
DOCTORAL THESIS

Assessment and Enhancement
of Hardware Reliability for
Deep Neural Networks

Mohammad Hasan Ahmadilivani

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2025

Assessment and Enhancement of
Hardware Reliability for Deep Neural

Networks

MOHAMMAD HASAN AHMADILIVANI

The dissertation was accepted for the defense of the degree of Doctor of Philosophy in
Information and Communication Technologies on January 2, 2025.

Supervisor: Professor Jaan Raik,

Tallinn University of Technolog
Tallinn, Estonia

Co-supervisor: Professor Masoud Daneshtalab,

Tallinn University of Technology
Tallinn, Estonia

Opponents: Professor Yanjing Li,
University of Chicago,
Chicago, USA

Professor Luciano Ost,
Loughborough University,
Loughborough, UK

Defense of the thesis: April 4, 2025, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

signature
Mohammad Hasan Ahmadilivani

https://digikogu.taltech.ee/et/Item/652d50e3-773f-4de5-897d-86531feb0d56

Riistvara töökindluse hindamine ja
täiustamine süvanärvivõrkude jaoks

MOHAMMAD HASAN AHMADILIVANI

Contents

List of Publications . 9
Author’s Contributions to the Publications . 11
Abbreviations . 12
1 Introduction . 141.1 Motivation . 161.2 Problem Formulation and Research Questions . 181.3 Contributions . 191.4 Thesis Organization . 22
2 Background . 242.1 Hardware Reliability. 242.1.1 Definition and Concept. 242.1.2 Hardware Faults: Definition, Classification, and Impact 252.1.3 Soft Errors: Origination and Impact . 262.1.4 Fault Tolerance Techniques . 272.1.5 Evaluation and Metrics . 282.2 Deep Neural Networks . 292.2.1 Convolutional Neural Networks . 292.2.2 Long Short-Term Memory Neural Networks . 312.3 DNN Hardware Accelerators . 32
3 Literature Review on the Reliability Assessment Methods for DNNs 353.1 Terminology . 353.2 Literature Review Methodology . 363.3 Taxonomy and Trends . 373.3.1 Characterization of Existing Methods . 373.3.2 Research Trends . 383.4 Fault Injection Methods . 393.4.1 Fault Simulation . 403.4.1.1 Hardware-Independent Platform. 403.4.1.2 Hardware-Aware Platform. 423.4.1.3 RTL Model Platform. 433.4.2 Fault Emulation . 433.4.2.1 FPGA Platform. 443.4.2.2 GPU Platform. 463.4.2.3 CPU Platform. 483.4.3 Irradiation. 493.4.3.1 FPGA Platform. 493.4.3.2 GPU Platform. 493.4.3.3 TPU Platform. 503.5 Analytical Methods . 503.6 Hybrid Methods . 523.7 Discussion: Qualitative Comparison and Open Challenges 533.8 Chapter Conclusions . 56
4 Reliability Assessment for CNNs . 57

5

4.1 DeepVigor: VulnerabIlity Value RanGes and FactORs . 584.1.1 Fault Model . 584.1.2 Fault Propagation Analysis . 584.1.3 The DeepVigor Method . 584.1.4 Validating DeepVigor By Fault Injection . 614.1.5 Experimental Setup . 624.1.6 Results and Validation . 624.1.7 Run-Time Analysis . 634.1.8 Discussion. 644.2 DeepVigor+: Scalable and Accurate Fault Resilience Analysis. 654.2.1 Fault Model . 654.2.2 Fault Propagation Model . 664.2.2.1 Single Fault Analysis in 32-bit Floating-Point. 664.2.2.2 Single Fault Error Propagation in CNNs . 674.2.3 The DeepVigor+ Method . 684.2.4 Experimental Setup . 734.2.4.1 DeepVigor+ Implementation . 734.2.4.2 Validating DeepVigor+ by Fault Injection 734.2.4.3 CNNs Under Study . 744.2.5 Results . 744.2.5.1 DeepVigor+ Accuracy Compared to FI . 744.2.5.2 Sampling Analysis vs. Complete Analysis 754.2.5.3 Run-Time and Scalability Investigation . 764.2.5.4 Reliability Visualization and Comparison for CNNs 784.2.5.5 Impact of Input Data on the Quality of Results 804.2.6 Discussion. 804.3 QDeepVigor: Applications for QNNs . 814.3.1 Cross-layer reliability enhancement for QNNs accelerators 814.3.1.1 Accelerator Model . 824.3.1.2 Identifying Critical Neurons by QDeepVigor 824.3.1.3 Resilience Enhancement by LCU and Neuron Splitting 834.3.1.4 Experimental Setup . 844.3.1.5 Results: An Exploration on NVF of QNNs 854.3.2 A Hybrid Method for QNNs’ Reliability Assessment 874.3.2.1 Hybrid Method: QDeepVigor and SAFFIRA 874.3.2.2 Results: Simulation Speed-up . 884.4 Chapter Conclusions . 89
5 Reliability Enhancement for CNNs. 905.1 Related Works: Fault Tolerance for CNNs . 905.2 ProAct: Progressive Training for Hybrid Clipped Activation Function 925.2.1 Research Motivation . 925.2.2 Methodology: ProAct and HyReLU . 935.2.3 Experimental Setup . 965.2.4 Results: Overhead Reduction and Resilience Improvement. 975.2.4.1 Effect of Activation RestrictionMethods on DNNs’ Base-line Accuracy- and Memory Footprint . 975.2.4.2 Resilience Comparison of Activation Restriction Methods 985.2.5 Discussion. 985.3 Channel Duplication and Vulnerability-Aware Pruning . 99

6

5.3.1 CNN Model Hardening . 1005.3.1.1 Vulnerability Estimation . 1005.3.1.2 CNN Model Hardening Method . 1005.3.2 Experimental Setup . 1025.3.3 Results . 1035.3.3.1 Hardening by Channel Duplication vs. Triplication 1035.3.3.2 Hardening by Selective Channels Duplication and EDACLayer . 1035.3.4 Overhead Reduction by Pruning based on Parameters’ Vulnerability 1045.3.4.1 Vulnerability-Aware Pruning . 1045.3.4.2 Resilience and Overhead of the Hardened Pruned CNNs . 1065.3.5 Discussion. 1085.4 SentinelNN: Model-Level CNN Hardening Framework . 1085.4.1 Experimental Setup . 1085.4.2 Experimental Results . 1095.5 Chapter Conclusions . 110
6 Reliability Assessment and Enhancement for LSTMs . 1116.1 LSTM-based NN for Gait Analysis . 1116.1.1 Proposed Method: Resilience Assessment and Enhancement 1116.1.1.1 LSTMs Under Study . 1116.1.1.2 Resilience Assessment by Fault Injection.. 1126.1.1.3 Resilience Enhancement: Weights Online Checking andCorrection . 1136.1.2 Experimental Setup . 1136.1.3 Experimental Results . 1146.1.3.1 Model-wise Resilience Analysis. 1146.1.3.2 Layer-wise Resilience Analysis. 1156.1.3.3 Inter-LSTM Resilience Analysis: FI into U vsW 1166.1.3.4 Resilience Improvement of LSTM-based ANNs 1176.1.4 Discussion. 1176.2 Convolutional LSTM DNN for Disease Prediction . 1176.2.1 Proposed Method: Resilience Assessment and Enhancement 1186.2.1.1 LSTMs Under Study . 1186.2.1.2 Resilience Assessment by Fault Injection 1186.2.1.3 Resilience Enhancement: Weights and Activations Clip-ping . 1196.2.2 Experimental Setup . 1196.2.3 Experimental Results . 1206.2.3.1 Resilience Analysis Results . 1206.2.3.2 Resilience Improvement Results. 1226.2.4 Discussion. 1226.3 Chapter Conclusions . 123
7 Conclusions and Future Directions . 124
List of Figures . 127
List of Tables . 128

7

References . 129
Acknowledgements . 149
Abstract . 150
Kokkuvõte . 151
Appendix 1 . 153
Appendix 2 . 195
Appendix 3 . 203
Appendix 4 . 219
Appendix 5 . 227
Appendix 6 . 241
Appendix 7. 251
Appendix 8 . 257
Curriculum Vitae . 263
Elulookirjeldus . 265

8

List of Publications

The present Ph.D. thesis is based on the following publications that are referred to in thetext by Roman numbers.
I M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, andM. Jenihhin. A SystematicLiterature Review on Hardware Reliability Assessment Methods for Deep Neural Net-works. ACM Computing Surveys, 56(6):1–36, 2024.DOI: https://doi.org/10.1145/3638242
II M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin. DeepVigor:VulnerabIlity Value RanGes and FactORs for DNNs’ Reliability Assessment. In IEEEEuropean Test Symposium (ETS), pages 1–6. Venice, Italy, 2023.DOI: https://doi.org/10.1109/ETS56758.2023.10174133
III M. H. Ahmadilivani, J. Raik, M. Daneshtalab, andM. Jenihhin. Deepvigor+: A Scalable,Accurate andAutomated Framework for ResilienceAnalysis of DeepNeural Networks.Under review, pages 1–14, 2024.DOI: https://doi.org/10.48550/arXiv.2410.15742
IV M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin. EnhancingFault Resilience of QNNs by Selective Neuron Splitting. In IEEE 5th International Con-ference on Artificial Intelligence Circuits and Systems (AICAS), pages 1–5. Hangzhou,China, 2023.DOI: https://doi.org/10.1109/AICAS57966.2023.10168633
V S. Mousavi, M. H. Ahmadilivani, J. Raik, M. Jenihhin, and M. Daneshtalab. ProAct:Progressive Training for Hybrid Clipped Activation Function to Enhance Resilience ofDNNs. Under review, pages 1–12, 2024.DOI: https://doi.org/10.48550/arXiv.2406.06313
VI M.H. Ahmadilivani, S.Mousavi, J. Raik,M.Daneshtalab, andM. Jenihhin. Cost-EffectiveFault Tolerance for CNNs Using Parameter Vulnerability Based Hardening and Prun-ing. In The 30th IEEE International Symposium on On-Line Testing and Robust SystemDesign (IOLTS), pages 1–6. Rennes, France, 2023.DOI: https://doi.org/10.1109/IOLTS60994.2024.10616072
VII M. H. Ahmadilivani, J. Raik,M. Daneshtalab, and A. Kuusik. Analysis and Improvementof Resilience for Long Short-Term Memory Neural Networks. In IEEE InternationalSymposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),pages 1–4. Juan-Les-Pennes, France, 2023.DOI: https://doi.org/10.1109/DFT59622.2023.10313559
VIII B. Parchekani, S. Nazari, M. H. Ahmadilivani, A. Azarpeyvand, J. Raik, T. Ghasempouri,andM.Daneshtalab. Zero-Memory-OverheadClipping-Based Fault Tolerance for LSTMDeep Neural Networks. In IEEE International Symposium on Defect and Fault Toler-ance in VLSI and Nanotechnology Systems (DFT), pages 1–4. Oxforshire, United King-dom, 2024.DOI: https://doi.org/10.1109/DFT63277.2024.10753533

9

https://doi.org/10.1145/3638242
https://doi.org/10.1109/ETS56758.2023.10174133
https://doi.org/10.48550/arXiv.2410.15742
https://doi.org/10.1109/AICAS57966.2023.10168633
https://doi.org/10.48550/arXiv.2406.06313
https://doi.org/10.1109/IOLTS60994.2024.10616072
https://doi.org/10.1109/DFT59622.2023.10313559
https://doi.org/10.1109/DFT63277.2024.10753533

Other Publications
IX M. H. Ahmadilivani, A. Bosio, B. Deveautour, F. F. Dos Santos, J. D. Guerrero Balaguera,M. Jenihhin, A. Kritikakou, R. L. Sierra, S. Pappalardo, J. Raik, J. E. Rodriguez Condia,M. Sonza Reorda, M. Taheri, and M. Traiola. Special Session: Reliability AssessmentRecipes for DNN Accelerators. In IEEE 42nd VLSI Test Symposium (VTS), pages 1–11.Tempe, United States of America, 2024.DOI: https://doi.org/10.1109/VTS60656.2024.10538707
X N. Cherezova, S. Pappalardo, M. Taheri, M. H. Ahmadilivani, B. Deveautour, A. Bo-sio, J. Raik, and M. Jenihhin. Heterogeneous Approximation of DNN HW Acceleratorsbased on Channels Vulnerability. In IFIP/IEEE International Conference on Very LargeScale Integration (VLSI-SoC). Tanger, Morocco, 2024.DOI: https://doi.org/10.1109/VLSI-SoC62099.2024.10767798
XI M. Taheri,M. Riazati,M.H. Ahmadilivani,M. Jenihhin,M.Daneshtalab, J. Raik,M. Sjödin,and B. Lisper. DeepAxe: A Framework for Exploration of Approximation and Reliabil-ity Trade-Offs in DNN Accelerators. In IEEE 24th International Symposium on QualityElectronic Design (ISQED), pages 1–8. San Francisco, United States of America, 2023.DOI: https://doi.org/10.1109/ISQED57927.2023.10129353
XII M. Taheri, M. H. Ahmadilivani, M. Jenihhin, M. Daneshtalab, and J. Raik. Appraiser:DNN Fault Resilience Analysis Employing Approximation Errors. In IEEE 26th Inter-national Symposium on Design and Diagnostics of Electronic Circuits and Systems(DDECS), pages 124–127. Tallinn, Estonia, 2023.DOI: https://doi.org/10.1109/DDECS57882.2023.10139468
XIII M.H. Ahmadilivani,M. Barbareschi, S. Barone, A. Bosio,M.Daneshtalab, S. Della Torca,G. Gavarini, M. Jenihhin, J. Raik, A. Ruospo, E. Sanchez, and M. Taheri. Special Ses-sion: Approximation and Fault Resiliency of DNN Accelerators. In IEEE 41st VLSI TestSymposium (VTS), pages 1–10. San Diego, United States of America, 2023.DOI: https://doi.org/10.1109/VTS56346.2023.10140043
XIV I. Dadras, M. H. Ahmadilivani, S. Banerji, J. Raik, and A. Abloo. An Efficient AnalogConvolutional Neural Network Hardware Accelerator Enabled by a Novel Memory-less Architecture for Insect-Sized Robots. In 11th International Conference on ModernCircuits and Systems Technologies (MOCAST), pages 1–6. Bremen, Germany, 2022.DOI: https://doi.org/10.1109/MOCAST54814.2022.9837551
XV I. Dadras, S. Seydi, M. H. Ahmadilivani, J. Raik, and M. E. Salehi. Fully-Fusible Convo-lutional Neural Networks for End-to-End Fused Architecture with FPGA Implemen-tation. In 30th IEEE International Conference on Electronics, Circuits and Systems(ICECS), pages 1–5. Istanbul, Turkey, 2023.DOI: https://doi.org/10.1109/ICECS58634.2023.10382831
XVI J. Rostovski, M. H. Ahmadilivani, A. Krivošei, A. Kuusik, and M. M. Alam. Real-TimeGait Anomaly Detection Using 1D-CNN and LSTM. In Nordic Conference on DigitalHealth and Wireless Solutions, pages 260–278. Oulu, Finland, Springer, 2024.DOI: https://doi.org/10.1007/978-3-031-59091-7_17

10

https://doi.org/10.1109/VTS60656.2024.10538707
https://doi.org/10.1109/VLSI-SoC62099.2024.10767798
https://doi.org/10.1109/ISQED57927.2023.10129353
https://doi.org/10.1109/DDECS57882.2023.10139468
https://doi.org/10.1109/VTS56346.2023.10140043
https://doi.org/10.1109/MOCAST54814.2022.9837551
https://doi.org/10.1109/ICECS58634.2023.10382831
https://doi.org/10.1007/978-3-031-59091-7_17

Author’s Contributions to the Publications
I In I, I was the main author, defined the scope and research questions, conducted asystematic search for the literature review, selected 139 papers to be included, andstudied them. I developed a taxonomy for categorizing the identified methods andwrote the manuscript.
II In II, I was the main author, conceptualized the fault resilience analysis, and imple-mented the method. I conducted the experiments and simulations, analyzed theresults, and wrote the manuscript.
III In III, I was the main author, extended the method, and developed the open-sourcetool. I conducted the experiments and simulations, analyzed the results, and wrotethe manuscript.
IV In IV, I was the main author, developed and implemented the methodology. I con-ducted the experiments and simulations, analyzed the results, and wrote the manu-script.
V In V, I was a co-author and contributed to conceptualizing the methodology. I ana-lyzed the results and wrote the manuscript.
VI In VI, I was the main author, designed and implemented the method for model-levelfault tolerance. I conducted the experiments and simulations, analyzed the results,and wrote the manuscript.
VII In VII, I was the main author, I designed and implemented LSTMs for gait analysis aswell as fault resilience assessment and enhancement. I conducted the experimentsand simulations, analyzed the results, and wrote the manuscript.
VIII In VIII, I was a co-author, initiated the topic, and contributed to designing and imple-menting the method. I analyzed the results and wrote the manuscript.

11

Abbreviations

ABFT Algorithm-Based Fault ToleranceAI Artificial IntelligenceALU Arithmetic Logic UnitASIC Application-Specific Integrated CircuitsBNN Binarized Neural NetworksBER Bit Error RateCNN Convolutional Neural NetworkCOTS Commercial Off-The-ShelfCPU Central Processing UnitCVV Candidate Vulnerability ValuesCVF Channel Vulnerability FactorDEF Data Extraction FormDHA DNN Hardware AcceleratorDNN Deep Neural NetworkDL Deep LearningDMR Dual Modular RedundancyDUE Detected Unrecoverable ErrorECC Error Correction CodeEDAC Error Detection and CorrectionEDM Error Distribution MapFF Flip FlopFPGA Field-Gate Programmable LogicFI Fault InjectionFIT Failure In TimeGAN Generative Adversarial NetworkGPU Graphical Processing UnitHDL Hardware Description LanguageHW HardwareHLS High-Level SynthesisIC Integrated CircuitsIFMap Input Feature MapIoT Internet of ThingsISA Instruction Set ArchitectureIVF Instruction Vulnerability FactorIP Intellectual PropertyKD Knowledge DistillationKVF Kernel Vulnerability FactorLSTM Long Short-Term MemoryLCU Lightweight Correction UnitLVF Layer Vulnerability FactorMAC Multiply-and-AccumulateMBU Multi-bit UpsetMEA Mean Absolute ErrorML Machine LearningMLP Multi-Layer PerceptronmPA mean Average PrecisionMTTF Mean Time to Failure

12

MWTF Mean Work To FailureMPSoC Multi-Processor System-on-ChipNPU Neural Processing UnitOFMap Output Feature MapOSR Open-Set RecognitionPE Processing ElementPC Personal ComputerPVF Program Vulnerability FactorQNN Quantized Neural NetworkRNN Recurrent Neural NetworkRTL Register-Transfer LevelRQ Research QuestionSA Systolic ArraysSBU Single Bit UpsetSDC Silent Data CorruptionSER Soft Error RateSEU Single Bit UpsetSFI Statistical Fault InjectionSIHFT Software Implemented Hardware Fault ToleranceSIMD Single Instruction, Multiple DataSLR Systematic Literature ReviewSM Streaming MultiprocessorsSW SoftwareSoC System-on-ChipTPU Tensor Processing UnitTMR Triple Modular RedundancyViT Vision TransformersVF Vulnerability FactorVVSS Vulnerability Values Search SpaceVVR Vulnerability Value Range

13

1 Introduction
Computer science is one of the most prominent achievements of human life through-out history and has revolutionized all aspects of our activities, including but not limitedto communications, manufacturing, business, education, transportation, etc. One of itsmost significant recent outcomes that is increasingly penetrating into various applicationsis Artificial Intelligence (AI). AI is an outstanding breakthrough in computer science thatallows computermachines to acquire intelligence and perform decision-making as humandoes [172].

Machine Learning (ML) is a primary branch of AI that enables computer systems to gainthe ability to learn and solve complex problems efficiently. Deep Neural Networks (DNNs)are brain-inspired algorithms that can learn and analyze complex patterns from data andprovide highly accurate results for many complex tasks such as image classification, ob-ject detection, regression, signal processing, prediction, etc. [223]. Fig. 1.1 illustrates anoverview of AI, ML, and Deep Learning (DL) and generally depicts their different branchesand divisions based on [172].

Artificial
Intelligence

Robotics Natural Language
Processing

Speech

Exp
ert

Sys
tem

s Machine
Learning

Deep
Learning

Rein
for

ce
men

t

Le
arn

ing
Unsupervised
Learning

CNNs RNNs

TransformersMLPs

GANs

Figure 1.1: An overview of AI, ML, and DL.

With the evolution of powerful processing systems in the recent decade, DNNs haveemerged to be larger and deeper, employed in an ever broader extent of domains. Due tothe high capabilities of DNNs in solving various tasks with a high accuracy, they are widelyadopted in safety-critical applications [41, 84]. Safety is the avoidance of unacceptablerisk. Risk is the probability of occurrence and the severity of a physical injury to the healthof people as a result of the system failure [133]. Safety-critical applications refer to theuse cases in which the failure of a system could result in consequences considered asunacceptable and affect the well-being of the people surrounding the system [134].
As AI and DNNs are increasingly leveraged in safety-critical applications such as auto-motive, space, healthcare, avionics, etc., the significance of safety is drawing more atten-tion. In compliance with the US National AI Initiative Act [2] and the European Union’s AIAct [6], any AI system that may pose a threat to people’s health and safety must be rig-orously evaluated and tested before deployment which reflects the importance of safetyassessment for AI systems deployment.

14

One of theMajor concerns in designing a system for safety-critical applications is hard-ware reliability [190]. Hardware reliability is a characteristic of digital systems expressingthe probability of perfectly performing their required function in given conditions withina time interval [37]. Hardware reliability is jeopardized by faults that can be caused by in-trinsic characteristics of chips such as manufacturing defects, process variation, aging, orenvironmental issues such as radiation, temperature variation, and electromagnetic dis-turbances [41, 173, 213]. Faults influence logic circuits or memory cells of digital devices byaltering their functionality during deployment, whichmay lead to a system failure [173]. Bytransistor scaling, the intrinsic fault rate ofmodern digital systems is drastically increasing,exacerbating their vulnerability to faults [120, 212].DNNs are deployed by various hardware devices and accelerators including Field-Pro-grammable Gate Arrays (FPGAs), Application-Specific Integrated Circuits (ASICs), GraphicsProcessingUnits (GPUs), and Central ProcessingUnits (CPUs) [169, 227]. Hardware reliabil-ity of DNNs concerns the ability of DNNaccelerators to operate correctly in the presence offaults during the deployment. Hardware faults can modify the operations or parametersof DNNs, producing errors that may propagate to their outputs and lead to misclassifica-tion, which may result in a catastrophe if safety-critical applications are concerned. It hasbeen shown in several studies that DNNs are highly susceptible to faults and their accu-racy can significantly drop with a few random bitflips [42, 80, 131]. As an example, Fig. 1.2illustrates an autonomous vehicle possessing digital devices for executing DNNs to per-form object detection. During the driving operation, faults influence the operations, andas a result, pedestrians are wrongly detected. Therefore, the vehicle continues drivingand leads to a potentially fatal risk situation.

Figure 1.2: Potential impact of faults in DNN accelerators in a safety-critical application.

To address the hardware reliability concerns in DNN deployment, their fault resilienceshould be first assessed and then enhanced. Reliability assessment is the process of mea-suring the reliability of a modeled or presented system with quantitative evaluation met-rics. It is the first step to achieving a fault-tolerant design and a reliable deployment. Gen-erally, the reliability assessment of a system can be conducted by three methods: FaultInjection (FI), analytical, and hybrid methods [83]. In FI methods, faults are injected intothe system implemented either in software or hardware, during the simulation or execu-tion. In analytical methods, the function of the system and its reliability is mathematicallymodeled, based on the target architecture. In hybrid methods, a combination of FI andanalytical methods is developed to estimate the reliability. Reliability assessment using
15

FI methods is generally more realistic and accurate than analytical and hybrid methods;however, FI is a non-scalable process with a high computational complexity and executiontime [201].Reliability assessment not only provides reliability measurement but also identifiesthe vulnerabilities in a DNN and its accelerator. Reliability enhancement is the processof mitigating the vulnerability of DNNs against hardware faults leading to a fault-tolerantdesign. Redundancy (in time, space, or data) is the key to achieving fault tolerance whichcan be applied at different levels of systemabstraction from the software level down to thetransistor level, depending on the application and system constraints [173, 190]. Reliabilityassessment and enhancement are tightly coupled to each other, necessitating an elegantand accurate process to ensure the safety of the system in deployment. In this thesis,some of the most significant challenges of reliability assessment and enhancement forDNNs are identified and addressed to enable extending the exploitation of DNNs in safety-critical applications with reliable deployment.
1.1 Motivation
According to IBM’s global AI adoption index in 2023 [5], 81% of enterprises in the automo-tive sector and 72% in the healthcare sector are either actively deploying AI or exploringits integration into their business operations. Furthermore, projections indicated that theAI global market size in the automotive industry will expand from USD 3.22 billion in 2023toUSD 35.7 billion by 2033 [4], while in the healthcare industry, it is expected to grow fromUSD 19.5 billion in 2023 to USD 490 billion by 2032 [3]. These numbers reflect the increas-ing need for AI as well as DNN deployment in the markets of safety-critical applications,and therefore, reliability assessment and enhancement are essential issues to address.With the growthofDNNexploitation, the size of emergingDNNs in termsof the amountof parameters and computations is rapidly rising. Fig. 1.3 illustrates the size of emergingDNNs in terms of the number of parameters and Multiply-and-Accumulate (MAC) oper-ations for CNNs [75] and Vision Transformers (ViT) [246]. It is observed that emergingDNNs possess billions of parameters and require billions of computations to achieve highaccuracy. The gigantic size of DNNs places a huge complexity on their reliability assess-ment and enhancement, necessitating efficient and innovative solutions to reduce thiscomplexity and overheads.Several papers have been published on reliability assessment and enhancement inrecent years [168, 220]. Due to the variety of DNN models and accelerators, differentpapers have considered their own customized setups to address their identified chal-lenges. As the extent of DNNs and their accelerators is increasingly widening, their re-liability study requires various techniques to enable specialized reliability assessment andenhancement. This diversity has led to an ambiguous space for researchers to compre-hend the methods for hardware reliability assessment of DNNs and their accelerators.Therefore, a Systematic Literature Review (SLR) is required to allow comprehension ofthe essentials of studying the reliability of DNNs. Throughout the literature, there is nosurvey characterizing existing solutions for the reliability assessment of DNNs, hinderingresearchers from identifying the challenges and gaps in this area and addressing them.By overviewing the literature, it can be observed that the hardware reliability of DNNsis mainly assessed by the means of FI [203]. However, given the huge size of emergingDNNs and the complexity of their accelerators, FI is prohibitively complex and impracti-cal. Achieving statistically high-confident results using FI requires weeks and months ofsimulations by powerful GPUs [200]. Therefore, one of the main challenges in the liter-ature is to tackle the high complexity of FI by devising alternative scalable methods for

16

(a) Convolutional Neural Networks [75]

(b) Vision Transformers (ViT) [246]

Figure 1.3: Growing size of emerging DNN models regarding their computations and memoryrequirements.

evaluating and quantifying the fault resilience of DNNs.
DNNs are inherently resilient to faults and they can mask a huge amount of faults, yettheir accuracy is considerably compromised by faults [147, 176]. Fault tolerance can beachieved by redundancy either at hardware or software levels [135]. As mentioned, hard-ware devices, including general-purpose processors (e.g., CPUs and GPUs) and specializedaccelerators (e.g., FPGAs andASICs), are exploited to efficiently deployDNNs [169]. Safety-critical applications such as autonomous vehicles are characterized as edge applicationswhere the processing of data is performed at the edge of the network instead of exploit-ing external service providers as in cloud computing [167]. In many cases in edge AI ap-plications, hardware accelerators are not configurable and it is not conceivable to modifythe underlying hardware to enhance the fault tolerance of the deployed DNNs; especiallywith the general purpose accelerators as well as with off-the-shelf Integrated Circuits (ICs)and hard cores. In these cases, fault tolerance can be achieved by Software-ImplementedHardware Fault Tolerance (SIHFT) [98]. In the case of DNNs, it can be obtained by in-troducing redundancy to the DNN models’ architecture (e.g., parameters, functions, andoperations) without redesigning the underlying hardware.
On the other hand, achieving fault tolerance through redundancy lays overhead to thesystem pertaining to the DNN’s memory footprint and execution performance [123, 213].Whereas hardware accelerators in edge computing pose several constraints in terms oflatency, power, and memory size [167]. Therefore, the trade-off between DNNs’ reliabilityand memory/performance is a crucial consideration in DNNs fault tolerance. Conven-tional fault-tolerant techniques such as Triple Modular Redundancy (TMR) or Dual Modu-lar Redundancy (DMR) introduce a massive overhead to DNNs which are already gigantic,making them inefficient compared to their effectiveness. Therefore, there is a need for

17

cost-effective model-level approaches to enhance the fault resilience of DNNs.
1.2 Problem Formulation and Research Questions
In the frame of this thesis, the objective is to identify themajor challenges in the literatureconcerning hardware reliability assessment and enhancement for DNNs in safety-criticalapplications. In this regard, four problems (P) are identified as follows:

■ P1. Ambiguity in the reliability assessment literature for DNNs: Due to the vari-ety of DNNs and accelerators, there exists a wide range of research papers withdistinct methods evaluating the reliability of DNNs and their accelerator. Becauseof the extent of the domain, researchers approach the problem of the reliabilityof DNNs from various perspectives. We are confronted with a multitude of DNNapplications as well as a variety of DNN architectures and accelerators for differ-ent tasks. This variety creates an ambiguous research area, restraining researchersfrom precisely identifying and comprehending the gaps in the literature. Multi-ple factors affect the variety of reliability evaluations of DNN accelerators lead-ing to different ways of assessment methods and experiments: DNN architectures,hardware accelerators, system abstraction level, and fault models. Existing surveys[123, 168, 203, 213, 220, 229] focus on reliability enhancement methods but thereis no comprehensive survey for reliability assessment methods. To tackle this am-biguity in the literature, there is a need for a comprehensive literature review tocharacterize the existing methods and identify the gaps. The Research Questions(RQ) regarding this problem are as follows:
• RQ1.1. What are the existing methods in this domain?
• RQ1.2. How could the existing methods be characterized?
• RQ1.3. What are the open challenges in this domain?

■ P2. Scalability of reliability assessment: Fault injection is the major method thatis employed for hardware reliability assessment for CNNs. It is a realistic methodand provides the possibility ofmodeling various fault types and injecting them at di-verse systemabstraction levels from software down to RTL level. Nonetheless, sinceemerging CNNs are gigantic and their accelerators are complex, FI’s non-scalabilityleads to an obstacle to reliability assessment. Achieving high-confidence and ac-curate results by FI for CNNs takes weeks and months. On the other hand, existinganalytical resilience analysis methods for DNNs [27, 28, 161, 206, 210, 237] could nottackle this gap in the literature. Although they are faster than FI, they do not quan-tify reliability and are not as accurate as FI. To our knowledge, there is no scalable,fast, and accurate approach to reliability assessment for CNNs. The RQs regardingthis problem are as follows:
• RQ2.1. How to quantify the reliability of emerging CNNs as accurately as FI?
• RQ2.2. How to obtain the reliability of fine-grain components of CNNs andidentify the more vulnerable ones?
• RQ2.3. How to perform a scalable and fast resilience analysis yet accurate foremerging CNNs?
• RQ2.4. How to apply the resilience analysis outputs for optimized resilienceassessment or enhancement methods?

18

■ P3. Costly fault tolerance: Fault-tolerant techniques for CNN accelerators are car-ried out at the architecture and algorithm level [168]. Architecture-level techniquesare accelerator-specific and exploit hardware redundancy with performance andmemory overhead and they do not apply to general-purpose processors and pre-designed IPs. Meanwhile, algorithm-level techniques modify the CNN models insoftware that any accelerator executes. Throughout the literature, several cost-effective algorithm-level fault tolerance techniques for enhancing the reliability ofCNNs are presented [49, 53, 93, 113, 143, 247, 252], yet they are either too com-plex, or induce considerable overhead, or provide low fault resilience comparedto the induced overhead. Therefore, there is a need for low-overhead model-levelapproaches for CNNs to significantly enhance their deployment reliability. The cor-responding RQs concerning this problem are as follows:
• RQ3.1. How to effectively enhance the fault tolerance for off-the-shelf CNNaccelerators?
• RQ3.2. How to provide high fault resilience for CNNswithminimal overheads?
• RQ3.3. How to allow trade-off controllability over resilience vs. overheadbased on the application’s constraints?

■ P4. Missing the studyof reliability for RecurrentNeuralNetworks (RNNs): Through-out the literature, numerous papers extensively examined the reliability assess-ment and enhancement of feed-forward DNNs [123, 220]. Nonetheless, the re-liability of RNNs, in particular Long Short-Term Memory (LSTM) DNNs, is not ex-plored. However, they are widely deployed in safety-critical applications, particu-larly in healthcare for diagnosis, treatment, and prediction of diseases and anoma-lies [165]. Therefore, there is a gap in the literature on the impact of faults on LSTMsand how to improve their fault resilience. The research questions pertaining to thisproblem are as follows:
• RQ4.1. How vulnerable are LSTM-based DNNs to faults?
• RQ4.2. How to improve their resilience against faults with a low overhead?

1.3 Contributions
This thesis attempts to address the identified problems in the research domain and theraised research questions. Fig. 1.4 summarizes the contributions of this dissertation withrespect to the aforementioned problems, that go beyond state-of-the-art as follows:

■ C1. Systematic literature review on hardware reliability assessment for DNNs: Toaddress P1 and RQ1.1-RQ1.3, the first Systematic Literature Review (SLR) focused ex-clusively on all methods of reliability assessment of DNNs is conducted. This studyestablishes a comprehensive picture of the reliability assessmentmethods for DNNsand systematically reviews the pertinent literature. The primary objective of this re-view is to explore the methods of reliability assessment for DNNs, generalize andclassify them, and identify the existing challenges in the field. To the best of ourknowledge, this survey constitutes the first in-depth literature review concerningreliability assessment methods for DNNs. The review encompasses all relevant pa-pers published from 2017 to 2022, identified through a systematic search. The keyhighlights of this contribution which is based on paper I are:
19

Systematic Literature Review

Reliability Assessment
for CNNs

Reliability Emhacement
for CNNs

DeepVigor and its applications

Model-level fault tolerance methods

Categorizing existing reliability assessment methods for DNNs and identifying the gaps

Reliability Assessment
and Enhancement for

RNNs
Fault resilience for LSTMsC4

Reliable Deployment of DNNs in
Safety-Critical Applications

C1

C2

C3

Figure 1.4: An overview of the contributions of the thesis.

• Presenting a thorough and systematic survey on the reliability assessmentmethods for DNNs;
• Analyzing publication trends across different years and methods;
• Classifying and characterizing reliability assessment methods for DNNs;
• Categorizing fault injection methods based on the DNN hardware platforms;
• Introducing analytical and hybrid reliability assessment methods as alterna-tives to FI;
• Highlighting open challenges in the field and proposing recommendations forfuture research.

■ C2. Scalable, fast, and accurate resilience analysis for CNNs: This contribution ad-dresses P2 and RQ2.1-RQ2.4 by introducing novel semi-analytical methods for relia-bility assessment of CNNs, DeepVigor and its optimized version DeepVigor+. In thisthesis’s contribution, the concept of neurons’ vulnerability ranges is first introducedin DeepVigor, which indicates whether a fault in the output of neurons would leadto a CNN misclassification. This enables a comprehensive reliability study througha novel resilience analysis method, where Vulnerability Factors (VF) of layers, neu-rons, andbitswithin CNNs are derived. The key highlights of this contribution, whichis based on paper II, are as follows:
• ProposingDeepVigor, an innovative,metric-oriented, and accelerator-agnosticresilience analysis method for CNNs that is faster than FI with comparable ac-curacy;

20

• Introducing and calculating vulnerability ranges for all neurons in CNNs, sup-ported by a fault propagation analysis, resulting in accurate categorization ofcritical/non-critical faults;
• Providing fine-grain VF as reliability quantification metrics for layers, neurons,and bits in CNNs, validated through comparison with fault injection;

The DeepVigor method is further optimized as DeepVigor+ to overcome the scala-bility challenges in reliability analysis. DeepVigor+ leverages an optimal fault prop-agation analysis across neurons and entire CNNs to acquire VFs in an optimizedmanner. To the best of our knowledge, DeepVigor+ represents the first scalablesemi-analytical alternative to FI with a comparable accuracy for resilience anal-ysis of CNNs in the literature. Additionally, DeepVigor+ is made available as anopen-source tool, facilitating reliability analysis for emerging CNNs and enabling re-searchers to quickly evaluate CNNs’ reliability and design fault-tolerant CNNs. Thekey highlights of this contribution which is based on paper III, are as follows:
• Introducing DeepVigor+, a scalable, fast, and accurate resilience analysis forderiving VFs for CNNs’ layers and models by analyzing both parameters andactivations and utilizing an optimal error propagation analysis;
• Employing a novel statistical approach in DeepVigor+ based on stratified sam-pling, enabling fast and accurate resilience analysis for emerging CNNs.

Furthermore, QDeepVigor is an extended version of DeepVigor for Quantized Neu-ral Networks (QNNs) and its analysis results are exploited for various purposes:
• Cross-layer reliability enhancement for QNNs accelerators: In thiswork, whichis based on paper IV, the more critical neurons in a QNN are identified byQDeepVigor and are split into two equivalent neurons. Then a LightweightCorrection Unit (LCU) is designed for Systolic Arrays (SAs) to correct faults inthe identified critical neurons. The results indicate the same fault resilienceas TMR with half overhead;
• A hybrid method for QNNs’ reliability assessment: In thiswork, which is basedon paper IX, QDeepVigor is exploited to prune the fault space using the vul-nerability value ranges for neurons in QNNs executing on an SA. This hybridreliability assessment method leads to a significant speed-up in fault simula-tion.

■ C3. Cost-effectivemodel-level fault-tolerance for CNNs: This contribution attemptsto address P3 and RQ3.1-RQ3.3 by proposing model-level fault tolerance methodsfor CNNs as SIHFT-based techniques. In the first method, a novel low-cost activa-tion restrictionmethod, called ProAct, is introduced and combinedwith progressivetraining based on Knowledge Distillation (KD) [112] to achieve significant resiliencein CNNs with minimal memory overhead. The source code for ProAct, along withother state-of-the-art activation restriction methods, is published and made pub-licly accessible for researchers for the first time. The key highlights of this workwhich is based on paper V, are as follows:
• Proposing Hybrid Clipped ReLU (HyReLU) activation function, which restrictsactivation values by trainable threshold parameters in a neuron-wise mannerat the last layer and operates layer-wise in the other layers of CNNs;

21

• Introducing progressive training to acquire clipping thresholds in HyReLU foreach layer individually, resulting inmore optimal and effective clipping thresh-old values that ensure high resilience for CNNs.
The second method introduces an innovative model-level hardening solution thatmodifies the architecture of CNNs to inherently enable fault correction during infer-ence. An efficient error correction mechanism is designed, achieved by selectivelyduplicating channels within the CNNs structure. In this approach, the vulnerabilityof the weight channels of CNNs is analyzed, and the most vulnerable ones are du-plicated. Subsequently, a correction layer detects and corrects erroneous outputsbased on duplicated values. The key highlights of this work, which is based on paperVI, are as follows:
• Proposing a model-level hardening method for CNNs to improve their faulttolerance during inference. The approach involves duplicating parameters inmost vulnerable channels and integrating an efficient Error Detection and Cor-rection (EDAC) layer to correct erroneous feature maps;
• Introducing a channel pruning technique based on the parameter vulnerabil-ity, allowing significant reductions in the overhead associated with the hard-ening technique;
• providing a set of user-defined constraints based on the application tomanagethe trade-off between performance and memory overheads vs. the expectedfault resilience.

Eventually, all proposed methods for reliability assessment and enhancement ofCNNs in this thesis, are integrated into the SentinelNN framework. This open-sourceframework obtains channel vulnerability factors for CNN models using DeepVigor+to perform vulnerability-aware pruning and hardening. SentinelNN hardens theCNN models by incorporating selective channel duplication and correction as wellas activation restriction.
■ C4. Low-overhead resilience assessment and enhancement for LSTMs: This con-tribution addresses P4 and RQ4.1-RQ4.2 by analyzing and improving the fault re-silience of LSTMs for healthcare applications. To our knowledge, this gap is ad-dressed for the first time. The key highlights of this contribution which is basedon papers VII and VIII, are as follows:

• Conducting a comprehensive analysis of the resilience of various LSTM-basedDNNs using fault injection into their parameters;
• Proposing multiple fault-tolerant techniques for LSTM-based DNNs, resultingin remarkably mitigating the impact of faults on LSTM-based DNNs;

1.4 Thesis Organization
This thesis consists of 7 Chapters. Chapter 2 presents a thorough background on the the-oretical aspects of the dissertation. It discusses the definition and concept of hardwarereliability and explains the impacts of hardware faults and soft errors and how they canbe measured and mitigated. Furthermore, the basics of DNNs and their accelerators arepresented. Chapter 3 presents a systematic literature review on the reliability assessmentmethods for DNNs. This Chapter thoroughly categorizes the existing methods and identi-fies the gaps in the literature.

22

Chapter 4 presents a novel scheme for fault resilience analysis for CNNs, called Deep-Vigor, and tackles the scalability of conventional methods based on fault injection. Deep-Vigor is exploited not only for fault resilience but also for fault enhancement of accelera-tors. Chapter 5 proposes SIHFT-basedmethods for enhancing the fault resilience of CNNs,beyond state-of-the-art. It presents ProAct for optimal activation restriction with a mini-mal overhead. Furthermore, this Chapter introduces EDAC layers accompanied by selec-tive channel-duplication in CNNs, which is facilitated by vulnerability-aware pruning for acost-effective fault tolerance in CNNs. This Chapter also introduces the SentinelNN frame-work that integrates the proposed methods for reliability assessment and enhancementin this dissertation. In the following, Chapter 6 investigates fault resilience assessmentand enhancement for various LSTM-based DNNs. Finally, Chapter 7 concludes the thesis.

23

2 Background
To convey the essence of this thesis, several concepts must be explained. This Chapterpresents the theoretical and technical background for the thesis in detail.
2.1 Hardware Reliability
The rapid increase in software and hardware complexity has been driven by the tremen-dous advances in electrical and computer technology in the past century. The growth ofmicroelectronics is generally associated with the evolution of the microprocessor, oftendescribed as “Moore’s Law”. Moore predicted that chip complexity would double everytwo years, which has been on track for the past decades [228]. In this context, transis-tor miniaturization has resulted in high-performance computing systems, which are alsoexpected to operate safely and reliably.Since microelectronics have permeated all aspects of our daily lives, it is crucial to em-ploy them safely and reliably. However, several threats can compromise their safety andreliable operation. Hardware faults are amajor threat to the safety of digital devices, espe-cially in their safety-critical applications. The following subsections describe the conceptof hardware reliability, its associated threats (hardware faults), and methods to evaluateand improve it.
2.1.1 Definition and ConceptHardware reliability of a system is defined as the probability that no failure or user-visibleerror occurs in its functional operation over a given period [37, 173, 214]. Reliability is afunction of time and represents the likelihood that a system can operate as intended for aspecific duration. As stated in reference [173], reliability is expressed as R(t) = P(T > t),where T denotes the lifetime of a system. If a population of N0 identical systems is con-sidered, R(t) is equal to the fraction of the systems that survive beyond time t. Supposing
Nt is the number of survived systems until time t, and E(t) is the number of systems thatencountered errors in the interval (0, t], then, reliability can be expressed as Eq. (2.1).

R(t) =
Nt

N0
=

N0−E(t)
N0

= 1− E(t)
N0

(2.1)
Differentiating Eq. (2.1) yields the instantaneous error rate i.e., hazard rate h(t) whichis defined as the probability that a system experiences an error during a time interval

∆t, given that it has prevailed until time t. It means that h(t) is the probability of an erroroccurring in the time interval (t, t+t]. Therefore, we can extend themathematics as notedin Eq. (2.2) [173].

dR(t)
dt

=−
dE(t)

dt
N0

h(t) = P(t < T < t +∆t|(T > t)) =−
dE(t)

dt
Nt

=
−E(t)

N0
Nt
N0

=
dR(t)

dt
R(t)

⇒ dR(t)
dt

=−h(t)R(t) (2.2)
The solution to this differential equation is written in Eq. (2.3) [173].

R(t) = e−
∫

h(t)dt (2.3)
24

Assuming that h(t) has a constant failure rate (λ) during its useful lifetime phase andthe system is not affected by aging, the reliability of the system can be expressed asEq. (2.4) [173].
R(t) = eλ t (2.4)

To elaborate on the concept of reliability, we refer to an example from [214]. Consider50 systems being tested over 1,000 hours, with two failures occurring during the test.The probability of failure, Pf , for this system over 1,000 hours of operation is calculatedas Pf (1,000) = 2
50 = 0.04. The probability of success, known as the reliability R, is given

byR(1,000) = 1−Pf (1,000) = 0.96. The failure rate, fr, for this system is fr =
2

50×1,000 =

4×10−5, representing the probability of failure of an instance for an individual system in1,000 hours of operation. Using the reliability function in Eq. (2.4):
R(1,000) = e−4×10−5×1,000 = 0.96 (2.5)

which is consistent with the previous calculation.
2.1.2 Hardware Faults: Definition, Classification, and ImpactIn a computer system, the abstraction layers are generally divided into six broad cate-gories, organized from top (software) to bottom (hardware), as shown in Fig. 2.1: userapplication, operating system, firmware, architecture, circuits, and process technology.Faults typically originate at the process technology or within the silicon chip itself. Hard-ware faults can result from manufacturing defects in a silicon chip or environment inter-actions such as bitflips caused by cosmic ray strikes [173].

User
Application

Operating
System

Firmware

Computer
Architecture

Circuits

Process
Technology

Software

Hardware
Computer Systems
Abstraction Layers

Figure 2.1: Abstraction layers of computer systems, inspired by [173].

Faults are generally categorized into three classes: permanent, intermittent, and tran-sient. Permanent faults persist indefinitely until a correction mechanism is applied, suchas oxide wearout leading to a transistor failure in a silicon chip. Intermittent faults repeat-edly show up and vanish, as seen in the case of partial oxide wearout. Transient faults,on the other hand, appear briefly and then disappear, such as bitflips in memory or gatemalfunctions in logic caused by alpha particles or neutron strikes [173].
25

Hardware faults may not always result in a user-visible error for two reasons. First, afault may be masked in an intermediate layer; for instance, a defective transistor causedby oxide wearout might impact performance but not disrupt the correct functioning ofthe architecture. Second, different layers within the system might be designed with faulttolerance. For example, radiation-hardened cells can detect and recover from faults intransistors. Each abstraction layer in Fig. 2.1 can thus be designed to handle faults origi-nating from lower layers. If a fault is managed at a specific layer, it prevents errors frompropagating to higher layers [173].Errors are the observable consequences of faults. While faults are necessary for errorsto occur, not all faults manifest as errors, particularly if they are masked or tolerated.Failure refers to a systemmalfunction that prevents the system frommeeting its expectedcorrect outputs. A failure is essentially a specific case where an error becomes visible tothe user. Fig. 2.2 illustrates the impact of faults on a system’s output. As depicted, whena fault occurs, it is consideredmasked if the affected bit or transistor is not read, or if thecorresponding error is corrected. If the fault leads to a user-visible error, it manifests as aSilent Data Corruption (SDC), i.e., failure. If it is detected but not corrected it appears as aDetected Unrecoverable Error (DUE), which may lead to temporary system unavailability[173]. As mentioned in [98], failure’s consequences can be categorized in four grades:
• Benign: No major impact on the system’s task or performance,
• Significant: The system’s task is disrupted, leading to reduced efficiency of the de-livered service,
• Serious: The system’s task is severely disrupted,
• Catastrophic: The system’s task is completely halted, resulting in the destruction ofthe controlled process or causing human injury or death.

Fault

MaskedError NoYes Read

No

Yes
Error

Corrected

Yes

No

Output
Affected

No

Yes
Error

Detected

SDC

DUE

Figure 2.2: Faults impact on the output of a system, inspired by [173].

2.1.3 Soft Errors: Origination and ImpactTransient faults in semiconductor devices can occur due to various factors, including tran-sistor variability, thermal cycling, erratic fluctuations in the minimum operational voltageof a circuit, and soft errors caused by external radiation. Transistor variability stems fromrandom dopant fluctuations, sub-wavelength lithography, and high heat flux amongst the
26

silicon die. Thermal cycling results from repeated stress due to temperature variations.Erratic fluctuations in the circuit’s minimum voltage can occur as a result of gate oxide softbreakdown combined with high gate leakage [173].
Radiation-induced soft errors are a significant threat to system reliability and can leadto circuitmalfunctions or systemcrashes. Soft errors occurwhendata is corrupted, whereasthe device itself remains undamaged. These errors are difficult to trace or identify as theroot cause of system malfunctions through failure analysis. Therefore, it is crucial to mit-igate their effects in the system design. In terrestrial applications, the primary sources ofsoft errors are neutrons and alpha particles, produced by cosmic radiation, solar activities,etc. When these high-energy particles strike transistors, they induce energy, generating acurrent pulse that can result in an upset in transistors [178].
Radiation impacts semiconductors from sea level to space, with neutron flux inten-sifying at higher altitudes. Consequently, space applications face the highest risk, whileterrestrial applications are at a lower risk. It is estimated that the average terrestrial neu-tron flux that can potentially lead to soft errors is 14 neutrons

cm2.hour . On the other hand, at thealtitude of 10 km, neutron flux increases by a factor of 228 compared to sea level. Thishighlights that digital devices are exposed to soft errors at any altitude, stressing the needfor fault tolerance mechanisms, particularly for safety-critical applications [173].
Asmentioned, a transistor can collect charge froman alpha particle or a neutron strike.When this charge exceeds the circuit’s threshold at the gate or cell level, it results in a bit-flip. In memory devices, a transient fault occurs when a bit stored in a cell flips. However,in logic devices, a transient fault is only considered to occur when this fault propagates toa forward latch or storage cell. These bitflips are classified as Single-Event Effects (SEEs),which may impact single or multiple bits in memory cells or latches. For a bitflip and sub-sequent malfunction to occur, the accumulated charge in a cell or circuit must exceed aminimum threshold, known as the critical charge [173].
Transistor scaling has a remarkable impact on the susceptibility of transistors to softerrors due to its effect on the critical charge. For instance, the Soft Error Rate (SER) inSRAMs increases by a factor of 6-7 from 130 nm to 22 nm process [120]. This indicatesthat emerging digital systems are becoming increasingly susceptible to soft errors. SERrefers to the rate at which soft errors occur in a device within a specific environment. TheSER is measured in Failure In Time (FIT), where one FIT is equal to one failure in 109 devicehours [178].

2.1.4 Fault Tolerance Techniques
Fault-tolerant computing refers to the ability to maintain correct computation despite thepresence of errors in a system, thus enhancing reliability. Achieving fault tolerance primar-ily involves leveraging and managing redundancy. Redundancy is the property of havingan excess of resources beyond the minimum required to perform a task. When failuresoccur, this redundancy is utilized to mask or bypass the failures, ensuring the system con-tinues to operate at the intended level of functionality [135, 214].

Redundancy can be exploited in different methods at the hardware or software level,in spatial and temporal ways. Hardware redundancy is provided by incorporating extrahardware into thedesign to either detect or override the effects of a failed component. Forexample, instead of having a single processor, we can use two or three processors, eachperforming the same function. By having two processors (Dual Modular Redundancy-DMR), we can detect the failure of a single processor; by having three (Triple ModularRedundancy-TMR), we can use the majority output to override the wrong output of asingle faulty processor. These forms of hardware redundancy incur high overheads, and
27

their use is therefore normally reserved for critical systems where such overheads can bejustified [135].Information redundancy encompasses techniques such as Error Detection and Correc-tion Codes (ECCs) or Algorithm-Based Fault Tolerance (ABFT). ECCs utilize additional bits,i.e., check bits, which are appended to the original data to enable the detection and po-tential correction of errors. On the other hand, ABFTs integrate redundant computationsinto algorithms to detect, locate, and correct errors caused by hardware faults duringnormal operations. Both ECCs and ABFTs are widely employed in memory units and stor-age devices to protect against benign failures. However, they often necessitate additionalhardware to handle the processing of redundant data [135, 235].Processing components can exploit time redundancy by re-executing the same pro-gram, primarily to counteract transient faults. Since most hardware faults are transient, itis unlikely that successive executions will encounter the same fault. This makes time re-dundancy an effective method for detecting transient faults that might otherwise remainundetected. Additionally, it can be employedwhen other error detectionmechanisms areavailable, allowing the system to recover from a fault and repeat the computation. Whiletime redundancy imposes significantly lower hardware and software overhead comparedto other methods, it lays a substantial performance cost [135].Software Implemented Hardware Fault Tolerance (SIHFT) refers to a set of techniquesthat exploit redundancy at the software level to detect and correct hardware faults, with-out requiring modifications to the hardware design. SIHFT offers a cost-effective alter-native to traditional hardware or information redundancy approaches and is particularlybeneficial when using Commercial Off-The-Shelf (COTS) microprocessors or predesignedIP cores, which typically lack native or strong error detection and correction capabilities.In SIHFT, the software not only performs its primary designed functions and requirements,but also incorporates monitoring functions to detect, signal, and correct hardware errorswhen they occur [98, 135].
2.1.5 Evaluation and Metrics
There are manymetrics to quantify the reliability of computer systems in relation to hard-ware faults and their fault tolerance. In this subsection, some of the key metrics that areemployed in this thesis are discussed. One of the fundamental metrics to measure is de-fined by the reliability function, as presented in Eq. (2.4). The error rate of a system istypically expressed in terms of Failure in Time (FIT), where one FIT corresponds to onefailure in 109 hours. The total FIT rate of a system can be calculated by the summation ofthe FIT rates of its individual components [173]. It can be expressed as Eq. (2.6) in which
FITraw is provided by the manufacturer, Sizecomponent is the total number of the compo-nent bits, and SDCcomponent that can be obtained by FI [145].

FITaccelerator = ∑
component

FITraw×Sizecomponent ×SDCcomponent (2.6)
Reliability is also measured by the SDC rate, which reflects the proportion of faultsthat propagate to the system’s output, regardless of its effect. Another essential metric isthe Vulnerability Factor (VF), representing the fraction of faults that result in user-visibleerrors, i.e., failure. VF can be measured across various system levels, from architecture tosoftware programs, by FI simulations or analytical approaches. VF expresses the proba-bility of failure at a given system level, in the case of fault occurrence. These metrics areessential for evaluating the FIT rate calculation of systems [173].Themetric Architectural Vulnerability Factor (AVF), specifically, expresses the probabil-

28

ity of fault propagating to the output at the architecture level [149]. AVF can be measuredthrough FI, by dividing the number of faults propagated to the output by the total numberof injected faults. Furthermore, authors in [150] provide a formula to estimate the cross-section of the configurationmemory in (2.7) where the obtained AVF by FI is multiplied bythe number of bits utilized by the design times the cross-section of bits of the configura-tion memory. This calculation can lead to further reliability metrics that authors presentin [150].
σ = AV F× (#UtilizedBits)× (

σstatic

#MemBits
) (2.7)

In radiation experiments, to formulate the SER, cross-section is defined as the propor-tion of observed faults (errors) over all particles collided to the surface (Flux), as expressedin Eq. (2.8) [236]. Cross-section σ is expressed as a unit of cm2 and is the probability thata particle may cause an observable error [149].
σ = errors/Flux (2.8)

The cross-section can lead to SER or FIT calculation by gettingmultiplied by the particleflux that the device will experience in the environment (φ). SER represents the number offailures of the device in 109 hours as shown in Eq. (2.9).
SER = σ ×φ (2.9)

2.2 Deep Neural Networks
Deep Learning (DL) is a subset of Machine Learning (ML), which focuses on enabling com-puters to learn how to solve problems without explicit programming. Due to the remark-able learning capabilities of Deep Neural Networks (DNNs), they find applications acrossa wide range of fields, including image and video processing, data mining, robotics, au-tonomous vehicles, and gaming [223]. DNNs experience a training phase using a desig-nated dataset before being utilized in their target application during the inference phase.The training phase is an iterative process conducted once, aimed at updating the pa-rameters of the DNN (e.g., weights, and biases). A loss function (e.g., cross-entropy) isemployed during this phase to measure the difference between the expected and thepredicted outputs of the DNN. Training function iteratively updates the parameters tominimize the loss function, until the DNN achieves a high accuracy. On the other hand,during the inference phase, representing the deployment of the DNN, the DNN model isexecuted multiple times using the parameters acquired from the training phase [223].DNNs consist of numerous interconnected neurons, each of which receives input acti-vations andmultiplies them by corresponding weights. The weighted activations are thensummed and passed to the neuron’s output. A collection of neurons forms a layer, whichis typically followed by additional functions such as activation functions (e.g., ReLU, sig-moid), batch normalization, and pooling (e.g., max or average pooling) [223]. DNNs canhave various architectures, each suited to different applications. In this subsection, theDNN architectures explored in this thesis are briefly reviewed.
2.2.1 Convolutional Neural NetworksConvolutional Neural Networks (CNNs) are widely employed in tasks such as image clas-sification and object detection, consisting of multiple Convolutional (CONV) and Fully-Connected (FC) layers. CONV layers contain a set ofmulti-dimensional weights, i.e., filters,which extract specific features from the layer’s input. A channel represents a set of Input

29

Feature Maps (IFMaps), which are convolved with the filters to produce Output FeatureMaps (OFMaps). FC layers are positioned at the end of CNNs to carry out the classificationtask [223].An abstract representation of a neuron in a neural network is illustrated in Fig. 2.3.As shown, inputs enter the network through the input layer. The intermediate or hiddenlayers determine the network’s depth and perform the CNN’s core computational func-tions. The output layer is responsible for decision-making and producing probabilities foreach output, i.e., logits or output confidence score. The highest value corresponds tothe top-ranked output in a classification task, representing the network’s final decision orclassification.
Input Layer Hidden Layers Output Layer

∑ φ

X1l-1

X2l-1

X3l-1

Wi2
l

Wi3
l

Wi1
l

Output

Activation

function
Summation

Ni
lbl

Figure 2.3: Representation of a simple neural network with the detail of a neuron.

Equation (2.10) describes the function of the i-th neuron in layer l (denoted as Nl
i)which receives input activations from the previous layer l-1 consisting of n outputs (de-noted as X l−1). In this equation,W and b represent weights and bias, respectively, asso-ciated with the connections between neurons [223].

Nl
i = φ(

n

∑
j=0

X l−1
j ×W l

i j +bl) (2.10)
Fig. 2.4 illustrates an abstract view of a CONV layer. As shown, the IFMaps in layer l,with n channels and dimensions X l ×X l , are convolved with filters that have the samenumber of input channels and a kernel size of Kl , producing m output channels. Duringthis process, each 3-D filter in an output channel performs a point-wise multiplicationwith a matching section of IFMaps. The results are summed to generate one value for therespective channel of OFMaps. The 3-D filter is then shifted across the IFMap to produceall values in one 2-D OFMapwith the size ofX l×X l . This operation is repeated with other3-D filters, resulting in the OFMaps for layer l +1.In the field of CNN research, several models are widely adopted, including LeNet-5[141], AlexNet [137], VGG [216], and ResNet [110] for image classification, and YOLO [194]for object detection. Prominent datasets that are often utilized for training are MNIST[244], CIFAR [136], and ImageNet [74]. Furthermore, due to the large number of param-eters and computations in DNNs, Quantized Neural Networks (QNNs) [119] and BinarizedNeural Networks (BNNs) [67] have been presented to reduce complexity, memory foot-

30

...
...

...

...
...

...

...
...

...
*

...
...

...

...

...
...

...

Figure 2.4: Abstract view of a CONV layer

print, and power consumption. These quantized networks reduce the bit-width of DNNs’parameters and computations while maintaining an acceptable accuracy trade-off.

2.2.2 Long Short-Term Memory Neural Networks

Recurrent Neural Networks (RNNs) are a type of DNNs that possess recursive connectionsacross their layers, allowing them to memorize information through time. Long Short-TermMemory (LSTM) neural networks, a subset of RNNs, are particularly proficient at re-taining long-term dependencies, making them appropriate for analyzing time-series data[233]. This capability hasmade LSTMs especially valuable for anomaly detection in health-care applications, including tasks such as disease diagnosis, treatmentmonitoring, and theprediction of anomalies [109, 165].
LSTM-based DNNs are composed of multiple cascaded LSTM layers, each containingindividual LSTM cells. The operations of a single LSTM cell are depicted in Fig. 2.5 andits functions are mathematically expressed in Eq. (2.11). In this context, xt is a time-seriesinput at time t,Ct−1 and ht−1 are recursive inputs i.e., the last outputs of the LSTMcell. TheparametersU andW represent the weights associated with the input data and recursiveinputs, respectively, and B denotes the bias parameters [233].

xt

ht-1 +

sigmoid
dot

Uf,i,g,o

Wf,i,g,o

dot
sigmoid

tanh

sigmoid

ft

it

gt

ot

x

Ct-1

+

x

Ct

tanh

x ht
Bf,i,g,o

Figure 2.5: Operations in a single LSTM cell (arrows show the data flow).

31





it = sigmoid(xtU i +ht−1W i +Bi)

ft = sigmoid(xtU f +ht−1W f +B f)

gt = tanh(xtUg +ht−1W g +Bg)

ot = sigmoid(xtUo +ht−1W o +Bo)

Ct = ft ×Ct−1 + it ×gt

ht = tanh(Ct)×ot

(2.11)

As discussed, an LSTM has two sets of weight parameters: 1)U , which is applied to theinput data, to extract features from the current input data, and 2)W , which is applied tothe recursive inputs, to manage information from previous outputs over time, enablingthe LSTM cells to retain and utilize relevant features. The structure of an LSTM-based DNNvaries depending on the specific task. In the case of time-series data classification, an FClayer can be added after the LSTM layer to perform the classification task. Additionally,CONV layers can be incorporated within the LSTM network to enhance feature extractioncapabilities [245].
2.3 DNN Hardware Accelerators
DNNs are trained and deployed in their target application using DNN Hardware Acceler-ators (DHAs). These accelerators are specifically designed to leverage parallelism to en-hance the performance of DNN deployment during both training and inference phases.DHAs are typically classified into four main categories: Field-Programmable Gate Arrays(FPGAs), Application-Specific IntegratedCircuits (ASICs), Graphics ProcessingUnits (GPUs),and Central Processing Units (CPUs) [169, 227].FPGAs are the most commonly utilized DHA compared to other platforms, primar-ily due to their design flexibility across various applications [169, 227]. FPGAs are pro-grammed through configuration bits that define their functionality. The architecture ofFPGA-based DNN accelerators typically incorporates a host CPU and an FPGA component,with corresponding interconnections between the two. In this design model, the corefunctions of DNN are implemented on the FPGA, while the CPU manages the accelera-tor’s instruction as well as data transfer, as both components are integrated with mem-ory. A typical architecture of an FPGA-based DHA is illustrated in Fig. 2.6, which employs aHardware/Software (HW/SW) co-design approach, effectively separating the DNN imple-mentation on the integrated CPU (software) and the FPGA (hardware) that communicatewith each other [105, 117].ASIC-based DHAs offer superior performance and power efficiency compared to FP-GAs; however, they lack flexibility for various applications and involve longer design time.An example of a spatial architecture model is illustrated in Fig. 2.7, which consists of 2Dsystolic arrays of Processing Elements (PEs) that flow data both horizontally and verti-cally between input/weight buffers and output buffers. PEs conduct Multiply-Accumulate(MAC) operations on inputs and weights, thus performing the functionality of neurons inDNNs. Off-chip memory is necessary to store DNN parameters and intermediate resultsgenerated by the PEs. One notable ASIC-based DNN accelerator is the Tensor ProcessingUnit (TPU) developed by Google, which utilizes this architectural framework [76, 127].GPUs are a strong platform for both training and inference of DNNs, incorporatingthousands of parallel cores that enhance their efficiency for DNN algorithms, particularlyfor training. GPUs are designed to execute multiple threads of a program simultaneously.Since DNNs are constructed of numerous independent computations, GPU architecture

32

Host CPU
(Runs software

and controls the system)

FPGA
(Runs designed hardware and

communicates with Host)

Host memories

FPGA memories

Interconnections

Figure 2.6: Typical structure of an FPGA-based DNN accelerator [105].

Off-chip Memory

Inputs
Buffer

Weights
Buffer

PE PE PE

PE PE PE

PE PE PE

Outputs
Buffer

Figure 2.7: An example of a spatial architecture for ASIC-based DNN accelerators [170].

has led to their vast exploitation for accelerating DNN execution. The general architectureof GPUs is depicted in Fig. 2.8. Numerous Streaming Multiprocessors (SMs) are presentwithin a GPU, each containing several cores that share register files and caches. A sched-uler and dispatchers manage the distribution of tasks among the SMs and their cores[76, 122, 227].

Figure 2.8: General architecture of CUDA-based GPUs [122].

CPUs are general-purpose processors capable of executing a diverse range of algo-rithms, including DNNs. Multi-core processors are particularly employed for deployingDNNs in edge computing and Internet of Things (IoT) applications. CPUs can execute SIMD(Single Instruction, Multiple Data) instructions, utilizing multiple ALUs (Arithmetic LogicUnits) simultaneously. Therefore, they enable parallel computing and low power con-
33

sumption, thus supporting a broader range of applications for DNNs. However, CPUs aregenerally not the preferred option for DNNs deployment, due to their relatively lower per-formance and efficiency compared to specialized hardware accelerators [159, 169, 209].Although newCPU architectures incorporate Neural Processing Units (NPUs) to acceleratethe performance for DNN deployment [51, 189].Fig. 2.9 illustrates an overview of the attributes of DNN accelerators in terms of flex-ibility, reconfigurability, and power efficiency [51]. CPUs and GPUs are general-purposeplatforms that provide high reconfigurability at runtime, making them suitable for a widerange of DNN applications. However, these platforms suffer from significant power con-sumption and high data transfer latency between PEs and off-chip memory. In contrast,ASICs and FPGAs can be tailored to optimize performance for specific DNNmodels, achiev-ing superior power efficiency. This optimization, however, comes at the expense of re-duced reconfigurability, limiting their ability to efficiently support diverse DNNmodels ona single platform.

Figure 2.9: An overview of the attributes of DNN accelerators [51].

34

3 Literature Reviewon the Reliability AssessmentMethods for
DNNs

Reliability assessment is the first step towards achieving fault tolerance. As mentioned inChapter 1, due to the extent of the domain of DNN applications, accelerators, and faultmodels different papers have studied the reliability of DNNs in a distinct method. Thisdiversity has led to an ambiguous space for researchers to comprehend the methods forhardware reliability assessment of DNNs and identify existing gaps. Therefore, a com-prehensive literature review is required to tackle this problem. This Chapter aims to re-view the literature on hardware reliability assessment methods for DNNs. This Chapterattempts to address P1 which includes RQ1.1-1.3 and presents contributions mentioned inC1, in Chapter 1. This Chapter is based on the following publication:
I M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin. A System-atic Literature Review on Hardware Reliability Assessment Methods for Deep NeuralNetworks. ACM Computing Surveys, 56(6):1–36, 2024
In the rest of this Chapter, Section 3.1 defines the terminology in this domain, 3.2 ex-plains the adopted methodology to conduct a comprehensive literature review, Section3.3 presents the characterized taxonomy for existing methods in the literature and out-lines the research trend of the field which are discussed in details in Sections 3.4, 3.5, and3.6. Afterward, Section 3.7 discusses the identified gaps in the literature and eventually,Section 3.8 concludes this Chapter.

3.1 Terminology
The terms robustness, reliability, and resilience aremostly used in the research pertainingto the reliability of DNNs. These terms are often used interchangeably and ambiguously.In the following, we present the definitions of these three terms as applied in the currentliterature review:

• Reliability concerns DNN accelerators’ ability to perform correctly in the presenceof faults, which may occur during the deployment caused by physical effects eitherfrom the environment (e.g., soft errors, electromagnetic effects) or fromwithin thedevice (e.g., manufacturing defects, aging effects, process variations).
• Robustness refers to the property of DNNs expressing that the network is able tocontinue functioning with high integrity despite the alteration of inputs or param-eters due to noise or malicious intent.
• Resilience is the feature of DNN to tolerate faults in terms of output accuracy.
In this work, we are concerned about the reliability of DNNs, which refers to the abilityof accelerators to continue functioning correctly in a specified period of time with thepresence of faults. Reliability in this thesis does not relate to the reliability and test insoftware engineering, reliability and robustness of DNN algorithms’ accuracy in terms ofsafely classifying corner cases or out-of-distribution, or security issues e.g., adversarial orbitflip attacks in which an attacker perturbs the inputs or parameters.

35

3.2 Literature Review Methodology
Systematic Literature Review (SLR) is a standard methodology for reviewing the literaturein a recursive process and minimizing bias in the study [59, 140, 227], which is adopted inthis Chapter. The SLR methodology determines:

• Specifying the SLR’s Research Questions (SLR-RQs),
• Specifying the search method for finding and filtering the related papers,
• Extracting corresponding data from the found papers based on the SLR-RQs,
• Synthesizing and analyzing the extracted data.
Based on the aforementioned steps in SLRmethodology, the SLR-RQs that we attemptto answer are:
• SLR-RQ1: What is the distribution of the research papers in the domain of DNNsreliability assessment? (To obtain the trend of publications in this domain).
• SLR-RQ2: What are the existing methods of reliability assessment for DNNs? (Tocomprehend the entire variety of methods in this domain).
• SLR-RQ3: Howcould the existingmethods be characterized and categorized in termsof reliability assessment methods? (To categorize existing works and provide thetaxonomy, and systematic instruction for finding the suitable method for potentialapplications in this domain).
• SLR-RQ4: What are the open challenges in the domain of reliability assessmentmethods for DNNs? (To specify the remaining areas for future research).
Themotivation for this survey is the numerous recent papers published on the reliabil-ity of DNNs emphasizing the need for such a literature review. We have searched for thepapers systematically through scientific search servers. The main databases and publish-ers we have used are: Google Scholar, IEEE Explore, ACM Digital Library, Science Direct,and Elsevier. The initial set of papers is provided by searching some keywords in the men-tioned servers, including "reliability of DNNs", "hardware reliability of DNN accelerators","resilient DNNs", "robust DNNs", "the vulnerability of DNNs", "soft errors in DNNs", "faultinjection in DNNs" ("DNN" also replaced with "CNN").Subsequently, based on the title and abstract of each paper, we select them. Thisselection is based on the criterion of whether the paper may be concerned with the reli-ability of DNNs or not. In addition, the references and citations of the papers have beenchecked for the chosen papers to find more related papers. In this process, we selected242 papers based on their titles and abstracts.In the next step, we study the introduction, conclusion, and methodology sections ofeach paper to decide whether we include the paper in the review or not. The inclusioncriteria of the papers are:
• The paper is published by one of the scientific publishers and has passed through apeer-review process,
• The focus of the work is DNN, neither generic reliability assessment methods usingDNNs as one of the examples nor employing DNNs for assessing the reliability of aplatform.

36

• The work includes a reliability assessment method for DNNs,
• The method of reliability assessment is clear and well-defined,
• Terms including reliability, robustness, resilience, or vulnerabilitymust refer clearlyto reliability issues, as defined in section 3.1.
Papers that have included similar keywords but have not matched the above condi-tions are excluded. As a result, we have included 139 papers published from 2017 to theend of 2022 in this literature review to build up the taxonomy of the literature review andmethods’ categorization.In the following, we have designed a Data Extraction Form (DEF) based on the SLR-RQs. In this form, we have taken note of reviewing the papers to find some specific datasuch as:
• General method of reliability modeling (FI, analytical, or hybrid),
• The platform where DNNs are implemented,
• The fault model and fault locations in case of FI,
• Details of reliability assessment method,
• Reliability evaluation metrics.
In the final step, after reviewing all the selected papers and filling in the DEF, we syn-thesized and analyzed the obtained data from the papers. Thereafter, we have providedthe categorization taxonomy of the reliability assessment methods for DNNs, have char-acterized them in this Chapter, and analyzed them to identify the open challenges.

3.3 Taxonomy and Trends
3.3.1 Characterization of Existing Methods
Fig. 3.1 represents the top-level categorization taxonomy of the study to address SLR-RQ2and SLR-RQ3 in this Chapter. Reliability assessment of DNNs is categorized into threemainmethods: Fault Injection, Analytical, and Hybrid.

Reliability Assessment
Methods of DNNs

Fault Injection
Methods

HW-Aware
Analytical
Methods

Hybrid
Methods

Fault
Simulation

Fault
Emulation

Irradiation

SW Model

GPU

FPGA

RTL Model

CPU

GPU

FPGA

TPU

Methods Approaches Platforms

Figure 3.1: Obtained taxonomy of the reliability assessment methods for DNNs in the SLR.

37

Fault Injection Methods: The works based on this method evaluate the reliability ofDNNs by fault injection campaign. There exist several taxonomies for the fault injectionapproaches in the hardware reliability domain [36, 83, 201, 203]. Therefore, we adaptthem for categorizing the relatedworks onDNNs into three approaches depicted in Fig. 3.1.FI methods are categorized into three approaches of FI as follows:
• Fault Simulation: DNNs are implemented either in software by high-level program-ming languages or Hardware Description Languages (HDL) and faults are injectedinto the model of the DNN. In the former case, some works consider a DHA modelin their software implementations while others do not. We divide works on thisapproach into hardware-independent, hardware-aware, and RTL model platforms.RTL models represent ASIC-based DHAs.
• Emulation in Hardware: Researchworks on this approach implement and runDNNson a DHA (i.e., FPGA, GPU, or CPU) and inject the faults into the components of theaccelerator by a software function, FI framework, etc.
• Irradiation: DNN is implemented on a DHA (i.e., FPGA, GPU, or TPU) placed underan irradiating facility to inject beams onto it.
Analytical Methods: Works relying on an analytical method for estimating DNNs’ re-liability attempt to determine how parameters and neurons of a DNN affect the outputbased on the connections of neurons and layers. Therefore, they analyze the structureof DNNs and provide a model for the impact of faults on the outputs to find more criti-cal and sensitive components in the DNN. Hence, they can evaluate the reliability of DNNsemploying vulnerability analysis derived by analyses, and eliminate the complexity of sim-ulating/emulating the faults in reliability assessment.
Hybrid Methods: The integration of FI and analytical methods within hybrid methodsleverages the strengths of both paradigms. Notably, the incorporation of analytical meth-ods enables the development of mathematical models alongside FI techniques leading tofaster reliability evaluation. This synergistic approach enables the derivation of reliabilityevaluationmetrics, mitigation of the complexity associatedwith extensive FI experiments,and more realistic compared to analytical methods alone.

3.3.2 Research TrendsTo address SLR-RQ1, we present the main statistics on the papers included in this study.Fig. 3.2 shows the distribution of the 139 included papers published over the years 2017-2022. Regarding this chart, it can be observed that research on the topic of DNNs’ relia-bility started in 2017, and in the following years, it drew increasingly more attention andturned into an active topic of study. The number of included papers in 2022 is fewer thanthat of in 2021 because the search for related papers is performed in Feb. 2022, therefore,many accepted papers in 2022 have not yet been indexed in databases.Fig. 3.3 illustrates the number of papers basedondifferent reliability assessmentmeth-ods among all identified works in this literature review. It can be observed that the major-ity ofworks use fault injection to assess the reliability of DNNswhile only 10% of theworksconsider analytical (11 works) and hybrid analytical/FI (3 works) methods. In this regard,we present Fig. 3.4 to illustrate the distribution ofworks using FI over different approachesand DNN platforms. It shows that most of the works belong to the hardware-independentplatform of simulation in the software approach. Moreover, in the emulation in hardwareapproach, most of the works are done on the GPU platform. Hence, the figures presentthe trend of the research domain and the distribution of works over different methodsand approaches leading to areas where there is still room for future research.
38

2017 2018 2019 2020 2021 20220

10

20

30

40

Year
Num

ber
ofp

ubli
cati

ons

Figure 3.2: Trend of publications related to hardware reliability of DNNs over different years.

Figure 3.3: Proportion of each method in the reliability assessment of DNNs among included works.

Figure 3.4: Distribution of included publications focused on FI over different approaches andplatforms.

3.4 Fault Injection Methods

In FI methods, once the DNN platform and fault model are determined, perturbationand system execution are performed, and the reliability is evaluated. The identified ap-proaches using FI for DNNs’ reliability assessment and distinct evaluation metrics are pre-sented in this subsection.
39

3.4.1 Fault SimulationIn this subsection, the works assessing the reliability of DNNs by FI with a fault simula-tion approach are described. There are three platforms in this approach i.e., hardware-independent, hardware-aware, and RTL models.
3.4.1.1 Hardware-Independent Platform. In hardware-independent platforms, DNNs areimplemented in software DNN frameworks. Therefore, fault injection is performed on topof the frameworks, i.e., PyTorch, Keras, TensorFlow, Caffe, etc. Implementing the DNN insoftware provides a flexible environment for studying the effect of various fault models.By analyzing the paper, it is observed that both transient and permanent faults are studiedin this platform, while most of the works studied transient faults such as soft errors.To model faults at the software level, the fault model is determined differently re-garding the fault type and general aspect of DHAs. In this regard, modeling and injectingpermanent faults are considered active throughout the entire execution, the value of a bitor variable (in weights, or activations) is set to 0 or 1, as experimented in [40, 113, 198]. Tomodel transient faults, the following assumptions are considered for injecting faults intoparameters, i.e.:

• DNN’s parameters (e.g., weights) are stored in the memory of DHAs. Hence, ran-dom transient faults are injected into random bits of weights as a bitflip in differentexecutions, as experimented in [29, 30, 43, 45, 47, 73, 88, 93, 97, 100, 125, 142, 143,164, 175, 176, 185, 188, 204, 205, 222, 243, 248].
• Faults in inputs/outputs of DNN’s layers (i.e., activations) lead to the study of theirimpacts on both memory and logic. Activation memory faults are studied in [113,175], and faults in logic or datapath are investigated in [26, 27, 45, 53, 185].
To examine the impact of faults on memory elements of DHAs at the software level,faults are injected into randomweights and activations, and tomodel fault effects on logic,faults are injected into random activations. Most of the relevant works on the Hardware-Independent platform inject transient faults into the bits of randomly selected weights.Nearly all works in this class, inject faults based on Bit Error Rate (BER), determining theratio of faulty bits throughout the values. In addition, to reach the 95% confidence levelwith 1% error margin, they repeat the tests several times with different random faults asin [40, 176, 198, 205].
Evaluation: For evaluating the reliability, different metrics are considered. References[26, 27, 29, 30, 43, 88, 93, 100, 113, 125, 142, 143, 164, 175, 176, 185, 188, 204, 205, 222, 248]report accuracy loss under fault campaign experiments. They compare the accuracy ofthe faulty network with the accuracy of the fault-free network on the same test set. Someworks classify the injected faults regarding the outputs of the faulty network comparedwith the golden model output. References [40, 198, 204] inject one permanent fault perexperiment and classify them into three classes:
• Masked: No difference between the outputs of the faulty and the golden DNN.
• Observed-Safe: Different output of the faulty networkwith the goldenmodel, whilethe confidence score of the top-ranked element is reduced by less than 5% withrespect to the one of the golden one.
• Observed-Unsafe: Different output of faulty network with the golden model, whilethe confidence score of the top-ranked element is reduced by more than 5% withrespect to the one of the golden one.

40

Moreover, in [47, 73] transient faults are injected into the encrypted weights of a net-work and they are classified based on the effect of faults on execution of the program andresults, as:
• Silent or safe: Similar to "masked" mentioned in [40, 198].
• SDC: Only affects the output results of the network.
• Detected as a software exception: Stops the program execution.
• Detected by padding check action: Corrupts the ciphertext.
Burel et al. [45] have adopted the fault classification scheme for semantic segmenta-tion applications in which DNNs label each pixel of an input image according to a set ofknown classes. The corresponding classes are:
• Masked: Similar to "masked" mentioned previously.
• No Impact SDC: No labels of pixels are modified.
• Tolerable SDC: Labels of less than 1% of pixels are modified and no class is re-moved/added due to the fault.
• Critical SDC: Labels ofmore than 1%of pixels aremodifiedor any class is removed/addeddue to the fault.
A specific way of fault evaluation based on fault classification is only considering thefaults that affect the output as SDC since they are critical. References [53, 97] evaluatethe network based on the proportion of faults that affect the output classification resultsas SDC rate. Therefore, the reliability of a network can be evaluated by fault classificationbased on its effect on the outputs, either by changing the output results, by a thresholdof accuracy loss, or by system exceptions.
Software FI Tools: Some fault injectors are presented as tools that are able to supportthe reliability study of DNNs with different fault models in software frameworks of DNNs.PyTorchFI [160], TensorFI [55, 146, 174] and its extension TensorFI+ [138, 139], and Ares[191] inject faults into DNNs which are implemented in PyTorch, Tensorflow, and Keras, re-spectively. All of these open-source frameworks can inject both, permanent and transientfaults intoweights aswell as activationswith specified error rates, hence, the accuracy losscan be evaluated. TensorFI also benefits from providing the SDC rate. These frameworksare used in the reliability studies of DNNs, e.g., PyTorchFI in [27, 97], TensorFI in [53], andAres in [205].
Moreover, to enhance the efficiency of the aforementioned tools, additional fault in-jectors have been introduced. One such injector, known as BinFI [54], is an extension ofTensorFI that aims to identify critical bits in DNNs. Another fault injector, namely LLTFI[16], is proposed to inject transient faults into specific instructions of DNN models in ei-ther PyTorch or TensorFlow and has been found to be faster than TensorFI. Additionally, acheck-point-based fault injector is proposed in [195] that enables studying the impact ofSDCs independently of the DNN implementation framework.

41

3.4.1.2 Hardware-Aware Platform. This platform includes publications that consider anabstract model of the accelerator in their implementation of DNNs in software. They im-plement the DNN in software frameworks or high-level programming languages. There-fore, they take advantage of simulation in software fault injection while they also applythe reliability assessment to an abstract model of the accelerator.
References [31, 145] implement a DNN in Tiny-DNN, and map it to the RTL implemen-tation of the accelerator. They study the effect of transient faults in memory and datapathaccurately. In these studies, FI is performed in software while all of its parameters are in-tegrated with the corresponding hardware components. Authors in [147] implement theDNN and the fault injector in software inspired by an FPGA-based DNN accelerator. More-over, in [184, 181] DNN and FI are implemented in Keras, and the architecture of a systolicarray accelerator is considered for a fault-tolerant design. Similarly, authors in [126, 132]evaluate their proposed reliability improvement technique on memories in TensorFlowwhile injecting transient faults into the weights. PyTorch is used in [182, 183] to imple-ment the DNN, and transient faults are injected into activations (datapath or MAC units)and weights (memory) regarding the systolic array accelerator model. Reference [96] alsouses PyTorch and injects faults by a custom framework called TorchFI to inject faults intothe outputs of CONV and FC layers of the network.
The effect of permanent faults at PEs’ outputs is studied in [42, 44] where the modelof the accelerator is adopted from implementing the DNN in an N2D2 framework [1]. Fur-thermore, authors in [114, 247] use PyTorch and study permanent faults inMAC units of anaccelerator while training to improve the reliability at inference. Authors in [231] have de-veloped a Keras-based accelerator simulator to study the effect of permanent faults on theon-chip memory of accelerators by injecting permanent faults into OFMaps and weights.Weight remapping strategy in memory to decrease the effect of permanent faults is eval-uated in [177] using Ares. SCALE-Sim [208], a Systolic Array (SA) simulator for CNNs, isadopted in [253] to study permanent faults in PEs and computing arrays in SA-based ac-celerators.
Similar to the Hardware-Independent platform, faults are injected based on BER, orfault rate, and experiments are repeated to reach 95% confidence level and 1% error mar-gin [145, 181, 184].
Evaluation: Nearly all works in this class evaluate the DNN by accuracy loss after FI[42, 44, 96, 132, 147, 177, 181, 182, 183, 184, 215, 231, 247, 253]. References [31] and [126]evaluate the reliability by SDC rate as the proportion of faults that causedmisclassificationin comparison with the golden model. In addition, authors in [145] differentiate SDCs ofinjected transient faults into defined classes and calculate FIT for the accelerator by itscomponents based on Eq. (2.6). In addition, in this work SDCs are classified by comparingthe faulty and golden model outputs as follows:
• SDC-1: Fault caused a misclassification in the top-ranked output class,
• SDC-5: Fault caused the top-ranked element not to exist in the top-5 predicted out-put classes,
• SDC-10%: Fault caused a variation in the output confidence score of the top-rankedoutput class more than 10% compared to the golden model,
• SDC-20%: Fault caused a variation in the output confidence score of the top-rankedoutput class more than 20% compared to the golden model.

42

3.4.1.3 RTLModel Platform. Researchworks that leverage the RTLmodel of ASIC-basedDHAs and simulate fault injections are described in the following. We identify three groupsof FI experiments in this platform, divided based on the architecture of DHAs:
• 2D systolic array accelerators [57, 64, 152, 240, 249, 250],
• RTL implementation of DNNs [116],
• Multi-Processor System-on-Chips (MPSoCs) for DNNs [197].
In the first group, a configuration of TPU is utilized in [57, 64, 249, 250], and a modelof a 2D systolic array is implemented in [152, 240]. Reference [57] also uses Eyeriss [52]architecture for the accelerator. In this group, FI is performed at RTL, and all works injectrandom permanent faults into PEs/MACs of the arrays, except [64] which injects randomtransient faults into buffers, control and data registers. The second group, which includes[116], implements DNNs in RTL to enable a fault simulation study in approximated DNNs.In this work, SEU injected into Look-Up Tables are simulated and studied.In the third group, which exploits MPSoCs, faults are emulated in the components ofthe target multicore processor. Authors in [197] propose a three-level pipeline FI frame-work that simulates permanent faults in the hardware model of an MPSoC and evaluatethe reliability at the software level. In their framework, the RTL model of the platformis provided as well as the fault injector unit at the lowest level. The software implemen-tation of the DNN exists in the middle level of the framework that performs a pipelinedinference and runs each layer of the network on a separate core. In the top-level of theframework, synchronization of layers and reliability evaluation is fulfilled.
Evaluation:Most works in this class evaluate the reliability by accuracy loss. Nonethe-less, fault classification is performed in [64, 116, 197]. Authors in [197] adopted the clas-sification of [145] which was discussed in the Hardware-Aware platform. Furthermore,they added two more classes for the faults that cause Hang (the HDL simulation neverfinishes) and Crash (the HDL simulation immediately stops). Authors in [116] classify thefaults similar to the general fault classification scheme (masked, SDC, crash) with differentterminology.In addition, [64] classifies SDCs on how they impact classification outputs comparedwith the golden model:
• TolerableMisclassification: The input ismisclassified the same as the goldenmodelwith different output confidence scores,
• No Impact Misclassification: The input is misclassified in both golden and faultymodels but into different classes,
• Critical Misclassification: The input is correctly classified in the golden model butmisclassified in the faulty model,
• Tolerable Correct Classification: The input is correctly classified in both golden andfaulty models with different output confidence scores,
• Beneficial Correct Classification: The input is misclassified in the golden model butcorrectly classified in the faulty model.

3.4.2 Fault EmulationIn this subsection, research works that assess the reliability of DNNs by emulating FI inhardware accelerators are explored, i.e., FPGA, GPU, and CPU platforms respectively.
43

3.4.2.1 FPGA Platform. DNNs are implemented fully or partially (e.g., one layer) on FP-GAs to perform the inference phase, and faults are emulated at different locations of theaccelerator. In most of the works on the FPGA platform, the fault injector unit is im-plemented in software that is run on a processor and faults are injected into the FPGArunning the DNN under analysis. This HW/SW co-design process benefits from the high-performance execution of DNNs and fast fault injection. It is worth mentioning that someworks implement only a part of the DNN (e.g., one specific layer) on the FPGA [71, 72, 236].In this group of works, Zynq-based architecture System-on-Chips (SoCs) [239] whichtake advantage of an ARM processor co-existing with the FPGA are deployed. We catego-rize this group of studies into three classes:
• A host computer (e.g., a PC) initializes the faults [71, 72, 81, 218, 236],
• The on-board embedded processor initializes the faults [35, 89, 129, 130, 131, 149,150, 157, 166, 241, 242],
• Fault injection module resides inside the hardware design implementation [34, 86,207].
In the first class, faults are generated by a host computer of the accelerator design.Then, the faults, network parameters, and FPGA configuration bits will be sent to theboard. The FPGA starts running, and the on-board processor collects the results. The on-board processor plays the role of a controller between the FPGA and the host computer. Inthe end, the results would be passed back to the host computer for further processing andreliability evaluation. All works of this class emulate transient faults (SEU) in configurationbits of the FPGA and exploit the accuracy loss of the DNN for reliability evaluation. Nev-ertheless, authors in [218] explore transient faults in Flip Flops (FFs) exhaustively besiderandom transient faults in configuration memory, and classify them as tolerable, critical,and crashes.FireNN is proposed in [71, 72] as a platform for deploying DNNs on Zynq-based archi-tecture SoCs along with a host computer in a way that DNN is run partially on the FPGAto perform a reliability evaluation. As shown in Fig. 3.5 FireNN machine runs the neuralnetwork and communicates with the FireNN engine for reliability evaluation of the layerunder analysis running on the FPGA. Faults are generated by the host computer and are in-jected to the FPGA through the engine. This platform injects SEUs in weights, layer inputs,and configuration bits.

Figure 3.5: An overview of the architecture of the FireNN platform [71, 72].
In the second class, faults are generated and injected into the FPGA’s configurationbits or on-chip memories by the embedded processor. The embedded processor or a host

44

computer is responsible for the reliability evaluation. The proposed method in [241, 242]provides an injection of permanent faults into the configuration bits of the FPGA as wellas into the on-chip memory blocks through the interfaces between the embedded pro-cessor and FPGA on Zynq SoC. References [35, 149, 150] provide a similar design to injecttransient faults into configuration bits of the FPGA. The effects of transient faults on bothon-chip memories and configuration bits of an FPGA running pruned DNNs are studied in[89]. Authors in [35] provide random-accumulated FI and exhaustive FI approach on theconfiguration bits to emulate neutron and ionizing radiation. Moreover, permanent andtransient faults in on-chip memory (HyperRAM) are studied in [157, 166] with a softwareemulator and are validated by radiation results.It is worth mentioning that injecting faults into the configuration memory is a repeti-tive process, where in each experiment of FI, the faulty configuration bits are loaded intothe configuration memory. Then, the system is run and the results are collected. There-after, the next fault(s) are injected into the fault-free configuration bits loaded to the cor-responding memory to analyze the newly injected fault(s).A framework named Fiji-FIN is proposed in [130] and the underlying method is alsoused in [131, 129]. This framework is capable of injecting transient faults into both con-figuration bits of FPGA and on-chip memories. In this method, FINN framework [232] isused to develop and train the BNN, and the proposed framework manipulates the FINN’soutput to prepare it for the FI campaign. The bit stream file of the FPGA is obtained by anHLS tool and imported to the FPGA. While the system is running, the faults are generatedand injected by the embedded processor and the reliability is evaluated in comparisonwith the golden model. Fig. 3.6 depicts in detail the steps of this FI framework.

Figure 3.6: Fiji-FIN framework for fault injection into FPGAs [130].

In the third class, references [86] and [207] inject permanent faults and the work in[34] injects transient faults into the hardware implementation of the network. Authors in[86] use the FINN framework to implement the QNN with 2-bit weights and activations,and a block has been added into the hardware design that is deployed for injecting stuck-atfaults into the output of PEs. Reference [207] injects permanent faults into the registersof the RTL model of the network. Authors in [34] explore the effect of transient faultson the configuration bits of FPGAs in which different accelerator architectures (SoftcoreFGPU and ZynqNet HLS) are implemented.
Evaluation: For evaluating the reliability of DNNs on FPGA, accuracy loss is exploitedin [86, 89, 129, 130, 131, 166, 207, 236, 241, 242]. Fault classification is also performed in[71, 72, 81, 129, 131, 149, 150, 242]. References [149, 150] classify SEUs in configuration bitsof the FPGA as critical if a fault caused misclassification compared to the golden model;otherwise, the fault is tolerable. In addition, Benign Errors are considered in [150] which

45

are the faults that caused the true classification of the inputs that were misclassified inthe golden model. Another fault classification is presented in [71, 72] that does not onlyconsider critical and tolerable faults but also categorizes the faults that prevent the accel-erator from generating the classification output. In this regard, the effect of faults on thesystem performance degradation is the criterion for classifying faults in [81].Reliability is evaluated by different metrics considering accuracy loss regarding the ap-plication of the target networks in [241, 242]. These works consider top-5 and top-1 accu-racy loss for image and audio classification tasks, respectively. For object detection, meanAverage Precision (mAP), and for image generation, Structural Similarity Index (SSIM) isadopted. Regarding the adopted metrics for accuracy loss in each network, the faults areclassified into three classes with different ranges of accuracy loss (≤ 1%, 1%∼ 5%,≥ 5%)caused by FI. In addition, they categorize the faults that are caused by a system exceptionthat may delay or terminate processes.[131] classifies the parameters of layers (i.e., weights and activations) by FI to charac-terize the level of DNN layers’ vulnerability. In this work, parameters of layers are labeledas Low-risk, Medium-risk, and High-risk, if FI into the target layers’ parameters results inless than 1%, 1%∼ 5%, and more than 5% accuracy loss, respectively.The metric Architectural Vulnerability Factor (AVF) is adopted in [149, 150] and ex-presses the probability of fault propagating to the output. These works obtain the AVFthrough the FI, by dividing the number of faults propagated to the output by the totalnumber of injected faults. Furthermore, authors in [150] provide a formula to estimatethe cross-section of the configuration memory in (3.1) where the obtained AVF by FI ismultiplied by the number of bits utilized by the design times the cross-section of bits ofthe configuration memory. This calculation can lead to further reliability metrics that au-thors present in [150].
σ = AV F× (#UtilizedBits)× (

σstatic

#MemBits
) (3.1)

In this regard, [157] estimates the SER of HyperRam saving the weights similar to (3.1)based on the extracted information from radiation experiment reports. By providing therate of faults likely to occur in the memory, they inject faults into the weights of CNNon an FPGA accelerator. Moreover, reference [35] expressed the reliability of the neuralnetwork with n layers (L1, L2, ..., Ln) that are implemented serially as different moduleson the FPGA, as an exponential distribution in (3.2), that is an extension of Eq. (2.4).
RNN(t) = e−(λL1+λL2+...+λLn)t (3.2)

Where λ = 1
MT T F (MTTF = Mean Time to Failure).

3.4.2.2 GPU Platform. This subsection explores FI in DNNs in which faults are emulatedand injected into GPUs. Nearly all works on this platform have studied the effect of tran-sient faults on GPUs. Permanent faults are studied in [63, 101, 102, 103, 104, 156]. To per-form FI on GPUs, researchers adopt an FI framework on GPUs; except in [107, 156] whichimplemented their own FI process on CUDA and TensorRT [66], respectively. FI frame-works in GPUs including FlexGripPlus [62], NVBitFI [230], and CAROL-FI [179] are used in[49, 61, 63, 78, 90, 192], and [79], respectively. Nonetheless, an FI framework is proposedin [102] adapting and customizing NVBitFI for studying permanent faults in GPUs and isleveraged in [101, 103, 104]. Moreover, a cross-layer fault injector framework CLASSESis presented in [39] to inject SEUs at the architecture level, enabling study of the corre-sponding fault effects in [38]. In all works, the rate of injected faults and the number of
46

experiments in the target locations varies and depends on the confidence level and errormargin as mentioned in [13, 77, 79, 80, 122].SASSIFI [108] is the most frequently used framework for FI into GPUs running DNNsthat is used in [13, 14, 15, 77, 80, 121, 122, 124]. This framework is developed by NVIDIAto conduct fault injections and is a powerful framework with different fault models cov-ering various locations of GPUs and provides extensive reliability evaluation metrics. Thestudies that use SASSIFI for fault injection investigate the effect of transient faults withSASSIFI’s bitflip model into the ISA (Instruction Set Architecture) visible states, includinggeneral-purpose registers, memory values’ predicate registers and condition registers insingle or multiple threads.
Evaluation: Reliability evaluation of DNNs in GPUs is carried outmore extensively thanin other platforms. Nearly all works have classified injected faults [13, 14, 15, 61, 63, 77, 78,79, 80, 90, 103, 104, 121, 122, 124, 156]. The general model for classifying faults in thementioned works is as follows:
• Masked: Fault does not affect the output,
• SDC: Output confidence score differs from that of the golden model,
• DUE: The program hangs or the system reboots (also called Crash in [77, 80])
Furthermore, SDC is also categorized regarding the effect of faults on the accuracy ofthe DNN for the object recognition task in [13, 122]. They define three categories of SDCsbased on the effect of faults on the output confidence score and ranking of objects:
• Non-critical: Output confidence score changed, and no misclassification occurredand no objects ranking modified,
• Light-critical: Objects ranking modified, and no misclassification occurred,
• Critical: Impacted the output confidence score and caused misclassification.
On the other hand, the fault classification of SDCs proposed in [79] is beyond the classicSDCs and is based on the impact of faults on the precision and recall for object detectiontasks in a self-driving car, as follows:
• Non-critical: Precision maintains larger than 90% (a new object is detected that isnot in the original classification) and recall remains 100% (all previous objects aredetected).
• Critical: Precision is lower than 90% (many wrong objects detected) and recall isnot 100% (real objects are not detected).
Furthermore, new classes of faults are presented in [156] which considers the marginsof the bounding box in the DNN for object detection. The authors compare the overlaps ofthe bounding box of the detected objects in each image for golden and faulty models andcategorize the SDCs based on a threshold. Their fault classification method is depicted inFig. 3.7.Vulnerability Factors (VFs) are also adopted to analyze the reliability of DNNs on GPUplatforms [13, 14, 61, 77, 79, 80, 121, 122, 124]. VF expresses the probability of propagatingfaults from a particular component to the output. Since faults may be injected into differ-ent locations, the vulnerability factor of the location (in different abstraction levels fromarchitecture to program) can bemeasured. In this regard, Kernel Vulnerability Factor (KVF)

47

Figure 3.7: Fault classification in the object detection task based on bounding boxes [156].

