy by the added flip-flops and to compare the
resulting failure rate of the original BNN with the security-masked BNN design, the
de-rating factors have to be computed.

The case-study BNN implementation [174] provides a functional testbench which
applies 100 different input data samples (images) to the network and the related outputs
are categorised into 4 classes. For the experiment, the testbench is modified in the way
that all bit-wise changes of the BNN outputs as well as the predicted class (i.e., the
functional result) are monitored and recorded for each applied input. This simulation
serves as the golden run.

The faults, i.e., inverted values of the target flip-flops, are injected at a random
target and at a random clock cycle during the active workload of the simulation. Thus,
each simulation run is independent and several runs can be performed in parallel. Since
the simulation time of the original (i.e., non-masked) BNN design is rather short it is
possible to run a complete fault injection campaign. This means that for each target

73

flip-flop enough fault injection simulations are performed to cover every clock cycle
during the active stimuli of the testbench. For the modified security-masked case-study
BNN design (i.e., with the implemented DPA countermeasures) the number of targets
and the simulation time are significantly higher and therefore, the random fault injection
sampling approach has to be used.

For each simulation run, the output of the circuit is monitored and any difference
to the golden run is traced as an output failure. Additionally, the predicted class is
compared to the golden simulation and the predicted class altered a functional failure is
traced.

To obtain the de-rating factors for the output or functional failure, the number of
observed failures is divided by the total number of injected faults. The failure rate is
then calculated using Equation (8). Since the FIT rate of the flip-flops depends on the
applied nano-scale implementation technology and the analysis in this work is performed
on a higher level, for both designs, a normalized FIT rate of FITFF, SEU = 1 is assumed
for each flip-flop. Equation (8) is simplified to multiply the number of flip-flops with
the de-rating factor to obtain the final failure rate SERSEU of the design.

5.5 Experimental Results
5.5.1 LDR Analysis of the Masked Full Adder
In order to analyse the critical parts of the BNN, an evaluation of the logical de-rating
is performed on the (security-masked) ripple carry adder. The analysis is performed
with the SoCFIT tool by IROC, as described in section 5.3.2. Different sizes (N) of the
adder are considered and the results for the maximum and average LDR are shown in
Table 6.

Table 6: LDR Analysis of the (Masked) Full Adder

Full Adder Masked Full Adder
Size N (bits) LDR (avg) LDR (max) LDR (avg) LDR (max)

4 0.61 1.0 0.98 1.0
8 0.57 1.0 0.99 1.0
16 0.55 1.0 0.99 1.0

The maximum LDR is 1.0 for both adders and unaffected by the adder size N . This
means, considering the worst case every fault in one of the sequential cells of the adder
is propagating to the output of the adder. The average LDR, however, is decreasing for
the normal full adder and increasing for the masked full adder. Generally, the LDR for
the full adder is lower than the LDR for the masked full adder. This means that a fault
in any of the sequential cells of the masked full adder is more likely to propagate to the
output than a fault in the conventional full adder.

The used LDR analysis approach is pessimistic because it shows an upper bound
for the LDR of the cell, without using any information of the actual workload. Thus,
LDR is the probability for a fault affecting an internal cell to propagate to the primary
outputs of the circuit. It does not include any aspects related to the criticality of
the fault. Additionally, the BNN consists of different stages which contain other
functional blocks besides the adder. An exhaustive analysis should therefore, consider
the adder in the full context. This is achieved by performing an exhaustive fault-injection
simulation campaign of the full BNN/masked BNN design. This campaign determines
the Functional De-Rating factors and is presented in the next section.

74

5.6 Fault-Injection Simulation Campaign
This section presents the results obtained from the performed fault injection simulation
campaigns. As mentioned in the previous section, the simulation time of the masked
BNN design is significantly higher and thus, a full fault injection campaign over the entire
available test data was not feasible. A random sampling fault injection campaign was
performed instead and in order to confirm that enough fault injection simulations have
been sampled, several simulation campaigns with a varying number of fault injections
were executed. Figure 31 shows the de-rating factors for the output and functional
failure measured from these campaigns depending on the number of injected faults. It
can be seen that that the de-rating factors are converging and the carried out fault
injection simulations were sufficient.

0 5,000 10,000 15,000 20,000

0

0.1

0.2

0.3

0.4

0.5

Number of Fault Injections

De
-R

at
in

g

De-Rating (Output)
De-Rating (Functional)

Figure 31: Convergence of the Masked BNN De-Rating Factors Values in the Random Sampling
Fault-Injection Campaign

Table 7: Fault Injection Results

BNN Masked BNN
Flip-Flops 2076.00 5348912.00
Number of Injections 197220.00 62760.00
Output Failures 188186.00 23000.00
De-Rating (Output) 0.95 0.37
Failure Rate (Output) 1980.91 1960245.00
Functional Failures 48948.00 2165.00
De-Rating (Functional) 0.25 0.03
Failure Rate (Functional) 515.24 184518.71

75

All the simulation campaigns shown in Figure 31 run a different subset of fault
injections (different target flip-flops with different input data) and therefore, can be
accumulated to obtain the overall de-rating and failure rate of the masked case-study
BNN design. The results are summarized in Table 7 together with the results of the
full fault injection campaign of the original case-study BNN design.

Table 7 provides a comparison of the original BNN and the masked BNN designs
with regard to their expected reliability. Although the output and functional de-rating
are about 3× and 10× lower for the masked BNN, due to the considerable high amount
of additional flip-flops, the resulting failure rate is about 1000× higher for the output
and 350× higher for the functional failures. This proves that the studied masking
techniques used in the literature for power side-channel countermeasures significantly
increase vulnerability of the HW BNN inference engines to soft errors.

5.7 Chapter Conclusions
Hardware BNN inference engines are gaining their popularity in the computer engineer-
ing domain and stamp their inevitable presence in the security and reliability-critical
applications. However, the efforts of security and reliability R&D communities happen
to be fragmented to address the issues specific to their domains. A prominent example
is a power side-channel countermeasure based on a set of masking techniques introduced
to address a recently discovered security vulnerability. The approach overlooks potential
issues for reliability and creates a significant vulnerability to radiation-induced single
event effect faults, i.e., soft errors, in the field.

In this chapter, first, the study has presented an analysis for the soft-error reliability
jeopardy by the DPA side-channel mitigation measures in hardware implementations of
BNN inference engines. The analysis contains the specific reliability assessment, the
fault injection simulation campaign and the analysis of the simulation results. This work
reveals reliability issues, i.e., a steep increase of vulnerability to single-event effects,
introduced by the security enhancement techniques. The results demonstrate that
due to the considerable number of additional flip-flops established by the security
countermeasure and their chained position, the bit-wise failure rate is about 1000×
higher for the BNN output and 350× higher for the neural network functional failures.

Figure 32: Security and Reliability Design Space Exploration

Second, this study also for the first time emphasizes the interdependency of the
design space between reliability and security aspects, which is essential for the critical
embedded system. As indicated in Figure 32, the vertical and horizontal axes represent

76

design space targeting security and reliability requirements separately. The red area
represents the situation that design modifications targeted at the improvement for
one aspect have negative influence on the other aspect. While for the green area, it
indicates design modification targeted at one aspect has positive influences on the
other aspect, which is also the ideal case when dealing with multiple extra-functional
aspects’ requirements. In this research work, the final results have shown that the
introduced secure enhancement modification to the BNN design has negative effects on
its reliability which falls in the red area in Figure 32.

77

6 Conclusions
Recent prominent trends in advanced electronic systems have emphasized the importance
of extra-functional aspects such as security, reliability and power. However, a systematic
study for extra-functional aspects’ verification from hardware perspective is still missing.
This PhD thesis contributes to closing the gap and targets at extra-functional verification
in hardware design with the focus on the reliability and security aspects.

The research work starts with a systematic study of the extra-functional aspects from
a hardware design perspective. Chapter 3 provides the first systematic review on
the status of hardware extra-functional verification based on a comprehensive literature
analysis. Based on the review, an up-to-date taxonomy of extra-functional aspects was
proposed. It also identifies the research challenges for today’s extra-functional aspects’
verification. In particular, the analysis shows that the state-of-the-art methodologies
and tools are rarely considering the interdependency of extra-functional aspects.

Based on the results of the study in Chapter 3, the security and reliability aspects
were identified as the most widely addressed both in academia and industry, and selected
for further study in Chapter 4 and Chapter 5 correspondingly.

• Chapter 4 targets timing SCA related security aspects verification, which is
conventionally analyzed after manufacturing and, therefore, results in significant
costs and the increase of the time-to-market. Aiming to provide an early design
stage verification of timing side-channel attack to reduce the design cost and
time, it presents both formal and simulation-based design verification methods.
The formal approach, presented in 4.2, focuses on a crypto core, which contributes
to secure communication in the electronic system. The verification method
combines the information flow tracking with the formal tool JasperGold SPV to
identify all the timing channels which lead to secure information (a secret key)
leakage. The method is able to automatically and formally identify all the timing
channels, and its feasibility was proved by a case study on RSA crypto core. The
study includes algorithm analysis to determine the timing leakages part (e.g.,
various encryption/decryption times caused by different values of the secret keys)
and additional design modification to assist the tool to find all the timing side
channels. Additionally, a lightweight and effective mitigation technique to balance
all the timing side channels was proposed.
The other approach, i.e. simulation-based methods presented in 4.3, targets
the ECC decoder used in the fuzzy extractors for PUF devices. First, this work
defines a novel attack model that combines fault injection techniques and timing
side-channel analysis to exploit the PUF secrets. The study involves definition of a
new attack model, the attack assumptions and the detailed attack procedure that
combines the fault injection for the memory-based PUF device with timing-channel
measurements for the ECC decoder used in the fuzzy extractor. Second, this work
provides a simulation-based design verification method to verify the vulnerability
of the design at early RTL design phase. The verification method contains a
structural analysis step to screen the input parameters and a simulation-based
analysis step to verify these parameters exhaustively.
In general, the work presented in Chapter 4 highlights the ability to verify the
timing side-channel attack at the early design phase contrary to the vast majority
of approaches available in the literature that do it after the manufacturing. This
enables the early detection of related design bugs that still can be easily fixed

79

during the early design phase, thus saving the design cost and reducing the
time-to-market.

• Chapter 5 concentrates on reliability study of security-enhanced BNN hardware
inference engines. It is the first time, when such a study addresses the mutual
influence between security and reliability aspects and explores the verification
methodology that can measure the influences of the security enhancements on the
design reliability quantitatively. First, the work analyzes the security mitigation
techniques used for protecting against power side-channel vulnerability for BNN.
One of such representative mitigation methods introduced a significant amount of
registers which are acting as "magnets" for the soft-errors, and therefore creating
a vulnerability. Then the research work has applied this mitigation method to the
BNN hardware inference engine design. Accordingly, specific soft-error reliability
assessments was created and then the related verification strategy was proposed.
The final simulation results quantitatively proved that the security enhancement
part of the circuit has a significant impact on the reliability of the design.

The future work for the research beyond this PhD thesis can fall into the vertical and
horizontal directions. For the horizontal direction, it can continue the research work
towards security and reliability aspect verification for BNN hardware inference engines,
but in the reverse direction, i.e. studying how the reliability techniques affect the
security of the network. For the vertical direction, the future work can target a holistic
method to verify different extra-functional aspects at the same time by increasing the
design abstraction levels or using model-checking based verification methods.

80

List of Figures
1 Thesis Contributions and Organisation . 16
2 Digital IC Design Flow . 19
3 Design and Verification for Different Abstraction Levels 20
4 Simulation-Based Verification Flow . 23
5 Formal Verification Flow . 24
6 Taxonomy of Multidimensional Verification Aspects . 28
7 Multidimensional Verification Campaigns (Radar-Chart n-Dimensional

Visualization) . 37
8 Prediction of Functional De-Rating Factors of the Test Data Set by

Using A Support Vector Machine Regression Model (Training Size =
50%, Coefficient of Determination R2 = 0.844). 42

9 Prediction of Path Delays of the Test Data Set by Using A Support
Vector Machine Regression Model (Training Size = 50%, Coefficient of
Determination R2 = 0.975). 42

10 Learning Curve for the Functional De-Rating Prediction by Using A
Support Vector Machine Regression Model with Different Training Sizes. 43

11 Learning Curve for the Path Delay Prediction by Using A Support Vector
Machine Regression Model with Different Training Sizes. 43

12 RSA for Secured Communication . 46
13 Timing Disparate Paths . 47
14 PASCAL Graphical Representation . 50
15 JG SPV Generated Connected Graph . 51
16 Counter Example and Execution Trace . 51
17 Modified DUV .. 52
18 IP Core with Many Timing Disparate Security Paths . 52
19 Proposed Mitigation Scheme . 53
20 Normalized Execution Times . 54
21 Generation Procedure in A PUF Fuzzy Extractor. 56
22 Reconstruction Procedure in A PUF Fuzzy Extractor . 57
23 An Illustration of the Proposed Attack Procedure . 59
24 Binary BCH Decoder Structure . 60
25 Reed-Solomon Decoder Structure . 61
26 Binarized Neural Network . 68
27 Trichina AND Gate . 72
28 1-bit Security-Masked Adder . 72
29 N-bit Masked Adder . 72
30 A Case-Study Security-Masked BNN Design . 73
31 Convergence of the Masked BNN De-Rating Factors Values in the

Random Sampling Fault-Injection Campaign . 75
32 Security and Reliability Design Space Exploration . 76

81

List of Tables
1 Survey of the SOTA Solutions for Extra-Functional and Multidimensional

Verification. 30
2 Power Consumption of the Bonfire System Implementation: corrected

and with bugs f1 and p1 . 38
3 Verification Time . 54
4 ECC Execution Time Variability and the SCA Vulnerability 62
5 ECC-based FE Decoding Timing Analysis . 64
6 LDR Analysis of the (Masked) Full Adder . 74
7 Fault Injection Results . 75

82

References
[1] M. Jenihhin, X. Lai, T. Ghasempouri, and J. Raik, “Towards multidimensional

verification: Where functional meets non-functional,” in 2018 IEEE Nordic Circuits
and Systems Conference (NORCAS): NORCHIP and International Symposium of
System-on-Chip (SoC), pp. 1–7, IEEE, 2018.

[2] H. Li, W. Zhang, S. Bhunia, and W. Wen, “Introduction to the special issue
on new trends in nanoelectronic device, circuit, and architecture design, part 1,”
2020.

[3] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “The detection and classifica-
tion of non-functional requirements with application to early aspects,” in 14th
IEEE International Requirements Engineering Conference (RE’06), pp. 39–48,
IEEE, 2006.

[4] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the internet of
things: perspectives and challenges,” Wireless Networks, vol. 20, no. 8, pp. 2481–
2501, 2014.

[5] D. Tang, C. He, Y. Li, H. Zang, C. Xiong, and J. Zhang, “Soft error reliability in
advanced cmos technologies-trends and challenges,” Science China Technological
Sciences, vol. 57, no. 9, pp. 1846–1857, 2014.

[6] M. Glinz, “On non-functional requirements,” in 15th IEEE international require-
ments engineering conference (RE 2007), pp. 21–26, IEEE, 2007.

[7] M. Younas, D. N. Jawawi, I. Ghani, and M. A. Shah, “Extraction of non-
functional requirement using semantic similarity distance,” Neural Computing
and Applications, vol. 32, no. 11, pp. 7383–7397, 2020.

[8] F. Z. Hammani, “Survey of non-functional requirements modeling and verification
of software product lines,” in 2014 IEEE Eighth International Conference on
Research Challenges in Information Science (RCIS), pp. 1–6, IEEE, 2014.

[9] D. Mukhopadhyay and R. S. Chakraborty, Hardware security: design, threats,
and safeguards. CRC Press, 2014.

[10] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware security: Models,
methods, and metrics,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1283–1295,
2014.

[11] W. K. Lam, Hardware design verification: simulation and formal method-based
approaches. Prentice Hall Professional Technical Reference, 2005.

[12] I. Sommerville, “Software engineering 9th edition,” ISBN-10, vol. 137035152,
p. 18, 2011.

[13] S. Bhunia and M. Tehranipoor, Hardware security: a hands-on learning approach.
Morgan Kaufmann, 2018.

[14] I. Eusgeld, B. Fechner, F. Salfner, M. Walter, P. Limbourg, and L. Zhang,
“Hardware reliability,” in Dependability metrics, pp. 59–103, Springer, 2008.

83

[15] A. P. Shah and P. Girard, “Impact of aging on soft error susceptibility in cmos
circuits,” in 2020 IEEE 26th International Symposium on On-Line Testing and
Robust System Design (IOLTS), pp. 1–4, IEEE, 2020.

[16] X. Lai, A. Balakrishnan, T. Lange, M. Jenihhin, T. Ghasempouri, J. Raik, and
D. Alexandrescu, “Understanding multidimensional verification: Where functional
meets non-functional,” Microprocessors and Microsystems, vol. 71, p. 102867,
2019.

[17] I. Verbauwhede, “Security adds an extra dimension to ic design: Future ic design
must focus on security in addition to low power and energy,” IEEE Solid-State
Circuits Magazine, vol. 9, no. 4, pp. 41–45, 2017.

[18] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang, “Challenges and trends
in modern soc design verification,” IEEE Design & Test, vol. 34, no. 5, pp. 7–22,
2017.

[19] J. Bhadra, M. S. Abadir, L.-C. Wang, and S. Ray, “A survey of hybrid techniques
for functional verification,” IEEE Design & Test of Computers, vol. 24, no. 02,
pp. 112–122, 2007.

[20] M. L. Fair, C. R. Conklin, S. B. Swaney, P. J. Meaney, W. J. Clarke, L. C. Alves,
I. N. Modi, F. Freier, W. Fischer, and N. E. Weber, “Reliability, availability,
and serviceability (ras) of the ibm eserver z990,” IBM Journal of Research and
Development, vol. 48, no. 3.4, pp. 519–534, 2004.

[21] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional requirements
in software engineering, vol. 5. Springer Science & Business Media, 2012.

[22] P. Singh and A. K. Tripathi, “Exploring problems and solutions in estimating
testing effort for non functional requirement,” International Journal of Computers
& Technology, vol. 3, no. 2b, pp. 284–290, 2012.

[23] E. R. Poort, N. Martens, I. Van De Weerd, and H. Van Vliet, “How architects see
non-functional requirements: Beware of modifiability,” in International Working
Conference on Requirements Engineering: Foundation for Software Quality,
pp. 37–51, Springer, 2012.

[24] D. Ameller, C. Ayala, J. Cabot, and X. Franch, “How do software architects
consider non-functional requirements: An exploratory study,” in 2012 20th IEEE
international requirements engineering conference (RE), pp. 41–50, IEEE, 2012.

[25] L. Motus, “Analytical study of quantitative timing properties of software,” in
Fifth Euromicro Workshop on Real-Time Systems, pp. 218–223, IEEE, 1993.

[26] A. Pfitzmann and M. Hansen, “Anonymity, unlinkability, undetectability, unob-
servability, pseudonymity, and identity management-a consolidated proposal for
terminology,” Version v0, vol. 31, p. 15, 2008.

[27] H. M. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T. Chong, and
T. Sherwood, “Networks on chip with provable security properties,” IEEE Micro,
vol. 34, no. 3, pp. 57–68, 2014.

84

[28] L.-W. Kim and J. D. Villasenor, “Dynamic function verification for system on
chip security against hardware-based attacks,” IEEE transactions on reliability,
vol. 64, no. 4, pp. 1229–1242, 2015.

[29] A. Nahiyan, M. Sadi, R. Vittal, G. Contreras, D. Forte, and M. Tehranipoor,
“Hardware trojan detection through information flow security verification,” in 2017
IEEE International Test Conference (ITC), pp. 1–10, IEEE, 2017.

[30] M. Yoshimura, T. Bouyashiki, and T. Hosokawa, “A hardware trojan circuit
detection method using activation sequence generations,” in 2017 IEEE 22nd
Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 221–
222, IEEE, 2017.

[31] F. K. Lodhi, S. R. Hasan, O. Hasan, and F. Awwad, “Formal analysis of macro
synchronous micro asychronous pipeline for hardware trojan detection,” in 2015
Nordic Circuits and Systems Conference (NORCAS): NORCHIP & International
Symposium on System-on-Chip (SoC), pp. 1–4, IEEE, 2015.

[32] J. Hansson, B. Lewis, J. Hugues, L. Wrage, P. Feiler, and J. Morley, “Model-based
verification of security and non-functional behavior using aadl,” IEEE Security &
Privacy, pp. 1–1, 2009.

[33] T. Boraten, D. DiTomaso, and A. K. Kodi, “Secure model checkers for network-
on-chip (noc) architectures,” in 2016 International Great Lakes Symposium on
VLSI (GLSVLSI), pp. 45–50, IEEE, 2016.

[34] M. A. Kochte, M. Sauer, L. R. Gomez, P. Raiola, B. Becker, and H.-J. Wunderlich,
“Specification and verification of security in reconfigurable scan networks,” in
2017 22nd IEEE European Test Symposium (ETS), pp. 1–6, IEEE, 2017.

[35] W. Hu, A. Becker, A. Ardeshiricham, Y. Tai, P. Ienne, D. Mu, and R. Kastner,
“Imprecise security: quality and complexity tradeoffs for hardware information flow
tracking,” in Proceedings of the 35th International Conference on Computer-Aided
Design, pp. 1–8, 2016.

[36] Z. Hanna and V. Purri, “Verifying security aspects of soc designs with jasper
app,” (white paper), Jasper Design Automation (Cadence), 2013.

[37] M. A. Kochte, R. Baranowski, M. Sauer, B. Becker, and H.-J. Wunderlich,
“Formal verification of secure reconfigurable scan network infrastructure,” in 2016
21th IEEE European Test Symposium (ETS), pp. 1–6, IEEE, 2016.

[38] M. Rocchetto and N. O. Tippenhauer, “Towards formal security analysis of
industrial control systems,” in Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pp. 114–126, 2017.

[39] J. Sepúlveda, D. Aboul-Hassan, G. Sigl, B. Becker, and M. Sauer, “Towards the
formal verification of security properties of a network-on-chip router,” in 2018
IEEE 23rd European Test Symposium (ETS), pp. 1–6, IEEE, 2018.

[40] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware,” Journal of
Cryptographic Engineering, vol. 8, no. 1, pp. 1–27, 2018.

85

[41] Y. Lyu and P. Mishra, “A survey of side-channel attacks on caches and counter-
measures,” Journal of Hardware and Systems Security, vol. 2, no. 1, pp. 33–50,
2018.

[42] S. Deng, W. Xiong, and J. Szefer, “Cache timing side-channel vulnerability
checking with computation tree logic,” in Proceedings of the 7th International
Workshop on Hardware and Architectural Support for Security and Privacy,
pp. 1–8, 2018.

[43] T. Zhang and R. B. Lee, “New models of cache architectures characterizing
information leakage from cache side channels,” in Proceedings of the 30th annual
computer security applications conference, pp. 96–105, 2014.

[44] P. Cañones, B. Köpf, and J. Reineke, “Security analysis of cache replacement
policies,” in International Conference on Principles of Security and Trust, pp. 189–
209, Springer, 2017.

[45] J. Vain, A. Kaur, L. Tsiopoulos, J. Raik, and M. Jenihhin, “Multi-view modeling
for mpsoc design aspects,” in 2018 16th Biennial Baltic Electronics Conference
(BEC), pp. 1–6, IEEE, 2018.

[46] “Jaspergold security path verification app, cadence.” http://www.cadence.com.

[47] F. S. Goncalves, D. Pereira, E. Tovar, and L. B. Becker, “Formal verification
of aadl models using uppaal,” in 2017 VII Brazilian Symposium on Computing
Systems Engineering (SBESC), pp. 117–124, IEEE, 2017.

[48] D. Burlyaev and P. Fradet, “Formal verification of automatic circuit transforma-
tions for fault-tolerance,” in 2015 Formal Methods in Computer-Aided Design
(FMCAD), pp. 41–48, IEEE, 2015.

[49] B. W. Thompto and B. Hoppe, “Verification for fault tolerance of the ibm system
z microprocessor,” in Design Automation Conference, pp. 525–530, IEEE, 2010.

[50] S. Kan, M. Lam, T. Porter, and J. Dworak, “A case study: pre-silicon soc ras
validation for noc server processor,” in 2016 17th International Workshop on
Microprocessor and SOC Test and Verification (MTV), pp. 19–24, IEEE, 2016.

[51] S. Vinco, M. Lora, E. Macii, and M. Poncino, “Ip-xact for smart systems design:
extensions for the integration of functional and extra-functional models,” in 2016
Forum on Specification and Design Languages (FDL), pp. 1–8, IEEE, 2016.

[52] S. Vinco, Y. Chen, F. Fummi, E. Macii, and M. Poncino, “A layered methodology
for the simulation of extra-functional properties in smart systems,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36,
no. 10, pp. 1702–1715, 2017.

[53] G. Aleksandrowicz, E. Arbel, R. Bloem, T. D. ter Braak, S. Devadze, G. Fey,
M. Jenihhin, A. Jutman, H. G. Kerkhoff, R. Könighofer, et al., “Designing reliable
cyber-physical systems,” in Languages, Design Methods, and Tools for Electronic
System Design, pp. 15–38, Springer, 2018.

[54] E. Arbel, S. Koyfman, P. Kudva, and S. Moran, “Automated detection and verifi-
cation of parity-protected memory elements,” in 2014 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1–8, IEEE, 2014.

86

[55] M. Maniatakos and Y. Makris, “Workload-driven selective hardening of control
state elements in modern microprocessors,” in 2010 28th VLSI test symposium
(VTS), pp. 159–164, IEEE, 2010.

[56] S. Ganapathy, R. Canal, D. Alexandrescu, E. Costenaro, A. González, and A. Rubio,
“Informer: An integrated framework for early-stage memory robustness analysis,”
in 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1–4, IEEE, 2014.

[57] S. Avramenko, S. P. Azad, S. Esposito, B. Niazmand, M. Violante, J. Raik,
and M. Jenihhin, “Qosinnoc: analysis of qos-aware noc architectures for mixed-
criticality applications,” in 2018 IEEE 21st International Symposium on Design
and Diagnostics of Electronic Circuits & Systems (DDECS), pp. 67–72, IEEE,
2018.

[58] S. Avramenko, S. P. Azad, B. Niazmand, M. Violante, J. Raik, and M. Jenihhin,
“Upgrading qosinnoc: efficient routing for mixed-criticality applications and power
analysis,” in 2018 IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), pp. 207–212, IEEE, 2018.

[59] S. Rubini, F. Singhoff, and J. Hugues, “Modeling and verification of memory
architectures with aadl and real,” in 2011 16th IEEE International Conference on
Engineering of Complex Computer Systems, pp. 338–343, IEEE, 2011.

[60] H. Wang, X. Zhou, Y. Dong, and L. Tang, “A hierarchical verification procedure of
timed petri-net model for real-time embedded systems,” in 2010 2nd International
Conference on Information Engineering and Computer Science, pp. 1–4, IEEE,
2010.

[61] H. Wang, X. Zhou, Y. Dong, and L. Tang, “Timing properties analysis of
real-time embedded systems with aadl model using model checking,” in 2010
IEEE International Conference on Progress in Informatics and Computing, vol. 2,
pp. 1019–1023, IEEE, 2010.

[62] A. Rafiev, F. Xia, A. Iliasov, A. Romanovsky, and A. Yakovlev, “Selective abstrac-
tion for estimating extra-functional properties in networks-on-chips using archon
framework,” in 2017 17th International Conference on Application of Concurrency
to System Design (ACSD), pp. 80–85, IEEE, 2017.

[63] D. Lorenz, P. A. Hartmann, K. Grüttner, and W. Nebel, “Non-invasive power
simulation at system-level with systemc,” in International Workshop on Power
and Timing Modeling, Optimization and Simulation, pp. 21–31, Springer, 2012.

[64] S. Orcioni, M. Giammarini, C. Scavongelli, G. B. Vece, and M. Conti, “Energy
estimation in systemc with powersim,” Integration, vol. 55, pp. 118–128, 2016.

[65] E.-Y. Kang, D. Mu, L. Huang, and Q. Lan, “Verification and validation of a
cyber-physical system in the automotive domain,” in 2017 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-C),
pp. 326–333, IEEE, 2017.

[66] A. Danese, G. Pravadelli, and I. Zandona, “Automatic generation of power
state machines through dynamic mining of temporal assertions,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 606–611,
IEEE, 2016.

87

[67] J. Zimmermann, S. Stattelmann, A. Viehl, O. Bringmann, and W. Rosenstiel,
“Model-driven virtual prototyping for real-time simulation of distributed embedded
systems,” in 7th IEEE International Symposium on Industrial Embedded Systems
(SIES’12), pp. 201–210, IEEE, 2012.

[68] R. Görgen, K. Grüttner, F. Herrera, P. Penil, J. Medina, E. Villar, G. Palermo,
W. Fornaciari, C. Brandolese, D. Gadioli, et al., “Contrex: Design of embed-
ded mixed-criticality control systems under consideration of extra-functional
properties,” in 2016 Euromicro Conference on Digital System Design (DSD),
pp. 286–293, IEEE, 2016.

[69] A. Ruan, Y. Liao, P. Li, W. Li, and W. Li, “Throughput estimation for model-
sim simulator tool based hw/sw co-verification system,” in 2009 International
Conference on Communications, Circuits and Systems, pp. 1014–1018, IEEE,
2009.

[70] M. Khamis, S. El-Ashry, A. Shalaby, M. AbdElsalam, and M. W. El-Kharashi, “A
configurable risc-v for noc-based mpsocs: a framework for hardware emulation,”
in 2018 11th International Workshop on Network on Chip Architectures (NoCArc),
pp. 1–6, IEEE, 2018.

[71] “Jaspergold connectivity verification app, cadence.” http://www.cadence.com.

[72] M. Elver and V. Nagarajan, “Mcversi: A test generation framework for fast memory
consistency verification in simulation,” in 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 618–630, IEEE, 2016.

[73] S.-C. Fang, C.-C. Weng, C.-K. Tseng, C.-W. Hsu, J.-L. Liao, S.-Y. Huang, C.-L.
Lung, and D.-M. Kwai, “Soc power analysis framework and its application to
power-thermal co-simulation,” in Proceedings of 2011 International Symposium
on VLSI Design, Automation and Test, pp. 1–4, IEEE, 2011.

[74] G. B. Vece, M. Conti, and S. Orcioni, “Transaction-level power analysis of vlsi
digital systems,” Integration, vol. 50, pp. 116–126, 2015.

[75] M. Giammarini, M. Conti, and S. Orcioni, “System-level energy estimation with
powersim,” in 2011 18th IEEE International Conference on Electronics, Circuits,
and Systems, pp. 723–726, IEEE, 2011.

[76] S. Mukherjee, Architecture design for soft errors. Morgan Kaufmann, 2011.

