
DOCTORAL THESIS

Hardware Realization of
Lattice-based Post-Quantum
Cryptography

Malik Imran

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2023

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

33/2023

Hardware Realization of
Lattice-based Post-Quantum

Cryptography

MALIK IMRAN

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems
The dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Information and Communication Technologies on July 31 2023

Supervisor:

Opponents:

Prof. Dr. Samuel Pagliarini,
Department of Computer Systems, Centre for Hardware Security,
Tallinn University of Technology,
Tallinn, Estonia

Prof. Georg Sigl,
Technical University of Munich,
Munich, Germany

Prof. Francesco Regazzoni,
University of Amsterdam,
Amsterdam, The Netherlands

Defence of the thesis: August 29 2023, Tallinn
Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Copyright: Malik Imran, 2023
ISSN 2585–6898 (publication)
ISBN 978-9916-80-029-4 (publication)
ISSN 2585–6901 (PDF)
ISBN 978-9916-80-030-0 (PDF)
Printed by Koopia Niini & Rauam

Malik Imran ...
signature

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

33/2023

Võrel põhinev
post-kvant-krüptograafia riistvaraline

realisatsioon

MALIK IMRAN

Contents
List of Publications . 7

Abbreviations . 9

1 Introduction . 10
1.1 Novelty, Contributions & Summary of the Thesis . 14

2 Background . 16
2.1 Lattice-Based Post-Quantum Cryptography . 16
2.2 Building-Blocks for Lattice-Based Crypto Systems . 20
2.3 SABER PQC KEM Protocol . 26
2.4 Implementation Platforms and Hardware Accelerators . 31

3 A Generator of Large Integer Polynomial Multipliers . 35
3.1 Supported Features . 35
3.2 Proposed Multiplier Generator Architecture . 37
3.3 Implementation Results. 38
3.4 Figures of Merit and Trade-offs . 43
3.5 Comparison and Discussion . 46

4 Design Space Exploration of SABER . 50
4.1 Serial and Parallel SABER Architectures . 50

4.1.1 Memory Manager. 52
4.1.2 Pipelining . 53
4.1.3 Shared Shift Buffer . 54
4.1.4 Address Decoder Unit (ADU) . 54
4.1.5 SABER Building Blocks . 54

4.2 Implementation Results. 60
4.3 Comparison and Discussion . 65

5 High-Speed SABER Chip Design . 71
5.1 Chip Architecture . 71

5.1.1 Wrapper . 71
5.1.2 Serial-in/out interface . 72
5.1.3 SABER crypto core. 73

5.2 Measurement Results . 74
5.2.1 Chip Layouts and Experimental Setup . 75
5.2.2 Leakage Current Measurement. 76
5.2.3 Area, Timing and Power Results . 76

5.3 Comparison and Discussion . 78

6 Conclusions and Future Directions. 81

List of Figures . 84

List of Tables . 85

References . 86

5

Acknowledgements. 97

Abstract . 98

Appendix 1 . 103

Appendix 2 . 131

Appendix 3 . 139

Appendix 4 . 159

Appendix 5 . 167

Appendix 6 . 175

Curriculum Vitae . 188

Elulookirjeldus . 189

6

List of Publications
The present Ph.D. thesis is based on the following publications that are referred to in
the text by Roman numbers.

I M. Imran, Z. U. Abideen, and S. Pagliarini, “An experimental study of build-
ing blocks of lattice-based nist post-quantum cryptographic algorithms,” Elec-
tronics, vol. 9, no. 11, 1953, 2020. DOI: https://doi.org/10.3390/
electronics9111953

II M. Imran, Z. U. Abideen, and S. Pagliarini, “An open-source library of large integer
polynomial multipliers,” in 2021 24th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS), Vienna, Austria, 2021, pp.
145–150. DOI: https://doi.org/10.1109/DDECS52668.2021.9417065

III M. Imran, Z. U. Abideen, and S. Pagliarini, “A versatile and flexible multiplier
generator for large integer polynomials,” Journal of Hardware and Systems Security,
2023. DOI: https://doi.org/10.1007/s41635-023-00134-2

IV M. Imran, F. Almeida, J. Raik, A. Basso, S. S. Roy, and S. Pagliarini, “Design
space exploration of saber in 65nm asic,” in Proceedings of the 5th Workshop on
Attacks and Solutions in Hardware Security, ASHES ’21, Virtual Event, Republic of
Korea, 2021, pp. 85–90. DOI: https://doi.org/10.1145/3474376.3487278

V M. Imran, A. Aikata, S. S. Roy, and S. Pagliarini, “High-speed design of post-
quantum cryptography with optimized hashing and multiplication,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, 2023. DOI: https://doi.org/
10.1109/TCSII.2023.3273821

VI M. Imran, F. Almeida, A. Basso, S. S. Roy, and S. Pagliarini, “High-speed SABER
key encapsulation mechanism in 65nm CMOS.” Journal of Cryptographic Engineer-
ing, 2023. DOI: https://doi.org/10.1007/s13389-023-00316-2

Other related publications
VII A. Aikata, A. C. Mert, M. Imran, S. Pagliarini, and S. S. Roy, “Kali: A crystal for

post-quantum security using kyber and dilithium,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 70, no. 2, pp. 747–758, 2023. DOI:
https://doi.org/10.1109/TCSI.2022.3219555

VIII L. Aksoy, D. B. Roy, M. Imran, P. Karl, and S. Pagliarini, “Multiplierless design of
very large constant multiplications in cryptography,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 69, no. 11, pp. 4503–4507, 2022. DOI:
https://doi.org/10.1109/TCSII.2022.3191662

IX F. Almeida, M. Imran, J. Raik, and S. Pagliarini, “Ransomware attack as hardware
trojan: A feasibility and demonstration study,” IEEE Access, vol. 10, pp. 44827–
44839, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3168991

X T. Perez, M. Imran, P. Vaz, and S. Pagliarini, “Side-channel trojan insertion –
a practical foundry-side attack via eco,” in 2021 IEEE International Symposium
on Circuits and Systems (ISCAS), Daegu, Korea, 2021, pp. 1–5. DOI: https:
//doi.org/10.1109/ISCAS51556.2021.9401481

7

https://doi.org/10.3390/electronics9111953
https://doi.org/10.3390/electronics9111953
https://doi.org/10.1109/DDECS52668.2021.9417065
https://doi.org/10.1007/s41635-023-00134-2
https://doi.org/10.1145/3474376.3487278
https://doi.org/10.1109/TCSII.2023.3273821
https://doi.org/10.1109/TCSII.2023.3273821
https://doi.org/10.1007/s13389-023-00316-2
https://doi.org/10.1109/TCSI.2022.3219555
https://doi.org/10.1109/TCSII.2022.3191662
https://doi.org/10.1109/ACCESS.2022.3168991
https://doi.org/10.1109/ISCAS51556.2021.9401481
https://doi.org/10.1109/ISCAS51556.2021.9401481

XI M. Imran, S. Pagliarini, and M. Rashid, “An area aware accelerator for elliptic curve
point multiplication,” in 2020 27th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), Glasgow, UK, 2020, pp. 1–4. DOI: https:
//doi.org/10.1109/ICECS49266.2020.9294908

8

https://doi.org/10.1109/ICECS49266.2020.9294908
https://doi.org/10.1109/ICECS49266.2020.9294908

Abbreviations

ASIC Application-specific Integrated Circuit
AES Advanced Encryption Standard
CACR Chinese Association for Cryptologic Research
CCA Chosen Ciphertext Attack
CMOS Complementary Metal Oxide Semiconductor
DSE Design Space Exploration
DECAPS Decapsulations
ECC Elliptic Curve Cryptography
ENCAPS Encapsulations
ENISA European Union Agency for Cybersecurity
FPGA Field-Programmable Gate Array
FOM Figure-of-Merit
FFT Fast Fourier Transform
FF Flip-Flop
ITU International Telecommunications Union
KEM Key Encapsulation Mechanism
KEYGEN Key Generation
LCM Least Common Multiples
LWE Learning With Errors
LWR Learning With Rounding
LUT Look-Up Table
NFS Number Field Sieve
NIST National Institute of Standards and Technology
NTT Number Theoretic Transform
NWC Negative Wrapped Convolution
PKC Public-key Cryptography
PQC Post-Quantum Cryptography
PAP Power-Area-Performance
PCB Printed Circuit Board
QC Quantum Cryptography
RSA Rivest, Shamir, and Adleman
ROM Read Only Memory
RAM Random Access Memory
RTL Register-Transfer Level
SBM Schoolbook Multiplier
TSMC Taiwan Semiconductor Manufacturing Company

9

1 Introduction

The world is becoming increasingly digitized and connected, and ensuring the security
and privacy of sensitive information has become a critical concern for individuals
and organizations. The exponential growth of the internet has opened up many
opportunities, but at the same time, it has also created new challenges. Recently, in
[1], the International Telecommunications Union (ITU) announced that internet users
increased from 400 million (in 2000) to 4.9 billion (in 2021). According to Snowden’s
report [2], in 2013, this growth rate is expected to be higher. The proliferation of
internet users has increased numerous data breaches and cyber attacks in recent years,
which have led to the theft of sensitive information, such as personal and financial
data. These incidents have not only resulted in significant financial losses but have
also damaged the reputation of organizations and eroded public trust. Various security
measures have been developed and implemented to address these concerns, such as
encryption/decryption [3], firewalls [4], and access controls [5]. However, despite these
measures, the threat of cyber attacks remains a constant, and organizations must
remain vigilant and take proactive measures to protect sensitive information. Hence,
the increasing connectivity of the world has highlighted the importance of data security
and privacy.

Cryptography is one of the techniques to protect sensitive information using math-
ematical problems [6]. It transforms original information/data into a format that
humans cannot understand. The original information is called plaintext, while the
text obtained after some mathematical operations is a ciphertext. The sequence of
operations to obtain ciphertext from plaintext and vice versa determines a cryptographic
algorithm/protocol. The current cryptographic schemes are categorized into symmetric
and public-key cryptography (PKC). The sender and the recipient share a common
key for encrypting and decrypting the message in symmetric key cryptography. The
encryption is a transformation of plaintext into ciphertext, while the conversion back
from ciphertext to plaintext is a decryption. Using a common key in symmetric schemes
makes symmetric cryptographic algorithms faster and more efficient for encrypting
and decrypting large amounts of data. They are also more suitable for low-resource
platforms such as wireless sensor nodes because they require less processing power and
memory. However, the challenge with symmetric schemes is that the common key
needs to be shared over an unsecured channel between two parties (sender and receiver),
which makes it potentially vulnerable to attacks.

On the other hand, PKC uses two keys, public and private. The public key is widely
available and can be used by anyone to encrypt original information/data, while the
private key is kept secret by the recipient and is used to decrypt the data. This makes
PKC schemes secure, especially for applications that require longer-term security or
when the parties involved have no prior relationship or secure communication channel.
However, public-key schemes are typically slower and require more processing power
and memory than symmetric schemes.

The choice of the cryptographic scheme depends on the specific requirements of the
application or platform, such as the level of security needed. PKC-based cryptographic
schemes are beneficial for achieving longer-term security, and their security strength
depends on solving prime factorization and discrete logarithm problems. In number
theory, integer factorization decomposes a composite number into a product of a smaller
integer. The process is prime factorization if the roots are restricted to prime numbers.
A composite number is a positive integer formed by multiplying two smaller positive

10

integers. In other words, it is a positive integer that has at least one divisor other
than 1 and itself. Every positive integer is composite, prime, or unit, so the composite
numbers are precisely those that are not prime and not a unit. For instance, integer 14
is a composite number because it is a product of the two smaller integers (i.e., 2 ×
7). In contrast, the integers 2, 3, 5, and 7 are not composite numbers because they
can divide only by 1 and themselves. Now, let us consider the following example to
comprehend prime factorization. Take a prime P and let P be equal to 3240, and
assume we need to find all prime roots/factors. The simplest way to do this is by finding
the least common multiples (LCM), as factored in high school classes, and presented
in Fig. 1 (left). The multiplication of the identified roots ensures the correctness of
getting the original prime back. Note that the LCM method is effective only when the
prime numbers are relatively small but for large primes, creating a tree diagram – as
illustrated right side in Fig. 1 – is more beneficial.

Figure 1: Methods for calculating prime factorization.

For discrete logarithms, we need to fix a prime P . Let a, b be nonzero integers
(mod P). The problem of finding x such that ax ≡ b (mod P) is called the discrete
logarithm problem. Assume that n is the smallest integer such that an ≡ (mod P).
By assuming 0 ≤ x < n, we denote x = La(b) and call it the discrete logarithm of b
with respect to a (mod P). For example, let the prime P = 11, a= 2 and b= 9, then
x= L2(9) = 6.

Some open-source tools in the literature exist for factoring large primes and com-
puting discrete logarithms. For example, an open-source CADO-NFS tool for integer
factorization is available in [7], and it incorporates C/C++ implementations of the
Number Field Sieve (NFS) algorithm [8] for factoring integers and computing discrete
logarithms in finite fields. It is important to mention that not every integer is a prime,
but for sufficiently large prime P , the literature demonstrates that the prime factorization
and discrete logarithm problems are hard to solve on traditional computers and even on
the fastest supercomputers because no efficient classical or non-quantum factorization
algorithm is known.

The recent development in super-fast quantum computers [9, 10] raises issues in
security and privacy. A quantum algorithm, named Shor’s [11], provides a way to solve
prime factorization and discrete logarithm problems exponentially faster than classical
algorithms, making current PKC standards – Rivest, Shamir, and Adleman (RSA)
[12] and elliptic curve cryptography (ECC) [13] – vulnerable to attacks by quantum
computers. Therefore, two emerging directions such as quantum cryptography (QC)

11

and post-quantum cryptography (PQC) found in the literature to tackle these security
concerns.

QC uses quantum mechanical properties to perform cryptographic tasks. At a very
high level, the quantum cryptography model with the case of Alice, Bob, and Eve,
is shown in Fig. 2. Alice and Bob want to send a secret to each other. Moreover,
Alice sends Bob a series of polarized photons over a quantum channel (could be fiber
optic cable), as shown in Fig. 2. If an eavesdropper, Eve, tries to listen in on the
conversation, she must read each photon to read the secret. Then she must pass that
photon on to Bob. By reading the photon, Eve alters the photon’s quantum state,
which introduces errors in the quantum key. This alerts Alice and Bob that someone
is listening and the key has been compromised, so they discard it. Alice has to send
Bob a new key that is not compromised, and then Bob can use that key to read the
secret. The main advantage of quantum cryptography is that it allows the completion
of many cryptographic tasks that are proven or presumed impossible using non-quantum
communication. For instance, the data encoded by a quantum state is impossible to
copy and modify. If someone tries to read the encoded data, the quantum state will be
changed due to wave function collapse (no-cloning theorem [14]). This helps to detect
eavesdropping in quantum key distribution.

Figure 2: Quantum cryptography model with the case of Alice, Bob, and Eve.

On the other hand, PQC uses mathematical-based problems for constructing
quantum-resilient algorithms or protocols to protect communications against quantum-
computer attacks. Hence, the scientific community is constructing new reliable quantum-
resistant cryptographic protocols, and standardization bodies and commercial orga-
nizations are also considering PQC alternatives. For example, in January 2020, the
Chinese Association for Cryptologic Research (CACR) finished its PQC-standardization
contest and selected LAC [15] as a winner for key establishment/agreement. Another
example is an ongoing contest – initiated by the American National Institute of Stan-
dards and Technology (NIST) in 2017 – for post-quantum public-key cryptography
standards. After the third round in 2022, NIST selected CRYSTALS-Kyber [16] and
CRYSTALS-Dilithium [17] and stimulated the competition process in round four to
investigate other protocols/algorithms. Note that quantum computers are still in their
early stages of development, and only the big organizations like Google, IBM, etc.,
will have quantum computers soon; regular users wouldn’t, and it may take a couple
of years to come into the market. But some quantum computers have already been
developed. In 2019, Google claimed to have the Sycamore – a 53 quantum bit (qubit)
– quantum computer [9], which takes 200 seconds to sample one instance of a quantum
circuit. The equivalent task on a supercomputer would take approximately 10,000 years.
In 2021, IBM developed a 127 qubits processor, named Eagle [10]. According to [18],
the Eagle chip is a step towards IBM’s goal of creating a 433-qubit quantum processor

12

next year, followed by one with 1,121 qubits, named Condor, by 2023. Therefore,
quantum-resistant cryptographic schemes are mandated to protect future and present
communications.

The security strength of the NIST candidates for PQC standardization relies on
several mathematical problems, including code, multivariate, isogeny, lattice, and
hash. Amongst these, the lattice-based schemes are the most promising due to their
computational efficiency, strong security assurance, and support for different applications;
so from onward, this thesis discusses only lattice-based cryptography. Indeed, lattice-
based cryptography has become a popular area of research in the last decade due to the
introduction of the Learning With Errors (LWE) [19] and Learning With Rounding (LWR)
[20] problems. The NIST selection of CRYSTALS-Kyber and CRYSTALS-Dilithium
algorithms relies on LWE-based lattice cryptography, which confirms the increasing
interest in this field. SABER [21], an LWR-based scheme, remained part of the NIST
competition until round three [22] and is investigated as a case study in this thesis.

Despite the level of security needed, the choice of the cryptographic scheme (also)
relies on the specific requirements of the application or platform, such as the available
resources and the speed of encryption and decryption required. The applications related
to the internet of things and wireless sensor nodes demand area- and power-constrained
accelerators for cryptographic computations. High-speed cryptographic computations
are always required for many applications, including wireless, telecom, cloud, data
centers, enterprise systems, and network-related devices. For these applications, 8920
and 8955 families of Intel chipsets can process 5k, and 40k RSA decryption operations
in one-second [23]. IBM 4769 hardware security module offers security services like
key exchange and signature generation/verification using ECC and RSA standards
[24]. Although these distinctive chips offer thousands of operations per second, they
might become compromised since the security of ECC and RSA can be broken using
Shor’s algorithm [11] on a quantum computer. Hence, high-speed quantum-resistant
cryptographic hardware accelerators are mandated to supersede ECC- and RSA-based
devices.

The most commonly used platforms for implementing hardware accelerators are field
programmable gate array (FPGA) and application-specific integrated circuit (ASIC).
FPGAs are programmable hardware devices that can be configured and reconfigured
to perform various tasks, including PQC algorithm acceleration. It offers several
advantages: flexibility, reusability, and low development cost, and it can also be used
to accelerate multiple PQC algorithms, making them a versatile choice. ASIC, on
the other hand, are custom-built integrated circuits that are optimized for specific
tasks or applications and offer higher performance and power efficiency than FPGA.
However, ASICs are expensive to design and manufacture and are not reconfigurable.
The choice between FPGA and ASIC for implementing PQC hardware accelerators will
depend on factors such as the specific PQC algorithm(s) being accelerated, the required
performance, and the available resources and budget. Keeping these factors in mind,
some existing FPGA and ASIC hardware accelerators of quantum-resistant protocols
(such as CRYSTALS-Kyber, CRYSTALS-Dilithium, and SABER) are implemented in
[25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. These implementations only provide
the hardware demonstrations without the design optimizations for specific to certain
parameters (such as low area, low power, high speed, etc.), hence posing a question:
how to further maximize the performance of PQC algorithms when demonstrated as
hardware accelerators?. This is the problem that this thesis explores.

13

Figure 3: Structure of the thesis.

1.1 Novelty, Contributions & Summary of the Thesis
The thesis focuses on lattice-based PQC schemes and their performance improvement
on the ASIC platform. Fig. 3 presents the overall structure of the thesis. Each chapter
is a novel contribution to this thesis, and the corresponding details are as follows.

■ Chapter 2 This chapter gives a comprehensive overview of the concepts related to
lattice-based PQC. Also, this chapter analyzes the building blocks of several lattice-
based post-quantum algorithms, estimates their area and power on the ASIC
platform, and concludes by selecting SABER [21] as the algorithm for hardware
demonstrations and optimizations. Moreover, this chapter also describes the
mathematical background for understanding the SABER algorithm and provides
implementation platforms trade-off.

■ Chapter 3 The design of cryptographic hardware accelerators depends on poly-
nomial arithmetic (addition, multiplication, inversion, sampling, hash, etc.) and
logical operations in their datapath. However, polynomial multiplication is a
computationally expensive operation in cryptographic schemes. Mostly the imple-
mentations of polynomial multipliers are specific to operands length and are not
open-source for free use to everyone. Therefore, for the first time, I developed
an open-source generator/tool for multiplying large integer polynomials to be
used in conventional PKC algorithms (such as RSA and ECC) and PQC schemes.
This chapter describes the structure/architecture of the developed multiplier
generator tool. It offers flexibility, digitizing, pipelining, and also generates scripts
for different ASIC synthesis tools, such as Cadence Genus and Design Compiler
(DC) by Synopsis. Different figure-of-merits in Power-Area-Performance (PAP)

14

are defined to evaluate different polynomial multiplication architectures generated
by the developed multiplier generator.

■ Chapter 4 The focus of this chapter is to provide a design space exploration (DSE)
process of SABER for optimizing circuit frequency specific to the ASIC platform.
The DSE process is initiated by setting a baseline architecture of SABER. Then,
several memory types are utilized to evaluate the circuit frequency. Pipelining is
incorporated to reduce the critical path of the SABER design. Parallel architectures
are also proposed and implemented to reduce the clock cycle requirements for
cryptographic computations, eventually improving the performance.

■ Chapter 5 In this chapter, a high-speed SABER chip is designed and fabricated
on a 65nm process technology. It is important to mention that designing a Printed
Circuit Board (PCB) is trivial for verification purposes. Therefore, I mount the
fabricated chip on a PCB and interface it with a microcontroller, which helps to
provide/collect inputs/outputs to/from the chip. All these details are described
in this chapter. The fabricated chip is the fastest silicon demonstrated amongst
state-of-the-art SABER chips regarding operating frequency.

■ Chapter 6 This chapter concludes the thesis. It provides future directions which
indicate that the techniques studied in this thesis can be applied to other PQC
algorithms, including CRYSTALS-Kyber and CRYSTALS-Dilithium, to improve
their computation speed.

15

2 Background

This chapter describes the concepts related to lattice problems and the building blocks
(i.e., multipliers, hash, samplers, etc.) needed for constructing lattice-based PQC
algorithms in Sections 2.1 and 2.2, respectively. The SABER PQC protocol is described
in Section 2.3. The existing hardware accelerators of lattice-based PQC algorithms are
described in Section 2.4.

2.1 Lattice-Based Post-Quantum Cryptography
This section describes an overview of the hard problems defined over lattices. Such
problems are a class of optimization problems and their conjectured intractability is
the foundation of lattice-based public-key cryptography schemes [37]. Lattice problems
have been studied for centuries and are considered hard to be solved. In 1996, Ajtai
proposed the first significant public-key scheme using lattices in [38], which offered
provable security, resistance to quantum computers, and worst-case hardness. Before
defining the lattice problems, it is essential to define the elements (lattice, vector, and
basis) on which the lattice problems depend.

• Lattice. A lattice L ∈ Rm is a set of points in m-dimensional space with a
periodic structure. An example of a two-dimensional lattice is shown in Fig. 4,
where each box (filled with a black color) specifies the lattice point.

Figure 4: An example of a two-dimensional lattice over a set of all real numbers.

• Vector. A vector represents a quantity with magnitude (distance) and direction.
Vectors can have different dimensions, however, the most intuitive is in two-
dimensional or three-dimensional space. Below, Eq. 1 and Eq. 2 show the
two-dimensional and three-dimensional vectors with their coordinates/elements.

v⃗1 = (2,1) & v⃗2 = (2,8) ∈ R2 (1)

v⃗1 = (2,1,4) & v⃗2 = (2,8,5) ∈ R3 (2)

16

• Basis. A basis is a collection of vectors to produce a point in a given space.

Definition 2.1.1. Lattice [39]. Let v be a set of n linearly independent vectors
v0,v1, . . . ,vn−1 ∈ Rm. The lattice L is the set of linear combinations of the vectors
with coefficients in Z, as shown in Eq. 3.

L = {a0.v0,+ · · ·+an−1.vn−1} =
n−1∑
i=0

ai.vi ∈ Z (3)

In Eq. 3, v is a basis of L, n specifies its rank and m determines its dimension. The
lattice is a full-rank if n=m. Fig. 5 presents an example of a two-dimensional lattice
with a basis of vectors v1 and v2. Any point in the lattice can be reached by an integer
combination of vectors v1 and v2.

Figure 5: A two-dimensional lattice with two basis vectors v1 and v2. The coordinates of v1
and v2 are (-1, 2) and (-1, 1), respectively.

Lattice approximate problems. The shortest vector problem (SVP) and close
vector problem (CVP) are two of the most important lattice approximate problems that
play a significant role in the security of lattice-based cryptography [37]. These problems
are presumed to be difficult to solve, which makes lattice-based cryptography secure.
Therefore, the formal construction of SVP and CVP problems is described below.

Definition 2.1.2. SVP [40]. The SVP is finding the shortest non-zero vector in a
lattice L, which is defined by n linearly independent and randomly chosen basis vectors.
In other words, find a non-zero vector v in a lattice L such that ∥ v ∥= λ1(L), where
∥ v ∥ is the Euclidean norm of the length of a vector v in L, λ1 is the shortest vector.

It shows in [38] that the SVP with Euclidean norm is NP-hard for randomized
reductions. The SVPγ is an γ-approximation version of the SVP where one has to find
a vector vγ in L such that ∥ vγ ∥≤ γλ1(L).

Definition 2.1.3. CVP [39]. Given a target vector t ∈ Rm that is not necessarily
in L, find a vector v ∈ L that is closest to t. In other words, finding a vector v ∈ L
reduces the Euclidean norm ∥ t−v ∥.

17

Like SVPγ , CVPγ is an γ-approximation of the CVP where one has to find a vector
vγ such that ∥ t− vγ ∥ ≤ ∥ t− v ∥. Note that the CVPγ is the generalization of the
SVPγ . Thus, CVP is also known to be NP-hard [38].

The SVP or CVP or their approximate versions (SVPγ and CVPγ) can be solved
easily when a basis in a lattice consists of either orthogonal or near orthogonal vectors,
also when short vectors are known. A set of orthogonal vectors describes a good basis.
Let us do examples to see the effect of bad and good basis in lattice-based cryptography.
The following examples are taken from [41]. Given a basis Bbad = {(6 14),(3 8)}
consisting of two vectors v1 and v2 with coordinates (6 14) and (3 8). Notice that
v1 and v2 are not orthogonal to each other. Also, a target vector t = (11.6 4.2) is
given. Then the approximation problem asks for the nearest point of a given lattice to
challenge the target point. The left portion in Fig. 6 describes the whole scenario, where
a system of the equations for the given basis and target t must be solved to find the
values of a and b. As seen in Fig. 6, the calculated values for a and b are real numbers
(i.e., 13.4 and -22.9); these values cannot be used to calculate the lattice point (c), so
the real values must be rounded up or down to get the integers (the closest value of
13.4 is 13 and -22.9 is -23) – this is the lattice approximation. After that, the values of
a and b need to be used in the identical system of equations to calculate the lattice
point. As shown green vector in Fig. 6, the calculated lattice point is (9 -2) and is far
from the red vector, which is a target point t= (11.6 4.2). The graphical visualization
of the complete scenario is illustrated in the right part of Fig. 6, where the orange circle
highlights that the target and calculated points are far from each other.

Figure 6: Example of a bad basis where the orange circle focuses on the target and calculated
points far from each other. The purple portion solves the lattices for CVP.

Similarly, let us consider a basis Bgood = {(3 0),(0 2)} consisting of two vectors v1
and v2 with coordinates (3 0) and (0 2). Here, notice that the v1 and v2 are orthogonal.
The same target vector t= (11.6 4.2) is considered. The approximation problem asks
for the closest point of a given lattice to challenge the target point. The left portion in
Fig. 7 describes the whole scenario, where a system of equations for the given basis and
target t must be solved to find the values of a and b. As seen in Fig. 7, the calculated
values for a and b are real numbers (i.e., 3.86 and 2.1); these values cannot be used to
calculate the lattice point c, so the real values must be rounded up or down to get the
integers (the closest value of 3.86 is 4 and 2.1 is 2) – this is the lattice approximation.

18

After that, the values of a and b need to be used in the identical system of equations to
calculate the lattice point. As shown by the green vector in Fig. 7, the calculated lattice
point is (12 4) and is closest to the given target point t= (11.6 4.2). The graphical
visualization of the complete scenario is illustrated in the right part of Fig. 7, where the
orange circle highlights that the target and calculated points are closer to each other.

Figure 7: Example of a good basis where the orange circle focuses on the target and calculated
points closer to each other. The purple portion solves the lattices for CVP.

Consequently, lattice reduction algorithms in the literature aim to build a good basis
from any given basis for a lattice. For example, the LLL algorithm [42] outputs an
LLL-reduced basis in a polynomial time but with the approximation factor of Wn, where
W is a small constant. Hence, the LLL algorithm is effective in scenarios where the
dimension n of the lattice is very small. The algorithms that achieve close approximation
can run in approximation time. Examples of such algorithms are AKS [43], and BKZ
[44]. The inability of the lattice reduction algorithms to find a good basis in polynomial
time is used as the construction for lattice-based cryptography schemes.

LWE Problem. As reported earlier in this section, Ajtai described the first lattice-
based public-key scheme in 1990 [38]. Later, in 2005, Regev [19] introduced a new
lattice problem named LWE. Since its introduction, the LWE problem has become very
popular for constructing various schemes such as public-key encryption, key exchange,
digital signature generation/verification, and even homomorphic encryption schemes
[37]. The LWE problem can be defined by a lattice with dimension n, an integer modulus
q, and an error distribution χ over integers Z. A secret vector s of dimension n is
generated by choosing its coefficients uniformly in an n-dimensional ring Zn

q . Generate
random vectors ai by uniformly and error terms ei from the error distribution χ. After
that compute bi = ⟨ai,s⟩+ei ∈ Zq. Then the LWE distribution is denoted as As,χ over
Zn

q ×Zq and is the set of tuples (ai, bi). The lower bold characters show the vectors of
dimension n. The decision and search are the two variants of LWE, defined below.

Definition 2.1.4. decision LWE problem [45]. Solving the decision LWE problem
is to distinguish with non-negligible advantage between the samples drawn from LWE
distribution As,χ and the same number of samples drawn uniformly from Zn

q ×Zq.
Definition 2.1.5. search LWE problem [45]. Find a secret s when a polynomial

number of samples from the LWE distribution As,χ is given.
Note that the cryptosystems constructed on the security hardness of the original LWE

19

problem are slow because they need computations on larger matrices with coefficients
from Zq. Hence, in literature, another computationally efficient variant of the LWE
problem is defined over polynomial rings, called the ring-LWE problem [46].

Lyubashevsky, Peikert, and Regev initially introduced the ring-LWE problem [47].
Ring-LWE uses a particular class of lattices named “ideal lattices” to attain computational
efficiency and reduce the key size. Therefore, the ring LWE problem is defined over a
polynomial ring Rq = Zq[x]/⟨f⟩, where ⟨f⟩ is an irreducible polynomial of degree n
and coefficients of ⟨f⟩ contain modulus q. The problem is defined as follows: Sample
a secret polynomial s(x), and error polynomials ei(x) ∈Rq with coefficients from χ.
Next, generate polynomials ai(x) with coefficients chosen uniformly from Zq. Compute
bi(x) = ai(x).s(x) + ei(x) ∈ Rq. The ring-LWE distribution is the set of polynomial
tuples (ai(x), bi(x)). As mentioned, ei specifies the error polynomials with coefficients
sampled from an n-dimensional error distribution χ. It is essential to highlight that
the error distribution is a discrete Gaussian distribution except for some cases, e.g.,
for 2k-power cyclotomics, where the error distribution is the product of n independent
discrete Gaussians. Note that, in general, χ is more complicated to compute. One can
form s by sampling the coefficients from χ rather than uniformly without any security
implications [47].

Definition 2.1.6. decision ring-LWE problem [47]. Distinguish between the samples
(ai(x), bi(x)) drawn from the ring-LWE distribution and the same number of samples
generated by choosing the coefficients uniformly.

Definition 2.1.7. search ring-LWE problem [47]. Find a secret polynomial s(x)
given a polynomial number of samples constructed from the ring-LWE distribution.

Instead of the ring-LWE, another variant of LWE schemes is module-LWE. In contrast,
ring-LWE uses polynomial ring elements, whereas module-LWR employs matrices of ring
elements to define the problem. As summarized, there exist two cases. In the first case,
when f specifies a cyclotomic polynomial [47], then the difficulty of the search ring-LWE
problem is roughly equivalent to finding a short vector in an ideal lattice (composed
of polynomials from R). A cyclotomic polynomial is a unique irreducible polynomial.
In the second case, for the LWE problem, the security strength is related to solving
the NP-hard SV Pγ over general lattices. These two cases are presumed to be equally
difficult because no proof is known (to date) to show equivalence between the SV Pγ

for general and ideal lattices. The computational efficiency using the ring-LWE problem
is obtained at the cost of the above security assumption. The cryptographic schemes
constructed on the ring-LWE problem are fast due to simple polynomial arithmetic [46].

LWR Problem. LWR is a variant of the LWE problem where random errors are
replaced with deterministic rounding. Initially, the LWR problem was introduced in
[48], and later, it was revisited in [49]. The LWR problem concerns the cryptographic
properties of the function fs : Zn

q → Zp, given by fs(x) = ⌊⟨x,s⟩⌉p = ⌊(P/q).⟨x,s⟩⌉.
Here, s ∈ Zn

q and is a secret key. The term ⟨x,s⟩ determines the inner product of x
and s mod q. The ⌊.⌉ denotes the closest integer. For mathematical derivations and
more details, readers are referred to [38, 19] for the LWE problem and [48, 49, 50] for
the LWR problem.

2.2 Building-Blocks for Lattice-Based Crypto Systems
This section deals with the building blocks of lattice-based PQC algorithms submitted
to NIST for standardization. Currently, the NIST standardization process is in round
four. I have started investigating the lattice-based PQC candidates submitted to NIST
for standardization in 2020. At that time, the NIST competition was in round two. All

20

Table 1: Multiplication and hash methods for different PQC algorithms. These methods are
obtained from their reference implementations, available at NIST sites [61] (after round-2)
and [22] (after round-3).

PQC Algorithms Multiplication Methods Hash Methods

qTesla [51] NTT and SBM SHAKE-256 and cSHAKE-128/256
CRYSTALS-Dilithium [17] NTT SHAKE-128/256
NTRU-Prime [52] SBM SHA2-512
NewHope [53] NTT SHAKE-128/256
ThreeBears [54] Karatsuba cSHAKE-256
LAC [55] SBM –
Round5 [56] SBM cSHAKE-256 and AES-256
CRYSTALS-Kyber [16] NTT SHA3-256/512 and SHAKE-128/256
NTRU [57] Karatsuba and Toom-Cook SHA3-256
FrodoKEM [58] SBM SHAKE-128/256
Falcon [59] SBM SHAKE-256
SABER [21] Karatsuba and Toom-Cook SHAKE-128, SHA3-256/512

Note that the multiplication and hash methods in columns two and three have been considered
from the reference C/C++ codes of PQC algorithms that were submitted to NIST for evaluation.

the lattice-based PQC algorithms that participated in the second and third rounds of the
NIST contest are qTesla [51], CRYSTALS-Dilithium [17], NTRU-Prime [52], NewHope
[53], ThreeBears [54], LAC [55], Round5 [56], CRYSTALS-Kyber [16], NTRU [57],
FrodoKEM [58], Falcon [59], and SABER [21]. These PQC algorithms require various
building blocks depending on the construction of the cryptographic protocol to perform
cryptographic tasks. However, the polynomial multiplication and hash are the most
critical operations to compute [60]. Table 1 lists different polynomial multiplication
and hash operations, and the text below provides the implementation details of these
multiplication and hash methods.

Polynomial multiplication involves multiplying two polynomials (i.e., a and b) and
obtaining a resultant polynomial (i.e., c). The degree of the resulting polynomial is
the sum of the degrees of the two input polynomials. The polynomial multipliers can
be categorized into serial and parallel designs. In the case of bit-serial multipliers
such as schoolbook (SBM) and Booth multipliers, the multiplication of polynomials
is performed bit-by-bit, resulting in a sequence of partial products. These partial
products are then added together to obtain the resultant polynomial. On the other
hand, bit-parallel multipliers split the input polynomials into multiple parts and perform
the multiplication of these parts in parallel. The inner product of the split portions is
computed, and the resulting polynomial is generated using addition and subtraction
operations. The 2-way Karatsuba multiplier is a famous bit-parallel multiplier that
splits the input polynomials into two equal parts and uses three multiplications along
with some additions and subtractions to compute the inner product. The 3-way and
4-way Toom-Cook multipliers split the input polynomials into three and four equal parts,
respectively, and use a more complex algorithm to compute the inner product. Overall,
bit-parallel multipliers are faster and more efficient than bit-serial multipliers, especially
for larger input sizes. However, they also require more hardware resources and may not
be practical for small input sizes.

SBM multiplier. SBM is the simplest way to multiply two input polynomials
a(x)×b(x), as shown in Eq. 4. The resultant polynomial c(x) is generated by performing
bit-by-bit operations. Algorithm 1 shows the number of steps required to perform
polynomial multiplication for the SBM multiplier, where polynomial a is multiplied with
the shifted polynomial b to produce the resultant polynomial c. The latency associated
with an SBM multiplier is ⌈m⌉ clock cycles, whereas the operations to be computed

21

are (m−1) additions and m multiplications (shifts).

c(x) =
m−1∑
i=0

m−1∑
j=0

aibjx
i+j (4)

Algorithm 1: Traditional SBM multiplication
Input: a and b (m− bit polynomial integers)
Output: c← a× b

1 for (j from 0 to m−1) do
2 if bj = 1 then
3 c← c + (a×2j)

4 return c

Booth multiplier. Similar to the SBM, the traditional Booth multiplier exploits
add, subtract, and shift operations. Yet, unlike the SBM, it does not look at a bit
at a time [62]. It observes two bits at a time and reduces the required addition and
subtraction operations, ultimately reducing the multiplier’s latency. The traditional
Booth multiplication method is presented in Algorithm 2, where A keeps the generated
partial product (initialized with 0). The b shows the extended polynomial with the
addition of a dummy 0-bit next to the least significant bit of the multiplier (b). It
computes multiplication by inspecting the least significant two bits of the multiplier
to match these four cases: 00, 01, 10, and 11. When the inspected bits are either
00 or 11, it means to do nothing or remain unchanged. For the remaining two cases,
the multiplicand may be added (line 5) or subtracted (line 8) from the partial product
(A). The shift_right_add function of lines 6 and 9 in Algorithm 2 determines the
multiplication of multiplicand by 2 with shift and add operations. For two operands of
length m, Algorithm 2 takes m/2 clock cycles. Follow [62] for additional details.

Algorithm 2: Booth Multiplication
Input: a and b (m− bit polynomial integers)
Output: c← a× b

1 A← 0 (m− bit temporary integer)
2 b←{b,0}
3 for (j from 0 to m−1) do
4 if bj+1×bj = 01 then
5 A←A + a

6 c← shift_right_add(A,bj+1,bj)
7 if bj+1×bj = 10 then
8 A←A−a

9 c← shift_right_add(A,bj+1,bj)

10 return c

Karatsuba multiplier. A generalized Karatsuba multiplier contains l number of
levels to perform polynomial multiplication, where l depends on the user or designer
to choose. For example, let us assume we have two input polynomials, z1 and z2. At
the first level, z1 and z2 are divided into two smaller polynomials, z1

2 and z2
2 . At the

22

second level, each split polynomial is further divided into two other polynomials, i.e., z1
4

and z2
4 . The process of splitting polynomial repeats until the value l is reached. After

splitting the input polynomials, the inner product can be computed, which is achieved
using three inner multiplications, a few additions, and shift operations on small(er)
operands. Eventually, the resulting polynomial is generated with the multiplications
starting from the smaller polynomials to the larger one in a reverse order (meaning
multiplications start from z1

4 and z2
4 to z1 and z2).

From Eq. 4, the split polynomial is derived in Eq. 5 where n shows the polynomial
splits and k determines the index of the split polynomial. For a specific 2-way Karatsuba
multiplier1, the expanded version of Eq. 5 is shown in Eq. 6. It requires four multiplica-
tions for the execution of inner products (one to achieve the resulting polynomial c1(x),
two multiplications for the execution of c2(x), and eventually one for the execution of
c0(x)). As presented in Eq. 7, the Karatsuba observation was to compute c2(x) with
only one multiplication instead of two. The addition of inner products is required to
generate the resultant polynomial c(x), as presented in Eq. 8. Algorithm 3 provides
the number of steps for the 2-way Karatsuba polynomial multiplication method. As
the name implies, function add_shift in line 8 of Algorithm 3 applies the shift and add
operations over the polynomials given in parentheses. In total, ⌈m

2 ⌉ clock cycles are
needed to implement one m-bit polynomial multiplication.

c(x) =

 m−1∑
i= k×m

n

ak(x)+ . . .+

k×m
n −1∑
i=0

a0(x)

︸ ︷︷ ︸

splitpolynomiala(x)

×

 m−1∑
i= k×m

n

bk(x)+ . . .+

k×m
n −1∑
i=0

b0(x)

︸ ︷︷ ︸

splitpolynomialb(x)

(5)

c(x) = a1(x)b1(x)︸ ︷︷ ︸
c1(x)

+a1(x)b0(x)+a0(x)b1(x)︸ ︷︷ ︸
c2(x)

+a0(x)b0(x)︸ ︷︷ ︸
c0(x)

(6)

c2(x) = (a1(x)+a0(x))× (b1(x)+ b0(x))− c1(x)− c0(x) (7)

c(x) = c0(x)+ c1(x)+ c2(x) (8)

Algorithm 3: 2-way Karatsuba Multiplication
Input: a and b (m− bit polynomial integers)
Output: c← a× b

1 [b1, b0,a1,a0]← [a,b]
2

2 c0← a0× b1
3 c1← a1× b1
4 c01← a1 + a0
5 c10← b1 + b0
6 c2← c10× c01− c1− c0
7 for (j from 0 to m−1

2) do
8 c← c0 + add_shift(c1, c2)
9 return c

Toom-Cook multiplier. The Toom-Cook multiplication method is the advanced
and extended form of Karatsuba multiplication. The difference is in dividing input

12-way Karatsuba means that the splitting of input polynomials for Karatsuba multiplication
is applied only once.

23

polynomials into 3 and 4 parts instead of 2 (as in 2-way Karatsuba). With index k of the
split input polynomials, the values for n= 3 and n= 4 in Eq. 5 determine the equations
of 3-way and 4-way Toom-Cook multipliers. The expanded version of Eq. 5 produces
nine and sixteen inner multiplications for 3-way and 4-way Toom-Cook multipliers,
respectively. Using a process identical to the 2-way Karatsuba, the required nine and
sixteen inner multiplications can be reduced to five and seven. The equations for variants
of the Toom-Cook multiplier are not shown as it requires an identical procedure to
the 2-way Karatsuba. However, Algorithm 4 presents a complete understanding of the
Took-Coom multiplication method when the split input polynomials are three smaller
polynomials. As the name implies, function add_shift in line 8 of Algorithm 4 applies
the shift and add operations over the polynomials given in parentheses. In total, ⌈m

3 ⌉
and ⌈m

4 ⌉ clock cycles are required to execute one m-bit polynomial multiplication.

Algorithm 4: 3-way Toom-Cook Multiplier
Input: a and b (m− bit polynomial integers)
Output: c← a× b

1 [b2, b1, b0,a2,a1,a0]← [a,b]
3

2 c0← a0× b0
3 c1← a0× b1 + a1× b0
4 c2← a0× b2 + a1× b1 + a2× b0
5 c3← a1× b2 + a2× b1
6 c4← a2× b2
7 for (j from 0 to m−1

3) do
8 c← c0 + add_shift(c1, c2, c3, c4)
9 return c

Multipliers based on Number Theoretic Transformation (NTT). The NTT-
based polynomial multiplication is an efficient way to multiply two polynomials over ring
Zq[X]/⟨Xn +1⟩, where Zq[X]/⟨Xn +1⟩ represent the polynomial ring reduced with
cyclotomic polynomial (Xn +1) over Zq[X]. It is a generalization of the Fast Fourier
Transform (FFT). Let we have a polynomial f with degree n, where f =

∑n−1
i=0 fiX

i

and fi ∈ Zq and ωn be the n-th primitive root of unity such that ωn
n = 1 mod q.

Then the forward NTT can be defined by f̂ =NTT (f), such that f̂i =
∑n−1

j=0 fjω
ij
n

mod q. Similarly, the inverse NTT can be computed by f = INTT (f̂), such that
fi = n−1∑n−1

j=0 f̂jω
−ij
n mod q. Based on these definitions, an NTT-based polynomial

multiplication between a and b can be performed such that a.b = INTT (NTT (a) ◦
NTT (b)).

The NTT-based multiplication computes on convolution, which transforms the input
polynomials of length n to 2n with zeros padding, resulting in more computation time.
Therefore, to avoid applying the NTT of length 2n with n zero padding of inputs, a
negative wrapped convolution (NWC) [63] method is introduced at the cost of pre-
processing of NTT and post-processing of INTT. Let us say ψ = √

ωn; it is a primitive
2n-th root of unity. The pre-processing cost includes the multiplication between the
coefficients of the input polynomials and ψi. In contrast, the post-processing cost
includes the multiplication between the coefficients of the output polynomials and ψ−i.

The CooleyTukey (CT) and Gentleman-Sande (GS) butterfly configurations are the
most frequently employed in literature on NTT-based implementations. Using these
configurations reduces the bit-reverse operation in NTT, which is the bit-wise reversal

24

of the binary representation of the coefficient index. For more insight details at the
algorithmic level, interested readers are referred to [64], and to follow some recent
NTT-based hardware accelerators, readers are referred to [65, 66, 67].

The last column of Table 1 shows the hash methods implemented in different PQC
algorithms for various purposes, such as binomial sampling. The PQC schemes of
column one of Table 1 contributed in rounds two and three of the NIST competition
process and mainly depended on variants of the SHA2, SHA3, and SHAKE-128/256
hash functions. This thesis is not describing the inner structures of these hash functions;
however, the only objective is to highlight the complexity of the PQC schemes when
realized as hardware accelerators. NIST standardizes the most recent SHA3 and its
variants in [68] and is mainly used in all PQC schemes of Table 1, including the NIST
selected CRYSTALS-Kyber and CRYSTALS-Dilithium algorithms to be standardized in
the near future.

Also, the computation time of polynomial multiplications and hash operations of
the PQC algorithms depends on their security parameters. NIST has defined five
security levels (1 to 5) for investigating PQC algorithms. Security levels 1, 3, and 5 are
equivalent to AES-128, AES-192, and AES-256 bit key search. The remaining security
levels (2 and 4) are equivalent to SHA-256/SHA3-256 and SHA-384/SHA3-384 bit
collision search. Implementing all security levels in one hardware design requires large
memory utilization. In other words, despite the polynomial multiplications and hash
operations, large memory utilization is also the key characteristic of the PQC algorithms
when demonstrated as hardware accelerators. Therefore, in [69], I have evaluated the
memory, hash, and multiplier building blocks of PQC algorithms of Table 1, where I
have targeted the highest security parameters shown in Fig. 8. The detailed outcomes
appear in [69] while the major findings are repeated in Fig. 9.

Figure 8: Selected lattice-based PQC algorithms and the corresponding implementations utilized
in this study. Red-colored text inside the parenthesis specifies selected security parameters.

To evaluate the area and power results in Fig. 9, I have added the area and power of

25

Figure 9: Total area and power of the studied NIST lattice-based PQC algorithms on 65nm
process technology.

memory, multiplier, and hash operations together. The area for memory is investigated
in terms of read-only (ROM) and read-access (RAM) memories. The instances of the
required ROM and RAMs are generated using a commercial memory compiler from a
partner foundry. For the corresponding PQC algorithm of Table 1, I have implemented
Algorithms 1 to 4 for polynomials multiplication. The hash algorithms of column three of
Table 1 are also implemented. For details about polynomials’ input and output lengths,
required memory sizes for ROM and RAM, and input and output of hash functions,
readers can follow [69]. Consequently, the CRYSTALS-Kyber algorithm utilizes lower
resources and consumes less power than other NIST round three candidates. On
the other hand, the CRYSTALS-Dilithium takes higher resources but consumes lower
power than the SABER algorithm, as shown in Fig. 9. Therefore, due to its simple
mathematical structure, I selected SABER for further investigations in this thesis. Hence,
the following text overviews SABER, including its building blocks.

2.3 SABER PQC KEM Protocol
SABER [21] provides security against Chosen-Ciphertext Attacks (IND-CCA), and its
security hardness depends upon solving the module variant of the LWR problem (mod-
LWR) [48]. A mod-LWR sample is defined by (a,b= ⌊p

q (aT s)⌉) ∈ Rl×1 × Rp. Here,
a denotes a vector of randomly generated polynomials in Rq, s determines a secret
vector of polynomials in Rq whose polynomial coefficients are sampled from a binomial
distribution, and the modulus p is less than q. The decisional variant of the problem
is about finding a way to distinguish between two types of samples (mod-LWR and
uniformly random) in Rl×1

q ×Rp. Moreover, SABER uses the Mod-LWR problem with
p and q being power-of-two to construct a public-key encryption (PKE) scheme that is
secure against Chosen Plaintext Attacks (IND-CPA). The PKE scheme supports the
following cryptographic operations: (i) generation of a pair of public and private keys
(PKE.KEYGEN), (ii) encryption (PKE.ENC), and (iii) decryption (PKE.DEC). The
related algorithms to execute these operations are described in algorithms 5, 6, and 7.
Similarly, for the KEM operations, the following are supported: (i) generation of a pair
of public and private keys (KEM.KEYGEN), (ii) encapsulation (KEM.ENCAPS), and
(iii) decapsulation (KEM.DECAPS). The algorithms for these operations are described
in algorithms 8, 9, and 10.

26

Algorithm 5: SABER.PKE.KEYGEN() [30]
Input: SABER Parameter Lengths
Output: pk⇐ (seedA, b),sk⇐ (s)

1 seedA⇐U({0,1}256)
2 A⇐ gen(seedA) ∈Rl×l

q

3 r⇐U({0,1}256)
4 s⇐ βµ(Rl×l

q ; r)
5 b⇐ ((AT s + h) mod q)≫ (ϵq− ϵp) ∈Rl×l

p

6 return pk⇐ (seedA, b),sk⇐ (s)

Algorithm 6: SABER.PKE.ENC() [30]
Input: pk⇐ (seedA, b),m ∈R2; r)
Output: c⇐ (cm, b′)

1 A⇐ gen(seedA) ∈Rl×l
q

2 if r is not specified then
3 r⇐U({0,1}256)

4 s′⇐ βµ(Rl×l
q ; r)

5 b′⇐ ((As′ + h) mod q)≫ (ϵq− ϵp) ∈Rl×1
p

6 v′⇐ bT (s′ mod p) ∈Rp

7 cm⇐ (v′ + h1−2ϵp−1m mod p)≫ (ϵp− ϵT) ∈RT

8 return c⇐ (cm, b′)

Algorithm 7: SABER.PKE.DEC() [30]
Input: sk⇐ s,c⇐ (cm, b′)
Output: m′

1 v⇐ b′T (s mod p) ∈Rp

2 m′⇐ ((v−2ϵp−ϵT cm + h2) mod p)≫ (ϵp−1) ∈R2
3 return c⇐ (cm, b′)

Algorithm 8: SABER.KEM.KEYGEN() [30]
Input: SABER.PKE.KEYGEN()
Output: pk⇐ (seedA, b),sk⇐ (s,z,pkh)

1 pk⇐ (seedA, b)
2 pkh⇐F(pk)
3 z⇐U({0,1}256)
4 return pk⇐ (seedA, b),sk⇐ (s,z,pkh)

Algorithm 9: SABER.KEM.ENCAPS() [30]
Input: pk⇐ (seedA, b)
Output: c,K

1 m⇐U({0,1}256)
2 (K̂,r)⇐G(F(pk),m)
3 c⇐ SABER.PKE.ENC(pk,m; r)
4 K⇐F(K̂,c)
5 return pk⇐ (seedA, b),sk⇐ (s,z,pkh)

27

Algorithm 10: SABER.KEM.DECAPS() [30]
Input: sk⇐ (s,z,pkh),pk⇐ (seedA, b), c
Output: K

1 m′⇐ SABER.PKE.DEC(s,c)
2 (K̂′, r′)⇐G(pkh,m′)
3 c′⇐ SABER.PKE.ENC(pk,m′; r′)
4 if c = c′ then
5 K ⇐H(K̂′, c)
6 else
7 K⇐H(z,c)
8 return pk⇐ (seedA, b),sk⇐ (s,z,pkh)

In algorithms 5 to 10, the coefficients of the secret vectors s and s′ are sampled
from a centered binomial distribution βµ(Rl×1

q) with a parameter µ, where µ < p. The
hash functions used in the SABER protocol are determined by F , G, and H. F and H
are implemented using SHA3-256, while G is implemented using SHA3-512. A variant
of SABER, U , samples the secret vectors s and s′ from a centered uniform distribution
instead of the binomial distribution. This makes the secret generation more efficient, as
sampling from U is simpler than sampling from βµ. The constant polynomials used in
SABER are h1 and h2. The implementation constants l, ϵq, ϵp, and ϵT have values of
3, 13, 10, and 4 for SABER. Different operations of SABER are further described in
the following points.

• PKE.KEYGEN begins by randomly generating a seed that defines an l× l matrix
A comprising l2 polynomials in Rq. A function gen of Algorithm 5 is used to
generating a matrix from the seed based on SHAKE-128. A secret vector s of
polynomials is also generated. These polynomials are sampled from a centered
binomial distribution. The generated public key contains a matrix seed and rounded
product AT s, while the secret key contains a secret vector s. KEM.KEYGEN
follows the same steps as used for the PKE.KEYGEN, except that it appends a
secret key with a hash of the public key and a randomly generated string z.