[13, 121], Layer Vulnerability Factor (LVF) [13, 38, 121], Instruction Vulnerability Factor (IVF)[13, 14, 124], Program Vulnerability Factor (PVF) [13, 77, 80, 122], Operation VulnerabilityFactor [90], and Architecture Vulnerability Factor (AVF) [13, 49, 61, 77, 79, 80, 122] havebeen presented. These metrics provide a thorough understanding of the vulnerability ofeach location either in DNNs or in GPUs.
3.4.2.3 CPU Platform. DNNs exploit CPUs mostly for IoT and edge applications. Theresearch works in which faults are emulated on single and multicore processors runningDNNs are reviewed in this subsection. Soft errors in the register file of ARM processorsrunning DNNs have been studied extensively in [8, 9, 10, 11, 12, 32, 91, 153, 154, 155]. Thevulnerability of instructions is studied in [154]. To emulate faults modeling soft errors intarget processors, ARM-FI is developed and adopted in [153, 154, 155] and SOFIA [32] is ex-ploited in [8, 9, 10, 11, 12, 32, 91] as fault injection frameworks. Each of the aforementionedfault injectors enables fault emulation in different components of processors.

Evaluation: All works in this class have evaluated the reliability by fault classification.The classification is performed similarly to the general scheme of classifying faults in theprevious platforms (Masked, tolerable SDC, critical SDC, and DUE).Furthermore, references [11, 32] classify the faults in an object detection task for au-tonomous vehicles as:
• Incorrect probability: All objects detected correctly with different output confi-dence scores,
• Wrong detection: Misclassification or missing an object,
• No prediction: No object detection.
Mean Work To Failure (MWTF) is also exploited as a reliability metric to show theamount ofwork a neural network can performuntilmeeting a failure, as in Eq. (3.3), where

AV Fcritical− f aults is the probability of an erroneous classification due to faults.
MWT F =

1
execution time×AV Fcritical− f aults

(3.3)
MWTF is adopted as a relationship between performance and reliability in [154, 155].AVF is obtained as the reliability metric for the register file in [10, 154, 155]. Furthermore,Program Vulnerability Factor (PVF) is leveraged to express the vulnerability of operationsand instructions in [154].

48

3.4.3 Irradiation
The most realistic way of FI is to irradiate the devices with a beam of particles, e.g., neu-trons or ions. In this subsection, the publications that study the reliability of DNN accel-erators, i.e., FPGA, GPU, and TPU, under radiation are described.
3.4.3.1 FPGA Platform. Zynq SoCs have been examined under radiation tests to assessthe reliability of DNNs in [34, 35, 148, 149, 158, 166, 236]. FPGAs are irradiated with neu-trons in [17, 34, 35, 85, 148, 149, 236] and with protons in [163]. References [85] and [163]have applied fault-aware training to DNNs and studied its impact under radiation. Hyper-RAM which includes constant and dynamic variables (e.g., weights and biases), is bom-barded with ionizing particles in [158, 166]. The research works set up the system’s con-figuration before the experiment, mostly based on HW/SW co-design and save the resultsfor further analysis. Fig. 3.8 shows an example of the setup of the FPGA irradiation.

Figure 3.8: Block diagram of the setup of beam experiment in [236].

Evaluation: Radiation experiments enable reliability evaluation by SER or FIT metrics[149, 158, 166, 236]. Cross-section and SER can be obtained according to Eq. (2.8) andEq. (2.9) respectively. Most research studies on irradiation on FPGAs evaluate the re-liability of devices under test using the mentioned metrics. Cross-section is exclusivelyemployed in [17, 85]. In addition, some works classify the faults radiated into FPGA byobserving the outputs [148, 149, 163]. Here, both works provide fault classification basedon the output confidence scores of the neural network. [149] sets up a HW/SW co-designimplementation on a target board and identifies the faults causing no misclassification(tolerable) and misclassification (critical). Thereafter, the FIT of different classes of faultsis obtained. [148, 163] also present the cross-sections of the device for different classes offaults (including tolerable errors, critical errors, and crashes). Moreover, the reliability isestimated by the aforementioned metrics in [35] as expressed in Eq. (3.2).
3.4.3.2 GPU Platform. Reliability of DNNs on GPUs is assessed under neutron beam ra-diation in [33, 77, 78, 79, 80, 107, 156]. All GPUs under test are manufactured by NVIDIAand have different architectures. They also provide tests by enabling and disabling ECCconfigurations, and different data representations. Each work has specified flux of neu-trons and radiation time, e.g., [156] tests the GPU equivalent to 2,000 years of exposureto terrestrial neutrons, or [80] reports data that cover more than 110,000 years of GPUoperation. Fig. 3.9 illustrates the radiation test setup in [33, 77, 80].

Evaluation: Research works of this group present reliability evaluation of DNNs onGPUs by FIT as well as fault classification similar to the works on FPGAs radiation. Authorsin [77, 80] identify faults that caused SDC and Crash and report their FIT, separately. [78]
49

Figure 3.9: Setup of neutron irradiation to GPU [33, 77, 80].

and [79] report FIT of faults caused by SDC and DUE separately in different data represen-tations of the DNN, and in [156] irradiated faults are classified based on Fig. 3.7. SDC rateis also the adopted evaluation metric in [107].
3.4.3.3 TPU Platform. The reliability of Google’s Tensor Processing Unit (TPU) is stud-ied under neutron beam radiation in [128, 193]. Theseworks experimentedwith Coral TPUchip, a low-power accelerator for DNNs, with several neural networks for image classifi-cation and object detection tasks.

Evaluation: The research works performing radiation experiments on Coral TPU haveevaluated the reliability by FIT and cross-section as well as by fault classification. In thisregard, SDC and DUE fault effects are reported based on FIT and cross-section.
3.5 Analytical Methods
Analytical methods in reliability assessmentmathematically represent the reliability with-out performing fault injection into the platform for simulation-based evaluation. Thesemethods rely on the function and algorithm of DNNs, and if needed, also consider thestructure of the accelerator. Nevertheless, they carry out fault injection to assess the ef-ficacy of the methods. Generally, all works in this group analyze the relations of neuronsand layers to find their effect and contribution to the output. In this regard, they estimatethe vulnerability of neurons and analyze how a faulty neuron may impact the output tofind critical neurons. Therefore, they link the reliability of the network with the vulnera-bility of its neurons and provide an analytical model for calculating the reliability of DNNs.We have identified four approaches in analytical methods:

• Layerwise Relevance Propagation (LRP) based analysis [7, 199, 202, 210, 211],
• Gradient-based analysis [58, 161, 162, 206],
• Estimation-based analysis [161, 162, 187],
• ML-base analysis [92].
In the first approach, DNNs are analyzed based on an algorithm called Layerwise Rele-vance Propagation (LRP) that leads to obtaining critical scores for neurons/OFMaps. Thesecond approach is based on the gradients of weights/OFMaps with respect to the outputleading to their sensitivity. Researchworks in the third approach estimate the vulnerabilityof DNNs by finding correlations between some information from DNNs and the vulnera-bility of layers/OFMaps. In the last approach, ML-based techniques are adopted in thecontext of fault analysis in DNNs.

50

In the LRP-based analysis, a hypothesis is raised in [210] proposing that the higher thecontribution of neurons to the DNN’s output, themore impact they have on the classifica-tion accuracy. Accuracy loss is one of the most important metrics in the reliability evalua-tion. Therefore, the more impact a neuron has on the accuracy, the more vulnerable it is,meaning it has more influence on the reliability of the network, consequently. Hence, theauthors adopted the Layerwise Relevance Propagation (LRP) algorithm to obtain the valueof the contribution of each neuron to the output. LRP indicates the proportion of eachconnected neuron in constructing the value of the target neuron and calculates this ratiofor all neurons from the last layers to the first. LRP specifies Ri, j(y0, t) for each neuron j inlayer iwhich is its output contribution score between 0 and 1 with the input y0 and outputclass t. Then, the average score of each neuron over the entire training set ofM inputs isobtained representing the resilience of the corresponding neuron, as in Eq. (3.4).
ri, j =

M

∑
M−1
m=0 Ri, j(y0,m, tm)

(3.4)
Thereafter, the sorted list of neurons regarding their ri, j represents the most to leastvulnerable neurons that can lead to protecting themost vulnerable neurons to improve re-liability. Furthermore, by this analytical method, another reliability improvement methodis presented in [211] based on balancing the resilience distribution inside the DNN. Simi-larly, [7] proposes an approach to extract the saliency or importance of each neuron andproposes a mapping scheme for neurons on PEs of a systolic array to minimize the scoreof corrupted weights.Authors in [202] extend the LRP algorithm based on different output classes of inputimages and provide the list of neurons’ resilience scores (scoremaps) for individual classesseparately, as well as the scoremap of thewhole network regardless of the output classes.Then, all sorted score maps are combined in descending order to set the maximum scorefor each corresponding neuron. Subsequently, a scheduling algorithm is applied to mapneurons to PEs of an MPSoC based on the score maps.In gradient-based analysis, three papers are identified. Explainable AI that explainshow the network computes the output by the input is exploited in [206] to obtain the sen-sitivity of layers and the importance of weights. This work defines the sensitivity of layersin compliance with the difference between the two highest output confidence scores ofthe last layer. Therefore, they obtain the average sensitivity of all layers and relate it tothe importance of weights. They provide the most important weights and their criticalbits consequently to be protected.The sensitivity of filters and weights is analyzed in [58], which refers to the amount ofaccuracy drop with bitflip occurrence in weights. In the proposed method in this paper,the gradient of weights with respect to the output is calculated over a dataset consideringa cost function. Also, the expectation for the probability of weights to be faulty is obtainedas a noise measurement (εw). The sensitivity of a weight w is measured as (3.5).

Sensitivityw = gradientw× εw (3.5)
Sensitivity analysis in this work leads to the allocation of robust hardware to the moresensitive weights.[161, 162] have presented three gradient-based approaches for vulnerability estima-tion of OFMaps in a DNN. Gradient approach considers the absolute values of OFMaps’gradients with respect to the cross-entropy loss at the output in a backpropagation asthe vulnerability of OFMaps. Gain approach measures the noise gain by obtaining theexpectation for a set of corrupted neurons affecting the DNN’s accuracy, based on the

51

derivatives of outputs with respect to the neurons over a set of data and the varianceof the noise source. Modified Gain is also proposed based on the Gain approach to vi-olate the independence between neurons and noise. The three mentioned approachesevaluate the vulnerability of OFMaps in a DNN. Authors in [161, 162] also presented threeestimation-based approaches for the vulnerability of OFMaps. They estimate the relativeOFMaps’ vulnerability by calculating themax neuron value,OFMap range, and average L2over the input samples. They have provided approximate yet scalable and fast approachesto estimate the vulnerability of OFMaps.[187] presents an equation to estimate the misclassification rate of CNNs in case ofsoft error occurrence in a specific layer. The authors consider any operation resulting in anon-zero value as a critical computation, since soft errors may corrupt their results. Theestimation is based on the proportion of critical operations (Crit_OPs) in the target layeri and subsequent layers relative to all operations in those layers, to model the misclassifi-cation rate (SERN) in a CNN with n layers. Equation (3.6) provides a representation of thisestimation.
SERN =

Crit_OPsi +∑
n
i+1 OPs

∑
n
i OPs

(3.6)
An ML-based approach for analytical reliability analysis is presented in [92] whereOpen-Set Recognition (OSR) methods are explored to analyze the criticality of faults inDNNs’ parameters. The concept of OSR is to identify whether the output classificationcorresponds to the trained classes of the DNN. This concept is adapted to analyze theoutput logits (output of softmax in the last layer) of DNNs to identify the critical fault inthe parameters. Four different OSR-based methods have been leveraged for this task andtheir efficacy is reported. In each method, a threshold for the output logits is obtained foridentifying critical fault occurrence.All theworks in this group evaluate their analyticalmethods compared to FI. It is shownthat analytical methods can evaluate/estimate the vulnerability of different componentsof DNNs including neurons, OFMaps, and weights. Analytical methods are significantlyfaster and less complex than FI and are accelerator-agnostic, and their analysis resultscan be utilized for designing robust DNN accelerators. Among the existing approaches,estimation-based analyses are faster than others while less accurate when the results arecompared with FI experiments. LRP-based and gradient analyses provide more accurateresults close to FI experiments, yet they are faster and incur less complexity.

3.6 Hybrid Methods
In hybrid methods, both FI and analytical methods are carried out to assess the reliabil-ity of DNNs. To that end, [111] proposes a reliability assessment framework called Fidelitybased on a hybrid method. This framework studies the transient faults in both data andcontrol paths of accelerators. Fidelity contains fault injection in the software frameworkTensorFlow to obtain the probability of masking faults in the DNN. In addition, the frame-work is capable of analyzing the architectural model of the accelerator and mapping FlipFlops (FFs) of datapath and control logic to the parameters of a high-level implementa-tion of the DNN. By the fault injection and elaborate analysis, it models the probabilityof activeness/inactiveness of FFs during the execution time as well as the probability ofmasking faults. Subsequently, the framework provides the FIT rate of the accelerator. Fur-thermore, the framework is validated by analyzing the NVDLA [65], i.e., an open-sourceNVIDIA’s DNN accelerator. To further improve this method, a softwaremodel for NVDLA isproposed in [234] to enable the reliability study of accelerators at the software level and

52

provide a more accurate, more hardware-aware, and faster method to obtain FIT rate ofthe accelerator.Zhang et al. [251] propose a hybrid of ML-based analysis and FI to estimate the vul-nerability of all parameters in DNNs by a low number of fault injections. The proposedmethod involves selecting a set of random parameters of the DNN and evaluating theirvulnerabilities by injecting bitflip faults andmeasuring the accuracy loss. Thereafter, somefeatures for the selected parameters (absolute value, gradient, calculation times and layerlocation) are extracted. A random forest as a machine learning approach is trained andtested using the features and vulnerability of the corresponding parameters so that whenit reaches a high accuracy, it can be used for vulnerability estimation of the entire set ofparameters.
3.7 Discussion: Qualitative Comparison and Open Challenges
In this Section, we highlight the pros and cons of the categorized methods in the SLR.Thereafter, we present a qualitative comparison of different reliability assessment meth-ods for DNNs. Lastly, we discuss the open challenges as well as major potential researchdirections for the future.Of the reviewed papers, FI as a conventional method for reliability assessment, is fre-quently used for evaluating the DNNs’ reliability. FI provides realistic results about howfaults impact the system’s execution. FI methods can be conducted for modeling variousfaults which can be injected at the different locations in the platform for reliability evalu-ation. Moreover, they are applicable to any platform at any system abstraction level andprovide various reliability evaluations based on metrics and fault classifications. There-fore, many research works choose FI as their primary method of DNNs’ reliability assess-ment. Nevertheless, FI methods are accompanied by a prohibitively high complexity dueto the need to consider several cases for fault occurrence and to iteratively repeat theexecutions. Moreover, FI is not scalable and with the increasing size of emerging DNNs inthe number of parameters and computations, utilizing FI is amajor challenge for reliabilityassessment. The advantages and disadvantages of FI methods are investigated in detail,as follows:

• In fault simulation approaches, the design time is low for high-level software im-plementations and they are adaptable for various DNNs, DHA models, and faultmodels, providing various reliability evaluation metrics. Software simulation en-ables the reliability study of variations of DNNs under approximation, quantization,encryption, etc. There aremultiple open-source frameworks available for high-levelsoftware simulation without the need for any special facilities and it is possible torun on regular PCs. On the other hand, fault simulation possesses a high time com-plexity to achieve a sufficient confidence level and it is non-scalable for emergingDNNs. Moreover, fault simulation is not a realistic model of fault effects in high-level software implementations and its results are inaccurate at high-level softwareimplementations.
• Fault emulation provides realistic reliability analysis for DHAs by conducting experi-ments with real conditions of DHA operation, accessing all possible locations of theDHA for FI, and deriving several evaluation metrics and fault classifications. How-ever, its design and development process is time-consuming and it requires thephysical DHA. Also, different platforms need their specific design and developmentto perform FI and they need platform-specific frameworks for FI, making fault emu-lation methods even more challenging. It is worth mentioning that fault emulation

53

has a lower observability of fault propagation compared to fault simulation.
• Fault radiation is the most realistic approach as real physical faults are injected intothe chip, and is suitable for developing fault models. It enables the study to validatesimulation and emulation approaches and allows observing the real behavior ofthe DHA when faced with a physical effect. However, performing radiation testingrequires specialized facilities, expertise, and significant expenses. During a radiationexperiment, there is a low control over the accuracy of fault injection in terms ofthe number and location of occurred faults, and also a lack of observability of faultpropagation.
Analytical methods have been proposed as an alternative to FI to cope with its highcomplexity. These methods study the function of DNNs and assess the model’s reliabil-ity using mathematical equations, leading to less complex approaches. Since analyticalmethods are developed mathematically, they have the potential to be generalized andadapted to various DNNs. Notably, analytical methods have the potential to be exploitedin the reliability assessment of the training phase. However, current analyticalmethods donot consider the accelerator models, and there is a gap in the use of reliability evaluationmetrics and their resilience estimation accuracy. While this survey identifies a relativelysmall number of works relying on analytical methods for DNNs’ reliability assessment, thefuture of research in this area should pay greater attention to the potential of analyticalmethods.Finally, hybrid methods combine the strength of both, FI and analytical methods. Byapplying analysis of the network or the accelerator in addition to conducting fault injec-tion, hybridmethods are capable of obtaining a comprehensive, quantitative, and realisticevaluation of reliability. A limited number of research works are identified in this categoryin the present survey, yet there is a huge space to explore for proposing new hybrid meth-ods in the future. Table 3.1 presents a qualitative comparison between the categorizedmethods of reliability assessment for DNNs regarding the reviewed papers included inthis Chapter.The analysis of statistics presented in Fig. 3.3 highlights that the majority of the iden-tified papers employ FI to assess the DNNs’ reliability. This can be attributed to the factthat, while DNNs are an emerging topic in computer science, the problem of reliability hasbeen a classic issue for a long time. In addition, the investigation of reliability over DNNshas started gaining traction since 2017, as indicated in Fig. 3.2. As a result, it is not sur-prising that the early research in this area has primarily focused on conventional methodssuch as FI. This could be the main reason for the significant imbalance in the number ofpublished papers across different method categories. However, in the future, the emer-gence of analytical and hybrid methods is expected to bridge this gap and increase theirapplication in the field of DNN reliability assessment.To address open challenges in reliability assessment methods for DNNs, this surveyhas identified the following main observations:
• Although some research works, such as [50], have studied the impact of faulty dataduring training, no work on the reliability assessment of the training phase hasbeen identified that considers faulty parameters or computational units. This issueshould be studied in future research;
• Nearly all included works focus on CNNs, with image classification and object de-tection tasks excluding other types of DNNs, such as RNNs and LSTMs as well asdifferent applications that should also be evaluated in terms of reliability;

54

Table 3.1: Qualitative analysis comparing different reliability assessment methods for DNNs.
Fault injection Analytical HybridTime Complexity High Low to Moderate ModerateDHA-aware Yes No YesLeading tofault-tolerant design Yes Yes Yes

Fault models variety All fault models Few fault models Few fault models
Fault propagationobservability

Low (radiation)Moderate (emulation)High (simulation) High High
Implementationsystem level Software &hardware Software Software
Evaluation accuracy Moderate to high Low to moderate ModerateDevelopment time Low to Moderate Moderate High

Evaluation metrics
Accuracy lossFault classificationVulnerability factorsSDC rateReliability equations

Criticality scoresSensitivityVulnerability esti-mation
FIT RateVulnerability es-timation

• The survey has identified no software FI framework in hardware-aware platforms.Hence, DNN accelerator simulators could be exploited or developed for reliabilityassessment of DNNs in this platform;
• Fault emulation on FPGAs can take advantage of HLS designs. Therefore, a generalFI framework for these platforms could be presented using HLS to minimize designtime;
• Based on this survey, very fewworks study the reliability of the control part of DHAs,especially in FPGAs and ASICs. The control part may play a significant role in thereliability of DNN accelerators and this should be explored in future studies;
• There is a limited number of analytical methods for DNNs reliability assessment inthis survey, all of which rely on finding critical neurons for fault-tolerant designs.Nevertheless, none of them can estimate the reliability of DNNs on their own orevaluate the reliability using specific metrics. ML-based algorithms can significantlyassist in efficient reliability assessment, and therefore, there is a huge potential fordeveloping new analytical methods of reliability assessment for DNNs;
• Analytical methods could be generalized for other DNNs and applications ratherthan considering only CNNs and image processing;
• Hybrid methods appear to be powerful and capable of being exploited for develop-ing reliability assessment frameworks. They can be one of the major methods forreliability assessment of DNNs in future works;
• Several FI research works to carry out accuracy loss and fault classification as anevaluation of reliability. Also, some works considered FIT. However, there is still anurgent need to present DNN-specific metrics for reliability evaluation.

55

As an outcome of this survey, in addition to the listed open challenges, the major pos-sible research directions for future studies in this domain are addressed below:
• Although analytical and hybrid methods have potential in the literature, they havenot evolved to the extent that their effectiveness can be fully realized. Existingmethods have shown that analytical and hybrid methods are capable of assessingthe DNNs’ reliability as realistically as FI, and lead to effective fault-tolerant designs.Moreover, ML-based approaches in conjunctionwith analytical and hybridmethodsare emerging. Therefore, researchers can be directed to develop novel analyticaland hybrid methods, especially those that adopt ML-based algorithms, for relia-bility assessment of DNNs that are faster, less complex, more scalable, and morespecific to DNNs than the conventional FI approaches.
• Bringing reliability as a classical issue into an emerging topic such as DNNs requiresnew tools to respond to the requirements of the new domain. Therefore, the newresearch not only needs to adopt commonly used metrics in the reliability domainbut also requires the introduction and proposal of novel DNNs-specific reliabilityevaluation metrics.
• There are several IoT and edge applications for DNNs emerging day by day, and reli-ability is not only a concern for safety-critical applications. New research can focuson the unstudied applications of DNNs while taking reliability into consideration,especially for Large Language Models (LLMs) and Vision Transformers (ViTs).

3.8 Chapter Conclusions
In this Chapter, a comprehensive and systematic literature review is carried out on thereliability assessment methods for DNNs. Out of the 139 papers related to the subjectof the review, three major approaches to reliability assessment of DNNs were identified,i.e., Fault Injection, Analytical, and Hybrid methods, addressing RQ1.1 and RQ1.2 in Chap-ter 1. Since the majority of works assess the reliability using conventional fault injectionmethods, the related works relying on FI methods are characterized based on differentapproaches and platforms.In addition, we have addressed the advantages and disadvantages of the differentmethods and highlighted the open challenges that may become the focus of future stud-ies in this domain, addressing RQ1.3 in Chapter 1. It is outlined that FI is non-scalable foremerging DNNs, therefore analytical and hybrid methods are proposed to tackle this chal-lenge. Based on the analysis of this Chapter, future research could focus on developinglightweight, DNN-specific analytical and hybrid methods for assessing reliability, as wellas providing new quantitative evaluation metrics that take into account emerging appli-cations for DNNs.

56

4 Reliability Assessment for CNNs
To ensure a reliable DNN deployment, the first step is to extensively evaluate the function-ality of pre-trained CNNs against hardware faults. Reliability assessment is the process ofrepresenting the target DNN accelerator or model and measuring its reliability with re-spect to the corresponding quantitative evaluation metrics. Chapter 3 presented and dis-cussed the existing methods to assess the reliability of DNNs. As mentioned, the majorityof the works assess the reliability of DNNs relying on FI, which provides realistic results onthe impact of different fault models on the system’s execution and is performed directlyon the target platform. However, given the growing size of emerging DNNs and their ac-celerators [48, 169], obtaining a fully precise evaluation using FI approaches, is unfeasibleand impractical.

Throughout the literature, multiple research works are presented to significantly re-duce the simulation complexity of FI experiments for DNNs while maintaining statisticalaccuracy, especially for software simulation [54, 160, 200, 238]. Nonetheless, any FI ex-periment requires a certain level of statistical confidence, which is obtained by a consider-ably high number of repetitions and amultitude of fault locations [200]. In addition, mostfaults in an FI experiment on DNNs are masked [40] and are thus unnecessarily examined.Therefore, FI-based approaches for reliability assessment are inherently non-scalable andcan take days to weeks depending on the DNN complexity.
On the other hand, analytical approaches are presented to tackle the drawbacks ofFI, particularly its scalability issue. Nonetheless, they cannot sufficiently explain how afault propagates through the network and influences its outputs. In addition, they donot provide reliability-oriented metrics, including Vulnerability Factors (VFs), which is anessential metric for reliability evaluation. Moreover, the accuracy of analytical methods isnot comparable to that of FI-based methods.
To the best of our knowledge, there is no accelerator-agnostic resilience analysismeth-od for DNNs that can compete with FI in terms of scalability and accuracy of reliabilityevaluation while providing fine-grain metrics enabling different reliability improvementtechniques. In this Chapter, we introduce the DeepVigor method, its extensions and ap-plications that address the corresponding gaps in the literature. This Chapter attemptsto address P2 which includes RQ2.1-2.4 and presents contributions mentioned in C2, inChapter 1, based on the following publications:
I M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin. DeepVigor:VulnerabIlity Value RanGes and FactORs for DNNs’ Reliability Assessment. In IEEEEuropean Test Symposium (ETS), pages 1–6. Venice, Italy, 2023II M. H. Ahmadilivani, J. Raik, M. Daneshtalab, andM. Jenihhin. Deepvigor+: A Scalable,Accurate andAutomated Framework for ResilienceAnalysis of DeepNeural Networks.Under review, pages 1–14, 2024III M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin. EnhancingFault Resilience of QNNs by Selective Neuron Splitting. In IEEE 5th International Con-ference on Artificial Intelligence Circuits and Systems (AICAS), pages 1–5. Hangzhou,China, 2023IV M. H. Ahmadilivani, A. Bosio, B. Deveautour, F. F. Dos Santos, J. D. Guerrero Balaguera,M. Jenihhin, A. Kritikakou, R. L. Sierra, S. Pappalardo, J. Raik, J. E. Rodriguez Condia,M. Sonza Reorda, M. Taheri, and M. Traiola. Special Session: Reliability AssessmentRecipes for DNN Accelerators. In IEEE 42nd VLSI Test Symposium (VTS), pages 1–11.Tempe, United States of America, 2024

57

In the rest of this Chapter, Section 4.1 presents the DeepVigor method in which a novelparadigm of resilience analysis for DNNs is introduced. Section 4.2 presents DeepVigor+,which tackles the scalability issue of DNNs’ resilience analysis. In Section 4.3 DeepVigoris extended for QNNs leading to their fault tolerance and fast fault resilience assessment,and Section 4.4 concludes the Chapter.
4.1 DeepVigor: VulnerabIlity Value RanGes and FactORs
This section introducesDeepVigor, an innovative,metric-oriented, and accelerator-agnosticresilience analysis method for DNNs that derives fine-grain VF as reliability quantificationmetrics for layers, neurons, and bits.
4.1.1 Fault Model
In this section, the fault propagation analysis is performed at the outputs of DNN neu-rons. This fault propagation model covers a vast majority of internal faults of the neuronsoccurring inside the MAC units and also a large portion of faults in the weights and neu-rons’ input activations. It is assumed that only one neuron has an erroneous output perexecution due to faults, which is a common assumption in the literature [54].For validation by FI, the single-bit fault model has been applied. While themultiple-bitfaultmodel ismore accurate, it requires a prohibitively large number of fault combinationsto be considered (3n−1 combinations, where n is the number of bits). It has been shownthat high fault coverage obtained using the single-bitmodel results in a high fault coverageof multiple-bit faults [46]. Therefore, a vast majority of practical FI and test methods arebased on the single-bit fault assumption. Single bitflip faults are injected randomly atneurons’ outputs and once per execution.
4.1.2 Fault Propagation Analysis
Fig. 4.1 depicts an overview of the rationale behind the DeepVigor method. The figureillustrates a neural network with 2 hidden layers, 6 neurons, inputs, golden (fault-free)activation values (inside of neurons), and weights (on the arrows). The golden classifica-tion output is class1. A fault changes the neuron’s output by δ , which is the differencebetween the golden and faulty activation values. The δ which can have either a negativeor a positive value is propagated to the output layer, and may change the classificationresult. The fault propagation differs in each output class as ∆1 and ∆2. Misclassificationhappens when the value of the output class2 gets higher than that of the class1.Thus, the propagation of the fault can be traced from the neuron to the output and aproblem formisclassification can be expressed as shown in Fig. 4.1. By solving the problemof misclassification condition in the output, the value for δ is obtained as a vulnerabilitythreshold that expresses howmuch a fault should influence the neuron to misclassify thenetwork. Therefore, a vulnerability value range for the neuron is acquired. In this ex-ample, the range (−∞,−5.39) is a vulnerable range and [−5.39,+∞) is non-vulnerablerange. This idea is generalized for a DNN including multiple output classes and other cor-responding functions in this method.
4.1.3 The DeepVigor Method
The steps of the proposed DNNs’ resilience analysismethod (DeepVigor) and its validationare illustrated in Fig. 4.2. As shown, an analysis is performed on a set of data (i.e., set1,training set) and outputs the vulnerability value ranges as well as the vulnerability factors.Furthermore, FI is performed on the same and different data (i.e., set2, test set) to validatethe outcomes of the analysis. The steps of DeepVigor are as follows:

58

Figure 4.1: An example of fault propagation analysis model and finding the vulnerability valueranges for a neuron with a given input.

Input Data
Set1

Pretrained
DNN

Step1:
Gradient-based
Initialization

Step3: Bitflip
Mapping

Vulnerability
Value Ranges

Step1: Random
Fault Injection

DeepVigor Analysis

Step3: Validating
DeepVigor

Inputs

DeepVigor
Outputs

Validation Steps

Vulnerability
Factors

Step2: Faults
Categorization

Input Data
Set2

Step2: Neurons'
Vulnerability

Analysis

Figure 4.2: Steps of the DeepVigor method for DNNs’ reliability assessment and its validation.

Step 1 - Gradient-based Initialization: In the first step, a neuron is examined whetheror not to be processed for the vulnerability analysis. For this purpose, assuming a neuralnetwork consisting of L layers with N output classes in C = {c1,c2, ...,cN}. Neuron k atlayer l is selected to be examined. The neuron’s output is corrupted by adding a sam-ple positive or negative value as ε l
k to its output and the feed-forward of the network isexecuted over a batch of input data. A loss function L is defined in Eq. (4.1) as:

L = sigmoid(
N

∑
j=0

(Ect −Eci)) (4.1)
where ct is the golden top class and Ect and Eci are the erroneous output values corre-sponding to the respective classes. The loss function computes the summation of differ-ences between the value of the golden top class and the other outputs in the corruptednetwork and applies a sigmoid function. The golden top class is what the fault-free DNNoutputs as its classification whether or not it is correctly classified.

L represents the impact of the neuron’s erroneous output on the golden top class ofthe network. When the gradient of L w.r.t. the corrupted neuron’s output for one inputis zero, it means that any error at this neuron’s output does not change the output classifi-cation. Considering a batch of inputs, if the gradients are zero for a portion of inputs larger
59

than a threshold, the neuron is disregarded for the vulnerability analysis. In case most ofthe gradients are not zero, a range for searching the vulnerability value is initialized.Considering ε l
k is a positive value for one input, in case the gradient is positive, thereis a minimum value 0 < δ l

k < ε l
k for the neuron that if error δ l

k is added to its output (bya fault at its inputs or the output value itself) the network’s golden classification wouldchange. But if the gradient is negative, then δ l
k should be searched through the valueslarger than ε l

k. A similar scenario is valid for negative values of ε l
k.

Step 2 - Neurons’ Vulnerability Analysis: In this step, the vulnerability ranges of neu-rons under analysis are obtained. Let RNV (l,k,x) = [rlower,rupper] be a Range of Non-vulnerable Values for a k-th neuron at layer l with input data x. The bounds of range R for
x are calculated as follows:

{
rupper = min(δ l

k),δ
l
k > 0,Ect < Eci , i ̸= t

rlower = max(δ l
k),δ

l
k < 0,Ect < Eci , i ̸= t

(4.2)
where ct and ci are the golden top class and any other output class, respectively, and Ectand Eci are the erroneous output values corresponding to the respective classes.Eq. (4.2) finds the maximum negative and minimum positive values induced at thecorresponding neuron that do not lead to misclassifying the input data from the goldenclassification. Further, a Range of Vulnerable Values RVV (l,k,x) for a k-th neuron at layer
l with input data x is equal to RVV = (−∞,rlower)∪ (rupper,∞). Note, Eq. (4.2) is appliedfor a single input data. In the case of a data set X containing T input data x j the RNV and
RVV will get refined and will be equal to intersections of their respective ranges over allinputs x j as follows:





RNV (l,k) =
T⋂

j=1
RNV (l,k,x j)

RVV (l,k) =
T⋂

j=1
RVV (l,k,x j)

(4.3)

The outcomeof solving the equations for each neuron, andmerging the results over allinputs will be the vulnerability value ranges for each class separately, each range specifiesthe impact of a fault on changing the neuron value whether it influences the networkclassification result or not. Fig. 4.3 depicts different cases for vulnerability ranges over allnumbers. Three vulnerability ranges are identified as follows:
• Non-vulnerable range: If a fault lay an effect on the neuron output in this range, nomisclassification happens (hachured-green sections in Fig. 4.3);
• Vulnerable range: If a fault makes a difference at the output of the neuron in thisrange, the output will be misclassified (cross hachured-red sections in Fig. 4.3);
• Semi-vulnerable range: If a fault causes the neuron value to move as an amountin this range, this fault may cause a misclassification (dashed-grey sections in Fig.4.3). Cases d-f in Fig. 4.3 happen when the portion of zero gradients in step1 is lessthan the threshold and more than 1− threshold.
Step 3 - Bitflip Mapping: In this step, DeepVigor maps the neurons’ bitflipped valuesover input data on the vulnerability value ranges to indicate fine-grain vulnerability factors

60

0
-∞ +∞

min_neg max_neg min_pos max_pos
non-vulnerablesemi-vulnerablevulnerable

0
-∞ +∞

0
-∞ +∞

0
-∞ +∞

a)

b)

d)

g)
0

-∞ +∞f)

0
-∞ +∞c)

-∞ +∞e)
0

Figure 4.3: Different possible cases of vulnerability ranges for each class in a neuron.

asmetrics for the DNNs’ reliability. For this purpose, the inputs used in step2 and obtainedvulnerability value ranges are fed to the network and in each bit of each neuron, bitflipsare performed. In each bitflip, the difference in the new value of the target neuron iscalculated and compared with the corresponding vulnerability range.Based on the range of what the bitflip maps, the bit is considered vulnerable or non-vulnerable, respectively. By this analysis, the number of vulnerable bits of the neurons isobtained over the inputs. Hence, vulnerability factors of each layer (LVF), neuron (NVF),or bit (BVF) of the DNN can be defined as equations (4.4), (4.5), and (4.6), respectively.Vulnerability factors express the probability of misclassifying the network in case of theoccurrence of a bitflip at the target element.
LV F =

#vulnerable bits in layer
#inputs ×#layer′s neurons×word length

×100 (4.4)

NV F =
#vulnerable bits in neuron

#inputs ×word length
×100 (4.5)

BV F =
#vulnerable times f or bit

#inputs
×100 (4.6)

4.1.4 Validating DeepVigor By Fault Injection
As illustrated in Fig. 4.2, DeepVigor results are validated bymeans of FI over the input dataand categorizing faults based on the vulnerability value ranges. The steps of the validationprocess of DeepVigor are as follows:

Step 1 - Random Fault Injection: According to the adopted fault model, when oneinput is fed to the network, a random single bitflip is injected into a random neuron ina layer. This process is repeated several times for one input depending on the num-ber of neurons and word length of data to reach a 95% confidence level and 1% errormargin based on [144]. The required number of faults is obtained by Eq. (4.7) where
N =word length×#layer′s neurons that represents the total number of bits in the outputof a layer.

#layer′s random f aults =
N

1+(0.012× N−1
1.962×0.52)

(4.7)
61

Step 2 - Fault Categorization: Once a fault is injected, a difference is produced in theoutput of the neuron in comparison with the golden model. In this step, the produceddifference by a fault at the neuron’s output is compared with the obtained vulnerabilityranges, and faults are categorized as:
• Non-critical fault: The produced difference is in the non-vulnerable range.
• Critical fault: The produced difference is in the vulnerable range.
Step 3 - Validating DeepVigor: To validate DeepVigor by FI, injected faults are propa-gated to the output and the network classification output is examined. The accuracy ofthe method is defined based on the two metrics as follows:
• True non-critical faults: Percentage of faults that are categorized as non-critical anddo not change the classification at the output;
• True critical faults: Percentage of faults that are categorized as critical and changethe classification at the output.
Another metric for validating the outputs of DeepVigor is the correlation between LVFand DNN’s accuracy loss. This correlation shows that the obtained vulnerability factorsfrom DeepVigor represent the criticality of the components properly. Since other vul-nerability factors (NVF and BVF) are calculated using the same vulnerability ranges, byvalidating LVF, they will be also liable metrics for the resilience analysis, consequently.

4.1.5 Experimental SetupAll DNNs, steps of DeepVigor and its validation are implemented in PyTorch and run onNVIDIA 3090 GPU. To explore different DNN structures, six representative DNNs trainedon three datasets are examined for the experimental results. We have experimented withtwo 5-layer MLPs (one with Sigmoid and one with ReLU) trained on MNIST, two LeNet-5with 3 convolutional (CONV) layers, 2 max-pooling (POOL) layers, and 2 fully-connected(FC) layers trained on MNIST and CIFAR-10, AlexNet with 5 CONV, 3 POOLs, 2 batch nor-malization (BN) and 3 FCs trained on CIFAR-10, and VGG-16 with 13 CONV, 13 BNs, 5 POOLsand 2 FCs trained on CIFAR-100. The respective networks’ accuracy on the correspondingtest sets are 94.64%, 90.55%, 90.4%, 66.15%, 72.73%, and 69.41%.Data representation in this work is 32-bit floating point IEEE-754 and the word lengthin equations (4.4)-(4.7) is 32 bits. For validation, a layer-wise statistical random FI is per-formed that satisfies a 95% confidence level and 1% error margin, according to Eq. (4.7).In the first step of DeepVigor, ε l
k is considered ±10,000 for range initialization andthe whole search range is [−5× 105,5× 105]. Finding δ l

k in all networks by a logarith-mic search is performed for negative and positive numbers separately, considering a 0.05difference from the main value. Also, based on empirical explorations, the threshold ofneurons’ zero-gradients for inputs is considered 98% for all experiments. Correspondingexperiments are performed on the whole sets of training (as the input data set1) and test(as the input data set2) data.
4.1.6 Results and ValidationWe analyze all neurons of the representative DNNs with training sets as the input data
set1 by DeepVigor and obtain the vulnerability ranges. In the fault categorization step,faults are categorized into critical and non-critical classes with an accuracy close to 100%.Throughout the results from FI experiments, DeepVigor identified from 66.63% to 99.42%of faults as non-critical over different layers of analyzed networks.

62

Table 4.1: Accuracy of DeepVigor by fault injection on the same input data as the analysis.
DNN True non-critical faults True critical faultsMLP-sigmoid-mnist 99.985%∼100% 100%MLP-relu-mnist 99.991%∼100% 100%LeNet-mnist 99.992%∼100% 100%LeNet-cifar10 99.956%∼100% 100%AlexNet-cifar10 99.973%∼100% 99.955%∼100%VGG16-cifar100 99.950%∼100% 99.972%∼100%

For validation, Table 4.1 presents the range of obtained accuracy values of the methodthrough all layers of DNNs in terms of true non-critical and critical faults. It is observedthat the accuracy of the method for categorizing non-critical faults is 99.950% to 100%and for critical faults ranging from 99.955% to 100% for the same data set.Theminor error seen in the results is due to: 1) Considered error in finding vulnerabilityvalues, 2) FI results in "NaN" values in 32-bit floating point IEEE-754 while the computa-tions are being done on a GPU. We have categorized them as critical faults, 3) the effectof few inputs with non-zero gradients in step1 as described in 4.1.3.We have also experimented with FI on the test sets (input data set2) to see the valid-ity of the analysis on different sets reported in Table 4.2. As it can be seen, similar highaccuracy values to input data set1 are obtained.
Table 4.2: Accuracy of DeepVigor by fault injection on a different input data from the analysis.

DNN True non-critical faults True critical faultsMLP-sig-mnist 99.985%∼99.996% 99.911%∼100%MLP-relu-mnist 99.976%∼100% 100%LeNet-mnist 99.992%∼100% 100%LeNet-cifar10 99.952%∼100% 99.970%∼100%AlexNet-cifar10 99.951%∼99.997% 99.948%∼99.998%VGG16-cifar100 99.950%∼99.983% 99.972%∼99.998%
To validate the vulnerability factors, Fig. 4.4 illustrates the correlation between LVF andaccuracy loss for a layer-wise FI on AlexNet. As demonstrated, there is a close relationshipbetween the LVF obtained fromDeepVigor and accuracy loss in FI, either the input sets aresimilar or different. This correlation is observed similarly in the results for all experimentedDNNs. Therefore, LVF represents the vulnerability of layers competently.DeepVigor also provides NVF and BVFmetrics as vulnerability factors for neurons andbits, respectively. As a representative example, Fig. 4.5 depicts NVF for layer conv3 ofLeNet5-mnist and LeNet5-cifar10 that the more vulnerable neurons can be identified. Inthis figure, the number of neurons is sorted in eachDNN separately, in the ascending orderof NVF. Also, BVF for all neurons in DNNs is obtained and the results show that the mostsignificant bit of exponents is the most vulnerable bit in most cases.

4.1.7 Run-Time Analysis
DeepVigor enables a fine-grain reliability evaluation for DNNs faster than exhaustive FI. Inour experiments, step1 of DeepVigor have removed up to 48% of neurons’ vulnerabilityanalysis to be processed in step2. Moreover, the range initialization in step1 has acceler-ated the search for the vulnerability values for 50% to 99% of neurons in step2 amongthe DNNs. Based on our experiments, a complete vulnerability range (as in Fig. 4.3) forone neuron can be obtained by 9.1 times feed-forward execution per neuron on average.

63

conv1 conv2 conv3 conv4 conv5 fc1 fc20.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Layers of AlexNet

LVF
(%)

LVF Accuracy Loss (same sets) Accuracy Loss (different sets)

Figure 4.4: Correlation between LVF and accuracy loss.

0 20 40 60 80 100 120
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Neurons in Layer CONV3 of LeNet-5

NVF
(%)

LeNet5-mnist LeNet5-cifar10

Figure 4.5: NVF of neurons in CONV3 for LeNet5-mnist and LeNet-cifar10.

While an exhaustive FI experiment runs the feed-forward by the number of bits (32 in ourcase) per neuron. Therefore, DeepVigor requires 3.5 times fewer feed-forwards translat-ing into a similar amount of speed-up in run-time.The run-time of DeepVigor depends on:
• Two backpropagation execution per neuron (one for positive and one for negativenumbers) in step1;
• Feed-forward executions based on the number of searches for finding a positive ornegative δ l

k per neuron, in which the best case is 0 search (in case of zero gradients),the moderate case is 14 searches (in case of limited range initialization), and theworst case is 22 searches;
• Vulnerability analysis of the neurons in the last layer is performed by simplifiedmathematics similar to Fig. 4.1 and requires no iterative feed-forward or searchingprocess through a wide range of numbers;
• Bitflipmapping is merely performing a bitflip at each neuron and a comparisonwiththe obtained vulnerability ranges.

4.1.8 DiscussionThe DeepVigor method is validated in the previous section, and it is shown how it canevaluate the reliability of DNNs proficiently with shorter run-times than FI. Vulnerability
64

ranges enable a fine-grain and accurate resilience evaluation for neural networks. Theyare not limited to representing the single bitflip fault model and the outcome of the anal-ysis is valid for an erroneous output for the neurons covering several fault models. Theoutputs of DeepVigor provide different possibilities for exploiting techniques of reliabilityimprovement, including:
• Selective bits/neurons/layers hardening in accelerators based on the obtained VFmetrics for bits, neurons, and layers;
• Fault-aware mapping for neurons on the processing elements of accelerators as in[202, 210];
• Applying range restriction for neurons’ or layers’ outputs for preventing faults prop-agation as in [53, 93, 113].
The output of this method is the vulnerability value ranges for all neurons throughthe DNNs which result in vulnerability factors for all layers, neurons, and bits of the DNN,separately. The method is validated extensively by fault injection and its feasibility to cat-egorize non-critical and critical faults on complex DNNs with 99.9% to 100% accuracy isdemonstrated. Moreover, vulnerability factors obtained by the proposed analysis providefine-grain criticalitymetrics for DNNs’ components leading to different reliability improve-ment techniques. This method enables an accelerator-agnostic analysis for DNNs and re-sults can be applied to different accelerators.

4.2 DeepVigor+: Scalable and Accurate Fault Resilience Analysis
DeepVigor is demonstrated to be faster than FI due to its novel fault propagation analysismethod, however, it requires a high execution time to obtain VFs. The reason is that Deep-Vigor attempts to analyze all neurons in a CNN as well as to find the vulnerability valuesin a huge space of numbers. This section proposes DeepVigor+, a new method to quicklyobtain VF metrics for layers and DNN models addressing both scalability and accuracy offault resilience analysis in the literature. DeepVigor+ employs an optimized error propa-gation analysis in neurons, assuming that a single fault might happen either at its inputsor weights, thus leading to effectively shrinking the search space for vulnerability values.Moreover, DeepVigor+ proposes a stratified sampling to further accelerate the process ofresilience analysis without a tangible analysis accuracy mitigation, leading to obtaining VFin a few minutes, even for deep and large emerging DNNs.
4.2.1 Fault Model
A Single Event Upset (SEU) caused by soft errors can impact memory cells, leading to un-intended bit flips in stored values. In DNN accelerators, SEUs can affect either the model’sparameters (i.e., weights) or its activations (i.e., layer inputs), as these values are storedin memory elements such as registers or on-chip memory [123].For reliability analysis, the multi-bit fault model is more realistic, however, it requiresa huge fault space to consider all combinations, i.e., 3n−1 combinations where n is thenumber of bits. On the other hand, it is demonstrated that the single-bit fault model pro-vides a high fault coverage of multiple-bit faults [46]. Therefore, analyzing the reliabilityof DNNs based on a single-bit fault model is valid for obtaining the VF of models.Therefore, in DeepVigor+, we build our analysis based on the single-bit fault model inweights and activations. We assume that a single parameter or a single input to a layeris faulty which is propagated to the output of the corresponding layer. By mathematical

65

analysis, we model the fault propagation to the output of neurons and DNNs, resulting incalculating VF for them.
4.2.2 Fault Propagation Model
4.2.2.1 Single Fault Analysis in 32-bit Floating-Point Tomodel the behavior of faults forthe analysis, we assume that at an inference, a single fault may influence the value of asingle input activation to a neuron or a single parameter in a CNN. First, we analyze theeffect of a single bitflip on the 32-bit floating-point data representation to comprehendhow a value might change due to a single fault. IEEE-754 32-bit floating-point data type isshown in Fig. 4.6. It contains 1 sign bit, 8 exponent bits, and 23 fraction bits, and representsa number based on Eq. (4.8).

number = (−1)sign×2E−127× (1+
i=23

∑
i=0

b23−i×2i) (4.8)

Figure 4.6: 32-bit floating point IEEE-754 data representation.
In this regard, we consider the following lemmas:
• Lemma 1: Any bitflip from 1 to 0 in a value decreases the value as ε while ε < 0, andany bitflip from 0 to 1 increases it as ε while ε > 0.
• Lemma 2: In the 32-bit floating-point data representation, an error (ε) induced to avalue (x) by a bitflip in bit i can be represented as in Eq. (4.9), whether the bitflip isin sign bit (2×x), exponent bits (2i×x), or mantissa bits (2i), as stated in [82, 248].

{
x f aulty = x+ ε

ε ∈ {2× x,2i−23× x,2i} (4.9)
• Lemma 3: To unify the analysis of the error induced to a value by a single bitflip, wecan approximate ε by representing it as a power of two, for each section of the datarepresentation, as follows:

1. Sign: approximate ε as±2log2(2×x),
2. Exponent: approximate ε as±2i−23, assuming that x is a small value,
3. Mantissa: approximate ε as±2i.

In all cases, ε can be approximated as the nearest value of the power of two to theactual ε . This approximation can lead to a unified representation for ε . To that end,
ε might be negative or positive (based on Lemma 1) andmight be small or big (basedon Lemma 2). Eventually, we can express it as a unified representation as shown inEq. (4.10).

ε ≈±2ρ ;ρ ∈ {±1,±2,±3, ...} (4.10)
66

• Lemma 4: When a faulty value is used in a multiplication operation in CNNs, theerroneous output can also be approximated. It has been observed that the param-eters in CNNs are mainly distributed around 0 and in the range of [−1,1] [118]. Inorder to approximate the error ofmultiplying two valueswhen one of them is faulty,we can analyze it based on Eq. (4.11), where x and y are fault-free values and x′ isthe faulty value after a bitflip in x.

let : x′ = x+ ε

then : x′× y = x× y+ ε× y

⇒ x′× y = x× y+δ (4.11)
In Eq. (4.11), when x is a small value, δ ≈ 0. Since most values in CNNs’ operationsare close to 0, the erroneous values inmultiplications in a CNN can be approximatedbased on the unified error representation, as shown in Lemma 3 and Eq. (4.10).

4.2.2.2 Single Fault Error Propagation in CNNs We analyze the single bitflip error prop-agation in CNNs considering their effect on the values of numbers. Each neuron in a con-volutional (CONV) layer operates as shown in Eq. (4.12), where the Output Feature Map(OFMap) in lth layer and kth channel is obtained by the summation of multiplications be-tween weights (ŵ) and Input Feature Map (IFMap, x̂) plus bias (b). In CONV layers, ŵ and
x̂ are 3-Dimensional (3D) cin×n×n arrays, where cin is the number of inputs channels tothe layer, and n is the kernel size.

OFMapl
k(x̂, ŵ,b) = (

cin

∑
i=0

n

∑
j=0

n

∑
k=0

xi jk×wi jk)+b (4.12)
Here, we assume that a fault affects a single IFMap in a single neuron, thus, it producesa single erroneous OFMap. Supposing that a fault occurs in an IFMap xi jk, represented as

x′i jk. The fault introduces an error ε to the fault-free value of xi jk. Therefore, it can beexpressed in Eq. (4.13).
x′i jk = xi jk + ε (4.13)

Hence, once a bitflip occurs in x̂ in Eq. (4.12), the partial multiplication is computed inEq. (4.14). In this equation, the term xi jk×wi jk represents the fault-free multiplication,and ε×wi jk is an added error to the output by a fault which can be represented as δ .
x′i jk×wi jk = (xi jk + ε)×wi jk

= xi jk×wi jk + ε×wi jk

= xi jk×wi jk +δ (4.14)
Consequently, the erroneous OFMap can be expressed in a way that it is the summa-tion of the fault-free OFMap and δ , while the single faulty IFMap in x̂ can be in any indexof the corresponding 3D array. Considering Lemma 4, the induced error at the neuron’sOFMap can be expressed in Eq. (4.15).

OFMapl
k(x̂
′, ŵ,b) = OFMapl

k(x̂, ŵ,b)+δ

δ ≈±2ρ ;ρ ∈ {±1,±2,±3, ...} (4.15)
67

On the other hand, when a fault occurs in a weight, it has the same effect on a singleneuron’s output. However, the same faulty weight in the corresponding CONV layer isused by all neurons in the layer, as filters slide over all IFMaps. Therefore, it results inan output channel in which all OFMaps are erroneous, as shown in Fig. 4.7. ConsideringLemma 4, the fault propagation for an output channel can be expressed in Eq. (4.16).

...
...

...

...
...

...
*

All OFMaps in
this channel are

erronous
...

...

...
...

...
...

...

Single bitflip

Figure 4.7: Fault propagation in a CNN in the case of a single bitflip in a weight.

Out_Channell
k(x̂, ŵ,b) = x̂∗ ŵ+b

Out_Channell
k(x̂, ŵ

′,b) = x̂∗ ŵ+b+ ε ∗ x̂

Out_Channell
k(x̂, ŵ

′,b) = Out_Channell
k(x̂, ŵ,b)+δ

δ ≈±2ρ ;ρ ∈ {±1,±2,±3, ...} (4.16)
Based on the aforementioned theoretical analysis, to analyze the effect of single faultson CNNs, regardless of the fault occurrence in activations or weights, we only need toidentify an added value δ (as a power of two) at the output of the target neuron/channelwhere it misclassifies the golden class of the CNN for each input image.

Pre-trained
DNN

Validation
Data

Vulnerability
Values

Taget
Neuron/Filter

Vulnerability
Factor

2. Vulnerability Values
Identification

1. Single Bitflip
Analysis

3. Obtaining
Vulnerability Factor

Vulnerability
Values Search
Space (VVSS)

Error
Distribution

Figure 4.8: An overview of the conducted steps in DeepVigor+.

4.2.3 The DeepVigor+ MethodIn this section, the steps of DeepVigor+ are presented. Fig. 4.8 illustrates the steps ofthe DeepVigor+ methodology for fault resilience analysis of DNNs against single faults.The method’s objective is to provide the Vulnerability Factor (VF) for layers and the entireDNN model when a single fault happens in activations or weights.
68

The inputs of the method are a pre-trained CNN and validation data in a dataset. Dur-ing the analysis, an OFMap or output channel is targeted, and multiple steps are taken toprovide the VF metrics:
1. Single Bitflip Analysis: constructs a search space for possible vulnerability valuesand produces a distribution of erroneous values based on the approximations inEq. (4.15) and (4.16),
2. Vulnerability Values Identification: obtains vulnerability values for the targetOFMapor channel
3. Obtaining Vulnerability Factor: exploits identified vulnerability values and error dis-tribution to provide VF for the target OFMap or channel.
By obtaining the VF for the analyzed neurons and filters in a DNN, the VF for layers andthe entire DNN can be derived. The details of each step are explained in the following.Noteworthy that each step presents a detailed description for analyzing a target neuronand then briefly links it to weights in filters.
Step 1 - Single Bitflip Analysis: As mentioned above, single faults at the inputs of aneuron are considered. This step conducts bitflips in the input activations of the targetneuron to construct Vulnerability Values Search Space (VVSS) and Error Distribution Map(EDM) for the target neuron. VVSS is a set of candidate values representing all possible δin Eq. (4.15). In other words, VVSS represents output errors produced by single bitflips inany bit locations of the inputs of the target neuron. EDM represents the distribution of δin Eq. (4.15) throughout the approximated δ values with a power of two.Obtaining VVSS and EDM requires performing a single bitflip for each input and multi-plying it by its corresponding weight, as shown in Eq. (4.14). Nonetheless, it is an exhaus-tive operation with high time complexity. This complexity can be remarkably reduced byleveraging Algorithm 4.1. In this algorithm, for each bitflip, we obtain all possible δ pro-duced at the output of the neuron for all inputs at once.Since each inputmight be faulty separately, to produce all errors in a neural operation,we first flip the ith bit in all inputs (line 3) and then convert the binary representation toa value (line 4). Then, the difference of the erroneous_inputs with the fault-free inputis computed (line 5), which represents all possible errors at inputs (ε in Eq. (4.14)) forall inputs added by a single bitflip in either of them. Then, a point-wise multiplicationbetween the erroneous_inputs and weights results in producing all possible errors (δ inEq. (4.15)) at the output (line 6).

Algorithm 4.1 Error Analysis for a Neuron
Input: Target neuron’s inputs and weights as 3D matrices;
Output: All possible errors at the output;Assume: δ is the error added to each golden output; All values are in 32-bit floating-bit;
1: binary_representation = float32_to_binary(inputs);
2: for i ∈ [0,31] do:
3: flip bit i in binary_representation;
4: erroneous_inputs = binary_to_float32(binary_representation);
5: input_errors = erroneous_inputs - inputs;
6: output_errors_list.append(input_errors⊙ weights);
7: end for;

69

Algorithm 4.1 produces all errors at the output of the target neuron. Thereafter, basedon the presented theory in the previous subsection, we generate the distribution of allproduced errors as an Error DistributionMap (EDM) based on the Candidate VulnerabilityValues (CVVs) which are a set of numbers as a power of two, shown in Eq. (4.17). Based onthe experimental observations, we limit the CVV in the analysis between−210 and 210 forlarge values. The error values between −2−10 and 2−10 are merged as their propagationeffects on CNNs are negligible and masked.
CVV = {±2ρ};ρ ∈ {0,±1,±2,±3, · · · ,±9,±10} (4.17)

EDM contains the distribution ratio of the values in output_errors_list in Algorithm 4.1,between each consecutive CVV, as shown in Eq. (4.18). EDM provides the ratio of errordistribution with respect to each candidate vulnerability value, demonstrating howmucheach CVV represents the produced errors at the output of the target neuron. Based onthe EDM, each CVVwhose distribution ratio is not zero, is added to the Vulnerability ValueSearch Space (VVSS). This means that VVSS contains a subset of CVV that are the approx-imated errors produced by single faults in the inputs and might lead to misclassificationat the output of the CNN.

∀i ∈CVV ;distribution_ratioi =
count(CVVi−1 < out put_errors_list <CVVi)

count(out put_errors_list)
(4.18)

The process of single bitflip analysis for a target filter is similar to the one for a neuron.Nonetheless, in the case of a bitflip in a filter, all OFMaps in an output channel are affected(as described in Eq. (4.16)). Therefore, this step is performed separately on every bit of allweights in the target filter, so thatVVSS and EDM for the corresponding filter are obtained.
Step 2: Vulnerability Values Identification: This step exploits VVSS to identify the vul-nerability values for the target neuron (i.e., OFMap) by exploring its constructed VVSS. Asmentioned, VVSS represents output errors induced by a single fault occurring at the inputsof the target neuron. The objective is to identify the maximum negative and minimumpositive vulnerability values among the existing ones in VVSS for a neuron that misclassifythe DNN’s outputs from its golden classification for each input data.To explore the vulnerability values efficiently, we divide them into four different explo-ration spaces:
1. VV SS[−∞,−1]: contains CVVs between [−∞,1] with non-zero distribution ratio,

Start

No

Yes misclassified?

YesNo exploration
finished? End

;
1 2 3 4

5

67

8

Update

9

Figure 4.9: Vulnerability value identification for a target neuron with a single input data forpositive errors.

70

2. VV SS(−1,0): contains CVVs between (−1,0) with non-zero distribution ratio,
3. VV SS(0,1): contains CVVs between (0,1) with non-zero distribution ratio,
4. VV SS[1,+∞]: contains CVVs between [1,+∞] with non-zero distribution ratio.
The flowchart in Fig 4.9 illustrates the algorithm of vulnerability value identificationfor positive vulnerability values for a single input data X. In this flowchart, δ is the vul-nerability value added to the target OFMap. First, δ equals 1 (box 1) is added to the targetOFMap. Thereafter, the forward pass of the CNN is performed to obtain its output logits(E) while a neuron is erroneous (box 2).In box 3, a loss function L is calculated to obtain the effect of added δ to the targetOFMap on the output classes based on the summation of the differences between all out-put class’s logits from the golden class. In this loss function, Ect represents the erroneousoutput logit of the golden top class andEc j is the erroneous output logit of any other class.In box 4, the gradient of loss functionL w.r.t. the target OFMap is calculated to checkif the CNNmight bemisclassified or not, when the target OFMap is erroneous. If the gradi-ent is 0, faults producing positive deviation in the neuron do not lead to misclassification.In this case, the neuron’s vulnerability value is considered the biggest CVV assumed valuefor positive numbers (i.e., 210) in box 5, and the algorithm ends. If the gradient is not 0,therefore, a value can be found for δ in the target OFMap which misclassifies the CNN.The rest of the algorithm attempts to find the minimum positive δ in VVSS.In box 6, it is examined if the CNN misclassifies the input from its golden classificationwhen δ = 1 for the target neuron, determining the initialization for δ in the next steps. Ifthe input ismisclassifiedwhen δ = 1, it means that its vulnerability value is less than 1 andwe should explore VV SS(0,1) (box 7), otherwise, VV SS[1,+∞) should be explored (box 8).In the case of exploringVV SS(0,1), δ is set to the middle element of the set, and if it doesnot misclassify the golden output, the next bigger CVV should be explored. This processcontinues until the first value which misclassifies the output is found (loop 9). The finalpositive vulnerability value (δ+) for the target neuron is the minimum value in positiveVVSS that does not misclassify the input for CNN from its golden classification.To identify the maximum negative vulnerability value (δ−) that does not misclassifythe input from its golden classification, the same procedure is conducted to explore nega-tive values in VVSS. As a result, the Vulnerability Value Range (VVR) for the correspondingneuron is obtained and is expressed in Eq. (4.19). VVR represents all induced error valuesto the outputs of a neuron leading to a misclassification. Noteworthy that since bitflipsin 32-bit floating-point might lead to large values, we assumed that any value larger than

210 and less than 2−10 are critical for CNNs, therefore, these values represent+∞ and−∞respectively.
VV R = (−∞,δ−]∪ [δ+,+∞) (4.19)

The step of vulnerability values identification for a target filter is similar to the one fora neuron. It is conducted similarly to the illustrated flowchart in Fig. 4.9 to obtain VVR forthe corresponding output channel resulting in VVR for each target channel in a DNN.
Step 3: Obtaining Vulnerability Factors: As mentioned, an Error Distribution Map(EDM) is obtained for the target neuron in step 1, representing the distribution ratio foreach vulnerability value. On the other hand, the Vulnerability Value Range (VVR) is ob-tained in step 2. This step aims tomapVVR to EDM to provide the VF for the target neuron,expressing the probability of misclassification in the case of a single bitflip in its inputs.Fig. 4.10 depicts how VF can be obtained by mapping VVR to aggregated EDM. Aggre-gated EDM represents the summation of the distribution ratio for all values less than a

71

CVV. As shown in Fig. 4.10, all values between (δ−,δ+) are non-vulnerable meaning thatif an error deviates the OFMap as big as any value in this range, it will not misclassify thegolden output. Otherwise, the error value is vulnerable leading to a misclassification.VF is obtained by subtracting the distribution ratio of theminimumpositive vulnerabil-ity value (δ+) and the maximum negative vulnerability value (δ−) as shown in Eq. (4.20).This equation expresses what portion of all errors produced at the output are critical forthe CNN in terms of misclassification which is equivalent to the probability that a faultmisclassifies the CNN’s output.

V Ftarget_neuron = 1− (distribution_ratioδ+ −distribution_ratioδ−) (4.20)

Figure 4.10: Mapping obtained Vulnerability Value Range (VVR) to aggregated Error DistributionMap (EDM) for VF calculation.
The VF for a filter is obtained similarly. The EDM and VVR for the target filter are ob-tained in step 1 and step 2 and they are exploited to provide the VF for the target filter.Deriving the VF for individual neurons and filters leads to obtaining the VF for CONV layersand the entire CNN model. Since the analysis is performed for neurons and filters sepa-rately, it can provide separate VF for layers and for the entire model based on filters andneurons. The Layer Vulnerability Factor (LVF) is the average of VF for all activations/filters.To obtain the total Model Vulnerability Factor (MVF) of the entire model using theobtained detailed VFs based on the activations and filters analysis, Eq. (4.21) is introduced,where L is the total number of layers in a CNN, Nl andWl are the total number of outputactivations and weights in layer l. This equation is a layerwise weighted average of LVFsthroughout the layers of a CNN including both activations and filters vulnerability analysis,leading to the MVF for the entire model, representing the probability of misclassificationif a fault occurs either in activations or weights.

MV Ftotal =
∑

L
l=1(

Nl
Nl+Wl

×LV Factl +
Wl

Nl+Wl
×LV Fweightl)

L
(4.21)

The DeepVigor+ analysis can be conducted for all neurons/filters in a CNN. However,performing a complete analysis is obstructive and time-consuming, particularly for emerg-ing CNNs. To address the scalability issue in resilience analysis for huge CNNs, we exploitthe stratified sampling concept to reduce the sampling size for statistical DeepVigor+ anal-ysis. Stratified random sampling is amethod to increase the accuracy of estimation in sam-pling by dividing the population into subgroups called strata and random samples can beselected within them [217].
72

In DeepVigor+, the analysis is performed layer by layer. To take the benefits of stratifiedsampling for reducing the execution time of the analysis, we assume that each outputchannel in a layer is one stratum. Thereafter, a portion of all output channels specifiedby channel sampling ratio is considered and some random channels are selected. Withineach channel, the number of analyzed neurons is determined by the log2(#neurons) inthe target channel, which is selected randomly. Therefore, the number of analyses can bedescribed with Eq. (4.22).

#analyzed neurons = ∑
l∈layers

⌈channel_sampling_ratio×

out_channell⌉× log2(#neuronsl
channel) (4.22)

4.2.4 Experimental Setup
4.2.4.1 DeepVigor+ Implementation DeepVigor+ is fully implementedusing Python andthe Pytorch library. The source code of DeepVigor+ is fully open-source in https://
github.com/mhahmadilivany/DeepVigor as a tool to enable researchers and engi-neers to adopt it for the resilience analysis of DNNs. The user can obtain the VF for theCONV layers of a target CNN based on analyzing neurons or weights by determining itthrough some inputs. User can specify the following inputs for the analysis:

• Target pre-trained CNN: the tool loads the pre-trained set of weights, in readableformats for pytorch (e.g., .h5 or .pth).
• Dataset: the tool loads the validation data from the dataset.
• Analysis method: the tool performs resilience analysis for neurons (OFMaps) or fil-ters (weights).
• Sampling method: the tool performs either complete analysis or stratified randomsampling based on channel sampling ratio.
• Channel sampling ratio: in the case of stratified random sampling, the channel sam-pling ratio should be specified.
With the determined inputs, the tool performs the analysis and outputs the LayerVulnerability Factor (LVF) for each layer and the Model Vulnerability Factor (MVF) for theentire CNN model. In this section, we perform the DeepVigor+ analysis on one batch of100 images in the test set. Note, that all experiments consider 32-bit floating-point datarepresentation.

4.2.4.2 Validating DeepVigor+ by Fault Injection We use Fault Injection (FI) to validatethe results of DeepVigor+. To that end, we validate the VF for channels by analyzing filtersof CNNs using complete DeepVigor+ and weights FI. In this regard, before an inference, arandom 3D filter in a specified layer is selected. In the FI campaign, one bit of one weightin the target filter is flipped considering 32-bit floating-point data representation and theinference is performed on the same data as the DeepVigor+ analysis was conducted. Thesame FI process is carried out for all bits of weights in the target filter resulting in the Chan-nel Vulnerability Factor (CVF) calculated by the ratio of outputmisclassifications comparedto the golden outcomes. The obtained CVF in FI for each channel is compared with theone in complete DeepVigor+ for the corresponding channel, and their absolute errors are
73

https://github.com/mhahmadilivany/DeepVigor
https://github.com/mhahmadilivany/DeepVigor

reported. In all DNNs under the experiment, 15% of all channels throughout the CONVlayers are passed through the FI campaign for validation.To show the accuracy of the result in exploited stratified sampling in DeepVigor+, wecompare the obtained VF for channels (CVF) and layers (LVF) in sampling DeepVigor+ vs.complete DeepVigor+ for both activations and filters. The absolute difference betweenobtained VFs is derived to show the VF estimation in sampling analysis. In order to achievemore accurate results, different channel sampling ratios are experimented including 5%,
10%, 15%, and 20%. Since neurons and channels are selected randomly in the strati-fied sampling, each sampled analysis is repeated 50 times and the maximum and meanabsolute errors are reported.Furthermore, to show the efficiency of DeepVigor+ analysis, we present the numberof simulations for DeepVigor+ and how it outperforms FI. First, we compare the numberof simulations in complete analysis of DeepVigor+ against exhaustive FI. Also, we com-pare the number of simulations for sampling DeepVigor+ with state-of-the-art StatisticalFault Injection (SFI) methods for CNNs proposed in [200], considering layer-wise SFI, data-unaware SFI, and data-aware SFI. Finally, the execution time for the complete and sam-pling DeepVigor+ is demonstrated on an NVIDIA A100 GPU to showcase the efficiency ofthe proposed method.The number of simulations in an SFI experiment for conventional computing hardwareused to be specified by Eq. (4.23), where n is the number of samples,N is total fault space,e is the error and t is determined based on the expected confidence-level [144].

n =
N

1+ e2× N−1
t2×p(p−1)

(4.23)
However, it is shown that applying Eq. (4.23) to the entire DNNdoes not result in statis-tically accurate results [200]. Authors in [200] introduced multiple methods to improvethe accuracy of SFI as well as to reduce the number of simulations. Accordingly, layer-wise SFI, data-unaware SFI and data-aware SFI were presented, which generally apply Eq.(4.23) to each layer separately. Data-unaware SFI and data-aware SFI methods consider FIat the bit level to improve the statistical experiments. In data-unaware p = 0.5 for all bitsin Eq. (4.23), whereas in data-aware SFI requires a pre-analysis to specify the p for eachbit position in the data representation.

4.2.4.3 CNNs Under Study In this section, Deepvigor+ is executed and validated on sixpre-trained DNNs using various datasets. DNNs under analysis include VGG-11 trained onCIFAR-10, VGG-16, ResNet-18-C and MobileNetV2 trained on CIFAR-100, ResNet-18-I, andResNet-34 trained on ImageNet. The baseline accuracy, number of channels and neuronsfor each DNN are shown in Table 4.3. All experiments in this section are performed on anNVIDIA A100 GPU accompanied by AMD EPYC 7742 64-core CPU.
4.2.5 Results
4.2.5.1 DeepVigor+ Accuracy Compared to FI To analyze the accuracy of the obtainedVFs by DeepVigor+, we perform FI experiments on 15% of randomly selected channels inall CNNs in Table 4.3 and present the Mean Absolute Error (MEA), as described in sub-section 4.2.4.1. Table 4.4 presents the MEA results comparing the Channel VulnerabilityFactor (CVF) by the complete DeepVigor+ filters analysis vs full FI into 15% of channels ineach DNN. Noteworthy that the acceptable mean error is 1% [200].The results in Table 4.4 indicate that themean absolute error byDeepVigor+ comparedto exact FI throughout the DNNs is between 0.819% to 0.978%, i.e., always less than 1%.

74

Table 4.3: The CNNs under study for DeepVigor+ validation.
DNN Dataset Baselineaccuracy # of CONVlayers # of channels # of neurons
VGG-11 Cifar-10 92.52% 8 2,752 232,448
VGG-16 Cifar-100 66.97% 13 4,224 185,344

ResNet-18-C Cifar-100 70.26% 20 4,800 666,624
MobileNetV2 Cifar-100 61.27% 54 17,188 854,064
ResNet-18-I ImageNet 69.19% 20 4,800 2,182,656
ResNet-34 ImageNet 73.04% 36 8,512 3,437,056

These results demonstrate that DeepVigor+ is able to provide precise VFs and meets theexpectation of an acceptable error with respect to exhaustive FI experiments.
Table 4.4: Absolute error for CVF in DeepVigor+ and fault injection for 15% of the channels in CNNs.

CNN VGG-11 VGG-16 ResNet-18-C Mobile-NetV2 ResNet-18-I ResNet-34
Mean Absolute Error 0.819 0.938 0.933 0.874 0.978 0.878

The main sources of error in VF calculation in DeepVigor+ are:
1. As discussed in subsection 4.2.2.2, DeepVigor+ approximates the error propagationin neurons based on the values of power of 2. This error approximation introducesan error to the resilience analysis which is also reflected in VF calculation.
2. DeepVigor+ assumes that bitflips resulting in big values are critical for DNNs and thedistribution ratio for large values are always considered critical. However, in somecases, these values don’t result in misclassification. This phenomenon is anotherreason for a minor difference between the VF by FI and DeepVigor+.

4.2.5.2 Sampling Analysis vs. Complete Analysis This subsection presents the resultsfor sampling DeepVigor+ and compares its VF results against the complete analysis toshow how accurate sampling DeepVigor+ is. Channel Vulnerability Factor (CVF) and LayerVulnerability Factor (LVF) are derived as described in subsection 4.2.3 and the maximumand mean absolute error for obtained CVFs and LVFs in complete and sampling Deep-Vigor+ for neurons and filters are presented separately. In sampling DeepVigor+, channelsampling ratio is explored.Table 4.5 indicates the absolute errors over various channel sampling ratio for DNNsunder study, in both neurons and filters analysis. Each sampling analysis is repeated 50times to observe the effect of random selections in stratified sampling. Based on the re-sults, the minimum absolute error throughout the experiments for both CVF and LVF isvery close to 0. As observed, the difference between obtained CVFs and LVFs throughoutthe results is minimal, demonstrating the effectiveness of the exploited stratified sam-pling.In all experiments, the Mean Absolute Error (MAE) for CVF does not vary since thesamplingmethodwithin channels is similar (i.e., the logarithm of the number of OFMaps).
75

Table 4.5: Average absolute error analysis over 50 executions for sampling DeepVigor+ comparedto complete analysis.
Activations analysis Filters analysis

DNN channelsampling ratio MAE CVF Max errorCVF MAE LVF Max errorLVF MAE CVF Max errorCVF MAE LVF Max errorLVF
VGG-11

5% 0.0004% 0.011% 0.0010% 0.012% 0.064% 0.171% 0.019% 0.125%10% 0.0004% 0.008% 0.0008% 0.008% 0.064% 0.148% 0.015% 0.097%15% 0.0004% 0.004% 0.0007% 0.007% 0.063% 0.130% 0.011% 0.083%20% 0.0004% 0.006% 0.0007% 0.007% 0.063% 0.128% 0.008% 0.076%
VGG-16

5% 0.037% 0.141% 0.033% 0.250% 0.045% 0.216% 0.017% 0.183%10% 0.038% 0.144% 0.022% 0.188% 0.044% 0.116% 0.010% 0.094%15% 0.038% 0.118% 0.018% 0.168% 0.043% 0.137% 0.008% 0.064%20% 0.038% 0.130% 0.015% 0.140% 0.043% 0.141% 0.007% 0.065%
ResNet-18-C

5% 0.029% 0.097% 0.054% 0.633% 0.045% 0.153% 0.016% 0.137%10% 0.029% 0.092% 0.038% 0.386% 0.045% 0.123% 0.011% 0.076%15% 0.029% 0.093% 0.031% 0.272% 0.045% 0.127% 0.010% 0.083%20% 0.029% 0.071% 0.026% 0.300% 0.045% 0.124% 0.008% 0.085%
MobileNetV2

5% 0.031% 1.443% 0.079% 2.803% 0.030% 0.893% 0.013% 0.983%10% 0.033% 0.841% 0.053% 1.252% 0.030% 0.401% 0.009% 0.372%15% 0.032% 0.586% 0.044% 0.742% 0.030% 0.468% 0.007% 0.346%20% 0.032% 0.465% 0.037% 0.720% 0.030% 0.401% 0.006% 0.320%
ResNet-18-I

5% 0.005% 0.071% 0.007% 0.168% 0.041% 0.115% 0.016% 0.114%10% 0.005% 0.070% 0.005% 0.212% 0.041% 0.096% 0.010% 0.061%15% 0.005% 0.054% 0.004% 0.108% 0.041% 0.083% 0.008% 0.062%20% 0.005% 0.045% 0.003% 0.082% 0.042% 0.089% 0.006% 0.032%
ResNet-34

5% 0.003% 0.061% 0.005% 0.140% 0.045% 0.136% 0.016% 0.087%10% 0.003% 0.059% 0.003% 0.084% 0.045% 0.127% 0.011% 0.097%15% 0.003% 0.054% 0.002% 0.089% 0.046% 0.122% 0.009% 0.080%20% 0.003% 0.048% 0.002% 0.063% 0.045% 0.120% 0.007% 0.061%

Also, it is observed that theMEA CVF is less than 0.065% in all experiments for both activa-tions and filters sampling analysis. It means that the averaged VF for the logarithm-basedrandom sampling within each channel results in a highly accurate CVF. This phenomenonis a result of the unified distribution of weights within a channel in a pre-trained DNN.The maximum observed error in neuron analysis is 0.004% to 1.443% throughout DNNs,whereas the mean error remains low, meaning that for most of the channels, obtainedCVFs are highly accurate leading to an overall high accuracy for obtained CVFs.On the other hand, channel sampling ratio directly affects the accuracy of LVF calcu-lations. According to Table 4.5, the error of LVF decreases with the increase of channelsampling ratio. Considering both MEA and maximum error for LVF, a 10% channel sam-pling ratio can guarantee a minimal error for VF calculations. Based on the MEA of com-plete DeepVigor+ compared to exhaustive FI in Table 4.4, sampling DeepVigor+ with 10%channel sampling ratio ensures that the overall error of obtained VFs will be below 1%.In conclusion, the proposed stratified sampling in DeepVigor+ results in highly accu-rate VF for channels and layers obtained from both activations and filter analysis with achannel sampling ratio of 10%. Sampling DeepVigor+ results in a higher error than state-of-the-art statistic FI approaches such as data-aware and data-unaware, yet it meets therequirement of average error for resilience study which is 1%.
4.2.5.3 Run-Time and Scalability Investigation To show the excellence of DeepVigor+in terms of complexity, scalability and execution time against FI, first, we investigate thecomplexity of each based on the required number of simulations (i.e., forward pass exe-cutions) to obtain VF. Then we present the execution time for the complete and samplingDeepVigor+ on an NVIDIA A100 GPU.Exhaustive FI is the most accurate method for determining precise VFs. In exhaustiveFI, the required number of simulations equals the number of activations/weights timesbit-width (i.e., 32 bits). Therefore, its complexity is proportional linearly to the size of

76

DNNs. Whereas the complete DeepVigor+ analysis estimates VFs with high accuracy andsignificantly lower complexity. Although its complexity is affected by the size of DNNs,DeepVigor+ analysis exploits various optimizations to reduce the number of simulationsresulting in significantly lower complexity than exhaustive FI. This is evidenced by the re-sults in Table 4.6where the required number of simulations is compared between Exhaus-tive FI and complete DeepVigor+ analysis, for activations and filters separately.
Table 4.6: Number of simulations for exhaustive FI vs complete DeepVigor+ for activations andfilters analysis.

Activations FiltersDNNs Exhaustive FI DeepVigor+ Exhaustive FI DeepVigor+VGG-11 7,438,336 1,636,414 294,967,296 11,035VGG-16 5,931,008 2,018,447 470,734,848 13,704ResNet-18-C 21,331,968 3,387,189 357,095,424 15,906MobileNet-V2 27,330,048 3,029,125 74,176,512 42,234ResNet-18-I 69,844,992 20,730,314 357,341,184 23,450ResNet-34 109,985,792 28,821,489 680,564,736 43,098
As observed, for each DNN, DeepVigor+ complete analysis requires significantly lowerexecutions either in activations or filters analysis. Throughout the results, activations anal-ysis by complete DeepVigor+ is 2.93 to 9.02 times faster than exhaustive FI. According toour detailed investigations, activations analysis by DeepVigor+ requires 6 forward simu-lations per neuron, on average, throughout the DNNs under study. In this regard, theintroduced loss function to obtain the vulnerability values (box 4 in Fig 4.9) contributes toskipping the analysis for up to 26% of neurons. Moreover, the vulnerability value can beobtained by a single forward simulation for up to 55% of neurons due to separating VVSSexploration (boxes 7 and 8 in Fig. 4.9).In the complete filters analysis, the DeepVigor+ fault propagation modeling implies ahuge impact on the number of simulations in the orders of magnitude. DeepVigor+ canderive VF for filters 1,756 to 34,350 times faster than exhaustive FI. To obtain the vul-nerability values for channels, up to 1% of channels are skipped by leveraging the lossfunction, and up to 34% of channels require one forward simulation. These results indi-cate that complete DeepVigor+ provides accurate VF for neurons and channels of CNNswith significantly lower complexity and shorter execution time than exhaustive FI enabledby its optimal fault propagation modeling and analysis.On the other hand, sampling DeepVigor+ is proposed to further reduce the executiontime and complexity of resilience analysis and achieve a scalable method. To show itsperformance against statistical FI (SFI), Table 4.7 compares the number of simulations forvarious state-of-the-art SFI [200]with samplingDeepVigor+. As presented, data-aware SFIleads to the least number of executions in FI-based simulation. It is observed that Deep-Vigor+ sampling activations analysis with 10% channel sampling ratio leads to 8.72 to 20.5times fewer simulations compared to data-aware SFI. For the filters analysis, DeepVigor+obtains their VF with 59.4 up to 96.2 times fewer simulations than data-aware SFI.To obtain the Model Vulnerability Factor (MVF) both activations and filters should beanalyzed separately, based on Eq. (4.21). Therefore, sampling DeepVigor+ accelerates theprocess from 14.9 up to 26.9 times throughout the DNNs. The scalability and speed ofthe method are achieved by both channel sampling ratio and logarithmic sampling withinthem. It can be observed that with the remarkable growth of DNNs under analysis in theirnumber of parameters, the number of simulations in DeepVigor+ does not grow linearly.

77

Table 4.7: Comparison of required simulations for statistical FI [200] and sampling DeepVigor+.
Activations Analysis Filters AnalysisAnalysismethod Layer-wise Data-unaware Data-aware SamplingDeepVigor+ 10% Layer-wise Data-unaware Data-aware SamplingDeepVigor+ 10%VGG-11 74,863 1,562,657 71,173 4,596 75,351 2,141,913 66,934 1,038VGG-16 117,992 1,839,889 106,513 10,283 123,266 3,588,834 112,151 1,476ResNet-18-C 188,644 4,264,406 181,911 15,996 189,772 5,253,096 164,159 1,706MobileNetV2 493,871 8,402,977 452,650 22,077 475,407 8,307,671 259,614 4,364ResNet-18-I 191,205 5,407,659 189,325 21,680 190,896 5,358,315 167,447 2,178ResNet-34 344,042 9,624,374 340,383 39,002 344,285 10,031,494 313,484 4,003

To demonstrate the execution time of DeepVigor+ analysis, we employed an NVIDIAA100 GPU and performed sampling DeepVigor+ for activations and filters with differentchannel sampling ratios. Table 4.8 and Table 4.9 present the average execution time over50 executions of the method for complete and sampling DeepVigor+ with different chan-nel sampling ratios, for activations and filters respectively. It is observed that VFs can beobtained in a fewminutes for the experimentedDNNs. Considering 10% channel samplingratio for both activations and filters analysis, the totalMVF for VGG-11, VGG-16, ResNet-18-C, MobileNet-V2, ResNet-18-I and ResNet-34 is obtained almost in 8.7 minutes, 9.6 min-utes, 12.7 minutes, 43.5 minutes, 19.4 minutes and 46 minutes, respectively. It is worthmentioning that the complete DeepVigor+ analysis for the DNNs under study takes almost
22 hours for VGG-16 and 18.5 days for ResNet-34, on the same GPU. Fast execution andaccurate estimation of VF obtained by sampling DeepVigor+ analysis provide a remarkableopportunity for a high-speed resilience analysis for DNNs.
Table 4.8: Average execution time over 50 repetitions on A100 GPU for DeepVigor+ activationsanalysis, with different channel sampling ratios.

DNN 5% 10% 15% 20% completeanalysis
VGG-11 203 sec(≈ 3.4 min) 415 sec(≈ 6.9 min) 625 sec(≈ 10.4 min) 838 sec(≈ 13.9 min) 66,083 sec(≈ 0.7 days)
VGG-16 223 sec(≈ 3.7 min) 453 sec(≈ 7.5 min) 676 sec(≈ 11 min) 915 sec(≈ 15 min) 43,326 sec(≈ 0.5 days)

ResNet-18-C 284 sec(≈ 4.7 min) 580 sec(≈ 9.5 min) 876 sec(≈ 14.5 min) 1,171 sec(≈ 19.5 min) 94,939(≈ 1.1 days)
MobileNetV2 1,037 sec(≈ 17 min) 2,097 sec(≈ 35 min) 3,153 sec(≈ 52.5 min) 4,071 sec(≈ 68 min) 211,868(≈ 2.4 days)
ResNet-18-I 448 sec(≈ 7.4 min) 917 sec(≈ 15 min) 1,390 sec(≈ 23 min) 1,866 sec(≈ 31 min) 634,872(≈ 7.3 days)
ResNet-34 1,100 sec(≈ 18 min) 2,237 sec(≈ 37 min) 3398 sec(≈ 56 min) 4549 sec(≈ 75 min) 1,402,362(≈ 16.2 days)

4.2.5.4 Reliability Visualization and Comparison for CNNs It has been shown that VFfor DNNs’ layers and the entire model can be obtained accurately in a few minutes byDeepVigor+. The obtained VF results by DeepVigor+ can be used to visualize the vulner-ability of layers within a DNN and identify more vulnerable ones. Fig. 4.11 illustrates theLVF comparison for ResNet-18 trained on CIFAR-100 and ImageNet datasets, while the to-tal LVF for each layer is obtained based on the numerator of Eq. (4.21). This visualizationsketches how vulnerable each layer is to single faults compared to each other. As ob-
78

Table 4.9: Average execution time over 50 repetitions on A100 GPU for DeepVigor+ filters analysis,with different channel sampling ratios.
DNN 5% 10% 15% 20% completeanalysis
VGG-11 57 sec(≈ 0.95 min) 111 sec(≈ 1.8 min) 170 sec(≈ 2.8 min) 219 sec(≈ 3.6 min) 23,031 sec(≈ 0.26 days)
VGG-16 61 sec(≈ 1 min) 125 sec(≈ 2.1 min) 168 sec(≈ 3.1 min) 245 sec(≈ 4.1 min) 35,634 sec(≈ 0.4 days)

ResNet-18-C 92 sec(≈ 1.5 min) 184 sec(≈ 3 min) 275 sec(≈ 4.6 min) 367 sec(≈ 6.1 min) 60,410 sec(≈ 0.7 days)
MobileNetV2 257 sec(≈ 4.3 min) 513 sec(≈ 8.5 min) 759 sec(≈ 12.6 min) 1,025 sec(≈ 17.1 min) 39,713 sec(≈ 0.46 days)
ResNet-18-I 117 sec(≈ 1.9 min) 250 sec(≈ 4.1 min) 370 sec(≈ 6.1 min) 506 sec(≈ 8.4 min) 134,164 sec(≈ 1.5 days)
ResNet-34 259 sec(≈ 4.3 min) 524 sec(≈ 8.7 min) 795 sec(≈ 13.2 min) 1,064 sec(≈ 17.7 min) 201,305 sec(≈ 2.3 days)

served, in both ResNet18-C and ResNet18-I, the first layers are more vulnerable than thelatter ones. Therefore, DeepVigor+ enables vulnerability visualization and comparisonwithin a DNN.
Furthermore, DeepVigor+ results in totalMVFbasedonEq. (4.21)which is theweightedaverage of obtained LVFs providing a comprehensive examination of vulnerability betweendifferent DNNs. Fig. 4.12 indicates MVFs for activations and filters of DNNs, separately, aswell as their total MVF. As a result, it is observed that activations are more vulnerablethan weights. However, weights generally contribute more to the total MVF since theirmemory footprint is higher than that of activations in DNNs. Based on total MVF, VGG-16is the least vulnerable DNN (MVF = 1.19%) and MobileNet-V2 is the most vulnerable one(MVF = 2.76%).

(a) ResNet-18-C (b) ResNet-18-I
Figure 4.11: LVF visualization and comparison for ResNet-18 trained on a) CIFAR-100 and b)ImageNet.

79

VGG-
11

VGG-
16

ResN
et-18

-C
Mob

ileNe
tV2

ResN
et-18

-I
ResN

et-34
0

1

2

3

4

MV
F(%

)

MVF activations MVF weights MVF total

Figure 4.12: MVF comparison for CNNs based on activations, filters and the entire model derived byDeepVigor+.

4.2.5.5 Impact of Input Data on theQuality of Results To obtain the VFs in DeepVigor+,we considered one batch of 100 data. Nonetheless, to investigate the impact of data onthe quality of analysis results, we repeat the experiments for different batches of datawiththe size of 100 input data and derive DNNs’ total MVF. Fig. 4.13 illustrates the obtainedtotal MVF for DNNs over 8 different batches of data. As observed, the variation betweenthe total MVF for each DNN is negligible for different batches of data, demonstrating thatanalyzing DNNs’ resilience with one batch of data provides confident results.
VGG-11 VGG-16 ResNet-18-C

MobileNet-V2 ResNet-18-I ResNet-34

1 2 3 4 5 6 7 8
1

1.4

1.8

2.2

2.8

3

Batch number

MV
F(%

)

Figure 4.13: Total MVF variation over different batches of data for all DNNs.

4.2.6 DiscussionAs shown, DeepVigor+ achieves a fast, scalable and accurate resilience analysis for emerg-ing DNNs. The analysis provided by DeepVigor+ is not limited to fault resilience assess-ment, but it can be exploited for designing fault-tolerant and resilient DNNs. Identify-ing more vulnerable channels and layers can lead to cost-effective selective fault mitiga-tion techniques as well as a comparative investigation between different architecturesof DNNs. Moreover, it enables design space exploration to identify more resilient DNNsagainst faults.The other output of DeepVigor+ is VVR representing the values that a fault should
80

affect neuron/weight to misclassify DNN’s golden results. These values can be used forobtaining VFs and identifying more vulnerable components as well as for fault detectionat inference and identifying bit-level resilience analysis since they are represented in thepower of 2 values and can be mapped down to bits.Yet, there are some constraints in thismethod to be considered and extended in futureresearch:
• It is assumed that the parameters within the layers of DNNs under analysis are uni-fiedly distributed among channels and their places are not resorted after training. Insuch cases, a higher channel sampling ratio is needed to obtain accurate VF results.
• DeepVigor+ supports a single-bit fault model in input activations and weights ofconvolutional layers and obtained VF corresponds to this fault model. For multi-bitfault models, the corresponding error propagation should be applied.
• The error propagation analysis presented in this section is based on 32-bit floatingpoint data representation. However, the same concept can be extended and appliedto fixed-point and integer data representations for QNNs resilience analysis.
• DeepVigor+ analysis is hardware-agnostic. It assumes that the accelerator architec-ture is dataflow and each neuron in a layer utilizes individual hardware resources. Ifhardware resources are shared between the neurons of a layer, a hardware-awareanalysis through the error propagation step should be applied.
This section addresses one of themajor challenges in fault resilience analysis for DNNsin the literature. It introduces DeepVigor+, the first semi-analytical scalable alternativemethod to fault injection, quantifying emerging DNN’s resilience accurately in a shorttime. DeepVigor+ is facilitated by optimal fault propagation modeling in DNNs accom-panied by stratified sampling tackling the scalability problem for resilience analysis forDNNs. This open-source method unleashes a fast resilience assessment, enabling fine-grain evaluation and design space exploration for various fault-tolerant and cost-effectivedesigns for DNNs.The results indicate that DeepVigor+ derives vulnerability factors for layers and the en-tire model of DNNs with less than 1% error, with 14.9 up to 26.9 times fewer simulationsthan the best-known state-of-the-art statistical FI. It is shown that DNN’s Model Vulner-ability Factor can be obtained within minutes by analyzing their activations and weights.DeepVigor+ is presented as an open-source tool for researchers and engineers to enablethem to exploit it for DNNs’ fault resilience assessment and enhancement.

4.3 QDeepVigor: Applications for QNNs
DeepVigor is primarily developed for the resilience analysis of CNNs using 32-bit floatingpoint data representation. As discussed, DeepVigor can be extended for other data typessuch as integers. In addition, DeepVigor’s outcomes can be utilized for fault-tolerant de-sign in DNN accelerators. Furthermore, QDeepVigor can be leveraged by FI to acceleratehardware-aware fault simulation, leading to a hybridmethod for reliability assessment. Inthis section, we present QDeepVigor and some case studies where it is exploited for theaforementioned purposes.
4.3.1 Cross-layer reliability enhancement for QNNs acceleratorsQuantizedNeural Networks (QNNs) are proposed to improve the computational efficiencyof DNNs by reducing the bit precision. However, their reliability is a concern, particularly in

81

safety-critical applications. Throughout the literature, protecting DNNs against soft errorsis primarily achieved through architecture-level methods such as hardened PEs or TripleModular Redundancy (TMR) [168]. However, to alleviate overheads, there is a need, first,to identify the critical neurons within a neural network before applying the mentionedmitigation techniques to harden them against the faults.
In related works, the criticality of neurons has been identified based on their contri-bution scores to outputs [7, 202, 210, 211]. Hence, there is no clear resilience evaluationmetric for selecting the critical neurons in the literature, and recent works extract the crit-icality based on the ranked scores. In this section, we present QDeepVigor, an extensionof DeepVigor, to identify critical neurons in QNNs. The resilience analysis enables us todesign a method for correcting soft errors in the datapath of DNN accelerators.
We identify critical neurons in QNNs based on a Neuron Vulnerability Factor (NVF)obtained by fault propagation analysis through the QNNs. The NVF represents the prob-ability of misclassification due to a fault in a neuron, which determines the level of criti-cality for neurons. To the best of our knowledge, for the first time, a protection techniquebased on splitting neurons’ operations is proposed. This modifies the QNN in a way thata Lightweight Correction Unit (LCU) corrects the detected faults in critical neurons. Theproposedmethod does not require redesigning the computational part of the accelerator.The accelerator executes the modified network, and only its controller needs to be awareof the critical neurons to be operated on the LCU. Our method imposes half the overheadof TMR since it corrects faults with only one additional neuron instead of two.

4.3.1.1 Accelerator Model Fig. 4.14 illustrates the accelerator model considered in thiswork, which is inspired by [183]. It consists of a computational part (an array of ProcessingElements (PEs), activation functions, pooling, and normalization), buffers for parameters(weight and bias), inputs, and outputs, and the controller. It is assumed that faults mayhappen in the computational part of the accelerator, thus, theOutputs Buffermay containfaulty values of output activations. The controller is responsible for feeding the inputs,transferring the outputs, and controlling the function of the accelerator.
To apply the resilience enhancement method to the accelerator, a Lightweight Correc-tion Unit (LCU) is added to the design in which the controller only needs to be aware ofthe critical neurons. Once the outputs of a layer are calculated, the controller transfersthe critical neurons to LCU, replaces its corrected outputs back to the Outputs Buffer, andcontinues the operations of the accelerator. The design of the LCU is proposed in the nextsubsections.