[77] M. Jenihhin, G. Squillero, T. S. Copetti, V. Tihhomirov, S. Kostin, M. Gaudesi,
F. Vargas, J. Raik, M. S. Reorda, L. B. Poehls, et al., “Identification and
rejuvenation of nbti-critical logic paths in nanoscale circuits,” Journal of Electronic
Testing, vol. 32, no. 3, pp. 273–289, 2016.

[78] A. Savino, S. Di Carlo, A. Vallero, G. Politano, D. Gizopoulos, and A. Evans,
“Riif-2: Toward the next generation reliability information interchange format,”
in 2016 IEEE 22nd International Symposium on On-Line Testing and Robust
System Design (IOLTS), pp. 173–178, IEEE, 2016.

[79] “Bell labs, verifying multi-threaded software with spin.” http://spinroot.com.
accessed December 2021.

88

[80] “Smt steering committee, the international satisfiability modulo theories (smt)
competition..” http://www.smtcomp.org. accessed December 2021.

[81] “Carnegie mellon university, architecture analysis and design language..” http:
//www.aadl.info/aadllcurrentsite. accessed December 2021.

[82] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1,
pp. 46–61, 1973.

[83] S. K. Roy, “Top level soc interconnectivity verification using formal techniques,”
in 2007 Eighth International Workshop on Microprocessor Test and Verification,
pp. 63–70, IEEE, 2007.

[84] “IEEE Standard for design and verification of Low-Power, energy-aware electronic
systems,,” ANSI/IEEE 1801-2015, March 2016.

[85] “Si2 Common Power Format, v2.1, Silicon Integration Initiative,” 2014.

[86] R. Ubar, J. Raik, A. Jutman, and M. Jenihhin, “Diagnostic modeling of digital
systems with multi-level decision diagrams,” in Geographic Information Systems:
Concepts, Methodologies, Tools, and Applications, pp. 407–433, IGI Global, 2013.

[87] P. Khondkar, Low-Power Design and Power-Aware Verification. Springer, 2018.

[88] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H. Zhang,
K. Zhong, et al., “Machine learning for electronic design automation: A survey,”
ACM Transactions on Design Automation of Electronic Systems (TODAES),
vol. 26, no. 5, pp. 1–46, 2021.

[89] E. Alpaydin, Introduction to machine learning. MIT press, 2020.

[90] B. Yu, D. Z. Pan, T. Matsunawa, and X. Zeng, “Machine learning and pat-
tern matching in physical design,” in The 20th Asia and South Pacific Design
Automation Conference, pp. 286–293, IEEE, 2015.

[91] B. Li and P. D. Franzon, “Machine learning in physical design,” in 2016 IEEE
25th conference on electrical performance of electronic packaging and systems
(EPEPS), pp. 147–150, IEEE, 2016.

[92] L. Bai and L. Chen, “Machine-learning-based early-stage timing prediction in soc
physical design,” in 2018 14th IEEE International Conference on Solid-State and
Integrated Circuit Technology (ICSICT), pp. 1–3, IEEE, 2018.

[93] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Young, and Z. Zhang, “Fast and
accurate estimation of quality of results in high-level synthesis with machine learn-
ing,” in 2018 IEEE 26th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp. 129–132, IEEE, 2018.

[94] K. Hasegawa, M. Oya, M. Yanagisawa, and N. Togawa, “Hardware trojans
classification for gate-level netlists based on machine learning,” in 2016 IEEE
22nd International Symposium on On-Line Testing and Robust System Design
(IOLTS), pp. 203–206, IEEE, 2016.

89

[95] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Hardware trojans classification
for gate-level netlists using multi-layer neural networks,” in 2017 IEEE 23rd
International Symposium on On-Line Testing and Robust System Design (IOLTS),
pp. 227–232, IEEE, 2017.

[96] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction at
gate-level netlists and its application to hardware-trojan detection using random
forest classifier,” in 2017 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–4, IEEE, 2017.

[97] A. Piziali, Functional verification coverage measurement and analysis. Springer
Science & Business Media, 2007.

[98] V. Guarnieri, N. Bombieri, G. Pravadelli, F. Fummi, H. Hantson, J. Raik, M. Jeni-
hhin, and R. Ubar, “Mutation analysis for systemc designs at tlm,” in 2011 12th
Latin American Test Workshop (LATW), pp. 1–6, IEEE, 2011.

[99] S. Ullah, M. Iqbal, and A. M. Khan, “A survey on issues in non-functional
requirements elicitation,” in International Conference on Computer Networks and
Information Technology, pp. 333–340, IEEE, 2011.

[100] L. M. Cysneiros and E. Yu, “Non-functional requirements elicitation,” in Perspec-
tives on software requirements, pp. 115–138, Springer, 2004.

[101] “S.-p. azad, b. niazmand, k. janson, j. raik, github bonfire project
(2017.” Bonfireprojectwebsite:https://github.com/Project-Bonfire/
[Online]. accessed December 2021.

[102] S. P. Azad, B. Niazmand, K. Janson, N. George, A. S. Oyeniran, T. Putkaradze,
A. Kaur, J. Raik, G. Jervan, R. Ubar, et al., “From online fault detection to
fault management in network-on-chips: A ground-up approach,” in 2017 IEEE
20th International Symposium on Design and Diagnostics of Electronic Circuits
& Systems (DDECS), pp. 48–53, IEEE, 2017.

[103] A. S. Alkalbani, T. Mantoro, and A. O. M. Tap, “Comparison between rsa hardware
and software implementation for wsns security schemes,” in Proceeding of the
3rd International Conference on Information and Communication Technology for
the Moslem World (ICT4M) 2010, pp. E84–E89, IEEE, 2010.

[104] S. Upadhyay, “Attack on rsa cryptosystem,” 2011.

[105] D. Boneh et al., “Twenty years of attacks on the rsa cryptosystem,” Notices of
the AMS, vol. 46, no. 2, pp. 203–213, 1999.

[106] D. E. Denning, “A lattice model of secure information flow,” Commun. ACM,
vol. 19, no. 5, pp. 236–243, 1976.

[107] J. Ming, D. Wu, G. Xiao, J. Wang, and P. Liu, “Taintpipe: Pipelined symbolic
taint analysis,” in 24th USENIX Security Symposium (USENIX Security 15),
(Washington, D.C.), pp. 65–80, USENIX Association, 2015.

[108] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures:
The case of AES,” in Topics in Cryptology - CT-RSA 2006, The Cryptographers’
Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2006,
Proceedings, pp. 1–20, 2006.

90

[109] A. Haeberlen, B. C. Pierce, and A. Narayan, “Differential privacy under fire,” in
20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011,
Proceedings, 2011.

[110] B. B. Brumley and N. Tuveri, “Remote timing attacks are still practical,” in
Computer Security - ESORICS 2011 - 16th European Symposium on Research
in Computer Security, Leuven, Belgium, September 12-14, 2011. Proceedings,
pp. 355–371, 2011.

[111] D. Zhang, A. Askarov, and A. C. Myers, “Predictive mitigation of timing channels
in interactive systems,” in In Proc. 18th ACM Conf. Computer and Communica-
tions Security (CCS, pp. 563–574, 2011.

[112] F. Koeune and F.-X. Standaert, “Foundations of security analysis and design iii,”
ch. A Tutorial on Physical Security and Side-channel Attacks, pp. 78–108, Berlin,
Heidelberg: Springer-Verlag, 2005.

[113] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter, “Practical
mitigations for timing-based side-channel attacks on modern x86 processors,” in
30th IEEE Symposium on Security and Privacy (S&P 2009), 17-20 May 2009,
Oakland, California, USA, pp. 45–60, 2009.

[114] K. Tiri and I. Verbauwhede, “A vlsi design flow for secure side-channel attack
resistant ics,” in Design, Automation and Test in Europe, pp. 58–63 Vol. 3, March
2005.

[115] I. Verbauwhede and P. Schaumont, “Design methods for security and trust,” in
Proceedings of the Conference on Design, Automation and Test in Europe, DATE
’07, (San Jose, CA, USA), pp. 672–677, EDA Consortium, 2007.

[116] F. Menichelli, R. Menicocci, M. Olivieri, and A. Trifiletti, “High-level side-channel
attack modeling and simulation for security-critical systems on chips,” IEEE
Transactions on Dependable and Secure Computing, vol. 5, pp. 164–176, July
2008.

[117] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer level
information flow tracking for provably secure hardware design,” in Proceedings
of the Conference on Design, Automation & Test in Europe, DATE ’17, (3001
Leuven, Belgium, Belgium), pp. 1695–1700, European Design and Automation
Association, 2017.

[118] M. Bidmeshki and Y. Makris, “Toward automatic proof generation for information
flow policies in third-party hardware ip,” in 2015 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), vol. 00, pp. 163–168, May
2015.

[119] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design language for
timing-sensitive information-flow security,” SIGPLAN Not., vol. 50, pp. 503–516,
Mar. 2015.

[120] S. Deng, W. Xiong, and J. Szefer, “Cache timing side-channel vulnerability
checking with computation tree logic,” in Proceedings of the 7th International
Workshop on Hardware and Architectural Support for Security and Privacy, HASP
’18, (New York, NY, USA), pp. 2:1–2:8, ACM, 2018.

91

[121] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-channel analysis
resistant description of the aes s-box,” in Fast Software Encryption (H. Gilbert
and H. Handschuh, eds.), (Berlin, Heidelberg), pp. 413–423, Springer Berlin
Heidelberg, 2005.

[122] L. S. Indrusiak, J. Harbin, and M. J. Sepúlveda, “Side-channel attack re-
silience through route randomisation in secure real-time networks-on-chip,” CoRR,
vol. abs/1607.03450, 2016.

[123] Z. Jiang, S. Dai, G. E. Suh, and Z. Zhang, “High-level synthesis with timing-
sensitive information flow enforcement,” in Proceedings of the International
Conference on Computer-Aided Design, ICCAD ’18, (New York, NY, USA),
pp. 88:1–88:8, ACM, 2018.

[124] S. Peter and T. Givargis, “Towards a timing attack aware high-level synthesis of
integrated circuits,” in 34th IEEE International Conference on Computer Design,
ICCD 2016, Scottsdale, AZ, USA, October 2-5, 2016, pp. 452–455, 2016.

[125] R. Maes and I. Verbauwhede, “Physically unclonable functions: A study on the
state of the art and future research directions,” in Towards Hardware-Intrinsic
Security, pp. 3–37, Springer, 2010.

[126] R. Maes, P. Tuyls, and I. Verbauwhede, “A soft decision helper data algorithm
for sram pufs,” in 2009 IEEE international symposium on information theory.

[127] A. R. Korenda, F. Afghah, B. Cambou, and C. Philabaum, “A proof of concept
sram-based physically unclonable function (puf) key generation mechanism for
iot devices,” in 2019 16th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON), pp. 1–8, 2019.

[128] L. Tebelmann, M. Pehl, and G. Sigl, “Em side-channel analysis of bch-based error
correction for puf-based key generation,” in Proceedings of the 2017 Workshop
on Attacks and Solutions in Hardware Security.

[129] D. Karakoyunlu and B. Sunar, “Differential template attacks on puf enabled
cryptographic devices,” in 2010 IEEE International Workshop on Information
Forensics and Security, pp. 1–6, IEEE, 2010.

[130] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data,” in International conference on the
theory and applications of cryptographic techniques, Springer, 2004.

[131] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, “Side-channel analysis of pufs
and fuzzy extractors,” in International Conference on Trust and Trustworthy
Computing, pp. 33–47, Springer, 2011.

[132] G. T. Becker, “Robust fuzzy extractors and helper data manipulation attacks
revisited: Theory vs practice,” 2017.

[133] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data algorithms
for puf-based key generation: Overview and analysis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 6,
pp. 889–902, 2014.

92

[134] M. Riley and I. Richardson, “An introduction to reed-solomon codes: principles,
architecture and implementation,” 2003.

[135] C. Roscian, A. Sarafianos, J.-M. Dutertre, and A. Tria, “Fault model analysis of
laser-induced faults in sram memory cells,” in 2013 Workshop on Fault Diagnosis
and Tolerance in Cryptography, pp. 89–98, IEEE, 2013.

[136] Y. Gao, Y. Su, W. Yang, S. Chen, S. Nepal, and D. C. Ranasinghe, “Building
secure sram puf key generators on resource constrained devices,” in 2019 IEEE
International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops).

[137] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,” in
International workshop on cryptographic hardware and embedded systems, pp. 2–
12, Springer, 2002.

[138] A. Krieg, J. Grinschgl, C. Steger, R. Weiss, and J. Haid, “A side channel attack
countermeasure using system-on-chip power profile scrambling,” in 2011 IEEE
17th International On-Line Testing Symposium, pp. 222–227, IEEE, 2011.

[139] X. Lai, M. Jenihhin, J. Raik, and K. Paul, “Pascal: Timing sca resistant design
and verification flow,” in 2019 IEEE 25th International Symposium on On-Line
Testing and Robust System Design (IOLTS), pp. 239–242, IEEE, 2019.

[140] W. Liu, J. Rho, and W. Sung, “Low-power high-throughput bch error correction
vlsi design for multi-level cell nand flash memories,” in 2006 IEEE Workshop on
Signal Processing Systems Design and Implementation.

[141] H.-C. Chang and C. B. Shung, “New serial architecture for the berlekamp-massey
algorithm,” IEEE transactions on communications, 1999.

[142] S. Lee and H. Lee, “A high-speed pipelined degree-computationless modified
euclidean algorithm architecture for reed-solomon decoders,” IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, vol. 91,
no. 3, pp. 830–835, 2008.

[143] “Verilog based bch encoder / decoder.” https://github.com/russdill/bch_
verilog.

[144] “Freecores reed-solomon codec generator.” https://github.com/freecores/
reed_solomon_codec_generator.

[145] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Pro. of the IEEE, vol. 105, no. 12,
pp. 2295–2329, 2017.

[146] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and I. Molloy,
“Protecting intellectual property of deep neural networks with watermarking,” in
Proceedings of the 2018 on Asia Conference on Computer and Communications
Security, pp. 159–172, 2018.

[147] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

93

[148] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” in European conference
on computer vision, pp. 525–542, Springer, 2016.

[149] A. Dubey, R. Cammarota, and A. Aysu, “Maskednet: The first hardware inference
engine aiming power side-channel protection,” in 2020 IEEE International Sym-
posium on Hardware Oriented Security and Trust (HOST), pp. 197–208, IEEE,
2020.

[150] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in
Cryptology — CRYPTO’ 99 (M. Wiener, ed.), (Berlin, Heidelberg), pp. 388–397,
Springer Berlin Heidelberg, 1999.

[151] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage
model,” in International workshop on cryptographic hardware and embedded
systems, pp. 16–29, Springer, 2004.

[152] A. Dubey, R. Cammarota, and A. Aysu, “Bomanet: boolean masking of an entire
neural network,” in 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pp. 1–9, IEEE, 2020.

[153] M. A. Hanif, F. Khalid, R. V. W. Putra, S. Rehman, and M. Shafique, “Robust
machine learning systems: Reliability and security for deep neural networks,” in
2018 IEEE 24th International Symposium on On-Line Testing And Robust System
Design (IOLTS), pp. 257–260, IEEE, 2018.

[154] T. Simons and D.-J. Lee, “A review of binarized neural networks,” Electronics,
vol. 8, no. 6, p. 661, 2019.

[155] R. N. Reith, T. Schneider, and O. Tkachenko, “Efficiently stealing your machine
learning models,” in Proceedings of the 18th ACM Workshop on Privacy in the
Electronic Society, WPES’19, (New York, NY, USA), p. 198–210, Association
for Computing Machinery, 2019.

[156] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse engineering of neural
network architectures through electromagnetic side channel,” in 28th USENIX
Security Symposium (USENIX Security 19), (Santa Clara, CA), pp. 515–532,
USENIX Association, Aug. 2019.

[157] H. Yu, H. Ma, K. Yang, Y. Zhao, and Y. Jin, “Deepem: Deep neural networks
model recovery through em side-channel information leakage,” 2020 IEEE Int.
Symposium on Hardware Oriented Security and Trust (HOST), pp. 209–218,
2020.

[158] E. Trichina, “Combinational logic design for aes subbyte transformation on masked
data.,” IACR Cryptol. EPrint Arch., vol. 2003, p. 236, 2003.

[159] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S. W.
Keckler, “Understanding error propagation in deep learning neural network (dnn)
accelerators and applications,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–12, 2017.

[160] M. Nicolaidis, Soft Errors in Modern Electronic Systems. Springer, Boston, MA,
2011.

94

[161] D. Alexandrescu and E. Costenaro, “Towards optimized functional evaluation of
see-induced failures in complex designs,” in 2012 IEEE 18th International On-Line
Testing Symposium (IOLTS), pp. 182–187, 2012.

[162] S. Mittal, “A survey on modeling and improving reliability of dnn algorithms and
accelerators,” Journal of Systems Architecture, vol. 104, p. 101689, 2020.

[163] G. Abich, J. Gava, R. Reis, and L. Ost, “Soft error reliability assessment of neural
networks on resource-constrained iot devices,” in 2020 27th IEEE Int. Conference
on Electronics, Circuits and Systems (ICECS), pp. 1–4, IEEE, 2020.

[164] Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam, and G. Guo, “Soft
errors in dnn accelerators: A comprehensive review,” Microelectronics Reliability,
vol. 115, p. 113969, 2020.

[165] Y. He, P. Balaprakash, and Y. Li, “Fidelity: Efficient resilience analysis framework
for deep learning accelerators,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 270–281, IEEE, 2020.

[166] W. Li, G. Ge, K. Guo, X. Chen, Q. Wei, Z. Gao, Y. Wang, and H. Yang, “Soft
error mitigation for deep convolution neural network on fpga accelerators,” in
2020 2nd IEEE International Conference on Artificial Intelligence Circuits and
Systems (AICAS), pp. 1–5, 2020.

[167] B. Salami, O. S. Unsal, and A. C. Kestelman, “On the resilience of rtl nn
accelerators: Fault characterization and mitigation,” in 2018 30th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), pp. 322–329, 2018.

[168] A. Ruospo, A. Bosio, A. Ianne, and E. Sanchez, “Evaluating convolutional
neural networks reliability depending on their data representation,” in 2020 23rd
Euromicro Conference on Digital System Design (DSD), pp. 672–679, 2020.

[169] M. A. Neggaz, I. Alouani, S. Niar, and F. Kurdahi, “Are cnns reliable enough
for critical applications? an exploratory study,” IEEE Design Test, vol. 37, no. 2,
pp. 76–83, 2020.

[170] L.-H. Hoang, M. A. Hanif, and M. Shafique, “Ft-clipact: Resilience analysis of
deep neural networks and improving their fault tolerance using clipped activation,”
in Proc. Design, Automation and Test in Europe, DATE ’20, (San Jose, CA,
USA), p. 1241–1246, EDA Consortium, 2020.

[171] E. Trichina, T. Korkishko, and K. H. Lee, “Small size, low power, side channel-
immune aes coprocessor: design and synthesis results,” in International Conference
on Advanced Encryption Standard, pp. 113–127, Springer, 2004.

[172] O. Reparaz, R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede,
“Additively homomorphic ring-lwe masking,” in Post-Quantum Cryptography,
pp. 233–244, Springer, 2016.

[173] S. Mangard, N. Pramstaller, and E. Oswald, “Successfully attacking masked aes
hardware implementations,” in Cryptographic Hardware and Embedded Systems
– CHES 2005 (J. R. Rao and B. Sunar, eds.), (Berlin, Heidelberg), pp. 157–171,
Springer Berlin Heidelberg, 2005.

95

[174] M. Rusci, L. Cavigelli, and L. Benini, “Design automation for binarized neural
networks: A quantum leap opportunity?,” CoRR, vol. abs/1712.01743, 2017.

[175] X. Lai, M. Jenihhin, G. Selimis, S. Goossens, R. Maes, and K. Paul, “Early rtl
analysis for sca vulnerability in fuzzy extractors of memory-based puf enabled
devices,” in 2020 IFIP/IEEE 28th International Conference on Very Large Scale
Integration (VLSI-SOC), pp. 16–21, IEEE, 2020.

[176] X. Lai, T. Lange, A. Balakrishnan, D. Alexandrescu, and M. Jenihhin, “On
antagonism between side-channel security and soft-error reliability in bnn inference
engines,” in 2021 IFIP/IEEE 29th International Conference on Very Large Scale
Integration (VLSI-SoC), pp. 1–6, 2021.

96

Acknowledgements
Finally, I reach this chapter with lots of gratitude. The accomplishment of this PhD
thesis has received lots of supports from many people, and I would like to express my
sincere thanks to all the people I have worked and cooperated with.

In particular, I would like to express my heartfelt appreciation to my supervisor,
Profesor Maksim Jenihhin, for his tremendous supports, mentoring, and instructive
advice throughout my PhD studies. It is a great and valuable experience to work with
you. I would also thank Professor Jaan Raik for his collaboration and timely support
when it was needed.

Special thanks to the Head of Department of Computer System, Dr. Margus Kruus,
for the support. And I would also express my thanks to my colleagues at the Department
of Computer Systems and researchers and supervisors from the RESCUE project.

Last but not least, sincere thanks to my parents and my siblings, who have and will
always be there to support me.

I would like to acknowledge the organization that has supported my PhD studies:
RESCUE European Training Network (ETN) project that received funding from European
Union’s Horizon 2020 research and innovation programme under the Marie Sklodowaska-
Curie grant agreement No 722325.

97

Abstract
Approaches to Extra-Functional Verification of Security
and Reliability Aspects in Hardware Designs
Several recent trends can be observed in advanced electronics. First, the technology
shrinking has enabled sophisticated functions to be integrated into small-size chips. Such
high-density integrated circuits accommodate billions of transistors, making the design
sensitive to the environment and thus error-prone. This fact introduces the design and
verification challenges for functional and extra-functional aspects. Second, along with
the widespread of the Internet-of-Things and critical systems, the reliability, security, and
power extra-functional aspects start playing essential roles to ensure design’s functional
correctness in harsh environments. Third, in order to cope up with very large and
complex designs, Intellectual Property (IP) reuse methodology is introduced and widely
applied to increase the design efficiency. This brings the front hardware security issues,
and in particular, IP protection against hardware trojans potentially sneaking in with an
external IP.

In order to align with the strict requirements for extra-functional aspects, the related
design verification techniques have to evolve at the same pace. Unfortunately, the
extra-functional verification techniques are still immature, and here the hardware design
discipline is still to catch up with the developments in software engineering. Normally
extra-functional aspects are composed of the measurement of the sequences of functional
behaviors. For some extra-functional aspects such as reliability and security, the highly
abstract extra-functional requirements need enormous analysis to extract the functional
sequence with an in-depth understanding of the design. Extra-functional features, like
side-channel leaks related to the security aspect, are usually verified only after the
manufacturing step, thus causing significant design cost overheads. For verification of
multiple extra-functional aspects, the problem becomes even more sophisticated, and
the complexity often grows exponentially. Therefore, the objectives of the thesis are to
have a comprehensive study of extra-functional aspects and address limitations of the
existing hardware design verification methodology, with the focus on research of the
most critical extra-functional aspects, i.e. security and reliability. The contributions of
the performed research are summarized as follows.

• A comprehensive understanding of the extra-functional aspects and features
of the related design verification methodologies. The research work is based on
the literature review of the state-of-the-art for extra-functional aspects verification
and proposes a taxonomy of extra-functional aspects. The research points out
challenges for the current hardware design verification and proposes an initial
method involving machine learning techniques to cope with the extra-functional
features analysis.

• Early Register-Transfer Level (RTL) design verification methods for timing
side-channel attacks. While vulnerability to timing side-channel attacks is
mostly addressed after manufacturing, this work proposes presents an early design
phase analysis using simulation-based and formal verification methods. The latter
combines the information flow tracking with a commercial formal verification tool,
Jasper Gold SPV, and uses a crypto core RSA as a case study. The new method
successfully identifies all the timing channels inside the design and provides a
lightweight mitigation technique to eliminate the vulnerability. A simulation-based
method is developed and applied to an Error Correction Code based decoder as

98

a part of the fuzzy extractor for memory-based Physical Unclonable Function
enabled integrated circuits. The method involves a structural analysis to identify
the implementation parameters that might create vulnerabilities to a defined novel
attack. The method is validated by simulation.

• The study of dependencies between side-channel security and soft-error
reliability in a design implementation. The design verification for multiple extra-
functional aspects is challenging due to their mutual influence. This work targets
the security and reliability aspects of Binary Neural Network (BNN) inference
engines used in critical systems and demonstrates the conflicts between security
and reliability requirements. The research work studies a recently introduced
power side-channel mitigation technique to the BNN hardware implementation
and estimates its impact on soft-error reliability of the involved design components.
The research has proposed a soft-error reliability analysis flow for BNN hardware
inference engines based on logical and functional de-rating. The final results have
shown a significant increase in vulnerability to soft errors caused by the security
mitigation techniques. In particular, for the case study, there is an up to 1000×
output bit failure rate increase and 350× neural network functional failure rate
increase.

99

Kokkuvõte
Riistvaraprojektide turva- ja töökindlusaspektide ekstra-
funktsionaalse verifitseerimise lähenemisviisid
Elektroonikas võib märgata mitmeid uusi trende. Esiteks võimaldab tehnoloogia minia-
turiseerumine keerukate funktsioonide integreerimist üliväikesel pinnal. Sellised kõrge
tihedusega kiibid mahutavad miljardeid transistore, muutes need tundlikuks keskkon-
namõjude ja rikete suhtes. Nimetatud asjaolu põhjustab väljakutseid funktsionaalsete
ja ekstrafunktsionaalsete aspektide verifitseerimisel. Teiseks on koos asjade interneti
ja kriitiliste süsteemide populaarsuse tõusuga kaasaegsetes elektroonikasüsteemides
hakatud üha enam tähelepanu pöörama ekstrafunktsionaalsetele aspektidele nagu töö-
kindlus, turvalisus ja võimsus ja need on saanud olulisteks parameetriteks projekteerimise
funktsionaalse korrektsuse tagamiseks ohutuskriitilistes keskkondades. Kolmandaks on
väga suurte ja keerukate kiibiprojektidega toimetulemiseks laialdaselt kasutusele võetud
tuumade taaskasutuse metoodika, et suurendada projekteerimisprotsessi tõhusust. Seega
on taaskasutatavate tuumade puhul esile kerkinud intellektuaalomandi kaitse ja riistvara
troojalastega seotud turvaprobleemid ning need on äratanud ka mikroelektroonika
kogukonna tähelepanu.

Verifitseerimistehnikaid tuleb jätkuvalt arendada ning viia kooskõlla ekstrafunktsio-
naalsete aspektide kõrgete nõudmistega. Kahjuks on verifitseerimistehnikad, mis aitavad
käsitleda riistvaraprojektide ekstrafunktsionaalseid aspekte, veel mittepiisavad ning
jäävad maha tarkvaradistsipliini vastavast arengust. Tavaliselt koostatakse ekstrafunkt-
sionaalsed aspektid funktsionaalse käitumisjada põhjal. Mõnede ekstrafunktsionaalsete
aspektide, nagu töökindlus ja turvalisus, jaoks vajavad äärmiselt abstraktsed ekstrafunkt-
sionaalsed nõuded tohutut analüüsi, et eraldada funktsionaalne järjestus ning see eeldab
skeemi põhjalikku ja detailset tundmist. Mõningaid ekstrafunktsionaalseid funktsioone,
nagu turvaaspektiga seotud külgkanalite rünnakud, verifitseeritakse tavaliselt alles peale
tootmist, mis põhjustab suuri projekteerimiskulusid. Mitme ekstrafunktsionaalse aspekti
samaaegsel verifitseerimisel muutub probleem veelgi keerukamaks ning see keerukus
suureneb eksponentsiaalselt.Seega on lõputöö eesmärkideks uurida põhjalikult ekstra-
funktsionaalseid aspekte ning käsitleda olemasoleva riistvara verifitseerimise metoodika
teatud piiranguid ja omadusi, uurides põhjalikult turvalisuse ja töökindluse olulisi ekst-
rafunktsionaalseid aspekte. Vastavalt sellele võib käesoleva uurimistöö tulemused kokku
võtta järgmiselt.

• Igakülgne arusaam asjakohaste verifitseerimismetoodikate ekstrafunkt-
sionaalsetest aspektidest ja omadustest. Uurimistöö põhineb ekstrafunkt-
sionaalsete aspektide verifitseerimise teadustöö taseme kirjanduse ülevaatel ja
pakub välja ekstrafunktsionaalsete aspektide taksonoomia. Uuring toob välja
väljakutsed praeguse riistvara verifitseerimisel ja pakub välja esialgse meetodi, mis
hõlmab masinõppe tehnikaid, et tulla toime ekstrafunktsionaalsete funktsioonide
analüüsiga.

• Varajased registersiirde taseme verifitseerimise meetodid ajastuse külg-
kanali rünnakutele. Kuigi haavatavust ajastuse külgkanalite rünnakute suh-
tes käsitletakse enamasti pärast tootmist, pakutakse selles töös välja varase
projekteerimisetapi analüüs, kasutades simulatsioonipõhiseid ja formaalseid ve-
rifitseerimismeetodeid. Viimane ühendab infovoo monitooringu kommertsiaalse
verifitseerimistööriistaga Jasper Gold SPV ja kasutab juhtumiuuringuna krüptotuu-
ma RSA-d. Uus meetod tuvastab edukalt kõik disaini sees olevad ajastuskanalid ja

100

pakub haavatavuse kõrvaldamiseks lihtsa leevendustehnika. Arendati välja simulat-
sioonil põhinev meetod ja rakendati seda veaparanduskoodil põhineval dekoodril
mälupõhiste füüsikalise unklooneerimata funktsiooniga integraallülituste häguse
ekstraktori osana. Meetod hõlmab struktuurianalüüsi, et tuvastada rakenduspa-
rameetrid, mis võivad tekitada haavatavusi määratletud uudse rünnaku suhtes.
Meetod on valideeritud simulatsiooni abil.

• Kõrvalkanali turbe ja pehmete vigade töökindluse vaheliste sõltuvuste
uurimine projekteerimislahenduses. Mitme ekstrafunktsionaalse aspekti disaini
koos verifitseerimine on nende vastastikuse mõju tõttu keeruline. Käesolev töö
on suunatud kriitilistes süsteemides kasutatavate Binaarsete Närvivõrkude (BNN)
turvalisuse ja töökindluse aspektidele ning demonstreerib vastuolusid turbe- ja
töökindlusnõuete vahel. Uurimistöös uuritakse hiljuti BNN-i riistvararakenduses
kasutusele võetud võimsuse külgkanali leevendamise tehnikat ja hinnatakse selle
mõju kaasatud disainikomponentide pehmete vigade töökindlusele. Uurimistöös
on välja pakutud pehmete vigade usaldusväärsuse analüüsi voog BNN-i riistvara
realisatsioonidele, mis põhineb loogilisel ja funktsionaalsel tegurite vähendamisel.
Lõpptulemused näitavad, et turvalisuse leevendamise tehnikatest põhjustatud
pehmete vigade haavatavus on oluliselt suurenenud. Eelkõige täheldati juhtumiuu-
ringu puhul kuni 1000-kordne väljundbiti tõrkesageduse suurenemine ja 350-kordne
närvivõrgu funktsionaalsete rikete sageduse kasv.