• The PKE.ENC operation consists of generating a new secret s′ and adding a
message to the inner product between the public key and the new secret s′. This
forms the first part of the ciphertext while the second part contains the rounded
product As′. The KEM.ENCAPS operation starts by randomly generating a
message m and obtaining from that the public key. The ciphertext c contains the
encrypted message and a value achieved from the message and public key.

• PKE.DEC requires the secret key s to extract the original message from the inner
product between the public and secret keys. It is the counterpart to PKE.ENC.
KEM.DECAPS re-encrypts the obtained message with the randomness associated
with it and checks whether the ciphertext corresponds to the one received.

SABER offers three variants to target different security levels: LightSABER, SABER,
and Fire SABER. The supported parameters to implement variants of SABER are given
in Table 2. The values of the implementation constants used in algorithms 5 to 10 can
be chosen from the SABER reference document [21]. Table 2 shows that, for the same

28

parameter size, three variants of SABER differ only in the secret key size. Moreover,
the required building blocks are shown in Fig 10 to implement three variants of SABER.

Table 2: Security parameters of SABER for PKE and KEM operations (taken from [21])

SLi Public-key (B) Secret-key (B) Cipher-text (B)
Light SABER (PKE & KEM): l = 2, n= 256, q = 213, p= 210, T = 23, µ= 10

SL1 672 832 (for PKE) & 1568 (for KEM) 736
SABER (PKE & KEM): l = 3, n= 256, q = 213, p= 210, T = 24, µ= 8

SL3 992 1248 (for PKE) & 2304 (for KEM) 1088
Fire SABER (PKE & KEM): l = 4, n= 256, q = 213, p= 210, T = 26, µ= 6

SL5 1312 1664 (for PKE) & 3040 (for KEM) 1472
SLi: Security levels, SL1: equivalent to AES-128, SL3: equivalent to AES-192
SL5: equivalent to AES-256.

(a) Concerning SABER specification document [21].

(b) Regarding FPGA-based hardware design of [30].

Figure 10: SABER building blocks.

Fig. 10(a) provides the SABER building blocks concerning its specification document
of [21], where all the blocks are implemented in C/C++ and called in a main file to
execute the sequence of SABER operations. The building blocks, shown in Fig. 10(b),
are regarding FPGA-based reference SABER implementation of [30], where blocks on

29

the left are the arithmetic and logical units and these blocks shares storage element
amongst them to keep intermediate and the final results after the computations.

The blocks of Fig. 10(a) and Fig. 10(b) operate identically with some additional
logic. For example, the SHA3-256/512 & SHAKE128 implemented as a wrapper to
operate variants of SHA3, GenMatrix and GenSecret blocks of Fig. 10(b). Similarly, a
polynomial multiplier is also implemented as a wrapper in Fig. 10(b), and it implements
PolyMul, MatrixVectorMul, and InnerProd blocks of Fig. 10(a). The HammingWeight
and Randombytes blocks of Fig. 10(a) correspond to the sampler and AddRound blocks
of Fig. 10(b). Moreover, the BS2POLN and POLN2BS blocks of Fig. 10(a) correspond to
Unpack and AddPack units. The additional CMOV and CopyWords blocks in Fig. 10(b)
need to compute matrix transpose by shifting rows with the columns and vice versa. In
short, the strategies to implement these building blocks are described in the text below.

SABER requires several hash functions such as variants of SHA3 (256/512) and
an extended output function, i.e., SHAKE128, for different purposes such as binomial
sampling. All these functions are standardized in FIPS-202 [68]. SHA3-256 takes the
input byte string from the byte array of length l and generates the output byte string
of length 32. Similarly, SHA3-512 takes the input byte string from the byte array of
length l and generates the output byte string of length 64. SHAKE128 receives the
input byte string from the byte array of length l and generates the output byte string
of length L. The execution of all these hash functions is based on a KECCAK sponge
function [68] to compute the permutations. The building blocks of KECCAK are theta,
pi, rho, chi, and iota. To understand KECCAK building blocks, interested readers are
referred to follow the KECCAK specification document [68].

SABER involves polynomial-to-polynomial multiplications and matrix-to-vector mul-
tiplication. In polynomial-to-polynomial multiplications, the corresponding inputs and
produced output are in polynomials. In matrix-to-vector multiplication, the first input
to the multiplier is a matrix that belongs to Rl×1

q while the second input is a vector v,
and it returns the products in a vector. Several approaches exist in the literature to
operate these (polynomial-to-polynomial and matrix-to-vector) multiplications. These
approaches include schoolbook [70, 71], Karatsuba [69, 72, 73], Toom-Cook [74, 75],
NTT [65], Booth [62], etc. Since SABER uses a power-of-two moduli p = 210 and
q= 213 [30]; therefore NTT-based multiplication could be applied but has no benefit and
even, it worse the performance of the SABER [76] – while the remaining methods can be
applied to perform polynomial coefficient multiplications. The mathematical structures
of these polynomial multiplication methods are already described in Section 2.2.

As mentioned before, SABER uses a power-of-two moduli p = 210 and q = 213

[21], therefore algorithms 1 and 2 can be applied in their present form to perform
SABER polynomial coefficient multiplication with clock cycles overhead compared
to SABER-specific SBM multipliers of [30, 34, 36]. More precisely, SABER has 256
public and secret polynomial coefficients with a length of 13 bits and 4 bits each,
respectively. Therefore, to perform multiplication over a 13-bit public polynomial
coefficient with a 4-bit secret polynomial coefficient, algorithms 1 and 2 take 4 and
2 clock cycles as these multipliers are not only specific to SABER but also feasible
for other cryptographic algorithms such as ECC. Using SBM multiplication designs of
[30, 34, 36], one polynomial coefficient can be multiplied in one clock cycle; hence
for 256 coefficients, only 256 cycles are required. In the case of other multipliers
of algorithms 3 and 4, some special considerations are needed to multiply SABER
polynomial coefficients so that readers can follow [31] (for Karatsuba implementation
specific to SABER) and [32] (for Toom-Cook implementation specific to SABER).

30

The remaining building blocks are CopyWords, Constant-time Move (CMOV), Verify,
AddPack, AddRound, Unpack, and BS2POLVECp. These have a low computational
complexity of O(n) [30]. The Copy-Words block is used to copy data-block from one
location to another. In SABER, this block is only utilized during the key generation
to compute the transpose of a matrix. The Verify block is a key component of
cryptographic protocols that aim to ensure the authenticity of the computed/generated
data. In the decapsulation operation, the received ciphertext must be compared with
the re-encrypted ciphertext. If they match, the result of this comparison is stored in
a flag register, which is used by the CMOV instruction to either copy the decrypted
session key to a specified location or a pseudo-random string.

The AddPack block performs coefficient-wise addition between a constant value and
a message. This operation is used in various cryptographic algorithms to transform the
message in a controlled and predictable way. Adding a constant value transforms the
message into a new value that is less predictable to an attacker. In addition, AddPack
is also responsible for packing the result bits into a byte string; the functions for this
transformation are described in the SABER specification document [21]. The AddRound
block performs two tasks: coefficient-wise addition and coefficient-wise rounding. The
coefficient-wise addition involves adding a constant value h to each coefficient of the
input data. This helps to mix the input data and add randomness to the result. The
coefficient-wise rounding involves rounding each coefficient of the result (obtained after
addition) to the nearest integer value. This helps reduce the number of possible output
values and therefore increases the cipher’s security. Overall, the AddRound block plays
an important role in designing secure cryptographic ciphers by adding randomness and
reducing the number of possible outputs, making it harder for an attacker to predict
the output or reverse the cipher. The conversion from byte into bit strings is the
responsibility of Unpack unit; the functions for this transformation are described in the
SABER specification document [21]. A BS2POLVECp block transforms the byte strings
into polynomial vectors. For more specific details, and corresponding algorithms for
different transformations, readers can follow the SABER specification document [21].

2.4 Implementation Platforms and Hardware Accelerators
This section summarizes different implementations of SABER on various platforms,
including RISC-V processors [77], general-purpose-processors (GPUs) [78], ARM plat-
forms [79, 80, 81], software implementations with side-channel protection [82, 83], a
side-channel protected hardware implementation [84], an embedded microcontroller
[85], FPGAs [76, 30, 86] and ASICs [34, 36, 31, 32, 33]. Below I am describing these
accelerator architectures along with their limitations and advantages.

A RISC-V architecture is modified in [77] to integrate a tightly coupled hardware
accelerator for performance improvement of lattice-based PQC. The aim was to reuse the
RISC-V processor resources to reduce memory access efficiently, significantly increasing
performance and keeping low area overhead. This was achieved with three steps: (i)
initially, the authors proposed hardware accelerators (one for NewHope, CRYSTALS-
Kyber, and SABER) and integrated them into the RISC-V pipeline design, (ii) then
they extended the RISC-V Instruction Set Architecture (ISA) to include twenty-nine
additional instructions to execute operations for lattice-based cryptography efficiently,
and (iii) finally the authors implemented the extended RISC-V architecture on ASIC
and FPGA platforms. Compared to only software implementation on RISC-V, the
co-design of [77] shows a speedup of 11.4, 9.6, and 2.7 for NewHope, Crystals-Kyber,
and SABER. Compared to ASIC, the consumed energy reduces by 9.5, 7.7, and 2.1

31

times for NewHope, Crystals-Kyber, and SABER.
The experiments in [78] reveal that the dot-product instruction, introduced by

NVIDIA in modern GPU architectures, can effectively accelerate matrix multiplication
and polynomial convolution operations commonly found in post-quantum lattice-based
cryptographic schemes.

NIST has recommended ARM microcontrollers as an important benchmarking
platform for its PQC standardization process, and hence several implementations
reported performance improvements [79, 80, 81]. The use of polynomial multiplication
styles (such as Toom-Cook, Karatsuba, and NTT) on embedded vector architectures is
explored in [79] where implementations were performed on Arm Cortex-M4 CPU as well
as the newer Cortex-M55 processor architectures. Through careful register management
and instruction scheduling, they show a significant performance improvement (3-5 times
faster) compared to highly optimized implementations on the Cortex-M4 architecture
while maintaining a low area and energy profile suitable for use in the embedded
market. The focus on low area and energy consumption is particularly important for
embedded systems, which often have limited resources and power constraints. The
design space of SABER on Cortex-M3 and Cortex-M4 processors is explored in [80].
Postquantum cryptography schemes’ speed and memory optimizations are crucial for
practical deployment in resource-constrained microcontrollers, specifically to ensure
secure communication in IoT-related applications. This is addressed by the authors
of [81] where they have leveraged digital signal processing instructions and efficient
memory access to optimize the polynomial multiplication operation of SABER on the
Cortex-M4 processor, which is a critical part of the scheme. Additionally, they have
employed the Karatsuba algorithm and just-in-time strategy to generate the module
lattice’s public matrix, which helps to reduce the memory footprint.

SABER is very efficient for masking because of the two specific design preferences:
(i) power-of-two moduli and (ii) limited noise sampling with LWR. Therefore, in [82],
the SABER design includes a novel primitive for masked logical shifting on arithmetic
shares, and adapts an existing masked binomial sampler to provide side-channel resistant
implementation on the ARM Cortex-M4 microcontroller. In [83], authors claimed to have
the first masked software-hardware co-design for PQC with SABER and CRYSTALS-
Kyber algorithms (as a case study) where they devise a masked ciphertext compression
protocol for non-power-of-two moduli PQC schemes. To accelerate the performance of
the linear operations such as a multiplier, they implement a generic NTT-based multiplier
suitable for schemes those not allowing the NTT operations (such as SABER). For the
required non-linear operations, they have developed masked hardware accelerators that
allow secure instructions execution using RISC-V instruction set extensions.

An efficient implementation of SABER on ESP322 microcontroller is implemented in
[85], where a big integer RSA-based co-processor is utilized for computing the polynomial
multiplications of SABER.

At register-transfer-level (RTL), a SABER hardware accelerator is designed to be a
fast co-processor for lattice-based cryptography in [30]. The co-processor is optimized
for polynomial multiplication and includes various design decisions and architectural
optimizations to reduce overall cycle counts and improve resource utilization. For key
generation, encapsulation, and decapsulation operations, the accelerator requires 5453,
6618, and 8034 cycles for a module dimension of 3 (which provides security similar to
AES-192). It runs at a maximum frequency of 250MHz on a Xilinx UltraScale+ FPGA

2ESP32 is an embedded microcontroller explicitly designed for an IoT environment with
WiFi and bluetooth support. Its manual can be accessed at [87].

32

and consumes 23686 look-up-tables (LUTs), 9805 flip-flops (FFs), and 2 BRAM tiles.
An NTT-based polynomial multiplier has been shared between two quantum-resistant

cryptographic protocols, i.e., SABER and Dilithium, in [76]. The authors estimate that
this can lead to a 4% increase in LUT count for existing Dilithium implementations.
Their NTT-based multiplier has a minor trade-off of producing inexact results in
some limited inputs, but the authors conduct a thorough analysis and prove that the
probability of these events occurring is near zero and does not affect the security of the
implementation. They also implement the NTT multiplier in hardware and obtain a
design with competitive performance/area trade-offs. The implementation has a latency
of 519 cycles and consumes 2012 LUTs and 331 FFs when implemented on an Artix-7
FPGA. A shuffling-based method is (also) offered to provide side-channel protection
with low overhead during polynomial multiplication. Furthermore, the side-channel
security of the design is evaluated on a Sakura-X FPGA board. It is important to note
that only the NTT-based multiplication core is described in [76] without providing the
complete implementation of the SABER and CRYSTALS-Dilithium PQC algorithms.

Design and implementation of a domain-specific co-processor to accelerate the
performance of SABER are considered in [86] where authors run the building blocks on
an ARM core and the most computationally intensive operations are offloaded to the co-
processor, leveraging the idea of distributed computing at the micro-architectural
level and incorporating algorithmic optimizations. The results show that the co-
processor provides approximately a 6 times speedup compared to optimized software
implementation, with a small area cost. The design was demonstrated on a Zynq-7000
ARM/FPGA System-on-Chip (SoC) platform. Hence, the co-processor accelerators of
[30] and [86] demonstrate the potential for hardware acceleration of PQC algorithms
and highlight the benefits of a hardware-software co-design approach for efficient and
compact implementations.

Another co-processor PQC accelerator is presented in [88]. The authors have
implemented three lattice-based PQC algorithms (FrodoKEM, Round5, and SABER)
on an Ultrascale+ FPGA using a software/hardware codesign approach.

Using various optimization techniques such as pipelining, resource sharing, and
efficient memory arrangements, a design space exploration of SABER is presented in
[34]. These optimizations (after synthesis) resulted in a clock frequency of 1GHz.
However, when the full-optimized SABER architecture was fabricated on a 65nm process
technology, the maximum operating frequency was only 715MHz (details are described
in [36]). This decrease in operating frequency is common when transitioning from
simulation to actual physical implementation due to manufacturing process variability,
power constraints, and limitations in on-chip interconnect. Notably, the decrease
in operating frequency does not necessarily mean that the optimized architecture
is ineffective. In [36], a proof-of-concept of the optimized SABER architecture is
demonstrated, showing the adopted approach’s viability.

The Energy-efficient crypto processor architecture of [31] for SABER employs the
hierarchical Karatsuba method to optimize the processor’s energy consumption. Im-
plementing the processor on 40nm process technology reveals an area consumption
of 0.38mm2 and a maximum frequency of 400MHz. A Toom-Cook multiplier with
a striding of 4 for SABER 256-degree polynomial multiplications is also a significant
contribution to the field; this optimization approach is investigated on 65nm process
technology, and the relevant details are described in [32]. These optimizations (of the
Karatsuba and Toom-Cook) help to make the processor more efficient and practical for
real-world applications.

33

It is impressive that a flexible crypto processor has been fabricated in [33] for
several hard mathematical problems using a 28nm process technology. The support
for various cryptographic algorithms such as SABER, NTRU, CRYSTALS-Dilithium,
Rainbow, CRYSTALS-Kyber, and McEliece makes the design very versatile and suitable
for a wide range of cryptographic applications. The fact that it can operate at a
maximum frequency of 500MHz while consuming low power at a 0.9V supply voltage
is also noteworthy. The large chip size of 3.6mm2 is used because it supports multiple
algorithms. These features make the design an excellent choice for implementing secure
cryptographic operations for various applications.

Most FPGA and ASIC SABER hardware accelerators execute the polynomial multi-
plications based on the sign-magnitude format. Recently, in [89], SABER multiplication
design was presented where authors emphasized two’s complement representation system
to multiply SABER polynomial coefficients.

In summary, hash and polynomial multiplications are the critical building blocks
of implementing lattice-based cryptography. In addition, large memory size is also
a requirement of the lattice-based PQC algorithms to keep the initial, intermediate,
and final results. The existing hardware accelerators are mostly obtained after the
polynomial multiplications’ optimizations. Indeed, NIST is investigating the security
aspects of PQC algorithms primarily at the software level only, and the performance of
PQC algorithms on different platforms is a crucial factor to consider. The choice of
platform for implementing PQC algorithms is not straightforward and depends on the
system’s specific requirements. For example, pure software implementations of PQC
algorithms are often more flexible and can be easily updated, but they may not provide
the same level of security as hardware implementations. On the other hand, hardware
implementations, such as those implemented on FPGAs or ASICs, can provide a higher
level of security, but they are often more expensive and may not be as flexible as software
implementations. The combined software-hardware approach provides a balance between
performance, security, and cost. It allows for the benefits of hardware-based security to
be combined with the flexibility of software implementations.

34

3 A Generator of Large Integer Polynomial Multipliers

This chapter focuses on the open-source polynomial multiplier generator that I have
developed. The chapter highlights the critical features and describes the multiplier
generator architecture in sections 3.1 and 3.2, respectively. Section 3.3 provides the
implementation results in various design parameters, including area, latency, clock
frequency, and power, of the generated multipliers on ASIC and FPGA platforms. After
providing the values of these design parameters, more than one design parameters are
utilized simultaneously to define the figures-of-merit (FoM) and design trade-offs to
evaluate the performance of the multiplier generator, the subsequent details are shown
in Section 3.4. Section 3.5 compares the generated multipliers to existing multiplier
accelerators.

Indeed, cryptographic systems rely on arithmetic and logical operations for secure
communication and data exchange. Multiplication is often considered the most compu-
tationally intensive operation in cryptographic circuits, and it can become a bottleneck
for efficient implementation of cryptographic schemes [90, 91, 92, 93, 94]. This is
especially true for public-key cryptosystems like RSA and ECC [95, 61], which require
efficient polynomial multiplications. Post-quantum cryptography algorithms also require
efficient polynomial multiplications. Additionally, fully homomorphic encryption enables
multi-party communications on the cloud and requires large integer polynomial multipli-
ers [96]. Therefore, there is a need for efficient polynomial multipliers to ensure the
security and efficiency of cryptographic systems.

Multiple multiplication techniques are available in the literature for multiplying
polynomial coefficients, and each technique has its own advantages and disadvantages.
Some commonly used techniques include the traditional SBM, Karatsuba, Toom-Cook,
Montgomery, Booth, and NTT. These techniques can also be utilized in a digitized
form, where the polynomial is split into smaller parts to reduce the complexity of
the multiplication at the expense of additional control logic to drive and unite the
small products. The choice of multiplication technique depends on the application’s
specific requirements and the target hardware platform. The reference implementations
of various PQC algorithms, available in [61], suggest using different multiplication
techniques for different algorithms. For example, (i) SBM is used in FrodoKEM and
NTRU-Prime, (ii) Karatsuba and Toom-Cook are used in SABER and NTRU, (iii) an
NTT is used in CRYSTALS-Kyber, and (iv) Montgomery and SBM are used in Falcon.

Examples of recent works employing non-digitized and digitized polynomial multipli-
cation methods are given in [90, 93, 92, 65, 97, 98, 99, 100, 101, 102, 103, 104], and
[105, 91, 106, 94], respectively. Even if several implementations of different multipli-
cation approaches are available in the literature, these dedicated implementations are
optimized for a specific operand size and a given target (e.g., high speed or low area
or low power). The matter is that this trade-off space exploration is difficult to drive
without automation. Therefore, there is a real need for access to (many) multiplications
approaches where designers can select an appropriate multiplier architecture combined
with their choice of operand lengths.

3.1 Supported Features
Concerning the gap mentioned above and the requirement for automation, this section
describes the features of the proposed generator of several polynomial multipliers,
named TTech-LIB. TTech-LIB is an open-source repository [107] of several large

35

integer polynomial multipliers whose initial results on Artix-7 FPGA and 65nm ASIC
platforms appeared in [108] and more detailed results on Artix-7 FPGA, 15nm, and
65nm ASIC technologies are published in [109]. The critical features of the multiplier
generator are as follows:

(i) Flexibility: The developed multiplier generator supports five multiplication ap-
proaches: (i) SBM, (ii) Booth, (iii) 2-way Karatsuba, (iv) 3-way Toom-Cook, and
(v) 4-way Toom-Cook.

(ii) Pipelining: The proposed generator supports pipelining to reduce the critical
paths (which therefore improves the clock frequency) of the multiplier circuits.

(iii) Digitizing: The developed multiplier generator offers a parameterized digit-serial
multiplier wrapper to multiply polynomial coefficients. By default, the wrapper
instantiates a singular SBM multiplier. It can be replaced by any other multiplier
method (from the proposed TTech-LIB or otherwise) as the input/output interfaces
are compatible.

(iv) Agnostic RTL: The codes generated by the multiplier generator tool are
technology- and device-agnostic, thus being synthesizable for both FPGA and
ASIC platforms. ASIC designers can additionally generate synthesis scripts for one
of two synthesis tools, either Synopsis Design Compiler or Cadence Genus. The
user is not bound to generate only a single architecture at a time; the generator
can produce multiple solutions if asked, which will appear as separate Verilog (.v)
files.

The generated multipliers by TTech-LIB take two m-bit polynomials (a and b) as
input and result in an output of polynomial (c) with 2×m bit. The algorithmic details of
the supported multipliers (SBM, Booth, 2-way Karatsuba, 3-way Toom-Cook, and 4-way
Toom-Cook) are already described in Section 2.2. Similarly, a supported digit-serial
wrapper takes two m-bit polynomials a(x) and b(x) as input and produces c(x) as an
output. The digits of polynomial b(x) are created with different lengths, which depend
on the user choice as follows: d = m

n , where d denotes the total number of digits,
m is the length of b(x), and users can choose n that determines the length of each
digit. After digitization, the multiplication of each digit is computed serially with the
polynomial a(x). Finally, the resultant polynomial c(x) is constructed using shift and
add operations. For one-digit serial multiplication, n cycles are needed. Thus, the total
digits are d, and the total clock cycles for one m-bit polynomial multiplication with n bit
digit take ⌈d×n⌉. It is important to note that the respective users/designers can select
any multiplication method inside the proposed digit-serial wrapper. For experiments in
this work, an SBM multiplication method is used.

Since the proposed library is aimed at large polynomials, the 2-way Karatsuba, 3-way
Toom-Cook, 4-way Toom-Cook, and Booth multipliers, generated in the proposed
TTech-LIB, actually implement the SBM strategy. The implementation of SBM, Booth
and our digit-serial wrapper produces resultant polynomial c(x) serially while 2-way
Karatsuba, 3-way Toom-Cook and 4-way Toom-Cook multipliers use a hybrid approach
(as they utilize a combination of both serial and parallel execution of SBM for the
computations).

The proposed generator architecture in TTech-LIB provides only the polynomial
multiplication without modular reduction. For modular reduction over prime and
binary elliptic curves, NIST-specified reduction routines [110] can be employed after the

36

multiplier circuit generated by TTech-LIB. Similarly, in the case of PQC algorithms, an
additional m-bit subtractor is required after the multiplier circuit for modular reduction
when polynomial coefficients need to multiply iteratively. The size of the polynomial
coefficient (m) depends on the specific PQC algorithm being used.

3.2 Proposed Multiplier Generator Architecture
Fig. 11 shows the architecture of the multiplier generator that supports TTech-LIB. It
shows that the generator engine takes inputs from a simple XML file structured around
a few keywords. The descriptions are given below.

Figure 11: Structure of the proposed multiplier generator. Green, orange, and gray portions
identify the input parameters, multiplier generator, and generated scripts and RTL files as
output.

The “target”, “lib”, and “effort” keywords are used to generate script files for the
ASIC platform, where the “target” keyword specifies the name of the commercial
synthesis tool (genus or dc), the “lib” keyword specifies the used library for the targeted
synthesis tools, and “effort” keyword determines the level of synthesis effort and can
take one of three values: low, medium, and high.

The “multiplier” keyword specifies the name of the multiplication method to gen-
erate and TTech-LIB takes the following names of the multiplication methods as
input: (i) schoolbook (for SBM), (ii) booth (for Booth), (iii) 2_way_karatsuba (for
Karatsuba), (iv) 3_way_toom_cook (for Toom-Cook with splitting levels of three), (v)
4_way_toom_cook (for Toom-Cook with splitting levels of four), and (vi) sbm_digitized
(for digitized multiplication).

The “reset” keyword determines the reset behavior (rising or falling edge of the
clock) for the generated multiplier circuit. The “width1” and “width2” keywords provide

37

the length of the polynomials as input operands to the multiplier. The “clock” keyword
defines the timing constraint. Users can use “digit_size” and “pipeline” keywords to
target different digit sizes and pipeline stages based on their application needs. To
generate non-pipelined multiplication circuits, the value for “pipeline” must be set to
one. The multiplier generator (orange portion in Fig. 11) takes all the parameters as
input using the parser and generates the corresponding Verilog HDL and script files
in respective directories. The generated code is pure RTL, therefore platform and
technology agnostic.

The structure of the proposed TTech-LIB is relatively simple and includes five
directories, i.e., (i) bin, (ii) run, (iii) src, (iv) synth, and (v) vlog. As the name specifies,
bin and run directories contain the essential files to compile and execute the project.
The src directory contains the library source files. The synth and vlog directories keep
the generated scripts and Verilog files, respectively. All the multipliers use an identical
interface, meaning the inputs are always clk, rst, a, and b while the output is always c.

The complete project files (written in C++) are freely available to everyone on a
GitHub repository [107]. To compile and execute the project source files, the current
directories should be /TMlib/src and /TMlib/run, respectively. Moreover, source
compile.sh and ../bin/libgen.exe commands can use to compile and run the source files.

3.3 Implementation Results
The proposed multiplier generator supports different multiplication architectures: non-
digitized and digitized. Also, the implementation results are given on distinct platforms
(FPGA and ASIC). A 15nm [111] and a 65nm technology are used for logic synthesis
on the ASIC platform, while an Artix-7 device is used for synthesis on FPGA. The tools
used for logic synthesis on ASIC and FPGA platforms are Cadence Genus and Vivado
IDE. The NIST-recommended prime (192, 224, 256, 384, and 521) and binary (163,
233, 283, 409, and 571) elliptic curve fields are used for the performance evaluation
of the supported non-digitized multipliers. To assess the performance of the digitized
wrapper, different digit sizes are considered for the operand lengths 521, 571, and 1024.
The performance of our generated multipliers is evaluated in terms of various design
parameters, i.e., clock frequency, latency, area, and power. The frequency, area, and
power values are obtained directly from the tools for both FPGA and ASIC evaluations.
At the same time, latency is calculated using Eq. 13.

latency (µs) =
(

clock cycles

frequency (MHz)

)
︸ ︷︷ ︸

non−digitized

× totaldigits

︸ ︷︷ ︸
digitized

(9)

Non-digitized multipliers on ASIC and FPGA platforms. Figures 12 and 13
show the implementation results for non-digitized polynomial multiplication methods
(including non-pipelined and pipelined) over the NIST-recommended prime (P-192 to P-
521) and binary (B-163 to B-571) fields utilized in ECC-based public-key cryptosystems
on ASIC (65nm technology) and Artix-7 FPGA3. Moreover, Fig. 12a to 12d and Fig. 13a
to 13d indicate the operand size and design feature (area in µm2 for ASIC and slices for
FPGA, power in mW , frequency in MHz and latency in µs) on horizontal and vertical

3This FPGA is designed in modern 28nm technology.

38

axis. The area of an FPGA implementation can be estimated in terms of LUTs, slices,
Regs, DSP, and carry blocks. The implemented multipliers utilize LUTs, slices, Regs,
and several F7 & F8 muxes. DSP and carry blocks are not utilized. Therefore, Fig.
13a shows slices as an area of the implemented multipliers because later slices are also
utilized to define figures of merit.

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

Operand size

0

2

4

A
re

a
(7

m
2)

#10 5
SBM Booth 2-way Karatsuba 3-way Toom-Cook 4-way Toom-Cook
SBM (PS2) Booth (PS2) 2-way Karatsuba (PS2) 3-way Toom-Cook (PS2) 4-way Toom-Cook (PS2)

(a) Area vs. operand size

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

Operand size

0

100

200

P
ow

er
 (

m
W

)

(b) Power vs. operand size

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

Operand size

0

500

1000

F
re

qu
en

cy
 (

M
H

z)

(c) Frequency vs. operand size

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

Operand size

0

0.5

1

L
at

en
cy

 (
7

s)

(d) Latency vs. operand size

Figure 12: Results for the non-pipelined and pipelined variants of several non-digitized multipliers
on 65nm ASIC over NIST recommended prime and binary elliptic curves

39

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

Operand size

0

2000

4000

6000
Sl

ic
es

SBM Booth 2-way Karatsuba 3-way Toom-Cook 4-way Toom-Cook
SBM (PS2) Booth (PS2) 2-way Karatsuba (PS2) 3-way Toom-Cook (PS2) 4-way Toom-Cook (PS2)

(a) Area vs. operand size

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

Operand size

0

200

400

600

800

P
ow

er
 (

m
W

)

(b) Power vs. operand size

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

Operand size

0

100

200

F
re

qu
en

cy
 (

M
H

z)

(c) Frequency vs. operand size

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

Operand size

0

10

20

L
at

en
cy

 (
7

s)

(d) Latency vs. operand size

Figure 13: Results for the non-pipelined and pipelined variants of several non-digitized multipliers
on Artix-7 FPGA over NIST recommended prime and binary elliptic curves

To comprehend Fig. 12a to Fig. 12d and Fig. 13a to Fig. 13d, assume the P-192-
labeled left-first bar from the area (Fig. 12) and slices (Fig. 12) panels. Here, the field
is determined by the first letter (P for prime, B for binary), and the integer specifies the
multiplier input length. Furthermore, in figures 12 and 13, the results for five distinct
multiplication methods are shown from left to right in the following sequence: (i) SBM;
(ii) Booth; (iii) 2-way Karatsuba; (iv) 3-way Toom-Cook; and (v) 4-way Toom-Cook.
For the color scheme of implemented non-pipelined and pipelined multiplier variants,
see the legend of Fig. 12 and Fig. 13. The results for 2-stage pipelining are provided for
the pipelined multiplier variants, which are annotated with the label ‘PS2’ in Fig. 12
and Fig. 13. The highest possible frequency is obtained by increasing pipeline stages
until saturation occurs, and adding more stages is no longer beneficial. For the studied
circuits, saturation occurs if more than 2 pipeline stages are added. A third stage brings

40

a minor increase in the clock frequency at a significant cost in area and power. As a
consequence, this thesis shows results only for PS2.

Concerning the non-pipelined and pipelined multipliers on ASIC 65nm technology, as
shown in Fig. 12, there is an increase in area, power, and latency characteristics with the
increase in operand length. On the other hand, there is a decrease in clock frequency
with the increase in operand length. Then, pipelining improves the performance (clock
frequency) at the cost of area and power. It is important to note that the pipelined
variant of the Booth multiplier results in minor improvements. Moreover, for every
studied multiplier, the power of the pipelined variants is always higher than the non-
pipelined ones.

The Booth multiplier uses less area than the other evaluated multipliers, as shown
in Fig. 12, for pipelined and non-pipelined versions. Additionally, the 2-way Karatsuba
variant without pipelines gets lower power values than other chosen multipliers. The
Booth multiplier uses less power for pipelined variants. The rationale is that Booth
has the simplest datapath among the multipliers under study. For example, in our
implemented architectures, SBM needs a 2m+2m bit adder, Booth requires an m bit
adder and subtractor, 2-way Karatsuba requires m+m+m bit adder and subtractor,
3-way Toom-Cook requires m

4 bit incrementer, and 4-way Toom-Cook requires sixteen
m
4 bit incrementers. For non-pipelined and pipelined implementations, variants of

Toom-Cook multipliers report higher clock frequency and lower latency values.
In contrast to ASIC evaluations, the performance of the non-pipelined and pipelined

multipliers over Artix-7 FPGA is different because the implementation platforms are
relatively different. For both non-pipelined and pipelined multipliers, as shown in Fig.
13, there is an increase in area, power, and latency characteristics with the increase
in operand length. On the other hand, there is a decrease in clock frequency with
the increase in operand length. Alike in ASIC implementations, pipelining improves
the performance (clock frequency) with an excess of both area and consumed power.
The latency trend is opposite to the clock frequency, it increases as the operand size
increases, but the pipeline stages decrease the latency. As shown in Fig. 13, the Booth
multiplier uses fewer FPGA slices than the other evaluated multipliers. Moreover, the
non-pipelined and pipelined variants of 2-way Karatsuba achieve lower power values
than other selected multipliers. Similar to the ASIC implementations, non-pipelined and
pipelined variants of a Toom-Cook multiplier result in higher clock frequency and lower
latency values.

In summary, the results obtained from ASIC and FPGA analysis of non-digitized
multipliers demonstrate that multiple design parameters, including area, power, fre-
quency, and latency, are subject to trade-offs. The findings also indicate that the choice
of a multiplier architecture depends on the application’s specific requirements. For
applications prioritizing reduced hardware resource utilization, bit-serial multiplication
approaches like SBM and Booth are more practical. Contrarily, for high-speed applica-
tions, utilizing bit-parallel multiplication approaches, including 2-way Karatsuba and
variants of Toom-Cook, offers more significant benefits.

Digitized SBM multiplier on ASIC and FPGA platforms. The experimental
results for the non-pipelined digitized multiplier wrapper on ASIC 65nm technology
are shown on the left portion of Table 3. Similarly, the right part of Table 3 provides
implementation results of the non-pipelined digitized multiplier wrapper on Artix-7
FPGA. For synthesis on both ASIC and FPFA platforms, the selected lengths of the
input operands are 521, 571, and 1024, as given in column one of Table 3. The selected
digit sizes (n) for input lengths 521 and 571 are 32, 41, 53, and 81. For an input length

41

Table 3: ASIC and FPGA results for digitized multipliers of various input sizes

m n d
ASIC (65nm) FPGA (Artix-7)

Freq
MHz

Lat
µs

Area
µm2

Pow
mW

Freq
MHz

Lat
µs

LUTs Regs CBs Pow
mW

52
1×

52
1 32 17 505 1.07 106956.7 30.9 33.11 16.43 6369 1692 408 184

41 13 377 1.41 101538.7 26.1 29.15 18.28 7995 1681 416 192
53 10 340 1.55 94752.7 20.0 28.32 22.72 8079 1732 417 191
81 7 336 1.68 84321.0 15.4 34.48 15.12 6095 1758 408 220

57
1×

57
1 32 18 487 1.18 114999.8 36.7 30.12 18.06 6397 1847 447 194

41 14 369 1.55 116010.3 28.9 27.17 19.62 8750 1834 455 192
53 11 312 1.86 91393.9 18.1 26.04 20.35 9053 1880 449 187
81 8 291 2.22 76146.8 14.1 28.01 23.13 8958 1951 452 226

10
24
×

10
24

2 512 363 2.82 196131.2 38.0 14.22 72.11 10993 3634 1085 173
4 256 357 2.86 178581.2 35.1 15.89 64.48 10824 3384 928 172
8 128 353 2.90 167536.4 31.5 16.86 60.66 11074 3261 849 180
16 64 343 2.98 166533.1 30.2 17.51 58.48 10634 3248 811 185
32 32 313 3.27 148489.5 23.0 17.89 57.28 11371 3267 791 190
64 16 285 3.59 122257.8 20.8 17.89 57.04 11947 3330 792 195
128 8 268 3.82 123164.6 19.9 18.57 55.14 12207 3450 800 221
256 4 263 3.89 129542.4 19.5 18.93 54.09 11367 3740 832 247
512 2 261 3.92 136292.4 23.1 19.12 53.55 10385 4295 896 226
1024 1 259 3.95 177834.2 24.1 18.46 55.50 11462 5303 1024 235

m: is the field size or length of the inputs (in bits), n: is the digit size, d: shows total digits.

of 1024 bits, digit sizes are selected in powers of two, for n = 2 . . .1024 where the
values for digit size n and total digits d are shown in columns two and three of Table 3.

Regarding the implementation results for ASIC 65nm technology, it shows that the
increase in digit size leads to a decrease in clock frequency, as given in column four
of Table 3. The increase in digit size increases latency, as shown in column five of
Table 3. With an increase in the digit size n, the achieved results for power and area
parameters indicate behavior akin to a parabolic curve, as provided in Table 3 (see
columns six and seven). For extreme cases of too small or too large digits, the wrapper
logic becomes inefficient and may even become the bottleneck for timing. Therefore,
shorter digit lengths are more valuable for an application that demands high speed.
On the other hand, the reported results on Artix-7 reveal that the increase in digit
size increases clock frequency, as shown in column eight of Table 3. This increase in
clock frequency occurs until a saturation point is reached. Once the saturation point
is reached, clock frequency decreases with the increase in digit size. Therefore, in
this particular experiment, saturation occurs when the value for n = 512. Yet, before
saturation is achieved, tiny increments in frequency are already observed, implying that
selecting the number of digits based on frequency alone is not a good strategy. Other
reported characteristics, i.e., latency, LUTs, and power, show a non-linear behavior (see
columns nine, ten, and thirteen of Table 3). As summarized, the implementation results
achieved after synthesis (clock frequency, area in terms of LUTs, Regs and Carry blocks,
latency, and power) for FPGA are different compared to ASIC as the implementation
platforms are relatively different.

The results for various digit sizes of 1024 × 1024 SBM multiplication method on
15nm technology are presented in Table 4. The selected length of input operands is
1024, as shown in column one of Table 4. For an input length of 1024 bits, digit sizes

42

Table 4: Synthesis results for 1024×1024 digitized multiplier on ASIC 15nm

m n d Freq
(MHz)

Lat (µs) Area
(µm2)

Pow
(mW)

1024×1024

2 512 909 1.12 19182.7 21.0
4 256 884 1.15 19059.8 19.9
8 128 862 1.18 18367.2 21.2
16 64 840 1.21 17398.7 20.9
32 32 829 1.23 17105.5 20.8
64 16 826 1.23 17523.4 20.5
128 8 822 1.24 17460.4 19.9
256 4 819 1.25 18594.0 23.5
512 2 813 1.25 19719.6 25.4
1024 1 806 1.27 22979.3 30.2

m: specifies the inputs length (in bits), n: shows the digit size, d: is the total digits.

are selected again in powers of two, for n = 2 . . .1024 where the values for digit size n
and total digits d are shown in columns two and three of Table 4. Columns four to seven
provide the frequency (Freq in MHz), latency (Lat in µs), area (in µm2), and power
(in mW). The results show that the increase in digit size reduces clock frequency, as
given in column four of Table 4. On the other hand, the increased digit size increases
latency, as presented in column five of Table 4. With an increase in the digit size n,
the achieved power and area parameters results indicate behavior similar to a parabolic
curve, as shown in the last two columns of Table 4. Similar to the results obtained on
65nm technology, for extreme cases of too small or too large digits, the wrapper logic
becomes inefficient and may even become the bottleneck for timing. Therefore, shorter
digit lengths are more useful for an application that demands high speed.

The implementation results for identical values of m, n, and d in Table 3 and Table
4 achieved on 15nm technology outperform the results obtained on 65nm technology,
as expected. More specifically, the 15nm technology allows for a threefold increase in
clock frequency with a significant reduction in area and power.

3.4 Figures of Merit and Trade-offs
The previous section has presented only the implementation results for non-digitized and
digitized multiplier wrapper. However, FoMs are defined to analyze the performance of
non-digitized and digitized multipliers using the combined effect of their characteristics
simultaneously. Thus, an FoM to evaluate the area and performance for both ASIC
and FPGA platforms is defined using Eq. 10. For FPGA, the number of slices is
utilized as area in Eq. 10. The higher the FoM values, the better performance of the
multiplier. Similarly, an FoM is calculated using Eq. 11 to evaluate the power and
latency parameters.

FoM = 1
area (µm2)× latency (µs) (10)

FoM = 1
power (mW)× latency (µs) (11)

FoM for non-digitized multipliers on ASIC and FPGA platforms. The calculated
values of defined FoMs for both non-pipelined and pipelined multipliers on ASIC and

43

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

Operand size (bits)

0

1

2

3
F

oM
#10 14

SBM Booth 2-way Karatsuba 3-way Toom-Cook 4-way Toom-Cook
SBM (PS2) Booth (PS2) 2-way Karatsuba (PS2) 3-way Toom-Cook (PS2) 4-way Toom-Cook (PS2)

(a) Area × latency

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

Operand size (bits)

0

2

4

6

8

F
oM

#10 8

(b) Power × latency

Figure 14: FoMs regarding area vs. latency and power vs. latency for various non-digitized
multipliers on ASIC.

FPGA platforms are illustrated in figures 14 and 15, respectively – where PS2 (a 2-stage
pipeline) shows the pipelined variants for different multipliers. For each panel in figures
14 and 15, the multipliers are shown from left to right in the following order: (i) SBM,
(ii) Booth, (iii) 2-way Karatsuba, (iv) 3-Way Toom-Cook and (v) 4-way Toom-Cook.

For the ASIC platform (Fig. 14), the trend shows a decrease in the FoM values with
increased operand size. Concerning Fig 14a, the value of the non-pipelined multiplier is
lower than the pipelined multiplier except for the Booth and variants of Toom-Cook
multipliers. For pipelined multipliers, the highest value of FoM for Eq. 10 is achieved
for the 2-way Karatsuba multiplier. The performance (latency) versus area trade-off
for non-pipelined multipliers could be graded, from highest to lowest, as (i) Booth, (ii)
4-way Toom-Cook, (iii) 3-way Toom-Cook, (iv) 2-way Karatsuba and (v) SBM. For
similar performance versus area trade-off, the possible grading from highest to lowest
for the pipelined multipliers is (i) 2-way Karatusuba, (ii) 4-way Toom-Cook, (iii) Booth,
(iv) 3-way Toom-Cook and (v) SBM. As far as the trend from Fig. 14b is concerned, the
value of the FoM for non-pipelined multipliers is higher than pipelined variants except
for the 4-way Toom-Coom multiplier. For non-pipelined and pipelined variants, the
highest FoM value for Eq. 11 is achieved for a 2-way Karatsuba and 4-way Toom-Cook
multiplier. Based on Fig. 14b, the latency versus power trade-off of the non-pipelined
multipliers could be graded as (i) 2-way Karatsuba, (ii) 3-way Toom-Cook, (iii) 4-way
Toom-Cook, (iv) Booth and (v) SBM. Furthermore, for similar performance versus
power trade-off, the possible grading from highest to lowest for pipelined multipliers is
(i) 4-way Toom-Cook, (ii) 2-way Karatusuba, (iii) Booth, (iv) 3-way Toom-Cook and
(v) SBM.

Similarly, for the FPGA platform (Fig. 15), the values for the non-pipelined multipliers
are lower than the pipelined variants, except for the SBM and 3-way Toom-Cook
multipliers. For pipelined multipliers in Fig. 15a, the highest FoM is achieved for the

44

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

Operand size (bits)

0

5

10
F

oM
#10 3

SBM Booth 2-way Karatsuba 3-way Toom-Cook 4-way Toom-Cook
SBM (PS2) Booth (PS2) 2-way Karatsuba (PS2) 3-way Toom-Cook (PS2) 4-way Toom-Cook (PS2)

(a) Area (Slices) × latency

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

|
P

-1
92

P
-2

24
P

-2
56

P
-3

84
P

-5
21

B
-1

63
B

-2
33

B
-2

83
B

-4
09

B
-5

71
|

P
-1

92
P

-2
24

P
-2

56
P

-3
84

P
-5

21
B

-1
63

B
-2

33
B

-2
83

B
-4

09
B

-5
71

Operand size (bits)

0

1

2

3

F
oM

#10 7

(b) Power × latency

Figure 15: FoMs regarding area vs. latency and power vs. latency for various non-digitized
multipliers on FPGA.

4-way Toom-Cook. The performance (latency) versus area trade-off for non-pipelined
multipliers could be ranked, from highest to lowest, as (i) Booth, (ii) 4-way Toom-
Cook, (iii) 3-way Toom-Cook, (iv) 2-way Karatsuba and (v) SBM. For equivalent
performance versus area trade-off, the possible ranking from highest to lowest for the
pipelined multipliers is (i) 4-way Toom-Cook, (ii) Booth, (iii) 3-way Toom-Cook, (iv)
2-way Karatusuba and (v) SBM. Notice that SBM is the least preferred multiplier
according to the defined FoMs. Concerning Fig. 15b, for non-pipelined and pipelined
variants, the highest FoM value is achieved for 3-way and 4-way Toom-Cook multipliers,
respectively. Moreover, the performance (latency) versus power trade-off of the non-
pipelined multipliers could be ranked as (i) 3-way Toom-Cook, (ii) 4-way Toom-Cook,
(iii) 2-way Karatsuba, (iv) Booth, and (v) SBM. For identical performance versus
power trade-off, the ranking from highest to lowest for pipelined multipliers is (i) 4-way
Toom-Cook, (ii) 3-way Toom-Cook, (iii) 2-way Karatusuba, (iv) Booth, and (v) SBM.

Figures 14 and 15 assist the designer in selecting a suitable multiplier architecture
according to application requirements. From an area perspective, SBM is the best
candidate. However, even if SBM has a relatively small footprint and relatively small
power consumption, this comes at the expense of performance. The pipelined variant
of the Booth multiplier is also a good candidate with the least power and optimal
performance compared to the non-pipelined version of a 4-way Toom-Cook multiplier.
These examples show the PPA trade-offs that are considered based on the FoMs in this
study.

FoM for digitized SBM multiplier on ASIC and FPGA platforms. A 1024×1024
multiplier is considered with various digit sizes to calculate FoM for evaluation on ASIC
and FPGA platforms. The calculated FoM results for ASIC on 15 and 65nm technologies
are shown in Fig. 16, while the calculated values of FoM in terms of area×latency and
power×latency for FPGA are shown in figures 17a and 17b, respectively.

45

 1
.8 1
.9 2
.0

 2
.0

 2
.0 2

.3

 2
.1

 2
.0

 1
.9

 1
.4

 4
.7

 4
.6

 4
.6 4
.8

 4
.8

 4
.6

 4
.6

 4
.3

 4
.0

 3
.4

x10-12

2 4 8 16 32 64 128 256 512 1024
Digit size

0

1

2

3

4

5

F
o

M

65nm 15nm

(a) Area × latency

 9
3.

0

 9
9.

3

 1
09

.1

 1
10

.9

 1
32

.7

 1
33

.5

 1
31

.0

 1
31

.4

 1
10

.2

 1
04

.7

 4
25

.1

 4
36

.9

 3
99

.7

 3
95

.4

 3
90

.8

 3
96

.5

 4
05

.2

 3
40

.4

 3
14

.9

 2
60

.7

x10-7

2 4 8 16 32 64 128 256 512 1024

Digit size

0

100

200

300

400

500

600

F
o

M

65nm 15nm

(b) Power × latency

Figure 16: FoMs in terms of area × latency and power × latency for digitized wrapper with
SBM multiplier on ASIC

2 4 8 16 32 64 128 256 512 1024
Digit size

0

1000

2000

3000

4000

5000

6000

7000

8000

F
o

M 4
09

3.
1

 4
87

6.
9

 4
96

8.
4

 5
22

2.
9

 5
31

7.
7

 5
18

9.
9

 5
22

7.
9

 5
81

1.
9

 6
61

2.
6

 4
04

9.
9

x10-6 FoM Slices

(a) Area (slices) × latency FoM for FPGA

2 4 8 16 32 64 128 256 512 1024
Digit size

0

200

400

600

800

1000

F
o

M

 8
01

.6 9
01

.7

 9
15

.9

 9
24

.3

 9
18

.8

 8
99

.9

 8
20

.0

 7
48

.5 8
26

.3

 7
66

.7

x10-13 FoM Power (mW)

(b) Power × latency FoM for FPGA

Figure 17: FPGA FoMs in terms of area × latency and power × latency for digitized wrapper
with SBM

Let us consider only the FoM results from Fig. 16 for evaluations; it becomes clear
that the extreme cases lead to suboptimal results for both FoMs (area×latency and
power×latency) on 65nm technology (presented in figures 16a and 16b). This is not
evident for the FoMs calculated on the 15nm technology where longer digit cases lead to
suboptimal results. For the studied 1024 × 1024 multiplier, the variant with n= 64 and
d= 16 presents an optimal solution on 65nm technology. Similar values, such as n= 32
and n= 128, also give very close to optimal solutions. On 15nm technology, the optimal
solutions for area × latency are achieved for n = 16 and n = 32. Additional closer
values to optimal solutions are achieved for digit sizes 2,4,8,64, and 128. Similarly, a
digit size for n= 4 provides the best power × latency solution.

There are multiple approaches to evaluating FoM results on FPGA. For example, the
number of FPGA basic building blocks for area evaluation are slices, LUTs, flip-flops,
and carry units. However, the FoM in Eq. 10 can be calculated using different metrics
of interest (such as slices, LUTs, flip-flops, or carry blocks). This study substitutes
FPGA slices for the area in Eq. 10. Therefore, Fig. 17a shows that the FoM values
for n= 512 and d= 2 result in an optimal solution. Fig. 17b reveals that the optimal
solution is achieved for n= 2 and d= 512. Hence, they are all very close.

3.5 Comparison and Discussion
To perform a realistic and reasonable comparison with state-of-the-art, we have used
similar operand lengths, digit sizes, and implementation platforms as presented in
Table 5. Column one presents the reference design (Ref). The implemented multiplier,

46

utilized platform (device), and targeted operands length (m) are given in columns two
to four. Different values of m are considered in the existing implementations to present
results for polynomial multiplications. However, for our comparison, we have considered
only the larger operands. The implemented circuit’s clock frequency (Freq in MHz)
is given in column five of Table 5. The last two columns (six and seven) provide the
latency (Lat in µs) and the hardware resources (in µm2 for ASIC and in LUTs for
FPGA), respectively. In Table 5, ‘N/A’ is utilized to denote values that are not provided.

Table 5: Comparison with state-of-the-art multipliers

Ref Multiplier Device m Freq (MHz) Lat (µs) Area (µm2)/LUTs

[97] BL-PIPO 65nm 163 N/A N/A 5328 GE
[112] LCHMA 65nm 163 68.49 N/A 321692

Virtex-4 163 33.78 N/A 34118 (19030 slices)
[92] Radix-2 Montgomery Virtex-6 1024 53.23 19.26 2566
[98] Systolic Montgomery 90nm 13 100 0.91 4782
[113] Montgomery Virtex-5 1024 400 0.88 6105 slices
[104] PCA approach Virtex-II 163 177.8 0.91 225 slices

[90] 2-way Karatsuba Virtex-7
128 104.3 0.61 3499
256 74.5 1.71 7452
512 51.6 4.96 20474

[91] DSM Virtex-6 571 258.5 0.03 10983 (when ds=64)

[106] DSMM Virtex-7
2048 N/A N/A 18067 (when ds=2)
2048 N/A N/A 33734 (when ds=4)
2048 N/A N/A 62023 (when ds=8)

[100] SBM (digit serial) Virtex-5

571 540/CCs=571 1.05 1731 (when ds=1)
571 550/CCs=286 0.52 1730 (when ds=2)
571 572/CCs=143 0.25 2302 (when ds=4)
571 450/CCs=72 0.16 3451 (when ds=8)
571 400/CCs=36 0.09 5754 (when ds=16)
571 400/CCs=24 0.06 8051 (when ds=24)
571 360/CCs=18 0.05 10350 (when ds=32)

TW

SBM 65nm 163 500 0.326 29341 (11727 GE)
Virtex-4 163 65.68 2.48 1934 (987 slices)

Booth
Virtex-4 163 131 1.24 565 slices
Virtex-6 1024 71.5 14.32 2429
65nm 163 824 0.19 20258.6
Virtex-5 1024 39.35 13.01 4113 slices

2-way Karatsuba Virtex-7
128 167.4 0.38 2110
256 119.9 1.06 4318
512 63.8 4.01 9582

SBM Wrapper

Virtex-6 571 46.4 1.74 6181 (when ds=64)

Virtex-7
2048 15.03 69760 25559 (when ds=2)
2048 16.6 15790 22040 (when ds=4)
2048 17.4 3760 23315 (when ds=8)

Virtex-5

571 23/CCs=571 24.82 11803 (when ds=1)
571 27.1/CCs=286 10.55 10353 (when ds=2)
571 30/CCs=143 4.76 9209 (when ds=4)
571 32/CCs=72 2.25 9399 (when ds=8)
571 33/CCs=36 1.09 8713 (when ds=16)
571 30/CCs=24 0.80 16536 (when ds=24)
571 34/CCs=18 0.52 8767 (when ds=32)

BL-PIPO: Bit level parallel in parallel out multiplier using SBM multiplication method, PCA:
programmable cellular automata, DSM: Digit Serial Montgomery multiplier based wrapper,
ds: digit size, DSMM: Digit Serial modular multiplier, GE: Gate equivalent, LCHMA: Low-
complexity hybrid multiplier architecture, TW: this work, latency reported for design [98] is in
milli-second.