4.3.1.2 Identifying Critical Neurons byQDeepVigor Algorithm4.2 presentsQDeepVigor,the resilience analysis of QNNs to obtain NVF for all neurons throughout the QNN in con-volution and fully-connected layers. It is assumed that the neural network is quantizedinto an 8-bit signed integer data type, and the output activation of the neuron is ana-lyzed. The algorithm, first, checks whether or not to analyze an input for the neuron (lines3-5 in Algorithm 4.2) by the gradients of a loss function (L) that represents the impact ofthe neuron’s erroneous output on the golden top class of the network.
Then, it finds minimum positive and maximum negative values for the neuron (δ),that cause a misclassification in the QNN from its golden output (lines 6, 7 in Algorithm4.2). Thereafter, it maps the obtained δ to a corresponding possible bitflip location inthe data type (lines 8, 9 in Algorithm 4.2) and counts it as a vulnerable location (lines 10,11 in Algorithm 4.2). In the end, regarding the count of vulnerable times for each bit, it

82

Inputs Buffer

PE PE

PE PE

PE

Activation Function
Pooling/Normalization

Outputs Buffer

PE

PE

PE
C

on
tro

lle
r

LCU

Weights/Bias Buffer

PE

C
om

pu
ta

tio
na

l P
ar

t

critical
neurons

Figure 4.14: An abstract view of the accelerator and where the faults may happen.

calculates the probability of misclassification of the network by each bitflip in the outputof the neuron as the NVF over the whole inputs (line 15 in Algorithm 4.2).A key observation in the analysis is that the 0 to 1 bitflip is much more critical than1 to 0 bitflip. Because the former enlarges the values in the activation and propagatesto the output, while the latter is masked. This observation leads us to the protectionmechanism proposed in the next Subsection. It is worth mentioning that the resilienceanalysis method is not limited to a single bitflip fault model, and it implicitly considersmulti-bit faults.By obtaining theNVF of all neurons through theQNN, the critical neurons can be foundbased on the values for NVF. Different thresholds can be set to select the critical neuronsand protect them, considering how many of them are affected by the protection tech-niques leading to execution overheads.
4.3.1.3 Resilience Enhancement by LCU and Neuron Splitting The proposed fault re-silience enhancement targets the critical neurons identified based on a threshold on NVF.The idea is to split the selected neurons’ operation into two neurons in the QNN at a highlevel and correct the critical outputs in the accelerator. Fig. 4.15 depicts how a criticalneuron is split into two halves. As shown, the input parameters (weights and bias) of theneuron are halved, keeping the output parameters non-modified, and the new neuronsare replaced with the critical neurons in the QNN. In this way, the neuron can be split intotwo neurons without changing the intermediate values of the further layers and the neu-ral network’s outputs. Noteworthy, the method is applied to all identified critical neuronsin convolution and fully-connected layers.Splitting the critical neurons provides an opportunity for fault correction using thesplit neurons without redesigning the computational part of the accelerator. The QNNis modified in a way that the selected critical neurons from the analysis are split. Themodified QNN can then be mapped to the accelerator using the existing controller andmapping algorithm of the accelerator. However, the controller needs to be aware of thecritical neurons so that it can transfer them to LCU to perform the correction and writethem back to the Output Buffers (Fig. 4.14).

83

Algorithm 4.2 QDeepVigor: Fault Resilience Analysis for QNNs
Input: Trained QNN with a set of neurons Q and N outputs, set of input images X;
Output: NVF of all neurons;Assume: δ ∈ [-128,127]; Ect is the output score for the golden top class; Cg isgolden classification; Cδ is classification result after injecting δ ; vul_map_arr_posand vul_map_arr_neg include counters for each bit corresponds to each vulnerabilityrange for positive and negative numbers;
1: for neuron ∈ Q do:
2: for input ∈ X do:
3: L = sigmoid(∑N

j=0(Ect −Ec j))4: grad = ∇L /outneuron5: if grad != 0 then
6: rupper = min(δ),δ > 0,s.t.Cg ̸=C f ;7: rlower = max(δ),δ < 0,s.t.Clg ̸=Cl f ;8: bitupper = ⌊log(rupper)⌋+1;
9: bitlower = ⌊log(|rlower|)⌋;10: vul_map_arr_pos[bitupper]++;11: vul_map_arr_neg[bitlower]++;12: end if;
13: end for;
14: vul_map_arr = (vul_map_arr_pos+ vul_map_arr_neg) / 2

15: NV Fneuron =
∑

8
i=1(

1
8×∑

i
j=1(vul_map_arr[j]))

size(X)16: end for;

LCU is designed to leverage the neuron splitting method for correction. The inputsof LCU are two split neurons representing one critical neuron, and the output is one cor-rected 8-bit data that is written back to the corresponding neurons. The data type (signedinteger 8-bit) contains one sign bit and 7 bits for the integer. As the neuron’s operation issplit, the range of output values for each replaced neuron would be divided by 2. There-fore, the Most Significant Bit (MSB) in the integer part of the output should always be 0.Regarding the observation in the analysis about bitflips, any faulty bit can be set to zeroto be less critical.
Therefore, to output the corrected value, LCU performs two operations: 1) a bit-wiseANDover the two inputs, 2) resets theMSBof the integer part to 0. In thisway,many singleand also multiple faults that occur to the bits will be masked by these two operations.Since the correction operations are merely an AND and a bit reset, the correction unit islightweight. The operation of the LCU correction is depicted in Fig. 4.16 performing onthe faulty outputs of PEs running two splits of a critical neuron. The corrected output iswritten back to Outputs Buffer as the outputs of the corresponding PEs.

4.3.1.4 Experimental Setup The experimentedQNNs in this work are fully quantized (allparameters and activation) to 8-bit signed integer using TFLite [70]. The experiments inthis work have been performed on a 7-layer MLP and LeNet-5 trained onMNIST as well asan AlexNet trained on CIFAR-10. The baseline accuracy of each network on the test datais 70.1%, 89.1%, and 62.9%, respectively.
The resilience analysis and enhancement are implemented in PyTorch. The resilienceanalysis is conducted over the training set. The critical neurons regarding different thresh-

84

Input Layer
Hidden Layers

Output Layer

∑ φX1
l-1

X2
l-1

Wi2
l/2

Wi1
l/2

N'i
l

bl/2
Wi1

l+1

Wi2
l+1

∑ φX1
l-1

X2
l-1

Wi2
l

Wi1
l

Activation

function
Summation

Ni
l

bl

Wi1
l+1

Wi2
l+1

∑ φX1
l-1

X2
l-1

Wi2
l/2

Wi1
l/2

N"i
l

bl/2
Wi1

l+1

Wi2
l+1

Split

critical neuron

Split

Figure 4.15: Splitting critical neurons in a QNN by halving the input parameters.

Critical
neuron
1st split

PE

PE

inp1

11010101

11010001 out

LCU operations:
1) out = inp1 AND inp2

2) out(6) = 0inp2

10010001

Critical
neuron

2nd split

Map to PEs Faulty outputs
of PEs (3 red bits)

Corrected output
of LCU (2 green bits)

Figure 4.16: An example of how LCU corrects faulty critical neurons.

olds for NVF are obtained to explore the number of neurons to be protected, which im-poses an overhead as well.To show the efficacy of the resilience enhancement method, a statistical FI is per-formed. In the FI process, one single bitflip in the output of a random neuron in thenetwork is injected, and whole inference over the test set is performed, and the over-all accuracy is obtained. To meet the 95% confidence level with a 1% error margin in thestatistical FI based on Eq. (4.7) [144], we repeated the FI process for each MLP-7, LeNet-5,and AlexNet for 6,750, 7,650, and 9,500 random faults, respectively.As a baseline comparison of the proposed design for LCU, we also apply a TMR tothe critical neurons for the detection and correction of faults. We adopt two metrics forcomparing the results of methods and expressing the resiliency:
• accuracy loss of QNNs over the fault injection,
• the portion of critical faults in a fault injection campaign. Critical faults are the onesthat misclassify the network from its golden classification.

4.3.1.5 Results: An Exploration on NVF of QNNs As mentioned, NVF explores the prob-ability of a faulty neuron’s output that misclassifies the QNN from its golden output. Table
85

4.10 presents the number of critical neurons in different NVFs ranging from 0% (all neu-rons are critical) to 50% (no neuron is critical). According to Table 4.10, different thresh-olds of NVF count a different portion of neurons as critical among QNNs. However, it isobserved that all neurons among QNNs have NVF of less than 50%. It is noteworthy thata higher threshold for NVF means a smaller number of critical neurons to be protected.Table 4.10 represents the overhead of any protectionmechanismover the critical neurons.
Table 4.10: Exploration of number and portion of critical neurons over different thresholds for NVF.

QNN MLP-7 LeNet-5 AlexNetNVF threshold #neurons portion #neurons portion #neurons portionNVF >= 0% 2816 100% 4684 100% 103168 100%NVF >= 5% 2513 89.24% 4380 93.5% 46322 44.9%NVF >= 10% 1382 49.07% 1659 35.41% 15818 15.33%NVF >= 15% 903 32.06% 222 4.74% 5171 5.01%NVF >= 20% 503 17.86% 187 3.99% 622 0.6%NVF >= 25% 272 9.6% 70 1.49% 398 0.38%NVF >= 30% 184 6.5% 3 0.06% 232 0.2%NVF >= 35% 85 3.01% 0 0% 147 0.14%NVF >= 40% 26 0.92% 0 0% 56 0.05%NVF >= 45% 7 0.2% 0 0% 6 0.005%NVF >= 50% 0 0% 0 0% 0 0%

Fig. 4.17 illustrates the experimental results of accuracy loss (a-c) and critical faults(d-f) of the proposed resilience enhancement and TMR over different NVF thresholds forthe QNNs. The results show how critical neurons are effectively selected and protected bythe proposed method. As shown, all results of protecting QNNs by the proposed methodare very close to those of selective TMR-based protection. Furthermore, Fig. 4.17-(g-i)shows that the QNNs’ size (as measured by the number of neurons in each network) us-ing the proposed protection is remarkably smaller than that of the TMR-based protectednetworks, resulting in half the overhead due to employing one additional neuron for cor-rection instead of two.
Assuming a constraint on the accuracy loss to be less than 5% in Fig. 4.17, a commonNVF for all three QNNs can be considered as 20% in which the accuracy loss is 4.86%,

3.88%, and 1.56% in the QNNs protected by the proposed method that is 2.14x, 3.38x,and 3.36x less than the unprotected QNNs, respectively. Regarding Table 4.10, the re-silience analysis suggests protecting 17.86% of neurons in MLP-7, 3.99% of neurons inLeNet-5, and 0.6% of neurons in AlexNet, respectively. The proposed protection mecha-nism results in 1.85x, 2.78x, and 1.97x fewer critical faults than unprotected QNNs in theMLP-7, LeNet-5, and AlexNet, respectively.
The proposedneuron splitting and correctionmethod leverages only twoneurons (oneadditional) for correcting faults, whereas TMR requires three neurons (two additional) toperform fault detection and correction. As a result, the overhead of the proposedmethodis significantly lower than that of TMR, while providing similar resilience. According to Ta-ble 4.10, to protect QNNs with an NVF of 20% using TMR, quantized MLP-7, LeNet-5, andAlexNet require 3,822, 5,058, and 104,412 neurons, respectively, whereas the proposedmethod requires only 3,319, 4,871, and 103,790 neurons, respectively. Therefore, theproposed method reduces the overall size of QNNs by 15.15%, 3.84%, and 0.6% com-pared to TMR-based protection, which impacts the memory footprint and execution timeof the accelerator accordingly.

86

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

NVF (%)

Acc
ura

cyL
oss

(%)

MLP-7 (MNIST)
Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

NVF (%)

Acc
ura

cyL
oss

(%)

LeNet-5 (MNIST)
Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

NVF (%)

Acc
ura

cyL
oss

(%)

AlexNet (CIFAR-10)
Unprotected Proposed TMR

(a) (b) (c)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

NVF (%)

Crit
ical

Fau
lts(

%) Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

NVF (%)
Crit

ical
Fau

lts(
%) Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

NVF (%)

Crit
ical

Fau
lts(

%) Unprotected Proposed TMR

(d) (e) (f)

0 5 10 15 20 25 30 35 40 45 50
0

2.0E3
4.0E3
6.0E3
8.0E3
1.0E4
1.2E4

NVF (%)

#N
eur

ons

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

3.0E3
6.0E3
9.0E3
1.2E4
1.5E4
1.8E4

NVF (%)

#N
eur

ons

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
5.0E4
1.0E5
1.5E5
2.0E5
2.5E5
3.0E5
3.5E5

NVF (%)
#N

eur
ons

Unprotected Proposed TMR

(g) (h) (i)

Figure 4.17: QNNs comparison in terms of accuracy loss (a-c), critical faults (d-f), and network size(g-i) under different levels of protection: unprotected, proposed protection, and TMR, consideringdifferent thresholds for NVF from 0% to 50%.

4.3.2 A Hybrid Method for QNNs’ Reliability Assessment
This subsection introduces a novel hybrid reliability assessment method for QNNs whichtargets systolic-array-based DNN accelerators using FI and QDeepVigor. The proposed hy-bridmethod adopts a software-based hardware-aware FI simulator for SAs, called SAFFIRA[225]; thus offering the advantage of being more accurate than a hardware-agnostic tool,yet much faster than traditional RTL-level simulations. QDeepVigor is exploited to prunethe fault space to further optimize and speed up the reliability assessment process.

4.3.2.1 Hybrid Method: QDeepVigor and SAFFIRA The methodology for the proposedhybrid reliability assessmentmethod is illustrated in Fig. 4.18. The inputs are a pre-trainedQNN and a fault list which is generated based on random transient faults in the registers ofthe systolic array’s PEs. The fault simulation by SAFFIRA is performed from the beginningof the QNN to the fault’s location to obtain the erroneous output of the correspondingneuron. Then, we map the deviation at the erroneous neuron’s output induced by a faultin PE’s registers to the obtained vulnerability ranges for the corresponding neuron. If theerror corresponds to the red or green areas, we immediately classify them respectivelyas critical or non-critical, and do not continue the fault simulation. Otherwise, if the errorcorresponds to a semi-vulnerable range, the fault simulation is required to be performed.To prune the fault space, we adopt QDeepVigor to obtain vulnerability analysis forQNNs, as described in the previous subsection. To this end, we find error values for eachOFMap that misclassifies the network output. Let δ l
k(Xi) be an added positive or negativeerror value to an OFMap by a fault in the k-th neuron at layer l with input dataXi. For each

87

Pre-trained
QNN

Fault list SAFFIRA

QDeepVigor Vulnerability
Value Ranges

criticality?SAFFIRA

Determining fault impact

semi-vulnerable

vulnerable or
non-vulnerable

Figure 4.18: The hybrid reliability assessment method for QNNs on SAs.

neuron, we find the minimum positive and maximum negative δ l
k(Xi) that misclassifiesthe output from the golden classification. This value is obtained for all input data X andaggregated over them. The aggregation leads to a Vulnerability Value Range (VVR) foreach neuron, as shown in Fig. 4.19. It is labeled as follows:

• Vulnerable (red area): if a fault deviates the output of a neuron as in this range, itwill certainly lead to misclassification for any input.
• Non-Vulnerable (green area): if a fault deviates the output of a neuron as in thisrange, it will not change the output classification for any input.
• Semi-vulnerable (grey area): if a fault deviates the output of a neuron as in thisrange, it might or might not lead to misclassification for any input.

-∞ +∞
min_neg max_neg min_pos max_pos

non-vulnerablesemi-vulnerablevulnerable

Figure 4.19: VVRs for fault space pruning

4.3.2.2 Results: Simulation Speed-up To evaluate the methodology, experiments wereperformed using a 16-bit quantized LeNet-5 trained on theMNIST dataset. The faultmodelis a random bitflip in the weight register of a random PE in SA. The target architectureis an output-stationary Systolic Array. In this experiment, faults are injected only in thefirst layer of the QNN. It is worth mentioning that the VVRs are obtained in less than oneminute on an NVIDIA 3090 GPU. The produced fault list includes 964 random faults, eachsimulated with various 100 input images of the MNIST test data.According to the obtained results, 77.48% of faults are classified as non-vulnerableand vulnerable, leading to an early stop during the fault simulation. It means that thefault simulation process is accelerated remarkably. In conclusion, the presented approachis capable of significantly reducing the FI simulation time by incorporating QDeepVigor.
88

4.4 Chapter Conclusions
This Chapter mainly attempted to propose novel resilience analysis methods for CNNs toaddress one of themost significant challenges in the literaturewhich is scalability. Towardsthat end, DeepVigor is introduced as an accurate and metric-oriented hardware-agnosticmethod that is faster than FI. It derives vulnerability value ranges for all neurons in CNNsleading to calculating VF metrics for bits, neurons, and layers. This method addressesRQ2.1 and RQ2.2 in Chapter 1.Based on that, DeepVigor+ is introduced to tackle the scalability of resilience analysisby exploiting an optimal fault propagation analysis. DeepVigor+ analyzes activations andparameters and acquires MVF as a total vulnerability metric for CNNs. This open-sourcetool can obtain a comprehensive fault resilience analysis in a few minutes with high ac-curacy for emerging CNNs, addressing RQ2.3 in Chapter 1. DeepVigor is also extended tosupport integer datatypes and its results can be used for fault enhancement as well asbeing integrated into hybrid fault resilience analysis approaches which addresses RQ.2.4in Chapter 1.

89

5 Reliability Enhancement for CNNs
Hardware devices, including general-purpose processors (e.g., CPUs and GPUs) and spe-cialized accelerators (e.g., FPGAs and ASICs), are widely employed to efficiently executeCNN models [52, 127]. Due to technology miniaturization, soft error rates in modern dig-ital devices have increased in recent years, in particular in SRAM-based memories [120].CNN accelerators store parameters (i.e., weights and biases) in memory that is prone tosoft errors. Parameters in memories are not being overwritten as frequently as values inthe data path, input buffers, and logic elements (e.g., buffers in PEs) [185]. Hence, bit-flips originating from soft errors in parameters are accumulative and persistent, leadingto constantly producing errors throughout the inference of a CNN accelerator.

Consequently, a major concern in deploying CNNs on hardware devices is their re-silience to faults in memory, particularly those affecting their parameters. Extensive stud-ies have demonstrated that faults in CNNparameters lead to drastic accuracy drops at verylow error rates [31, 164, 176, 219]. Therefore, it is crucial to enhance the fault toleranceof CNN models against faults in parameters to effectively employ them in safety-criticalapplications.
This Chapter attempts to tackle the aforementioned challenges concerning fault toler-ance in CNNs. This Chapter addresses P3 which includes RQ3.1-3.3 and presents contribu-tions mentioned in C3, in Chapter 1. This Chapter is based on the following publications:
I S. Mousavi, M. H. Ahmadilivani, J. Raik, M. Jenihhin, and M. Daneshtalab. ProAct:Progressive Training for Hybrid Clipped Activation Function to Enhance Resilience ofDNNs. Under review, pages 1–12, 2024II M.H. Ahmadilivani, S.Mousavi, J. Raik,M.Daneshtalab, andM. Jenihhin. Cost-EffectiveFault Tolerance for CNNs Using Parameter Vulnerability Based Hardening and Prun-ing. In The 30th IEEE International Symposium on On-Line Testing and Robust SystemDesign (IOLTS), pages 1–6. Rennes, France, 2023
In the rest of the Chapter, Section 5.1 overviews the existing fault tolerance techniquesfor CNNs and highlights the existing gaps in the literature. Section 5.2 presents ProAct, anovel, effective, and lightweight activation restriction method that outperforms the ex-isting ones. Section 5.3 introduces a cost-effective approach for hardening CNNs by ar-chitectural modifications. Moreover, Section 5.4 presents SentinelNN, an open-sourceframework that integrates DeepVigor into the proposed enhancement methods in thisChapter. Eventually, Section 5.5 concludes this Chapter.

5.1 Related Works: Fault Tolerance for CNNs
Fault-tolerant techniques to enhance the reliability of DNN accelerators against soft er-rors in memories can be generally carried out at the architecture and algorithm level.Architecture-level techniques are accelerator-specific and exploit hardware redundancy,laying overhead on performance, area, and power. In these techniques, computing unitsor memory components of the DNN accelerators are either designed to be reliable (i.e.,hardened) or redundant units are included [115, 147, 152]. To mitigate the impact of faultson the deployment of CNNs and at the same time avoid the high overhead in conven-tional fault-tolerant techniques such as Triple Modular Redundancy (TMR), researchersproposed selective hardening approaches [7, 149, 202, 210, 211]. Here, the objective is toprotect the parameters or neurons that have a larger effect on the neural network’s out-puts against faults and errors. Therefore, the more vulnerable neurons are identified by

90

resilience analysis and they are executed on hardened PEs on the target hardware.
Although thesemethods propose amodel-level resilience analysis to identify themorevulnerable parameters/neurons, their protection techniques are restricted to FPGAs andASICs that can be freely modified and redesigned. Whereas there exist numerous appli-cations from high-performance to edge computing, where general-purpose computingdevices such as CPUs and GPUs or hard and firm accelerator cores are deployed that donot support redesigning the hardware for fault-tolerance [9, 252].
Algorithm-level techniques, i.e., Software-Implemented Hardware Fault Tolerance (SI-HFT) techniques, modify the DNN models in the software which is executable by any ac-celerators. Throughout the literature, several cost-effective algorithm-level fault tolerancetechniques for enhancing the reliability of DNNs are presented. Quantization is shown tobe highly effective for the resilience of CNNs [185] since it restricts the numerical rangewithin a CNN, thus eliminating the effect of large values produced due to faults and bit-flips in a CNN. Nevertheless, apart from accuracy concerns, deploying quantized CNNsrequires dedicated hardware accelerators for handling associated operations. Otherwise,they carry out the floating-point arithmetic of general-purpose computing devices [94]which leads to the reliability issues of floating-point data types, that is contradictory tothe purpose of hardening by quantization. Nonetheless, the model-level fault tolerancemethods are mostly orthogonal to quantization and they can be employed on top of eachother to improve the resilience of DNNs.
Fault-aware training [49, 247] effectively improves the resilience of DNNs. However, itretrains the entire CNNwith numerous fault injection scenarios that is not only excessivelycomplex but also requires the possibility of having access to parameters. Error CorrectionCodes (ECC) and Algorithm-based Fault Tolerance (ABFT) utilize data encoding/decodingprocesses for real-time fault detection and correction [143, 252]. However, the practicalityof these techniques in fault correction is questionable due to the overhead they introducetomemory and computations, posing a considerable challenge for CNNs that already havesubstantial memory and computational requirements.
Activation restriction methods [53, 93, 113] bound the activation values between lay-ers through activation functions (i.e., ReLU) to mitigate error propagation to the outputsof CNNs. They clip the activations to 0 when their values exceed pre-identified ranges.These methods are effective in enhancing the resilience of CNNs, however, they do notprovide error correction, and CNNs fail to work at high error rates due to the replacementof numerous feature maps with 0. [26] proposes a correction layer that executes eachconvolutional layer three times for fault detection and correction, which, however lays aprohibitive performance overhead to CNNs.
Authors in [53] present Ranger, a clipped ReLU that bounds the layer activations’ out-put to 0 in case their value is higher than a fixed threshold. The threshold values areobtained from the maximum values at each layer seen in a validation set of the dataset.The method of clipping out-bound values to 0 in Ranger is demonstrated to be effective,however, the method does not provide optimal clipping thresholds. Hoang et al. [113]have analyzed various boundary values on the model’s accuracy. Their method, namedFT-ClipAct, attempts to find optimal boundary values for each layer that are not neces-sarily the maximum values of the layers’ activations and are smaller than the maximumbounds. The authors propose a heuristic interval search algorithmbasedon the fault injec-tion process to find appropriate threshold values for the ReLU activation function at eachlayer. FT-ClipAct incurs significant computational overhead in determining the thresholdsfor DNNs’ layers due to the injection of faults at each step of the search algorithm. There-fore, it is unfeasible to employ it for every single neuron in a DNN.

91

FitAct proposes an activation function based on the sigmoid function that is differen-tiable to boundary values to optimize them with a gradient-based algorithm [93]. FitActconsiders the boundary values for each neuron and smoothlymaps the activation outputsto 0. Furthermore, Fitact demonstrates that for fixed-point representation, the optimalthreshold values that maintain the baseline accuracy of the fault-free model tend to besmaller. While FitAct effectively enhances the resilience of DNNs, it concurrently elevatesboth memory overhead and the likelihood of faults occurring in the activation functions’parameters. This indicates that as the number of parameters in DNNs grows, the likeli-hood of faults occurring in the threshold values also increases, thereby diminishing theresilience. Furthermore, FitAct trains all the threshold parameters in the clipping acti-vation function simultaneously, which decreases the possibility of providing the optimalthreshold for each activation function.This Chapter introduces two novel model-level hardening solutions to modify the ar-chitecture of CNNs to allow fault correction at inference inherently, outperforming thestate-of-the-art methods.
5.2 ProAct: Progressive Training for Hybrid Clipped Activation Function
In this section, we attempt to address the identified issues in the existing activation re-striction methods. To the best of our knowledge, for the first time, a novel activationrestriction method is introduced that combines layer-wise and neuron-wise clipping in-corporated with progressive training employing Knowledge Distillation (KD) [95, 112] toachieve significant resiliencewith negligiblememory overhead in CNNs. Progressive train-ing for hybrid clipped activation function thresholds (ProAct) empowers CNNs to mitigateerror propagation to the output with a considerably lower memory overhead than thestate-of-the-art methods.
5.2.1 Research Motivation
The optimal clipping threshold value for an activation function (layer-wise or neuron-wise)is the minimum possible value that maintains the accuracy of the fault-free DNN model[93, 113]. The heuristic optimization method in FT-ClipAct [113] demands extensive com-putation overhead as it involves conducting fault injections at every step of the searchprocess and finding sub-optimal thresholds due to the limited number of search steps.The gradient-based optimization method in FitAct [93] improves the resilience of DNNscompared to FT-ClipAct in a less complex way. However, the obtained thresholds for neu-rons are not optimal since all of them are trained simultaneously in each backward pass.To illustrate the aforementioned shortcoming, we calculate the clipping threshold val-ues for activation functions in the AlexNet using FitAct. Afterward, we attempt to progres-sively reduce the clipping threshold values for the neurons layer by layer while ensuringthat the model’s baseline accuracy remains unaffected. We accomplish this by trainingthe threshold parameters for each layer individually for 5 epochs, using a higher weightdecay hyper-parameter. Fig. 5.1 illustrates the results for AlexNet resilience based on itsaccuracy under different BERs into parameters, after minimizing the neurons’ thresholdsin each layer progressively. It is observed that the obtained clipping thresholds by FitActare not the optimal values and it is possible to identify more appropriate clipping thresh-old values to improve the resilience of DNNs. These results demonstrate the necessityfor a new training mechanism to optimize clipping threshold values. In this section, weintroduce the ProAct algorithm, which progressively trains threshold values layer by layeraccompanied by Knowledge Distillation (KD).Moreover, the main factor contributing to memory overhead in FitAct is the imple-

92

3×10−6 10−5 3×10−5
10

25

40

55

70

BER

Top
-1A

ccu
racy

(%)

FitAct Progressively optimized thresholds

Figure 5.1: Top1-Accuracy of AlexNet under different BERs employing FitAct and progressivelyoptimized thresholds.

mentation of clipped thresholds at the level of individual neurons. Applying an individualclipping threshold to each neuron not only enlarges memory overhead but also increasesthe probability of memory faults as there are more stored parameters. To comprehendthe impact of neuron-wise activation restriction, we examine error propagation throughFitAct-instrumented AlexNet by illustrating the distribution of activations of each layerwithout and with faults into parameters (BER = 3× 10−5) in Fig. 5.2. To enhance the vi-sualization, the distribution of values is partitioned into two ranges, the left-hand sidecolumn presents the activation values between [0,1] and the right-hand side one showsthem in (1,∞), respectively.The distribution of activations in both fault-free and faulty models exhibits a similarityin the initial layers. While, by proceeding through the depth of the model, the disparitybetween the distribution of activations in fault-free and fault models becomes more pro-nounced. This phenomenon reveals that the errors are mostly amplified in the last layersof DNNs where it is crucial to harness them. This observation suggests that the outputactivations in the initial layers of DNNs can be restricted by layer-wise clipping thresholdsand the last layer can be restrained by neuron-wise ones. As a solution, we introduce ahybrid clipped activation function that incorporates neuron-wise thresholds specificallyfor the last layer of DNNs and layer-wise thresholds for the rest of the layers, aiming todecrease memory overhead and enhance resilience.
5.2.2 Methodology: ProAct and HyReLU
In this subsection, we introduce ProAct, a progressive training approach for clipping ac-tivation function thresholds, implemented in a hybrid manner: neuron-wise exclusivelyin the last layer of DNNs and layer-wise in all other layers. Progressive training aims tominimize clipping thresholds for activation functions and enhance DNNs resilience whilemaintaining their baseline accuracy. Moreover, the hybrid clipped activation functionmit-igates memory overhead and reduces the occurrence of faults in memory locations.The proposed hybrid clipped ReLU activation function incorporates neuron-specificthresholds for the neurons in the final layer of CNNswhile employing layer-specific thresh-olds for the neurons in the preceding layers. In addition, to utilize the gradient-based op-timization method, it is necessary to create a differentiable version of the activation func-tion. To achieve these objectives, we introduce a hybrid clipped ReLU activation function(HyReLU), which guarantees smooth transitions around the threshold values (λ) utilized

93

Figure 5.2: The distribution of output activation values for the AlexNet model on the CIFAR-10dataset after applying the FitAct algorithm to find threshold parameters.

in the clipped ReLU in Eq. (5.1). In this equation, x is an input activation, λ is a trainableparameter representing the value of the clipping threshold in the respective neuron/layerand k is a hyper-parameter determining the slope for the smooth transition to 0, which isobtained through cross-validation. L indicates the last layer index.
HyReLU(x,λ , l) =

{
max{0,xi[1−σ(k[λi− xi])]} i f l = L
max{0,x[1−σ(k[λ − x])]} otherwise

(5.1)
HyReLU is employed across all neurons of the last layer of DNNs (i.e., the layer preced-ing the output layer), with each having a distinct trained λi. For other layers, the functionis applied separately, with each layer possessing its own trained λ . Consequently, thememory overhead introduced to a DNN with the HyReLU is formulated in Eq. (5.2).

Memory Overhead =
#Layers + #Neuronslast layer

#ParametersDNN
(5.2)

To obtain the best clipping thresholds (λ) in HyReLU for each layer/neuron in a DNN,we propose ProAct, a layer-wise progressive training method exploiting knowledge distil-lation. Fig. 5.3 depicts an outline of the ProAct approach, where the purpose is to findan optimal λ for each HyReLU without breaching the maximum permitted accuracy dropand memory overhead.ProAct trains the clipping threshold of each layer separately, from the last to the firstlayer. ProAct includes twomain steps to find the threshold parameters: 1) Pre-processing,and 2) Progressive training. In the first step, we start by profiling the model on valida-tion data to determine the initial values for the threshold parameters. Specifically, weinitialize the threshold parameters with the maximum activation value observed by thecorresponding layer/neuron on the validation dataset. Then, we replace all ReLU activa-tion functions with the proposed HyReLU, using the initial threshold parameters (lines 1-8in Algorithm 5.1). Within the progressive training step, we select layers from the last layer
94

 + +

HR

HR

HR

Hidden Layers
Output Layer

Neurons with HyRelu HR
YES

NO

HR

HR

HR

Bounded Selected Layer

R Neurons with ReLU

R

R

R

Hidden Layers

R

R

R

Output Layer

Train
of selected layer

Training
 DATA

Find max value for layer
and initialize the threshold

Is this last
 layer?

next layer
Replace ReLU by
HyReLU clipped

with initial thresholds

ProAct: Progressive Training for HyReLU

No

Replace all
layers?

Preprocessing Step: replace ReLU by HyReLU

Select layer L

No

L = L-1

Yes

Train for all
layers?

Progressive Training Step: Find optimal Thresholds
End

Find max value for neurons
and initialize thresholds

Start

Student Model (s) - Clipped Teacher Model (t) - Baseline

Figure 5.3: Hybrid Progressive training based on Knowledge Distillation.

to the first one and train the threshold parameters (λ s) in the HyReLU of the selected layerthrough the KD-based training. The clipping threshold of the target layer is trained usingKD and this process continues down to the first layer (lines 9-15 in Algorithm 5.1).
Algorithm 5.1 ProAct: Progressive Training for HyReLU Activation Function
Input: The unbounded teacher and bounded studentmodels (t,s), learning rate (α), Reg-ularization parameter (γ), number of epochs (N), BERs = [10−6,3× 10−6,10−5,3×

10−5,10−4];
Output: Resilience DNN;

Preprocessing Step
1: for l ∈ [1,2, · · · ,L] do:
2: if l = L then:
3: Profile the model to find max value in each neuron;
4: else:
5: Profile the model to find max value in each Layer;
6: end if;
7: Initial the threshold parameters (λ) based on max values;
8: end for

Progressive Training Step
9: for l ∈ [L,L−1, · · · ,1] do:
10: for i← 1 to N do:
11: Compute L (loss function) based on Eq. (5.4);
12: Compute ∂L /∂λ where λ : ∇λ L (X ,Y,λ);
13: Update λ via Adam optimizer;
14: end for;
15: end for;

The proposed training method utilizes KD in a way that the clipping thresholds inHyReLUare trainedbasedon the supervision of the unbounded fault-free (baseline)model.Through this process, the purpose is to mimic the output values of the unbounded fault-free model in the modified model with the HyReLU activation function. The pre-trainedbaseline model including ReLU is used as the teacher model that includes the golden out-put values and the modified DNN is the student model that has the same structure asthe teacher model, but ReLU is replaced by HyReLU. The loss function LKD is computedbased on the Kullback–Leibler divergence (KL) distance between the distribution of out-put values in the student and the teacher model as in Eq. (5.3) where P(f (.,T)) show thesoft output logits with temperature parameter T .
95

Table 5.1: Baseline accuracy for each baseline CNNs.
CNNs AlexNet VGG-16 ReNet-50

Accuracy for CIFAR-10 81.67% 89.87% 91.11%Accuracy for CIFAR-100 55.44% 65.45% 74.37%

LKD(X ,s, t) = Ex∼DKL
(

P(fs(x,T,λ))||P(ft(x),T)
)

(5.3)
Therefore, the whole loss function (L) that we use to train the threshold parametersin the selected layer can be expressed as in Eq.(5.4), where the Lce and R(λ) show thecross entropy loss function and l2-regularization. The regularization helps to constrainthe magnitude of the threshold parameters, preventing them from becoming excessivelylarge.

L (X ,Y,λ) = LKD(X ,s, t)+Ex,y∼DLce(fs(x,λ),y)+ γR(λ) (5.4)
5.2.3 Experimental Setup
The proposed method ProAct is applied to and evaluated on three DNNs: AlexNet, VGG-16, and ResNet-50, all trained on both CIFAR-10 and CIFAR-100 datasets. Their baselineclassification accuracy on the test sets is shown in Table 5.1. It is noteworthy that experi-ments in this work exploit 32-bit fixed point data type representation in which the MostSignificant Bit (MSB) is for the sign, 15 bits are for the integer and 16 bits are for the frac-tion. All experiments in this section are performed on NVIDIA A4000-16GB GPU.To demonstrate the excellence and effectiveness of ProActwith respect to the state-of-the-art, results are compared to Ranger [53], FT-ClipAct [113], and FitAct [93]methods. Weimplement Ranger in, both, layer-wise and neuron-wise manners and use a random smallpart of training data (3,000 out of 60,000 in both CIFAR-10 and CIFAR-100 datasets) as thevalidation data to find the maximum values for the layers/neurons. FT-ClipAct is imple-mented layer-wise and FitAct is implemented neuron-wise, as they are presented in [113]and [93], respectively. All mentioned activation restriction methods are implemented inthe PyTorch framework and their source code is published on a GitHub repository as atool1, to enable researchers for further achievements in this area.To obtain a quantitative comparison with the existing works, we carry out the reliabil-ity assessment by injecting random bitflip faults into the parameters of CNNs, includingweights, bias, and parameters of clipping activation functions as the fault space. Bits arerandomly selected and flipped based on the 32-bit fixed-point data representation. Weconsider different BERs to flip multiple bits to model the accumulative effect of faultsinto the memory through time. The experimented BERs are {10−7,3× 10−7,10−6,3×
10−6,10−5,3×10−5}.Fault injection experiments are repeated 500 times for each BER and average resultsfor Top-1 accuracy are reported and compared. For the fault injection, we adopt and ex-tend PyTorchFI [160] to consider clipping thresholds in the fault space, developed on top ofPyTorch. The training iterations consist of 50 epochs for neuron-specific clipping thresh-olds in the final layer and 20 epochs for layer-wise HyReLUs. This ensures comparablecomputational overhead to FitAct, which employs 150 epochs. We initialize the learningrate at 0.01, halving it every 10 epochs, and utilize a batch size of 128.

1https://github.com/hamidmousavi0/reliable-relu-toolbox.git

96

https://github.com/hamidmousavi0/reliable-relu-toolbox.git

5.2.4 Results: Overhead Reduction and Resilience Improvement
5.2.4.1 Effect of Activation RestrictionMethods on DNNs’ Baseline Accuracy- andMem-
ory Footprint Asmentioned, the clipping thresholds in any activation restrictionmethodare obtained through validation data (not test data). On the other hand, the main re-quirement of applying them is that they are required not to drop the baseline accuracy offault-free DNNs over unseen test data. Table 5.2 shows the impact of activation restrictionmethods on the baseline accuracy for each DNN after application. It is observed that:

• Ranger has the least effect on the accuracy drop compared to the other methods.Since Ranger considers the clipping threshold as the maximum value seen in valida-tion data (either for neurons or layers), the obtained clipping thresholds are largeenough not to affect the inference of the test data. As a result, Ranger reduces thebaseline accuracy by less than 0.2%.
• FT-ClipAct introduces the largest accuracy drop through all methods, from 0.9%in AlexNet trained up to 4.68% in ResNet-50 both trained on CIFAR-10. Such anaccuracy drop is significant for DNNs, especially in safety-critical applications, anddecreases the effectiveness of the applied activation restriction method. Since theheuristic search algorithm is very complex and slow, it is exploited with a small sub-set of the training data (1,000 data in both CIFAR-10 and CIFAR-100). Therefore, theobtained thresholds are not optimal and influence the accuracy considerably.
• The accuracy drop induced by ProAct is less than 1% which is negligible. Moreover,ProAct reduces the baseline accuracy of DNNs less than both FT-clipAct and FitAct.This is due to the progressive training method, which ensures finding the optimalthreshold for each layer separately without sacrificing accuracy.

Table 5.2: Accuracy drop of CNNs after applying different activation function restriction methods.
Activationrestrictionmethod

Ranger(layer-wise) Ranger(neuron-wise) FT-ClipAct(layer-wise) FitAct(neuron-wise) ProAct(hybrid)
AlexNetCIFAR-10 0.00% 0.00% 0.90% 0.78% 0.29%
AlexNetCIFAR-100 0.01% 0.03% 2.40% 0.64% 0.51%
VGG-16CIFAR-10 0.00% 0.02% 1.15% 1.14% 1.00%
VGG-16CIFAR-100 0.00% 0.07% 1.69% 0.83% 0.35%

ResNet-50CIFAR-10 0.15% 0.19% 4.69% 0.30% 0.22%
ResNet-50CIFAR-100 0.00% 0.08% 1.60% 0.03% 0.10%

The existingmethods are either neuron-wise or layer-wise, which lay differentmemoryoverheads on CNNs. Layer-wise approaches introduce new clipping threshold parametersto DNNs proportional to the number of layers which is a negligible overhead. Whereasneuron-wise approaches lay a remarkable overhead as the number of neurons in CNNs ishuge. However, the ProAct memory footprint is limited since it is a hybrid neuron-wiseand layer-wise activation function.
97

Table 5.3 compares the inducedmemory overhead to baseline CNNs between neuron-wise, layer-wise, and the proposed hybrid approach activation restriction. It is observedthat ProAct significantly reduces memory overhead compared to neuron-wise techniques(FitAct), ranging from 10.5 to 134.28 times while ensuring enhanced accuracy in CNNsagainst faults.
Table 5.3: Comparison of memory overhead for neuron-wise, layer-wise, and hybrid activationrestriction methods.
Activation restriction method neuron-wise layer-wise Hybrid (ProAct)

AlexNet CIFAR-10 0.29% 0.00003% 0.017%AlexNet CIFAR-100 0.21% 0.000035% 0.020%VGG-16 CIFAR-10 1.88% 0.0000884% 0.014%VGG-16 CIFAR-100 0.85% 0.0000446% 0.012%ResNet-50 CIFAR-10 12.23% 0.0002% 0.134%ResNet-50 CIFAR-100 12.23% 0.0002% 0.134%

5.2.4.2 Resilience Comparison of Activation Restriction Methods Fig. 5.4 depict theTop-1 accuracy of DNNs leveraging different activation restriction methods on CIFAR-10and CIFAR-100 under FI campaigns. The right column in both figures magnifies the resultsto highlight the impact of ProAct against the state-of-the-art methods, in particular FT-ClipAct and FitAct. It is observed that equipping DNNs with ProAct remarkably enhancesthe resilience of DNNs compared to the other state-of-the-art methods.Regarding Fig. 5.4, at all BERs, the accuracy of DNNs with ProAct is higher than theDNNs with other activation restriction methods. As it is observed, Ranger provides theleast resilient DNNs. According to the results, although FitAct provides better resiliencethan FT-ClipAct, it introduces a remarkable memory overhead orders of magnitude morethan FT-ClipAct. Whereas ProAct achieves a higher resilience than all existing methodswith negligible overhead.Moreover, it is observed that in model-wise FI experiments, all activation restrictionmethods can effectively improve the resilience of DNNs compared to unprotected DNNs.However, they fail to provide highly resilient DNNs at high BERs. When faulty weights arespread throughout a DNN, several neurons in various layers are affected. Consequently,in a high BER, the values of affected neurons are restricted by their activation functionsand make numerous erroneous activations propagate to the DNN output resulting in aconsiderable accuracy drop. However, ProAct surpasses the other activation restrictiontechniques in terms of providing superior accuracy for DNNs in model-wise FI.Table 5.4 summarizes the results for accuracy drop of experimentedDNNswith respectto their own baseline accuracy in Table 5.1, hardened by FT-ClipAct, FitAct and ProAct, atthe BERs where the accuracy drop of ProActed CNNs for CIFAR-10 is less than 5%, and forCIFAR-100 is less than 10%. This comparison implicitly includes the accuracy drop due toactivation restriction methods exhibiting the overall benefit of ProAct. According to theresults, it is observed that ProAct reduces the accuracy drop of CNNs from 1.36 up to 6.4times compared to FT-ClipAct, and from 1.07 up to 1.72 times compared to FitAct.
5.2.5 Discussion
This section introduced ProAct, a progressive training method for determining thresholdvalues in a novel activation function i.e., HyReLU, aimed at enhancing the resilience of

98

Ranger NW Ranger LW FT-ClipAct FitAct ProAct

10−7 3×10−7 10−6 3×10−6 10−5 3×10−5
10
20
30
40
50
60
70
80

BER

Top
-1A

ccu
racy

(%)

10−7 3×10−7 10−6 3×10−6 10−5 3×10−5
0

10

20

30

40

50

BER

Top
-1A

ccu
racy

(%)

a) AlexNet CIFAR-10 b) AlexNet CIFAR-100

10−7 3×10−7 10−6 3×10−6 10−5 3×10−5
10
20
30
40
50
60
70
80
90

BER

Top
-1A

ccu
racy

(%)

10−7 3×10−7 10−6 3×10−6 10−5 3×10−5

10

20

30

40

50

60

BER

Top
-1A

ccu
racy

(%)

c) VGG-16 CIFAR-10 d) VGG-16 CIFAR-100

10−7 3×10−7 10−6 3×10−6 10−5 3×10−5
10
20
30
40
50
60
70
80
90

BER

Top
-1A

ccu
racy

(%)

10−7 3×10−7 10−6 3×10−6 10−5 3×10−5

5
15
25
35
45
55
65
75

BER

Top
-1A

ccu
racy

(%)

(e) ResNet-50 CIFAR-10 ResNet-50 CIFAR-100
Figure 5.4: Top-1 accuracy comparison of DNNs using ProAct with Ranger neuron-wise (NW),Ranger layer-wise (LW), FT-ClipAct, and FitAct methods under FI.

DNNs. The proposed HyReLU reduces memory overhead by applying neuron-wise clip-ping solely in the last layer and layer-wise clipping in the preceding layers. Furthermore,we proposed a progressive training method utilizing KD to train the threshold parame-ters layer by layer, effectively identifying optimal threshold values for the HyReLU. Ourexperimental results indicate that ProAct significantly improves the resilience of DNNs,with enhancements of up to 6.4 times in high BERs. Furthermore, our approach dramati-cally reduces memory overhead, achieving reductions up to 134.28 times compared to aneuron-wise state-of-the-art method. Furthermore, we have published all source codesto enable researchers to present more effective approaches in this area.
5.3 Channel Duplication and Vulnerability-Aware Pruning
Activation restrictionmethods are effective in enhancing the resilience of CNNs, however,they do not conduct error correction, and CNNs fail to function at high BERs due to the

99

Table 5.4: Comparing the accuracy drop of DNNs using different activation restriction methodsunder fault injection.
DNNs BER FT-ClipAct FitAct ProAct

AlexNet CIFAR-10 1E-6 7.67% 4.34% 2.52%VGG-16 CIFAR-10 3E-6 3.19% 2.61% 1.88%ResNet-50 CIFAR-10 1E-6 9.09% 1.53% 1.42%AlexNet CIFAR-100 3E-7 7.89% 6.31% 5.28%VGG-16 CIFAR-100 1E-7 6.74% 6.34% 4.40%ResNet-50 CIFAR-100 3E-7 12.75% 11.24% 9.37%

replacement of numerous neurons with 0. This section introduces a novel model-levelhardening solution to modify the architecture of CNNs to allow fault correction at infer-ence inherently. An efficient error correction mechanism is designed and enabled by se-lectively duplicated channels within the structure of CNNs. In the proposed method, theparameter vulnerability of CNNs is analyzed and themore vulnerable ones are duplicated.Thereafter, a correction layer detects and corrects the erroneous output activations basedon the two duplicated values. To reduce the method’s overhead, a strategy is proposedfor channel pruning based on the vulnerability of parameters to effectively shrink the sizeof CNNs with a negligible accuracy loss.
5.3.1 CNN Model Hardening
5.3.1.1 Vulnerability Estimation Vulnerability estimation of CNN’s parameters reflectshow they affect classification outputs in the presence of faults. We adopt a vulnerabil-ity estimation approach introduced by [161] and adapt it to the parameters of a channelin a CNN. This approach is validated by FI in [161]. Eq. (5.5) describes the vulnerabilityestimation for each channel:

Vulnerabilitychannel =
C

∑
i=1,i ̸=t

∑w∈channel | ∂ (Zi−Zt)
∂w |2

|Zi−Zt |2
(5.5)

In Eq. (5.5), the vulnerability of a channel with multiple weights w in a convolutional(CONV) layer of a CNN withC number of classes is estimated for a single input data. Theoutput logits of the network corresponding to each output class is Zi and the top class’slogit is Zt . This equation represents the effect of each channel on the output logits as avulnerability estimation and a higher value represents a higher vulnerability of the corre-sponding channel. A similar equation is applied to the weights corresponding to a neuronin Fully Connected (FC) layers.
5.3.1.2 CNN Model Hardening Method After obtaining the vulnerability of channels ofa pre-trained CNN, the CNN model is hardened by performing two steps:

• Duplication of the more vulnerable channels,
• Insertion of the Error Detection and Correction (EDAC) layer after each CONV/FC.
Fig. 5.5 illustrates how the duplication of channels functions. A channel of param-eters contains multiple weights for obtaining an OFMap Fk resulting from the summa-tion of weighted inputs. In the lth CONV layer with Cl output channels, a channel is a 3-dimensional array ofweightsX l ,Y l ,Cl . In an FC layer, an output channel is a 1-dimensional

100

weight array corresponding to a neuron. Duplicating a channel of parameters generatesduplicated values in Fk which provides an opportunity to detect and correct errors pro-duced by faults in parameters. This method selects a ratio of more vulnerable channelswith respect to Eq. (5.5) for duplication.

... ...

...

 EDAC layer

 [,]

... ...

...

output feature maps
from layer

Upper values in detection interval = { }
Lower values in detection interval = { }

corrected
output feature maps

Case A

Case B

Case C

Case D

Case E

 [,]

 [,]

 [,]

 [,]

 [,]

 [,]

 [,]

 [,]

 [,]

... ...

...

... ...

...

... ...

...

... ...

...

 conv layer

...

duplicated channels

output feature maps
from conv layer

duplicated filters

... ...

...

duplicated feature maps

Figure 5.5: Channel duplication and EDAC layer.

After duplicating the vulnerable parameter channels, an EDAC layer is inserted into theCNN after each CONV and FC layer. The EDAC layer is meant to detect and correct errorsin its incoming Fk from a CONV/FC layer within the CNN. One of the major challenges with32-bit floating point data representation in general-purpose devices such as CPU and GPUis that faults may lead to overflows in CNNs producing Not-a-Number (NaN) values andcorrupting the outputs. To address this issue, one of the primary operations in the EDAClayer is to replace any produced NaN value with 0 in the feature maps Fk.Fig. 5.5 illustrates how the EDAC layer operates. The EDAC layer exploits a detectioninterval containing the minimum and maximum values in the channels of Fk that are thelower values {w1,w2, ...,wn} and the upper values {u1,u2, ...,un}, respectively. Detectionintervals are obtained by profiling the CNN on the training dataset. It is assumed that thedata distribution of training is representative enough to provide generic and valid detec-tion intervals for the unseen data during the inference [99].The EDAC layer is aware of duplicated and non-duplicated channels. In the duplicatedchannels, an error is detected and corrected in two cases:
• Both duplicated values of an OFMap in the corresponding channels are in the de-tection interval but are not equal. In this case, the minimum value between themis selected as the correct output F i

k (case A in Fig. 5.5). The reason behind thiscorrection is that CNNs are more resilient to small numbers [113].
• A value in a channel exceeds the detection interval, thus, the duplicated value thatis in the detection interval is the correct value for the output F i

k (case B and C in Fig.5.5). If both duplicated values are not in the detection interval, the output F i
k is setto 0 (case D in Fig. 5.5).

In the non-duplicated channels, faults are detected and corrected based on the de-tection intervals. If any value in the channel exceeds the corresponding detection intervaloutputF i
k sets to 0 (case E in Fig. 5.5). The rationale behind zeroing is that it eliminates thepropagation of erroneous values within a DNN. Note, that the detection and correctionare repeated for each element of the two-dimensional array of the OFMap Fk. Fig. 5.6

101

depicts an example of the operation of the EDAC layer. The red values in this figure areerroneous and green values are fault-free.

0.3 0.6

0.1 -0.5

-3.8 0.6

0.1 -0.5

duplicated
filters

-1

3 1

0 5

input
activations

9.5

output
activations

EDAC LayerCONV Layer

min = -1.5
max = 4.7

∉ [min, max]

-1

correct output
activations

-1 9.5

-1

9.5

≠

∈ [min, max]

0.3 0.6

0.1 -0.5

1.5 0.6

0.1 -0.5

-1

3 1

0 5
2.6

∈ [min, max]

-1

-1 2.6

-1

2.6

≠

∈ [min, max]

-1 2.6<

Figure 5.6: An example for the operation of EDAC layer operation.

To prevent faults fromany immediatemisclassification at the last layer, all output chan-nels of the last layer in CNNs (i.e., neurons in the last FC layer) are duplicated andprotectedby an EDAC layer. It is worth mentioning that EDAC is implemented in a highly parallelway in Pytorch so that it can operate detection and correction on all duplicated and non-duplicated channels in parallel. Moreover, the hardened CNNs have the same accuracy asthe baseline ones.
5.3.2 Experimental Setup
The parameters of a pre-trained CNN could be faulty at inference time due to severalreasons, including soft errors, temperature or voltage variation, process variation, aging,etc. To examine the resilience of CNNs, we model faults in the parameters by flippingtheir bits considering different Bit Error Rates (BERs). To this end, any layer in the CNN’sparameters, including convolutional, Fully Connected (FC), batch normalization, and EDAClayers is subject to a fault injection campaign. We have developed the fault injection ontop of Pytorch, and the data representation is IEEE-754 32-bit floating point. The numberof bitflips in a layer is equal to BER× #parameters× 32 in that layer. The fault injectionsimulations are performed on an NVIDIA 3090 GPU and any fault injection experiment isrepeated 1000 times and the average accuracy drop is reported as the resilience metric.The experimented BERs are 10−8, 5× 10−8, 10−7, 5× 10−7, 10−6, 5× 10−6, 10−5, 5×
10−5, and 10−4.The experiments in this work are performed on three deep CNNs: AlexNet and VGG-11 trained on CIFAR-10 and VGG-16 trained on CIFAR-100. Their baseline accuracy as wellas the number of parameters and MAC operations are reported in Table 5.5. The per-formance in terms of execution time of the CNNs over their test set is examined on an

102

NVIDIA 3090 GPU coupled with an AMD Threadripper 3960X 24-core processor. Notethat the accuracy of unprotected CNNs decreases drastically even at relatively low BERs.The unprotected AlexNet drops 26% at BER = 5×10−7 and the accuracy of unprotectedVGG-11 and VGG16 drops 24.07% and 31.17% at BER = 5×10−8, respectively.
Table 5.5: The baseline CNNs leveraged in this section.

CNN Dataset Baseaccuracy #parameters #MACs Performance(sec)
AlexNet Cifar-10 73.15% 21,623,562 42,316,288 0.591
VGG-11 Cifar-10 92.85% 9,228,362 153,293,824 0.655
VGG-16 Cifar-100 73.20% 34,015,396 332,756,992 0.782

5.3.3 Results
5.3.3.1 Hardening by Channel Duplication vs. Triplication First, we demonstrate howEDAC performs if the detection intervals are not exploited for non-duplicated channelsand compare it with a triplication-based correction performed by a voter. The voter takesthree replicated OFMaps in the corresponding channel and outputs the most repeatedvalue. In the case where all three OFMaps are different (if at least two replicated filtersare faulty), the voter outputs the minimum value.Fig. 5.7 presents the results for accuracy drop and memory overhead of duplication +EDAC vs. triplication + voter for AlexNet at BER = 10−4 over different channel hardeningratios. A similar trend is observed for VGG-11 and VGG-16. The highlights that can beobserved from the Figure are:

• Duplication + EDAC achieves a similar resilience to that of triplication + voter interms of accuracy drop, with twice less memory overhead.
• The memory overhead is proportional to the channel duplication and triplicationratio. The memory overhead of the EDAC layer is negligible compared to the totalmemory and computational requirements of CNNs.
• A high resilience is achieved only at full channel hardening. At lower hardening ra-tios, although the more vulnerable channels are protected, the unprotected chan-nels incur a high accuracy drop in CNNs due to the high BER.
As observed, we need to apply a full channel duplication + EDAC to protect CNNswhichleads to a significant overhead in the hardened CNNs compared to the unprotected ones.The hardened CNNs have double memory and computational requirements (100% over-head) and the execution time increases up to 1.83 times. To tackle this issue, we exploitthe detection intervals in the non-duplicated channels to protect less vulnerable channelswhich leads to lower hardening ratios. It is presented in the next subsection.

5.3.3.2 Hardening by Selective Channels Duplication and EDAC Layer This subsectionpresents the results for the selective channel duplicationwith EDAC layers. In a pre-trainedDNN, a ratio of themore vulnerable channels are duplicated and both duplicated and non-duplicated channels exploit detection intervals to be hardened at the EDAC layer. Sincethe hardening method is at the model level, the performance in terms of execution timeis influenced. We present the performance overhead on NVIDIA 3090 GPU.
103

Dup. + EDAC Trip. + voter

90 95 100

10

30

50

70

Channel hardening ratio (%)

Acc
ura

cyd
rop

(%)

90 95 100
0

50

100

150

200

Channel hardening ratio (%)

Me
mo

ryo
verh

ead
(%)

(a) Resilience (b) Memory Overhead
Figure 5.7: Resilience (a) and memory overhead (b) for AlexNet hardened by duplication + EDAC vs.triplication + voter at BER=10−4, without applying detection intervals to Non-duplicated channels.

Fig. 5.8 demonstrates the resilience and performance overhead for all the experi-mented CNNs at the highest BERs where the accuracy drop is not yet significant (lowerthan 5%). As observed, exploiting detection intervals in unprotected channels has a re-markable effect on reducing the hardening ratio to achieve high resilience. It can be ob-served that by merely using detection intervals without channel duplication (hardeningratio = 0%), the accuracy drops at high BERs are lower than 4% with up to 11.4% perfor-mance overhead compared to the unprotected baseline CNNs. Nonetheless, increasingthe channel hardening ratio improves the resilience without a significant performanceoverhead. With a 15% channel hardening ratio the accuracy drop improves 17%, 38%,and 24% for AlexNet, VGG-11, and VGG-16 respectively, achieved by 6.7% to 12% longerexecution time, compared to 0% hardening ratio.As noted, EDAC layers exploiting detection intervals for all channels can significantlyreduce the overhead of the hardened CNNs compared to the full duplication. However, atangible overhead is laid upon CNNs due to hardening. The overheads are caused by bothchannel duplication and EDAC layer operations. To tackle this issue, we deploy a pruningmethod to reduce the size of baseline CNNs by removing the least vulnerable channels andapplying EDAC to themost vulnerable ones, so the total overhead can be further reduced.This method is presented in the next section.
5.3.4 Overhead Reduction by Pruning based on Parameters’ Vulnerability
As observed, although the introduced hardening technique exhibits a high resilience toCNNs, it lays a considerable overhead to them. To address this issue, we apply an effec-tive structured channel pruning to CNNs to shrink their baseline size and then apply thehardening mechanism.

5.3.4.1 Vulnerability-AwarePruning Structuredpruning is awell-knownmethod for CNNmodels to reduce their size leading to optimizing their performance and resource utiliza-tion. In thismethod, ametric for the significance of the effect of parameters on the outputaccuracy is considered and the least important weights are removed from the CNN witha negligible accuracy loss.Conventionally, the significance of the weights effect is examined by L1-norm which isshown to be effective [106]. In this work, we exploit Eq. (5.5) as the importance metric for
104

Accuracy drop Performance Overhead

0 5 10 15
3.00

3.15

3.30

3.45

3.60

Channel hardening ratio (%)

Acc
ura

cyd
rop

(%)
4.00

7.25

10.50

13.75

17.00

Per
form

anc
eov

erh
ead

(%)

(a) AlexNet (BER=10−4)

0 5 10 15
2.8

3.1

3.4

3.7

4.0

Channel hardening ratio (%)

Acc
ura

cyd
rop

(%)

8.5

11.0

13.5

16.0

18.5

Per
form

anc
eov

erh
ead

(%)
(b) VGG-11 (BER=5×10−5)

0 5 10 15
1.6

1.7

1.8

1.9

2.0

2.1

Channel hardening ratio (%)

Acc
ura

cyd
rop

(%)

11.0

12.6

14.2

15.8

17.4

19.0
Per

form
anc

eov
erh

ead
(%)

(c) VGG-16 (BER=10−5)
Figure 5.8: Accuracy drop and performance overhead comparison for hardened CNNs overdifferent channel pruning ratios at the BERs where accuracy drop is below 5%.

channel parameters and remove a ratio of the least vulnerable channels from CONV andFC layers in CNNs. To avoid losing too much accuracy, we perform lightweight training onthe pruned CNNs with 10 epochs using SGD with a learning rate of 0.001 on the trainingdataset. Fig. 5.9 shows that our vulnerability-aware pruning method is more effectivethan L1-norm pruning in terms of removing the channels of CNNs while the accuracy isstill close to that of the baseline CNN.
To obtain the highest possible pruning ratios for each CNN, we perform an extensiveexploration over different pruning ratios of CONV and FC layers to minimize the numberof parameters and MAC operations maintaining the test accuracy within 1% of its unpro-tected baseline. Table 5.6 shows the selected pruning ratios for the experimented CNNsand their improved memory and computational requirements compared to the baselineones. As it is observed, the pruned CNNs achieve from 1.18 to 6.19 times fewer parame-

105

(3%
,2

0%
)

(3%
,3

0%
)

(3%
,4

0%
)

(3%
,5

0%
)

(4%
,2

0%
)

(4%
,3

0%
)

(4%
,4

0%
)

(4%
,5

0%
)

(5%
,2

0%
)

(5%
,3

0%
)

(5%
,4

0%
)

(5%
,5

0%
)

60

65

70

75

Pruning ratio in percentage for (conv, fc)

Acc
ura

cy(
%)

L1-norm Vulnerability-based

Figure 5.9: Comparison of L1-norm pruning and vulnerability-based pruning in AlexNet.

ters, 1.03 to 2.06 times fewer MAC operations, and 1% to 11.1% less execution time thanthe baseline ones.
Table 5.6: Pruned CNNs specifications.

CNNs Conv.prun. ratio FC prun.ratio Pruned CNNAccuracy
Norm.#params tobaseline

Norm.#MACs tobaseline
Norm.perf. tobaseline

AlexNet 5% 80% 72.38% 0.1615 0.4851 0.888
VGG-11 4% 35% 91.96% 0.847 0.9059 0.987
VGG-16 1% 15% 72.4% 0.826 0.9665 0.998

5.3.4.2 Resilience and Overhead of the Hardened Pruned CNNs By shrinking the base-line CNNs using pruning, the overhead of hardened CNNs is reduced compared to thebaseline ones. To that end, the pruned CNNs’ channel vulnerability is obtained, the morevulnerable channels are duplicated, and EDAC layers are implanted into the model withthe corresponding detection intervals. Fig. 5.10 illustrates how resilience is improved inthe hardened pruned CNNs against hardened baseline ones over different BERs, with 15%channel hardening ratio. It is observed that the proposed pruning not only reduces theoverhead of hardened CNNs but also improves their resilience.
Fig. 5.11 compares the performance overhead in terms of the execution time of dif-ferent hardened CNNs on NVIDIA 3090 GPU. As observed, the overhead of triplication +voter is significantly higher than the other methods. On the other hand, hardened prunedCNNs have the best performance among the hardened CNNs. Throughout the results, theperformance of 15% hardened pruned Alexnet, VGG-11, and VGG-16 is improved by 24%,

1%, and 4.7%, respectively, compared to the 15% hardened ones without pruning. Note-worthy, the hardened pruned AlexNet has 6.06% less execution time than its unprotectedbaseline. The selective hardened pruned AlexNet, VGG-11, and VGG-16 require 81.40%,
2.67%, and 3.98% less memory, respectively, than their unprotected baseline to storetheir parameters.

106

Hardened baseline Hardened pruned

5×10−
6

10−
5

5×10−
5

10−
4

0

1

2

3

BER
Acc

ura
cyd

rop
(%)

(a) AlexNet

10−
6

5×10−
6

10−
5

5×10−
50

1

2

3

BER

Acc
ura

cyd
rop

(%)

(b) VGG-11

10−
6

5×10−
6

10−
5

5×10−
50

3

6

9

BER

Acc
ura

cyd
rop

(%)

(c) VGG-16
Figure 5.10: Resilience comparison in terms of accuracy drop of hardened baseline and hardenedpruned CNNs at different BERs with 15% channel hardening ratio.

AlexNet VGG-11 VGG-16
−20

0

45

100

155

210

Per
form

anc
eov

erh
ead

(%) Fully trip.+voter Fully dup.+EDAC
15% hardened 15% hardened pruned

Figure 5.11: Performance overhead comparison for hardened CNNs.

107

5.3.5 DiscussionThis section presents a model-level hardening method for CNNs by selective channel du-plication and EDAC layers. The proposed method enables CNNs to detect and correctfaults inherently, at inference time. The hardened CNNs perform reliably at orders ofmagnitude higher error rates than unprotected CNNs with merely a 15% hardening ra-tio, yet incurring 12% performance overhead. To further minimize the incurred overheadby the hardening method, for the first time, a vulnerability-based pruning that improvesresilience is presented. As a result, the hardened pruned CNNs achieve up to 24% higherperformance than the un-pruned hardened CNNs.
5.4 SentinelNN: Model-Level CNN Hardening Framework
Based on the findings in the current and previous Chapters, an open-source framework isdeveloped for model-level CNN hardening, named SentinelNN. This framework employsDeepVigor+ for a fast and accurate resilience analysis to identify the more vulnerablechannels and conducts selective channel duplication and correction. Furthermore, it em-ploys activation restriction (Ranger) through ReLU to constrain the generation of largevalues generated as a result of hardware faults.Fig. 5.12 illustrates the workflow of this open-source framework. As depicted, theframework receives a pre-trained CNN model and the dataset and performs DeepVigor+to derive vulnerability factors for all channels in convolutional layers. Based on the ob-tained vulnerability, the less vulnerable channels in each layer are structurally prunedbased on the user-specified channel pruning ratio. Afterward, the pruned CNN is ana-lyzed by DeepVigor+ to provide the channels’ vulnerability of the pruned CNN. Thereafter,based on a user-specified channel hardening ratio, the higher-vulnerable channels are du-plicated, and a correction function similar to the proposed method in Fig. 5.5 is appliedto them. It is noteworthy that SentinelNN does not incorporate detection intervals, andinstead, employs a layer-wise Ranger for ReLU throughout the CNN.

Pre-trained
CNN

Dataset

Resilience Analysis
(DeepVigor+) Channels'

Vulnerability

Channel
pruning ratio

Structured
Channel Pruning

Selective Channel
Hardening and

Activation Function
Clipping

Pruned
CNN

Hardened
CNN

Channel
hardening ratio

Figure 5.12: SentinelNN framework for CNN models hardening.

5.4.1 Experimental SetupSentinelNN is fully implemented using Python and the Pytorch library. Its source codeis published in https://github.com/mhahmadilivany/SentinelNN as a convenient
108

https://github.com/mhahmadilivany/SentinelNN

and scalable tool for researchers and engineers to adopt and build upon. The user canseparately specify the pre-trained model and the corresponding ratio for channel pruningand hardening. This framework supports various architectures of CNNs (e.g., VGG andResNet) and includes multiple resilience analysis methods including DeepVigor+, Vulner-ability Gain [161] i.e., Eq. (5.5), and LRP for weights [7]. These methods can be employedfor pruning and hardening CNNs to explore their efficacy.
To briefly present the outputs and effectiveness of the SentinelNN framework, we per-form some experiments on two CNNs on CIFA-100: VGG-19 on CIFAR-100 with an accu-racy of 73.87%, and ResNet-20 on ImageNet with an accuracy of 68.83%. The CNNs arepruned and hardened with different ratios and their overhead to the number of parame-ters and MAC operations are reported. Moreover, to show the effectiveness of the hard-ening method, we perform FI into their weights with various BERs and measure their ac-curacy loss. We experiment CNNs with a batch size of 256 images, pruning ratio of 5% and

10%, and hardening ratio of 10% and 20%. DeepVigor+ is conducted for resilience anal-ysis. FI campaigns are repeated 1,000 times and the average accuracy drop is reported.
5.4.2 Experimental Results

Asmentioned, SentinelNN employs pruning to reduce the size of DNNs and conduct hard-ening for selective channel duplication, producing fault-tolerant CNN models. Table 5.7presents the results for pruning and hardening CNNs using DeepVigor+ for weight chan-nel vulnerability analysis. These results demonstrate that we can obtain hardened CNNswith the same or smaller size than the baseline ones, considering the number of param-eters and MAC operations.

Table 5.7: Comparing the pruned CNNs specifications.
CNNs ChannelPruning Ratio Pruned CNNAccuracy Channelhardening ratio

Normalized#params tobaseline
Normalized#MACs tobaseline

VGG-19 5% 70% 10% 0.994 0.99620% 1.082 1.086
10% 69.24% 10% 0.894 0.89420% 0.815 0.815

ResNet-20 5% 64.88% 10% 1.007 1.03320% 1.096 1.136
10% 63.5% 10% 0.892 0.90620% 0.977 1.003

Fig. 5.13 presents the resilience of hardened CNN under the FI campaign with differentBERs. It can be observed that the fault resilience of hardened CNNs is remarkably higherthan that of baseline CNNs, with the same or smaller size. The accuracy drop for theunprotected baseline VGG-19 is 70% at BER = 5× 10−7 and for ReNset-20 is 50% at
BER = 10−5. Whereas the hardened CNNs produced by SentinelNN have a remarkablylower accuracy drop at high BERs, according to Fig. 5.13. Furthermore, a higher hardeningratio at a same pruning ratio leads to a more fault-tolerant CNN. SentinelNN allows theuser to control the size of CNNs based on the application requirement concerning accuracyand performance while achieving high fault tolerance.

109

pr=5%, hr=10% pr=5%, hr=20%
pr=10%, hr=10% pr=10%, hr=20%

10−
7

5×10−
7

10−
6

5×10−
60

1

2

3

4

5

BER

Acc
ura

cyd
rop

(%)

5×10−
7

10−
6

5×10−
6

10−
5

0

1

2

3

BER

Acc
ura

cyd
rop

(%)

(a) VGG-19 (b) ResNet-20
Figure 5.13: Resilience comparison in terms of accuracy drop for pruned and hardened CNNs atdifferent BERs (pr = pruning ratio, hr = hardening ratio).

5.5 Chapter Conclusions
This Chapter addresses the identified gaps in the literature concerning model-level tech-niques to enhance the resilience of CNNs based on SIHFT-based methods. The proposedapproaches enable reliable deployment of CNNs on any accelerator, ranging from general-purpose computing devices such as GPUs and CPUs to ASICs and pre-designed IPs, ad-dressing RQ3.1 in Chapter 1. The proposed method attempted to outperform the state-of-the-art methods in terms of both fault resilience and computational/memory overheadof emerging CNNs and accelerators, addressing RQ3.2 and RQ3.3 in Chapter 1We proposed HyReLU, a novel hybrid layer-wise and neuron-wise clipping activationfunction that is trained progressively by ProAct to identify the optimal values for clippingthresholds. It is shown that this method is more effective in enhancing the fault resilienceof CNNs than the best state-of-the-art method while reducing its memory overhead re-markably. Furthermore, we introduced a novel and effective approach for hardening CNNsagainst faults and enable to correct errors inherently. On the other hand, vulnerability-aware pruning is proposed to enable the management of overheads vs. fault resilienceof CNNs. Eventually, this Chapter introduces the open-source SentinelNN framework thatintegrates vulnerability-aware pruning using DeepVigor+ and hardening (channel dupli-cation and range restriction) to produce highly fault-resilient CNNs. The proposed ap-proaches in this Chapter consider the trade-off between performance and reliability andattempt to provide more resilience for CNNs with lower costs than the state-of-the-art.

110

6 Reliability Assessment and Enhancement for LSTMs
Given the safety-critical nature of medical and healthcare domains, the hardware relia-bility of DL devices is of paramount importance. Healthcare applications exploit DeepNeural Networks (DNNs) extensively for various tasks such as diagnosis, treatment, andprediction of diseases and anomalies [109, 165] because of their outstanding strength inprocessing time-series data [151, 223].As mentioned in Chapter 3, nearly all existing works study the reliability of Convo-lutional Neural Networks (CNNs) for image classification and object detection tasks. Al-though LSTMs are widely deployed in safety-critical applications, including healthcare,their reliability against faults and fault tolerance methods are not extensively explored.In this Chapter, we conduct resilience assessment and enhancement for LSTMs in dif-ferent medical applications: gait analysis and disease prediction. This Chapter attemptsto address P4 which includes RQs 4.1 and 4.2 and presents contributions mentioned in C4,in Chapter 1. This Chapter is based on the following publications:
I M. H. Ahmadilivani, J. Raik,M. Daneshtalab, and A. Kuusik. Analysis and Improvementof Resilience for Long Short-Term Memory Neural Networks. In IEEE InternationalSymposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),pages 1–4. Juan-Les-Pennes, France, 2023.II B. Parchekani, S. Nazari, M. H. Ahmadilivani, A. Azarpeyvand, J. Raik, T. Ghasempouri,andM.Daneshtalab. Zero-Memory-OverheadClipping-Based Fault Tolerance for LSTMDeep Neural Networks. In IEEE International Symposium on Defect and Fault Toler-ance in VLSI and Nanotechnology Systems (DFT), pages 1–4. Oxforshire, United King-dom, 2024.
In the rest of the Chapter, Section 6.1 investigates the resilience of multiple LSTM-based neural networks for gait analysis and applies a lightweight method to enhance theirfault resilience. Section 6.2 studies the fault resilience of convolutional LSTM DNNs andapplies some zero-overhead techniques to them to enhance their reliability, and Section6.3 concludes the Chapter.

6.1 LSTM-based NN for Gait Analysis
Gait analysis as an essential diagnostic tool in various medical fields, including orthope-dics, neurology, wellness assessment, and rehabilitation, benefits greatly from the utiliza-tion of LSTMs for processing time-series data typically collected by wearable Microme-chanical Motion Sensors (MEMS) [60, 109, 180, 221].In this work, we investigate the resilience of different LSTM-based NNs to detect gaitabnormalities in time-series gait data and study their resilience using Fault Injection (FI)into the weights. Moreover, by analyzing the distribution of weight values and assessingthe resilience of the NNs, we propose a method to enhance their resilience.
6.1.1 Proposed Method: Resilience Assessment and Enhancement
6.1.1.1 LSTMs Under Study Three LSTMs are developed based on the architecture illus-trated in Fig. 6.1 for gaits abnormality detection. Each LSTM has two output classes rep-resenting normal and abnormal steps. The examined LSTMs are called ANN-n where nrepresents the number of cells in the LSTM layer and also the number of neurons in thefirst FC layer. The designed LSTMs and their achieved results are fully presented and dis-cussed in paper XVI, which is out of the scope of this thesis.

111

LSTM cell

Ct
ht

Ct-1

ht-1

xt cell output

LSTM cell cell output

LSTM cell cell output

LSTM Layer
FC Layers

Ct
ht

Ct-1

ht-1

xt

Ct
ht

Ct-1

ht-1

xt

Figure 6.1: LSTM-based ANNs adopted in this work for gait abnormality detection.

6.1.1.2 Resilience Assessment by Fault Injection. Resilience assessment is performedby FI into different sets of weights. Faults are assumed to occur in memory that impactthe weight parameters of ANNs. To represent this phenomenon, we consider differentBit Error Rates (BERs) to model accumulated bitflips throughout the parameters. Notably,faults in bias are not considered as their effect was negligible in our preliminary experi-ments. In our FI experiments, we flip random bits across the weights considering differentBERs. We perform a random FI into the weights at each BER before a full inference. Thenwe obtain the outputs of the network for further resilience analysis and repeat the exper-iments several times in order to reach high-confidence results.To perform both coarse-grain and fine-grain resilience analyses over the weights, weinject faults into randomly selected weights considering different scenarios, as follows:
• Model-wise FI: Injecting faults into randomly selected weights across the ANN,
• LSTM FI: Injecting faults only into randomly selected weights of the LSTM layer,
• FC FI: Injecting faults only into randomly selected weights of FC layers,
• Recursive weights (W) FI: Injecting faults only into randomly selected weights ofthe LSTM layer that involve the recursive inputs of cells (vectorW in Eq. (2.11)),
• Input weights (U) FI: Injecting faults only into randomly selected weights of LSTMlayer that involve the time-series inputs (vectorU in Eq. (2.11)).
For each FI experiment, the faulty outputs of the last layer in ANNs are stored andcomparedwith the ones in a fault-free execution. We present different evaluationmetricsfor resilience analysis in this work as follows:
• Accuracy loss: The difference between the accuracy of fault-free and faulty execu-tion of the ANNs,
• F1-score Loss: The difference between the F1-score of fault-free and faulty executionof the ANNs.

112

Werepeat FI experimentswith different sets of randomweights several times to achievehigh-confidence results. Therefore, the average accuracy and F1-score over all the FI ex-periments are considered. Furthermore, we analyze the effect of faults on the outputvalues to classify them. In each FI experiment, the outputs are classified into one of thefollowing classes:
• Masked: The outputs in faulty and fault-free execution are the same,
• Non-critical Silent Data Corruption (SDC): The output values are different in faultyand fault-free execution but the classification result is the same,
• Critical SDC: The output values and classification are different in faulty and fault-free execution,
• DetectedUnrecoverable Error (DUE):ANNproduces ’NaN’ values in the output con-sidered as system exception.

6.1.1.3 Resilience Enhancement: Weights Online Checking and Correction To improvethe resilience of LSTMs, first, we profile the weight values in the ANNs to observe thepattern of their distribution. This would lead us to the existing value ranges in the weightsand find themost frequent values. Fig. 6.2 depicts the value distribution of weights acrosseach network separately. It is observed that in all ANNs the range of weights is limited tosome exclusive values. In addition, the values of most of the weights are close to 0.

(a) (b) (c)
Figure 6.2: The distribution of values of weights for a) ANN-20, b) ANN-30, c) ANN-40, respectively.

For resilience improvement, two modes are considered; 1) offline mode, 2) deploy-ment. In the offline mode, the minimum and maximum values for an ANN are obtainedby profiling its weights. Thereafter, in the deployment, to detect and correct the faultyweights before an inference, we perform these operations iteratively:
• Comparing the value of all weights with the obtained range from the profiling,
• Replacing the exceeded weights with 0.
Using these operations allows us to find and remove the faulty weights that are largerthan the expected values in the weights at run-time. The application specifies the fre-quency of iterating over the correction procedure.

6.1.2 Experimental Setup
The LSTMs that are examined in this section, detect abnormal gaits in a time-series datasetobtained from clinical experiments on 15 patients including their normal and abnormalsteps. Table 6.1 presents the accuracy and F1-score as well as the number of parametersin LSTM-based ANNs. It is strictly determined by the application that the accuracy of an

113

Pre-trained
LSTM DNN

Profiling
weights

Min and max
values of weights

Offline Mode

Compare all
weights with
min and max

values

Replace
exceeding

weights with 0

LSTM DNN
to be

deployed

Deployment

Online checking and correction

Figure 6.3: The proposed protection mechanism for LSTMs.

ANN should be higher than 80% and its F1-score should be more than 70%. Also, ANNsare employed by a general-purpose computer that supports 32-bit floating-point IEEE-754data representation.
Table 6.1: Accuracy, F1-score, and the number of different weight sets of the LSTM-based ANNs.

Accuracy F1-score #weights in U #weights in W #weights in FC
ANN-20 93.35% 80.33% 320 1,600 440
ANN-30 94.73% 85.39% 480 3,600 960
ANN-40 95.79% 88.57% 640 6,400 1,680

As mentioned, various FI scenarios are carried out over different sets of weights in theANNs. The number of injected faults is determined by the Bit Error Rates (BERs) between
0.000015 to 0.006 to observe the full possible spectrum of the pieces of evidence. Toachieve high-confidence results through random FI in terms of statistics, we repeat eachFI experiment 2,000 times and report the average accuracy and F1-score. For the faultclassification results, we save the outputs of each FI campaign and label them asMasked,Non-critical SDC, Critical SDC and DUE, and in the end, the rate of each fault class over the2,000 experiments is reported. All experiments are implemented in PyTorch and are runon an A100 NVIDIA GPU along with an AMD EPYC 64-core CPU.
6.1.3 Experimental Results
6.1.3.1 Model-wiseResilienceAnalysis. The results of average accuracy loss and f1-scoreloss through a model-wise FI are reported in Fig. 6.4. It shows how the accuracy and F1-score of ANNs decrease together with the increase in the error rate. Regarding the men-tioned accuracy constraints by the application (accuracy should be more than 80% andF1-score more than 70%), all networks fail to function at the BERs higher than 1.5×10−4.Assuming that only 0.015% of the weights across the model are faulty the averageaccuracy of ANN-20, ANN-30, and ANN-40 decreases by 4.29%, 7.26%, and 11.86%, re-spectively. Moreover, the F1-score of the ANNs at thementioned BER is reduced by 7.12%,
13.11%, and 19.02%, respectively. These findings indicate a general trend: larger ANNsexhibit lower resilience compared to the smaller ones. This observation can be attributedto the fact that larger neural networks possess a greater number of parameters, makingthem more susceptible to the corrupting effects of faults.In addition, faults are classified according to their effect on the outputs of ANNs in Fig.6.5. It is observed that at low BERs, most of the faults are either masked or non-critical.

114

ANN-20 ANN-30 ANN-40

1.5×
10−

5

6×10−
5

3×10−
4

1.5×
10−

4

6×10−
3

0

20

40

60

BER

Acc
ura

cyd
rop

(%)

1.5×
10−

5

6×10−
5

3×10−
4

1.5×
10−

4

6×10−
3

0

20

40

60

BER

F1-s
core

dro
p(%

)

(a) Accuracy drop (b) F1-score drop
Figure 6.4: Resilience analysis of LSTM-based ANNs under model-wise FI.

However, by increasing the frequency of faults, networks are no more resilient. Especiallywhen BER is 1.5×10−5 or more, where nearly all the faults are propagated to the outputas SDC. At BER = 1.5× 10−5, critical SDC for ANN-20, ANN-30, and ANN-40 is 5.44%,
8.79%, and 13.69% and the rest of the faults are mostly non-critical SDC (less than 0.1%are masked). It can be observed that DUE appears only when BER is very high.

Masked Non-critical SDC Critical SDC DUE

1.5
×10−

5

3×
10−

5

6×
10−

5

1.5
×10−

4

3×
10−

4

6×
10−

4

1.5
×10−

3

3×
10−

3

6×
10−

3
0

20

40

60

80

100

BER

Rat
e(%

)

1.5
×10−

5

3×
10−

5

6×
10−

5

1.5
×10−

4

3×
10−

4

6×
10−

4

1.5
×10−

3

3×
10−

3

6×
10−

3
0

20

40

60

80

100

BER

Rat
e(%

)

1.5
×10−

5

3×
10−

5

6×
10−

5

1.5
×10−

4

3×
10−

4

6×
10−

4

1.5
×10−

3

3×
10−

3

6×
10−

3
0

20

40

60

80

100

BER

Rat
e(%

)

(a) ANN-20 (b) ANN-30 (c) ANN-40

Figure 6.5: Fault classification in model-wise FI for LSTM-based ANNs.

6.1.3.2 Layer-wiseResilienceAnalysis. Fig. 6.6 presents the accuracy dropof ANNswhenweights in the layers are faulty separately. Based on the results, it is observed that forBERs below 1.5×10−4, the resilience of both, LSTM and FC layers are approximately sim-ilar, i.e., the variation in accuracy drop resulting from FI into these layers separately isminimal, with a difference of less than 0.5%. On the other hand, when BER is 1.5×10−4

and higher, in nearly all cases, the accuracy drop of ANNs in LSTM FI is remarkably higher.Therefore, the main observation in these results is that in all ANNs, the weights of theLSTM layer are more vulnerable than the ones in the FC layers, especially at high BERs.Fault classification is also conducted for layer-wise FI. Analyzing its results provides thefollowing observations:
• FC layers outperform the LSTM layer in fault-masking, also evidenced by the accu-racy loss results. This observation can be attributed to the dense connections andthe fault-masking capability of the ReLU activation function in the FC layers.

115

LSTM FI FC FI

1.5×
10−

5

6×10−
5

3×10−
4

1.5×
10−

4

6×10−
3

0

20

40

60

BER

Acc
ura

cyd
rop

(%)

1.5×
10−

5

6×10−
5

3×10−
4

1.5×
10−

4

6×10−
3

0

20

40

60

BER

F1-s
core

dro
p(%

)

1.5×
10−

5

6×10−
5

3×10−
4

1.5×
10−

4

6×10−
3

0

20

40

60

BER

F1-s
core

dro
p(%

)

(a) ANN-20 (b) ANN30 (c) ANN-40
Figure 6.6: Comparison of ANNs’ accuracy drop in layer-wise FI (LSTM vs FC).

• Faulty weights in an LSTM layer lead to more critical cases in all ANNs. Given theLSTM layer’s role in memorizing input patterns, faults in its parameters can signifi-cantly influence ANNs resulting in increased misclassifications.
• In LSTM FI, the DUE rate is consistently 0, whereas in FC FI, DUE occurs at high BERs.This is caused by sigmoid and tanh activation functions within LSTM cells, which ef-fectively eliminate large values caused by faulty weights. In contrast, FC layers em-ploy the ReLU activation function, allowing the propagation of large positive values,leading to DUE occurrences.

6.1.3.3 Inter-LSTMResilience Analysis: FI intoU vsW As observed, LSTM layers are lessresilient than FC layers. Accordingly, we further analyze the resilience of weights insideLSTM layers. As mentioned, two scenarios of Recursive weights (W) FI and Input weights(U) FI are performed separately. Fig. 6.7 depicts the results of this study. It is observedthat in all ANNs, W weights are remarkably more vulnerable. At BER = 1.5× 10−4, theaccuracy drop resulting from FI experiments into W parameters is 2.41, 3.25, and 4.55times worse than that of FI into U, for ANN-20, ANN-30, and ANN-40, respectively. Thereason behind this observation is that W parameters involve memorizing the incomingtime-series data through the recursive inputs of the LSTM layer. Therefore, faults in theseparameters persist in influencing the recursive inputs through time and corrupt the mem-orizing ability of the network more than the other weights.
W ANN-20 U ANN-20
W ANN-30 U ANN-30
W ANN-40 U ANN-40

1.5×
10−

5

3×10−
5

6×10−
5

1.5×
10−

4

3×10−
4

6×10−
4

1.5×
10−

3

3×10−
3

6×10−
3

0

10

20

30

40

50

BER

F1-s
core

dro
p(%

)

Figure 6.7: Inter-LSTM FI and accuracy comparison for LSTM-based ANNs.

116

6.1.3.4 Resilience Improvement of LSTM-basedANNs It is observed that ANNs are highlyvulnerable to faults and adopted ANNs are no longer applicable when BER > 1.5×10−4.To improve the resilience of ANNs, any weight throughout an ANN that exceeds the ex-pected values is replaced by 0, based on the offline mode profiling. To show the efficacyof the proposed method, we have applied it to the ANNs and performed a model-wiseFI to obtain the results of accuracy loss, F1-score loss, and fault classification. Fig. 6.8shows how the proposed method improves the accuracy and F1-score of ANNs in differ-ent BERs. Considering the required accuracy and F1-score of ANNs in the application, pro-tected ANN-20 can operate when BER <= 1.5× 10−3 (10 times higher than the unpro-tected one). In addition, the protected ANN-30 and ANN-40 can meet the requirementsup to BER = 3×10−3 meaning that they can tolerate up to 20x higher BERs.

(a) Accuracy (b) F1-score
Figure 6.8: Accuracy and F1-score improvement of ANNs.

Moreover, weperform the fault classification in the FI experiments for protectedANNs.It is worth highlighting that the critical SDC rate and DUE rate have been significantly re-duced in comparison with the unprotected ANNs. As a result, the critical SDC rate is re-duced 7 times atBER= 1.5×10−3 for ANN-20 aswell as 3.96 and 5.26 atBER= 3×10−3

for ANN-30 and ANN-40 respectively. Our protection mechanism results in 0.65 and 1.72times less DUE at BER = 1.5×10−3 for ANN-20 and BER = 3×10−3 for ANN-30 respec-tively. In addition, it has removed any DUE in ANN-40 throughout FI experiments.
6.1.4 Discussion

This section presents a pioneering study that highlights the criticality of conducting relia-bility assessments for LSTM-based ANNs. Extensive experiments using fault injection havebeen performed to thoroughly examine the effect of faults on various sets of weights inANNs. Notably, our findings demonstrate that recursive weights within LSTM cells areparticularly vulnerable parameters in LSTM-based ANNs. Furthermore, a lightweight yeteffective resilience improvement technique has been proposed which involves replacingfaulty weights with 0s. Remarkably, the implementation of this technique results in ANNsexperiencing 7 times fewer critical faults while successfully operating in environments upto 20 times harsher than unprotected networks.
6.2 Convolutional LSTM DNN for Disease Prediction

This section investigates the resilience ofmore complex LSTM-basedDNNs containing con-volutional layers.
117

6.2.1 Proposed Method: Resilience Assessment and Enhancement
6.2.1.1 LSTMs Under Study StageNet [87] is an LSTM-based DNN designed for diseaseprediction in healthcare. It predicts the stage of a patient’s disease according to the char-acteristics of the tests performed by the patient through time. Fig. 6.9 illustrates the over-all structure of StageNet. It is composed of an LSTM layer for characterizing the diseasestage over time, a convolutional (CONV) module, and a Fully Connected (FC) layer to out-put the predicted disease condition. The CONVmodule contains one CONV layer and twoFC layers, and their outputs are multiplied point-wise.

Figure 6.9: Overal structure of StageNet [87].

StageNet receives time-series data as inputs according to the patient visits (v1,v2, · · · ,vt)which contain numerical clinical features at different times (∆1,∆2, · · · ,∆t). They passthrough the LSTM layer with multiple cells inferring the variation of a patient’s healthstage considering their current status. The produced results from time-series data by theLSTM layer are forwarded to the CONVmodule for learning patterns of the disease stages.Afterward, a classification is performed for disease stage and risk prediction. In the vari-ations of StageNet, the number of LSTM cells can be customized, and also the presenceof the CONV module is arbitrary. In this work, we consider four variations of StageNet forresilience analysis.To measure the performance of StageNet, the following metrics are evaluated:
• Accuracy: This metric represents the percentage of correct predictions of StageNetcompared to the expected outputs.
• AUROC: This metric refers to the area under the receiver operating characteristiccurve illustrating the trade-off between true positive rate and false positive rate. Itshows how a classifier can discriminate the positive and negative classes and it isextensively used when a dataset is imbalanced.
Since the distribution of data in the dataset between different disease stages is im-balanced, AUROC is a more suitable metric to show the performance of StageNet. Animbalanced data record is common in medical data since unstable cases happen less fre-quently than stable patient conditions.

6.2.1.2 ResilienceAssessment by Fault Injection Asmentioned, DNNs’weights are storedin memory, which is susceptible to soft errors. To assess the potential impact of thesethreats on the performance of LSTM DNNs, random bits determined by predefined BitError Rates (BER) are flipped in the weights of the DNN before inference. This process isrepeated several times and average results over the repetition are reported.
118

To analyze the resilience of DNNs, random bitflips are applied throughout the DNN’sweights to assess the overall network’s behavior in the presence of faults. To quantifythe resilience analysis, once the average performance metrics (Accuracy and AUROC) fora DNN under test are obtained, their difference with the fault-free metrics is consideredas accuracy drop and AUROC drop. Furthermore, the output effect of faults is categorizedinto four classes, similar to the previous section: 1) Masked, 2) Non-critical SDC, 3) CriticalSDC, and 4) DUE.Moreover, to identify the critical bits in DNNs, we perform a bit-wise FI experimentthroughout the DNNs. In such an experiment, one bit is considered as the target and it isflipped in all parameters and the inference is performed and the performance metrics aremeasured. The bit that has the highest impact on the performance metrics is identifiedas the most critical bit.
6.2.1.3 Resilience Enhancement: Weights and Activations Clipping To enhance the re-silience of the LSTM DNNs, first, we profile the bit values in weights and all activationvalues with validation input data. Observing the bit patterns of weights leads us to thefirst protectionmechanism formemory errors. On the other hand, faulty weights produceerroneous activation values. Therefore, observing the range of values in the activationsthrough a forward pass of the DNN leads us to a second fault tolerance technique forLSTMs. Consequently, we propose two model-level fault tolerance techniques with zeromemory overhead: 1) Weights Bit Clipping (WBC), and 2) Activations Value Clipping (AVC).In the WBC method, all weights of fault-free DNN models are profiled and their bitpatterns are analyzed. As a result, a consistent bit pattern is revealed in the DNNs un-der study. Moreover, using FI, the most critical bit is identified. Therefore, the methodsuggests clipping the most critical bits to a certain value throughout the DNN, before aninference.In the AVCmethod, first, the input values to each activation function of the LSTM cellsas well as the CONV and FC layers in DNNs are profiled and their maximum and minimumvalues are obtained, during a fault-free forward pass with validation data. The obtainedvalues are then utilized for detecting faults. When an input to corresponding activationfunctions exceeds the determined value range, a fault is detected; so the the correspond-ing value is clamped to theminimum ormaximum threshold value. It is worthmentioningthat since LSTM cells possess sigmoid and Tanh activation functions, their outputs are al-ready limited to a certain range (i.e., [0,1] and [−1,1] respectively). Therefore, AVC isapplied to the inputs of activation functions throughout the LSTM-based DNNs, whetherthey are sigmoid, tanh, or ReLU.
6.2.2 Experimental Setup
The resilience of four variations of StageNet is experimented against faults in parameters.Two variations represent the full StageNet model which includes the CONV module, withdifferent numbers of LSTM cells (384 and 72), and the two variations that exclude theCONV module, containing only the LSTM layer, also with 384 and 72 LSTM cells.The test data is sourced from theMedical InformationMart for Intensive Care (MIMIC-III) data set, which includes 17 physiological variables recorded at each visit. This datais transformed into a 76-dimensional vector comprising numerical and one-hot encodedcategorical clinical features for 33,678 unique patients.Baseline metrics, including accuracy and AUROC in fault-free executions, are summa-rized in Table 6.2, alongside the number of parameters for each model. All models wereexecuted on a general-purpose processor supporting 32-bit floating-point IEEE-754 data

119

representation.
Table 6.2: Accuracy, AUROC, and the number of weights in variations of StageNet.

Accuracy AUROC #weightsin LSTM #weightsin CONV #weightsin FC
Stage-CONV-384 94.94% 79.21% 738,618 442,368 24,960
Stage-CONV-72 83.75% 76.75% 48,764 51,840 1,800

Stage-384 90.28% 79.29% 738,618 0 384
Stage-72 77.28% 76.97% 48,764 0 72

We conduct FI across all weights in the DNNs under study. The number of injectedfaults is determined using BER ranging from 0.0001 to 0.01, covering a comprehensiverange of potential errors. FI is repeated 1,000 times to ensure an acceptable confidencelevel. For each iteration, a drop in accuracy and AUROC is obtained, and faults are clas-sified. Eventually, the average results over all iterations are reported in the paper. All ex-periments are implemented and performed using PyTorch and executed on an Intel Core™i7-9700 CPU.
6.2.3 Experimental Results
6.2.3.1 Resilience Analysis Results As mentioned, weight parameters across all DNNmodels are the fault space for randombit flips determined by different BERs. As illustratedin Fig. 6.10, the performance metrics for all DNNs significantly drop under FI campaigns.In this figure, as the BER increases, larger models (i.e., Stage-CONV-384 and Stage-384)demonstrate more accuracy drop than the smaller ones, at the same BERs. However, theAUROC drop metric appears differently. Stage-CONV-72 and Stage-72 are remarkably sen-sitive to faults in terms of their AUROC at the lowest BER. At higher BERs, the AUROC dropis higher for larger DNNs. As AUROC expresses the discrimination of classification overdifferent thresholds, this observation shows that smaller DNNs are remarkably sensitiveto faults to distinguish the stage of patients’ disease correctly.

Stage-72 Stage-384
Stage-CONV-72 Stage-CONV-384

1×10−
4

3×10−
4

1×10−
3

3×10−
3

1×10−
2

0

20

40

60

BER

Acc
ura

cyd
rop

(%)

1×10−
4

3×10−
4

1×10−
3

3×10−
3

1×10−
2

0

5

10

15

20

BER

AUR
OC

dro
p(%

)

(a) Accuracy drop (b) AUROC drop
Figure 6.10: Resilience analysis of various structures of StageNet under model-wise FI.

According to the results, the AUROCmetric for all DNNs falls below 60% when BER =

120

0.01. At such high BERs, although larger DNNs are shown to be more error-prone, noneof them functions reliably in this particular application. Noteworthy that when AUROC isclose to 50% DNNs perform random classification. On the other hand, it is observed thatDNNs possessing the CONVmodule are generallymore resilient than the oneswithout theCONV module. It shows that the CONV module increases the capability of fault maskingin LSTM-based DNNs and improves their inherent resilience.Fig. 6.11 presents the fault classification for DNNs under FI. In all experiments, the faulteffectswithmasked and non-critical SDCsdecrease as the BER increases, followedbymorecritical SDCs and DUEs. This figure also evidences that the DNNs with the CONV moduleare more resilient to faults than the ones without it. Obtained results indicate that when
BER = 0.01, total critical SDC and DUE rate for StageNet-CONV-384, StageNet-CONV-72,StageNet-384 and StageNet-72 is 90.05%, 54.97%, 82.02%, and 77.33%, respectively.

Masked Non-critical SDC Critical SDC DUE

1×
10−

4

3×
10−

4

1×
10−

3

3×
10−

3

1×
10−

2
0

20

40

60

80

100

BER

Rat
e(%

)

1×
10−

4

3×
10−

4

1×
10−

3

3×
10−

3

1×
10−

2
0

20

40

60

80

100

BER

Rat
e(%

)

(a) Stage-CONV-384 (b) Stage-CONV-72

1×
10−

4

3×
10−

4

1×
10−

3

3×
10−

3

1×
10−

2
0

20

40

60

80

100

BER

Rat
e(%

)

1×
10−

4

3×
10−

4

1×
10−

3

3×
10−

3

1×
10−

2
0

20

40

60

80

100

BER

Rat
e(%

)

(c) Stage-384 (d) Stage-72
Figure 6.11: Fault classification in model-wise FI for different structures of StageNet.

Towards mitigating the effect of faults, we perform a bit-level analysis on weights. Itis observed in Fig. 6.12-a that bits 0 (i.e., LSB) to 26 in 32-bit floating point data represen-tation almost have a unified distribution between 0 and 1. while bits number 27, 28, and29 are always 1 and bit number 30 is always 0. Therefore, the bits with constant valuesthroughout the weights can be protected. However, to decrease the fault tolerance over-head, we further analyze the resilience of DNNs against each bit position. As depicted inFig. 6.12-b, the accuracy drop for bit 30 in all DNNs is significantly higher than the otherbits. Consequently, bit 30 is identified as the most critical bit possessing a constant value
121

of 0. Hence, this bit can be always set to 0, which ensures that the most critical bit isconsistently protected.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 310

0.2

0.4

0.6

0.8

1

Weights bit position

Ave
rage

valu
e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 310

2

4

6

8

10

Weights bit position

Ave
rage

acc
ura

cyl
oss

(%)

(a) Average bit values (b) Average criticality
Figure 6.12: Bit-level analysis of weights based on their values and criticality.