101

Appendix 1

I
M. Jenihhin, X. Lai, T. Ghasempouri, and J. Raik, “Towards multidi-
mensional verification: Where functional meets non-functional,” in 2018
IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and
International Symposium of System-on-Chip (SoC), pp. 1–7, IEEE, 2018

103

Towards Multidimensional Verification:
Where Functional Meets Non-Functional

Maksim Jenihhin, Xinhui Lai, Tara Ghasempouri, Jaan Raik

Computer Systems, Tallinn University of Technology, Estonia, maksim@ati.ttu.ee

Abstract— Trends in advanced electronic systems’ design
have a notable impact on design verification technologies. The
recent paradigms of Internet-of-Things (IoT) and Cyber-
Physical Systems (CPS) assume devices immersed in physical
environments, significantly constrained in resources and
expected to provide levels of security, privacy, reliability,
performance and low power features. In recent years, numerous
extra-functional aspects of electronic systems were brought to
the front and imply verification of hardware design models in
multidimensional space along with the functional concerns of
the target system. However, different from the software domain
such a holistic approach remains underdeveloped. The
contributions of this paper are a taxonomy for multidimensional
hardware verification aspects, a state-of-the-art survey of
related research works and trends towards the
multidimensional verification concept. The concept is motivated
by an example for the functional and power verification
dimensions.

Keywords— extra-functional verification; functional
verification; survey; taxonomy; security verification; reliability
verification; power verification; timing verification.

I. INTRODUCTION

Today, several prominent trends in electronic systems
design can be observed. The Internet-of-Things (IoT) and
Cyber-Physical Systems (CPS) devices are immersed in
physical environments, significantly constrained in resources
and expected to provide levels of security and privacy [1],
ultra-low power feature or high performance. Very complex
electronic systems, including those built from the non-
certified for reliability Commercial-Off-The-Shelf (COTS)
components, are used for safety- and business-critical
applications. These trends along with gigascale integration at
nanoscale technology nodes and multi-/many-processor based
systems-on-chip architectures have ultimately brought to the
front various extra-functional aspects of the electronic
systems’ design at the chip design level. The latter include
security, reliability, timing, power consumption etc. There
exist numerous threats causing an electronic system to violate
its specification. In the hardware part, these are design errors
(bugs), manufacturing defects and variations, reliability issues
such as soft errors and aging faults or malicious faults, such as
security attacks. Eventually, there can also be bugs in the
software part.

Hardware design model verification detects design errors
affecting functional and extra-functional (also
interchangeably referred as non-functional) aspects of the
target electronic system. Strictly, the sole task of extra-
functional verification of a design model is limited to detecting
deviations that cause violation of extra-functional
requirements. In practice, it often intersects with the task of
functional verification [2], [14], thus establishing a
multidimensional space for verification. A “grey area” in
distinction between functional and extra-functional

requirements may appear when an extra-functional
requirement is a part of design’s main functionality. E.g.,
security requirements for some HW design can be split into
extra-functional and functional sets if the design’s purpose and
specified functionality is a system’s security aspect, e.g. it is a
secure cryptoprocessor.

In this paper, we present an overview for the recent trends
in extra-functional and functional verification of HW designs
and discuss the challenges towards the holistic
multidimensional verification. The rest of this paper is
organized as follows: Section II provides a taxonomy of
multidimensional verification aspects, Sections III proposes a
state-of-the-art survey with the key trends in verification for
the main extra-functional aspects, Section IV discusses the
multidimensional verification paradigm and presents a
motivational example for the functional and power
verification dimensions, Section V draws the conclusions.

II. TAXONOMY OF MULTIDIMENSIONAL VERIFICATION

ASPECTS

In practice, relevance of each functional and extra-
functional aspect strongly depends on design type, target
system application and specific user requirements. Following
the design paradigm shift, a number of extra-functional
aspects have recently received significant academic research
attention e.g., security. At the same time, there already exist
established industrial practices for measuring and maintaining
separate design qualities, e.g. the RAS (Reliability-
Availability-Serviceability) aspect introduced by IBM [6].
While in the software engineering discipline, the taxonomy of
extra-functional requirements has a comprehensive coverage
by the literature [7]-[12], it cannot be directly re-used for the
HW verification discipline because of significant difference in
the design models.

Fig 1 introduces a taxonomy of multidimensional
verification aspects derived from the performed literature
review. The conventional functional concerns are safety and
liveness properties, combinational and temporal
dependencies along with data types, however this list can be
extended for particular designs. The extra-functional aspects
can be strictly categorized into three groups: system qualities,
system resource constraints and timing aspects (in bold).
Despite the security and reliability aspects belong to the first
group and the power aspect belongs to the second group, these
three aspects have a special attention in the literature and in
practical applications. Several extra-functional aspects such
as (manufacturing defects) testability, fault-tolerance and
other in-field fault group aspects do not have a direct
correspondence in the software engineering discipline because
of the distinct nature of faults. Other aspects such as real-time
constraints are very similar between the two domains.

978-1-5386-7656-1/18/$31.00 ©2018 IEEE

III. TRENDS IN EXTRA-FUNCTIONAL VERIFICATION

Table I presents a survey of recent publications targeting
extra-functional and multidimensional verification. Here,
along with the specific extra-functional aspects details about
the design model and verification approach are outlined, i.e.,
the design under verification type, verification engine, the
level of abstraction, design representation language, compute
model and the tool operated in the research. For instance, the
row for paper [40] shows that the authors performed model
checking to reduce the state space of a Timed Petri Net of a
real-time scheduler. Looking at this row, real-time constraints
is the type of timing property, a scheduler of an embedded
system is the design under verification, the abstraction level is
the system level and SMT model checker Promela [64], Timed
Petri Net and SPIN [63] are the verification engine, the design
representation language, the compute model and the tool,
respectively. We pointed out such key points for all the recent
up to 10-year old studies in this area.

A. Security aspects

Security is difficult to quantify as today there are no
commonly agreed metrics for this purpose [1]. The key
targeted security services [16] are commonly represented as
non-functional aspects for verification are confidentiality,
integrity and availability. They are tightly linked to the type of
attack and the attacker model assumed for each case, i.e.
black-, grey- or white-box.

Today, for complex HW designs (e.g. IEEE1687
Reconfigurable Scan Networks or NoCs) the specific on-chip
security features in the design model to be verified also tend
to be very sophisticated. These include on-chip mechanisms
for attack prevention (firewalls, user management,
communications isolation), attack protection (traffic
scrambling, encryption) and attack resilience (checkers for
side-channel attacks, covert channel detection, attack recovery
mechanisms).

Many of the existing works in security verification (e.g.
[21], [23], [25], [28], [29]) are focusing on the integrity
attribute, mostly addressing HW trojan detection . There also
exist some works that additionally target ([19], [20], [22], [24],

[30]) or are exclusively considering ([26], [27]) the
confidentiality aspect.

Several solutions in security verification are restricted to
target specific architectures or types of modules such as
Reconfigurable Scan Networks (RSNs) [22], [26] or macro-
asynchronous micro-synchronous pipelines [29].

There is virtually no work that considers security in
combination with other extra-functional aspects. Some
solutions in the security verification of NoCs indirectly
address reliability due to the fact that they implement
hardware monitors that allow avoiding both, attacks and in-
field faults [20], [21]. An approach that is designed for
modeling a multitude of extra-functional aspects is the model-
based engineering example of Architecture Analysis and
Design Language (AADL) [19]. While, in principle, AADL
allows representing several extra-functional aspects (called
quality attributes in AADL), [19] only concentrates on
analysis of confidentiality as a part of verifying security in a
system with multiple levels of security. The authors in [70]
have target a general multi-view HW modeling and
verification approach taking into consideration the security
view.

B. Reliability aspects

The key drivers for the reliability aspect in today’s designs
are the recent industrial standards in different application
domains such as IEC61508, ISO26262, IEC61511, IEC62279,
IEC62061, RTCA/DO-254, IEC60601, etc. These ultimately
imply extra-functional features such as safety mechanisms and
redundancy to ensure levels of fault coverage, e.g. ASIL
(Automotive Safety Integrity Level). Here, the key threats are
transient faults in the field such as radiation-induced single
event effects or soft errors [15] and intermittent to permanent
faults by process or time-dependent variations, i.e. aging, e.g.
induced by Bias Temperature Instability (BTI) [13]. New
applications, demand the systems to be fail-safe or fail-
operational, by functionally redundant design parts enabling
fault-tolerance, -resilience and -robustness. A promising
initiative in reliability specification and modelling is the
Reliability Information Interchange Format (RIIF) [30].

Fig. 1. Taxonomy of multidimensional verification aspects

Similar to other aspects, reliability in large complex
electronic systems, e.g. safety-critical CPSs is tackled starting
at high level of abstraction. System’s fault tolerance is
formally checked using UPPAAL and timed automata models
generated from AADL specifications [33]. HW design models

and tools at such a level also enable verification of interference
of extra-functional design aspects [70].

There are research works relying on design soft-error
reliability verification by fault-injection campaigns e.g. [69]
or formal analysis [68]. This analysis is targeted at extra-

TABLE I. SURVEY OF THE STATE-OF-THE-ART SOLUTIONS FOR EXTRA-FUNCTIONAL AND MULTIDIMENSIONAL VERIFICATION

Paper Year1

Extra-functional aspect2
Design under
verification

Verification
engine

Abstract.
level5

Design
representation

language

Compute
model Tool

Security Reliability3 Timing4 Power Other system
quality

Other
constrained

resource

[19] 2009 confidentiality,
integrity - - - - - HW/SW system

formal,
correct-by-

construction
SL AADL - OSATE

[20] 2016 integrity,
confidentiality ○ - - - - NoC

simulation,
HW

monitors
RTL VHDL/Verilog - -

[21] 2014 integrity ○ - - - - NoC formal GL VHDL/Verilog - SurfNoC

[22] 2017 integrity,
confidentiality - - - - - RSN model check RTL ICL Craig

interpolation CIP solver

[23] 2015 integrity - - - - - SoC simulation RTL VHDL/Verilog - -

[24] 2016 integrity,
confidentiality - - - - - ALU equivalence

check GL - QBF-SAT -

[25] 2017 integrity - - - - - SoC semiformal GL - - JasperGold
SPV

[26] 2016 confidentiality - - - - - RSN model check RTL ICL Craig
interpolation CIP Solver

[27] 2017 confidentiality - - - - - industrial
control systems formal SL ASLan++ - CL-AtSe

[28] 2017 integrity - - - - - IP cores semiformal GL VHDL - mini-SAT
[29] 2015 integrity - - - - - ISA, pipeline model check RTL - CTL, LTL nuXmv SMV

[30],[71] 2013 integrity,
confidentiality - - - - - IPs and SoCs formal RTL, GL Verilog - JasperGold

SPV

[33] 2017 - ● - - - - CPS model check SL AADL Timed
Automata UPPAAL

[34] 2015 - SER - - - - IP cores formal GL/RTL LDDL LDDL Coq

[35] 2010 - SER - - availability,
serviceability - processor fault inject. GL Verilog - IBM in-house

[36] 2016 - ● - - availability,
serviceability - SoC fault inject. RTL - - -

[38] 2018 - - latency ○ - - NoC fault inject. RTL VHDL - QoSinNoC
[39] 2011 - - RT - - - memory model check RTL REAL;AADL - Ocarina

[40] 2010 - - RT - - - Scheduler of a
RT emb. system model check - Promela Time Petri-

net SPIN

[41] 2010 - - latency - - - RT emb. system model check SL AADL - YICES

[42] 2017 - - performance ○ - - NoC, HW/SW
architectures simulation SL

GAL (Graph
Assembly
Language)

resource /
connectivity

graphs
ArchOn

[43],[44] 2016 - ○ (LTR) - ○ - thermal Smart Systems simulation SL IP-XACT;
SystemC-AMS - -

[46] 2012 ● - - IPs simulation SL SystemC - -
[47] 2016 ● - - DSP cores simulation SL,GL,RTL SystemC - Powersim

[50] 2017 - - performance ○ - - automotive CPS model check SL C, EAST-ADL Timed
Automata UPPAALsdv

[51] 2016 - - - ● - - IPs semiformal
ABV RTL VHDL/Verilog;

SystemC

Hidden
Markov
Model

-

[52] 2012 - - execution
time ○ - - distributed emb.

system simulation SL SystemC - -

[53] 2016 - - performance ○ - thermal HW/SW
platform

simulation,
formal

(analytical)
RTL,TLM,SL

UML; C++;
SystemC-AMS;

VHDL
HIF HIFSuite

[54] 2014 - - - - connectivity - SoC
symbolic

model
checking

RTL/TLM Verilog -
Incisive
Formal
Verifier

[55] 2008 - - ○ (latencies) - connectivity - SoC property
checking RTL Verilog - JasperGold

CV

[56] 2016 - - - - - memory
consistency processor simulation ISA ruby - McVerSi

[60] 2011 - - - ● - thermal SoC simulation SL, GL/RTL SystemC -
PowerMixer,
PowerDepot,
PowerBrick,

[61] 2015 - - - ● - - simulation SL,TLM SytemC - Power Kernel
Tool

[62] 2011 - - - ● - - SoC simulation SL SystemC - Powersim

[67] 2018 - ● - - - - CPS

formal and
simulation,

HW
monitors

RTL VHDL/Verilog multiple multiple

[68] 2014 - SER - - - - IPs SAT solver RTL VHDL - -

[69] 2010 - SER - - - - IPs, processor simulation RTL VHDL/Verilog - -

[70] 2018 ● ● - - - - MPSoC model check SL, RTL - Timed
Automata UPPAAL

1 only conference, journal and industrial white papers published in the last 10 years were selected for this survey
2 ● – this aspect is the main focus in the paper; ○ – this aspect is partially addressed

3 LTR – lifetime reliability; SER – soft-error reliability;
4 RT – real-time constraints;
5 GL – gate level; SL – system level; ISA – instruction set architecture level; TLM – transaction level model

functional structures for error protection, e.g. error-correction
code (ECC) based mechanisms against single-bit errors in
memory elements [68]. [34] proposes a general approach to
verify gate-level design transformations for reliability against
single-event transients by soft errors that combines formal
reasoning on execution traces. [35] and [36] focus on the RAS
(reliability, availability and serviceability) group of extra-
functional aspects outlined by IBM for complex processor
designs where embedded error protection mechanisms and
designs intrinsic immunity (due to various masking) to errors
is evaluated by fault injection.

[43] and [44] propose extensions to system descriptions in
the IP-EXACT format to enable multi-layer representation
and simulation of several mutually influencing extra-
functional aspects of smart system designs such as lifetime
reliability (aging), power and temperature. A complex
approach to verification of multiple reliability concerns (soft
errors, BTI, etc.) across layers in industrial CPS designs is
proposed in [67] as a collaborative research result in the
IMMORAL project.

C. Timing aspects

Functional temporal properties are essential part of
sequential designs’ specification that are often modelled for
functional verification by computational tree logic (CTL),
applied for formal approaches, and linear temporal logic (LTL)
temporal assertions expressed arbitrarily in PSL (Property
Specification Language), SVA (System Verilog Assertions) or
systematically in UVM (Universal Verification Methodology).
In the extra-functional domain, these can be extended to
specific requirements about performance (in particular as a
trade-off to the power aspects), quality of service parameters
such as latency, throughput etc. For formal classification,
particular timing aspects may stay in the “limbo” between
functional and extra-functional dimensions when timing
properties are indivisible with the functionality for the real-
time systems (e.g. demanding a worst-case execution time)
[32] or time-constrained communication implementations as
in the Network-on-Chip (NoC) structures [37], [38].

Several works have been widely studying system’s timing
properties. Some researchers are mainly focused on generating
timing properties such as Real Time (RT), latency, execution
time, throughput, communication time, performance and etc.,
to reduce the verification process, state space and cost [40],
[42], [53]. Other works instead use the timing properties to
assess whether the system under verification is correctly
functioning or not [41], [50], [52]. In [42] a framework has
been developed to analyze performance of a system design.
The framework is based on stochastic modeling and
simulation and it is applied on a set of NoC topologies. The
methodology uses the selective abstraction concept to reduce
complexity. [53] introduces a tool called CONTREX to
complement current activities in the area of predictable
computing platforms and segregation mechanisms with
techniques to compute RT properties. CONTREX enables
energy efficient and cost aware design through analysis and
optimization of properties such as RT. In [41], an analysis tool
is developed to work with the AADL [65] developing
environment to analyze the latency of the AADL model to
assure the correctness of a scheduling model that binds the
relation of different components in a model. The authors in
[50] modified EASTADL [66] to include energy constraints
and transformed energy-aware real-time (ERT) behaviors
modeled in EAST-ADL/Stateflow into UPPAAL models

amenable to formal verification. And finally, in [52] a
platform has been developed to generate a virtual platform in
SystemC to express the accuracy of real-time embedded
system.

A few works also take into account dependencies between
several extra-functional aspects. For instance, the work in
[50], [53] and [42] present the effect of optimizing timing
properties (performance and latency) on power consumption
or the study in [52] performs the effect of decreasing execution
time on power consumption. Such analysis is mostly limited
to two extra functional aspects or neglected at all [39], [40],
[41], [55], while design timing constraints can strongly
influence not only power consumption but reliability, security,
availability, etc. as well as functional properties.

D. Power consumption

 This extra-functional aspect has a tight relation to the
implementation technology assumed for the synthesis of the
design model under verification. With planar bulk MOSFET
technology known for exponential growth of the static leakage
power for smaller device geometries and employment of
FinFET and Tri-Gate-Transistors in the advanced technology
nodes, the CMOS device parameters are essential for this
analysis [45].

In commercial flows, this verification dimension can be
addressed relatively independently from the functional
verification dimension. The power intent and detailed power
modelling can be done starting at TLM or RTL with minimal
interference with the HDL functional description, e.g. using
the Accellera introduced Unified Power Format (UPF)
employed for power-aware design verification automation by
commercial tools especially with the latest UPF3.0 [48] or
Cadence/Si2 Common Power Format CPF [49]. For the
advanced device implementation technologies, power
specification implies multi-voltage design with up to tens of
power domains and may consider dynamic and adaptive
voltage scaling.

 In the recent research works, design verification against
the power aspect is performed at different abstraction levels
with a trade-off between speed and accuracy. Some works
such as [46], [47], [61], [62] perform power analysis at system
level targeting high simulation speed and low power
optimization flexibility similar to the accuracy achievable at
lower levels. In [46], the authors applied their approach to
SRAM and AES encryption IPs and obtained a significant
simulation speed-up in comparison to gate-level simulation
with a high fidelity of the system-level power simulation. A
promising software tool for power simulation in SystemC
designs is the Powersim framework [47], [62]. In [47], a
methodology to estimate the dissipation of energy in hardware
at any level of abstraction is proposed. In [62], the authors
propose a SystemC class library aimed at calculation of energy
consumption of hardware described at system level. The work
in [60] introduces a series of tools which can be tightly linked
and enable the power analysis from layout, gate-level, RT-
level, IP-level to system level. The power aspect verification
could benefit from a holistic multi-level modelling, such as e.g.
[17] available for functional verification. [42], [43], [44], [50],
[52], [53], are aimed at methodologies suitable for specific
applications (such as cyber-physical system [50]) that assume
verification of extra-functional aspects such as power, timing,
thermal at the system level.

IV. THE CHALLENGE OF MULTIDIMENSIONAL

VERIFICATION

The performed analysis of the state of the art has outlined
a gap in methodologies and tools for holistic multidimensional
verification of hardware design models.

Different from functional verification, approaches for
extra-functional hardware design aspects’ verification remain
underdeveloped even when tackled in isolation. Here, one of
the key issues is a lack of established metrics for verification
confidence. For a particular functional verification plan, the
functional dimension usually includes conventional structural
(code) coverage metrics, functional coverage [3] in form of
asserted and assumed properties and design parameters along
with stimuli quality assessment by model mutations [18]. The
metrics for confidence in extra-functional dimension
verification results may be challenging as in practice the
requirements are subjective and can be specified as a mixture
of quantitative and qualitative constraints. Accurate hardware
verification in a particular dimension requires both sufficient
extra-functional design modeling and the extra-functional
aspect target modeling [70]. There is a limited number of
dedicated commercial tools and common standards for extra-
functional verification flows. In particular, for the security
dimension the JasperGold SPV [71] is one of the few such
tools that stand out from the academic research frameworks.
Finally, the issue of eliciting the extra-functional requirements
[4], [5] is a challenging task as ambiguity and (sometimes
conflicting) interdependency of the extra-functional aspects in
the specifications increases complexity and may leave gaps in
the multidimensional verification plans.

Unfortunately, there is no established hardware design
methodology supporting multidimensional verification plans
for mutually influencing functional and extra-functional
aspects. There is a very limited number of research works
going beyond analysis of one extra-functional verification
aspect under constraints of another as the complexity of the
problem grows extremely fast with the number of dimensions
(interdependent constraints) and the electronic system size.
The first works in this direction are, for example, [44] and
[70].

 The objective for the research community is to manage
multidimensional verification campaigns as illustrated in
Fig.2. Fig. 2a is an illustration of six independent verification
campaigns in a three-dimensional verification space. Here, a
verification campaign can achieve a level of confidence in one,
two or all dimensions - (F)unctionality, (P)ower and
(S)ecurity. Radar-charts are an instrument for summarizing
multidimensional verification results for unlimited number of
dimensions, see Fig. 2b (where the dimensions can be ordered
to emphasize correlation or interdependencies between
adjacent dimensions).

A. Motivational Example

Single-dimension verification campaigns ignoring
interdependencies between the dimensions may lead to gaps
in the overall electronic system quality. As an example, let us
consider an actual verification campaign of an open-source
NoC framework Bonfire [57], [58].

The design under verification is in RTL VHDL and
implements a 2x2 NoC infrastructure (processing elements
excluded). The verification plan considered 2-dimensional
verification campaign targeting functionality and power
consumption requirements. For the former, assertion-based

functional verification by simulation was employed targeting
statement, branch, condition and toggle coverage metrics and
satisfaction of a set of temporal simple-subset PSL assertions.
For the latter, a set of power targets were extracted for the
targeted silicon implementation assuming a predetermined
switching activity.

Among documented design errors, the bug f1, as shown in
Fig. 3, is an example of a functional misbehavior due to
improper usage of write and read pointers in the FIFO. The
bug p1 as shown in Fig. 4, causes violations of specified power
consumption targets because of unnecessary excessive use of
a fault-tolerance structure related counter. Interestingly,
functionality of both the router core and the complete system
is not interfered in case of p1.

Table II summarizes power consumption for the three
cases. Here, the Total Power is composed of the dynamic
power, i.e. the Switching Power in the interconnects and the
Internal Power in the logic cells, and the insignificant (for the
target technology) static leakage power Leak Power. The case
p1 results in double power consumption compared to the
correct implementation and violates the power targets in the
specification, whereas the power consumption for the f1 case
remains within the specification. Design verification in a
single dimension may lead to a faulty design.

process(write_en, write_pointer) begin --write pointer bug
 if write_en = '1' then
 write_pointer_in <= write_pointer(0)&write_pointer(3 downto 1);
 else
 write_pointer_in <= write_pointer;
 end if;
end process;

process(read_en, empty, read_pointer) begin --read pointer bug
 if (read_en = '1' and empty = '0') then
 read_pointer_in <= read_pointer(0)&read_pointer(3 downto 1);
 else
 read_pointer_in <= read_pointer;
 end if;
end process;

process(write_en, write_pointer)begin --write pointer
 if write_en = '1' then
 write_pointer_in <= write_pointer(2 downto 0)&write_pointer(3);
 else
 write_pointer_in <= write_pointer;
end if;
end process;

process(read_en, empty, read_pointer) begin --read pointer
 if (read_en = '1' and empty = '0') then
 read_pointer_in <= read_pointer(2 downto 0)&read_pointer(3);
 else
 read_pointer_in <= read_pointer;
 end if;
end process;

Fig. 3. Bug f1 and its correction.

Fig. 2. Multidimensional verification campaigns
(Radar-chart n-dimensional visualization)

Functionality

PowerSecurity

Campaign_1 (F‐P‐S)

Campaign_2 (F‐S)

Campaign_3 (F‐P)

Campaign_4 (F)

Campaign_5 (P)

Campaign_6 (S)

100% 100%

100%

0%

Functionality

Power

SecurityReliability

Timing

camp_a

camp_b

a)

b)

process(Healthy_packet, reset_counters, healthy_counter_out)
begin
 if reset_counters = '1' then
 healthy_counter_in <= (others => '0');
 elsif Healthy_packet = '1' then -- Bug p1!
 healthy_counter_in <= healthy_counter_out + 1;
 else
 healthy_counter_in <= healthy_counter_out;
 end if;
end process;

process(Healthy_packet, reset_counters, healthy_counter_out,
 faulty_counter_out) begin
 if reset_counters = '1' then
 healthy_counter_in <= (others => '0');
 elsif Healthy_packet = '1' and faulty_counter_out /=
std_logic_vector(to_unsigned(0, faulty_counter_out'length)) then
 healthy_counter_in <= healthy_counter_out + 1;
 else
 healthy_counter_in <= healthy_counter_out;
 end if;
end process;

Fig. 4. Bug p1 and its correction.

TABLE II. POWER CONSUMPTION OF THE CORRECTED BONFIRE SYSTEM
IMPLEMENTATION AND THE ONE IN PRESENCE OF BUGS F1 AND P1.

Bonfire system
Implementation

Switching
Power (mW)

Internal
Power (mW)

Leak Power
(pW)

Total Power
(mW)

with f1 bug 0.783 9.427 7.50e+05 10.211

with p1 bug 0.757 21.379 6.93e+05 22.137

corrected 0.666 9.518 7.43e+05 10.184

V. CONCLUSION

In the recent years, numerous extra-functional aspects of
electronic systems were brought to the front and imply
verification of hardware design models in multidimensional
space along with the functional concerns of the target system.
In this paper, we have presented a taxonomy for
multidimensional hardware verification aspects, a state-of-
the-art survey of related research works and trends towards the
multidimensional verification concept. The performed
analysis of the state of the art has outlined a gap in
methodologies and tools for holistic multidimensional
verification of hardware design models. The concept was also
motivated by a case study for the functional and power
verification dimensions.

ACKNOWLEDGMENTS

We would like to acknowledge Apneet Kaur and Behrad
Niazmand for their help with the case study analysis. This
research was supported in part by projects H2020 MSCA ITN
RESCUE funded from the EU H2020 programme under the
MSC grant agreement No.722325, H2020 TWINN
TUTORIAL, by the Estonian Ministry of Education and
Research institutional research grant no. IUT19-1 and by
European Union through the European Structural and
Regional Development Funds.

REFERENCES
[1] I. Verbauwhede, "Security Adds an Extra Dimension to IC Design:

Future IC Design Must Focus on Security in Addition to Low Power
and Energy," in IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp.
41-45, Fall 2017.

[2] W. Chen, S. Ray, J. Bhadra, M. Abadir and L. C. Wang, "Challenges
and Trends in Modern SoC Design Verification," in IEEE Design &
Test, vol. 34, no. 5, pp. 7-22, Oct. 2017.

[3] A. Piziali, Functional verification coverage measurement and analysis,
Springer, 2008

[4] S. Ullah, M. Iqbal and A. M. Khan, "A survey on issues in non-
functional requirements elicitation," Int. Conf. on Computer Networks
and Information Technology, Abbottabad, 2011, pp. 333-340

[5] Cysneiros L.M., Yu E. (2004) Non-Functional Requirements
Elicitation. In: do Prado Leite J.C.S., Doorn J.H. (eds) Perspectives on
Software Requirements. The Springer International Series in
Engineering and Computer Science, vol 753. Springer, Boston, MA.

[6] M. L. Fair et al., "Reliability, availability, and serviceability (RAS) of
the IBM eServer z990," in IBM Journal of Research and Development,
vol. 48, no. 3.4, pp. 519-534, May 2004.

[7] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, "Non-Functional
Requirements," in Software Engineering. Kluwer Academic, 2000

[8] P. Singh, and A. K. Tripathi, "Exploring Problems and Solutions in
estimating Testing Effort for Non Functional Requirement,"
International Journal of Computers & Technology, vol. 3, no 2b, pp.
284-290, 2012.

[9] E. R. Poort, N. Martens, I. Van de Weerd, and H. Van Vliet, "How
architects see non-functional requirements: beware of modifiability,"
In Requirements Engineering: Foundation for Software Quality, pp. 37-
51. Springer Berlin Heidelberg, 2012.

[10] D. Ameller, C. Ayala, J. Cabot, and X. Franch, "How do software
architects consider non-functional requirements: An exploratory
study," Requirements Engineering Conference (RE), pp. 41-50, 2012.

[11] M. Glinz, "On non-functional requirements," In Requirements
Engineering Conference, 2007. RE'07, pp. 21-26, IEEE, 2007.

[12] Motus, L. “Analytical Study of Quantitative Timing Properties of
Software” 5th EUROMICRO Workshop on Real-Time Systems, 1993.

[13] M. Jenihhin, G. Squillero, T.S. Copetti, V. Tihhomirov, S. Kostin, M.
Gaudesi, F. Vargas, J. Raik, M. Sonza Reorda, L. Bolzani Poehls, R.
Ubar, G.C. Medeiros, Identification and Rejuvenation of NBTI-Critical
Logic Paths in Nanoscale Circuits. JETTA, 32(3),273–289, June 2016.

[14] J. Bhadra, M. S. Abadir, L. C. Wang and S. Ray, "A Survey of Hybrid
Techniques for Functional Verification," in IEEE Design & Test of
Computers, vol. 24, no. 2, pp. 112-122, 2007

[15] S. Mukherjee, Architecture Design for Soft Errors, Morgan Kauf. 2008.
[16] A. Ptzmann, M. Hansen, "Anonymity Unlinkability Undetectability

Unobservability Pseudonymity and Identity Management", A
Consolidated Proposal for Terminology version 0.31, 2008.

[17] R. Ubar et al., “Diagnostic Modeling of Digital Systems with Multi-
Level DDs”. In: Ubar R., Raik J., Vierhaus H.Th. (eds.) Design and test
technology for dependable SoC. 2011, pp. 92-118.

[18] V. Guarnieri et al., "Mutation analysis for SystemC designs at TLM,"
2011 12th Latin American Test Workshop (LATW), Porto de Galinhas,
2011, pp. 1-6.

[19] J. Hansson, B. Lewis, J. Hugues, L. Wrage, P. Feiler and J. Morley,
"Model-Based Verification of Security and Non-Functional Behavior
using AADL," in IEEE Security & Privacy, 2009, pp. 1-1.

[20] T. Boraten, D. DiTomaso and A. K. Kodi, "Secure model checkers for
Network-on-Chip (NoC) architectures," 2016 Int. Great Lakes
Symposium on VLSI (GLSVLSI), Boston, MA, 2016, pp. 45-50.