Bit-serial architectures. FPGA results for operand length of 1024 are reported
in [92] where the authors have utilized a Virtex-6 device. A Radix-2 Montgomery
multiplier architecture [92] results in 25% higher clock frequency and latency than
the Booth multiplier generated by TTech-LIB. The excessive use of LUTs in their
implementation is noticeable (see the last column of Table 5). On the Virtex-5

47

device, FPGA implementations for 1024-bit operand lengths are reported in [113].
The Montgomery multiplier architecture of [113] results in 9.83 times higher clock
frequency when compared to the Booth multiplier generated by TTech-LIB. Due to
higher frequency, they have achieved a latency value of 0.88µs that is comparatively
2.81 times lower than the TTech-LIB generated Booth multiplier circuit (2.48µs). On
the other hand, there is a trade-off since the generated Booth multiplier utilizes 1.48
times fewer FPGA slices.

The comparison to systolic Montgomery multiplier architecture of [98] can be a little
unfair as this study uses a 65nm technology for logic synthesis while a 90nm technology is
considered in [98]. However, the TTech-LIB-generated SBM and Booth serial multipliers
have been compared. For operands length of 13-bit over elliptic curve binary GF (213)
field, their architecture achieves 5 times lower clock frequency when compared to 163-bit
generated (by TTech-LIB) SBM and Booth multiplier implementations. The generated
SBM and Booth implementations utilize the higher area and take more computational
time as the length of the operands is 12.5 times higher than [98].

For 163-bit operands size on 65nm ASIC and Virtex-4 FPGA platforms, the low-
complexity hybrid multiplier architecture of [112] is 7.30 and 1.94 times slower in clock
frequency as compared to SBM generated multiplier by TTech-LIB. As shown in Table
5, the latency comparison is hard as the related information is not described in [112].
Moreover, the generated SBM multiplier by TTech-LIB utilizes 10.96 and 17.64 times
lower hardware resources on similar ASIC and FPGA platforms.

In [104], for 163-bit operands length, a programmable cellular automata-based
bit-serial multiplier design is reported on Xilinx Virtex-II Pro FPGA4. Therefore, this
study uses a Virtex-4 device built on a 90nm technology to provide a comparison that is
not disproportionately unfair. As shown in Table 5, the dedicated architecture of [104]
results in lower hardware resources (225 slices whereas the generated Booth multiplier
by TTech-LIB used 565) and achieves higher clock frequency (177.8MHz while the
generated Booth multiplier design in this study operates at 131MHz). This comparison
shows that there is always a trade-off between flexibility and performance (area, clock
frequency, latency, etc.).

Bit-parallel designs. A bit-parallel 2-way Karatsuba multiplier is reported in [90] for
a Virtex-7 FPGA. In terms of latency, it is 38% (for operand size of 128 bit), 39% (for
operand size of 256 bit), and 20% (for operand size of 512 bit) slower when compared to
2-way Karatsuba multiplier generated by TTech-LIB, as shown in Table 5. Additionally,
the proposed 2-way Karatsuba multiplier requires fewer FPGA LUTs (see column seven
in Table 5) as compared to [90]. The BL-PIPO multiplier of [97] on 65nm technology
utilizes 55% lower gate counts compared to the SBM multiplier generated by TTech-LIB.
However, the multiplier given in [97] shares resources with a reduction unit specific for
the 163-bit operand. The proposed multiplier generates a 2×m−1 bit output, whereas
their solution generates an m bit output.

Digitized solutions. The digit-serial Montgomery multiplier wrapper of [91] results
in 83% higher clock frequency and 58% lower latency than the proposed digitized
solution based on SBM multiplier architecture. This is valid when the digitized flavor
of polynomials multiplication is considered for comparison over different digit sizes.
Contrarily, the generated digit serial wrapper by TTech-LIB results in 56% lower hardware
resources over Virtex-6 FPGA. Another digit serial modular multiplication wrapper of
[106] results in 14% (for ds=2) lower FPGA LUTs, while for remaining digit sizes of
4 and 8, it utilizes 35% and 63% higher FPGA LUTs as compared to SBM wrapper

4The Xilinx Virtex-II Pro devices are built on a 90nm technology.

48

generated by TTech-LIB. The frequency and latency parameters cannot be compared
because the relevant information is unavailable in the reference designs.

In [100], a digit-serial multiplier for the operand length of 571 bits over Virtex-5 is
described, as shown in Table 5. With the increase in digit sizes (i.e., 1, 2, 4, 8, 16,
24, and 32), the digit-serial multiplier of [100] results in an increase in the hardware
resources (LUTs) and a decrease in clock cycles (CCs) and latency. For clock frequency,
it shows behavior like a parabolic curve. This is not the case for TTech-LIB offered
digit-serial wrapper as it considers the flexibility which is not tackled in the design
of [100]. With a similar clock cycle requirement, a digit-serial wrapper generated by
TTech-LIB takes more computational time and achieves lower clock frequency than
[100]. Moreover, the wrapper generated by TTech-LIB utilizes more hardware resources
for ds = 1, 2, 4, 8, 16, and 24. For a digit size of 32 (see the last column of Table 5),
the proposed wrapper utilizes 1.18 times lower hardware resources with an overhead
in latency. Therefore, the wrapper generated by TTech-LIB outperforms in terms of
hardware resources (LUTs) for larger digit sizes compared to [100].

In summary, the comparisons and discussion reveal that the versatile and flexible
TTech-LIB multiplier generator provides, in general, a realistic and reasonable compari-
son to many existing multiplier architectures [98, 92, 104, 97, 90, 91, 106, 100]. It is
essential to highlight that some of the compared architectures also contain reduction
routines in their implementation, a feature that is not currently supported by TTech-LIB
generator but could be considered in future. Based on the results, it has been evalu-
ated that designers can explore various design parameters within TTech-LIB-supported
multiplier architectures and benefit from competitive implementations concerning the
existing literature on polynomial multipliers. Since the TTech-LIB generator produces
RTL code that is technology- and platform-agnostic, users can (also) take the code as
a starting point for their design, develop the optimized ones, and define other FoMs for
further evaluation.

49

4 Design Space Exploration of SABER
This chapter provides the design space exploration of PQC algorithms for performance
improvement on the ASIC platform. The DSE process is accomplished by adopting
several memory configurations and employing wider datapaths. A SABER PQC algo-
rithm/protocol is considered as a case study in this thesis to perform the DSE process.
Section 4.1 describes the DSE process, including the SABER architectural details.
Section 4.2 describes the area, timing, and power results. The comparison to existing
state-of-the-art hardware accelerators and discussions are provided in Section 4.3.

The design space exploration, in this study, determines the adaption of various
architectural elements such as distinct memory configurations, pipelining, logic sharing,
and different data path widths with an emphasis on optimizing the design for a specific
65nm ASIC technology. Therefore, an open-source implementation of SABER is selected
to initiate the DSE process. This open-source SABER code is modeled as an instruction
set co-processor architecture, and the code is written in Verilog HDL at Register Transfer
Level. The Verilog code of the SABER co-processor can be accessed directly from [114]
and the corresponding architectural details and implementation results appeared in [30].
The top-level block diagram of the SABER architecture of [30] consists of four units:
(i) a data memory; (ii) a program memory; (iii) a dedicated finite state machine (FSM)
controller for efficient control functionalities; and (iv) SABER building blocks. The
building blocks of SABER are (i) a polynomial Vector-Vector multiplier wrapper; (ii)
variants of secure hash algorithms, i.e., SHA3-256, SHA3-512, and SHAKE-128; (iii) a
binomial sampler; (iv) AddPack; (v) AddRound; (vi) Verify; (vii) CMOV; (viii) Unpack;
(ix) CopyWords; and (x) BS2POLVECp.

Note that the open-source SABER code of [114] was developed specifically for an
FPGA platform, but in this study, the ASIC platform is targeted. Therefore, a baseline
ASIC architecture is developed to evaluate SABER on a 65nm commercial technology to
fulfill the DSE premise. The strategy employed in this thesis differs from the approach
of [30], as BRAM is replaced with an SRAM in the baseline design. Furthermore, a
commercial memory compiler from a partner foundry is used in this work to generate the
same size SRAM memory. The next section will show multiple variants where several
memory instances have been used with different sizes. It is essential to mention that
the baseline design in this study is still a co-processor architecture and assumes that the
program memory resides outside the SABER accelerator. The other building blocks are
considered as implemented in the open-source SABER accelerator of [114], but most
of them are modified during the DSE process, which will be detailed in the upcoming
sections.

The DSE process is initiated with a SABER serial architecture and completed with
parallel designs. Therefore, a total of eight SABER designs include in the DSE, one
corresponds to the baseline and the remaining seven are optimized ones, including serial
and parallel techniques. The details of the corresponding serial and parallel SABER
designs are described in the upcoming section.

4.1 Serial and Parallel SABER Architectures
A summary of the DSE process is shown in Fig. 18, where Fig. 18(a) describes the serial
SABER design by using several optimization approaches (pipelining, resource sharing
and different memory configurations). In contrast, Fig. 18(b) provides the parallel
SABER architecture using a wider 256-bit data path strategy instead of a 64-bit data
path utilized in the baseline serial SABER design.

50

(a) Serial SABER architecture by utilizing different memory configurations, pipelining, and resource sharing.

(b) Parallel SABER architecture by employing wider data path strategy.

Figure 18: Block diagrams of the designs generated during the design space exploration.

Hence, Fig. 18(a) and Fig. 18(b) show different SABER designs with different
names to differentiate the studied architectures from one another. For example, the
prefixes DP and SP mean that the architecture employs a dual-port or a single-port
memory. Similarly, the PIP prefix implies that the architecture is pipelined. Moreover,
the prefixes SS and DS show that the design uses single-sponge and double-sponge
KECCAK functions inside the SHA3 variants for hash operations of parallel SABER
designs (of Fig. 18(b)). A prefix Parallel determines that the SABER design supports a
256-bit data path instead of a 64 bit. Note that in the serial SABER architectures of
Fig. 18(a), single-sponge is used in the SHA3 variants, and the architectures differ in
different memory sizes and number of memory instances used. On the other hand, in
the parallel SABER implementations of Fig. 18(b), memory instances and size are fixed,
but the architectures vary with single- and double-sponge functions. Therefore, based
on this terminology, the following architectures have been considered:

51

• Baseline

– DP_1(1024x64)

• Optimized

– DP_2(1024x32)
– DP_4(1024x16)
– DP_8(512x16)
– PIP_DP_4(1024x16)
– PIP_SP_4(256x64)
– SS_Parallel_SP_4(256x64)
– DS_Parallel_SP_4(256x64)

Subsequently, seven optimized designs have been presented; the first five optimized
designs have been generated from the baseline design from Fig. 18(a), and the last
two-optimized designs have been presented from Fig. 18(b). The memory is structured
as i(m×n), where i shows the number of memory instances, m determines the number
of memory addresses, and n implies the data width of each address.

In contrast to the open-source design of [114], the DSE process led to the creation
of new units in addition to the FSM controller and SABER building blocks shown in
Fig. 18(a): (i) memory manager; (ii) pipeline register; and (iii) shared shift buffer. All
these units are common to all of the studied serial SABER architectures except for the
pipeline register, which is considered only in pipeline architectures, i.e., PIP_DP and
PIP_SP. It is essential to highlight that several modifications have been performed in
the SABER building blocks to synchronize their inputs/outputs with the memory timing
requirements. The modified SABER building blocks are outlined with green color lines
in Fig. 18(a).

On the other hand, the parallel SABER designs constructed from Fig. 18(b) utilize
four smaller SRAM-based RegFile memories having a size of 256 × 64 each. The
difference is that in Fig. 18(a), all the memory instances operate serially. This means
that at one time, only one 64-bit word can read/write on one memory. But in Fig. 18(b),
four smaller memories operate in parallel. Each memory can read/write one 64-bit word
in one clock cycle. So, four memory instances in parallel can read/write one 256-bit
word in one cycle. To deal with 256-bit words in Fig. 18(b), an additional address
decoder unit is required. This address decoder unit prepares the corresponding 64-bit
or 256-bit word for the SABER controller to operate SABER building blocks.

The following text will describe the design blocks of Fig. 18(a) and Fig. 18(b)
in detail. Moreover, from now on, the baseline and optimized SABER architectures
will be referred to using abbreviated forms. For example, the optimized SABER
PIP_SP_4(256×64), SS_Parallel_SP_4(256×64), and DS_Parallel_SP_4(256×64)
designs will be abbreviated as PIP_SP, SS_Parallel, and DS_Parallel.

4.1.1 Memory Manager
In Fig. 18(a), the name ‘memory manager’ comes from the smart memory synthesis
[115] process concept. The smart memory synthesis is the observation that smaller,
more distributed memories can benefit an ASIC design because the smaller memories
need simpler address decoder units which are faster. This, combined with the fact that
part of the address decoding is now described as logic and can be co-optimized with the

52

remainder of the design, leads to performance improvements with a sometimes marginal
increase in area. Hence, in this study, a smart memory synthesis strategy is explored
within the limitations of a commercial memory compiler. For the key encapsulation
mechanism, when security is equivalent to AES-192, SABER needs 992, 1344, and 1088
bytes for generating a single public-key, secret-key, and the cipher text [21]. This need
confirms that a relatively large memory size is needed. Hence, a dual-port memory
size of 1024×64 is employed in the FPGA design of SABER in [30] and the baseline
SABER design in this work incorporates the same memory size of 1024×64.

The DSE process is initiated where the word size of the employed large memory
of size 1024×64 is divided into smaller chunks (32 and 16), and then the number of
memory instances is increased accordingly. With this division, the memory structure
becomes DP_2(1024×32) and DP_4(1024×16). More precisely, DP_2(1024×32)
means that two instances of a dual-port memory are employed where the total number
of addresses is 1024, and the data stored on each address is 32-bit. For the memory
structure of DP_4(1024×16), four instances of dual-port memory are used where the
total number of addresses is 1024, and the word size is 16. As expected, these memory
choices increase clock frequency but at the expense of area and power. Afterward,
from DP_4(1024×16) memory structure, another architecture is constructed where
the number of addresses is (also) divided to take half per memory (i.e., from 1024 to
512). In this case, the memory structure becomes DP_8(512×16), and this means that
eight instances of dual-port memory are used where the total number of addresses is
512, and the word size is 16. Later in the results section, I will show that this design
choice increases area and power with a minor gain in operating frequency. Hence, at
this stage, it has been realized that further dividing memories into smaller chunks is no
longer beneficial, and other optimization approaches must be explored.

Hence, pipelining is utilized after dividing the number of addresses and data widths
for memories. In the first pipelined design, i.e., PIP_DP, the same 4(1024×16) memory
structure is chosen as in DP_4(1024×16). The second pipelined architecture, however,
utilizes compiled RegFiles5. In this DSE process, one of the limitations of using a
RegFile is that the IP available to the author was for a single-port instead of a dual-port.
Thus, converting the design from a dual-port memory to a single-port requires several
modifications in the building blocks to generate their correct functionalities. Therefore,
using single-port memory increases the overall clock cycle count, but this will show later
in the results section that this increase is beneficial since the improved clock frequency
still reduces the overall latency for all SABER operations. Hence, the memory structure
is PIP_SP_4(256×64).

4.1.2 Pipelining
Finding an appropriate location for the placement of pipeline registers in a digital design
is a critical task. Therefore, a pipeline register is placed at the memory output in the
DSE process because evaluating the critical path of several architectures (in Section
4.2) shows that memory is the performance bottleneck of the design. Therefore, in
the PIP_DP and PIP_SP architectures in Fig. 18(a), the input to the pipeline register
is from the memory while the output is connected to the binomial sampler. The red
dotted lines in Fig. 18(a) mean that the pipeline register is connected with the binomial
sampler through the FSM controller.

5RegFiles are not flip-flops. This vendor-specific terminology for a compiled 6T SRAM
memory is advantageous when bit density can be traded-off with performance. Its vendor also
calls it a “high-speed” variant of SRAM.

53

4.1.3 Shared Shift Buffer
Several building blocks of SABER, i.e., AddRound, AddPack, BS2POLVECp, and
multiplier, require a shift register to read from many memory addresses and accumulate
(hundreds of) bits into local registers. For example, a 320-bit long register is required in
AddPack and BS2POLVECp, while a 64 and 676-bit register is required in AddPack and
Multiplier blocks, respectively. Note that the SABER building blocks produce outputs
serially, so the shift buffer can be shared as there are no concerns with concurrent access.
Therefore, a 676-bit register is shared across AddRound, AddPack, BS2POLVECp, and
Multiplier blocks. Using a shared shift buffer results in a 10.3% decrease in the total
area with no impact on performance. This shared buffer is common in all the optimized
designs of Fig. 18(a).

4.1.4 Address Decoder Unit (ADU)
The address decoder unit is only involved in the SABER design of Fig. 18(b), where four
instances of smaller memories are utilized and each memory can read/write one 64-bit
word in one clock cycle. Recalling again, four memory instances in parallel perform one
256-bit word as read/write in one cycle. Therefore, the ADU selects an appropriate
memory to read/write a 64-bit word. Moreover, it also communicates to the SABER
controller to pass/collect 64-bit (for SHA3 variants) or 256-bit (for other SABER blocks)
data as input/output to/from the SABER core.

4.1.5 SABER Building Blocks
The blue portion in Fig. 18(a) and Fig. 18(b) shows the SABER building blocks, including
the FSM controller to drive the SABER operations (i.e., key generation, encapsulation,
and decapsulation). These SABER building blocks can be implemented using different
approaches. However, serial and parallel implementations of these building blocks are
described below.

SHA3-256/512 & SHAKE-128. Fig. 18(a) and Fig. 18(b) show that SABER
uses SHA3-256 and SHA3-512 hash functions. Moreover, it also uses an EoF (SHAKE-
128). These hash and EoF functions use the KECCAK sponge function to compute
the ‘state permutations’. Hence, in Fig. 18(a) and Fig. 18(b), these hash functions
are implemented in a wrapper across a single KECCAK core like implemented in [30].
For Fig. 18(a), an open-source high-speed implementation of the KECCAK core is
selected, originally developed by the KECCAK team in [116]. This high-speed KECCAK
core computes ‘state permutations’ iteratively (or in a serial fashion) after every 28
clock cycles; generating 1,344 bits of pseudo-random string in 28 cycles. The serial
implementation of the KECCAK core is illustrated in Fig. 19(a). For the parallel SABER
architecture of Fig. 18(b), a serial KECCAK core of [116] is modified with orange
additional blocks to half the clock cycles, and the update block design of the KECCAK
core is shown in Fig. 19(b).

The serial implementation of the KECCAK core of Fig. 19(a) needs an instance
each of (i) Buffer_Unit, (ii) Const_Gen_Unit, and (iii) Round_Unit. The initial
vectors, intermediate, and final results are kept in the Buffer_Unit. Also, Buffer_Unit
holds different counter values for generating KECCAK round vectors. Therefore,
Const_Gen_Unit generates 64-bit round vectors based on a 5-bit counter value coming
from Buffer_Unit. The Round_Unit specifies the KECCAK sponge function, and its
implementation relies on implementing five KECCAK building blocks, i.e., theta, pi,
rho, chi, and iota6. Moreover, the Round_Unit takes two 64-bit inputs, one from the

6The theta, pi, rho, chi, and iota KECCAK building blocks operate on 64-bit width, and

54

(a) Serial design of KECCAK, implemented in [116].

(b) Parallel design of KECCAK.

Figure 19: KECCAK cores.

Const_Gen_Unit, and another from the Buffer_Unit. It generates a 64-bit vector as
output which is further connected as an input to a register inside the Buffer_Unit. This
technique takes 28 cycles to serve 24 KECCAK rounds iteratively: 24 cycles are for 24
KECCAK rounds, and an additional 4 cycles determine the ‘wait’ until the registers in
the datapath are free. This serial KECCAK implementation architecture can also be
named KECCAK with a single-sponge function.

On the other hand, the parallel implementation of the KECCAK core of Fig. 19(b)
can also be named KECCAK with a double-sponge function. It details how the number
of clock cycles of the KECCAK core can be reduced by using additional orange-colored
boxes. It includes a Buffer_Unit, two blocks of the Const_Gen_Unit and Round_Unit.
As the name implies, the Buffer_Unit keeps the initial, intermediate, and final KECCAK
results. Like serial (or single-sponge) KECCAK architecture, it also holds counter values
for generating round vectors. Therefore, the Buffer_Unit is modified by adding a
register and an accumulator. Each register takes a 64-bit vector from the corresponding
Round_Unit block, while an accumulator is mandated to produce the final result for the
next KECCAK round. Similarly, each block of Const_Gen_Unit takes a 5-bit counter
value as input from Buffer_Unit and produces a 64-bit constant vector as an output.
Each instance of the Round_Unit (or sponge function) takes two 64-bit inputs and
produces a single 64-bit output for the registers in the Buffer_Unit. The first 64-bit
input to the corresponding sponge function is from the round constants block. The
second 64-bit input to the first sponge function is from the KECCAK buffer (after the
accumulation) and its output goes as an input to the second sponge function. This
means the sponge functions are connected serially, one after another. The outputs of
the first and second sponge functions are connected as inputs to the KECCAK buffer to
accumulate the results. Employing double-sponge KECCAK functions, 14 clock cycles

the related mathematical functions to implement these KECCAK building blocks are described
in [68].

55

are (only) required to operate 24 KECCAK rounds. Compared to the SABER FPGA
design of [30], the double-sponge function divides the cycle counts by two with area
and power overhead.

Binomial sampler. A binomial sampler operates on parameter µ and computes a
sample from a µ-bit pseudo-random input string. Let us assume r[µ−1 : 0] is a pseudo-
random string. Then the sample is computed by subtracting the Hamming weight of
the most-significant µ/2 bits from the Hamming weight of the least-significant µ/2
bits, i.e., by computing HW(r[µ/2 − 1 : 0]) – HW(r[µ− 1 : µ/2]), where HW() specifies
the Hamming weight. In the SABER PQC protocol, the secret polynomial coefficients
are computed from centered binomial distribution using parameters µ = 10, µ = 8,
and µ= 16 for LightSABER, SABER, and FireSABER. Hence the secret polynomial
coefficients in SABER PQC KEM must be in a range [-5, 5], [-4, 4], and [-3, 3] for
LightSABER, SABER, and FireSABER. As the parameter µ is very small in all variants
of SABER, it is very simple to implement a binomial sampler using bit manipulations.
Therefore, in Fig. 19(a) and Fig. 19(b), the binomial sampler is a combinational block
that directly maps the input string into a sample value based on the parameter value µ.
A sample is represented as a 4-bit signed-magnitude number for all variants of SABER.
In the reference C/C++ implementations of SABER, a sample is represented using
2’s complement number system. However, it has been reported in [30] that using a
signed-magnitude number system reduces hardware complexity. Therefore, this study
also uses a signed-magnitude number system to represent a sample.

In the binomial sampler of Fig. 19(a), two 64-bit words are loaded from the data
memory and stored in a 128-bit buffer. After that, for SABER where parameter µ= 8,
16 (128/µ= 8) samples are generated in parallel and stored in a 64-bit output buffer
(samples × 4, where 4 represent a sample in a signed-magnitude number system for
µ= 8). Finally, the 64-bit word from the output buffer is written back into data memory.
On the other hand, in the binomial sampler of Fig. 19(b), eight 64-bit words are loaded
from the data memory and stored in a long 512-bit buffer. Then, for SABER where
parameter µ = 8, 64 (512/µ = 8) samples are generated in parallel and stored in a
256-bit output buffer (samples × 4, where 4 represent a sample in a signed-magnitude
number system for µ= 8). Finally, the 256-bit word from the output buffer is written
back into data memory. Generating 64 samples in parallel in Fig. 19(b) is beneficial to
reduce clock cycles with area and power overhead.

Multiplier. In ideal and module lattice-based cryptosystems, the performance
of the polynomial multiplier plays a critical role. Hence, SABER uses power-of-two
moduli p= 210 and q = 213, the fastest native NTT-based polynomial multiplier is not
beneficial for SABER. The reference C/C++ implementation of SABER uses Toom-
Cook polynomial multiplier, the second fastest multiplier after NTT. The structure of
the Toom-Cook multiplier is recursive, and it is difficult to transform into an iterative
algorithm. In [86], a hardware implementation of the Toom-Cook multiplier is described
for lattice-based cryptosystems where several challenges have been identified when
implementing the recursive function calls of the Toom-Cook.

In this thesis, an SBM multiplier is realized for SABER PQC KEM. Recalling once
more, SABER involves public and secret polynomials of degree 256. Therefore, a
schoolbook multiplier of degree 256 is shown in Algorithm 11.

56

Algorithm 11: Traditional integer polynomial SBM multiplier for SABER [30].
Input: Polynomial a(x) and b(x) of degree 256
Output: The product of a(x) · b(x) of degree 256

1 acc(x)← 0
2 for i = 0; i < 256; i = i + 1 do
3 for j = 0; j < 256; j = j + 1 do
4 acc[j] = acc[j] + b[j].a[i] mod Zq

5 b = b.x mod Rq

6 return acc

Line one of Algorithm 11 initializes an accumulator buffer with 0. Moreover, this
accumulator buffer stores the multiplication result. Line four of Algorithm 11 multiplies
the i-th coefficient of a(x) with the j-th coefficient of b(x) followed by modular
addition and reduction operations. This is the integer polynomial multiplication of two
polynomials of degree 256. After executing the inner for loop, line five of Algorithm
11 multiplies the rotated polynomial b(x) with x in Rq, where Rq is a ring of the
polynomial.

Algorithm 11 describes the traditional way to multiply public and secret polynomials
of degree 256; specific to SABER, some optimizations can be made to reduce the
complexity of the SBM multiplier. The public polynomial is represented with a(x),
and the secret polynomial is shown with s(x). Moreover, the public polynomial
multiplications are computed in Rp and Rq. The coefficients of a secret polynomial
are generated from the centered binomial distribution, and depending on the variant of
SABER, the secret coefficients are contained in the intervals [-3,3], [-4,4], and [-5,5]. In
addition, the modular reduction in p and q is free in SABER as these are in power-of-two.
Hence, reduction-free modular multiplication to multiply SABER polynomial coefficients
is shown in Algorithm 12 where the coefficient-wise polynomial multiplication is shown
using shift and add operations rather than a true integer multiplier. It is important to
note that the coefficient of secret polynomial s is in a signed-magnitude form, and the
multiplications need to perform only with their absolute values. The accumulator buffer
must update by adding or subtracting the results based on the sign-bit of the coefficient
of s. As the modulus q is a power of 2 and the coefficients of a are represented as
13-bit numbers, modulus reduction is implicit and requires no additional operation.

Algorithm 12: Coefficient wise shift and add multiplier [30].
Input: a(i) (a 13-bit number) and s(i) (a 3-bit number with 0≤ sj ≤ 5)
Output: The product of a(i) ·s(j) modulo q = 213

1 n0← 0
2 n1← ai

3 n2← ai≪ 1
4 n3← ai + (ai≪ 1)
5 n4← ai≪ 2
6 n5← ai + (ai≪ 2)
7 return nk, where k = sj

The overall cost of the multiplier for SABER depends on the computation of the
following matrix, where a, s, and r show the coefficients of public, secret, and resultant
polynomials. Each row of matrix a contains 256 13-bit polynomial coefficients. Each row

57

of the matrix s contains 256 4-bit polynomial coefficients. Therefore, 768 coefficients
are in three rows of a matrix a and a matrix s.a(0,0) a(0,1) . . . a(0,255)

a(1,0) a(1,1) . . . a(1,255)
a(2,0) a(2,1) . . . a(2,255)

 ·

s0
s1
s2

=

r0
r1
r2

 (12)

In Fig. 18(a), a serial multiplier is implemented using an SBM architecture to
compute Eq. 12 for coefficient multiplications of SABER. The serial architecture of
the SBM multiplier is illustrated in Fig. 20 where 256 MAC units are employed to
implement the matrix of Eq. 12 for coefficient multiplications. Moreover, two buffers
(sbuff and abuff) load the corresponding secret and public polynomial coefficients
from the external data memory for multiplication. An additional buffer (i.e., accbuff)
accumulates the multiplication result. Furthermore, each MAC unit performs coefficient
multiplication using Algorithm 12. The multiplication starts with loading 256 secret
polynomial coefficients from the first row of Eq. 12 into the corresponding buffer. Then,
256 public polynomial coefficients will be loaded into the corresponding buffer from the
first row of Eq. 12. After that, the multiplication will be computed, and the result will
be stored in the accumulator buffer (i.e., accbuff). This process repeats twice for the
second and third rows multiplication of Eq. 12. Note 256 MAC units are running in
parallel in this iterative approach. Each MAC unit takes one clock cycle for singular
13-bit and 4-bit polynomial coefficient multiplication. Thus, the architecture of Fig. 20
takes 768 clock cycles to implement the SABER matrix multiplication of Eq. 12.

Figure 20: Serial SBM multiplier architecture for SABER coefficients multiplication [86].

Based on the serial SBM multiplier of Fig. 20, a fully parallel SBM multiplier is
proposed and the block diagram is shown in Fig. 21, which is utilized for SABER
coefficient multiplications in Fig. 18(b).

As shown in Fig. 21, the fully parallelized polynomial multiplication design includes
two long polynomial buffers (LPPB and LSPB) and three copies of a schoolbook
multiplier, that is, SBM1, SBM2, and SBM3. The length of LPPB and LSPB is
proportional to the size of the matrix a and matrix s, respectively. Recalling again that
each row of matrix a contains 256 13-bit public polynomial coefficients and each row of
the matrix s contains 256 4-bit secret polynomial coefficients. Therefore, matrix a and
s contain 768 coefficients in three rows (256 in one row). Then, the length of LPPB is
9984 bits (768×13) and the length of LSPB is 3072 bits (768×4). Multiplication starts
with loading 768 polynomial coefficients into LPPB and LSPB buffers.

When loading all the 768 polynomial coefficients into LPPB and LSPB buffers is
finished, the corresponding 256 public and secret polynomial coefficients are forwarded

58

Figure 21: Parallel SBM multiplier architecture for SABER coefficients multiplication.

to multipliers SBM1, SBM2, and SBM3. The design of the SBM1 multiplier is shown
in Fig. 21; it contains three buffers (i.e., pbuff1, sbuff1, and accbuff1) and 256 MAC
units. The pbuff1 and sbuff1 contain 256 coefficients of the first row of the matrix
a and matrix s from Eq. 12 for multiplication. The multiplication computation takes
256 clock cycles having 256 MAC units. Each MAC unit takes two inputs, the size
of the first input is 13-bit (public polynomial coefficient), and the size of the second
input is 4-bit (secret polynomial coefficient), resulting in a 13-bit polynomial as output,
as shown in Fig. 21. A 13-bit output polynomial from each MAC relies on the 4-bit
secret polynomial. Two bits from the LSB side of a secret polynomial decide between
shifted 13-bit public polynomial coefficients (a, 2a, 3a, 4a) using a multiplexer M1.
The next (third) bit from the LSB side is a sign bit. The last bit of a secret polynomial
coefficient determines the modular addition or subtraction operation to generate a
13-bit multiplication result. Finally, accbuff1 accumulates the multiplication results for
the SBM1 multiplier.

Similarly, for SBM2 and SBM3 multipliers, the identical strategy of the SBM1
multiplier is utilized, as shown in Fig. 21. But, in the SBM2 multiplier, pbuff2 and
sbuff2 keep the public and secret polynomial coefficients of the second row of the
matrix a and matrix s of Eq. 12. Similarly, pbuff3 and sbuff3 hold the public and secret
polynomial coefficients from the third row of matrix a and matrix s of Eq. 12. It is
essential to note that an additional buffer is also required to accumulate multiplication
results from three copies of the used SBM multipliers. Therefore, Fig. 21 shows that an
additional ‘raccbuff’ buffer accumulates the multiplication results from SBM1, SBM2,
and SBM3 before writing back on the employed data memory.

In a nutshell, the computational cost of the serial and parallel SBM multipliers of

59

Fig. 20 and Fig. 21 is 768 and 256 clock cycles, respectively. In Fig. 20, 256 MAC
units have been used and these MACs operated iteratively (or serially) to compute the
polynomial multiplications of Eq. 12 in 768 clock cycles. The identical strategy is also
utilized in schoolbook multipliers of [30, 34, 36] for SABER polynomial coefficients. On
the other hand, the parallel SBM multiplier of Fig. 21 utilizes 768 MAC units (running
all in parallel) and takes 256 clock cycles to compute the polynomial multiplications of
Eq. 12. Despite the computational cost of the coefficients multiplication, the use of a
long buffer (i.e., LPPB and LPSB) approach is beneficial to avoid frequent memory
access for read/write operations in Fig. 21 because the SABER architecture deals with
256-bit data bus instead of the typical 64-bit size found in the literature (and in Fig. 20).
The total clock cycle cost of loading public and secret polynomials from data memory
is 156 and 48 for the serial SBM design of Fig. 20. The fully-parallelized architecture of
Fig. 21 reduces these costs to 39 and 12 cycles. Apart from the computation cost, the
area utilization of the multiplier of Fig. 21 is 3 times the area consumed by the SBM
multiplier of Fig. 20.

Other SABER building blocks. The UnPack, AddPack, AddRound, BS2POLVECp,
CopyWords, CMOV, and Verify blocks are implemented to deal with the corresponding
64-bit and 256-bit SABER architectures of figures 20 and 21. The objective of the
UnPack block in SABER is to transform a byte string into a bit string. The AddPack
block performs coefficient-wise addition of a constant with a generated message, which
is subsequently packed into a byte string. Similarly, the AddRound block executes
coefficient-wise addition of a constant with coefficient-wise rounding. The BS2POLVECp
block transforms the byte string into a polynomial vector. CopyWords block in SABER
is incorporated in figures 20 and 21 to perform matrix transpose by copying rows in
columns and vice versa. The Verify block in the SABER compares two-byte strings of
the same length. The output of the Verify block enables the CMOV block to either copy
the decrypted session key or a pseudo-random string at a specified memory location.

4.2 Implementation Results
Table 6 provides the implementation results on a 65nm commercial technology for the
baseline and optimized architectures. These results are obtained after logic synthesis
using Cadence Genus. Column one of Table 6 shows the baseline and optimized designs
constructed from variants of Fig. 18. The area information is provided in columns two
and three. Similarly, the timing information is presented in columns four and five. From
columns six to eleven, power information is provided.

Area and Power Evaluations. The serial SABER architectures of Fig. 18(a)
concurrently using compiled memories in a “smart synthesis” fashion with logic sharing
to several SABER building blocks and pipelining allows maximizing the clock frequency.
Column five of Table 6 shows that this approach enables obtaining a clock frequency of
up to 1GHz on 65nm process technology with area (column two) and power (columns
six to eleven) overheads. Optimizing from the baseline (DP_1(1024×64)) to the
PIP_DP architectures revealed that the memory is the primary bottleneck in the
SABER implementation. For example, in the case of the baseline design, the total
dynamic power consumption of the utilized memory is 44%, while the combinational
logic accounts for only 19%. Moreover, an increase in the number of memory instances
increases the power consumption of the designs, as noticed in the last column of Table 6
for the PIP_DP_4(1024×16) architecture where four memory instances account for
72% of the total dynamic power and the logic consumes only 10%. Therefore, one
approach to overcoming this bottleneck involves using faster memory instances, as

60

demonstrated by the PIP_SP_4(256×64) architecture, where the combinational logic
and the memory account for 23% and 27% of the dynamic power consumption of the
SABER architecture. Despite the timing and power results, column two of Table 6
shows that the increase in memory instances also increases the area.

Similarly, for parallel SABER architectures of Fig. 18(b) where four memory instances
are running in parallel, the PIP_SP_4(256 × 64) and SS_Parallel_SP_4(256 × 64)
designs obtain 1GHz clock frequency, as shown in column five of Table 6. On the
other hand, DS_Parallel_SP_4(256 × 64) design can operate on a maximum clock
frequency of 936MHz. In addition, implementing SS_Parallel and DS_Parallel designs
reveals that the logic consumes more dynamic power than the four memory instances
running all in parallel; see columns nine and eleven of Table 6. The potential reasons
include the 256-bit data path where all SABER building blocks operate on 256-bit words
instead of the SHA3-256/512 and SAHKE wrapper. Another reason is implementing
the SABER building blocks using several buffers as utilized in Fig. 19(b) for KECCAK
hash computations and Fig. 21 for fully parallelized SBM multiplier. The use of several
buffers in SABER building blocks causes to increase in the dynamic power consumption
of the sequential logic instead of the combinational, as can see that the SS_Parallel
design consumes 76% (for sequential logic or flip-flops), 17% (for combinational logic),
and 7% (for four instances of RegFiles running all in parallel) of the total dynamic
power consumption. On the other hand, the DS_Parallel design consumes 53% (for
sequential logic or flip-flops), 41% (for combinational logic), and 5% (for four instances
of RegFiles running all in parallel) of the total dynamic power consumption.

Critical path analysis. On 65nm process technology, the critical paths of the
designs of Fig. 18(a) and Fig. 18(b) are presented in Fig. 22. It shows that the memories
containing longer access time to read/write one operation result in longer critical paths.
Moreover, as seen from DP_1 to PIP_DP designs in Fig. 22, the memory is the real
bottleneck, while the use of faster SRAM-based RegFiles results in a shorter critical
path, as can be seen for last three designs. In other words, as shown in Fig. 22, the
critical path of the baseline architecture (i.e., DP_1) depends on the memory and some
amount of combinational logic (to a lesser degree). However, this is not the case for
the last three optimized architectures (PIP_SP, SS_Parallel, and DS_Parallel), where
the critical path is mostly combinational logic. Also, the critical path of the PIP_SP
design contains the setup time of the destination flip-flop, as this design contains a
pipeline register between the memories and a binomial sampler.

DP_1
DP_2

DP_4
DP_8

PIP_DP
PIP_SP

SS_Parallel

DS_Parallel
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C
ri

ti
ca

l P
at

h
 (

in
 n

s)

Memory
Logic
FFs

Figure 22: Critical path evaluations of serial and parallel SABER architectures.

61

Ta
bl

e
6:

Re
su

lts
af

te
r

lo
gi

c
sy

nt
he

sis
fo

rs
er

ia
la

nd
pa

ra
lle

lS
AB

ER
PQ

C
K

EM
on

65
nm

pr
oc

es
s

te
ch

no
lo

gy
.

D
es

ig
ns

A
re

a
R

es
ul

ts
T

im
in

g
R

es
ul

ts
Po

w
er

In
fo

rm
at

io
n

(in
m

W
)

A
re

a
G

at
es

C
lk

.
P

Fr
eq

C
ry

pt
o

co
re

C
om

b
lo

gi
c

M
em

or
y

(m
m

2)
(n
s)

(M
H
z
)

Lk
g

D
yn

Lk
g

D
yn

Lk
g

D
yn

Se
ria

lS
A

B
ER

de
sig

ns
w

ith
64

-b
it

da
ta

pa
th

+
sin

gl
e-

sp
on

ge
→

se
e

Fi
g.

18
(a

)
DP

_1
(1

02
4×

64
)

0.
29

9
43

33
6

2.
00

0
50

0
0.

09
0

86
.8

44
0.

05
9

16
.2

35
(1

9%
)

0.
00

3
38

.0
01

(4
4%

)
DP

_2
(1

02
4×

32
)

0.
30

8
45

31
9

1.
71

8
58

2
0.

09
1

10
4.

83
5

0.
05

9
18

.4
99

(1
8%

)
0.

00
4

48
.3

22
(4

6%
)

DP
_4

(1
02

4×
16

)
0.

34
0

39
98

1
1.

63
8

61
0

0.
08

2
13

5.
34

2
0.

05
1

18
.7

62
(1

4%
)

0.
00

6
81

.3
68

(6
0%

)
DP

_8
(5

12
×

16
)

0.
47

8
45

97
9

1.
62

4
61

5
0.

09
9

22
0.

41
0

0.
06

2
21

.6
91

(1
0%

)
0.

01
0

15
7.

49
0

(7
1%

)
PI

P_
DP

_4
(1

02
4×

16
)

0.
36

5
46

21
7

1.
50

8
66

3
0.

09
7

23
3.

36
1

0.
06

3
20

.8
90

(1
0%

)
0.

00
6

16
8.

47
6

(7
2%

)
PI

P_
SP

_4
(2

56
×

64
)

0.
31

4
64

23
0

0.
99

8
10

02
0.

11
1

14
2.

41
3

0.
07

4
32

.9
25

(2
3%

)
0.

00
6

39
.0

60
(2

7%
)

Pa
ra

lle
lS

A
B

ER
de

sig
ns

w
ith

25
6-

bi
t

da
ta

pa
th

+
sin

gl
e/

do
ub

le
-s

po
ng

e
→

se
e

Fi
g.

18
(b

)
SS

_P
ar

all
el_

SP
_4

(2
56

×
64

)
0.

94
4

19
92

88
0.

99
8

10
02

0.
41

2
64

6.
88

0
0.

24
1

10
6.

45
7

(1
7%

)
0.

00
6

45
.3

76
(7

%
)

DS
_P

ar
all

el_
SP

_4
(2

56
×

64
)

1.
02

6
23

77
61

1.
06

8
93

6
0.

46
1

86
0.

50
4

0.
28

9
35

4.
02

8
(4

1%
)

0.
00

6
43

.0
20

(5
%

)
C

lk
.

P
:c

lo
ck

pe
rio

d,
Fr

eq
:

op
er

at
in

g
fre

qu
en

cy
,L

kg
:

le
ak

ag
e

po
we

r,
D

yn
:

dy
na

m
ic

po
we

r,
C

om
b

lo
gi

c:
co

m
bi

na
tio

na
ll

og
ic

,T
he

fli
p-

flo
ps

in
SS

_P
ar

al
le

l
de

sig
n

co
ns

um
e

49
3.

07
2

dy
na

m
ic

po
we

r,
w

hi
ch

is
76

%
of

th
e

to
ta

ld
yn

am
ic

po
we

r,
T

he
fli

p-
flo

ps
in

D
S_

Pa
ra

lle
l_

SP
_4

(2
56
×

64
)

de
sig

n
co

ns
um

es
46

1.
62

8
dy

na
m

ic
po

we
r,

w
hi

ch
is

53
%

of
th

e
to

ta
ld

yn
am

ic
po

we
r.

62

As observed that the critical paths of the last two designs in Fig. 22 are a bit higher
than the critical path of the most-optimized PIP_SP design. One reason is the pipelining
in PIP_SP design; another is 64-bit words in the data path, while SS_Parallel and
DS_Parallel designs operate on 256-bit words. One more thing is observed that using a
single-sponge function (as used in SS_Parallel design) results in a shorter critical path
than the DS_Parallel design where two sponge functions are employed in the wrapper
of SHA3-256/512 and SHAKE-128 functions. As the critical path of the SS_Parallel
and DP_Parallel designs is a bit higher than the PIP_SP design, the SS_Parallel
and DP_Parallel designs are beneficial to reduce the clock cycles requirement, which
will be discussed next. Overall, the critical path evaluations of SABER designs with
different characteristics imply that the last three optimized architectures are saturating
the memory bandwidth thanks to the optimization strategies at the architecture and
circuit levels.

Clock cycle count. The clock cycles have been calculated from end to end of
each operation (KEYGEN, ENCAPS, and DECAPS). Moreover, the computation time
needed to perform one cryptographic operation determines the latency, measured in µs,
and is calculated using Eq. 13. Therefore, the total clock cycles and latency to compute
KEYGEN, ENCAPS, and DECAPS operations of the baseline and optimized designs are
provided in Table 7. Column one provides the implemented design, and columns two to
four provide the total clock cycles for KEYGEN, ENCAPS, and DECAPS operations.
Finally, the last three columns show the latency values.

Latency (µs) = Total Clock Cycles

Clock Frequency (MHz) (13)

Table 7: Total clock cycles and latency for CCA-secure KEM SABER on a 65nm commercial
technology.

Designs Total Clock Cycles Latency (µs)
KEYGEN ENCAPS DECAPS KEYGEN ENCAPS DECAPS

DP_1 5644 6990 8664 11.2 13.9 17.3
DP_2 5644 6990 8664 9.6 12.0 14.8
DP_4 5644 6990 8664 9.2 11.4 14.2
DP_8 5644 6990 8664 9.1 11.3 14.0
PIP_DP 5741 7087 8761 8.6 10.6 13.1
PIP_SP 7154 7136 9359 7.1 7.1 9.3
SS_Parallel 4166 4917 5249 4.1 4.9 5.2
DS_Parallel 3836 4554 4908 4.0 4.8 5.2

For the first six designs, Table 7 shows that the increase in both clock cycles and
clock frequency (values given in column five of Table 6) results in a decrease in the
computation time, i.e., latency. On the other hand, for the last two designs, Table 7
shows a decrease in both clock cycles and clock frequency (values provided in column
five of Table 6), resulting in a decrease in the computation time.

Apart from the total clock cycle information in Table 7, the clock cycle dis-
tribution amongst the building blocks of the SABER PQC algorithm is further
shown in Fig. 23. Note, this information is only provided for the last three opti-
mized designs: (i) PIP_SP_4(256 × 64), (ii) SS_Parallel_SP_4(256 × 64), and (iii)
DS_Parallel_SP_4(256 × 64). Therefore, from left to right, the first row with three

63

panels in Fig. 23 specifies the KEYGEN, ENCAPS, and DECAPS operations for
a serial SABER architecture, i.e., PIP_SP_4(256 × 64). Similarly, the second row
includes three panels for the same three operations on a parallel SABER architec-
ture – SS_Parallel_SP_4(256 × 64) – with a single sponge in its KECCAK block.
DS_Parallel_SP_4(256 ×64) design in the third row of Fig. 23 has the double-sponge
functions. The total clock cycles from the last three rows of Table 7 are presented
again in the bottom panel of Fig. 23. In addition, in Fig. 23, hash shows the variants of
SHA3 (256/512) and SHAKE-128.

KEYGEN

Multi
plie

r
Copy
Has

h

AddRound
Sam

pler
Oth

er
AddPac

k
UnPac

k

BS2P
OLVEC
Ver

ify

100

102

104
ENCAPS

Multi
plie

r
Has

h

AddRound

BS2P
OLVEC

Sam
pler

Oth
er

AddPac
k

UnPac
k

Copy
Ver

ify

100

102

104
DECAPS

Multi
plie

r
Has

h

BS2P
OLVEC
Ver

ify
Oth

er

AddRound
UnPac

k
Sam

pler
AddPac

k
Copy

100

102

104

Multi
plie

r
Copy
Has

h

AddRound
Sam

pler
Oth

er
AddPac

k
UnPac

k

BS2P
OLVEC
Ver

ify

100

102

104

Multi
plie

r
Has

h

AddRound

BS2P
OLVEC

Sam
pler

Oth
er

AddPac
k

UnPac
k

Copy
Ver

ify

100

102

104

Multi
plie

r
Has

h

BS2P
OLVEC
Ver

ify
Oth

er

AddRound
UnPac

k
Sam

pler
AddPac

k
Copy

100

102

104

Multi
plie

r
Copy
Has

h

AddRound
Sam

pler
Oth

er
AddPac

k
UnPac

k

BS2P
OLVEC
Ver

ify

100

102

104

Multi
plie

r
Has

h

AddRound

BS2P
OLVEC

Sam
pler

Oth
er

AddPac
k

UnPac
k

Copy
Ver

ify

100

102

104

Multi
plie

r
Has

h

BS2P
OLVEC
Ver

ify
Oth

er

AddRound
UnPac

k
Sam

pler
AddPac

k
Copy

100

102

104

Total clock cycle counts

KEYGEN ENCAPS DECAPS
0

5000

10000

PIP_SP SS_Parallel DS_Parallel

Figure 23: Clock cycle distribution for PIP_SP, SS_Parallel, and DS_Parallel designs.

As expected, Fig. 23 shows a decrease in clock cycles for KEYGEN, ENCAPS, and
DECAPS operations when moving from a serial (PIP_SP) to a parallel design with
a single-sponge function (SP_Parallel) – see blue and red bars. Similarly, there is
a decrease in clock cycles for hash operation when comparing two parallel SABER
designs (SP_Parallel and DS_Parallel) with single- and double-sponge functions (see
red and green bars). The last panel in Fig. 23 highlights the total cycle count for
each operation on the last three optimized architectures. The average number of
clock cycles required to execute KEYGEN, ENCAPS, and DECAPS operations using an
SS_Parallel accelerator is 1.65× lower than the serial SABER architectures of [34, 36].
The DS_Parallel accelerator design further reduces the clock cycle requirement by
1.07× compared to SS_Parallel architecture.

Until now, the implementation results are presented on a commercial 65nm process
technology. Next, the last two optimized (SS_Parallel, and DS_Parallel) parallel designs
have also been evaluated on a modern 28nm process technology to investigate the clock
frequency, latency, area, power, and energy parameters. After the logic synthesis, the
implementation results are given in Table 8. Column one provides the implementation

64

Table 8: Results of the optimized SABER accelerators on 28nm technology.

Implementation details SS_Parallel DS_Parallel
Maximum Frequency (MHz) 2500 2500
Latency (µs) 1.66/1.96/2.09 1.53/1.82/1.96
Utilized Area (mm2) 0.251 0.255
Power (Lkg/Dyn) (mW) 10.96/556.25 11.49/597.05
Energy (µJ) 0.923/1.090/1.162 0.913/1.086/1.170

details regarding clock frequency, latency, area, power, and energy. Columns two and
three show the corresponding values for SS_Parallel and DS_Parallel designs. By
separating with a ‘/’ character, the latency, power, and energy values are given for
KEYGEN, ENCAPS, and DECAPS operations of SABER. Similarly, Lkg and Dyn are the
leakage and dynamic power consumption. The Vivado IDE tool is used for simulations,
while Cadence Genus is used for logic synthesis. In addition, the area and power values
are reported directly from the synthesis tool; latency values are calculated using Eq. 13;
energy values are calculated using Eq. 14.

Energy (µJ) =Dynamic Power (mW)×Latency (µs) (14)

Table 8 shows that the SP_Parallel and DP_Parallel designs can operate on
2500MHz clock frequency. DS_Parallel design reduces the computation time for
the SABER’s KEYGEN, ENCAPS, and DECAPS operations compared to SS_Parallel
design. The reason is the single-sponge function in SS_Parallel design while double-
sponge functions in DS_Paralel design, comparatively, the double-sponge functions
minimize the clock cycle. Although DS_Parallel design reduces the computation time,
on the other hand, it increases by +4.63% and +6.84% for leakage and dynamic power,
and +1.57% increase in area. The max frequency is obtained by pushing the timing
constraint until the slack is close to zero. Apart from the area and power increase,
the DL_Parallel design has higher merit as it consumes nearly the same energy as the
SS_Parallel design.

In summary, a significant improvement in clock cycles, latency, area, power, and
energy when moving from a serialized design to parallel architectures reveals that the
realized approaches (of Fig. 18, Fig. 19 and Fig. 21) can be utilized in other PQC
algorithms for optimizations.

4.3 Comparison and Discussion
The previous section describes the DSE process, where one baseline and seven optimized
SABER designs have been constructed. Therefore, comparing all the baseline and
optimized designs is challenging with existing SABER architectures; however, the most
optimized (three) designs are selected to compare to state-of-the-art architectures:
PIP_SP, SS_Parallel, and DS_Parallel. Table 9 shows the comparison after logic
synthesis to existing FPGA and ASIC SABER implementations. Also, the NIST-selected
CRYSTALS-Kyber PQC KEM to be standardized in the near future is compared. Column
one provides the reference design, while the implementation platform (FPGA/ASIC) is
shown in column two. The computational cost in latency for KEYGEN, ENCAPS, and
DECAPS operations is presented in column three. In addition, the latency values are
separated by the character ‘/’. The operating frequency in MHz is reported in column
four. Finally, the last column shows the area (LUT/FF for FPGA and ASIC in mm2).

65

A symbol ‘–’ is placed in Table 9 where the relevant information is not reported in the
reference designs.

Table 9: ASIC and FPGA comparison to existing PQC KEM SABER and CRYSTALS-Kyber
hardware accelerators after logic synthesis. All implementation results are for security equivalent
to AES-192.

Ref. # FPGA/ASIC Latency (µs) Freq. Area
(MHz) LUT/FF (or) mm2

SABER Implementations
[30] Ultrascale+ 21.8/26.5/32.1 250 23.6K/9.8K
[31] 40nm 2.66/3.64/4.25 400 0.38
[84] Artix-7 –/373.1/422.1 125 6.7K/7.3K
[86] Artix-7 3.2K/4.1K/3.8K 125 7.4K/7.3K
[88] Ultrascale+ –/60/65 322 –/–
CRYSTALS-Kyber Accelerators (Kyber-768)
[26] 28nm 4.5/5.6/6.9 2000 0.263
[117] Artix-7 209 115 16K/6K
[118] Artix-7 499.8 (ENCAPS) 155 97K/153K
[118] Artix-7 658.7 (DECAPS) 155 110K/167K
[119] Virtex-7 39 (KEYGEN) 217 22K/12K
[119] Virtex-7 57.5 (ENC+DEC) 226 29K/22K
[120] 65nm 35/50/70 200 372KGE
PIP_SP 65nm 7.1/7.1/9.3 1000 0.314
SS_Parallel 65nm 4.1/4.9/5.2 1002 0.944
DS_Parallel 65nm 4.0/4.8/5.2 936 1.026
SS_Parallel 40nm 2.4/2.9/3.0 1694 0.846
DS_Parallel 40nm 3.4/4.1/4.4 1095 0.767
SS_Parallel 28nm 1.6/1.9/2.0 2500 0.251
DS_Parallel 28nm 1.5/1.8/1.9 2500 0.255

ENC and DEC: represents encryption and decryption operations, ENCAPS and DECAPS:
shows encapsulation and decapsulation operations, GE: specifies the gate equivalents, Ref [117]:
reports the latency for ENCAPS + DECAPS and KEYGEN can be executed offline, Ref [118]:
instead of FFs, slices are reported as area, Ref [119]: the reported results are for Kyber-1024
(security equivalent to AES-256), Ref [120]: the latency values are calculated using the ratio
of clock cycles (mentioned in the reference paper) with frequency 200MHz.