6.2.3.2 Resilience Improvement Results. All variations of StageNet are hardened byboth WBC and AVC methods and are experimented with FI campaigns. It is observed thatWBC lays a significant improvement on the reliability of LSTM-based DNNs. The accuracydrop of WBC-protected DNNs is close to zero through all BERs. Furthermore, the AUROCdrop for them is remarkably improved for all DNNs, e.g., it is reduced by up to 3.2x when
BER = 0.01. According to the fault classification results of WBC-based StageNet DNNs,the critical SDC and DUE rate is remarkably reduced. This protection mechanism is capa-ble of effectively removing all DUE impacts on the outputs; sinceWBC prevents producingany large value by clipping the MSB in weights. As a result, the total critical SDC and DUErate across DNNs is reduced by up to 278.6 times when BER = 0.01.In AVC-protected DNNs, the accuracy drop and AUROC drop are reduced by up to
15.54 and 1.5 times among the DNNs, respectively, when BER = 0.01. The fault clas-sification results through the FI campaigns on protected DNNs by AVC indicate that thismethod is also capable of removing all DUE effects. As a result, the total DUE and criti-cal SDC rate for StageNet-CONV-384, StageNet-CONV-72, StageNet-384 and StageNet-72is 13.88%, 5.18%, 36.47%, and 16.86% resulting in up to 10.6 times reduction across DNNswhen BER = 0.01.Fig. 6.13 compares the proposed zero-memory overhead fault-tolerant techniques forLSTM-based DNNs. As observed, WBC generally demonstrates a more consistent protec-tive effect across different DNNs. It reduces the AUROC drop and the incidence of crit-ical faults across DNNs more effectively than AVC. WBC achieves up to 2.36 times lessAUROC drop than AVC throughout the DNNs when BER = 0.01. Nonetheless, each pro-posed fault-tolerance technique is applicable in different design scenarios. WBC appliesdirectly to the memory and can be conducted to the bit values of the stored data beforean inference. On the other hand, AVC is applied during the inference and prevents errorsproduced by faulty weights during the inference.
6.2.4 DiscussionIn this section, the reliability of various LSTM-based DNNs (variants of StageNet) in health-care is studied and two zero-memory overhead fault-tolerance techniques is proposed forthem. Using FI, the fault resilience of different structures is analyzed. Results indicate thatLSTM-based DNNs possessing convolutional layers demonstrate more resilience than the

122

WBC AVC

1×10−
4

3×10−
4

1×10−
3

3×10−
3

1×10−
2

5

10

15

20

BER

Acc
ura

cyd
rop

(%)

1×10−
4

3×10−
4

1×10−
3

3×10−
3

1×10−
2

5

10

15

20

BER

AUR
OC

dro
p(%

)

(a) Stage-72 (b) Stage-CONV-72

1×10−
4

3×10−
4

1×10−
3

3×10−
3

1×10−
2

5

10

15

20

BER

Acc
ura

cyd
rop

(%)

1×10−
4

3×10−
4

1×10−
3

3×10−
3

1×10−
2

5

10

15

20

BER

AUR
OC

dro
p(%

)

(c) Stage-384 (d) Stage-CONV-384
Figure 6.13: Comparing WBC and AVC methods based on AUROC drop under FI.

oneswithout convolutional layers. Furthermore, we performed bit-level analysis resultingin the identification of the most critical bits.Moreover, two zero-overhead protection techniques to improve their fault toleranceare proposed: Weights Bit Clipping (WBC) and Activations Value Clipping (AVC). It is shownthat WBC can reduce the AUROC drop by up to 3.2 times and DUE and critical faults by upto 278.6 times compared to the unprotected DNNs at a high BER. Also, AVC reduces theAUROC drop by 1.5 and DUE and critical SDCs by 10.6, under the same conditions. Theresults demonstrate that the WBC method is more effective than AVC in mitigating theeffect of faults occurring in the parameters of LSTM-based DNNs.
6.3 Chapter Conclusions
This section investigates andmitigates the fault resilience of various LSTM-based DNNs forhealthcare applications for the first time. FI experiments extensively showed that LSTMsare highly susceptible to hardware faults, addressing RQ4.1 in Chapter 1. The purpose ofLSTM layers is to retain memory through time, thus, faults can corrupt the memory andresult in failure. In this section, multiple methods to mitigate the fault effects on LSTMsare introduced. It is shown that LSTMs can be significantly hardened against faults withminimal overhead, , addressing RQ4.2 in Chapter 1.

123

7 Conclusions and Future Directions
This thesis focuses on addressing themajor challenges against hardware reliability assess-ment and enhancement for DNNs. Chapter 3 addresses the ambiguity in the literaturepertaining to the reliability assessment methods for DNNs by conducting a systematic lit-erature review. It includes 139 papers published between 2017-2022, categorizes the ex-isting methods, investigates them in detail, and identifies the gaps in the literature. ThisChapter identifies threemajormethods for reliability assessment of DNNs: Fault Injection,Analytical, and Hybrid. It is outlined that FI is mostly used for the reliability assessment ofDNNs, however, it is non-scalable for emerging DNNs. On the other hand, analytical andhybrid methods are potential scalable alternatives for FI, yet they are not accurate andmetric-oriented.

Accordingly, Chapter 4 attempts to introduce a new paradigm for fault resilience as-sessment of DNNs. It introduces DeepVigor, the first semi-analytical and metric-orientedmethod, which derives vulnerability factors for various components of DNNs through vul-nerability value ranges for neurons. DeepVigor demonstrates 99.9% to 100% accuracy inidentifying critical and non-critical faults for DNNs compared to FI, while 3.5 times faster.DeepVigor provides Vulnerability Factors (VFs) for bits, neurons, and layers in DNNs as areliability metric and enables various fault mitigation techniques for them.
On top of that, DeepVigor+ is developed as an open-source tool to tackle the scalabilityproblem in fault resilience assessment for DNNs, by reducing the analysis time fromweeksto minutes. It exploits an optimal fault resilience analysis within neurons and obtains VFsfor DNNs’ layers and models. The results indicate that DeepVigor+ derives VFs with lessthan 1% error, with 14.9 up to 26.9 times fewer simulations than the best-known state-of-the-art statistical FI. This open-source method unleashes a fast resilience assessment,enabling fine-grain evaluation and design space exploration for various fault-tolerant andcost-effective designs for DNNs.
Moreover, this Chapter presents QDeepVigor, which is an extension of DeepVigor forQNNs. It is shown that DeepVigor and its extensions are as accurate as FI, yet faster andscalable. QDeepVigor is exploited for a cross-layer reliability enhancement in QNN ac-celerators. In this method, the critical neurons identified by QDeepVigor are split at themodel level and corrected by a Lightweight CorrectionUnit in the accelerator. Thismethodprovides a similar fault resilience for accelerators to TMR-based methods, with twice re-duced memory overhead. Furthermore, QDeepVigor is employed to conduct a hybrid re-silience assessment method for QNN accelerators. QDeepVigor prunes the critical faultsin QNN, resulting in a remarkable acceleration in the fault simulation process. Accordingto the obtained results, 77.48% of faults are classified as non-vulnerable and vulnerableby QDeepVigor, leading to an early stop during the fault simulation.
Chapter 5 and Chapter 6 present multiple methods to achieve a reliable DNN deploy-ment in safety-critical applications. Chapter 5 introduces two novel methods to achievemodel-level fault tolerance for COTS DNN accelerators with minimal overhead. ProActproposes a KD-based progressive training for determining optimal threshold values ina novel activation function, i.e., HyReLU. The proposed HyReLU reduces memory over-head by applying neuron-wise clipping solely in the last layer and layer-wise clipping inthe preceding layers. Results indicate that ProAct significantly improves the resilience ofDNNs by up to 6.4 times in high BERs. Furthermore, it dramatically reduces memory over-head, achieving reductions up to 134.28 times compared to a neuron-wise state-of-the-artmethod. This source code of this method is published to enable researchers to presentmore effective approaches in this area.
Moreover, a model-level hardening method for CNNs is proposed with selective chan-

124

nel duplication and EDAC layers, enabling them to correct errors inherently, at inferencetime. The hardened CNNs perform reliably at orders of magnitude higher error rates thanunprotected CNNs with merely a 15% hardening ratio, yet incurring 12% performanceoverhead. To minimize the incurred overhead, for the first time, a vulnerability-basedpruning that improves resilience is presented. As a result, the hardened pruned CNNsachieve up to 24% higher performance than the un-pruned hardened CNNs. Eventually,Chapter 5 introduces theopen-source SentinelNN framework that integrates vulnerability-aware pruning using DeepVigor+ and hardening (channel duplication and range restric-tion). This framework allows controllability to produce cost-effective fault-tolerant CNNsdeployed on DNN HW accelerators.Chapter 6 attempts to enhance the resilience of LSTM-based DNNs in medical applica-tions. The fault resilience of various structures of LSTM-based DNNs is investigated in thisChapter, using FI. It is shown that LSTM layers are more vulnerable than CONV and FC lay-ers. Throughout this Chapter, multiple methods to mitigate the fault effects on LSTMs areinvestigated, including online monitoring and correction to weights, and clipping-basedmethods to weights and activations. It is shown that LSTMs can be significantly hardenedagainst faults with minimal overhead.The attempts in this thesis have built a foundation for further research in the fieldof reliable deployment of emerging ML systems. The presented scalable fault resilienceanalysis can be applied to other applications such as object detection. Furthermore, itcan be extended for emerging ML models such as Transformers. On the other hand, theproposed SIHFT-based approaches can be applied not only to emerging ML models butalso to hardware accelerators for their reliable and efficient deployment. We presentedmultiple open-source tools that enable researchers and engineers in this field to extendthe existing methods. The application of proposed methods is not limited to hardwarefaults and they can be also employed to enhance the robustness of DNNs againstmaliciousattacks in weights or inputs.The achievements in this thesis can be a foundation to further research and develop-ments, such as:
• DeepVigor+ canbe abasis to develop scalable hardware-aware fault resiliencemeth-ods for emerging DL systems. Safety certification of DL systems compliant with in-dustrial standards can be accomplished by designing cross-layer techniques for as-sessing hardware reliability.
• DeepVigor+ can be used in design space exploration for producing reliable DNNs,employing Neural Architecture Search (NAS).
• The proposed techniques for enhancing the reliability of DNNs can be integratedwith DHA design to increase the efficiency of a fault-tolerant deployment. More-over, the effectiveness of model-level techniques under fault simulation/emulationon DHAs can be studied.
• All proposed techniques in this thesis can be extended for emerging DLmodels suchas LLMs and ViTs, to enable their fault resilience assessment and enhancement.

125

List of Figures

1.1 An overview of AI, ML, and DL. 141.2 Potential impact of faults in DNN accelerators in a safety-critical application. 151.3 Growing size of emerging DNN models regarding their computations andmemory requirements. 171.4 An overview of the contributions of the thesis. 202.1 Abstraction layers of computer systems, inspired by [173]. 252.2 Faults impact on the output of a system, inspired by [173]. 262.3 Representation of a simple neural network with the detail of a neuron. 302.4 Abstract view of a CONV layer . 312.5 Operations in a single LSTM cell (arrows show the data flow). 312.6 Typical structure of an FPGA-based DNN accelerator [105]. 332.7 An example of a spatial architecture for ASIC-based DNN accelerators [170]. 332.8 General architecture of CUDA-based GPUs [122]. 332.9 An overview of the attributes of DNN accelerators [51]. 343.1 Obtained taxonomy of the reliability assessment methods for DNNs in theSLR. 373.2 Trend of publications related to hardware reliability of DNNs over differentyears. 393.3 Proportion of each method in the reliability assessment of DNNs amongincluded works.. 393.4 Distributionof includedpublications focusedon FI over different approachesand platforms. 393.5 An overview of the architecture of the FireNN platform [71, 72]. 443.6 Fiji-FIN framework for fault injection into FPGAs [130]. 453.7 Fault classification in the object detection task based on bounding boxes[156]. 483.8 Block diagram of the setup of beam experiment in [236]. 493.9 Setup of neutron irradiation to GPU [33, 77, 80]. 504.1 An example of fault propagation analysis model and finding the vulnera-bility value ranges for a neuron with a given input. 594.2 Steps of the DeepVigor method for DNNs’ reliability assessment and itsvalidation. 594.3 Different possible cases of vulnerability ranges for each class in a neuron. . . 614.4 Correlation between LVF and accuracy loss. 644.5 NVF of neurons in CONV3 for LeNet5-mnist and LeNet-cifar10. 644.6 32-bit floating point IEEE-754 data representation. 664.7 Fault propagation in a CNN in the case of a single bitflip in a weight. 684.8 An overview of the conducted steps in DeepVigor+. 684.9 Vulnerability value identification for a target neuron with a single inputdata for positive errors. 704.10 Mapping obtained Vulnerability Value Range (VVR) to aggregated ErrorDistribution Map (EDM) for VF calculation. 724.11 LVF visualization and comparison for ResNet-18 trained on a) CIFAR-100and b) ImageNet. 794.12 MVF comparison for CNNsbasedon activations, filters and the entiremodelderived by DeepVigor+. 804.13 Total MVF variation over different batches of data for all DNNs. 804.14 An abstract view of the accelerator and where the faults may happen. 83
126

4.15 Splitting critical neurons in a QNN by halving the input parameters.. 854.16 An example of how LCU corrects faulty critical neurons.. 854.17 QNNs comparison in terms of accuracy loss (a-c), critical faults (d-f), andnetwork size (g-i) under different levels of protection: unprotected, pro-posed protection, and TMR, considering different thresholds for NVF from0% to 50%. 874.18 The hybrid reliability assessment method for QNNs on SAs.. 884.19 VVRs for fault space pruning. 885.1 Top1-Accuracy of AlexNet under different BERs employing FitAct and pro-gressively optimized thresholds. 935.2 The distribution of output activation values for the AlexNet model on theCIFAR-10 dataset after applying the FitAct algorithm to find threshold pa-rameters. 945.3 Hybrid Progressive training based on Knowledge Distillation. 955.4 Top-1 accuracy comparison ofDNNsusing ProActwith Ranger neuron-wise(NW), Ranger layer-wise (LW), FT-ClipAct, and FitAct methods under FI. 995.5 Channel duplication and EDAC layer. 1015.6 An example for the operation of EDAC layer operation. 1025.7 Resilience (a) and memory overhead (b) for AlexNet hardened by duplica-tion + EDAC vs. triplication + voter at BER=10−4, without applying detec-tion intervals to Non-duplicated channels. 1045.8 Accuracy drop and performance overhead comparison for hardened CNNsover different channel pruning ratios at the BERs where accuracy drop isbelow 5%.. 1055.9 Comparison of L1-norm pruning and vulnerability-based pruning in AlexNet.1065.10 Resilience comparison in terms of accuracy drop of hardened baseline andhardened pruned CNNs at different BERs with 15% channel hardening ratio. 1075.11 Performance overhead comparison for hardened CNNs. 1075.12 SentinelNN framework for CNN models hardening. 1085.13 Resilience comparison in terms of accuracy drop for pruned and hardenedCNNs at different BERs (pr = pruning ratio, hr = hardening ratio). 1106.1 LSTM-based ANNs adopted in this work for gait abnormality detection. 1126.2 The distribution of values ofweights for a) ANN-20, b) ANN-30, c) ANN-40,respectively. 1136.3 The proposed protection mechanism for LSTMs.. 1146.4 Resilience analysis of LSTM-based ANNs under model-wise FI. 1156.5 Fault classification in model-wise FI for LSTM-based ANNs. 1156.6 Comparison of ANNs’ accuracy drop in layer-wise FI (LSTM vs FC). 1166.7 Inter-LSTM FI and accuracy comparison for LSTM-based ANNs. 1166.8 Accuracy and F1-score improvement of ANNs. 1176.9 Overal structure of StageNet [87]. 1186.10 Resilience analysis of various structures of StageNet under model-wise FI. . 1206.11 Fault classification in model-wise FI for different structures of StageNet. . . . 1216.12 Bit-level analysis of weights based on their values and criticality. 1226.13 Comparing WBC and AVC methods based on AUROC drop under FI. 123

127

List of Tables

3.1 Qualitative analysis comparing different reliability assessment methodsfor DNNs. 554.1 Accuracy of DeepVigor by fault injection on the same input data as theanalysis. 634.2 Accuracy of DeepVigor by fault injection on a different input data from theanalysis. 634.3 The CNNs under study for DeepVigor+ validation. 754.4 Absolute error for CVF in DeepVigor+ and fault injection for 15% of thechannels in CNNs. 754.5 Average absolute error analysis over 50 executions for sampling Deep-Vigor+ compared to complete analysis. 764.6 Number of simulations for exhaustive FI vs complete DeepVigor+ for acti-vations and filters analysis. 774.7 Comparison of required simulations for statistical FI [200] and samplingDeepVigor+. 784.8 Average execution time over 50 repetitions on A100 GPU for DeepVigor+activations analysis, with different channel sampling ratios. 784.9 Average execution time over 50 repetitions on A100 GPU for DeepVigor+filters analysis, with different channel sampling ratios. 794.10 Exploration of number andportion of critical neurons over different thresh-olds for NVF. 865.1 Baseline accuracy for each baseline CNNs. 965.2 Accuracy drop of CNNs after applying different activation function restric-tion methods. 975.3 Comparison of memory overhead for neuron-wise, layer-wise, and hybridactivation restriction methods. 985.4 Comparing the accuracy drop of DNNs using different activation restric-tion methods under fault injection. 1005.5 The baseline CNNs leveraged in this section. 1035.6 Pruned CNNs specifications. 1065.7 Comparing the pruned CNNs specifications. 1096.1 Accuracy, F1-score, and the number of different weight sets of the LSTM-based ANNs. 1146.2 Accuracy, AUROC, and the number of weights in variations of StageNet. 120

128

References
[1] "N2D2 CAD framework for DNNs". https://github.com/cea-list/N2D2. [On-line].
[2] H.R.6216 - national artificial intelligence initiative act of 2020. https://

www.congress.gov/bill/116th-congress/house-bill/6216, 2020. [On-line].
[3] Artificial intelligence (AI) in healthcare market size, share & industry analy-sis, by platform, by application, by end-user, and regional forecasts, 2024-2032. https://www.fortunebusinessinsights.com/industry-reports/

artificial-intelligence-in-healthcare-market-100534, 2024. [On-line].
[4] Automotive artificial intelligence (AI) market size, share, and trends 2024 to2034. https://www.precedenceresearch.com/automotive-artificial-

intelligence-market, 2024. [Online].
[5] IBM global ai adoption index – enterprise report. https://newsroom.ibm.com/

2024-01-10-Data-Suggests-Growth-in-Enterprise-Adoption-of-AI-
is-Due-to-Widespread-Deployment-by-Early-Adopters, 2024. [Online].

[6] Regulation (EU) 2024/1689 of the european parliament and of the coun-cil. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
32024R1689, 2024. [Online].

[7] M. Abdullah Hanif and M. Shafique. Salvagednn: salvaging deep neural networkaccelerators with permanent faults through saliency-driven fault-aware mapping.Philosophical Transactions of the Royal Society A, 378(2164):20190164, 2020.
[8] G. Abich, R. Garibotti, J. Gava, R. Reis, and L. Ost. Impact of thread parallelism onthe soft error reliability of convolution neural networks. In 2022 IEEE 13th LatinAmerica Symposium on Circuits and System (LASCAS), pages 1–4. IEEE, 2022.
[9] G. Abich, R. Garibotti, R. Reis, and L. Ost. The impact of soft errors in memoryunits of edge devices executing convolutional neural networks. IEEE Transactionson Circuits and Systems II: Express Briefs, 69(3):679–683, 2022.
[10] G. Abich, J. Gava, R. Garibotti, R. Reis, and L. Ost. Applying lightweight soft errormitigation techniques to embedded mixed precision deep neural networks. IEEETransactions on Circuits and Systems I: Regular Papers, 68(11):4772–4782, 2021.
[11] G. Abich, J. Gava, R. Reis, and L. Ost. Soft error reliability assessment of neural net-works on resource-constrained iot devices. In 2020 27th IEEE International Confer-ence on Electronics, Circuits and Systems (ICECS), pages 1–4. IEEE, 2020.
[12] G. Abich, R. Reis, and L. Ost. The impact of precision bitwidth on the soft errorreliability of the mobilenet network. In 2021 IEEE 12th Latin America Symposium onCircuits and System (LASCAS), pages 1–4. IEEE, 2021.
[13] K. Adam, I. I. Mohamed, and Y. Ibrahim. A selective mitigation technique of softerrors for dnn models used in healthcare applications: Densenet201 case study.IEEE Access, 9:65803–65823, 2021.

129

https://github.com/cea-list/N2D2
https://www.congress.gov/bill/116th-congress/house-bill/6216
https://www.congress.gov/bill/116th-congress/house-bill/6216
https://www.fortunebusinessinsights.com/industry-reports/artificial-intelligence-in-healthcare-market-100534
https://www.fortunebusinessinsights.com/industry-reports/artificial-intelligence-in-healthcare-market-100534
https://www.precedenceresearch.com/automotive-artificial-intelligence-market
https://www.precedenceresearch.com/automotive-artificial-intelligence-market
https://newsroom.ibm.com/2024-01-10-Data-Suggests-Growth-in-Enterprise-Adoption-of-AI-is-Due-to-Widespread-Deployment-by-Early-Adopters
https://newsroom.ibm.com/2024-01-10-Data-Suggests-Growth-in-Enterprise-Adoption-of-AI-is-Due-to-Widespread-Deployment-by-Early-Adopters
https://newsroom.ibm.com/2024-01-10-Data-Suggests-Growth-in-Enterprise-Adoption-of-AI-is-Due-to-Widespread-Deployment-by-Early-Adopters
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R1689
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R1689

[14] K. Adam, I. I. Mohd, and Y. Ibrahim. Analyzing the instructions vulnerability of denseconvolutional network on gpus. International Journal of Electrical and ComputerEngineering (IJECE), 11(5):4481–4488, 2021.
[15] K. Adam, I. I. Mohd, and Y. M. Younis. The impact of the soft errors in convolutionalneural network on gpus: Alexnet as case study. Procedia Computer Science, 182:89–94, 2021.
[16] U. K. Agarwal, A. Chan, and K. Pattabiraman. Lltfi: Framework agnostic fault injec-tion for machine learning applications (tools and artifact track). In 2022 IEEE 33rdInternational Symposium on Software Reliability Engineering (ISSRE), pages 286–296. IEEE, 2022.
[17] D. Agiakatsikas, N. Foutris, A. Sari, V. Vlagkoulis, I. Souvatzoglou, M. Psarakis, M. Lu-ján, M. Kastriotou, and C. Cazzaniga. Evaluation of the xilinx deep learning process-ing unit under neutron irradiation. In 2021 21th European Conference on Radiationand Its Effects on Components and Systems (RADECS), pages 1–4. IEEE, 2021.
[18] M. H. Ahmadilivani, M. Barbareschi, S. Barone, A. Bosio, M. Daneshtalab,S. Della Torca, G. Gavarini, M. Jenihhin, J. Raik, A. Ruospo, E. Sanchez, andM. Taheri.Special Session: Approximation and Fault Resiliency of DNN Accelerators. In IEEE41st VLSI Test Symposium (VTS), pages 1–10. San Diego, United States of America,2023.
[19] M. H. Ahmadilivani, A. Bosio, B. Deveautour, F. F. Dos Santos, J. D. Guerrero Bal-aguera, M. Jenihhin, A. Kritikakou, R. L. Sierra, S. Pappalardo, J. Raik, J. E. Ro-driguez Condia, M. Sonza Reorda, M. Taheri, and M. Traiola. Special Session: Relia-bility Assessment Recipes for DNN Accelerators. In IEEE 42nd VLSI Test Symposium(VTS), pages 1–11. Tempe, United States of America, 2024.
[20] M. H. Ahmadilivani, S. Mousavi, J. Raik, M. Daneshtalab, and M. Jenihhin. Cost-Effective Fault Tolerance for CNNs Using Parameter Vulnerability Based Hardeningand Pruning. In The 30th IEEE International Symposium on On-Line Testing andRobust System Design (IOLTS), pages 1–6. Rennes, France, 2023.
[21] M. H. Ahmadilivani, J. Raik, M. Daneshtalab, and M. Jenihhin. Deepvigor+: A Scal-able, Accurate and Automated Framework for Resilience Analysis of Deep NeuralNetworks. Under review, pages 1–14, 2024.
[22] M. H. Ahmadilivani, J. Raik, M. Daneshtalab, and A. Kuusik. Analysis and Improve-ment of Resilience for Long Short-TermMemory Neural Networks. In IEEE Interna-tional Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Sys-tems (DFT), pages 1–4. Juan-Les-Pennes, France, 2023.
[23] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, andM. Jenihhin. DeepVigor:VulnerabIlity Value RanGes and FactORs for DNNs’ Reliability Assessment. In IEEEEuropean Test Symposium (ETS), pages 1–6. Venice, Italy, 2023.
[24] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin. Enhanc-ing Fault Resilience of QNNs by Selective Neuron Splitting. In IEEE 5th Interna-tional Conference on Artificial Intelligence Circuits and Systems (AICAS), pages 1–5.Hangzhou, China, 2023.

130

[25] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin. A Sys-tematic Literature Review on Hardware Reliability Assessment Methods for DeepNeural Networks. ACM Computing Surveys, 56(6):1–36, 2024.
[26] M. S. Ali, T. B. Iqbal, K.-H. Lee, A. Muqeet, S. Lee, L. Kim, and S.-H. Bae. Erdnn:Error-resilient deep neural networks with a new error correction layer and piece-wise rectified linear unit. IEEE Access, 8:158702–158711, 2020.
[27] C. Amarnath, M. Mejri, K. Ma, and A. Chatterjee. Soft error resilient deep learningsystems using neuron gradient statistics. In 2022 IEEE 28th International Sympo-sium on On-Line Testing and Robust System Design (IOLTS), pages 1–7. IEEE, 2022.
[28] C. Amarnath, M. Mejri, K. Ma, and A. Chatterjee. Error resilience in deep neuralnetworks using neuron gradient statistics. IEEE Transactions on Computer-AidedDesign of Integrated Circuits and Systems, 2023.
[29] A. P. Arechiga and A. J. Michaels. The effect of weight errors on neural networks.In 2018 IEEE 8th Annual Computing and CommunicationWorkshop and Conference(CCWC), pages 190–196. IEEE, 2018.
[30] A. P. Arechiga and A. J. Michaels. The robustness of modern deep learning archi-tectures against single event upset errors. In 2018 IEEE High Performance extremeComputing Conference (HPEC), pages 1–6. IEEE, 2018.
[31] A. Azizimazreah, Y. Gu, X. Gu, and L. Chen. Tolerating soft errors in deep learn-ing accelerators with reliable on-chip memory designs. In 2018 IEEE InternationalConference on Networking, Architecture and Storage (NAS), pages 1–10. IEEE, 2018.
[32] V. Bandeira, F. Rosa, R. Reis, and L. Ost. Non-intrusive fault injection techniquesfor efficient soft error vulnerability analysis. In 2019 IFIP/IEEE 27th InternationalConference on Very Large Scale Integration (VLSI-SoC), pages 123–128. IEEE, 2019.
[33] P.M. Basso, F. F. dos Santos, and P. Rech. Impact of tensor cores andmixed precisionon the reliability of matrix multiplication in gpus. IEEE Transactions on NuclearScience, 67(7):1560–1565, 2020.
[34] F. Benevenuti, M. Gonçalves, E. C. F. P. Junior, R. G. Vaz, O. L. Gonçalez, J. R. Azam-buja, and F. L. Kastensmidt. Neutron-induced faults on cnn for aerial image classifi-cation on sram-based fpga using softcore gpu and hls. In 2021 21th European Con-ference on Radiation and Its Effects on Components and Systems (RADECS), pages1–4. IEEE, 2021.
[35] F. Benevenuti, F. Libano, V. Pouget, F. L. Kastensmidt, and P. Rech. Comparativeanalysis of inference errors in a neural network implemented in sram-based fpgainduced by neutron irradiation and fault injectionmethods. In 2018 31st Symposiumon Integrated Circuits and Systems Design (SBCCI), pages 1–6. IEEE, 2018.
[36] A. Benso and S. DiCarlo. The art of fault injection. Journal of Control Engineeringand Applied Informatics, 13(4):9–18, 2011.
[37] A. Birolini. Reliability engineering. Springer, 2007.

131

[38] C. Bolchini, L. Cassano, A. Miele, and A. Nazzari. Selective hardening of cnns basedon layer vulnerability estimation. In 2022 IEEE International Symposium on Defectand Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6. IEEE,2022.
[39] C. Bolchini, L. Cassano, A. Miele, and A. Toschi. Fast and accurate error simulationfor cnns against soft errors. IEEE Transactions on Computers, 2022.
[40] A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez. A reliability analysis of a deepneural network. In 2019 IEEE Latin American Test Symposium (LATS), pages 1–6.IEEE, 2019.
[41] A. Bosio, I. O’Connor, M. Traiola, J. Echavarria, J. Teich, M. A. Hanif, M. Shafique,S. Hamdioui, B. Deveautour, P. Girard, et al. Emerging computing devices: Chal-lenges and opportunities for test and reliability. In 2021 IEEE European Test Sympo-sium (ETS), pages 1–10. IEEE, 2021.
[42] S. Burel, A. Evans, and L. Anghel. Mozart: Masking outputs with zeros for architec-tural robustness and testing of dnn accelerators. In 2021 IEEE 27th InternationalSymposium on On-Line Testing and Robust System Design (IOLTS), pages 1–6. IEEE,2021.
[43] S. Burel, A. Evans, and L. Anghel. Zero-overhead protection for cnn weights. In 2021IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotech-nology Systems (DFT), pages 1–6. IEEE, 2021.
[44] S. Burel, A. Evans, and L. Anghel. Mozart+: Masking outputs with zeros for im-proved architectural robustness and testing of dnn accelerators. IEEE Transactionson Device and Materials Reliability, 22(2):120–128, 2022.
[45] S. BurelT, A. EvansT, and L. Anghel. Improving dnn fault tolerance in semantic seg-mentation applications. In 2022 IEEE International Symposium on Defect and FaultTolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6. IEEE, 2022.
[46] M. Bushnell and V. Agrawal. Essentials of electronic testing for digital, memory andmixed-signal VLSI circuits, volume 17. Springer Science & Business Media, 2004.
[47] R. Cantoro, N. I. Deligiannis, M. S. Reorda, M. Traiola, and E. Valea. Evaluating dataencryption effects on the resilience of an artificial neural network. In 2020 IEEEInternational SymposiumonDefect and Fault Tolerance in VLSI andNanotechnologySystems (DFT), pages 1–4. IEEE, 2020.
[48] A. Canziani, A. Paszke, and E. Culurciello. An analysis of deep neural networkmodelsfor practical applications. arXiv preprint arXiv:1605.07678, 2016.
[49] N. Cavagnero, F. Dos Santos, M. Ciccone, G. Averta, T. Tommasi, and P. Rech.Transient-fault-aware design and training to enhance dnns reliability with zero-overhead. In 2022 IEEE 28th International Symposium on On-Line Testing and Ro-bust System Design (IOLTS), pages 1–7. IEEE, 2022.
[50] A. Chan, A. Gujarati, K. Pattabiraman, and S. Gopalakrishnan. The fault in our datastars: studying mitigation techniques against faulty training data in machine learn-ing applications. In 2022 52nd Annual IEEE/IFIP International Conference on De-pendable Systems and Networks (DSN), pages 163–171. IEEE, 2022.

132

[51] K.-C. J. Chen, M. Ebrahimi, T.-Y. Wang, Y.-C. Yang, and Y.-H. Liao. A noc-based sim-ulator for design and evaluation of deep neural networks. Microprocessors andMicrosystems, 77:103145, 2020.
[52] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for energy-efficientdataflow for convolutional neural networks. ACM SIGARCH Computer ArchitectureNews, 44(3):367–379, 2016.
[53] Z. Chen, G. Li, and K. Pattabiraman. A low-cost fault corrector for deep neural net-works through range restriction. In 2021 51st Annual IEEE/IFIP DSN, pages 1–13. IEEE,2021.
[54] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben. Binfi: an efficient fault injec-tor for safety-critical machine learning systems. In Proceedings of the InternationalConference for High Performance Computing, Networking, Storage and Analysis,pages 1–23, 2019.
[55] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and N. DeBardeleben. Ten-sorfi: A flexible fault injection framework for tensorflow applications. In 2020 IEEE31st International Symposium on Software Reliability Engineering (ISSRE), pages426–435. IEEE, 2020.
[56] N. Cherezova, S. Pappalardo, M. Taheri, M. H. Ahmadilivani, B. Deveautour, A. Bo-sio, J. Raik, and M. Jenihhin. Heterogeneous Approximation of DNN HW Accelera-tors based on Channels Vulnerability. In IFIP/IEEE International Conference on VeryLarge Scale Integration (VLSI-SoC). Tanger, Morocco, 2024.
[57] K. T. Chitty-Venkata and A. K. Somani. Model compression on faulty array-basedneural network accelerator. In 2020 IEEE 25th Pacific Rim International Symposiumon Dependable Computing (PRDC), pages 90–99. IEEE, 2020.
[58] W. Choi, D. Shin, J. Park, and S. Ghosh. Sensitivity based error resilient techniquesfor energy efficient deep neural network accelerators. In Proceedings of the 56thAnnual Design Automation Conference 2019, pages 1–6, 2019.
[59] A. Cicchetti, F. Ciccozzi, and A. Pierantonio. Multi-view approaches for software andsystem modelling: a systematic literature review. Software and Systems Modeling,18(6):3207–3233, 2019.
[60] R. M. Coelho, J. Gouveia, M. A. Botto, H. I. Krebs, and J. Martins. Real-time walk-ing gait terrain classification from foot-mounted inertial measurement unit usingconvolutional long short-termmemory neural network. Expert Systems with Appli-cations, 203:117306, 2022.
[61] J. E. R. Condia, F. F. dos Santos, M. S. Reorda, and P. Rech. Combining architec-tural simulation and software fault injection for a fast and accurate cnns reliabilityevaluation on gpus. In 2021 IEEE 39th VLSI Test Symposium (VTS), pages 1–7. IEEE,2021.
[62] J. E. R. Condia, B. Du, M. S. Reorda, and L. Sterpone. Flexgripplus: An im-proved gpgpu model to support reliability analysis. Microelectronics Reliability,109:113660, 2020.

133

[63] J. E. R. Condia, J. D. Guerrero Balaguera, F. F. Dos Santos, M. S. Reorda, and P. Rech.A multi-level approach to evaluate the impact of gpu permanent faults on cnn’sreliability. In 2022 IEEE International Test Conference (ITC), pages 278–287. IEEE,2022.
[64] P. Corneliou, P. Nikolaou, M. K. Michael, and T. Theocharides. Fine-grained vulner-ability analysis of resource constrained neural inference accelerators. In 2021 IEEEInternational SymposiumonDefect and Fault Tolerance in VLSI andNanotechnologySystems (DFT), pages 1–6. IEEE, 2021.
[65] N. Corporation. "NVDLA Open Source Project". http://nvdla.org. [Online].
[66] N. Corporation. "NVIDIA TensorRT". https://developer.nvidia.com/

tensorrt. [Online].
[67] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neuralnetworks: Training deep neural networks with weights and activations constrainedto+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.
[68] I. Dadras, M. H. Ahmadilivani, S. Banerji, J. Raik, and A. Abloo. An Efficient AnalogConvolutional Neural Network Hardware Accelerator Enabled by a Novel Memory-less Architecture for Insect-Sized Robots. In 11th International Conference on Mod-ern Circuits and Systems Technologies (MOCAST), pages 1–6. Bremen, Germany,2022.
[69] I. Dadras, S. Seydi, M. H. Ahmadilivani, J. Raik, andM. E. Salehi. Fully-Fusible Convo-lutional Neural Networks for End-to-End Fused Architecture with FPGA Implemen-tation. In 30th IEEE International Conference on Electronics, Circuits and Systems(ICECS), pages 1–5. Istanbul, Turkey, 2023.
[70] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier,M. Natraj, T. Wang, et al. Tensorflow lite micro: Embedded machine learning fortinyml systems. Machine Learning and Systems, 3:800–811, 2021.
[71] C. De Sio, S. Azimi, and L. Sterpone. An emulation platform for evaluating the relia-bility of deep neural networks. In 2020 IEEE International SymposiumonDefect andFault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–4. IEEE, 2020.
[72] C. De Sio, S. Azimi, and L. Sterpone. Firenn: Neural networks reliability evaluation onhybrid platforms. IEEE Transactions on Emerging Topics in Computing, 10(2):549–563, 2022.
[73] N. I. Deligiannis, R. Cantoro, M. S. Reorda, M. Traiola, and E. Valea. Towards theintegration of reliability and security mechanisms to enhance the fault resilience ofneural networks. IEEE Access, 9:155998–156012, 2021.
[74] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hier-archical image database. In 2009 IEEE conference on computer vision and patternrecognition, pages 248–255. Ieee, 2009.
[75] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie. Model compression and hardware accel-eration for neural networks: A comprehensive survey. Proceedings of the IEEE,108(4):485–532, 2020.

134

http://nvdla.org
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

[76] M. Dhouibi, A. K. Ben Salem, A. Saidi, and S. Ben Saoud. Accelerating deep neuralnetworks implementation: A survey. IET Computers & Digital Techniques, 15(2):79–96, 2021.
[77] F. F. dos Santos, L. Draghetti, L. Weigel, L. Carro, P. Navaux, and P. Rech. Evaluationandmitigation of soft-errors in neural network-based object detection in three gpuarchitectures. In 2017 47th Annual IEEE/IFIP International Conference on Depend-able Systems and Networks Workshops (DSN-W), pages 169–176. IEEE, 2017.
[78] F. F. Dos Santos, A. Kritikakou, J. E. R. Condia, J. D. Guerrero Balaguera, M. S. Reorda,O. Sentieys, and P. Rech. Characterizing a neutron-induced fault model for deepneural networks. IEEE Transactions on Nuclear Science, 2022.
[79] F. F. dos Santos, P. Navaux, L. Carro, and P. Rech. Impact of reduced precision in thereliability of deep neural networks for object detection. In 2019 IEEE European TestSymposium (ETS), pages 1–6. IEEE, 2019.
[80] F. F. dos Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro, D. Kaeli, and P. Rech.Analyzing and increasing the reliability of convolutional neural networks on gpus.IEEE Transactions on Reliability, 68(2):663–677, 2018.
[81] B. Du, S. Azimi, C. De Sio, L. Bozzoli, and L. Sterpone. On the reliability of con-volutional neural network implementation on sram-based fpga. In 2019 IEEE In-ternational Symposium on Defect and Fault Tolerance in VLSI and NanotechnologySystems (DFT), pages 1–6. IEEE, 2019.
[82] J. Elliott, F.Mueller, F. Stoyanov, and C.Webster. Quantifying the impact of single bitflips on floating point arithmetic. Technical report, North Carolina State University.Dept. of Computer Science, 2013.
[83] M. Eslami, B. Ghavami, M. Raji, and A. Mahani. A survey on fault injection methodsof digital integrated circuits. Integration, 71:154–163, 2020.
[84] H. Forsberg, J. Lindén, J. Hjorth, T. Månefjord, and M. Daneshtalab. Challenges inusing neural networks in safety-critical applications. In 2020 AIAA/IEEE 39th DigitalAvionics Systems Conference (DASC), pages 1–7. IEEE, 2020.
[85] G. Gambardella, N. J. Fraser, U. Zahid, G. Furano, andM. Blott. Accelerated radiationtest on quantized neural networks trained with fault aware training. In 2022 IEEEAerospace Conference (AERO), pages 1–7. IEEE, 2022.
[86] G. Gambardella, J. Kappauf, M. Blott, C. Doehring, M. Kumm, P. Zipf, and K. Vis-sers. Efficient error-tolerant quantized neural network accelerators. In 2019 IEEEInternational SymposiumonDefect and Fault Tolerance in VLSI andNanotechnologySystems (DFT), pages 1–6. IEEE, 2019.
[87] J. Gao, C. Xiao, Y. Wang, W. Tang, L. M. Glass, and J. Sun. Stagenet: Stage-awareneural networks for health risk prediction. In Proceedings of The Web Conference2020, pages 530–540, 2020.
[88] Z. Gao, X. Wei, H. Zhang, W. Li, G. Ge, Y. Wang, and P. Reviriego. Reliability eval-uation of pruned neural networks against errors on parameters. In 2020 IEEE In-ternational Symposium on Defect and Fault Tolerance in VLSI and NanotechnologySystems (DFT), pages 1–6. IEEE, 2020.

135

[89] Z. Gao, Y. Yao, X. Wei, T. Yan, S. Zeng, G. Ge, Y. Wang, A. Ullah, and P. Reviriego.Reliability evaluation of fpga based pruned neural networks. Microelectronics Reli-ability, 130:114498, 2022.
[90] T. Garrett and A. D. George. Improving dependability of onboard deep learningwith resilient tensorflow. In 2021 IEEE Space Computing Conference (SCC), pages134–142. IEEE, 2021.
[91] J. Gava, G. Dorneles, R. Reis, R. Garibotti, and L. Ost. Soft error assessment of cnninference models running on a risc-v processor. In 2022 29th IEEE InternationalConference on Electronics, Circuits and Systems (ICECS), pages 1–4. IEEE, 2022.
[92] G. Gavarini, D. Stucchi, A. Ruospo, G. Boracchi, and E. Sanchez. Open-set recogni-tion: an inexpensive strategy to increase dnn reliability. In 2022 IEEE 28th Interna-tional Symposium on On-Line Testing and Robust System Design (IOLTS), pages 1–7.IEEE, 2022.
[93] B. Ghavami, M. Sadati, Z. Fang, and L. Shannon. Fitact: Error resilient deep neuralnetworks via fine-grained post-trainable activation functions. In 2022 DATE, pages1239–1244. IEEE, 2022.
[94] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A survey ofquantization methods for efficient neural network inference. In Low-Power Com-puter Vision, pages 291–326. Chapman and Hall/CRC, 2022.
[95] M. Goldblum, L. Fowl, S. Feizi, and T. Goldstein. Adversarially robust distillation.In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages3996–4003, 2020.
[96] B. F. Goldstein, V. C. Ferreira, S. Srinivasan, D. Das, A. S. Nery, S. Kundu, and F. M.França. A lightweight error-resiliencymechanism for deep neural networks. In 202122nd International Symposium on Quality Electronic Design (ISQED), pages 311–316.IEEE, 2021.
[97] B. F. Goldstein, S. Srinivasan, D. Das, K. Banerjee, L. Santiago, V. C. Ferreira, A. S.Nery, S. Kundu, and F. M. França. Reliability evaluation of compressed deep learn-ing models. In 2020 IEEE 11th Latin American Symposium on Circuits & Systems(LASCAS), pages 1–5. IEEE, 2020.
[98] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante. Software-implemented hardware fault tolerance. Springer Science & Business Media, 2006.
[99] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.
[100] H. Guan, L. Ning, Z. Lin, X. Shen, H. Zhou, and S.-H. Lim. In-place zero-spacememoryprotection for cnn. In Proceedings of the 33rd International Conference on NeuralInformation Processing Systems, pages 5734–5743, 2019.
[101] J. D. Guerrero Balaguera, J. E. R. Condia, and M. S. Reorda. Neural network’s re-liability to permanent faults: Analyzing the impact of performance optimizationsin gpus. In 2022 29th IEEE International Conference on Electronics, Circuits andSystems (ICECS), pages 1–4. IEEE, 2022.

136

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[102] J. D. Guerrero Balaguera, L. Galasso, R. L. Sierra, andM. S. Reorda. Reliability assess-ment of neural networks in gpus: A framework for permanent faults injections. In2022 IEEE 31st International Symposium on Industrial Electronics (ISIE), pages 959–962. IEEE, 2022.
[103] J. D. Guerrero Balaguera, L. Galasso, R. L. Sierra, E. Sanchez, andM. S. Reorda. Eval-uating the impact of permanent faults in a gpu running a deep neural network. In2022 IEEE International Test Conference in Asia (ITC-Asia), pages 96–101. IEEE, 2022.
[104] J. D. Guerrero Balaguera, R. L. Sierra, andM. S. Reorda. Effective fault simulation ofgpu’s permanent faults for reliability estimation of cnns. In 2022 IEEE 28th Interna-tional Symposium on On-Line Testing and Robust System Design (IOLTS), pages 1–6.IEEE, 2022.
[105] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang. [dl] a survey of fpga-based neuralnetwork inference accelerators. ACM Transactions on Reconfigurable Technologyand Systems (TRETS), 12(1):1–26, 2019.
[106] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neuralnetworks with pruning, trained quantization and huffman coding. arXiv preprintarXiv:1510.00149, 2015.
[107] S. K. S. Hari, M. Sullivan, T. Tsai, and S. W. Keckler. Making convolutions resilient viaalgorithm-based error detection techniques. IEEE Transactions on Dependable andSecure Computing, 2021.
[108] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer. Sassifi: Anarchitecture-level fault injection tool for gpu application resilience evaluation. In2017 IEEE International Symposium on Performance Analysis of Systems and Soft-ware (ISPASS), pages 249–258. IEEE, 2017.
[109] E. J. Harris, I.-H. Khoo, and E. Demircan. A survey of human gait-based artificialintelligence applications. Frontiers in Robotics and AI, 8:749274, 2022.
[110] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.In Proceedings of the IEEE conference on computer vision and pattern recognition,pages 770–778, 2016.
[111] Y. He, P. Balaprakash, and Y. Li. Fidelity: Efficient resilience analysis framework fordeep learning accelerators. In 2020 53rd Annual IEEE/ACM International Sympo-sium on Microarchitecture (MICRO), pages 270–281. IEEE, 2020.
[112] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.arXiv preprint arXiv:1503.02531, 2(7), 2015.
[113] L.-H. Hoang, M. A. Hanif, and M. Shafique. Ft-clipact: Resilience analysis of deepneural networks and improving their fault tolerance using clipped activation. In2020 DATE, pages 1241–1246. IEEE, 2020.
[114] L.-H. Hoang, M. A. Hanif, and M. Shafique. Tre-map: Towards reducing the over-heads of fault-aware retraining of deep neural networks by merging fault maps. In2021 24th Euromicro Conference on Digital System Design (DSD), pages 434–441.IEEE, 2021.

137

[115] Y. Hong, J. Lian, L. Xu, J. Min, Y. Wang, L. J. Freeman, and X. Deng. Statistical per-spectives on reliability of artificial intelligence systems. Quality Engineering, pages1–23, 2022.
[116] A. Hosseinkhani and B. Ghavami. Improving soft error reliability of fpga-based deepneural networks with reduced approximate tmr. In 2021 11th International Confer-ence on Computer Engineering and Knowledge (ICCKE), pages 459–464. IEEE, 2021.
[117] N. Hou, X. Yan, and F. He. A survey on partitioning models, solution algorithms andalgorithm parallelization for hardware/software co-design. Design Automation forEmbedded Systems, 23(1):57–77, 2019.
[118] Z. Huang, W. Shao, X. Wang, L. Lin, and P. Luo. Rethinking the pruning criteria forconvolutional neural network. Advances in Neural Information Processing Systems,34:16305–16318, 2021.
[119] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized neuralnetworks: Training neural networks with low precisionweights and activations. TheJournal of Machine Learning Research, 18(1):6869–6898, 2017.
[120] E. Ibe, H. Taniguchi, Y. Yahagi, K.-i. Shimbo, and T. Toba. Impact of scaling onneutron-induced soft error in srams from a 250 nm to a 22 nm design rule. IEEE Transactionson Electron Devices, 57(7):1527–1538, 2010.
[121] Y. Ibrahim, H. Wang, and K. Adam. Analyzing the reliability of convolutional neuralnetworks on gpus: Googlenet as a case study. In 2020 International Conference onComputing and Information Technology (ICCIT-1441), pages 1–6. IEEE, 2020.
[122] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen. Soft error re-silience of deep residual networks for object recognition. IEEE Access, 8:19490–19503, 2020.
[123] Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam, and G. Guo. Softerrors in dnn accelerators: A comprehensive review. Microelectronics Reliability,115:113969, 2020.
[124] Y. Ibrahin, J. Liu, X. Yang, H. Sha, and H. Wang. Analyzing the impact of soft errorsin deep neural networks on gpus from instruction level. WSEAS Transaction onSystems and Control, 15:699–708, 2020.
[125] M. Jang and J. Hong. Mate: Memory-and retraining-free error correction for convo-lutional neural network weights. Journal of information and communication con-vergence engineering, 19(1):22–28, 2021.
[126] M. Jasemi, S. Hessabi, and N. Bagherzadeh. Enhancing reliability of emergingmem-ory technology for machine learning accelerators. IEEE Transactions on EmergingTopics in Computing, 9(4):2234–2240, 2020.
[127] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bha-tia, N. Boden, A. Borchers, et al. In-datacenter performance analysis of a tensorprocessing unit. In Proceedings of the 44th annual international symposium oncomputer architecture, pages 1–12, 2017.

138

[128] R. L. R. Junior, S. Malde, C. Cazzaniga, M. Kastriotou, M. Letiche, C. Frost, andP. Rech. High energy and thermal neutron sensitivity of google tensor processingunits. IEEE Transactions on Nuclear Science, 69(3):567–575, 2022.
[129] N. Khoshavi, C. Broyles, and Y. Bi. Compression or corruption? a study on the ef-fects of transient faults on bnn inference accelerators. In 2020 21st InternationalSymposium on Quality Electronic Design (ISQED), pages 99–104. IEEE, 2020.
[130] N. Khoshavi, C. Broyles, Y. Bi, and A. Roohi. Fiji-fin: A fault injection framework onquantized neural network inference accelerator. In 2020 19th IEEE InternationalConference on Machine Learning and Applications (ICMLA), pages 1139–1144. IEEE,2020.
[131] N. Khoshavi, A. Roohi, C. Broyles, S. Sargolzaei, Y. Bi, and D. Z. Pan. Shieldenn: On-line accelerated framework for fault-tolerant deep neural network architectures. In2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2020.
[132] J.-S. Kimand J.-S. Yang. Dris-3: Deepneural network reliability improvement schemein 3d die-stacked memory based on fault analysis. In 2019 56th ACM/IEEE DesignAutomation Conference (DAC), pages 1–6. IEEE, 2019.
[133] M. C. Kim and C. S. Smidts. Three suggestions on the definition of terms for thesafety and reliability analysis of digital systems. Reliability Engineering & SystemSafety, 135:81–91, 2015.
[134] J. C. Knight. Safety critical systems: challenges and directions. In Proceedings of the24th international conference on software engineering, pages 547–550, 2002.
[135] I. Koren and C. M. Krishna. Fault-tolerant systems. Morgan Kaufmann, 2020.
[136] A. Krizhevsky, v. Nair, and G. Hinton. "The CIFAR-10 Dataset". https://

www.cs.toronto.edu/~kriz/cifar.html. [Online].
[137] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-volutional neural networks. Advances in neural information processing systems,25:1097–1105, 2012.
[138] S. Laskar, M. H. Rahman, and G. Li. Tensorfi+: A scalable fault injection frame-work for modern deep learning neural networks. In 2022 IEEE International Sym-posium on Software Reliability Engineering Workshops (ISSREW), pages 246–251.IEEE, 2022.
[139] S. Laskar, M. H. Rahman, B. Zhang, and G. Li. Characterizing deep learning neu-ral network failures between algorithmic inaccuracy and transient hardware faults.In 2022 IEEE 27th Pacific Rim International Symposium on Dependable Computing(PRDC), pages 54–67. IEEE, 2022.
[140] M. Lavallée, P.-N. Robillard, and R. Mirsalari. Performing systematic literaturereviews with novices: An iterative approach. IEEE Transactions on Education,57(3):175–181, 2013.
[141] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied todocument recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

139

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

[142] S. Lee, I. Choi, and J.-S. Yang. Bipolar vector classifier for fault-tolerant deep neuralnetworks. In Proceedings of the 59th ACM/IEEE Design Automation Conference,pages 673–678, 2022.
[143] S.-S. Lee and J.-S. Yang. Value-aware parity insertion ecc for fault-tolerant deepneural network. In 2022 DATE, pages 724–729. IEEE, 2022.
[144] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical fault injection:Quantified error and confidence. In 2009 Design, Automation & Test in EuropeConference & Exhibition, pages 502–506. IEEE, 2009.
[145] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S.W. Keckler. Un-derstanding error propagation in deep learning neural network (dnn) acceleratorsand applications. In Proceedings of the International Conference for High Perfor-mance Computing, Networking, Storage and Analysis, pages 1–12, 2017.
[146] G. Li, K. Pattabiraman, and N. DeBardeleben. Tensorfi: A configurable fault injec-tor for tensorflow applications. In 2018 IEEE International symposium on softwarereliability engineering workshops (ISSREW), pages 313–320. IEEE, 2018.
[147] W. Li, G. Ge, K. Guo, X. Chen, Q. Wei, Z. Gao, Y. Wang, and H. Yang. Soft errormitigation for deep convolution neural network on fpga accelerators. In 2020 2ndIEEE AICAS, pages 1–5. IEEE, 2020.
[148] F. Libano, P. Rech, B. Neuman, J. Leavitt, M.Wirthlin, and J. Brunhaver. How reduceddata precision and degree of parallelism impact the reliability of convolutional neu-ral networks on fpgas. IEEE Transactions on Nuclear Science, 68(5):865–872, 2021.
[149] F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin, C. Cazzaniga, C. Frost, and P. Rech.Selective hardening for neural networks in fpgas. IEEE Transactions on NuclearScience, 66(1):216–222, 2018.
[150] F. Libano, B. Wilson, M. Wirthlin, P. Rech, and J. Brunhaver. Understanding theimpact of quantization, accuracy, and radiation on the reliability of convolutionalneural networks on fpgas. IEEE Transactions on Nuclear Science, 67(7):1478–1484,2020.
[151] B. Lim and S. Zohren. Time-series forecasting with deep learning: a survey. Philo-sophical Transactions of the Royal Society A, 379(2194):202–209, 2021.
[152] C. Liu, C. Chu, D. Xu, Y. Wang, Q. Wang, H. Li, X. Li, and K.-T. Cheng. Hyca: A hy-brid computing architecture for fault-tolerant deep learning. IEEE Transactions onComputer-AidedDesign of Integrated Circuits and Systems, 41(10):3400–3413, 2021.
[153] Z. Liu, Z. Deng, and X. Yang. Using checksum to improve the reliability of embeddedconvolutional neural networks. Microelectronics Reliability, 136:114666, 2022.
[154] Z. Liu, Y. Liu, Z. Chen, G. Guo, and H. Wang. Analyzing and increasing soft errorresilience of deep neural networks on arm processors. Microelectronics Reliability,124:114331, 2021.
[155] Z. Liu and X. Yang. An efficient structure to improve the reliability of deep neuralnetworks on arms. Microelectronics Reliability, 136:114729, 2022.

140

[156] A. Lotfi, S. Hukerikar, K. Balasubramanian, P. Racunas, N. Saxena, R. Bramley, andY. Huang. Resiliency of automotive object detection networks on gpu architectures.In 2019 IEEE International Test Conference (ITC), pages 1–9. IEEE, 2019.
[157] L. M. Luza, A. Ruospo, A. Bosio, E. Sanchez, and L. Dilillo. Amodel-based frameworkto assess the reliability of safety-critical applications. In 2021 24th InternationalSymposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS),pages 41–44. IEEE, 2021.
[158] L.M. Luza, D. Söderström, G. Tsiligiannis, H. Puchner, C. Cazzaniga, E. Sanchez, A. Bo-sio, and L. Dilillo. Investigating the impact of radiation-induced soft errors on the re-liability of approximate computing systems. In 2020 IEEE International Symposiumon Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages1–6. IEEE, 2020.
[159] M. S.Mahdavinejad,M. Rezvan,M. Barekatain, P. Adibi, P. Barnaghi, and A. P. Sheth.Machine learning for internet of things data analysis: A survey. Digital Communi-cations and Networks, 4(3):161–175, 2018.
[160] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W. Fletcher,I. Frosio, and S. K. S. Hari. Pytorchfi: A runtime perturbation tool for dnns. In2020 50th Annual IEEE/IFIP International Conference on Dependable Systems andNetworks Workshops (DSN-W), pages 25–31. IEEE, 2020.
[161] A. Mahmoud, S. K. S. Hari, C. W. Fletcher, S. V. Adve, C. Sakr, N. Shanbhag,P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler. Hardnn: Feature map vul-nerability evaluation in cnns. arXiv preprint arXiv:2002.09786, 2020.
[162] A. Mahmoud, S. K. S. Hari, C. W. Fletcher, S. V. Adve, C. Sakr, N. R. Shanbhag,P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler. Optimizing selective pro-tection for cnn resilience. In ISSRE, pages 127–138, 2021.
[163] P. Maillard, Y. P. Chen, J. Vidmar, N. Fraser, G. Gambardella, M. Sawant, and M. L.Voogel. Radiation tolerant deep learning processor unit (dpu) based platform usingxilinx 20nm kintex ultrascale™ fpga. IEEE Transactions on Nuclear Science, 2022.
[164] E. Malekzadeh, N. Rohbani, Z. Lu, and M. Ebrahimi. The impact of faults on dnns:A case study. In 2021 IEEE International Symposium on Defect and Fault Tolerancein VLSI and Nanotechnology Systems (DFT), pages 1–6. IEEE, 2021.
[165] R. Manne and S. C. Kantheti. Application of artificial intelligence in healthcare:chances and challenges. Current Journal of Applied Science and Technology,40(6):78–89, 2021.
[166] L. Matanaluza, A. Ruospo, D. Soderstrom, C. Cazzaniga, M. Kastriotou, E. Sanchez,A. Bosio, and L. Dilillo. Emulating the effects of radiation-induced soft-errors for thereliability assessment of neural networks. IEEE Transactions on Emerging Topics inComputing, 2021.
[167] J. Mendez, K. Bierzynski, M. P. Cuéllar, and D. P. Morales. Edge intelligence: con-cepts, architectures, applications, and future directions. ACM Transactions on Em-bedded Computing Systems (TECS), 21(5):1–41, 2022.

141

[168] S. Mittal. A survey on modeling and improving reliability of dnn algorithms andaccelerators. Journal of Systems Architecture, 104:101689, 2020.
[169] T. Mohaidat and K. Khalil. A survey on neural network hardware accelerators. IEEETransactions on Artificial Intelligence, 2024.
[170] D. Moolchandani, A. Kumar, and S. R. Sarangi. Accelerating cnn inference on asics:A survey. Journal of Systems Architecture, 113:101887, 2021.
[171] S. Mousavi, M. H. Ahmadilivani, J. Raik, M. Jenihhin, and M. Daneshtalab. ProAct:Progressive Training for Hybrid Clipped Activation Function to Enhance Resilienceof DNNs. Under review, pages 1–12, 2024.
[172] R. I. Mukhamediev, Y. Popova, Y. Kuchin, E. Zaitseva, A. Kalimoldayev, A. Symagulov,V. Levashenko, F. Abdoldina, V. Gopejenko, K. Yakunin, et al. Review of artificialintelligence and machine learning technologies: classification, restrictions, oppor-tunities and challenges. Mathematics, 10(15):2552, 2022.
[173] S. Mukherjee. Architecture design for soft errors. Morgan Kaufmann, 2011.
[174] N. Narayanan, Z. Chen, B. Fang, G. Li, K. Pattabiraman, and N. Debardeleben. Faultinjection for tensorflow applications. IEEE Transactions on Dependable and SecureComputing, 2022.
[175] M. A. Neggaz, I. Alouani, P. R. Lorenzo, and S. Niar. A reliability study on cnns forcritical embedded systems. In 2018 IEEE 36th International Conference onComputerDesign (ICCD), pages 476–479. IEEE, 2018.
[176] M. A. Neggaz, I. Alouani, S. Niar, and F. Kurdahi. Are cnns reliable enough for criticalapplications? an exploratory study. IEEE Design & Test, 37(2):76–83, 2019.
[177] T.-H. Nguyen,M. Imran, J. Choi, and J.-S. Yang. Low-cost and effective fault-toleranceenhancement techniques for emerging memories-based deep neural networks. In2021 58th ACM/IEEE Design Automation Conference (DAC), pages 1075–1080. IEEE,2021.
[178] M. Nicolaidis. Soft errors inmodern electronic systems, volume 41. Springer Science& Business Media, 2010.
[179] D. Oliveira, L. Pilla, N. DeBardeleben, S. Blanchard, H. Quinn, I. Koren, P. Navaux,and P. Rech. Experimental and analytical study of xeon phi reliability. In Proceed-ings of the International Conference for High Performance Computing, Networking,Storage and Analysis, pages 1–12, 2017.
[180] F. J. Ordóñez andD. Roggen. Deep convolutional and lstm recurrent neural networksfor multimodal wearable activity recognition. Sensors, 16(1):115, 2016.
[181] E. Ozen andA.Orailoglu. Sanity-check: Boosting the reliability of safety-critical deepneural network applications. In 2019 IEEE 28th Asian Test Symposium (ATS), pages7–75. IEEE, 2019.
[182] E. Ozen and A. Orailoglu. Boosting bit-error resilience of dnn accelerators throughmedian feature selection. IEEE Transactions on Computer-Aided Design of Inte-grated Circuits and Systems, 39(11):3250–3262, 2020.

142

[183] E. Ozen and A. Orailoglu. Just say zero: containing critical bit-error propagationin deep neural networks with anomalous feature suppression. In 2020 IEEE/ACMInternational ConferenceOn Computer AidedDesign (ICCAD), pages 1–9. IEEE, 2020.
[184] E. Ozen and A. Orailoglu. Low-cost error detection in deep neural network accelera-torswith linear algorithmic checksums. Journal of Electronic Testing, 36(6):703–718,2020.
[185] E. Ozen andA.Orailoglu. Snr: S queezing n umerical r ange defuses bit error vulnera-bility surface in deep neural networks. ACM Transactions on Embedded ComputingSystems (TECS), 20(5s):1–25, 2021.
[186] B. Parchekani, S. Nazari, M. H. Ahmadilivani, A. Azarpeyvand, J. Raik, T. Ghasem-pouri, and M. Daneshtalab. Zero-Memory-Overhead Clipping-Based Fault Toler-ance for LSTM Deep Neural Networks. In IEEE International Symposium on Defectand Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–4. Oxfor-shire, United Kingdom, 2024.
[187] L. Ping, J. Tan, and K. Yan. Sern: Modeling and analyzing the soft error reliability ofconvolutional neural networks. In Proceedings of the 2020 on Great Lakes Sympo-sium on VLSI, pages 445–450, 2020.
[188] J. Ponader, K. Thomas, S. Kundu, and Y. Solihin. Milr: Mathematically induced layerrecovery for plaintext space error correction of cnns. In 2021 51st Annual IEEE/IFIPInternational Conference onDependable Systems andNetworks (DSN), pages 75–87.IEEE, 2021.
[189] A. S. Prasad, L. Benini, and F. Conti. Specialization meets flexibility: A heteroge-neous architecture for high-efficiency, high-flexibility ar/vr processing. In 2023 60thACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2023.
[190] M. Rausand. Reliability of safety-critical systems: theory and applications. JohnWiley & Sons, 2014.
[191] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mulholland,D. Brooks, and G.-Y. Wei. Ares: A framework for quantifying the resilience of deepneural networks. In 2018 55th ACM/ESDA/IEEE Design Automation Conference(DAC), pages 1–6. IEEE, 2018.
[192] R. L. Rech and P. Rech. Impact of layers selective approximation on cnns reliabil-ity and performance. In 2020 IEEE International Symposium on Defect and FaultTolerance in VLSI and Nanotechnology Systems (DFT), pages 1–4. IEEE, 2020.
[193] R. L. Rech and P. Rech. Reliability of google’s tensor processing units for embeddedapplications. In 2022 Design, Automation & Test in Europe Conference & Exhibition(DATE), pages 376–381. IEEE, 2022.
[194] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer visionand pattern recognition, pages 779–788, 2016.
[195] E. Rojas, D. Pérez, J. C. Calhoun, L. B. Gomez, T. Jones, and E. Meneses. Under-standing soft error sensitivity of deep learning models and frameworks throughcheckpoint alteration. In 2021 IEEE International Conference on Cluster Computing(CLUSTER), pages 492–503. IEEE, 2021.

143

[196] J. Rostovski, M. H. Ahmadilivani, A. Krivošei, A. Kuusik, and M. M. Alam. Real-TimeGait Anomaly Detection Using 1D-CNN and LSTM. In Nordic Conference on DigitalHealth and Wireless Solutions, pages 260–278. Oulu, Finland, Springer, 2024.
[197] A. Ruospo, A. Balaara, A. Bosio, and E. Sanchez. A pipelinedmulti-level fault injectorfor deep neural networks. In 2020 IEEE International Symposium on Defect andFault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6. IEEE, 2020.
[198] A. Ruospo, A. Bosio, A. Ianne, and E. Sanchez. Evaluating convolutional neural net-works reliability depending on their data representation. In 2020 23rd EuromicroConference on Digital System Design (DSD), pages 672–679. IEEE, 2020.
[199] A. Ruospo, G. Gavarini, I. Bragaglia, M. Traiola, A. Bosio, and E. Sanchez. Selectivehardening of critical neurons in deep neural networks. In 2022 25th InternationalSymposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS),pages 136–141. IEEE, 2022.
[200] A. Ruospo, G. Gavarini, C. De Sio, J. Guerrero, L. Sterpone, M. S. Reorda, E. Sanchez,R. Mariani, J. Aribido, and J. Athavale. Assessing convolutional neural networksreliability through statistical fault injections. In 2023 Design, Automation & Test inEurope Conference & Exhibition (DATE), pages 1–6. IEEE, 2023.
[201] A. Ruospo, L. M. Luza, A. Bosio, M. Traiola, L. Dilillo, and E. Sanchez. Pros and consof fault injection approaches for the reliability assessment of deep neural networks.In 2021 IEEE 22nd Latin American Test Symposium (LATS), pages 1–5. IEEE, 2021.
[202] A. Ruospo and E. Sanchez. On the reliability assessment of artificial neural networksrunning on ai-oriented mpsocs. Applied Sciences, 11(14):6455, 2021.
[203] A. Ruospo, E. Sanchez, L. M. Luza, L. Dilillo, M. Traiola, and A. Bosio. A survey ondeep learning resilience assessment methodologies. Computer, 56(2):57–66, 2023.
[204] A. Ruospo, E. Sanchez,M. Traiola, I. O’connor, andA. Bosio. Investigating data repre-sentation for efficient and reliable convolutional neural networks. Microprocessorsand Microsystems, 86:104318, 2021.
[205] M. Sabbagh, C. Gongye, Y. Fei, and Y. Wang. Evaluating fault resiliency of com-pressed deep neural networks. In 2019 IEEE International Conference on EmbeddedSoftware and Systems (ICESS), pages 1–7. IEEE, 2019.
[206] M. Sabih, F. Hannig, and J. Teich. Fault-tolerant low-precision dnns using explain-able AI. In 2021 51st Annual IEEE/IFIP International Conference on Dependable Sys-tems and Networks Workshops (DSN-W), pages 166–174. IEEE, 2021.
[207] B. Salami, O. S. Unsal, and A. C. Kestelman. On the resilience of rtl nn accelerators:Fault characterization and mitigation. In 2018 30th International Symposium onComputer Architecture and High Performance Computing (SBAC-PAD), pages 322–329. IEEE, 2018.
[208] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna. Scale-sim: Systoliccnn accelerator simulator. arXiv preprint arXiv:1811.02883, 2018.
[209] R. Sanchez-Iborra and A. F. Skarmeta. Tinyml-enabled frugal smart objects: Chal-lenges and opportunities. IEEE Circuits and Systems Magazine, 20(3):4–18, 2020.

144

[210] C. Schorn, A. Guntoro, and G. Ascheid. Accurate neuron resilience prediction fora flexible reliability management in neural network accelerators. In 2018 Design,Automation & Test in Europe Conference & Exhibition (DATE), pages 979–984. IEEE,2018.
[211] C. Schorn, A. Guntoro, and G. Ascheid. An efficient bit-flip resilience optimizationmethod for deep neural networks. In 2019 Design, Automation & Test in EuropeConference & Exhibition (DATE), pages 1507–1512. IEEE, 2019.
[212] N. Seifert, X. Zhu, and L. W. Massengill. Impact of scaling on soft-error rates incommercial microprocessors. IEEE Transactions on Nuclear Science, 49(6):3100–3106, 2002.
[213] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O. Mutlu, L. Orosa, and J. Choi.Robust machine learning systems: Challenges, current trends, perspectives, andthe road ahead. IEEE Design & Test, 37(2):30–57, 2020.
[214] M. L. Shooman. Reliability of computer systems and networks: fault tolerance, anal-ysis, and design. John Wiley & Sons, 2003.
[215] A. Siddique, K. Basu, and K. A. Hoque. Exploring fault-energy trade-offs in approxi-mate dnn hardware accelerators. In 2021 22nd International Symposium on QualityElectronic Design (ISQED), pages 343–348. IEEE, 2021.
[216] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scaleimage recognition. arXiv preprint arXiv:1409.1556, 2014.
[217] R. Singh, N. S. Mangat, R. Singh, and N. S. Mangat. Stratified sampling. Elements ofsurvey sampling, pages 102–144, 1996.
[218] I. Souvatzoglou, A. Papadimitriou, A. Sari, V. Vlagkoulis, and M. Psarakis. Analyzingthe single event upset vulnerability of binarized neural networks on sram fpgas.In 2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI andNanotechnology Systems (DFT), pages 1–6. IEEE, 2021.
[219] T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa, B. Linares-Barranco, andH.-G. Stratigopoulos. Reliability analysis of a spiking neural network hardware ac-celerator. In 2022 Design, Automation & Test in Europe Conference & Exhibition(DATE), pages 370–375. IEEE, 2022.
[220] F. Su, C. Liu, and H.-G. Stratigopoulos. Testability and dependability of ai hardware:Survey, trends, challenges, and perspectives. IEEE Design & Test, 2023.
[221] Y. Su and C.-C. J. Kuo. On extended long short-term memory and dependent bidi-rectional recurrent neural network. Neurocomputing, 356:151–161, 2019.
[222] R. T. Syed, M. Ulbricht, K. Piotrowski, and M. Krstic. Fault resilience analysis ofquantized deep neural networks. In 2021 IEEE 32nd International Conference onMicroelectronics (MIEL), pages 275–279. IEEE, 2021.
[223] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer. Efficient processing of deep neuralnetworks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

145

[224] M. Taheri, M. H. Ahmadilivani, M. Jenihhin, M. Daneshtalab, and J. Raik. Appraiser:DNN Fault Resilience Analysis Employing Approximation Errors. In IEEE 26th Inter-national Symposium on Design and Diagnostics of Electronic Circuits and Systems(DDECS), pages 124–127. Tallinn, Estonia, 2023.
[225] M. Taheri, M. Daneshtalab, J. Raik, M. Jenihhin, S. Pappalardo, P. Jimenez, B. De-veautour, and A. Bosio. Saffira: a framework for assessing the reliability of systolic-array-based dnn accelerators. In 2024 27th International Symposium on Design &Diagnostics of Electronic Circuits & Systems (DDECS), pages 19–24. IEEE, 2024.
[226] M. Taheri, M. Riazati, M. H. Ahmadilivani, M. Jenihhin, M. Daneshtalab, J. Raik,M. Sjödin, and B. Lisper. DeepAxe: A Framework for Exploration of Approximationand Reliability Trade-Offs in DNN Accelerators. In IEEE 24th International Sympo-sium on Quality Electronic Design (ISQED), pages 1–8. San Francisco, United Statesof America, 2023.
[227] M. A. Talib, S. Majzoub, Q. Nasir, and D. Jamal. A systematic literature review onhardware implementation of artificial intelligence algorithms. The Journal of Su-percomputing, 77:1897–1938, 2021.
[228] T. N. Theis and H.-S. P. Wong. The end of moore’s law: A new beginning for infor-mation technology. Computing in science & engineering, 19(2):41–50, 2017.
[229] C. Torres-Huitzil and B. Girau. Fault and error tolerance in neural networks: A re-view. IEEE Access, 5:17322–17341, 2017.
[230] T. Tsai, S. K. S. Hari, M. Sullivan, O. Villa, and S. W. Keckler. Nvbitfi: dynamic faultinjection for gpus. In 2021 51st Annual IEEE/IFIP International Conference on De-pendable Systems and Networks (DSN), pages 284–291. IEEE, 2021.
[231] Y.-Y. Tsai and J.-F. Li. Evaluating the impact of fault-tolerance capability of deepneural networks caused by faults. In 2021 IEEE 34th International System-on-ChipConference (SOCC), pages 272–277. IEEE, 2021.
[232] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vis-sers. Finn: A framework for fast, scalable binarized neural network inference. InPro-ceedings of the 2017 ACM/SIGDA International Symposium on Field-ProgrammableGate Arrays, pages 65–74, 2017.
[233] G. Van Houdt, C. Mosquera, and G. Nápoles. A review on the long short-termmem-ory model. Artificial Intelligence Review, 53(8):5929–5955, 2020.
[234] A. Veronesi, F. Dall’Occo, D. Bertozzi, M. Favalli, and M. Krstic. Exploring softwaremodels for the resilience analysis of deep learning accelerators: the nvdla casestudy. In 2022 25th International Symposium on Design and Diagnostics of Elec-tronic Circuits and Systems (DDECS), pages 142–147. IEEE, 2022.
[235] M. Vijay and R. Mittal. Algorithm-based fault tolerance: a review. Microprocessorsand Microsystems, 21(3):151–161, 1997.
[236] H.-B. Wang, Y.-S. Wang, J.-H. Xiao, S.-L. Wang, and T.-J. Liang. Impact of single-eventupsets on convolutional neural networks in xilinx zynq fpgas. IEEE Transactions onNuclear Science, 68(4):394–401, 2021.

146

[237] J. Wang, J. Zhu, X. Fu, D. Zang, K. Li, and W. Zhang. Enhancing neural networkreliability: Insights fromhardware/software collaborationwith neuron vulnerabilityquantization. IEEE Transactions on Computers, 2024.
[238] O. Weng, A. Meza, Q. Bock, B. Hawks, J. Campos, N. Tran, J. M. Duarte, and R. Kast-ner. Fkeras: A sensitivity analysis tool for edge neural networks. Journal on Au-tonomous Transportation Systems, 2024.
[239] XILINX. "SoCs with Hardware and Software Programmability". https://

www.xilinx.com/products/silicon-devices/soc/zynq-7000.html. [On-line].
[240] D. Xu, C. Chu, Q. Wang, C. Liu, Y. Wang, L. Zhang, H. Liang, and K.-T. Cheng. A hybridcomputing architecture for fault-tolerant deep learning accelerators. In 2020 IEEE38th International Conference on Computer Design (ICCD), pages 478–485. IEEE,2020.
[241] D. Xu, Z. Zhu, C. Liu, Y. Wang, H. Li, L. Zhang, and K.-T. Cheng. Persistent fault anal-ysis of neural networks on fpga-based acceleration system. In 2020 IEEE 31st Inter-national Conference on Application-specific Systems, Architectures and Processors(ASAP), pages 85–92. IEEE, 2020.
[242] D. Xu, Z. Zhu, C. Liu, Y. Wang, S. Zhao, L. Zhang, H. Liang, H. Li, and K.-T. Cheng. Re-liability evaluation and analysis of fpga-based neural network acceleration system.IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 29(3):472–484,2021.
[243] Z. Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou, and C. Zhuo. When single eventupset meets deep neural networks: Observations, explorations, and remedies. In2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pages163–168. IEEE, 2020.
[244] C. J. B. Yann, Y. LeCun, and C. Cortes. "TheMNIST DATABASE of Handwritten Digits".

http://yann.lecun.com/exdb/mnist/. [Online].
[245] Y. Yu, X. Si, C. Hu, and J. Zhang. A review of recurrent neural networks: Lstm cellsand network architectures. Neural computation, 31(7):1235–1270, 2019.
[246] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay, J. Feng, and S. Yan.Tokens-to-token vit: Training vision transformers from scratch on imagenet. In Pro-ceedings of the IEEE/CVF international conference on computer vision, pages 558–567, 2021.
[247] U. Zahid, G. Gambardella, N. J. Fraser, M. Blott, and K. Vissers. Fat: Training neuralnetworks for reliable inference under hardware faults. In 2020 IEEE ITC, pages 1–10.IEEE, 2020.
[248] J. Zhan, R. Sun, W. Jiang, Y. Jiang, X. Yin, and C. Zhuo. Improving fault tolerancefor reliable dnn using boundary-aware activation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(10):3414–3425, 2021.
[249] J. J. Zhang, K. Basu, and S. Garg. Fault-tolerant systolic array based accelerators fordeep neural network execution. IEEE Design & Test, 36(5):44–53, 2019.

147

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://yann.lecun.com/exdb/mnist/

[250] J. J. Zhang, T. Gu, K. Basu, and S. Garg. Analyzing and mitigating the impact ofpermanent faults on a systolic array based neural network accelerator. In 2018 IEEE36th VLSI Test Symposium (VTS), pages 1–6. IEEE, 2018.
[251] Y. Zhang, H. Itsuji, T. Uezono, T. Toba, and M. Hashimoto. Estimating vulnerabilityof all model parameters in dnn with a small number of fault injections. In 2022Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 60–63.IEEE, 2022.
[252] K. Zhao, S. Di, S. Li, X. Liang, Y. Zhai, J. Chen, K. Ouyang, F. Cappello, and Z. Chen.Ft-cnn: Algorithm-based fault tolerance for convolutional neural networks. IEEETransactions on Parallel and Distributed Systems, 32(7):1677–1689, 2020.
[253] Y. Zhao, K. Wang, and A. Louri. Fsa: An efficient fault-tolerant systolic array-baseddnn accelerator architecture. In 2022 IEEE 40th International Conference on Com-puter Design (ICCD), pages 545–552. IEEE, 2022.

148

Acknowledgements
InMay 2020, when I received an email fromProf. JaanRaik informingmeofmy acceptancefor this position, I had no idea how intriguing and challenging the next four yearswould be.Now, as I reach the end of this journey, I am proud to reflect on the invaluable memoriesand transformative experiences it has broughtme; ones I could not have gained anywhereelse. This period not only allowed me to delve deeply into scientific research but alsobroadened my horizons by enabling me to visit many beautiful places and connect withinspiring people. I am deeply grateful to everyone who accompanied and supported methroughout this path.First and foremost, I owemy deepest gratitude to my beloved wife, Mina, my ultimatesource of inspiration. It was she who encouraged me to accept this position, and her un-wavering support has been the driving force behindmy ability to embark on and completethis journey. Leaving behind the life we knew and stepping into an uncertain future was amonumental change for both of us, and I will forever admire her resilience and strengthin navigating these challenges alongside me. I am also profoundly thankful to my parentsfor their lifelong encouragement and support, which enabled me to pursue my academicaspirations. They instilled in me the values of hard work, honesty, and trustworthiness,qualities that have been instrumental in my journey.I extend my heartfelt gratitude to Prof. Jaan Raik, Prof. Masoud Danestalab, and Prof.Maksim Jenihhin, whose guidance and mentorship have been invaluable. I was incredi-bly fortunate to work with such a distinguished and competent team of professors dur-ing my PhD studies, from whom I learned not only about science and research but alsoabout life and academic growth. Under Prof. Raik’s supervision, I benefited immenselyfrom his extensive knowledge, insightful advice, and unwavering support. His positiveoutlook, humility, and encouragement to learn from setbacks have left a lasting impres-sion onme, and I amdeeply grateful for the nurturing research environment he cultivated.Prof. Daneshtalab taught me the importance of embracing challenges, exploring new top-ics outside my expertise, and broadening my perspective for future career opportunities.From Prof. Jenihhin, I learned the value of persistence, meticulous organization, and prag-matism in conducting high-quality research.Throughout my studies, I had the privilege of collaborating with numerous talentedPhD students, scientists, and engineers, all of whom contributed to the impact and scopeof my research. I am especially thankful to Hamidreza Mousavi, Mahdi Taheri, MartenRoots, Ali Emre Karatopuk, Dr. Iman Dadras, Jakob Rostovski, Natalia Cherezova, Luca DiMauro (ARM), Dr. Marco Restifo (ARM), Ahmad Mirsalari, Dr. Mohammad Riazati, Salva-tore Pappalardo, Sakineh Seyedi, Samira Nazari, Prof. Alberto Bosio, Dr. Alar Kuusik, Dr.Levent Aksoy, Prof. Ali Azarpeyvand, Prof. Mostafa E. Salehi, Prof. Tara Ghasempouri, Dr.Marko Koort, Dr. Mohammad Eslami, Yuto Kobayashi, and Akiha Kusumoto.I sincerely appreciate Prof. Luciano Ost and Prof. Yanjing Li, for their time and effortin reviewing this thesis. Their insightful feedback and invaluable comments have greatlycontributed to improving its quality. Finally, I would like to express my gratitude to thestaff of the Computer Systems Department at TalTech for providing a supportive workenvironment and access to the necessary resources for conducting high-quality research.This dissertation is financially supported in part by the European Union through theEuropean Social Fund in the frames of the “Information and Communication Technolo-gies (ICT) programme”-(“ITA-IoIT”), and the Estonian Research Council vai “SustainableArtificial Internet of Things (SAIoT)”-(“TEM-TA138").

149

Abstract
Assessment andEnhancement ofHardwareReliability forDeep
Neural Networks
Artificial Intelligence and Machine Learning (ML) have revolutionized the conventionalcomputing paradigm. They are extensively applied to various use cases due to their strengthin solving complex problems. Safety-critical applications such as autonomous vehicles andhealthcare employ ML to achieve more efficient outcomes. However, the safety of MLsystems is a huge concern. Hardware reliability is one of the prominent aspects of safety,where hardware faults can lead to system failures and result in catastrophes.Due to the variety of Deep Neural Networks (DNNs) and accelerators, there exists awide range of research papers with distinct methods evaluating the reliability of DNNsand their accelerator. The extent of this domain and the variety of solutions have cre-ated an ambiguous research area, restraining researchers from precisely identifying andcomprehending the gaps in the literature. To bridge this gap, this thesis conducts the firstSystematic Literature Review focused exclusively on all methods of reliability assessmentof DNNs. This study establishes a comprehensive picture of this topic by thoroughly cate-gorizing and analyzing the existing methods and identifying the gaps in the literature.By overviewing the literature, it can be observed that Fault Injection (FI) is the ma-jor method employed for hardware reliability assessment for DNNs. Nonetheless, sinceemerging DNNs are gigantic and DNN accelerators are complex, FI’s non-scalability leadsto an obstacle to reliability assessment. This thesis introduces the first semi-analytical,metric-oriented, and accurate method for fault resilience assessment of DNNs, calledDeepVigor. The extension of this method (DeepVigor+) tackles the scalability of FI, provid-ing highly accurate vulnerability factors for layers and models within a fewminutes ratherthan days, by an optimal fault propagation analysis for weights and activations.DNNs are inherently resilient to faults and they can mask a huge amount of faults, yettheir accuracy may be considerably compromised by certain critical faults. Architecture-level fault-tolerant techniques are accelerator-specific and exploit hardware redundancywith performance and memory overhead and they do not apply to general-purpose pro-cessors and pre-designed IPs. Whereas algorithm-level fault-tolerant techniques mod-ify the DNN models in software that any accelerator executes. The existing algorithm-level techniques are too complex, induce considerable overhead, and provide low faultresilience compared to the induced overhead.This thesis proposes model-level fault tolerance methods for Convolutional NeuralNetworks (CNNs) as Software-Implemented Hardware Fault Tolerance. In this regard, anovel low-cost activation restriction method, called ProAct, is introduced by conductingprogressive training based on Knowledge Distillation to achieve significant resilience inDNNs with minimal memory overhead. Moreover, an innovative model-level hardeningmethod for CNNs is proposed conducting selective channel duplication and error detec-tion and correction layerswhileminimizing the induced overhead leveraging vulnerability-aware pruning. Furthermore, the open-source SentinelNN framework is presented, em-ploying DeepVigor+ vulnerability assessment for applying selective channel duplication toCNNs accompanied with range restriction.Moreover, this thesis investigates the fault resilience assessment and enhancementof LSTM-based CNNs for the first time. The fault resilience of various structures of LSTM-based DNNs is investigated and multiple methods to mitigate the fault effects on LSTMsare proposed. It is shown that LSTM layers are highly vulnerable to faults, yet they can besignificantly hardened with minimal overhead.

150

Kokkuvõte
Riistvara töökindluse hindamine ja täiustamine süvanärvivõr-
kude jaoks
Tehisintellekt ja masinõpe (ML) on toonud revolutsiooni tavapärasesse andmetöötluse pa-
radigmasse. Neid kasutatakse laialdaselt erinevates valdkondades tänu nende tugevusele
keeruliste probleemide lahendamisel. ML-i kasutatakse ohutuskriitilistes rakendustes
tõhusamate tulemuste saavutamiseks, näiteks autonoomsetes sõidukites ja tervisehoius.
Seetõttu on ML-süsteemide ohutus ülimalt oluline. Üks oluline töökindluse aspekt on riist-
vara töökindlus kuna riistvarariketest tekkinud süsteemitõrked võivad põhjustada katast-
roofe.

Süvanärvivõrkude (DNN) ja kiirendite külluse tõttu leidub DNN-ide ja kiirendite töö-
kindluse hindamise kohta mitmeid teadustöid. Selle valdkonna ulatus ja lahenduste mit-
mekesisus on loonud laialivalguva uurimisvaldkonna, mis teeb teadlastel olemasoleva kir-
janduse puuduste hindamist raskemaks. Antud uuring koostab esimese süstemaatilise kir-
jandusülevaate, mis käsitleb kõiki olemasolevaid DNN-ide töökindluse hindamise meeto-
deid. Et luua terviklik pilt antud valdkonnast, liigitatakse olemasolevad meetodid, analüü-
sitakse neid ja tuuakse välja olemasoleva kirjanduse puudused.

Kirjanduse ülevaatamisest selgub, et kõige levinum riistvara töökindluse hindamise
meetod on vigade sisestamine (VS). Modernsete DNN-ide ja kiirendite keerukuse tõttu
on VS halb skaleeruvus töökindluse hindamisel tõsiseks katsumuseks. Antud töös tutvus-
tatakse esimest pool-analüütilist, tunnustele keskenduvat ja täpset DNN-ide hindamise
meetodit, nimega DeepVigor. Selle meetodi laiendus (DeepVigor+) lahendab VS skalee-
ruvuse probleemi ja väljastab suure täpsusega süsteemi haavatavuse tegureid. Erinevalt
VS-st, võtab protsess aega päevade asemel tunde, kasutades optimeeritud kaalude ja ak-
tiveerimisvigade propageerimise analüüsi.

DNN-id on olemuslikult rikete suhtes töökindlad ja suudavad suure osa nendest ära
siluda, kuid teatud kriitiliste rikete tulemusel võib langeda oluliselt nende täpsus. Arhitek-
tuuritasemel töötavad tõrkekindluse tehnikad sõltuvad kiirendi tüübist ja rakendavad riist-
vara liiasust, millega kaasneb suurem jõudluse ja mälu koormus. Lisaks ei rakendu need
hästi üldotstarbelistele protsessoritele ega juba disainitud moodulitele. Algoritmitasemel
töötavad meetodid muudavad aga DNN mudeleid neid jooksutavas tarkvaras. Olemasole-
vad algoritmilised tehnikad on liialt keerukad, märkimisväärse lisakuluga ja nendest tule-
nev tõrkekindlus on võrdlemisi väike.

Käesolevas lõputöös pakutakse välja CNN-ide jaoks välja kaks tarkvaralise lahendus-
ega mudelitasemel tõrketaluvuse tõstmise meetodit. Esimene neist on lihtne aktiveeri-
mise piiramise meetod, ProAct. See võetakse kasutusele teadmiste destilleerimisel põhi-
neva progresseeruva õpetamise läbiviimisel, et saavutada DNN-ides märkimisväärne vas-
tupidavus minimaalse mälumahuga. Lisaks sellele töötasin välja uendusliku mudelitase-
mel CNN-ide kaitsmise meetodi, mis töötab kanalite selektiivse dubleerimise ning vigade
tuvastamise ja korrigeerimise kihtide abil. See minimeerib samal ajal tekitatud üldkulu,
kasutades haavatavuste teadlikku kärpimist. Peale selle esitatakse vabavaraline raamis-
tik SentinelNN, mis rakendab DeepVigor+ haavatavuse hindamise lähenemist valikuliseks
kanali dubleerimiseks CNN võrkudes koostöös väärtuste piirkonna piiramise meetodiga.

Lisaks uurib käesolev töö esmakordselt LSTM-põhiste CNN-ide riketele vastupidavuse
hindamist ja täiustamist. Uuritakse LSTM-põhiste DNN-ide erinevate struktuuride tõrke-
kindlust ja pakutakse välja erinevaid meetodeid LSTM-ide tõrkemõjude leevendamiseks.
Näidatakse, et LSTM kihid on vigade suhtes väga tundlikud, kuid neid saab minimaalse
üldkuluga oluliselt karastada.

151

Appendix 1

I

M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin. ASystematic Literature Review onHardware Reliability AssessmentMethodsfor Deep Neural Networks. ACM Computing Surveys, 56(6):1–36, 2024

153

141

A Systematic Literature Review on Hardware Reliability
Assessment Methods for Deep Neural Networks

MOHAMMAD HASAN AHMADILIVANI, MAHDI TAHERI, and JAAN RAIK, Tallinn Univer-
sity of Technology, Estonia
MASOUD DANESHTALAB, Mälardalen University, Sweden and Tallinn University of Technology,
Estonia
MAKSIM JENIHHIN, Tallinn University of Technology, Estonia

Artificial Intelligence (AI) and, in particular, Machine Learning (ML), have emerged to be utilized in various
applications due to their capability to learn how to solve complex problems. Over the past decade, rapid
advances in ML have presented Deep Neural Networks (DNNs) consisting of a large number of neurons and
layers. DNN Hardware Accelerators (DHAs) are leveraged to deploy DNNs in the target applications. Safety-
critical applications, where hardware faults/errors would result in catastrophic consequences, also benefit
from DHAs. Therefore, the reliability of DNNs is an essential subject of research.

In recent years, several studies have been published accordingly to assess the reliability of DNNs. In this
regard, various reliability assessment methods have been proposed on a variety of platforms and applications.
Hence, there is a need to summarize the state-of-the-art to identify the gaps in the study of the reliability of
DNNs. In this work, we conduct a Systematic Literature Review (SLR) on the reliability assessment methods
of DNNs to collect relevant research works as much as possible, present a categorization of them, and address
the open challenges.

Through this SLR, three kinds of methods for reliability assessment of DNNs are identified, including Fault
Injection (FI), Analytical, and Hybrid methods. Since the majority of works assess the DNN reliability by FI,
we characterize different approaches and platforms of the FI method comprehensively. Moreover, Analytical
and Hybrid methods are propounded. Thus, different reliability assessment methods for DNNs have been
elaborated on their conducted DNN platforms and reliability evaluation metrics. Finally, we highlight the
advantages and disadvantages of the identified methods and address the open challenges in the research
area. We have concluded that Analytical and Hybrid methods are light-weight yet sufficiently accurate and
have the potential to be extended in future research and to be utilized in establishing novel DNN reliability
assessment frameworks.

CCS Concepts: • General and reference→ Surveys and overviews; • Hardware→Hardware reliability;
• Computer systems organization→ Neural networks; Reliability;

This work was supported in part by the European Union through the European Social Fund in the frames of the “Information
and Communication Technologies (ICT) programme” (“ITA-IoIT” topic), the Estonian Research Council grant PRG1467
“CRASHLESS,” the Estonian-French science and technology cooperation programme PARROT project “EnTrustED,” and by
the Swedish Innovation Agency VINNOVA project SafeDeep.
Authors’ addresses: M. H. Ahmadilivani, M. Taheri, J. Raik, and M. Jenihhin, Tallinn University of Technology, Tallinn, Esto-
nia; e-mails: {mohammad.ahmadilivani, mahdi.taheri, jaan.raik, maksim.jenihhin}@taltech.ee; M. Daneshtalab, Mälardalen
University, Västerås, Sweden and Tallinn University of Technology, Tallinn, Estonia; e-mail: masoud.daneshtalab@
taltech.ee.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
0360-0300/2024/01-ART141
https://doi.org/10.1145/3638242

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:2 M. H. Ahmadilivani et al.

Additional Key Words and Phrases: Reliability assessment, deep neural networks, DNN hardware accelerator,
fault injection

ACM Reference format:
Mohammad Hasan Ahmadilivani, Mahdi Taheri, Jaan Raik, Masoud Daneshtalab, and Maksim Jenihhin. 2024.
A Systematic Literature Review on Hardware Reliability Assessment Methods for Deep Neural Networks.
ACM Comput. Surv. 56, 6, Article 141 (January 2024), 39 pages.
https://doi.org/10.1145/3638242

1 INTRODUCTION
Deep Neural Networks (DNNs) are nowadays extensively applied to a wide variety of applica-
tions due to their impressive ability to approximate complex functions (e.g., classification and
regression tasks) via learning. Since powerful processing systems have evolved in the recent
decade, DNNs have emerged to be deeper and more efficient as well as employed in an ever broader
extent of domains. Meanwhile, using DNN Hardware Accelerators (DHAs) in safety-critical ap-
plications, including autonomous driving, raises reliability concerns [1, 2]. In compliance with ISO
26262 functional safety standard for road vehicles, the evaluated FIT (Failures In Time) rates of
hardware components must be less than 10 (meaning 10 failures in 1 billion hours) to pass the
highest reliability level [3], which requires diligent design.

DNNs are deployed in their target application by different DHA platforms, including Field-
Programmable Gate Arrays (FPGAs), Application-Specific Integrated Circuits (ASICs),
and Graphics Processing Units (GPUs) [4]. Depending on the DHA and the application’s envi-
ronment, different fault types may present a threat to the reliability of the component [5]. Figure 1
illustrates the reliability threats (described in Section 2.3) in an example DHA. In this figure, differ-
ent fault types originating from several reasons could occur in any of the DHA’s components that
may lead to a disastrous misclassification, e.g., once a red light is detected as a green light. Faults
are originated from hardware, however, they can also be modeled at software platforms for the
ease of study. Accordingly, the reliability of DNNs is tightly coupled with the reliability of DHAs
as faults are coming from hardware. It is worth highlighting that the reliability in this article does
not relate to the reliability in software engineering or security issues, e.g., adversarial attacks.

It has been shown in several studies that the functionality of DNNs in terms of accuracy is
remarkably degraded in the presence of faults [6–10]. Recently, numerous research works have
been published on the assessment and enhancement of DNNs’ reliability. However, due to the
extent of the DNNs domain, these works approach the problem of the reliability of DNNs from
various perspectives. We are faced with several applications of DNNs as well as a variety of DNN
algorithms for different tasks. Therefore, it will lead to distinct platforms and reliability threats,
which hinders unifying and generalizing the methods of reliability assessment and enhancement
of DNNs.

Throughout the literature, various methods of DNN reliability assessment and enhancement are
presented. Some review papers have been published on the topic of DNNs reliability enhancement
methods [4, 5, 11–14]. These works aim to formulate the reliability problem in DNNs, categorize
available reliability improvement methods in this domain, and overview the fault injection meth-
ods for reliability assessment. The analysis in Reference [14] is the first review on the subject of
fault tolerance in DNNs and describes different fault models and reliability improvement methods
in DNNs. However, the topic was still not as mature as it is today, and numerous works have been
published afterwards. Subsequent works such as References [4, 5, 11] provide extensive reviews on
the reliability improvement methods for DNNs and characterize taxonomies of different methods.
Nevertheless, they do not consider the assessment and evaluation methods of the reliability for

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:3

Fig. 1. Hardware-induced reliability threats in an example DHA and their possible impact on the output [1].

DNNs. Other surveys [12, 13] have reviewed fault injection methods for DNNs reliability assess-
ment, with the former work focused merely on fault criticality assessment and the latter including
only a few papers in the survey. In this article, we present the first Systematic Literature Review
(SLR) dedicated to all methods of reliability assessment of DNNs.

Reliability assessment of DNNs is a process for evaluating the reliability of a DNN that is being
executed either as a software model or by a hardware platform. However, the assessment method
for reliability may vary, depending on the platform. In this regard, it is necessary to comprehend
and distinguish the different methods used to assess the reliability of DNNs across platforms. This
article establishes a thorough picture of the reliability assessment methods for DNNs and system-
atically reviews the relevant literature. To achieve this, we carry out the SLR methodology [15, 16]
to present this survey. The primary focus of this review is to investigate the methods of reliability
assessment for DNNs, generalize and characterize the methods, and identify the open challenges
in the domain.