[21] H. M. G. Wassel et al., "Networks on Chip with Provable Security
Properties," in IEEE Micro, vol. 34, no. 3, pp. 57-68, May-June 2014.

[22] M. A. Kochte, M. Sauer, L. R. Gomez, P. Raiola, B. Becker and H. J.
Wunderlich, "Specification and verification of security in
reconfigurable scan networks," 2017 22nd IEEE European Test
Symposium (ETS), Limassol, 2017, pp. 1-6.

[23] L. W. Kim and J. D. Villasenor, "Dynamic Function Verification for
System on Chip Security Against Hardware-Based Attacks," in IEEE
Transactions on Reliability, vol. 64, no. 4, pp. 1229-1242, Dec. 2015.

[24] Wei Hu et al., "Imprecise security: Quality and complexity tradeoffs
for hardware information flow tracking," IEEE/ACM Int. Conference
on Computer-Aided Design (ICCAD), Austin, TX, 2016, pp. 1-8.

[25] A. Nahiyan, M. Sadi, R. Vittal, G. Contreras, D. Forte and M.
Tehranipoor, "Hardware trojan detection through information flow
security verification," 2017 IEEE International Test Conference (ITC),
Fort Worth, TX, 2017, pp. 1-10.

[26] M. A. Kochte, R. Baranowski, M. Sauer, B. Becker and H. J.
Wunderlich, "Formal verification of secure reconfigurable scan
network infrastructure," 2016 21th IEEE European Test Symposium
(ETS), Amsterdam, 2016, pp. 1-6.

[27] M. Rocchetto, N. O. Tippenhauer, “Towards formal security analysis
of industrial control systems,” ACMA sia Conf. Comput. Commun.
Secur., 2017, pp. 114–126.

[28] M. Yoshimura, T. Bouyashiki and T. Hosokawa, "A Hardware Trojan
Circuit Detection Method Using Activation Sequence Generations,"
2017 IEEE 22nd Pacific Rim International Symposium on Dependable
Computing (PRDC), Christchurch, 2017, pp. 221-222.

[29] F. K. Lodhi, S. R. Hasan, O. Hasan and F. Awwad, "Formal analysis of
macro synchronous micro asychronous pipeline for hardware Trojan
detection," NORCAS 2015, Oslo, pp. 1-4

[30] Z. Hanna, “Verifying Security Aspects of SoC Designs with Jasper App”
(white paper), Jasper Design Automation (Cadence), 2013.

[31] A. Savino, S. Di Carlo, A. Vallero, G. Politano, D. Gizopoulos and A.
Evans, "RIIF-2: Toward the next generation reliability information
interchange format," IEEE IOLTS, 2016, pp. 173-178.

[32] C. Liu and J. Layland. Scheduling Algorithms for Multi programming
in a Hard Real Time Environment, J. of ACM, 20, pp. 46-61, 1973.

[33] F. S. Gonçalves, D. Pereira, E. Tovar and L. B. Becker, "Formal
Verification of AADL Models Using UPPAAL," 2017 VII Brazilian
Symposium on Computing Systems Engineering (SBESC), Curitiba,
2017, pp. 117-124.

[34] D. Burlyaev and P. Fradet, "Formal verification of automatic circuit
transformations for fault-tolerance," 2015 Formal Methods in
Computer-Aided Design (FMCAD), Austin, TX, 2015, pp. 41-48.

[35] B. W. Thompto and B. Hoppe, "Verification for fault tolerance of the
IBM system z microprocessor," Design Automation Conference,
Anaheim, CA, 2010, pp. 525-530.

[36] S. Kan, M. Lam, T. Porter, J. Dworak, "A Case Study: Pre-Silicon SoC
RAS Validation for NoC Server Processor", MTV 2016, pp. 19-24.

[37] S. Avramenko, S. P. Azad, S. Esposito, B. Niazmand, M. Violante, J.
Raik, M. Jenihhin, “QoSinNoC: Analysis of QoS-Aware NoC
Architectures for Mixed-Criticality Applications,” in 21st IEEE Int.
Symp. DDECS 2018, pp 1-6.

[38] S. Avramenko et al., "Upgrading QoSinNoC: Efficient Routing for
Mixed-Criticality Applications and Power Analysis", in IEEE VLSI-
SoC 2018, Verona, pp 1-6.

[39] S. Rubini, F. Singhoff and J. Hugues, "Modeling and Verification of
Memory Architectures with AADL and REAL," 2011 16th IEEE
International Conference on Engineering of Complex Computer
Systems, Las Vegas, NV, 2011, pp. 338-343.

[40] H. Wang, X. Zhou, Y. Dong and L. Tang, "A Hierarchical Verification
Procedure of Timed Petri-Net Model for Real-Time Embedded
Systems," 2010 2nd International Conference on Information
Engineering and Computer Science, Wuhan, 2010, pp. 1-4.

[41] H. Wang, X. Zhou, Y. Dong, L. Tang, “Timing Properties Analysis of
Real-Time Embedded Systems with AADL Model Using Model
Check”, IEEE Int. Conf. on Progress in Informatics and Computing
(PIC), pp 1019–1023, 2010.

[42] A. Rafiev, F. Xia, A. Iliasov, A. Romanovsky and A. Yakovlev,
"Selective Abstraction for Estimating Extra-Functional Properties in
Networks-on-Chips Using ArchOn Framework," 2017 17th
International Conference on Application of Concurrency to System
Design (ACSD), Zaragoza, 2017, pp. 80-85.

[43] S. Vinco, M. Lora, E. Macii and M. Poncino, "IP-XACT for smart
systems design: extensions for the integration of functional and extra-
functional models," 2016 Forum on Specification and Design
Languages (FDL), Bremen, 2016, pp. 1-8.

[44] S. Vinco, Y. Chen, F. Fummi, E. Macii and M. Poncino, "A Layered
Methodology for the Simulation of Extra-Functional Properties in
Smart Systems," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 10, pp. 1702-1715, 2017.

[45] P. Khondkar, “Low-Power Design and Power-Aware Verification”,
Springer 2018.

[46] D. Lorenz et al, “Non-invasive Power Simulation at System-Level with
SystemC”, PATMOS 2012. LNCS (7606), Springer 2012.

[47] S. Orcioni, et al, “Energy estimation in SystemC with Powersim”,
Integration, the VLSI Journal, (55), 2016, 118-128.

[48] "ANSI/IEEE 1801-2015 - IEEE Standard for Design and Verification
of Low-Power, Energy-Aware Electronic Systems", March 2016,

[49] Si2 “Common Power Format”, v2.1, 2014 [Online]
[50] E. Y. Kang, D. Mu, L. Huang and Q. Lan, "Verification and Validation

of a Cyber-Physical System in the Automotive Domain," 2017 IEEE
International Conference on Software Quality, Reliability and Security
Companion (QRS-C), Prague, 2017, pp. 326-333.

[51] A. Danese, G. Pravadelli and I. Zandonà, "Automatic generation of
power state machines through dynamic mining of temporal assertions,"
2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Dresden, 2016, pp. 606-611.

[52] J. Zimmermann, S. Stattelmann, A. Viehl, O. Bringmann and W.
Rosenstiel, "Model-driven virtual prototyping for real-time simulation
of distributed embedded systems," 7th IEEE Int. Symposium on
Industrial Embedded Systems (SIES'12), Karlsruhe, 2012, pp. 201-210.

[53] R. Görgen et al., "CONTREX: Design of Embedded Mixed-Criticality
CONTRol Systems under Consideration of EXtra-Functional
Properties," 2016 Euromicro Conference on Digital System Design
(DSD), Limassol, 2016, pp. 286-293.

[54] JasperGold Connectivity Verification App, Cadence,
http://www.cadence.com [Online]

[55] S.K. Roy, Top Level SOC Interconnectivity Verification Using Formal
Techniques. The 8th Int. Workshop on Microprocessor Test and
Verification, Austin, TX, USA, 2008, pp. 63–70.

[56] M. Elver and V. Nagarajan, "McVerSi: A test generation framework
for fast memory consistency verification in simulation," 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Barcelona, 2016, pp. 618-630.

[57] Bonfire project website: https://github.com/Project-Bonfire/ [Online]
[58] S. P. Azad et al., "From online fault detection to fault management in

Network-on-Chips: A ground-up approach," 2017 IEEE 20th
International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS), Dresden, 2017, pp. 48-53.

[59] J. Flich and J. Duato, “Logic-based distributed routing for nocs,” IEEE
Computer Architecture Letters, vol. 7, no. 1, pp. 13–16, Jan 2008.

[60] S.-C. Fang, C.-C. Weng, C.-K. Tseng, C.-W. Hsu, J.-L. Liao, S.-Y.
Huang, C.-L. Lung, D.-M. Kwai, SoC power analysis framework and
its application to power-thermal co-simulation, in: 2011 Int. Symp. on
VLSI Design, Automation and Test, April 2011, pp. 1–4.

[61] G. Vece, M. Conti, S. Orcioni, Transaction-level power analysis of
VLSI digital systems, Integr. VLSI J. 50 (2015) 116–126

[62] M. Giammarini, M. Conti, S. Orcioni, System-level energy estimation
with Powersim, in: 2011 18th IEEE Int. Conf. on Electronics, Circuits
and Systems (ICECS), December 2011, pp. 723–726.

[63] Spin tool website. http://spinroot.com/ [Online].
[64] Smt-comp tool website. http://www.smtcomp.org/ [Online].

[65] The architecture analysis and design language AADL.
http://www.aadl.info/aadllcurrentsite/ [Online].

[66] EAST-ADL Consortium, “East-adl domain model specification
v2.1.9,” Maenad European Project, Tech. Rep., 2011.

[67] G. Aleksandrowicz et al. (2018) Designing Reliable Cyber-Physical
Systems. In: Fummi F., Wille R. (eds) Languages, Design Methods,
and Tools for Electronic System Design. Lecture Notes in Electrical
Engineering, vol 454. Springer, Cham

[68] Eli Arbel, Shlomit Koyfman, Prabhakar Kudva, and Shiri Moran.
Automated detection and verification of parity-protected memory
elements. In Proc. IEEE/ACM ICCAD, 2014, 1-8.

[69] M. Maniatakos, Y. Makris, “Workload-driven selective hardening of
control state elements in modern microprocessors”. In VTS, 2010, 159–
164

[70] J. Vain, A. Kaur, L. Tsiopoulos, J. Raik and M. Jenihhin, “Multi-view
modeling for MPSoC design aspects”, IEEE BEC October 8-10, 2018

[71] JasperGold Security Path Verification App, Cadence,
http://www.cadence.com [Online]

Appendix 2

II
X. Lai, A. Balakrishnan, T. Lange, M. Jenihhin, T. Ghasempouri, J. Raik,
and D. Alexandrescu, “Understanding multidimensional verification: Where
functional meets non-functional,” Microprocessors and Microsystems,
vol. 71, p. 102867, 2019

113

Microprocessors and Microsystems 71 (2019) 102867

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Understanding multidimensional verification: Where functional meets

non-functional

Xinhui Lai a , ∗, Aneesh Balakrishnan

a , b , Thomas Lange

b , c , Maksim Jenihhin

a ,
Tara Ghasempouri a , Jaan Raik

a , Dan Alexandrescu

b

a Department of Computer Systems, Tallinn University of Technology, Akadeemia 15A, Tallinn 12618, Estonia
b IROC Technologies, 2 Square Roger Genin, 5th floor, Grenoble, 380 0 0, France
c Dipartimento di Informatica e Automatica, Politecnico di Torino, Turin, Italy

a r t i c l e i n f o

Article history:

Received 25 February 2019

Revised 28 June 2019

Accepted 5 August 2019

Available online 5 August 2019

Keywords:

Extra-functional verification

Functional verification

Survey

Taxonomy

Security verification

Reliability verification

Power verification

Machine learning

a b s t r a c t

Advancements in electronic systems’ design have a notable impact on design verification technologies.

The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices im-

mersed in physical environments, significantly constrained in resources and expected to provide levels

of security, privacy, reliability, performance and low-power features. In recent years, numerous extra-

functional aspects of electronic systems were brought to the front and imply verification of hardware

design models in multidimensional space along with the functional concerns of the target system. How-

ever, different from the software domain such a holistic approach remains underdeveloped. The contribu-

tions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art

survey of related research works and trends enabling the multidimensional verification concept. Further,

an initial approach to perform multidimensional verification based on machine learning techniques is

evaluated. The importance and challenge of performing multidimensional verification is illustrated by an

example case study.

© 2019 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Recently, several prominent trends in electronic systems de-

sign can be observed. Safety-critical applications in the automo-

tive domain set stringent requirements for electronics certification,

the Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) de-

vices are immersed in physical environments, significantly con-

strained in resources and expected to provide levels of security

and privacy [1] , ultra-low power feature or high performance. Very

complex electronic systems, including those built from the non-

certified for reliability commercial-off-the-shelf components, are

used for safety- and business-critical applications. These trends

along with gigascale integration at nanoscale technology nodes and

multi-/many-processor based systems-on-chip architectures have

ultimately brought to the front various extra-functional aspects of

the electronic systems’ design at the chip design level. The latter

include security, reliability, timing, power consumption, etc. There

exist numerous threats causing an electronic system to violate its

specification. In the hardware part, these are design errors (bugs),

∗ Corresponding author.

E-mail address: xinhui.lai@taltech.ee (X. Lai).

manufacturing defects and variations, reliability issues, such as soft

errors and aging faults, or malicious faults, such as security attacks.

Withal, there can also be bugs in the software part.

Hardware design model verification detects design errors affect-

ing functional and extra-functional (interchangeably referred as non-

functional) aspects of the target electronic system. Strictly, the sole

task of extra-functional verification of a design model is limited

to detecting deviations that cause violation of extra-functional re-

quirements. In practice, it often intersects with the task of func-

tional verification [2,14] , thus establishing a multidimensional space

for verification . A “grey area” in distinction between functional

and extra-functional requirements may appear when an extra-

functional requirement is a part of design’s main functionality. E.g.,

security requirements for some HW design can be split into extra-

functional and functional sets if the design’s purpose and specified

functionality is a system’s security aspect, e.g. it is a secure cryp-

toprocessor.

The contributions of this paper are a taxonomy for multidi-

mensional hardware verification aspects, a state-of-the-art sur-

vey of related research works towards enabling the multidimen-

sional verification concept. Further, an approach is evaluated which

performs multidimensional verification by using machine learn-

https://doi.org/10.1016/j.micpro.2019.102867

0141-9331/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

2 X. Lai, A. Balakrishnan and T. Lange et al. / Microprocessors and Microsystems 71 (2019) 102867

Fig. 1. Taxonomy of multidimensional verification aspects.

ing techniques. The rest of this paper is organized as follows.

Section 2 provides a taxonomy of multidimensional verification

aspects. Sections 3 proposes a state-of-the-art survey with the

key trends in verification for the main extra-functional aspects.

Section 4 discusses the multidimensional verification challenges

and presents a motivational example for the functional and power

verification dimensions. Section 5 proposes adoption of machine

learning techniques for support of design’s multi-aspect features

extraction and verification. Finally, Section 6 draws the conclusions.

2. Taxonomy of multidimensional verification aspects

In practice, relevance of each functional and extra-functional

aspect strongly depends on the design type, target system ap-

plication and specific user requirements. Following the design

paradigm shifts, a number of extra-functional aspects have re-

cently received significant academic research attention e.g., secu-

rity. At the same time, there already exist established industrial

practices for measuring and maintaining particular design quali-

ties, e.g. the RAS (Reliability-Availability-Serviceability) aspect in-

troduced by IBM [6] . While in the software engineering discipline,

the taxonomy of extra-functional requirements has a comprehen-

sive coverage by the literature [7–12] , it cannot be directly re-used

for the HW verification discipline because of significant difference

in the design models.

Fig 1 introduces a taxonomy of multidimensional verification

aspects derived from the performed literature review. The conven-

tional functional concerns are safety and liveness properties, com-

binational and temporal dependencies along with data types , how-

ever this list can be extended for particular designs. The extra-

functional aspects can be strictly categorized into two groups: Sys-

tem Qualities and System Resources and Requirements (in bold). The

main system qualities for extra-functional verification are manu-

facturability of the design, security, in-field safety, reliability dur-

ing the operational lifespan and a set of timing aspects. The sec-

ond group embraces the power and architectural resources as well

as design constraints set by the operational environment.

Several extra-functional aspects such as manufacturability , i.e.

primarily yield and testability against manufacturing defects, fault-

tolerance, reliability (subject to transient, intermittent and perma-

nent hardware faults) and several aspects from the System Re-

sources and Requirements group do not have a direct correspon-

dence in the software engineering discipline because of the distinct

nature of faults and specification violations. Other aspects such as

real-time constraints are very similar between the two domains.

3. Trends in extra-functional verification

Table 1 presents a survey of recent publications targeting extra-

functional and multidimensional verification. Here, along with the

specific extra-functional aspects details about the design model

and verification approach are outlined, i.e., the design under ver-

ification type, verification engine, the level of abstraction, design

representation language, compute model and the tool operated in

the research. We pointed out such key points for all the recent up

to 10-year old studies in this area. Further, in the following sub-

sections, we focus on understanding trends for the extra-functional

aspects that have the strongest attention in the literature, i.e. se-

curity, in-field reliability, timing and power.

3.1. Security aspects

Security is difficult to quantify as today there are no commonly

agreed metrics for this purpose [1] . The key targeted security ser-

vices [16] commonly represented as extra-functional aspects for

verification are confidentiality, integrity and availability. Verifying

X
.
 La

i,
 A

.
 B

a
la

k
rish

n
a

n
 a

n
d
 T.

 La
n

g
e
 et

 a
l.
 /
 M

icro
p

ro
cesso

rs
 a

n
d
 M

icro
sy

stem
s
 7

1
 (2

0
19

)
 10

2
8

6
7

3

Table 1

Survey of the state-of-the-art solutions for extra-functional and multidimensional verification.

Pub. Year a Extra-functional aspect b Design under

verification

Verification engine Abst. level e Design representation

language

Compute model Tool

Security Reliability c Timing d Power Other aspects

[19] 2009 confidentiality,

integrity

– – – – HW/SW system formal, correct-by-

construction

SL AADL – OSATE

[20] 2018 confidentiality – – – – NoC unbounded

model-checking

RTL VHDL/Verilog, PSL LTL –

[21] 2016 integrity,

confidentiality

◦ – – – NoC simulation, HW

monitors

RTL VHDL/Verilog – –

[22] 2014 integrity ◦ – – – NoC formal GL VHDL/Verilog – SurfNoC

[23] 2017 integrity,

confidentiality

– – – – RSN model check RTL ICL Craig

interpolation

CIP solver

[24] 2015 integrity – – – – SoC simulation RTL VHDL/Verilog – –

[25] 2016 integrity,

confidentiality

– – – – ALU equivalence check GL – QBF-SAT –

[26] 2017 integrity – – – – SoC semiformal GL – – JasperGold SPV

[27] 2016 confidentiality – – – – RSN model check RTL ICL Craig

interpolation

CIP Solver

[28] 2017 confidentiality – – – – control systems formal SL ASLan ++ – CL-AtSe

[29] 2017 integrity – – – – IP cores semiformal GL VHDL – mini-SAT

[30] 2015 integrity – – – – ISA, pipeline model check RTL – CTL, LTL nuXmv SMV

[31] 2018 confidentiality – – – – cache model check SL – CTL –

[32] 2014 confidentiality – – – – cache model check RTL/SL – FSM Murphi

[33] 2017 confidentiality – – – – cache model check RTL/SL – FSM CacheAudit

[34,35] 2013 integrity,

confidentiality

– – – – IPs and SoCs formal RTL, GL Verilog – JasperGold SPV

[36] 2018 ● ● – – – MPSoC model check SL, RTL – Timed

Automata

UPPAAL

[41] 2017 – ● – – – CPS model check SL AADL Timed

Automata

UPPAAL

[42] 2015 – SER – – – IP cores formal GL/RTL LDDL LDDL Coq

[43] 2010 – SER – – availability,

serviceability

processor fault inject. GL Verilog – IBM in-house

[44] 2016 – ● – – availability,

serviceability

SoC fault inject. RTL – – –

[45,46] 2016 – ◦ (LTR) – ◦ thermal Smart Systems simulation SL IP-XACT, SystemC-AMS – –

[47] 2018 – ● – – – CPS formal /simulation,

HW monitors

RTL VHDL/Verilog multiple multiple

(continued on next page)

4

X
.
 La

i,
 A

.
 B

a
la

k
rish

n
a

n
 a

n
d
 T.

 La
n

g
e
 et

 a
l.
 /
 M

icro
p

ro
cesso

rs
 a

n
d
 M

icro
sy

stem
s
 7

1
 (2

0
19

)
 10

2
8

6
7

Table 1 (continued)

Pub. Year a Extra-functional aspect b Design under

verification

Verification engine Abst. level e Design representation

language

Compute model Tool

Security Reliability c Timing d Power Other aspects

[48] 2014 – SER – – – IPs SAT solver RTL VHDL – –

[49] 2010 – SER – – – IPs, processor simulation RTL VHDL/Verilog – –

[50] 2014 – SER – – – memory circuit-level

simulation

circuit

level

– – INFORMER

[51,52] 2018 – – comm.

constraint

◦ – NoC fault inject. RTL VHDL – QoSinNoC

[53] 2011 – – RT – – memory model check RTL REAL/AADL – Ocarina

[54] 2010 – – RT – – Scheduler of RT

system

model check – Promela Time Petri-net SPIN

[55] 2010 – – latency – – RT emb. system model check SL AADL – YICES

[56] 2017 – – performance ◦ – NoC, HW/SW

architectures

simulation SL Graph Assembly

Language

connectivity

graphs

ArchOn

[58] 2012 ● – IPs simulation SL SystemC – –

[59] 2016 ● – DSP cores simulation SL,GL, RTL SystemC – Powersim

[62] 2017 – – RT ◦ – automotive CPS model check SL C, EAST-ADL Timed

Automata

UPPAALsdv

[63] 2016 – – – ● – IPs Semiformal ABV RTL VHDL/Verilog; SystemC Hidden Markov

Model

–

[64] 2012 – – execution

time

◦ – distributed emb.

system

simulation SL SystemC – –

[65] 2016 – – performance

RT

◦ thermal HW/SW platform semiformal RTL,TLM,SL UML, C ++ ,VHDL

SystemC-AMS

HIF HIFSuite

[66] 2009 – – throughput – – SoC/FPGA simulation RTL Verilog/VHDL – Modelsim

[67] 2018 – – throughput – – NoC simulation RTL System Verilog – UVM

[68] 2014 – – – – connectivity SoC symbolic model

checking

RTL, TLM Verilog – Incisive Formal

Verifier

[70] 2016 – – – – memory

consistency

processor simulation ISA ruby – McVerSi

[73] 2011 – – – ● thermal SoC simulation SL,GL, RTL SystemC – Power-Mixer,

-Depot, -Brick

[74] 2015 – – – ● – simulation SL,TLM SytemC – Power Kernel

Tool

[75] 2011 – – – ● – SoC simulation SL SystemC – Powersim

a only conference, journal and industrial white papers published in the last 10 years were selected for this survey .
b ● – this aspect is the main focus in the paper; ◦ – this aspect is partially addressed .
c LTR – lifetime reliability; SER – soft-error reliability; .
d RT – real-time constraints; .
e GL – gate level; SL – system level; ISA – instruction set architecture level; TLM – transaction level model .

X. Lai, A. Balakrishnan and T. Lange et al. / Microprocessors and Microsystems 71 (2019) 102867 5

security aspects is highly dependent on the type of attack and the

attacker model assumed.

Many of the existing works in security verification (e.g.

[22,24,26,29,30]) are focusing on the integrity attribute, mostly ad-

dressing hardware trojan detection. There also exist works that

additionally target [19,21,23,25,34] or are exclusively considering

[27,28] the confidentiality aspect. Several solutions in security ver-

ification are restricted to specific target architectures or types of

modules such as Reconfigurable Scan Networks (RSNs) [23,27] or

macro-asynchronous micro-synchronous pipelines [30] . To that

end, for complex hardware architectures (e.g. large IEEE1687 Re-

configurable Scan Networks or MPSoCs) the specific on-chip se-

curity features to be verified also tend to be very sophisticated.

These may include on-chip mechanisms for attack prevention (fire-

walls, user management, communications’ isolation), attack protec-

tion (traffic scrambling, encryption) and attack resilience (checkers

for side-channel attacks, covert channel detection, attack recovery

mechanisms). Several works consider security verification for NoC-

based MPSoCs. [20] proposes a method to formally verify the cor-

rectness and the security properties of a NoC router. Some solu-

tions in the security verification of NoCs do indirectly address reli-

ability due to the fact that they implement hardware monitors that

allow avoiding both, attacks and in-field faults [21,22] .

According to recent surveys [37] and [38] cache access driven

side-channel attacks have become a major concern in hardware se-

curity. In modern processors, deep hierarchy of cache memory is

implemented to increase system performance. However, this makes

modern computing systems, including IoT devices, vulnerable to

cache side-channel attacks. There exist several works addressing

verification of the cache security. In [31] , the authors propose.

Computation Tree Logic (CTL) based modeling of timing-driven

and access-driven cache attacks. This work concentrates on for-

mally describing the attack types. Zhang and Lee [32] models cache

as a state machine and proposes a metric based on the non-

interference condition to evaluate the access-based cache vulner-

ability. Canones et al. [33] proposes a model to formally analyze

the security of different cache replacement policies. None of the

above-mentioned works consider multiple dimensions, or aspects.

An approach that is designed for modeling a multitude of extra-

functional aspects is the model-based engineering example of Ar-

chitecture Analysis and Design Language (AADL) [19] . While, in

principle, AADL allows representing several extra-functional as-

pects (called quality attributes in AADL), Hansson et al. [19] only

concentrates on analysis of confidentiality as a part of verifying se-

curity in a system with multiple levels of security. The authors in

[36] have targeted a general Uppaal Timed Automata based multi-

view hardware modeling and verification approach taking into con-

sideration of the security view. The survey of related literature

clearly shows that, up to this moment, there is virtually no work

considering security verification in combination with other extra-

functional aspects.

3.2. Reliability aspects

The key drivers for the reliability aspect in today’s designs

are the recent industrial standards in different application do-

mains such as IEC61508, ISO26262, IEC61511, IEC62279, IEC62061,

RTCA/DO-254, IEC60601, etc. Integrated circuits used in high-

reliability applications, e.g. complying with high (Automotive)

Safety Integrity Level - (A)SIL, must demonstrate low failure rates

(modelled by FIT – Failures in Time) and high fault coverage (e.g.

Single-Point Failure Metric SPFM and Latent Fault Metric LFM).

These requirements ultimately mandate extra-functional validation

efforts for reliability analysis, such as Failure Mode and Effects

(Criticality) Analysis - FME(C)A and imply generalized use of meth-

ods and features, such as safety mechanisms, for error manage-

ment. Functional safety is a property of the complete system rather

than just a component property because it depends on the in-

tegrated operation of all sensors, actuators, control devices, and

other integrated units. The goal is to reduce the residual risk as-

sociated with a functional failure of the target system below a

threshold given by the assessment of severity, exposure, and con-

trollability.

The dominant threats for reliability are, first, random hardware

faults such as transient faults by radiation-induced single event ef-

fects or soft errors [15] , i.e. a subject for Soft-Error Reliability (SER).

Second, these are extreme operating conditions, electronic inter-

ference and intermittent to permanent faults by process or time-

dependent variations, such as aging induced by Bias Temperature

Instability (BTI) [13] , where the latter is a subject for Life-Time Reli-

ability (LTR). Reliability verification challenge is emphasized by the

adoption of advanced nanoscale implementation technology nodes

and high complexity of systems, utilizing tens or hundreds of com-

plex microelectronic components and embedding large quantities

of standard logic and memory. Moreover, these designs integrate

IP cores from multiple design teams making reliability evaluation

task to be scattered and complex. Initiatives such as RIIF (Reliabil-

ity Information Interchange Format) [39] , allow the formalization,

specification and modeling of extra-functional, reliability proper-

ties for technology, circuits and systems.

Similar to other aspects, reliability in large complex electronic

systems, e.g. safety-critical CPSs, may be tackled starting at high

level of abstraction. System’s fault tolerance is formally checked

using UPPAAL and timed automata models generated from AADL

specifications [41] . HW design models and tools at such a level also

enable verification of interference of several extra-functional de-

sign aspects [36] . There are research works relying on design soft-

error reliability verification by fault-injection campaigns, e.g. [49] ,

or formal analysis, e.g. error-correction code (ECC) based mecha-

nisms against single-bit errors in memory elements [48] . Burlyaev

and Fradet [42] proposes a general approach to verify gate-level

design transformations for reliability against single-event tran-

sients by soft errors that combines formal reasoning on execu-

tion traces. Thompto and Hoppe [43] and Kan et al. [44] focus

on the RAS (Reliability, Availability and Serviceability) group of

extra-functional aspects outlined by IBM for complex processor de-

signs where embedded error protection mechanisms and designs

intrinsic immunity (due to various masking) to errors is evaluated

by fault injection. Vinco et al. [45,46] propose extensions to sys-

tem descriptions in the IP-EXACT format to enable multi-layer rep-

resentation and simulation of several mutually influencing extra-

functional aspects of smart system designs such as lifetime reli-

ability, power and temperature. A complex approach to verifica-

tion of multiple reliability concerns (soft errors, BTI, etc.) across

layers in industrial CPS designs is proposed in [47] as a collabo-

rative research result in the IMMORTAL project. Last but not least,

addressing the need for reliability verification automation tools, in

[50] , authors propose a fully automated tool INFORMER to estimate

memory reliability metrics by circuit-level simulations of failure

mechanisms such as soft-errors and parametric failures.

The survey clearly shows that currently there is a very small

number of works considering verification of reliability together

with other aspects.

3.3. Timing aspects

Functional temporal properties are essential part of sequential

designs’ specification that are often modelled for functional veri-

fication by Computational Tree Logic (CTL), applied for formal ap-

proaches, and Linear Temporal Logic (LTL) temporal assertions ex-

pressed arbitrarily, e.g. in Property Specification Language (PSL),

System Verilog Assertions (SVA) or systematically, e.g. in Universal

6 X. Lai, A. Balakrishnan and T. Lange et al. / Microprocessors and Microsystems 71 (2019) 102867

Verification Methodology (UVM). In the extra-functional context,

these can be extended to specific requirements and properties such

as: real-time (RT), performance, throughput, latency, on-chip commu-

nication time constraint, worst-case execution time constraints, etc.

Several works have been widely studying these timing properties.

Some researchers are mainly focused on generating timing proper-

ties to reduce the verification effort, for example, state space and

cost [54,56,65] . Other works instead use the timing properties to

assess whether the system under verification is correctly function-

ing or not [55,62,64] . In the following, we discuss state of the art

for each timing aspect.