Comparison to SABER hardware accelerators. As shown in Table 9, the FPGA
implementations are reported in [30, 84, 86, 88] while an ASIC SABER implementation
after logic synthesis is described in [31]. As mentioned before, the objective of the DSE
process was to improve the operating frequency of the lattice-based PQC hardware
accelerators specific to the ASIC platform. As can see in column four of Table 9, the
highest operating frequency on FPGA devices is 322MHz which is obtained in [88];
on the other hand, the frequency obtained for ASIC on 40nm technology is 400MHz
and is achieved in [31]; comparatively, on different ASIC platforms (65, 40, 28nm),
the operating frequency reported in column four of Table 9 for PIP_SP, SS_Parallel
and DS_Parallel designs is very high. More precisely, on an identical 28nm process
technology, the implemented SS_Parallel and DS_Parallel designs are 4.23× and 2.73×
faster than the ASIC implementation of [31]. Similarly, the implemented SS_Parallel
and DS_Parallel designs are 7.76× faster than the fastest FPGA implementation of [88].

66

Instead of the modern 40 and 28nm process technologies, more insight comparisons are
given below on 65nm technology, highlighting the significance of the DSE process.

Let us consider only the SABER FPGA designs for comparison, but before comparing
results, it is essential to highlight that a realistic comparison to FPGA devices is difficult
as the implementation platforms differ. In terms of computation time or latency (shown
in column three of Table 9), the most efficient implementation of SABER on FPGA
is described in [30], where the design takes 5453, 6618 and 8034 clock cycles for one
KEYGEN, ENCAPS, and DECAPS operations computation. Their design utilizes a
co-processor architecture style where all building blocks of SABER operate serially. The
PIP_SP architecture uses the same serial strategy for execution; therefore, the PIP_SP
accelerator takes 7154, 7136, and 9359 clock cycles to compute one KEYGEN, ENCAPS,
and DECAPS operation. Indeed, the PIP_SP design utilizes more clock cycles; on the
other hand, the PIP_SP accelerator on 65nm process technology requires 3.07× (for
KEYGEN), 3.73× (for ENCAPS), and 3.45× (for DECAPS) lower latency than [30].
This is due to the higher operating frequency of 1GHz in PIP_SP, which is obtained
by employing a pipeline register in the data path of the SABER crypto core, which
reduces the critical path. Another reason is using four smaller distributed single-port
RegFile memories in PIP_SP accelerator architecture while a singular dual-port BRAM
of size 64KB is used in [30]. In PIP_SP accelerator architecture, the same memory size
is utilized. The area comparison is hard as the implementation platforms are different.

In [84], a lightweight hardware implementation of SABER uses a masking technique
to protect against side-channel attacks. Initially, a lightweight hardware architecture is
designed as a baseline, and after that, countermeasures are incorporated for side-channel
attack protection. The authors claimed to have the first secure hardware-protected
implementation of SABER, outperforming previously reported secure software and
software/hardware co-design implementations. The area and latency results of the
unprotected SABER implementation of [84] are shown in Table 9, where the utilized
LUT and FF are 6713 and 7363. In addition, the utilized slices and DSP blocks (not
shown in Table 9) are 2631 and 32, respectively. If considering the protected SABER
implementation, the values for LUT, FF, slices, and DSP blocks are 19299, 21977, 7036,
and 64. The unprotected and protected SABER designs do not utilize the BRAMs and
operate on identical 125MHz frequency. Despite the area, the computational cost
(latency) of the unprotected SABER designs is 373.1µs (for ENCAPS) and 422.1µs (for
DECAPS). Similarly, the computational cost of the protected SABER designs is 576.0µs
(for DECAPS). On modern Artix-7 FPGA device, adding side-channel countermeasures
to unprotected SABER design of [84] results in a 2.87× (ratio of 19299 with 6713)
increase in the number of LUT and a 1.4× increase in latency. When comparing
the unprotected SABER design of [84] with PIP_SP architecture on 65nm process
technology, the PIP_SP design takes 52.54 and 45.38 times lower latency for ENCAPS
and DECAPS operations. The cause is the higher operating frequency of 1GHz for
PIP_SP, while in the reference design, the obtained circuit frequency is 125MHz on
Artix-7 FPGA. Also, this comparison shows that the PIP_SP design is 8× faster (in
operating frequency) compared to unprotected and protected SABER implementations
of [84].

Similar to other SABER designs, in [86], a hardware-software co-design approach is
utilized to implement SABER design. The authors have operated SABER operations on
an ARM core, and only the most computationally intensive polynomial multiplication
operation is tasked to the coprocessor, resulting in a compact design. They utilized
a distributed computing concept at the micro-architectural level, where different algo-

67

rithmic optimizations have been performed, resulting in a speedup of approximately
six times compared to optimized-only software implementation with a minor increase
in hardware cost. The Zynq-7000 FPGA SoC is used for hardware deployments. On
65nm technology, for KEYGEN, ENCAPS, and DECAPS operations, the PIP_SP
architecture utilizes 450.7×, 577.4×, and 408.6× lower latency, when compared to [86].
Moreover, like [84], the PIP_SP architecture is 8× faster in clock frequency. The area
comparison is challenging as the implementation platform in this study is ASIC, while
FPGA implementation is provided in the reference design.

Another co-processor-based SABER design is described in [88], where the imple-
mentation and benchmarking of three lattice-based KEM algorithms, including SABER,
have been presented. Compared to pure-software-based implementations, the SABER
co-processor on the Ultrascale+ platform results in 28× (for ENCAPS) and 20× (for
DECAPS) speed-ups. Therefore, compared to [88], the PIP_SP architecture on 65nm
technology results in a 3.10× speed-up in clock frequency. As for as the latency is
concerned for comparison, the PIP_SP design is 8.45× and 6.98× faster than [88].
The optimized latency in the PIP_SP accelerator is achieved due to pipelining and by
employing variants of four smaller SRAM-based RegFile memory instances.

Now let us see the ASIC SABER implementation of [31]. It describes an energy-
efficient configurable crypto-processor architecture supporting multiple security levels
of SABER. It incorporates an 8-level Karatsuba multiplier to perform coefficient-wise
multiplications. Moreover, an optimized hardware-efficient Karatsuba scheduling strategy
is implemented for a pre-/post-processing structure of the Karatsuba, which reduces
the area overheads. The SABER design of [31] takes 1066, 1456, and 1701 clock cycles
for KEYGEN, ENCAPS, and DECAPS operations. On TSMC 40nm process technology,
the utilized area of the SABER design of [31] is 0.38mm2 (shown in the last column
of Table 9). Comparatively, on 65, 40, and 28nm process technologies, the PIP_SP,
SS_Parallel, and DS_Parallel designs are faster than [31] in operating frequency because
in the serial PIP_SP architecture pipelining reduces the critical path which eventually
improves the operating frequency. The SS_parallel and DS_Parallel designs utilized a
wider 256-bit data path strategy, reducing the clock cycles. As shown in column three
of Table 9, the serial and parallel (PIP_SP, SS_Parallel, and DS_Parallel) designs on
65nm technology take higher computation time for KEYGEN, ENCAPS, and DECAPS
operations because the design of [31] uses two-sponge functions in the KECCAK core to
reduce the clock cycles and another reason is the use of several smaller memories specific
to SABER operations. On the other hand, the SS_Parallel and DS_Parallel designs on
identical 40nm and even on modern 28nm technologies take much lower computation
time than [31]. The reason is four smaller memories running all in parallel allows to deal
with a wider 256-bit data path in SS_Parallel and DS_Parallel designs, whereas in [31],
a 64-bit data path is implemented even with several smaller memories. Hence, using
four smaller memories running all in parallel in SS_Parallel and DS_Parallel design is
more efficient than [31] as this strategy reduces the clock cycles, improves the operating
frequency, and the ratio of clock cycles with the operating frequency allows to obtain
lower computation time.

Comparison to CRYSTALS-Kyber hardware accelerators. The point-to-point
comparison is challenging as the PQC schemes are different. Moreover, the area
comparison to FPGA devices is difficult as the implementation platforms differ. Hence,
this comparison shows the significance of several optimization techniques utilized
in executing the DSE process for optimizing the performance of the SABER PQC
algorithm. In addition, it highlights the importance of the techniques used in SABER

68

for optimizing other lattice-based NIST-selected PQC algorithms such as CRYSTALS-
Kyber, CRYSTALS-Dilithium, etc. Note that these optimization techniques are not
only specific to lattice-based PQC algorithms but can be used for other cryptographic
applications for different purposes. For instance, one-time data loading from memories
and a wider data path of 256-bit strategies are beneficial to reduce clock cycles. Below,
the comparison to some CRYSTALS-Kyber hardware accelerators is compared to the
last three optimized SABER designs.

As for as the ASIC implementations are concerned for comparison, in [26], a unified
architecture (named KaLi) is described to perform KEYGEN, ENCAPS, DECAPS,
SIGNGEN (signature-generation), and SIGNVRF (signature-verify) for all three security
levels of CRYSTALS-Kyber, and CRYSTALS-Dilithium PQC algorithms. On modern
28nm ASIC technology, KaLi can operate at a maximum of 2GHz clock frequency.
Comparatively, on identical 28nm ASIC technology, the SS_Parallel and DS_Parallel
designs can operate on 2.5GHz. As shown in column three of Table 9, the PIP_SP
design on 65nm technology takes more computation time than the design of [26] on
28nm technology. On the other hand, the parallel SABER designs take less computation
time than the KaLi design of [26]. The area reported for KaLi is higher than this
work because KaLi utilizes unified accelerator architecture for CRYSTALS-Kyber and
CRYSTALS-Dilithium algorithms. On 65nm process technology, an ASIC implementa-
tion of CRYSTALS-Kyber is described in [120] where a maximum 200MHz operating
frequency is achieved. On the same 65nm technology, the PIP_SP, SS_Parallel, and
DS_Parallel designs can operate on higher 1GHz, 1GHz, and 936MHz clock frequen-
cies. As can be observed from column three of Table 9, the optimized SABER designs
(in this study) take much less time in latency than CRYSTALS-Kyber implementation
of [120]. Similarly, in column five of Table 9, the area for reference design is given
in gate equivalents (which is 372K); however, the gate equivalents for implemented
SABER optimized PIP_SP, SS_Parallel, and DS_Parallel designs is 64.2K, 199.2K,
and 237.7K. These values are much lower than the 372K. Hence, the parallel designs
of this study are more efficient in operating frequency and latency compared to ASIC
accelerators of CRYSTALS-Kyber of [26, 120].

The FPGA-implemented designs of CRYSTALS-Kyber are reported in [117, 118, 119].
The designs of [117] and [118] generate the KEYGEN offline while the remaining two
operations, i.e., ENCAPS, & DECAPS, are executed on an FPGA device. Moreover,
the implementation of these two designs is different than each other. For example, in
[117], a unified design is presented for ENCAPS and DECAPS operations. The design
of [118] includes two implementations, one for each ENCAPS and DECAPS; these two
designs operate on identical 155MHz clock frequency (see column four of Table 9),
but the hardware utilization costs are different (97K LUTs for ENCAPS and 110K LUTs
for DECAPS – see column five of Table 9). The design of [119] is different than the
accelerators of [117, 118], as it implements all three operations (KEYGEN, ENC, and
DEC) on hardware; the KEYGEN design is dedicated while a unified implementation
is presented for ENC (encryption) and DEC (decryption) operations. Due to different
platforms, the latency and area parameters are difficult to compare with the ASIC-
implemented designs of this study. However, it can be seen from column four of
Table 9 that the optimized SABER implementations of this study are faster in clock
frequency as compared to recent CRYSTALS-Kyber implementations. The reasons are
the smaller memories running in parallel and the larger data path size of 256-bit (for
parallel designs). Apart from these techniques, pipelining, shared shift buffers across
several building blocks, and one-time data loading from the memories are the additional

69

approaches that help to obtain higher circuit frequency and reduce clock cycles. The
studied approaches in the DSE process are not specific to SABER and PQC algorithms;
these can be utilized in other related applications to optimize the operating frequency.

In summary, the premise of the DSE process was to optimize the operating frequency
of the PQC algorithms when demonstrated on the ASIC platform. Consequently, after
applying several optimization techniques, column four of Table 9 shows that the serial
and parallel designs (of this study) are faster in operating frequency compared to
state-of-the-art PQC accelerators with an additional area overhead.

70

5 High-Speed SABER Chip Design
This chapter concentrates on the silicon implementation of SABER designs from the
ones studied in the Chapter 4. Hence, an optimized PIP_SP serial design is considered
for fabrication. Initially, the chapter describes the chip architecture, including the top
wrapper, serial input/output interface, and SABER crypto core, along with the building
blocks in Section 5.1. Section 5.2 details the measurement results, including the chip
layouts, experimental setup, and the range of operations the fabricated chip supports.
In Section 5.3, the performance of the fabricated SABER chip is compared to existing
SABER silicon-proven implementations.

5.1 Chip Architecture
Fig. 24 shows the top-level architecture of the fabricated SABER chip. It includes a
wrapper, a serial-in/out interface, and the SABER crypto core. The wrapper acts as
a controller to operate the required cryptographic operations. As the name implies,
serial-in/out bears inputs serially from outside to the chip and also results in a serialized
output. The SABER crypto core is responsible for the computations of corresponding
operations such as KEYGEN, ENCAPS, and DECAPS. The upcoming sections provide
the architectural details of the wrapper, serial-in/out interface, and SABER crypto core.

Figure 24: Top-level architecture of the SABER chip, where gray portion specifies the wrapper.

5.1.1 Wrapper
Fig. 24 illustrates that the chip’s interface comprises 16 I/O pins, each capable of
handling a single bit. The input pins consist of clk1, clk2, rst, start, we, cont,
addr, addr_ready, din, lad1, lad2, crypto_op_1, crypto_op_2, and crypto_op_3,
whereas the output pins are dout and done.

As the objective of this study is to operate the SABER crypto core at a high frequency,
it becomes difficult to communicate with the outside environment at a high frequency.
Therefore, two different clocks (named clk1 and clk2) are utilized. The clk1 pin drives
a slower clock that feeds the serial I/O interface of the chip. Similarly, clk2 drives
the faster clock connected to the inner SABER crypto core. The names of various
other I/O pins are intuitive: rst is a reset signal, start is a trigger signal for starting

71

cryptographic operations, we is a write-enable, din is data in, dout is data out, addr
specifies read/write address. The pins addr_ready and done inform when operations
are finalized, either loading an address or an entire crypto operation.

The objective of using a cont pin is to measure the chip’s power consumption when
the KEYGEN, ENCAPS, and DECAPS operations are executed continuously (i.e., in an
infinite loop). Doing so will ensure that the power measurement is not affected by I/O
limitations.

The combined use of lad1 and lad2 allows to drive four possible combinations: (i)
2’b00 means “no-operation", (ii) 2’b01 means load read/write address on the chip using
addr, (iii) 2’b10 means load input data vector from outside on the chip using din,
and (iv) 2’b11 means reading data back from the chip on dout. The crypto_op_1,
crypto_op_2, and crypto_op_3 signals are used to select the crypto operation, either
KEYGEN, ENCAPS, or DECAPS.

The wrapper of the chip is an FSM-based dedicated controller. It is responsible to
execute the KEYGEN, ENCAPS, and DECAPS operations by properly orchestrating
the sequential use of the SABER blocks. The chip remains in an IDLE mode until the
start signal is asserted. Next, based on the values of crypto_op_1, crypto_op_2, and
crypto_op_3, the FSM begins to execute the corresponding sequence of instructions
for computation of KEYGEN, ENCAPS, and DECAPS operations. When the required
KEM operation completes its execution, the FSM returns the chip into an IDLE mode
(if cont is 0, otherwise the operation is continuously executed non-stop when cont is 1).

5.1.2 Serial-in/out interface
Fig. 25 depicts the architecture of the serial-in/out interface, which bridges the external
environment and the SABER crypto core. This interface helps data loading via serial
communication and serves two purposes: loading user-defined inputs din and addr
& chip debugging. The serial interface can access the entire memory addressing
space (1024×64) to store or retrieve data from the memories. The incoming bits are
accumulated into vector lengths of 10 bits for read/write addresses and 64 bits for
read/write data to load user-defined inputs. Three shift registers are used: (i) one for
read/write address, (ii) one for data input, and (iii) one for data output, as shown
inside the highlighted circle in Fig. 25 to accumulate addr and read/write data bits. In
addition, an 8-bit count register counts up to 10 for loading read/write addresses and
up to 64 for read/write data. All these shift registers operate based on the values of
lad1 and lad2 signals.

Figure 25: Design for serial-in/out interface.

72

The addr, din, and dout pins of the fabricated chip are linked to the corresponding
read/write address, data input, and data output shift registers, respectively. Recalling
again, the values on lad1 and lad2 are used to route the corresponding shift register
bits to the appropriate pins.

5.1.3 SABER crypto core
The SABER crypto core corresponds to the PIP_SP architecture and is capable of
computing KEYGEN, ENCAPS, and DECAPS operations. As shown in Fig. 26, it
consists of several blocks, i.e., a data memory, a routing network, a pipeline register,
a shared shift buffer, building blocks, and a dedicated controller. The corresponding
details of these blocks are given below.

Figure 26: SABER crypto core.

To implement the SABER as a hardware accelerator, the FPGA-based SABER
design of [30] utilizes a BRAM-based dual-port data memory of size 1024×64. In
the previous chapter, a DSE process was presented. It has been determined that the
smaller and distributed memories in an ASIC design are more beneficial as the smaller
memories require simpler address decoder units which are faster and lead to performance
improvements with area and power overheads. Therefore, as shown in Fig. 26, the
SABER crypto core utilizes four instances of 256× 4 size of a single-port SRAM-based
RegFile as a data memory to retain initial, intermediate, and final results during and
after the computations. The total size of the four memory instances is (256× 4) × 4
= 65Kbits.

The proposed SABER crypto core splits the memory address space into multi-

73

ple blocks. However, each memory block requires different signals for write enable,
read/write address, and input/output data. Hence, a unified routing network is es-
sential for communication between the SABER building blocks and memory instances.
Therefore, the routing network of the SABER crypto core includes several multiplexers
that handle the corresponding memory instances during read and write operations.
In the DSE process, it has been described the use of smaller memories in serial and
parallel fashions. Note that the SABER crypto core routing network in fabricated chip
handles four memory instances sequentially. This means only one memory instance can
read/write at one time.

The hardware implementations of the building blocks of the PQC protocols require
several shift registers for different purposes, such as shift and accumulation. For example,
many SABER building blocks need shift registers with different lengths to acquire data
from many memory addresses and then accumulate into local registers/buffers for com-
putations. For instance, a 320-bit register is required in AddRound and BS2POLVECp,
while a 64 and 676-bit register is needed in AddPack and multiplier, respectively. Using
different buffers in different building blocks results in higher hardware resources and
consumes more power. Therefore, a better solution is to use a single shared buffer.
The difficulty is in determining an appropriate length for such a buffer. As SABER
requires polynomial multiplications over 256 13-bit coefficients, a serialized architecture
is more beneficial to load some partial coefficients for multiplication and then load the
subsequent coefficients. In the SABER crypto core, 52 13-bit polynomial coefficients are
loaded at first in a 676-bit buffer for multiplications. After that, the next coefficients
are loaded for multiplications, and so on, until the completion of 256 coefficients. Con-
sequently, a single 676-bit register is shared across AddRound, AddPack, BS2POLVECp,
and multiplier blocks in the SABER crypto core to save area without degrading the
performance of the crypto core.

The green portion in Fig. 26 highlights the SABER building blocks: (i) variants of
secure hash algorithms (i.e., SHA3-256, SHA3-512, and SHAKE-128); (ii) Unpack;
(iii) CopyWords; (iv) CMOV; (v) Verify; (vi) Binomial sampler, (vii) AddPack, (viii)
AddRound, (ix) Multiplier, and (x) BS2POLVECp. In Chapter 4, the serial and parallel
implementation of these SABER building blocks is already described. Recalling again,
PIP_SP architecture is fabricated on 65nm technology. Therefore, all the SABER
building blocks in the fabricated chip support serial implementation.

Despite the SABER building blocks, the crypto core has a dedicated controller.
Therefore, based on the instructions from the wrapper for the computation of KEYGEN,
ENCAPS, and DECAPS, the controller generates the corresponding control signals to
execute the SABER building blocks one at a time; this means that the fabricated chip
incorporates a serial architecture instead of the parallel design. Moreover, it controls the
use of the shared shift buffer and the routing network. As shown in Fig. 26, the binomial
sampler is connected through a pipeline register; this creates NOP (no-operation) or
execution bubbles. Hence, the controller also manages the synchronization between the
building blocks.

5.2 Measurement Results
A 65nm CMOS (Complimentary Metal Oxide Semiconductor) technology is used for
silicon demonstration of the proposed SABER architecture. The RTL code is written
in Verilog HDL. To generate the netlist, the top-level SABER design was synthesized
using Cadence Genus and a foundry-provided 65nm standard cell library. After that,
the generated netlist was loaded for physical implementation in Cadence Innovus. For

74

physical verification (DRC and LVS), Calibre was used. Later on, the GDSII file was
submitted to the foundry for fabrication. A total of one hundred chips were fabricated
and twenty-five were packaged in a Dual-In-Line-28 (DIP-28) form factor. It is important
to provide that the design implementation was completed in August 2021, the chip
underwent fabrication in the time frame from September–November, and fabricated
parts were delivered in December 2021. Finally, the testing and measurement results
were finished in February 2022.

The chip layouts and the experimental setup, including the leakage current measure-
ment, area, timing & power results, and an operational range of the chip, are described
in the following sections.

5.2.1 Chip Layouts and Experimental Setup
The chip layout is shown in Fig. 27(a), where the four memory instances are highlighted
around the corners across the core. All metals between M2 and M7 were used for signal
routing. M7 is also used for creating a power ring around the core. Moreover, the power
is distributed across the core using horizontal and vertical stripes in M8 and M9 (and
these stripes are visible in Fig. 27(a)). The die size is 960µm×960µm. The SABER
design barely fits in this size. The placement density of the core area is 93.4%, with the
remaining 6.6% occupied by decap and filler cells. This high density made the SABER
design very challenging for timing closure. Moreover, the I/O pins (seven on each side
of the chip) and power stripes routed across the entire chip, horizontally and vertically,
are visible. Similarly, a micrograph of an unpackaged chip taken by a microscope is
illustrated in Fig. 27(b). It is possible to recognize the same power routing stripes and
IOs as in the physical layout. Fig. 27(a) and Fig. 27(b) highlight pins of the chip’s
lower right corner for orientation.

(a) Physical layout of the SABER chip taken
from Cadence Innovus.

(b) Microscope view of an unpackaged die
where it is possible to identify the IOs (7 on
each side) and horizontal & vertical power

stripes on the top metal layers.

Figure 27: Physical layout and microscope view of the fabricated SABER chip.

The utilized testing setup to validate the chip is shown in Fig. 28. A printed circuit
board (PCB) was designed using KiCAD and fabricated to facilitate the test and enable
measurements. A DIP-28 socket is mounted on the PCB. Therefore, the packaged
chip is placed on the DIP-28 socket. Two power sources are connected to the PCB
through BNC connectors, where the core logic (1.2V) and IO cells (2.5V) are powered

75

through the PCB. Small decoupling capacitors are manually mounted on the PCB for
both VDDs. The STM32F446RE [121] microcontroller is integrated with the PCB to
drive all the input signals except the faster clock (i.e., clk2). The microcontroller also
collects the outputs of the chip. To generate the fast clk2, a high-frequency generator
(shown between the two power sources in Fig. 28) is used. Note that the fabricated
SABER chip does not contain an internal clock generator.

Figure 28: Testing setup used to validate the fabricated SABER chip.

5.2.2 Leakage Current Measurement
The plot of a normal distribution of the average leakage current measurements of
the twenty-five packaged chips is shown in Fig. 29. Reminding that the leakage (or
state-off) current is the current that flows through a device even when the device is
not actively computing. The average leakage current is 0.2099mA and the standard
deviation is 0.0409. The measured data points are plotted as red circles over the
normal distribution (black line). The pre-silicon leakage current results (obtained from
Innovus) for three different corners, i.e., typical, worst, and best, are 0.164mA (on
1.2V), 0.450mA (on 1.08V) and 3.20mA (on 1.32V) and these values are relative to
temperatures of 25◦C, 125◦C and 0◦C, respectively. The blue vertical line in Fig. 29
shows a typical corner’s pre-silicon leakage current value. The measurement results
appear slightly more pessimistic than the simulated value predicted but within the
expected range. The best and the worst measured data points are also highlighted in
Fig. 29.

5.2.3 Area, Timing and Power Results
The identified ‘best case’ sample is placed on the PCB to identify the chip’s highest
possible operating frequency and power consumption. All the KEM operations of SABER
(i.e., KEYGEN, ENCAPS, and DECAPS) can be executed on 770, 715, and 840MHz at
1.2V supply voltage. The corresponding power values on identical operating conditions
for KEYGEN, ENCAPS, and DECAPS are 151, 158, and 157mW . These power values
are obtained using a high-precision measurement unit. Here, for the KEYGEN operation
of SABER, the obtained 151mW value is highlighted with a red portion in Fig. 28.

76

0.1 0.15 0.2 0.25 0.3 0.35 0.4
Leakage current (mA)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

ili
ty

Normal distribution
(7 = 0.2099, < = 0.0409)
Leakage current (Measured)
Leakage current (Simulation)

Worst case

Best case

Figure 29: Average leakage current measurement plotted as a normal distribution. Each red
circle corresponds to a single sample or chip. The best and worst values are also highlighted.

Therefore, it has been identified that the 715MHz is the optimal clock frequency where
all the KEYGEN, ENCAPS, and DECAPS operations of SABER can perform correctly.
In short, on a supply voltage of 1.2V, the optimal operating frequency is 715MHz,
and the consumed power of the SABER chip is 151mW (for KEYGEN), 158mW (for
ENCAPS) and 152mW (for DECAPS). Therefore, the average power consumption at
715MHz is 153.6mW .

The timing results in clock cycles and latency for KEM-supported operations are
given in Table 10. Column one provides the design parameter for clock cycles and latency
(µs). The corresponding values of clock cycles and latency for KEYGEN, ENCAPS,
and DECAPS operations of SABER are shown in columns two to four. The latency
value @ optimal 715MHz is calculated using Eq. 15. The DSE process in chapter 4
briefly describes the clock cycle information.

latency(in µs) = Clock cycles

Frequency (in MHz) = Clock cycles

715MHz
(15)

Table 10: Timing results for SABER after physical measurements at nominal 1.2V @ 715MHz.

Operation KEYGEN ENCAPS DECAPS
Clock cycles 7154 7136 9359
Latency (in µs) 10.00 9.98 13.08

Instead of the power and timing results, the top-level area breakdown of the fabricated
SABER design is presented in Table 11 where column one provides the design units
and column two shows the utilized area. It shows that the I/O placement, serial-in/out
interface, SABER crypto core, and four instances of small memories utilize 0.350, 0.041,
0.232, and 0.104mm2 area out of the total 1mm2 chip size. The sum of the area of
these blocks is 0.727mm2. The remaining area (1mm2–0.727mm2) is wasted with
mandatory empty spaces between the IO cells and the seal ring, the IO cells and the
core, and power rings.

After the area, timing, and power results, it is essential to show the fabricated
SABER chip’s response in different operating conditions (or supply voltage values).

77

Table 11: Top level area breakdown of the SABER chip.

Design unit(s) Utilized area (mm2)
Pads and I/O ring 0.350
Wrapper + Serial interface 0.041
SABER crypto core 0.232
Memories 0.104

Generally, a Shmoo plot provides the graphical representation of the response of the
component (or) system varying over a range of conditions or inputs. Therefore, for
only the DECAPS operation of a SABER, the complete range that fabricated SABER
chip supports can be visualized in Fig. 30 where the horizontal axis shows the operating
frequency (in MHz), and each tick represents an increment of 10MHz. On the other
hand, the vertical axis shows the supplied voltage (in V) in steps of 0.05V. It shows
that the fabricated SABER chip is fully operational at a very small clock frequency of
10MHz with a supplied voltage of 0.65V. The increase in VDD (from 0.65 to 1.4)
increases the operational frequency (from 10MHz to a bit more than 800MHz). Note
that the fabricated chip is functional in the green portion of Fig. 30 while the red area
determines that the chip is not-operational.

200 400 600 800
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Frequency (MHz)

Su
pp

ly
(V

)

Figure 30: Graphical representation of the entire range of operation that the chip supports
(Shmoo plot).

5.3 Comparison and Discussion

Several FPGA and ASIC SABER implementations are available in the literature. There-
fore, for a realistic comparison, Table 12 compares only the existing fabricated SABER

78

chips with the demonstrated chip in this study7. Column one of Table 12 provides the
reference designs, whereas the implementation technology is given in column two. The
area in chip size is illustrated in column three. Column four provides the clock cycle
utilization for KEYGEN, ENCAPS, and DECAPS operations. The operating frequency
in MHz @ supply voltage is reported in column five. Similar to clock cycles, the
computation time in latency (in µs) for KEYGEN, ENCAPS, and DECAPS operations
is given in column six. Finally, the last column of Table 12 shows the fabricated chips’
power consumption (in mW).

Table 12: Comparison of the fabricated SABER chip with existing PQC ASIC chips. All
implementation results are for security equivalent to AES-192.

Ref Tech Chip Clock cyles Frequency Latency (in µs) Power
size (MHz) (mW)

[32] 65nm 1.6 14336/18704/23376 160 @ 1.1V 89.6/116.9/146.1 –
[32] 65nm 1.6 14336/18704/23376 10 @ 0.7V 1433.6/1870.4/2337.6 0.334
[33] 28nm 3.6 –/–/– 500 @ 0.9V –/–/– 39–368

P
IP

_
SP 65nm 1 7154/7136/9359 160 @ 1.2V 44.7/44.6/58.4 43.5

65nm 1 7154/7136/9359 10 @ 0.7V 715.4/713.6/935.9 0.855
65nm 1 7154/7136/9359 715 @ 1.2V 10/9.9/13 153.6

Ref [32]: the clock cycles have been calculated by multiplying the corresponding latency
values with 160MHz clock frequency, PIP_SP: SABER design fabricated in this study.

A realistic comparison is made by operating the fabricated SABER chip on the same
conditions employed in [32] for measurement purposes, as presented in Table 12. More
precisely, in [32], the KEYGEN, ENCAPS, and DECAPS operations of SABER were
computed at 160MHz @ a nominal voltage of 1.1V, and a frequency of 10MHz @
supply voltage of 0.7V.

For two conditions when operating frequency = 160MHz @ 1.1 supply voltage
and operating frequency = 10MHz @ 0.7 supply voltage, the fabricated chip (in this
study) is 2, 2.62, and 2.50 times faster in terms of clock cycles and computational time
(latency) for KEYGEN, ENCAPS, and DECAPS operations of SABER, respectively, in
comparison to 65nm demonstrated SABER chip of [32]. The reason is a centralized
schoolbook multiplier utilized in this study from [122] for multiplying two 256-degree
polynomials in SABER. On the other hand, the SABER fabricated chip of [32] employs
a Toom-Cook multiplication method with a striding factor of 4, which reduces memory
requirements by half but takes significantly more clock cycles and utilizes more hardware

7Before comparing the chip results, it is essential to provide that in chapter 4, the DSE
process emphasizes using smaller and distributed memories to achieve high-speed PQC algo-
rithms implementation on the ASIC platform, which is (also) used in the high-speed SABER
chip design. More precisely, the chip contains four SRAM-based inferred memories, each with
a size of 256×64 and an addressing range of [0-255], [256-511], [512-767], and [768-1023].
However, a logic bug provoked the first address of memories 2, 3, and 4 to be incorrectly
decoded, resulting in data overwrite and a few flipped bits in the chip’s output compared to
the expected results. However, this issue can be bypassed by not using these memory addresses
in LightSABER. While on the other hand, the SABER and FireSABER variants will still be
affected. Nevertheless, this issue does not impact the computational blocks of SABER or
change the number of memory accesses. Therefore, we have the assurance that the reported
power values in this thesis are representative.

79

resources. A comprehensive comparison over various multiplication architectures in
[108] reports that the Toom-Cook multiplier is known to be more hardware-intensive
than the schoolbook multiplier. Therefore, the use of a schoolbook multiplier along with
a shared shift buffer across several building blocks of SABER results in 1mm2 chip size,
which is comparatively 1.6 times lower compared to [32]. As shown in Table 12, instead
of the area and latency parameters, the power comparison is only possible for operating
frequency = 10MHz @ 0.7 supply voltage. Comparatively, the fabricated chip in this
study consumes 2.55 times more power because the objective of the fabricated SABER
chip was to obtain higher clock frequency. In contrast, the objective in [32] was low
area and power reduction.

Regardless of the operating conditions considered in [32], a comparison between the
clock frequency of 715MHz @ 1.2 nominal voltage (considered in this study) and the
maximum clock frequency achieved in [32] of 160MHz @ 1.1 supply voltage reveals
that the chip fabricated in this study performs 8.96, 11.80, and 11.23 times faster for
the computation of KEYGEN, ENCAPS, and DECAPS operations, respectively.

Table 12 shows that a realistic and reasonable comparison to [33] regarding the area,
timing, and power parameters is not feasible because the implementation technologies
are different. This study considers a 65nm process technology for silicon demonstrations
while a modern 28nm technology is utilized in [33]. In addition, the fabricated chip is
specific to SABER. At the same time, a silicon-implemented design of [33] considers
several cryptographic primitives (i.e., SABER, NTRU, CRYSTALS-Dilithium, Rainbow,
CRYSTALS-Kyber and McEliece). Depending on the execution of a specific crypto-
graphic protocol, the power values are 39–368mW . Hence, this comparison is also not
possible.

80

6 Conclusions and Future Directions
The critical findings of this study are summarized in the following. Open-source
libraries/tools are always in the community’s interest. The polynomial multipliers
are essential for multiplying polynomial coefficients in cryptographic algorithms, including
PQC and homomorphic encryption schemes. At the onset of my research in 2020, it
was found that no open-source tool existed for generating these multipliers. Hence, I
developed the first open-source library for large integer polynomial multiplications to
address this gap. I believe open-source libraries and tools are always in the community’s
interest because they promote collaboration, innovation, and knowledge sharing. When
researchers and developers share their works on open-source platforms such as GitHub,
the respective community can benefit from their expertise and build upon their ideas,
leading to rapid outputs in research and development cycles.

Sometimes memory becomes a bottleneck in PQC accelerators. The perfor-
mance of the PQC algorithm as a hardware accelerator depends on the computation of
building blocks (i.e., multipliers, hash, samplers, etc.). Despite these blocks, memory
is essential in the hardware accelerators. In PQC algorithms, sometimes, it becomes
a real bottleneck when the high-speed designs are in the designer’s interest. One
of the approaches to overcome this bottleneck is to use faster SRAM-based RegFile
memories. Small and distributed memories (in parallel) improve throughput.
Several instances of small and distributed memories when running (all) in parallel are
advantageous to reduce clock cycles and critical paths and improve the operating
frequency. In addition, the parallel use of several smaller memories is more beneficial to
reduce frequent read/write access from the data memory. Overall, these advantages
help to maximize the throughput or performance of the PQC hardware accelerator.

One-time data loading and buffering benefits for designing efficient polynomial
multipliers. One of the approaches for performance improvement of polynomial
coefficient multiplications is to load data from memory only once and store it in long
polynomial buffers. This approach reduces the number of clock cycles required and is
particularly helpful in designing parallel multipliers. For instance, in the SS_Parallel
and DS_Parallel SABER designs, the schoolbook multiplier benefits from this one-time
loading approach, resulting in a lower clock cycles count. Similarly, this approach benefits
the design of a compact and parallel NTT-based multiplier for the CRYSTALS-Kyber and
CRYSTALS-Dilithium PQC algorithms, which are expected to be standardized in 2024.
It is worth noting that NTT-based polynomial multiplications are (also) required for
lattice-based homomorphic encryption schemes, in addition to PQC algorithms. Wider
data path benefits to high-speed crypto applications. Indeed, PQC algorithms
require variants of SHA3 and SHAKE hash functions, and these hashes operate on 64-bit
for permutation computations. Hence, all state-of-the-art PQC hardware accelerators
adopted a 64-bit data path in their designs. Instead of 64-bit, a 256-bit data path is
utilized in this thesis, concluding that the wider data path strategy reduces clock cycles
and allows for obtaining 2.5GHz on modern 28nm process technology but, on the other
hand, increases critical path delay.

Next, some future directions to extend this thesis work are provided. Design of
hardware accelerators. Several optimization techniques, including pipelining, resource
sharing, and wider data path strategy, have been employed to maximize the performance
of the PQC algorithm, specifically SABER, which remained a participant in the NIST
competition until round three. Even if the optimized approaches are applied to SABER,
they could be used in other PQC KEM and digital signature algorithms, such as
CRYSTALS-Kyber, LAC, CRYSTALS-Dilithium, and SPHINCS+, to improve their

81

processing speed and performance. Apart from improving the performance of PQC
algorithms, the same optimization techniques with minor adaptations can also be used
to realize hardware resources and power consumption for a wide range of cryptographic
applications, including IoT and cloud computing. Unified ECC + PQC accelerators.
The ENISA report from 2021 [123] highlights the transition from the pre-quantum era
to the post-quantum one, which requires the combination of pre-and post-quantum
cryptography algorithms in a single cryptosystem to ensure security even for today’s
computers. Hence, this could be an attractive choice in the future.

Protection against physical attacks. This thesis explores only the hardware
realization of the lattice-based PQC schemes on the ASIC platform without focusing
on the side-channel resistance and other related attacks such as timing, fault, etc.
Hence, designing countermeasures against side-channel and fault attacks would be very
interesting for future research.

82

List of Figures
1 Methods for calculating prime factorization. 11
2 Quantum cryptography model with the case of Alice, Bob, and Eve.. 12
3 Structure of the thesis . 14
4 An example of a two-dimensional lattice over a set of all real numbers. . . 16
5 A two-dimensional lattice with two basis vectors v1 and v2. The coordi-

nates of v1 and v2 are (-1, 2) and (-1, 1), respectively. 17
6 Example of a bad basis where the orange circle focuses on the target

and calculated points far from each other. The purple portion solves the
lattices for CVP. 18

7 Example of a good basis where the orange circle focuses on the target
and calculated points closer to each other. The purple portion solves
the lattices for CVP. 19

8 Selected lattice-based PQC algorithms and the corresponding implemen-
tations utilized in this study. Red-colored text inside the parenthesis
specifies selected security parameters. 25

9 Total area and power of the studied NIST lattice-based PQC algorithms
on 65nm process technology. 26

10 SABER building blocks. 29
11 Structure of the proposed multiplier generator. Green, orange, and

gray portions identify the input parameters, multiplier generator, and
generated scripts and RTL files as output. 37

12 Results for the non-pipelined and pipelined variants of several non-
digitized multipliers on 65nm ASIC over NIST recommended prime and
binary elliptic curves . 39

13 Results for the non-pipelined and pipelined variants of several non-
digitized multipliers on Artix-7 FPGA over NIST recommended prime
and binary elliptic curves . 40

14 FoMs regarding area vs. latency and power vs. latency for various
non-digitized multipliers on ASIC. 44

15 FoMs regarding area vs. latency and power vs. latency for various
non-digitized multipliers on FPGA. 45

16 FoMs in terms of area × latency and power × latency for digitized
wrapper with SBM multiplier on ASIC. 46

17 FPGA FoMs in terms of area × latency and power × latency for digitized
wrapper with SBM .. 46

18 Block diagrams of the designs generated during the design space explo-
ration. 51

19 KECCAK cores. 55
20 Serial SBM multiplier architecture for SABER coefficients multiplica-

tion [86]. 58
21 Parallel SBM multiplier architecture for SABER coefficients multiplication. 59
22 Critical path evaluations of serial and parallel SABER architectures. 61
23 Clock cycle distribution for PIP_SP, SS_Parallel, and DS_Parallel designs. 64
24 Top-level architecture of the SABER chip, where gray portion specifies

the wrapper. 71
25 Design for serial-in/out interface. 72
26 SABER crypto core. 73
27 Physical layout and microscope view of the fabricated SABER chip. 75

83

28 Testing setup used to validate the fabricated SABER chip. 76
29 Average leakage current measurement plotted as a normal distribution.

Each red circle corresponds to a single sample or chip. The best and
worst values are also highlighted. 77

30 Graphical representation of the entire range of operation that the chip
supports (Shmoo plot). 78

84

List of Tables
1 Multiplication and hash methods for different PQC algorithms. These

methods are obtained from their reference implementations, available at
NIST sites [61] (after round-2) and [22] (after round-3). 21

2 Security parameters of SABER for PKE and KEM operations (taken
from [21]) . 29

3 ASIC and FPGA results for digitized multipliers of various input sizes. . . . 42
4 Synthesis results for 1024×1024 digitized multiplier on ASIC 15nm 43
5 Comparison with state-of-the-art multipliers . 47
6 Results after logic synthesis for serial and parallel SABER PQC KEM on

65nm process technology. 62
7 Total clock cycles and latency for CCA-secure KEM SABER on a 65nm

commercial technology. 63
8 Results of the optimized SABER accelerators on 28nm technology. 65
9 ASIC and FPGA comparison to existing PQC KEM SABER and

CRYSTALS-Kyber hardware accelerators after logic synthesis. All
implementation results are for security equivalent to AES-192. 66

10 Timing results for SABER after physical measurements at nominal 1.2V
@ 715MHz. 77

11 Top level area breakdown of the SABER chip. 78
12 Comparison of the fabricated SABER chip with existing PQC ASIC chips.

All implementation results are for security equivalent to AES-192. 79

85

References
[1] ITU, “Measuring digital development facts and figures,” last accessed on

February 12, 2023. [Online] available at: https://www.itu.int/en/ITU-
D/Statistics/Documents/facts/FactsFigures2021.pdf.

[2] E. Snowden’s, “Nsa collecting phone records of millions of verizon customers
daily,” last accessed on February 22, 2023. [Online] available at: https://www.
theguardian.com/us-news/the-nsa-files.

[3] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” last accessed on
February 12, 2023. [Online] available at: https://web.archive.org/
web/20070203204845/https://csrc.nist.gov/CryptoToolkit/aes/
rijndael/Rijndael.pdf.

[4] NORTON, “What is a firewall? firewalls explained and why you need one,” last
accessed on February 11, 2023. [Online] available at: https://us.norton.com/
blog/emerging-threats/what-is-firewall#.

[5] Fortinet, “What is access control?,” last accessed on February 16, 2023. [On-
line] available at: https://www.fortinet.com/resources/cyberglossary/
access-control.

[6] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second Edition.
Chapman & Hall/CRC, 2nd ed., 2014. https://dl.acm.org/doi/book/10.
5555/2700550.

[7] CADO-NFS, “Cado-nfs an implementation of the number field sieve algorithm,”
last accessed on February 17, 2023. [Online] available at: https://cado-nfs.
gitlabpages.inria.fr.

[8] C. Pomerance and P. Erdös, “A tale of two sieves,” last accessed on February
21, 2023. [Online] available at: https://www.ams.org/notices/199612/
pomerance.pdf.

[9] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler,
C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J.
Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey,
Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov,
F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R.
McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus,
O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt,
C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger,
V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga,
T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum
supremacy using a programmable superconducting processor,” Nature, vol. 574,
no. 7779, p. 505–510, 2019.

[10] IBM, “Ibm unveils breakthrough 127-qubit quantum processor,” last accessed
on November 22, 2022. [Online] available at: https://newsroom.ibm.com/
2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor.

86

https://www.theguardian.com/us-news/the-nsa-files
https://www.theguardian.com/us-news/the-nsa-files
https://web.archive.org/web/20070203204845/https://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf
https://web.archive.org/web/20070203204845/https://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf
https://web.archive.org/web/20070203204845/https://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf
https://us.norton.com/blog/emerging-threats/what-is-firewall#
https://us.norton.com/blog/emerging-threats/what-is-firewall#
https://www.fortinet.com/resources/cyberglossary/access-control
https://www.fortinet.com/resources/cyberglossary/access-control
https://dl.acm.org/doi/book/10.5555/2700550
https://dl.acm.org/doi/book/10.5555/2700550
https://cado-nfs.gitlabpages.inria.fr
https://cado-nfs.gitlabpages.inria.fr
https://www.ams.org/notices/199612/pomerance.pdf
https://www.ams.org/notices/199612/pomerance.pdf
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor

[11] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer,” SIAM J. Comput., vol. 26, no. 5, p. 1484–1509,
1997.

[12] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM, 1978.

[13] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology —
CRYPTO ’85 Proceedings (H. C. Williams, ed.), (Berlin, Heidelberg), pp. 417–426,
Springer Berlin Heidelberg, 1986.

[14] W. H. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature,
vol. 299, no. 5886, pp. 802–803, 1982.

[15] X. Lu, Y. Liu, Z. Zhang, D. Jia, H. Xue, J. He, B. Li, and K. Wang, “Lac: Practical
ring-lwe based public-key encryption with byte-level modulus.” Cryptology ePrint
Archive, Paper 2018/1009, 2018. https://eprint.iacr.org/2018/1009.

[16] P. Schwabe and J. Mann, “Crystals-kyber: Cryptographic suite for algebraic
lattices,” last accessed on February 11, 2023. [Online] available at: https:
//pq-crystals.org/kyber/.

[17] P. Schwabe and J. Mann, “Crystals-dilithium: Cryptographic suite for algebraic
lattices,” last accessed on February 11, 2023. [Online] available at: https:
//pq-crystals.org/dilithium/.

[18] P. Ball, “First quantum computer to pack 100 qubits enters crowded race,”
Nature, vol. 599, p. 542, 2021.

[19] O. Regev, “On lattices, learning with errors, random linear codes, and cryptogra-
phy,” J. ACM, vol. 56, sep 2009.

[20] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions and lattices.”
Cryptology ePrint Archive, Paper 2011/401, 2011. https://eprint.iacr.org/
2011/401.

[21] A. Basso, J. M. B. Mera, J.-P. D’Anvers, A. Karmakar, S. S. Roy, M. V. Beiren-
donck, and F. Vercauteren, “Saber: Mod-lwr based kem (round 3 submission),”
last accessed on March 23, 2022. [Online] available at: https://www.esat.
kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf.

[22] NIST, “Computer security resource centre: Pqc standardization process, third
round candidate announcement,” 2020. [Online] available at: https://csrc.
nist.gov/news/2020/pqc-third-round-candidate-announcement.

[23] Intel, “Integrated cryptographic and compression accelerators
on intel architecture platforms,” last accessed on September
29, 2022. [Online] available at: https://www.intel.com/
content/dam/www/public/us/en/documents/solution-briefs/
integrated-cryptographic-compression-accelerators-brief.pdf.

[24] IBM, “Ibm cex7s / 4769 pcie cryptographic coprocessor (hsm),” last accessed
on October 20, 2022. [Online] available at: https://public.dhe.ibm.com/
security/cryptocards/pciecc4/docs/4769_Data_Sheet.pdf.

87

https://eprint.iacr.org/2018/1009
https://pq-crystals.org/kyber/
https://pq-crystals.org/kyber/
https://pq-crystals.org/dilithium/
https://pq-crystals.org/dilithium/
https://eprint.iacr.org/2011/401
https://eprint.iacr.org/2011/401
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://csrc.nist.gov/news/2020/pqc-third-round-candidate-announcement
https://csrc.nist.gov/news/2020/pqc-third-round-candidate-announcement
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/integrated-cryptographic-compression-accelerators-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/integrated-cryptographic-compression-accelerators-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/integrated-cryptographic-compression-accelerators-brief.pdf
https://public.dhe.ibm.com/security/cryptocards/pciecc4/docs/4769_Data_Sheet.pdf
https://public.dhe.ibm.com/security/cryptocards/pciecc4/docs/4769_Data_Sheet.pdf

[25] A. Jati, N. Gupta, A. Chattopadhyay, and S. K. Sanadhya, “A configurable crystals-
kyber hardware implementation with side-channel protection.” Cryptology ePrint
Archive, Paper 2021/1189, 2021. https://eprint.iacr.org/2021/1189.

[26] A. Aikata, A. C. Mert, M. Imran, S. Pagliarini, and S. S. Roy, “Kali: A crystal for
post-quantum security using kyber and dilithium,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 70, no. 2, pp. 747–758, 2023.

[27] L. Beckwith, D. T. Nguyen, and K. Gaj, “High-performance hardware implemen-
tation of crystals-dilithium.” Cryptology ePrint Archive, Paper 2021/1451, 2021.
https://eprint.iacr.org/2021/1451.

[28] G. Land, P. Sasdrich, and T. Güneysu, “A hard crystal - implementing dilithium
on reconfigurable hardware,” in Smart Card Research and Advanced Applications:
20th International Conference, CARDIS 2021, Lübeck, Germany, November 11–12,
2021, Revised Selected Papers, (Berlin, Heidelberg), p. 210–230, Springer-Verlag,
2021.

[29] Z. Zhou, D. He, Z. Liu, M. Luo, and K.-K. R. Choo, “A software/hardware
co-design of crystals-dilithium signature scheme,” ACM Trans. Reconfigurable
Technol. Syst., vol. 14, jun 2021.

[30] S. Sinha Roy and A. Basso, “High-speed instruction-set coprocessor for lattice-
based key encapsulation mechanism: Saber in hardware,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2020, p. 443–466, 2020.

[31] Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei, and L. Liu,
“Lwrpro: An energy-efficient configurable crypto-processor for module-lwr,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 3, pp. 1146–
1159, 2021.

[32] A. Ghosh, J. Mera, A. Karmakar, D. Das, S. Ghosh, I. Verbauwhede, and S. Sen,
“A 334µw 0.158mm2 saber learning with rounding based post-quantum crypto
accelerator,” in 2022 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–2,
2022.

[33] Y. Zhu, W. Zhu, M. Zhu, C. Li, C. Deng, C. Chen, S. Yin, S. Yin, S. Wei,
and L. Liu, “A 28nm 48kops 3.4µj/op agile crypto-processor for post-quantum
cryptography on multi-mathematical problems,” 2022. IEEE International Solid
State Circuits Conference (ISSCC), San Francisco, CA, USA, p. 514–516, February
20-26, 2022.

[34] M. Imran, F. Almeida, J. Raik, A. Basso, S. S. Roy, and S. Pagliarini, “Design
space exploration of saber in 65nm asic,” in Proceedings of the 5th Workshop on
Attacks and Solutions in Hardware Security, ASHES ’21, (New York, NY, USA),
p. 85–90, Association for Computing Machinery, 2021.

[35] M. Imran, A. Aikata, S. S. Roy, and S. Pagliarini, “High-speed design of post quan-
tum cryptography with optimized hashing and multiplication,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. –, no. –, 2023.

[36] M. Imran, F. Almeida, A. Basso, S. S. Roy, and S. Pagliarini, “High-speed
saber key encapsulation mechanism in 65nm cmos,” Journal of Cryptographic
Engineering (JCEN), vol. –, no. –, pp. –, 2023.

88

https://eprint.iacr.org/2021/1189
https://eprint.iacr.org/2021/1451

[37] S. S. Roy, Public Key Cryptography on Hardware Platforms: Design and Analysis
of Elliptic Curve and Lattice-based Cryptoprocessors. PhD thesis, KU LEUVEN,
Belgium, 2017.

[38] M. Ajtai, “Generating hard instances of lattice problems (extended abstract),”
in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, (New York, NY, USA), p. 99–108, Association for
Computing Machinery, 1996.

[39] J. Silverman, J. Pipher, and J. Hoffstein, “An introduction
to mathematical cryptography,” 2008. [Online] available at:
https://link.springer.com/book/10.1007/978-0-387-77993-5.

[40] O. Regev, “Lattices in computer science,” Fall 2009. [Online] available at:
https://cims.nyu.edu/ regev/teaching/lattices_fall_2009/.

[41] N. Körtge, “The idea behind lattice-based cryptography or how can
lattices be useful for cryptography?,” last accessed on February 26,
2023. [Online] available at: https://medium.com/nerd-for-tech/
the-idea-behind-lattice-based-cryptography-5e623fa2532b.

[42] A. K. Lenstra, H. W. L. Jr., and L. Lovász, “Factoring polynomials with rational
coefficients,” Mathematische Annalen, vol. 261, p. 515–534, 1982.

[43] M. Ajtai, R. Kumar, and D. Sivakumar, “A sieve algorithm for the shortest lattice
vector problem,” in Proceedings of the Thirty-Third Annual ACM Symposium on
Theory of Computing, STOC ’01, (New York, NY, USA), p. 601–610, Association
for Computing Machinery, 2001.

[44] C. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems,” Mathematical Programming, vol. 66,
p. 181–199, 1994.

[45] O. Regev, “On lattices, learning with errors, random linear codes, and cryptogra-
phy,” in In Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing, STOC ’05, pp. 84–93, 2005.

[46] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss, “On the de-
sign of hardware building blocks for modern lattice-based encryption schemes,”
in Cryptographic Hardware and Embedded Systems – CHES 2012 (E. Prouff
and P. Schaumont, eds.), (Berlin, Heidelberg), pp. 512–529, Springer Berlin
Heidelberg, 2012.

[47] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with
errors over rings,” in Advances in Cryptology – EUROCRYPT 2010 (H. Gilbert,
ed.), (Berlin, Heidelberg), pp. 1–23, Springer Berlin Heidelberg, 2010.

[48] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions and lattices.”
Cryptology ePrint Archive, Paper 2011/401, 2011. https://eprint.iacr.org/
2011/401.