To the best of our knowledge, this survey represents the first comprehensive literature review
on reliability assessment methods for DNNs. We cover all published papers from 2017 to 2022 that
could be found through a systematic search. The main contributions of this article are:

— Reviewing the literature of the reliability assessment methods of DNNs, systematically;
— Analyzing the trends of published papers over different years and methods;
— Characterizing and categorizing the reliability assessment methods for DNNs;
— Identifying fault injection methods based on the DNN platforms;
— Introducing analytical and hybrid reliability assessment methods along with fault injection;
— Addressing the open challenges in the research area and recommendations for future re-

search directions.
The structure of the article is as follows: Section 2 presents the background on DNNs and re-

liability concepts; Section 3 explains the methodology of this survey and addresses the research
questions; Section 4 reviews the study briefly, presents the statistics of the publications, and de-
picts the top-level taxonomy of reliability assessment methods for DNNs. In Section 5, the details
of the reliability assessment methods are explained. Section 6 includes pros and cons of methods
and open challenges of the study domain. Section 7 provides the conclusions of this survey.

2 PRELIMINARIES
2.1 Deep Neural Networks
Deep Learning (DL) is a sub-domain of Machine Learning (ML), which is the study of mak-
ing computers learn to solve problems without being directly programmed [17]. Regarding the

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:4 M. H. Ahmadilivani et al.

Fig. 2. Abstract view of a simple neural network with the detail of a neuron.

impressive ability of DNNs in learning, they are applicable in a vast variety of domains, such as
image and video processing, data mining, robotics, autonomous cars, gaming, and so on.

DNNs are inspired by the human brain, and they have two major phases: training and inference.
In the training phase, which is an iterative process and performed once, the hyper-parameters
(e.g., weights and biases) of the neural network are updated on a determined dataset. A loss func-
tion is adopted in the training phase that measures the difference between the expected and the
estimated output of DNN to achieve higher accuracy. Accuracy expresses the proportion of the
DNN outputs coinciding with the expected output. However, in the inference phase, representing
the DNN deployment, the network is run several times with the parameters obtained during the
training phase [17].

DNNs are constructed of the units of neurons. Each neuron receives some activation inputs and
multiplies them by the corresponding weights. Then, it conveys the summation of the weighted
activations to its output. A set of neurons builds up a layer that may have other additional functions,
e.g., activation function (ReLu, sigmoid, etc.), batch normalization, (max or average) pooling, and
so on [17]. Equation (1) represents the function of the ith neuron in layer l (denoted as N l

i) with
input activations from the previous layer l-1 with n outputs (denoted as X l−1), where W and b
represent weights and bias, respectively.

N l
i = ϕ ���

n∑

j=0
X l−1

j ×W l
i j + b

l��� (1)

An abstract view of a neuron and a neural network is depicted in Figure 2. As shown, inputs
are fed into the network through the input layer. The middle layers, called hidden layers, determine
the depth of the network and conduct the function of the DNN. The output layer is where the
network decides. It produces some probabilities of the possible outputs, i.e., output confidence
score, and the class with the highest value is the top-ranked output.

DNNs have various architectures each suitable for specific applications. Nevertheless, it is worth
mentioning some terms that are used in this article. Convolutional Neural Networks (CNNs)
are extensively used in classification, object detection, and semantic segmentation tasks and
consist of multiple convolutional (CONV) and fully connected (FC) layers. CONV layers have
ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:5

a set of two-dimensional (2D) weights, called filters, that extract a specific feature from the in-
put of the layer. A channel is a set of input feature maps (ifmap) that is convolved with filters
resulting in the output feature maps (ofmap) [17].

In the research area of CNNs, there are some models of networks that are most frequently
used. For instance, LeNet-5 [18], AlexNet [19], GoogLeNet [20], VGG [21], and ResNet [22] are
introduced for image classification, and YOLO [23] is designed for object detection. In addition,
prominent datasets that are mostly used for training networks on image classification tasks are
MNIST [24], CIFAR [25], and ImageNet [26]; and on object detection are KITTI [27] and PASCAL
VOC [28].

In addition, due to the large number of parameters and calculations in DNNs, Quantized Neural
Networks (QNNs) [29] and Binarized Neural Networks (BNNs) [30] are introduced to reduce
the complexity, memory usage, and energy consumption of DNNs. These DNNs are the quantized
versions of existing DNNs that reduce the bit-width of their parameters and calculations with an
acceptable accuracy loss.

2.2 DNN Platforms
2.2.1 Software Frameworks. DNN software frameworks and libraries in high-level program-

ming languages have been developed to ease the process of designing, training, and testing DNNs.
These frameworks are widely used due to their high abstraction level of modeling and short design
time. Some of well-known software frameworks that are being used for training the DNNs are: Ten-
sorFlow [31], Keras [32], PyTorch [33], DarkNet [34], and Tiny-DNN [35]. All these frameworks
are capable of using both CPU and GPU to accelerate the training process.

2.2.2 DNN Hardware Accelerators (DHAs). DHAs are used for the training as well as the infer-
ence phase of DNNs. They are called accelerators due to their dedicated design employing paral-
lelism for reducing the execution time of the DNN, either in training or inference. DHAs can be
generally categorized into four classes: FPGAs, ASICs, GPUs, and multi-core processors [36, 37].

According to the literature review of DHAs in Reference [37], FPGAs are used more frequently
than other DHA platforms in terms of implementing DNNs, due to their availability and design
flexibility for different applications [38]. FPGAs are programmed via their configuration bits that
determine the functionality of the FPGA. The system of FPGA-based DNN accelerators usually
consists of a host CPU and an FPGA part with corresponding interconnections between them. In
this design model, the DNN is implemented on the FPGA part and the CPU controls the accelerator
with software, while each part is integrated with memories [38]. A typical structure of FPGA-based
DNN accelerator is depicted in Figure 3, which is based on HW/SW co-design, which means sepa-
rating the implementation of DNNs on the integrated CPU (the software) and FPGA (the hardware)
that are communicating with one another [39]. High-Level Synthesis (HLS) tools, which can syn-
thesize high-level programming languages to RTL, are also used for developing FPGA-based DNN
accelerators [38].

ASIC-based DNN accelerators are more efficient than FPGAs in terms of performance and power
consumption but less flexible in terms of applications and require a long design time [40]. There
are two general types of architectures for ASIC-based DHA platforms: spatial and temporal [17].
Figure 4 depicts an example of a spatial architecture model that is constructed of 2D arrays of
Processing Elements (PEs) flowing data horizontally and vertically from input/weight buffers
to output buffers. PEs perform Multiply-Accumulate (MAC) operations on inputs and weights
representing a neuron operation in the DNN. Off-chip memories are required to store the pa-
rameters of DNNs and save the intermediate results from PEs. Tensor Processing Unit (TPU),
produced by Google, one of the most applicable ASIC-based DNN accelerators, is based on this
type of architecture [41].

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:6 M. H. Ahmadilivani et al.

Fig. 3. Typical structure of an FPGA-based DNN accelerator [38].

Fig. 4. An example of spatial architecture for ASIC-based DNN accelerators [42].

Fig. 5. General architecture of CUDA-based GPUs [44].

GPUs are a powerful platform for training and inferring deep networks and are vastly used
in safety-critical applications [43]. GPUs include up to thousands of parallel cores, which make
them efficient for DNN algorithms, especially in the training phase [40]. GPUs are designed to
run several threads of a program and are also exploited to accelerate running DNNs [37]. The
general architecture of GPUs is depicted in Figure 5. There are numerous Streaming Multipro-
cessors (SMs) in the GPU, each having several cores with a shared register file and caches, while
a scheduler and dispatchers control the tasks among and within SMs and cores [44].

Multi-core processors, e.g., ARM processors, deploy DNNs mostly for edge processing and In-
ternet of Things (IoT) applications [45–47]. They facilitate DNNs with parallel computing and
low power consumption and provide a wider range of applications for DNNs.
ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:7

2.3 Reliability, Threats, Fault Models, and Evaluation
Terms of robustness, reliability, and resilience are mostly used in the research pertaining to the
reliability of DNNs. These terms are often used interchangeably and ambiguously. In the following,
we present the definitions of these three terms as applied in the current literature review:

— Reliability concerns DNN accelerators’ ability to perform correctly in the presence of faults,
which may occur during the deployment caused by physical effects either from the environ-
ment (e.g., soft errors, electromagnetic effects) or from within the device (e.g., manufacturing
defects, aging effects, process variations).

— Robustness refers to the property of DNNs expressing that the network is able to continue
functioning with high integrity despite the alteration of inputs or parameters due to noise
or malicious intent.

— Resilience is the feature of DNN to tolerate faults in terms of output accuracy.
In this work, we are concerned about the reliability of DNNs, which refers to the ability of

accelerators to continue functioning correctly in a specified period of time with the presence
of faults. Reliability in this article does not relate to the reliability and test in software engi-
neering or security issues, e.g., adversarial attacks in which an attacker perturbs the inputs or
parameters.

Faults are the sources of threatening the reliability of DNN accelerators (see Figure 1) that can
be caused by several reasons, e.g., soft errors, aging, process variation, and so on [1]. Soft errors
are transient faults induced by radiation that are caused by striking charged particles to transis-
tors [48]. Aging is the time-dependent effect of the increasing threshold voltage of transistors due
to physical phenomena that will lead to timing errors and permanent faults [49]. Process varia-
tions are alterations of transistor’s attributes in the process of chip fabrication. As a consequence,
voltage scaling may result in faults at the outputs of transistors during their operation [50].

Faults as reliability threats are generally modeled as permanent and transient faults [5, 11, 14].
Permanent faults result from process variations, manufacturing defects, aging, and so on, and
they stay constant and stable during the runtime. However, transient faults are caused by soft
errors, electromagnetic effects, voltage and temperature variations, and so on, and they show up
for a short period of time. Nevertheless, once a faulty value from a component is read by another
component and the propagated value does not coincide with the expected one, an error happens.
Therefore, a fault is an erroneous state of hardware or software, and an error is a manifestation
of it at the output. Failure or system malfunction is the corruption or abnormal operation of the
system, which is caused by errors [14, 51, 52].

Faults may have different impacts on the output of DNNs and can be classified based on their
effects. A fault may be masked or corrected if detected or result in different outputs compared to
the fault-free execution (golden model), in which case, the fault is propagated and observed at the
output. Faults observed at the output of the system can be classified in two categories: Silent Data
Corruption (SDC) and Detected Unrecoverable Errors (DUE), depending on whether a fault
is undetected (SDC) or detected (DUE) [11, 53]. Figure 6 illustrates this general fault classification
scheme regarding the output of systems adopted from Reference [51].

Reliability assessment is the process in which the target system or platform is modeled or pre-
sented, and by means of simulations, experiments, or analysis, the reliability is measured and
evaluated. Reliability assessment is a challenging process, and several methods can be adopted
for modeling and evaluating reliability. In general, evaluating the reliability of a system can be
performed by three approaches: Fault Injection (FI) methods, analytical methods, and hybrid
methods [54]. FI methods are exploited to inject a model of faults into the system implemented
either in software or hardware, while the system is in simulation or being executed. Analytical

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:8 M. H. Ahmadilivani et al.

Fig. 6. The adopted fault classification based on the output point of view, as in Reference [51].

methods attempt to model the function of the system and its reliability with mathematical equa-
tions, depending on the target architecture. In hybrid methods, an analytical model is adopted
alongside an FI to evaluate the reliability. Generally, FI methods are more realistic than analyt-
ical and hybrid methods; however, FI is a time-consuming process with a high computational
complexity [55].

In the reliability assessment using FI, it is necessary to determine the target platform, potential
fault locations (logic or memory), and the fault type (transient or permanent). Transient faults
in logic show up in one clock cycle, while in the memory, they flip a bit that will remain until
the end of the execution. Permanent faults are modeled as stuck-at-0 (sa-0), or stuck-at-1 (sa-1),
and they exist during the whole execution. According to the selected fault model, perturbation
of the model is performed, the system is run, and the outputs are gathered. The output of faulty
execution should be compared with the one of the golden-model to measure the impact of faults
on the system.

FI allows calculating reliability metrics, e.g., Failures-In-Time (FIT), Architectural Vulnera-
bility Factor (AVF), SDC rate, Soft Error Rate (SER), cross-section, and so on. FIT is the number
of failures in 109 hours, AVF is the probability of fault propagation from a component to other com-
ponents in a design, SDC rate refers to the ratio of the outputs affected by faults, SER refers to the
ratio of soft error occurrence, and cross-section is the proportion of observed errors over all col-
lided particles. These quantitative evaluation metrics are usually tightly coupled to each other, yet
follow a different purpose to express the reliability of a system.

Exhaustive fault injection into all bits of a platform at every clock cycle requires an extensive
simulation. Therefore, to determine how many faults could be injected into the system to be repre-
sentative statistically, a confidence level with an error margin is presented [56]. It provides a fault
rate or Bit Error Rate (BER) for an FI experiment. The number of FI experiments’ repetitions re-
garding the number of possible bit and clock cycle combinations to support the number of injected
faults determines the execution space for the FI task.

3 REVIEW METHODOLOGY
Systematic Literature Review (SLR) is a standard methodology for reviewing the literature in
a recursive process and minimizing bias in the study [15, 16, 37]. Hence, the SLR methodology is
adopted in this survey. The methodology determines:

— Specifying the Research Questions (RQs),
— Specifying the search method for finding and filtering the related papers,

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:9

— Extracting corresponding data from the found papers based on the RQs,
— Synthesizing and analyzing the extracted data.

Therefore, based on the aforementioned steps of SLR, the RQs that we attempt to answer are:
— RQ1: What is the distribution of the research works in the domain of reliability assessment?

(To obtain the trend of publications in this domain).
— RQ2: What are the existing methods of reliability assessment for DNNs? (To comprehend

the entire variety of methods in this domain).
— RQ3: How could the existing methods be characterized and categorized in terms of reliability

assessment methods? (To categorize existing works and provide the taxonomy, a systematic
instruction for finding the suitable method for potential applications in this domain).

— RQ4: What are the open challenges in the domain of reliability assessment methods for
DNNs? (To specify the remaining areas for future research).

The motivation for this survey is the numerous recent papers published on the reliability of
DNNs emphasizing the need for such a literature review. We have searched for the papers system-
atically through scientific search servers. The main databases and publishers we have used are:
Google Scholar, IEEE Explore, ACM Digital Library, Science Direct, and Elsevier. The initial set of
papers is provided by searching some keywords in the mentioned servers, including “reliability
of DNNs”, “hardware reliability of DNN accelerators”, “resilient DNNs”, “robust DNNs”, “the vul-
nerability of DNNs”, “soft errors in DNNs”, “fault injection in DNNs” (“DNN” also replaced with
“CNN”).

Subsequently, based on the title and abstract of each paper, we select them. This selection is
based on the criterion of whether the paper may be concerned with the reliability of DNNs or not.
In addition, the references and citations of the papers have been checked for the chosen papers to
find more related papers. In this process, we selected 242 papers based on their titles and abstracts.

In the next step, we study the introduction, conclusion, and methodology sections of each paper
to decide whether we include the paper in the review or not. The inclusion criteria of the papers
are:

— The paper is published by one of the scientific publishers and has passed through a peer-
review process,

— The focus of the work is DNN, neither generic reliability assessment methods using DNNs
as one of the examples nor employing DNNs for assessing the reliability of a platform.

— The work includes a reliability assessment method for DNNs,
— The method of reliability assessment is clear and well-defined,
— Terms including reliability, robustness, resilience, or vulnerability must refer clearly to reli-

ability issues, as defined in Section 2.3.
Papers that have included similar keywords but have not matched the above conditions are

excluded. As a result, we have included 139 papers published from 2017 to the end of 2022 in this
literature review to build up the taxonomy of the literature review and methods’ categorization.

In the following, we have designed a Data Extraction Form (DEF) based on the RQs. In this
form, we have taken note of reviewing the papers to find some specific data such as:

— General method of reliability modeling (FI, analytical, or hybrid),
— The platform where DNNs are implemented,
— The fault model and fault locations in case of FI,
— Details of reliability assessment method,
— Reliability evaluation metrics.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:10 M. H. Ahmadilivani et al.

Fig. 7. Top-level overview of the reliability assessment methods in this work.

In the final step, after reviewing all the selected papers and filling in the DEF, we synthesized
and analyzed the obtained data from the papers. Thereafter, we have provided the categorization
taxonomy of the reliability assessment methods for DNNs, have characterized them in this article,
and analyzed them to find the open challenges.

4 STUDY OVERVIEW
This section presents an overview of the study and the analyzed statistics of the included works in
different categories. As mentioned, we have included 139 papers from 2017 to 2022 for categorizing
the reliability assessment methods for DNNs.

4.1 Taxonomy
Figure 7 represents the top-level categorization overview of the study to address RQ2 and RQ3.
Reliability assessment of DNNs is categorized into three main methods: Fault Injection, Analytical,
and Hybrid.

4.1.1 Fault Injection (FI) Methods. The works based on this method evaluate the reliabil-
ity of DNNs by fault injection campaign. There exist several taxonomies for the fault injection
approaches in the hardware reliability domain [12, 54, 55, 57, 58]. Therefore, we adapt them for
categorizing the related works on DNNs into three approaches addressed in Figure 7 and Table 1.
FI methods are categorized into three approaches of fault injection as follows:

— Fault Simulation: DNNs are implemented either in software by high-level programming
languages or Hardware Description Languages (HDL) and faults are injected into the
model of the DNN. In the former case, some works consider a DHA model in their software
implementations while others do not. We divide works on this approach into hardware-
independent, hardware-aware, and RTL model platforms. RTL models represent ASIC-based
DHAs.

— Emulation in Hardware: Research works on this approach implement and run DNNs on
a DHA (i.e., FPGA, GPU, or processor) and inject the faults into the components of the ac-
celerator by a software function, FI framework, and so on.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:11

Ta
bl

e
1.

Fa
ul

t
In

je
ct

io
n

C
at

eg
or

iz
at

io
n

w
it

h
th

e
C

or
re

sp
on

di
ng

R
ef

er
en

ce
s

FI
M

et
ho

d
Fa

ul
tS

im
ul

at
io

n
Fa

ul
tE

m
ul

at
io

n
Ir

ra
di

at
io

n
D

N
N

Pl
at

fo
rm

H
W

-i
nd

ep
en

de
nt

H
W

-a
w

ar
e

R
TL

M
od

el
FP

G
A

G
PU

Pr
oc

es
so

rs
FP

G
A

G
PU

TP
U

Fa
ul

tT
yp

e

Tr
an

sie
nt

[5
9–

61
]

[6
2–

67
]

[6
8–

73
]

[7
4–

78
]

[7
9–

82
]

Tr
an

sie
nt

[9
,8

3]
[8

4–
87

]
[8

8–
91

]

Tr
an

sie
nt

[3
6,

92
–9

4]

Tr
an

sie
nt

[8
]

[9
5–

99
]

[1
00

–1
02

]
[1

03
–1

05
]

[1
06

–1
08

]

Tr
an

sie
nt

[1
0]

[4
4,

10
9–

11
1]

[1
12

–1
15

]
[1

16
?

–1
19

]
[1

20
–1

22
]

Tr
an

sie
nt

[3
6]

[9
2,

12
3,

12
4]

[1
25

–1
27

]
[1

28
–1

30
]

Tr
an

sie
nt

[9
5,

96
,1

03
,1

06
]

[1
08

,1
31

,1
32

]
[1

33
–1

35
]

Tr
an

sie
nt

[1
0,

11
5,

11
7]

[1
21

,1
22

]
[1

36
,1

37
]

Tr
an

sie
nt

[1
38

,1
39

]

Pe
rm

an
en

t[
72

]
[1

40
–1

43
]

Pe
rm

an
en

t[
14

4]
[6

,1
45

–1
47

]
[1

48
–1

50
]

Pe
rm

an
en

t
[7

,5
8,

15
1]

[1
52

–1
54

]

Pe
rm

an
en

t
[1

05
,1

06
]

[1
55

,1
56

]

Pe
rm

an
en

t
[1

37
,1

57
,1

58
]

[1
59

,1
60

]

Fa
ul

tL
oc

at
io

n

W
ei

gh
ts

[6
1,

62
]

[6
3–

65
,6

7,
69

]
[6

8,
70

,7
1,

73
,7

4]
[7

5–
79

]
[8

0–
82

,1
40

]
[1

41
–1

43
,1

61
?

]

W
ei

gh
ts

[9
,8

5,
86

]
[8

8–
90

]
[9

1,
14

6,
14

8]

PE
s,

M
AC

s
[7

,1
51

,1
52

]
[1

53
,1

54
]

Co
nfi

gu
ra

tio
n

Bi
ts

[8
,9

5]
[9

6–
99

]
[1

00
–1

02
]

[1
03

,1
04

,1
07

]
[1

08
,1

62
,1

63
]

Re
gi

st
er

s,
In

st
ru

ct
io

ns
[1

0,
44

,1
09

,1
10

]
[1

11
–1

14
]

[1
15

,1
16

,1
18

]
[1

19
–1

22
]

[1
57

–1
60

]

Re
gi

st
er

Fi
le

[3
6,

92
,1

23
,1

24
]

[1
25

–1
27

]
[1

28
–1

30
]

En
tir

e
FP

GA
Pa

ck
ag

e
[9

5]
[9

6,
10

3,
13

2]
[1

08
,1

31
,1

33
]

[1
35

]

En
tir

e
GP

U
[1

0,
11

5,
11

7]
[1

21
,1

22
]

[1
36

?
,1

37
]

En
tir

e
Ch

ip
re

fs
[1

38
,1

39
]

Ac
tiv

at
io

ns
[5

9]
[6

0,
64

,6
6,

72
]

[7
6,

78
]

Ac
tiv

at
io

ns
[6

]
[9

,8
3?

,8
4]

[8
7–

90
]

[9
1,

14
4,

14
5]

[1
47

–1
49

]

Re
gi

st
er

s,
Bu

ffe
rs

,L
U

Ts
[3

6,
92

–9
4]

O
n-

Ch
ip

M
em

or
ie

s[
8]

[9
8,

10
0,

10
1]

[1
02

,1
05

,1
06

]
[1

55
,1

62
,1

63
]

W
ei

gh
ts

,
Ac

tiv
at

io
ns

[1
17

,1
37

]

In
st

ru
ct

io
ns

[1
30

]
H

yp
er

RA
M

[1
06

,1
34

]

Ev
al

ua
ti

on

Ac
cu

ra
cy

Lo
ss

[5
9]

[6
0–

63
,6

8]
[6

9,
71

–7
4]

[7
5–

79
]

[8
0–

82
,1

41
,1

43
]

Ac
cu

ra
cy

Lo
ss

[6
,9

,8
4,

87
,8

8]
[8

9–
91

,1
44

]
[1

45
–1

47
]

[1
48

–1
50

]

Ac
cu

ra
cy

Lo
ss

[7
,9

3,
15

1]
[1

52
–1

54
]

Ac
cu

ra
cy

Lo
ss

[8
,9

7,
99

?
,1

00
]

[1
01

,1
02

,1
05

]
[1

06
,1

07
,1

56
]

[1
08

,1
55

,1
62

,1
63

]

Ac
cu

ra
cy

Lo
ss

[1
13

,1
20

,1
58

]
[1

59
,1

60
]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[3

6,
92

,1
23

,1
24

]
[1

25
–1

27
]

[1
28

–1
30

]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[1

03
,1

33
,1

35
]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[1

0,
11

5,
12

1]
[1

22
,1

37
]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[1

38
,1

39
]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[6

4,
65

,6
7]

[1
40

,1
42

,1
43

]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[8

7]
Fa

ul
t

Cl
as

sifi
ca

tio
n

[3
6,

58
,9

2]
[9

3,
94

]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[8

,9
7–

99
]

[1
01

–1
03

]
[1

04
,1

07
,1

63
]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[1

0,
44

,1
09

–1
11

]
[1

14
–1

16
,1

18
]

[1
19

,1
21

,1
22

,1
37

]
[1

57
–1

60
]

Re
lia

bi
lit

y
Eq

ua
tio

ns
[3

6,
12

4,
12

6]
[1

29
,1

30
]

Re
lia

bi
lit

y
Eq

ua
tio

ns
[9

5,
96

,1
03

]
[1

06
,1

08
]

[1
31

,1
33

,1
34

]

FI
T

Ra
te

[1
0,

11
5]

[1
21

,1
22

]

FI
T

Ra
te

[1
38

,1
39

]

SD
C

Ra
te

[6
6,

70
]

SD
C

Ra
te

[8
3,

85
]

Re
lia

bi
lit

y
Eq

ua
tio

ns
[9

5,
96

,1
03

]
[1

04
,1

05
]

Vu
ln

er
ab

ili
ty

Fa
ct

or
s[

10
,4

4]
[1

09
,1

10
,1

12
,1

13
]

[1
14

,1
16

,1
18

]
[1

19
,1

21
,1

22
]

Vu
ln

er
ab

ili
ty

Fa
ct

or
s

[1
29

,1
30

]

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:12 M. H. Ahmadilivani et al.

— Irradiation: DNN is implemented on a DHA (i.e., FPGA, GPU, or TPU) placed under an
irradiating facility to inject beams onto it.

Most of the works on DNNs’ reliability assessment use FI methods. Therefore, we characterize
three approaches of FI methods in Table 1. In each approach of FI methods, the works are distin-
guished based on DNN platforms. Furthermore, in each category, we elaborate on how the works
determine the fault types and locations and evaluate the reliability by metrics. The details will be
discussed in Section 5.1.

4.1.2 Analytical Methods. Works relying on an analytical method for estimating DNNs’ relia-
bility attempt to determine how parameters and neurons of a DNN affect the output based on the
connections of neurons and layers. Therefore, they analyze the structure of DNNs and provide
a model for the impact of faults on the outputs to find more critical and sensitive components
in the DNN. Hence, they can evaluate the reliability of DNNs by means of vulnerability analysis
derived by analyses and eliminate the complexity of simulating/emulating the faults in reliability
assessment.

4.1.3 Hybrid Methods. Both fault injection and analytical methods are used in this category of
works to take advantage of both. In this regard, analytical methods can provide some mathematical
models in addition to a straightforward fault injection into the system for reliability evaluation, so
metrics of reliability evaluation can be obtained with less complexity than extensive FI experiments
and more realistic than analytical methods.

4.2 Research Trends
To address RQ1, we present the main statistics on the papers included in this study. Figure 8 shows
the distribution of the 139 included papers published over the years 2017–2022. Regarding the chart
of Figure 8, it can be seen that research on the topic of DNNs’ reliability started in 2017 and in the
following years it drew increasingly more attention and turned into an active topic of study.

Figure 9 illustrates the number of papers based on different reliability assessment methods
among all identified works in this literature review. It can be observed that the majority of works
use fault injection to assess the reliability of DNNs while only 10% of the works consider analytical
(11 works) and hybrid analytical/FI (3 works) methods. In this regard, we present Figure 10 to il-
lustrate the distribution of works using FI over different approaches and DNN platforms. It shows
that most of the works belong to the hardware-independent platform of simulation in the software
approach. Moreover, in the emulation in hardware approach, most of the works are done on the
GPU platform. Hence, the figures present the trend of the research domain and the distribution of
works over different methods and approaches, leading to areas where there is still room for future
research.

5 CHARACTERIZATION
In this section, details of reliability assessment methods for DNNs are presented based on the
categorizations in Figure 7 and Table 1. We start from FI methods, which include the majority of
works. Then, analytical and hybrid methods will be discussed.

5.1 Fault Injection Methods
In FI methods of reliability assessment, once the DNN platform and fault model are determined,
perturbation and system execution are performed, and the reliability is evaluated. Regarding the
categorization in Table 1, the identified approaches of FI methods on DNN reliability assessment
are presented in this subsection, separately. Since FI is the most frequently used method in the

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:13

Fig. 8. Number of included papers over years.

Fig. 9. Proportion of each method in the reliability assessment of DNNs among included works.

Fig. 10. Distribution of included papers over different FI approaches and platforms.

reliability assessment of DNNs, there are various presented evaluation metrics. To elaborate and
distinguish different evaluation metrics, we have presented them for different approaches and
platforms, separately.

5.1.1 Fault Simulation. In this subsection, the works assessing the reliability of DNNs by FI
with a fault simulation approach are described. There are three platforms in this approach, i.e.,
hardware-independent, hardware-aware, and RTL models that are explained in the corresponding
subsections.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:14 M. H. Ahmadilivani et al.

5.1.1.1 Hardware-independent Platform. In this platform, DNNs are implemented in soft-
ware DNN frameworks. Therefore, fault injection is performed on top of the frameworks, i.e., Py-
Torch (used in References [59, 68, 70–72, 76, 78]), Keras (used in References [61, 62, 80, 81]), Ten-
sorFlow (used in References [66, 79]), Caffe (used in Reference [77]), DarkNet (used in References
[73, 140, 142]). Implementing the DNN in software provides a flexible environment for studying
the effect of various fault models. As shown in the corresponding branch of Table 1, both transient
and permanent faults are studied in this platform. However, most of the works studied transient
faults (soft errors, SEU, MBU, etc.).

To model faults at the software level, the fault model is determined differently regarding the
fault type and general aspect of DHAs. In this regard, modeling and injecting permanent faults
are straightforward. They are active throughout the entire execution and set the value of a bit or
variable (in weights or activations) to 0 or 1, as experimented in References [72, 140, 142]. To model
transient faults, the following assumptions are considered for injecting faults into parameters,
i.e.:

— DNN’s parameters (e.g., weights) are stored in the memory of the accelerator. Hence, random
transient faults are injected into random bits of weights as a bitflip in different executions,
as experimented in References [61–65, 67–71, 73–82, 141, 143, 161].

— Faults in inputs/outputs of DNN’s layers (i.e., activations) lead to the study of their impacts
on both memory and logic. Activation memory faults are studied in References [72, 76], and
faults in logic or datapath are investigated in References [59, 60, 64, 66, 78].

Therefore, to experiment the impact of faults on memory elements of DHAs at the software
level, faults are injected into random weights and activations, and to model fault effects on logic,
faults are injected into random activations. Most of the relevant works on Hardware-independent
platform inject transient faults into the bits of randomly selected weights. Nearly all works in
this class inject faults based on BER, determining the ratio of faulty bits throughout the values.
In addition, to reach the 95% confidence level with 1% error margin, they repeat the tests several
times with different random faults as in References [77, 80, 140, 142].

Evaluation: For evaluating the reliability, different metrics are considered. References [59–63,
68, 69, 71–82, 141, 143] report accuracy loss under fault campaign experiments. They compare the
accuracy of the faulty network with the accuracy of the fault-free network on the same test set.
Some works classify the injected faults regarding the outputs of the faulty network compared with
the golden model output. References [140, 142, 143] inject one permanent fault per experiment and
classify them into three classes:

— Masked: No difference between the outputs of the faulty network and the golden model.
— Observed-safe: Different output of the faulty network with the golden model, while the

confidence score of the top-ranked element is reduced by less than 5% with respect to the
one of the golden one.

— Observed-unsafe: Different output of faulty network with the golden model, while the
confidence score of the top-ranked element is reduced by more than 5% with respect to the
one of the golden one.

Moreover, in References [65, 67] transient faults are injected into the encrypted weights of a
network, and they are classified based on the effect of faults on execution of the program and
results, as:

— Silent or safe: Similar to “masked,” mentioned above in References [140, 142].
— SDC: Only affects the output results of the network.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:15

— Detected as a software exception: Affects the execution of the program and stops it.
— Detected by padding check action: Corrupts the ciphertext.

Burel et al. [64] have adopted the fault classification scheme for semantic segmentation applica-
tions in which DNNs label each pixel of an input image according to a set of known classes. The
corresponding classes are:

— Masked: Similar to “masked,” mentioned above.
— No Impact SDC: No labels of pixels are modified.
— Tolerable SDC: Labels of less than 1% of pixels are modified, and no class is removed/added

due to the fault.
— Critical SDC: Labels of more than 1% of pixels are modified or any class is removed/added

due to the fault.
A specific way of fault evaluation based on fault classification is only considering the faults that

affect the output as SDC, since they are critical. References [66, 70] evaluate the network based
on the proportion of faults that affect the output classification results as SDC rate. Therefore, the
reliability of a network can be evaluated by fault classification based on their effect on the outputs,
whether by changing the output results, or by a threshold of accuracy loss, or system exceptions.
This way of evaluation assists in understanding how faults would be propagated and affect the
network.

Software FI Tools: Some fault injectors are presented as tools that are able to support the relia-
bility study of DNNs with different fault models in software frameworks of DNNs. PyTorchFI [164],
TensorFI [165–167] and its extension TensorFI+ [168, 169], and Ares [170] inject faults into DNNs,
which are implemented in PyTorch, Tensorflow, and Keras, respectively. All of these open-source
frameworks can inject both permanent and transient faults into weights as well as activations with
specified error rates, hence, the accuracy loss can be evaluated. TensorFI also benefits from pro-
viding the SDC rate. These frameworks are used in the reliability studies of DNNs, e.g., PyTorchFI
in References [60, 70], TensorFI in Reference [66], and Ares in Reference [80].

Moreover, to enhance the efficiency of the aforementioned tools, additional fault injectors have
been introduced. One such injector, known as BinFI [171], is an extension of TensorFI that aims
to identify critical bits in DNNs. Another fault injector, namely, LLTFI [172], is proposed to inject
transient faults into specific instructions of DNN models in either PyTorch or TensorFlow and has
been found to be faster than TensorFI. Additionally, a checkpoint-based fault injector is proposed
in Reference [173] that enables studying the impact of SDCs independently of the DNN implemen-
tation framework.

5.1.1.2 Hardware-aware Platform. This platform includes works that consider an abstract
model of the accelerator in their implementation of DNNs in software. They implement the net-
work in DNN software frameworks as well as high-level programming languages. Therefore, they
take advantages of simulation in software fault injection while they also apply the reliability as-
sessment to the abstract model of the accelerator.

References [83, 87] implement a DNN in Tiny-DNN and map it to the RTL implementation of the
accelerator. They study the effect of transient faults in memory and datapath accurately. In these
studies, FI is performed in software while all of its parameters are integrated with the correspond-
ing hardware components. Authors in Reference [88] implement the DNN and the fault injector
in software inspired by an FPGA-based DNN accelerator. Moreover, in References [9, 91], DNN
and FI are implemented in Keras, and the architecture of a systolic array accelerator is considered
for a fault-tolerant design. Similarly, authors in Reference [85] and [86] evaluate their proposed
reliability improvement technique on memories in TensorFlow while injecting transient faults into

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:16 M. H. Ahmadilivani et al.

the weights. PyTorch is used in References [89, 90] to implement the DNN, and transient faults are
injected into activations (datapath or MAC units) and weights (memory) regarding the systolic ar-
ray accelerator model. Reference [84] also uses PyTorch and injects faults by a custom framework
called TorchFI to inject faults into the outputs of CONV and FC layers of the network.

The effect of permanent faults at PEs’ outputs is studied in References [6, 144] where the model
of the accelerator is adopted from implementing the DNN in an N2D2 framework [174]. Further-
more, authors in References [145, 149] use PyTorch and study permanent faults in MAC units of
an accelerator while training to improve the reliability at inference. Authors in Reference [148]
have developed a Keras-based accelerator simulator to study the effect of permanent faults on
the on-chip memory of accelerators by injecting permanent faults into fmaps and weights. Weight
remapping strategy in memory to decrease the effect of permanent faults is evaluated in Reference
[146] using Ares. SCALE-Sim [175], a systolic CNN accelerator simulator, is adopted in Reference
[150] to study permanent faults in PEs and computing arrays in systolic array-based accelerators.

Similar to the Hardware-independent platform, faults are injected based on BER, or fault rate,
and experiments are repeated to reach 95% confidence level and 1% error margin [9, 87, 91].

Evaluation: Nearly all works in this class evaluate the DNN by accuracy loss after fault injec-
tion [6, 9, 84, 86, 88–91, 144, 146–150]. References [83] and [85] evaluate the reliability by SDC
rate as the proportion of faults that caused misclassification in comparison with the golden model.
In addition, authors in Reference [87] differentiate SDCs of injected transient faults into defined
classes and calculate FIT for the accelerator (accel) by its components (comp) with Equation (2) in
which FITr aw is provided by the manufacturer, Sizecomp is the total number of the component bits,
and SDCcomp is obtained by FI.

FITaccel =
∑

comp

FITr aw × Sizecomp × SDCcomp (2)

In addition, in this work, SDCs are classified by comparing the faulty and golden model
outputs as:

— SDC-1: Fault caused a misclassification in the top-ranked output class.
— SDC-5: Fault caused the top-ranked element not to exist in the top-5 predicted output

classes.
— SDC-10%: Fault caused a variation in the output confidence score of the top-ranked output

class more than 10% compared to the golden model.
— SDC-20%: Fault caused a variation in the output confidence score of the top-ranked output

class more than 20% compared to the golden model.

5.1.1.3 RTL Model Platform. Research works that leverage the RTL model of ASIC-based
DHAs and simulate fault injections are described in the following. We identify three groups of FI
experiments in this platform, divided based on the architecture of DHAs:

— 2D systolic array accelerators [7, 93, 151–154],
— RTL implementation of DNNs [94]
— Multi-Processor System-on-Chips (MPSoCs) for DNNs, [58].

In the first group, a configuration of TPU is utilized in References [7, 93, 153, 154], and a model of
a 2D systolic array is implemented in References [151, 152]. Reference [7] also uses Eyeriss [176]
architecture for the accelerator. In this group, FI is performed at RTL, and all works inject ran-
dom permanent faults into PEs/MACs of the arrays, except Reference [93], which injects random
transient faults into buffers, control and data registers.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:17

The second group, which includes Reference [94], implements DNNs in RTL to enable a fault
simulation study in approximated DNNs. In this work, SEU injected into Look-Up Tables are sim-
ulated and studied.

In the third group, which exploits MPSoCs, faults are emulated in the components of the target
multicore processor. Authors in Reference [58] propose a three-level pipeline FI framework that
simulates permanent faults in the hardware model of an MPSoC and evaluate the reliability at the
software level. In their framework, the RTL model of the platform is provided as well as the fault
injector unit at the lowest level. The software implementation of the DNN exists in the middle
level of the framework that performs a pipelined inference and runs each layer of the network
on a separate core. In the top-level of the framework, synchronization of layers and reliability
evaluation is fulfilled.

Evaluation: Most works in this class evaluate the reliability by accuracy loss. Nonetheless,
fault classification is performed in References [58, 93, 94]. Authors in Reference [58] adopted the
classification of Reference [87], which was discussed in Hardware-aware platform (Section 5.1.1)
previously. Furthermore, they added two more classes for the faults that cause Hang (the HDL sim-
ulation never finishes) and Crash (the HDL simulation immediately stops). Authors in Reference
[94] classify the faults similar to the general fault classification scheme (Masked, SDC, crash) with
different terminology.

In addition, Reference [93] classifies SDCs on how they impact classification outputs compared
with the golden model:

— Tolerable Misclassification: The input is misclassified the same as the golden model with
different output confidence scores,

— No Impact Misclassification: The input is misclassified in both golden and faulty models
but into different classes,

— Critical Misclassification: The input is correctly classified in the golden model but mis-
classified in the faulty model,

— Tolerable Correct Classification: The input is correctly classified in both golden and
faulty models with different output confidence scores,

— Beneficial Correct Classification: The input is misclassified in the golden model but cor-
rectly classified in the faulty model.

5.1.2 Fault Emulation. In this subsection, research works that assess the reliability of DNNs
by emulating FI in hardware accelerators are explored. FPGA and GPU platforms are described,
respectively.

5.1.2.1 FPGA Platform. DNNs are implemented fully or partially (e.g., one layer) on FPGAs to
perform the inference phase as described in Section 2.2, and faults are being emulated on different
locations of the accelerator. In most of the works on the FPGA platform, the fault injector unit is
implemented in software that is run on a processor, and faults are injected into the FPGA running
the DNN under analysis. This HW/SW co-design process benefits from the high-performance ex-
ecution of DNNs and fast fault injection. It is worth mentioning that some works implement only
a part of the DNN (e.g., one specific layer) on the FPGA [97, 98, 108].

In this group of works, Zynq-based architecture System-on-Chips (SoCs) [177], which take
advantage of an ARM processor co-existing with the FPGA, are deployed. We categorize this group
of studies into three classes:

— A host computer (e.g., a PC) initializes the faults [97–99, 107, 108],
— The on-board embedded processor initializes the faults [8, 95, 100–106, 162, 163],
— Fault injection module resides inside the hardware design implementation [96, 155, 156].

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:18 M. H. Ahmadilivani et al.

Fig. 11. An overview of the architecture of the FireNN platform [97, 98].

In the first class, faults are generated by a host computer of the accelerator design. Then, the
faults, network parameters, and FPGA configuration bits will be sent to the board. The FPGA starts
running, and the on-board processor collects the results. The on-board processor plays the role of
a controller between FPGA and the host computer. In the end, the results would be passed back to
the host computer for further processing and reliability evaluation. All works of this class emulate
transient faults (SEU) in configuration bits of the FPGA and exploit the accuracy loss of the DNN
for reliability evaluation. Nevertheless, authors in Reference [107] explore transient faults in Flip
Flops (FFs) exhaustively beside random transient faults in configuration memory and classify
them as tolerable, critical, and crashes.

FireNN is proposed in References [97, 98] as a platform for deploying DNNs on Zynq-based
architecture SoCs along with a host computer in a way that DNN is run partially on the FPGA to
perform a reliability evaluation. As shown in Figure 11, FireNN machine runs the neural network
and communicates with the FireNN engine for reliability evaluation of the layer under analysis
running on the FPGA. Faults are generated by the host computer and are injected to the FPGA
through the engine. This platform injects SEUs in weights, layer inputs, and configuration bits.

In the second class, faults are generated and injected into the FPGA’s configuration bits or on-
chip memories by the embedded processor. The embedded processor or a host computer is re-
sponsible for the reliability evaluation. The proposed method in References [162, 163] provides an
injection of permanent faults into the configuration bits of the FPGA as well as into the on-chip
memory blocks through the interfaces between the embedded processor and FPGA on Zynq SoC.
References [95, 103, 104] provide a similar design to inject transient faults into configuration bits
of the FPGA. The effects of transient faults into both on-chip memories and configuration bits of
an FPGA running pruned DNNs are studied in Reference [100]. Authors in Reference [95] provide
random-accumulated FI and exhaustive FI approach on the configuration bits to emulate neutron
and ionizing radiation. Moreover, permanent and transient faults in on-chip memory (HyperRAM)
are studied in References [105, 106] with a software emulator and are validated by radiation results.

It is worth mentioning that injecting faults into the configuration memory is a repetitive pro-
cess, where in each experiment of FI, the faulty configuration bits are loaded to the configuration
memory. Then, the system is run and the results are collected. Thereafter, the next fault(s) are
injected into the fault-free configuration bits loaded to the corresponding memory to analyze the
newly injected fault(s).

A framework named Fiji-FIN is proposed in Reference [102], and the underlying method is
also used in References [8, 101]. This framework is capable of injecting transient faults into both

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:19

Fig. 12. Fiji-FIN framework for fault injection into FPGAs [102].

configuration bits of FPGA and on-chip memories. In this method, FINN framework [178] is used to
develop and train the BNN, and the proposed framework manipulates the FINN’s output to prepare
it for the fault injection. The bit stream file of the FPGA is obtained by an HLS tool and imported
to the FPGA. While the system is running, the faults are generated and injected by the embedded
processor and the reliability is evaluated in comparison with the golden model. Figure 12 depicts
in detail the steps of this FI framework.

In the third class, References [155] and [156] inject permanent faults, and the work in Reference
[96] injects transient faults into the hardware implementation of the network. Authors in Refer-
ence [155] use the FINN framework to implement the QNN with 2-bit weights and activations, and
a block has been added into the hardware design that is deployed for injecting stuck-at faults into
the output of PEs. Reference [156] injects permanent faults into the registers of the RTL model of
the network. Authors in Reference [96] explore the effect of transient faults to the configuration
bits of FPGAs in which different accelerator architectures (Softcore FGPU and ZynqNet HLS) are
implemented.

Evaluation: For evaluating the reliability of DNNs on the FPGA platform, accuracy loss is ex-
ploited in References [8, 100–102, 106, 108, 155, 156, 162, 163]. Moreover, fault classification is also
performed in References [8, 97–99, 101, 103, 104, 163]. References [103, 104] classify SEUs in con-
figuration bits of the FPGA as critical if a fault caused misclassification with respect to the golden
model; otherwise, the fault is tolerable. In addition, Benign Errors are considered in Reference
[104], which are the faults that caused true classification of the inputs that were misclassified in
the golden model. Another fault classification is presented in References [97, 98] that does not
only consider critical and tolerable faults but also categorizes the faults that prevent the acceler-
ator from generating the classification output. In this regard, the effect of faults on the system
performance degradation is the criterion for classifying faults in Reference [99].

Reliability is evaluated by different metrics considering accuracy loss regarding the application
of the target networks in References [162, 163]. These works consider top-5 and top-1 accuracy
loss for image and audio classification tasks, respectively. For object detection, mean Average
Precision (mAP), and for image generation, Structural Similarity Index (SSIM) is adopted.
Regarding the adopted metrics for accuracy loss in each network, the faults are classified into three
classes with different ranges of accuracy loss (≤1%, 1%∼5%, ≥5%) caused by FI. In addition, they
categorize the faults that are caused by a system exception that may delay or terminate processes.

To characterize the status of DNN layers’ vulnerability, authors in Reference [8] classify the
parameters of layers (i.e., weights and activations) separately by performing FI. In this work, pa-
rameters of layers are labeled as Low-risk, Medium-risk, and High-risk if FI process into the target
layers’ parameters results in less than 1%, 1%∼5%, and more than 5% accuracy loss, respectively.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:20 M. H. Ahmadilivani et al.

The metric AVF (defined in Section 2.3) is adopted in References [103, 104] and expresses the
probability of fault propagating to the output. These works obtain the AVF through the FI by
dividing the number of faults propagated to the output by the total number of injected faults.
Furthermore, authors in Reference [104] provide a formula to estimate the cross-section (defined
in Section 2.3) of the configuration memory in Equation (3), where the obtained AVF by FI is
multiplied by the number of bits utilized by the design times the cross-section of bits of the con-
figuration memory. This calculation can lead to further reliability metrics that authors present in
Reference [104].

σ = AVF × (#UtilizedBits) ×
(σstatic

#MemBits

)
(3)

In this regard, Reference [105] estimates the SER of HyperRam saving the weights similar to
Equation (3) based on the extracted information from radiation experiment reports. By providing
the rate of faults likely to occur in the memory, they inject faults into the weights of CNN on an
FPGA accelerator.

Moreover, Reference [95] expressed the reliability of the neural network with n layers (L1, L2, . . . ,
Ln) that are implemented serially as different modules on the FPGA, as an exponential distribution
in Equation (4).

RN N (t) = e−(λL1+λL2+· · ·+λLn)t , (4)
where λ = 1

MTT F (MTTF (Mean Time to Failure)).

5.1.2.2 GPU Platform. In this subsection, we explore FI in DNNs in which faults are em-
ulated and injected into the GPU. Nearly all works on this platform have studied the effect of
transient faults on GPUs. Permanent faults are studied in References [137, 157–160, 179]. To per-
form FI on GPUs, researchers adopt an FI framework on GPUs; except in References [117, 137],
which implemented their own FI process on CUDA and TensorRT [180], respectively. FI frame-
works in GPUs including FlexGripPlus [181], NVBitFI [182], and CAROL-FI [183] are used in
References [113–116, 120, 157], and [122], respectively. Nonetheless, an FI framework is proposed
in Reference [179] adapting and customizing NVBitFI for studying permanent faults in GPUs and
is leveraged in References [158–160]. Moreover, a cross-layer fault injector framework CLASSES
is presented in Reference [184] to inject SEUs at the architecture level, enabling study of the corre-
sponding fault effects in Reference [112]. In all works, the rate of injected faults and the number of
experiments in the target locations varies and depends on the confidence level and error margin,
as mentioned in References [10, 44, 109, 121, 122].

SASSIFI [185] is the most frequently used framework for FI into GPUs running DNNs, which
is used in References [10, 44, 109–111, 118, 119, 121]. This framework is developed by NVIDIA to
conduct fault injections and is a powerful framework with different fault models covering vari-
ous locations of GPUs and provides extensive reliability evaluation metrics. The studies that use
SASSIFI for fault injection investigate the effect of transient faults with SASSIFI’s bit-flip model
into the ISA (Instruction Set Architecture) visible states, including general-purpose registers,
memory values’ predicate registers, and condition registers in a single or multiple thread.

Evaluation: Reliability evaluation of DNNs in GPUs is carried out more extensively than in
other platforms. Nearly all works have classified injected faults [10, 44, 109–111, 114–116, 118, 119,
121, 122, 137, 157, 159, 160]. The general model for classifying faults in the mentioned works is as
follows:

— Masked: Fault does not affect the output,
— SDC: Output confidence score differs from that of the golden model,
— DUE: The program hangs or the system reboots (also called Crash in References [10, 121]).

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:21

Fig. 13. Fault classification in the object detection task based on bounding boxes [137].

Furthermore, SDC is also categorized regarding the effect of faults on the accuracy of the DNN
for the object recognition task in References [44, 109]. They define three categories of SDCs based
on the effect of faults on the output confidence score and ranking of objects:

— Non-critical: Output confidence score changed, and no misclassification occurred and no
objects ranking modified,

— Light-critical: Objects ranking modified, and no misclassification occurred,
— Critical: Impacted the output confidence score and caused misclassification.

However, the fault classification of SDCs proposed in Reference [122] is beyond the classic SDCs
and is based on the impact of faults on the precision and recall for object detection tasks in a self-
driving car, as follows:

— Non-critical: Precision maintains larger than 90% (a new object is detected that is not in
the original classification) and recall remains 100% (all previous objects are detected).

— Critical: Precision is lower than 90% (many wrong objects detected) and recall is not 100%
(real objects are not detected).

Furthermore, new classes of faults are presented in Reference [137], which considers the margins
of the bounding box in the DNN for object detection. The authors compare the overlaps of the
bounding box of the detected objects in each image for golden and faulty models and categorize
the SDCs based on a threshold. Their fault classification method is depicted in Figure 13.

Vulnerability factors are also adopted to analyze the reliability of DNNs on GPU platform [10, 44,
109, 110, 114, 118, 119, 121, 122]. Vulnerability factors express the probability of propagating faults
from a particular component to the output. Since faults may be injected into different locations, the
vulnerability factor of the location (in different abstraction levels from architecture to program) can
be measured. In this regard, Kernel Vulnerability Factor (KVF) [109, 118], Layer Vulnerability
Factor (LVF) [109, 112, 118], Instruction Vulnerability Factor (IVF) [109, 110, 119], Program
Vulnerability Factor (PVF) [10, 44, 109, 121], Operation Vulnerability Factor [116], and Archi-
tecture Vulnerability Factor (AVF) [10, 44, 109, 113, 114, 121, 122] have been presented. These
metrics provide a thorough understanding of the vulnerability of each location either in DNN or
in GPU.

5.1.2.3 Processors Platform. DNNs exploit processors mostly for IoT and edge applications.
The research works in which faults are emulated on multi-core processors running DNNs are
reviewed in this subsection. Soft errors in the register file of ARM processors running DNNs
have been studied extensively in References [36, 92, 123–130]. The vulnerability of instruc-
tions is studied in Reference [130]. To emulate faults modeling soft errors in target proces-
sors, ARM-FI is developed and adopted in References [128–130] and SOFIA [92] is exploited in

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:22 M. H. Ahmadilivani et al.

Fig. 14. Block diagram of the setup of beam experiment in Reference [108].

References [36, 92, 123–127] as fault injection frameworks. Each of the aforementioned fault injec-
tors enables fault emulation in different components of processors.

Evaluation: All works in this class have evaluated the reliability by fault classification. The
classification is performed similarly to the general scheme of classifying faults in the previous
platforms (Masked, tolerable SDC, critical SDC, and DUE).

Furthermore, References [36, 92] classify the faults in an object detection task for autonomous
vehicles as:

— Incorrect probability: All objects detected correctly with different output confidence
scores,

— Wrong detection: Misclassification or missing an object,
— No prediction: No object detection.

Mean Work To Failure (MWTF) is also exploited as a reliability metric to show the amount
of work a neural network can perform until meeting a failure, as:

MWTF =
1

executiontime ×AVFcr it ical−f aults
, (5)

where AVFcr it ical−f aults is the probability of an erroneous classification due to faults. MWTF is
adopted as a relationship between performance and reliability in References [129, 130]. AVF is
obtained as the reliability metric for the register file in References [124, 129, 130]. PVF is leveraged
to express the vulnerability of operations and instructions in Reference [130].

5.1.3 Irradiation. The most realistic way of fault injection is to irradiate the devices under the
beam of particles, e.g., neutron or ion. In this subsection, the research works that study the relia-
bility of DNN accelerators, i.e., FPGA and GPU under radiation, are described.

5.1.3.1 FPGA Platform. Zynq SoCs have been examined under radiation tests to assess the reli-
ability of DNNs in References [95, 96, 103, 106, 108, 133, 134]. FPGAs are irradiated with neutrons
in References [95, 96, 103, 108, 131–133] and with protons in Reference [135]. References [132]
and [135] have applied fault-aware training to DNNs and studied its impact under radiation. Hy-
perRAM, which includes constant and dynamic variables (e.g., weights and biases) is bombarded
with ionizing particles in References [106, 134]. The research works set up the configuration of the
system before the experiment mostly based on HW/SW co-design and save the results for further
analysis. Figure 14 shows an example of the setup of the FPGA irradiation.

Evaluation: Radiation experiments enable reliability evaluation by SER or FIT metrics [103,
106, 108, 134]. To formulate the SER, cross-section is defined as the proportion of observed faults
(errors) over all particles collided to the surface (Flux), as expressed in Equation (6) [108]. Cross-
section σ is expressed as a unit of cm2 and is the probability that a particle may cause an observable

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:23

Fig. 15. Setup of neutron irradiation to GPU [10, 121, 136].

error [103]. The cross-section is exclusively adopted in References [131, 132].

σ = errors/Flux (6)

The cross-section can lead to SER or FIT calculation by getting multiplied by the particle flux
that the device will experience in the environment (ϕ). SER represents the number of failures of
the device in 109 hours as shown in Equation (7).

SER = σ × ϕ (7)

Most research works that study irradiation on FPGAs evaluate the reliability of devices under
test by the above metrics. In addition, some works classify the faults radiated into FPGA by ob-
serving the outputs [103, 133, 135]. Here, both works provide fault classification based on output
confidence scores of the neural network. Reference [103] sets up an HW/SW co-design imple-
mentation on a target board and identifies the faults causing no misclassification (tolerable) and
misclassification (critical). Thereafter, the FIT of different classes of faults is obtained. References
[133, 135] also present the cross-sections of the device for different classes of faults (including
tolerable errors, critical errors, and crashes). Moreover, the reliability is estimated by the afore-
mentioned metrics in Reference [95] as expressed in Equation (4).

5.1.3.2 GPU Platform. Reliability of DNNs on GPUs is assessed under neutron beam radi-
ation in References [10, 115, 117, 121, 122, 136, 137]. All GPUs under test are manufactured by
NVIDIA and have different architectures. They also provide tests by enabling and disabling ECC
configurations, and different data representations. Each work has specified flux of neutrons and
radiation time, e.g., Reference [137] tests the GPU equivalent to 2,000 years of exposure to terres-
trial neutron, or Reference [10] reports data that cover more than 110,000 years of GPU operation.
Figure 15 illustrates the radiation test setup in References [10, 121, 136].

Evaluation: Research works of this group present reliability evaluation of DNNs on GPUs
by FIT as well as fault classification similar to the works on FPGAs radiation. Authors in
References [10, 121] identify faults that caused SDC and Crash and report their FIT, separately.
References [115] and [122] report FIT of faults caused SDC and DUE separately in different
data representations of the DNN, and in Reference [137] irradiated faults are classified based on
Figure 13. SDC rate is also the adopted evaluation metric in Reference [117].

5.1.3.3 TPU Platform. The reliability of Google’s Tensor Processing Unit (TPU) is studied
under neutron beam radiation in References [139] and [138]. These works experimented Coral TPU
chip, a low-power accelerator for DNNs, with several neural networks for image classification and
object detection tasks.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:24 M. H. Ahmadilivani et al.

Evaluation: The research works performing radiation experiments on Coral TPU have evalu-
ated the reliability by FIT and cross-section as well as by fault classification. In this regard, SDC
and DUE fault effects are reported based on FIT and cross-section.

5.2 Analytical Methods
Analytical methods in reliability assessment model the reliability mathematically and do not in-
ject faults into the platform to be simulated to evaluate the reliability. These methods rely on
the function and algorithm of DNNs, and if needed, also consider the structure of the accelerator.
Nevertheless, they carry out fault injection to assess the efficacy of the methods. For the sake of
generalization, all works in this group analyze the relations of neurons and layers to find their
effect and contribution to the output. In this regard, they estimate the vulnerability of neurons
and analyze how a faulty neuron may impact the output to find critical neurons. Therefore, they
link the reliability of the network with the vulnerability of its neurons and provide an analytical
model of calculating the reliability for DNNs.

We have identified four approaches in analytical methods:
— Layerwise Relevance Propagation (LRP)-based analysis [186–190],
— Gradient-based analysis [191–194],
— Estimation-based analysis [192, 193, 195],
— ML-based analysis [196].

In the first approach, DNNs are analyzed based on an algorithm called Layerwise Relevance
Propagation (LRP) that leads to obtaining critical scores for neurons/fmaps. The second approach
is based on the gradients of weights/fmaps with respect to the output leading to their sensitivity.
Research works in the third approach estimate the vulnerability of DNNs by finding correlations
between some information from DNNs and the vulnerability of layers/fmaps. In the last approach,
ML-based techniques are adopted in the context of fault analysis in DNNs.

In the LRP-based analysis, a hypothesis is raised in Reference [189] proposing that the higher
the contribution of neurons to the DNN’s output, the more impact they have on the classification
accuracy. Accuracy loss is one of the most important metrics in the reliability evaluation. Therefore,
the more impact a neuron has on the accuracy, the more vulnerable it is, which means it has more
influence on the reliability of the network, consequently. Hence, the authors adopted the LRP
algorithm to obtain the value of the contribution of each neuron to the output. LRP indicates the
proportion of each connected neuron in constructing the value of the target neuron and calculates
this ratio for all neurons from the last layers to the first. LRP specifies Ri, j (y0, t) for each neuron
j in layer i, which is its output contribution score between 0 and 1 with the input y0 and output
class t. Then, the average score of each neuron over the entire training set of M inputs is obtained
representing the resilience of the corresponding neuron as Equation (8).

ri, j =
M

∑M−1
m=0 Ri, j (y0,m , tm)

(8)

Thereafter, the sorted list of neurons regarding their ri, j represents the most to least vulnerable
neurons that can lead to protecting the most vulnerable neurons to improve reliability. Further-
more, by this analytical method, another reliability improvement method is presented in Reference
[190] based on balancing the resilience distribution inside the DNN. Similarly, Reference [186] pro-
poses an approach to extract the saliency or importance of each neuron and proposes a mapping
scheme for neurons on PEs of a systolic array to minimize the score of corrupted weights.

Authors in Reference [187] extend the LRP algorithm based on different output classes of in-
put images and provide the list of neurons’ resilience scores (score maps) for individual classes

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:25

separately, as well as the score map of the whole network regardless of the output classes. Then,
all sorted score maps are combined in descending order to set the maximum score for each cor-
responding neuron. Subsequently, a scheduling algorithm is applied to map neurons to PEs of an
MPSoC based on the score maps.

In gradient-based analysis, three papers are identified. Explainable AI, which explains how the
network computes the output by the input, is exploited in Reference [194] to obtain the sensitivity
of layers and the importance of weights. This work defines the sensitivity of layers in compliance
to the difference of the two highest output confidence scores of the last layer. Therefore, they
obtain the average sensitivity of all layers and relate it to the importance of weights. They provide
the most important weights and their critical bits consequently to be protected.

The sensitivity of filters and weights are analyzed in Reference [191], which refers to the amount
of accuracy drop with bit-flip occurrence in weights. In the proposed method in this paper, the gra-
dient of weights with respect to the output is calculated over a dataset considering a cost function.
Also, the expectation for the probability of weights to be faulty is obtained as a noise measurement
(εw). The sensitivity of a weight w is measured as Equation (9).

Sensitivityw = дradientw × εw (9)

Sensitivity analysis in this work leads to allocation of robust hardware to the more sensitive
weights.

References [192, 193] have presented three gradient-based approaches for vulnerability estima-
tion of fmaps in a DNN. Gradient approach considers the absolute values of fmaps’ gradients with
respect to the cross-entropy loss at the output in a backpropagation as the vulnerability of fmaps.
Gain approach measures the noise gain by obtaining the expectation for a set of corrupted neurons
affecting the DNN’s accuracy based on the derivatives of outputs with respect to the neurons over
a set of data and the variance of noise source. Modified Gain is also proposed based on the Gain ap-
proach to violate the independence between neurons and noise. The three mentioned approaches
evaluate the vulnerability of fmaps in a DNN.

Authors in References [192, 193] also presented three estimation-based approaches for the vul-
nerability of fmaps. They estimate the relative fmaps’ vulnerability by calculating the max neuron
value, fmap range, and average L2 over the input samples. They have provided approximate yet
scalable and fast approaches to estimate the vulnerability of fmaps.

Reference [195] presents an equation to estimate the misclassification rate of CNNs in case of
soft error occurrence in a specific layer. The authors consider any operation resulting in a non-
zero value as a critical computation, since soft errors may corrupt their results. The estimation is
based on the proportion of critical operations (Crit_OPs) in the target layer i and subsequent layers
relative to all operations in those layers, to model the misclassification rate (SERN) in a CNN with
n layers. Equation (10) provides a representation of this estimation.

SERN =
Crit_OPsi +

∑n
i+1 OPs∑n

i OPs
(10)

An ML-based approach for analytical reliability analysis is presented in Reference [196] where
Open-Set Recognition (OSR) methods are explored to analyze the criticality of faults in DNNs’
parameters. The concept of OSR is to identify whether the output classification corresponds to
the trained classes of the DNN. This concept is adapted to analyze the output logits (output of
softmax in the last layer) of DNNs to identify the critical fault in the parameters. Four different
OSR-based methods have been leveraged for this task and their efficacies are reported. In each
method, a threshold for the output logits is obtained for identifying critical fault occurrence.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:26 M. H. Ahmadilivani et al.

All the works in this group evaluate their analytical methods on the reliability by FI. The FI
methods that are used in these works are similar to the FI methods presented and characterized in
Section 5.1. It is shown that analytical methods can evaluate/estimate the vulnerability/sensitivity
of different components of DNNs, including neurons, fmaps, and weights. Analytical methods are
more lightweight than FI by far and are accelerator-agnostic. However, their analysis results can be
utilized for designing robust DNN accelerators. Among the existing approaches, estimation-based
analyses are faster than others while less accurate when the results are compared with FI experi-
ments. LRP-based and gradient analyses provide more accurate results close to FI experiments, yet
they are faster and incur less complexity.

5.3 Hybrid Methods
In hybrid methods, both FI and analytical methods are carried out to assess the reliability of DNNs.
To that end, Reference [197] proposes a reliability assessment framework called Fidelity based
on a hybrid method. This framework studies the transient faults in both data and control path
of accelerators. Fidelity contains fault injection in the software framework TensorFlow to obtain
the probability of masking faults in the DNN. In addition, the framework is capable of analyzing
the architectural model of the accelerator and mapping Flip Flops (FFs) of datapath and control
logic to the parameters of a high-level implementation of the DNN. By the fault injection and
elaborate analysis, it models the probability of activeness/inactiveness of FFs during the execution
time as well as the probability of masking faults. Subsequently, the framework provides the FIT
rate of the accelerator. Furthermore, the framework is validated by analyzing the NVDLA [198],
i.e., an open-source NVIDIA’s DNN accelerator. To further improve this method, a software model
for NVDLA is proposed in Reference [199] to enable reliability study of accelerators at the software
level and provide a more accurate, more hardware-aware, and faster method to obtain FIT rate of
the accelerator.

Zhang et al. [200] propose a hybrid of ML-based analysis and FI to estimate the vulnerability
of all parameters in DNNs by a low number of fault injections. The proposed method involves
selecting a set of random parameters of the DNN and evaluating their vulnerabilities by injecting
bitflip faults and measuring the accuracy loss. Thereafter, some features for the selected parameters
(absolute value, gradient, calculation times, and layer location) are extracted. A random forest
as a machine learning approach is trained and tested using the features and vulnerability of the
corresponding parameters so when it reaches a high accuracy, it can be used for vulnerability
estimation of the entire set of parameters.

6 DISCUSSION
In this section, we will first discuss the reliability assessment methods for DNNs based on the
works reviewed and presented in Section 5. Then, we will summarize the current status in the
three main categories of reliability assessment: FI, analytical, and hybrid methods, respectively,
and address their pros and cons in the research domain of this literature review. Thereafter, we
will present a qualitative comparison of different reliability assessment methods for DNNs. Last,
we will list the open challenges as well as major potential research directions for the future.

Table 2 lists the pros and cons of all the methods categorized in this work and described in
Section 5.

Of the reviewed papers, FI, as a conventional method for reliability assessment, is frequently
used for evaluating the DNNs’ reliability. FI provides realistic results about how faults impact the
system’s execution. FI methods can be conducted for modeling various faults that can be injected
at the different locations in the platform for reliability evaluation. Moreover, they are applicable
to any platform at any system abstraction level and provide various reliability evaluations based

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:27

Table 2. Pros and Cons of Reliability Assessment Methods for DNNs

Method Pros Cons

Fault Sim-
ulation

– Low design time and fast execution in
high-level software implementations
– Adoptable for various DNNs, DHA models,
and fault models
– Enabling reliability study of variations of DNNs
under approximation, quantization, encryption,
etc.
– The availability of open-source frameworks
for high-level software simulation
– No need for special facilities and capable of
being run on regular PCs
– Enabling a fast evaluation of reliability
enhancement methods at high-level software
implementations
– Providing various reliability evaluation metrics

– High time complexity to achieve a sufficient
confidence level
– Not realistic model of fault effects in
high-level software implementations
– Inaccurate results at high-level software
implementations
– Time-consuming design and development for
HDL implementations

Fault Emu-
lation

– Providing realistic reliability analysis of DHA
– Enabling experiments for real conditions of
DHA operation
– Providing full access to possible locations of
the DHA for FI
– Enabling realistic studying of faults in datapath
– Providing fault-tolerant designs and evaluating
them directly
– Providing several evaluation metrics and fault
classifications

– Time-consuming design and development
– Need for the physical DHA
– Different platforms need their own specific
design and development to perform FI
– Need for platform-specific frameworks for FI

Irradiation

– Performing realistic experiments as real
physical faults are injected into the chip
– Suitable for developing fault models
– Enabling the study for validating simulation
and emulation approaches
– Providing the real behavior of the DHA when
faced with a physical effect

– Need for specific facilities for performing
radiation
– Low control over accuracy of fault injection
in terms of number and locations of occurred
faults
– Lack of the visibility of fault propagation

Analytical

– Implementable at software-level
– Scalable and less complex than FI
– Leading to fault-tolerant hardware designs
– Providing information for algorithm-level
resiliency for DNNs
– DHA-agnostic

– Not providing quantitative evaluation metrics
– Not considering DHA models
– Inaccurate in estimating the vulnerabilities of
DNN components (neurons, fmaps, etc.)

Hybrid

– Combining fast FI with an analytical approach
– Capability of reliability study for DHAs
– Possibility of evaluation by either vulnerability
estimation or quantitative metrics

– Need for detailed information of the DHA
(depending on the method)
– Accuracy of the results could be low
(depending on the method)

on metrics and fault classifications. Therefore, many research works choose FI as their primary
method of DNNs’ reliability assessment. Nevertheless, FI methods are accompanied by a prohibi-
tively high complexity due to the need to consider several cases for fault occurrence and to itera-
tively repeat the executions.

Analytical methods have been proposed as a way to cope with the high complexity of FI methods.
These methods study the function of DNNs and assess the model’s reliability using mathematical
equations, leading to less complex approaches. Since analytical methods are developed mathemat-
ically, they have the potential to be generalized and adapted to various DNNs. Notably, analyti-
cal methods have the potential to be exploited in the reliability assessment of the training phase.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:28 M. H. Ahmadilivani et al.

Table 3. Qualitative Analysis Comparing Different Reliability Assessment Methods for DNNs

Fault injection Analytical Hybrid
Time Complexity High Low to Moderate Moderate
HDA-aware Yes No Yes
Leading to fault-tolerant design Yes Yes Yes
Fault models variety All fault models Few fault models Few fault models
Implementation system level Software and hardware Software Software
Evaluation accuracy Moderate to high Low to moderate Moderate
Development time Low to Moderate Moderate High

Evaluation metrics

Accuracy loss
Fault classification
Vulnerability factors
SDC rate
Reliability equations

Criticality scores
Sensitivity
Vulnerability estimation

FIT Rate
Vulnerability estimation

However, current analytical methods do not consider the accelerator models, and there is a gap
in the use of reliability evaluation metrics. While this survey identifies a relatively small number
of works relying on analytical methods for DNNs’ reliability assessment, the future of research in
this area should pay greater attention to the potential of analytical methods.

Finally, hybrid methods combine the strength of both FI and analytical methods. By applying
analysis of the network or the accelerator in addition to conducting fault injection, hybrid methods
are capable of obtaining a comprehensive and realistic evaluation of reliability. Although a limited
number of research works are identified in this category in the present survey, yet there is a huge
space to explore for proposing new hybrid methods in the future. Table 3 presents a qualitative
comparison between the categorized methods of reliability assessment for DNNs regarding the
papers included in this survey.

The analysis of statistics presented in Figure 9 highlights that the majority of the identified
research works employ FI to assess the DNNs’ reliability. This can be attributed to the fact that,
while DNNs are an emerging topic in computer science, the problem of reliability has been a classic
issue for a long time. In addition, the investigation of reliability over DNNs has started gaining
traction since 2017, as indicated in Figure 8. As a result, it is not surprising that the early research
in this area has primarily focused on conventional methods such as FI. This could be the main
reason for the significant imbalance in the number of published papers across different method
categories. However, in the future, the emergence of analytical and hybrid methods is expected to
bridge this gap and increase their application in the field of DNN reliability assessment.

To address open challenges in reliability assessment methods for DNNs, this survey has identi-
fied the following main observations:

— Although some research works, such as Reference [201], have studied the impact of faulty
data during training, no work on the reliability assessment of the training phase has been
identified that considers faulty parameters or computational units. This issue should be stud-
ied in future research;

— Nearly all included works focus on CNNs, with image classification and object detection
tasks excluding other types of DNNs, such as RNNs and LSTMs as well as different applica-
tions that should also be evaluated in terms of reliability;

— The survey has identified no software FI framework in hardware-aware platforms. Hence,
DNN accelerator simulators could be exploited or developed for reliability assessment of
DNNs in this platform;

— Fault emulation on FPGAs can take advantage of HLS designs. Therefore, a general FI frame-
work for these platforms could be presented using HLS to minimize design time;

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:29

— Based on this survey, very few works study the reliability of the control part of DHAs, espe-
cially in FPGAs and ASICs. The control part may play a significant role in the reliability of
DNN accelerators, and this should be explored in future studies;

— There is a limited number of analytical methods for DNNs reliability assessment in this
survey, all of which rely on finding critical neurons for fault-tolerant designs. Also, only
one work tries to predict the accuracy loss caused by soft errors, and ML-based approaches
are proposed in one work. Nevertheless, none of them can estimate the reliability of DNNs
on their own or evaluate the reliability using specific metrics. ML-based algorithms can
significantly assist in efficient reliability assessment, and therefore, there is a huge potential
for developing new analytical methods of reliability assessment for DNNs;

— Analytical methods could be generalized for other DNNs and applications rather than con-
sidering only CNNs and image processing;

— Hybrid methods appear to be powerful and capable of being exploited for developing reliabil-
ity assessment frameworks. They can be one of the major methods for reliability assessment
of DNNs in future works;

— Several FI research works carry out accuracy loss and fault classification as an evaluation of
reliability. Also, some works considered FIT. However, there is still an urgent need to present
DNN-specific metrics for reliability evaluation.

As an outcome of this survey, in addition to the listed open challenges, the major possible re-
search directions for future studies in this domain are addressed below:

— Although analytical and hybrid methods have potential in the literature, they are not evolved
to the extent that their effectiveness can be fully realized. Existing methods have shown that
analytical and hybrid methods are capable of assessing the DNNs’ reliability as realistically
as FI and lead to effective fault-tolerant designs. Moreover, ML-based approaches in conjunc-
tion with analytical and hybrid methods are emerging. Therefore, researchers can be directed
to develop novel analytical and hybrid methods, especially those that adopt ML-based algo-
rithms, for reliability assessment of DNNs that are faster, less complex, more scalable, and
more specific to DNNs than the conventional FI approaches.

— Bringing reliability as a classical issue into an emerging topic such as DNNs requires new
tools to respond to the requirements of the new domain. Therefore, the new research not
only needs to adopt commonly used metrics in the reliability domain, but also requires the
introduction and proposal of novel DNNs-specific reliability evaluation metrics.

— There are several IoT and edge applications for DNNs emerging day by day, and reliability is
not only a concern for safety-critical applications. New research can focus on the unstudied
applications of DNNs while taking reliability into consideration.

7 CONCLUSION
DNNs are being utilized in an increasingly diverse range of applications in our daily lives. Con-
sequently, their deployment in safety-critical applications has emerged to be expanding day by
day. However, threats to reliability are one of the major issues that they experience in the real
world. To address this, several studies have been published in recent years to assess the reliability
of DNNs, with or without the use of accelerators, resulting in the development of various assess-
ment methods. In this work, we conduct a systematic literature review to present a categorization
of the reliability assessment methods for DNNs.

Out of the 139 papers related to the subject of the review, three major approaches to reliability
assessment of DNNs were identified, i.e., Fault Injection, Analytical, and Hybrid methods. Since
the majority of works assess the reliability using conventional fault injection methods, the related

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:30 M. H. Ahmadilivani et al.

works relying on FI methods are characterized based on different approaches and platforms. In
addition, we have addressed the advantages and disadvantages of the different methods and high-
lighted the open challenges that may become the focus of future studies in this domain. Based on
the analysis of this survey, future research could focus on developing lightweight, DNN-specific
analytical and hybrid methods for assessing reliability, as well as providing new quantitative eval-
uation metrics that take into account emerging applications for DNNs.

REFERENCES
[1] Alberto Bosio, Ian O’Connor, Marcello Traiola, Jorge Echavarria, Jürgen Teich, Muhammad Abdullah Hanif, Muham-

mad Shafique, Said Hamdioui, Bastien Deveautour, Patrick Girard, Arnaud Virazel, and Koen Bertels. 2021. Emerging
computing devices: Challenges and opportunities for test and reliability. In IEEE European Test Symposium (ETS’21).
IEEE, 1–10.

[2] Håkan Forsberg, Joakim Lindén, Johan Hjorth, Torbjörn Månefjord, and Masoud Daneshtalab. 2020. Challenges in us-
ing neural networks in safety-critical applications. In AIAA/IEEE 39th Digital Avionics Systems Conference (DASC’20).
IEEE, 1–7.

[3] Alessandra Nardi and Antonino Armato. 2017. Functional safety methodologies for automotive applications. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD’17). IEEE, 970–975.

[4] Younis Ibrahim, Haibin Wang, Junyang Liu, Jinghe Wei, Li Chen, Paolo Rech, Khalid Adam, and Gang Guo. 2020.
Soft errors in DNN accelerators: A comprehensive review. Microelectron. Reliab. 115 (2020), 113969.

[5] Muhammad Shafique, Mahum Naseer, Theocharis Theocharides, Christos Kyrkou, Onur Mutlu, Lois Orosa, and
Jungwook Choi. 2020. Robust machine learning systems: Challenges, current trends, perspectives, and the road ahead.
IEEE Des. Test 37, 2 (2020), 30–57.

[6] Stéphane Burel, Adrian Evans, and Lorena Anghel. 2021. MOZART: Masking outputs with zeros for architectural
robustness and testing of DNN accelerators. In IEEE 27th International Symposium on On-Line Testing and Robust
System Design (IOLTS’21). IEEE, 1–6.

[7] Krishna Teja Chitty-Venkata and Arun K. Somani. 2020. Model compression on faulty array-based neural network
accelerator. In IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC’20). IEEE, 90–99.

[8] Navid Khoshavi, Arman Roohi, Connor Broyles, Saman Sargolzaei, Yu Bi, and David Z. Pan. 2020. SHIELDeNN:
Online accelerated framework for fault-tolerant deep neural network architectures. In 57th ACM/IEEE Design Au-
tomation Conference (DAC’20). IEEE, 1–6.

[9] Elbruz Ozen and Alex Orailoglu. 2020. Low-cost error detection in deep neural network accelerators with linear
algorithmic checksums. J. Electron. Test. 36, 6 (2020), 703–718.

[10] Fernando Fernandes dos Santos, Pedro Foletto Pimenta, Caio Lunardi, Lucas Draghetti, Luigi Carro, David Kaeli, and
Paolo Rech. 2018. Analyzing and increasing the reliability of convolutional neural networks on GPUs. IEEE Trans.
Reliab. 68, 2 (2018), 663–677.

[11] Sparsh Mittal. 2020. A survey on modeling and improving reliability of DNN algorithms and accelerators. J. Syst.
Archit. 104 (2020), 101689.

[12] Annachiara Ruospo, Ernesto Sanchez, Lucas Matana Luza, Luigi Dilillo, Marcello Traiola, and Alberto Bosio. 2023.
A survey on deep learning resilience assessment methodologies. Computer 56, 2 (2023), 57–66.

[13] Fei Su, Chunsheng Liu, and Haralampos-G. Stratigopoulos. 2023. Testability and dependability of AI hardware: Sur-
vey, trends, challenges, and perspectives. IEEE Des. Test 40, 2 (2023).

[14] Cesar Torres-Huitzil and Bernard Girau. 2017. Fault and error tolerance in neural networks: A review. IEEE Access 5
(2017), 17322–17341.

[15] Antonio Cicchetti, Federico Ciccozzi, and Alfonso Pierantonio. 2019. Multi-view approaches for software and system
modelling: A systematic literature review. Softw. Syst. Model. 18, 6 (2019), 3207–3233.

[16] Mathieu Lavallée, Pierre-N. Robillard, and Reza Mirsalari. 2013. Performing systematic literature reviews with
novices: An iterative approach. IEEE Trans. Educ. 57, 3 (2013), 175–181.

[17] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017. Efficient processing of deep neural networks: A
tutorial and survey. Proc. IEEE 105, 12 (2017), 2295–2329.

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document
recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neu-
ral networks. Adv. Neural Inf. Process. Syst. 25 (2012), 1097–1105.

[20] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In IEEE Conference on Computer Vision
and Pattern Recognition. 1–9.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:31

[21] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556 (2014).

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern Recognition. 770–778.

[23] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once: Unified, real-time object
detection. In IEEE Conference on Computer Vision and Pattern Recognition. 779–788.

[24] C. J. B. Yann, Y. LeCun, and C. Cortes. The MNIST DATABASE of Handwritten Digits. Retrieved from: http://yann.
lecun.com/exdb/mnist/

[25] A. Krizhevsky, v. Nair, and G. Hinton. 2009. The CIFAR-10 Dataset. Retrieved from: https://www.cs.toronto.edu/
~kriz/cifar.html

[26] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image
database. In IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 248–255.

[27] Moritz Menze and Andreas Geiger. 2015. Object scene flow for autonomous vehicles. In IEEE Conference on Computer
Vision and Pattern Recognition. 3061–3070.

[28] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. 2010. The Pascal
visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 2 (2010), 303–338.

[29] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2017. Quantized neural net-
works: Training neural networks with low precision weights and activations. J. Mach. Learn. Res. 18, 1 (2017),
6869–6898.

[30] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized neural
networks: Training deep neural networks with weights and activations constrained to +1 or –1. arXiv preprint
arXiv:1602.02830 (2016).

[31] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 265–283.

[32] Keras: The Python deep learning API. 2015. Retrieved from: https://keras.io/
[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019), 8026–8037.

[34] Joseph Redmon. Darknet: Open Source Neural Networks in C. Retrieved from: http://pjreddie.com/darknet/
[35] Tiny-CNN Framework. 2012. Retrieved from: https://github.com/tiny-dnn/tiny-dnn
[36] Geancarlo Abich, Jonas Gava, Ricardo Reis, and Luciano Ost. 2020. Soft error reliability assessment of neural net-

works on resource-constrained IoT devices. In 27th IEEE International Conference on Electronics, Circuits and Systems
(ICECS’20). IEEE, 1–4.

[37] Manar Abu Talib, Sohaib Majzoub, Qassim Nasir, and Dina Jamal. 2021. A systematic literature review on hardware
implementation of artificial intelligence algorithms. J. Supercomput. 77 (2021), 1897–1938.

[38] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. 2019. A survey of FPGA-based neural net-
work inference accelerators. ACM Trans. Reconfig. Technol. Syst. 12, 1 (2019), 1–26.

[39] Neng Hou, Xiaohu Yan, and Fazhi He. 2019. A survey on partitioning models, solution algorithms and algorithm
parallelization for hardware/software co-design. Des. Automat. Embed. Syst. 23, 1 (2019), 57–77.

[40] Meriam Dhouibi, Ahmed Karim Ben Salem, Afef Saidi, and Slim Ben Saoud. 2021. Accelerating deep neural networks
implementation: A survey. IET Comput. Digit. Techniq. 15, 2 (2021), 79–96.

[41] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike
Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert
Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James
Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire
Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory
Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia
Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-
datacenter performance analysis of a Tensor Processing Unit. In 44th Annual International Symposium on Computer
Architecture. 1–12.

[42] Diksha Moolchandani, Anshul Kumar, and Smruti R. Sarangi. 2021. Accelerating CNN inference on ASICs: A survey.
J. Syst. Archit. 113 (2021), 101887.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:32 M. H. Ahmadilivani et al.

[43] Jon Perez-Cerrolaza, Jaume Abella, Leonidas Kosmidis, Alejandro J. Calderon, Francisco Cazorla, and Jose Luis Flores.
2022. GPU devices for safety-critical systems: A survey. Comput. Surv. 55, 7 (2022), 1–37.

[44] Younis Ibrahim, Haibin Wang, Man Bai, Zhi Liu, Jianan Wang, Zhiming Yang, and Zhengming Chen. 2020. Soft error
resilience of deep residual networks for object recognition. IEEE Access 8 (2020), 19490–19503.

[45] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. CMSIS-NN: Efficient neural network kernels for arm cortex-M
CPUs. arXiv preprint arXiv:1801.06601 (2018).

[46] Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Mohammadamin Barekatain, Peyman Adibi, Payam Bar-
naghi, and Amit P. Sheth. 2018. Machine learning for Internet of Things data analysis: A survey. Digit. Commun.
Netw. 4, 3 (2018), 161–175.

[47] Ramon Sanchez-Iborra and Antonio F. Skarmeta. 2020. TinyML-enabled frugal smart objects: Challenges and oppor-
tunities. IEEE Circ. Syst. Mag. 20, 3 (2020), 4–18.

[48] Robert C. Baumann. 2005. Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans. Device
Mater. Reliab. 5, 3 (2005), 305–316.

[49] G. C. K. Y. Chen, K. Y. Chuah, M. F. Li, Daniel S. H. Chan, C. H. Ang, J. Z. Zheng, Y. Jin, and D. L. Kwong. 2003.
Dynamic NBTI of PMOS transistors and its impact on device lifetime. In 41st IEEE International Reliability Physics
Symposium. IEEE, 196–202.

[50] Shekhar Borkar. 2005. Designing reliable systems from unreliable components: The challenges of transistor variabil-
ity and degradation. IEEE Micro 25, 6 (2005), 10–16.

[51] Israel Koren and C. Mani Krishna. 2007. Fault-tolerant Systems. (2007).
[52] Barry Johnson. 1984. Fault-tolerant microprocessor-based systems. IEEE Micro 4, 06 (1984), 6–21.
[53] Arijit Biswas, Paul Racunas, Razvan Cheveresan, Joel Emer, Shubhendu S. Mukherjee, and Ram Rangan. 2005. Com-

puting architectural vulnerability factors for address-based structures. In 32nd International Symposium on Computer
Architecture (ISCA’05). IEEE, 532–543.

[54] Mohammad Eslami, Behnam Ghavami, Mohsen Raji, and Ali Mahani. 2020. A survey on fault injection methods of
digital integrated circuits. Integration 71 (2020), 154–163.

[55] Annachiara Ruospo, Lucas Matana Luza, Alberto Bosio, Marcello Traiola, Luigi Dilillo, and Ernesto Sanchez. 2021.
Pros and cons of fault injection approaches for the reliability assessment of deep neural networks. In IEEE 22nd Latin
American Test Symposium (LATS’21). IEEE, 1–5.

[56] Régis Leveugle, A. Calvez, Paolo Maistri, and Pierre Vanhauwaert. 2009. Statistical fault injection: Quantified error
and confidence. In Design, Automation & Test in Europe Conference & Exhibition. IEEE, 502–506.

[57] Alfredo Benso and Stefano DiCarlo. 2011. The art of fault injection. J. Contr. Eng. Appl. Inform. 13, 4 (2011), 9–18.
[58] Annachiara Ruospo, Angelo Balaara, Alberto Bosio, and Ernesto Sanchez. 2020. A pipelined multi-level fault injector

for deep neural networks. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT’20). IEEE, 1–6.

[59] Muhammad Salman Ali, Tauhid Bin Iqbal, Kang-Ho Lee, Abdul Muqeet, Seunghyun Lee, Lokwon Kim, and Sung-Ho
Bae. 2020. ERDNN: Error-resilient deep neural networks with a new error correction layer and piece-wise rectified
linear unit. IEEE Access 8 (2020), 158702–158711.

[60] Chandramouli Amarnath, Mohamed Mejri, Kwondo Ma, and Abhijit Chatterjee. 2022. Soft error resilient deep learn-
ing systems using neuron gradient statistics. In IEEE 28th International Symposium on On-Line Testing and Robust
System Design (IOLTS’22). IEEE, 1–7.

[61] Austin P. Arechiga and Alan J. Michaels. 2018. The effect of weight errors on neural networks. In IEEE 8th Annual
Computing and Communication Workshop and Conference (CCWC’18). IEEE, 190–196.

[62] Austin P. Arechiga and Alan J. Michaels. 2018. The robustness of modern deep learning architectures against single
event upset errors. In IEEE High Performance Extreme Computing Conference (HPEC’18). IEEE, 1–6.

[63] Stéphane Burel, Adrian Evans, and Lorena Anghel. 2021. Zero-overhead protection for CNN weights. In IEEE Inter-
national Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’21). IEEE, 1–6.

[64] Stéphane BurelT, Adrian EvansT, and Lorena Anghel. 2022. Improving DNN fault tolerance in semantic segmentation
applications. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT’22). IEEE, 1–6.

[65] Riccardo Cantoro, Nikolaos I. Deligiannis, Matteo Sonza Reorda, Marcello Traiola, and Emanuele Valea. 2020. Eval-
uating data encryption effects on the resilience of an artificial neural network. In IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’20). IEEE, 1–4.

[66] Zitao Chen, Guanpeng Li, and Karthik Pattabiraman. 2021. A low-cost fault corrector for deep neural networks
through range restriction. In 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’21). IEEE, 1–13.

[67] Nikolaos Ioannis Deligiannis, Riccardo Cantoro, Matteo Sonza Reorda, Marcello Traiola, and Emanuele Valea. 2021.
Towards the integration of reliability and security mechanisms to enhance the fault resilience of neural networks.
IEEE Access 9 (2021), 155998–156012.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:33

[68] Zhen Gao, Xiaohui Wei, Han Zhang, Wenshuo Li, Guangjun Ge, Yu Wang, and Pedro Reviriego. 2020. Reliability
evaluation of pruned neural networks against errors on parameters. In IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT’20). IEEE, 1–6.

[69] Behnam Ghavami, Mani Sadati, Zhenman Fang, and Lesley Shannon. 2022. FitAct: Error resilient deep neural net-
works via fine-grained post-trainable activation functions. In Design, Automation & Test in Europe Conference &
Exhibition (DATE’22). IEEE, 1239–1244.

[70] Brunno F. Goldstein, Sudarshan Srinivasan, Dipankar Das, Kunal Banerjee, Leandro Santiago, Victor C. Ferreira,
Alexandre S. Nery, Sandip Kundu, and Felipe M. G. França. 2020. Reliability evaluation of compressed deep learning
models. In IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS’20). IEEE, 1–5.

[71] Hui Guan, Lin Ning, Zhen Lin, Xipeng Shen, Huiyang Zhou, and Seung-Hwan Lim. 2019. In-place zero-space memory
protection for CNN. In 33rd International Conference on Neural Information Processing Systems. 5734–5743.

[72] Le-Ha Hoang, Muhammad Abdullah Hanif, and Muhammad Shafique. 2020. FT-ClipAct: Resilience analysis of deep
neural networks and improving their fault tolerance using clipped activation. In Design, Automation & Test in Europe
Conference & Exhibition (DATE’20). IEEE, 1241–1246.

[73] Myeungjae Jang and Jeongkyu Hong. 2021. MATE: Memory-and retraining-free error correction for convolutional
neural network weights. J. Inf. Commun. Converg. Eng. 19, 1 (2021), 22–28.

[74] Suyong Lee, Insu Choi, and Joon-Sung Yang. 2022. Bipolar vector classifier for fault-tolerant deep neural networks.
In 59th ACM/IEEE Design Automation Conference. 673–678.

[75] Elaheh Malekzadeh, Nezam Rohbani, Zhonghai Lu, and Masoumeh Ebrahimi. 2021. The impact of faults on DNNs:
A case study. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT’21). IEEE, 1–6.

[76] Mohamed A. Neggaz, Ihsen Alouani, Pablo R. Lorenzo, and Smail Niar. 2018. A reliability study on CNNs for critical
embedded systems. In IEEE 36th International Conference on Computer Design (ICCD’18). IEEE, 476–479.

[77] Mohamed A. Neggaz, Ihsen Alouani, Smail Niar, and Fadi Kurdahi. 2019. Are CNNs reliable enough for critical
applications? An exploratory study. IEEE Des. Test 37, 2 (2019), 76–83.

[78] Elbruz Ozen and Alex Orailoglu. 2021. SNR: Squeezing numerical range defuses bit error vulnerability surface in
deep neural networks. ACM Trans. Embed. Comput. Syst. 20, 5s (2021), 1–25.

[79] Jonathan Ponader, Kyle Thomas, Sandip Kundu, and Yan Solihin. 2021. MILR: Mathematically induced layer recovery
for plaintext space error correction of CNNs. In 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’21). IEEE, 75–87.

[80] Majid Sabbagh, Cheng Gongye, Yunsi Fei, and Yanzhi Wang. 2019. Evaluating fault resiliency of compressed deep
neural networks. In IEEE International Conference on Embedded Software and Systems (ICESS’19). IEEE, 1–7.

[81] Rizwan Tariq Syed, Markus Ulbricht, Krzysztof Piotrowski, and Milos Krstic. 2021. Fault resilience analysis of quan-
tized deep neural networks. In IEEE 32nd International Conference on Microelectronics (MIEL’21). IEEE, 275–279.

[82] Jinyu Zhan, Ruoxu Sun, Wei Jiang, Yucheng Jiang, Xunzhao Yin, and Cheng Zhuo. 2021. Improving fault tolerance
for reliable DNN using boundary-aware activation. IEEE Trans. Comput.-Aid. Des. Integ. Circ. Syst. 41, 10 (2021),
3414–3425.

[83] Arash Azizimazreah, Yongbin Gu, Xiang Gu, and Lizhong Chen. 2018. Tolerating soft errors in deep learning acceler-
ators with reliable on-chip memory designs. In IEEE International Conference on Networking, Architecture and Storage
(NAS’18). IEEE, 1–10.

[84] Brunno F. Goldstein, Victor C. Ferreira, Sudarshan Srinivasan, Dipankar Das, Alexandre S. Nery, Sandip Kundu, and
Felipe M. G. França. 2021. A lightweight error-resiliency mechanism for deep neural networks. In 22nd International
Symposium on Quality Electronic Design (ISQED’21). IEEE, 311–316.

[85] Masoomeh Jasemi, Shaahin Hessabi, and Nader Bagherzadeh. 2020. Enhancing reliability of emerging memory tech-
nology for machine learning accelerators. IEEE Trans. Emerg. Topics Comput. 9, 4 (2020), 2234–2240.

[86] Jae-San Kim and Joon-Sung Yang. 2019. DRIS-3: Deep neural network reliability improvement scheme in 3D die-
stacked memory based on fault analysis. In 56th ACM/IEEE Design Automation Conference (DAC’19). IEEE, 1–6.

[87] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik Pattabiraman, Joel Emer, and
Stephen W. Keckler. 2017. Understanding error propagation in deep learning neural network (DNN) accelerators
and applications. In International Conference for High Performance Computing, Networking, Storage and Analysis.
1–12.

[88] Wenshuo Li, Guangjun Ge, Kaiyuan Guo, Xiaoming Chen, Qi Wei, Zhen Gao, Yu Wang, and Huazhong Yang. 2020.
Soft Error Mitigation for Deep Convolution Neural Network on FPGA Accelerators. In 2nd IEEE International Con-
ference on Artificial Intelligence Circuits and Systems (AICAS’20). IEEE, 1–5.

[89] Elbruz Ozen and Alex Orailoglu. 2020. Boosting bit-error resilience of DNN accelerators through median feature
selection. IEEE Trans. Comput.-Aid. Des. Integ. Circ. Syst. 39, 11 (2020), 3250–3262.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:34 M. H. Ahmadilivani et al.

[90] Elbruz Ozen and Alex Orailoglu. 2020. Just say zero: Containing critical bit-error propagation in deep neural networks
with anomalous feature suppression. In IEEE/ACM International Conference on Computer Aided Design (ICCAD’20).
IEEE, 1–9.

[91] Elbruz Ozen and Alex Orailoglu. 2019. Sanity-check: Boosting the reliability of safety-critical deep neural network
applications. In IEEE 28th Asian Test Symposium (ATS’19). IEEE, 7–75.

[92] Vitor Bandeira, Felipe Rosa, Ricardo Reis, and Luciano Ost. 2019. Non-intrusive fault injection techniques for efficient
soft error vulnerability analysis. In IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-
SoC’19). IEEE, 123–128.

[93] Panayiotis Corneliou, Panagiota Nikolaou, Maria K. Michael, and Theocharis Theocharides. 2021. Fine-grained vul-
nerability analysis of resource constrained neural inference accelerators. In IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’21). IEEE, 1–6.

[94] Anahita Hosseinkhani and Behnam Ghavami. 2021. Improving soft error reliability of FPGA-based deep neural net-
works with reduced approximate TMR. In 11th International Conference on Computer Engineering and Knowledge
(ICCKE’21). IEEE, 459–464.

[95] Fabio Benevenuti, Fabiano Libano, Vincent Pouget, Fernanda Lima Kastensmidt, and Paolo Rech. 2018. Comparative
analysis of inference errors in a neural network implemented in SRAM-based FPGA induced by neutron irradiation
and fault injection methods. In 31st Symposium on Integrated Circuits and Systems Design (SBCCI’18). IEEE, 1–6.

[96] Fabio Benevenuti, Márcio Gonçalves, Evaldo Carlos Fonseca Pereira Junior, Rafael Galhardo Vaz, Odair Lelis
Gonçalez, José Rodrigo Azambuja, and Fernanda Lima Kastensmidt. 2021. Neutron-induced faults on CNN for aerial
image classification on SRAM-based FPGA using softcore GPU and HLS. In 21th European Conference on Radiation
and Its Effects on Components and Systems (RADECS’21). IEEE, 1–4.

[97] Corrado De Sio, Sarah Azimi, and Luca Sterpone. 2020. An emulation platform for evaluating the reliability of deep
neural networks. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT’20). IEEE, 1–4.

[98] Corrado De Sio, Sarah Azimi, and Luca Sterpone. 2022. FireNN: Neural networks reliability evaluation on hybrid
platforms. IEEE Trans. Emerg. Topics Comput. 10, 2 (2022), 549–563.

[99] Boyang Du, Sarah Azimi, Corrado De Sio, Ludovica Bozzoli, and Luca Sterpone. 2019. On the reliability of convolu-
tional neural network implementation on SRAM-based FPGA. In IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT’19). IEEE, 1–6.

[100] Zhen Gao, Yi Yao, Xiaohui Wei, Tong Yan, Shulin Zeng, Guangjun Ge, Yu Wang, Anees Ullah, and Pedro Reviriego.
2022. Reliability evaluation of FPGA based pruned neural networks. Microelectron. Reliab. 130 (2022), 114498.

[101] Navid Khoshavi, Connor Broyles, and Yu Bi. 2020. Compression or corruption? A study on the effects of transient
faults on BNN inference accelerators. In 21st International Symposium on Quality Electronic Design (ISQED’20). IEEE,
99–104.