A real-time system describes hardware and software systems

subject to a real-time constraint , that ensures response within a

specified time. The correctness of the function depends both on

the correctness of the result and also the timeliness of the peri-

ods. In [54] , an approach to verify the timed Petri-Net model is

proposed. A non-instantaneous model is abstracted from the timed

Petri-Net model in a hierarchical structure. The non-instantaneous

model which is verified with a model-checking tool is used to re-

duce the state space of the timed Petri-Net model for verifica-

tion with a satisfiability modulo theories solvers [76,77] . The timed

Petri-Net is used to model the interacting relations of the software

components and the binding relations between software and hard-

ware in a certain period of time. Görgen et al. [65] introduces a

tool called CONTREX to complement current activities in the area

of predictable computing platforms and segregation mechanisms

with techniques to compute real-time properties. CONTREX en-

ables energy-efficient and cost-aware design through analysis and

optimization of real-time constraint. The authors in [62] proposed

a method to combine real-rime constraint aspect of a model with

energy-aware real-time (ERT) behaviors of the model into UPPAAL

for formal verification.

Throughput is a measure of how many units of information a

system can process in a given amount of time. In [66] , a verifica-

tion environment has been proposed to estimate the throughput

of a SoC. The intention of the paper is to judge whether the veri-

fication system can handle SOC verification and provide the neces-

sary performance in terms of speed and throughput. Khamis et al.

[67] introduced a Universal Verification Methodology (UVM) envi-

ronment to measure throughput of a NoC. UVM is a SystemVerilog

class library explicitly designed to help and build modular reusable

verification components and test-benches. It is an industry stan-

dard, so it is possible to acquire UVM IP from other sources and

reuse them.

Performance refers to the amount of work which is done dur-

ing a process, for instance, executing instructions per second. In

[56] , a framework has been developed to analyze performance of

a system design. The framework is based on stochastic modeling

and simulation and it is applied on a set of NoC topologies. The

methodology uses a selective abstraction concept to reduce com-

plexity.

When referring to hardware, latency is the time required for

a hardware component to respond to a request made by another

component. However, in the cast of hardware, latency is sometimes

referred to as the access time . In [55] , an analysis tool is developed

to work with the AADL models [78] to assure the correctness of a

scheduling model that binds the relation of different components

in a model.

On-chip communication time constraints refer to the require-

ments on the start and end times of each task in a system crit-

ical path, which is the sequence of tasks that cannot be delayed

without delaying the entire system. For instance, in [51] and [52] a

framework has been proposed, which is based on a set of quality

of service aware NoC architectures along with the analysis method-

ology including selected relevant metrics that enable an efficient

trade-off between guarantees and overheads in mixed-criticality

application scenarios. These architectures overcome the notion of

strictly divided regions by allowing non-critical communication

pass through the critical region, providing they do not utilize com-

mon router resources. Such problem formulation is relevant to fa-

cilitate the usage of NoC technology by safety-critical industries

such as avionics.

The worst-case execution time of a computational task is the

maximum length of time the task could take to execute on a

specific hardware platform. The designer of a system can employ

techniques such as schedulability analysis to verify that the sys-

tem responds fast enough [40] . For instance, Zimmermann et al.

[64] presents an approach to generate a virtual execution platform

in SystemC to advance the development real-time embedded sys-

tems including early validation and verification. These virtual ex-

ecution platforms allow the execution of embedded software with

strict consideration of the underlying hardware platform configura-

tion in order to reduce subsequent development costs and to allow

a short time-to-market by tailoring and exploring distributed em-

bedded hardware and software architectures.

Last but not least, a few works also take into account depen-

dencies between several extra-functional aspects. For instance, the

work in [62,65] and [56] present the effect of optimizing timing

properties (performance and latency) on power consumption or

the study in [64] performs the effect of decreasing execution time

on power consumption. Such analysis is mostly limited to two ex-

tra functional aspects or neglected at all [53–55,69] , while design

timing constraints can strongly influence not only power consump-

tion but reliability, security, availability, etc. as well as functional

properties.

3.4. Power aspects

In commercial flows, verification of the power aspect can be

addressed relatively independently from the functional verification

dimension. The power intent and detailed power modelling can be

done starting at TLM or RTL with minimal interference with the

HDL functional description, e.g. using the Accellera introduced Uni-

fied Power Format (UPF) employed for power-aware design verifi-

cation automation by commercial tools especially with the latest

UPF3.0 [60] or Cadence/Si2 Common Power Format CPF [61] . For

the advanced device implementation technologies, power specifi-

cation implies multi-voltage design with up to tens of power do-

mains and may consider dynamic and adaptive voltage scaling.

In the recent research works, design verification against the

power aspect is performed at different abstraction levels with

a trade-off between speed and accuracy. Some works such as

[58,59,74,75] perform power analysis at system level targeting high

simulation speed and low power optimization flexibility similar to

the accuracy achievable at lower levels. In [58] , the authors ap-

plied their approach to SRAM and AES encryption IPs and obtained

a significant simulation speed-up in comparison to gate-level sim-

ulation with a high fidelity of the system-level power simulation. A

promising software tool for power simulation in SystemC designs

is the Powersim framework [59,75] . In [59] , a methodology to es-

timate the dissipation of energy in hardware at any level of ab-

straction is proposed. In [75] , the authors propose a SystemC class

library aimed at calculation of energy consumption of hardware

described at system level. The work in [73] introduces a series

of tools (PowerBrick (construct power library for standard cell li-

brary), PowerMixer (for RTL/gate-level estimator), PoweMixer ip (IP-

based model builder), PowerDepot (estimate system-level power

consumption)) which can be tightly linked and enable the power

analysis from layout, gate-, RT-, IP- to system level with a good

simulation speed while retaining high accuracy. The power aspect

verification could benefit from a holistic multi-level modelling,

such as e.g. [17] available for functional verification. Rafiev et al.

X. Lai, A. Balakrishnan and T. Lange et al. / Microprocessors and Microsystems 71 (2019) 102867 7

[56] , Vinco et al. [45,46] , Kang et al. [62] , Zimmermann et al. [64] ,

Görgen et al. [65] , are aimed at methodologies suitable for specific

applications (such as cyber-physical system [62]) that assume ver-

ification of extra-functional aspects such as power, timing, thermal

at the system level.

This extra-functional aspect has a tight relation to the imple-

mentation technology assumed for the synthesis of the design

model under verification. With planar bulk MOSFET technology

known for exponential growth of the static leakage power for

smaller device geometries and employment of FinFET and Tri-Gate-

Transistors in the advanced technology nodes, the CMOS device pa-

rameters are essential for this analysis [57] .

3.5. Machine learning based techniques

The complex problem of multidimensional verification can be

assisted by the recent advances in the machine learning discipline.

This type of approaches (along with e.g. evolutionary algorithms) is

particularly suitable for multi-aspect optimization problems where

formal deterministic approaches may lack scalability.

Machine Learning (ML) is the concept of a machine learning

from examples and making predictions based on its experience,

without being explicitly programmed [82] . Previous works have

shown that ML can be used for verification purposes at different

levels. In [83] , machine learning was introduced in physical de-

sign analysis. The feasibility of ML in physical design verification

(e.g., lithography hotspot detection) was investigated, and a ref-

erence model for application was presented. Based on this work

[84] used ML to increase the speed of the performance evaluation

(power and area) of a circuit design after physical design by a fac-

tor of 40 as well as performing a Design Rule Check. In [85] , ML

was used to predict the timing behavior of the final floorplan of a

circuit during the Place & Route routine and thus, shifting the anal-

ysis to an earlier design stage. In [79] , the analysis is moved even

to higher abstraction level. The high-level synthesis (HLS) resource

usage and timing estimation was improved by train ML models

with data from real implementations. Thus, the design flow can be

assisted with machine learning and predict accurate values even

in very early design stages. Machine learning was further applied

for Security Verification in [80,81,86] , where it was used to detect

Hardware Trojans based on features from the Gate Level Netlist. In

Section 5 , we propose an approach to assist the multidimensional

verification flow by using machine learning techniques to estimate

a reliability metric, as well as timing metric.

4. The challenges of multidimensional verification

The performed analysis of the state of the art has outlined a

gap in methodologies and tools for holistic multidimensional veri-

fication of hardware design models.

Different from functional verification, approaches for extra-

functional hardware design aspects’ verification remain underde-

veloped even when tackled in isolation. Here, one of the key is-

sues is a lack of established metrics for verification confidence.

For a particular functional verification plan, the functional dimen-

sion usually includes conventional structural (code) coverage met-

rics, functional coverage [3] in form of asserted and assumed prop-

erties and design parameters along with stimuli quality assess-

ment by model mutations [18] . The metrics for confidence in extra-

functional dimension verification results may be challenging as in

practice the requirements are subjective and can be specified as a

mixture of quantitative and qualitative constraints . Accurate hard-

ware verification in a particular dimension requires both sufficient

extra-functional design modeling and the extra-functional aspects

target modeling [36] . There is a limited number of dedicated com-

mercial tools and common standards for extra-functional verifica-

Fig. 2. Multidimensional verification campaigns (Radar-chart n-dimensional visual-

ization).

tion flows. In particular, for the security dimension the JasperGold

SPV [35] is one of the few such commercial tools that stand out

from the academic research frameworks. Finally, the issue of elic-

iting the extra-functional requirements [4,5] is a challenging task

as ambiguity and (sometimes conflicting) interdependency of the

extra-functional aspects in the specifications increases complexity

and may leave gaps in the multidimensional verification plans.

Unfortunately, there is no established hardware design method-

ology supporting multidimensional verification plans for mutually

influencing functional and extra-functional aspects. There is a very

limited number of research works going beyond analysis of one

extra-functional verification aspect under constraints of another

as the complexity of the problem grows extremely fast with the

number of dimensions (interdependent constraints) and the elec-

tronic system size. The first works in this direction are, for exam-

ple, Vinco et al. [46] and Vain et al. [36] .

Ultimately, results of multidimensional verification campaigns

proposed in this work are subject to be represented in a multi-

dimensional space, as illustrated in Fig. 2 a. Here is shown an il-

lustration of six hypothetical independent verification campaigns

in a three-dimensional verification space. A verification campaign

in this example shows the level of confidence in the different di-

mensions - (F)unctionality, (P)ower and (S)ecurity. In this illustra-

tive example, only three aspects are taken into consideration. Ob-

viously, on the demand the verification engineers can involve dif-

ferent dimensions. Here, the different colors of the lines repre-

sent different multi-dimensional spaces e.g. as Campaign_1 in blue

lines stand for the verification result considering three extra func-

tional aspects i.e., functional, power and security aspects at the

same time. The figure shows the interdependency of these three

requirements and thus can help the designers to choose the most

suitable design combination. Subsequently, Compaign_2 represents

the combination of functional and security aspects, Compaign_3

demonstrates the combination of functional and power aspect, etc.

Thus the Radar-charts, as shown in Fig. 2 b, are an instrument for

summarizing multidimensional verification results for a large num-

ber of dimensions, (where the dimensions can be ordered to em-

phasize correlation or interdependencies between adjacent dimen-

sions).

4.1. Motivational example

Single-dimension verification campaigns ignoring interdepen-

dencies between the dimensions may lead to gaps in the overall

electronic system quality. As an example to show the importance

of multidimensional verification, let us consider an actual verifica-

tion campaign of an open-source NoC framework Bonfire [71,72] .

8 X. Lai, A. Balakrishnan and T. Lange et al. / Microprocessors and Microsystems 71 (2019) 102867

Fig. 3. Bug f1 and its correction.

Fig. 4. Bug p1 and its correction.

The design under verification is in RTL VHDL and implements a

2 × 2 NoC infrastructure (processing elements excluded). The ver-

ification plan considered 2-dimensional verification campaign tar-

geting functionality and power consumption requirements. For the

former, assertion-based functional verification by simulation was

employed targeting statement, branch, condition and toggle cover-

age metrics and satisfaction of a set of temporal simple-subset PSL

assertions. For the latter, a set of power targets were extracted for

the targeted silicon implementation assuming a particular switch-

ing activity (set to 12 mW in this example).

Among documented design errors in the Bonfire project, the

bug f1, as shown in Fig. 3 , is an example of a functional misbehav-

ior due to improper usage of write and read pointers in the FIFO.

The figure represents the code errors in the red line and the cor-

rected versions of the code lines in blue. The bug f1 and the bug

p1 demonstrate the error in Figs. 3 and 4 , respectively. The bug p1

causes violations of specified power consumption targets because

of unnecessary excessive use of a fault-tolerance structure related

counter. The report of such a power consumption is described in

Table 2 . The power consumption is shown in the cell Total Power

which is composed of the dynamic power, i.e. the Switching Power

in the interconnects and the Internal Power in the logic cells,

and the insignificant (for the target technology) static leakage

power Leak Power. As summarized in the first row, for the bug

f1 the Total Power is equal to 10.211 (consistence with the power

consumption requirement). Similarly, in the third row, which rep-

resents the power consumption for the correct version of the code,

the total power is equal to 10.184. This report prove that even if

there is a bug (bug f1) in the code but still the power consumption

requirement is met. In contrary, for the bug p1, even though there

is no functional errors, the Total Power consumption is reported

which is equal to 22.137. Thus the bug p1 results in a double

power consumption compared to the correct implementation and

violates the power targets in the specification. This fact prove that

it is critical to know how and where the code should be modified

in order to reduce the power consumption as well as maintain

functional correctness. In general, the above simple motivation

example demonstrates the challenge of interdependency of differ-

ent aspects when requirements in more than one dimension are

present.

5. Machine learning to tackle the challenges of

multidimensional verification

As it can be seen in the previous sections, multidimensional

verification is a complex multi-aspect optimization problem. Ma-

chine learning algorithms are known to be able to learn com-

plex relationships and have been used for several optimization

problems. Section 3.5 has shown that machine learning techniques

were already successfully used for estimating several different sin-

gle verification metrics. This suggests that machine learning can be

also used for solving multidimensional verification problem. There-

X. Lai, A. Balakrishnan and T. Lange et al. / Microprocessors and Microsystems 71 (2019) 102867 9

Table 2

Power consumption of the Bonfire system implementation: corrected and with bugs f1 and p1.

Bonfire system Implementation Switching Power (mW) Internal Power (mW) Leak Power (pW) Total Power (mW)

with f1 bug 0.783 9.427 7.50e + 05 10.211

with p1 bug 0.757 21.379 6.93e + 05 22.137

corrected 0.666 9.518 7.43e + 05 10.184

Fig. 5. Prediction of Functional De-Rating factors of the test data set by using a Support Vector Machine regression model (Training Size = 50%, Coefficient of Determination

R 2 = 0.844).

Fig. 6. Learning Curve for the Functional De-Rating prediction by using a Support Vector Machine regression model with different training sizes.

fore, an initial approach is proposed which is based on machine

learning techniques in order to tackle this multidimensional verifi-

cation challenge.

5.1. Proposed methodology

The proposed approach targets to predict two different verifi-

cation metrics based on the same feature set extracted from the

gate-level netlist of a given circuit. These two different metrics are

Prediction of De-Rating and Path delay. The first metric to predict

is the De-Rating or Vulnerability Factor, which are related to the

reliability verification flow and a major metric of the failure analy-

sis. The second metric is the path delay and related to the timing

analysis. This metric is usually obtained during the synthesis or

place and route stage of the design development. Therefore, ma-

chine learning can help to shift the analysis to an earlier design

stage.

A possible application scenario consists in extracting a list of

circuit feature and training a ML tool with a limited set of ref-

erence inputs (the values of the selected circuit features) and

10 X. Lai, A. Balakrishnan and T. Lange et al. / Microprocessors and Microsystems 71 (2019) 102867

Fig. 7. Prediction of Path Delays of the test data set by using a Support Vector Machine regression model (Training Size = 50%, Coefficient of Determination R 2 = 0.975).

Fig. 8. Learning Curve for the Path Delay prediction by using a Support Vector Machine regression model with different training sizes.

expected outputs (reliability and timing metrics). Depending on

the exhaustiveness of the training campaign, the trained ML tool

can provide actual reliability metrics from a limited list of circuit

features while spending far less resources (CPU time, EDA tools li-

censes, man-power) than using classical methods.

5.2. Prediction results

The proposed idea was implemented and evaluated on a prac-

tical example. Therefore, a set of features is defined which charac-

terizes each flip-flop instance in the circuit. The feature set is com-

posed of static elements (cell properties, circuit structure, synthe-

sis attributes) and dynamic elements (signal activity). After extract-

ing the features for the full list of circuit instances, reference data

was obtained. The Functional De-Rating per flip-flop was deter-

mined through first-principles fault simulation approaches and the

path delay was extracted by a classical static timing analysis. One

part of the reference dataset is used to train the machine learning

model and the remaining data is used to validate and benchmark

the accuracy of the trained tool.

As a circuit under test, the Ethernet 10GE MAC Core was used

which is available as RTL description from OpenCores. The circuit

consists of control logic, state machines, FIFO controllers and mem-

ory interfaces. By synthesizing the design with NanGate FreePDK45

Open Cell Library, 1054 flip-flops have been identified and the cor-

responding features have been extracted.

Several machine learning models have been evaluated, such as

the Linear Least Squares, Ridge (with linear and non-kernels), k-

Nearest Neighbors (k-NN), Decision Tree (CART) and Support Vec-

tor regression (SVR, with linear and non-linear kernels). It has

been noted that especially the linear models are not very suitable

to predict the reliability metrics. The non-linear models perform

much better and the Support Vector regression with Radial Ba-

sis Function (RBF) as kernel functions is among the best. There-

X. Lai, A. Balakrishnan and T. Lange et al. / Microprocessors and Microsystems 71 (2019) 102867 11

fore, the SVR model with RBF kernel function is used for the fol-

lowing presentation of the prediction results. Figs. 5 and 7 show

the prediction of the two metrics. When 50% (527 flip-flops) of

the data are used to train the model and the remaining 50% was

used to evaluate the model. The performance of regression mod-

els is usually evaluated by using the Coefficient of Determination

(R 2) score and the model reaches a score of R 2 = 0.844 to predict

the Functional De-Rating and R 2 = 0.975 to predict the path delay.

Figs. 6 and 8 show the learning curve of the model. This curve de-

scribes the performance of the model for different sizes of the data

set used for training and the remaining data set used for the eval-

uation. The learning curves suggest that by using more than 50%

of the available data for training doesn’t significantly improve the

prediction performance. However, it can also be seen that by using

less than 50% still a valuable prediction can be performed. Thus,

by allowing a slight reduction of accuracy, the cost of an exhaus-

tive analysis can still be reduced.

The practical example has shown that machine learning can be

successfully applied for different verification purposes. In order use

ML to support the multidimensional verification problem, features

from different design stages need to be extracted and used to train

a unified model or several separated models. These can be used to

predict the required verification metrics.

6. Conclusion

In the recent years, numerous extra-functional aspects of elec-

tronic systems were brought to the front and imply verification of

hardware design models in multidimensional space along with the

functional concerns of the target system. Targeting at understand-

ing of this new verification paradigm, we have performed a com-

prehensive analysis of the state of the art and presented a taxon-

omy for multidimensional hardware verification aspects, an up-to-

date survey of related research works and trends towards enabling

the multidimensional verification concept and investigated the po-

tential of machine learning based techniques to support the con-

cept. As the result of the performed analysis of the state of the

art we have outlined a gap in methodologies and tools for holistic

multidimensional verification of hardware design models and the

key challenges.

Declaration of competing interest

All authors have participated in (a) conception and design, or

analysis and interpretation of the data; (b) drafting the article or

revising it critically for important intellectual content; and (c) ap-

proval of the final version.

Acknowledgments

This research was supported in part by projects H2020 MSCA

ITN RESCUE funded from the EU H2020 programme under the MSC

grant agreement no. 722325 , by the Estonian Ministry of Education

and Research institutional research grant no. IUT19-1 and by Euro-

pean Union through the European Structural and Regional Devel-

opment Funds.

References

[1] I. Verbauwhede , Security adds an extra dimension to IC design: future IC de-
sign must focus on security in addition to low power and energy, in: IEEE

Solid-State Circuits Magazine, 9, Fall 2017, pp. 41–45 .
[2] W. Chen , S. Ray , J. Bhadra , M. Abadir , L.C. Wang , Challenges and trends in mod-

ern SoC design verification, in: IEEE Design & Test, 34, Oct. 2017, pp. 7–22 .

[3] A. Piziali , Functional Verification Coverage Measurement and Analysis,
Springer, 2008 .

[4] S. Ullah , M. Iqbal , A.M. Khan , A survey on issues in non-functional require-
ments elicitation, in: Int. Conf. on Computer Networks and Information Tech-

nology, Abbottabad, 2011, pp. 333–340 .

[5] L.M. Cysneiros , E. Yu , Non-Functional requirements elicitation, in: J.C.S. do
Prado Leite, J.H. Doorn (Eds.), Perspectives On Software Requirements. The

Springer International Series in Engineering and Computer Science, 753,
Springer, Boston, MA, 2004 .

[6] M.L. Fair , Reliability, availability, and serviceability (RAS) of the IBM eServer
z990, IBM J. Res. Dev. 48 (3.4) (May 2004) 519–534 .

[7] L. Chung , B. Nixon , E. Yu , J. Mylopoulos , Non-Functional requirements, Soft-
ware Engineering, Kluwer Academic, 20 0 0 .

[8] P. Singh , A.K. Tripathi , Exploring problems and solutions in estimating testing

effort f or non functional requirement, Int. J. Comput. Technol. 3 (2b) (2012)
284–290 .

[9] E.R. Poort , N. Martens , I. Van de Weerd , H. Van Vliet , How architects see
non-functional requirements: beware of modifiability, in: Requirements En-

gineering: Foundation for Software Quality, Springer, Berlin Heidelberg, 2012,
pp. 37–51 .

[10] D. Ameller , C. Ayala , J. Cabot , X. Franch , How do software architects consider

non-functional requirements: an exploratory study, in: Requirements Engineer-
ing Conference (RE), 2012, pp. 41–50 .

[11] M. Glinz , On non-functional requirements, in: Requirements Engineering Con-
ference, 2007. RE’07, IEEE, 2007, pp. 21–26 .

[12] L. Motus , Analytical study of quantitative timing properties of software, 5th
EUROMICRO Workshop on Real-Time Systems, 1993 .

[13] M. Jenihhin , G. Squillero , T.S. Copetti , V. Tihhomirov , S. Kostin , M. Gaudesi ,

F. Vargas , J. Raik , M. Sonza Reorda , L. Bolzani Poehls , R. Ubar , G.C. Medeiros ,
Identification and rejuvenation of NBTI-Critical logic paths in nanoscale cir-

cuits, JETTA 32 (3) (June 2016) 273–289 .
[14] J. Bhadra , M.S. Abadir , L.C. Wang , S. Ray , A survey of hybrid techniques

for functional verification, in: IEEE Design & Test of Computers, 24, 2007,
pp. 112–122 .

[15] S. Mukherjee , Architecture design for soft errors, Morgan Kauf (2008) .

[16] A. Ptzmann , M. Hansen , Anonymity unlinkability undetectability unobservabil-
ity pseudonymity and identity management, A Consolidated Proposal for Ter-

minology version 0.31, 2008 .
[17] R. Ubar , et al. , Diagnostic modeling of digital systems with multi-level DDs, in:

R. Ubar, J. Raik, Vierhaus H.Th. (Eds.), Design and Test Technology For Depend-
able, SoC, 2011, pp. 92–118 .

[18] V. Guarnieri , Mutation analysis for SystemC designs at TLM, in: 2011 12th Latin

American Test Workshop (LATW), Porto de Galinhas, 2011, pp. 1–6 .
[19] J. Hansson , B. Lewis , J. Hugues , L. Wrage , P. Feiler , J. Morley , Model-Based ver-

ification of security and non-functional behavior using AADL, IEEE Secur. Priv.
(2009) 1–1 .

[20] J. Sepulveda, D. Aboul-Hassan, G. Sigl, B. Becker, M. Sauer, Towards the formal
verification of security properties of a Network-on-Chip router, in: 2018 IEEE

23rd European Test Symposium (ETS), Bremen, 2018, pp. 1–6, doi: 10.1109/ETS.

2018.8400692 .
[21] T. Boraten , D. DiTomaso , A.K. Kodi , Secure model checkers for Network-on-Chip

(NoC) architectures, in: 2016 Int. Great Lakes Symposium on VL SI (GL SVL SI),
Boston, MA, 2016, pp. 45–50 .

[22] H.M.G. Wassel , Networks on chip with provable security properties, IEEE Mi-
cro. 34 (3) (May-June 2014) 57–68 .

[23] M.A. Kochte , M. Sauer , L.R. Gomez , P. Raiola , B. Becker , H.J. Wunderlich , Spec-
ification and verification of security in reconfigurable scan networks, in: 2017

22nd IEEE European Test Symposium (ETS), Limassol, 2017, pp. 1–6 .

[24] L.W. Kim , J.D. Villasenor , Dynamic function verification for system on chip se-
curity against hardware-based attacks, IEEE Transa. Reliab. 64 (4) (Dec. 2015)

1229–1242 .
[25] Hu Wei , et al. , Imprecise security: quality and complexity tradeoffs for hard-

ware information flow tracking, in: IEEE/ACM Int. Conference on Comput-
er-Aided Design (ICCAD), Austin, TX, 2016, pp. 1–8 .

[26] A. Nahiyan , M. Sadi , R. Vittal , G. Contreras , D. Forte , M. Tehranipoor , Hardware

trojan detection through information flow security verification, in: 2017 IEEE
International Test Conference (ITC), Fort Worth, TX, 2017, pp. 1–10 .

[27] M.A. Kochte , R. Baranowski , M. Sauer , B. Becker , H.J. Wunderlich , Formal verifi-
cation of secure reconfigurable scan network infrastructure, in: 2016 21th IEEE

European Test Symposium (ETS), Amsterdam, 2016, pp. 1–6 .
[28] M. Rocchetto , N.O. Tippenhauer , Towards formal security analysis of indus-

trial control systems, in: ACMA sia Conf. Comput. Commun. Secur., 2017,

pp. 114–126 .
[29] M. Yoshimura , T. Bouyashiki , T. Hosokawa , A hardware trojan circuit detec-

tion method using activation sequence generations, in: 2017 IEEE 22nd Pacific
Rim International Symposium on Dependable Computing (PRDC), Christchurch,

2017, pp. 221–222 .
[30] F.K. Lodhi , S.R. Hasan , O. Hasan , F. Awwad , Formal analysis of macro syn-

chronous micro asychronous pipeline for hardware trojan detection, in: NOR-

CAS, Oslo, 2015, pp. 1–4 .
[31] S. Deng , W. Xiong , J. Szefer , Cache timing side-channel vulnerability checking

with computation tree logic, in: Proceedings of the 7th International Work-
shop on Hardware and Architectural Support for Security and Privacy, ser.

HASP ’18, New York, NY, USA, ACM, 2018, p. 2. 1–2:8 .
[32] T. Zhang , R.B. Lee , New models of cache architectures characterizing informa-

tion leakage from cache side channels, in: Proceedings of the 30th Annual

Computer Security Applications Conference, ser. ACSAC’14, New York, NY, USA,
ACM, 2014, pp. 96–105 .

[33] P. Canones, B. Köpf, J. Reineke, Security analysis of cache replacement policies,
CoRR, 2017 arXiv: 1701.06481 .

12 X. Lai, A. Balakrishnan and T. Lange et al. / Microprocessors and Microsystems 71 (2019) 102867

[34] Z. Hanna , Verifying security aspects of SoC designs with Jasper app, (white
paper), Jasper Design Automation (Cadence), 2013 .

[35] JasperGold Security Path Verification App, Cadence, http://www.cadence.com .
[36] J. Vain , A. Kaur , L. Tsiopoulos , J. Raik , M. Jenihhin , Multi-view modeling for MP-

SoC design aspects, in: 2018 16th Biennial Baltic Electronics Conference (BEC),
Tallinn, 2018, pp. 1–6 .

[37] Q. Ge , Y. Yarom , D. Cock , G. Heiser , A survey of microarchitectural timing at-
tacks and countermeasures on contemporary hardware, J. Cryptogr. Eng. 8 (1)

(2018) 1–27 .

[38] Y. Lyu , P. Mishra , A survey of side-channel attacks on caches and countermea-
sures, J. Hardw. Syst. Secur. 2 (1) (Mar 2018) 33–50 .

[39] A. Savino , S. Di Carlo , A. Vallero , G. Politano , D. Gizopoulos , A. Evans , RIIF-2:
toward the next generation reliability information interchange format, IEEE

IOLTS (2016) 173–178 .
[40] C. Liu , J. Layland , Scheduling algorithms for multi programming in a hard real

time environment, J. ACM 20 (1973) 46–61 .

[41] F.S. Gonçalves , D. Pereira , E. Tovar , L.B. Becker , Formal verification of AADL
models using UPPAAL, in: 2017 VII Brazilian Symposium on Computing Sys-

tems Engineering (SBESC), Curitiba, 2017, pp. 117–124 .
[42] D. Burlyaev , P. Fradet , Formal verification of automatic circuit transformations

for fault-tolerance, in: 2015 Formal Methods in Computer-Aided Design (FM-
CAD), Austin, TX, 2015, pp. 41–48 .

[43] B.W. Thompto , B. Hoppe , Verification for fault tolerance of the IBM sys-

tem z microprocessor, in: Design Automation Conference, Anaheim, CA, 2010,
pp. 525–530 .

[44] S. Kan , M. Lam , T. Porter , J. Dworak , A case Study: pre-Silicon SoC RAS valida-
tion for NoC server processor, in: MTV, 2016, pp. 19–24 .

[45] S. Vinco , M. Lora , E. Macii , M. Poncino , IP-XACT for smart systems design: ex-
tensions for the integration of functional and extra-functional models, in: 2016

Forum on Specification and Design Languages (FDL), Bremen, 2016, pp. 1–8 .

[46] S. Vinco , Y. Chen , F. Fummi , E. Macii , M. Poncino , A layered methodology
for the simulation of extra-functional properties in smart systems, in: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36,
2017, pp. 1702–1715 .

[47] G. Aleksandrowicz , et al. , Designing reliable cyber-physical systems, in:
F. Fummi, R. Wille (Eds.), Languages, Design Methods, and Tools for Electronic

System Design. Lecture Notes in Electrical Engineering, 454, Springer, Cham,

2018 .
[48] Eli Arbel , Shlomit Koyfman , Prabhakar Kudva , Shiri Moran , Automated detec-

tion and verification of parity-protected memory elements, in: Proc. IEEE/ACM

ICCAD, 2014, pp. 1–8 .

[49] M. Maniatakos , Y. Makris , Workload-driven selective hardening of control state
elements in modern microprocessors, in: VTS, 2010, pp. 159–164 .