[49] J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs, “Learning with rounding, revisited:
New reduction, properties and applications.” Cryptology ePrint Archive, Paper
2013/098, 2013. https://eprint.iacr.org/2013/098.

89

https://medium.com/nerd-for-tech/the-idea-behind-lattice-based-cryptography-5e623fa2532b
https://medium.com/nerd-for-tech/the-idea-behind-lattice-based-cryptography-5e623fa2532b
https://eprint.iacr.org/2011/401
https://eprint.iacr.org/2011/401
https://eprint.iacr.org/2013/098

[50] A. Bogdanov, S. Guo, D. Masny, S. Richelson, and A. Rosen, “On the hardness
of learning with rounding over small modulus,” in Theory of Cryptography
(E. Kushilevitz and T. Malkin, eds.), (Berlin, Heidelberg), pp. 209–224, Springer
Berlin Heidelberg, 2016.

[51] S. Akleylek, E. Alkim, P. S. L. M, N. Bindel, J. Buchmann, E. Eaton, G. Gutoski,
J. Krämer, P. Longa, H. Polat, J. E. Ricardini, and G. Zanon, “Submission to nist’s
post-quantum project (2nd round): lattice-based digital signature scheme qtesla,”
last accessed on March 20, 2020. [Online] available at: https://qtesla.org.

[52] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal, “Ntru
prime: round 2–20190330,” last accessed on April 17, 2020. [Online] available at:
https://ntruprime.cr.yp.to.

[53] E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, T. Pöppelmann, P. Schwabe,
D. Stebila, M. R. Albrecht, E. Orsini, V. Osheter, K. G. Paterson, G. Peer, and
N. P. Smart, “Newhope,” last accessed on April 17, 2020. [Online] available at:
https://newhopecrypto.org.

[54] M. Hamburg, “Post-quantum cryptography proposal: Threebears,” last accessed
on May 23, 2020. [Online] available at: https://sourceforge.net/projects/
threebears/.

[55] X. Lu, Y. Liu, D. Jia, H. Xue, J. He, Z. Zhang, Z. Liu, H. Yang,
B. Li, and K. Wang, “Lac: Lattice-based cryptosystems,” last accessed on
May 11, 2020. [Online] available at: https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[56] H. Baan, S. Bhattacharya, S. Fluhrer, O. Garcia-Morchon, T. Laarhoven, R. Player,
R. Rietman, M.-J. O. Saarinen, L. Tolhuizen, J. L. Torre-Arce, and Z. Zhang,
“Round5: Kem and pke based on (ring) learning with rounding,” last accessed on
April 28, 2020. [Online] available at: https://round5.org.

[57] C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, T. Saito, J. M. Schanck,
P. Schwabe, W. Whyte, K. Xagawa, T. Yamakawa, and Z. Zhang, “Ntru,” last
accessed on April 16, 2020. [Online] available at: https://ntru.org.

[58] E. Alkim, J. W. Bos, L. Ducas, P. Longa, I. Mironov, M. Naehrig, V. Nikolaenko,
C. Peikert, A. Raghunathan, D. Stebila, K. Easterbrook, and B. LaMacchia,
“Frodokem learning with errors key encapsulation algorithm,” last accessed on
April 17, 2020. [Online] available at: https://frodokem.org.

[59] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon: fast-fourier lattice-based
compact signatures over ntru specifications v1.1,” last accessed on April 20, 2020.
[Online] available at: https://falcon-sign.info.

[60] D. Soni and R. Karri, “Efficient hardware implementation of pqc primitives and
pqc algorithms using high-level synthesis,” in 2021 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp. 296–301, 2021.

[61] NIST, “Computer security resource centre: Post-quantum cryptography, round 2
submissions,” 2020.

90

https://qtesla.org
https://ntruprime.cr.yp.to
https://newhopecrypto.org
https://sourceforge.net/projects/threebears/
https://sourceforge.net/projects/threebears/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://round5.org
https://ntru.org
https://frodokem.org
https://falcon-sign.info

[62] S. Venkatachalam, E. Adams, H. J. Lee, and S.-B. Ko, “Design and analysis of
area and power efficient approximate booth multipliers,” IEEE Transactions on
Computers, vol. 68, no. 11, pp. 1697–1703, 2019.

[63] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for lattice-based
cryptography on reconfigurable hardware,” in Progress in Cryptology – LATIN-
CRYPT 2012 (A. Hevia and G. Neven, eds.), (Berlin, Heidelberg), pp. 139–158,
Springer Berlin Heidelberg, 2012.

[64] Z. Liang and Y. Zhao, “Number theoretic transform and its applications in
lattice-based cryptosystems: A survey,” 2022.

[65] A. C. Mert, E. Öztürk, and E. Savaş, “FPGA implementation of a run-time
configurable ntt-based polynomial multiplication hardware,” Microprocessors and
Microsystems, vol. 78, p. 103219, 2020.

[66] K. Koleci, P. Mazzetti, M. Martina, and G. Masera, “A flexible ntt-based multiplier
for post-quantum cryptography,” IEEE Access, vol. 11, pp. 3338–3351, 2023.

[67] K. Derya, A. C. Mert, E. Öztürk, and E. Savaş, “Coha-ntt: A configurable
hardware accelerator for ntt-based polynomial multiplication,” Microprocessors
and Microsystems, vol. 89, p. 104451, 2022.

[68] NIST, “Sha-3 standard: Permutation-based hash and extendable-output functions.”
FIPS PUB 202, last accessed on January 9, 2023. Available at https://doi.
org/10.6028/NIST.FIPS.202.

[69] M. Imran, Z. U. Abideen, and S. Pagliarini, “An experimental study of building
blocks of lattice-based nist post-quantum cryptographic algorithms,” Electronics,
vol. 9, no. 11, 2020.

[70] W. Liu, S. Fan, A. Khalid, C. Rafferty, and M. O’Neill, “Optimized schoolbook
polynomial multiplication for compact lattice-based cryptography on fpga,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 10,
pp. 2459–2463, 2019.

[71] Y. Zhang, Y. Cui, Z. Ni, D.-E.-S. Kundi, D. Liu, and W. Liu, “A lightweight and
efficient schoolbook polynomial multiplier for saber,” in 2022 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 2251–2255, 2022.

[72] M. Kashif, I. Cicek, and M. Imran, “A hardware efficient elliptic curve accelerator
for fpga based cryptographic applications,” in 2019 11th International Conference
on Electrical and Electronics Engineering (ELECO), pp. 362–366, 2019.

[73] S. Jahani, A. Samsudin, and K. G. Subramanian, “Efficient big integer multiplica-
tion and squaring algorithms for cryptographic applications,” Journal of Applied
Mathematics, vol. 2014, no. 107109, pp. 1–9, 2014.

[74] M. Bodrato, “Towards optimal toom-cook multiplication for univariate and
multivariate polynomials in characteristic 2 and 0,” in Arithmetic of Finite Fields
(C. Carlet and B. Sunar, eds.), (Berlin, Heidelberg), pp. 116–133, Springer Berlin
Heidelberg, 2007.

[75] M. Bodrato, “Notes on low degree toom-cook multiplication with small charac-
teristic,” 2020. Online] available at: http://www.bodrato.it/papers/#CIVV2007.

91

https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202

[76] A. Basso, F. Aydin, D. Dinu, J. Friel, A. Varna, M. Sastry, and S. Ghosh, “Where
star wars meets star trek: Saber and dilithium on the same polynomial multiplier.”
Cryptology ePrint Archive, Report 2021/1697, 2021. https://ia.cr/2021/
1697.

[77] T. Fritzmann, G. Sigl, and J. Sepúlveda, “Risq-v: Tightly coupled risc-v accel-
erators for post-quantum cryptography,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2020, p. 239–280, Aug. 2020.

[78] W.-K. Lee, H. Seo, S. O. Hwang, A. Karmakar, J. M. B. Mera, and R. Achar,
“Dpcrypto: Acceleration of post-quantum cryptographic algorithms using dot-
product instruction on gpus.” Cryptology ePrint Archive, Report 2021/1389, 2021.
https://ia.cr/2021/1389.

[79] H. Becker, J. M. Bermudo Mera, A. Karmakar, J. Yiu, and I. Verbauwhede,
“Polynomial multiplication on embedded vector architectures,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol. 2022, p. 482–505, 2021.

[80] A. Abdulrahman, J.-P. Chen, Y.-J. Chen, V. Hwang, M. J. Kannwischer, and
B.-Y. Yang, “Multi-moduli ntts for saber on cortex-m3 and cortex-m4,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol. 2022,
p. 127–151, Nov. 2021.

[81] A. Karmakar, J. M. Bermudo Mera, S. Sinha Roy, and I. Verbauwhede, “Saber
on arm: Cca-secure module lattice-based key encapsulation on arm,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol. 2018,
p. 243–266, Aug. 2018.

[82] M. V. Beirendonck, J.-P. D’anvers, A. Karmakar, J. Balasch, and I. Verbauwhede,
“A side-channel-resistant implementation of saber,” J. Emerg. Technol. Comput.
Syst., vol. 17, no. 2, p. 1–26, 2021.

[83] T. Fritzmann, M. Van Beirendonck, D. Basu Roy, P. Karl, T. Schamberger,
I. Verbauwhede, and G. Sigl, “Masked accelerators and instruction set extensions
for post-quantum cryptography,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2022, p. 414–460, Nov. 2021.

[84] A. Abdulgadir, K. Mohajerani, V. B. Dang, J.-P. Kaps, and K. Gaj, “A lightweight
implementation of saber resistant against side-channel attacks,” 2021. In: Adhikari,
A., Küsters, R., Preneel, B. (eds) Progress in Cryptology – INDOCRYPT 2021.
INDOCRYPT 2021. Lecture Notes in Computer Science(), vol 13143. Springer,
Cham. https://doi.org/10.1007/978-3-030-92518-5_11.

[85] B. Wang, X. Gu, and Y. Yang, “Saber on esp32.” Cryptology ePrint Archive,
Report 2019/1453, 2019. https://ia.cr/2019/1453.

[86] J. Maria Bermudo Mera, F. Turan, A. Karmakar, S. Sinha Roy, and I. Verbauwhede,
“Compact domain-specific co-processor for accelerating module lattice-based kem,”
in 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2020.

[87] ESPRESSIF, “Esp32 series,” last accessed on February 17, 2023. [On-
line] available at: https://www.alldatasheet.com/view_datasheet.jsp?
Searchword=ESP32.

92

https://ia.cr/2021/1697
https://ia.cr/2021/1697
https://ia.cr/2021/1389
https://doi.org/10.1007/978-3-030-92518-5_11
https://ia.cr/2019/1453
https://www.alldatasheet.com/view_datasheet.jsp?Searchword=ESP32
https://www.alldatasheet.com/view_datasheet.jsp?Searchword=ESP32

[88] V. B. Dang, F. Farahmand, M. Andrzejczak, and K. Gaj, “Implementing and
benchmarking three lattice-based post-quantum cryptography algorithms us-
ing software/hardware codesign,” in 2019 International Conference on Field-
Programmable Technology (ICFPT), pp. 206–214, 2019.

[89] Y. Tu, P. He, C.-Y. Lee, D. Chasaki, and J. Xie, “Hardware implementation
of high-performance polynomial multiplication for kem saber,” in 2022 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1160–1164, 2022.

[90] C. Rafferty, M. O’Neill, and N. Hanley, “Evaluation of large integer multiplication
methods on hardware,” IEEE Transactions on Computers, vol. 66, no. 8, pp. 1369–
1382, 2017.

[91] M. Morales-Sandoval, C. Feregrino-Uribe, P. Kitsos, and R. Cumplido,
“Area/performance trade-off analysis of an fpga digit-serial gf(2m) montgomery
multiplier based on lfsr,” Computers & Electrical Engineering, vol. 39, no. 2,
pp. 542 – 549, 2013.

[92] A. A. Abd-Elkader, M. Rashdan, E.-S. A. Hasaneen, and H. F. Hamed, “Advanced
implementation of montgomery modular multiplier,” Microelectronics Journal,
vol. 106, p. 104927, 2020.

[93] M. Imran, Z. U. Abideen, and S. Pagliarini, “An experimental study of building
blocks of lattice-based nist post-quantum cryptographic algorithms,” Electronics,
vol. 9, no. 11, p. 1953, 2020.

[94] B. Rashidi, “Throughput/area efficient implementation of scalable polynomial
basis multiplication,” Journal of Hardware and Systems Security, vol. 4, no. 2,
pp. 120–135, 2020.

[95] H. Eberle, N. Gura, S. Shantz, V. Gupta, L. Rarick, and S. Sundaram, “A
public-key cryptographic processor for rsa and ecc,” in Proceedings. 15th IEEE
International Conference on Application-Specific Systems, Architectures and
Processors, 2004., pp. 98–110, IEEE, 2004.

[96] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty compu-
tation on the cloud via multikey fully homomorphic encryption,” in Proceedings
of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC
’12, (New York, NY, USA), p. 1219–1234, Association for Computing Machinery,
2012.

[97] R. Azarderakhsh, K. U. Järvinen, and M. Mozaffari-Kermani, “Efficient algorithm
and architecture for elliptic curve cryptography for extremely constrained secure
applications,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 61, no. 4, pp. 1144–1155, 2014.

[98] J. Xie, J. j. He, and P. K. Meher, “Low latency systolic montgomery multiplier
for finite field gf(2m) based on pentanomials,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 21, no. 2, pp. 385–389, 2013.

[99] Y. Doröz, E. Öztürk, and B. Sunar, “Accelerating fully homomorphic encryption
in hardware,” IEEE Transactions on Computers, vol. 64, no. 6, pp. 1509–1521,
2015.

93

[100] G. D. Sutter, J.-P. Deschamps, and J. L. Imana, “Efficient elliptic curve point
multiplication using digit-serial binary field operations,” IEEE Transactions on
Industrial Electronics, vol. 60, no. 1, pp. 217–225, 2013.

[101] S. Venkatachalam, H. J. Lee, and S.-B. Ko, “Power efficient approximate booth
multiplier,” in 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–4, 2018.

[102] P. K. Somayajulu and S. Ramesh, “Area and power efficient 64-bit booth mul-
tiplier,” in 2020 6th International Conference on Advanced Computing and
Communication Systems (ICACCS), pp. 721–724, 2020.

[103] A. Mrabet, N. El-Mrabet, R. Lashermes, J.-B. Rigaud, B. Bouallegue, S. Mesnager,
and M. Machhout, “A scalable and systolic architectures of montgomery modular
multiplication for public key cryptosystems based on dsps,” Journal of Hardware
and Systems Security, vol. 1, no. 3, pp. 219–236, 2017.

[104] M. Machhout, Z. Guitouni, K. Torki, L. Khriji, and R. Tourki, “Coupled fpga/asic
implementation of elliptic curve crypto-processor,” International Journal of Net-
work Security & Its Applications, vol. 2, no. 2, pp. 100–112, 2010.

[105] J. Xie, P. K. Meher, X. Zhou, and C. Lee, “Low register-complexity systolic
digit-serial multiplier over gf(2m) based on trinomials,” IEEE Transactions on
Multi-Scale Computing Systems, vol. 4, no. 4, pp. 773–783, 2018.

[106] J. Pan, P. Song, and C. Yang, “Efficient digit-serial modular multiplication
algorithm on fpga,” IET Circuits, Devices Systems, vol. 12, no. 5, pp. 662–668,
2018.

[107] M. Imran, Z. U. Abideen, and S. Pagliarini, “TTech-LIB: Center for hardware
security,” 2020. https://github.com/Centre-for-Hardware-Security/
TTech-LIB.

[108] M. Imran, Z. U. Abideen, and S. Pagliarini, “An open-source library of large
integer polynomial multipliers,” in 2021 24th International Symposium on Design
and Diagnostics of Electronic Circuits & Systems (DDECS), pp. 145–150, 2021.

[109] M. Imran, Z. U. Abideen, and S. Pagliarini, “A versatile and flexible multiplier
generator for large integer polynomials,” Journal of Hardware and Systems Security
(HASS), vol. –, no. –, 2022.

[110] NIST, “Recommended Elliptic Curves for Federal Government Use
(1999).” https://csrc.nist.gov/csrc/media/publications/fips/186/
2/archive/2000-01-27/documents/fips186-2.pdf.

[111] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech, and
J. Michelsen, “Open cell library in 15nm freepdk technology,” in Proceedings of
the 2015 Symposium on International Symposium on Physical Design, ISPD ’15,
(New York, NY, USA), p. 171–178, Association for Computing Machinery, 2015.

[112] R. Azarderakhsh and A. Reyhani-Masoleh, “Low-complexity multiplier architec-
tures for single and hybrid-double multiplications in gaussian normal bases,” IEEE
Transactions on Computers, vol. 62, no. 4, pp. 744–757, 2013.

94

https://github.com/Centre-for-Hardware-Security/TTech-LIB
https://github.com/Centre-for-Hardware-Security/TTech-LIB
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf

[113] A. Rezai and P. Keshavarzi, “High-throughput modular multiplication and expo-
nentiation algorithms using multibit-scan–multibit-shift technique,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 9, pp. 1710–
1719, 2015.

[114] S. S. Roy and A. Basso, “Hardware implementation of saber,” last accessed
on March 19, 2023. [Online] available at: https://github.com/sujoyetc/
SABER_HW.

[115] H. E. Sumbul, K. Vaidyanathan, Q. Zhu, F. Franchetti, and L. Pileggi, “A
synthesis methodology for application-specific logic-in-memory designs,” in 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, 2015.

[116] K. Team, “Keccak in vhdl: High-speed core,” last accessed on March 16, 2023.
[Online] available at: https://keccak.team/hardware.html.

[117] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “Instruction-set
accelerated implementation of crystals-kyber,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 68, no. 11, pp. 4648–4659, 2021.

[118] Y. Huang, M. Huang, Z. Lei, and J. Wu, “A pure hardware implementation of
crystals-kyber pqc algorithm through resource reuse,” IEICE Electronics Express,
vol. advpub, p. 17.20200234, 2020.

[119] T. T. Nguyen, S. Kim, Y. Eom, and H. Lee, “Area-time efficient hardware
architecture for crystals-kyber,” Applied Sciences, vol. 12, no. 11, p. 10 pages,
2022.

[120] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “A monolithic
hardware implementation of kyber: Comparing apples to apples in pqc candidates,”
in Progress in Cryptology – LATINCRYPT 2021 (P. Longa and C. Ràfols, eds.),
(Cham), pp. 108–126, Springer International Publishing, 2021.

[121] STM32, “Nucleo-64 development board with stm32f446re mcu,” last ac-
cessed on March 19, 2023. [Online] available at https://www.st.com/en/
evaluation-tools/nucleo-f446re.html.

[122] A. Basso and S. S. Roy, “Optimized polynomial multiplier architectures for post-
quantum kem saber,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC), pp. 1285–1290, 2021.

[123] W. Beullens, J.-P. D’Anvers, A. Hülsing, T. Lange, L. Panny, C. de Saint Guilhem,
and N. P. Smart., “Post-Quantum Cryptography: Current State and Quantum
Mitigation.” Available at: https://www.enisa.europa.eu/publications/
post-quantum-cryptography-current-state-and-quantum-mitigation,
last accessed on March 13, 2023.

95

https://github.com/sujoyetc/SABER_HW
https://github.com/sujoyetc/SABER_HW
https://keccak.team/hardware.html
https://www.st.com/en/evaluation-tools/nucleo-f446re.html
https://www.st.com/en/evaluation-tools/nucleo-f446re.html
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation

Acknowledgements

I would like to thank Prof. Dr. Samuel Pagliarini, my Ph.D. mentor, and head of the
Centre for Hardware Security (CHS), for allowing me to join CHS in November 2019.
His daily guidance, sincere efforts, and weekly meetings encouraged me to fold this
thesis in June 2023. In addition, I would like to thank him for training me throughout
my career during my stay at CHS. His timely actions and steps enable me to contribute
to prestigious journals as publications related to my Ph.D. topic.

I am very grateful to my thesis committee members, from TalTech and outside
TalTech, for their valuable feedback and constructive criticism. Their expertise in the
domain, technical comments & valuable suggestions, and more insights help me to
structure my work in this shape.

I want to thank the Department of Computer Systems, School of IT staff, and faculty
members, who have provided an excellent academic environment that has enabled me to
develop and grow as a researcher. I am grateful for the project’s financiers that financed
my contributions as publications during my Ph.D. studies: (i) MOBERC35 "novel
and competent solutions towards synthesizing trusted hardware," Estonian Research
Council; (ii) SAFEST "Secure and Assured Hardware: Facilitating ESTonia’s Digital
Society," European Comission; and (iii) EITSA18019 "Research measure of IT Academy
programme for 2018-2022: Riistvara turvalisus," IT Academy, European Social Fund
and Estonian Education and Youth Board. I thank the IT Academy scholarship program
for giving me financial support for four months in 2020.

I thank one of the SAFEST project partners, Prof. Dr. Sujoy Sinha Roy from
Graz University of Technology, Austria, for permitting me to stay in Graz for scientific
collaboration. Also, I thank the team members of Dr. Roy for their support and help. I
also thank Prof. Dr. Muhammad Rashid from Umm-Al Qurrah University, Makkah,
Saudi Arabia, for scientific collaborations to generate a potential outcome published in
conference proceedings.

I am grateful to my colleagues for their unwavering support, encouragement, and
love throughout this journey. Dr. Levent Aksoy and Dr. Muayad Baqer Al-Jafar, thanks
for the unlimited support and encouraging words, especially when I received a rejection
from a conference or journal. Zain Ul-Abideen, Mohammad Eslami, and Tiago Perez,
thanks for helping me to verify the chip. In addition, I like to thank Zain for dealing
with STM32 Microcontroller. Also, I thank Felipe Almeida for covering the backend
steps related to my chip. Dr. Karl Janson and Uljana Reinsalu, thanks for your support
in translating text from English to Estonian.

Indeed, I am extremely grateful to my loving wife, six-year cute doll (Areeba Malik),
respected parents, and siblings for their countless support to encourage me to stay in
very cold weather in Tallinn, Estonia. I couldn’t finish this thesis at the right time
without their support.

97

Abstract
Hardware Realization of Lattice-based Post-Quantum
Cryptography
The vulnerability of currently deployed public-key cryptography schemes to quan-
tum computer attacks highlights the need for post-quantum cryptography (PQC)
schemes/algorithms. The National Institute of Standards and Technology (NIST) is
an American standardization organization that promotes and maintains measurement
standards for the respective community; currently, it is evaluating the security strength
of PQC algorithms based heavily on the inputs from various stakeholders to announce
standards shortly in the future. The security strength of the candidates submitted
to NIST for standardization relies on several mathematical problems, such as lattice,
code, hash, multivariate, and isogeny; the PQC schemes constructed on lattice concepts
got significant interest due to higher security. Yet, to evaluate their performance, the
respective community, researchers, and developers are implementing PQC schemes
on different hardware platforms, such as field-programmable gate arrays (FPGA) and
application-specific integrated circuits (ASIC). Unfortunately, the current state-of-the-
art lacks the realization of hardware implementations of PQC algorithms for specific
high-speed cryptographic applications. Therefore, this thesis realizes one lattice-based
PQC algorithm, i.e., SABER, as a case study for design space explorations specific to
high-speed cryptographic applications on the ASIC platform. The main contributions
are summarized as follows:

Open-source multiplier generator (TTech-LIB). Cryptographic hardware for
secure communications and data exchange comprises several building blocks. Multi-
plication is often identified as the real bottleneck in implementing efficient crypto-
graphic circuits as it is the most computationally intensive operation in public-key
cryptography schemes, including the PQC algorithms. Therefore, an open-source
versatile and flexible generator of various large integer polynomial multipliers to
be used in hardware crypto cores is presented for the first time. Flexibility allows
circuit designers to choose an appropriate multiplication method from a list that
includes Schoolbook, Booth, Karatsuba, and variants of Toom-Cook. Moreover,
TTech-LIB supports traditional and digitized polynomial multiplication solutions,
where inputs are broken into smaller parts for efficiency. A parameterized digit
serial multiplier wrapper provides the digitized solution for multiplying polynomial
coefficients. To explore power-performance-area trade-offs, pipelining for the non-
digitized multiplication methods is also introduced. The generator automatically
creates the multiplier’s Verilog HDL logic compliant with FPGA and ASIC synthesis.
Moreover, it also generates configurable and parameterizable scripts for commercial
ASIC synthesis tools. Various performance metrics have been considered to evaluate
multiplication architectures on FPGA and ASIC platforms.

Serial + Parallel SABER architectures. A design space exploration focusing on
performance improvement (regarding operating frequency) of SABER is performed
where eight architectures are evaluated; one is a baseline ported from FPGA, and the
remaining seven are optimized, including serial and parallel architectures. The serial
architectures incorporate 64-bit data paths and have been investigated using several
optimization approaches: (i) use of compiled memories in a ‘smart synthesis’ fashion,
(ii) pipelining, and (iii) logic sharing between SABER building blocks. On the other
hand, parallel SABER designs have been evaluated using 256-bit wider data paths,

98

where a buffering technique for efficient polynomial coefficient multiplications is
utilized to reduce the clock cycle count. Additionally, double-sponge functions are
combined serially (one after another) in a high-speed KECCAK core to improve
the hash operations of SHA and SHAKE hash functions. Overall, parallel SABER
designs decrease the computation time with area and power overheads. The most
optimized parallel SABER architecture utilizes four instances of RegFile-based SRAM
memories, achieving a remarkable clock frequency of 2.5GHz and utilizes an area
of 0.255mm2 on modern 28nm process technology. It takes 1.53µs, 1.82µs, and
1.96µs to compute the key generation, encapsulation, and decapsulation operations
of SABER.
Fastest-silicon demonstration of SABER. One serial-optimized SABER architec-
ture is fabricated as a chip on 65nm process technology. The chip measures 1mm2

in size and can operate at a maximum frequency of 715MHz at a nominal supply
voltage of 1.2V. It takes 10µs, 9.9µs, and 13µs to compute the key generation,
encapsulation, and decapsulation operations of SABER. The average power con-
sumption of the chip is 153.6mW . Physical measurements reveal that the fabricated
design is 8.96× (for key generation), 11.80× (for encapsulation), and 11.23× (for
decapsulation) faster than the best-known silicon-proven SABER implementation.
Therefore, the TTech-LIB benefits the community by generating different multipli-

cation architectures for traditional public-key cryptography, including PQC algorithms.
The optimization techniques used in this thesis for the performance improvement of
the SABER algorithm can be utilized in other PQC algorithms for their performance
improvements.

99

Kokkuvõte
Võrel põhinev post-kvant-krüptograafia riistvaraline
realisatsioon
Praegu kasutusel olevad avalikuvõtmega krüptograafiaskeemid on kvantarvutite rünna-
kute suhtes haavatavad. See suurendab vajadust kvantkrüptograafiajärgsete skeemide
ja algoritmide (PQC) järele. Ameerika standardimisorganisatsioon National Institute of
Standards and Technology (NIST) hindab PQC-algoritmide turvalisust koos sidusrüh-
made panusega, et kuulutada välja tulevased standardid. PQC-kandidaatide turvalisuse
tugevus sõltub matemaatilistest probleemidest, nagu võre, kood, hash, muutujate
arv ja isogeneesia. Võre-põhised PQC-skeemid on eriti huvipakkuvad nende suurema
turvalisuse tõttu. Nende tõhususe hindamine hõlmab PQC-skeemide rakendamist riistva-
raplatvormidel, nagu programmeeritav ventiilmaatriks (FPGA) ja rakendusspetsiifilised
integraallülitused (ASIC). Praeguses tehnoloogias puuduvad aga PQC-algoritmide riist-
varalised rakendused konkreetsete kiirete krüptograafiliste rakenduste jaoks. Käesolevas
väitekirjas keskendutakse ühe võre-põhise PQC-algoritmi (SABER) realiseerimisele, mis
on juhtumiuuringuks, et uurida projekteerimisruumi kiirete krüptograafiliste rakenduste
puhul ASIC-platvormil. Selle doktoritöö peamised panused on järgmised:

Avatud lähtekoodiga korrutaja generaator (TTech-LIB). Krüptograafariistvaral
on oluline roll turvalise side ja andmevahetuse tagamisel. Tõhusate krüptograafiliste ahe-
late loomisel on peamiseks kitsaskohaks korrutamine. Seda seetõttu, et avalike võtmete
krüptograafiaskeemide puhul, kaasaarvatud PQC-algoritmides, on korrutamine arvutusli-
kult kõige kulukam operatsioon. Selle probleemi lahendamiseks elitletakse esmakordselt
paindliku avatud lähtekoodiga generaatorit suurte täisarvuliste polünoomide korrutajate
loomiseks. Selle abil saavad ahelate projekteerijad valida neile sobivaima korrutaja
mitmete võimaluste hulgast, sealhulgas Schoolbooki, Booth’i, Karatsuba ja Toom-Cooki
variantide hulgast. Lisaks toetab TTech-LIB nii traditsioonilisi kui ka digitaliseeritud po-
lünoomi korrutamise lahendusi, mis hõlmab tõhususe suurendamiseks sisendite jagamist
väiksemateks osadeks. Kasutades parameetriseeritud ümbrist järjestikuse digitaliseeritud
korrutaja loomiseks, mis võimaldab digitaliseeritud korrutada polünoomi koefitsiente.
Samuti võimsuse, jõudluse ja pindala vaheliste kompromisside uurimiseks tutvustatakse
mittedigitiseeritud korrutamismeetodite konveierit. Generaator loob automaatselt Ve-
rilogi loogika, mis on kasutatav FPGA või ASICu sünteesiks. Samuti genereerib see
kommertslike ASIC-sünteesitööriistade jaoks konfigureeritavaid ja paranetriseeritavaid
skripte. FPGA- ja ASIC-platvormide korrutamisarhitektuuride hindamisel on hoolikalt
kaalutud erinevaid jõudlusnäitajaid. Selline põhjalik lähenemisviis tagab, et genereeritud
krüptograafiline riistvara vastab kõrgeimatele tõhususe ja tulemuslikkuse standarditele.

Järjestik + paralleelne SABERi arhitektuur. Käesolevas doktoritöös keskendutak-
se SABERi jõudluse suurendamist taktsageduse tõstmise kaudu, kasutades disainiruumi
uuringut. Hinnatakse kaheksat arhitektuuri, sealhulgas ühte FPGA-st portitud baasver-
siooni ja seitset optimeeritud versiooni, mis sisaldavad nii järjestik- kui ka paralleelset
lähenemist. Jadaarhitektuuride puhul kasutatakse 64-bitiseid andmeradu ja uuritakse kol-
me optimeerimistehnikat: (i) kompileeritud mälude kasutamine ‘nutika sünteesi’ abil, (ii)
konveieri kasutamist ja (iii) loogika jagamist SABERi plokkide vahel. Seevastu paralleel-
sed SABERi konstruktsioonid kasutavad 256-bitiseid laiemaid andmeradu ja kasutavad
puhverdamistehnikat, mis võimaldavad tõhustada polünoomikoefitsientide korrutamist,
vähendades taktsüklite arvu. SHA ja SHAKE funktsioonide hash-operatsioonide täiusta-
miseks kombineerime double-sponge funktsioonid järjestikühenduses kiires KECCAKi
tuumas. Üldiselt võimaldavad paralleelsed SABER arhitektuurid vähendada arvutuseteks

100

kuluvat aega, suurendades skeemi pindala ja energiakulu. Neist kõige optimeeritum
arhitektuur kasuta nelja RegFile-tüüpi SRAM-mälu ja saavutab muljetavaldava 2.5GHz
taktsageduse. Kaasaegsel 28nm protsessoritehnoloogial on selle pindala 0.255mm2.
SABERi võtmete genereerimise, kapseldamise ja dekapseldamise operatsioonid võtavad
selle arhitektuuri puhul aega vastavalt 1.53µs, 1.82µs ja 1.96µs.

SABERi fastest-silicon demonstratsioon. Üks Järjestikoptimeeritud SABERi arhi-
tektuur valmistati kiibina, kastuades 65nm protsessoritehnoloogiat. Kiibi mõõtmed on
1mm2 ja suuteline töötama maksimaalselt sagedusel 715MHz nominaalse toitepinge
1.2V juures. SABERi võtme genereerimiseks kulub 10µs, kapseldamiseks 9.9µs ja de-
kapseldamisel 13µs. Kiibi keskmine energiatarve on 153.6mW . Kiibil tehtud füüsilised
mõõtmised näitavad, et see arhitektuur on tuntuimast ränil testitud SABERi implemen-
tatsioonist kiirem 8.96× võtme genereerimisel, 11.80× kiirem kapseldamisel ja 11.23×
kiirem dekapseldamisel.

Seega, TTech-LIBi toob kasu krüptograafiakogukonnale, kuna see genereerib erinevaid
korrutamisarhitektuure traditsioonilise avaliku võtme krüptograafia, sealhulgas PQC-
algoritmide jaoks. Käesolevas töös SABERi algoritmi jõudluse parandamiseks kasutatud
optimeerimistehnikaid saab kasutada ka teiste PQC-algoritmide jõudluse parandamiseks.

101

Appendix 1

I

103

M. Imran, Z. U. Abideen, and S. Pagliarini, “An experimental study of building
blocks of lattice-based NIST post-quantum cryptographic algorithms,” Electronics,
vol. 9, no. 11, 1953, 2020. DOI: https://doi.org/10.3390/electronics9111953

electronics

Article

An Experimental Study of Building Blocks of
Lattice-Based NIST Post-Quantum
Cryptographic Algorithms

Malik Imran * , Zain Ul Abideen and Samuel Pagliarini

Centre for Hardware Security, Tallinn University of Technology (TalTech), 12616 Tallinn, Estonia;
zain.abideen@taltech.ee (Z.U.A.); samuel.pagliarini@taltech.ee (S.P.)
* Correspondence: malik.imran@taltech.ee; Tel.: +372-53676608

Received: 27 October 2020; Accepted: 16 November 2020; Published: 19 November 2020 ����������
�������

Abstract: Security of currently deployed public-key cryptography algorithms is foreseen to be vulnerable
against quantum computer attacks. Hence, a community effort exists to develop post-quantum
cryptography (PQC) algorithms, most notably the NIST PQC standardization competition. In this
work, we have investigated how lattice-based candidate algorithms fare when implemented in
hardware. To achieve this, we have assessed 12 lattice-based algorithms in order to identify their
basic building blocks. We assume the algorithms will be implemented in an application-specific
integrated circuit (ASIC) platform and the targeted technology is 65 nm. To estimate the characteristics
of each algorithm, we have assessed the following characteristics: memory requirements, use of
multipliers, and use of hashing functions. Furthermore, for these building blocks, we have collected
area and power figures for all studied algorithms by making use of commercial memory compilers
and standard cells. Our results reveal interesting insights about the relative importance of each
building block for the overall cryptosystem, which can be used for guiding ASIC designers when
selecting an algorithm or when deciding where to focus optimization efforts such that the final design
respects requirements and design constraints.

Keywords: post-quantum cryptography; NIST PQC algorithms; crypto-hardware; PQC building blocks

1. Introduction

Electronic devices are vulnerable to an array of security threats, a problem that is more widespread
than ever in the internet-of-things era. The backbone technology ensuring that sensitive data can be
transmitted over an unsecured public channel is cryptography. Generally, it has two distinct flavors,
i.e., private-key and public-key cryptography. Over the last few decades, public-key cryptography
(PKC) has become a fundamental security protocol for all forms of digital communication, both wired
and wireless.

For PKC, the security strength of currently deployed algorithms (e.g., RSA and Elliptic Curve
Cryptography) is based on the difficulty of solving integer factorization and discrete logarithm
problems. However, it has been shown that quantum computers can factorize integers in a
polynomial-time—the consequence being that traditional PKC algorithms may become vulnerable [1].
Thus, to keep current communication practices secure, crypto researchers are investigating different
cryptographic “hard problems” (e.g., isogeny, lattices, multivariates, etc.) to develop new algorithms
that are robust against quantum computers.

Towards assessing different cryptographic methods against quantum attacks, the ongoing NIST
post-quantum cryptography (PQC) standardization process serves as a beacon for the security
community. Considering several parameters (i.e., security, cost, performance, implementation

Electronics 2020, 9, 1953; doi:10.3390/electronics9111953 www.mdpi.com/journal/electronics

Electronics 2020, 9, 1953 2 of 26

characteristics, etc.), 43 and 11 algorithms were excluded after first and second rounds, respectively,
while the remaining 15 algorithms were kept for the third round [2]. The algorithms that remained in
the second round can be categorized into five different cryptographic hard problems: (a) isogeny-based
(1 algorithm), (b) lattice-based (12 algorithms), (c) code-based (7 algorithms), (d) multivariate
polynomial cryptography (4 algorithms), and (e) hash-based digital signatures (2 algorithms) [2,3].
The security hardness of lattice-based cryptographic algorithms depends on solving the shortest
vector problem (SVP), [4]. For complete mathematical formulations and constructions, interested
readers can consult [4–6]. Several mathematical problems can be used to construct lattice-based
schemes. However, the most commonly used mathematical problems are learning with errors (LWE)
and learning with rounding (LWR). The LWE scheme is based on finding a vector s when given a
matrix A and a vector b = As + e, where e is a small error vector [5]. On the other hand, the LWR
problem is a variant of LWE where one replaces random errors with deterministic rounding [6].
The following algorithms rely on the LWE problem: FrodoKEM [7], NewHope [8], Crystals-KYBER [9],
ThreeBears [10], LAC [11], NTRU [12], qTesla [13], and Falcon [14]. The LWR problem, on the other
hand, is considered in TRU-Prime [15], Round5 [16], and Saber [17] algorithms. Finally, another
popular mathematical problem to construct a lattice-based scheme includes short vectors in lattices,
as used in the Crystals-Dilithium [18] algorithm. The aforementioned 12 algorithms were part of the
NIST PQC standardization process and are the objects of this study.

Security is the primary evaluation criterion driving the NIST PQC competition and,
understandably, the software implementations of the candidates focus on it. However, even before
the competition process is finalized, the selected candidate(s) are being considered for hardware
acceleration [19–24]. The most suitable platforms for acceleration are: (1) field-programmable gate
array (FPGAs), (2) ASICs, and hardware/software (HW/SW) co-design. As compared to ASICs,
FPGAs and HW/SW co-designs provide flexible solutions due to reconfigurability characteristic and
are relatively less expensive. However, they cannot meet the same performance-at-power efficiency of
an ASIC. Consequently, ASIC designers will be tasked to improve performance, reduce area footprint,
and reduce power consumption of PQC accelerators. Being so, it is imperative that we understand the
constraints and characteristics of the algorithms in terms of their building blocks when implemented
as ASICs such that we can then judge their feasibility of implementation for resource-constrained
application domains.

1.1. Existing Implementations of NIST PQC Algorithms

The algorithms considered in NIST’s standardization process have received a fair share of
attention [19–26] and have been implemented in different platforms, including FPGA, ASIC,
and HW/SW co-design.

FPGA-based implementations [19–22]. The authors in [19,20] have leveraged a high-level
synthesis (HLS) approach through which they evaluate different design characteristics (i.e., area, clock
frequency, and the number of cycles required for the overall computation). The Xilinx Artix-7 FPGA
has often been used as a benchmarking platform for FPGA-based implementations. Therefore, in [19],
qTesla and Crystals-Dilithium are evaluated on an Artix-7 device for key-pair generation, signature
generation, and signature verification. Using distinct optimization techniques, i.e., loop-unrolling
and pipelining, area and latency results for different security levels are reported. According
to [19], Crystals-Dilithium requires lower hardware resources as compared to qTesla for all key-pair
generation, signature generation, and signature verification operations. An implementation and
comparison study of a few of the lattice-based algorithms is provided in [20], where a Zynq UltraScale
system-on-chip (SoC) platform has been utilized. For each key-encapsulation and -decapsulation
operation, the hardware implementation results reveal that the selected NIST PQC algorithms are 396
and 712 times faster than their software-based implementations. Additionally, the implementations
reported in [20] differ from [19] as it describes complete cryptosystem designs for various NIST PQC
algorithms (instead of only encapsulation). A parameterized implementation of qTesla hash algorithm

Electronics 2020, 9, 1953 3 of 26

on Artix-7 FPGA is discussed in [21] where each key-pair generation, signing, and verification of the
execution (for the parameter set of security level-1) takes 7.7 ms, 34.4 ms, and 7.8 ms, respectively.
In [22], an efficient architecture for NewHope is presented using a low-complexity Number Theoretic
Transformation (NTT)/inverse NTT-based modular multiplications. A low-complexity solution is
achieved by merging the pre-processing of NTT and the post-processing of INTT into the Fast Fourier
Transform (FFT) algorithm, which results in a decrease in N and 2N modular multiplications for
N-point NTT and INTT operations, respectively.

ASIC-based implementations [23–26]. Similar to FPGA-based implementations, RTL is generated
through HLS by the authors of [23,24] where they also evaluate different design characteristics. Instead
of describing dedicated cryptocores, solutions that make use of an RISC-V microprocessor are described
in [25,26]. Still referring to [23], ASIC-specific discussion and results over 65 nm standard cell library
are reported for seven lattice-based algorithms (Saber, Crystals-KYBER, NewHope, FrodoKEM, NTRU,
Crystals-Dilithium, and qTesla) where loop-unrolling and pipelining techniques have been utilized to
optimize design parameters such as area, latency, clock frequency, and power. The key-encapsulation
algorithms (Saber, Crystals-KYBER, NewHope, NTRU, and Crystals-Dilithium) targeted in [23] require
an area of 4.7, 3.3, 3.2, 1.2, and 4.7 mm2. Moreover, the corresponding power values are 54.49 mW,
39.21 mW, 38.02 mW, 14.30 mW, and 51.24 mW. A design-space exploration of key generation, signature
generation, and signature verification components of two digital signature algorithms (qTesla and
Crystals-Dilithium) is presented in [24] where the authors also make use of a 65 nm standard cell
library in their results. The Crystals-Dilithium in [24] operates at a faster clock frequency as compared
to qTesla. The power values for Crystals-Dilithium do not increase with the increase in security level,
while area does. On the other hand, power values of qTesla implementation increase with the security
level, while area does not.

A configurable crypto-processor for post-quantum lattice-based protocols referred to as Sapphire
has been presented in [25], where the authors developed a dedicated instruction set, an arithmetic
logical unit (ALU), and a control unit that interfaces with data and instruction memories. All the
components/units used inside Sapphire are secure against timing and simple power analysis
side-channel attacks. Moreover, the Sapphire processor was integrated with an RISC-V microprocessor
to demonstrate FrodoKEM, NewHope, qTesla, Crystals-Kyber, and Crystals-Dilithium algorithms.
Similarly, an integrated domain-specific vector co-processor for post-quantum cryptography
algorithms with RISC-V microprocessor has been presented in [26].

1.2. Limitations in the Existing Implementations of NIST PQC Algorithms

Although there are several implementations where area and power constraints have been
evaluated over distinct implementation platforms [19–26], there are various shortcomings in these
implementations, listed as follows:

• Unfortunately, several reference works [19–26] attempting to compare PQC algorithms only do
it for a small number of algorithms at a time. Our approach stands out because we assess all
12 lattice-based algorithms involved in the NIST PQC standardization.

• In [19,20,23,24], an HLS approach has been used to evaluate area and power constraints while
abstracting their essential building blocks and functions (e.g., memory instances, arithmetic
operators, logical operators, hash functions, etc.). While HLS allows for a fast architectural
evaluation, we opt not to make use of HLS in our study since HLS still is more convenient
for FPGA-based implementations where BRAMs can be easily inferred. In ASICs, this method
still presents some enormous challenges as the tools have no direct interface to proprietary
memory compilers.

• The performance of a crypto-system often depends on the performance of the utilized multiplier.
The functional C/C++ routines of multipliers written in reference implementations of the selected
NIST PQC algorithms, when submitted to an HLS tool, yield an architecture where the input
and output parameters are uint16_t/uint32_t/uint64_t [7–18]. Such a solution might not be

Electronics 2020, 9, 1953 4 of 26

optimal in terms of latency, even if it brings a decrease in area and power [19,20,23,24]. To fully
understand the design space, actual input and output operand sizes of arithmetic operators have
to be identified.

1.3. Our Contributions

The key contribution of this work is to provide an experimental study that investigates the
building blocks of selected NIST PQC algorithms. The term “building block” refers to the fundamental
components that are used inside each lattice-based NIST PQC algorithm and that together make up
the composition of the cryptosystem. The additional contributions of this work are given as follows:

• To identify the essential building blocks, we have defined a set of rules (see Section 2) which
allows us to fairly assess each reference implementation to (1) estimate the required memory
sizes, (2) identify large arithmetic operators (i.e., multipliers), and (3) to identify the utilized
hashing functions.

• Area and power values for read-only memory (ROM) and random-access memory (RAM)
instances are calculated using specific memory compilers provided by a partner foundry.
Naturally, ROMs allow only read operations while RAMs allow both read and write operations.
The target technology is 65 nm bulk CMOS with a “low-power” flavor (details are provided in
Sections 3.1 and 4.1).

• Amongst the identified arithmetic operators, we focus on the multipliers as they are often
large and a bottleneck for the performance. Therefore, to calculate the actual hardware costs,
we have developed Verilog RTL models for the multipliers (Schoolbook, 2-Way Karatsuba, 3-Way
Toom-Cook, and 4-Way Toom-Cook) and synthesized several variants of them using a commercial
standard cell library (details are provided in Sections 3.2 and 4.2). Furthermore, we have shown
performance trends for the aforementioned multiplier architectures over different input operand
lengths (21 to 212) in terms of power, area, and clock frequency (see Appendix A).

• We have developed code in Verilog RTL for the identified hash functions (total = 10) according to
their required input and output lengths (details are given in Sections 3.3 and 4.3).

• Finally, we put all the building blocks together and compile results for the combined
memory/logic footprints of each studied algorithm. The motivation for this effort is not to
serve as a benchmarking measure. Instead, we provide this comparison to demonstrate that the
block-by-block deconstruction has merit.

Our paper is organized as follows: a research protocol is defined in Section 2 to assess the reference
implementations of selected algorithms. The characteristics of each assessed algorithm are described in
Section 3, where we identify memory instances, arithmetic operators (and the size of their operands),
and hashing functions. Using memory compilers and standard cell libraries, required hardware
resources are provided in Section 4. The final evaluation of each studied algorithm, in terms of area
and power, is presented in Section 5. Finally, our conclusions are given in Section 6.

2. Principles Definition

We have defined a set of rules to select and evaluate the performance of PQC algorithms.
These rules include the inclusion-exclusion principles (Section 2.1), selection of the algorithms for
evaluations in this work (Section 2.2), the criterion to estimate memory instances, and finally, the rules
for estimating the memory, inputs, and outputs of utilized arithmetic operators (Section 2.3).

2.1. Inclusion-Exclusion Principles

We have defined the following principles for inclusion-exclusion of a particular PQC algorithm:

• Participation in the NIST competition. Include only algorithms that were considered on the
NIST competition for standardization.

Electronics 2020, 9, 1953 5 of 26

• Underlying cryptographic primitive. Include only algorithms that are built on the security
problems of lattice-based cryptography.

• Security levels. For each studied algorithm, we consider only the parameters that determine the
highest security level.

• Purpose of the algorithm. For each particular algorithm, there might be a number of
implementations, either for encryption/decryption or key encapsulations/establishments. We opt
not to include all these as they serve inherently different purposes. Instead, we consider only the
encryption/decryption implementations.

2.2. Selection of Algorithms

Based on the inclusion-exclusion principles defined above, we have selected 12 algorithms for
this study, as shown in Figure 1. Note that the selected algorithms have many different security
parameters (described in the corresponding reference documents [7–18] and in red colored text in
Figure 1) for different security levels (SLi). NIST has defined five different security levels (SL1−SL5)
for the standardization process: security levels SL1, SL3, and SL5 are equivalent to security levels
of AES-128, AES-192, and AES-256 bit key search. The remaining SL2 and SL4 are equivalent to
SHA-256/SHA3-256 and SHA-384/SHA3-384 bit collision search.

Figure 1. Selected algorithms and the corresponding implementations utilized in this study.

2.3. Calculation of Memory and Operand Sizes

Memories can easily take most of the area of a chip, so correctly estimating their number, type,
and sizes is critical for assessing the size of an ASIC design. Memories bear a large influence on the
floorplan of a chip, and therefore it is important to correctly estimate the required memory instances
using actual memory compilers. In the studied algorithms, variables to which only read operations
are allowed are considered as a candidate for an ROM. Variables that present both read and write
operations are considered as RAM candidates. However, not all variables are of interest in this exercise.
For instance, variables that serve as flags or for temporary storage would not require an RAM as these
would most likely reside in flip-flops or register banks. The same is true for small constants that do not
require an ROM.

To estimate the size of each ROM and RAM instance, we assess the total number of memory
addresses (p), as well as the number of bits stored at each address (q). Regarding operand sizes for
logic/arithmetic, the total number of inputs and outputs are identified based on the parameters passed
to a given function of interest, while the size of each operand is identified based on its datatype. In a few

Electronics 2020, 9, 1953 6 of 26

cases, we had to resort to contacting the authors for clarification on the operand sizes. Moreover, for the
many hashing operations used in the selected PQC algorithms [7–18], sizes are already standardized
by NIST itself and the effort lies in identifying the correct hashing function employed. Now that we
have defined rules to assess the building blocks of PQC algorithms (memory estimations, identification
of arithmetic operators and their operand sizes, hashing functions, etc.), we are ready to assess their
implementations in ASIC.

3. Assessment of Building Blocks of the Selected NIST PQC Candidates

3.1. Memory Estimations according to the Defined Criteria

Based on the principles defined in Section 2.3, we provide sizes for the ROM and RAM instances
in Table 1. The first column lists the name of the studied algorithm and the selected reference model.
The other columns determine: (2) required memory instances (n), (3) number of memory addresses per
instance (p), (4) number of bits stored at each address (q), (5) size of each memory instance (r = p × q in
Kbytes), (6) size of n memory instances (s = n × r in Kbytes), and finally, (7) the total size (Totalsize) is
the sum of size for n memory instances, i.e., (Totalsize = ∑ (s) in Kbytes).

Concerning Table 1, we describe where the memory requirements are coming from for each
algorithm in the next paragraphs. NTRU-Prime requires RAM to store intermediate and final results
of arithmetic (modular addition and subtraction) and logical operations that take place during the
algorithm. FrodoKEM requires RAM instances to perform modular addition and subtraction operations
over matrices of size M × N. Saber requires different RAM instances to pack and unpack 3 and 4 bits,
to implement the transformation function BS2POL() of byte string into polynomial and to implement
the transformation functions, i.e., POLVECN2BS() and BS2POLVECN(). All the RAM instances with
sizes of 1.642 Kbytes each are required to keep intermediate and final results of the NTRU algorithm.
ThreeBears uses RAM instances to hold private and public-keys, to hold capsule and message seed
bytes and to keep encapsulation seed bytes and shared secret bytes. Round5 requires RAM instances to
store inputs/outputs to/from an AES core [27] and to keep the key for the execution of AES algorithm.
The implementation of Crystals-Dilithium requires only 3 RAM instances to keep intermediate results
for polynomial addition and subtraction operations. Crystals-KYBER requires RAM instances to keep
original and the inverse of original Zeta values for the NTT computations. Furthermore, it utilizes
RAM to decompress the polynomials, to perform polynomial arithmetic operations—modular addition
and subtraction, to convert polynomial coefficients for modular multiplications from Montgomery to
the normal domain and to convert bytes to polynomials.

Table 1. Estimated sizes of required random-access memory (RAM) and read-only memory (ROM)
memory instances.

Algorithm
RAM ROM

n p q r s
Totalsize
(Kbytes) n p q r s

Totalsize
(Kbytes)

NTRU-Prime
(sntrup857)

1 256 8 0.256 0.256
0.448

- - - - - -

1 24 64 0.192 0.192 - - - - - -

FrodoKEM
(frodokem1344)

3 10752 16 21.504 64.512
65.152

- - - - - -

5 64 16 0.128 0.640 - - - - - -

Electronics 2020, 9, 1953 7 of 26

Table 1. Cont.

Algorithm
RAM ROM

n p q r s
Totalsize
(Kbytes) n p q r s

Totalsize
(Kbytes)

Saber (firesaber)

1 32 8 0.032 0.032

1.888

- - - - - -

2 32 16 0.064 0.128 - - - - - -

1 128 8 0.128 0.128 - - - - - -

1 128 16 0.256 0.256 - - - - - -

1 64 8 0.064 0.064 - - - - - -

1 64 16 0.128 0.128 - - - - - -

1 4 512 0.256 0.256 - - - - - -

1 4 1024 0.512 0.512 - - - - - -

1 4 256 0.128 0.128 - - - - - -

1 4 512 0.256 0.256 - - - - - -

NTRU (hps4096821) 14 821 16 1.642 22.988 22.988 - - - - - -

ThreeBears
(papabearephem)

1 40 8 0.040 0.040

3.409

- - - - - -

1 1584 8 1.584 1.584 - - - - - -

1 1697 8 1.697 1.697 - - - - - -

1 24 8 0.024 0.024 - - - - - -

2 32 8 0.032 0.064 - - - - - -

Round5
(r5nD-5pke-5d)

2 16 8 0.016 0.032
0.064

- - - - - -

1 32 8 0.032 0.032 - - - - - -

Crystals-Dilithium
(dilithium4-AES) 3 256 32 1.024 3.072 3.072 - - - - - -

Crystals-KYBER
(kyber1024-90s)

5 256 16 0.512 2.560
2.816

2 128 16 0.256 0.512
0.512

1 128 16 0.256 0.256 - - - - -

NewHope
(newhope1024cca) 8 1024 16 2.048 16.384 16.384 4 1024 16 2.048 8.192 8.192

LAC (lac256)

1 2080 8 2.080 2.080

4.560

2 512 16 1.024 2.048

22.5281 1056 8 1.056 1.056 1 5120 32 20.480 20.480

1 1024 8 1.424 1.424 - - - - -

qTesla
(qtesla-p-III)

1 2048 8 2.048 2.048

152.576

1 444 32 1.776 1.776

22.000

1 9600 32 38.400 38.400 1 224 64 1.792 1.792

1 10,240 32 49.960 40.960 2 2048 36 9.216 18.432

1 1408 32 5.632 5.632 - - - - -

4 2048 64 16.384 65.536 - - - - -

Electronics 2020, 9, 1953 8 of 26

Table 1. Cont.