[102] Navid Khoshavi, Connor Broyles, Yu Bi, and Arman Roohi. 2020. Fiji-FIN: A fault injection framework on quantized
neural network inference accelerator. In 19th IEEE International Conference on Machine Learning and Applications
(ICMLA’20). IEEE, 1139–1144.

[103] Fabiano Libano, Brittany Wilson, J. Anderson, Michael J. Wirthlin, Carlo Cazzaniga, Christopher Frost, and Paolo
Rech. 2018. Selective hardening for neural networks in FPGAs. IEEE Trans. Nuclear Sci. 66, 1 (2018), 216–222.

[104] Fabiano Libano, Brittany Wilson, Michael Wirthlin, Paolo Rech, and John Brunhaver. 2020. Understanding the impact
of quantization, accuracy, and radiation on the reliability of convolutional neural networks on FPGAs. IEEE Trans.
Nuclear Sci. 67, 7 (2020), 1478–1484.

[105] Lucas Matana Luza, Annachiara Ruospo, Alberto Bosio, Ernesto Sanchez, and Luigi Dilillo. 2021. A model-based
framework to assess the reliability of safety-critical applications. In 24th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS’21). IEEE, 41–44.

[106] Lucas Matanaluza, Annachiara Ruospo, Daniel Soderstrom, Carlo Cazzaniga, Maria Kastriotou, Ernesto Sanchez,
Alberto Bosio, and Luigi Dilillo. 2021. Emulating the effects of radiation-induced soft-errors for the reliability assess-
ment of neural networks. IEEE Trans. Emerg. Topics Comput. 10, 4 (2021).

[107] Ioanna Souvatzoglou, Athanasios Papadimitriou, Aitzan Sari, Vasileios Vlagkoulis, and Mihalis Psarakis. 2021. An-
alyzing the single event upset vulnerability of binarized neural networks on SRAM FPGAs. In IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’21). IEEE, 1–6.

[108] H.-B. Wang, Y.-S. Wang, J.-H. Xiao, S.-L. Wang, and T.-J. Liang. 2021. Impact of single-event upsets on convolutional
neural networks in Xilinx Zynq FPGAs. IEEE Trans. Nuclear Sci. 68, 4 (2021), 394–401.

[109] Khalid Adam, Izzeldin Ibrahim Mohamed, and Younis Ibrahim. 2021. A selective mitigation technique of soft errors
for DNN models used in healthcare applications: DenseNet201 case study. IEEE Access 9 (2021), 65803–65823.

[110] Khalid Adam, Izzeldin I. Mohd, and Younis Ibrahim. 2021. Analyzing the instructions vulnerability of dense convo-
lutional network on GPUS. Int. J. Electric. Comput. Eng. 11, 5 (2021), 4481–4488.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:35

[111] Khalid Adam, Izzeldin I. Mohd, and Younis M. Younis. 2021. The impact of the soft errors in convolutional neural
network on GPUs: Alexnet as case study. Procedia Comput. Sci. 182 (2021), 89–94.

[112] Cristiana Bolchini, Luca Cassano, Antonio Miele, and Alessandro Nazzari. 2022. Selective hardening of CNNs based
on layer vulnerability estimation. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nan-
otechnology Systems (DFT’22). IEEE, 1–6.

[113] Niccolò Cavagnero, Fernando Dos Santos, Marco Ciccone, Giuseppe Averta, Tatiana Tommasi, and Paolo Rech. 2022.
Transient-fault-aware design and training to enhance DNNs reliability with zero-overhead. In IEEE 28th International
Symposium on On-Line Testing and Robust System Design (IOLTS’22). IEEE, 1–7.

[114] Josie E. Rodriguez Condia, Fernando Fernandes dos Santos, Matteo Sonza Reorda, and Paolo Rech. 2021. Combining
architectural simulation and software fault injection for a fast and accurate CNNs reliability evaluation on GPUs. In
IEEE 39th VLSI Test Symposium (VTS’21). IEEE, 1–7.

[115] Fernando Fernandes Dos Santos, Angeliki Kritikakou, Josie E. Rodriguez Condia, Juan-David Guerrero-Balaguera,
Matteo Sonza Reorda, Olivier Sentieys, and Paolo Rech. 2022. Characterizing a neutron-induced fault model for deep
neural networks. IEEE Trans. Nuclear Sci. 70, 4 (2022).

[116] Tyler Garrett and Alan D. George. 2021. Improving dependability of onboard deep learning with resilient TensorFlow.
In IEEE Space Computing Conference (SCC’21). IEEE, 134–142.

[117] Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, and Stephen W. Keckler. 2021. Making convolutions resilient
via algorithm-based error detection techniques. IEEE Trans. Depend. Sec. Comput. 19, 4 (2021).

[118] Younis Ibrahim, Haibin Wang, and Khalid Adam. 2020. Analyzing the reliability of convolutional neural networks on
GPUs: GoogLeNet as a case study. In International Conference on Computing and Information Technology (ICCIT’20).
IEEE, 1–6.

[119] Younis Ibrahin, Junyang Liu, Xuanxuan Yang, Hongwei Sha, and Haibin Wang. 2020. Analyzing the impact of soft
errors in deep neural networks on GPUs from instruction level. WSEAS Trans. Syst. Contr. 15 (2020), 699–708.

[120] Rubens Luiz Rech and Paolo Rech. 2020. Impact of layers selective approximation on CNNs reliability and perfor-
mance. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’20).
IEEE, 1–4.

[121] Fernando Fernandes dos Santos, Lucas Draghetti, Lucas Weigel, Luigi Carro, Philippe Navaux, and Paolo Rech. 2017.
Evaluation and mitigation of soft-errors in neural network-based object detection in three GPU architectures. In
47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W’17). IEEE,
169–176.

[122] Fernando Fernandes dos Santos, Philippe Navaux, Luigi Carro, and Paolo Rech. 2019. Impact of reduced precision in
the reliability of deep neural networks for object detection. In IEEE European Test Symposium (ETS’19). IEEE, 1–6.

[123] Geancarlo Abich, Ricardo Reis, and Luciano Ost. 2021. The impact of precision bitwidth on the soft error reliability
of the MobileNet network. In IEEE 12th Latin America Symposium on Circuits and System (LASCAS’21). IEEE, 1–4.

[124] Geancarlo Abich, Jonas Gava, Rafael Garibotti, Ricardo Reis, and Luciano Ost. 2021. Applying lightweight soft error
mitigation techniques to embedded mixed precision deep neural networks. IEEE Trans. Circ. Syst. I: Reg. Pap. 68, 11
(2021), 4772–4782.

[125] Geancarlo Abich, Rafael Garibotti, Jonas Gava, Ricardo Reis, and Luciano Ost. 2022. Impact of thread parallelism
on the soft error reliability of convolution neural networks. In IEEE 13th Latin America Symposium on Circuits and
System (LASCAS’22). IEEE, 1–4.

[126] Geancarlo Abich, Rafael Garibotti, Ricardo Reis, and Luciano Ost. 2022. The impact of soft errors in memory units of
edge devices executing convolutional neural networks. IEEE Trans. Circ. Syst. II: Express Briefs 69, 3 (2022), 679–683.

[127] Jonas Gava, Guilherme Dorneles, Ricardo Reis, Rafael Garibotti, and Luciano Ost. 2022. Soft error assessment of CNN
inference models running on a RISC-V processor. In 29th IEEE International Conference on Electronics, Circuits and
Systems (ICECS’22). IEEE, 1–4.

[128] Zhi Liu, Zhen Deng, and Xinni Yang. 2022. Using checksum to improve the reliability of embedded convolutional
neural networks. Microelectron. Reliab. 136 (2022), 114666.

[129] Zhi Liu and Xinni Yang. 2022. An efficient structure to improve the reliability of deep neural networks on ARMs.
Microelectron. Reliab. 136 (2022), 114729.

[130] Zhi Liu, Yuhong Liu, Zhengming Chen, Gang Guo, and Haibin Wang. 2021. Analyzing and increasing soft error
resilience of Deep Neural Networks on ARM processors. Microelectron. Reliab. 124 (2021), 114331.

[131] Dimitris Agiakatsikas, Nikos Foutris, Aitzan Sari, Vasileios Vlagkoulis, Ioanna Souvatzoglou, Mihalis Psarakis, Mikel
Luján, Maria Kastriotou, and Carlo Cazzaniga. 2021. Evaluation of the Xilinx deep learning processing unit under
neutron irradiation. In 21st European Conference on Radiation and Its Effects on Components and Systems (RADECS’21).
IEEE, 1–4.

[132] Giulio Gambardella, Nicholas J. Fraser, Ussama Zahid, Gianluca Furano, and Michaela Blott. 2022. Accelerated radi-
ation test on quantized neural networks trained with fault aware training. In IEEE Aerospace Conference (AERO’22).
IEEE, 1–7.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:36 M. H. Ahmadilivani et al.

[133] F. Libano, P. Rech, B. Neuman, J. Leavitt, M. Wirthlin, and J. Brunhaver. 2021. How reduced data precision and degree
of parallelism impact the reliability of convolutional neural networks on FPGAs. IEEE Trans. Nuclear Sci. 68, 5 (2021),
865–872.

[134] Lucas Matana Luza, Daniel Söderström, Georgios Tsiligiannis, Helmut Puchner, Carlo Cazzaniga, Ernesto Sanchez,
Alberto Bosio, and Luigi Dilillo. 2020. Investigating the impact of radiation-induced soft errors on the reliability of
approximate computing systems. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nan-
otechnology Systems (DFT’20). IEEE, 1–6.

[135] Pierre Maillard, Yanran P. Chen, Jason Vidmar, Nicholas Fraser, Giulio Gambardella, Minal Sawant, and Martin L.
Voogel. 2022. Radiation tolerant deep learning processor unit (DPU) based platform using Xilinx 20nm Kintex Ultra-
Scale™ FPGA. IEEE Trans. Nuclear Sci. 70, 4 (2022).

[136] Pedro Martins Basso, Fernando Fernandes dos Santos, and Paolo Rech. 2020. Impact of tensor cores and mixed pre-
cision on the reliability of matrix multiplication in GPUs. IEEE Trans. Nuclear Sci. 67, 7 (2020), 1560–1565.

[137] Atieh Lotfi, Saurabh Hukerikar, Keshav Balasubramanian, Paul Racunas, Nirmal Saxena, Richard Bramley, and Yanx-
iang Huang. 2019. Resiliency of automotive object detection networks on GPU architectures. In IEEE International
Test Conference (ITC’19). IEEE, 1–9.

[138] Rubens Luiz Rech Junior, Sujit Malde, Carlo Cazzaniga, Maria Kastriotou, Manon Letiche, Christopher Frost, and
Paolo Rech. 2022. High energy and thermal neutron sensitivity of Google Tensor Processing Units. IEEE Trans. Nu-
clear Sci. 69, 3 (2022), 567–575.

[139] Rubens Luiz Rech and Paolo Rech. 2022. Reliability of Google’s tTensor Processing Units for embedded applications.
In Design, Automation & Test in Europe Conference & Exhibition (DATE’22). IEEE, 376–381.

[140] Alberto Bosio, Paolo Bernardi, Annachiara Ruospo, and Ernesto Sanchez. 2019. A reliability analysis of a deep neural
network. In IEEE Latin American Test Symposium (LATS’19). IEEE, 1–6.

[141] Seo-Seok Lee and Joon-Sung Yang. 2022. Value-aware parity insertion ECC for fault-tolerant deep neural network.
In Design, Automation & Test in Europe Conference & Exhibition (DATE’22). IEEE, 724–729.

[142] Annachiara Ruospo, Alberto Bosio, Alessandro Ianne, and Ernesto Sanchez. 2020. Evaluating convolutional neural
networks reliability depending on their data representation. In 23rd Euromicro Conference on Digital System Design
(DSD’20). IEEE, 672–679.

[143] Annachiara Ruospo, Ernesto Sanchez, Marcello Traiola, Ian O’connor, and Alberto Bosio. 2021. Investigating data
representation for efficient and reliable convolutional neural networks. Microprocess. Microsyst. 86 (2021), 104318.

[144] Stephane Burel, Adrian Evans, and Lorena Anghel. 2022. Mozart+: Masking outputs with zeros for improved archi-
tectural robustness and testing of DNN accelerators. IEEE Trans. Device Mater. Reliab. 22, 2 (2022), 120–128.

[145] Le-Ha Hoang, Muhammad Abdullah Hanif, and Muhammad Shafique. 2021. TRe-Map: Towards reducing the over-
heads of fault-aware retraining of deep neural networks by merging fault maps. In 24th Euromicro Conference on
Digital System Design (DSD’21). IEEE, 434–441.

[146] Thai-Hoang Nguyen, Muhammad Imran, Jaehyuk Choi, and Joon-Sung Yang. 2021. Low-cost and effective fault-
tolerance enhancement techniques for emerging memories-based deep neural networks. In 58th ACM/IEEE Design
Automation Conference (DAC’21). IEEE, 1075–1080.

[147] Ayesha Siddique, Kanad Basu, and Khaza Anuarul Hoque. 2021. Exploring fault-energy trade-offs in approxi-
mate DNN hardware accelerators. In 22nd International Symposium on Quality Electronic Design (ISQED’21). IEEE,
343–348.

[148] Yung-Yu Tsai and Jin-Fu Li. 2021. Evaluating the impact of fault-tolerance capability of deep neural networks caused
by faults. In IEEE 34th International System-on-Chip Conference (SOCC’21). IEEE, 272–277.

[149] Ussama Zahid, Giulio Gambardella, Nicholas J. Fraser, Michaela Blott, and Kees Vissers. 2020. FAT: Training neural
networks for reliable inference under hardware faults. In IEEE International Test Conference (ITC’20). IEEE, 1–10.

[150] Yingnan Zhao, Ke Wang, and Ahmed Louri. 2022. FSA: An efficient fault-tolerant systolic array-based DNN acceler-
ator architecture. In IEEE 40th International Conference on Computer Design (ICCD’22). IEEE, 545–552.

[151] Cheng Liu, Cheng Chu, Dawen Xu, Ying Wang, Qianlong Wang, Huawei Li, Xiaowei Li, and Kwang-Ting Cheng.
2021. HyCA: A hybrid computing architecture for fault-tolerant deep learning. IEEE Trans. Comput.-aid. Des. Integ.
Circ. Syst. 41, 10 (2021), 3400–3413.

[152] Dawen Xu, Cheng Chu, Qianlong Wang, Cheng Liu, Ying Wang, Lei Zhang, Huaguo Liang, and Kwang-Ting Cheng.
2020. A hybrid computing architecture for fault-tolerant deep learning accelerators. In IEEE 38th International Con-
ference on Computer Design (ICCD’20). IEEE, 478–485.

[153] Jeff Jun Zhang, Kanad Basu, and Siddharth Garg. 2019. Fault-tolerant systolic array based accelerators for deep neural
network execution. IEEE Des. Test 36, 5 (2019), 44–53.

[154] Jeff Jun Zhang, Tianyu Gu, Kanad Basu, and Siddharth Garg. 2018. Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator. In IEEE 36th VLSI Test Symposium (VTS’18). IEEE, 1–6.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:37

[155] Giulio Gambardella, Johannes Kappauf, Michaela Blott, Christoph Doehring, Martin Kumm, Peter Zipf, and Kees
Vissers. 2019. Efficient error-tolerant quantized neural network accelerators. In IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’19). IEEE, 1–6.

[156] Behzad Salami, Osman S. Unsal, and Adrian Cristal Kestelman. 2018. On the resilience of RTL NN accelerators: Fault
characterization and mitigation. In 30th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD’18). IEEE, 322–329.

[157] Josie E. Rodriguez Condia, Juan-David Guerrero-Balaguera, Fernando F. Dos Santos, Matteo Sonza Reorda, and Paolo
Rech. 2022. A multi-level approach to evaluate the impact of GPU permanent faults on CNN’s reliability. In IEEE
International Test Conference (ITC’22). IEEE, 278–287.

[158] Juan-David Guerrero-Balaguera, Josie E. Rodriguez Condia, and Matteo Sonza Reorda. 2022. Neural network’s relia-
bility to permanent faults: Analyzing the impact of performance optimizations in GPUs. In 29th IEEE International
Conference on Electronics, Circuits and Systems (ICECS’22). IEEE, 1–4.

[159] Juan-David Guerrero-Balaguera, Robert Limas Sierra, and Matteo Sonza Reorda. 2022. Effective fault simulation of
GPU’s permanent faults for reliability estimation of CNNs. In IEEE 28th International Symposium on On-Line Testing
and Robust System Design (IOLTS’22). IEEE, 1–6.

[160] Juan-David Guerrero-Balaguera, Luigi Galasso, Robert Limas Sierra, Ernesto Sanchez, and Matteo Sonza Reorda.
2022. Evaluating the impact of permanent faults in a GPU running a deep neural network. In IEEE International Test
Conference in Asia (ITC-Asia’22). IEEE, 96–101.

[161] Zheyu Yan, Yiyu Shi, Wang Liao, Masanori Hashimoto, Xichuan Zhou, and Cheng Zhuo. 2020. When single event
upset meets deep neural networks: Observations, explorations, and remedies. In 25th Asia and South Pacific Design
Automation Conference (ASP-DAC’20). IEEE, 163–168.

[162] Dawen Xu, Ziyang Zhu, Cheng Liu, Ying Wang, Huawei Li, Lei Zhang, and Kwang-Ting Cheng. 2020. Persistent fault
analysis of neural networks on FPGA-based acceleration system. In IEEE 31st International Conference on Application-
specific Systems, Architectures and Processors (ASAP’20). IEEE, 85–92.

[163] Dawen Xu, Ziyang Zhu, Cheng Liu, Ying Wang, Shuang Zhao, Lei Zhang, Huaguo Liang, Huawei Li, and Kwang-
Ting Cheng. 2021. Reliability evaluation and analysis of FPGA-based neural network acceleration system. IEEE Trans.
Very Large Scale Integ. Syst. 29, 3 (2021), 472–484.

[164] Abdulrahman Mahmoud, Neeraj Aggarwal, Alex Nobbe, Jose Rodrigo Sanchez Vicarte, Sarita V. Adve, Christopher W.
Fletcher, Iuri Frosio, and Siva Kumar Sastry Hari. 2020. PyTorchFi: A runtime perturbation tool for DNNs. In 50th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W’20). IEEE, 25–31.

[165] Zitao Chen, Niranjhana Narayanan, Bo Fang, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben. 2020.
TensorFI: A flexible fault injection framework for TensorFlow applications. In IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE’20). IEEE, 426–435.

[166] Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben. 2018. TensorFI: A configurable fault injector for
TensorFlow applications. In IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW’18).
IEEE, 313–320.

[167] Niranjhana Narayanan, Zitao Chen, Bo Fang, Guanpeng Li, Karthik Pattabiraman, and Nathan Debardeleben. 2022.
Fault injection for TensorFlow applications. IEEE Trans. Depend. Sec. Comput. 20, 4 (2022).

[168] Sabuj Laskar, Md Hasanur Rahman, and Guanpeng Li. 2022. TensorFI+: A scalable fault injection framework for mod-
ern deep learning neural networks. In IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW’22). IEEE, 246–251.

[169] Sabuj Laskar, Md Hasanur Rahman, Bohan Zhang, and Guanpeng Li. 2022. Characterizing deep learning neural
network failures between algorithmic inaccuracy and transient hardware faults. In IEEE 27th Pacific Rim International
Symposium on Dependable Computing (PRDC’22). IEEE, 54–67.

[170] Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough, Sae Kyu Lee, Niamh Mulholland, David Brooks,
and Gu-Yeon Wei. 2018. Ares: A framework for quantifying the resilience of deep neural networks. In 55th
ACM/ESDA/IEEE Design Automation Conference (DAC’18). IEEE, 1–6.

[171] Zitao Chen, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben. 2019. BinFI: An efficient fault injector for
safety-critical machine learning systems. In International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–23.

[172] Udit Kumar Agarwal, Abraham Chan, and Karthik Pattabiraman. 2022. LLTFI: Framework agnostic fault injection for
machine learning applications (tools and artifact track). In IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE’22). IEEE, 286–296.

[173] Elvis Rojas, Diego Pérez, Jon C. Calhoun, Leonardo Bautista Gomez, Terry Jones, and Esteban Meneses. 2021. Un-
derstanding soft error sensitivity of deep learning models and frameworks through checkpoint alteration. In IEEE
International Conference on Cluster Computing (CLUSTER’21). IEEE, 492–503.

[174] N2D2 CAD framework for DNNs. 2016. Retrieved from: https://github.com/cea-list/N2D2

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:38 M. H. Ahmadilivani et al.

[175] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar Krishna. 2018. SCALE-Sim: Systolic
CNN accelerator simulator. arXiv preprint arXiv:1811.02883 (2018).

[176] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture for energy-efficient dataflow for
convolutional neural networks. ACM SIGARCH Comput. Archit. News 44, 3 (2016), 367–379.

[177] XILINX. 2021. SoCs with Hardware and Software Programmability. Retrieved from: https://www.xilinx.com/
products/silicon-devices/soc/zynq-7000.html

[178] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees
Vissers. 2017. FINN: A framework for fast, scalable binarized neural network inference. In ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 65–74.

[179] Juan-David Guerrero-Balaguera, Luigi Galasso, Robert Limas Sierra, and Matteo Sonza Reorda. 2022. Reliability as-
sessment of neural networks in GPUs: A framework for permanent faults injections. In IEEE 31st International Sym-
posium on Industrial Electronics (ISIE’22). IEEE, 959–962.

[180] NVIDIA Corporation. 2021. NVIDIA TensorRT. Retrieved from: https://developer.nvidia.com/tensorrt
[181] Josie E. Rodriguez Condia, Boyang Du, Matteo Sonza Reorda, and Luca Sterpone. 2020. FlexGripPlus: An improved

GPGPU model to support reliability analysis. Microelectron. Reliab. 109 (2020), 113660.
[182] Timothy Tsai, Siva Kumar Sastry Hari, Michael Sullivan, Oreste Villa, and Stephen W. Keckler. 2021. NVBitFI: Dy-

namic fault injection for GPUs. In 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’21). IEEE, 284–291.

[183] Daniel Oliveira, Laércio Pilla, Nathan DeBardeleben, Sean Blanchard, Heather Quinn, Israel Koren, Philippe Navaux,
and Paolo Rech. 2017. Experimental and analytical study of Xeon Phi reliability. In International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–12.

[184] Cristiana Bolchini, Luca Cassano, Antonio Miele, and Alessandro Toschi. 2022. Fast and accurate error simulation
for CNNs against soft errors. IEEE Trans. Comput. 72, 4 (2022).

[185] Siva Kumar Sastry Hari, Timothy Tsai, Mark Stephenson, Stephen W. Keckler, and Joel Emer. 2017. SASSIFI: An
architecture-level fault injection tool for GPU application resilience evaluation. In IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’17). IEEE, 249–258.

[186] Muhammad Abdullah Hanif and Muhammad Shafique. 2020. SalvageDNN: Salvaging deep neural network accelera-
tors with permanent faults through saliency-driven fault-aware mapping. Philosoph. Trans. Roy. Societ. A 378, 2164
(2020), 20190164.

[187] Annachiara Ruospo and Ernesto Sanchez. 2021. On the reliability assessment of artificial neural networks running
on AI-oriented MPSoCs. Appl. Sci. 11, 14 (2021), 6455.

[188] Annachiara Ruospo, Gabriele Gavarini, Ilaria Bragaglia, Marcello Traiola, Alberto Bosio, and Ernesto Sanchez. 2022.
Selective hardening of critical neurons in deep neural networks. In 25th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS’22). IEEE, 136–141.

[189] Christoph Schorn, Andre Guntoro, and Gerd Ascheid. 2018. Accurate neuron resilience prediction for a flexible reli-
ability management in neural network accelerators. In Design, Automation & Test in Europe Conference & Exhibition
(DATE’18). IEEE, 979–984.

[190] Christoph Schorn, Andre Guntoro, and Gerd Ascheid. 2019. An efficient bit-flip resilience optimization method for
deep neural networks. In Design, Automation & Test in Europe Conference & Exhibition (DATE’19). IEEE, 1507–1512.

[191] Wonseok Choi, Dongyeob Shin, Jongsun Park, and Swaroop Ghosh. 2019. Sensitivity based error resilient techniques
for energy efficient deep neural network accelerators. In 56th Annual Design Automation Conference. 1–6.

[192] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Christopher W. Fletcher, Sarita V. Adve, Charbel Sakr, Naresh
Shanbhag, Pavlo Molchanov, Michael B. Sullivan, Timothy Tsai, and Stephen W. Keckler. 2020. HarDNN: Feature
map vulnerability evaluation in CNNs. arXiv preprint arXiv:2002.09786 (2020).

[193] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Christopher W. Fletcher, Sarita V. Adve, Charbel Sakr, Naresh R.
Shanbhag, Pavlo Molchanov, Michael B. Sullivan, Timothy Tsai, and Stephen W. Keckler. 2021. Optimizing selective
protection for CNN resilience. In International Symposium on Software Reliability Engineering (ISSRE’21). 127–138.

[194] Muhammad Sabih, Frank Hannig, and Jürgen Teich. 2021. Fault-tolerant low-precision DNNs using explainable AI.
In 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W’21). IEEE,
166–174.

[195] Liqi Ping, Jingweijia Tan, and Kaige Yan. 2020. SERN: Modeling and analyzing the soft error reliability of convolu-
tional neural networks. In Great Lakes Symposium on VLSI. 445–450.

[196] G. Gavarini, D. Stucchi, A. Ruospo, G. Boracchi, and E. Sanchez. 2022. Open-set recognition: An inexpensive strat-
egy to increase DNN reliability. In IEEE 28th International Symposium on On-Line Testing and Robust System Design
(IOLTS’22). IEEE, 1–7.

[197] Yi He, Prasanna Balaprakash, and Yanjing Li. 2020. Fidelity: Efficient resilience analysis framework for deep learning
accelerators. In 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’20). IEEE, 270–281.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:39

[198] NVIDIA Corporation. 2021. NVDLA Open Source Project. Retrieved from: http://nvdla.org
[199] Alessandro Veronesi, Francesco Dall’Occo, Davide Bertozzi, Michele Favalli, and Milos Krstic. 2022. Exploring soft-

ware models for the resilience analysis of deep learning accelerators: The NVDLA case study. In 25th International
Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS’22). IEEE, 142–147.

[200] Yangchao Zhang, Hiroaki Itsuji, Takumi Uezono, Tadanobu Toba, and Masanori Hashimoto. 2022. Estimating vul-
nerability of all model parameters in DNN with a small number of fault injections. In Design, Automation & Test in
Europe Conference & Exhibition (DATE’22). IEEE, 60–63.

[201] Abraham Chan, Arpan Gujarati, Karthik Pattabiraman, and Sathish Gopalakrishnan. 2022. The fault in our data
stars: studying mitigation techniques against faulty training data in machine learning applications. In 52nd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’22). IEEE, 163–171.

Received 8 May 2023; accepted 15 December 2023

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

Appendix 2

II

M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin.DeepVigor: VulnerabIlity Value RanGes and FactORs for DNNs’ ReliabilityAssessment. In IEEE European Test Symposium (ETS), pages 1–6. Venice,Italy, 2023

195

DeepVigor: VulnerabIlity Value RanGes and FactORs
for DNNs’ Reliability Assessment

Mohammad Hasan Ahmadilivani1, Mahdi Taheri1, Jaan Raik1, Masoud Daneshtalab1,2, and Maksim Jenihhin1

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

1{mohammad.ahmadilivani, mahdi.taheri, jaan.raik, maksim.jenihhin}@taltech.ee
2masoud.daneshtalab@mdu.se

Abstract—Deep Neural Networks (DNNs) and their accelerators
are being deployed ever more frequently in safety-critical applica-
tions leading to increasing reliability concerns. A traditional and
accurate method for assessing DNNs’ reliability has been resorting
to fault injection, which, however, suffers from prohibitive time
complexity. While analytical and hybrid fault injection-/analytical-
based methods have been proposed, they are either inaccurate or
specific to particular accelerator architectures.

In this work, we propose a novel accurate, fine-grain, metric-
oriented, and accelerator-agnostic method called DeepVigor that
provides vulnerability value ranges for DNN neurons’ outputs.
An outcome of DeepVigor is an analytical model representing
vulnerable and non-vulnerable ranges for each neuron that can
be exploited to develop different techniques for improving DNNs’
reliability. Moreover, DeepVigor provides reliability assessment
metrics based on vulnerability factors for bits, neurons, and layers
using the vulnerability ranges.

The proposed method is not only faster than fault injection
but also provides extensive and accurate information about
the reliability of DNNs, independent from the accelerator. The
experimental evaluations in the paper indicate that the proposed
vulnerability ranges are 99.9% to 100% accurate even when
evaluated on previously unseen test data. Also, it is shown that
the obtained vulnerability factors represent the criticality of bits,
neurons, and layers proficiently. DeepVigor is implemented in the
PyTorch framework and validated on complex DNN benchmarks.

I. INTRODUCTION

Deep Neural Networks (DNNs) have recently emerged to be
exploited in a wide range of applications. DNN accelerators have
also penetrated into safety-critical applications e.g., autonomous
vehicles [1], [2]. Therefore, several concerns are raised regarding
developing and utilizing DNN accelerators in the realm of safety-
critical applications, one of them being the reliability.

Reliability of DNNs concerns their accelerators’ ability to
perform correctly in the presence of faults [3] originating from
either the environment (e.g., soft errors, electromagnetic effects,
temperature variations) or inside of the chip (e.g., manufacturing
defects, process variations, aging effects) [1], [4]. As shown in
Fig. 1, faults may occur in different locations of accelerators
either in memory or logic components and they influence the

The work is supported in part by the European Union through European
Social Fund in the frames of the “Information and Communication Technologies
(ICT) programme” (“ITA-IoIT” topic), by the Estonian Research Council
grant PUT PRG1467 “CRASHLES” and by Estonian-French PARROT project
“EnTrustED”.

Fig. 1: Hardware reliability threats in DNN accelerators and their
impact on the output [1].

parameters (e.g., weights and bias) and intermediate results
(layers’ activations) of neural networks that can decrease their
accuracy drastically [5], [6]. By technology miniaturization, the
effect of Single Event Transient (SET) and Single Event Upset
(SEU) faults in devices is increasing thereby jeopardizing the
reliability of modern digital systems [7].

Recently, several works have been published on the assessment
and improvement of the reliability of a variety of DNNs as well
as on different levels of system hierarchy [3], [4], [8]. Reliability
assessment is the process of modeling the target DNN accelerator
and measuring its reliability with respect to the corresponding
quantitative evaluation metrics. Reliability assessment is the
underlying procedure for improving reliability since it presents
how the system could be influenced by threats as well as which
locations of the system are more vulnerable to them. Therefore,
it is the very first and principal phase of a reliable design process.

Throughout the literature, reliability assessment methods for
DNNs are mainly categorized into two major classes: fault
injection (FI) and resilience analysis. The majority of the
works assess the reliability of DNNs relying on FI, which
provides realistic results on the impact of different fault models
on the system’s execution and is performed directly on the
target platform (accelerator’s software [9] or RTL model [10],
FPGA [11], GPU [12]). FI outputs different evaluations for
DNNs’ reliability by accuracy loss, vulnerability factors, or fault
classification [11], [13], [14]. Moreover, fine-grain evaluations
for finding critical bits can be performed by exhaustive FI or
an optimized method in [15].

Nevertheless, FI methods are prohibitively time-consuming
and carry a high complexity due to the need to inject an enormous
amount of faults into a huge number of DNN parameters as

2023 28th IEEE European Test Symposium (ETS)

979-8-3503-3634-4/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 E
ur

op
ea

n
Te

st
 S

ym
po

si
um

 (E
TS

) |
 9

79
-8

-3
50

3-
36

34
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

ET
S5

67
58

.2
02

3.
10

17
41

33

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 27,2024 at 06:53:36 UTC from IEEE Xplore. Restrictions apply.

well as time instances to reach an acceptable confidence level
[16], [17]. The more fine-grain evaluation is required the more
sophisticated experiments should be performed. In addition, most
faults in a FI experiment on DNNs are masked [18] and are
thus unnecessarily examined. Furthermore, the outcome of such
assessment is application/platform specific which can not be
generalized for other platforms [19].

Resilience analysis methods cope with the drawbacks of FI.
They analyze the function of DNNs mathematically and have
the potential to evaluate their reliability with arbitrary metrics.
Therefore, resilience analysis methods can provide a deeper
insight into the reliability evaluations of DNNs with lower
complexity. Moreover, they can be conducted in different fault-
tolerant designs on various platforms [20].

Layer-wise Relevance Propagation (LRP) algorithm is lever-
aged in [21]–[24] to obtain the contribution of neurons to
the output to express their criticality and apply protections to
improve the reliability of DNN accelerators. The sensitivity of
DNN’s filters is obtained by Taylor expansion with given error
rates in [25] for designing an error-resilient and energy-efficient
accelerator.

The conducted resilience analyses in these works are not
able to provide reliability measurement metrics and detailed
vulnerability evaluations. Moreover, they combine the criticality
scores of neurons over individual outputs of the DNNs, thus
resulting in missing important information about the resilience
of DNNs as a whole. Mahmoud et al. [20] proposed different
heuristics for vulnerability estimation of feature maps without
FI. These estimations which are more coarse grain than the LRP-
based methods, lead to hardening the accelerators, however, the
accuracy of the vulnerability estimation methods is remarkably
lower than that of fault-injection methods.

The aforementioned papers on resilience analysis methods
have focused mainly on finding the most critical neurons/weights
in a DNN to protect them against faults in a fault-tolerant
design. In addition, they do not explain sufficiently how a
fault propagates through the network and influence its outputs.
Fidelity framework [26] is proposed to take advantage of both FI
and analyzing DNN accelerators to provide reliability metrics.
However, it requires detailed information of the accelerator
architecture/implementation. To the best of our knowledge, there
is no accelerator-agnostic resilience analysis method for DNNs
that can compete with FI in terms of reliability evaluation to
be less time-consuming, and accurate with fine-grain metrics
enabling different reliability improvement techniques.

In this research work, we introduce the concept of neurons’
vulnerability ranges expressing whether or not a fault at the
output of neurons would misclassify the network. Thus, it
enables a comprehensive reliability study with a novel resilience
analysis method called DeepVigor where the vulnerability factors
of layers, neurons, and bits in a DNN are obtained. The
contributions in this work are:

• Proposing DeepVigor, a novel accurate, metric-oriented, and
accelerator-agnostic resilience analysis method for DNNs
reliability assessment faster than fault injection;

• Introducing and acquiring vulnerability ranges for all

neurons in DNNs, assisted by a fault propagation analysis,
providing accurate categorization of critical/non-critical
faults;

• Providing fine-grain vulnerability factors as reliability
evaluation metrics for layers, neurons, and bits in DNNs,
compared with and validated by fault injection.

The remainder of the paper is organized as follows: the
resilience analysis method is presented in Section II, and the
experimental setup and results are provided in Section III. The
applicability of the method is discussed in Section IV, and the
work is concluded in Section V.

II. DNN RELIABILITY ASSESSMENT WITH DEEPVIGOR

A. Fault Model

In this work, the fault propagation analysis is performed at
the outputs of DNN neurons. However, they will cover a vast
majority of internal faults of the neurons occurring inside the
MAC units and also a large portion of faults in the weights and
neurons’ input activations. It is assumed that only one neuron
has an erroneous output per execution due to faults which is a
common assumption in the literature [15].

For validation by FI, the single-bit fault model has been
applied. While the multiple-bit fault model is more accurate, it
requires a prohibitively large number of fault combinations to be
considered (3n−1 combinations, where n is the number of bits).
Fortunately, it has been shown that high fault coverage obtained
using the single-bit model results in a high fault coverage of
multiple-bit faults [27]. Therefore, a vast majority of practical
FI and test methods are based on the single-bit fault assumption.
Single bitflip faults are injected randomly at neurons’ outputs
and once per execution.

B. Fault Propagation Analysis

Fig. 2 depicts an overview of the rationale behind the
DeepVigor method. A tiny neural network with few layers
and neurons with given inputs, golden (fault-free) activation
values (inside of neurons), and weights (on the arrows) is shown.
The golden classification output is class1. A fault changes the
neuron’s output by δ which is the difference between the golden
and faulty activation values. This δ that can have either a negative
or a positive value will be propagated to the output layer and may
change the classification result. The fault propagation will make
a difference on each output class as ∆1 and ∆2. Misclassification
happens when the value of the output neuron class2 gets higher
than that of neuron class1.

Thus, the propagation of the fault can be traced from the
neuron to the output and a problem for misclassification can
be expressed as shown in Fig. 2. By solving the problem
of misclassification condition in the output, the value for δ
is obtained as a vulnerability threshold that expresses how
much a fault should influence the neuron to misclassify the
network. Therefore, a vulnerability value range for the neuron is
acquired. In this example, the range (−∞,−5.39) is a vulnerable
range and [−5.39,+∞) is non-vulnerable range. This idea is
generalized for a DNN including multiple output classes and
other corresponding functions in this paper.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 27,2024 at 06:53:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: An example of fault propagation analysis model and finding
the vulnerability value ranges for a neuron with a given input.

C. The DeepVigor Method

The steps of the proposed DNNs’ resilience analysis method
(DeepVigor) and its validation are illustrated in Fig. 3. As shown,
an analysis is performed on a set of data (i.e., set1, training
set) and outputs the vulnerability value ranges as well as the
vulnerability factors. Furthermore, FI is performed on the same
and different data (i.e., set2, test set) to validate the outcomes
of the analysis. The steps of DeepVigor are as follows:

Input Data
Set1

Pretrained
DNN

Step1:
Gradient-based

Initialization

Step3: Bitflip
Mapping

Vulnerability
Value Ranges

Step1: Random
Fault Injection

DeepVigor Analysis

Step3: Validating
DeepVigor

Inputs

DeepVigor
Outputs

Validation Steps

Vulnerability
Factors

Step2: Faults
Categorization

Input Data
Set2

Step2: Neurons'
Vulnerability

Analysis

Fig. 3: Steps of the DeepVigor method for DNNs’ reliability
assessment and its validation.

Step1 - Gradient-based Initialization: In the first step, a
neuron is examined whether or not to be processed for the
vulnerability analysis. For this purpose, assuming a neural
network consisting of L layers with N output classes in
C = {c1, c2, ..., cN}. Neuron k at layer l is selected to be
examined. The neuron’s output is corrupted by adding a sample
positive or negative value as ϵlk to its output and the feed-forward
of the network is executed over a batch of input data. A loss
function L is defined in Equation (1) as:

L = sigmoid(
N∑
j=0

(Ect − Eci)) (1)

where ct is the golden top class and Ect and Eci are the erroneous
output values corresponding to the respective classes. The loss
function computes the summation of differences between the
value of the golden top class and the other outputs in the

corrupted network and applies a sigmoid function. The golden
top class is what the fault-free DNN outputs as its classification
whether or not it is correctly classified.

L represents the impact of the neuron’s erroneous output on
the golden top class of the network. When the gradient of L
w.r.t. the corrupted neuron’s output for one input is zero, it
means that any error at this neuron’s output does not change
the output classification. Considering a batch of inputs, if the
gradients are zero for a portion of inputs larger than a threshold,
the neuron is disregarded for the vulnerability analysis. In case
most of the gradients are not zero, a range for searching the
vulnerability value is initialized.

Considering ϵlk is a positive value for one input, in case the
gradient is positive, there is a minimum value 0 < δlk < ϵlk for
the neuron that if error δlk is added to its output (by a fault
at its inputs or the output value itself) the network’s golden
classification would change. But if the gradient is negative, then
δlk should be searched through the values larger than ϵlk. A
similar scenario is valid for negative values of ϵlk.

Step2 - Neurons’ Vulnerability Analysis: In this step, the
vulnerability ranges of neurons under analysis are obtained. Let
RNV (l, k, x) = [rlower, rupper] be a Range of Non-vulnerable
Values for a k-th neuron at layer l with input data x. The bounds
of range R for x are calculated as follows:

{
rupper = min(δlk), δ

l
k > 0, Ect < Eci , i ̸= t

rlower = max(δlk), δ
l
k < 0, Ect < Eci , i ̸= t

(2)

where ct and ci are the golden top class and any other output
class, respectively, and Ect and Eci are the erroneous output
values corresponding to the respective classes.

Equation (2) finds the maximum negative and minimum
positive values induced at the corresponding neuron that do
not lead to misclassifying the input data from the golden
classification. Further, a Range of Vulnerable Values RV V (l, k, x)
for a k-th neuron at layer l with input data x is equal to
RV V = (−∞, rlower) ∪ (rupper,∞).

Note, the equation is applied for a single input data. In the
case of a data set X containing T input data xj the RNV and
RV V will get refined and will be equal to intersections of their
respective ranges over all inputs xj as follows:

RNV (l, k) =
T⋂

j=1

RNV (l, k, xj)

RV V (l, k) =
T⋂

j=1

RV V (l, k, xj)

(3)

The outcome of solving the equations for each neuron and
merging the results over all inputs will be the vulnerability value
ranges for each class separately, each range specifies the impact
of a fault on changing the neuron value whether it influences the
network classification result or not. Fig. 4 depicts different cases
for vulnerability ranges over all numbers. Three vulnerability
ranges are identified as follows:

• Non-vulnerable range: If a fault lay an effect on the
neuron output in this range, no misclassification happens
(hachured-green sections in Fig. 4);

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 27,2024 at 06:53:36 UTC from IEEE Xplore. Restrictions apply.

• Vulnerable range: If a fault makes a difference at the
output of the neuron in this range, the output will be
misclassified (cross hachured-red sections in Fig. 4);

• Semi-vulnerable range: If a fault causes the neuron value
to move as an amount in this range, this fault may cause a
misclassification (dashed-grey sections in Fig. 4). Cases d-f
in Fig. 4 happen when the portion of zero gradients in step1
is less than the threshold and more than 1 − threshold.

0
-∞ +∞

min_neg max_neg min_pos max_pos
non-vulnerablesemi-vulnerablevulnerable

0
-∞ +∞

0
-∞ +∞

0
-∞ +∞

a)

b)

d)

g)
0

-∞ +∞f)

0
-∞ +∞c)

-∞ +∞e)
0

Fig. 4: Different possible cases of vulnerability ranges for each class
in a neuron.

Step3 - Bitflip Mapping: In this step, DeepVigor maps the
neurons’ bitflipped values over input data on the vulnerability
value ranges to indicate fine-grain vulnerability factors as metrics
for the DNNs’ reliability. For this purpose, the inputs used in
step2 and obtained vulnerability value ranges are fed to the
network and in each bit of each neuron, bitflips are performed. In
each bitflip, the difference in the new value of the target neuron
is calculated and compared with the corresponding vulnerability
range.

Based on the range of what the bitflip maps, the bit is
considered vulnerable or non-vulnerable, respectively. By this
analysis, the number of vulnerable bits of the neurons is obtained
over the inputs. Hence, vulnerability factors of each layer (LVF),
neuron (NVF), or bit (BVF) of the DNN can be defined as
equations (4), (5), and (6), respectively. Vulnerability factors
express the probability of misclassifying the network in case of
the occurrence of a bitflip at the target element.

LV F =

#vulnerable bits in layer

#inputs ×#layer′s neurons× word length
× 100

(4)

NV F =
#vulnerable bits in neuron

#inputs × word length
× 100 (5)

BV F =
#vulnerable times for bit

#inputs
× 100 (6)

D. Validating DeepVigor By Fault Injection

As illustrated in Fig. 3, DeepVigor results are validated by
means of FI over the input data and categorizing faults based
on the vulnerability value ranges. The steps of the validation
process of DeepVigor are as follows:

Step1 - Random Fault Injection: According to the adopted
fault model, when one input is fed to the network, a random
single bitflip is injected into a random neuron in a layer. This
process is repeated several times for one input depending on
the number of neurons and word length of data to reach a
95% confidence level and 1% error margin based on [28]. The
required number of faults is obtained by Equation (7) where
N = word length × #layer′s neurons that represents the
total number of bits in the output of a layer.

#layer′s random faults =
N

1 + (0.012 × N−1
1.962×0.52)

(7)

Step2 - Fault Categorization: Once a fault is injected, a
difference is produced in the output of the neuron in comparison
with the golden model. In this step, the produced difference by
a fault at the neuron’s output is compared with the obtained
vulnerability ranges, and faults are categorized as:

• Non-critical fault: The produced difference is in the non-
vulnerable range.

• Critical fault: The produced difference is in the vulnerable
range.

Step3 - Validating DeepVigor: To validate DeepVigor by
FI, injected faults are propagated to the output and the network
classification output is examined. The accuracy of the method
is defined based on the two metrics as follows:

• True non-critical faults: Percentage of faults that are cate-
gorized as non-critical and do not change the classification
at the output;

• True critical faults: Percentage of faults that are catego-
rized as critical and change the classification at the output.

Another metric for validating the outputs of DeepVigor is
the correlation between LVF and DNN’s accuracy loss. This
correlation shows that the obtained vulnerability factors from
DeepVigor represent the criticality of the components properly.
Since other vulnerability factors (NVF and BVF) are calculated
using the same vulnerability ranges, by validating LVF, they will
be also liable metrics for the resilience analysis, consequently.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

All DNNs, steps of DeepVigor, and its validation are imple-
mented in PyTorch and run on NVIDIA 3090 GPU. To explore
different DNN structures, six representative DNNs trained on
three datasets are examined for the experimental results. We
have experimented with two 5-layer MLPs (one with Sigmoid
and one with ReLU) trained on MNIST, two LeNet-5 with 3
convolutional (CONV) layers, 2 max-pooling (POOL) layers,
and 2 fully-connected (FC) layers trained on MNIST and CIFAR-
10, AlexNet with 5 CONV, 3 POOLs, 2 batch normalization
(BN) and 3 FCs trained on CIFAR-10, and VGG-16 with 13
CONV, 13 BNs, 5 POOLs and 2 FCs trained on CIFAR-100.
The respective networks’ accuracy on the corresponding test
sets are 94.64%, 90.55%, 90.4%, 66.15%, 72.73%, and 69.41%.

Data representation in this work is 32-bit floating point IEEE-
754 and the word length in equations (4)-(7) is 32 bits. For

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 27,2024 at 06:53:36 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Accuracy of DeepVigor by fault injection on the same input
data as the analysis.

DNN True non-critical faults True critical faults
MLP-sigmoid-mnist 99.985%∼100% 100%

MLP-relu-mnist 99.991%∼100% 100%
LeNet-mnist 99.992%∼100% 100%

LeNet-cifar10 99.956%∼100% 100%
AlexNet-cifar10 99.973%∼100% 99.955%∼100%
VGG16-cifar100 99.950%∼100% 99.972%∼100%

validation, a layer-wise statistical random FI is performed that
satisfies a 95% confidence level and 1% error margin.

In the first step of DeepVigor ϵlk is considered −/+10000
for range initialization and the whole search range is [−5 ×
105, 5 × 105]. Finding δlk in all networks by a logarithmic
search is performed for negative and positive numbers separately,
considering a 0.05 difference from the main value. Also, based on
empirical explorations the threshold of neurons’ zero-gradients
for inputs is considered 98% for all experiments. Corresponding
experiments are performed on the whole sets of training (as the
input data set1) and test (as the input data set2) data.

B. Results and Validation

We analyze all neurons of the representative DNNs with
training sets as the input data set1 by DeepVigor and obtain the
vulnerability ranges. In the fault categorization step, faults are
categorized into critical and non-critical classes with an accuracy
close to 100%. Throughout the results from FI experiments,
DeepVigor identified 66.63% to 99.42% of faults as non-critical
over different layers of analyzed networks.

For validation, Table I presents the range of obtained accuracy
values of the method through all layers of DNNs in terms of true
non-critical and critical faults. It is observed that the accuracy
of the method for categorizing non-critical faults is 99.950% to
100% and for critical faults ranging from 99.955% to 100% for
the same data set.

The minor error seen in the results is due to: 1) Considered
error in finding vulnerability values, 2) FI results in ”NaN”
values in 32-bit floating point IEEE-754 while the computations
are being done on a GPU. We have categorized them as critical
faults, 3) the effect of few inputs with non-zero gradients in
step1 as described in II-C.

We have also experimented with FI on the test sets (input
data set2) to see the validity of the analysis on different sets
reported in Table II. As it can be seen, similar high accuracy
values to input data set1 are obtained.

TABLE II: Accuracy of DeepVigor by fault injection on a different
input data from the analysis.

DNN True non-critical faults True critical faults
MLP-sig-mnist 99.985%∼99.996% 99.911%∼100%
MLP-relu-mnist 99.976%∼100% 100%

LeNet-mnist 99.992%∼100% 100%
LeNet-cifar10 99.952%∼100% 99.970%∼100%

AlexNet-cifar10 99.951%∼99.997% 99.948%∼99.998%
VGG16-cifar100 99.950%∼99.983% 99.972%∼99.998%

To validate the vulnerability factors, Fig. 5 illustrates the
correlation between LVF and accuracy loss for a layer-wise FI on
AlexNet. As demonstrated, there is a close relationship between
the LVF obtained from DeepVigor and accuracy loss in FI, either

the input sets are similar or different. This correlation is observed
similarly in the results for all experimented DNNs. Therefore,
LVF represents the vulnerability of layers competently.

DeepVigor also provides NVF and BVF metrics as vulnerabil-
ity factors for neurons and bits, respectively. As a representative
example, Fig. 6 depicts NVF for layer conv3 of LeNet5-mnist
and LeNet5-cifar10 that the more vulnerable neurons can be
identified. In this figure, the number of neurons is sorted in each
DNN separately, in the ascending order of NVF. Also, BVF for
all neurons in DNNs is obtained and the results show that the
most significant bit of exponents is the most vulnerable bit in
most cases.

conv1 conv2 conv3 conv4 conv5 fc1 fc2
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Layers of AlexNet
LV

F
(%

)

LVF Accuracy Loss (same sets) Accuracy Loss (different sets)

Fig. 5: Correlation between LVF and accuracy loss.

0 20 40 60 80 100 120
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Neurons in Layer CONV3 of LeNet-5

N
V

F
(%

)

LeNet5-mnist LeNet5-cifar10

Fig. 6: NVF of neurons in CONV3 for LeNet5-mnist and
LeNet-cifar10.

C. Run-Time Analysis

DeepVigor enables a fine-grain reliability evaluation for DNNs
faster than exhaustive FI. In our experiments, step1 of DeepVigor
have removed up to 48% of neurons’ vulnerability analysis to
be processed in step2. Moreover, the range initialization in step1
has accelerated the search for finding the vulnerability values for
50% to 99% of neurons in step2 among the DNNs. Based on our
experiments, a complete vulnerability range (as in Fig. 4) for one
neuron can be obtained by 9.1 times feed-forward execution per
neuron on average. While an exhaustive FI experiment runs the
feed-forward by the number of bits (32 in our case) per neuron.
Therefore, DeepVigor requires 3.5 times fewer feed-forwards
translating into a similar amount of speed-up in run-time.

The run-time of DeepVigor depends on:
• Backpropagation execution by the number of neurons step1

(one for positive and one negative numbers per neuron);
• Feed-forward execution by the number of searches for

finding a positive or negative δlk per neuron, in which the

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 27,2024 at 06:53:36 UTC from IEEE Xplore. Restrictions apply.

best case is 0 searches (in case of zero gradients), the
moderate case is 14 searches (in case of limited range
initialization), and the worst case is 22 searches;

• Vulnerability analysis of the neurons in the last layer is
performed by simplified mathematics similar to Fig. 2
and requires no iterative feed-forward or searching process
through a wide range of numbers;

• Bitflip mapping is merely performing a bitflip at each
neuron and a comparison with the obtained vulnerability
ranges.

IV. DISCUSSION

DeepVigor method is validated in the previous section, and it
is shown how it can evaluate the reliability of DNNs proficiently
with shorter run-times than FI. Vulnerability ranges enable a
fine-grain and accurate resilience evaluation for neural networks.
They are not limited to representing the single bitflip fault model
and the outcome of the analysis is valid for an erroneous output
for the neurons covering several fault models. This method
enables an accelerator-agnostic analysis for DNNs and results
can be applied to different accelerators.

The outputs of DeepVigor provide different possibilities for
exploiting techniques of reliability improvement, including:

• Selective bits/neurons/layers hardening in accelerators based
on the obtained BVF/NVF/LVF metrics;

• Fault-aware mapping for neurons on the processing ele-
ments of accelerators as in [21], [23];

• Applying range restriction for neurons’ or layers’ outputs
for preventing faults propagation as in [9], [29], [30].

V. CONCLUSIONS

In this work, a novel resilience analysis method for DNNs
reliability assessment named DeepVigor is proposed. The output
of this method is the vulnerability value ranges for all neurons
through the DNNs which result in vulnerability factors for all
layers, neurons, and bits of the DNN, separately. The method
is validated extensively by fault injection and its feasibility to
categorize non-critical and critical faults on complex DNNs
with 99.9% to 100% accuracy is demonstrated. Moreover,
vulnerability factors obtained by the proposed analysis provide
fine-grain criticality metrics for DNNs’ components leading
to different reliability improvement techniques. The DeepVigor
method is very proficient in the evaluation and explanation of the
reliability of DNNs with shorter run-times than fault injection.

REFERENCES

[1] A. Bosio et al., “Emerging computing devices: Challenges and oppor-
tunities for test and reliability,” in 2021 IEEE ETS. IEEE, 2021, pp.
1–10.

[2] H. Forsberg et al., “Challenges in using neural networks in safety-critical
applications,” in 2020 AIAA/IEEE 39th Digital Avionics Systems Conference
(DASC). IEEE, 2020, pp. 1–7.

[3] Y. Ibrahim et al., “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

[4] M. Shafique et al., “Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead,” IEEE Design & Test, vol. 37,
no. 2, pp. 30–57, 2020.

[5] W. Li et al., “Soft error mitigation for deep convolution neural network
on fpga accelerators,” in 2020 2nd IEEE AICAS. IEEE, 2020, pp. 1–5.

[6] M. A. Neggaz et al., “Are cnns reliable enough for critical applications?
an exploratory study,” IEEE Design & Test, vol. 37, no. 2, pp. 76–83,
2019.

[7] A. Azizimazreah et al., “Tolerating soft errors in deep learning accelerators
with reliable on-chip memory designs,” in 2018 IEEE International
Conference on Networking, Architecture and Storage (NAS). IEEE, 2018,
pp. 1–10.

[8] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104, p.
101689, 2020.

[9] Z. Chen et al., “A low-cost fault corrector for deep neural networks through
range restriction,” in 2021 51st IEEE/IFIP DSN. IEEE, 2021, pp. 1–13.

[10] D. Xu et al., “A hybrid computing architecture for fault-tolerant deep
learning accelerators,” in 2020 IEEE 38th International Conference on
Computer Design (ICCD). IEEE, 2020, pp. 478–485.

[11] D. Xu et al., “Reliability evaluation and analysis of fpga-based neural
network acceleration system,” IEEE TVLSI, vol. 29, no. 3, pp. 472–484,
2021.

[12] P. M. Basso et al., “Impact of tensor cores and mixed precision on the
reliability of matrix multiplication in gpus,” IEEE Transactions on Nuclear
Science, vol. 67, no. 7, pp. 1560–1565, 2020.

[13] F. F. dos Santos et al., “Analyzing and increasing the reliability of
convolutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2018.

[14] N. Khoshavi et al., “Shieldenn: Online accelerated framework for fault-
tolerant deep neural network architectures,” in 2020 57th ACM/IEEE DAC.
IEEE, 2020, pp. 1–6.

[15] Z. Chen et al., “Binfi: An efficient fault injector for safety-critical machine
learning systems,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019,
pp. 1–23.

[16] M. Taheri, M. H. Ahmadilivani et al., “Deepaxe: A framework for
exploration of approximation and reliability trade-offs in dnn accelerators,”
in 2023 ISQED. In press, 2023.

[17] M. Taheri, M. H. Ahmadilivani et al., “Appraiser: Dnn fault resilience
analysis employing approximation errors,” in 2023 DDECS. In press,
2023.

[18] A. Bosio et al., “A reliability analysis of a deep neural network,” in 2019
IEEE LATS. IEEE, 2019, pp. 1–6.

[19] A. Ruospo et al., “Pros and cons of fault injection approaches for the
reliability assessment of deep neural networks,” in 2021 IEEE LATS. IEEE,
2021, pp. 1–5.

[20] A. Mahmoud et al., “Hardnn: Feature map vulnerability evaluation in
cnns,” arXiv preprint arXiv:2002.09786, 2020.

[21] C. Schorn et al., “Accurate neuron resilience prediction for a flexible
reliability management in neural network accelerators,” in 2018 DATE.
IEEE, 2018, pp. 979–984.

[22] C. Schorn et al., “An efficient bit-flip resilience optimization method for
deep neural networks,” in 2019 DATE. IEEE, 2019, pp. 1507–1512.

[23] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on ai-oriented mpsocs,” Applied Sciences, vol. 11,
no. 14, p. 6455, 2021.

[24] M. Abdullah Hanif and M. Shafique, “Salvagednn: salvaging deep neural
network accelerators with permanent faults through saliency-driven fault-
aware mapping,” Philosophical Transactions of the Royal Society A, vol.
378, no. 2164, 2020.

[25] W. Choi et al., “Sensitivity based error resilient techniques for energy
efficient deep neural network accelerators,” in 2019 DAC, 2019, pp. 1–6.

[26] Y. He et al., “Fidelity: Efficient resilience analysis framework for deep
learning accelerators,” in 2020 53rd IEEE/ACM MICRO. IEEE, 2020,
pp. 270–281.

[27] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. Springer Science & Business
Media, 2004, vol. 17.

[28] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in 2009 DATE. IEEE, 2009, pp. 502–506.

[29] L.-H. Hoang et al., “Ft-clipact: Resilience analysis of deep neural networks
and improving their fault tolerance using clipped activation,” in 2020 DATE.
IEEE, 2020, pp. 1241–1246.

[30] B. Ghavami et al., “Fitact: Error resilient deep neural networks via fine-
grained post-trainable activation functions,” in 2022 DATE. IEEE, 2022,
pp. 1239–1244.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 27,2024 at 06:53:36 UTC from IEEE Xplore. Restrictions apply.

Appendix 3

III

M. H. Ahmadilivani, J. Raik, M. Daneshtalab, and M. Jenihhin. Deepvigor+:A Scalable, Accurate and Automated Framework for Resilience Analysis ofDeep Neural Networks. Under review, pages 1–14, 2024

203

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

DeepVigor+: Scalable and Accurate Semi-Analytical Fault Resilience
Analysis for Deep Neural Networks

Mohammad Hasan Ahmadilivani1, Jaan Raik1, Masoud Daneshtalab1,2, Maksim Jenihhin1

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

Growing exploitation of Machine Learning (ML) in safety-critical applications necessitates rigorous safety analysis. Hardware
reliability assessment is a major concern with respect to measuring the level of safety. Quantifying the reliability of emerging ML
models, including Deep Neural Networks (DNNs), is highly complex due to their enormous size in terms of the number of parameters
and computations. Conventionally, Fault Injection (FI) is applied to perform a reliability measurement. However, performing FI on
modern-day DNNs is prohibitively time-consuming if an acceptable confidence level is to be achieved. In order to speed up FI for
large DNNs, statistical FI has been proposed. However, the run-time for the large DNN models is still considerably long.

In this work, we introduce DeepVigor+, a scalable, fast and accurate semi-analytical method as an efficient alternative for reliability
measurement in DNNs. DeepVigor+ implements a fault propagation analysis model and attempts to acquire Vulnerability Factors
(VFs) as reliability metrics in an optimal way. The results indicate that DeepVigor+ obtains VFs for DNN models with an error
less than 1% and 14.9 up to 26.9 times fewer simulations than the best-known state-of-the-art statistical FI enabling an accurate
reliability analysis for emerging DNNs within a few minutes.

I. INTRODUCTION

In recent years, the rapid advancement of Artificial Intel-
ligence (AI), in particular of Machine Learning (ML), has
provided a unique opportunity for automation leading to AI
exploitation in safety-critical applications [1], [2]. Deep Neural
Networks (DNNs) are dominantly employed in ML for complex
tasks such as image classification and object detection that have
applications in the safety-critical domain [3], [4]. According to
recent regulations such as the European Union’s AI ACT [5]
and the US National AI Initiative Act [6], AI systems that may
cause adverse impacts on people’s safety are considered high-
risk and must be rigorously assessed before deployment. This
reflects the importance of early-stage safety risk assessment
for AI deployment.

One of the major concerns in safety-critical applications is
the hardware reliability of systems, which are threatened by
hardware faults and errors [7]. With the technology miniatur-
ization, the rate at which hardware faults occur is continuously
rising in logic and memory circuits since the sensitivity of
transistors increases against soft errors, temperature variations,
etc. [8], [9], [10]. As DNNs are penetrating such applications
e.g., perception in automotive [11], their hardware reliability
assessment is necessary during the design and development
phase, not only for risk certification but also for eliminating
reliability weaknesses as early as possible.

On the other hand, the size of DNNs, in particular Convolu-
tional Neural Networks (CNNs), in terms of memory footprint
and number of operations is rapidly growing [12], [13]. Fig.
1 presents the growing model size in terms of the number
of MAC operations and parameters for emerging DNNs and
Vision Transformers (ViT), leading to their higher accuracy
[14]. This trend necessitates leveraging more complex and
performant computing systems such as GPUs, TPUs, etc. [15].
The fact that these complex systems are prone to hardware
faults [16], [17], [18] leads to a necessary and complex task
of their hardware reliability assessment prior to deployment in

safety-critical applications.

Fig. 1: Growing size of emerging DNN models regarding
computation and memory requirement [14].

Hardware faults result in the alteration of values at the
application level and might lead to erroneous outputs in a
digital system. Hardware faults could lead to catastrophic
consequences when exploiting hardware DNN accelerators
in safety-critical applications. As an example, a hardware
fault may result in misclassifying a red traffic light at an
intersection in an autonomous vehicle and jeopardize the life
of its passengers, as shown in Fig. 2, generated by AI.

Fig. 2: An example of hardware faults effect on an autonomous
vehicle, generated by https://getimg.ai.

1

ar
X

iv
:2

41
0.

15
74

2v
1

 [
cs

.L
G

]
 2

1
O

ct
 2

02
4

UNDER REVIEW IN AN IEEE JOURNAL 2

In this regard, several research works have been carried
out to assess and enhance DNNs’ hardware reliability against
hardware faults listed in the related surveys [19], [16], [20],
[21], [22]. Hardware reliability of DNN accelerators is the
likelihood of a DNN accelerator performing as it is trained
during the deployment [23]. The source of reliability threats is
hardware-originated (soft errors, electromagnetic, temperature
variation, aging, etc.) influencing a DNN’s functionality by
changing its parameters (e.g., weights) or activation values
during run-time.

To ensure a reliable DNN deployment, the first step is to
extensively evaluate the performance and functionality of pre-
trained DNNs against hardware faults. To achieve this objective,
three main approaches are identified throughout the state-of-
the-art, in a prior systematic literature review [22]: 1) Fault
Injection (FI) methods in which faults are injected into the
target system and simulated, 2) Analytical methods where faults
effects are mathematically analyzed, and 3) Hybrid methods
that combine FI and analytical methods.

It was observed that the majority of existing research works
adopt FI (based on simulation, emulation, or irradiation). In
FI experiments, faults can be accurately modeled, and the
behavior of a system is evaluated in the presence of faults.
However, given the growing size of emerging DNNs and their
accelerators [15], [24], obtaining a fully precise evaluation is
unfeasible and impractical.

Throughout the literature, multiple research works are
presented to significantly reduce the simulation complexity
of FI experiments for DNNs while maintaining statistical
accuracy. It includes software simulation [25], [26], [27], [28],
or hardware emulation [29], [30], [31]. Nonetheless, any FI
experiment requires a certain level of statistical confidence,
which is obtained by a considerably high number of repetitions
and a multitude of fault locations [26]. Therefore, FI-based
approaches for reliability assessment are inherently unscalable
and take days and weeks using powerful computing resources
such as GPU.

On the other hand, analytical approaches are presented to
tackle the scalability issue. Nonetheless, they cannot provide
reliability-oriented metrics including Vulnerability Factors
(VFs) which is an essential metric for reliability evaluation.
Moreover, the accuracy of analytical methods is not comparable
to that of FI-based methods. To tackle the existing issues in
the literature, a prior semi-analytical method named DeepVigor
[23] is proposed as an alternative to simulation-based FI.
DeepVigor provides accurate VF for bits, neurons, and layers
of CNNs demonstrated to be faster than FI by utilizing a
fault propagation analytical method. However, it analyzes all
neurons in a CNN, implying a huge search space to obtain
vulnerability values, leading to a scalability issue for large and
deep emerging CNNs.

In this paper, we propose a scalable, fast, and accurate
alternative to FI named DeepVigor+, which provides VF for
layers and models of DNNs. DeepVigor+ takes advantage of
an optimal fault propagation analysis within neurons and entire
DNNs to derive VFs in an optimized way. To the best of our
knowledge, DeepVigor+ is the first scalable semi-analytical
alternative to FI with a comparable accuracy for resilience

analysis of DNNs in the literature. The contributions of this
paper are as follows:

• Introducing a scalable, fast and accurate resilience analysis
method for DNNs called DeepVigor+ for deriving VFs for
DNNs’ layers and models by analyzing both parameters
and activations as well as by exploiting an optimal
error propagation analysis. DeepVigor+ conducts a novel
statistical approach based on stratified sampling unleashing
a fast and accurate resilience analysis for large and deep
emerging DNNs,

• Extensively demonstrating the effectiveness of DeepVigor+
by examining its error compared to FI, leading to meeting
a 1% mean absolute error in obtaining VF. Furthermore,
its scalability is evidenced against statistical FI, resulting
in 14.9 to 26.9 times fewer simulations than a cutting-
edge state-of-the-art statistical FI approach. Derived VF
by DeepVigor+ can provide the possibility of reliability
comparison and visualization between and within various
DNN models in a few minutes for deep and large DNNs.

DeepVigor+ is presented as an open-source tool (https://
github.com/mhahmadilivany/DeepVigor), unlocking reliability
analysis for emerging DNNs and enabling researchers to quickly
assess their reliability and design and develop fault-tolerant
DNNs.

Table I presents the abbreviations frequently used in the
manuscript. In the rest of the paper, Section II highlights the
gap by overviewing the related works on statistical FI as well
as analytical methods. Section III presents the methodology of
DeepVigor+ leading to fast and accurate reliability analysis for
CNNs. Section IV explains how DeepVigor+ is implemented
and describes the experiments, and their results are presented in
detail in Section V to demonstrate the efficiency of DeepVigor+.
Finally, Section VI concludes the paper.

TABLE I: Frequent abbreviations used in this manuscript.

Abbreviation Description

DNN Deep Neural Network
CNN Convolutional Neural Network
FI Fault Injection
SFI Statistical Fault Injection
VF Vulnerability Factor
CVF Channel Vulnerability Factor
LVF Layer Vulnerability Factor
MVF Model Vulnerability Factor
OFMap Output Feature Map
IFMap Input Feature Map
VVSS Vulnerability Values Search Space
EDM Error Distribution Map
CVV Candidate Vulnerability Value
VVR Vulnerability Value Range
MAE Mean Absolute Error

II. RELATED WORKS: RESILIENCE ANALYSIS METHODS
FOR DNNS

With the fast growth of emerging DNNs’ size regarding
their memory and computation requirements, their reliability
analysis becomes prohitively complex, time-consuming and
resource-hungry. In a recent literature review [22], it has been
observed that the majority of papers studying the reliability of

UNDER REVIEW IN AN IEEE JOURNAL 3

DNNs exploit a Fault Injection (FI) approach. Software-level
simulation FI is widely adopted in reliability analysis due to
its low design time and fast execution.

Multiple open-source tools for software-level simulation-
based reliability analysis are proposed in the literature, and
the most adopted ones include PytorchFI [27] and TensorFI
[32], [33], enabling FI simulations in PyTorch and TensorFlow
respectively. These software-level FI tools support various fault
models and provide different metrics for the resilience analysis
of DNNs regarding parameters and activations.

Any FI simulation requires multiple simulations while a
random set of parameters/activations are faulty and propagated
through the forward execution of a DNN. Then, the erroneous
outputs are observed, and reliability metrics are acquired. The
number of simulations affects the accuracy of the obtained
metrics. In exhaustive FI, all possible bitflips in the fault space
are flipped individually, leading to a huge simulation space,
which is impractical since DNNs possess millions of parameters
and activations. Statistical Fault Injection (SFI) attempts to
reduce the number of simulations based on statistical analysis,
while guaranteeing a certain maximum error margin.

For conventional computing hardware, the number of simu-
lations in an SFI experiment used to be specified by Eq. (1),
where n is the number of samples, N is total fault space, e is
the error and t is determined based on the expected confidence-
level [34].

n =
N

1 + e2 × N−1
t2×p(p−1)

(1)

However, it is shown that applying Eq. (1) to the entire
DNN does not result in statistically accurate results [26].
Authors in [26] introduced multiple methods to improve the
accuracy of SFI as well as to reduce the number of simulations.
Accordingly, layer-wise SFI, data-unaware SFI and data-aware
SFI were presented, which generally apply Eq. (1) to each
layer separately. Data-unaware SFI and data-aware SFI methods
consider FI at the bit level to improve the statistical experiments.
In data-unaware p = 0.5 for all bits in Eq. (1), whereas in
data-aware SFI requires a pre-analysis to specify the p for each
bit position in the data representation.

Yet, SFI requires hundreds of thousands of simulations
in any FI method leading to a significantly long simulation
time even with leveraging GPUs. Furthermore, the growth
of emerging DNNs necessitates an increasing number of
simulations. Therefore, reliability analysis requires a paradigm
shift in resilience analysis. Analytical methods for reliability
analysis of DNNs are proposed to address its scalability issue.

Throughout the literature, multiple techniques are proposed
to obtain the resilience of CNNs based on non-FI approaches,
called analytical methods [22]. Layer-wise Relevance Propaga-
tion (LRP) is proposed to derive the contribution of neurons
to the classification output of CNNs expressing their criticality
in the presence of faults and errors [35]. The gradient-based
analysis is exploited in [36], [37], [38], [39], [40] to obtain
the resilience of CNNs against faults. Nonetheless, gradients
neither represent the impact of faults on misclassification nor
result in a probabilistic outcome of faults’ effect on outputs.

Also, faults may change the values significantly, while gradients
represent small variations in erroneous values.

Therefore, the existing analytical approaches do not result in
accurate metrics for the reliability analysis of DNNs. DeepVigor
was proposed to address this gap in the literature to provide
fast and accurate metrics for the resilience of CNNs against
faults [23]. It provides a Vulnerability Factor (VF) for bits,
neurons and layers in CNNs by acquiring vulnerability values
for each neuron (i.e., output feature maps). Vulnerability values
represent how much a fault should change the golden value of
a neuron’s output to misclassify CNN’s golden classification.
Although DeepVigor is demonstrated to be faster than FI due
to its fault propagation analysis method, it requires a high
execution time to obtain VFs. The reason is that DeepVigor
attempts to analyze all neurons in a CNN as well as to find
the vulnerability values in a huge space of numbers.

This paper proposes DeepVigor+, a new method to quickly
obtain VF metrics for layers and DNN models addressing
both scalability and accuracy of fault resilience analysis in the
literature. DeepVigor+ employs an optimized error propagation
analysis in neurons, assuming that a single fault might happen
either at its inputs or weights, thus leading to effectively
shrinking the search space for vulnerability values. Moreover,
DeepVigor+ proposes a stratified sampling to further accelerate
the process of resilience analysis without a tangible analysis
accuracy mitigation, leading to obtaining VF in a few minutes,
even for deep and large emerging DNNs.

III. METHODOLOGY: SCALABLE AND ACCURATE
RESILIENCE ANALYSIS FOR DNNS BY DEEPVIGOR+

In this section, the proposed resilience analysis method for
DNNs, DeepVigor+, is presented. First, the fault model and its
effect on 32-bit floating point values are described. Then, the
mathematical model for fault propagation in DNNs is explained,
which forms the basis for the DeepVigor+ analysis.

A. Fault Model

Transistor miniaturization leads to more efficient computa-
tional digital systems, whereas its reliability side-effects are
becoming increasingly profound. With transistor scaling soft
error rates increase significantly posing reliability concerns, in
particular in the deployment of safety-critical applications [41],
[42], [43]. Single Event Upset (SEU) due to soft errors may
affect memory cells and flip a bit in a stored value. SEU in
DNN accelerators affects either the parameters of a DNN (i.e.,
weights) or its activations (i.e., layers’ inputs), which are stored
in memory elements such as registers or on-chip memories
[16], [22].

For reliability analysis, the multi-bit fault model is more
realistic, however, it requires a huge fault space to consider all
combinations, i.e., 3n−1 combinations where n is the number
of bits. On the other hand, it is demonstrated that the single-bit
fault model provides a high fault coverage of multiple-bit faults
[44]. Therefore, analyzing the reliability of DNNs based on a
single-bit fault model is valid for obtaining the VF of models.
This fault model is in line with the other works in the literature
[23], [25].

UNDER REVIEW IN AN IEEE JOURNAL 4

Therefore, in this paper we build our analysis based on the
single-bit fault model in weights and activations separately. We
assume that a single parameter or a single input to a layer is
faulty which is propagated to the output of the corresponding
layer. By mathematical analysis, we model the fault propagation
to the output of neurons and DNNs, resulting in calculating
VF for them.

B. Single Fault Analysis in 32-bit Floating-Point

To model the behavior of faults for the analysis, we assume
that at an inference, a single fault may influence the value of
a single input activation to a neuron or a single parameter in
a CNN. First, we analyze the effect of a single bitflip on the
32-bit floating-point data representation to comprehend how
a value might change due to a single fault. IEEE-754 32-bit
floating-point data type is shown in Fig. 3. It contains 1 sign
bit, 8 exponent bits, and 23 fraction bits, and represents a
number based on Eq. (2).

number = (−1)sign × 2E−127 × (1 +

i=23∑

i=0

b23−i × 2i) (2)

Fig. 3: 32-bit floating point IEEE-754 data representation.

In this regard, we consider the following lemmas:
• Lemma 1: Any bitflip from 1 to 0 in a value decreases

the value as ϵ while ϵ < 0, and any bitflip from 0 to 1
increases it as ϵ while ϵ > 0.

• Lemma 2: In the 32-bit floating-point data representation,
an error (ϵ) induced to a value (x) by a bitflip in bit i can
be represented as in Eq. (3), whether the bitflip is in sign
bit (2× x), exponent bits (2i × x), or mantissa bits (2i),
as stated in [45], [46].

{
xfaulty = x+ ϵ

ϵ ∈ {2× x, 2i−23 × x, 2i} (3)

• Lemma 3: To unify the analysis of the error induced
to a value by a single bitflip, we can approximate ϵ by
representing it as a power of two, for each section of the
data representation, as follows:

1) Sign: approximate ϵ as ±2log2(2×x).
2) Exponent: approximate ϵ as ±2i−23, assuming that

x is a small value.
3) Mantissa: approximate ϵ as ±2i.

In all cases, ϵ can be approximated as the nearest value
of the power of two to the actual ϵ. This approximation
can lead to a unified representation for ϵ. To that end, ϵ
might be negative or positive (based on Lemma 1) and
might be small or big (based on Lemma 2). Eventually,

we can express it as a unified representation as shown in
Eq. (4).

ϵ ≈ ±2ρ; ρ ∈ {±1,±2,±3, ...} (4)

• Lemma 4: When a faulty value is used in a multiplication
operation in CNNs, the erroneous output can also be
approximated. It has been observed that the parameters
in CNNs are mainly distributed around 0 and in the
range of [−1, 1] [47]. In order to approximate the error
of multiplying two values when one of them is faulty,
we can analyze it based on Eq. (5), where x and y are
fault-free values and x′ is the faulty value after a bitflip
in x.

let : x′ = x+ ϵ

then : x′ × y = x× y + ϵ× y

⇒ x′ × y = x× y + δ (5)

In Eq. (5), when x is a small value, δ ≈ 0. Since most
values in CNNs’ operations are close to 0, the erroneous
values in multiplications in a CNN can be approximated
based on the unified error representation, as shown in
Lemma 3 and Eq. (4).

C. Single Fault Error Propagation in DNNs

We analyze the single bitflip error propagation in CNNs
considering their effect on the values of numbers. Each neuron
in a convolutional (CONV) layer operates as shown in Eq. (6),
where the Output Feature Map (OFMap) in lth layer and
kth channel is obtained by the summation of multiplications
between weights (ŵ) and Input Feature Map (IFMap, x̂) plus
bias (b). In CONV layers, ŵ and x̂ are 3-Dimensional (3D)
cin×n×n arrays, where cin is the number of inputs channels
to the layer, and n is the kernel size.

OFMaplk(x̂, ŵ, b) = (

cin∑

i=0

n∑

j=0

n∑

k=0

xijk × wijk) + b (6)

Here, we assume that a fault affects a single IFMap in a
single neuron, thus, it produces a single erroneous OFMap.
Supposing that a fault occurs in an IFMap xijk, represented
as x′

ijk. The fault introduces an error ϵ to the fault-free value
of xijk. Therefore, it can be expressed in Eq. (7).

x′
ijk = xijk + ϵ (7)

Hence, once a bitflip occurs in x̂ in Eq. (6), the partial
multiplication is computed in Eq. (8). In this equation, the
term xijk × wijk represents the fault-free multiplication, and
ϵ× wijk is an added error to the output by a fault which can
be represented as δ.

x′
ijk × wijk = (xijk + ϵ)× wijk

= xijk × wijk + ϵ× wijk

= xijk × wijk + δ (8)

UNDER REVIEW IN AN IEEE JOURNAL 5

Consequently, the erroneous OFMap can be expressed in a
way that it is the summation of the fault-free OFMap and δ,
while the single faulty IFMap in x̂ can be in any index of the
corresponding 3D array. Considering Lemma 4, the induced
error at the neuron’s OFMap can be expressed in Eq. (9).

OFMaplk(x̂
′, ŵ, b) = OFMaplk(x̂, ŵ, b) + δ

δ ≈ ±2ρ; ρ ∈ {±1,±2,±3, ...} (9)

On the other hand, when a fault occurs in a weight, it has
the same effect on a single neuron’s output. However, the
same faulty weight in the corresponding CONV layer is used
by all neurons in the layer, as filters slide over all IFMaps.
Therefore, it results in an output channel in which all OFMaps
are erroneous, as shown in Fig. 4. Considering Lemma 4, the
fault propagation for an output channel can be expressed in
Eq. (10).

...
...

...

...
...

...
*

All OFMaps in
this channel are

erronous
...

...

...
...

...
...

...

Single bitflip

Fig. 4: Fault propagation in a CNN in the case of a single bitflip in a
weight.

Out Channellk(x̂, ŵ, b) = x̂ ∗ ŵ + b

Out Channellk(x̂, ŵ
′, b) = x̂ ∗ ŵ + b+ ϵ ∗ x̂

Out Channellk(x̂, ŵ
′, b) = Out Channellk(x̂, ŵ, b) + δ

δ ≈ ±2ρ; ρ ∈ {±1,±2,±3, ...} (10)

Based on the aforementioned theoretical analysis, to analyze
the effect of single faults on CNNs, regardless of the fault
occurrence in activations or weights, we only need to identify
an added value δ (as a power of two) at the output of the target
neuron/channel where it misclassifies the golden class of the
CNN for each input image.

D. DeepVigor+: Fault Resilience Analysis for DNNs

In this section, the steps of DeepVigor+ are presented. Fig. 5
illustrates the steps of the DeepVigor+ methodology for fault
resilience analysis of DNNs against single faults. The method’s
objective is to provide the Vulnerability Factor (VF) for layers
and the entire DNN model when a single fault happens in
activations or weights.

The inputs of the method are a pre-trained CNN and
validation data in a dataset. During the analysis, an OFMap
or output channel is targeted, and multiple steps are taken to
provide the VF metrics:

1) Single Bitflip Analysis: constructs a search space for
possible vulnerability values and produces a distribution
of erroneous values based on the approximations in Eq.
(9) and (10),

2) Vulnerability Values Identification: obtains vulnerability
values for the target OFMap/channel

3) Obtaining Vulnerability Factor: exploits identified vul-
nerability values and error distribution to provide VF for
the target neuron/channel.

By obtaining the VF for the analyzed neurons and filters
in a DNN, the VF for layers and the entire DNN can be
derived. The details of each step are explained in the following.
Noteworthy that each step presents a detailed description for
analyzing a target neuron and then briefly links it to weights
in filters.

Step 1 - Single Bitflip Analysis: As mentioned above,
single faults at the inputs of a neuron are considered. This step
conducts bitflips in the input activations of the target neuron to
construct Vulnerability Values Search Space (VVSS) and Error
Distribution Map (EDM) for the target neuron. VVSS is a set
of candidate values representing all possible δ in Eq. (9). In
other words, VVSS represents output errors produced by single
bitflips in any bit locations of the inputs of the target neuron.
EDM represents the distribution of δ in Eq. (9) throughout the
approximated δ values with a power of two.

Obtaining VVSS and EDM requires performing a single
bitflip for each input and multiplying it by its corresponding
weight as shown in Eq. (8). Nonetheless, it is an exhaustive
operation with high time complexity. This complexity can
be remarkably reduced by leveraging Algorithm 1. In this
algorithm, for each bitflip, we obtain all possible δ produced
at the output of the neuron for all inputs at once.

Since each input might be faulty separately, to produce all
errors in a neural operation, we first flip the ith bit in all inputs

Pre-trained
DNN

Validation
Data

Vulnerability
Values

Taget
Neuron/Filter

Vulnerability
Factor

2. Vulnerability Values
Identification

1. Single Bitflip
Analysis

3. Obtaining
Vulnerability Factor

Vulnerability
Values Search
Space (VVSS)

Error
Distribution

Fig. 5: An overview of the conducted steps in DeepVigor+.

UNDER REVIEW IN AN IEEE JOURNAL 6

(line 3) and then convert the binary representation to a value
(line 4). Then, the difference of the erroneous inputs with
the fault-free input is computed (line 5), which represents all
possible errors at inputs (ϵ in Eq. (8)) for all inputs added by a
single bitflip in either of them. Then, a point-wise multiplication
between the erroneous inputs and weights results in producing
all possible errors (δ in Eq. (9)) at the output (line 6).

Algorithm 1 Error Analysis for a Neuron

Input: Target neuron’s inputs and weights as 3D matrices;
Output: All possible errors at the output;

Assume: δ is the error added to each golden output; All
values are in 32-bit floating-bit;

1: binary representation = float32 to binary(inputs);
2: for i ∈ [0, 31] do:
3: flip bit i in binary representation;
4: erroneous inputs =

binary to float32(binary representation);
5: input errors = erroneous inputs - inputs;
6: output errors list.append(input errors ⊙ weights);
7: end for;

Algorithm 1 produces all errors at the output of the target
neuron. Thereafter, based on the presented theory in the
subsections III-B and III-C, we generate the distribution of all
produced errors as an Error Distribution Map (EDM) based on
the Candidate Vulnerability Values (CVVs) which are a set of
numbers as a power of two, shown in Eq. (11). Based on the
experimental observations, we limit the CVV in the analysis
between −210 and 210 for large values. The error values
between −2−10 and 2−10 are merged as their propagation
effects on CNNs are negligible and masked.

CV V = {±2ρ}; ρ ∈ {0,±1,±2,±3, · · · ,±9,±10} (11)

EDM contains the distribution ratio of the existing values
over the values in output errors list in Algorithm 1, between
each consecutive values in CVV, as shown in Eq. (12). EDM
provides the ratio of error distribution with respect to each

candidate vulnerability value, demonstrating how much each
CVV represents the produced errors at the output of the target
neuron. Based on the EDM, each CVV whose distribution ratio
is not zero, is added to the Vulnerability Value Search Space
(VVSS). This means that VVSS contains a subset of CVV that
are the approximated errors produced by single faults in the
inputs and might lead to misclassification at the output of the
CNN.

∀i ∈ CV V ; distribution ratioi =

count(CV Vi−1 < output errors list < CV Vi)

count(output errors list)
(12)

The process of single bitflip analysis for a target filter is
similar to the one for a neuron. Nonetheless, in the case of a
bitflip in a filter, all OFMaps in an output channel are affected
(as described in subsection III-C and Eq. (10)). Therefore, this
step is performed separately on every bit of all weights in the
target filter, so that VVSS and EDM for the corresponding filter
are obtained.

Step 2: Vulnerability Values Identification: This step
exploits VVSS to identify the vulnerability values for the
target neuron (i.e., OFMap) by exploring its constructed VVSS.
As mentioned, VVSS represents output errors induced by a
single fault occurring at the inputs of the target neuron. The
objective is to identify the maximum negative and minimum
positive vulnerability values among the existing ones in VVSS
for a neuron that misclassify the DNN’s outputs from its golden
classification for each input data.

To explore the vulnerability values efficiently, we divide
them into four different exploration spaces:

1) V V SS[−∞,−1]: contains CVVs between [−∞, 1] that
have a non-zero distribution ratio.

2) V V SS(−1,0): contains CVVs between (−1, 0) that have
a non-zero distribution ratio.

3) V V SS(0,1): contains CVVs between (0, 1) that have a
non-zero distribution ratio.

4) V V SS[1,+∞]: contains CVVs between [1,+∞] that have
a non-zero distribution ratio.

Start

No

Yes misclassified?

YesNo exploration
finished? End

;
1 2 3 4

5

67

8

Update

9

Fig. 6: Vulnerability value identification for a target neuron with a single input data for positive errors.

UNDER REVIEW IN AN IEEE JOURNAL 7

The flowchart in Fig 6 illustrates the algorithm of vulnera-
bility value identification for positive vulnerability values for
a single input data X. In this flowchart, δ is the vulnerability
value added to the target OFMap. First, δ equals 1 (box 1) is
added to the target OFMap. Thereafter, the forward pass of
the CNN is performed to obtain its output logits (E) while a
neuron is erroneous (box 2).

In box 3, a loss function L is calculated to obtain the effect
of added δ to the target OFMap on the output classes based
on the summation of the differences between all output class’s
logits from the golden class. In this loss function, Ect represents
the erroneous output logit of the golden top class and Ecj is
the erroneous output logit of any other class.

In box 4, the gradient of loss function L w.r.t. the target
OFMap is calculated to check if the CNN might be misclassified
or not, when the target OFMap is erroneous. If the gradient is 0,
faults producing positive deviation in the corresponding neuron
do not lead to misclassification. In this case, the neuron’s
vulnerability value is considered the biggest CVV assumed
value for positive numbers (i.e., 210) in box 5, and the algorithm
ends. If the gradient is not equal to 0, a value can be found
for δ in the target OFMap which misclassifies the DNN. The
rest of the algorithm attempts to find the minimum positive δ
in VVSS.

In box 6, it is examined if the CNN misclassifies the input
from its golden classification when δ = 1 for the target neuron,
determining the initialization for δ in the next steps. If the input
is misclassified when δ = 1, it means that its vulnerability
value is less than 1 and we should explore V V SS(0,1) (box
7), otherwise, V V SS[1,+∞) should be explored (box 8). In the
case of exploring V V SS(0,1), δ is set to the middle element of
the set, and if it does not misclassify the golden output, the next
bigger CVV should be explored. This process continues until
the first value which misclassifies the output is found (loop
9). The final positive vulnerability value (δ+) for the target
neuron is the minimum value in positive VVSS that does not
misclassify the input for CNN from its golden classification.

To identify the maximum negative vulnerability value (δ−)
that does not misclassify the input from its golden classification,
the same procedure is conducted to explore negative values in
VVSS. As a result, the Vulnerability Value Range (VVR) for
the corresponding neuron is obtained and is expressed in Eq.
(13). VVR represents all induced error values to the outputs of
a neuron leading to a misclassification. Noteworthy that since
bitflips in 32-bit floating-point might lead to large values, we
assumed that any value larger than 2 ∗ 10 and less than 2−10

are critical for CNNs, therefore, these values represent +∞
and −∞ respectively.

V V R = (−∞, δ−] ∪ [δ+,+∞) (13)

The step of vulnerability values identification for a target
filter is similar to the one for a neuron. It is conducted similarly
to the illustrated flowchart in Fig. 6 to obtain VVR for the
corresponding output channel resulting in VVR for each target
channel in a DNN.

Step 3: Obtaining Vulnerability Factors: As mentioned,
an Error Distribution Map (EDM) is obtained for the target

neuron in step 1, representing the distribution ratio for each
vulnerability value. On the other hand, the Vulnerability Value
Range (VVR) is obtained in step 2. This step aims to map VVR
to EDM to provide the VF for the target neuron, expressing the
probability of misclassification in the case of a single bitflip
in its inputs.

Fig. 7 depicts how VF can be obtained by mapping VVR to
aggregated EDM. Aggregated EDM represents the summation
of the distribution ratio for all values less than a CVV.
As shown in Fig. 7, all values between (δ−, δ+) are non-
vulnerable meaning that if an error deviates the OFMap as big
as any value in this range, it will not misclassify the golden
output. Otherwise, the error value is vulnerable leading to a
misclassification.

VF is obtained by subtracting the distribution ratio of the
minimum positive vulnerability value (δ+) and the maximum
negative vulnerability value (δ−) as shown in Eq. (14). This
equation expresses what portion of all errors produced at the
output are critical for the CNN in terms of misclassification
which is equivalent to the probability that a fault misclassifies
the CNN’s output.

V Ftarget neuron =

1− (distribution ratioδ+ − distribution ratioδ−) (14)

Fig. 7: Mapping obtained Vulnerability Value Range (VVR) to
aggregated Error Distribution Map (EDM) for VF calculation.

The VF for a filter is obtained similarly. the EDM and
VVR for the target filter are obtained in the previous steps.
In this step, they are exploited to provide the VF for the
target filter. Deriving the VF for individual neurons and filters
leads to obtaining the VF for CONV layers and the entire
CNN model. Since the analysis is performed for neurons
and filters separately, it can provide separate VF for layers
and for the entire model based on filters and neurons. The
Layer Vulnerability Factor (LVF) is the average of VF for all
activations/filters, and the Model Vulnerability Factor (MVF)
is the average of LVFs within it.

Furthermore, to obtain the total MVF of the entire model
using the obtained detailed VFs based on the activations and
filters analysis, Eq. (15) is introduced, where L is the total
number of layers in a CNN, Nl and Wl are the total number
of output activations and weights in layer l. This equation is
a layerwise weighted average of LVFs throughout the layers
of a CNN including both activations and filters vulnerability

UNDER REVIEW IN AN IEEE JOURNAL 8

analysis, leading to the MVF for the entire model, representing
the probability of misclassification if a fault occurs either in
activations or weights.

MV Ftotal =∑L
l=1(

Nl

Nl+Wl
× LV Factl +

Wl

Nl+Wl
× LV Fweightl)

L
(15)

E. Stratified Random Sampling for Vulnerability Analysis:
The DeepVigor+ analysis can be conducted for all neu-

rons/filters in a CNN. However, performing a complete analysis
is obstructive and time-consuming, in particular for very
deep and emerging CNNs. To address the scalability issue
in resilience analysis for huge CNNs, we exploit the stratified
sampling concept to reduce the sampling size for statistical
DeepVigor+ analysis. Stratified random sampling is a method
to increase the accuracy of estimation in sampling by dividing
the population into subgroups called strata and random samples
can be selected within them [48].

In DeepVigor+, the analysis is performed layer by layer.
To take the benefits of stratified sampling for reducing the
execution time of the analysis, we assume that each output
channel in a layer is one stratum. Thereafter, a portion of
all output channels specified by channel sampling ratio is
considered and some random channels are selected. Within
each channel, the number of analyzed neurons is determined by
the log2(#neurons) in the target channel, which is selected
randomly. Therefore, the number of analyses can be described
with Eq. (16).

#analyzed neurons =
∑

l∈layers

⌈channel sampling ratio×

out channell⌉ × log2(#neuronslchannel) (16)

IV. EXPERIMENTAL SETUP

A. DeepVigor+ Implementation

DeepVigor+ is fully implemented using Python and the
Pytorch library. The source code of DeepVigor+ is fully open-
source in https://github.com/mhahmadilivany/DeepVigor as a
tool to enable researchers and engineers to adopt it for the
resilience analysis of DNNs. The user can obtain the VF for
the CONV layers of a target CNN based on analyzing neurons
or weights by determining it through some inputs. User can
specify the following inputs for the analysis:

• Target pre-trained CNN: the tool loads the pre-trained set
of weights.

• Dataset: the tool loads the validation data from the dataset.
• Analysis method: the tool performs resilience analysis for

neurons (OFMaps) or filters (weights).
• Sampling method: the tool performs either complete

analysis or stratified random sampling based on channel
sampling ratio.

• Channel sampling ratio: in the case of stratified random
sampling, the channel sampling ratio should be specified.

With the determined inputs, the tool performs the analysis
and outputs the Layer Vulnerability Factor (LVF) for each layer
and the Model Vulnerability Factor (MVF) for the entire CNN
model. In the paper, we perform the DeepVigor+ analysis
on one batch of 100 images in the test set. Note, that all
experiments consider 32-bit floating-point data representation.

B. Validating DeepVigor+

We use Fault Injection (FI) to validate the results of
DeepVigor+. To that end, we validate the VF for channels
by analyzing filters of CNNs using complete DeepVigor+ and
weights FI. In this regard, before an inference, a random 3D
filter in a specified layer is selected. In the FI campaign, one bit
of one weight in the target filter is flipped considering 32-bit
floating-point data representation and the inference is performed
on the same data as the DeepVigor+ analysis was conducted.
The same FI process is carried out for all bits of weights in the
target filter resulting in the Channel Vulnerability Factor (CVF)
calculated by the ratio of output misclassifications compared to
the golden outcomes. The obtained CVF in FI for each channel
is compared with the one in complete DeepVigor+ for the
corresponding channel, and their absolute errors are reported. In
all DNNs under the experiment, 15% of all channels throughout
the CONV layers are passed through the FI campaign for
validation.

To show the accuracy of the result in exploited stratified
sampling in DeepVigor+, we compare the obtained VF for
channels (CVF) and layers (LVF) in sampling DeepVigor+
vs. complete DeepVigor+ for both activations and filters. The
absolute difference between obtained VFs is derived to show
the VF estimation in sampling analysis. In order to achieve
more accurate results, different channel sampling ratios are
experimented including 5%, 10%, 15%, and 20%. Since
neurons and channels are selected randomly in the stratified
sampling, each sampled analysis is repeated 50 times and the
maximum and mean absolute errors are reported.

Furthermore, to show the efficiency of DeepVigor+ anal-
ysis, we present the number of simulations for DeepVigor+
and how it outperforms FI. First, we compare the number
of simulations for DeepVigor+’s complete analysis against
exhaustive FI. Also, we compare the number of simulations
for sampling DeepVigor+ with state-of-the-art Statistical FI
(SFI) methods for CNNs proposed in [26], considering layer-
wise SFI, data-unaware SFI, and data-aware SFI. Finally, the
paper demonstrates the execution time for the complete and
sampling DeepVigor+ on an NVIDIA A100 GPU to showcase
the efficiency of the proposed method.

C. DNNs Under Study

In this paper, Deepvigor+ is executed and validated on six
pre-trained DNNs using various datasets. DNNs under analysis
include VGG-11 trained on CIFAR-10, VGG-16, ResNet-18-
C and MobileNetV2 trained on CIFAR-100, ResNet-18-I and
ResNet-34 trained on ImageNet. The baseline accuracy, number
of channels and neurons for each DNN are shown in Table II.
All experiments in this paper are performed on an NVIDIA
A100 GPU accompanied by AMD EPYC 7742 64-core CPU.

UNDER REVIEW IN AN IEEE JOURNAL 9

TABLE II: The DNNs under study for DeepVigor+ validation.

DNN Dataset Baseline
accuracy

of conv
layers # of channels # of neurons

VGG-11 Cifar-10 92.52% 8 2,752 232,448

VGG-16 Cifar-100 66.97% 13 4,224 185,344

ResNet-18-C Cifar-100 70.26% 20 4,800 666,624

MobileNetV2 Cifar-100 61.27% 54 17,188 854,064

ResNet-18-I ImageNet 69.19% 20 4,800 2,182,656

ResNet-34 ImageNet 73.04% 36 8,512 3,437,056

V. EXPERIMENTAL RESULTS

A. DeepVigor+ Accuracy with FI

To analyze the accuracy of the obtained VFs by DeepVigor+,
we perform fault injection experiments on 15% of randomly
selected channels in all DNNs in Table II and present the
Mean Absolute Error (MEA), as described in subsection IV-B.
Table III presents the MEA results comparing the Channel
Vulnerability Factor (CVF) by the complete DeepVigor+ filters
analysis vs full FI into 15% of channels in each DNN.
Noteworthy that the acceptable mean error is 1% [26].