[50] S. Ganapathy , R. Canal , D. Alexandrescu , E. Costenaro , A. González , A. Rubio ,

INFORMER: an integrated framework for early-stage memory robustness anal-
ysis, in: 2014 Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2014, pp. 1–4 .
[51] S. Avramenko , S.P. Azad , S. Esposito , B. Niazmand , M. Violante , J. Raik , M. Jeni-

hhin , QoSinNoC: analysis of qos-Aware NoC architectures for mixed-criticality
applications, in: 21st IEEE Int. Symp. DDECS, 2018, pp. 1–6 .

[52] S. Avramenko , Upgrading QoSinNoC: efficient routing for mixed-criticality ap-
plications and power analysis, in: IEEE VLSI-SoC, Verona, 2018, pp. 1–6 .

[53] S. Rubini , F. Singhoff, J. Hugues , Modeling and verification of memory archi-

tectures with AADL and REAL, in: 2011 16th IEEE International Conference on
Engineering of Complex Computer Systems, Las Vegas, NV, 2011, pp. 338–343 .

[54] H. Wang , X. Zhou , Y. Dong , L. Tang , A hierarchical verification procedure of
timed petri-net model for real-time embedded systems, in: 2010 2nd Interna-

tional Conference on Information Engineering and Computer Science, Wuhan,
2010, pp. 1–4 .

[55] H. Wang , X. Zhou , Y. Dong , L. Tang , Timing properties analysis of real-time

embedded systems with AADL model using model check, in: IEEE Int. Conf. on
Progress in Informatics and Computing (PIC), 2010, pp. 1019–1023 .

[56] A. Rafiev , F. Xia , A. Iliasov , A. Romanovsky , A. Yakovlev , Selective abstraction
for estimating extra-functional properties in Networks-on-Chips using archon

framework, in: 2017 17th International Conference on Application of Concur-
rency to System Design (ACSD), Zaragoza, 2017, pp. 80–85 .

[57] P. Khondkar , Low-Power Design and Power-Aware Verification, Springer, 2018 .

[58] D. Lorenz , Non-invasive power simulation at system-level with systemc, PAT-
MOS 2012. LNCS (7606), Springer, 2012 .

[59] S. Orcioni , et al. , Energy estimation in SystemC with powersim, Integr. VLSI J.
(55) (2016) 118–128 .

[60] ANSI/IEEE 1801-2015 - IEEE Standard for design and verification of Low-Power,
energy-aware electronic systems, March 2016,

[61] Si2 Common Power Format, v2.1, Silicon Integration Initiative, 2014.

[62] E.Y. Kang , D. Mu , L. Huang , Q. Lan , Verification and validation of a cyber-phys-
ical system in the automotive domain, in: 2017 IEEE International Conference

on Software Quality, Reliability and Security Companion (QRS-C), Prague, 2017,
pp. 326–333 .

[63] A. Danese , G. Pravadelli , I. Zandonà, Automatic generation of power state ma-
chines through dynamic mining of temporal assertions, in: 2016 Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE), Dresden, 2016,

pp. 606–611 .
[64] J. Zimmermann , S. Stattelmann , A. Viehl , O. Bringmann , W. Rosenstiel , Mod-

el-driven virtual prototyping for real-time simulation of distributed embed-
ded systems, in: 7th IEEE Int. Symposium on Industrial Embedded Systems

(SIES’12), Karlsruhe, 2012, pp. 201–210 .

[65] R. Görgen , et al. , CONTREX: design of embedded mixed-criticality CONTRol
systems under consideration of EXtra-Functional properties, in: 2016 Euromi-

cro Conference on Digital System Design (DSD), Limassol, 2016, pp. 286–293 .
[66] A.W. Ruan , Y.B. Liao , P. Li , W.C. Li , W. Li , Throughput estimation for mod-

elsim simulator tool based HW/SW co-verification system, in: 2009 Inter-
national Conference on Communications, Circuits and Systems, Milpitas, CA,

2009, pp. 1014–1018 .
[67] M. Khamis , S. El-Ashry , A. Shalaby , M. AbdElsalam , M.W. El-Kharashi , A config-

urable RISC-V for noc-Based MPSoCs: a framework for hardware emulation, in:

2018 11th International Workshop on Network on Chip Architectures (NoCArc),
Fukuoka, 2018, pp. 1–6 .

[68] JasperGold Connectivity Verification App, Cadence, http://www.cadence.com .
[69] S.K. Roy , Top level SOC interconnectivity verification using formal techniques,

in: The 8th Int. Workshop on Microprocessor Test and Verification, Austin, TX,
USA, 2008, pp. 63–70 .

[70] M. Elver , V. Nagarajan , McVerSi: a test generation framework for fast mem-

ory consistency verification in simulation, in: 2016 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), Barcelona, 2016,

pp. 618–630 .
[71] S.-P. Azad, B. Niazmand, K. Janson, J. Raik, Github Bonfire Project (2017), https:

//github.com/Project-Bonfire/ (accessed 1 June 2019).
[72] S.P. Azad , From online fault detection to fault management in Net-

work-on-Chips: a ground-up approach, in: 2017 IEEE 20th International Sym-

posium on Design and Diagnostics of Electronic Circuits & Systems (DDECS),
Dresden, 2017, pp. 48–53 .

[73] S.-C. Fang , C.-C. Weng , C.-K. Tseng , C.-W. Hsu , J.-L. Liao , S.-Y. Huang , C.-L. Lung ,
D.-M. Kwai , SoC power analysis framework and its application to power-ther-

mal co-simulation, in: 2011 Int. Symp. on VLSI Design, Automation and Test,
April 2011, pp. 1–4 .

[74] G. Vece , M. Conti , S. Orcioni , Transaction-level power analysis of VLSI digital

systems, Integr. VLSI J. 50 (2015) 116–126 .
[75] M. Giammarini , M. Conti , S. Orcioni , System-level energy estimation with

powersim, in: 2011 18th IEEE Int. Conf. on Electronics, Circuits and Systems
(ICECS), December 2011, pp. 723–726 .

[76] Bell Labs, Verifying Multi-threaded Software with Spin, (1980). http://spinroot.
com/ (accessed 1 June 2019).

[77] SMT Steering Committee, The International Satisfiability Modulo Theories

(SMT) Competition. http://www.smtcomp.org/ (accessed 1 June 2019).
[78] Carnegie Mellon University, Architecture Analysis and Design Language. http:

//www.aadl.info/aadllcurrentsite/ (accessed 1 June 2019).
[79] S. Dai , Y. Zhou , H. Zhang , E. Ustun , E.F.Y. Young , Z. Zhang , Fast and accurate

estimation of quality of results in high-level synthesis with machine learning,
in: 2018 IEEE 26th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM), 2018, pp. 129–132 .

[80] K. Hasegawa , M. Oya , M. Yanagisawa , N. Togawa , Hardware Trojans classifica-
tion for gate-level netlists based on machine learning, in: 2016 IEEE 22nd In-

ternational Symposium on On-Line Testing and Robust System Design (IOLTS),
2016, pp. 203–206 .

[81] K. Hasegawa , M. Yanagisawa , N. Togawa , Hardware Trojans classification for
gate-level netlists using multi-layer neural networks, in: 2017 IEEE 23rd In-

ternational Symposium on On-Line Testing and Robust System Design (IOLTS),
2017, pp. 227–232 .

[82] E. Alpaydin , F. Bach , Introduction to Machine Learning, MIT Press, 2014 .

[83] B. Yu , D.Z. Pan , T. Matsunawa , X. Zeng , Machine learning and pattern match-
ing in physical design, in: The 20th Asia and South Pacific Design Automation

Conference, 2015, pp. 286–293 .
[84] B. Li , P.D. Franzon , Machine learning in physical design, in: 2016 IEEE 25th

Conference on Electrical Performance Of Electronic Packaging And Systems
(EPEPS), 2016, pp. 147–150 .

[85] L. Bai , L. Chen , Machine-Learning-Based early-stage timing prediction in SoC

physical design, in: 2018 14th IEEE International Conference on Solid-State and
Integrated Circuit Technology (ICSICT), 2018, pp. 1–3 .

[86] K. Hasegawa , M. Yanagisawa , N. Togawa , Trojan-feature extraction at gate-level
netlists and its application to hardware-Trojan detection using random forest

classifier, in: 2017 IEEE International Symposium on Circuits and Systems (IS-
CAS), 2017, pp. 1–4 .

Xinhui Lai is one of the early stages researchers in the
RESCUE European Training Network. She is doing her re-

search work and Ph.D in Tallinn University of Technology
which is one of the institutions evolved in the RESCUE

project. She got her bachelor and master diploma in Elec-

tronic Engineering from Politecnico di Torino, Italy, in Oc-
tober 2014 and April 2017 respectively. Her research is

focused on design error functional verification and auto-
mated debug, i.e. localization and correction, as well as

verification of extra-functional interdependent aspects in
nanoelectronic system design such as security, reliability,

power/performance envelope.

X. Lai, A. Balakrishnan and T. Lange et al. / Microprocessors and Microsystems 71 (2019) 102867 13

Aneesh Balakrishnan is an Early Stage Researcher in the

RESCUE European Training Network. Within the project,
he is a Research and Development Engineer at iRoC Tech-

nologies, France and also a Ph.D. Candidate in the de-
partment of computer systems at Tallinn University of

Technology, Estonia. Aneesh has a master degree in Com-

munication and Multimedia Engineering from Friedrich-
Alexander University, Erlangen-Nurnberg, Germany in July

2016 and holds a Bachelor of Engineering in Electronics
and Communication Engineering from Anna University of

Technology, India. His current research will address to-
day’s high-performance designs requirements in term of

validation and reliability. The objective of the research is

to significantly enhance and develop new statistical, probabilistic methods and al-
gorithms.

Thomas Lange is an Early Stage Researcher in the RESCUE

European Training Network. Within the project he is a Re-
search and Development Engineer at iRoC Technologies,

France and also Ph.D. Candidate in Computer and Systems

Engineering at Politecnico di Torino, Italy. Thomas holds a
Bachelor’s and Master’s degree in Computer Engineering

from Technische Universität Berlin. In his research he is
investigating the effects of transient faults for high relia-

bility applications in harsh environments. His main inter-
est includes the development of new models and assess-

ment techniques for transient faults, as well as new mit-

igation and error management techniques with the focus
on hardware capabilities.

Maksim Jenihhin is a professor of Computing Systems

Reliability at the Department of Computer Systems of

Tallinn UT. He holds M. Sc . and Ph.D. degrees in Com-
puter Engineering from Tallinn UT (2004 and 2008 re-

spectively). His research interests include methodologies
and EDA tools for hardware design, verification and de-

bug as well as nanoelectronics reliability and manufactur-
ing test topics. Maksim is a project coordinator for H2020

RESCUE - Interdependent Challenges of Reliability, Secu-

rity and Quality in Nanoelectronic Systems Design.

Tara Ghasempouri is a Postdoctoral Researcher at Tallinn

University of Technology in Computer Systems depart-
ment. Her group is mainly focused on three categories

such as fault tolerance, verification and safety/security of
systems. She is interested in finding innovative solutions

for the verification process at the different level of ab-

straction. Her research topic is also focused on Hardware
Security. She received a Ph.D. degree in Computer Science

from University of Verona, Italy. During her Ph.D. pro-
gram, she has researched on different kind of verifications

and specially Assertion-based Verification on the embed-
ded system. She is a member of IEEE Computer Society

and she was a reviewer for different conferences such as

ETS, VLSI-SOC and etc.

Jaan Raik is a professor of digital systems verification at
the Department of Computer Systems of Tallinn Univer-

sity of Technology and the leader of the Center for De-
pendable Computing Systems Design (DCSD). Prof. Raik

received his M. Sc . and Ph.D. degrees in Computer Engi-

neering from Tallinn University of Technology in 1997 and
in 2001, respectively. He is a member of IEEE Computer

Society, HiPEAC and a member of steering/program com-
mittees of several conferences. He has co-authored more

than 200 scientific publications.

Dan Alexandrescu (IEEE Member’07-Senior Member’13)

is the CEO of IROC Technologies. Dan holds a M. Eng. in
Electronics from Politehnica Bucharest, Romania, a M.A.S.

in Microelectronics from Joseph Fourier University, Greno-

ble, France and a Ph.D in Microelectronics from INPG,
Grenoble Institute of Technology, France. He specializes

in the design, optimization and improvement of highly-
reliable microelectronic circuits. He contributed to the or-

ganization of reliability-centric workshops and symposia
(Program Co-Chair for multiple IOLTS editions, Finance

and General Co-Chair for several SELSE editions) and he

prepared many publications in the field of reliability and
radiation-induced effects.

Appendix 3

III
X. Lai, M. Jenihhin, J. Raik, and K. Paul, “Pascal: Timing sca resistant
design and verification flow,” in 2019 IEEE 25th International Symposium
on On-Line Testing and Robust System Design (IOLTS), pp. 239–242,
IEEE, 2019

129

PASCAL: Timing SCA Resistant Design and
Verification Flow

Xinhui Lai1, Maksim Jenihhin1, Jaan Raik1, Kolin Paul1,2
1 Computer Systems, Tallinn University of Technology, Estonia

2 Department of Computer Science & Engg. Indian Institute of Technology Delhi, India
email:{Xinhui.Lai,Maksim.Jenihhin,Jaan.Raik,Kolin.Paul}@taltech.ee

Abstract—A large number of crypto accelerators are being
deployed with the widespread adoption of IoT. It is vitally im-
portant that these accelerators and other security hardware IPs
are provably secure. Security is an extra functional requirement
and hence many security verification tools are not mature. We
propose an approach/flow – PASCAL – that works on RTL
designs and discovers potential Timing Side Channel Attack
(SCA) vulnerabilities in them. Based on information flow analysis,
this is able to identify Timing Disparate Security Paths that
could lead to information leakage. This flow also (automatically)
eliminates the information leakage caused by the timing channel.
The insertion of a lightweight Compensator Block as balancing
or compliance FSM removes the timing channel with minimum
modifications to the design with no impact on the clock cycle
time or combinational delay of the critical path in the circuit.

I. INTRODUCTION

Security is not a first class citizen in (hardware) design and
is rarely considered during design space exploration. Bugs
or vulnerabilities can originate from design flaws, some of
which can be fully eliminated after a complete verification.
The goal of the adversary in a security critical application,
is to learn information that one has no legitimate access to,
e.g. the classified data or secret keys. Novel attack vectors
like side-channel analysis rely on design features, to build
efficient exploits that undermine assumptions regarding the
accessibility of internal secret information in a computing
system. For example, Timing Driven Attacks exploit timing
differences in execution traces as the information flow is via
different paths with the same start and end nodes (controllable
and observable) to derive the secret information.

Denning et. al. introduced the concept of secure information
flow in a computer system whereby it can be shown that no
unauthorized flow of information is possible due to control
and data flow [1]. However, in recent years, side channels
or out of band data channels have been exploited to exfiltrate
or deduce secret information. Consequently, Information Flow
Tracking (IFT) has evolved and has been used as a formal
methodology for modeling and reasoning about security prop-
erties related to integrity, confidentiality of side channels. The
problem becomes more interesting and hard because high-level
architecture abstractions are translated into transparent micro
architecture implementations. While the hardware behavior in
the micro-architecture can cause additional information flows
which can be gainfully exploited to form these side channels.

As opposed to physical Side Channels Attacks (SCA) like
differential power attacks etc. that require physical access to

the computer system, Timing SCA can be launched (relatively)
easily on general purpose compute environments that contain
a memory hierarchy or performance enhancing microarchitec-
ture features like speculative execution. The key invariant in
these attacks is that there are different timing paths that provide
out of band information. Security path verification addresses
a specific, important aspect of overall security verification by
checking access to the secure data on the hardware to make
certain that attackers access the secure (secret) data through
illegal logic paths. For example, in Figure 1, there are paths

Fig. 1: Timing Disparate Paths

from A to B which is controlled by the node S containing
the secret. Tools do Taint Propagation/Taint Analysis, which
is a conservative approximation of secure information flow
analysis, to find such paths [2]. A timing side channel exists,
if the contents of S can be derived/deduced by analyzing time
of arrival of K at N. We call these two or more paths with
unequal transit time as Timing Disparate Security Paths.
And these Timing Disparate Security Paths will be potentially
vulnerabilities open for a timing side channel exploit.

The primary contribution of our work is a secure automated
digital design flow – PAth based Side Channel AnaLysis
(PASCAL) – that creates a secure IP core or system-on-chip.
The proposed flow starts from the RTL design and the threat
model and uses a state of the art Security Path verification
tool to identify potential timing side channel vulnerabilities
and proposes a method to remove them by enforcing uniform
timing to remove data dependent instruction cycle count
variations in the timing side channels.

The remainder of the paper is organized as follows. Sec-
tion II summarizes the state of the art in this area. The next
section details the approach used and presents the key algorith-
mic contribution in this work for identifying Timing Disparate

239978-1-7281-2490-2/19/$31.00 c©2019 IEEE

Security Paths while Section IV presents a lightweight method
for Timing SCA Resistant Design using the results of the
method proposed in the previous section. Section V describes
the implementation results on a widely used crypto core and
also demonstrates the efficacy of the proposed mitigation
method. Section VI summarises the contributions of the paper
and provides directions for future work.

II. RELATED WORK
Timing side channel attacks are known to be a hard and

a very important problem in modern systems. They have
been used to extract cryptographic secrets from running sys-
tems.Even differential privacy systems are not immune to these
attacks. And these are possible using both remoteand local
adversaries. Koeune et. al present an indepth tutorial on Side
Channel Attacks [3].

A popular approach for defending against both local and
remote timing attacks is to ensure that the low-level instruction
sequence does not contain instructions whose performance
depends on secret information. This can be enforced by
manually re-writing the code, as was done in OpenSSL or
by changing the compiler to ensure that the generated code
has this property [4].

While methods for high performance design or low power
are available, design for security is still adhoc. Only recently,
systematic methods support design for trust and security have
been described in literature [5].Menichelli et. al present an
exploration approach centered on high level simulation based
on SystemC to suggest improvements in the knowledge and
identification of the weaknesses in cryptographic algorithm
implementations [6]. Ardeshiricham et. al. have proposed an
information flow based method for secure hardware design [7]
by analyzing all logical code flows of the RTL code. In contrast
VeriCoq-IFT converts designs from HDL to Coq to analyze
a formal security properties [8]. SecVerilog requires explicit
annotating each variable in the design with a security label
— this is similar to using a type system to track information
flow in the code [9]. Deng et. al. have proposed a Computation
Tree Logic to model execution paths of the processor cache
logic and derive formulas for paths that can lead to timing
side-channel vulnerabilities [10].

Most of the mitigation techniques that have been proposed
try to remove data dependent instruction cycle count variations
by balancing timing or do a power flattening to remove power
peaks/anomalies [11]. In some cases, Pipeline randomization
for power and timing is also attempted. Alternatively, packet
route randomisation as a mechanism to increase NoC re-
silience has also been proposed [12]. Recently, Jiang et. al.
have proposed a high-level synthesis (HLS) infrastructure that
incorporates static information flow analysis to remove timing
channels in a verifiable manner on HLS-generated hardware
accelerators [13].

The methodology proposed in this paper is based on a
formal method that can identify all Timing Disparate Security
Paths at RT level and improve the state of the art is a
simple mitigation scheme for potential SCA vulnerable timing
channels.

In the next section, we discuss the proposed method for
discovering Timing Disparate Security Paths in RTL designs.

III. METHODOLOGY

Hardware implementations of encryption algorithms are be-
ing increasingly used as hardware is regarded as more effective
root of trust. RSA is a asymmetric cryptographic algorithm
and has been shown to be vulnerable to Timing SCAs and
mitigation techniques have also been proposed. However, the
major focus continues to rely on verifying the correctness of
encryption algorithms and their implementation in software
and hardware. We present an approach based on RT level
analysis that allows a precise understanding of possible flows
for side channels based on timing. The methodology relies
on a formal analysis tool Cadence JasperGold Security Path
Verification App (JG SPV) [14]. The original objective of the
tool is for security verification by checking access or leak
of the secure data on the hardware to make certain that the
attacker cannot breach the authentication logic and seek the
secure data through illegal paths.

Based on a formal method of path sensitization from the
secret information to the output observable points, we propose
a method that can detect possible Timing-Disparate Paths
in RTL designs which could be exploited as Timing Side
Channel(s). As a result of this analysis, a simple and effective
retiming of Timing SCA sensitive paths is proposed to make
the design immune for the threats under the chosen threat
model. We illustrate this on a standard RSA RTL Verilog code.

Algorithm 1: Example: RSA Modulus Code
Input: Cm, Pn; // C is the m bits cipher text, P is the n

bits private key
Output: Om; // O is the m bits output plain text

1 R0 ← Montgomery(Cm) and R1 ← Montgomery(1))
2 j ← 0
3 while j ≤ n− 1 do
4 R0 ← Montgomery Reduction(R1 ∗R1)
5 if P [j] then
6 R0 ← Montgomery Reduction(R0 ∗R1)
7 end
8 Om ← Montgomery−1(R0)
9 end

The decryption of the RSA modulus in Algorithm 1 uses
Montgomery modular multiplication with square-and-multiply
algorithm. Here we did not mention the details about how to
choose the key or how the Montegomery algorithm works but
focus on explaining the unintended timing channels in RSA
which can be used by attacker to reverse the private key. In
Algorithm 1, n, the bit number of Pn, decides total loop times
while value of single bit of Pn: P[j] determine the operations
for each single loop – only when P[j] equal to 1, statements
at Line 5,6,7 will be executed while P[j] equal to 0 will not.
For the decryption of RSA, the total operations need to be
executed might be different with different private key duing
to the above reasons. Assuming the time for single bit P[j] is

240 25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019)

tP[j], the final execution time will be ttotal =
∑n

j=0 tP[j]. Thus
keys with different number of ’1s’ will cause the different
execution time. This will open a timing side channel for the
attackers.

For this Timing SCAs, the PASCAL is shown in figure 2.
Firstly, we use JG SPV to analyze if there is one or several

Fig. 2: PASCAL: Graphical Representation

paths, from a variable deemed to be secure and unobservable
to the output, exist. JG SPV uses a special path sensitization
technology implying taint analysis to find if private key P
can be propagated to the output O. Then if the path exist, JG
SPV will give a counterexample along with an execution trace
detailing: the exact number of clock cycles(say X). As shown
in the figure 3, the example shows waveforms of related signals
along the path. We use the command ”[get property info
-list{max length} property exponent to finish]” to get the
total execution time(clock based) of an exist path for this speci-
fied secure signal pair. Here it needs 44 clock cycles(additional
2 clock cycles are for setting up)to propagate. After that, JG

Fig. 3: Counter Example and Execution Trace

SPV will be used to find another functional path (if it exists)
from P to the output O with a time length different from X
cycles. This is achieved by invoking JG SPV on a modified
design, shown in Figure 4. A counter is added which drives
the multiplexer to select the situation where the DUV both
finish the decryption AND also the length of the execution
trace Y is not equal to X. If JG SPV finds another path with

an execution trace length not equal to X and Y, it is added to
the Union Clause of the multiplexer select condition and the
process is repeated until they find all the timing classes.

Fig. 4: Modified DUV

IV. TIMING SCA SECURE DESIGN FLOW

We also propose a method that aims to achieve timing-
sensitive noninterference for the synthesized design, via which
it is ensured that confidential or secret values cannot be
revealed by the observing/measuring the timing of events at
observable ports. An intuitive method to remove this Timing
SCA vulnerability is to insert additional registers in the faster
paths using path-balanced scheduling [15]. However, as shown
in Figure 1, there could be many paths t1, t2, · · · , tnin the
same basic block. Assume without loss of generality, that
there are n/2 paths each differing by one cycle. Hence a
path balanced scheduling synthesis procedure would insert
1 + 2 + 3 + · · ·+ n/2 or O(n2) registers.

The method we propose is shown in Algorithm 2. Since
Timing Disparate Security Paths result in a Timing SCA
vulnerability only if they are observable at user interfaces
(output ports), it can relax the constrains in the path balanced
scheduling approach and enforce indistinguishable timing be-
haviors at the observable points in the design. Clearly, for
the basic block or the core to be timing insensitive at the
observable points, the output should be observable modulo
tmax cycles where tmax = maximum(t1, t2, · · · , tn). We
enable the output port/interface every tmax cycles using a
counter and an AND gate. This small additional circuitry
acts as the Compensator or balancing/compliance FSM and
provides the (read) enable / data ready signal for observable
interface.

This therefore, leads to a very simple synthesis technique
for ensuring a path balanced design with a single lightweight
Compensator Block at the observable points of interest in
the design. The additional circuit has a very small overhead
counter which counts upto tm to generate the control input
for the AND gate which provides the enable signal to the
observable register. The counter is reset every time a new
input enters the basic block. This additional logic incurs
no penalty in the critical path of the system and avoids
resource duplication since it has a uniform counter where the
results from the different Timing Disparate Security Paths are
delivered to the observable interface with the same latency.

V. RESULTS

The Montgomery modular multiplication with square-and-
multiply algorithm based RSA cryptographic RTL implemen-

25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019) 241

Algorithm 2: Timing Channel Removal
Input: Design Under Verification (DUV)
Output: Secure Design Under Test (sDUV)

1 P ← PACSCAL(DUV) ;
2 tm = findMaxExecutionLength(P);
3 Ccompensator Logic Block ← Counter(tm) + ResetLogic;
4 sDUV ← Compensator Logic Block + DUV

tation is vulnerable to timing SCA. This is because for differ-
ent keys the time differences are dependent on the number of
’1s’ in the key as explained in the Algorithm 1. In figure 5,
the time required to generate the timing disparate classes
for 32-bits RSA, 64-bits RSA and 128-bits RSA are shown.
For different RSA, the time needed to identify timing cases
are varies: for the initial few time classes, they are obtained
quickly while for the last few time classes they need a very
long time.

Our method can correctly identifies all timing classes using
formal methods. i.e. for the 32-bits RSA verilog implementa-
tion, it identifies all the timing classes with cycle times from
33 to 64. As for the mitigation method mentioned in Figure 4.
Since the counter need to count to 64, we only need a 7 bits
counter which incurs an approximate area penalty of 7 flops. In
contrast, the path-balanced scheduling strategy would require
about 512 flip flops. Clearly, with a 64-bit RSA, the savings
are more significant. As mentioned earlier, the Compliance
State Machine is not in the critical path and incurs no penalty
in the operational speed of the circuit.

�������

1500 180 30

1250 150 25

1000 120 20

750 90 15

500 60 10

250 30 5

0 0 0

����	

������

1 8 16 24 32
1 8 16 24 32 40 48 56 64
1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

��������� �����������������������

��
��

���
��
��
���

��
�

��
���

��
��
��

���
��
��
���

��
��

��
���
���

���
��

!�
��

��
�

"

Fig. 5: Normalized Execution Times

VI. CONCLUSION

Significant numbers of hardware IPs or crypto accelerators
are being deployed with the widespread adoption of IoT. It
is vitally important that these IPs are provably secure. We
have proposed a novel approach to discover timing SCA
vulnerabilities that (can)exist in designs. This flow also (au-
tomatically) eliminates the information leakage caused by the
timing channel. The insertion of a lightweight Compensator
Block removes the timing channel with minimum modifica-
tions to the design with no impact on the clock cycle time
or combinational delay of the critical path in the circuit. For

the future work, multiple secrets in design or multiple public
interfaces will be studied. And we will also integrate this
framework to High Level Synthesis flow so that more accurate
estimates of area can be obtained.

ACKNOWLEDGEMENTS

This research was supported in part by projects H2020 MSCA
ITN RESCUE funded from the EU H2020 programme under the
MSC grant agreement No.722325, by the Estonian Ministry of
Education and Research institutional research grant no. IUT19-1 and
by European Union through the European Structural and Regional
Development Funds.

REFERENCES

[1] D. E. Denning, “A lattice model of secure information flow,” Commun.
ACM, vol. 19, no. 5, pp. 236–243, 1976.

[2] J. Ming, D. Wu, G. Xiao, J. Wang, and P. Liu, “Taintpipe: Pipelined
symbolic taint analysis,” in 24th USENIX Security Symposium (USENIX
Security 15), Washington, D.C., 2015, pp. 65–80.

[3] F. Koeune and F.-X. Standaert, “Foundations of security analysis and
design iii,” A. Aldini, R. Gorrieri, and F. Martinelli, Eds., 2005, ch. A
Tutorial on Physical Security and Side-channel Attacks, pp. 78–108.

[4] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter,
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in 30th IEEE Symposium on Security and Privacy (S&P
2009), 17-20 May 2009, Oakland, California, USA, 2009, pp. 45–60.

[5] K. Tiri and I. Verbauwhede, “A vlsi design flow for secure side-channel
attack resistant ics,” in Design, Automation and Test in Europe, March
2005, pp. 58–63 Vol. 3.

[6] F. Menichelli, R. Menicocci, M. Olivieri, and A. Trifiletti, “High-level
side-channel attack modeling and simulation for security-critical systems
on chips,” IEEE Transactions on Dependable and Secure Computing,
vol. 5, no. 3, pp. 164–176, July 2008.

[7] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,” in
Proceedings of the Conference on Design, Automation & Test in Europe,
ser. DATE ’17, 2017, pp. 1695–1700.

[8] M. Bidmeshki and Y. Makris, “Toward automatic proof generation for
information flow policies in third-party hardware ip,” in 2015 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), vol. 00, 2015, pp. 163–168.

[9] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” SIGPLAN Not.,
vol. 50, no. 4, pp. 503–516, Mar. 2015.

[10] S. Deng, W. Xiong, and J. Szefer, “Cache timing side-channel vulner-
ability checking with computation tree logic,” in Proceedings of the
7th International Workshop on Hardware and Architectural Support for
Security and Privacy, ser. HASP ’18, 2018, pp. 2:1–2:8.

[11] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-
channel analysis resistant description of the aes s-box,” in Fast Software
Encryption, H. Gilbert and H. Handschuh, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 413–423.

[12] L. S. Indrusiak, J. Harbin, and M. J. Sepúlveda, “Side-channel attack
resilience through route randomisation in secure real-time networks-on-
chip,” CoRR, vol. abs/1607.03450, 2016.

[13] Z. Jiang, S. Dai, G. E. Suh, and Z. Zhang, “High-level synthesis with
timing-sensitive information flow enforcement,” in Proceedings of the
International Conference on Computer-Aided Design, ser. ICCAD ’18,
2018, pp. 88:1–88:8.

[14] JasperGold Security Path Verification App. [Online]. Available:
https://www.cadence.com/content/cadence-www/global/en US/home/
tools/system-design-and-verification/formal-and-static-verification/
jasper-gold-verification-platform.html

[15] S. Peter and T. Givargis, “Towards a timing attack aware high-level
synthesis of integrated circuits,” in 34th IEEE International Conference
on Computer Design, ICCD 2016, Scottsdale, AZ, USA, October 2-5,
2016, 2016, pp. 452–455.