Algorithm
RAM ROM

n p q r s
Totalsize
(Kbytes) n p q r s

Totalsize
(Kbytes)

Falcon
(falcon1024)

5 1024 16 2.048 10.240

22.744

1 540 64 4.320 4.320

12.160

6 521 32 2.084 12.504 1 1080 16 2.160 2.160

- - - - - 2 31 64 0.248 0.496

- - - - - 2 27 64 0.216 0.432

- - - - - 2 30 64 0.240 0.480

- - - - - 2 1024 16 2.048 4.096

- - - - - 2 32 16 0.512 1.024

- - - - - 2 64 16 1.024 2.048

- - - - - 2 1024 8 1.024 2.048

- - - - - 2 256 8 0.256 0.512

- - - - - 2 512 8 0.512 1.024

NewHope requires RAM instances to keep pre-computed constant values for its execution,
to re-order the polynomials, and to compute the inverses of powers of nth root of unity and −1 in
Montgomery domain in bit reversed order. Further, it utilizes RAM to hold inverses of powers of the
nth root of −1 divided by n in Montgomery domain with R = 218 and to compute arithmetic operations
(instead of modular multiplications) over polynomial representations. LAC requires RAM instances
for numerous operations: secret-key, the public-key, and the cipher texts. qTesla: to keep initial power
and log values for the polynomial computations, to hold modulus values required for the reduction of
polynomials after multiplication operation, to keep bytes of the generated secret-key, the public-key
and the cipher texts. qTesla requires ROM instances to hold initial values for the Gaussian sampler
with 32-bit words and 64-bit words, constants for the Zeta computations, and constants for the inverse
Zeta computations. It also requires RAM instances to pack the secret-key, encode and decode the
public-key and sampled message, and to perform polynomial addition and subtraction operations.
Falcon utilizes ROM instances to keep initial values for discrete Gaussian distributions and bit reversal
index table, to hold precomputed continuous cumulative distribution function (CoDF) values and
precomputed cumulative distribution function (CDF) values for small/large primes. It requires ROM
to keep initial values for the computation of NTT and inverse NTT operations for binary, cubic,
and ternary polynomials. It also requires RAM instances to generate small prime numbers and initial
parameters using the Gaussian distribution function.

As summarized, the requirements for ROM and RAM sizes are relatively small by modern
software standards. However, when considering ASIC implementations, these memory sizes are
not modest and may render some algorithms severely less attractive than others. To give a better
understanding of the magnitude of the memory sizes, we later provide area values in Section 4.1.

3.2. Common Arithmetic Operators and Operand Sizes

According to the rules defined in Section 2.3, the identified common arithmetic operators and
the length of input and output operands are shown in Table 2. In the first column, the name of the
particular algorithm and its reference model are presented. The second column is further divided
into three subcolumns: (1) identified common arithmetic operators, (2) used function name in the
provided reference implementations and the name of algorithm/method used for implementations

Electronics 2020, 9, 1953 9 of 26

(in parentheses), and finally, (3) the length of required input (OP1, OP2, OP3), and output (OP4)
operands, in bits.

Table 2. Required common arithmetic operators and the length of input and output operands.

Algorithm
(Reference Model)

Details of Arithmetic Operators and Operand Lengths (in Bits)

Operators Function Name (Method)
Input/Output Operands

OP1 OP2 OP3 OP4

NTRU-Prime
(sntrup857) A × B

Rq_mult_small() (SBM) 12,176 6088 - 12,176

Rq_mult() (SBM) 6088 6088 - 6088

FrodoKEM
(frodokem1344)

(C− × A−) + B− frodo_mul_add_as_plus_e() (SBM) 172,032 172,032 128 172,032

(C− × A−) + B− frodo_mul_add _sa_plus_e() (SBM) 172,032 172,032 128 172,032

(A− × B−) + C− frodo_mul_add _sb_plus_e() (SBM) 172,032 172,032 128 128

A− × B− frodo_mul _bs() (SBM) 172,032 172,032 128 128

A− + B− poly_add() (SBM) 128 128 - 128

A− − B− poly_sub() (SBM) 128 128 - 128

Saber (firesaber) (A × B)
karatsuba_simple() (KM) 4096 4096 - 4096

toom_cook_4way() (TCM) 4096 4096 - 4096

NTRU
(hps4096821)

(A × B)
poly_Rq_mul() (KM) 11,216 11,216 - 11,216

poly_Sq_mul() (TCM) 11,216 11,216 - 11,216

1/A poly_S3_inv() (Almost algo) 11,216 - - 11,216

ThreeBears
(papabearephem) += A × B mac() (2-Way KM) 3120 3120 - 3120

Round5
(r5nD-5pke-5d)

(A− × B−) ringmul_p() (SBM) 15,136 6208 - 7840

(A− × B−) ringmul_p() (SBM) 15,136 6208 - 15,136

Crystals-Dilithium
(dilithium4-AES)

(A + B) poly_add() (SBM) 8192 8192 - 8192

(A − B) poly_sub() (SBM) 8192 8192 - 8192

(A × B) poly_pointwise_invmontgomery() (NTT) 8192 8192 - 8192

Crystals-KYBER
(kyber1024-90s)

A × B poly_basemul() (NTT) 3072 3072 - 3072

A− + B− poly_add() (SBM) 3072 3072 - 3072
A− − B− poly_sub() (SBM) 3072 3072 - 3072

NewHope
(newhope1024cca)

A × B poly_mul _pointwise() (NTT) 16,384 16,384 - 16,384

A− + B− poly_add() (SBM) 128 128 - 128

A− − B− poly_sub() (SBM) 128 128 - 128

LAC (lac256)
A × B poly_aff() (SBM) 8192 8192 8192 8192

(A × B) + C poly_mul() (SBM) 8192 8192 32 8192

qTesla
(qtesla-p-III)

(A × B) poly_mul() (NTT) 16,384 16,384 - 16,384

(A + B) poly_add() (SBM) 16,384 16384 - 16,384

(A − B) poly_sub_reduce() (SBM) 16,384 16,384 - 16,384

Falcon (falcon1024)

(A − B) mq_poly_sub() (SBM) 24,576 24,576 - 24,576

(A × B) mq_poly_montymul_ntt() (Mont) 24,576 24,576 - 24,576

(A × B) mq_montymul() (Mont) 32 32 32 32

Electronics 2020, 9, 1953 10 of 26

The arithmetic additions and subtraction operations, shown in column three of Table 2,
are commonly implemented by using the schoolbook method. It is worth mentioning that several
algorithms make use of rather large operands (see the fourth column of Table 2). Several different
methods are considered, including schoolbook [28], 2-Way Karatsuba [29], 4-Way Toom-Cook [30],
NTT [31], and Montgomery [32] methods. Consequently, in the text that follows, we discuss the
identified multiplication methods utilized by the candidates of the NIST PQC competition.

Schoolbook method (SBM). The schoolbook method by generating partial products and matrix
multiplications is often applied to lattice-based cryptography [28]. In the studied algorithms,
it was applied in [7,11,12,15,16]. Multiplications by generating partial products is implemented
in NTRU-Prime, LAC, and NTRU algorithms. In both NTRU-Prime and LAC algorithms, a modular
reduction mod_q is applied to reduce the resultant polynomial. Matrix multiplication using schoolbook
method is considered in FrodoKEM and Round5 algorithms. In the Round5 algorithm, row-wise
matrix multiplication method is implemented in ringmul_p() and ringmul_q() functions. FrodoKEM
uses 16 bit data types in reference implementations, so a modulo 216 is used for modular reduction
(see Section 1.2.3 in reference [7]) while in Round5, modq reduction is implemented (see Section 2.2 in
reference [16]).

Karatsuba (KM) [29,33] and Toom-Cook (TCM) [30] multipliers. Both KM and TCM are based
on the idea of splitting input operands into n parts, where n determines the length of each split
operand. Then, the multiplication of each split part (n) is recursively computed using addition and
shift operations. For mathematical formulations, interested readers can turn to [29,30,33]. In [17],
the authors exploit 2-Way and 4-Way methods for multiplication with an operand length of 4096 bits.
ThreeBears is based on polynomial multiplication and addition, it computes multiplication using
a 2-Way KM with an input operand sizes of 3120 bits and generates 3120 bits as an output after
modulo-n reduction.

NTT method [34]. NTT is the generalized form of Discrete Fourier Transform (DFT) which
exploits the convolution feature to multiply large operands [31]. The NTT method for polynomial
multiplications with Montgomery reduction is utilized in NewHope, Crystals-KYBER, qTesla,
and Crystals-Dilithium algorithms. The Crystals-KYBER algorithm has 256 coefficients and each
coefficient is in the set {0, 1, . . . , 3328} so, Crystals-KYBER takes 256 × 12 = 3072 bits in length for each
operand. The NewHope and qTesla algorithms contain 1024 coefficients and each coefficient is 16 bits
in length, so 16,384 (1024 × 16) bits for each operand is required. Similarly, the required operand
length of multiplier functions in the Crystals-Dilithium algorithm is 8192 bits.

Montgomery multiplier [32]. The input operands are first converted into the Montgomery
domain and then multiplication is performed on Montgomery representation. For complete
mathematical formulations regarding the Montgomery algorithm, we redirect the reader to [32].
Falcon algorithm computes polynomial multiplications using the Montgomery multiplication with the
operand size of 32 bits and 24,576 bits.

The required computational cost (in terms of clock cycles) of SBM, 2-Way KM, 4-Way TCM, NTT,
and Montgomery multiplication methods, when ignoring coordinate/domain conversions, are m-1,
(m/2)-1, (m/4)-1, 2m+2log2

n, and 2m-1, where m is the operand length.

3.3. Hashing Algorithms

Apart from the memories and arithmetic operators, NIST PQC algorithms also make use of known
cryptographic primitives. In practice, a hash function may be considered to perform three functions,
i.e., (1) convert variable-length keys into a fixed length, (2) scramble the bits of a key so that the resulting
values are uniformly distributed over the keyspace, and (3) map key values into ones less than or
equal to the size of the message. However, in NIST PQC algorithms, hash functions are frequently
utilized for scrambling purposes. As shown in Table 3, the lattice-based PQC algorithms involved in
the competition use a combination of both SHA2 and SHA3 functions and two extendable-output hash
functions (XOF), named SHAKE-128 and SHAKE-256. The SHAKE-128 and SHAKE-256 functions

Electronics 2020, 9, 1953 11 of 26

can be used as customizable SHAKE (cSHAKE-128 and cSHAKE-256) with two additional inputs,
i.e., function name bit string (N) and a customization bit string (S).

NTRU-Prime uses SHA2-512 for hashing a session key but only the first 256 bits of output
generated by SHA-512 are used to generate the public-key. For mathematical descriptions, readers are
redirected to Sections 3.1 and 4.7 of [15]. FrodoKEM comes in two flavors, either using AES or SHAKE.
Naturally, the AES variants (FrodoKEM-640-AES, FrodoKEM-976-AES, and FrodoKEM-1344-AES) are
more convenient for devices containing AES hardware acceleration such as AES-NI on Intel platforms,
but SHAKE variants (FrodoKEM-640-SHAKE, FrodoKEM-976-SHAKE, and FrodoKEM-1344-SHAKE)
provide better performance [7]. Therefore, we have used an instance of AES-128 for matrix generation
and an instance of SHAKE-256 for key generation and encryption processes.

Table 3. Hash algorithms utilized in the reference implementations of lattice-based post-quantum
cryptography (PQC) algorithms.

Algorithm (Reference Model) Name of the Hashing Method Utilized

NTRU-Prime (sntrup857) SHA2-512
FrodoKEM (frodokem1344) AES-128 (or) SHAKE-128 for matrix generation, SHAKE-128 (or)

SHAKE-256 for key generation/encryption
Saber (firesaber) SHAKE-128, SHA3-256 and SHA3-512
NTRU (hps4096821) SHA3-256
ThreeBears (papabearephem) cSHAKE-256
Round5 (r5nD-5pke-5d) cSHAKE-256 and AES-256
Crystals-Dilithium (dilithium4-AES) SHAKE-128 and SHAKE-256
Crystals-KYBER (kyber1024-90s) AES-256, SHA2-256, SHA2-512 and SHAKE-256
NewHope (newhope1024cca) SHAKE-128 and SHAKE-256
LAC (lac256) -
qTesla (qtesla-p-III) SHAKE-256, cSHAKE-128 and cSHAKE-256
Falcon (falcon1024) SHAKE-256

SHAKE-128, SHA3-256, and SHA3-512 are utilized for generation of pseudorandom matrix A
from a seedA and for public and secret-key pair generations in Saber (see algorithms 15–17 on pages
22 and 23 of [17]). In NTRU, SHA3-256 function with an output length of 256 bits is required for
key encapsulation and decapsulation processes (see Section 1.12 on page 19 of [12]). ThreeBears
uses cSHAKE-256 for multiple purposes such as to generate uniform and noise samplers, keypair
generation, encapsulation and decapsulation (see algorithms 1,5–7 on pages 18–26 of [10]). We have
used an instance of the aforementioned cSHAKE function with an output length of 256 bits to evaluate
the hardware resources.

Round5 also uses cSHAKE-256 and an instance of AES-256 for hashing purposes. cSHAKE-256 is
used in the construction of the permutations while AES-256 is utilized as an alternative to generating
random data. Two XOF functions, i.e., SHAKE-128 and SHAKE-256, are required for matrix generation,
signature signing, and verification procedures in Crystals-Dilithium. An instance of SHAKE-256 with
an output length of 384 bits is used and an instance of SHAKE-128 with an output length of 256 bits
is used to generate a public matrix that is needed for both signature signing and its verification (see
lines 1 and 2 in Figure 4 of [18]). In the selected variant of Crystals-KYBER (kyber1024-90s), there are
four hash functions utilized: an XOF using AES-256 in CTR mode, an H function using SHA2-256,
a G function using SHA2-512, a PRF(s, b) function using AES-256 where s is used as the key and b is
zero-padded to a 12-byte nonce, and finally a KDF function that utilizes SHAKE-256 (see Section 1.4
on page 11 of [9]). We have used an instance of SHAKE-256 for our evaluations with an output length
of 256 bits.

NewHope uses SHAKE-128 and SHAKE-256 functions, SHAKE-128 generates the public
parameters and SHAKE-256 (512, 768, and 1024 bits) has been used to hash and extend the output

Electronics 2020, 9, 1953 12 of 26

of the random number generator in key generation, encapsulation, and decapsulation functions
(see algorithms 1, 4, 17–21 in reference [8]). Therefore, we have used an instance each of SHAKE-128
and SHAKE-256 for output lengths 1600 (200 bytes × 8) and 1024 bits, respectively. In the selected
qtesla-p-III variant, SHAKE-256, cSHAKE-128, and cSHAKE-256, all with identical output lengths
of 256 bits have been used. SHAKE-256 is used for seed generation and for hash functions G, H.
A cSHAKE-256 function is used to sample polynomial y using GaussSampler and ySampler functions.
cSHAKE-128 is used for generation of public polynomials using function GenA and for encoding
purposes using function Enc (see algorithm 9–14 in reference [13]). SHAKE-256 is utilized in Falcon,
where it takes an arbitrary length string as an input and produces 16 bits of hashed chunks as an output
(see algorithm 3 at top of page 32 in reference [14]). However, for efficient utilization of SHAKE-256,
instead of 16, 64 bits can be extracted as an output [14].

4. Implementing Building Blocks in ASIC

In this section, we provide actual implementation characteristics of the identified building blocks.
We make use of commercial memory compilers and a standard cell library, both designed for the
same 65 nm “low-power” technology. For the sake of comparison, while not revealing foundry
privileged information, we clarify that the nominal supply voltage is 1.2 V for both memories and
logic. Without loss of generality, our analysis is performed only for the typical-typical corner (TT),
i.e., P = 1, V = 1.2 V, and T = 25 C.

In Section 4.1, we present our ROM and RAM data. In Section 4.2, we provide the implementation
results for selected SBM multiplier. Hashing functions and their implementation are given in Section 4.3.
Some caveats of our approach are carefully discussed later in Section 5.

4.1. Memory Characteristics

Area, max frequency, and power characteristics of each memory instance required by the many
different algorithms are obtained from commercial memory compilers. The compilers output several
files, including datasheets, LEF abstracts, LIB timing information, and GDSII layouts. The information
presented in this section was extracted from over 50+ datasheets.

Knowing the number of addresses and the size of each address is, unfortunately, not enough
to estimate the characteristics of each memory instance. The most significant limitation comes from
the choice of a column-mux ratio, which not only determines the aspect ratio of the actual memory,
but also determines the bounds for address and data ranges. Thus, the valid range for p (number
of addresses) and q (bits stored at each address) depends on the column-mux ratio. Without loss of
generality, we have selected 8 as a column-mux ratio for calculations of both ROM and RAM memory
instances. The ROM and RAM memory compilers used in this work are very similar, except that we
have to define the data content for the ROMs. To this end, we have prepared a MATLAB script to make
sure that the ROMs are initialized with a representative ratio of zeros and ones, otherwise the power
estimation would be skewed.

The values collected from the generated compiled memories are shown in Table 4. The first
column in Table 4 lists the related algorithm while the second column presents numerical values for p
(memory addresses) and q (number of bits at each address) that were provided as inputs to the memory
compiler. Due to certain limitations in the tool, as discussed earlier, the present form of values of p and
q (shown in the second column of Table 4) could not be used directly as an input to the commercial
memory compiler. Therefore, we have rounded off the values of p and q to make it possible to use it as
input to the memory compiler. The sizes of the ROM and RAM instances, given by W (width of the
memory cell) and H (height of the memory cell), are shown in column three of Table 4. For n number of
required memory instances, the total area is calculated using the product of width of the memory cell,
the height of the memory cell and the number of required memory instances (n), as shown in column
four of Table 4. Power consumption values, both static (in µW) and dynamic (µW × F), are provided

Electronics 2020, 9, 1953 13 of 26

in column five of Table 4. In the same way, columns from eight to fifteen provide the same data for
ROM calculations. All generated memories are single port and perform one operation per clock cycle.

Table 4. Characteristics of RAMs and ROMs generated using commercial memory compiler.

Area and Power Calculation of RAMs Area and Power Calculation of ROMs

2–15 Algorithm
Input Dimension

(µm) Total
Area
(mm2)*

Power
Consumption Input Dimension

(µm) Total
Area
(mm2)*

Power
Consumption

p q W H Static
(µW)

Dynamic
(µW × F)

p q W H Static
(µW)

Dynamic
(µW × F)

NTRU-Prime
256 8 112.8 160.5 0.1087 0.331 8.307 - - - - - - -

24 64 79.2 161.5 0.0768 0.331 5.488 - - - - - - -

FrodoKEM
10,752 16 311.1 59.1 0.0184 0.213 22.656 - - - - - - -

64 16 109.5 59.1 0.0065 0.084 6.613 - - - - - - -

Saber

32 8 75.9 55.1 0.0042 0.056 3.832 - - - - - - -

32 16 109.5 55.1 0.0121 0.112 6.452 - - - - - - -

128 8 75.9 67.1 0.0051 0.076 4.149 - - - - - - -

128 16 109.5 67.1 0.0174 0.103 6.932 - - - - - - -

64 8 75.9 59.1 0.0045 0.062 3.938 - - - - - - -

64 16 109.5 59.1 0.0065 0.084 6.613 - - - - - - -

4 512 647.1 55.1 0.0357 0.376 13.083 - - - - - - -

4 1024 647.1 55.1 0.0357 0.376 5.758 - - - - - - -

4 256 647.1 55.1 0.0357 0.376 7.156 - - - - - - -

4 512 647.1 55.1 0.0357 0.376 13.083 - - - - - - -

NTRU 821 16 112.8 156.5 0.2473 0.319 82.280 - - - - - - -

ThreeBears

40 8 75.9 56.1 0.0043 0.057 3.859 - - - - - - -

1584 8 79.2 253.9 0.0201 0.399 6.772 - - - - - - -

1697 8 79.2 268.9 0.0213 0.426 6.978 - - - - - - -

24 8 75.9 55.1 0.0042 0.056 3.832 - - - - - - -

32 8 75.9 55.1 0.0042 0.056 3.832 - - - - - - -

Round5
16 8 75.9 55.1 0.0042 0.056 3.832 - - - - - - -

32 8 75.9 55.1 0.0042 0.056 3.832 - - - - - - -

Crystals-Dilithium 256 32 176.7 83.1 0.0441 0.216 12.762 - - - - - - -

Crystals-KYBER
256 16 109.5 83.1 0.0729 0.141 7.156 128 16 85.7 36.2 0.0062 0.175 5.541

128 16 109.5 67.1 0.0074 0.103 6.932 - - - - - - -

NewHope 1024 16 112.8 181.5 0.1639 0.379 8.624 1024 16 85.7 80.4 0.0276 0.310 8.455

LAC
2080 8 183.7 32.8 0.0121 0.628 7.563 512 16 85.7 55.1 0.0094 0.232 7.0224

1056 8 79.2 186.3 0.0148 0.285 5.874 5120 32 128.7 308.3 0.0397 1.281 17.750

1024 8 79.2 181.5 0.0144 0.279 5.758 - - - - - - -

qTesla

2048 8 79.2 312.7 0.0248 0.319 11.553 444 32 128.7 52.0 0.0067 0.266 11.553

9600 32 180.0 312.7 0.2815 1.050 69.676 224 64 214.6 40.9 0.0088 0.316 17.9650

10,240 32 180.0 312.7 0.2815 1.050 87.096 2048 36 139.4 137.2 0.0383 0.600 17.089

1408 32 180.0 231.1 0.0416 0.756 15.661 - - - - - - -

2048 64 314.4 312.7 0.3934 1.784 30.560 - - - - - - -

Electronics 2020, 9, 1953 14 of 26

Table 4. Cont.

Area and Power Calculation of RAMs Area and Power Calculation of ROMs

2–15 Algorithm
Input Dimension

(µm) Total
Area
(mm2)*

Power
Consumption Input Dimension

(µm) Total
Area
(mm2)*

Power
Consumption

p q W H Static
(µW)

Dynamic
(µW × F)

p q W H Static
(µW)

Dynamic
(µW × F)

Falcon

1024 16 112.8 181.5 0.0205 0.379 8.624 540 64 214.6 56.7 0.0122 0.364 22.329

521 32 180.0 118.7 0.1287 0.454 13.83 1080 16 85.7 89.8 0.0077 0.379 8.520

- - - - - - - 31 64 214.6 31.4 0.0135 0.288 15.190

- - - - - - - 27 64 214.6 31.4 0.0135 0.288 15.190

- - - - - - - 30 64 214.6 31.4 0.0135 0.288 15.190

- - - - - - - 1024 16 85.7 80.4 0.0138 0.309 8.455

- - - - - - - 32 16 85.7 31.4 0.0054 0.160 5.121

- - - - - - - 64 16 85.7 33.0 0.0057 0.165 5.272

- - - - - - - 1024 8 64.2 80.4 0.0103 0.309 8.455

- - - - - - - 256 8 64.2 42.5 0.0055 0.174 3.988

- - - - - - - 512 8 64.2 55.1 0.0071 0.232 7.022

* Total area (in mm2) is calculated using W × H × n.

4.2. Implementation of Identified Multipliers

It is important to emphasize that there are many options available to implement the multiplication
operations required by the studied algorithms. For this reason, we have shown implementation results
for operand size of up to 4096 bits for 2-Way KM, 3-Way TCM, and 4-Way TCM multipliers, which are
comparable with state-of-the-art implementations [34–36]. These results are shown in Appendix A,
the outcome of this discussion is that the SBM is advantageous as it leads to a low area, reasonable
frequency of operation, and, most importantly, the lowest power consumption of the compared
architectures. This characteristic, even if it comes at a cost in latency, led us to select the SBM as the
multiplier of choice for implementing all multipliers.

In order to provide a fair comparison in terms of clock frequency, we make use of 500 MHz as our
frequency of choice in the experiments that follow (Synthesis is performed with high area and high
power effort on 65 nm technology). The SBM multiplier takes two inputs OP1 and OP2 and results
in a product with size s = m + n − 1 bits. Therefore, it is essential to perform a reduction to achieve
a product length that matches the input length. One approach to perform reduction is to perform
bitwise XOR operation over first m bits of s with cyclic shifts to left on the remaining n bits of s and
repeated until all n bits of s are processed. Thus, a unified architecture for reduction and multiplication
takes 2(m-1) cycles to compute. Our results for the implemented multipliers are shown in Table 5,
where the first column shows the name of the particular algorithm and the length of input operands
in parentheses (i.e., OP1 × OP2). The number of combinational cells, sequential cells, reported area
(in mm2), dynamic power (in µW), and leakage power values are provided in the next 5 columns,
respectively. As shown in column three of Table 5, the number of flip flops for the SBM multiplier is
roughly 2 times the length of input operands. A handful of additional flops are required for controlling
the shift and add operation and for setting its termination condition.

Electronics 2020, 9, 1953 15 of 26

Table 5. Implementation results for SBM multiplier using a 65 nm standard cell library. Target frequency
is 500 MHz.

Algorithms
(Operand Sizes in Bits)

Combinational
Cells

Sequential
Cells

Area
(mm2)

Dynamic
Power (µW)

Leakage Power
(µW)

NTRU-Prime (6088 × 6088) 435,073 12,189 0.8389 100,510.6 125.3402
NTRU-Prime (12,176 × 6088) 750,152 18,278 1.4124 144,073.8 202.0082
FrodoKEM * (172,032 × 172,032) - 2,329,421 22.1505 51,177,810 629.637
Saber (4096 × 4096) 206,941 8205 0.4599 66,433.2 42.4874
NTRU (11,216 × 11,216) 821,229 22,446 1.5602 163,509.7 207.3250
ThreeBears (3120 × 3120) 141,422 6252 0.3192 58,829.7 30.8762
Round5 (15,136 × 6208) 902,623 21,358 1.6785 164,367.2 230.1910
Crystals-Dilithium (8192 × 8192) 592,155 16,398 1.1251 123,343.3 139.4685
Crystals-KYBER (3072 × 3072) 131,973 6156 0.3069 51,800.5 31.9299
NewHope (16,384 × 16,384) 1,302,689 32,783 2.4760 230,704.9 446.6865
LAC (8192 × 8192) 592,155 16,398 1.1251 123,343.3 139.4685
qTesla (16,384 × 16,384) 1,302,689 32,783 2.4760 230,704.9 446.6865
Falcon (32 × 32) 1001 70 0.0024 581.5 0.2499
Falcon (24,576 × 24,576) 2,926,129 49,167 5.4670 327,836.5 1410.9000

* The area and power values reported for FrodoKEM are estimated instead of synthesized. Unfortunately,
a multiplier of this size is too challenging for synthesis to handle.

4.3. Implementation of Identified Hash Algorithms

The lattice-based NIST PQC candidates use different hash functions with different input and
output lengths. This section deals with the implementation of identified hash functions. Therefore,
we have developed our own RTL cores in Verilog for the identified hash and XOF functions,
which include SHA2-256, SHA2-512, SHA3-256, SHA3-512, SHAKE-128, SHAKE-256, cSHAKE-128,
and cSHAKE-256. In one clock cycle, each developed core takes 64 bits of a message as an input and
results in the desired hash value as an output (as described in Section 3.3).

However, the sum of clock cycles for Mlength/64 and the number of rounds determine the total
clock cycles required to generate a hash value over a message of arbitrary length. For each hash
and XOF function, the behavioral simulations of each developed core are verified by providing an
empty “ ” message string as an input and the resultant hash value achieved in 256 and 512 bits in
length is compared with the corresponding hash values (test vectors for verification’s—provided by
the NIST—available at [37]). We have selected an open-source AES core (for 128 and 256 bits) from
references [27,38], respectively. The implementation results over 500 MHz are provided in Table 6.
The name of the NIST PQC candidate, combinational cells and sequential cells are provided in the
first, second, and third columns of Table 6, respectively. Required area (in µm2) is shown in column
three, while columns four and five provide values for dynamic (in µW) and leakage power (in µW),
respectively.

Electronics 2020, 9, 1953 16 of 26

Table 6. Implementation of identified hash algorithms using 65 nm standard cell library. Target
frequency is 500 MHz.

Algorithms Hash Functions
(Total = 10)

Area
(mm2)

Dynamic
Power (µW)

Leakage
Power (µW)

NTRU-Prime SHA2-512 0.0732 18,003.4 1.6227

FrodoKEM
AES-128 0.0225 6415.5 0.3062

SHAKE-256 0.1056 18,568.4 3.6235

Saber
SHAKE-128 0.1101 19,379.2 3.1528

SHA3-256 0.1062 18,568.1 4.2955

SHA3-512 0.0984 15,927.1 3.2830

NTRU SHA3-256 0.1062 18,568.1 4.2955

ThreeBears cSHAKE-256 0.1055 18,568.4 3.6235

Round5
cSHAKE-256 0.1055 18,568.4 3.6235

AES-256 0.0395 13,562.1 0.4472

Crystals-Dilithium SHAKE-128 0.1103 19,649.9 4.4626

SHAKE-256 0.1056 18,556.2 3.5285

Crystals-KYBER

AES-256 0.0395 13,562.1 0.4472

SHA2-256 0.0362 8881.4 0.4671

SHA2-512 0.0732 18,003.4 1.6227

SHAKE-256 0.1055 18,568.4 3.6235

NewHope SHAKE-128 0.1103 19,649.9 4.4626

SHAKE-256 0.1055 18,555.9 3.4193

LAC - - - -

qTesla
SHAKE-256 0.1056 18,568.4 3.6235

cSHAKE-128 0.1103 19,649.9 4.4626

cSHAKE-256 0.1055 18,568.4 3.6235

Falcon SHAKE-256 0.1056 18,559.8 3.4941

5. Evaluation of NIST PQC Algorithms as Hardware Accelerators

In this section, we treat the algorithms as “accelerators” completely described as specialized
hardware—there are no processor/software components. Therefore, for each accelerator, we provide
the aggregated results that take into account all the identified building blocks. We emphasize that
complete implementations of NIST lattice-based PQC algorithms are not described in this work for the
reason that we have not accounted for the “glue logic” that gives meaning to each algorithm—instead,
we focus on the individual building blocks. Our aim when showing the combined contribution of
the individual blocks was to allow a degree of comparison with other works. Unfortunately, it is
not trivial to perform a block by block comparison, so we must compare accelerators to accelerators,
even if technically we do not build full-fledged accelerators ourselves.

Area and power figures for each accelerator are calculated by using Equations (1) and (2),
respectively, in which we sum the contributions of each building block (NTRU-Prime and Falcon
employ more than one multiplier. We sum the contributions of both multipliers for each algorithm.

Electronics 2020, 9, 1953 17 of 26

For NTRU-Prime in particular, this might not be the optimal design choice since both multipliers take
at least one input of 6088 bits, meaning that resources can be easily shared.).

Area = area o f (∑ ROM + ∑ RAM + MULT + ∑ HASH) (1)

Power = dynamic power o f (∑ ROM + ∑ RAM + MULT + ∑ HASH) (2)

The aggregate results for area and power are presented in Figures 2 and 3, respectively. Results
are presented in ascending order. As we described earlier in this work, having large multipliers is a
common requirement for several of the NIST PQC candidates. There are many multiplier architectures
that can be used, including solutions that rely on digitized computation [36,39]. These multipliers
should be adapted to the characteristics of each algorithm and to the application requirements.
The information provided in Figures 2 and 3 is very useful in that regard, while also identifying
which building block is the best candidate for being replaced, optimized, or even offloaded elsewhere.
Regarding area, our analysis reveals that FrodoKEM is too far above a reasonable size and would be a
perfect candidate for a digitized multiplier architecture. We opt not to show FrodoKEM in these charts.

Figure 2. Total area of the studied NIST lattice-based PQC algorithms, ordered.

Electronics 2020, 9, 1953 18 of 26

Figure 3. Total power consumption of the studied NIST lattice-based PQC algorithms, ordered.

As shown in Figure 3, the highest power consumption comes from the Falcon algorithm while
qTesla is the second-highest power hungry algorithm. Often, multipliers contribute significantly to
the total power consumption of an algorithm, but the power profile of Crystals-KYBER is completely
different as it consumes 112.77 mW of power. Here, the hash core is responsible for approximately
53% of the power consumption (59.01 mW out of 112.77 mW). The contribution of memories to
the accelerator area is more pronounced, even if the total area is still strongly dominated by the
multiplier area. Regarding the frequency of operation, the bottleneck in all of our experiments is
always the multiplier.

5.1. Comparison to State-of-the-Art Implementations

After providing descriptions and evaluations of critical building blocks of NIST lattice-based PQC
candidates in Sections 3 and 4, now we have to frame these results with respect to state-of-the-art
implementations of lattice-based algorithms in hardware.

As described in Section 1.2, the available literature on NIST lattice-based PQC candidates considers
FPGA and ASIC implementation platforms [19–26,40,41], where different technologies (i.e., 65 nm,
40 nm, and 28 nm) have been used to evaluate area and power profiles. Moreover, the results reported
in [23,24] use the same 65 nm node as we do in our experiments. The authors have provided results
for Crystals-Kyber, NewHope, FrodoKEM, NTRU, Saber, Crystals-Dilithium, and qTesla. Except for
FrodoKEM, we provide comparisons to these accelerators in Table 7.

Electronics 2020, 9, 1953 19 of 26

Table 7. Implementation details of NIST lattice-based PQC candidates on 65 nm application-specific
integrated circuit (ASIC) technology.

Reference Implemented
Accelerator SLi

Clk. Period
(ns)

Freq.
(MHz)

Total Area
(µm2) Total Power (mW)

[23]

Crystals-KYBER 1 5.0 200 3,378,515 39.21

NewHope 1 5.9 168.6 3,208,999 38.02

NTRU 1 5.8 169.5 1,246,869 14.30

Saber 3 7.2 137.75 4,774,529 54.49

Crystals-Dilithium 1 6.3 157.7 4,774,529 51.24

[24]
qTesla 1 5.0 200 3,450,765 16.08

Crystals-Dilithium 1 5.0 200 3,677,434 11.31

This work

Crystals-KYBER 5 5.0 200 596,300 (−82%) 47.39 (+21%)

NewHope 5 5.93 168.6 2,384,120
(−26%) 98.54 (+159%)

NTRU 5 5.89 169.5 1,642,730 (+32%) 78.85 (+451%)

Saber 5 7.3 137.75 834,200 (−82%) 42.14 (−23%)

Crystals-Dilithium 4 6.34 157.7 1,153,800
(−76%) 50.94 (−1%)

qTesla 3 5.0 200 3,348,300 (−3%) 156.44 (873%)

Crystals-Dilithium 4 5.0 200 1,165,100
(−68%) 69.41 (513%)

This work
(digitized
multiplier)

qTesla (8 digits) 3 5.0 200 2,187,300
(−37%) 137.29 (754%)

* Values in red indicate an increase in area/power with respect to the reference. * Values in blue indicate a
decrease in area/power with respect to the reference.

It is noteworthy that the implementation of NTRU in [23] requires 32% more area than our
estimation, while for remaining candidates our estimated area values are much lower than the
implementations described in [23,24]. This can be attributed mostly to the fact that we focus on
building blocks and disregard the ‘glue logic’ between them.

As shown in the last column of Table 7, the power values achieved in this work are much higher
than the counterparts reported in [23,24]. There are various reasons for such, including our use of
multiple hashing cores per algorithm. It is also worth mentioning that HLS was utilized for generating
RTL code in [23,24], which implies the C/C++ routines written for multipliers are operated in a loop
fashion where the input and output parameters are uint16_t/uint32_t/uint64_t. Such a solution is no
different than a digitized/segmented multiplier, which should decrease area and power at the cost of
execution time/latency. Thus, we have also provided area and power values for a segmented SBM
multiplier with a segment size of only 8 digits for qTesla (16,384 × 16,384). The reduced area and power
values relative to the segmented version of the SBM multiplier are shown at the bottom of Table 7.
The power requirements can further be reduced by increasing the number of digits/segments in the
multiplier. Finally, the power requirements for the other remaining algorithms can also be reduced
by utilizing segmented multipliers in their datapaths as we did for qTesla in this work. A thorough
exploration of the segmentation/digitizing design space is beyond the scope of our work and is left for
the ASIC designer to perform.

Electronics 2020, 9, 1953 20 of 26

The use of higher security levels in our work is also a (small) factor that results in higher hardware
resources and power consumption, as shown in column three of Table 7. Therefore, we achieved
lesser hardware resources at the expense of higher power consumption as compared to state-of-the-art
implementations. Regarding power, we show comparison values at the bottom of Table 7 for which
we have matched the frequency of operation. Otherwise, our accelerators tend to consume much more
power than their counterparts, which is explained by our much higher frequency of operation and
the additional buffering required to attain this frequency. There is always a trade-off between clock
frequency (performance) and area/power. In this paper, we opted to target a really challenging clock
frequency with the assumption that performance is paramount.

5.2. Limitations of this Work

Despite the fact that this paper has assessed the building blocks of NIST PQC candidates based
on the strict rules defined in Section 2.1, there are still certain limitations and caveats:

• Table 2 lists many of the identified arithmetic operators, but our analysis focuses on multiplication
as we consider it to be more challenging than other operations. This is not enough to generate
a functional crypto accelerator, but it ought to be enough to capture the characteristics of it.
There are various other operators, including transformations from one domain to another, that are
required for a complete implementation of a lattice-based crypto accelerator.

• For each particular algorithm, there is a number of reference models that target different security
levels. For each studied algorithm, we consider only the reference model with the highest security
level. This approach might be overkill for several applications that would otherwise be satisfied
with an AES-128 equivalent level of security.

• Results for area and power are collected after logic synthesis. However, an accelerator still has
to go through physical synthesis, where many additional cells are added and routing resources
have to be accounted for.

• We make assumptions based on reference implementations that were submitted to NIST for
standardization. As the name implies, these are reference implementations and may not be
optimized for the sake of readability.

6. Conclusions

In this paper, we have evaluated how lattice-based algorithms participating in the NIST PQC
standardization process would perform as ASIC hardware accelerators. To achieve this, we have
studied the C/C++ codes of reference implementations to extract the relevant information on this
study which we refer to as building blocks. Based on the extracted memory characteristics, we have
compiled ROMs and RAMs for 12 lattice-based PQC algorithms. Thereafter, we have developed
various RTL cores in Verilog for different multipliers (e.g., Schoolbook, 2-Way KM, 3-Way Toom-Cook,
and 4-Way Toom-Cook) architectures. The area and power profiles are compiled for different input
operands lengths, i.e., (21–212). We selected the SBM multiplier architecture to obtain area and power
values for the multiplier required by the various NIST PQC algorithms. We ran dozens of synthesis
for selected SBM multiplier over required operand sizes, reported the corresponding area and power
values for the targeted frequency of 500 MHz. We have equally developed several RTL cores in Verilog
for the required hash algorithms to report area and power figures.

From the onset, our goal was to provide ASIC designers with information that can guide their
future implementations of lattice-based crypto cores. For this matter, the results provided in Section 4
give designers an insight into the wide design space and should allow designers to quickly identify
where to focus their optimization efforts when conceiving a PQC cryptosystem.

Author Contributions: Conceptualization, M.I. and Z.U.A.; data extraction, M.I. and Z.U.A.; results compilation,
M.I. and Z.U.A.; validation, M.I., Z.U.A.; writing—original draft preparation, M.I.; critical review, S.P.;
draft optimization, M.I. and Z.U.A.; supervision, S.P.; funding acquisition, S.P. All authors have read and agreed
to the published version of the manuscript.

Electronics 2020, 9, 1953 21 of 26

Funding: This work was supported by the EC through the European Social Fund in the context of the project
“ICT programme”.

Acknowledgments: We would like to acknowledge the technical support of few authors of NIST PQC candidates
to clarify different parts of their algorithms.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study, in the data collection, analyses, extraction of data, in writing the manuscript, and in the decision to publish
the results.

Appendix A. Area, Power, and Frequency Trends for Different Multipliers

To provide representative trends, we have developed codes in Verilog for several of the multipliers
employed by the reference implementations (see Section 3.2). Next, we performed a logic synthesis of
the multipliers using a range of operand sizes. The tool utilized for this experiment is Cadence Genus.
The standard cell library is a commercial one and the process node is 65 nm.

Appendix A.1. SBM, 2-Way KM, 3-Way, and 4-Way TCM Multipliers

We have developed our own codes in RTL form for SBM, 2-Way KM, 3-Way TCM, and 4-Way
TCM multipliers, which all take two input operands and produce one single output. The inputs are
identical in size and are given in the form 2n, where n is an integer value in the range 1 to 12. In these
multipliers, the output is considered without any reduction operation (i.e., the output is 2×(2n)− 1 bits
in length). To evaluate the performance of SBM, 2-Way KM, 3-Way TCM and 4-Way TCM multipliers,
we show trends with respect to input operand sizes in Figures A1–A3.

Figure A1. Required area (in µm2) for different multipliers and sizes.

Figure A2. Achieved clock frequency (in GHz) for different multipliers and sizes.

Electronics 2020, 9, 1953 22 of 26

Figure A3. Total power consumption (in µW) for different multipliers and sizes.

As shown in Figure A1, the SBM multiplier utilizes lower hardware resources in terms of area
as compared to its counterparts. The 2-Way KM multiplier requires a lower hardware resources
than 3-Way and 4-Way TCM multipliers, as expected. When comparing 3-Way TCM to 4-Way
TCM multipliers, the former utilizes a lower hardware area than the latter. Still, regarding area
increase trends, it can be seen that the SBM, 2-Way KM, 3-Way TCM, and 4-Way TCM multipliers
show an exponential increase in size with the operand size. This is a strong argument in favor of
digitized computation.

For different multipliers with diverse operand lengths, the maximum achieved clock frequency is
shown in Figure A2. These values were obtained by performing synthesis runs repeatedly until the
performance could no longer be improved (i.e., the constraints were pushed iteratively until they were
no longer met). Based on the implementation results, it becomes clear that the 2-Way KM multiplier
could be used as an efficient replacement for the 3-Way TCM multiplier as it achieves comparable
clock frequency while utilizing less area. For large input sizes, all multipliers outperform SBM since
they benefit from breaking down the problem in chunks. Conversely, the 4-Way TCM presents the
highest frequency in the comparison shown in Figure A2.

Regarding power consumption, as shown in Figure A3, the SBM multiplier outperforms all other
multipliers—this is an important characteristic that influenced our choice of SBM as the multiplier
for the PQC algorithms studied in this paper. When considering the power consumption of 2-Way
KM, 3-Way TCM, and 4-Way TCM multipliers, 4-Way TCM consumes more power than 2-Way KM
and 3-Way TCM multipliers. There is an increase in power consumption as the length of inputs to the
multipliers are increased, as well as an increase with the number of ’ways’ each multiplier uses.

Appendix A.2. NTT Multiplier

For the analysis of NTT multipliers, we have adapted the pipeline architecture described in [35].
Contrary to the previously discussed multipliers, here it makes little sense to decouple the pipelining
from the core idea of the algorithm. In fact, it would be fair to refer to [35] as a multiplier architecture
instead of a simple multiplier implementation. For this reason, our NTT multiplier analysis is presented
separately. We emphasize that it is a complex architecture, for which the authors carefully selected
many parameters (e.g., polynomial-size, residual size, number of parallel units, reduction tables, etc.)
when targeting an FPGA platform.

After our analysis, and in line with the results of [35], we have found the critical path of the NTT
multiplier to be dependent on a 30-bit integer multiplier and the reduction operation that follows it
(i.e., the operation that brings the 60-bit result back to 30 bits). We have considered multiple pipeline
depths (1, 2, 3, and 4) and multiple operand sizes for its integer multiplier (20, 25, 35, and 40) in our
analysis [34]. In Figure A4, we show how the critical path changes depending on the pipeline depth
of the integer multiplier as well as the width of operands. From our results, it appears that the clock

Electronics 2020, 9, 1953 23 of 26

frequency saturates when 3 stages are used for pipelining, whereas in [35] the implementation makes
use of 4 stages. We believe this difference comes from the FPGA DSP unit that implements the integer
multiplier in [35]. In our analysis, this unit has been replaced by a ChipWare component. For the
sake of providing a basis for comparison to other multipliers, we have evaluated the area required
for the 30-bit/4-stage version of the NTT code, which comes to be 209,740 µm2 (approximately 52 k
cells). However, this result includes many black boxes for the memory hierarchy that is required to
implement this NTT architecture. These values should not be directly compared to other multipliers
since they are known to be underestimated.

Figure A4. Analysis of NTT multiplier (obtained from [35] and slightly modified for ASIC).

Appendix A.3. Summary of the Multipliers Trend

Due to bit serial structure, the implemented SBM multiplier requires m-1 clock cycles for m bit
operands length. The implemented 2-Way KM, 3-Way TCM, and 4-Way TCM multiplier require m/2-1,
m/3-1, and m/4-1 clock cycles. This reduction comes with a cost in resources, naturally. Implementation
of NTT multiplier requires 2m+2log2

n clock cycles, where n determines the number of NTT points.
The performance of the evaluated multipliers could be improved significantly by using

different optimization techniques, most notably pipelining and digitizing. However, in these plots
(Figures A1–A3) we have not provided optimized results either for pipelining or digitizing, as we are
interested in showing trends that capture the core idea of each algorithm.

Consequently, there is always a trade-off when selecting an appropriate multiplier and evaluating
its area, frequency, and power characteristics. In this work, the SBM multiplier was deemed more
appropriate due, its flexibility, its lower area footprint, and its lower power consumption (with respect
to the other multipliers we considered).

Finally, regarding NTT-based multipliers, while it appears tremendously advantageous,
generating a single NTT multiplier architecture that would be a good fit for all NIST candidates
is not feasible. The parameter space requires careful algorithm-specific exploration.

References

1. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput. 1999, 26, 1484–1509. [CrossRef]

2. Moody, D.; Alagic, G.; Apon, D.C.; Cooper, D.A.; Dang, Q.H.; Kelsey, J.M.; Liu, Y.K.; Miller, C.A.; Peralta, R.C.;
Perlner, R.A.; et al. Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization
Process; NIST Interagency/Internal Report (NISTIR)—8309; NIST Interagency: Gaithersburg, MD, USA, 2020.

Electronics 2020, 9, 1953 24 of 26

3. NIST. Post-Quantum Cryptography, Round 2 Submissions. 2020. Available online: https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions (accessed on 20 April 2020).

4. Chuang, Y.; Fan, C.; Tseng, Y. An Efficient Algorithm for the Shortest Vector Problem. IEEE Access 2018,
6, 61478–61487. [CrossRef]

5. Khalid, A.; Oder, T.; Valencia, F.; O’ Neill, M.; Güneysu, T.; Regazzoni, F. Physical Protection of Lattice-Based
Cryptography: Challenges and Solutions. In Proceedings of the 2018 on Great Lakes Symposium on VLSI;
GLSVLSI ’18; Association for Computing Machinery: New York, NY, USA, 2018; pp. 365–370. [CrossRef]

6. Alwen, J.; Krenn, S.; Pietrzak, K.; Wichs, D. Learning with Rounding, Revisited. In Advances in Cryptology –
CRYPTO 2013; Canetti, R., Garay, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 57–74.

7. Alkim, E.; Bos, J.W.; Ducas, L.; Longa, P.; Mironov, I.; Naehrig, M.; Nikolaenko, V.; Peikert, C.; Raghunathan, A.;
Stebila, D.; et al. FrodoKEM Learning with Errors Key Encapsulation Algorithm. 2020. Available online:
https://frodokem.org/files/FrodoKEM-specification-20200930.pdf (accessed on 18 April 2020).

8. Alkim, E.; Avanzi, R.; Bos, J.; Ducas, L.; de la Piedra, A.; Pöppelmann, T.; Schwabe, P.; Stebila, D.;
Albrecht, M.R.; Orsini, E.; et al. NewHope. 2020. Available online: https://newhopecrypto.org (accessed on
12 May 2020).

9. Avanzi, R.; Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.;
Stehle, D. CRYSTALS-KYBER. 2020. Available online: https://pq-crystals.org (accessed on 11 April 2020).

10. Hamburg, M. Post-Quantum Cryptography Proposal: ThreeBears. 2020. Available online: https://
sourceforge.net/projects/threebears/ (accessed on 13 March 2020).

11. Lu, X.; Liu, Y.; Jia, D.; Xue, H.; He, J.; Zhang, Z.; Liu, Z.; Yang, H.; Li, B.; Wang, K. LAC: Practical Ring-LWE
Based Public-KeyEncryption with Byte-Level Modulus. Available online: https://eprint.iacr.org/2018/1009.
pdf (accessed on 9 March 2020).

12. Chen, C.; Danba, O.; Hoffstein, J.; Hülsing, A.; Rijneveld, J.; Saito, T.; Schanck, J.M.; Schwabe, P.; Whyte, W.;
Xagawa, K.; et al. NTRU, 2020. Available online: https://ntru.org (accessed on 14 May 2020).

13. Akleylek, S.; Alkim, E.; Bindel, N.; Buchmann, J.; Eaton, E.; Gutoski, G.; Krämer, J.; Longa, P.; Polat, H.;
Ricardini, J.E.; et al. Submission to NIST’s Post-Quantum project (2nd Round): Lattice-Based Digital
Signature Scheme qTESLA. 2020. Available online: https://qtesla.org/wp-content/uploads/2020/04/
qTESLA_round2_14.04.2020.pdf (accessed on 29 March 2020).

14. Fouque, P.A.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.;
Whyte, W.; Zhang, Z. Falcon: Fast-Fourier Lattice-Based Compact Signatures over NTRU Specifications v1.1.
2020. Available online: https://falcon-sign.info (accessed on 14 April 2020).

15. Bernstein, D.J.; Chuengsatiansup, C.; Lange, T.; van Vredendaal, C. NTRU Prime: Round 2–20190330. 2020.
Available online: https://ntruprime.cr.yp.to (accessed on 4 May 2020).

16. Baan, H.; Bhattacharya, S.; Fluhrer, S.; Garcia-Morchon, O.; Laarhoven, T.; Player, R.; Rietman, R.;
Saarinen, M.J.O.; Tolhuizen, L.; Torre-Arce, J.L.; et al. Round5: KEM and PKE Based on (Ring) Learning with
Rounding. 2020. Available online: https://round5.org (accessed on 8 April 2020).

17. D’Anvers, J.P.; Karmakar, A.; Roy, S.S.; Vercauteren, F. SABER: Mod-LWR Based KEM (Round 2 Submission).
2020. Available online: https://www.esat.kuleuven.be/cosic/pqcrypto/saber/ (accessed on 7 March 2020).

18. Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. CRSTALS-Dilithium. 2019.
Available online: https://tches.iacr.org/index.php/TCHES/article/view/839 (accessed on 10 February
2020).

19. Soni, D.; Basu, K.; Nabeel, M.; Karri, R. A hardware evaluation study of NIST Post-quantum cryptographic
signature schemes. In Proceedings of the Second PQC Standardization Conference, Santa Barbara, CA, USA,
22–24 August 2019; pp. 1–4.

20. Farahmand, F.; Dang, V.B.; Andrzejczak, M.; Gaj, K. Implementing and benchmarking seven round
2 lattice-based key encapsulation mechanisms using a software/hardware codesign approach. In Proceedings
of the Second PQC Standardization Conference, Santa Barbara, CA, USA, 22–24 August 2019; pp. 1–36.

Electronics 2020, 9, 1953 25 of 26

21. Wang, W.; Tian, S.; Jungk, B.; Bindel, N.; Longa, P.; Szefer, J. Parameterized Hardware Accelerators for
Lattice-Based Cryptography and Their Application to the HW/SW Co-Design of qTESLA. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2020, 3, 123–151.

22. Zhang, N.; Yang, B.; Chen, C.; Yin, S.; Wei, S.; Liu, L. Highly Efficient Architecture of NewHope-NIST
on FPGA using Low-Complexity NTT/INTT. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 2, 49–72.
[CrossRef]

23. Basu, K.; Soni, D.; Nabeel, M.; Karri, R. NIST Post-Quantum Cryptography- A Hardware Evaluation Study.
Cryptology ePrint Archive, Report 2019/047. 2019. Available online: https://eprint.iacr.org/2019/047
(accessed on 27 January 2020).

24. Soni, D.; Nabeel, M.; Basu, K.; Karri, R. Power, Area, Speed, and Security (PASS) Trade-Offs of NIST PQC
Signature Candidates Using a C to ASIC Design Flow. In Proceedings of the 2019 IEEE 37th International
Conference on Computer Design (ICCD), Abu Dhabi, UAE, 17–20 November 2019; pp. 337–340.

25. Banerjee, U.; Ukyab, T.S.; Chandrakasan, A.P. Sapphire: A Configurable Crypto-Processor for Post-Quantum
Lattice-based Protocols. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 4, 17–61. [CrossRef]

26. Xin, G.; Han, J.; Yin, T.; Zhou, Y.; Yang, J.; Cheng, X.; Zeng, X. VPQC: A Domain-Specific Vector Processor for
Post-Quantum Cryptography Based on RISC-V Architecture. IEEE Trans. Circuits Syst. I Regul. Pap. 2020,
67, 2672–2684. [CrossRef]

27. Strömbergson, J. A Verilog Implementation of the Symmetric Block Cipher AES (NIST FIPS 197). Available
online: https://github.com/secworks/aes (accessed on 5 March 2020).