The results in Table III indicate that the mean absolute error
by DeepVigor+ compared to exact FI throughout the DNNs is
between 0.819% to 0.978%, i.e., always less than 1%. These
results demonstrate that DeepVigor+ is able to provide precise
VFs and meets the expectation of an acceptable error with
respect to exhaustive FI experiments.

TABLE III: Absolute error for CVF in DeepVigor+ and fault
injection for 15% of the channels in DNNs.

DNN VGG-11 VGG-16 ResNet
-18-C

Mobile-
NetV2

ResNet
-18-I

ResNet
-34

Mean
Absolute
Error (%)

0.819 0.938 0.933 0.874 0.978 0.878

The main sources of error in VF calculation in DeepVigor+
are:

1) As discussed in subsection III-C, DeepVigor+ approx-
imates the error propagation in neurons based on the
values of power of 2. This error approximation introduces
an error to the resilience analysis which is also reflected
in VF calculation.

2) DeepVigor+ assumes that bitflips resulting in big values
are critical for DNNs and the distribution ratio for large
values are always considered critical. However, in some
cases, these values don’t result in misclassification. This
phenomenon is another reason for a minor difference
between the VF by FI and DeepVigor+.

B. Sampling Analysis vs. Complete Analysis

This subsection presents the results for sampling DeepVigor+
and compares its VF results against the complete analysis
to show how accurate sampling DeepVigor+ is. Channel
Vulnerability Factor (CVF) and Layer Vulnerability Factor
(LVF) are derived as described in subsection III-D and the
maximum and mean absolute error for obtained CVFs and LVFs
in complete and sampling DeepVigor+ for neurons and filters

are presented separately. In sampling DeepVigor+, channel
sampling ratio is explored.

Table IV indicates the absolute error results over various
channel sampling ratio for DNNs under study, in both neurons
and filters analysis. Each sampling analysis is repeated 50
times to observe the effect of random selections in stratified
sampling. Based on the results, the minimum absolute error
throughout the experiments for both CVF and LVF is very
close to 0. As observed, the difference between obtained CVFs
and LVFs throughout the results is minimal, demonstrating the
effectiveness of the exploited stratified sampling.

In all experiments, the Mean Absolute Error (MAE) for
CVF does not vary since the sampling method within channels
is similar (i.e., the logarithm of the number of OFMaps).
Also, it is observed that the MEA CVF is less than 0.065%
in all experiments for both activations and filters sampling
analysis. It means that the averaged VF for the logarithm-
based random sampling within each channel results in a highly
accurate CVF. This phenomenon is a result of the unified
distribution of weights within a channel in a pre-trained DNN.
The maximum observed error in neuron analysis is 0.004% to
1.443% throughout DNNs, whereas the mean error remains
low, meaning that for most of the channels, obtained CVFs
are highly accurate leading to an overall high accuracy for
obtained CVFs.

On the other hand, channel sampling ratio directly affects
the accuracy of LVF calculations. As observed in Table IV,
LVF error decreases with the increase of channel sampling
ratio. Considering both MEA and maximum error for LVF, a
10% channel sampling ratio can guarantee a minimal error for
VF calculations. Based on the MEA of complete DeepVigor+
compared to exhaustive FI Table III, sampling DeepVigor+
with 10% channel sampling ratio ensures that all the overall
error of obtained VFs for all DNNs will be lower than 1%.

In conclusion, the proposed stratified sampling in Deep-
Vigor+ results in highly accurate VF for channels and layers
obtained from both activations and filter analysis with a channel
sampling ratio of 10%. Sampling DeepVigor+ results in a
higher error than state-of-the-art statistic FI approaches such
as data-aware and data-unaware, yet it meets the requirement
of average error for resilience study which is 1%.

C. Run-Time and Scalability Investigation

To show the excellence of DeepVigor+ in terms of com-
plexity, scalability and execution time against FI, first, we
investigate the complexity of each based on the required number
of simulations (i.e., forward pass executions) to obtain VF. Then
we present the execution time for the complete and sampling
DeepVigor+ on an NVIDIA A100 GPU.

Exhaustive FI is the most accurate method for determin-
ing precise VFs. In exhaustive FI, the required number of
simulations equals the number of activations/weights times bit-
width (i.e., 32 bits). Therefore, its complexity is proportional
linearly to the size of DNNs. Whereas the complete DeepVigor+
analysis estimates VFs with high accuracy and significantly
lower complexity. Although its complexity is affected by
the size of DNNs, DeepVigor+ analysis exploits various

UNDER REVIEW IN AN IEEE JOURNAL 10

TABLE IV: Average absolute error analysis over 50 executions for sampling DeepVigor+ compared to complete analysis.

Activations analysis Filters analysis

DNN channel
sampling ratio MAE CVF Max error

CVF MAE LVF Max error
LVF MAE CVF Max error

CVF MAE LVF Max error
LVF

VGG-11

5% 0.0004% 0.011% 0.0010% 0.012% 0.064% 0.171% 0.019% 0.125%
10% 0.0004% 0.008% 0.0008% 0.008% 0.064% 0.148% 0.015% 0.097%
15% 0.0004% 0.004% 0.0007% 0.007% 0.063% 0.130% 0.011% 0.083%
20% 0.0004% 0.006% 0.0007% 0.007% 0.063% 0.128% 0.008% 0.076%

VGG-16

5% 0.037% 0.141% 0.033% 0.250% 0.045% 0.216% 0.017% 0.183%
10% 0.038% 0.144% 0.022% 0.188% 0.044% 0.116% 0.010% 0.094%
15% 0.038% 0.118% 0.018% 0.168% 0.043% 0.137% 0.008% 0.064%
20% 0.038% 0.130% 0.015% 0.140% 0.043% 0.141% 0.007% 0.065%

ResNet-18-C

5% 0.029% 0.097% 0.054% 0.633% 0.045% 0.153% 0.016% 0.137%
10% 0.029% 0.092% 0.038% 0.386% 0.045% 0.123% 0.011% 0.076%
15% 0.029% 0.093% 0.031% 0.272% 0.045% 0.127% 0.010% 0.083%
20% 0.029% 0.071% 0.026% 0.300% 0.045% 0.124% 0.008% 0.085%

MobileNetV2

5% 0.031% 1.443% 0.079% 2.803% 0.030% 0.893% 0.013% 0.983%
10% 0.033% 0.841% 0.053% 1.252% 0.030% 0.401% 0.009% 0.372%
15% 0.032% 0.586% 0.044% 0.742% 0.030% 0.468% 0.007% 0.346%
20% 0.032% 0.465% 0.037% 0.720% 0.030% 0.401% 0.006% 0.320%

ResNet-18-I

5% 0.005% 0.071% 0.007% 0.168% 0.041% 0.115% 0.016% 0.114%
10% 0.005% 0.070% 0.005% 0.212% 0.041% 0.096% 0.010% 0.061%
15% 0.005% 0.054% 0.004% 0.108% 0.041% 0.083% 0.008% 0.062%
20% 0.005% 0.045% 0.003% 0.082% 0.042% 0.089% 0.006% 0.032%

ResNet-34

5% 0.003% 0.061% 0.005% 0.140% 0.045% 0.136% 0.016% 0.087%
10% 0.003% 0.059% 0.003% 0.084% 0.045% 0.127% 0.011% 0.097%
15% 0.003% 0.054% 0.002% 0.089% 0.046% 0.122% 0.009% 0.080%
20% 0.003% 0.048% 0.002% 0.063% 0.045% 0.120% 0.007% 0.061%

optimizations to reduce the number of simulations resulting
in significantly lower complexity than exhaustive FI. This is
evidenced by the results in Table V where the required number
of simulations is compared between Exhaustive FI and complete
DeepVigor+ analysis, for activations and filters separately.

TABLE V: Number of simulations for exhaustive FI vs complete
DeepVigor+ for activations and filters analysis.

Activations Filters
DNNs Exhaustive FI DeepVigor+ Exhaustive FI DeepVigor+

VGG-11 7,438,336 1,636,414 294,967,296 11,035
VGG-16 5,931,008 2,018,447 470,734,848 13,704

ResNet-18-C 21,331,968 3,387,189 357,095,424 15,906
MobileNet-V2 27,330,048 3,029,125 74,176,512 42,234
ResNet-18-I 69,844,992 20,730,314 357,341,184 23,450
ResNet-34 109,985,792 28,821,489 680,564,736 43,098

As observed, for each DNN, DeepVigor+ complete analysis
requires significantly lower executions either in activations or
filters analysis. Throughout the results, activations analysis by
complete DeepVigor+ is 2.93 to 9.02 times faster than exhaus-
tive FI. According to our detailed investigations, activations
analysis by DeepVigor+ requires 6 forward simulations per
neuron, on average, throughout the DNNs under study. In this
regard, the introduced loss function to obtain the vulnerability
values (box 4 in Fig 6) contributes to skipping the analysis for
up to 26% of neurons. Moreover, the vulnerability value can
be obtained by a single forward simulation for up to 55% of
neurons due to separating VVSS exploration (boxes 7 and 8
in Fig. 6).

In the complete filters analysis, the DeepVigor+ fault
propagation modeling implies a huge impact on the number of
simulations in the orders of magnitude. DeepVigor+ can derive
VF for filters 1,756 to 34,350 times faster than exhaustive FI.
To obtain the vulnerability values for channels, up to 1% of
channels are skipped by leveraging the loss function, and up

to 34% of channels require one forward simulation. These
results indicate that complete DeepVigor+ provides accurate
VF for neurons and channels of CNNs with significantly lower
complexity and shorter execution time than exhaustive FI
enabled by its optimal fault propagation modeling and analysis.

On the other hand, sampling DeepVigor+ is proposed to
further reduce the execution time and complexity of resilience
analysis and achieve a scalable method. To show its perfor-
mance against statistical FI (SFI), Table VI compares the
number of simulations for various state-of-the-art SFI [26] with
sampling DeepVigor+. As presented, data-aware SFI leads to
the least number of executions in FI-based simulation. It is
observed that DeepVigor+ sampling activations analysis with
10% channel sampling ratio leads to 8.72 to 20.5 times fewer
simulations compared to data-aware SFI. For the filters analysis,
DeepVigor+ obtains their VF with 59.4 up to 96.2 times fewer
simulations than data-aware SFI.

To obtain the Model Vulnerability Factor (MVF) both
activations and filters should be analyzed separately, based
on Eq. (15). Therefore, sampling DeepVigor+ accelerates the
process from 14.9 up to 26.9 times throughout the DNNs.
The scalability and speed of the method are achieved by both
channel sampling ratio and logarithmic sampling within them.
It can be observed that with the remarkable growth of DNNs
under analysis in their number of parameters, the number of
simulations in DeepVigor+ does not grow linearly.

To demonstrate the execution time of DeepVigor+ analysis,
we employed an A100 NVIDIA GPU and performed sampling
DeepVigor+ for activations and filters with different channel
sampling ratios. Table VII and Table VIII present the average
execution time over 50 executions of the method for complete
and sampling DeepVigor+ with different channel sampling
ratios, for activations and filters respectively. It is observed

UNDER REVIEW IN AN IEEE JOURNAL 11

TABLE VI: Comparison of required simulations for statistical FI [26] and sampling DeepVigor+.

Activations Analysis Filters Analysis
Analysis
method Layer-wise Data-unaware Data-aware Sampling

DeepVigor+ 10% Layer-wise Data-unaware Data-aware Sampling
DeepVigor+ 10%

VGG-11 74,863 1,562,657 71,173 4,596 75,351 2,141,913 66,934 1,038
VGG-16 117,992 1,839,889 106,513 10,283 123,266 3,588,834 112,151 1,476

ResNet-18-C 188,644 4,264,406 181,911 15,996 189,772 5,253,096 164,159 1,706
MobileNetV2 493,871 8,402,977 452,650 22,077 475,407 8,307,671 259,614 4,364
ResNet-18-I 191,205 5,407,659 189,325 21,680 190,896 5,358,315 167,447 2,178
ResNet-34 344,042 9,624,374 340,383 39,002 344,285 10,031,494 313,484 4,003

that VFs can be obtained in a few minutes for any DNNs.
Considering 10% channel sampling ratio for both activations
and filters analysis, the total MVF for VGG-11, VGG-16,
ResNet-18-C, MobileNet-V2, ResNet-18-I and ResNet-34 is
obtained almost in 8.7 minutes, 9.6 minutes, 12.7 minutes,
43.5 minutes, 19.4 minutes and 46 minutes, respectively. It is
worth mentioning that the complete DeepVigor+ analysis for
the DNNs under study takes almost 22 hours for VGG-16 and
18.5 days for ResNet-34, on the same GPU. Fast execution and
accurate estimation of VF obtained by sampling DeepVigor+
analysis provide a remarkable opportunity for a high-speed
resilience analysis for any DNN.

TABLE VII: Average execution time over 50 repetitions on A100
GPU for DeepVigor+ activations analysis, with different channel

sampling ratios.

DNN 5% 10% 15% 20% complete
analysis

VGG-11 203 sec
(≈ 3.4 min)

415 sec
(≈ 6.9 min)

625 sec
(≈ 10.4 min)

838 sec
(≈ 13.9 min)

66,083 sec
(≈ 0.7 days)

VGG-16 223 sec
(≈ 3.7 min)

453 sec
(≈ 7.5 min)

676 sec
(≈ 11 min)

915 sec
(≈ 15 min)

43,326 sec
(≈ 0.5 days)

ResNet-18-C 284 sec
(≈ 4.7 min)

580 sec
(≈ 9.5 min)

876 sec
(≈ 14.5 min)

1,171 sec
(≈ 19.5 min)

94,939
(≈ 1.1 days)

MobileNetV2 1,037 sec
(≈ 17 min)

2,097 sec
(≈ 35 min)

3,153 sec
(≈ 52.5 min)

4,071 sec
(≈ 68 min)

211,868
(≈ 2.4 days)

ResNet-18-I 448 sec
(≈ 7.4 min)

917 sec
(≈ 15 min)

1,390 sec
(≈ 23 min)

1,866 sec
(≈ 31 min)

634,872
(≈ 7.3 days)

ResNet-34 1,100 sec
(≈ 18 min)

2,237 sec
(≈ 37 min)

3398 sec
(≈ 56 min)

4549 sec
(≈ 75 min)

1,402,362
(≈ 16.2 days)

TABLE VIII: Average execution time over 50 repetitions on A100
GPU for DeepVigor+ filters analysis, with different channel sampling

ratios.

DNN 5% 10% 15% 20% complete
analysis

VGG-11 57 sec
(≈ 0.95 min)

111 sec
(≈ 1.8 min)

170 sec
(≈ 2.8 min)

219 sec
(≈ 3.6 min)

23,031 sec
(≈ 0.26 days)

VGG-16 61 sec
(≈ 1 min)

125 sec
(≈ 2.1 min)

168 sec
(≈ 3.1 min)

245 sec
(≈ 4.1 min)

35,634 sec
(≈ 0.4 days)

ResNet-18-C 92 sec
(≈ 1.5 min)

184 sec
(≈ 3 min)

275 sec
(≈ 4.6 min)

367 sec
(≈ 6.1 min)

60,410 sec
(≈ 0.7 days)

MobileNetV2 257 sec
(≈ 4.3 min)

513 sec
(≈ 8.5 min)

759 sec
(≈ 12.6 min)

1,025 sec
(≈ 17.1 min)

39,713 sec
(≈ 0.46 days)

ResNet-18-I 117 sec
(≈ 1.9 min)

250 sec
(≈ 4.1 min)

370 sec
(≈ 6.1 min)

506 sec
(≈ 8.4 min)

134,164 sec
(≈ 1.5 days)

ResNet-34 259 sec
(≈ 4.3 min)

524 sec
(≈ 8.7 min)

795 sec
(≈ 13.2 min)

1,064 sec
(≈ 17.7 min)

201,305 sec
(≈ 2.3 days)

D. Reliability Visualization and Comparison for DNNs

It has been shown that VF for DNNs’ layers and the
entire model can be obtained accurately in a few minutes
by DeepVigor+. The obtained VF results by DeepVigor+ can
be used to visualize the vulnerability of layers within a DNN

and identify more vulnerable ones. Fig. 8 illustrates the LVF
comparison for ResNet-18 trained on CIFAR-100 and ImageNet
datasets, while total LVF for each layer is obtained based on
the numerator of Eq. (15). This visualization sketches how
much each layer is vulnerable to single faults compared to
each other. As observed, in both ResNet18-C and ResNet18-I
first layers are more vulnerable than the latter ones. Therefore,
DeepVigor+ enables vulnerability visualization and comparison
within a DNN.

Furthermore, DeepVigor+ results in total MVF based on Eq.
(15) which is the weighted average of obtained LVFs providing
a comprehensive examination of vulnerability between different
DNNs. Fig. 9 indicates MVFs for activations and filters of
DNNs, separately, as well as their total MVF. As a result, it
is observed that activations are more vulnerable than weights.
However, weights generally contribute more to the total MVF
since their memory footprint is higher than that of activations
in DNNs. Based on total MVF, VGG-16 is the least vulnerable
DNN (MVF = 1.19%) and MobileNet-V2 is the most vulnerable
one (MVF = 2.76%).

E. Impact of Input Data on the Quality of Results

To obtain the VFs in DeepVigor+, we considered one batch
of 100 data. Nonetheless, to investigate the impact of data
on the quality of analysis results, we repeat the experiments
for different batches of data with the size of 100 input data
and derive DNNs’ total MVF. Fig. 10 illustrates the obtained
total MVF for DNNs over 8 different batches of data. As
observed, the variation between the total MVF for each DNN
is negligible for different batches of data, demonstrating that
analyzing DNNs’ resilience with one batch of data provides
confident results.

F. DeepVigor+ Applications and Considerations

As shown, DeepVigor+ achieves a fast, scalable and accurate
resilience analysis for emerging DNNs. The analysis provided
by DeepVigor+ is not limited to fault resilience assessment,
but it can be exploited for designing fault-tolerant and resilient
DNNs. Identifying more vulnerable channels and layers can
lead to cost-effective selective fault mitigation techniques
as well as a comparative investigation between different
architectures of DNNs. Moreover, it enables design space
exploration to identify more resilient DNNs against faults.

The other output of DeepVigor+ is VVR representing the
values that a fault should affect neuron/weight to misclassify
DNN’s golden results. These values can be used for obtaining
VFs and identifying more vulnerable components as well as for

UNDER REVIEW IN AN IEEE JOURNAL 12

(a) ResNet-18-C

(b) ResNet-18-I

Fig. 8: LVF visualization and comparison for ResNet-18 trained on
a) CIFAR-100 and b) ImageNet.

VGG-11

VGG-16

ResN
et-

18
-C

M
ob

ile
NetV

2

ResN
et-

18
-I

ResN
et-

34
0

1

2

3

4

M
od

el
V

ul
ne

ra
bi

lit
y

Fa
ct

or
(%

)

MVF activations MVF weights MVF total

Fig. 9: MVF comparison for DNNs based on activations, filters and
the entire model derived by DeepVigor+.

fault detection at inference and identifying bit-level resilience
analysis since they are represented in the power of 2 values
and can be mapped down to bits.

Yet, there are some constraints in this method to be
considered and extended in future research:

• It is assumed that the parameters within the layers of
DNNs under analysis are unifiedly distributed among
channels and their places are not resorted after training.
In such cases, a higher channel sampling ratio is needed

VGG-11 VGG-16 RESNET-18-C

MOBILENET-V2 RESNET-18-I RESNET-34

1 2 3 4 5 6 7 8
1

1.4

1.8

2.2

2.8

3

Batch number

M
V

F
(%

)

Fig. 10: Total MVF variation over different batches of data for all
DNNs.

to obtain accurate VF results.
• DeepVigor+ supports a single-bit fault model in input ac-

tivations and weights of convolutional layers and obtained
VF corresponds to this fault model. For multi-bit fault
models, the corresponding error propagation should be
applied.

• The error propagation analysis presented in this paper
is based on 32-bit floating point data representation.
However, the same concept can be extended and applied
to fixed-point and integer data representations for QNNs
resilience analysis, as in [49].

VI. CONCLUSION

This paper addresses one of the major challenges in fault re-
silience analysis for DNNs in the literature. It introduces Deep-
Vigor+, the first semi-analytical scalable alternative method
to fault injection, quantifying emerging DNN’s resilience
accurately in a short time. DeepVigor+ is facilitated by optimal
fault propagation modeling in DNNs accompanied by stratified
sampling tackling the scalability problem for resilience analysis
for DNNs. This open-source method unleashes a fast resilience
assessment, enabling fine-grain evaluation and design space
exploration for various fault-tolerant and cost-effective designs
for DNNs.

The results in the paper indicate that DeepVigor+ derives
vulnerability factors for layers and the entire model of DNNs
with less than 1% error, with 14.9 up to 26.9 times fewer
simulations than the best-known state-of-the-art statistical FI.
It is shown that DNN’s Model Vulnerability Factor can be
obtained within minutes by analyzing their activations and
weights. DeepVigor+ is presented as an open-source tool for
researchers and engineers to enable them to exploit it for DNNs’
fault resilience assessment and enhancement.

REFERENCES

[1] Y. Wang and S. H. Chung, “Artificial intelligence in safety-critical
systems: a systematic review,” Industrial Management & Data Systems,
vol. 122, no. 2, pp. 442–470, 2022.

[2] P. Rech, “Artificial neural networks for space and safety-critical applica-
tions: Reliability issues and potential solutions,” IEEE Transactions on
Nuclear Science, 2024.

UNDER REVIEW IN AN IEEE JOURNAL 13

[3] J. Athavale, A. Baldovin, R. Graefe, M. Paulitsch, and R. Rosales, “Ai
and reliability trends in safety-critical autonomous systems on ground
and air,” in 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W). IEEE, 2020,
pp. 74–77.

[4] I. Moghaddasi, S. Gorgin, and J.-A. Lee, “Dependable dnn accelerator
for safety-critical systems: A review on the aging perspective,” IEEE
Access, 2023.

[5] “Proposal for a regulation of the european parliament and of the
council laying down harmonised rules on artificial intelligence (artificial
intelligence act) and amending certain union legislative acts,” https://data.
consilium.europa.eu/doc/document/ST-5662-2024-INIT/en/pdf, 2024,
[Online].

[6] “H.r.6216 - national artificial intelligence initiative act of 2020,” https://
https://www.congress.gov/bill/116th-congress/house-bill/6216, 2020, [On-
line].

[7] M. Rausand, Reliability of safety-critical systems: theory and applications.
John Wiley & Sons, 2014.

[8] R. Baumann, “The impact of technology scaling on soft error rate
performance and limits to the efficacy of error correction,” in Digest.
International Electron Devices Meeting,. IEEE, 2002, pp. 329–332.

[9] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori,
and N. Wehn, “Reliable on-chip systems in the nano-era: Lessons learnt
and future trends,” in Proceedings of the 50th Annual Design Automation
Conference, 2013, pp. 1–10.

[10] S. Safari, M. Ansari, H. Khdr, P. Gohari-Nazari, S. Yari-Karin,
A. Yeganeh-Khaksar, S. Hessabi, A. Ejlali, and J. Henkel, “A survey of
fault-tolerance techniques for embedded systems from the perspective of
power, energy, and thermal issues,” IEEE Access, vol. 10, pp. 12 229–
12 251, 2022.

[11] H. Y. Yatbaz, M. Dianati, and R. Woodman, “Introspection of dnn-
based perception functions in automated driving systems: State-of-the-
art and open research challenges,” IEEE Transactions on Intelligent
Transportation Systems, 2023.

[12] H. Hussain, P. Tamizharasan, and C. Rahul, “Design possibilities and
challenges of dnn models: a review on the perspective of end devices,”
Artificial Intelligence Review, pp. 1–59, 2022.

[13] R. Desislavov, F. Martı́nez-Plumed, and J. Hernández-Orallo, “Trends in
ai inference energy consumption: Beyond the performance-vs-parameter
laws of deep learning,” Sustainable Computing: Informatics and Systems,
vol. 38, p. 100857, 2023.

[14] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay,
J. Feng, and S. Yan, “Tokens-to-token vit: Training vision transformers
from scratch on imagenet,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 558–567.

[15] T. Mohaidat and K. Khalil, “A survey on neural network hardware
accelerators,” IEEE Transactions on Artificial Intelligence, 2024.

[16] Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam, and
G. Guo, “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

[17] F. F. Dos Santos, L. Carro, and P. Rech, “Understanding and improving
gpus’ reliability combining beam experiments with fault simulation,”
in 2023 IEEE International Test Conference (ITC). IEEE, 2023, pp.
176–185.

[18] T. Garrett, S. Roffe, and A. George, “Soft-error characterization and
mitigation strategies for edge tensor processing units in space,” IEEE
Transactions on Aerospace and Electronic Systems, 2024.

[19] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104,
p. 101689, 2020.

[20] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O. Mutlu, L. Orosa,
and J. Choi, “Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead,” IEEE Design & Test, vol. 37,
no. 2, pp. 30–57, 2020.

[21] F. Su, C. Liu, and H.-G. Stratigopoulos, “Testability and dependability of
ai hardware: Survey, trends, challenges, and perspectives,” IEEE Design
& Test, vol. 40, no. 2, pp. 8–58, 2023.

[22] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“A systematic literature review on hardware reliability assessment methods
for deep neural networks,” ACM Computing Surveys, vol. 56, no. 6, pp.
1–39, 2024.

[23] ——, “Deepvigor: Vulnerability value ranges and factors for dnns’
reliability assessment,” in 2023 IEEE European Test Symposium (ETS).
IEEE, 2023, pp. 1–6.

[24] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint
arXiv:1605.07678, 2016.

[25] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben, “Binfi: An
efficient fault injector for safety-critical machine learning systems,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–23.

[26] A. Ruospo, G. Gavarini, C. De Sio, J. Guerrero, L. Sterpone, M. S.
Reorda, E. Sanchez, R. Mariani, J. Aribido, and J. Athavale, “Assessing
convolutional neural networks reliability through statistical fault injec-
tions,” in 2023 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2023, pp. 1–6.

[27] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W.
Fletcher, I. Frosio, and S. K. S. Hari, “Pytorchfi: A runtime perturbation
tool for dnns,” in 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), 2020, pp.
25–31.

[28] O. Weng, A. Meza, Q. Bock, B. Hawks, J. Campos, N. Tran, J. M.
Duarte, and R. Kastner, “Fkeras: A sensitivity analysis tool for edge
neural networks,” Journal on Autonomous Transportation Systems, 2024.

[29] N. Khoshavi, C. Broyles, Y. Bi, and A. Roohi, “Fiji-fin: A fault
injection framework on quantized neural network inference accelerator,”
in 2020 19th IEEE International Conference on Machine Learning and
Applications (ICMLA). IEEE, 2020, pp. 1139–1144.

[30] M. Taheri, M. H. Ahmadilivani, M. Jenihhin, M. Daneshtalab, and J. Raik,
“Appraiser: Dnn fault resilience analysis employing approximation errors,”
in 2023 26th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS). IEEE, 2023, pp. 124–127.

[31] M. Taheri, M. Daneshtalab, J. Raik, M. Jenihhin, S. Pappalardo,
P. Jimenez, B. Deveautour, and A. Bosio, “Saffira: a framework for
assessing the reliability of systolic-array-based dnn accelerators,” in 2024
27th International Symposium on Design & Diagnostics of Electronic
Circuits & Systems (DDECS). IEEE, 2024, pp. 19–24.

[32] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and N. De-
Bardeleben, “Tensorfi: A flexible fault injection framework for tensorflow
applications,” in 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2020, pp. 426–435.

[33] S. Laskar, M. H. Rahman, and G. Li, “Tensorfi+: a scalable fault injection
framework for modern deep learning neural networks,” in 2022 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 2022, pp. 246–251.

[34] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition. IEEE, 2009, pp. 502–506.

[35] C. Schorn, A. Guntoro, and G. Ascheid, “Accurate neuron resilience
prediction for a flexible reliability management in neural network
accelerators,” in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2018, pp. 979–984.

[36] J. Wang, J. Zhu, X. Fu, D. Zang, K. Li, and W. Zhang, “Enhancing neural
network reliability: Insights from hardware/software collaboration with
neuron vulnerability quantization,” IEEE Transactions on Computers,
2024.

[37] C. Amarnath, M. Mejri, K. Ma, and A. Chatterjee, “Soft error resilient
deep learning systems using neuron gradient statistics,” in 2022 IEEE
28th International Symposium on On-Line Testing and Robust System
Design (IOLTS). IEEE, 2022, pp. 1–7.

[38] ——, “Error resilience in deep neural networks using neuron gradient
statistics,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2023.

[39] M. Sabih, F. Hannig, and J. Teich, “Fault-tolerant low-precision dnns
using explainable ai,” in 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W).
IEEE, 2021, pp. 166–174.

[40] A. Mahmoud, S. K. S. Hari, C. W. Fletcher, S. V. Adve, C. Sakr,
N. Shanbhag, P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler,
“Hardnn: Feature map vulnerability evaluation in cnns,” arXiv preprint
arXiv:2002.09786, 2020.

[41] I. Chatterjee, B. Narasimham, N. Mahatme, B. Bhuva, R. Reed,
R. Schrimpf, J. Wang, N. Vedula, B. Bartz, and C. Monzel, “Impact
of technology scaling on sram soft error rates,” IEEE Transactions on
Nuclear Science, vol. 61, no. 6, pp. 3512–3518, 2014.

[42] M. B. Sullivan, N. Saxena, M. O’Connor, D. Lee, P. Racunas, S. Huk-
erikar, T. Tsai, S. K. S. Hari, and S. W. Keckler, “Characterizing
and mitigating soft errors in gpu dram,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
641–653.

[43] Z. Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou, and C. Zhuo, “When
single event upset meets deep neural networks: Observations, explorations,
and remedies,” in 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2020, pp. 163–168.

UNDER REVIEW IN AN IEEE JOURNAL 14

[44] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. Springer Science & Business
Media, 2004, vol. 17.

[45] J. Elliott, F. Mueller, F. Stoyanov, and C. Webster, “Quantifying the
impact of single bit flips on floating point arithmetic,” North Carolina
State University. Dept. of Computer Science, Tech. Rep., 2013.

[46] J. Zhan, R. Sun, W. Jiang, Y. Jiang, X. Yin, and C. Zhuo, “Improving
fault tolerance for reliable dnn using boundary-aware activation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 10, pp. 3414–3425, 2021.

[47] Z. Huang, W. Shao, X. Wang, L. Lin, and P. Luo, “Rethinking the
pruning criteria for convolutional neural network,” Advances in Neural
Information Processing Systems, vol. 34, pp. 16 305–16 318, 2021.

[48] R. Singh, N. S. Mangat, R. Singh, and N. S. Mangat, “Stratified sampling,”
Elements of survey sampling, pp. 102–144, 1996.

[49] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“Enhancing fault resilience of qnns by selective neuron splitting,” in 2023
IEEE 5th International Conference on Artificial Intelligence Circuits and
Systems (AICAS). IEEE, 2023, pp. 1–5.

Mohammad Hasan Ahmadilivani is a PhD student
in the Computer Systems Department at Tallinn Uni-
versity of Technology (Taltech), Estonia. He earned
his MSc in Computer Architecture Systems from
the University of Tehran, Iran, in 2020. His research
focuses on developing analytical methods to measure
and enhance the hardware reliability of deep neural
networks (DNNs). His research interests include
exploiting DNNs in safety-critical applications, robust
computer vision, and efficient and reliable DNN
accelerator design.

Jaan Raik is a Full Professor at the Department
of Computer Systems and Head of the Center
for Dependable Computing Systems at the Tallinn
University of Technology (Taltech), Estonia. He
received his M.Sc. and Ph.D. degrees from Taltech
in 1997 and in 2001, respectively. His research
interests cover a wide area in electrical engineering
and computer science domains including reliability of
deep learning, hardware test, functional verification,
fault-tolerance and security as well as emerging
computer architectures. He has co-authored more

than 400 scientific publications. He is a member of IEEE Computer Society,
HiPEAC and of Steering/Program Committees of numerous conferences within
his field. He served as the General Chair to IEEE European Test Symposium
’25, ’20, IFIP/IEEE VLSI-SoC ’16, DDECS ’12), Vice General Chair IEEE
European Test Symposium ’24, DDECS ’13 and Program Co-Chair DDECS
’23, ’15, CDN-Live ’16 conferences. He was awarded the Global Digital
Governance Fellowship at Stanford (2022) and HiPEAC Paper Award (2020).

Masoud Daneshtalab Masoud Daneshtalab is
currently a full Prof. at Mälardalen University in
Sweden, Adj. Prof. at TalTech in Estonia and leads
the Heterogeneous System research group. He is
on the Euromicro board of directors, an editor
of the MICPRO journal, and has published over
200 refereed papers. His research interests include
HW/SW/Algorithm co-design, dependability and
deep learning acceleration.

Maksim Jenihhin is a tenured associate professor
of computing systems reliability and Head of the
research group Trustworthy and Efficient Comput-
ing Hardware (TECH) at the Tallinn University of
Technology, Estonia. He received his PhD degree
in Computer Engineering from the same university
in 2008. His research interests include reliable and
efficient hardware for AI acceleration, methodologies
and EDA tools for hardware design, verification and
security, as well as nanoelectronics reliability and
manufacturing test topics. He has published more

than 170 research papers, supervised several PhD students and postdocs and
served on executive and program committees for numerous IEEE conferences
(DATE, ETS, DDECS, LATS, NORCAS, etc.). Prof. Jenihhin coordinates
European collaborative research projects HORIZON MSCA DN “TIRAMISU”
(2024), HORIZON TWINN “TAICHIP” (2024) and national ones about energy
efficiency and reliability of edge-AI chips and cross-layer self-health awareness
of autonomous systems.

Appendix 4

IVM. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin.Enhancing Fault Resilience of QNNs by Selective Neuron Splitting. In IEEE5th International Conference on Artificial Intelligence Circuits and Systems(AICAS), pages 1–5. Hangzhou, China, 2023

219

Enhancing Fault Resilience of QNNs by Selective Neuron Splitting
Mohammad Hasan Ahmadilivani1, Mahdi Taheri1, Jaan Raik1, Masoud Daneshtalab1,2, and Maksim Jenihhin 1

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

1{mohammad.ahmadilivani, mahdi.taheri, jaan.raik, maksim.jenihhin}@taltech.ee
2masoud.daneshtalab@mdu.se

Abstract—The superior performance of Deep Neural Networks
(DNNs) has led to their application in various aspects of human life.
Safety-critical applications are no exception and impose rigorous
reliability requirements on DNNs. Quantized Neural Networks
(QNNs) have emerged to tackle the complexity of DNN accelerators,
however, they are more prone to reliability issues.

In this paper, a recent analytical resilience assessment method is
adapted for QNNs to identify critical neurons based on a Neuron
Vulnerability Factor (NVF). Thereafter, a novel method for splitting
the critical neurons is proposed that enables the design of a
Lightweight Correction Unit (LCU) in the accelerator without
redesigning its computational part.

The method is validated by experiments on different QNNs and
datasets. The results demonstrate that the proposed method for
correcting the faults has a twice smaller overhead than a selective
Triple Modular Redundancy (TMR) while achieving a similar level
of fault resiliency.

I. INTRODUCTION

Artificial Intelligence (AI) has shifted the paradigm of com-
puter science in the latest decade with Deep Neural Networks
(DNNs), one of AI’s illustrious instruments, demonstrating
remarkable precision levels [1]. This has led to their adoption
in several safety-critical applications like autonomous driving
[2]. As DNN accelerators become more prevalent in safety-
critical applications, hardware reliability of digital circuits has
become increasingly more noticeable. The reliability of DNNs is
determined by the ability of their accelerators to function correctly
[3] in the presence of environment-related faults (soft errors,
electromagnetic effects, temperature variations) or faults in the
underlying hardware (manufacturing defects, process variations,
aging effects) [4].

Various emerging techniques are explored to improve the
computational efficiency of DNNs’ complex architectures, such
as reducing the bit precision of parameters, which has led to
the emergence of Quantized Neural Networks (QNNs). However,
the effectiveness of such techniques raises concerns about the
reliability of QNNs, particularly in safety-critical applications.
Soft errors, a type of fault caused by charged particles colliding
with transistors, can cause a logic value to flip, dramatically
influencing the functionality of QNNs [5], [6].

Throughout the literature, protecting DNNs against soft errors
is primarily achieved through architecture-level methods such
as hardened PEs or Triple Modular Redundancy (TMR) [7].
However, to alleviate overheads, there is a need, first, to identify
the critical neurons within a neural network before applying
the mentioned mitigation techniques to harden them against the
faults.

Reliability assessment serves as the initial step towards
exploiting an effective protection mechanism. Fault Injection

The work is supported in part by the EU through European Social Fund in the
frames of the “ICT programme” (“ITA-IoIT” topic), by the Estonian Research
Council grant PUT PRG1467 “CRASHLESS”, Estonian Centre for Research
Excellence EXCITE and by Estonian-French PARROT project “EnTrustED”.

(FI) is a conventional method for reliability assessment that
is vastly adopted for DNNs. However, identifying the critical
points in a QNN requires an exhaustive FI that is prohibitively
complex due to their large number of parameters. To address this
issue, analytical resilience assessment approaches are proposed
to evaluate the reliability of DNNs by analyzing them at the
algorithm level [8].

In previous works, the criticality of neurons has been identified
based on their contribution scores to outputs [9]–[12]. Hence,
there is no clear resilience evaluation metric for selecting the
critical neurons in the literature, and recent works extract the
criticality based on the ranked scores. To tackle the drawbacks
of the state-of-the-art in DNNs’ resilience analysis methods, a
prior study has proposed a method called DeepVigor [13], which
provides vulnerability factors for all bits, neurons, and layers
of DNNs accurately. However, it does not consider QNNs. In
this work, we adapt and optimize DeepVigor for identifying
critical neurons in QNNs. The resilience analysis enables us to
design a method for correcting soft errors in the datapath of
DNN accelerators.

In this paper, we identify critical neurons in QNNs based on a
Neuron Vulnerability Factor (NVF) obtained by fault propagation
analysis through the QNNs. The NVF represents the probability of
misclassification due to a fault in a neuron which determines the
level of criticality for neurons. To the best of our knowledge, for
the first time, a protection technique based on splitting neurons’
operations is proposed that modifies the network in a way that a
Lightweight Correction Unit (LCU) corrects the faults in critical
neurons. The proposed method does not require redesigning the
computational part of the accelerator. The accelerator executes
the modified network, and only its controller needs to be aware
of the critical neurons to be operated on the LCU. Our method
imposes half the overhead of TMR since it corrects faults with
only one additional neuron instead of two.

The contributions of this work are as follows:

• Developing an analytical fault resilience assessment method
for QNNs to identify the most critical neurons based on the
conducted Neuron Vulnerability Factor (NVF);

• Proposing a novel high-level modification method for QNNs
to improve fault resiliency by splitting the operations
of critical neurons, without requiring a redesign of the
computational part of the accelerator;

• Designing an effective Lightweight Correction Unit (LCU)
for selected critical neurons in accelerators, with low
overhead (twice less than that of TMR) and high fault
resiliency (similar to that of TMR).

The paper is organized as follows. The proposed method for
enhancing fault resilience of QNNs is presented in Section II,
experiments are performed and discussed in Section III, and the
paper is concluded in Section IV.

20
23

 IE
EE

 5
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

rti
fic

ia
l I

nt
el

lig
en

ce
 C

irc
ui

ts
 a

nd
 S

ys
te

m
s (

A
IC

A
S)

 |
97

9-
8-

35
03

-3
26

7-
4/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

A
IC

A
S5

79
66

.2
02

3.
10

16
86

33

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

II. METHOD FOR RESILIENCE ENHANCEMENT OF QNNS

A. Accelerator Model

Fig. 1 illustrates the accelerator model considered in this work
which is inspired by [14]. It consists of a computational part (an
array of Processing Elements (PEs), activation functions, pooling,
and normalization), buffers for parameters (weight and bias),
inputs, and outputs, and the controller. It is assumed that faults
may happen in the computational part of the accelerator, thus, the
Outputs Buffer may contain faulty values of output activations.
The controller is responsible for feeding the inputs, transferring
the outputs, and controlling the function of the accelerator.

To apply the resilience enhancement method to accelerator, a
Lightweight Correction Unit (LCU) is added to the design in
which the controller only needs to be aware of the critical neurons.
Once the outputs of a layer are calculated, the controller transfers
the critical neurons to LCU, replaces its corrected outputs back to
the Outputs Buffer, and continues the operations of the accelerator.
The design of the LCU is proposed in Subsection II-C.

Inputs Buffer

PE PE

PE PE

PE

Activation Function
Pooling/Normalization

Outputs Buffer

PE

PE

PE

C
on

tro
lle

r

LCU

Weights/Bias Buffer

PE

C
om

pu
ta

tio
na

l P
ar

t

critical
neurons

Fig. 1: An abstract view of the accelerator and where the faults may
happen.

B. Identifying Critical Neurons by Resilience Analysis

Algorithm 1 presents the resilience analysis of QNNs to obtain
Neuron Vulnerability Factors (NVF) for all neurons throughout
the QNN in convolution and fully-connected layers. It is assumed
that the neural network is quantized into an 8-bit signed integer
data type, and the output activation of the neuron is analyzed.
The algorithm, first, checks whether or not to analyze an input
for the neuron (lines 3-5) by the gradients of a loss function (L)
that represents the impact of the neuron’s erroneous output on
the golden top class of the network.

Then, it finds minimum positive and maximum negative values
for the neuron (δ), that cause a misclassification in the QNN from
its golden output (lines 6, 7). Thereafter, it maps the obtained δ
to a corresponding possible bitflip location in the data type (lines
8, 9) and counts it as a vulnerable location (lines 10, 11). In
the end, regarding the counted of vulnerable times for each bit,
it calculates the probability of misclassification of the network
by each bitflip in the output of the neuron as the NVF over the
whole inputs (line 15).

A key observation in the analysis is that the 0 to 1 bitflip
is much more critical than 1 to 0 bitflip. Because the former
enlarges the values in the activation and propagates to the output,
while the latter is masked. This observation leads us to the
protection mechanism proposed in the next Subsection. It is worth
mentioning that the resilience analysis method is not limited to
a single-bit flip fault model, and it implicitly considers multi-bit
faults.

By obtaining the NVF of all neurons through the QNN, the
critical neurons can be found based on the values for NVF.
Different thresholds can be set to select the critical neurons and
protect them, considering how many of them are affected by the
protection techniques leading to execution overheads.

Algorithm 1 Resilience Analysis of QNNs

Input: Trained QNN with a set of neurons Q and N outputs,
set of input images X;

Output: NVF of all neurons;
Assume: δ ∈ [-128,127]; Ect is the output score for
the golden top class; Cg is golden classification; Cδ is
classification result after injecting δ; vul map arr pos and
vul map arr neg include counters for each bit corresponds
to each vulnerability range for positive and negative numbers;

1: for neuron ∈ Q do:
2: for input ∈ X do:
3: L = sigmoid(

∑N
j=0(Ect − Ecj))

4: grad = ∇L/outneuron
5: if grad != 0 then
6: rupper = min(δ), δ > 0, s.t. Cg ̸= Cf

7: rlower = max(δ), δ < 0, s.t. Clg ̸= Clf
8: bitupper = int(√rupper) + 1;
9: bitlower = int(

√
|rlower|);

10: vul map arr pos[bitupper]++;
11: vul map arr neg[bitlower]++;
12: end if;
13: end for;
14: vul map arr =

(vul map arr pos+ vul map arr neg) / 2

15: NV Fneuron =
∑8

i=1(
1
8×

∑i
j=1(vul map arr[j]))

size(X)
16: end for;

C. Resilience Enhancement by Splitting Critical Neurons and
LCU

The proposed fault resilience enhancement targets the critical
neurons identified based on a threshold on NVF. The idea is to
split the selected neurons’ operation into two neurons in the QNN
at a high level and correct the critical outputs in the accelerator.
Fig. 2 depicts how a critical neuron is split into two halves. As it
is shown, the input parameters (weights and bias) of the neuron
are halved, keeping the output parameters non-modified, and the
new neurons are replaced with the critical neuron in the QNN.
In this way, the neuron can be split into two neurons without
changing the intermediate values of the further layers and the
neural network’s outputs. Noteworthy, the method is applied to
all identified critical neurons in convolution and fully-connected
layers.

Splitting the critical neurons provides an opportunity for
fault correction using the split neurons without redesigning the

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

Input Layer
Hidden Layers

Output Layer

∑ φX1
l-1

X2
l-1

Wi2
l/2

Wi1
l/2

N'i
l

bl/2
Wi1

l+1

Wi2
l+1

∑ φX1
l-1

X2
l-1

Wi2
l

Wi1
l

Activation

function
Summation

Ni
l

bl

Wi1
l+1

Wi2
l+1

∑ φX1
l-1

X2
l-1

Wi2
l/2

Wi1
l/2

N"i
l

bl/2
Wi1

l+1

Wi2
l+1

Split

critical neuron

Split

Fig. 2: Operation splitting for a neuron in a QNN involves halving the
input parameters while keeping the output parameters non-modified. A
critical neuron is replaced with its corresponding split neurons in the

QNN.

computational part of the accelerator. The network is modified
in a way that the selected critical neurons from the analysis
are split. The modified network can then be mapped to the
accelerator using the existing controller and mapping algorithm
of the accelerator. However, the controller needs to be aware
of the critical neurons so that it can transfer them to LCU to
perform the correction and write them back to the Output Buffers
(Fig. 1).

LCU is designed to leverage the neuron-splitting method for
correction. The inputs of LCU are two split neurons representing
one critical neuron, and the output is one corrected 8-bit data
that will be written back to the corresponding neurons.

The data type (signed integer 8-bit) contains one sign bit and
7 bits for the integer. As the neuron’s operation is split, the range
of output values for each replaced neuron would be divided by
2. Therefore, the Most Significant Bit (MSB) in the integer part
of the output should always be 0. Regarding the observation in
the analysis about bitflips (Subsection II-B), any faulty bit can
be set to zero to be less critical.

Therefore, to output the corrected value, LCU performs two
operations: 1) a bit-wise AND over the two inputs, 2) resets the
MSB of the integer part to 0. In this way, many single and also
multiple faults that occur to the bits will be masked by these two
operations. Since the correction operations are merely an AND
and a bit reset, the correction unit is lightweight. The operation
of the LCU correction is depicted in Fig. 3 performing on the
faulty outputs of PEs running two splits of a critical neuron. The
corrected output is written back to Outputs Buffer as the outputs
of the corresponding PEs.

III. EXPERIMENTS

A. Experimental Setup

The experimented QNNs in this work are fully quantized (all
parameters and activation) to 8-bit signed integer using TFLite
[15]. The experiments in this work have been performed on a 7-
layer MLP and LeNet-5 trained on MNIST as well as an AlexNet

Critical
neuron
1st split

PE

PE

inp1

11010101

11010001 out

LCU operations:
1) out = inp1 AND inp2

2) out(6) = 0inp2

10010001

Critical
neuron

2nd split

Map to PEs Faulty outputs
of PEs (3 red bits)

Corrected output
of LCU (2 green bits)

Fig. 3: An example of how LCU corrects faulty critical neurons.

trained on CIFAR-10. The baseline accuracy of each network on
the test data is 70.1%, 89.1%, and 62.9%, respectively.

The resilience analysis and enhancement (Sections II-B and
II-C) are implemented in PyTorch considering the accelerator
model. The resilience analysis is conducted over the training
set. The critical neurons regarding different thresholds for NVF
are obtained to explore the number of neurons to be protected,
which imposes an overhead as well.

To show the efficacy of the resilience enhancement method, a
statistical FI is performed. In the FI process, one single bitflip
in the output of a random neuron in the network is injected, and
whole inference over the test set is performed, and the overall
accuracy is obtained. To meet the 95% confidence level with a
1% error margin in the statistical FI based on [16], we repeated
the FI process for each MLP-7, LeNet-5, and AlexNet for 6,750,
7,650, and 9,500 random faults, respectively.

As a baseline comparison of the proposed design for LCU,
we also apply a TMR to the critical neurons for the detection
and correction of faults. We adopt two metrics for comparing
the results of methods and expressing the resiliency: 1) accuracy
loss of QNNs over the fault injection, 2) the portion of critical
faults in a fault injection campaign. Critical faults are the ones
that misclassify the network from its golden classification.

B. Experimental Results

1) An Exploration on NVF of QNNs
As mentioned, NVF explores the probability of a faulty

neuron’s output that misclassifies the QNN from its golden output.
Table I presents the number of critical neurons in different NVFs
ranging from 0% (all neurons are critical) to 50% (no neuron
is critical). According to the table, different thresholds of NVF
count a different portion of neurons as critical among QNNs.
However, it is observed that all neurons among QNNs have NVF
of less than 50%. It is noteworthy that a higher threshold for
NVF means a less number of critical neurons to be protected.
This table represents the overhead of any protection mechanism
over the critical neurons.

Table I: Exploration of number and portion of critical neurons over
different thresholds for NVF.

QNN MLP-7 LeNet-5 AlexNet
NVF threshold #neurons portion #neurons portion #neurons portion
NVF >= 0% 2816 100% 4684 100% 103168 100%
NVF >= 5% 2513 89.24% 4380 93.5% 46322 44.9%
NVF >= 10% 1382 49.07% 1659 35.41% 15818 15.33%
NVF >= 15% 903 32.06% 222 4.74% 5171 5.01%
NVF >= 20% 503 17.86% 187 3.99% 622 0.6%
NVF >= 25% 272 9.6% 70 1.49% 398 0.38%
NVF >= 30% 184 6.5% 3 0.06% 232 0.2%
NVF >= 35% 85 3.01% 0 0% 147 0.14%
NVF >= 40% 26 0.92% 0 0% 56 0.05%
NVF >= 45% 7 0.2% 0 0% 6 0.005%
NVF >= 50% 0 0% 0 0% 0 0%

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

NVF (%)

A
cc

ur
ac

y
L

os
s

(%
)

MLP-7 (MNIST)

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

NVF (%)

A
cc

ur
ac

y
L

os
s

(%
)

LeNet-5 (MNIST)

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

NVF (%)

A
cc

ur
ac

y
L

os
s

(%
)

AlexNet (CIFAR-10)

Unprotected Proposed TMR

(a) (b) (c)

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

NVF (%)

C
ri

tic
al

Fa
ul

ts
(%

)

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

NVF (%)

C
ri

tic
al

Fa
ul

ts
(%

)

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

NVF (%)

C
ri

tic
al

Fa
ul

ts
(%

)

Unprotected Proposed TMR

(d) (e) (f)

0 5 10 15 20 25 30 35 40 45 50
0

2.0E3

4.0E3

6.0E3

8.0E3

1.0E4

1.2E4

NVF (%)

#
N

eu
ro

ns

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

3.0E3

6.0E3

9.0E3

1.2E4

1.5E4

1.8E4

NVF (%)

#
N

eu
ro

ns

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
5.0E4

1.0E5

1.5E5

2.0E5

2.5E5

3.0E5

3.5E5

NVF (%)
#

N
eu

ro
ns

Unprotected Proposed TMR

(g) (h) (i)

Fig. 4: QNNs comparison in terms of accuracy loss (a-c), critical faults (d-f), and network size (g-i) under different levels of protection:
unprotected, proposed protection, and TMR, considering different thresholds for NVF from 0% to 50%.

2) Resilience Enhancement of QNNs
Fig. 4 illustrates the experimental results of accuracy loss (a-c)

and critical faults (d-f) of the proposed resilience enhancement
and TMR over different NVF thresholds for the QNNs. The
results show how critical neurons are effectively selected and
protected by the proposed method. As shown, all results of
protecting QNNs by the proposed method are very close to those
of selective TMR-based protection. Furthermore, Fig. 4-(g-i)
shows that the QNNs’ size (as measured by the number of neurons
in each network) using the proposed protection is remarkably
smaller than that of the TMR-based protected networks, resulting
in half the overhead due to employing one additional neuron for
correction instead of two.

Assuming a constraint on the accuracy loss to be less than 5%
in Fig. 4, a common NVF for all three QNNs can be considered
as 20% in which the accuracy loss is 4.86%, 3.88%, and 1.56%
in the QNNs protected by the proposed method that is 2.14x,
3.38x, and 3.36x less than the unprotected QNNs, respectively.
Regarding Table I, the resilience analysis suggests protecting
17.86% of neurons in MLP-7, 3.99% of neurons in LeNet-5,
and 0.6% of neurons in AlexNet, respectively. The proposed
protection mechanism results in 1.85x, 2.78x, and 1.97x fewer
critical faults than unprotected QNNs in the MLP-7, LeNet-5,
and AlexNet, respectively.

The proposed neuron splitting and correction method leverages
only two neurons (one additional) for correcting faults, whereas

TMR requires three neurons (two additional) to perform fault
detection and correction. As a result, the overhead of the proposed
method is significantly lower than that of TMR, while providing
similar resilience. According to Table I, to protect QNNs with
an NVF of 20% using TMR, quantized MLP-7, LeNet-5, and
AlexNet require 3,822, 5,058, and 104,412 neurons, respectively,
whereas the proposed method requires only 3,319, 4,871, and
103,790 neurons, respectively. Therefore, the proposed method
reduces the overall size of QNNs by 15.15%, 3.84%, and 0.6%
compared to TMR-based protection, which impacts the memory
footprint and execution time of the accelerator accordingly.

IV. CONCLUSION

This paper proposes a QNN fault resilience enhancement
method. It is achieved by a fault resilience analysis method for
QNNs based on the computation of the vulnerability factor for
all neurons of a QNN. A neuron splitting method is introduced
to modify the network in a way that the critical neurons selected
by the resilience analysis are split into two halves. This method
enables us to design a Lightweight Correction Unit (LCU) within
the accelerator without redesigning its computational parts. The
results indicate that the proposed method significantly enhances
the fault resiliency of QNNs, matching that of selective TMR
methods, but with half the overhead. It means that the proposed
method can improve fault resilience in QNNs, making them more
reliable for safety-critical applications.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Silver et al., “Mastering the game of go without human knowledge,”
nature, vol. 550, no. 7676, pp. 354–359, 2017.

[2] S. Mozaffari et al., “Deep learning-based vehicle behavior prediction for
autonomous driving applications: A review,” IEEE T-ITS, 2020.

[3] Y. Ibrahim et al., “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

[4] M. Shafique et al., “Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead,” IEEE Design & Test, vol. 37,
no. 2, pp. 30–57, 2020.

[5] U. Zahid et al., “Fat: Training neural networks for reliable inference under
hardware faults,” in 2020 IEEE International Test Conference (ITC). IEEE,
2020, pp. 1–10.

[6] N. Khoshavi et al., “Fiji-fin: A fault injection framework on quantized
neural network inference accelerator,” in 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE, 2020,
pp. 1139–1144.

[7] S. Mittal, “A survey on modeling and improving reliability of dnn algorithms
and accelerators,” Journal of Systems Architecture, vol. 104, p. 101689,
2020.

[8] A. Mahmoud et al., “Hardnn: Feature map vulnerability evaluation in cnns,”
arXiv preprint arXiv:2002.09786, 2020.

[9] C. Schorn and other, “Accurate neuron resilience prediction for a flexible
reliability management in neural network accelerators,” in 2018 DATE.
IEEE, 2018, pp. 979–984.

[10] C. Schorn et al., “An efficient bit-flip resilience optimization method for
deep neural networks,” in 2019 DATE. IEEE, 2019, pp. 1507–1512.

[11] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on ai-oriented mpsocs,” Applied Sciences, vol. 11,
no. 14, p. 6455, 2021.

[12] M. Abdullah Hanif and M. Shafique, “Salvagednn: salvaging deep neural
network accelerators with permanent faults through saliency-driven fault-
aware mapping,” Philosophical Transactions of the Royal Society A, vol.
378, no. 2164, p. 20190164, 2020.

[13] M. H. Ahmadilivani et al., “Deepvigor: Vulnerability value ranges and
factors for dnns reliability assessment,” in 28th IEEE European Test
Symposium. In press, 2023.

[14] E. Ozen and A. Orailoglu, “Just say zero: Containing critical bit-error
propagation in deep neural networks with anomalous feature suppression,”
in 39th ICCAD, 2020, pp. 1–9.

[15] R. David et al., “Tensorflow lite micro: Embedded machine learning for
tinyml systems,” Machine Learning and Systems, vol. 3, pp. 800–811, 2021.

[16] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in 2009 DATE. IEEE, 2009, pp. 502–506.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:46:49 UTC from IEEE Xplore. Restrictions apply.

Appendix 5

VS. Mousavi, M. H. Ahmadilivani, J. Raik, M. Jenihhin, and M. Daneshtalab.ProAct: Progressive Training for Hybrid Clipped Activation Function to En-hance Resilience of DNNs. Under review, pages 1–12, 2024

227

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which
this version may no longer be accessible.

ProAct: Progressive Training for Hybrid Clipped
Activation Function to Enhance Resilience of DNNs

Seyedhamidreza Mousavi1, Mohammad Hasan Ahmadilivani2, Jaan Raik2, Maksim Jenihhin2, and
Masoud Daneshtalab1,2

1Mälardalen University, Västerås, Sweden
2Tallinn University of Technology, Tallinn, Estonia

1{seyedhamidreza.mousavi, masoud.daneshtalab}@mdu.se
2{mohammad.ahmadilivani, jaan.raik, maksim.jenihhin}@taltech.ee

Abstract—Deep Neural Networks (DNNs) are extensively em-
ployed in safety-critical applications where ensuring hardware
reliability is a primary concern. To enhance the reliability of
DNNs against hardware faults, activation restriction techniques
significantly mitigate the fault effects at the DNN structure
level, irrespective of accelerator architectures. State-of-the-art
methods offer either neuron-wise or layer-wise clipping activation
functions. They attempt to determine optimal clipping thresholds
using heuristic and learning-based approaches. Layer-wise clipped
activation functions cannot preserve DNNs’ resilience at high bit
error rates. On the other hand, neuron-wise clipping activation
functions introduce considerable memory overhead due to the
addition of parameters, which increases their vulnerability to
faults. Moreover, the heuristic-based optimization approach
demands numerous fault injections during the search process,
resulting in time-consuming threshold identification. On the other
hand, learning-based techniques that train thresholds for entire
layers concurrently often yield sub-optimal results.

In this work, first, we demonstrate that it is not essential
to incorporate neuron-wise activation functions throughout all
layers in DNNs. Then, we propose a hybrid clipped activation
function that integrates neuron-wise and layer-wise methods
that apply neuron-wise clipping only in the last layer of DNNs.
Additionally, to attain optimal thresholds in the clipping activation
function, we introduce ProAct, a progressive training methodology.
This approach iteratively trains the thresholds on a layer-
by-layer basis, aiming to obtain optimal threshold values in
each layer separately. Throughout the progressive training, we
utilize Knowledge Distillation (KD) to transfer the output class
probability from the unbounded activation model (teacher model)
to the bounded activation model (student model). ProAct enhances
the fault resilience of DNNs, achieving improvements of up to
6.4x at high bit error rates. Moreover, ProAct reduces memory
overhead by 91.26x and 134.28x compared to the state-of-the-
art neuron-wise activation restriction technique, as evaluated on
ResNet50 and VGG16 models, respectively. The source codes
of the methods experimented in this paper are released at:
https://github.com/hamidmousavi0/reliable-relu-toolbox.git

I. Introduction

Machine Learning (ML) and, in particular, Deep Neural
Networks (DNNs) have recently emerged to play a significant
role in various applications [1], [2], [3], [4]. DNN hardware
accelerators are widely leveraged in safety-critical applications,
e.g., autonomous driving and healthcare, where hardware
reliability is a major concern [5], [6], [7], [8].

The reliability of DNN accelerators expresses their ability
to produce correct outputs in the presence of hardware faults
originating from various phenomena, e.g., soft errors that are
caused by colliding high energy particles to digital devices and
result in bitflips either in memory or logic [7], [9]. In this regard,
resilience pertains to the ability of DNNs to maintain their
prediction accuracy in the presence of faults [8], [10], [11]. Due
to technology miniaturization, soft error rates have increased in
recent years, in particular in SRAM-based memories, leading to
significant accuracy drops in DNNs due to corrupted parameters
that are stored in memory [7], [12], [13].

Since DNN accelerators store parameters (i.e., weights and
biases) in memory, which is prone to soft errors, the accuracy
of DNNs is jeopardized [14], [15]. Parameters in memories
are not being overwritten as frequently as values in the data
path, input buffers, and logic elements (e.g., buffers in PEs),
thus, bitflips originating from soft errors in parameters are
accumulative and persistent, leading to constantly producing
errors throughout the inference of a DNN accelerator. Fig. 1
depicts an example of how soft errors in memories storing
DNNs’ parameters can lead to a catastrophic outcome for an
autonomous vehicle by misclassifying a pedestrian as a bird,
which can result in a loss of life.

For the sake of simplicity, without loss of generality, in this
paper we are addressing Single Event Upset (SEU) fault effects,
i.e. soft errors latched to memory elements. SEUs cover a vast
majority of Single Event Transient (SET) effects on the logic
cells and are significantly more probable than SETs due to the
frequent masking of the latter [16]. Moreover, in the reliability
assessment, we resort to fault injection into parameters of the
DNN, while SEU faults may also occur in the neurons and
loop counters. These faults, albeit critical, have a marginal
impact on the overall reliability assessment result due to the
significantly smaller size of the counter registers versus the
parameters memory and thereby marginal fault probabilities
[17], [18].

Fault-tolerant techniques to enhance the reliability of DNN
accelerators against soft errors in memories are carried out
at the architecture and algorithm level. Architecture-level
techniques are accelerator-specific and exploit hardware re-
dundancy with performance and cost. Whereas they do not

1

Inputs
Buffer

PE PE PE

PE PE PE

PE PE PE

Outputs
Buffer

DNN Accelerator

input result

Expected result
Human

Obtained result
Bird

Parameters Memory

Fig. 1: Example of the impact of memory faults on the output classification
in a safety-critical application.

apply to the commercial-off-the-shelf and pre-designed IPs.
However, algorithm-level techniques modify the DNN models
in the software executable by any accelerators. Throughout the
literature, several cost-effective algorithm-level fault tolerance
techniques for enhancing the reliability of DNNs are presented,
such as activation restriction methods [19], [20], [21].

In the activation restriction methods, the rationale is to limit
the activation values within layers to mitigate the effect of fault
propagation on the output of DNNs mostly produced by large
erroneous values. To this end, a clipping threshold is obtained
for the ReLU activation functions in DNNs, to clip the higher
values than the threshold to 0.

In Ranger [19] and FT-ClipAct [20], a single threshold is
obtained for each layer while fitAct [21] assigns a threshold
to the ReLU of each neuron throughout a DNN. To obtain
the clipping thresholds, Ranger merely considers them as the
maximum activation value in each layer over validation data.
FT-ClipAct presents a heuristic search algorithm to identify the
corresponding clipping thresholds. On the other hand, FitAct
proposes a training-based method to obtain the neuron-wise
clipped activation function.

Regarding the related research works, the main shortcomings
in the previously proposed activation restriction methods are
as follows:

• The granularity of the existing clipping activation func-
tions is not optimal: 1) Layer-wise method does not
effectively prevent errors from propagating to outputs;
2) Neuron-wise method imposes significant overhead on
DNNs and increases the number of possible fault locations
in the memory.

• The existing optimization methods for obtaining clipping
thresholds are not only highly time-consuming but also
obtain sub-optimal clipping thresholds.

In this work, we attempt to address the identified issues
in the literature. To the best of our knowledge, for the first
time, a novel activation restriction method is introduced that

combines layer-wise and neuron-wise clipping incorporated
with progressive training employing Knowledge Distillation
(KD) [22], [23] to achieve significant resilience with negligible
memory overhead in DNNs. The contributions of this work
are as follows:

• Proposing Hybrid Clipped ReLU (HyReLU) activation
function restricting the activation values by trainable
threshold parameters in a neuron-wise way at the last
layer and performs layer-wise in the other layers of DNNs.
The proposed HyReLU imposes a negligible memory
overhead on DNNs.

• Introducing progressive training to obtain trainable clip-
ping thresholds in HyReLU for each layer separately.
It transfers the knowledge from baseline DNN models
(teacher) to the clipped DNNs by HyReLU (student),
leading to more optimal and effective clipping threshold
values ensuring high resilience for DNNs.

• Comparing the results extensively with the state-of-the-art
activation-restriction methods. Results demonstrate that
the ProAct method improves the resilience of DNNs up
to 6.4x at high bit error rates, compared to the state-of-
the-art methods with a remarkable reduction in memory
overhead, i.e., up to 134.28x.

• Publishing the source codes, not only for the proposed
ProAct method but also the implemented state-of-the-
art activation restriction methods presented in this paper.
To our knowledge, there is no open-source tool in the
literature providing activation restriction methods for
resilience enhancement of DNNs. The source code and
usage instructions for all activation restriction methods,
including ProAct, are accessible for researchers on the
corresponding GitHub repository1.

Progressive Training for Hybrid Clipped Activation Function
Thresholds (ProAct) empowers DNNs to mitigate error propa-
gation to the output to a significantly greater extent and with
considerably lower memory overhead than the state-of-the-art
methods.

We analyze the distribution of activation values in layer-wise
clipped activation functions within fault-free and faulty models
to demonstrate that layer-wise clipping suffices for initial layers,
while neuron-wise clipping becomes necessary for the final
layers. Subsequently, we propose a hybrid neuron-/layer-wise
clipped activation function, wherein only the last layer of DNNs
employs neuron-wise clipping activation functions, while the
preceding layers utilize layer-wise clipping to mitigate memory
overhead.

We demonstrate that the optimization methods utilized
in current state-of-the-art approaches fail to attain optimal
threshold values. Subsequently, we introduce a progressive
training technique based on knowledge distillation for clipped
thresholds, executed layer by layer, to improve the resilience
of DNNs.

The remainder of the paper is organized as follows. Section
II overviews the literature on the fault-tolerant techniques for

1https://github.com/hamidmousavi0/reliable-relu-toolbox.git

DNNs. Section III presents the preliminaries regarding the
activation restriction and knowledge distillation topics. The
motivation for the research is presented in Section IV. The
ProAct method is described in Section V. The experimental
setup and results are presented in Section VI. Finally, the paper
is concluded in Section VII.

II. Related Works
In this section, the research works attempting to improve the

reliability of DNNs are overviewed. Techniques for improving
the reliability of DNN accelerators against soft errors in
memories can be considered at two levels of system abstraction:

• Architecture level: The computing units or memory
components of the DNN accelerators are either designed to
be reliable (i.e., hardened) or redundant units are included
[24], [25], [26], [27].

• Algorithm level: The structure of the DNN model is ma-
nipulated or fault-aware training is performed to improve
the resiliency of the DNN [28], [29], [30], [21].

Architecture-level techniques are designed specifically for
concrete DNN accelerators, and they apply hardware redun-
dancy leading to performance, area, and power overheads.
However, algorithm-level techniques are concerned with the
DNN model itself and can be applied to any accelerator [31],
[32]. Throughout the literature, the effective algorithm-level
techniques for improving the reliability of DNNs are presented
as follows:

• Fault correction: Faults are corrected using Error Correc-
tion Codes (ECC) [33], [34], or Algorithm-Based Fault
Tolerance (ABFT) [35] approaches.

• Inherent resilience improvement: Different approaches
to improve the inherent resilience of DNNs includ-
ing quantization and outlier regularization [36], fault-
aware training [29], [37], and activation restriction
[21], [31], [38], [19], [20].

ECC and ABFT methods are conventional and well-
established fault tolerance methods to detect and correct faults
using numerical and computational overheads. However, the
efficacy of these techniques in fault correction highly depends
on the overhead they introduce, whereas the state-of-the-
art approaches tend to improve the inherent resilience of
DNNs in more effective and efficient ways [29], [21], [36].
Nonetheless, the mentioned approaches for DNNs’ inherent
resilience improvement are orthogonal to one another and can
be applied as a combination to enhance their inherent resilience.

The process of quantization and outlier regularization offers
the potential to restrict the numerical range within a DNN,
thereby eliminating the possibility of generating excessively
large values due to faults. Nonetheless, quantization necessitates
the utilization of hardware accelerators specifically designed to
handle the operations associated with the respective data types.
Quantization can be deployed on general-purpose devices as
well, however, these carry out the floating-point arithmetic
leading to the reliability issues of floating-point data types.

In the research works leveraging fault-aware training methods,
all the DNN’s parameters are retrained while fault injection is

being performed. Fault-aware training for stuck-at and transient
faults at activations are presented in [28] and [29], respectively.
It is shown, including by radiation experiments, that fault-
aware training methods effectively improve the resilience of
DNNs [39], [40]. However, these methods retrain the entire
DNN which requires updating all the model parameters. This
is excessively complex and compute-expensive and requires
the possibility of retraining for a pre-trained DNN.

As mentioned, activation restriction methods attempt to
restrain the activation values within layers to alleviate the
effect of fault propagation on the DNNs outputs, produced
by large erroneous activation values. Assuming faults are
either in parameters or computations, neurons’ erroneous output
activations can be detected and handled after the generation
of their respective outputs using activation restriction methods
[20]. These methods do not require retraining the entire model
and do not suffer from the complexity of fault-aware training.
In addition, they are non-intrusive in the sense that they do
not require any changes to an accelerator.

Piece-wise Rectified Linear Unit (ReLU) is proposed in
[38] that finds thresholds to split ReLU into different ranges
by training and applies predefined coefficients to its outputs.
However, the effect of large faulty activation values remains.
Zhan et al. [31] have proposed another method to find the
thresholds of ReLU in a layer called BReLU and clip the
output to the threshold value itself. BReLU maps the faulty
activations in a layer to a non-zero value within that layer,
while DNNs are shown to be more resilient if faulty values
are replaced with a value near 0.

Ranger [19] presents a clipped ReLU that bounds the layer
activations’ output to 0 in case their value is higher than a
fixed threshold. The threshold values are obtained from the
maximum values at each layer seen in a validation set of
the dataset. The method of clipping out-bound values to 0 in
Ranger is demonstrated to be effective, however, the method
does not provide optimal clipping thresholds.

Hoang et al. have analyzed various boundary values on
the model’s accuracy [20]. Their method, named FT-ClipAct,
attempts to find optimal boundary values for each layer that are
not necessarily the maximum values of the layers’ activations
and are smaller than the maximum bounds. The authors
propose a heuristic interval search algorithm based on the
fault injection process to find appropriate threshold values
for the ReLU activation function at each layer. FT-ClipAct
incurs significant computational overhead in determining the
thresholds for DNNs’ layers due to the injection of faults at
each step of the search algorithm. Therefore, it is unfeasible
to employ it for every single neuron in a DNN.

FitAct [21] proposes an activation function based on the
sigmoid function that is differentiable to boundary values to
optimize them with a gradient-based algorithm. FitAct considers
the boundary values for each neuron and smoothly maps the
activation outputs to 0. Furthermore, Fitact demonstrates that
for fixed-point representation, the optimal threshold values
that maintain the baseline accuracy of the fault-free model
tend to be smaller. While FitAct effectively enhances the

resilience of DNNs, it concurrently elevates both memory
overhead and the likelihood of faults occurring in the activation
functions’ parameters. This indicates that as the number of
parameters in DNNs grows, the likelihood of faults occurring
in the threshold values also increases, thereby diminishing
the resilience. Furthermore, FitAct trains all the threshold
parameters in the clipping activation function simultaneously,
which decreases the possibility of providing the optimal
threshold for each activation function.

Therefore, there is a need for new activation restriction
methods in which more optimal thresholds can be obtained
and less memory overhead is incurred to DNNs. This paper
attempts to address these shortcomings in the literature.

III. Preliminaries
A. Clipping Activation Functions

Deep Neural Networks (DNNs) that are exploited for image
classification mainly consist of two main types of computational
layers: convolution and the fully-connected. An activation
function follows these layers to take non-linearity into account.
ReLU is the most frequently used activation function in DNNs
which is defined as follows:

ReLU(x) = max(0, x) (1)

ReLU has a remarkable impact on DNN training in terms of
efficiency and accuracy. However, it passes all positive values
leading to resilience issues once a fault produces large values
in the activations. This phenomenon decreases the classification
accuracy of the model significantly [20]. Therefore, it is
possible to create a clipped ReLU activation function to increase
the resilience of DNNs.

The primary strategy for restricting ReLU’s output values is
to use threshold values for each layer to prevent crossing the
large values. To achieve this, a clipped version of the ReLU
activation function for each layer is proposed in [19], [20]:

ReLUclipped(x) =

{
x if 0 ≤ x ≤ λ

0 otherwise
(2)

where λ is the clipping threshold and any value above this
threshold is considered faulty, and its value is clipped to 0.

As mentioned, Ranger [19] obtains the threshold values (λ)
based on the maximum value in the activation of each layer
on validation data. FT-ClipAct [20] finds the thresholds for
each layer by performing an interval search algorithm, which
results in a lower accuracy drop than Ranger in the presence of
faults. FitAct [21] introduces a neuron-wise smooth activation
function and is used as a gradient-based optimization method
to obtain all thresholds efficiently and provides better results
than FT-ClipAct in terms of accuracy drop, with considerably
higher memory overhead.

B. Knowledge Distillation
Knowledge Distillation (KD) is a teacher-student paradigm,

where the student model learns to mimic the output class
probability of the teacher model [41]. The most common

KD technique for mimicking the output of the teacher model
is known as soft targets that is based on the output logits
(activation outputs before softmax) of teacher and student
models [22]. The smooth, extended version of the softmax
function transforms the logits of a neural network into soft
probabilities P . The formulation is as follows:

P (zi, T) =
exp(zi/T)∑
j exp(zj/T)

(3)

where z is the logits, i is the top output class and j refers to
all output classes, and T indicates is a hyper-parameter called
temperature.

KD can be expressed as a minimization problem that
minimizes an expected (EX∼D) function based on soft targets,
as:

min
θ

EX∼D[KL(P (fs(X, θ), T)||P (ft(X), T))] (4)

where fs(·, θ) and ft(·) are the logit outputs of the student
model (s) with parameters θ and pretrained teacher model
(t), respectively. KL shows the KL-divergence distance which
measures the difference between two distributions, and X is
an input to the model that is drawn from the data distribution
D.

The main objective of knowledge distillation is to reduce
the gap between the outputs of the student and teacher models
in the last layers. By optimizing Eq. (4), the logit outputs of
the student model eventually coincide with those of the teacher
model.

IV. Research Motivation

The existing activation restriction methods in the literature
incur a notable accuracy drop at high Bit Error Rates (BERs)
and memory overhead accompanied by a time-consuming
and computationally expensive process to obtain the clipping
thresholds. The primary reason for the mentioned shortcomings
stems from the optimization process to determine the clipping
thresholds for clipping activation functions within DNN layers
or neurons.

It is stated that the optimal clipping threshold value for an
activation function (layer-wise or neuron-wise) is the minimum
possible value that maintains the accuracy of the fault-free
DNN model [20], [21]. The heuristic optimization method
in FT-ClipAct [20] demands extensive computation overhead
as it involves conducting fault injections at every step of the
search process and finding sub-optimal thresholds due to the
limited number of search steps.

The gradient-based optimization method in FitAct [21]
improves the resilience of DNNs compared to FT-ClipAct
as well as reduces its computational overhead. However, the
obtained thresholds for neurons are not optimal since all of
them are trained simultaneously in each backward pass. As
DNNs possess numerous neurons, this optimization process
may not necessarily lead to an optimal local minimum for the
clipping thresholds of activation functions for all neurons of a
DNN.

3× 10−6 10−5 3× 10−5

10

25

40

55

70

To
p-

1
A

cc
ur

ac
y

(%
)

FitAct Progressively optimized thresholds

Fig. 2: Top1-Accuracy of AlexNet under different BERs employing FitAct
and progressively optimized thresholds.

To illustrate the aforementioned shortcoming, we calculate
the clipping threshold values for activation functions in the
AlexNet using FitAct. Afterwards, we attempt to progressively
reduce the clipping threshold values for the neurons layer by
layer while ensuring that the model’s baseline accuracy remains
unaffected. We accomplish this by training the threshold
parameters for each layer individually for 5 epochs, using
a higher weight decay hyper-parameter. Fig. 2 illustrates the
results for AlexNet resilience based on its accuracy under
different BERs into parameters, after minimizing the neurons’
thresholds in each layer progressively.

It is observed that the obtained clipping thresholds by
FitAct are not the optimal values and it is possible to identify
more appropriate clipping threshold values to improve the
resilience of DNNs. These results demonstrate the necessity
for a new training mechanism to optimize clipping threshold
values. In this paper, we introduce the ProAct algorithm, which
progressively trains threshold values layer by layer accompanied
by Knowledge Distillation (KD).

Moreover, the main factor contributing to memory overhead
in FitAct is the implementation of clipped thresholds at the level
of individual neurons. Applying an individual clipping threshold
to each neuron not only enlarges memory overhead but also
increases the probability of memory faults as there are more
stored parameters. To comprehend the impact of neuron-wise
activation restriction, we examine error propagation through
FitAct-instrumented AlexNet by illustrating the distribution of
activations of each layer without and with faults into parameters
(BER = 3e − 5) in Fig. 3. To enhance the visualization, the
distribution of values is partitioned into two ranges, the left-
hand side column presents the activation values between [0, 1]
and the right-hand side one shows them in (1,∞), respectively.

The distribution of activations in both fault-free and faulty
models exhibits a similarity in the initial layers. While, by
proceeding through the depth of the model, the disparity
between the distribution of activations in fault-free and fault
models becomes more pronounced. This phenomenon reveals
that the errors are mostly amplified in the last layers of DNNs
where it is crucial to harness them. This observation suggests
that the output activations in the initial layers of DNNs can
be restricted by layer-wise clipping thresholds and the last

Fig. 3: The distribution of output activation values for the AlexNet model on
the CIFAR-10 dataset after applying the FitAct algorithm to find threshold

parameters.

layer can be restrained by neuron-wise ones. As a solution, we
introduce a hybrid clipped activation function that incorporates
neuron-wise thresholds specifically for the last layer of DNNs
and layer-wise thresholds for the rest of the layers, aiming to
decrease memory overhead and enhance resilience.

V. Methodology

Building upon the insights from the previous section, we
introduce ProAct, a progressive training approach for clipping
activation function thresholds, implemented in a hybrid manner:
neuron-wise exclusively in the last layer of DNNs and layer-
wise in all other layers. Progressive training aims to minimize
clipping thresholds for activation functions and enhance DNNs
resilience while maintaining their baseline accuracy. Moreover,
the hybrid clipped activation function mitigates memory
overhead and reduces the occurrence of faults in memory
locations.

A. Hybrid Clipped ReLU and Its Memory Overhead

To propose a hybrid clipped ReLU activation function,
it is essential to incorporate neuron-specific thresholds for
the neurons in the final layer of DNNs, while employing
layer-specific thresholds for the neurons in the preceding
layers. In addition, to utilize the gradient-based optimization
method, it is necessary to create a differentiable version of the
activation function. To achieve these objectives, we introduce
a hybrid clipped ReLU activation function (HyReLU), which
draws inspiration from the sigmoid activation function (σ), in
Eq. (5). This function guarantees smooth transitions around
the threshold values (λ) utilized in the clipped ReLU.

HyReLU(x, λ, l) =

{
max{0, xi[1− σ(k[λi − xi])]} if l = L

max{0, x[1− σ(k[λ− x])]} otherwise
(5)

In Eq. (5), x is an input activation, λ is a trainable parameter
representing the value of the clipping threshold in the respective
neuron/layer and k is a hyper-parameter determining the slope
for the smooth transition to 0, which is obtained through
cross-validation. L indicates the last layer index. This equation
expresses that the values larger than λ in a layer are considered
erroneous and are smoothly clipped to 0.

HyReLU is employed across all neurons of the last layer of
DNNs (i.e., the layer preceding the output layer), with each
having a distinct trained λi. For other layers, the function is
applied separately, with each layer possessing its own trained
λ. Consequently, the memory overhead introduced to a DNN
with the HyReLU is formulated in Eq. (6).

Memory Overhead =
#Layers + #Neuronslast layer

#ParametersDNN
(6)

B. ProAct: Progressive Training for HyReLU Activation
Function

To obtain the best clipping thresholds (λ) in HyReLU for
each layer/neuron in a DNN, we propose ProAct, a layer-wise
progressive training method exploiting knowledge distillation.
Figure 4 depicts an outline of the ProAct approach, where
the purpose is to find an optimal λ for each HyReLU without
breaching the maximum permitted accuracy drop and memory
overhead.

ProAct trains the clipping threshold of each layer separately,
from the last to the first layer. ProAct includes two main
steps to find the threshold parameters 1) Preprocessing and 2)
Progressive training. In the first step, we start by profiling the
model on validation data to determine the initial values for the
threshold parameters. Specifically, we initialize the threshold
parameters with the maximum activation value observed by
the corresponding layer/neuron on the validation dataset. Then,
we replace all ReLU activation functions with the proposed
HyReLU, using the initial threshold parameters (preprocessing
step in Algorithm 1 (1-8 lines)). Within the progressive training
step, we progressively select the layers from the last layer to
the first one and train the threshold parameters (λs) in the
HyReLU of the selected layer through the KD-based training.
The clipping threshold of the target layer is trained using KD
and this process continues down to the first layer (Training
step in Algorithm 1 (9-15 lines)).

The proposed training method utilizes KD in a way that
the clipping thresholds in HyReLU are trained based on
the supervision of the unbounded fault-free (baseline) model.
Through this process, the purpose is to mimic the output values
of the unbounded fault-free model in the modified model with
the HyReLU activation function. The pre-trained baseline model
including ReLU is used as the teacher model that includes the

golden output values and the modified DNN is the student
model that has the same structure as the teacher model, but
ReLU replaced by HyReLU.

The loss function LKD is computed based on the Kull-
back–Leibler divergence (KL) distance [42] between the
distribution of output values in the student and the teacher
model as:

LKD(X, s, t) = Ex∼DKL

(
P (fs(x, T, λ))||P (ft(x), T)

)

(7)

where P (f(., T)) show the soft output logits with temperature
parameter T .

Therefore, the whole loss function (L) that we use to train
the threshold parameters in the selected layer is:
L(X,Y, λ)=LKD(X, s, t)+Ex,y∼DLce(fs(x, λ), y)+γR(λ)

(8)

where the Lce and R(λ) show the cross entropy loss function
and l2-regularization. l2-regularization helps to constrain the
magnitude of the threshold parameters, preventing them from
becoming excessively large.

Algorithm 1 ProAct: Progressive Training for HyReLU Acti-
vation Function
Input: The unbounded teacher and bounded student models

(t, s), learning rate (α), Regularization parameter (γ),
number of epochs (N), BERs = [10−6, 3×10−6, 10−5, 3×
10−5, 10−4];

Output: Resilience DNN;
Preprocessing Step

1: for l ∈ [1, 2, · · · , L] do:
2: if l = L then:
3: Profile the model to find max value in each neuron;
4: else:
5: Profile the model to find max value in each Layer;
6: end if ;
7: Initial the threshold parameters (λ) based on max

values;
8: end for

Progressive Training Step
9: for l ∈ [L,L− 1, · · · , 1] do:

10: for i← 1 to N do:
11: Compute L (loss function) based on Eq. (8);
12: Compute ∂L/∂λ where λ : ∇λL(X,Y, λ);
13: Update λ via Adam optimizer;
14: end for;
15: end for;

VI. Experiments
A. Experimental Setup

The proposed method ProAct is applied to and evaluated on
three DNNs: AlexNet [43], VGG-16 [44], and ResNet-50 [45],
all trained on both CIFAR-10 and CIFAR-100 datasets. Their
baseline classification accuracy on the test sets is shown in

 + +

HR

HR

HR

Hidden Layers
Output Layer

Neurons with HyRelu HR
YES

NO

HR

HR

HR

Bounded Selected Layer

R Neurons with ReLU

R

R

R

Hidden Layers

R

R

R

Output Layer

Train
of selected layer

Training
 DATA

Find max value for layer
and initialize the threshold

Is this last
 layer?

next layer
Replace ReLU by
HyReLU clipped

with initial thresholds

ProAct: Progressive Training for HyReLU

No

Replace all
layers?

Preprocessing Step: replace ReLU by HyReLU

Select layer L

No

L = L-1

Yes

Train for all
layers?

Progressive Training Step: Find optimal Thresholds
End

Find max value for neurons
and initialize thresholds

Start

Student Model (s) - Clipped Teacher Model (t) - Baseline

Fig. 4: Hybrid Progressive training based on Knowledge Distillation

TABLE I: Baseline accuracy for each baseline CNNs

Networks AlexNet VGG-16 ReNet-50
Accuracy for CIFAR-10 81.67% 89.87% 91.11%
Accuracy for CIFAR-100 55.44% 65.45% 74.37%

Table I. It is noteworthy that experiments in this work exploit
32-bit fixed point data type representation in which the Most
Significant Bit (MSB) is for sign, 15 bits are for the integer
and 16 bits are for the fraction. All experiments in this paper
are performed on Nvidia® A4000-16GB GPU.

To demonstrate the excellence and effectiveness of ProAct
with respect to the state-of-the-art, results are compared to
Ranger [19], FT-ClipAct [20], and FitAct [21] methods. We
implement Ranger in, both, layer-wise and neuron-wise manners
and use a random small part of training data (3000 out of 60000
in both CIFAR-10 and CIFAR-100 datasets) as the validation
data to find the maximum values for the layers/neurons. FT-
ClipAct is implemented layer-wise and FitAct is implemented
neuron-wise, as they are presented in [20] and [21], respectively.

To obtain a quantitative comparison with the existing works,
we carry out the reliability assessment by injecting random
bit-flip faults into the parameters of CNNs, including weights,
bias, and parameters of clipping activation functions as the fault
space. Bits are randomly selected and flipped based on the 32-
bit fixed-point data representation. We consider different Bit Er-
ror Rates (BERs) to flip multiple bits to model the accumulative
effect of faults into the memory through time. The experimented
BERs are [10−7, 3× 10−7, 10−6, 3× 10−6, 10−5, 3× 10−5].

Fault injection experiments are repeated 500 times for each
BER and average results for Top-1 accuracy are reported
and compared. For the fault injection, we adopt and extend
PyTorchFI [46] to consider clipping thresholds in the fault space
which is developed on top of PyTorch. The training iterations
consist of 50 epochs for neuron-specific clipping thresholds in
the final layer and 20 epochs for layer-wise HyReLUs. This
ensures comparable computational overhead to FitAct, which
employs 150 epochs. We initialize the learning rate at 0.01,
halving it every 10 epochs, and utilize a batch size of 128.

B. Experimental Results
1) Effect of Activation Restriction Methods on DNNs’

Baseline Accuracy- and Memory Footprint: As mentioned,

the clipping thresholds in any activation restriction method are
obtained through validation data (not test data). On the other
hand, the main requirement of applying them is that they are
required not to drop the baseline accuracy of fault-free DNNs
over unseen test data. Table II shows the impact of activation
restriction methods on the baseline accuracy for each DNN
after application. It is observed that:

• Ranger has the least effect on the accuracy drop compared
to the other methods. Since Ranger considers the clipping
threshold as the maximum value seen in validation data
(either for neurons or layers), the obtained clipping
thresholds are large enough not to affect the inference
of the test data. As a result, in fault-free DNNs in
Table II Ranger reduces the accuracy by less than 0.2%.
However, this method does not improve DNNs’ resilience
as effectively as other methods, as shown in the next
subsection.

• FT-ClipAct introduces the largest accuracy drop through
all methods, from 0.9% in AlexNet trained up to 4.68%
in ResNet-50 both trained on CIFAR-10. Such accuracy
drop is significant for DNNs, especially in safety-critical
applications, and decreases the effectiveness of the applied
activation restriction method. Since the heuristic search
algorithm is very complex and slow, it is exploited with
a small subset of the training data (1000 out of 60000 in
both CIFAR-10 and CIFAR-100). Therefore, the obtained
thresholds are not optimal and influence the accuracy
considerably.

• The accuracy drop induced by applying ProAct is always
less than 1% which is negligible. Moreover, in all cases,
ProAct reduces the baseline accuracy of DNNs less than
both FT-clipAct and FitAct methods. This is due to
the progressive training method, which ensures that the
optimal threshold for each layer is found separately without
sacrificing accuracy.

The existing methods are either neuron-wise or layer-wise,
which lay different memory overhead on DNNs. Layer-wise
approaches introduce new clipping threshold parameters to
DNNs proportional to the number of layers which is a negligible
overhead. Whereas neuron-wise approaches lay a remarkable

TABLE II: Baseline Accuracy drop of DNNs by different activation function
restriction methods.

Activation
restriction
method

Ranger
(layer-wise)

Ranger
(neuron-wise)

FT-ClipAct
(layer-wise)

FitAct
(neuron-wise)

ProAct
(hybrid)

AlexNet
CIFAR-10 0.00% 0.00% 0.90% 0.78% 0.29%

AlexNet
CIFAR-100 0.01% 0.03% 2.40% 0.64% 0.51%

VGG-16
CIFAR-10 0.00% 0.02% 1.15% 1.14% 1.00%

VGG-16
CIFAR-100 0.00% 0.07% 1.69% 0.83% 0.35%

ResNet-50
CIFAR-10 0.15% 0.19% 4.69% 0.30% 0.22%

ResNet-50
CIFAR-100 0.00% 0.08% 1.60% 0.03% 0.10%

TABLE III: Comparison of memory overhead for neuron-wise, layer-wise,
and hybrid activation restriction methods

Activation
restriction
method

neuron-wise layer-wise Hybrid (ProAct)

AlexNet
CIFAR-10 0.29 3×10−5 0.017
AlexNet

CIFAR-100 0.21 3.5×10−5 0.020
VGG-16

CIFAR-10 1.88 8.84×10−5 0.014
VGG-16

CIFAR-100 0.85 4.46×10−5 0.012
ResNet-50
CIFAR-10 12.23 2×10−4 0.134
ResNet-50
CIFAR-100 12.23 2×10−4 0.134

overhead as the number of neurons in the DNN is huge, leading
to an increase in fault locations within the memory. However,
the ProAct memory footprint is limited since it is a hybrid
neuron-wise and layer-wise activation function.

Table III compares the memory overhead of neuron-wise,
layer-wise, and the proposed hybrid approach for activation
restriction methods. It is observed that ProAct significantly
reduces memory overhead compared to neuron-wise techniques
such as FitAct, ranging from 10.5x to 134.28x, while still
ensuring enhanced accuracy in protecting DNNs against faults.

2) Resilience Analysis of Activation Restriction Methods
Using Fault Injection: Fig. 5 and Fig. 7 depict the Top-1
accuracy of DNNs leveraging different activation restriction
methods on CIFAR-10 and CIFAR-100 respectively, under fault
injection campaigns as described in Subsection VI-A. The
right column in both figures magnifies the results to highlight
the impact of ProAct against the state-of-the-art methods, in
particular FT-ClipAct and FitAct. It is observed that equipping
DNNs with ProAct remarkably enhances the resilience of DNNs
compared to the other state-of-the-art methods.

Regarding Fig. 5 and Fig. 7, at all BERs, the accuracy
TABLE IV: Comparing the accuracy drop of DNNs using different activation

restriction methods under fault injection.

DNNs BER FT-ClipAct FitAct ProAct
AlexNet CIFAR-10 1E-6 7.67% 4.34% 2.52%
VGG-16 CIFAR-10 3E-6 3.19% 2.61% 1.88%

ResNet-50 CIFAR-10 1E-6 9.09% 1.53% 1.42%
AlexNet CIFAR-100 3E-7 7.89% 6.31% 5.28%
VGG-16 CIFAR-100 1E-7 6.74% 6.34% 4.40%

ResNet-50 CIFAR-100 3E-7 12.75% 11.24% 9.37%

Fig. 6: The distribution of output activation values for the AlexNet model on
the CIFAR-10 dataset after applying the ProAct algorithm to find threshold

parameters.

of DNNs with ProAct is higher than the DNNs with other
activation restriction methods. As it is observed, Ranger
provides the least resilient DNNs. According to the results,
although FitAct provides better resilience than FT-ClipAct, it
introduces a remarkable memory overhead orders of magnitude
more than FT-ClipAct. Whereas ProAct achieves a higher
resilience than all existing methods with negligible overhead.

Moreover, it is observed that in model-wise FI experiments,
all activation restriction methods can effectively improve the
resilience of DNNs compared to unprotected DNNs. However,
they fail to provide highly resilient DNNs at high BERs. When
faulty weights are spread throughout a DNN, several neurons
in various layers are affected. Consequently, in a high BER,
the values of affected neurons are restricted by their activation
functions and make numerous erroneous activations propagate
to the DNN output resulting in a considerable accuracy drop.
However, ProAct surpasses the other activation restriction
techniques in terms of providing superior accuracy for DNNs
in model-wise FI.

Table IV summarizes the results for accuracy drop of
experimented DNNs with respect to their own baseline accuracy
in Table I, hardened by FT-ClipAct, FitAct and ProAct, at the
BERs where the accuracy drop of ProActed DNNs for CIFAR-
10 is less than 5%, and for CIFAR-100 is less than 10%.
This comparison implicitly includes the accuracy drop due to
activation restriction methods exhibiting the overall benefit of
ProAct. According to the results, it is observed that ProAct
reduces the accuracy drop of DNNs from 1.36x up to 6.4x
compared to FT-ClipAct and from 1.07x up to 1.72x compared
to FitAct.

3) Activation Distribution in ProActed DNNs: As discussed
in Section IV and illustrated in Fig. 3, there is a significant

Ranger NW Ranger LW FT-ClipAct FitAct ProAct

10−7 3× 10−7 10−6 3× 10−6 10−5 3× 10−5
10

20

30

40

50

60

70

80

BER

To
p-

1
A

cc
ur

ac
y

(%
)

3× 10−7 10−6 3× 10−6
60

65

70

75

80

BER

To
p-

1
A

cc
ur

ac
y

(%
)

(a) AlexNet CIFAR-10

10−7 3× 10−7 10−6 3× 10−6 10−5 3× 10−5
10

20

30

40

50

60

70

80

90

BER

To
p-

1
A

cc
ur

ac
y

(%
)

3× 10−7 10−6 3× 10−6
86.5

87

87.5

88

88.5

89

BER

To
p-

1
A

cc
ur

ac
y

(%
)

(b) VGG-16 CIFAR-10

10−7 3× 10−7 10−6 3× 10−6 10−5 3× 10−5
10
20
30
40
50
60
70
80
90

BER

To
p-

1
A

cc
ur

ac
y

(%
)

10−7 3× 10−7 10−6
82

84

86

88

90

BER

To
p-

1
A

cc
ur

ac
y

(%
)

(e) ResNet-50 CIFAR-10

Fig. 5: Top-1 accuracy comparison of DNNs using ProAct with Ranger neuron-wise , Ranger layer-wise , FT-ClipAct, and FitAct methods under fault injection.

TABLE V: Average L2 distance of different DNNs and mitigation techniques,
layer-wise FI, BER = 1E − 4.

Method
L2 Distance

AlexNet VGG-16 ResNet-50
FitAct 65.6 80.3 93.7
ProAct 45.9 72.4 86.5

difference in the distribution of activation values between the
fault-free and faulty models, particularly in the last layer. ProAct
addresses this issue by reducing the gap between these distri-
butions through the identification of more effective thresholds
for the hybrid activation functions, using a progressive training
mechanism.

Fig. 6 presents the distribution of fault-free and faulty values
after applying ProAct to the AlexNet model on the CIFAR-10
dataset. The figure demonstrates that the distributions are more
similar, indicating that ProAct generates a model that closely
resembles the fault-free model. Specifically, incorporating
Knowledge Distillation (KD) in the training process helps
identify threshold values that maintain the similarity between
the distributions of the fault-free model and the faulty model.

To numerically evaluate the similarity of the activation

values between the clipped model and the fault-free model, we
compute the average L2 distance metric for all the layers of
the models as:

L2 =
1

N × L

L∑

i=1

N∑

j=1

|zij − fij |22 (9)

where L and N show the number of DNN’s layers and neurons
in a layer, respectively. Also, z and f indicate the activation
value for faulty and fault-free models, respectively.

Table V compares the similarity metric for ProAct and FitAct
as the state-of-the-art optimization based method. As observed,
the L2 distance of activations for all models is decreased
by the ProAct, meaning it produces activations much closer
to the fault-free network than FitAct. Compared to FitAct,
ProAct improves the L2 distance by 30%, 9.83%, and 7.68%
on AlexNet, VGG-16 and ResNet-50, respectively.