242 25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019)

Appendix 4

IV
X. Lai, M. Jenihhin, G. Selimis, S. Goossens, R. Maes, and K. Paul, “Early
rtl analysis for sca vulnerability in fuzzy extractors of memory-based puf
enabled devices,” in 2020 IFIP/IEEE 28th International Conference on Very
Large Scale Integration (VLSI-SOC), pp. 16–21, IEEE, 2020

135

Early RTL Analysis for SCA Vulnerability in Fuzzy
Extractors of Memory-Based PUF Enabled Devices

Xinhui Lai1, Maksim Jenihhin1, Georgios Selimis2, Sven Goossens2, Roel Maes2, Kolin Paul3
1 Department of Computer Systems, Tallinn University of Technology, Estonia

2 Intrinsic ID, The Netherlands
3 Department of Computer Science & Engg, Indian Institute of Technology Delhi, India

Email: xinhui.lai@taltech.ee

Abstract—Physical Unclonable Functions (PUFs) are gaining
attention in the cryptography community because of the ability to
efficiently harness the intrinsic variability in the manufacturing
process. However, this means that they are noisy devices and
require error correction mechanisms, e.g., by employing Fuzzy
Extractors (FEs). Recent works demonstrated that applying
FEs for error correction may enable new opportunities to break
the PUFs if no countermeasures are taken. In this paper, we
address an attack model on FEs hardware implementations
and provide a solution for early identification of the timing
Side-Channel Attack (SCA) vulnerabilities which can be
exploited by physical fault injection. The significance of this
work stems from the fact that FEs are an essential building
block in the implementations of PUF-enabled devices. The
information leaked through the timing side-channel during
the error correction process can reveal the FE input data
and thereby can endanger revealing secrets. Therefore, it is
very important to identify the potential leakages early in the
process during RTL design. Experimental results based on
RTL analysis of several Bose–Chaudhuri–Hocquenghem (BCH)
and Reed-Solomon decoders for PUF-enabled devices with FEs
demonstrate the feasibility of the proposed methodology.

Keywords - timing side-channel attack, physical unclonable
function, fuzzy extractor, fault-injection attack, error correction
code, BCH, Reed-Solomon, RTL analysis.

I. INTRODUCTION

Physical unclonable functions (PUFs) are hardware prim-
itives which derive identifiers and cryptographic keys from
the random variations of the silicon manufacturing process.
PUFs provide a significantly higher security assurance as keys
are volatile and derived only when required. Thus, a PUF
can be easily attached or embedded into the cryptographic
implementation for authentication and identification [1]. PUF-
enabled devices are also an efficient alternative to the ex-
pensive conventional measures against the integrated circuit
power-off, e.g., by using the Non-Volatile Memory (NVM)
for the key storage. The keys generated by PUFs are derived
by measurements in the field during the run time and can be
saved in a cheaper volatile memory.

PUFs are known to be sensitive to the environmental factors
such as the ambient temperature, the supply voltage noise, etc.
that may affect the reliability of the response measurement,
and ultimately, reduce the reproducibility of the cryptographic
key. Along with the external factors, the internal factors of the

PUF’s manufacturing technology prevent it from guaranteeing
a constant response all the time. This nondeterminism poses
issues for applying a PUF as a key generator or identifier [2].
Therefore, for the post-processing, a Fuzzy Extractor (FE) is
an essential component to help a PUF generate a reliable key
by correcting the errors caused internally or by environmental
variations.

Different types of the PUF structure and the environmental
conditions imply different requirements for the FE and the cor-
responding ECC. An example of a silicon PUF is the memory-
based PUF, which is widely used in chip-level authentication.
FE ECCs such as the Bose–Chaudhuri–Hocquenghem (BCH)
[2] or Reed-Solomon [3] are used in memory-based PUF
enabled devices.

While FEs with ECCs significantly raise reliability, they
can lead to new exploits such as allowing an attacker to
extract sensitive information by studying the behavior of ECC.
Side-Channel Attacks (SCA) on ECC implementations have
attracted particular attention of the research community. In
[4], the authors extract the information about the key by non-
invasive measurement of electromagnetic radiation together
with a differential power analysis of the BCH decoder. In [5],
the authors study the simple power analysis of both BCH and
Reed-Solomon code and manage to recover the PUF response
from the collected power traces. However, there is no research
work that refers to attacks that combine timing SCA and fault
attacks for FEs, namely targeting to the execution time of the
error-correcting code of FE in combination with the insertion
of faults to PUF. So in this paper, we address this gap by
a study on BCH and Reed-Solomon RTL designs execution
time differences as a reaction to intentionally triggered faults
inserted to PUF. Specifically, the contributions of the paper
include:
• Definition of an attack model based on fault injection

and timing analysis of ECC execution that may lead to
the secret PUF values extraction.

• An early design stage RTL methodology for verification
of an ECC design invulnerability against the proposed
attack by employing both structural and simulation-based
analysis steps.

• Case studies of Reed-Solomon and BCH based ECC with
vulnerabilities identification and exploitation.

978-1-7281-3915-9/19/$31.00 ©2019 IEEE

The rest of the paper is organized as follows. Section
II reviews the background of the FE architecture and ECC
decoders. The attack model is discussed in Section III. Section
IV presents the proposed methodology for verifying invul-
nerability against the proposed attack. Section V presents a
case study for ECC implementations. Section VI concludes
the paper.

II. BACKGROUND AND RELATED WORKS

A. Fuzzy Extractor and Secure Sketch

The Fuzzy Extractor [6] is a secure method to generate cryp-
tographic keys from noisy sources. The FE serves as a post-
processing unit in memory-based PUF-enabled cryptographic
schemes. It is used both in the Generation and Reconstruction
Procedures, as illustrated in Fig. 1 and Fig. 2 correspondingly.

In the Generation Procedure case, the fuzzy data from
the PUF response W and a random secret S are used to
generate the Helper Data by XOR operation on W and E(S0)
which is encoded S0. The generated helper data is stored in a
non-volatile memory. In memory-based PUF-enabled devices,
the Generation Procedure happens only once at the first-time
power-on of the memory-based PUF.

Fig. 1. Generation Procedure in A PUF Fuzzy Extractor

On the contrary to this, the Reconstruction Procedure is
executed many times during the product lifetime. Due to the
noise and PUF manufacturing randomness, it is difficult to
generate the same response consistently. To reproduce the
correct cryptographic key, the Helper Data, stored in an NVM,
is used in conjunction with the measured PUF response W ′.
Then with the help of the ECC decoder to detect and correct
the divergent bits, the correct W is reproduced. After applying
the Hash Function, the expected correct cryptographic key is
reconstructed.

Fig. 2. Reconstruction Procedure in A PUF Fuzzy Extractor

The FE guarantees that the resulting key is consistent while
the publicly accessible Helper Data does not leak any infor-
mation related to the secret of the key. To ensure consistent
generation of the correct key, the hamming distance between
the measured PUF response W ′ with the originally measured
W in the Generator Procedure should be smaller or equal to
the correction capability of the ECC decoder, represented as a

constant value t. In this paper, we assume that the measured
responses of the memory-based PUF are within this hamming
distance constraint.

Recent research works have identified potential attacks on
FEs [7]. Most of them target the Reconstruction Procedure.
In [8], the authors report on a method to extract the PUF
secret by manipulating the Helper Data in the Reconstruction
Procedure. In [9], Delvaux et al. provide an in-depth analysis
of the Helper Data algorithms, and identify new threats for
leaking the Helper Data and the soft-decision coding.

B. ECC decoder
The ECC unit is the main component in a FE. Binary

BCH and Reed-Solomon are the two types of ECC that are
widely used in PUF-enabled devices. Both codes are cyclic
and capable of detecting up to 2t and correct up to t errors
by adding 2t check bits or non-binary values (symbols) to
the data. Binary BCH is used for binary error correction, and
Reed-Solomon is used for symbol error correction. While both
software and hardware implementations of these codes exist,
the hardware ones are more adopted. First, this is because the
complex algorithms of the decoders require significant compu-
tational power along with the real-time constraints. The second
difficulty for software implementations is the limited support
of the Galois Fields Arithmetic operation in the general-
purpose processors [10]. The hardware implementations of
binary BCH and Reed-Solomon decoders are discussed in
more detail in Section V.

III. ATTACK MODEL

In this paper, we assume an attack combining 1) fault
injection to the memory-based PUF with 2) a timing SCA
for observing and comparing the different decoding execution
times of the ECC unit that is aimed at revealing the correct
memory-based PUF data. In case of success, the attack ex-
plicitly compromises the core function of the PUF-enabled
cryptographic devices, because the attacker can clone the PUF
and can steal the secret.

A. Fault Injection Parameters
For the physical fault injection to the memory-based PUF

the following fault parameters are assumed.
(a) Granularity: each fault injection results in exactly one

fault in one-bit data.
(b) Modification (fault type): after the fault injection, the

manipulated data is set to a specified logic value, i.e.
either ’1’ or ’0’.

(c) Control: the attacker has a bit-wise precise control of fault
injection to the memory-based PUF bits.

(d) Effect of the fault: the injected faults have a transient na-
ture, i.e. the injected values are overwritten by the normal
functionality of the device (e.g. the next measurement of
the PUF on power-on).

Several studies on laser fault injection [11] have demonstrated
similar attack parameters and, therefore, the feasibility of the
above assumptions. Technical details of the fault injection
attack implementation are out of the scope of this study.

B. Attack Assumptions
The following set of assumptions must be satisfied for the

success of the attack. The feasibility of the assumptions (iii)-
(vi) is supported by several research works in state of the art.

(i) The output of a memory-based PUF measurement in the
cryptographic device is processed by a FE with a binary
BCH or Reed-Solomon based ECC.

(ii) The ECC implementation leaks exploitable information
through the timing-side channel.
Comment: The methodology for identifying the vulnera-
bility enabling this assumption is the core contribution of
this paper and presented in Section IV.

(iii) The memory-based PUF is noise-free under stable en-
vironmental conditions. The errors in the memory-based
PUF are caused by the environment.
Comment: While an ideal noise-free memory-based PUF
would not require the FE at all, we assume that the noise
is caused by the variations in the external environment
while the internal noise is negligible. [12] demonstrated
that the external environmental conditions like the am-
bient temperature, supply voltage, etc. have a significant
impact on the error rate of the PUF.

(iv) The generated Helper Data is stored in NVM or the
flash memory of the cryptographic devices and remains
constant during the Reconstruction Procedure.
Comment: As an added value, this assumption creates an
advantage for the proposed attack, compared to alterna-
tives (e.g. [8], [9]), because it does not rely on the attacker
being able to modify the Helper Data.

(v) The fault injection parameters (a) to (d) hold (see III.A).
Comment: Several research works proposed bit-wise fault
injection in SRAM and other on-chip memories. E.g.,
in [13], bit-wise faults were successfully injected in a
PIC microcontroller through a semi-invasive method and
without mechanical damage to the silicon.

(vi) The attacker has a controlled access for measuring the
decoding execution time.
Comment: The physical measurement of the ECC decod-
ing execution time can exploit the reflection of timing by
the power traces. In [14], the authors analyze use of the
AES execution power traces for a SCA. The power traces
are represented by changes of power over time, with
the timing information embedded. A similar approach is
used in [15] for RTL verification of RSA designs against
vulnerability to timing SCAs.

C. Attack Procedure
The proposed attack is a combination of fault injection with

timing side channel analysis and represented by the following
4 steps. The procedure is illustrated in Fig.3.

1) Power on the device. Measure the initial PUF data.
With the above assumptions, this memory value should
be error-free, i.e. the same with W generated in the
Generation Procedure. Measure and record the reference
time T as the number of clock cycles for the execution
of the ECC decoding.

2) Inject a fault f at the mth bit of memory-based PUF
following the (a) to (d) parameters and generate the new
memory data Wm f . Wm f has a one-bit difference value
compared to W . E.g, if the f is a set to logic “1” value
and m = 1 then W and W1 f can be either equal or
can be different by exactly one bit at the first position.
Then execute the Reconstruction Procedure, measure the
decoding execution time T (m).

3) The relation between these two decoding times T and
T (m) contains only two possible cases. The PUF’s secret
single bit m can be revealed by comparing the two
decoding times as follows:
• if T ! = T (m), then a different value at the mth bit was

injected. E.g., for f = 1, the original value of the mth

bit in memory is ’0’;
• if T = T (m) then the value at the mth bit was equal

to the injected one. E.g., for f = 1, the original value
of the mth bit in memory is ’1’;

4) Repeat the steps 1) to 3). of the procedure until the last
mth bit of memory-based PUF. The memory-based PUF’s
secret value is revealed.

Fig. 3. An illustration of the proposed attack procedure

IV. PROPOSED METHODOLOGY

The precondition for the introduced attack is the non-
constant decoding execution time in case of different input data
for the ECC unit of the memory-based PUF Fuzzy Extractor.
In this section, we propose a methodology to identify this
vulnerability in an ECC implementation already at the RTL
design phase. The methodology employs both structural and
simulation-based analysis for binary BCH and Reed-Solomon
algorithms based hardware ECC implementations. In practice,
these two algorithms are widely used by the industry in
memory-based PUF-enabled devices.

A. Structural Analysis of ECC Decoder

1) Binary BCH Decoder: A general binary BCH decoder
hardware implementation has three stages, as shown in Fig.4.
The divergent (error) bits are identified by the Syndrome
Calculator, Key Equation Solver and the Chien Search. Next,
the decoder corrects the error bits by the XOR operation on the
stored input with the identified error bits to recover the correct

codeword. Let r(x), c(x) and e(x) be the received polynomial,
codeword polynomial and error polynomial, i.e. r(x) = c(x) +
e(x). Assume the binary BCH decoder can correct t errors.
As the structural analysis of the binary BCH, we consider the

Fig. 4. Binary BCH Decoder Structure

following reasoning.

• Syndrome Calculator: It is the first stage in the decoder
generates 2t syndromes as defined in (1).
Si = r(xi) = r0+r1x

i+r2x
2i++rn−1x

(n−1)i (1)
where 1 ≤ i ≤ 2t − 1.An important feature of the
syndromes is that they do not depend on transmitted
information but only on error locations. If at position
i there is an error then Si has a non-zero value and it
is equal to zero otherwise. For all possible inputs, the
decoder always generates 2t syndromes. Therefore, the
time for the syndrome calculation is constant for the BCH
decoder with a fixed error correction capability.

• Key Equation Solver: In the second stage, the error lo-
cation polynomial σ(x) is generated. Berlekamp Massey
Algorithm (BMA) is one known iterative procedure that
determines polynomial equation (2) out of a set of linear
equations for the 2t syndromes calculated in the first
stage.

σ(x) = 1 + σ1x+ σ2x
2 + ...σtx

t (2)
BMA can be implemented in parallel or serially. In
[16], it is demonstrated that a parallel implementation
for a t errors correction BMA needs 2t iterations. A
serial implementation implies a significant increase in
the number of iterations. According to [17], it needs 2t2

iterations. However, for both cases, the total number of
iterations is determined only by t, which is the maximum
number of errors the decoder can correct.

• Chien Search: This stage searches for error locations by
checking the roots of σ(x). It is a simple trial-and-error
procedure. All nonzero elements of the Galois Fields for
a binary BCH decoder are generated in sequence and
only capture the condition when σ(xi) is equal to zero
which the error position. Therefore, in this stage, the total
number of nonzero elements depends only on the Galois
Field GF(2m) where n = 2m − 1 and n is the size of
codeword.

To conclude, for different binary BCH decoder implementa-
tions, the error correction bits and the size of the codeword are
the factors which lead to the different decoding execution time.
However, for a specific binary BCH decoder, these parameters
are fixed at the design phase. Therefore, the structural analysis
has not identified timing channels in binary BCH decoder
structures.

2) Reed-Solomon Decoder: Reed-Solomon (RS) decoder
aimes at non-binary (symbol) error correction. Different from
the binary BCH, which needs only to generate error locator
polynomial σ(x) RS also needs to generate an error value
polynomial. Therefore, some RS implementations replace
BMA by Euclidean Algorithm (EA) for the Key Equation
Solver to calculate the error location polynomial and error
value polynomial and add a new component Forney to cal-
culate the error value. The Reed-Solomon decoder structure
is illustrated in Fig.5. Here, the differences with the BCH
decoder structure are highlighted in red. In the following
structural analysis, we focus only on these two different
components.

Fig. 5. Reed-Solomon Decoder Structure

• Euclidean Algorithm (EA): It is an iterative procedure
to generate the error locator polynomial and the error
value polynomial with the 2t syndromes generated by the
Syndrome Calculator stage. Particular implementations of
EA may prefer a pipelined version with the objective of
performance optimization [18]. In EA procedure [18],
the error locator polynomial σ(x) and the error value
polynomial ω(x) are acquired by solving the equation (3).
Equation (3) can be represented in the form of equation
(4). The extend Euclidean Algorithm can find a series
polynomial by (5). From (4) and (5), Ai(x) = σ(x),
Ri(x) = ω(x) and Bi(x) = −Q(x). To solve the
Key Equation the EA procedure starts with initiating
the values R0(x) = x2t, Q0(x) = S(x), L0(x) = 0,
U0(x) = 1 and then it is followed by interactions of
four equations used to calculate Ri(x), Qi(x), Li(x) and
Ui(x), based on the values from the previous stage, until
the degree of Ri(x) gets smaller than the degree of Li(x)
or t. When the iteration is finished, the equation (3) is
solved. Because the R(x) starts at the degree 2t, and the
iteration can finish at the degree of R(x) equal to t or
smaller. Therefore, the EA stage may require a different
number of iterations for the different codewords which
may introduce different execution times.

ω(x) = S(x)σ(x) mod x2t (3)
σ(x)S(x) = Q(x)x2t + ω(x) (4)
Ai(x)S(x) +Bi(x)x

t = Ri(x) (5)
• Forney: By using the Forney algorithm, the error value

e(x) can be acquired by the equation (6).

ej = −
ω(Xj)

σ
′
(Xj)

(6)

Normally, it is implemented in combinational logic be-
cause ω(X) and σ(x) are available. The execution time
of this stage is constant.

To conclude, the structural analysis has not identified the

timing channel in the other stages of the Reed-Solomon
structure but the second stage. Based on the implementation,
the Key Equation Solver stage in the Reed-Solomon based
ECC decoder can introduce the vulnerability.

B. Simulation-based analysis of ECC decoder
In an RTL simulation of an ECC decoder implementation,

a number of stimuli data parameters may have an impact on
the execution time of a decoding iteration. For the proposed
simulation-based analysis step, the following parameters are
identified:
• codewordvalue: the encoded codeword value
• errorvalue: the error value is relevant only for a non-

binary (symbol) ECC decoders
• errorposition: the error bit position for a binary ECC

decoder or the error symbol position for a non-binary
ECC decoder

• errornumber : the number of error bits or symbols for
binary or non-binary ECC decoder correspondingly

The structural analysis of binary BCH and RS decoders and
the defined attack model allows reducing the search space.
Table I presents the relationship of the execution time variation
introduced by manipulating a particular decoding parameter
and the vulnerability to the proposed attack. The notations
C and NC represent constant and non-constant decoding
execution time, while V and NV represent vulnerability or
invulnerability.

TABLE I
ECC EXECUTION TIME VARIABILITY AND THE SCA VULNERABILITY

ECC Decoding Execution Time/Vulnerability
Parameters RS decoder Binary BCH decoder

codewordvalue C/NV C/NV
errorvalue C/V

errorposition C/V C/V
errornumber NC/V C/V

In particular, manipulation of the codewordvalueparameter
does not identify the vulnerability of the target decoder. The
attacker does not have access to manipulate the predefined
correct codeword and can only manipulate the input codeword
to cause an error. Based on the structural analysis, it is
already known that different codewords do not introduce
different decoding time neither in binary BCH nor in RS
structures. The errorvalue and errorposition parameters can
be manipulated by the attacker by injecting faults to the input
codeword. However, the constant decoding time will not leak
information through the timing channel. From Table I, we can
conclude that the binary BCH decoder structures are secure
with regards to the information leakage through the timing
channel. An RS decoder implementation can be vulnerable if
the attacker injects a different number of error symbols, i.e. the
errornumber. The table guides the designer which simulation
campaigns are required to verify a particular implementation
against vulnerability to the proposed SCA.

V. CASE STUDY

The feasibility of the proposed methodology was validated
by running an exhaustive simulation campaign on 3 case study

ECC designs for memory-based PUF Fuzzy Extractors, i.e. 2
binary BCH and a Reed-Solomon ECC implementations.

A. Binary BCH decoder
The implementation of the binary BCH decoder is an open-

source design in RTL Verilog accessible from Github [19].
Its general architecture is illustrated in Fig. 4. The decoder
was configured for a 12-bit codeword, 8-bit message and
supports two types of BMA, i.e. serial BMA serial and parallel
BMA parallel versions. The configuration was set to correct
up to two errors, i.e. t = 2. Both versions were simulated
with an exhaustive set of test vectors to identify the timing
information leakage. Only valid values for the 12-bit binary
codeword were extracted by running the encoder with all
possible inputs. The input for the encoder is 4-bit message and
2-bit error correction capability. Since the number of errors
correctable for a given polynomial is sparse, the encoder has
the selection algorithm to select suitable polynomial function
to meet the provided requirements. Thus the actual message
bit might be changed. In our case, the encoder pads 4-bit zeros
and makes the input message bit 8-bit. We input all possible
4-bit value into encoder. Then each encoded message value
was merged with all possible error combinations considering
the injection of 0, 1 or 2 errors at a time, i.e. all combina-
tions of errornumber and errorposition were simulated. This
means Ttest vectors = 24 ∗ (

(
12
0

)
+

(
12
1

)
+

(
12
2

)
)=1,264 ECC

decoding executions were analyzed for the each design, and
the decoding time was measured.

B. Reed-Solomon decoder
The case-study Reed-Solomon decoder implementation is

also an open-source design accessible from Github [20] and
illustrated in Fig.5. The design was configured for 8-symbol
codewords, 4-symbol messages and 8-bit symbols. The error
correction capacity was also set to 2 errors, i.e. t = 2. By
default, the design is pipelined by using registers to extend
the execution time for each stage to the worst execution-
time case. In practice, for memory-based PUF enabled devices
where execution time is a critical factor, a configuration
aimed at the decoder speed optimization is often used. This
was also applied for the current case study. Different from
the binary BCH, the Reed-Solomon decoder uses symbol-
based error correction. While the parameter errorposition
represents the position of the error symbol, the errorvalue
can take one of the 28 = 256 possible values for an error in
each symbol. The number of all combinations for the valid
codewords merged with all possible errors for each symbol
is Ttestvector =

(
8
1

)
∗ (28 − 1) +

(
8
2

)
∗ (28 − 1) +

(
8
0

)
=

1,822,741 that represents the number of executions to simulate
and analyse per codeword. In the simulation campaign, we
limited the analysis to one random valid codeword. Based on
the architecture analysis, the other codewords provide the same
results.

C. Experiment Results Analysis
Experiment results are shown in Table II. In the list

of parameters identified for manipulation by the proposed

methodology, the symbols ” ” and ”-” represent the varied and
constant parameters correspondingly. Td denotes the number
of different decoding execution times identified and the cor-
responding values in clock cycles. For the Binary BCH, the
experimental results confirm the conclusions of the structural
analysis and do not identify any variations in the execution
times. For the Reed-Solomon decoder, the red cells highlight
the cases with the varying decoding time. In this experiment,
Td:3 {38, 66, 72} denotes different timing cases in case of the
different number of errors to be corrected, i.e. 38, 66 or 72
clock cycles for 0, 1 or 2 errors correspondingly. As shown
in the first three rows, different errorposition and errorvalue
can not affect the decoding time, and it remains constant (but
can be equal to different values) Td : 1 {38}‖{66}‖{72}.

TABLE II
ECC-BASED FE DECODING TIMING ANALYSIS

Varied Parameters Decoding time by ECC Implementations (clock cycles)

co
d
ew

o
r
d
v
a
lu

e

er
r
o
r n

u
m

b
e
r

er
r
o
r p

o
s
it
io

n

er
r
o
r v

a
lu

e

Binary
BCH-12-8
BMA serial

Binary
BCH-12-8
BMA parallel

Reed-Solomon-4-8-8

- - - Td:1 {38}‖{66}‖{72}
- - - Td:1 {28} Td:1 {21} Td:1 {38}‖{66}‖{72}
- - Td:1 {38}‖{66}‖{72}
- - - Td:1 {28} Td:1 {21} Td:3 {38, 66, 72}
- - Td:1 {28} Td:1 {21} Td:3 {38, 66, 72}
- - Td:3 {38, 66, 72}
- Td:3 {38, 66, 72}

- - - Td:1 {28} Td:1 {21}
- - Td:1 {28} Td:1 {21}

- Td:1 {28} Td:1 {21}
- - Td:1 {28} Td:1 {21}

VI. CONCLUSIONS

Application of Fuzzy Extractors for error correction may
enable opportunities to break the secure PUFs if no counter-
measures are taken. This paper considers a combined attack
model based on fault injection and timing analysis of ECC ex-
ecution. In the worst case, such an attack may lead to the secret
PUF value extraction. An early design stage RTL methodology
was developed to verify the ECC design invulnerability against
such or a similar SCA.

The methodology involves structural and simulation-based
analysis parts. In our study, we targeted at two ECC archi-
tectures most widely used in FEs. The structural analysis has
not identified vulnerabilities in the considered binary BCH
architectures, while the architecture of Reed-Solomon based
ECC may be vulnerable in particular implementations. A set
of simulation-based experimental results have confirmed the
findings and demonstrated the timing information leakage. Un-
der the specified assumptions, the proposed attack procedure
is able to exploit this vulnerability and reveal the secret.

The results of the early RTL analysis can guide in the
selection of suitable ECC implementation or in the application
of design-level countermeasures. To remove the leakage, e.g., a
register can be added at the output of the Euclidean Algorithm
stage to equalize the timing to the worst-case execution, or

optimizations at the ECC algorithm may be applied. The
efficiency of the mitigation solutions can be explored by the
proposed methodology at a low cost.

VII. ACKNOWLEDGEMENTS

This research was supported in part by the project H2020 MSCA
ITN RESCUE funded from the EU H2020 programme under the
MSC grant agreement No.722325 and by European Union through
the European Structural, Regional Development and Social Funds.

REFERENCES

[1] R. Maes et al., “Physically unclonable functions: A study on the state of
the art and future research directions,” in Towards Hardware-Intrinsic
Security. Springer, 2010, pp. 3–37.

[2] R. Maes et al., “A soft decision helper data algorithm for sram pufs,”
in 2009 IEEE international symposium on information theory.

[3] A. R. Korenda et al., “A proof of concept sram-based physically
unclonable function (puf) key generation mechanism for iot devices,”
in 2019 16th Annual IEEE International Conference on Sensing, Com-
munication, and Networking (SECON), 2019, pp. 1–8.

[4] L. Tebelmann et al., “Em side-channel analysis of bch-based error
correction for puf-based key generation,” in Proceedings of the 2017
Workshop on Attacks and Solutions in Hardware Security.

[5] D. Karakoyunlu et al., “Differential template attacks on puf enabled
cryptographic devices,” in 2010 IEEE International Workshop on Infor-
mation Forensics and Security. IEEE, 2010, pp. 1–6.

[6] Y. Dodis et al., “Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data,” in International conference on the
theory and applications of cryptographic techniques. Springer, 2004.

[7] D. Merli et al., “Side-channel analysis of pufs and fuzzy extractors,”
in International Conference on Trust and Trustworthy Computing.
Springer, 2011, pp. 33–47.

[8] G. T. Becker. (2017) Robust fuzzy extractors and helper data manipu-
lation attacks revisited: Theory vs practice.

[9] J. Delvaux et al., “Helper data algorithms for puf-based key generation:
Overview and analysis,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 34, no. 6, pp. 889–902, 2014.

[10] M. Riley et al., “An introduction to reed-solomon codes: principles,
architecture and implementation,” 2003.

[11] C. Roscian et al., “Fault model analysis of laser-induced faults in sram
memory cells,” in 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography. IEEE, 2013, pp. 89–98.

[12] Y. Gao et al., “Building secure sram puf key generators on resource con-
strained devices,” in 2019 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops).

[13] S. P. Skorobogatov et al., “Optical fault induction attacks,” in Inter-
national workshop on cryptographic hardware and embedded systems.
Springer, 2002, pp. 2–12.

[14] A. Krieg et al., “A side channel attack countermeasure using system-on-
chip power profile scrambling,” in 2011 IEEE 17th International On-
Line Testing Symposium. IEEE, 2011, pp. 222–227.

[15] X. Lai et al., “Pascal: Timing sca resistant design and verification flow,”
in 2019 IEEE 25th International Symposium on On-Line Testing and
Robust System Design (IOLTS). IEEE, 2019, pp. 239–242.

[16] W. Liu et al., “Low-power high-throughput bch error correction vlsi
design for multi-level cell nand flash memories,” in 2006 IEEE Workshop
on Signal Processing Systems Design and Implementation.

[17] H.-C. Chang et al., “New serial architecture for the berlekamp-massey
algorithm,” IEEE transactions on communications, 1999.

[18] S. Lee et al., “A high-speed pipelined degree-computationless modified
euclidean algorithm architecture for reed-solomon decoders,” IEICE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. 91, no. 3, pp. 830–835, 2008.

[19] “Verilog based bch encoder / decoder,”
https://github.com/russdill/bch verilog.

[20] “Freecores reed-solomon codec generator,”
https://github.com/freecores/reed solomon codec generator.

Appendix 5

V
X. Lai, T. Lange, A. Balakrishnan, D. Alexandrescu, and M. Jenihhin, “On
antagonism between side-channel security and soft-error reliability in bnn
inference engines,” in 2021 IFIP/IEEE 29th International Conference on
Very Large Scale Integration (VLSI-SoC), pp. 1–6, 2021

143

On Antagonism Between Side-Channel Security and
Soft-Error Reliability in BNN Inference Engines

Xinhui Lai1, Thomas Lange2,3, Aneesh Balakrishnan1,2, Dan Alexandrescu2, Maksim Jenihhin1
1 Department of Computer Systems, Tallinn University of Technology, Estonia

2 IROC Technologies, France
3 Dipartimento di Informatica e Automatica, Politecnico di Torino, Italy

Email: xinhui.lai@taltech.ee

Abstract—Recently, several research works have emphasized
the problem of stealing the intellectual property of trained
Machine Learning (ML) models from hardware neural net-
work inference engines spotlighting Binarized Neural Networks
(BNNs). The binary operations in BNNs can be executed bitwise,
which notably saves storage memory, reduces the execution time
and power and, therefore, makes them convenient for implemen-
tation in hardware. Unfortunately, these advantages may also
enable a vulnerability to Differential Power Analysis (DPA) side-
channel attacks, which, in turn, necessitates dedicated masking
techniques to protect the models. Notably, the recent BNN
hardware inference engines are being increasingly adopted for
critical applications and demand, along with security, also high
levels of in-filed reliability throughout their lifetime. The state-
of-the-art power side-channel masking in BNNs implies glitch-
resistant structures, such as Trichina AND gates and sequences
of flip-flops, and may create soft-error reliability issues that are
currently overlooked in the literature. This paper presents an
analysis for the soft-error reliability jeopardy by the security
countermeasures in hardware implementations of BNN inference
engines. Our work reveals a steep increase (hundreds of times)
of vulnerability to single-event effects, introduced by the state-
of-the-art security enhancement techniques, and emphasizes the
interdependency of the design’s reliability and security aspects.