28. Liu, W.; Fan, S.; Khalid, A.; Rafferty, C.; O’Neill, M. Optimized Schoolbook Polynomial Multiplication
for Compact Lattice-Based Cryptography on FPGA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019,
27, 2459–2463. [CrossRef]

29. Kashif, M.; Cicek, I.; Imran, M. A Hardware Efficient Elliptic Curve Accelerator for FPGA Based
Cryptographic Applications. In Proceedings of the 2019 11th International Conference on Electrical and
Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019; pp. 362–366.

30. Bodrato, M. Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in
Characteristic 2 and 0. In Arithmetic of Finite Fields; Carlet, C., Sunar, B., Eds.; Springer: Berlin/Heidelberg,
Germany, 2007; pp. 116–133.

31. Longa, P.; Naehrig, M. Speeding up the Number Theoretic Transform for Faster Ideal Lattice-Based
Cryptography. In Cryptology and Network Security; Foresti, S., Persiano, G., Eds.; Springer International
Publishing: Cham, Switzerland, 2016; pp. 124–139.

32. Walter, C.D. Montgomery’s Multiplication Technique: How to Make It Smaller and Faster. In Cryptographic
Hardware and Embedded Systems; Koç, Ç.K., Paar, C., Eds.; Springer: Berlin/Heidelberg, Germany, 1999;
pp. 80–93.

33. Weimerskirch, A.; Paar, C. Generalizations of the Karatsuba Algorithm for Efficient Implementations.
IACR Cryptol. EPrint Arch. 2006, 2006, 224.

34. Harvey, D. Faster arithmetic for number-theoretic transforms. J. Symb. Comput. 2014, 60, 113–119. [CrossRef]
35. Sinha Roy, S.; Turan, F.; Jarvinen, K.; Vercauteren, F.; Verbauwhede, I. FPGA-Based High-Performance

Parallel Architecture for Homomorphic Computing on Encrypted Data. In Proceedings of the 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA), Washington, DC, USA,
16–20 February 2019; pp. 387–398.

36. Rafferty, C.; O’Neill, M.; Hanley, N. Evaluation of Large Integer Multiplication Methods on Hardware.
IEEE Trans. Comput. 2017, 66, 1369–1382. [CrossRef]

37. NIST. Computer Security Division—Computer Security Resource Center. 2016. Available online: https:
//csrc.nist.gov (accessed on 3 August 2020).

38. Rijndael. AES (Rijndael) IP Core, 2002. A Ultra-Compact Advanced Encryption Standard (AES, FIPS-197)
Core. Available online: http://www.ipcores.com/aes_ip_core.htm (accessed on 15 March 2020).

39. Imran, M.; Rashid, M. Architectural review of polynomial bases finite field multipliers over GF(2m).
In Proceedings of the2017 International Conference on Communication, Computing and Digital Systems
(C-CODE), Islamabad, Pakistan, 8–9 March 2017; pp. 331–336.

Electronics 2020, 9, 1953 26 of 26

40. Roma, C.; Tai, C.E.A.; Hasan, M.A. Energy consumption of round 2 submissions for NIST PQC standards.
Available online: http://cacr.uwaterloo.ca/techreports/2019/cacr2019-03.pdf (accessed on 18 June 2020).

41. Huang, W.L.; Chen, J.P.; Yang, B.Y. Power Analysis on NTRU Prime. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020, 1, 123–151.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Appendix 2

II

131

M. Imran, Z. U. Abideen, and S. Pagliarini, “An open-source library of large integer
polynomial multipliers,” in 2021 24th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS), Vienna, Austria, 2021,
pp. 145–150. DOI: https://doi.org/10.1109/DDECS52668.2021.9417065

An Open-source Library of Large Integer
Polynomial Multipliers

Malik Imran
Centre for Hardware Security

Tallinn University of Technology
Tallinn, Estonia

malik.imran@taltech.ee

Zain Ul Abideen
Centre for Hardware Security

Tallinn University of Technology
Tallinn, Estonia

zain.abideen@taltech.ee

Samuel Pagliarini
Centre for Hardware Security

Tallinn University of Technology
Tallinn, Estonia

samuel.pagliarini@taltech.ee

Abstract—Polynomial multiplication is a bottleneck in most of
the public-key cryptography protocols, including Elliptic-curve
cryptography and several of the post-quantum cryptography
algorithms presently being studied. In this paper, we present
a library of various large integer polynomial multipliers to be
used in hardware cryptocores. Our library contains both digitized
and non-digitized multiplier flavours for circuit designers to
choose from. The library is supported by a C++ generator that
automatically produces the multipliers’ logic in Verilog HDL that
is amenable for FPGA and ASIC designs. Moreover, for ASICs, it
also generates configurable and parameterizable synthesis scripts.
The features of the generator allow for a quick generation
and assessment of several architectures at the same time, thus
allowing a designer to easily explore the (complex) optimization
search space of polynomial multiplication.

Index Terms—schoolbook multiplier, karatsuba multiplier,
toom cook multiplier, digitized polynomial multiplication, Large
integer polynomial multipliers

I. INTRODUCTION

Polynomial multiplication (i.e., c(x) = a(x) × b(x)) is a
fundamental building block for cryptographic hardware and
is often identified as the bottleneck in implementing efficient
circuits. The most widely deployed public key crypto systems
(e.g., RSA and ECC) need polynomial multiplications [1].
Many of the post-quantum cryptography (PQC) algorithms
(e.g., NTRU-Prime, FrodoKEM, Saber, etc.) also require large
integer multipliers for multiplying polynomial coefficients
utilized to perform key-encapsulations and digital signatures
[2]. Another application is in fully homomorphic encryption,
a specific branch of cryptography that requires large integer
multipliers to enable multi-party and secure-by-construction
on the cloud computations [3]. There is a clear demand
for large integer multipliers to perform multiplication over
polynomial coefficients. To our knowledge, today, no widely
available repository of open source multiplier architectures
exists. This is the gap that our library addresses.

There are several multiplication methods employed to per-
form multiplication over polynomial coefficients, including the

This work was partially supported by the EC through the European Social
Fund in the context of the project “ICT programme”. It was also partially
supported by the Estonian Research Council grant MOBERC35.

schoolbook method (SBM), Karatsuba, Toom-Cook, Mont-
gomery, and number theoretic transformation (NTT). A quick
scan of the PQC algorithms involved in the NIST standard-
ization effort [4] reveals that many reference implementations
suggest the use of these multipliers: SBM is suggested by
the authors of NTRU-Prime and FrodoKEM, Karatsuba and
Toom-Cook methods are used in Saber and NTRU, a combi-
nation of NTT and SBM is suggested for CRYSTALS-Kyber,
SBM and Montgomery are considered in Falcon.

Examples of recent works employing non-digitized and digi-
tized polynomial multiplication methods are given in [5]–[11]
and [12]–[14], respectively. In [5], for different polynomial
sizes, an architectural evaluation of different multiplication
methods (SBM, comba, Karatsuba, Toom-Cook, Montgomery,
and NTT) is performed over a Virtex-7 FPGA platform.
An improved Montgomery polynomial multiplier is presented
in [7] for a polynomial size of 1024 bits over a Virtex-
6 FPGA. A run-time configurable and highly parallelized
NTT-based polynomial multiplication architecture over Virtex-
7 is discussed in [8]. A systolic based digit serial multiplier
wrapper on an Intel Altera Stratix-V FPGA is described in
[12], where digit sizes of 22 and 30 bits are considered for
operand lengths 233 and 409 bits, respectively. A digit serial
Montgomery based wrapper is provided in [13], where a digit
size of 64 is selected for the operand length 571 bits, on a
Virtex-6. Similarly, a digit serial modular multiplication based
wrapper on Virtex-7 is shown in [14], where digit sizes of 2,
4 and 8 bits are preferred for an operand length of 2048 bits.

ASIC implementations, while less frequent, also explore
the polynomial multiplication design space. In [6], different
polynomial multipliers with different operand lengths are
considered for area and power evaluations on a 65nm technol-
ogy. On similar technology, a bit level parallel-in-parallel-out
(BL-PIPO) multiplier architecture and a modified interleaved
modular reduction multiplication with bit-serial sequential ar-
chitecture is proposed in [9], [10], respectively. Using a 65nm
commercial node, for an operand length of 409 bits. For fully
homomorphic encryption schemes, an optimized multi-million
bit multiplier based on the Schonhage Strassen multiplication
algorithm is described in [11] on 60nm technology node.

Although there are several reported implementations of dif-
ferent multiplication methods [5]–[14], these implementations978-1-6654-3595-6/21/$31.00 ©2021 IEEE

2021 24th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)

145

145

20
21

 2
4t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

D
es

ig
n

an
d

D
ia

gn
os

tic
s o

f E
le

ct
ro

ni
c

C
irc

ui
ts

 &
 S

ys
te

m
s (

D
D

EC
S)

 |
97

8-
1-

66
54

-3
59

5-
6/

20
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
D

EC
S5

26
68

.2
02

1.
94

17
06

5

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on November 30,2022 at 14:12:45 UTC from IEEE Xplore. Restrictions apply.

tend to be specifically tailored for a given operand size and
for a given target (e.g., high speed or low area). The matter
is that this trade-off space is rather complicated to navigate
without automation. Consequently, a common approach to
assess (several) multiplication methods is required.

In order to tackle the aforementioned limitations of the
available literature and the need for automation, we develop
an open-source library of multipliers which we name TTech-
LIB. Our library is supported by a C++ generator utility
that produces – following user specifications – hardware
description of four selected multiplication methods: (a) SBM,
(b) 2-way Karatsuba, (c) 3-way Toom-Cook, and (d) 4-way
Toom-Cook. For selected multiplication methods, our library
also offers a digitized solution: a single parameterized digit-
serial wrapper to multiply polynomial coefficients. By default,
the wrapper instantiates a singular SBM multiplier, but it can
be replaced by any other multiplier method since the interfaces
are identical between all methods. Finally, FPGA and ASIC
designers can select their own multiplication method, size
of the input operands, and digit size (only for the digitized
wrapper, naturally). Moreover, for ASIC designers, there is
the possibility to generate synthesis scripts for one of two
synthesis tools, either Cadence Genus or Synopsys Design
Compiler (DC). The user is not restricted to generating a single
architecture at a time, the generator will produce multiple
solutions if asked to do so, which will appear as separate
Verilog (.v) files.

The remainder of this work is structured as follows: The
mathematical background for selected multiplication methods
is described in Section II. The generator architecture and
the structure of proposed TTech-LIB is provided in Section
III. Section IV shows the experimental results and provide
comparisons of non-digitized and digitized flavours of multi-
plication methods. Finally, Section V concludes the paper.

II. MATHEMATICAL BACKGROUND

In this section, we present the mathematical formulations
behind polynomial multiplication. We assume the inputs are
two m-bit polynomials and the output is a polynomial of size
2m− 1.

A. Non-digitized multiplication

The SBM is the traditional way to multiply two input
polynomials a(x) × b(x), as shown in Eq. 1. To produce
resultant polynomial c(x) by performing bit by bit operations,
it requires 2×m clock cycles, m2 multiplications and (m−1)2
additions.

c(x) =
m−1∑

i=0

m−1∑

j=0

aibjx
i+j (1)

Other approaches such as the 2-way Karatsuba, 3-way
Toom-Cook, and 4-way Toom-Cook are more time efficient
since they split the polynomials into n equal parts, as shown in
Eq. 2. The value of n for 2-way Karatsuba, 3-way Toom-Cook

and 4-way Toom-Cook multipliers is 2, 3 and 4, respectively
and as the name implies. In Eq. 2, the variable k determines
the index of the split input polynomial. For example, for a
4-way Toom-Cook multiplier, the values of k are {3, 2, 1, 0},
meaning the input polynomial a(x) becomes a3(x), a2(x),
a1(x), and a0(x).

c(x) =

m−1∑

i= k×m
n

ak(x) + . . .+

k×m
n −1∑

i=0

a0(x)

︸ ︷︷ ︸
split polynomial a(x)

×

m−1∑

i= k×m
n

bk(x) + . . .+

k×m
n −1∑

i=0

b0(x)

︸ ︷︷ ︸
split polynomial b(x)

(2)

In Eq. 3, the expanded version of Eq. 2 is presented for the
case of 2-way split of input polynomials. The straightforward
computation would require four multiplications: (1) one for the
computation of inner product resulting polynomial c1(x), two
multiplications for the computation of c2(x), and finally one
multiplication for the computation of c0(x). However, c2(x)
could be alternatively calculated with only one multiplication,
as shown in Eq. 4. This is the Karatsuba observation. To
generate the final resultant polynomial c(x), addition of inner
products is required, as presented in Eq. 5. Similarly, when
considering the 3-way and 4-way Toom-Cook multipliers,
the expanded versions of Eq. 2 produce nine and sixteen
multiplications, respectively. These multiplications are then
reduced to five and seven using a process similar to the 2-way
Karatsuba, respectively. We omit the equations for Toom-Cook
multipliers for the sake of brevity.

c(x) = a1(x)b1(x)︸ ︷︷ ︸
c1(x)

+ a1(x)b0(x) + a0(x)b1(x)︸ ︷︷ ︸
c2(x)

+ a0(x)b0(x)︸ ︷︷ ︸
c0(x)

(3)

c2(x) = (a1(x) + a0(x))× (b1(x) + b0(x))− c1(x)− c0(x) (4)

c(x) = c0(x) + c1(x) + c2(x) (5)

Now, let us assume that the polynomials involved in the
multiplications above remain relatively large in size even after
split. Thus, SBM multipliers can be employed to resolve the
partial products. For a 2-way Karatsuba multiplier of m-bit
input polynomials, there will be 3 SBM multipliers and each
will take two polynomials of size m

2 as inputs. Each multiplier
requires m

2 clock cycles to be completed. If all multipliers
operate in parallel, the overall computation also takes m

2
cycles. For 3-way and 4-way splits, the number of clock cycles
is m

3 and m
4 , respectively. Since our library is aimed at large

polynomials, the 2-way Karatsuba, 3-way Toom-Cook, and
4-way Toom-Cook codes available in it actually implement
the parallel SBM strategy discussed above. In fact, our non-
digitized multipliers are hybrid multipliers.

B. Digitized multiplication

The digit serial wrapper in TTech-LIB takes two m-bit
polynomials a(x) and b(x) as an input and produces c(x)

146

146

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on November 30,2022 at 14:12:45 UTC from IEEE Xplore. Restrictions apply.

GENERATOR

Synthesis Script

multiplier.tcl

Inputs to the generator

Outputs from the generator

Reports

gates.rpt

power.rpt

runtime.rpt

area.rpt

timing.rpt

Design Files

generic.v

multiplier.v

mapped.v

XML File

library path

Genus/DC

XML File

polynomial size

digit size

clock frequency

multiplier

Fig. 1. Generator architecture and file structure of TTech-LIB

as an output. Digits are created for polynomial b(x) with
different sizes which are user-defined as follows: d = m

n ,
where d determines the total number of digits, m denotes
the size of input polynomial b(x), and n is the size of
each digit. Then, the multiplication of each created digit is
performed serially with the input polynomial a(x), while the
final resultant polynomial c(x) is produced using shift and
add operations. The main difference here is that our digitized
solution is serial, while the 2-, 3-, and 4-way multipliers are
parallel. The required computational cost (in clock cycles) to
perform one digit multiplication is n. Since there are d digits,
the overall computation takes d×n clock cycles. It is important
to mention that users/designers can choose any multiplication
method inside the described digit serial wrapper as per their
application requirements. We have used an SBM multiplication
method as default.

III. HOW TO ACCESS TTECH-LIB

The complete project files (written in C++) are freely
available to everyone on our GitHub repository [15]. A sample
of pre-generated multipliers is also included in the repository.
As shown in Fig. 1, the user settings can be customized by
using a configuration file (config.xml). The structure of the
library is rather simple and includes five directories: (1) bin,
(2) run, (3) src, (4) synth, and (5) vlog. After running the
generator binary, the produced synthesis scripts are put in the
synth directory while the generated multipliers are put in the
vlog folder. All generated multipliers have the same interface
(i.e., inputs are clk, rst, a, and b; the output is c).

IV. EXPERIMENTAL RESULTS AND COMPARISONS

A. Implementation results and evaluations

The experimental results for non-digitized and digitized
polynomial multiplication methods over NIST defined field
lengths [16] on 65nm technology node using Genus, Cadence
is provided in Table I and Table II, respectively. Moreover,
the implementation results for various digit sizes of digitized

SBM multiplication method over an Artix-7 FPGA device is
given in Table III. In tables I–II, clock frequency (MHz),
area (in µm2), and power (mW) values are achieved after
synthesis using Cadence Genus. Similarly, in Table III, clock
frequency (MHz), look-up-tables (LUTs), utilized registers
(Regs) and power (mW) values are achieved after synthesis
using Vivado design tool. Finally, latency for both digitized
and non-digitized multipliers (in tables I–III) is calculated
using Eq. 6:

latency (µs) =
clock cycles

frequency (MHz)︸ ︷︷ ︸
non-digitized

× total digits

︸ ︷︷ ︸
digitized

(6)

TABLE I
RESULTS OF NON-DIGITIZED MULTIPLIERS FOR NIST RECOMMENDED

ELLIPTIC CURVES OVER PRIME AND BINARY FIELDS

Multiplier m Freq
(MHz)

latency
(µs)

Area
(µm2)

Power
(mW)

Schoolbook

P-192 500 0.382 32011.2 13.8
P-224 486 0.458 38048.0 17.1
P-256 480 0.531 48726.7 16.9
P-384 444 0.862 67861.8 27.1
P-521 434 1.198 100242.0 28.0
B-163 500 0.324 29341.4 12.9
B-233 476 0.487 39321.4 16.0
B-283 454 0.621 50603.4 17.8
B-409 442 0.923 73587.6 28.2
B-571 413 1.380 89993.2 29.1

2-way Karatsuba

P-192 473 0.202 41379.5 8.2
P-224 469 0.238 49514.4 9.6
P-256 467 0.274 59532.1 11.8
P-384 420 0.457 74844.0 15.2
P-521 408 0.639 105059.5 20.8
B-163 487 0.168 35060.0 7.7
B-233 478 0.244 52328.2 10.0
B-283 455 0.312 64743.8 12.6
B-409 432 0.474 84778.6 17.2
B-571 418 0.684 120374.3 21.7

3-way Toom-Cook

P-192 909 0.070 96498.4 44.4
P-224 869 0.086 102470.8 46.9
P-256 826 0.104 104820.9 49.4
P-384 689 0.185 139375.1 57.2
P-521 680 0.255 201341.2 80.0
B-163 934 0.058 75085.6 36.0
B-233 877 0.088 106357.7 49.5
B-283 800 0.118 115188.1 54.5
B-409 775 0.176 170509.0 78.4
B-571 766 0.249 256604.4 115.9

4-way Toom-Cook

P-192 900 0.053 105679.1 56.9
P-224 847 0.066 125124.1 62.0
P-256 826 0.077 122298.1 63.6
P-384 793 0.121 241893.7 98.2
P-521 767 0.170 332534.9 139.4
B-163 925 0.044 94834.1 49.9
B-233 892 0.066 132080.0 64.2
B-283 826 0.085 145709.3 70.6
B-409 769 0.133 236989.4 99.0
B-571 746 0.191 340750.8 148.2

m determines the field size or length of the inputs (in bits), where
‘P’ stands for Prime and ‘B’ stands for Binary

1) ASIC non-digitized multipliers: Our results consider
NIST-defined prime (P-192 to P-521) and binary (B-163 to B-

147

147

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on November 30,2022 at 14:12:45 UTC from IEEE Xplore. Restrictions apply.

TABLE II
RESULTS OF DIGITIZED MULTIPLIERS FOR NIST RECOMMENDED

ELLIPTIC CURVES OVER PRIME AND BINARY FIELDS

m digit
size
(n)

total
digits
(d)

Freq
(MHz)

latency
(µs)

Area
(µm2)

Power
(mW)

52
1×

52
1 32 17 505 1.07 106956.7 30.9

41 13 377 1.41 101538.7 26.1
53 10 340 1.55 94752.7 20.0
81 7 336 1.68 84321.0 15.4

57
1×

57
1 32 18 487 1.18 114999.8 36.7

41 14 369 1.55 116010.3 28.9
53 11 312 1.86 91393.9 18.1
81 8 291 2.22 76146.8 14.1

10
24
×

10
24

2 512 363 2.82 196131.2 38.0
4 256 357 2.86 178581.2 35.1
8 128 353 2.90 167536.4 31.5
16 64 343 2.98 166533.1 30.2
32 32 313 3.27 148489.5 23.0
64 16 285 3.59 122257.8 20.8
128 8 268 3.82 123164.6 19.9
256 4 263 3.89 129542.4 19.5
512 2 261 3.92 136292.4 23.1
1024 1 259 3.95 177834.2 24.1

TABLE III
FPGA BASED RESULTS OF DIGITIZED 1024×1024 SBM MULTIPLIER FOR

DIFFERENT DIGIT SIZES (ARTIX-7)

m digit
size
(n)

total
digits
(d)

Freq
(MHz)

latency
(µs)

LUTs Regs Carry Power
(mW)

52
1×

52
1

32 17 33.11 16.43 6369 1692 408 184
41 13 29.15 18.28 7995 1681 416 192
53 10 28.32 22.72 8079 1732 417 191
64 9 34.48 15.12 6095 1758 408 220
81 8 30.30 21.38 8207 1795 415 247
128 5 34.84 14.95 5964 1881 424 220

57
1×

57
1 32 17 30.12 18.06 6397 1847 447 194

41 13 27.17 19.62 8750 1834 455 192
53 10 26.04 20.35 9053 1880 449 187
81 8 28.01 23.13 8958 1951 452 226

10
24
×

10
24

2 512 14.22 72.11 10993 3634 1085 173
4 256 15.89 64.48 10824 3384 928 172
8 128 16.86 60.66 11074 3261 849 180
16 64 17.51 58.48 10634 3248 811 185
32 32 17.89 57.28 11371 3267 791 190
64 16 17.95 57.04 11947 3330 792 195
128 8 18.57 55.14 12207 3450 800 221
256 4 18.93 54.09 11367 3740 832 247
512 2 19.12 53.55 10385 4295 896 226
1024 1 18.46 55.50 11462 5303 1024 235

571) fields utilized in ECC-based public key cryptosystems. As
the operand sizes increase, the corresponding clock frequency
decreases, as shown in column three of Table I. The decrease
in frequency leads to an increase in latency, as presented in
column four of Table I. In addition to latency, the correspond-
ing area and power values also increase with the increase in
size of multiplier operands (see columns five and six of Table
I). It is evident from these results that the SBM multiplier
requires less hardware resources than 2-way Karatsuba, 3-way
Toom-Cook, and 4-way Toom-Cook multipliers. Moreover, the
2-way Karatsuba achieves lower power values as compared to
other selected multipliers. This is explained by the datapath
and the composition of the different multipliers. SBM requires

2m+2m bit adder, 2-way Karatsuba requires m+m+m bit
adder/subtracter for generating final polynomial, 3-way Toom-
Cook requires fifteen m

3 bit incrementers, and 4-way Toom-
Cook requires sixteen m

4 bit incrementers. There is always
a trade-off between various design parameters such as area,
latency, power etc. Consequently, the SBM multiplier is more
useful for area constrained applications. For better latency,
other multipliers are more convenient.

2) ASIC digitized multipliers: For digitizing, we have se-
lected 521, 571, and 1024 as the lengths of the input operands,
as shown in column one of Table II. Moreover, for input
lengths of 521 and 571, digit sizes of 32, 41, 53 and 81
have been adopted. For an input length of 1024 bits, digit
sizes are given in powers of two, for n = 2, . . . , 1024. Digit
size n and total digits d are listed in columns two and three
of Table II, respectively. It is noteworthy that the increase in
digit size results in a decrease in clock frequency, as presented
in column four of Table II. Moreover, it also translates to an
increase in latency, as shown in column five of Table II. For
the 1024 × 1024 multiplier, the obtained values for area and
power show behavior similar to a parabolic curve with respect
to digit size, as given in the last two columns of Table II.
This is intuitive, as in the extreme cases of too small or too
large digits, the wrapper logic becomes inefficient and may
even become the bottleneck for timing. In summary, for an
application that requires high clock frequency, shorter digits
are preferred; however, this brings a significant cost in area
and power.

3) FPGA digitized multipliers: Alike ASIC demonstrations
(presented in Sec. IV-A2), we have chosen similar lengths of
the input operands (521, 571, and 1024) for the evaluation on
an Artix-7 FPGA platform, as shown in column one of Table
III.We have used Xilinx Viviado Desig Suite for the FPGA
based experiments. Furthermore, for input lengths of 521 and
571, digit sizes of 32, 41, 53 and 81 have been considered. For
an input length of 1024 bits, digit sizes are adopted in powers
of two, for n = 2, . . . , 1024. Digit size n and total digits d
are listed in columns two and three of Table III, respectively.
The synthesis results (clock frequency, latency, area in terms
of LUTs and Regs, and power) achieved for FPGA are totally
distinct when compared to ASIC values as the implementation
platforms are quite contrasting. It is important to note that
the frequency of the multiplier architecture increases with the
increase in digit size (shown in column four of Table III). This
phenomenon keeps on-going until it reaches a saturation point
(i.e., best possible performance in terms of clock frequency
with respect to n). Once it reaches a saturation point, then there
is a decrease in the clock frequency. Moreover, the saturation
occurs at any digit size between 0 to n (in this work and
for this experiment, the saturation occurs when the value for
n = 512). The saturation point also varies with the change
in operand size of the multiplier as given in Table III. For
other reported parameters, i.e., latency, LUTs and power, the
saturation point is not possible to show as there is a non-linear
behavior (see columns five, six and nine of Table III). It is
noteworthy that we have considered the worst case scenario by

148

148

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on November 30,2022 at 14:12:45 UTC from IEEE Xplore. Restrictions apply.

excluding the DSP (Digital Signal Processing) blocks during
synthesis. The performance of multiplier architectures will be
higher by considering the conventional synthesis flow with
DSPs.

4) Figure-of-Merit (FoM) for digitized SBM multiplier: A
FoM is defined to perform a comparison while taking into
account different design characteristics at the same time. A
FoM to evaluate the latency and area parameters for both ASIC
and FPGA platforms is defined using Eq. 7. The higher the
FoM values, the better. Similarly, a ratio for latency and power
characteristics are calculated considering Eq. 8.

FoM =
1

latency (µs)× area (7)

FoM =
1

latency (µs)× power (mW)
(8)

The calculated values of defined FoMs for ASIC are given
in figures 2 and 3, where various digit sizes were considered
for a 1024× 1024 multiplier.

Fig. 2. Area and latency FoM for various digit sizes of a 1024 × 1024
multiplier

Fig. 3. Power and latency FoM for various digit sizes of a 1024 × 1024
multiplier

For both FoMs (shown in figures 2 and 3), it becomes
clear that the extreme cases lead to suboptimal results. For
the studied 1024 × 1024 multiplier, the variant with n = 64
and d = 16 presents an optimal solution. Other similar values,
such as n = 32 and n = 128, also give very close to optimal
solutions.

Likewise ASICs, the calculated values of defined FoM (from
Eq. 7) for FPGA is given in Fig. 4, where various digit sizes
were considered for a 1024×1024 multiplier. To calculate

Fig. 4. Slices and latency FoM for various digit sizes of a 1024 × 1024
multiplier

Fig. 5. Frequency, latency and power analysis for various digit sizes of a
1024× 1024 multiplier

FPGA area utilizations, the slices flip-flops, LUTs and carry
units are the basic building-blocks. Therefore, the FoM in Eq.
7 can be calculated by employing different metrics-of-interest
(e.g., slices, LUTs, registers and carry blocks). Note that we
have used an FPGA slices as area in Eq. 7. Fig. 4 reveals that
the FoM value for n = 512 and d = 2 results an optimal
solution.

The combined relation between frequency, latency and
power for different values of n is illustrated in Fig. 5.
Therefore, it is noted from Fig. 5 that the value of latency
decreases, frequency increases with the increase in n. The
increase in frequency and decrease in latency keeps on-going
until saturation point occurs (when n = 512).

B. Comparison to the state of the art

To perform a fair comparison with existing state-of-the-
art modular multiplier architectures, we have used similar
operand lengths, digit sizes and implementation technologies
(for FPGA and ASIC) as used in the corresponding solutions,
shown in Table IV. In state-of-the-art solutions, multiplication
results are given for different operands length. However, we
have provided comparison of our results with only the larger
operands. Moreover, we have used symbol ‘N/A’ in Table IV
where the values for design parameters (Freq, latency and
area) are not given.

Concerning only the non-digitized multipliers for compari-
son, the 2-way Karatsuba multiplier of [5] over Virtex-7 FPGA
for operand sizes of 128, 256 and 512 bits presents 38%, 39%
and 20% higher latency when compared to 2-way Karatsuba

149

149

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on November 30,2022 at 14:12:45 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
AREA AND LATENCY COMPARISONS OF NON-DIGITIZED AND DIGITIZED

MULTIPLIERS WITH STATE OF THE ART

Ref Multiplier Device m Freq
(MHz)

latency
(µs)

Area
(µm2)/LUTs

[5]
2-way KM V7 128 104.3 0.61 3499
2-way KM V7 256 74.5 1.71 7452
2-way KM V7 512 51.6 4.96 20474

[9] BL-PIPO 65nm 163 N/A N/A 5328 GE
[13] DSM (ds=64) V6 571 258.5 0.03 10983

[14]
DSMM (ds=2) V7 2048 N/A N/A 18067
DSMM (ds=4) V7 2048 N/A N/A 33734
DSMM (ds=8) V7 2048 N/A N/A 62023

TW

SBM 65nm 163 N/A N/A 11727 GE
2-way KM V7 128 167.4 0.38 2110
2-way KM V7 256 119.9 1.06 4318
2-way KM V7 512 63.8 4.01 9582
SBM (ds=2) V7 2048 15.03 69760 25559
SBM (ds=4) V7 2048 16.6 15790 22040
SBM (ds=8) V7 2048 17.4 3760 23315
SBM (ds=64) V6 571 46.4 1.74 6181

V7: Xilinx Virtex-7, V6: Xilinx Virtex-6, ds: digit size, TW: this work,
DSM: Digit Serial Montgomery multiplier based wrapper, BL-PIPO:
Bit level parallel in parallel out multiplier using SBM multiplication
method, GE: gate equivalents

multiplier generated by TTech-LIB, as shown in Table IV.
Moreover, the generated multiplier utilizes lower hardware
resources in terms of LUTs (see column seven in Table IV) as
compared to resources (LUTs) utilized in [5]. On 65nm node,
the BL-PIPO multiplier of [9] utilizes 55% lower hardware
resources in terms of gate counts as compared to our SBM
multiplier generated by TTech-LIB.

When digitized flavor of polynomials multiplication is con-
sidered for comparison over different digit sizes, the digit
serial Montgomery multiplier based wrapper of [13] results
83% higher clock frequency and requires 58% less computa-
tional time as compared to our SBM based digit serial wrapper
generated by TTech-LIB. On the other hand, the SBM based
digit serial wrapper results 56% lower hardware resources
over Virtex-6 FPGA. There is always a trade-off between
performance and area parameters. Another digit serial modular
multiplication based wrapper of [14] results 14% (for ds=2)
lower FPGA LUTs while for remaining digit sizes of 4 and
8, it utilizes 35% and 63% higher FPGA LUTs as compared
to SBM wrapper generated by TTech-LIB. The frequency and
latency parameters cannot be compared as these are not given.

The comparisons and discussion above show that the mul-
tipliers generated by TTech-LIB provide a realistic and rea-
sonable comparison to state-of-the-art multiplier solutions [5],
[9], [13], [14]. Hence, not only can users explore various
design parameters within our library, they can also benefit
from implementations that are competitive with respect to the
existing literature.

V. CONCLUSION

This work has presented an open-source library for large
integer polynomial multipliers. The library contains digitized
and non-digitized flavors of polynomial coefficient multipliers.
For non-digitized multipliers, based on the values for various

design parameters, users/designers can select amongst sev-
eral studied multipliers according to needs of their targeted
application. Furthermore, we have shown that for digitized
multipliers, the evaluation of individual design parameters may
not be comprehensive, and figures of merit are better suited
to capture the characteristics of a circuit. Furthermore, we
believe the results enabled by TTech-LIB will guide hardware
designers to select an appropriate digit size that reaches an
acceptable performance according to application requirements.
This is achieved with the aid of TTech-LIB’s generator, which
helps a designer to quickly explore the complex design space
of polynomial multipliers.

REFERENCES

[1] H. Eberle, N. Gura, S. Shantz, V. Gupta, L. Rarick, and S. Sundaram,
“A public-key cryptographic processor for rsa and ecc.” IEEE, 2004,
pp. 98–110.

[2] NIST, “Computer security resource centre: Pqc standardization process,
third round candidate announcement,” 2020. [Online]. Available: https:
//csrc.nist.gov/news/2020/pqc-third-round-candidate-announcement

[3] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,”
in Proceedings of the Forty-Fourth Annual ACM Symposium on Theory
of Computing, ser. STOC ’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 1219–1234.

[4] NIST, “Computer security resource centre: Post-quantum cryptography,
round 2 submissions,” 2020. [Online]. Available: https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions

[5] C. Rafferty, M. O’Neill, and N. Hanley, “Evaluation of large integer
multiplication methods on hardware,” IEEE Transactions on Computers,
vol. 66, no. 8, pp. 1369–1382, 2017.

[6] M. Imran, Z. U. Abideen, and S. Pagliarini, “An experimental study
of building blocks of lattice-based nist post-quantum cryptographic
algorithms,” Electronics, vol. 9, no. 11, p. 1953, Nov 2020.

[7] A. A. Abd-Elkader, M. Rashdan, E.-S. A. Hasaneen, and H. F. Hamed,
“Advanced implementation of montgomery modular multiplier,” Micro-
electronics Journal, vol. 106, p. 104927, 2020.

[8] A. C. Mert, E. Öztürk, and E. Savaş, “FPGA implementation of a
run-time configurable ntt-based polynomial multiplication hardware,”
Microprocessors and Microsystems, vol. 78, p. 103219, 2020.

[9] R. Azarderakhsh, K. U. Järvinen, and M. Mozaffari-Kermani, “Efficient
algorithm and architecture for elliptic curve cryptography for extremely
constrained secure applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 61, no. 4, pp. 1144–1155, 2014.

[10] S. R. Pillutla and L. Boppana, “An area-efficient bit-serial sequential
polynomial basis finite field gf(2m) multiplier,” AEU - International
Journal of Electronics and Communications, vol. 114, p. 153017,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1434841119318485

[11] Y. Doröz, E. Öztürk, and B. Sunar, “Accelerating fully homomorphic
encryption in hardware,” IEEE Transactions on Computers, vol. 64,
no. 6, pp. 1509–1521, 2015.

[12] J. Xie, P. K. Meher, X. Zhou, and C. Lee, “Low register-complexity
systolic digit-serial multiplier over gf(2m) based on trinomials,” IEEE
Transactions on Multi-Scale Computing Systems, vol. 4, no. 4, pp. 773–
783, 2018.

[13] M. Morales-Sandoval, C. Feregrino-Uribe, P. Kitsos, and R. Cumplido,
“Area/performance trade-off analysis of an fpga digit-serial gf(2m)
montgomery multiplier based on lfsr,” Computers & Electrical Engi-
neering, vol. 39, no. 2, pp. 542 – 549, 2013.

[14] J. Pan, P. Song, and C. Yang, “Efficient digit-serial modular multiplica-
tion algorithm on fpga,” IET Circuits, Devices Systems, vol. 12, no. 5,
pp. 662–668, 2018.

[15] M. Imran, Z. U. Abideen, and S. Pagliarini, “TTech-LIB: Center
for hardware security,” 2020. [Online]. Available: https://github.com/
Centre-for-Hardware-Security/TTech-LIB

[16] C. Lily, M. Dustin, R. Andrew, and R. Karen, “Recommendations
for discrete logarithm-based cryptography: Elliptic curve domain
parameters,” 2020. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-186-draft.pdf

150

150

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on November 30,2022 at 14:12:45 UTC from IEEE Xplore. Restrictions apply.

Appendix 3

III

139

M. Imran, Z. U. Abideen, and S. Pagliarini, “A versatile and flexible multiplier
generator for large integer polynomials,” Journal of Hardware and Systems Security,
2023. DOI: https://doi.org/10.1007/s41635-023-00134-2

Vol.:(0123456789)1 3

Journal of Hardware and Systems Security
https://doi.org/10.1007/s41635-023-00134-2

A Versatile and Flexible Multiplier Generator for Large Integer Polynomials

Malik Imran1 · Zain Ul Abideen1 · Samuel Pagliarini1

Received: 24 March 2022 / Accepted: 7 June 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
This work presents a versatile and flexible generator of various large integer polynomial multipliers to be used in hardware
cryptocores. Flexibility is offered by allowing circuit designers to choose an appropriate multiplication method from a list
that includes Schoolbook, Booth, Karatsuba, and Toom-Cook. Moreover, the generator supports traditional and digitized
polynomial multiplication solutions, where inputs are broken in smaller parts for efficiency. A parameterized digit serial
multiplier wrapper provides the digitized solution for multiplying polynomial coefficients. To explore power-performance-
area (PPA) trade-offs, pipelining for the non-digitized multiplication methods is also introduced. Our generator automatically
creates the multiplier’s logic in Verilog HDL that is compliant with field-programmable gate array (FPGA) and application
specific integrated circuits (ASIC) synthesis. Moreover, it also generates configurable and parameterizable scripts for com-
mercial ASIC synthesis tools. For our experimental results, we have evaluated PPA for multipliers that are sized according
to NIST-defined prime and binary fields. Results are presented for two ASIC technologies (65 nm and 15 nm technology)
and for the Artix-7 FPGA family. Our generator is also versatile since it creates several architectures simultaneously, thus
allowing a designer to easily explore the complex optimization search space of polynomial multiplication in cryptography.

Keywords Schoolbook · Booth · Karatsuba · Toom-cook · Digitized polynomial multiplication · Large integer
polynomial multipliers

1 Introduction

Cryptographic hardware utilized to perform secure com-
munications and data exchange is typically composed
of several building blocks, consisting of arithmetic (i.e.,
addition, subtraction, multiplication, inversion) and logi-
cal operations. Multiplication is often identified as the real
bottleneck in implementing efficient cryptographic circuits
because it is the most computational intensive operation
in cryptography schemes [1–5]. More precisely, post-
quantum cryptography (PQC) algorithms and frequently

used public-key cryptosystems, such as RSA and elliptic
curve cryptography (ECC) [6, 7], require efficient poly-
nomial multiplications. Fully homomorphic encryption is
another application where large integer polynomial multi-
pliers are required to enable multi-party communications
on the cloud [8]. Thus, there is a need for efficient large
integer polynomial multipliers.

There are numerous multiplication approaches described
in the literature that perform polynomial coefficient mul-
tiplication, including the traditional Schoolbook method
(SBM), Karatsuba, Toom-Cook, Montgomery, Booth,
and Number Theoretic Transformation (NTT). These
approaches can also be utilized in a digitized form where
the polynomial is broken in smaller parts, thus reducing
the complexity of the multiplication at the expense of some
additional control logic to manage and merge the small
products. The reference implementations of various PQC
algorithms, available on [9], suggest the use of (i) SBM in
FrodoKEM and NTRU-Prime, (ii) Karatsuba and Toom-
Cook in Saber and NTRU, (iii) combination of NTT and
SBM in CRYSTALS-Kyber, and (iv) Montgomery and
SBM in Falcon.

 * Malik Imran
malik.imran@taltech.ee

Zain Ul Abideen
zain.abideen@taltech.ee

Samuel Pagliarini
samuel.pagliarini@taltech.ee

1 Centre for Hardware Security, Department of Computer
Systems, School of IT, Tallinn University of Technology
(TalTech), Tallinn, Estonia

 Journal of Hardware and Systems Security

1 3

Even if a variety of implementations of different multiplica-
tion approaches is available in the literature [1–5, 10–16], these
dedicated implementations are optimized for a specific oper-
and size and for a given target (e.g., high speed or low area
or low power). The matter is that this trade-off space explora-
tion is difficult to drive without automation. Therefore, there
is a real need for access to (many) multiplication approaches
where designers can select an appropriate multiplier architec-
ture combined with their choice of operand lengths.

To address the aforementioned gap in the literature and
the requirement for automation, we develop a generator of
several polynomial multipliers which we termed TTech-
LIB. TTech-LIB is an open-source repository [17] of several
large integer polynomial multipliers. Preliminary results on
Artix-7 FPGA and 65 nm ASIC have been published in [18].
More insight into the characteristics of the implemented
multiplier circuits is given in this work, where we consider
Artix-7 FPGA, 15 nm, and 65 nm ASIC technologies. The
critical features of our multiplier generator are as follows:

 (i) Flexibility: Our multiplier generator supports five
multiplication approaches: (i) SBM, (ii) Booth, (iii)
2-way Karatsuba, (iv) 3-way Toom-Cook, and (v)
4-way Toom-Cook.

 (ii) Pipelining: Our generator supports pipelining to
reduce the critical paths (which therefore improves
the clock frequency) of the multiplier circuits.

 (iii) Digitizing: Our multiplier generator offers a param-
eterized digit-serial multiplier wrapper to multiply
polynomial coefficients. By default, the wrapper
instantiates a singular SBM multiplier. It can be
replaced by any other multiplier method (from our
TTech-LIB or otherwise) as the input/output inter-
faces are compatible.

 (iv) Agnostic RTL: The codes generated by our tool
are technology- and device-agnostic, thus being
synthesizable for both FPGA and ASIC platforms.
ASIC designers can additionally generate synthesis
scripts for one of two synthesis tools, either synopsis
design compiler (DC) or cadence genus. The user is
not restricted to generating a single architecture at a
time, and the generator will produce multiple solu-
tions if asked to do so, which will appear as separate
Verilog (.v) files.

In this article, we present several original contributions that
were not previously described in [18]: pipelining of the mul-
tiplier circuits, support for Booth multiplier, numerous and
more robust results, including PPA trade-off analysis, detailed
figures of merit, and also a comparison between the perfor-
mance of multipliers in 15nm and 65nm ASIC technologies.

Our generator architecture provides polynomial multi-
plication without modular reduction. However, for modular

reduction over prime and binary elliptic curves, NIST-
specified reduction routines [19] can be employed after the
multiplier circuit generated by TTech-LIB. Similarly, in the
case of PQC algorithms, an additional m-bit subtractor is
required after the multiplier circuit for modular reduction
when polynomial coefficients are multiplied in an iterative
way, where m denotes the size of polynomial coefficient of
the corresponding PQC algorithm.

The remainder of this paper is organized as follows:
related works are discussed in Sect. 2. The mathematical
structure of the selected polynomial multipliers is described
in Sect. 3. The structure of the multiplier generator architec-
ture is presented in Sect. 4. The implementation results are
described in Sect. 5. For ASIC and FPGA implementations,
the power-performance-area trade-offs are given in Sect. 6 in
the form of a figure of merit. Comparisons and discussions
are provided in Sect. 7. Finally, Sect. 8 concludes the paper.

2 Related Works

Examples of recent works employing non-digitized and digi-
tized polynomial multiplication methods are given in [1, 2,
4, 10–13, 15, 20–23] and [3, 5, 14, 16], respectively. Let us
now discuss important details of these works.

On Virtex-7 FPGA, area and frequency trade-off over dif-
ferent multiplication approaches (SBM, Comba, Karatsuba,
Toom-Cook, Montgomery, Booth, and NTT) are provided
in [4]. An efficient multiplication architecture for radix-2
Montgomery polynomial multiplier is described in [1] over
a polynomial length of 1024 bits on Virtex-6 FPGA. Also, in
[24], a Montgomery modular multiplier architecture is pre-
sented on Xilinx Virtex-5. Similarly, in [13], a Montgomery
modular multiplication integrated with an effective systolic
architecture is implemented on different FPGA devices for
different operand lengths (i.e., 8, 16, 32, and 64). In [12], a
parallel NTT-based polynomial multiplication architecture
is shown on Virtex-7 FPGA. In [20], for 163-bit operands
length, a programmable cellular automata-based bit-serial
multiplier design is reported on Xilinx Virtex-II FPGA. On
Intel Altera Stratix-V FPGA, a systolic-based digit serial
multiplier wrapper is described in [16], where digit lengths
of 22 and 30 bits are used for operand sizes 233 and 409
bits, respectively.

On Xilinx Virtex-6 FPGA, a Montgomery-based digit
serial wrapper is given in [3], where a digit length of 64
is considered for the operand size 571 bits. Similar to [3,
16], a modular multiplication-based digit serial wrapper on
Virtex-7 is provided in [14], where digit lengths of 2, 4, and
8 bits are used for an operand size of 2048 bits. In [22], a
digit-serial multiplier for the operand length of 571 bits over
Virtex-5 is described. On Virtex-4 and Virtex-5 devices, a
serially implemented digit to digit polynomial multiplication

Journal of Hardware and Systems Security

1 3

wrapper architecture is presented in [5] where the multipli-
cation is computed by creating digits with different sizes of
both input operands (163 and 233) to a multiplier.

Apart from the FPGA demonstrations, the trade-off space
exploration (i.e., the optimization of multiplier circuits for
several design characteristics) of various polynomial mul-
tipliers is also investigated on ASIC (while less frequent).
In [2], various polynomial multipliers with different oper-
and lengths are considered for area and power estimations
on a 65 nm technology. On similar technology, a bit-level
parallel-in-parallel-out (BL-PIPO) multiplier architecture is
presented in [10]. On a 90 nm commercial technology, a low
latency polynomial multiplication architecture over GF(2163)
is presented in [15]. For fully homomorphic encryption
schemes, an optimized multi-million bit multiplier archi-
tecture (with the use of Schonhage Strassen algorithm) is
provided in [11] on 90 nm commercial technology. An effi-
cient implementation of Booth multiplier, also on 65 nm
technology, is given in [23]. On 65 nm ASIC and Virtex-4
FPGA technologies, a low-complexity multiplier architec-
ture specific to elliptic curves over the binary field GF(2163)
is presented in [25].

The discussion presented above demonstrates that the
existing polynomial multiplication architectures are fre-
quently optimized for a specific operand length and a given
target such as high speed, low area, or low power. Conse-
quently, our multiplier generator addresses this by its flex-
ible and open-source nature.

3 Mathematical Structure of the Polynomial
Multipliers

Polynomial multipliers can take two distinct forms: serial
and parallel designs. SBM and Booth multipliers are bit-
serial (meaning bit-by-bit operations are utilized to perform
polynomial multiplications). Bit-parallel multipliers intend
to reduce the computational complexity of bit-serial multi-
plication approaches. The typical examples include 2-way
Karatsuba and variants of Toom-Cook. The parallelization
in bit-parallel multipliers is achieved by a generalized three
step process: (i) splitting input polynomials, (ii) inner product
computations, and (iii) generating resultant polynomial. The
bit-parallel multipliers require splitting of input polynomials
into n equal parts. As the name implies, the value of n for
2-way Karatsuba, 3-way Toom-Cook, and 4-way Toom-Cook
is 2, 3 and 4, respectively. The inner product is required to
compute over the split inputs. For example, in the case of a
Karatsuba multiplier, three multiplications associated with
a few additions and subtractions are required. Once, after
the inner product calculation, the resulting polynomial using
addition and subtraction operations is generated.

Our multipliers take two m-bit polynomials (a and b) as
input and result in an output of polynomial (c) with 2 × m
bit. The details of these multipliers are as follows:

SBM Multiplier As shown in Eq. 1, SBM is the standard way
to multiply two input polynomials a(x) × b(x) . The result-
ant polynomial c(x) is generated by performing bit-by-bit
operations. The number of steps to perform polynomial
multiplication for the SBM is shown in Algorithm 1, where
polynomial a is multiplied with the shifted polynomial b
to generate the resultant polynomial c. The latency associ-
ated with an SBM multiplier is ⌈m⌉ clock cycles, whereas
the operations to be computed are (m − 1) additions and m
multiplications (shifts).

Booth Multiplier Similar to the SBM, the traditional
Booth multiplier exploits add, subtract, and shift opera-
tions. Yet, as opposed to the SBM, it does not look at
a bit at a time [26]. By observing two bits at a time, it
reduces the number of required addition and subtraction
operations, which ultimately reduces the latency of the
multiplier. The traditional Booth multiplication method
is presented in Algorithm 2, where A stores the gener-
ated partial product (initialized with 0). The b shows the
extended polynomial with the addition of a dummy 0-bit
next to the least significant bit of the multiplier (b). It
computes multiplication by inspecting the least significant
two bits of the multiplier to match with these four cases:
(i) 00, (ii) 01, (iii) 10, and (iv) 11. When the inspected
bits are either 00 or 11, it means to do nothing or remain
unchanged. For the remaining two cases, the multipli-
cand may be added (line 5) or subtracted (line 8) from the
partial product (A). The shift_right_add function of lines
6 and 9 in Algorithm 2 determines the multiplication of
multiplicand by 2 with shift and add operations. For math-
ematical formulations, we refer interested readers to [26].

(1)c(x) =

m−1∑
i=0

m−1∑
j=0

aibjx
i+j

 Journal of Hardware and Systems Security

1 3

It is essential to highlight that modern cryptographic
applications demand constant-time polynomial multiplica-
tions to avoid leakage of sensitive information through tim-
ing side-channels. The present form of Algorithm 2, when
implemented in software, would not present a constant-
time runtime. However, our implemented multipliers are
described as hardware and are guaranteed to be constant-
time: for two operands of length m, the computation always
takes m/2 clock cycles.

Karatsuba Multiplier A generalized Karatsuba multiplier
contains l number of levels to perform polynomial multipli-
cation, where l depends on the user or designer to choose.
For example, let us assume we have two input polynomials,
z1 and z2 . At the first level, z1 and z2 are divided into two
smaller polynomials, z1

2
 and z2

2
 . At the second level, each split

polynomial is further divided in two other polynomials, i.e.,
z1

4
 and z2

4
 . The process of splitting polynomial repeats until

the value l is reached. After splitting the input polynomials,
the inner product can be computed, which is achieved by
using three inner multiplications, a few additions and shift
operations on small(er) operands. Eventually, the resulting
polynomial is generated with the multiplications starting
from the smaller polynomials to the larger one in a reverse
order (meaning multiplications start from z1

4
 and z2

4
 to z1 and

z2). In our multiplier generator architecture, the splitting of
input polynomials for Karatsuba multiplication is applied
only one time. Then, multiplication over each split polyno-
mial is performed by an SBM multiplication approach.

From Eq. 1, the split polynomial is derived in Eq. 2 where
n shows the polynomial splits and k determines the index of
the split polynomial. For a specific 2-way Karatsuba mul-
tiplier, the expanded version of Eq. 2 is shown in Eq. 3.
It requires four multiplications for the execution of inner
products (one to achieve the resulting polynomial c1(x) , two
multiplications for the execution of c2(x) , and eventually
one for the execution of c0(x)). As presented in Eq. 4, the
Karatsuba observation was to compute c2(x) with only one

multiplication instead of two. The addition of inner prod-
ucts is required to generate the resultant polynomial c(x),
as presented in Eq. 5. Algorithm 3 provides the number of
steps for the 2-way Karatsuba polynomial multiplication
method. As the name implies, function add_shift in line 8
of Algorithm 3 applies the shift and add operations over the
polynomials given in parentheses. The ⌈m

2
⌉ clock cycles is

needed to implement one m-bit polynomial multiplication.

Toom‑Cook Multiplier The Toom-Cook multiplication
method is the advanced and extended form of Karatsuba
multiplication. The difference is in dividing input polyno-
mials to 3 and 4 parts instead of 2 (as in 2-way Karatsuba).
With index k of the split input polynomials, the values for
n = 3 and n = 4 in Eq. 2 determine the equations of 3-way
and 4-way Toom-Cook multipliers. The expanded version
of Eq. 2 produces nine and sixteen inner multiplications
for 3-way and 4-way Toom-Cook multipliers, respectively.

(2)

c(x) =

⎛
⎜⎜⎝

m−1�
i=

k×m

n

ak(x) +… +

k×m

n
−1�

i=0

a
0
(x)

⎞
⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
split polynomial a(x)

×

⎛⎜⎜⎝

m−1�
i=

k×m

n

bk(x) +… +

k×m

n
−1�

i=0

b
0
(x)

⎞⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

split polynomial b(x)

(3)
c(x) = a1(x)b1(x)

⏟⏞⏞⏟⏞⏞⏟

c1(x)

+ a1(x)b0(x) + a0(x)b1(x)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

c2(x)

+ a0(x)b0(x)
⏟⏞⏞⏟⏞⏞⏟

c0(x)

(4)c2(x) = (a1(x) + a0(x)) × (b1(x) + b0(x)) − c1(x) − c0(x)

(5)c(x) = c0(x) + c1(x) + c2(x)

Journal of Hardware and Systems Security

1 3

Using a process identical to the 2-way Karatsuba, the
required nine and sixteen inner multiplications can be
reduced to five and seven. We opt not to include equations
for variants of the Toom-Cook multiplier as it requires
an identical procedure to the 2-way Karatsuba. However,
Algorithm 4 presents a complete understanding of the Took-
Coom multiplication method when the split input polyno-
mials are three smaller polynomials. As the name implies,
function add_shift in line 8 of Algorithm 4 applies the shift
and add operations over the polynomials given in parenthe-
ses. The ⌈m

3
⌉ and ⌈m

4
⌉ clock cycles are required to implement

one m-bit polynomial multiplication in our studied variants
of Toom-Cook multipliers.