VII. Conclusion
In this work, we introduce ProAct, a progressive training

method for determining threshold values in a novel hybrid

Ranger NW Ranger LW FT-ClipAct FitAct ProAct

10−7 3× 10−7 10−6 3× 10−6 10−5 3× 10−5
0

10

20

30

40

50
54

BER

To
p-

1
A

cc
ur

ac
y

(%
)

10−7 3× 10−7

47

48.5

50

51.5

53

BER

To
p-

1
A

cc
ur

ac
y

(%
)

(a) AlexNet CIFAR-100

10−7 3× 10−7 10−6 3× 10−6 10−5 3× 10−5

10

20

30

40

50

60

BER

To
p-

1
A

cc
ur

ac
y

(%
)

10−7 3× 10−7

45

50

55

60

BER
To

p-
1

A
cc

ur
ac

y
(%

)

(b) VGG-16 CIFAR-100

10−7 3× 10−7 10−6 3× 10−6 10−5 3× 10−5

5

15

25

35

45

55

65

75

BER

To
p-

1
A

cc
ur

ac
y

(%
)

10−7 3× 10−7
60

65

70

75

BER

To
p-

1
A

cc
ur

ac
y

(%
)

(c) ResNet-50 CIFAR-100

Fig. 7: Top-1 accuracy comparison of DNNs using ProAct with Ranger neuron-wise, Ranger layer-wise, FT-ClipAct, and FitAct methods under fault injection.

clipped ReLU (HyReLU) activation function aimed at enhanc-
ing the resilience of DNNs. We demonstrate that existing
optimization techniques are computationally intensive and
frequently fail to find optimal threshold values. Additionally,
neuron-wise clipping methods such as FitAct are shown to
incur substantial memory costs. To address these issues, we
develop a hybrid clipped ReLU activation function that reduces
memory overhead by applying neuron-wise clipping solely
in the final layer and layer-wise clipping in the preceding
layers. Following this, we proposed a progressive training
strategy utilizing knowledge distillation to train the threshold
parameters layer by layer, effectively identifying suitable
threshold values for the HyReLU. Our experimental results
indicate that ProAct significantly improves the resilience of
DNNs, with enhancements of up to 6.4x in high bit error
rates. Furthermore, our approach dramatically reduces memory
overhead, achieving reductions of 10.5× to 134.28× compared
to the leading neuron-wise activation restriction methods.
Furthermore, we have published all source codes in Python,
enabling researchers to present more effective approaches in

this area.

References
[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of

deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[2] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep
learning for computer vision: A brief review,” Computational intelligence
and neuroscience, vol. 2018, 2018.

[3] J. Lin, W.-M. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han, “Mcunet: Tiny
deep learning on iot devices,” arXiv preprint arXiv:2007.10319, 2020.

[4] M. Loni, H. Mousavi, M. Riazati, M. Daneshtalab, and M. Sjödin,
“Tas: ternarized neural architecture search for resource-constrained edge
devices,” in 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2022, pp. 1115–1118.

[5] D. Moolchandani, A. Kumar, and S. R. Sarangi, “Accelerating cnn
inference on asics: A survey,” Journal of Systems Architecture, vol. 113,
p. 101887, 2021.

[6] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104,
p. 101689, 2020.

[7] F. Su, C. Liu, and H.-G. Stratigopoulos, “Testability and dependability of
ai hardware: Survey, trends, challenges, and perspectives,” IEEE Design
& Test, 2023.

[8] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“A systematic literature review on hardware reliability assessment methods
for deep neural networks,” ACM Computing Surveys, vol. 56, no. 6, pp.
1–39, 2024.

[9] C. Bolchini, L. Cassano, A. Miele, and A. Toschi, “Fast and accurate
error simulation for cnns against soft errors,” IEEE Transactions on
Computers, 2022.

[10] Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam, and
G. Guo, “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

[11] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“Deepvigor: Vulnerability value ranges and factors for dnns’ reliability
assessment,” in 2023 IEEE European Test Symposium (ETS). IEEE,
2023, pp. 1–6.

[12] A. Azizimazreah, Y. Gu, X. Gu, and L. Chen, “Tolerating soft errors
in deep learning accelerators with reliable on-chip memory designs,” in
2018 IEEE International Conference on Networking, Architecture and
Storage (NAS). IEEE, 2018, pp. 1–10.

[13] E. Malekzadeh, N. Rohbani, Z. Lu, and M. Ebrahimi, “The impact of
faults on dnns: A case study,” in 2021 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT).
IEEE, 2021, pp. 1–6.

[14] M. A. Neggaz, I. Alouani, S. Niar, and F. Kurdahi, “Are cnns reliable
enough for critical applications? an exploratory study,” IEEE Design &
Test, vol. 37, no. 2, pp. 76–83, 2019.

[15] T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa, B. Linares-
Barranco, and H.-G. Stratigopoulos, “Reliability analysis of a spiking
neural network hardware accelerator,” in 2022 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2022, pp. 370–375.

[16] R. Baumann, “Soft errors in advanced computer systems,” IEEE design
& test of computers, vol. 22, no. 3, pp. 258–266, 2005.

[17] A. Lotfi, S. Hukerikar, K. Balasubramanian, P. Racunas, N. Saxena,
R. Bramley, and Y. Huang, “Resiliency of automotive object detection
networks on gpu architectures,” in 2019 IEEE International Test
Conference (ITC). IEEE, 2019, pp. 1–9.

[18] P. Rech, “Artificial neural networks for space and safety-critical applica-
tions: Reliability issues and potential solutions,” IEEE Transactions on
Nuclear Science, 2024.

[19] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector
for deep neural networks through range restriction,” in 2021 51st
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 2021, pp. 1–13.

[20] L.-H. Hoang, M. A. Hanif, and M. Shafique, “Ft-clipact: Resilience
analysis of deep neural networks and improving their fault tolerance
using clipped activation,” in 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2020, pp. 1241–1246.

[21] B. Ghavami, M. Sadati, Z. Fang, and L. Shannon, “Fitact: Error resilient
deep neural networks via fine-grained post-trainable activation functions,”
in 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2022, pp. 1239–1244.

[22] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[23] M. Goldblum, L. Fowl, S. Feizi, and T. Goldstein, “Adversarially
robust distillation,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 3996–4003.

[24] C. Liu, C. Chu, D. Xu, Y. Wang, Q. Wang, H. Li, X. Li, and K.-T.
Cheng, “Hyca: A hybrid computing architecture for fault-tolerant deep
learning,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 10, pp. 3400–3413, 2021.

[25] W. Li, G. Ge, K. Guo, X. Chen, Q. Wei, Z. Gao, Y. Wang, and H. Yang,
“Soft error mitigation for deep convolution neural network on fpga
accelerators,” in 2020 2nd IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS). IEEE, 2020, pp. 1–5.

[26] Y. Hong, J. Lian, L. Xu, J. Min, Y. Wang, L. J. Freeman, and X. Deng,
“Statistical perspectives on reliability of artificial intelligence systems,”
Quality Engineering, pp. 1–23, 2022.

[27] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“Enhancing fault resilience of qnns by selective neuron splitting,” in 2023
IEEE 5th International Conference on Artificial Intelligence Circuits and
Systems (AICAS). IEEE, 2023, pp. 1–5.

[28] N. Cavagnero, F. D. Santos, M. Ciccone, G. Averta, T. Tommasi, and
P. Rech, “Fault-aware design and training to enhance dnns reliability
with zero-overhead,” arXiv preprint arXiv:2205.14420, 2022.

[29] U. Zahid, G. Gambardella, N. J. Fraser, M. Blott, and K. Vissers, “Fat:
Training neural networks for reliable inference under hardware faults,” in
2020 IEEE International Test Conference (ITC). IEEE, 2020, pp. 1–10.

[30] F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro, D. Kaeli,
and P. Rech, “Analyzing and increasing the reliability of convolutional
neural networks on gpus,” IEEE Transactions on Reliability, vol. 68,
no. 2, pp. 663–677, 2019.

[31] J. Zhan, R. Sun, W. Jiang, Y. Jiang, X. Yin, and C. Zhuo, “Improving
fault tolerance for reliable dnn using boundary-aware activation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 10, pp. 3414–3425, 2021.

[32] C. Schorn, A. Guntoro, and G. Ascheid, “An efficient bit-flip resilience
optimization method for deep neural networks,” in 2019 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). IEEE, 2019,
pp. 1507–1512.

[33] M. Jang and J. Hong, “Mate: Memory-and retraining-free error correction
for convolutional neural network weights,” Journal of information and
communication convergence engineering, vol. 19, no. 1, pp. 22–28, 2021.

[34] S.-S. Lee and J.-S. Yang, “Value-aware parity insertion ecc for fault-
tolerant deep neural network,” in 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2022, pp. 724–729.

[35] K. Zhao, S. Di, S. Li, X. Liang, Y. Zhai, J. Chen, K. Ouyang, F. Cappello,
and Z. Chen, “Ft-cnn: Algorithm-based fault tolerance for convolutional
neural networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 7, pp. 1677–1689, 2020.

[36] E. Ozen and A. Orailoglu, “Snr: Squeezing numerical range defuses bit
error vulnerability surface in deep neural networks,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 20, no. 5s, pp. 1–25,
2021.

[37] N. Cavagnero, F. Dos Santos, M. Ciccone, G. Averta, T. Tommasi,
and P. Rech, “Transient-fault-aware design and training to enhance
dnns reliability with zero-overhead,” in 2022 IEEE 28th International
Symposium on On-Line Testing and Robust System Design (IOLTS).
IEEE, 2022, pp. 1–7.

[38] M. S. Ali, T. B. Iqbal, K.-H. Lee, A. Muqeet, S. Lee, L. Kim, and
S.-H. Bae, “Erdnn: Error-resilient deep neural networks with a new error
correction layer and piece-wise rectified linear unit,” IEEE Access, vol. 8,
pp. 158 702–158 711, 2020.

[39] G. Gambardella, N. J. Fraser, U. Zahid, G. Furano, and M. Blott,
“Accelerated radiation test on quantized neural networks trained with fault
aware training,” in 2022 IEEE Aerospace Conference (AERO). IEEE,
2022, pp. 1–7.

[40] P. Maillard, Y. P. Chen, J. Vidmar, N. Fraser, G. Gambardella, M. Sawant,
and M. L. Voogel, “Radiation tolerant deep learning processor unit
(dpu) based platform using xilinx 20nm kintex ultrascale™ fpga,” IEEE
Transactions on Nuclear Science, 2022.

[41] L. Wang and K.-J. Yoon, “Knowledge distillation and student-teacher
learning for visual intelligence: A review and new outlooks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

[42] J. Shlens, “Notes on kullback-leibler divergence and likelihood,” arXiv
preprint arXiv:1404.2000, 2014.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[44] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[46] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W.
Fletcher, I. Frosio, and S. K. S. Hari, “Pytorchfi: A runtime perturbation
tool for dnns,” in 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W). IEEE, 2020,
pp. 25–31.

Seyedhamidreza Mousavi is currently pursuing the
PhD degree in computer science and engineering at
the School of Innovation, Design, and Engineering,
Mälardalen University, Västerås, Sweden. He is a
member of AutoDeep and FASTER-AI projects. His
research is focused on designing deep neural network
architectures that are both high-performing and com-
pact, while also ensuring their safety using reliable
and robust neural architecture search techniques.

Mohammad Hasan Ahmadilivani is a PhD student
in the Computer Systems Department at Tallinn Uni-
versity of Technology (Taltech), Estonia. He earned
his MSc in Computer Architecture Systems from
the University of Tehran, Iran, in 2020. His research
focuses on developing analytical methods to measure
and enhance the hardware reliability of deep neural
networks (DNNs). His research interests include
exploiting DNNs in safety-critical applications, robust
computer vision, and efficient and reliable DNN
accelerator design.

Jaan Raik is a Full Professor at the Department
of Computer Systems and Head of the Center for
Dependable Computing Systems at the Tallinn Uni-
versity of Technology (Taltech), Estonia. He received
his M.Sc. and Ph.D. degrees from Taltech in 1997
and in 2001, respectively. His research interests
cover a wide area in electrical engineering and
computer science domains including reliability of
deep learning, hardware test, functional verification,
fault-tolerance and security as well as emerging
computer architectures. He has co-authored more

than 400 scientific publications. He is a member of IEEE Computer Society,
HiPEAC and of Steering/Program Committees of numerous conferences within
his field. He served as the General Chair to IEEE European Test Symposium
’25, ’20, IFIP/IEEE VLSI-SoC ’16, DDECS ’12), Vice General Chair IEEE
European Test Symposium ’24, DDECS ’13 and Program Co-Chair DDECS
’23, ’15, CDN-Live ’16 conferences. He was awarded the Global Digital
Governance Fellowship at Stanford (2022), HiPEAC Paper Award (2020), the
Order of the White Star 4th class medal by the President of Estonia (2016)
and Estonian Academy of Science’s Bernhard Schmidt Award for innovation
(2007).

Maksim Jenihhin is a tenured associate professor
of computing systems reliability and Head of the
research group Trustworthy and Efficient Comput-
ing Hardware (TECH) at the Tallinn University of
Technology, Estonia. He received his PhD degree in
Computer Engineering from the same university in
2008. His research interests include methodologies
and EDA tools for hardware design, verification
and debug, and security, as well as nanoelectronics
reliability and manufacturing test topics. He has
published more than 150 research papers, supervised

several PhD students and postdocs and served on executive and program
committees for numerous IEEE conferences (DATE, ETS, DDECS, LATS,
NORCAS, etc.). Prof. Jenihhin coordinates European collaborative research
projects HORIZON MSCA DN “TIRAMISU” (2024), HORIZON TWINN
“TAICHIP” (2024) and national ones about energy efficiency and reliability of
edge-AI chips and cross-layer self-health awareness of autonomous systems.

Masoud Daneshtalab Masoud Daneshtalab is
currently a full Prof. at Mälardalen University in
Sweden, Adj. Prof. at TalTech in Estonia and leads
the Heterogeneous System research group. He is
on the Euromicro board of directors, an editor
of the MICPRO journal, and has published over
200 refereed papers. His research interests include
HW/SW/Algorithm co-design, dependability and
deep learning acceleration.

Appendix 6

VIM. H. Ahmadilivani, S. Mousavi, J. Raik, M. Daneshtalab, and M. Jenih-hin. Cost-Effective Fault Tolerance for CNNs Using Parameter VulnerabilityBased Hardening and Pruning. In The 30th IEEE International Symposiumon On-Line Testing and Robust System Design (IOLTS), pages 1–6. Rennes,France, 2023

241

Cost-Effective Fault Tolerance for CNNs Using Parameter
Vulnerability Based Hardening and Pruning

Mohammad Hasan Ahmadilivani1, Seyedhamidreza Mousavi2,
Jaan Raik1, Masoud Daneshtalab1,2, and Maksim Jenihhin1

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

1{mohammad.ahmadilivani, jaan.raik, maksim.jenihhin}@taltech.ee
2{seyedhamidreza.mousavi, masoud.daneshtalab}@mdu.se

Abstract—Convolutional Neural Networks (CNNs) have be-
come integral in safety-critical applications, thus raising con-
cerns about their fault tolerance. Conventional hardware-
dependent fault tolerance methods, such as Triple Modular
Redundancy (TMR), are computationally expensive, imposing
a remarkable overhead on CNNs. Whereas fault tolerance
techniques can be applied either at the hardware level or
at the model levels, the latter provides more flexibility with-
out sacrificing generality. This paper introduces a model-level
hardening approach for CNNs by integrating error correction
directly into the neural networks. The approach is hardware-
agnostic and does not require any changes to the underlying
accelerator device. Analyzing the vulnerability of parameters
enables the duplication of selective filters/neurons so that their
output channels are effectively corrected with an efficient and
robust correction layer. The proposed method demonstrates
fault resilience nearly equivalent to TMR-based correction but
with significantly reduced overhead. Nevertheless, there exists
an inherent overhead to the baseline CNNs. To tackle this
issue, a cost-effective parameter vulnerability based pruning
technique is proposed that outperforms the conventional pruning
method, yielding smaller networks with a negligible accuracy
loss. Remarkably, the hardened pruned CNNs perform up to
24% faster than the hardened un-pruned ones.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have found
widespread application in various safety-critical domains,
owing to their superior accuracy compared to human perfor-
mance [1], [2]. Hardware devices, including general-purpose
processors (e.g., CPUs and GPUs) and specialized acceler-
ators (e.g., FPGAs and ASICs), are employed to efficiently
execute CNN models [3], [4]. In many cases, especially with
the general purpose accelerators but also with off-the-shelf
integrated circuits and hard/firm cores, it is not possible to
alter the underlying hardware to improve the fault tolerance
of the CNN operation.

The hardware systems deploying CNNs rely on extensive
memory resources to store the parameters, making them
susceptible to various fault effects due to transistor miniatur-
ization [5]. Consequently, a major concern in deploying CNNs
on hardware devices is their resilience to faults in memory,
particularly those affecting their parameters. Extensive studies
have demonstrated that faults in CNN parameters lead to
drastic accuracy drops at very low error rates [6]–[9].

Fig. 1: Potential impact of faults on the output classification in the object
detection task of an autonomous vehicle.

Fig. 1 illustrates an example of the effect of faults on
the output classification in the object detection task of an
autonomous vehicle. The faults can be a result of different
causes, including temperature variation, terrestrial or cosmic
radiation, circuit aging, or electromagnetic interference. A
CNN running on a computing device in the vehicle classifies
the input images and due to faults, some parameters are
erroneous. As a result, the failure to recognize the pedestrians
leads to a catastrophe. Therefore, it is crucial to enhance the
fault tolerance of CNN models running on hardware devices
to effectively employ them in safety-critical applications [10]–
[12].

To mitigate the impact of faults on the deployment of
CNNs and at the same time avoid the high overhead in
conventional fault-tolerant techniques such as Triple Modular
Redundancy (TMR), researchers proposed selective hardening
approaches [7], [13]–[16]. Here, the objective is to protect the
parameters or neurons that have a larger effect on the neural
network’s outputs against faults and errors. Therefore, the
more vulnerable neurons are identified by resilience analysis
and they are executed on hardened processing elements on
the target hardware.

Although these methods propose a model-level resilience
analysis to identify the more vulnerable parameters/neurons,
their protection techniques are restricted to FPGAs and ASICs
that can be freely modified and redesigned. Whereas there
exist numerous applications from high-performance to edge
computing, where general-purpose computing devices such
as CPUs and GPUs or hard and firm accelerator cores are
deployed that do not support redesigning the hardware for979-8-3503-7055-3/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 3
0t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

O
n-

Li
ne

 T
es

tin
g

an
d

R
ob

us
t S

ys
te

m
 D

es
ig

n
(I

O
LT

S)
 |

97
9-

8-
35

03
-7

05
5-

3/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IO

LT
S6

09
94

.2
02

4.
10

61
60

72

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:51:07 UTC from IEEE Xplore. Restrictions apply.

fault-tolerance [17], [18].
Moreover, fault-aware pruning with retraining is another

approach for improving fault tolerance of CNNs proposed by
[19], [20] in which the parameters that are mapped to cor-
rupted processing elements of the target accelerator are pruned
in the network. These methods are not only accelerator-
specific but also should be applied to each individual chip
with a different fault map separately. Moreover, they cannot
be applied in the field but are designed to tolerate faults that
have been already diagnosed in the laboratory. Thus, model-
level fault tolerance approaches are preferred in terms of their
flexibility.

Quantization is shown to be highly effective for the re-
silience of CNNs [21] since it restricts the numerical range
within a CNN, thus eliminating the effect of large values
produced due to faults and bitflips in a CNN. Nevertheless,
apart from accuracy concerns, deploying quantized CNNs
requires dedicated hardware accelerators for handling asso-
ciated operations. Otherwise, they carry out the floating-point
arithmetic of general-purpose computing devices [22] which
leads to the reliability issues of floating-point data types, that
is contradictory to the purpose of hardening by quantization.
Nonetheless, the model-level fault tolerance methods are
mostly orthogonal to quantization and they can be employed
on top of each other to improve the resilience of DNNs.

Fault-aware training [23], [24] effectively improves the
resilience of DNNs. However, it retrains the entire CNN with
numerous fault injection scenarios that is not only excessively
complex but also requires the possibility of having access to
parameters. Error Correction Codes (ECC) and Algorithm-
based Fault Tolerance (ABFT) utilize data encoding/decoding
processes for real-time fault detection and correction [18],
[25]. However, the practicality of these techniques in fault
correction is questionable due to the overhead they introduce
to memory and computations, posing a considerable challenge
for CNNs that already have substantial memory and compu-
tational requirements.

Activation restriction methods [26]–[28] bound the activa-
tion values between layers through activation functions (i.e.,
ReLU) to mitigate error propagation to the outputs of CNNs.
They clip the activations to 0 when their values exceed pre-
identified ranges. These methods are effective in enhancing
the resilience of CNNs, however, they do not provide error
correction, and CNNs fail to work at high error rates due to the
replacement of numerous feature maps with 0. [29] proposes
a correction layer that executes each convolutional layer three
times for fault detection and correction which however lays a
prohibitive performance overhead to CNNs.

To overcome the previously mentioned issues, this paper
introduces a novel model-level hardening solution to modify
the architecture of CNNs to allow fault correction at in-
ference inherently. An efficient error correction mechanism
is designed enabled by selectively duplicated channels (in
both convolutional and fully connected layers) within the
structure of CNNs. In the proposed method, the parameter
vulnerability of CNNs is analyzed and the more vulnerable
ones are duplicated. Thereafter, a correction layer detects and
corrects the erroneous output activations based on the two
duplicated values.

The proposed hardening mechanism effectively reduces the
overhead with respect to the TMR-based hardening solution,
possessing the same fault tolerance capabilities. However, it
still incurs some overhead to the memory and performance of
the hardened CNN. To further reduce this overhead, for the
first time, a strategy is proposed for channel pruning based
on the vulnerability of parameters to effectively shrink the
size of CNNs with a negligible accuracy loss. In particular,
we estimate the vulnerability of weight channels in CNNs,
eliminate the least vulnerable ones to decrease the network’s
size, and then apply the hardening mechanism. The presented
vulnerability-aware pruning provides the opportunity to elim-
inate any overhead caused by the protection mechanism on
the designed hardened CNNs.

The contributions of this paper are as follows:
• Proposing a model-level hardening method for CNNs

to enhance their fault tolerance during inference. The
approach involves duplicating the parameters in channels
more vulnerable to faults and incorporating a highly
effective Error Detection and Correction (EDAC) Layer
to correct erroneous feature maps.

• Proposing a channel pruning technique based on the
parameter vulnerability that enables achieving a substan-
tial reduction in the overhead incurred by the hardening
mechanism.

• Results indicate that the proposed method allows hard-
ened CNNs to perform reliably at error rates several
orders of magnitude higher than those tolerated by the
baseline CNN, achieved with merely 15% selective pa-
rameter duplication. Moreover, leveraging pruning allows
hardened pruned CNNs to be more resilient than the un-
pruned ones, with up to 24% higher performance in terms
of execution time.

In the rest of the paper, Section II presents the proposed
CNN model hardening through duplicated vulnerable channels
and EDAC layer. Section III indicates the results achieved by
the proposed method. In Section IV the proposed parameter
vulnerability based pruning is presented, and the overhead and
resilience analyses are performed, and Section V concludes
the paper.

II. CNN MODEL HARDENING

In this section, the proposed hardening method to enhance
the fault tolerance of CNN models is presented. This involves
CNN architecture modification empowering them to inher-
ently detect and correct faults. The method takes a pre-trained
CNN and generates a hardened version that is executable by
the target device.

A. Vulnerability Estimation

Vulnerability estimation of CNN’s parameters reflects how
they affect classification outputs in the presence of faults.
Fault injection based approaches are very complex and time-
consuming for addressing this task, whereas analytical ap-
proaches can estimate vulnerability fast and reasonably ac-
curately [10]. This work adopts a vulnerability estimation
approach introduced by [30] and adapts it to the parameters
of a channel in a CNN. This approach is accurate with fault

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:51:07 UTC from IEEE Xplore. Restrictions apply.

injection results in [30]. Eq. (1) describes the vulnerability
estimation for each channel:

V ulnerabilitychannel =
C∑

i=1,i̸=t

∑
w∈channel |

∂(Zi−Zt)
∂w |2

|Zi − Zt|2
(1)

In Eq. (1), the vulnerability of a channel with multiple
weights w in a convolutional (CONV) layer of a CNN with
C number of classes is estimated for a single input data. The
output logits of the network corresponding to each output
class is Zi and the top class’s logit is Zt. This equation
represents the effect of each channel on the output logits as a
vulnerability estimation and a higher value represents a higher
vulnerability of the corresponding channel. A similar equation
is applied to the weights corresponding to a neuron in Fully
Connected (FC) layers.

B. CNN Model Hardening Method

Subsequent to obtaining the vulnerability of channels of a
pre-trained CNN, the CNN model is hardened by performing
two steps:

• Duplication of the more vulnerable channels,
• Insertion of the Error Detection and Correction (EDAC)

layer after each CONV/FC.

1) Channel Duplication: Fig. 2 illustrates how the dupli-
cation of parameter channels functions. A channel contains
multiple weights for obtaining an output feature map (fmap)
Fk resulting from the summation of weighted inputs. In the
lth CONV layer with Cl output channels, a channel is a 3-
dimensional array of weights X l, Y l, Cl. (In an FC layer, an
output channel is a 1-dimensional weight array corresponding
to a neuron). Duplicating a channel of parameters generates
duplicated values in Fk which provides an opportunity to
detect and correct errors produced by faults in parameters. In
this method, a ratio of more vulnerable channels with respect
to Eq. (1) are selected for duplication.

2) Error Detection And Correction (EDAC) Layer: After
duplicating the vulnerable parameter channels, an EDAC layer
is inserted into the CNN after each CONV and FC layer.
The EDAC layer is meant to detect and correct errors in
its incoming Fk from CONV/FC layers within the networks.
One of the major challenges with 32-bit floating point data
representation in general-purpose devices such as CPU and
GPU is that faults may lead to overflows in CNNs producing
Not-a-Number (NaN) values and corrupting the outputs. To
address this issue, one of the primary operations in the EDAC
layer is to replace any produced NaN value with 0 in the
feature maps Fk.

Fig. 2 illustrates how the EDAC layer operates. The EDAC
layer exploits a detection interval containing the minimum
and maximum values in the channels of Fk that are the lower
values {w1, w2, ..., wn} and the upper values {u1, u2, ..., un},
respectively. Detection intervals are obtained by profiling the
CNN on the training dataset. It is assumed that the data
distribution of training is representative enough to provide
generic and valid detection intervals for the unseen data during
the inference [31].

EDAC layer is aware of the duplicated and non-duplicated
channels. In the duplicated channels, an error is detected and
corrected in two cases:

• Both duplicated values in the corresponding channels
are in the detection interval but are not equal. In this
case, the minimum value between them is selected as the
correct output Fk (case A in Fig. 2). The reason behind
this correction is that CNNs are more resilient to small
numbers [27].

• A value in a channel exceeds the detection interval, thus,
the duplicated value that is in the detection interval is the
correct value for the output Fk (case B and C in Fig. 2).
If both duplicated values are not in the detection interval,
the output Fk is set to 0 (case D in Fig. 2).

In the non-duplicated channels, faults are detected and
corrected based on the detection intervals. If any value in the
channel exceeds the corresponding detection interval output
Fk sets to 0 (case E in Fig. 2). The rationale behind zeroing
is that it eliminates the propagation of erroneous values within
a DNN. Note, that the detection and correction are repeated
for each element of the two-dimensional array of the feature
map Fk.

To prevent faults from any immediate misclassification at
the last layer, all output channels of the last layer in CNNs
(i.e., neurons in the last FC layer) are duplicated and protected
by an EDAC layer. It is worth mentioning that EDAC is
implemented in a highly parallel way in Pytorch so that it
can operate detection and correction on all duplicated and
non-duplicated channels in parallel. Moreover, the hardened
CNNs have the same accuracy as the baseline ones.

III. RESILIENCE AND OVERHEAD RESULTS

In this section, the results of fault injection experiments
into the parameters of hardened CNNs are presented.

A. Fault Model

The parameters of a pre-trained CNN could be faulty at
inference time due to several reasons, including soft errors,
temperature or voltage variation, process variation, aging, etc.
To examine the resilience of CNNs, we model faults in the
parameters by flipping their bits considering different Bit
Error Rates (BERs). To this end, any layer in the CNN’s
parameters, including convolutional, Fully Connected (FC),
batch normalization and EDAC layers is subject to a fault
injection campaign. We have developed the fault injection on
top of Pytorch, and the data representation is IEEE-754 32-bit
floating point. The number of bitflips in a layer is equal to
BER×#parameters× 32 in that layer. The fault injection
simulations are performed on an NVIDIA 3090 GPU and
any fault injection experiment is repeated 1000 times and the
average accuracy drop is reported as the resilience metric.
The experimented BERs are 10−8, 5×10−8, 10−7, 5×10−7,
10−6, 5× 10−6, 10−5, 5× 10−5, and 10−4.

B. Baseline CNNs

The experiments in this work are performed on three deep
CNNs: AlexNet and VGG-11 trained on Cifar-10 and VGG-
16 trained on Cifar-100. Their baseline accuracy as well as
the number of parameters and MAC operations are reported

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:51:07 UTC from IEEE Xplore. Restrictions apply.

... ...

...

... ...

...

duplicated feature maps

 EDAC layer

 [,]

 [,]

 [,]

 [,]

 [,]

 [,]

 [,]

 [,]

 [,]

 [,]

... ...

...

... ...

...

... ...

...

... ...

...

... ...

...

 conv layer

...

duplicated channels

output feature maps
from conv layer

duplicated filters

output feature maps
from layer

Upper values in detection interval = { }
Lower values in detection interval = { }

corrected
output feature maps

Case A

Case B

Case C

Case D

Case E

Fig. 2: Channel duplication and EDAC layer

in Table 1. The performance in terms of execution time of
the CNNs over their test set is examined on an NVIDIA
3090 GPU coupled with an AMD Threadripper 3960X 24-
core processor.

Note, that the accuracy of unprotected CNNs decreases
drastically even at relatively low BERs. The unprotected
AlexNet drops 26% at BER = 5×10−7 and the accuracy of
unprotected VGG-11 and VGG16 drops 24.07% and 31.17%
at BER = 5× 10−8, respectively.

TABLE I: The baseline CNNs leveraged in this paper.

CNN Dataset Base
accuracy #parameters #MACs Performance

(sec)

AlexNet Cifar-10 73.15% 21,623,562 42,316,288 0.591

VGG-11 Cifar-10 92.85% 9,228,362 153,293,824 0.655

VGG-16 Cifar-100 73.20% 34,015,396 332,756,992 0.782

C. Hardening by Channel Duplication vs. Triplication

First, we demonstrate how EDAC performs if the detection
intervals are not exploited for non-duplicated channels and
compare it with a triplication-based correction performed
by a voter. The voter takes three replicated fmaps in the
corresponding channel and outputs the most repeated value.
In the case where all three fmaps are different (if at least two
replicated filters are faulty), the voter outputs the minimum
value.

Fig. 3 presents the results for accuracy drop and memory
overhead of duplication + EDAC vs. triplication + voter
for AlexNet at BER=10−4 over different channel hardening
ratios. A similar trend is observed for VGG-11 and VGG-16.
The highlights that can be observed from the Figure are:

• Duplication + EDAC achieves a similar resilience to that
of triplication + voter in terms of accuracy drop, with
twice less memory overhead.

• The memory overhead is proportional to the channel
duplication and triplication ratio. The memory overhead
of the EDAC layer is negligible compared to the total
memory and computational requirements of CNNs.

• A high resilience is achieved only at full channel hard-
ening. At lower hardening ratios, although the more vul-

nerable channels are protected, the unprotected channels
incur a high accuracy drop in CNNs due to the high BER.

Dup. + EDAC Trip. + voter

90 95 100

10

30

50

70

Channel hardening ratio (%)

A
cc

ur
ac

y
dr

op
(%

)

90 95 100
0

50

100

150

200

Channel hardening ratio (%)

M
em

or
y

ov
er

he
ad

(%
)

(a) Resilience (b) Memory Overhead

Fig. 3: Resilience (a) and memory overhead (b) for AlexNet hardened by
duplication + EDAC vs. triplication + voter at BER=10−4, without

applying detection intervals to Non-duplicated channels.

As observed, we need to apply a full channel duplication +
EDAC to protect CNNs which leads to a significant overhead
in the hardened CNNs compared to the unprotected ones.
The hardened CNNs have double memory and computational
requirements (100% overhead) and the execution time in-
creases up to 1.83 times. To tackle this issue, we exploit the
detection intervals in the non-duplicated channels to protect
less vulnerable channels which leads to lower hardening
ratios. It is presented in the next subsection.

D. Hardening by Selective Channels Duplication and EDAC
Layer

In this subsection, we present the results for the selective
channel duplication with EDAC layers as described in Fig. 2.
In a pre-trained DNN, a ratio of the more vulnerable chan-
nels are duplicated and both duplicated and non-duplicated
channels exploit detection intervals to be hardened at EDAC
layer. Since the hardening method is at the model level, the
performance in terms of execution time is influenced. Thus,
we present the performance overhead on NVIDIA 3090 GPU
in the paper.

Fig. 4 demonstrates the resilience and performance over-
head for all the experimented CNNs at the highest BERs
where the accuracy drop is not yet significant (lower than 5%).
As observed, exploiting detection intervals in unprotected

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:51:07 UTC from IEEE Xplore. Restrictions apply.

Accuracy drop Performance Overhead

0 5 10 15
3.00

3.15

3.30

3.45

3.60

Channel hardening ratio (%)

A
cc

ur
ac

y
dr

op
(%

)

4.00

7.25

10.50

13.75

17.00

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
)

0 5 10 15
2.8

3.1

3.4

3.7

4.0

Channel hardening ratio (%)

A
cc

ur
ac

y
dr

op
(%

)

8.5

11.0

13.5

16.0

18.5

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
)

0 5 10 15
1.6

1.7

1.8

1.9

2.0

2.1

Channel hardening ratio (%)

A
cc

ur
ac

y
dr

op
(%

)

11.0

12.6

14.2

15.8

17.4

19.0

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
)

(a) AlexNet (BER=10−4) (b) VGG-11 (BER=5× 10−5) (c) VGG-16 (BER=10−5)

Fig. 4: Accuracy loss and performance overhead comparison for hardened AlexNet (a), hardened VGG-11 (b), and hardened VGG-16 (c), over different
channel pruning ratios at the corresponding BERs where accuracy drop is lower than 5%.

channels has a remarkable effect on reducing the hardening
ratio to achieve high resilience. It can be observed that by
merely using detection intervals without channel duplication
(hardening ratio = 0%), the accuracy drops at high BERs
are lower than 4% with up to 11.4% performance overhead
compared to the unprotected baseline CNNs. Nonetheless,
increasing the channel hardening ratio improves the resilience
without a significant performance overhead.

With a 15% channel hardening ratio the accuracy drop im-
proves 17%, 38%, and 24% for AlexNet, VGG-11, and VGG-
16 respectively, achieved by 6.7% to 12% longer execution
time, compared to 0% hardening ratio.

As noted, EDAC layers exploiting detection intervals for
all channels can significantly reduce the overhead of the
hardened CNNs compared to the full duplication. However, a
tangible overhead is incurred to CNNs due to hardening. The
overheads are caused by both channel duplication and EDAC
layer operations. To tackle this issue, we deploy a pruning
method to reduce the size of baseline CNNs by removing
the least vulnerable channels and applying EDAC to the most
vulnerable ones, so the total overhead can be further reduced.
This method is presented in the next section.

IV. OVERHEAD REDUCTION BY PARAMETER
VULNERABILITY BASED PRUNING

As observed, although the introduced hardening technique
exhibits a high resilience to CNNs, it lays a considerable
overhead to them. To address this issue, we apply an effective
structured channel pruning to CNNs to shrink their baseline
size and open room for the hardening mechanism.

A. Vulnerability Based Pruning

Structured pruning is a well-known method for CNN mod-
els to reduce their size leading to optimizing their performance
and resource utilization. In this method, a metric for the
significance of the effect of parameters on the output accuracy
is considered and the least important weights are removed
from the CNN with a negligible accuracy loss.

Conventionally, the significance of the weights effect is
examined by L1-norm which is shown to be effective [32].
In this work, we exploit Eq. (1) as the importance metric for
channel parameters and remove a ratio of the least vulnerable
channels from CONV and FC layers in CNNs. To avoid losing
too much accuracy, we perform lightweight training on the
pruned CNNs with 10 epochs using SGD with a learning

rate of 0.001 on the training dataset. Fig. 5 shows that our
vulnerability-aware pruning method is more effective than L1-
norm pruning in terms of removing the channels of CNNs
while the accuracy is still close to that of the baseline CNN.

(3
%
,
2
0
%

)
(3
%
,
3
0
%

)
(3
%
,
4
0
%

)
(3
%
,
5
0
%

)
(4
%
,
2
0
%

)
(4
%
,
3
0
%

)
(4
%
,
4
0
%

)
(4
%
,
5
0
%

)
(5
%
,
2
0
%

)
(5
%
,
3
0
%

)
(5
%
,
4
0
%

)
(5
%
,
5
0
%

)

60

70

80

Pruning ratio in percentage for (conv, fc)

A
cc

ur
ac

y
(%

)

L1-norm Vulnerability-based

Fig. 5: Comparison of L1-norm pruning and vulnerability-based pruning in
AlexNet.

To obtain the highest possible pruning ratios for each CNN,
we perform an extensive exploration over different pruning
ratios of CONV and FC layers to minimize the number of
parameters and MAC operations maintaining the test accuracy
within 1% of its unprotected baseline. Table II shows the
selected pruning ratios for the experimented CNNs and their
improved memory and computational requirements compared
to the baseline ones. As it is observed, the pruned CNNs
achieve from 1.18 to 6.19 times fewer parameters, 1.03 to 2.06
times fewer MAC operations, and 1% to 11.1% less execution
time than the baseline ones.

TABLE II: Pruning ratio and normalized number of parameters and MAC
operations and performance for each CNN.

CNNs Conv.
prun. ratio

FC prun.
ratio

Pruned CNN
Accuracy

Norm.
#params to

baseline

Norm.
#MACs to
baseline

Norm.
perf. to
baseline

AlexNet 5% 80% 72.38% 0.1615 0.4851 0.888

VGG-11 4% 35% 91.96% 0.847 0.9059 0.987

VGG-16 1% 15% 72.4% 0.826 0.9665 0.998

B. Resilience and Overhead Study of the Hardened Pruned
CNNs

By shrinking the baseline CNNs using pruning, we have
the opportunity to minimize the overhead of hardened CNNs

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:51:07 UTC from IEEE Xplore. Restrictions apply.

Hardened baseline Hardened pruned

5× 10
−6

10
−5

5× 10
−5

10
−40

1

2

3

BER

A
cc

ur
ac

y
dr

op
(%

)

10
−6

5× 10
−6

10
−5

5× 10
−50

1

2

3

BER

A
cc

ur
ac

y
dr

op
(%

)

10
−6

5× 10
−6

10
−5

5× 10
−50

3

6

9

BER

A
cc

ur
ac

y
dr

op
(%

)

(a) AlexNet (b) VGG-11 (c) VGG-16

Fig. 6: Resilience comparison in terms of accuracy drop of hardened baseline and hardened pruned CNNs at different BERs with 15% channel hardening
ratio.

compared to the baseline ones. Now, the pruned pre-trained
CNNs are hardened by the method introduced in Section II.
Their channel vulnerability is obtained, the more vulnerable
channels are duplicated, and EDAC layers are implanted into
the model with the corresponding detection intervals.

Fig. 6 illustrates how resilience is improved in the hardened
pruned CNNs against hardened baseline ones over different
BERs, with 15% channel hardening ratio. It is observed
that the proposed pruning not only reduces the overhead of
hardened CNNs but also improves their resilience.

Fig. 7 compares the performance overhead in terms of the
execution time of different hardened CNNs on NVIDIA 3090
GPU. As observed, the overhead of triplication + voter is
significantly higher than the other methods. On the other hand,
hardened pruned CNNs have the best performance among
the hardened CNNs. The resilience of the hardened CNNs
is presented in Fig. 3-a, Fig. 4, and Fig. 6.

Throughout the results, the performance of 15% hardened
pruned Alexnet, VGG-11, and VGG-16 is improved by 24%,
1%, and 4.7%, respectively, compared to the 15% hardened
ones without pruning. It is noteworthy that the hardened
pruned AlexNet has 6.06% less execution time than its un-
protected baseline. The selective hardened pruned AlexNet,
VGG-11, and VGG-16 require 81.40%, 2.67%, and 3.98%
less memory, respectively, than their unprotected baseline to
store their parameters.

AlexNet VGG-11 VGG-16

−20
0

45

100

155

210

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
) Fully trip.+voter Fully dup.+EDAC

15% hardened 15% hardened pruned

Fig. 7: Performance overhead comparison for hardened CNNs.

V. CONCLUSIONS

This paper presents a model-level hardening method for
CNNs by selective channel duplication and EDAC layers.
The proposed method enables CNNs to detect and correct

faults inherently, at inference time. The hardened CNNs
perform reliably at orders of magnitude higher error rates
than unprotected CNNs with merely a 15% hardening ratio,
yet incurring 12% performance overhead. To further minimize
the incurred overhead by the hardening method, for the first
time, a vulnerability-based pruning that improves resilience
is presented. As a result, the hardened pruned CNNs achieve
up to 24% higher performance than the un-pruned hardened
CNNs.

REFERENCES

[1] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” Advances in neural information processing systems,
vol. 25, 2012.

[2] S. Pouyanfar et al., “A survey on deep learning: Algorithms, techniques,
and applications,” ACM Computing Surveys, vol. 51, no. 5, pp. 1–36,
2018.

[3] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelera-
tor for deep convolutional neural networks,” IEEE journal of solid-state
circuits, vol. 52, no. 1, pp. 127–138, 2016.

[4] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in 44th annual international symposium on computer
architecture, 2017, pp. 1–12.

[5] R. Canal et al., “Predictive reliability and fault management in exascale
systems: State of the art and perspectives,” ACM Computing Surveys,
vol. 53, no. 5, pp. 1–32, 2020.

[6] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104,
p. 101689, 2020.

[7] M. H. Ahmadilivani et al., “Enhancing fault resilience of qnns by
selective neuron splitting,” in 2023 IEEE 5th AICAS, 2023, pp. 1–5.

[8] Y. Ibrahim et al., “Soft errors in dnn accelerators: A comprehensive
review,” Microelectronics Reliability, vol. 115, p. 113969, 2020.

[9] F. Su et al., “Testability and dependability of ai hardware: Survey,
trends, challenges, and perspectives,” IEEE Design & Test, 2023.

[10] M. H. Ahmadilivani et al., “A systematic literature review on hardware
reliability assessment methods for deep neural networks,” ACM Comput.
Surv., vol. 56, no. 6, jan 2024.

[11] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jeni-
hhin, “Deepvigor: Vulnerability value ranges and factors for dnns’
reliability assessment,” in 2023 IEEE European Test Symposium (ETS).
IEEE, 2023, pp. 1–6.

[12] M. H. Ahmadilivani et al., “Special session: Reliability assessment
recipes for dnn accelerators,” in 2024 VTS. IEEE, 2024.

[13] C. Schorn et al., “Accurate neuron resilience prediction for a flexible
reliability management in neural network accelerators,” in 2018 DATE.
IEEE, 2018, pp. 979–984.

[14] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on ai-oriented mpsocs,” Applied Sciences,
vol. 11, no. 14, p. 6455, 2021.

[15] M. Abdullah Hanif and M. Shafique, “Salvagednn: salvaging deep
neural network accelerators with permanent faults through saliency-
driven fault-aware mapping,” Philosophical Transactions of the Royal
Society A, vol. 378, no. 2164, 2020.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:51:07 UTC from IEEE Xplore. Restrictions apply.

[16] F. Libano et al., “Selective hardening for neural networks in fpgas,”
IEEE Transactions on Nuclear Science, vol. 66, no. 1, pp. 216–222,
2018.

[17] G. Abich et al., “The impact of soft errors in memory units of edge
devices executing convolutional neural networks,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 679–683,
2022.

[18] K. Zhao et al., “Ft-cnn: Algorithm-based fault tolerance for convolu-
tional neural networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 7, pp. 1677–1689, 2020.

[19] J. J. Zhang et al., “Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator,” in 2018
IEEE 36th VTS. IEEE, 2018, pp. 1–6.

[20] K. T. Chitty-Venkata and A. K. Somani, “Model compression on faulty
array-based neural network accelerator,” in 2020 IEEE 25th PRDC.
IEEE, 2020, pp. 90–99.

[21] E. Ozen and A. Orailoglu, “Snr: S queezing n umerical r ange
defuses bit error vulnerability surface in deep neural networks,” ACM
Transactions on Embedded Computing Systems, vol. 20, no. 5s, pp.
1–25, 2021.

[22] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” in Low-Power Computer Vision. Chapman and Hall/CRC, 2022,
pp. 291–326.

[23] N. Cavagnero et al., “Fault-aware design and training to enhance dnns
reliability with zero-overhead,” arXiv preprint arXiv:2205.14420, 2022.

[24] U. Zahid et al., “Fat: Training neural networks for reliable inference
under hardware faults,” in 2020 IEEE ITC. IEEE, 2020, pp. 1–10.

[25] S. Lee and J. Yang, “Value-aware parity insertion ecc for fault-tolerant
deep neural network,” in 2022 DATE. IEEE, 2022, pp. 724–729.

[26] Z. Chen et al., “A low-cost fault corrector for deep neural networks
through range restriction,” in 2021 51st Annual IEEE/IFIP DSN. IEEE,
2021, pp. 1–13.

[27] L. Hoang et al., “Ft-clipact: Resilience analysis of deep neural networks
and improving their fault tolerance using clipped activation,” in 2020
DATE. IEEE, 2020, pp. 1241–1246.

[28] B. Ghavami et al., “Fitact: Error resilient deep neural networks via
fine-grained post-trainable activation functions,” in 2022 DATE. IEEE,
2022, pp. 1239–1244.

[29] M. S. Ali et al., “Erdnn: Error-resilient deep neural networks with a
new error correction layer and piece-wise rectified linear unit,” IEEE
Access, vol. 8, pp. 158 702–158 711, 2020.

[30] A. Mahmoud et al., “Hardnn: Feature map vulnerability evaluation in
cnns,” arXiv preprint arXiv:2002.09786, 2020.

[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[32] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:51:07 UTC from IEEE Xplore. Restrictions apply.

Appendix 7

VIIM. H. Ahmadilivani, J. Raik, M. Daneshtalab, and A. Kuusik. Analysis andImprovement of Resilience for Long Short-TermMemory Neural Networks.In IEEE International Symposium on Defect and Fault Tolerance in VLSI andNanotechnology Systems (DFT), pages 1–4. Juan-Les-Pennes, France, 2023

251

Analysis and Improvement of Resilience for Long Short-Term Memory
Neural Networks

Mohammad Hasan Ahmadilivani1, Jaan Raik1, Masoud Daneshtalab1,2, and Alar Kuusik 1

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

1{mohammad.ahmadilivani, jaan.raik, alar.kuusik}@taltech.ee
2masoud.daneshtalab@mdu.se

Abstract—The reliability of Artificial Neural Networks (ANNs)
has emerged as a prominent research topic due to their increasing
utilization in safety-critical applications. Long Short-Term Memory
(LSTM) ANNs have demonstrated significant advantages in health-
care applications, primarily attributed to their robust processing of
time-series data and memory-facilitated capabilities. This paper, for
the first time, presents a comprehensive and fine-grain analysis of
the resilience of LSTM-based ANNs in the context of gait analysis
using fault injection into weights. Additionally, we improve their
resilience by replacing faulty weights with zero, enabling ANNs
to withstand environments that are up to 20 times harsher while
experiencing up to 7 times fewer critical faults than an unprotected
ANN.

I. INTRODUCTION

The realm of Deep Learning (DL) applications is constantly
expanding due to its ability to effectively address various complex
tasks. In healthcare, Artificial Neural Networks (ANNs) have
found extensive application in disease diagnosis, treatment, and
anomaly prediction [1], [2], leveraging their superior image and
time-series data processing capabilities [3], [4]. Given the safety-
critical nature of healthcare applications, ensuring the hardware
reliability of DL devices becomes paramount. Reliability is the
probability of hardware functioning correctly in the presence of
faults, which may occur due to soft errors, temperature variation,
aging, etc. [5].

Long Short-Term Memory (LSTM) neural networks possess
remarkable capabilities to retain long-term information, making
them highly effective in analyzing time-series data. This unique
feature has rendered them highly desirable for anomaly detection
in healthcare applications. Gait analysis, a vital diagnostic tool in
orthopedics, neurology, wellness assessment, and rehabilitation,
benefits greatly from the utilization of LSTMs for processing
time-series data typically collected by wearable Micromechanical
Motion Sensors (MEMS) [6], [7].

Numerous research works have extensively examined the
reliability of Convolutional Neural Networks (CNNs) in safety-
critical applications, including in healthcare. These studies have
demonstrated that faults in the weights of CNNs can drastically
influence their accuracy [8], [9]. Notably, memory faults affecting
the weights of CNNs can result in a significant decrease in
accuracy [10]. Consequently, various techniques for enhancing
reliability have been proposed in the literature [11].

Although several studies have exploited LSTMs in the afore-
mentioned applications, there has been a notable absence of
research studying the effects of faults on the LSTM weights and
potential approaches for enhancing their resilience [9]. To the
best of our knowledge, this work represents the first attempt to
address these critical issues.

In this work, we investigate the resilience of different LSTM-
based ANNs detecting gait abnormalities in time-series data and

The work is supported in part by the EU through European Social Fund in
the frames of the “ICT programme” (“ITA-IoIT” topic).

study their resilience using Fault Injection (FI) into the weights.
Moreover, by analyzing the distribution of weight values and
assessing the resilience of the ANNs, we propose a method to
enhance their resilience. The contributions are as follows:

• Conducting a comprehensive and fine-grained analysis of
the resilience of LSTM-based ANNs by injecting faults
into various sets of their weights, leading to identifying the
most susceptible ones,

• Introducing a resilience improvement method for LSTM-
based ANNs based on replacing the faulty weights with
zero, taking into account the distribution of weight values,

• Demonstrating the effectiveness of the proposed method
by achieving significantly more resilient ANNs that meet
constraints of the application successfully.

Through the rest of the paper, Section II introduces LSTM-
based ANNs, Section III proposes the method for their resilience
analysis and improvement, Section IV presents and analyzes the
results, and Section V concludes the paper.

II. PRELIMINARIES ON LSTM-BASED ANNS

LSTMs have recursive loops among their neurons’ intercon-
nections and enable memorizing arbitrary information for a long
time. They consist of stacking LSTM layers in which LSTM
cells are present. The operations of an LSTM cell are described
in Eq. 1, where xt is a time-series input at time t, Ct−1 and
ht−1 are recursive inputs i.e., the last outputs of the LSTM cell,
U and W are the weights of the cell that involve with inputs
and recursive inputs, respectively, and B is bias parameters.





it = sigmoid(xtU
i + ht−1W

i +Bi)

ft = sigmoid(xtU
f + ht−1W

f +Bf)

gt = tanh(xtU
g + ht−1W

g +Bg)

ot = sigmoid(xtU
o + ht−1W

o +Bo)

Ct = ft × Ct−1 + it × gt
ht = tanh(Ct)× ot

(1)

There are two sets of weight parameters in LSTM: 1) U that is
multiplied into the inputs and extracts the features of the current
input data, 2) W that is multiplied into the recursive inputs and
manages the information from the previous outputs through time
to facilitate the cells with memorizing the features.

To classify time-series data in an LSTM-based ANN, a Fully-
Connected (FC) layer can be attached to the LSTM layer. An
FC layer contains several neurons each functioning as shown
in Eq. 2, where n input activations from a previous layer l-1
(denoted as X l−1) are fed to the i-th neuron in layer l (denoted
as N l

i) which performs a weighted summation of inputs (W and
b represent weights and bias, respectively). Thereafter, the result
passes through an activation function which is ReLU in this
paper.

N l
i = ReLU(

n∑

j=0

Xl−1
j ×W l

ij + bl) (2)
979-8-3503-1500-4/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
D

ef
ec

t a
nd

 F
au

lt
To

le
ra

nc
e

in
 V

LS
I a

nd
 N

an
ot

ec
hn

ol
og

y
Sy

st
em

s (
D

FT
) |

 9
79

-8
-3

50
3-

15
00

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

FT
59

62
2.

20
23

.1
03

13
55

9

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:54:47 UTC from IEEE Xplore. Restrictions apply.

In this work, LSTMs are employed for abnormality detection
in a human walking motion. Their structure is demonstrated in
Fig. 1, comprises an LSTM layer with multiple cells, followed
by an FC layer with an equal number of neurons as the LSTM
cells, and an output FC layer with 2 output neurons for binary
classification of abnormality detection. Input data (xt) are the
samples of walking steps through time.

Ct
ht

Ct-1

ht-1

xt cell output

cell output

cell output

LSTM Layer
FC Layers

Ct
ht

Ct-1

ht-1

xt

Ct
ht

Ct-1

ht-1

xt

LSTM cell

LSTM cell

LSTM cell

Fig. 1: LSTM-based ANNs in this work for gait abnormality detection.

III. PROPOSED METHOD: RESILIENCE ANALYSIS AND
IMPROVEMENT FOR LSTM-BASED ANNS

A. LSTM-Based ANNs Under Study

Three adopted LSTM-based ANNs in this paper have the
structure shown in Fig. 1, each has two output classes repre-
senting normal and abnormal steps. The examined ANNs called
ANN-n where n represents the number of cells in the LSTM
layer and also the number of neurons in the first FC layer.

B. Fault Injection (FI) Method

Faults in memory can result in a remarkable accuracy drop in
ANNs. In this work, faults are assumed to occur in memory that
impacts the weight parameters of ANNs. We consider different
Bit Error Rates (BERs) to model accumulated bitflips throughout
the parameters. Notably, faults in bias are not considered as their
effect was negligible in our preliminary experiments.

We perform a random FI into the weights at each BER before
a full inference. Then we obtain the outputs of the network for
further resilience analysis and repeat the experiments several
times in order to reach high-confidence results.

We inject faults into randomly selected weights considering
different scenarios: 1) Model-wise FI: weights across the ANN,
2) LSTM FI: weights of the LSTM layer, 3) FC FI: weights of
FC layers, 4) Recursive weights (W) FI: weights of the LSTM
layer that involve the recursive inputs of cells (vector W in Eq.
1), 5) Input weights (U) FI: weights of LSTM layer that involve
the time-series inputs (vector U in Eq. 1).

C. Resilience Evaluation Method

We evaluate the resilience using accuracy loss and F1-score
loss under the FI campaign representing the difference between
the fault-free and faulty execution of the ANNs. The average
accuracy and F1-score over all the FI experiments are considered.

We analyze the effect of faults on the output to classify them in
line with prior studies [9]. In each FI experiment, the outputs are
classified into one of the following classes: 1) Masked: outputs
in faulty and fault-free executions are the same, 2) Non-critical
Silent Data Corruption (SDC): output values are different
in faulty and fault-free executions but the classification result
is the same, 3) Critical SDC: output values and classification
are different in faulty and fault-free executions, 4) Detected
Unrecoverable Error (DUE): ANN produces ’NaN’ values in
the output considered as system exception.

D. Resilience Improvement Method

First, we observe the weight values distribution. Fig. 2 depicts
the value distribution of weights across each network separately.
It is observed that in all ANNs the range of weights is limited
to a small range as well as most of the values are close to 0.

We propose a resilience improvement method based on
this observation considering two modes: 1) offline mode, 2)
deployment. In the offline mode (fault-free), the minimum
and maximum weight values are obtained. Thereafter, in the
deployment, to detect and correct the faulty weights before an
inference, we perform these operations iteratively: 1) Comparing
all weights with the obtained range, 2) Setting the exceeded
weights to 0. Therefore, faulty weights that are larger than the
expected values are found and removed at run-time.

IV. EXPERIMENTS

A. Experimental Setup

Three fault-free pre-trained LSTMs adopted in this work,
detect abnormal gaits in a time-series dataset obtained from
clinical experiments on 15 patients including their normal and
abnormal steps. Table I demonstrates the accuracy and F1-score
as well as their number of weights. It is strictly determined by the
application that the accuracy of an ANN should be higher than
80% and its F1-score should be more than 70%. Also, ANNs
are employed by a general-purpose computer that supports 32-bit
floating-point IEEE-754 data representation.

Table I: Accuracy, F1-score, and the number of different weight sets of
the LSTM-based ANNs in this work.

Accuracy F1-score #weights
in U

#weights
in W

#weights
in FC

ANN-20 93.35% 80.33% 320 1600 440
ANN-30 94.73% 85.39% 480 3600 960
ANN-40 95.79% 88.57% 640 6400 1680

The number of injected faults is determined by BERs between
0.0001 to 0.5 to observe the full possible spectrum of the pieces
of evidence. We repeat each FI experiment 2000 times and report
the average accuracy and F1-score. For the fault classification
results, we save the outputs of each FI campaign and label them
according to Subsection III-C, and in the end, the rate of each

(a) (b) (c)

Fig. 2: The distribution of values of weights for a) ANN-20, b) ANN-30, c) ANN-40, respectively.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:54:47 UTC from IEEE Xplore. Restrictions apply.

fault class over the 2000 experiments is reported. All experiments
are implemented in PyTorch and are run on an A100 NVIDIA
GPU along with an AMD EPYC 64-core CPU.

B. Resilience Analysis Results

1) Model-wise Resilience Analysis: The weights across the
model are corrupted in FI experiments using different BERs, and
average accuracy loss and F1-score loss are reported in Fig. 3
and Fig. 4, respectively. Regarding the application constraints
(accuracy >= 80% and f1-score >= 70%), all networks fail to
function at the BERs higher than 0.005.

Fig. 3: ANNs’ accuracy loss in a model-wise FI.

Fig. 4: ANNs’ F1-score loss in a model-wise FI.

Assuming that only 0.5% of the weights across the model
are faulty (i.e., BER = 0.005) the average accuracy of ANN-
20, ANN-30, and ANN-40 decreases by 4.29%, 7.26%, and
11.86%, their F1-score is reduced by 7.12%, 13.11%, and
19.02%, respectively. The findings indicate a general trend: larger
networks exhibit lower resilience compared to smaller ones. it
can be attributed that larger networks possess a greater number
of parameters, making them more susceptible to faults.

In addition, faults classification results are depicted in Fig. 5
showing that at low BERs, most of the faults are either masked or
non-critical. However, when BER is 0.005 or more, nearly all the
faults are propagated to the output as SDC. At BER = 0.005,
critical SDC for ANN-20, ANN-30, and ANN-40 is 5.44%,
8.79%, and 13.69% and the rest of the faults are mostly non-
critical SDC (less than 0.1% are masked). It can be observed
that DUE appears only when BER is very high and still its ratio
is not remarkable.

2) Resilience Analysis of LSTM vs FC: Fig. 6 presents the
accuracy loss of ANNs when weights in the LSTM layer are
faulty. It is observed that for BERs below 0.005, the resilience
of both, LSTM and FC layers are approximately similar, i.e.,

the variation in accuracy loss has a difference of less than 0.5%.
On the other hand, when BER is 0.005 and higher, in nearly all
cases accuracy loss in LSTM FI is remarkably higher. Therefore,
in all ANNs, the weights of the LSTM layer are more vulnerable
than the ones in the FC layers, especially at high BERs.

Fig. 7 illustrates the fault classification for ANN-20 in LSTM
and FC FI, while results for other ANNs have a similar trend.
FC layers outperform the LSTM layer in fault-masking, also
evidenced by the accuracy loss results. This is due to the dense
connections and the fault-masking capability of ReLU in FC
layers. Moreover, faulty weights in an LSTM layer lead to more
critical cases, since it memorizes input patterns and faults in its
parameters compromise ability. In addition, in LSTM FI, the
DUE rate is consistently 0, whereas, in FC FI, DUE occurs
at high BERs. This is caused by sigmoid and tanh activation
functions within LSTM cells, which effectively eliminate large
values. In contrast, FC layers employ ReLU, allowing the
propagation of large positive values, leading to DUE occurrences.

3) Inter-LSTM Resilience Analysis- FI into U vs W: Since
LSTM layers are less resilient than FC layers in the experimented
ANNs, we have further analyzed the resilience of weights inside
LSTM layers. The results for Recursive weights (W) FI and
Input weights (W) FI are presented in Fig. 8.

It is observed that in all ANNs, W weights are remarkably
more vulnerable. At BER = 0.005, the accuracy drop resulting
from FI into W parameters is 2.41x, 3.25x, and 4.55x worse
than that of FI into U, for ANN-20, ANN-30, and ANN-40,
respectively. The reason is that W parameters involve memorizing
the incoming time-series data through the recursive inputs of
the LSTM layer. Therefore, faults in these parameters persist
in influencing the recursive inputs through time and corrupt the
memorizing ability of the network more than the other weights.

C. Resilience Improvement of LSTM-based ANNs

To show the efficacy of the proposed method, we have applied
it to ANNs and performed a model-wise FI to obtain the results
of accuracy loss, F1-score loss, and fault classification. Fig. 9 and
Fig. 10 show how the proposed method improves the accuracy
and F1-score of ANNs in different BERs. Considering application
constraints, protected ANN-20 can operate when BER <= 0.05
(10x higher than the unprotected one). In addition, the protected
ANN-30 and ANN-40 can meet the requirements up to BER =
0.1 meaning that they can tolerate up to 20x higher BERs.

Regarding the fault classification results, the critical SDC rate
and DUE rate have been significantly reduced in comparison
with the unprotected ANNs in Fig. 5. As a result, the critical
SDC rate is reduced 7x at BER = 0.05 for ANN-20 as well
as 3.96x and 5.26x at BER = 0.1 for ANN-30 and ANN-40
respectively. Our protection mechanism results in 0.65x and
1.72x less DUE at BER = 0.05 for ANN-20 and BER = 0.1

(a) (b) (c)
Fig. 5: Fault classification in model-wise FI for a) ANN-20, b) ANN-30, c) ANN-40.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:54:47 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)
Fig. 6: Comparison of ANNs’ accuracy loss with FI in LSTM vs FC for a) ANN-20, b) ANN-30, c) ANN-40.

(a) ANN-20 LSTM FI

(b) ANN-20 FC FI

Fig. 7: ANNs-20’s fault classification with FI in LSTM vs FC.

Fig. 8: Comparison of ANNs’ accuracy loss with FI in U and W
weights in the LSTM layer.

Fig. 9: Accuracy improvement of ANNs.

for ANN-30 respectively. In addition, it has removed any DUE
in ANN-40 throughout FI experiments. The results reveal that
the straightforward act of replacing zero with the faulty weights
can effectively improve the resilience of the LSTM-based ANNs
as has been shown to be feasible for CNNs [12].

Fig. 10: F1-score improvement of ANNs.

V. CONCLUSION

This paper presents a pioneering study that highlights the
criticality of conducting reliability assessments for LSTM-based
ANNs. Extensive experiments using fault injection have been
performed to thoroughly examine the effect of faults on various
sets of weights in ANNs. Notably, our findings demonstrate
that recursive weights within LSTM cells are particularly
vulnerable parameters in LSTM-based ANNs. Furthermore,
a lightweight yet effective resilience improvement technique
has been proposed which involves replacing faulty weights
with zeros. Remarkably, the implementation of this technique
results in ANNs experiencing 7 times fewer critical faults while
successfully operating in environments up to 20 times harsher
than unprotected networks.

REFERENCES

[1] R. Manne and S. C. Kantheti, “Application of ai in healthcare: chances and
challenges,” Current Journal of Applied Science and Technology, vol. 40,
no. 6, pp. 78–89, 2021.

[2] E. J. Harris et al., “A survey of human gait-based ai applications,” Frontiers
in Robotics and AI, vol. 8, p. 749274, 2022.

[3] V. Sze et al., “Efficient processing of dnns: A tutorial and survey,”
Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[4] B. Lim and S. Zohren, “Time-series forecasting with dl: a survey,”
Philosophical Transactions of the Royal Society A, vol. 379, pp. 202–
209, 2021.

[5] M. Shafique et al., “Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead,” IEEE Design & Test, vol. 37,
no. 2, pp. 30–57, 2020.

[6] Y. Su and C.-C. J. Kuo, “On extended lstm and dependent bidirectional
rnn,” Neurocomputing, vol. 356, pp. 151–161, 2019.

[7] R. M. Coelho et al., “Real-time walking gait terrain classification from foot-
mounted inertial measurement unit using conv-lstm nn,” Expert Systems
with Applications, vol. 203, p. 117306, 2022.

[8] K. Adam et al., “A selective mitigation technique of soft errors for dnn
models used in healthcare applications: Densenet201 case study,” IEEE
Access, vol. 9, pp. 65 803–65 823, 2021.

[9] M. H. Ahmadilivani et al., “A systematic literature review on hardware
reliability assessment methods for dnns,” 2023.

[10] M. A. Neggaz et al., “Are cnns reliable enough for critical applications? an
exploratory study,” IEEE Design & Test, vol. 37, no. 2, pp. 76–83, 2019.

[11] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104, p.
101689, 2020.

[12] L.-H. Hoang et al., “Ft-clipact: Resilience analysis of dnns and improving
their fault tolerance using clipped activation,” in DATE, 2020, pp. 1241–
1246.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on August 31,2024 at 15:54:47 UTC from IEEE Xplore. Restrictions apply.

Appendix 8

VIIIB. Parchekani, S. Nazari, M. H. Ahmadilivani, A. Azarpeyvand, J. Raik, T. Ghasem-pouri, and M. Daneshtalab. Zero-Memory-Overhead Clipping-Based FaultTolerance for LSTM Deep Neural Networks. In IEEE International Sympo-sium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems(DFT), pages 1–4. Oxforshire, United Kingdom, 2024

257

Zero-Memory-Overhead Clipping-Based Fault Tolerance
for LSTM Deep Neural Networks

Bahram Parchekani1, Samira Nazari1, Mohammad Hasan Ahmadilivani2,
Ali Azarpeyvand1,2, Jaan Raik2, Tara Ghasempouri2, and Masoud Daneshtalab 2,3

1University of Zanjan, Zanjan, Iran
2Tallinn University of Technology, Tallinn, Estonia

3Mälardalen University, Västerås, Sweden
1{bahram.parchekani, samira.nazari, azarpeyvand}@znu.ac.ir

2{mohammad.ahmadilivani, ali.azarpeyvand, jaan.raik, tara.ghasempouri}@taltech.ee
3masoud.daneshtalab@mdu.se

Abstract—Long Short-Term Memory (LSTM) Deep Neural Net-
works (DNNs) have shown superior accuracy in predicting and
classifying time-series data. This has made them suitable for many
applications, including safety-critical ones, such as healthcare, where
fault tolerance is a major concern. Until now, fault resilience and
mitigation in LSTMs have not been thoroughly explored, raising
concerns about exploiting them in safety-critical use cases. This work,
first, extensively explores the effect of faults on LSTM DNNs using
fault injection into parameters. Moreover, the paper presents two
effective zero-memory-overhead fault tolerance techniques for LSTM
DNNs to protect them against random faults in their parameters.
Experimental results indicate that the proposed techniques can
improve fault tolerance of LSTM-based DNNs up to 278.6 times
concerning unprotected ones.

Index Terms—Hardware Reliability, Fault Tolerance, Neural
Networks, LSTMs, Healthcare.

I. INTRODUCTION

Deep Learning (DL) is being increasingly employed in safety-
critical applications, e.g., healthcare and automotive, due to their
outstanding accuracy in classification, prediction, etc. [1], [2]. In
this domain of applications, hardware reliability is a significant
concern [3]–[5]. Hardware reliability is defined as the probability
of hardware performing correctly with the presence of faults. Faults
may occur due to temperature variation, aging, soft errors, etc., and
flip the bits in logic or memory [3], [6], [7]. Such an effect may
lead to catastrophic results in safety-critical applications. With
transistor scaling, fault rates in memories have been increased,
which threatens the hardware reliability significantly [8].

Healthcare applications exploit Deep Neural Networks (DNNs)
extensively for various tasks such as diagnosis, treatment, and
prediction of diseases and anomalies [9], [10] because of their
outstanding strength in processing time-series data [11]. Long
Short-Term Memory (LSTM) DNNs are a subset of Recursive
Neural Networks (RNNs) that are remarkably effective in clas-
sifying and predicting time-series data. They retain long-term
information through time via feedback loops making them highly
desirable for disease prediction in healthcare applications [11].

Throughout the literature, several research works have thor-
oughly studied the reliability of DNNs in safety-critical applica-
tions [4], [6]. Fault injection at the software simulation level
is the predominant method for analyzing and evaluating the
reliability of DNNs due to their fast execution time [3]. The related
studies indicate that faults in memory impacting the parameters of
DNNs result in a substantial reduction of their accuracy [8], [12].
Therefore, various methods for improving their fault tolerance

are proposed. Model-level fault tolerance [13]–[15] significantly
impacts their resilience against memory faults.

Nearly all existing works study the reliability of Convolutional
Neural Networks (CNNs) for image classification and object detec-
tion [3]. Although LSTMs are widely deployed in safety-critical
applications, their fault tolerance is not extensively explored [3].
In a recent paper, the effect of faults in the computational units
of LSTMs for image classification in automotive is studied and
a hardware-level fault tolerance approach is proposed [16]. In
another prior work, a fine-grain and comprehensive resilience
analysis for different sets of parameters in LSTMs is performed
[17]. It is shown that their resilience can be remarkably improved
by detecting the faulty weights and setting them to 0.

In this paper, we perform resilience analysis on StageNet [18]
as a case study in healthcare applications for disease prediction.
The contributions of this paper are as follows:

• Performing a comprehensive resilience analysis for various
LSTM-based DNNs using fault injection in parameters,
leading to observing the effect of different DNN structures
and identification of critical bits;

• Proposing two fault-tolerant methods for LSTM-based DNNs,
Weights Bit Clipping (WBC) and Activations Value Clipping
(AVC), to effectively reduce the impact of faults in parameters
on LSTM-based DNNs;

• Demonstrating the efficacy of the proposed methods in DNNs’
resilience, leading up to 278.6 times less critical cases in the
outputs caused by faulty parameters.

Section II provides a background on StageNet. Section III
presents the proposed method for its resilience analysis and
improvement. Section IV provides the results, and Section V
concludes the paper.

II. PRELIMINARIES ON LSTMS AND STAGENET

StageNet [18] is an LSTM-based DNN designed for disease
prediction in healthcare. It predicts the stage of a patient’s disease
according to the characteristics of the tests performed by the
patient through time. Fig. 1 illustrates the overall structure of
StageNet. It is composed of an LSTM layer for characterizing the
disease stage over time, a convolutional (CONV) module, and an
output Fully Connected (FC) layer to output the predicted disease
condition. The CONV module contains one layer in parallel with
two FC layers, and their outputs are multiplied point-wise.

StageNet receives time-series data as inputs according to the
patient visits (v1, v2, · · · , vt) which contain numerical clinical
features at different times (∆1,∆2, · · · ,∆t). They pass through
the LSTM layer with multiple cells inferring the variation of a979-8-3503-6688-4/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
De

fe
ct

 a
nd

 F
au

lt
To

le
ra

nc
e

in
 V

LS
I a

nd
 N

an
ot

ec
hn

ol
og

y
Sy

st
em

s (
DF

T)
 |

 9
79

-8
-3

50
3-

66
88

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
DF

T6
32

77
.2

02
4.

10
75

35
33

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on December 06,2024 at 11:03:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Overal structure of StageNet [18].

patient’s health stage considering their current status. The produced
results are forwarded to the CONV module to learn patterns
of the disease stages. Afterward, the output layer performs the
classification for disease stage and risk prediction.

To measure the performance of StageNet, the following metrics
are evaluated: Accuracy: This metric represents the percentage
of correct predictions of StageNet compared to the expected
outputs. AUROC: This metric refers to the area under the receiver
operating characteristic curve illustrating the trade-off between true
positive rate and false positive rate. It shows how a classifier can
discriminate the positive and negative classes and it is extensively
used when a dataset is imbalanced. Since the distribution of data
in the dataset between different disease stages is imbalanced,
AUROC is a more suitable metric to show the performance of
StageNet. Therefore, for resilience analysis of this LSTM-based
DNN, we consider AUROC drop along with accuracy drop.

III. FAULT PROPAGATION AND MITIGATION IN LSTM-BASED
DNNS

A. Resilience Evaluation Using Fault Injection

To analyze the resilience of DNNs comprehensively, random
bit flips are applied throughout the DNN’s weights to assess the
overall network’s behavior in the presence of faults. To quantify
the resilience analysis, once the average performance metrics
(Accuracy and AUROC) for a DNN under test are obtained, their
difference with the fault-free metrics is considered as accuracy
drop and AUROC drop.

Furthermore, the output effect of faults is categorized into the
following classes, to quantify the effect of faults on the DNNs’
outputs: Masked: Outputs remain identical between faulty and
fault-free executions. Non-critical Silent Data Corruption (SDC):
Output values differ between faulty and fault-free executions, while
the classification result remains consistent. Critical SDC: Both
output values and classification results differ between faulty and
fault-free executions. Detected Unrecoverable Error (DUE):
The DNN generates ”NaN” values in the output, indicative of a
system exception.

To identify the critical bits in DNNs, we perform a bit-wise fault
injection experiment throughout the DNNs. In such an experiment,
one bit is considered as the target and it is flipped in all parameters
and the inference is performed and the performance metrics are
measured. The bit that has the highest impact on the performance
metrics is identified as the most critical bit.

B. Resilience Improvement for LSTM-based DNNs

We propose two model-level fault tolerance techniques with
zero memory overhead: 1) Weights Bit Clipping (WBC), and

2) Activations Value Clipping (AVC). In the WBC method, all
weights of fault-free DNN models are profiled and their bit patterns
are analyzed. As a result, a consistent bit pattern is revealed in
the DNNs under study. Moreover, using fault injection, the most
critical bit is identified. To this end, an extensive exploration of
different bit flips is carried out and the resilience is measured for
each bit. Therefore, the method suggests clipping the most critical
bits to a certain value throughout the DNN, before an inference.

In the AVC method, first, the input values to each activation
function of the LSTM cells as well as the CONV and FC layers
in DNNs are profiled and their maximum and minimum values
are obtained, during a fault-free forward pass with validation data.
The obtained values are then utilized for detecting faults that is
when an input to corresponding activation functions exceeds the
determined value range. Once a fault is detected in a forward
pass, the corresponding value is clipped. If an activation value
falls below the minimum range value, it is set to that minimum
threshold. Conversely, if an activation value exceeds the maximum
profiled value, it is set to the maximum threshold.

Ultimately, the effectiveness of WBC and AVC is evaluated by
fault injection to determine how they mitigate the fault impact and
which technique offers superior fault tolerance in LSTM DNNs.
By comparing these methods, we aim to identify the more robust
approach for enhancing the reliability of LSTM neural networks
in the presence of faults.

IV. EXPERIMENTS

A. Experimental Setup

To evaluate and improve the resilience of LSTM-based DNNs
against faults in parameters, four variations of StageNet are
experimented. Two variations represent the full StageNet model
which includes CONV layer, with different numbers of LSTM cells
(384 and 72), and the two variations that exclude the convolutional
module, containing only LSTM layer, with 384 and 72 cells.

Test data is sourced from the Medical Information Mart for
Intensive Care (MIMIC-III) dataset, which includes 17 physio-
logical variables recorded at each visit. It is transformed into a
76-dimensional vector comprising numerical and one-hot encoded
categorical clinical features for 33,678 patients.

Baseline metrics, including accuracy and AUROC in fault-free
executions, are summarized in Table I, alongside the number of
parameters for each model. All models were executed on a CPU
supporting 32-bit floating-point IEEE-754 data representation.

Table I: Accuracy, AUROC, and the number of different weight sets of
the LSTM-based ANNs in this work.

Accuracy AUROC #weights
in LSTM

#weights
in CONV

#weights
in FC

Stage-CONV-384 94.94% 79.21% 738618 442368 24960
Stage-CONV-72 83.75% 76.75% 48764 51840 1800

Stage-384 90.28% 79.29% 738618 0 384
Stage-72 77.28% 76.97% 48764 0 72

We conduct Fault Injection (FI) across all weights in the DNNs
under study. The number of injected faults is determined using
a Bit Error Rate (BER) ranging from 0.0001 to 0.01, covering a
comprehensive range of potential errors. FI is repeated 1000 times
to ensure an acceptable confidence level. For each iteration, a
drop in accuracy and AUROC is obtained, and faults are classified
according to Subsection III-A. Eventually, the average results over
all iterations are reported in the paper.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on December 06,2024 at 11:03:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Model-wise FI results for DNNs.

All experiments are implemented and performed using PyTorch
and executed on an Intel® Core™ i7-9700 CPU. Through these
experiments, we aim to thoroughly assess the reliability of
LSTM-based DNNs under faults in parameters and evaluate the
effectiveness of the proposed protection techniques in preserving
model performance.

B. Resilience Analysis Results

As illustrated in Fig. 2, the performance metrics for all models
significantly drop under fault injection campaigns. In Fig 2a,
as the BER increases, larger models (i.e., Stage-CONV-384 and
Stage-384) demonstrate more accuracy drop than the other models,
at the same BERs. However, the AUROC drop metric shows a
different behavior. It is observed that Stage-CNN-72 and Stage-72
are remarkably sensitive to faults in terms of their AUROC, at the
lowest BER. While at higher BERs, the AUROC drop is higher
for larger DNNs.

Regarding Fig. 2b, as AUROC expresses the discrimination
of classification over different thresholds, this observation shows
that smaller DNNs are remarkably sensitive to faults to correctly
distinguish the stage of patients’ disease. According to the results,
the AUROC metric for all DNNs falls below 60% when BER =
0.01. At such high BERs, although larger DNNs are shown to be
more error-prone, in this safety-critical application, none of them
are reliably functioning.

On the other hand, it is observed that DNNs possessing the
CONV module are generally more resilient than the ones without
the CONV module. It shows that the CONV module increases the
capability of fault masking in LSTM-based DNNs and improves
their inherent resilience.

According to Fig. 3, in all models, as the BER increases,
the fault effects with masked and non-critical SDCs decrease,
significantly leading to more critical SDCs and DUEs. This figure
also evidences the fact that the DNNs with the CONV module are
more resilient to faults than the ones without the CONV module.
Obtained results indicate that when BER = 0.01, total critical
SDC and DUE rate for StageNet-CONV-384, StageNet-CONV-72,
StageNet-384 and StageNet-72 is 90.05%, 54.97%, 82.02% and
77.33%.

We perform a bit-level analysis of weights. First, we observe
the average value of each bit throughout the weights in all DNNs,
as illustrated in Fig. 4a. It is observed that bits 0 to 26 in 32-bit
floating point data representation almost have a unified distribution
between 0 and 1. while bits number 27, 28, and 29 are always
’1’ and bit number 30 is always ’0’. It shows that we can protect
the bits that are constant throughout the weights.

As depicted in Fig. 4b, the accuracy drop for bit 30 in all DNNs
is significantly higher than bit-flip in other bits. Consequently, bit
30 is identified as the most critical bit in the DNNs, which is
observed in Fig. 4a that its value is always ’0’. As a protection
mechanism, this bit is always set to ’0’, which ensures that the

(a) Stage-CONV-384 (b) Stage-CONV-72

(c) Stage-384 (d) Stage-72

Fig. 3: Fault classification in model-wise FI for a) Stage-CONV-384, b)
Stage-CONV-72, c) Stage-384, d) Stage-72.

most critical bit is consistently safeguarded, enhancing the overall
reliability of the LSTM-based DNNs.

C. Fault Tolerance for LSTM-based DNNs

1) Weights Bit Clipping (WBC)
As shown in Fig. 5a and Fig. 5b, weights bit clipping lays

a significant improvement on the reliability of LSTM-based
DNNs. The accuracy drop is close to zero through all BERs
for all protected models. On the other hand, the AUROC drop is
remarkably improved for all DNNs. According to the results, the
AUROC drop is reduced by up to 3.2x when BER = 0.01 and
the total critical SDC and DUE rate across DNNs is reduced by
up to 278.6x.

2) Activations Value Clipping (AVC)
Fig. 5c and Fig. 5d present how effectively activations value

clipping protects the models against faults. According to the results,
The accuracy drop and AUROC drop are reduced by up to 15.54x
and 1.5x among the DNNs, respectively, when BER = 0.01. The
fault classification results through the fault injection campaigns on
protected DNNs by AVC indicate that this method is also capable
of removing all DUE effects. As a result, the total DUE and
critical SDC rate for StageNet-CONV-384, StageNet-CONV-72,
StageNet-384, and StageNet-72 is 13.88%, 5.18%, 36.47%, and
16.86% resulting in up to 10.6x reduction across DNNs when
BER = 0.01.

3) Comparison
Fig. 6 compares the proposed zero-memory overhead fault-

tolerant techniques for LSTM-based DNNs. As observed, Weights
Bit Clipping (WBC) generally demonstrates a more consistent
protective effect across different DNNs. It effectively reduces
accuracy drop and the incidence of critical faults across the board.
However, Activations Value Clipping (AVC) slightly outperforms
in a few cases. WBC achieves 2.36x, 1.19x and 2.26x less AUROC
drop than AVC in Stage-CONV-384, Stage-CONV-72, and Stage-
384, when BER = 0.01, whereas AVC provides 1.13x times less
AUROC drop than WBC for Stage-72 at the same BER.

(a) Average value of different bits. (b) Finding the most critical bit.

Fig. 4: Monitoring bit values

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on December 06,2024 at 11:03:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Weights Bit Clipping protection and Activation Value Clipping and FI results.

Fig. 6: Weights Bit Clipping (WBC) and Activations Value Clipping (AVC) comparison based on AUROC drop.

Nonetheless, each proposed fault-tolerance technique is appli-
cable in different design scenarios. WBC applies directly to the
memory and can be conducted to the bit values of the stored data
before an inference. On the other hand, AVC is applied during the
inference and prevents errors produced by faulty weights during
the inference.

V. CONCLUSION

In this paper, we study the reliability of various LSTM-based
DNNs (variants of StageNet) in healthcare as a case study with
different structures and propose two zero-memory overhead fault-
tolerance techniques for them. Results indicate that LSTM-based
DNNs possessing convolutional layers demonstrate more resilience
than the ones without convolutional layers. Furthermore, we
performed bit-level analysis resulting in the identification of the
most critical bits.

Moreover, two zero-overhead protection techniques to improve
their fault tolerance are proposed: weights bit clipping and
activations value clipping. It is shown that weights bit clipping
can reduce the AUROC drop by up to 3.2x and DUE and critical
faults by up to 278.6x compared to the unprotected DNNs at a
high BER. Also, activations value clipping reduces the AUROC
drop by 1.5x and DUE and critical SDCs by 10.6x, under the
same conditions. Thus, the results demonstrate that the weights
bit clipping method is extremely effective in mitigating the effect
of faults occurring in the parameters of LSTM-based DNNs.

ACKNOWLEDGMENTS

This work is supported by PSG837 Estonian national funding.

REFERENCES

[1] M. Loni, H. Mousavi, M. Riazati, M. Daneshtalab, and M. Sjödin, “Tas:
ternarized neural architecture search for resource-constrained edge devices,”
in 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2022, pp. 1115–1118.

[2] B. Rokh, A. Azarpeyvand, and A. Khanteymoori, “A comprehensive survey
on model quantization for deep neural networks in image classification,”
ACM Transactions on Intelligent Systems and Technology, vol. 14, no. 6, pp.
1–50, 2023.

[3] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“A systematic literature review on hardware reliability assessment methods
for deep neural networks,” ACM Computing Surveys, vol. 56, no. 6, pp. 1–39,
2024.

[4] F. Su, C. Liu, and H.-G. Stratigopoulos, “Testability and dependability of
ai hardware: Survey, trends, challenges, and perspectives,” IEEE Design &
Test, 2023.

[5] M. Taheri, N. Cherezova, S. Nazari, A. Rafiq, A. Azarpeyvand, T. Ghasem-
pouri, M. Daneshtalab, J. Raik, and M. Jenihhin, “Adam: Adaptive fault-
tolerant approximate multiplier for edge dnn accelerators,” in 2024 IEEE
European Test Symposium (ETS), 2024, pp. 1–4.

[6] Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam, and G. Guo,
“Soft errors in dnn accelerators: A comprehensive review,” Microelectronics
Reliability, vol. 115, p. 113969, 2020.

[7] M. Nourazar, V. Rashtchi, F. Merrikh-Bayat, and A. Azarpeyvand, “Towards
memristor-based approximate accelerator: Application to complex-valued
fir filter bank,” Analog Integrated Circuits and Signal Processing, vol. 96,
no. 3, pp. 577–588, 2018.

[8] M. A. Neggaz et al., “Are cnns reliable enough for critical applications? an
exploratory study,” IEEE Design & Test, vol. 37, no. 2, pp. 76–83, 2019.

[9] R. Manne and S. C. Kantheti, “Application of artificial intelligence in
healthcare: chances and challenges,” Current Journal of Applied Science and
Technology, vol. 40, no. 6, pp. 78–89, 2021.

[10] E. J. Harris et al., “A survey of human gait-based artificial intelligence
applications,” Frontiers in Robotics and AI, vol. 8, p. 749274, 2022.

[11] B. Lim and S. Zohren, “Time-series forecasting with deep learning: a survey,”
Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, pp.
202–209, 2021.

[12] K. Adam et al., “A selective mitigation technique of soft errors for dnn
models used in healthcare applications: Densenet201 case study,” IEEE
Access, vol. 9, pp. 65 803–65 823, 2021.

[13] L.-H. Hoang et al., “Ft-clipact: Resilience analysis of deep neural networks
and improving their fault tolerance using clipped activation,” in DATE, 2020,
pp. 1241–1246.

[14] B. Ghavami et al., “Fitact: Error resilient deep neural networks via fine-
grained post-trainable activation functions,” in 2022 DATE. IEEE, 2022,
pp. 1239–1244.

[15] M. H. Ahmadilivani, S. Mousavi, J. Raik, M. Daneshtalab, and M. Jenihhin,
“Cost-effective fault tolerance for cnns using parameter vulnerability based
hardening and pruning,” in 2024 IEEE IOLTS, inpress, 2024, pp. 1–7.

[16] N. Nosrati and Z. Navabi, “Analysis and enhancement of resilience for lstm
accelerators using residue-based ceds,” IEEE Access, 2024.

[17] M. H. Ahmadilivani, J. Raik, M. Daneshtalab, and A. Kuusik, “Analysis and
improvement of resilience for long short-term memory neural networks,” in
2023 IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT). IEEE, 2023, pp. 1–4.

[18] J. Gao, C. Xiao, Y. Wang, W. Tang, L. M. Glass, and J. Sun, “Stagenet:
Stage-aware neural networks for health risk prediction,” in Proceedings of
The Web Conference 2020, 2020, pp. 530–540.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on December 06,2024 at 11:03:47 UTC from IEEE Xplore. Restrictions apply.

Curriculum Vitae
1. Personal data

Name Mohammad Hasan AhmadilivaniDate and place of birth 17 February 1994, Gorgan, Iran
2. Contact information

Address Tallinn University of Technology, School of Information Technologies,Department of Computer Systems,Akadeemia tee 15a, 12618, Tallinn, EstoniaPhone +372 5802 8289E-mail mohammad.ahmadilivani@taltech.ee
3. Education

2021–2025
2017–2020
2012–2017

Tallinn University of Technology, School of Information Technologies, Dependable Computing Systems, PhD studiesUniversity of Tehran, School of Electrical and Computer Engineering, Computer Systems Architecture, MScIran University of Science and Technology, School of Computer Engineering, Computer Hardware, BSc
4. Language competence

Persian nativeEnglish fluentEstonian beginner

5. Professional employment

2018–2020 Mana Engineering, Embedded Software Developer2018–2018 Negar Andishegan Pouya, Embedded Software Intern
6. Computer skills

• Operating systems: Windows, Linux
• Document preparation: Latex, Microsoft Word
• Programming languages: Python, C, C++, C#, Matlab
• Hardware Description Languages: VHDL

263

7. Defended theses

• 2020, Design, Evaluation, and Implementation of Fault Tolerant Techniques for Stor-age Units in Embedded Processors, MSc, supervisor Prof. Mostafa E. Salehi, Univer-sity of Tehran.
• 2017, Study and Comparison of Lightweight Encryption Algorithms on ARM Micro-processors, supervisor Prof. Mahdi Fazeli, IranUniversity of Science and Technology.

8. Field of research

• Efficient and Fault-Tolerant Hardware Design
• Robust Machine Learning and Trustworthy Artificial Intelligence
• Efficient Deep Learning in Embedded Applications and IoT

9. Honors and awards

• 2024, Author of the Research Article of the Year at ICT School of Tallinn Universityof Technology.
10. Projects

• DeepVigor Tool

– Developed a scalable tool for resilience analysis of DNNs, outputting variousnecessary metrics, GitHub repo: https://github.com/mhahmadilivany/
DeepVigor

• SentinelNN Tool

– Developed a framework for fault resilience assessment and enhancement ofCNNs, GitHub repo: https://github.com/mhahmadilivany/SentinelNN
• AI Chip for a Medical Application

– Developed a customized machine learning solution (LSTM) for clinical gaitsabnormality detection
– Optimized the developed LSTM for designing an ASIC AI chip

• Machine Vision for Collaborative Robots

– Technical Lead of two projects supported by AIRE, to develop an AI-basedproduct for automated programming of collaborative robots and productionquality control, for industrial manufacturers in Estonia.

264

https://github.com/mhahmadilivany/DeepVigor
https://github.com/mhahmadilivany/DeepVigor
https://github.com/mhahmadilivany/SentinelNN

Elulookirjeldus
1. Isikuandmed

Nimi Mohammad Hasan AhmadilivaniSünniaeg ja -koht 17 February 1994, Gorgan, Iran
2. Kontaktandmed

Aadress Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,Akadeemia tee 15a, 12618, Tallinn, EstoniaTelefon +372 5802 8289E-post mohammad.ahmadilivani@taltech.ee
3. Haridus

2021–2025 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,Usaldusväärsete arvutisüsteemide, doktoriõpe2017–2020 Teherani ülikool, elektri- ja arvutitehnika teaduskond,Arvutisüsteemide arhitektuur, MSc2012–2017 Iraani teadus- ja tehnoloogiaülikool, arvutitehnika teaduskond,Arvuti riistvara, BSc
4. Keelteoskus

pärsia keel emakeelinglise keel kõrgtaseeesti keel algaja
5. Teenistuskäik

2018–2020 Mana Engineering, Embedded Software Developer2018–2018 Negar Andishegan Pouya, Embedded Software Intern
6. Arvuti oskused

• Operatsioonisüsteemid: Windows, Linux
• Kontoritarkvara: Latex, Microsoft Word
• Programmeerimiskeeled: Python, C, C++, C#, Matlab
• Riistvara kirjelduse keeled: VHDL

7. Kaitstud lõputööd

• 2020, Sardsüsteemide protsessorites salvestusüksuste tõrketaluvate tehnikate hin-damine ja rakendamine, MSc, juhendaja Prof. Mostafa E. Salehi, Teherani ülikool.
• 2017, ARM-i mikroprotsessorite kergete krüpteerimisalgoritmide uurimine ja võrdle-mine, juhendaja Prof. Mahdi Fazeli, Iraani teadus- ja tehnoloogiaülikool.

8. Teadustöö põhisuunad

• Tõhus ja tõrkekindel riistvara disain
265

• Robustne masinõpe ja usaldusväärne tehisintellekt
• Tõhus süvaõpe manustatud rakendustes ja asjade Internetis

9. Autasud

• 2024, Infotehnoloogia teaduskonna aasta teadusartikli autor
10. Projektid

• DeepVigor töörist

– Töötas välja skaleeritava tööriista DNN-ide vastupidavuse analüüsiks, väljas-tades erinevaid vajalikke mõõdikuid, GitHub repo: https://github.com/
mhahmadilivany/DeepVigor

• SentinelNN töörist

– Developed a framework for fault resilience assessment and enhancement ofCNNs, GitHub repo: https://github.com/mhahmadilivany/SentinelNN
• AI kiip meditsiiniliseks rakenduseks

– Töötas välja kohandatud masinõppelahenduse (LSTM) kliiniliste kõnnakuhäiretetuvastamiseks
– Optimeeritud väljatöötatud LSTM ASIC AI kiibi kujundamiseks

• Masinnägemine koostöörobotite jaoks

– Kahe AIRE toetatud projekti tehniline juht, mille eesmärk on arendada tehis-intellektil põhinevat toodet koostöörobotite automatiseeritud programmee-rimiseks ja tootmiskvaliteedi kontrollimiseks, tööstustootjatele Eestis.

266

https://github.com/mhahmadilivany/DeepVigor
https://github.com/mhahmadilivany/DeepVigor
https://github.com/mhahmadilivany/SentinelNN

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-276-2 (PDF)

	List of Publications
	Author's Contributions to the Publications
	Abbreviations
	Introduction
	Motivation
	Problem Formulation and Research Questions
	Contributions
	Thesis Organization

	Background
	Hardware Reliability
	Definition and Concept
	Hardware Faults: Definition, Classification, and Impact
	Soft Errors: Origination and Impact
	Fault Tolerance Techniques
	Evaluation and Metrics

	Deep Neural Networks
	Convolutional Neural Networks
	Long Short-Term Memory Neural Networks

	DNN Hardware Accelerators

	Literature Review on the Reliability Assessment Methods for DNNs
	Terminology
	Literature Review Methodology
	Taxonomy and Trends
	Characterization of Existing Methods
	Research Trends

	Fault Injection Methods
	Fault Simulation
	Hardware-Independent Platform.
	Hardware-Aware Platform.
	RTL Model Platform.

	Fault Emulation
	FPGA Platform.
	GPU Platform.
	CPU Platform.

	Irradiation
	FPGA Platform.
	GPU Platform.
	TPU Platform.

	Analytical Methods
	Hybrid Methods
	Discussion: Qualitative Comparison and Open Challenges
	Chapter Conclusions

	Reliability Assessment for CNNs
	DeepVigor: VulnerabIlity Value RanGes and FactORs
	Fault Model
	Fault Propagation Analysis
	The DeepVigor Method
	Validating DeepVigor By Fault Injection
	Experimental Setup
	Results and Validation
	Run-Time Analysis
	Discussion

	DeepVigor+: Scalable and Accurate Fault Resilience Analysis
	Fault Model
	Fault Propagation Model
	Single Fault Analysis in 32-bit Floating-Point
	Single Fault Error Propagation in CNNs

	The DeepVigor+ Method
	Experimental Setup
	DeepVigor+ Implementation
	Validating DeepVigor+ by Fault Injection
	CNNs Under Study

	Results
	DeepVigor+ Accuracy Compared to FI
	Sampling Analysis vs. Complete Analysis
	Run-Time and Scalability Investigation
	Reliability Visualization and Comparison for CNNs
	Impact of Input Data on the Quality of Results

	Discussion

	QDeepVigor: Applications for QNNs
	Cross-layer reliability enhancement for QNNs accelerators
	Accelerator Model
	Identifying Critical Neurons by QDeepVigor
	Resilience Enhancement by LCU and Neuron Splitting
	Experimental Setup
	Results: An Exploration on NVF of QNNs

	A Hybrid Method for QNNs' Reliability Assessment
	Hybrid Method: QDeepVigor and SAFFIRA
	Results: Simulation Speed-up

	Chapter Conclusions

	Reliability Enhancement for CNNs
	Related Works: Fault Tolerance for CNNs
	ProAct: Progressive Training for Hybrid Clipped Activation Function
	Research Motivation
	Methodology: ProAct and HyReLU
	Experimental Setup
	Results: Overhead Reduction and Resilience Improvement
	Effect of Activation Restriction Methods on DNNs' Baseline Accuracy- and Memory Footprint
	Resilience Comparison of Activation Restriction Methods

	Discussion

	Channel Duplication and Vulnerability-Aware Pruning
	CNN Model Hardening
	Vulnerability Estimation
	CNN Model Hardening Method

	Experimental Setup
	Results
	Hardening by Channel Duplication vs. Triplication
	Hardening by Selective Channels Duplication and EDAC Layer

	Overhead Reduction by Pruning based on Parameters' Vulnerability
	Vulnerability-Aware Pruning
	Resilience and Overhead of the Hardened Pruned CNNs

	Discussion

	SentinelNN: Model-Level CNN Hardening Framework
	Experimental Setup
	Experimental Results

	Chapter Conclusions

	Reliability Assessment and Enhancement for LSTMs
	LSTM-based NN for Gait Analysis
	Proposed Method: Resilience Assessment and Enhancement
	LSTMs Under Study
	Resilience Assessment by Fault Injection.
	Resilience Enhancement: Weights Online Checking and Correction

	Experimental Setup
	Experimental Results
	Model-wise Resilience Analysis.
	Layer-wise Resilience Analysis.
	Inter-LSTM Resilience Analysis: FI into U vs W
	Resilience Improvement of LSTM-based ANNs

	Discussion

	Convolutional LSTM DNN for Disease Prediction
	Proposed Method: Resilience Assessment and Enhancement
	LSTMs Under Study
	Resilience Assessment by Fault Injection
	Resilience Enhancement: Weights and Activations Clipping

	Experimental Setup
	Experimental Results
	Resilience Analysis Results
	Resilience Improvement Results.

	Discussion

	Chapter Conclusions

	Conclusions and Future Directions
	List of Figures
	List of Tables
	References
	Acknowledgements
	Abstract
	Kokkuvõte
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7
	Appendix 8
	Curriculum Vitae
	Elulookirjeldus
	Blank Page
	Blank Page