Keywords - Binarized Neural Network (BNN), soft-error reli-
ability, logical de-rating, side-channel attack, Differential Power
Analysis (DPA).

I. INTRODUCTION

Deep Neural Networks (DNNs) are designed to classify
objects after training and have been proven effective in many
Artificial Intelligence (AI) applications. To improve the en-
ergy efficiency and throughput, a trained DNN model can
be mapped to a hardware inference engine [1]. As a rule,
generating an industrial DNN model implies a significant
amount of training data, computing resources as well as human
efforts. Therefore, it is essential to protect a DNN model
against data and functionality integrity violations, intellectual
property rights and potential illegitimate reproduction [2]. On
the other hand, the DNN inference engines are increasingly
adopted for critical applications demanding high levels of
functional safety and reliability to in-field faults.

A Binarized Neural Network (BNN) is a particular class
of DNNs proposed in [3] characterized by binary weights

and activation functions that require less storage and com-
putational resources compared to full-precision DNN models.
Therefore, BNN hardware inference engines are efficient for
applications in critical embedded systems [4], e.g. autonomous
robotic vehicles and ML-powered edge devices. However,
recent research works have discovered that the simpler binary
operations in BNN have accidentally created power side-
channels. In a recent research work [5], Anuj Dubey, et
al. show that the Differential Power Analysis (DPA) [6]
on a running BNN hardware inference engine can extract
the secret model parameters such as weights. Using the
methodology described in [7], the authors repeatedly apply
the DPA method on a 4-bit secret weight of a BNN. Based on
100k measurements, they compute the corresponding power
consumption of the intermediate computation for all the 16
possible values and discover a significant correlation between
the power measurements and the correct weight values, which
can be exploited for information leakages. To address DPA
in BNN hardware inference design, data masking techniques
are proposed in [8]. In the paper, the authors propose a fully-
masked BNN hardware inference engine design by masking
all the linear and non-linear operations that existed in the
implementation and validate the effectiveness on an FPGA
with 2M power traces.

Recently, BNN hardware implementations are increasingly
employed for critical applications with the requirement for
in-field lifetime reliability and trustworthy results even in
the presence of hardware-level faults [9]. Unfortunately, the
described above security enhancements modifying the logic
structure of the design may negatively affect the soft-error
reliability of the DNN. To the best of our knowledge, the
effects of such side-channel masking techniques on soft-error
reliability of the hardware design are not duly addressed in
the literature.

In this work, we propose a soft-error reliability analysis
of the security-enhanced BNN. We apply an existing masking
technique to the BNN hardware implementation and prove that
the reliability of the DPA-resistant HW BNN inference engine
is compromised.

The paper makes the following main contributions:
• Establishing a novel discussion for reliability jeopardy

introduced by side-channel security countermeasures in978-1-6654-2614-5/21/$31.00 ©2021 IEEE

the HW BNN inference engines.
• Proposing a soft-error reliability analysis flow for HW

BNN inference engines based on logical and functional
de-rating factors evaluation.

• Proving a significant soft-error increase vulnerability in
a representative case-study open-source BNN design,
specifically, up to 1000× output bitwise failure rate
increase or up to 350× neural network functional failure
rate increase.

The rest of the paper is organized as follows. Section II
reviews the background of BNNs, the relevant power side-
channel attacks and the corresponding mitigation techniques.
In section III, the soft-error reliability assessment is discussed.
Section IV explains the case-study BNN architecture and
the performed reliability analysis, followed by experimental
results in section V. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORKS

A. Binarized Neural Network

Generally, a BNN has an input layer with input vectors, sev-
eral hidden layers composed of internal operational neurons,
and an output layer that computes the final result (see Fig. 1a).
In BNNs, the arithmetic computations use binarization, i.e.
the most extreme form of network quantization [10]. Here,
the weight multiplication can be replaced by a simple bitwise
operation XNOR operation. The summation can be simplified
by using a population count (or popcount) that calculates the
number of bits set to ’1’ in a bit vector (see Fig. 1b).

(a) (b)

Fig. 1: Binarized Neural Network

B. Power Side-Channel Attacks on BNNs

However, the simple structure of such a neural network
has its drawbacks. Recent research works have demonstrated
BNN model extraction vulnerabilities [11] that exploit phys-
ical side channels such as time, power and electromagnetic
emanations [12], [13]. Notably, the work in [5] demonstrates
an impressive Differential Power Analysis side-channel attack
that can reveal the secret weights of a fully connected BNN.
Considering that the weight value is binary, the summation is
usually implemented by a pipelined adder tree composed of
several stages that need additional registers in the middle to
store intermediate values. The adversary can target any stage
of the adder tree, primarily focusing on the switching activity
of the registers in the adder tree to extract the power traces.
With the power traces at hand, it may be feasible to steal
the weights and biases values of the trained model. In the
mentioned example, the authors apply the DPA method [7]

on the second stage registers of the adder tree and succeed
in extracting the values of the weights and the biases for all
nodes by analyzing the Pearson correlation coefficient of the
power traces.

C. BNN Power Side-Channel Masking Techniques

To address the above vulnerability, [8] proposes techniques
for the power side-channel masking aiming at enhancing the
HW BNN inference engine’s resistance to DPA. In the paper,
the authors analyze the neural network specific computation
and propose the following masking techniques:
• For the weighted summations, build a protected AND

operation by adopting the glitch-resistant Trichina’s AND
gate for the Ripple-Carry Adders (RCA) to replace them
with the security-masked N-bit RCA;

• For multiplexers, use Look-Up Table (LUT) as a replace-
ment, e.g., an 1-bit multiplexer is replaced with a 4-input
2-output security-masked LUT.

• For the activation functions, perform the NOT operation
by inverting one of the two Boolean shares of MSB
received from the previous security-masked adder.

• For the output layer, transform the problem of the masked
comparison to masked subtraction and reuse the masked
adder as a subtractor.

Among the four mitigation techniques, only the first one,
i.e. the RCA masking, introduces numerous extra registers,
depending on the size of the adder. This particular technique
creates an important case study for our analysis. Intuitively, the
introduced massive sequences of flip-flops behave as ”mag-
nets” to additional soft-errors to be caught by the BNN in the
field. According to our hypothesis, a BNN protected against
security side-channels with this or a similar technique becomes
significantly more vulnerable to the soft-error reliability issues.
Interestingly, the adopted Trichina AND gates structure [14]
is also known in the literature for its application to AES co-
processors and similar cryptocores to protect them from power
side-channel attacks. This fact potentially extends the impact
of our analysis.

III. SOFT-ERROR RELIABILITY ASSESSMENT FOR HW
BNN IMPLEMENTATIONS

A. De-Rating Based Soft-Error Reliability Assessment

With the technology feature size shrinking, the probability
of electronic systems to experience Single Event Effects
(SEEs) is increasing and the overall vulnerability to the
radiation-induced transient faults, i.e. soft-errors, is becoming
more prominent [15]. To evaluate the reliability to soft-errors
for a circuit, the analysis of sensitivity of the underlying cell’s
technology is used. However, not all faults occurring in the
cells lead to failures, i.e. observable effects at the application
level, but can be masked on the way. De-rating factors are
used to quantify the masking effects of soft-errors. At logic
level, the de-rating analysis relies on logic-level models for
SEE, i.e. a Single Event Upset (SEU) for sequential cells
and a Single Event Transient (SET) for the gates. Moreover,
in an RTL analysis, the SET faults, can be modeled with a

reasonable accuracy by a subset of SEUs. The overall Soft-
Error Reliability (SER) for SEUs in a system circuit can be
expressed by Equation (2), where SERSEU,i is the rate of SEUs
in a sequential cell i (a flip-flop). SERSEU,i is calculated by
Equation (1) [16], [17], where the Failure-In-Time FITSEU,i

denotes the rate of soft errors for the sequential element
and depends on the underlying technology and the operating
environment. The considered de-rating factors are Temporal
De-Rating (TDRi), Logical De-Rating (LDRi), Functional De-
Rating (FDRi), respectively.

SERSEU,i = FITSEU,i · TDRi · LDRi · FDRi (1)

SERSEU =
∑

i∈flip-flops

SERSEU,i (2)

B. Reliability Assessment for the HW BNN Implementations

Recent research works [9], [18]–[22] have demonstrated
the significance of the soft-error reliability study for ma-
chine learning systems in safety-critical applications like au-
tonomous unmanned robotic vehicles and AI-powered edge
devices. One of the interesting questions in the DNN reliability
research is related to understanding the resilience of particular
layers to transient and permanent faults. The conclusion in
[23] considering faults in registers of a RTL model was that
permanent faults in inner layers cause less inference errors
than the permanent faults in the first layers. This is in line
with the studies of permanent faults in [15] and [24]. However,
according to [23], the later layers are more vulnerable to
transient faults compared to the first layers. Also the research
in [25] and [26] demonstrates that the random bit flips in
weights for the early layers has less impact on the inference
accuracy compared to the faults injected to the last layers. In
our current analysis, as discussed in next section, we follow
the arguments that the last layers of a DNN are the most
critical for the SER assessment.

The studies for DNN reliability assessment include frame-
works, e.g Fidelity [21], for abstracting the level of or opti-
mizing the fault analysis for DNN hardware inference engines
such as fixed-/floating point CNNs generated by NVDLA,
Eyeriss, MAERI, FINN, CAFFEINE, ISAAC and similar gen-
erators. Frameworks for automated generation of binarized NN
HW inference accelerators from established DNN evaluation
and training platforms such as Tensorflow, PyTorch or Caffe
are limited. Therefore, the SER analysis flow for the BNN
designs (initial ones and the ones containing the security
enhancements) employed in our work relies on a two-step
approach. First, we perform de-rating evaluation for the critical
parts of the case-study BNN, e.g. the security-masked ripple
carry adder. Second, we execute a fault injection simulation
campaign.

For the first step we rely on the SoCFIT tool by IROC. It is
a reliability-focused design characterization tool that predicts
various de-rating factors and calculates the failure rate of
digital circuits. The tool computes the SEU logic de-rating by
analyzing the structure of the RTL description of the circuit.
Therefore, all paths from the sequential cell to any end point

(primary output) are considered and the LDR for each found
paths is evaluated, by multiplying the intrinsic LDR for each
gate along the path. The overall LDR for the sequential cell
can then be computed by either selecting the value of the
path with the maximum path or averaging the results of the
individual paths.

C. BNN-level Fault-Injection Simulation Campaign

In this paper, the reliability analysis for HW BNN infer-
ence engine implementations is performed by statistical fault
injection simulations on the RT level of the design. The BNN
circuit is simulated with a logic-level simulator by running
a corresponding inference testbench. With the testbench the
correct behaviour of the BNN circuit can be verified. This
can be achieved by monitoring and recording all outputs of
the neural network or testing the functional behaviour of the
inference engine. First, a simulation is run without any faults
injected to create a reference golden run. Afterwards, a random
target flip-flop is chosen where the fault is injected at a random
time. The SEU in a flip-flop can be emulated in the simulator
by inverting the value of the target flip-flop. This procedure
is automated by using a standard state-of-the-art simulator
and its routines and commands. In the presence of a fault,
the simulation run is compared with the golden run and any
differences at the output or any differences in the functional
behaviour of the circuit can be observed and recorded.

IV. RELIABILITY ANALYSIS OF SECURED BNN
HARDWARE INFERENCE ENGINE

A. Implementation of Power-Side Channel Masking in BNNs

As mentioned in Section II.C, several power side-channel
masking techniques are proposed in the state of the art, e.g. [8].
In our analysis, we focus on the weighted summations as
the most critical to soft-error reliability according to our
hypothesis.

Instead of an adder tree, which is used for the popcount
implementation that may be vulnerable to power side-channel
attack [5], a ripple-carry style adder is recommended. For the
normal 1-bit RCA, the logic functions for the summation and
the carry-out bit are provided in (3) (4), respectively, where
a, b, c, C and S are the two one-bit inputs, one-bit carry-in,
carry-out and summation.

S = a⊕ b⊕ c; (3)
C = a · b⊕ b · c⊕ a · c; (4)

Based on these equations, the complete addition com-
putations are expressed as a sequence of XOR and AND
operations. As indicated in [27], only the AND operation in
the summation needs to be masked since it is a non-linear
operation, while the XOR operation is a linear operation and,
therefore, can be left unmasked. Among the recent related
masking styles [28], the Trichina method is chosen for AND
gate masking because of its simplicity and efficiency [8].
However, the straightforward adoption of Trichina’s AND
gate causes glitches in the circuit [29], which can lead to
information leakage. Thus additional registers are introduced

to stabilize the signals in the design. The glitch-resistant
Trichina’s AND gate is shown in Fig. 2, where the secret
variables (a and b) are split into different shares (a0, a1, b0,
b1), r is a fresh random bit, and the additional registers are
marked in red. The equations used for sum bits and carry bits
are shown respectively in (5), (6), (7) and (8)).

S0 = a0 ⊕ b0 ⊕ c0; (5)
S1 = a1 ⊕ b1 ⊕ c1; (6)

C0 = Tri0(a0, b0, r0)⊕ Tri1(b0, c0, r1)⊕ Tri2(c0, a0, r2) (7)
C1 = Tri0(a1, b1, r1)⊕ Tri1(b1, c1, r1)⊕ Tri2(c1, a1, r2) (8)

Fig. 2: Trichina AND gate

Fig. 3 shows the 1-bit ripple-carry style security-masked
adder with the Trichina AND gate used in the RCA.

Fig. 3: 1-bit security-masked adder

For the final 1-bit security-masked adder, 12 more registers
(marked in red) complement the Trichina AND gate to address
the introduced delay in the Trichina AND gate. In total, for
1-bit security-masked adder, 54 (14 · 3 + 12 = 54) registers
are added. Generally, an N-bit ripple carry adder is formed
by N 1-bit full adders, as shown in Fig. 4. Therefore, for
one N-bit security-masked adder, the total number of registers
introduced to the design is 54 ·N . Depending on the adder’s
size N and the number of summation resources instantiated in
the BNN, a significant number of registers may be introduced
that increase the susceptibility of the design to soft-errors.

B. Security-Masked BNN-Based Case Study Design

In order to study how the weighted summation masking
technique influences the soft-error reliability of the BNN

Fig. 4: N-bit Masked Adder

Fig. 5: A Case-study security-masked BNN design

hardware implementation, we apply the above masking tech-
nique on a case-study ultra-low power near-sensor binarized
neural network implementation proposed in [30]. There are
six layers in total which include three convolutional layers,
one flattening layer and two fully connected layers. The DPA
countermeasure target masking technique is initially applied
to the fully connected layers [8] and the last two layers of
the BNN hardware implementation influence the output the
most, therefore we apply the masking technique to the last two
fully connected layers in the BNN. We replace the weighted
summation operation (i.e. popcount) with the N -bit security-
masked adder explained in section IV-A: 8-bit security-masked
adder and 7-bit security-masked adder for layers 5 and 6
separately. Due to the number of summation resources, the
security-masked design introduces around 5 million flip-flops.
The final design is shown in the Fig. 5 and the security-masked
layers are marked in red.

C. Reliability Assessment Setup

Replacing an original adder with the security-masked adder
introduces many additional flip-flops to the circuit. Each
additional flip-flop, in turn, increases the probability of SEU
faults. However, soft-error effects can be masked as discussed
in Section III. To evaluate the actual reliability jeopardy by
the added flip-flops and to compare the resulting failure rate
of the original BNN with the security-masked BNN design,
the de-rating factors have to be computed.

The case-study BNN implementation [30] provides a func-
tional testbench which applies 100 different input data samples
(images) to the network and the related outputs are categorised
into 4 classes. For the experiment, the testbench is modified in
the way that all bit-wise changes of the BNN outputs as well
as the predicted class (i.e. the functional result) are monitored
and recorded for each applied input. This simulation serves as
the golden run.

The faults, i.e. inverted values of the target flip-flops, are
injected at a random target and at a random clock cycle during
the active workload of the simulation. Thus, each simulation
run is independent and several runs can be performed in
parallel. Since the simulation time of the original (i.e. non-
masked) BNN design is rather short it is possible to run
a complete fault injection campaign. This means that for
each target flip-flop enough fault injection simulations are
performed to cover every clock cycle during the active stimuli
of the testbench. For the modified security-masked case-study
BNN design (i.e. with the implemented DPA countermeasures)

the number of targets and the simulation time are significantly
higher and therefore, the random fault injection sampling
approach has to be used.

For each simulation run, the output of the circuit is mon-
itored and any difference to the golden run is traced as an
output failure. Additionally, the predicted class is compared
to the golden simulation and the predicted class altered a
functional failure is traced.

To obtain the de-rating factors for the output or functional
failure, the number of observed failures is divided by the total
number of injected faults. The failure rate is then calculated
using Equation (2). Since the FIT rate of the flip-flops depends
on the applied nano-scale implementation technology and the
analysis in this paper is performed on a higher level, for both
designs, a normalized FIT rate of FITFF, SEU = 1 is assumed
for each flip-flop. Equation (2) is simplified to multiply the
number of flip-flops with the de-rating factor to obtain the
final failure rate SERSEU of the design.

V. EXPERIMENTAL RESULTS

A. LDR Analysis of the Masked Full Adder

In order to analyse the critical parts of the BNN, an eval-
uation of the logical de-rating is performed on the (security-
masked) ripple carry adder. The analysis is performed with the
SoCFIT tool by IROC, as described in section III-B. Different
sizes (N) of the adder are considered and the results for the
maximum and average LDR are shown in Table I.

TABLE I: LDR Analysis of the (Masked) Full Adder

Fulle Adder Masked Full Adder
Size N (bits) LDR (avg) LDR (max) LDR (avg) LDR (max)

4 0.61 1.0 0.98 1.0
8 0.57 1.0 0.99 1.0

16 0.55 1.0 0.99 1.0

The maximum LDR is 1.0 for both adders and unaffected by
the adder size N . This means, considering the worst case every
fault in one of the sequential cells of the adder is propagating
to the output of the adder. The average LDR, however, is
decreasing for the normal full adder and increasing for the
masked full adder. Generally, the LDR for the full adder is
lower than the LDR for the masked full adder. This means
that a fault in any of the sequential cells of the masked full
adder is more likely to propagate to the output than a fault in
the conventional full adder.

The used LDR analysis approach is pessimistic because it
shows an upper bound for the LDR of the cell, without using
any information of the actual workload. Thus, LDR is the
probability for a fault affecting an internal cell to propagate to
the primary outputs of the circuit. It does not include any
aspects related to the criticality of the fault. Additionally,
the BNN consists of different stages which contain other
functional blocks besides the adder. An exhaustive analysis
should therefore, consider the adder in the full context. This
is achieved by performing an exhaustive fault-injection sim-
ulation campaign of the full BNN/masked BNN design. This

campaign determines the Functional De-Rating factors and is
presented in the next section.

B. Fault-Injection Simulation Campaign

This section presents the results obtained from the per-
formed fault injection simulation campaigns. As mentioned in
the previous section, the simulation time of the masked BNN
design is significantly higher and thus, a full fault injection
campaign over the entire available test data was not feasible.
A random sampling fault injection campaign was performed
instead and in order to confirm that enough fault injection
simulations have been sampled, several simulation campaigns
with a varying number of fault injections were executed. Fig. 6
shows the de-rating factors for the output and functional failure
measured from these campaigns depending on the number of
injected faults. It can be seen that that the de-rating factors
are converging and the carried out fault injection simulations
were sufficient.

0 5,000 10,000 15,000 20,000

0

0.1

0.2

0.3

0.4

0.5

Number of Fault Injections

D
e-

R
at

in
g

De-Rating (Output)
De-Rating (Functional)

Fig. 6: Convergence of the masked BNN de-rating factors
values in the random sampling fault-injection campaign

TABLE II: Fault Injection Results

BNN Masked BNN

Flip-Flops 2076 5 348 912
Number of Injections 197 220 62 760

Output Failures 188 186 23 000
De-Rating (Output) 0.95 0.37
Failure Rate (Output) 1980.91 1 960 245.00

Functional Failures 48 948 2165
De-Rating (Functional) 0.25 0.03
Failure Rate (Functional) 515.24 184 518.71

All the simulation campaigns shown in Fig. 6 run a different
subset of fault injections (different target flip-flops with dif-
ferent input data) and therefore, can be accumulated to obtain
the overall de-rating and failure rate of the masked case-study
BNN design. The results are summarized in Tab. II together
with the results of the full fault injection campaign of the
original case-study BNN design.

Table II provides a comparison of the the original BNN
and the masked BNN designs with regard to their expected

reliability. Although the output and functional de-rating are
about 3× and 10× lower for the masked BNN, due to the
considerable high amount of additional flip-flops, the resulting
failure rate is about 1000× higher for the output and 350×
higher for the functional failures. This proves that the studied
masking techniques used in the literature for power side-
channel countermeasures significantly increase vulnerability of
the HW BNN inference engines to soft errors.

VI. CONCLUSIONS

Hardware BNN inference engines are gaining their popu-
larity in the computer engineering domain and stamp their
inevitable presence in the security and reliability critical
applications. However, the efforts of security and reliability
R&D communities happen to be fragmented to address the
issues specific to their domains. A prominent example is a
power side-channel countermeasure based on a set of masking
techniques introduced to address a recently discovered security
vulnerability. The approach overlooks potential issues for
reliability and creates a significant vulnerability to radiation-
induced single event effect faults, i.e. soft errors, in the field.

This paper has presented an analysis for the soft-error
reliability jeopardy by the DPA side-channel mitigation mea-
sures in hardware implementations of BNN inference engines.
The work reveals reliability issues, i.e. a steep increase of
vulnerability to single-event effects, introduced by the security
enhancement techniques, and emphasizes the interdependency
of the design’s reliability and security aspects. The analysis
demonstrates that due to the considerable number of additional
flip-flops established by the security countermeasure and their
chained position, the bit-wise failure rate is about 1000×
higher for the BNN output and 350× higher for the neural
network functional failures.

As the future work, we plan to study options for reliability-
aware side-channel countermeasures for security enhancement
in DNN inference engines, i.e. aiming at cross-aspect opti-
mization solutions.

REFERENCES

[1] V. Sze et al., “Efficient processing of deep neural networks: A tutorial
and survey,” Pro. of the IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[2] J. Zhang et al., “Protecting intellectual property of deep neural networks
with watermarking,” in Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, 2018, pp. 159–172.

[3] M. Courbariaux et al., “Binarized neural networks: Training deep neural
networks with weights and activations constrained to+ 1 or-1,” arXiv
preprint arXiv:1602.02830, 2016.

[4] M. Rastegari et al., “Xnor-net: Imagenet classification using binary
convolutional neural networks,” in Computer Vision – ECCV 2016,
B. Leibe et al., Eds., 2016.

[5] A. Dubey et al., “Maskednet: The first hardware inference engine aiming
power side-channel protection,” in 2020 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). IEEE, 2020, pp.
197–208.

[6] P. Kocher et al., “Differential power analysis,” in Advances in Cryptology
— CRYPTO’ 99, M. Wiener, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, pp. 388–397.

[7] E. Brier et al., “Correlation power analysis with a leakage model,”
in International workshop on cryptographic hardware and embedded
systems. Springer, 2004, pp. 16–29.

[8] A. Dubey et al., “Bomanet: boolean masking of an entire neural
network,” in 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE, 2020, pp. 1–9.

[9] M. A. Hanif et al., “Robust machine learning systems: Reliability and
security for deep neural networks,” in 2018 IEEE 24th International
Symposium on On-Line Testing And Robust System Design (IOLTS).
IEEE, 2018, pp. 257–260.

[10] T. Simons et al., “A review of binarized neural networks,” Electronics,
vol. 8, no. 6, p. 661, 2019.

[11] R. N. Reith et al., “Efficiently stealing your machine learning models,”
in Proceedings of the 18th ACM Workshop on Privacy in the
Electronic Society, ser. WPES’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 198–210. [Online]. Available:
https://doi.org/10.1145/3338498.3358646

[12] L. Batina et al., “CSI NN: Reverse engineering of neural network
architectures through electromagnetic side channel,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, Aug. 2019, pp. 515–532. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/batina

[13] H. Yu et al., “Deepem: Deep neural networks model recovery through
em side-channel information leakage,” 2020 IEEE Int. Symposium on
Hardware Oriented Security and Trust (HOST), pp. 209–218, 2020.

[14] E. Trichina, “Combinational logic design for aes subbyte transformation
on masked data.” IACR Cryptol. EPrint Arch., vol. 2003, p. 236, 2003.

[15] G. Li et al., “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–12.

[16] M. Nicolaidis, Soft Errors in Modern Electronic Systems. Springer,
Boston, MA, 2011.

[17] D. Alexandrescu et al., “Towards optimized functional evaluation of see-
induced failures in complex designs,” in 2012 IEEE 18th International
On-Line Testing Symposium (IOLTS), 2012, pp. 182–187.

[18] S. Mittal, “A survey on modeling and improving reliability
of dnn algorithms and accelerators,” Journal of Systems
Architecture, vol. 104, p. 101689, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1383762119304965

[19] G. Abich et al., “Soft error reliability assessment of neural networks on
resource-constrained iot devices,” in 2020 27th IEEE Int. Conference on
Electronics, Circuits and Systems (ICECS). IEEE, 2020, pp. 1–4.

[20] Y. Ibrahim et al., “Soft errors in dnn accelerators: A comprehensive
review,” Microelectronics Reliability, vol. 115, p. 113969, 2020.

[21] Y. He et al., “Fidelity: Efficient resilience analysis framework for deep
learning accelerators,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2020, pp. 270–281.

[22] W. Li et al., “Soft error mitigation for deep convolution neural network
on fpga accelerators,” in 2020 2nd IEEE International Conference on
Artificial Intelligence Circuits and Systems (AICAS), 2020, pp. 1–5.

[23] B. Salami et al., “On the resilience of rtl nn accelerators: Fault
characterization and mitigation,” in 2018 30th International Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD), 2018, pp. 322–329.

[24] A. Ruospo et al., “Evaluating convolutional neural networks reliability
depending on their data representation,” in 2020 23rd Euromicro Con-
ference on Digital System Design (DSD), 2020, pp. 672–679.

[25] M. A. Neggaz et al., “Are cnns reliable enough for critical applications?
an exploratory study,” IEEE Design Test, vol. 37, no. 2, pp. 76–83, 2020.

[26] L.-H. Hoang et al., “Ft-clipact: Resilience analysis of deep neural
networks and improving their fault tolerance using clipped activation,”
in Proc. Design, Automation and Test in Europe, ser. DATE ’20. San
Jose, CA, USA: EDA Consortium, 2020, p. 1241–1246.

[27] E. Trichina et al., “Small size, low power, side channel-immune aes
coprocessor: design and synthesis results,” in International Conference
on Advanced Encryption Standard. Springer, 2004, pp. 113–127.

[28] O. Reparaz et al., “Additively homomorphic ring-lwe masking,” in Post-
Quantum Cryptography. Springer, 2016, pp. 233–244.

[29] S. Mangard et al., “Successfully attacking masked aes hardware im-
plementations,” in Cryptographic Hardware and Embedded Systems –
CHES 2005, J. R. Rao et al., Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 157–171.

[30] M. Rusci et al., “Design automation for binarized neural networks:
A quantum leap opportunity?” CoRR, vol. abs/1712.01743, 2017.
[Online]. Available: http://arxiv.org/abs/1712.01743

Fluent

Curriculum Vitae
1. Personal data

Name Xinhui Lai
Date and place of birth May 28th 1990, Henan Province, China

ChineseNationality

2. Contact information

Address

Phone
E-mail

Tallinn University of Technology, School of Information
Technologies, Department of Computer System,
Ehitajate tee 5, 19086 Tallinn, Estonia
+372 58488565
xinhui.lai@taltech.ee

3. Education

2017–present

2014–2017

2010–2014

Tallinn University of Technology, School of Information
Technologies, Department of Computer System, PhD studies
Politecnical di Torino, Faculty of Electronic Engineering,
Embedded System, MSc
Politecnical di Torino, Faculty of Electronic Engineering,
Electronic and Communications Engineering, BSc

4. Language competence

Chinese
English

5. Professional employment

2017–Now Tallinn University of Technology, Early Stage Researcher
2017–2021 MSCA ITN "RESCUE" Early Stage Researcher,

Host Tallinn University of Technology, Estonia
2022–Now Nokia Corporation, Specialist SoC/IP Design & Verification

6. Computer skills

• Operating systems: Uinux, Windows

• Document preparation: Microsoft office, Latex

• Programming languages: VHDL/Verilog, Python, Tcl, C

151

Native

7. Honours and awards

• 2014–2017 EDISU scholarship

8. Defended theses

• 2014, Hardware Implementation of Polar Encoder, MSc, Supervisor Prof. Guido
Masera, Politecnical di Torino, Faculty of Electronic Engineering

9. Field of research

• Hardware security

• Extra-functional aspects verification

• Design verification

152

Elulookirjeldus
1. Isikuandmed

Nimi
Sünniaeg ja -koht
Kodakondsus

2. Kontaktandmed

Aadress

Telefon
E-post

3. Haridus

2017–2022

2014–2017

2010–2014

4. Keelteoskus

Hiina keel
Inglise keel

5. Teenistuskäik

2017–Praegu
2017–2021

2022–Praegu

Xinhui Lai
28.05.1990, Henan Provints, Hiina
Hiina

Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
Arvutisüsteemide instituut,
Akadeemia tee 15a, 12618 Tallinn, Estonia
+372 58488565
xinhui.lai@taltech.ee

Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
Arvutisüsteemid, doktoriõpe
Politecnical di Torino, Faculty of Electronic Engineering,
Embedded System, magistratuur
Politecnical di Torino, Faculty of Electronic Engineering,
Electronic and Communications Engineering, bakalaureus

Emakeel
Kõrgtase

Tallinna Tehnikaülikool, nooremteadur
MSCA ITN "RESCUE" nooremteadur,
Tallinna Tehnikaülikool
Nokia Corporation, SoC/IP projekteerimise & verifitseerimise
spetsialist

6. Arvutialased oskused

• Operatsioonisüsteemid: Uinux, Windows

• Tekstitöötlus: Microsoft office, Latex

• Programmeerimiskeeled: VHDL/Verilog, Python, Tcl, C

7. Autasud

• 2014–2017 EDISU stipendium

153

8. Kaitstud lõputööd

• 2014, Hardware Implementation of Polar Encoder, magistritöö, juhendaja Prof.
Guido Masera, Politecnical di Torino, Faculty of Electronic Engineering

9. Teadustöö põhisuunad

• Riistvara turvalisus

• Ekstra-funktsionaalsete aspektide verifitseerimine

• Funktsionaalne verifitseerimine

154

ISSN 2585-6901 (PDF)
ISBN 978-9949-83-852-3 (PDF)