Apart from the multipliers described above, TTech-LIB
also provides a digit-serial wrapper that takes two m-bit
polynomials a(x) and b(x) as input and produces c(x) as
an output. The digits of polynomial b(x) are created with
different lengths, which depends on the user choice as fol-
lows: d =

m

n
 , where d denotes the total number of digits, m

is the length of b(x), and n determines the length of each
digit. After digitization, the multiplication of each digit
is computed serially with the polynomial a(x). Finally,
the resultant polynomial c(x) is constructed using shift
and add operations. For one-digit serial multiplication, n
cycles are needed. Thus, the total digits are d, the total
clock cycles for one m-bit polynomial multiplication with
n bit digit take ⌈d × n⌉ . It is important to note that the
respective users/designers can select any multiplication
method inside our digit-serial wrapper. In our case, we
have utilized an SBM multiplication method.

Since our library is aimed at large polynomials, the 2-way
Karatsuba, 3-way Toom-Cook, 4-way Toom-Cook, and
Booth multipliers, generated in the proposed TTech-LIB,
actually implement the SBM strategy. The implementa-
tion of SBM, Booth, and our digit-serial wrapper produces
resultant polynomial c(x) serially while 2-way Karatsuba,
3-way Toom-Cook, and 4-way Toom-Cook multipliers use

a hybrid approach (as they utilize a combination of both
serial and parallel execution of SBM for the computations).

4 Generator Architecture of TTech‑LIB

The architecture of the multiplier generator that supports
TTech-LIB is illustrated in Fig. 1, where it is broken down
in parameters (inputs), the generator engine, and its outputs.
The parameters determine the input settings using a simple
XML file structured around a few keywords. More precisely,
“multiplier" takes the name of the multiplication method (as
an input). Similarly, “reset" determines the reset behavior
(either rising or falling edge of the clock) for the gener-
ated multiplier circuit. The “polynomial size" and “clock
frequency" keywords define the operand’s length and the
timing constraint, respectively. Moreover, users can target
different numbers of pipeline stages (for the pipelined vari-
ants) and digit sizes (for the digitized wrapper) based on the
need of their applications. The multiplier generator takes all
the parameters as input using the parser and generates the
corresponding Verilog HDL and script files in respective
directories. The generated code is pure RTL, being therefore
platform and technology agnostic.

Fig. 1 Architecture of our Multiplier generator

 Journal of Hardware and Systems Security

1 3

The structure of our TTech-LIB is relatively simple and
includes five directories, i.e., (i) bin, (ii) run, (iii) src, (iv)
synth, and (v) vlog. As the name specifies, bin and run direc-
tories contain the essential files to compile and execute the
project. The src directory contains the library source files.
The synth and vlog directories keep the generated scripts
and Verilog HDL files, respectively. The complete project
files (written in C++) are freely available to everyone on our
GitHub repository [17]. A sample of pre-generated multipli-
ers is also added to the repository. All the multipliers make
use of an identical interface (i.e., inputs are always clk, rst,
a, and b; the output is c).

5 ASIC and FPGA Results

We have synthesized the RTL codes of the multipliers gen-
erated by TTech-LIB on both ASIC (15 nm [27] and 65 nm
technologies) and FPGA (Artix-7) platforms using Cadence
Genus and Vivado IDE tools, respectively. Moreover, we
have adopted NIST recommended prime (192, 224, 256,
384, and 521) and binary (163, 233, 283, 409, and 571)
elliptic curve fields for the performance evaluation of our
supported non-digitized multipliers on 65nm technology. To
assess the performance of our digitized wrapper on Artix-7
FPGA and 65nm technology, we have considered different
digit sizes for the operand lengths 521, 571, and 1024. Simi-
larly, the performance evaluation of the digitized wrapper
with several digits sizes is provided on 15nm technology for
operands of length 1024 × 1024.

In the subsections that follow, the performance of our
generated multipliers is evaluated in terms of various design
parameters, i.e., clock frequency, latency, area, and power. For
both FPGA and ASIC evaluations, the values for frequency,
area, and power are obtained directly from the tools (after
logic synthesis), while latency is calculated using Eq. 6.

5.1 ASIC Non‑Digitized Multipliers

The results for non-digitized polynomial multiplication
methods (including non-pipelined and pipelined) over NIST
recommended prime (P-192 to P-521) and binary (B-163
to B-571) fields utilized in ECC-based public-key crypto-
systems is presented in Fig. 2. The horizontal and vertical
axis of Fig. 2(a)-(d) show the operand size and design char-
acteristic (area in �m2 , power in mW, frequency in MHz

(6)

latency (�s) =

(
clock cycles

frequency (MHz)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

non−digitized

× total digits

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

digitized

and latency in �s), respectively. Let us assume the left-first
bar from the area panel (Fig. 2(a)), which is labelled P-192.
Here, the first letter determines the field (P for prime, B for
binary) and the number determines the length of the multi-
plier inputs. Moreover, the results for five different multi-
plication approaches are illustrated from left to right in the
following order: (i) SBM, (ii) Booth, (iii) 2-way Karatsuba,
(iv) 3-way Toom-Cook, and (v) 4-way Toom-Cook (see leg-
end of Fig. 2 for the color scheme).

Concerning the pipeline variants, we have reported our
results for 2-stage pipelining. These multiplier variants are
annotated with the label ‘PS2’ in Fig. 2. To achieve the
highest possible frequency, we keep increasing the number
of pipeline stages until saturation occurs and adding more
stages is no longer beneficial. For the studied circuits, satu-
ration occurs if more than 2 pipeline stages are added. A
third stage brings a minor increase in the clock frequency
at a significant cost in area and power. Therefore, we show
results only for PS2.

For both non-pipelined and pipelined multipliers, as
shown in Fig. 2, there is an increase in area, power, and
latency characteristics with the increase in operand length.
On the other hand, there is a decrease in clock frequency with
the increase in operand length. Then, pipelining improves
the performance (clock frequency) at the cost of area and
power. It is important to note that the pipelined variant of the
Booth multiplier results in minor improvements. Moreover,
for every studied multiplier, the power of the pipelined vari-
ants is always higher than the non-pipelined ones.

It is evident from Fig. 2 that the Booth multiplier utilizes
less area than the other evaluated multipliers, and this is true
for non-pipelined and pipelined variants. Moreover, the non-
pipelined variant of 2-way Karatsuba achieves lower power
values than other selected multipliers. For the pipelined
cases, the Booth multiplier consumes less power. The reason
is that Booth has the simplest datapath among the studied
multipliers. For example, in our implemented architectures,
SBM requires 2m + 2m bit adder, Booth requires m bit adder
and subtractor, 2-way Karatsuba requires m + m + m bit
adder and subtractor, 3-way Toom-Cook requires fifteen m

3

bit incrementers, and 4-way Toom-Cook requires sixteen
m

4
 bit incrementers. For both non-pipelined and pipelined

implementations, variants of Toom-Cook multipliers report
higher clock frequency and lower latency values.

5.2 ASIC Digitized Multipliers

The experimental results for the non-pipelined digitized
multiplier wrapper on ASIC 65 nm are shown on the left
portion of Table 1. Similarly, results for various digit sizes
for the 1024 × 1024 SBM multiplication method on 15 nm
technology are given in Table 2. As mentioned earlier, the
selected lengths of the input operands are 521, 571, and

Journal of Hardware and Systems Security

1 3

1024, as given in column one of Table 1. The selected digit
sizes for input lengths of 521 and 571 are 32, 41, 53, and 81.
For an input length of 1024 bits, digit sizes are selected in
powers of two, for n = 2… 1024 where the values for digit
size n and total digits d are shown in columns two and three
of Tables 1 and 2.

The implementation results for 15 nm and 65 nm tech-
nologies show that the increase in digit size leads to a

decrease in clock frequency, as given in column four
of Tables 1 and 2, respectively. On the other hand, the
increase in digit size increases latency, as presented in col-
umn five of Tables 1 and 2, respectively. With an increase
in the digit size n, the achieved results for power and area
parameters indicate behavior akin to a parabolic curve,
as provided in Table 1 (see columns six and seven) and
Table 2 (see last two columns). For extreme cases of too

(a)

(b)

(c)

(d)

Fig. 2 Results for the non-pipelined and pipelined variants of several non-digitized multipliers on 65 nm ASIC over NIST recommended prime
and binary elliptic curves

 Journal of Hardware and Systems Security

1 3

Ta
bl

e
1

 A
SI

C
 a

nd
 F

PG
A

 re
su

lts
 fo

r d
ig

iti
ze

d
m

ul
tip

lie
rs

 o
f v

ar
io

us
 in

pu
t s

iz
es

m
 sh

ow
s t

he
 fi

el
d

si
ze

 o
r l

en
gt

h
of

 th
e

in
pu

ts
 (i

n
bi

ts
),

n
de

te
rm

in
es

 th
e

di
gi

t s
iz

e
an

d
d

st
an

ds
 fo

r t
ot

al
 d

ig
its

m
n

d
A

SI
C

 (6
5n

m
)

FP
G

A
 (A

rt
ix

-7
)

Fr
eq

. (
M

H
z)

La
te

nc
y

(�
s
)

Ar
ea

 (�
m

2
)

Po
we

r (
m

W
)

Fr
eq

. (
M

H
z)

La
te

nc
y

(�
s
)

of

 L
U

Ts

of
 R

eg
s

Ca
rr

y
bl

oc
ks

Po
we

r (
m

W
)

52
1 ×

52
1

32
17

50
5

1.
07

10
69

56
.7

30
.9

33
.1

1
16

.4
3

63
69

16
92

40
8

18
4

41
13

37
7

1.
41

10
15

38
.7

26
.1

29
.1

5
18

.2
8

79
95

16
81

41
6

19
2

53
10

34
0

1.
55

94
75

2.
7

20
.0

28
.3

2
22

.7
2

80
79

17
32

41
7

19
1

81
7

33
6

1.
68

84
32

1.
0

15
.4

34
.4

8
15

.1
2

60
95

17
58

40
8

22
0

57
1×

57
1

32
18

48
7

1.
18

11
49

99
.8

36
.7

30
.1

2
18

.0
6

63
97

18
47

44
7

19
4

41
14

36
9

1.
55

11
60

10
.3

28
.9

27
.1

7
19

.6
2

87
50

18
34

45
5

19
2

53
11

31
2

1.
86

91
39

3.
9

18
.1

26
.0

4
20

.3
5

90
53

18
80

44
9

18
7

81
8

29
1

2.
22

76
14

6.
8

14
.1

28
.0

1
23

.1
3

89
58

19
51

45
2

22
6

10
24
×

10
24

2
51

2
36

3
2.

82
19

61
31

.2
38

.0
14

.2
2

72
.1

1
10

99
3

36
34

10
85

17
3

4
25

6
35

7
2.

86
17

85
81

.2
35

.1
15

.8
9

64
.4

8
10

82
4

33
84

92
8

17
2

8
12

8
35

3
2.

90
16

75
36

.4
31

.5
16

.8
6

60
.6

6
11

07
4

32
61

84
9

18
0

16
64

34
3

2.
98

16
65

33
.1

30
.2

17
.5

1
58

.4
8

10
63

4
32

48
81

1
18

5
32

32
31

3
3.

27
14

84
89

.5
23

.0
17

.8
9

57
.2

8
11

37
1

32
67

79
1

19
0

64
16

28
5

3.
59

12
22

57
.8

20
.8

17
.8

9
57

.0
4

11
94

7
33

30
79

2
19

5
12

8
8

26
8

3.
82

12
31

64
.6

19
.9

18
.5

7
55

.1
4

12
20

7
34

50
80

0
22

1
25

6
4

26
3

3.
89

12
95

42
.4

19
.5

18
.9

3
54

.0
9

11
36

7
37

40
83

2
24

7
51

2
2

26
1

3.
92

13
62

92
.4

23
.1

19
.1

2
53

.5
5

10
38

5
42

95
89

6
22

6
10

24
1

25
9

3.
95

17
78

34
.2

24
.1

18
.4

6
55

.5
0

11
46

2
53

03
10

24
23

5

Journal of Hardware and Systems Security

1 3

small or too large digits, the wrapper logic becomes inef-
ficient and may even become the bottleneck for timing.
Therefore, shorter digit lengths are more valuable for an
application that demands high speed.

For identical values of m, n and d in Tables 1 and 2,
the implementation results achieved on 15 nm technology
outperform the results obtained on 65nm technology, as
expected. More specifically, the 15 nm technology allows
for a threefold increase in clock frequency with a significant
reduction in area and power.

5.3 FPGA Non‑Digitized Multipliers

The results for non-digitized polynomial multiplication
methods (including non-pipelined and pipelined) over NIST
recommended prime (P-192 to P-521) and binary (B-163 to
B-571) fields utilized in ECC-based public-key cryptosys-
tems over Artix-7 FPGA1 is presented in Fig. 3. The hori-
zontal axis in Fig. 3(a)-(d) provides the operand size, while
the vertical axis displays the design characteristic (slices
as area, power in mW, frequency in MHz, and latency in
�s), one in each panel. The area of an FPGA implementa-
tion can be estimated in terms of look-up-tables (LUTs),
slices, Regs, DSP, and carry blocks. Our implementation
utilizes LUTs, slices, Regs, and several F7 & F8 muxes.
The DSP and carry blocks are not utilized. Therefore, in
Fig. 3(a), we reported only the slices to represent the area
of our implemented multipliers because we used slices later
in our defined figures of merit. Let us take the left-first bar
from the area panel (Fig. 3(a)), which is labeled P-192. Here,
the first letter shows the targeted field (P for prime, B for
binary), and the number shows the length of the multiplier
inputs. Furthermore, the results for five different multiplica-
tion approaches are given from left to right in the following
order: (i) SBM, (ii) Booth, (iii) 2-way Karatsuba, (iv) 3-way

Toom-Cook, and (v) 4-way Toom-Cook (see legend of Fig. 3
for the color scheme).

Similar to ASIC non-digitized (pipelined) multipliers,
we have provided our results for 2-stage pipelining. These
variants are represented with the label ‘PS2’ in Fig. 3). To
achieve the highest possible frequency, we keep increasing
the number of pipeline stages until saturation occurs and
adding more stages is no longer beneficial. For the imple-
mented circuits, saturation occurs when (only) 2 pipeline
stages are included. With significant cost in area and power,
third stage provides a similar clock frequency to 2-stage.
Therefore, we provide pipelined results only for PS2.

As compared to ASIC evaluations, the performance of
our selected multipliers over FPGA is different because the
implementation platforms are relatively different. For both
non-pipelined and pipelined multipliers, as shown in Fig. 3,
there is an increase in area, power, and latency characteris-
tics with the increase in operand length. On the other hand,
there is a decrease in clock frequency with the increase in
operand length. Alike in ASIC implementations, pipelining
improves the performance (clock frequency) with an excess
of both area and consumed power. The latency trend is oppo-
site to the clock frequency; it increases as the operand size
increases, but the pipeline stages decrease the latency.

As shown in Fig. 3, the Booth multiplier uses fewer
FPGA slices than the other evaluated multipliers. Moreover,
the non-pipelined and pipelined variants of 2-way Karatsuba
achieve lower power values than other selected multipliers.
Similar to the ASIC implementations, both non-pipelined
and pipelined variants of a Toom-Cook multiplier result in
higher clock frequency and lower latency values.

To summarize the ASIC and FPGA results of our non-
digitized multipliers, we highlight that there is always a
trade-off between several design parameters such as area,
power, frequency, and latency. Moreover, our evaluations
reveal that the bit-serial (SBM and Booth) multipliers are
more convenient for applications that demand lower hard-
ware resource utilization. For high-speed applications,

Table 2 Synthesis results for
1024 × 1024 digitized multiplier
on ASIC 15nm technology

m determines the length of the inputs (in bits), n determines the digit size and d stands for total digits

m n d Freq (MHz) latency (�s) Area (�m2) Power (mW)

1024×1024 2 512 909 1.12 19182.7 21.0
4 256 884 1.15 19059.8 19.9
8 128 862 1.18 18367.2 21.2
16 64 840 1.21 17398.7 20.9
32 32 829 1.23 17105.5 20.8
64 16 826 1.23 17523.4 20.5
128 8 822 1.24 17460.4 19.9
256 4 819 1.25 18594.0 23.5
512 2 813 1.25 19719.6 25.4
1024 1 806 1.27 22979.3 30.2

1 We clarify that this FPGA is designed in 28 nm.

 Journal of Hardware and Systems Security

1 3

bit-parallel multipliers (2-way Karatsuba and variants of a
Toom-Cook) are more beneficial.

5.4 FPGA Digitized Multipliers

Like our ASIC implementations, we have selected identical
lengths of the input operands (521, 571, and 1024) for the

evaluation on an Artix-7 FPGA, as presented in the last six
columns (i.e., column eight to column thirteen) of Table 1.
Moreover, we have selected identical digit sizes of 32, 41, 53,
and 81 for operand lengths of 521 and 571. For an operand
length of 1024 bits, the considered digit sizes are again in pow-
ers of two, for n = 2… 1024 . The values for digit size n and
total digits d are listed in columns two and three of Table 1,

(a)

(b)

(c)

(d)

Fig. 3 Results for the non-pipelined and pipelined variants of several non-digitized multipliers on Artix-7 FPGA over NIST recommended prime
and binary elliptic curves

Journal of Hardware and Systems Security

1 3

respectively. The results achieved after synthesis (clock fre-
quency, area in terms of LUTs, Regs and Carry blocks, latency,
and power) for FPGA are different compared to ASIC as the
implementation platforms are relatively different.

The reported results reveal that the increase in digit size
results in an increased clock frequency, as shown in column
eight of Table 1. This increase in clock frequency occurs
until a saturation point is reached. Once the saturation point
is reached, clock frequency decreases with an increase in digit
size. Therefore, in this particular experiment, the saturation
occurs when the value for n = 512. Yet, before saturation
is achieved, very small increments in frequency are already
observed, implying that selecting the number of digits based
on frequency alone is not a good strategy. Other reported char-
acteristics, i.e., latency, LUTs, and power, show a non-linear
behavior (see columns nine, ten and thirteen of Table 1).

6 Figures of Merit for PPA and Trade‑Offs

A figure of merit (FoM) is defined to perform a comparison
while taking into account different design characteristics at
the same time. Here, performance determines the latency of
the multiplier. So, an FoM to evaluate the area and perfor-
mance for both ASIC and FPGA platforms is defined using
Eq. 7. For FPGA, we use the number of slices as area in

Eq. 7. The higher the FoM values, the better performance of
the multiplier. Similarly, an FoM to evaluate the power and
latency parameters is calculated using Eq. 8.

6.1 FoM for Non‑Digitized Multipliers

The calculated values of defined FoMs for both non-pipelined
and pipelined multipliers on ASIC and FPGA platforms are
illustrated in Figs. 4 and 5, respectively. The pipelined vari-
ants for different multipliers are shown with PS2 (meaning a
2-stage pipeline). For each panel in Figs. 4 and 5, the multi-
pliers are shown from left to right in the following order: (i)
SBM, (ii) Booth, (iii) 2-way Karatsuba, (iv) 3-Way Toom-
Cook, and (v) 4-way Toom-Cook. Moreover, we used slices
as a proxy for area in Fig. 5(a).

As shown in Fig. 4, the trend shows a decrease in the FoM
values with the increase in the operand size. Concerning the
ratio of one over area times latency, the value of the non-
pipelined multiplier is lower than the pipelined multiplier except

(7)FoM =
1

area(�m2) × latency (�s)

(8)FoM =
1

power (mW) × latency (�s)

(a)

(b)

Fig. 4 FoMs in terms of area vs. latency and power vs. latency for various non-digitized multipliers on ASIC (the order from left to right is
SBM, Booth, 2-way Karatsuba, 3-way Toom-Cook, and 4-way Toom-Cook)

 Journal of Hardware and Systems Security

1 3

for the Booth and variants of Toom-Cook multipliers. For pipe-
lined multipliers, the highest ratio of one over area times latency
is achieved for the 2-way Karatsuba multiplier. The performance
(latency) vs. area trade-off for non-pipelined multipliers could
be graded, from highest to lowest, as (i) Booth, (ii) 4-way Toom-
Cook, (iii) 3-way Toom-Cook, (iv) 2-way Karatsuba, and (v)
SBM. For similar performance vs. area trade-off, the possible
grading from highest to lowest for the pipelined multipliers is
(i) 2-way Karatusuba, (ii) 4-way Toom-Cook, (iii) Booth, (iv)
3-way Toom-Cook, and (v) SBM.

Figure 4(b) shows the same trend as described for the area
versus latency FoM. The value of the FoM for non-pipelined
multipliers is higher compared to pipelined variants except
for the 4-way Toom-Coom multiplier. For non-pipelined and
pipelined variants, the highest ratio of one over power times
latency is achieved for a 2-way Karatsuba and 4-way Toom-
Cook multiplier, respectively. Based on Fig. 4(b), the latency
vs. power trade-off of the non-pipelined multipliers could be
graded as (i) 2-way Karatsuba, (ii) 3-way Toom-Cook, (iii)
4-way Toom-Cook, (iv) Booth, and (v) SBM. Furthermore,
for similar performance vs. power trade-off, the possible
grading from highest to lowest for pipelined multipliers is
(i) 4-way Toom-Cook, (ii) 2-way Karatusuba, (iii) Booth,
(iv) 3-way Toom-Cook, and (v) SBM.

Whenever the ratio of one over area times latency values
from Fig. 5 is considered, the values for the non-pipelined

multipliers are lower than the pipelined variants, except for
the SBM multiplier. For pipelined multipliers, the highest
FoM is achieved for 4-way Toom-Cook. The performance
(latency) vs. area trade-off for non-pipelined multipli-
ers could be ranked, from highest to lowest, as (i) 4-way
Toom-Cook, (ii) 3-way Toom-Cook, (iii) Booth, (iv) 2-way
Karatsuba, and (v) SBM. For equivalent performance vs.
area trade-off, the possible ranking from highest to lowest
for the pipelined multipliers is (i) 4-way Toom-Cook, (ii)
3-way Toom-Cook, (iii) Booth, (iv) 2-way Karatusuba, and
(v) SBM. Notice that SBM is the least preferred multiplier
according to the defined FoMs.

Figure 5(b) provides a similar trend as described for the
area vs. latency FoM. For non-pipelined and pipelined vari-
ants, the highest FoM value is achieved for 3-way and 4-way
Toom-Cook multipliers, respectively. Concerning Fig. 5(b),
the performance (latency) vs. power trade-off of the non-
pipelined multipliers could be ranked as (i) 3-way Toom-
Cook, (ii) 4-way Toom-Cook, (iii) 2-way Karatsuba, (iv)
Booth, and (v) SBM. For equivalent performance vs. power
trade-off, the ranking from highest to lowest for pipelined
multipliers is (i) 4-way Toom-Cook, (ii) 3-way Toom-Cook,
(iii) 2-way Karatusuba, (iv) Booth, and (v) SBM.

Figures 4 and 5 assist the designer(s) in selecting a suit-
able multiplier architecture according to application require-
ments. From an area perspective, SBM is the best candidate.

(a)

(b)

Fig. 5 FoMs in terms of area vs. latency and power vs. latency for various non-digitized multipliers on FPGA (the order, from left to right, is:
SBM, Booth, 2-way Karatsuba, 3-way Toom-Cook, and 4-way Toom-Cook)

Journal of Hardware and Systems Security

1 3

However, even if SBM has a relatively small footprint and
relatively small power consumption, this comes at the
expense of performance. The pipelined variant of the Booth
multiplier is also a good candidate with the least power and
optimal performance compared to the non-pipelined version
of a 4-way Toom-Cook multiplier. These are some examples
that show the PPA trade-offs which we considered based
on the FoMs. The designer could perform several (other)
comparisons to select an appropriate multiplier architecture.

6.2 FoM for Digitized SBM

A 1024 × 1024 multiplier is considered with various digit
sizes to calculate FoM for evaluation on ASIC and FPGA
platforms. The calculated FoM results for ASIC on 15nm
and 65nm technologies are shown in Fig. 6.

For both FoMs on 65nm technology (presented in
Fig. 6(a) and (b)), it becomes clear that the extreme cases
lead to suboptimal results. This is not so evident for the
FoMs calculated on the 15nm technology where longer digit

cases lead to suboptimal results. For the studied 1024 ×
1024 multiplier, the variant with n = 64 and d = 16 pre-
sents an optimal solution on 65nm technology. Other similar
values, such as n = 32 and n = 128 , also give very close to
optimal solutions. On 15nm technology, the optimal solu-
tions in terms of area × latency are achieved for n = 16 and
n = 32 . Additional closer values to optimal solutions are
achieved for digit sizes 2, 4, 8, 64 and 128. Similarly, a digit
size for n = 4 provides the best power × latency solution.

Similar to ASICs, the calculated values of FoM in terms
of area×latency and power×latency for FPGA is shown in
Fig. 7(a) and (b), respectively. The number of FPGA basic
building blocks (slices, LUTs, flip-flops and carry units)
is given in order to estimate the use of FPGA resources.
However, the FoM in Eq. 7 can be calculated by using
different metrics of interest (e.g., slices, LUTs, registers,
or carry blocks). Note that we have used FPGA slices as
a substitute for area in Eq. 7. Figure 7(a) reveals that the
FoM values for n = 512 and d = 2 results in an optimal
solution. It is evident from Fig. 7(b) that the optimal solu-
tion is achieved for n = 2.

(a) (b)

Fig. 6 FoMs in terms of area × latency and power × latency for digitized wrapper with SBM multiplier on ASIC

(a) (b)

Fig. 7 FPGA FoMs in terms of area × latency and power × latency for digitized wrapper with SBM

 Journal of Hardware and Systems Security

1 3

7 Comparison and Discussion

To perform a realistic and reasonable comparison with
the state of the art, we have used similar operand lengths,
digit sizes, and implementation platforms (for ASIC and

FPGA) as targeted in the existing architectures, presented in
Table 3. Column one presents the reference designs (Ref#).
The implemented multiplier, utilized platform (device) and
targeted operands length (m) are given in columns two to
four. Different values of m are considered in the existing

Table 3 Comparison with state-
of-the-art multipliers

BL-PIPO Bit level parallel in parallel out multiplier using SBM multiplication method; PCA programma-
ble cellular automata; DSM Digit Serial Montgomery multiplier based wrapper; ds digit size; DSMM Digit
Serial modular multiplier; GE Gate equivalent; LCHMA Low-complexity hybrid multiplier architecture;
TW this work

Ref # Multiplier Device m Freq (MHz) latency (�s) Area (�m2)/LUTs

[10] BL-PIPO 65nm 163 N/A N/A 5328 GE
[25] LCHMA 65nm 163 68.49 N/A 321692

Virtex-4 163 33.78 N/A 34118 (19030 slices)
[1] Radix-2 Montgomery Virtex-6 1024 53.23 19.26 2566
[15] Systolic Montgomery 90nm 13 100 0.91 ×10−3 4782
[24] Montgomery Virtex-5 1024 400 0.88 6105 slices
[20] PCA approach Virtex-II 163 177.8 0.91 225 slices
[4] 2-way Karatsuba Virtex-7 128 104.3 0.61 3499

256 74.5 1.71 7452
512 51.6 4.96 20474

[3] DSM Virtex-6 571 258.5 0.03 10983 (when ds=64)
[14] DSMM Virtex-7 2048 N/A N/A 18067 (when ds=2)

2048 N/A N/A 33734 (when ds=4)
2048 N/A N/A 62023 (when ds=8)

[22] SBM (digit serial) Virtex-5 571 540/CCs=571 1.05 1731 (when ds=1)
571 550/CCs=286 0.52 1730 (when ds=2)
571 572/CCs=143 0.25 2302 (when ds=4)
571 450/CCs=72 0.16 3451 (when ds=8)
571 400/CCs=36 0.09 5754 (when ds=16)
571 400/CCs=24 0.06 8051 (when ds=24)
571 360/CCs=18 0.05 10350 (when ds=32)

TW SBM 65nm 163 500 0.326 29341 (11727 GE)
Virtex-4 163 65.68 2.48 1934 (987 slices)

Booth Virtex-4 163 131 1.24 565 slices
Virtex-6 1024 71.5 14.32 2429
65nm 163 824 0.19 20258.6
Virtex-5 1024 39.35 13.01 4113 slices

2-way Karatsuba Virtex-7 128 167.4 0.38 2110
256 119.9 1.06 4318
512 63.8 4.01 9582

SBM Wrapper Virtex-6 571 46.4 1.74 6181 (when ds=64)
Virtex-7 2048 15.03 69760 25559 (when ds=2)

2048 16.6 15790 22040 (when ds=4)
2048 17.4 3760 23315 (when ds=8)

Virtex-5 571 23/CCs=571 24.82 11803 (when ds=1)
571 27.1/CCs=286 10.55 10353 (when ds=2)
571 30/CCs=143 4.76 9209 (when ds=4)
571 32/CCs=72 2.25 9399 (when ds=8)
571 33/CCs=36 1.09 8713 (when ds=16)
571 30/CCs=24 0.80 16536 (when ds=24)
571 34/CCs=18 0.52 8767 (when ds=32)

Journal of Hardware and Systems Security

1 3

implementations to present results for polynomial multipli-
cations. However, for our comparison, we have considered
only the larger operands. The operational clock frequency
(Freq in MHz) of the implemented circuit is given in column
five of Table 3. The last two columns (six and seven) provide
the latency (in �s) and the hardware resources (in �m2 for
ASIC and LUTs for FPGA), respectively. In Table 3, ‘N/A’
is utilized to denote values that are not provided.

Bit‑serial Architectures [1, 15, 20, 24, 25] FPGA results
for operand length of 1024 are reported in [1] where they
utilized a Virtex-6 device. A Radix-2 Montgomery multi-
plier architecture [1] results in 25% higher clock frequency
and higher computational time (latency) as compared to
our Booth multiplier. The excessive use of LUTs in their
implementation is noticeable (see last column of Table 3).
On the Virtex-5 device, FPGA implementations for 1024-
bit operand lengths are reported in [24]. A Montgomery
multiplier architecture of [24] results in 9.83 times higher
clock frequency when compared to our Booth multiplier.
Due to higher frequency, they have achieved a latency value
of 0.88�s that is comparatively 2.81 times lower than our
Booth multiplier circuit (2.48�s). On the other hand, there
is a trade-off since our Booth multiplier utilizes 1.48 times
fewer FPGA slices.

The comparison to systolic Montgomery multiplier
architecture of [15] can be a little unfair as we used a 65
nm technology while a 90 nm technology is considered in
[15]. However, we have provided comparison with our SBM
and Booth serial multipliers. For operands length of 13-bit
over elliptic curve binary GF(213) field, their architecture
achieves 5 times lower clock frequency when compared to
our 163-bit SBM and Booth multiplier implementations. Our
SBM and Booth implementations utilizes higher area and
takes more computational time as we are using 12.5 times
higher operands length.

For 163-bit operands size on 65nm ASIC and Virtex-4
FPGA platforms, the low-complexity hybrid multiplier archi-
tecture of [25] is 7.30 and 1.94 times slower in clock fre-
quency as compared to our SBM multiplier implementation.
As shown in Table 3, the latency comparison is not possible
as the related information is not described in [25]. Moreo-
ver, our SBM multiplier utilizes 10.96 and 17.64 times lower
hardware resources on similar ASIC and FPGA platforms.

In [20], for 163-bit operands length, a programmable
cellular automata-based bit-serial multiplier design is
reported on Xilinx Virtex-II Pro FPGA.2 Therefore, to pro-
vide a comparison that is not disproportionately unfair, we
have used a Virtex-4 device that is also built on a 90 nm

technology. As shown in Table 3, the dedicated architec-
ture of [20] results in lower hardware resources (225 slices
whereas we used 565) and achieves higher clock frequency
(177.8MHz while our design operates at 131MHz) as com-
pared to our flexible generator architecture of Booth mul-
tiplication on Virtex-4 device. This comparison shows that
there is always a trade-off between flexibility and perfor-
mance (area, clock frequency, latency, etc).

Bit‑parallel Designs [4, 10] A bit-parallel 2-way Karatsuba
multiplier is reported in [4] for a Virtex-7 FPGA. In terms
of latency, it is 38% (for operand size of 128 bit), 39% (for
operand size of 256 bit), and 20% (for operand size of 512
bit) slower when compared to our 2-way Karatsuba multi-
plier, as shown in Table 3. Additionally, our 2-way Karat-
suba multiplier requires less FPGA LUTs (see column seven
in Table 3) as compared to [4]. The BL-PIPO multiplier of
[10] on 65 nm technology utilizes 55% lower gate counts as
compared to our SBM multiplier generated by TTech-LIB.
However, the multiplier given in [10] shares resources with
a reduction unit that is specific for 163-bit operand. Our
multiplier generates a 2 × m − 1 output, whereas their solu-
tion generates a m output.

Digitized Solutions [3, 14, 22] The digit-serial Montgomery
multiplier wrapper of [3] results in 83% higher clock fre-
quency and 58% lower latency as compared to our digitized
solution. This is valid when the digitized flavor of polynomi-
als multiplication is considered for comparison over differ-
ent digit sizes. Contrarily, our digit serial wrapper results in
56% lower hardware resources over Virtex-6 FPGA. Another
digit serial modular multiplication wrapper of [14] results in
14% (for ds=2) lower FPGA LUTs while for remaining digit
sizes of 4 and 8, it utilizes 35% and 63% higher FPGA LUTs
as compared to SBM wrapper generated by TTech-LIB. The
comparison to frequency and latency parameters is not pos-
sible as the relevant information is not available.

In [22], a digit-serial multiplier for the operand length
of 571 bits over Virtex-5 is described, as shown in Table 3.
With the increase in digit sizes (i.e., 1, 2, 4, 8, 16, 24, and
32), the digit-serial multiplier of [22] result in an increase
in the hardware resources (LUTs) and a decrease in clock
cycles (CCs) and latency. For clock frequency, it shows
behavior like a parabolic curve. This is not the case for our
digit-serial wrapper as we considered flexibility (not tack-
led in [22]). With the similar clock cycles requirement, our
wrapper takes more computational time and achieves lower
clock frequency as compared to [22]. Moreover, our wrap-
per utilizes more hardware resources for ds = 1, 2, 4, 8, 16,
and 24. For digit size of 32 (see the last column of Table 3),
our wrapper utilizes 1.18 times lower hardware resources
with an overhead in latency. Therefore, for larger digit sizes, 2 The Xilinx Virtex-II Pro devices are built on a 90nm technology.

 Journal of Hardware and Systems Security

1 3

our digit-serial wrapper outperforms in terms of hardware
resources (LUTs) as compared to [22].

The comparisons and discussion reveal that our versatile
and flexible generator provides, in general, a realistic and rea-
sonable comparison to many existing multiplier architectures
[1, 3, 4, 10, 14, 15, 20, 22]. We do highlight that some of the
compared architectures also contain reduction routines in their
implementation, a feature that is not currently supported by
our generator but stands as a formidable future work.

Finally, the results reveal that not only can designers
explore various design parameters within our multiplier gen-
erator, they can also benefit from implementations that are
competitive with respect to the existing literature on poly-
nomial multipliers. Since our generator produces RTL code
that is technology- and platform-agnostic, users can also take
the code as a starting point for their design and produce
optimized versions from it. Finally, we strongly highlight
that none of the surveyed papers provides open source codes
for their designs, a feature that is at the center of our library.

8 Conclusion

This paper has presented an open-source generator that sup-
ports several architectures for large integer polynomial mul-
tipliers. The key features of our generator include (i) flexibil-
ity, (ii) pipelining, (iii) digitizing, and (iv) generating Verilog
HDL and script files. Flexibility bears several bit-serial
(SBM and Booth) and bit-parallel (Karatsuba and variants
of Toom-Cook) multiplication approaches. Moreover, sup-
port for n-stage pipelining facilitates users with the optimized
multiplier circuits. Digitizing provides support for the use of
non-digitized and digitized solutions. With user-specific set-
tings, designers can generate Verilog HDL codes and scripts
(for ASIC users) according to their application requirements.

For both non-digitized and digitized multipliers, we have
shown that the evaluation of individual design constraints
may not be exhaustive and different figures of merit(s) for
PPA trade-offs are more interesting when capturing the char-
acteristics of a circuit. Moreover, we have shown that the
multipliers generated by TTech-LIB are relatively competi-
tive when compared to existing solutions.

Statements and Declarations

Funding This work was partially supported by the EC through the
European Social Fund in the context of the project “ICT programme”.
It was also partially supported by the Estonian Research Council grant
MOBERC35.

Conflict of Interest The authors declare that they have no conflict of interest.

Data Availability The datasets generated during and/or analysed during
the current study are available in the TTech-LIB repository: TTech- LIB

References

 1. Abd-Elkader AA, Rashdan M, Hasaneen ESA, Hamed HF (2020)
Advanced implementation of montgomery modular multiplier.
Microelectron J 106

 2. Imran M, Abideen ZU, Pagliarini S (2020) An experimental
study of building blocks of lattice-based nist post-quantum cryp-
tographic algorithms. Electronics 9(11):1953. https:// doi. org/ 10.
3390/ elect ronic s9111 953

 3. Morales-Sandoval M, Feregrino-Uribe C, Kitsos P, Cumplido R
(2013) Area/performance trade-off analysis of an fpga digit-serial
gf(2m) montgomery multiplier based on lfsr. Comput Electr Eng
39(2):542–549. https:// doi. org/ 10. 1016/j. compe leceng. 2012. 08. 010

 4. Rafferty C, O’Neill M, Hanley N (2017) Evaluation of large inte-
ger multiplication methods on hardware. IEEE Trans Comput
66(8):1369–1382. https:// doi. org/ 10. 1109/ TC. 2017. 26774 26

 5. Rashidi B (2020) Throughput/area efficient implementation of
scalable polynomial basis multiplication. Journal of Hardware
and Systems Security 4(2):120–135. https:// doi. org/ 10. 1007/
s41635- 019- 00087-5

 6. Eberle H, Gura N, Shantz S, Gupta V, Rarick L, Sundaram S
(2004) A public-key cryptographic processor for rsa and ecc. In:
Proceedings. 15th IEEE International Conference on Application-
Specific Systems, Architectures and Processors, 2004., pp. 98–110.
IEEE. https:// doi. org/ 10. 1109/ ASAP. 2004. 13424 62

 7. NIST (2020) Computer security resource centre: Pqc standardiza-
tion process, third round candidate announcement. URL https://
csrc. nist. gov/ news/ 2020/ pqc- third- round- candi date- annou nceme nt

 8. López-Alt A, Tromer E, Vaikuntanathan V (2012) On-the-fly mul-
tiparty computation on the cloud via multikey fully homomorphic
encryption. In: Proceedings of the Forty-Fourth Annual ACM
Symposium on Theory of Computing, STOC ’12, p. 1219-1234.
Association for Computing Machinery, New York, NY, USA.
https:// doi. org/ 10. 1145/ 22139 77. 22140 86

 9. NIST (2020) Computer security resource centre: post-quantum
cryptography, round 2 submissions. URL https:// csrc. nist. gov/
proje cts/ post- quant um- crypt ograp hy/ round-2- submi ssions

 10. Azarderakhsh R, Järvinen KU, Mozaffari-Kermani M (2014) Effi-
cient algorithm and architecture for elliptic curve cryptography for
extremely constrained secure applications. IEEE Trans Circuits
Syst I Regul Pap 61(4):1144–1155. https:// doi. org/ 10. 1109/ TCSI.
2013. 22836 91

 11. Doröz Y, Öztürk E, Sunar B (2014) Accelerating fully homo-
morphic encryption in hardware. IEEE Trans Comput 64(6),
1509–1521. https:// doi. org/ 10. 1109/ TC. 2014. 23453 88

 12. Mert AC, Öztürk E, Savaş E (2020) FPGA implementation of
a run-time configurable ntt-based polynomial multiplication
hardware. Microprocess Microsyst 78. https:// doi. org/ 10. 1016/j.
micpro. 2020. 103219

 13. Mrabet A, El-Mrabet N, Lashermes R, Rigaud JB, Bouallegue B,
Mesnager S, Machhout M (2017) A scalable and systolic architec-
tures of montgomery modular multiplication for public key cryp-
tosystems based on dsps. Journal of Hardware and Systems Secu-
rity 1(3):219–236. https:// doi. org/ 10. 1007/ s41635- 017- 0018-x

 14. Pan J, Song P, Yang C (2018) Efficient digit-serial modular multi-
plication algorithm on fpga. IET Circuits Devices Syst 12(5):662–
668. https:// doi. org/ 10. 1049/ iet- cds. 2017. 0300

 15. Xie J, He JJ, Meher PK (2013) Low latency systolic montgomery
multiplier for finite field gf (2m) based on pentanomials. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems
21(2), 385–389. https:// doi. org/ 10. 1109/ TVLSI. 2012. 21852 57

 16. Xie J, Meher PK, Zhou X, Lee C (2018) Low register-complexity
systolic digit-serial multiplier over gf (2m) based on trinomials.
IEEE Transactions on Multi-Scale Computing Systems 4(4):773–
783. https:// doi. org/ 10. 1109/ TMSCS. 2018. 28784 37

Journal of Hardware and Systems Security

1 3

 17. Imran M, Abideen ZU, Pagliarini S (2020) TTech-LIB: center for
hardware security. URL https:// github. com/ Centre- for- Hardw are-
Secur ity/ TTech- LIB

 18. Imran M, Abideen ZU, Pagliarini S (2021) An open-source library
of large integer polynomial multipliers. In: 2021 24th Interna-
tional Symposium on Design and Diagnostics of Electronic Cir-
cuits Systems (DDECS), pp. 145–150. https:// doi. org/ 10. 1109/
DDECS 52668. 2021. 94170 65

 19. NIST (1999) Recommended elliptic curves for federal government
use. https:// csrc. nist. gov/ csrc/ media/ publi catio ns/ fips/ 186/2/ archi ve/
2000- 01- 27/ docum ents/ fips1 86-2. pdf

 20. Machhout M, Guitouni Z, Torki K, Khriji L, Tourki R (2010) Cou-
pled fpga/asic implementation of elliptic curve crypto-processor.
International Journal of Network Security & Its Applications
2(2):100–112. https:// doi. org/ 10. 5121/ ijnsa. 2010. 2208

 21. Somayajulu PK, Ramesh S (2020) Area and power efficient
64-bit booth multiplier. In: 2020 6th International Conference on
Advanced Computing and Communication Systems (ICACCS), pp.
721–724. https:// doi. org/ 10. 1109/ ICACC S48705. 2020. 90743 05

 22. Sutter GD, Deschamps JP, Imana JL (2013) Efficient elliptic
curve point multiplication using digit-serial binary field opera-
tions. IEEE Trans Ind Electron 60(1):217–225. https:// doi. org/
10. 1109/ TIE. 2012. 21861 04

 23. Venkatachalam S, Lee HJ, Ko SB (2018) Power efficient approxi-
mate booth multiplier. In: 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–4. https:// doi. org/ 10. 1109/
ISCAS. 2018. 83517 08

 24. Rezai A, Keshavarzi P (2015) High-throughput modular multiplication
and exponentiation algorithms using multibit-scan-multibit-shift tech-
nique. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 23(9), 1710–1719. https:// doi. org/ 10. 1109/ TVLSI. 2014. 23558 54

 25. Azarderakhsh R, Reyhani-Masoleh A (2013) Low-complexity mul-
tiplier architectures for single and hybrid-double multiplications
in gaussian normal bases. IEEE Trans Comput 62(4):744–757.
https:// doi. org/ 10. 1109/ TC. 2012. 22

 26. Venkatachalam S, Adams E, Lee HJ, Ko SB (2019) Design and
analysis of area and power efficient approximate booth multipli-
ers. IEEE Trans Comput 68(11):1697–1703. https:// doi. org/ 10.
1109/ TC. 2019. 29262 75

 27. Martins M, Matos JM, Ribas RP, Reis A, Schlinker G, Rech L,
Michelsen J (2015) Open cell library in 15nm freepdk technology.
In: Proceedings of the 2015 Symposium on International Sympo-
sium on Physical Design, ISPD ’15, p. 171-178. Association for
Computing Machinery, New York, NY, USA. https:// doi. org/ 10.
1145/ 27177 64. 27177 83

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Appendix 4

IV

159

M. Imran, F. Almeida, J. Raik, A. Basso, S. S. Roy, and S. Pagliarini, “Design space
exploration of saber in 65nm asic,” in Proceedings of the 5th Workshop on Attacks
and Solutions in Hardware Security, ASHES ’21, Virtual Event, Republic of Korea,
2021, pp. 85–90. DOI: https://doi.org/10.1145/3474376.3487278

Design Space Exploration of SABER in 65nm ASIC
Malik Imran

Tallinn University of Technology
Tallinn, Estonia

malik.imran@taltech.ee

Felipe Almeida
Tallinn University of Technology

Tallinn, Estonia
felipe.almeida@taltech.ee

Jaan Raik
Tallinn University of Technology

Tallinn, Estonia
jaan.raik@taltech.ee

Andrea Basso
University of Birmingham

Birmingham, UK
a.basso@pgr.bham.ac.uk

Sujoy Sinha Roy
Graz University of Technology

Graz, Austria
sujoy.sinharoy@iaik.tugraz.at

Samuel Pagliarini
Tallinn University of Technology

Tallinn, Estonia
samuel.pagliarini@taltech.ee

ABSTRACT
This paper presents a design space exploration for SABER, one of
the finalists in NIST’s quantum-resistant public-key cryptographic
standardization effort. Our design space exploration targets a 65nm
ASIC platform and has resulted in the evaluation of 6 different
architectures. Our exploration is initiated by setting a baseline ar-
chitecture which is ported from FPGA. In order to improve the
clock frequency (the primary goal in our exploration), we have
employed several optimizations: (i) use of compiled memories in
a ‘smart synthesis’ fashion, (ii) pipelining, and (iii) logic sharing
between SABER building blocks. The most optimized architecture
utilizes four register files, achieves a remarkable clock frequency of
1𝐺𝐻𝑧 while only requiring an area of 0.314𝑚𝑚2. Moreover, physi-
cal synthesis is carried out for this architecture and a tapeout-ready
layout is presented. The estimated dynamic power consumption
of the high-frequency architecture is approximately 184mW for
key generation and 187mW for encapsulation or decapsulation
operations. These results strongly suggest that our optimized ac-
celerator architecture is well suited for high-speed cryptographic
applications.

CCS CONCEPTS
•Hardware→ Application specific integrated circuits; • Security
and privacy → Hardware security implementation; Cryptogra-
phy.

KEYWORDS
SABER; Lattice cryptography; MLWR; Crypto core; ASIC

ACM Reference Format:
Malik Imran, Felipe Almeida, Jaan Raik, Andrea Basso, Sujoy Sinha Roy,
and Samuel Pagliarini. 2021. Design Space Exploration of SABER in 65nm
ASIC. In Proceedings of the 5th Workshop on Attacks and Solutions in Hard-
ware Security (ASHES ’21), November 19, 2021, Virtual Event, Republic of Korea.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3474376.3487278

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8662-3/21/11. . . $15.00
https://doi.org/10.1145/3474376.3487278

1 INTRODUCTION
Currently deployed public-key cryptographic schemes, i.e., Rivest
Shammir Adleman (RSA) and Elliptic-curve Cryptography (ECC),
have their security strength built on the hardness of solving hard
mathematical problems such as prime factorization and discrete
logarithms. While these crypto schemes have been standardized
and, to a large extent, remain useful, the recent advances in the field
of quantum computers now threat to break them [11]. Therefore,
researchers are focusing on designing and investigating quantum-
resistant public-key algorithms and protocols to keep future com-
munications secure.

Recently, a competition has been started by the National Institute
of Standards and Technology (NIST) for the standardization of
post-quantum cryptographic (PQC) public-key protocols [9], i.e.,
protocols that would not be vulnerable to quantum computers. As
the competition approaches its end, the majority of the remaining
candidates are based on computationally infeasible lattice problems.
One such candidate is a key encapsulationmechanism (KEM) named
SABER [6], which is the central piece of this study.

Throughout the standardization/competition process, NIST has
considered the security strength of PQC KEM protocols. C/C++
reference implementations of the finalist protocols are available
from [9]. Naturally, as with ECC and RSA, having accelerators for
PQC candidates is of interest as dedicated hardware can achieve
significant speed-ups in performance. Examples of hardware accel-
erators for NIST PQC protocols are presented in [1, 2, 4, 5, 8, 10, 13]
where both field programmable gate array (FPGA) and application
specific integrated circuit (ASIC) platforms are targeted.

Comparatively, state-of-the-art hardware implementations of
SABER [10, 13] provide significant performance improvements in
terms of computational time for the key generation (KeyGen), en-
capsulation (Encaps) and decapsulation (Decaps) operations. The
required computation time for these operations can be further
reduced by employing different architectural and circuit-level so-
lutions. Consequently, the focus of this work is to show the
design space exploration for the NIST PQC finalist SABER
with a focus on improving performance.

The design space exploration, in this work, determines the adap-
tion in various architectural elements (i.e., distinct memory con-
figurations, pipelining, and logic sharing) with an emphasis on
optimizing the design for a specific 65nm ASIC technology. There-
fore, to initiate our design space exploration, we have selected an

Workshop Short Paper ASHES '21, November 19, 2021, Virtual Event, Republic of Korea

85

open source implementation of SABER1. The existing code targets
an FPGA platform, whereas in our work we target an ASIC plat-
form. Converting the code to ASIC is one of the contributions of
our work, as well as the following:

• Exploration of different types, numbers, and sizes of com-
piled memories in a ‘smart synthesis’ fashion.

• Promoting logic sharing between SABER building blocks
that require similar functionality.

• Pipelining of selected portions of the design, thus trading-off
throughput for latency.

• Design of a tapeout-ready SABER core in a commercial 65nm
CMOS technology, for which we provide a layout and power,
area, and timing characteristics.

• Source codes for our many architectures2

The remainder of this paper is organized as follows: Section 2
provides the required mathematical background and discusses the
baseline architecture for the SABER PQC KEM protocol. Our design
space exploration is given in Section 3. Implementation results and
a comparison to the state of the art is provided in Section 4. Finally,
Section 5 concludes the paper.

2 PRELIMINARIES
This section presents the required mathematical background and a
description of the chosen baseline architecture for SABER.

Symbols (or notations). The 𝑝 and 𝑞 are modulo powers of 2. Set of
integers is presented with Z. Then the ring of integers modulo 𝑝 and
𝑞 is Z𝑝 and Z𝑞 , respectively. The ring of polynomials for an integer
𝑁 is presented with 𝑅𝑝 = Z𝑝 [𝑥]/⟨𝑥𝑁 +1⟩ and 𝑅𝑞 = Z𝑞 [𝑥]/⟨𝑥𝑁 +1⟩
where 𝑁 is a fixed power of 2. Vectors are shown in bold and lower
case font (e.g., a).

Security strength. The security strength relies on the hardness of
module Learning With Rounding (Mod-LWR) problem. Therefore,
a Mod-LWR sample is defined as follows:

(a, 𝑏 = ⌊𝑝
𝑞
(a𝑇 s)⌉) ∈ 𝑅𝑙×1𝑞 × 𝑅𝑝 (1)

In Eq. 1, a is a vector of randomly generated polynomials in
𝑅𝑞 , s is a secret vector of polynomials in 𝑅𝑞 whose coefficients are
sampled from binomial distribution, and the modulus 𝑝 < 𝑞. The
identification between Mod-LWR samples and uniformly random
samples in 𝑅𝑙×1𝑞 × 𝑅𝑝 formulates the Mod-LWR problem. There-
fore, this Mod-LWR problem is presumed to be computationally
infeasible both on classical and quantum computers. Consequently,
SABER is a good candidate for developing quantum-resistant cryp-
tosystems.

PKE and KEM operations. SABER is a Chosen Ciphertext Attack,
i.e., IND-CCA, secure KEM and Chosen Plaintext Attack, i.e., IND-
CPA, secure public-key encryption (PKE) scheme. Therefore, the
PKE crypto operations are the generation of pairs of public and
private keys (PKE.KeyGen), encryption (PKE.Enc) and decryption
(PKE.Dec). Similarly, the corresponding KEM operations are key
generation (KEM.KeyGen), encapsulation (KEM.Encaps) and decap-
sulation (KEM.Decaps). These operations are described as follows:
1The utilized SABER core is modelled as an instruction set coprocessor architecture.
The code is written in Verilog at Register Transfer Level (RTL). It can be accessed
directly at https://github.com/sujoyetc/SABER_HW.
2Available from [7].

Key Generation. PKE.KeyGen starts by randomly generating
a seed that defines an 𝑙 × 𝑙 matrix A containing 𝑙2 polynomials in
𝑅𝑞 . A function 𝑔𝑒𝑛 (see Algorithm 1 of [10]) is used to generate
the matrix from the seed based on SHAKE-128. A secret vector s
of polynomials is also generated. These polynomials are sampled
from a centered binomial distribution. The generated public key
contains a matrix seed and rounded product A𝑇 s, while the secret
key contains a secret vector s. KEM.KeyGen does not differ from
PKE.KeyGen, except that it appends a secret key with a hash of the
public key and a randomly generated string 𝑧.

Encryption and Encapsulation. The PKE.Enc operation con-
sists of generating a new secret s′ and adding message to the inner
product between the public key and the new secret s′. This forms
the first part of the ciphertext while the second part contains the
rounded product As′. The KEM.Encaps operation starts by ran-
domly generating a message𝑚 and obtaining from that the public
key. The ciphertext 𝑐 contains the encrypted message and a value
achieved from the message and public key.

Decryption and Decapsulation. PKE.Dec requires the secret
key s to extract original message from the inner product between
the public and secret keys. It is the reverse to PKE.Enc. KEM.Decaps
re-encrypts the obtained message with the randomness associated
with it and checks whether the ciphertext corresponds to the one
received.

Set of parameters. For a security level equivalent to AES-128, AES-
192, and AES-256, SABER provides three variants that are termed
LightSABER, SABER, and FireSABER, respectively. All three vari-
ants use polynomial degree 𝑁 = 256 and moduli 𝑞 = 213 & 𝑝 = 210.
They differ only in the module dimension, binomial distribution
parameter (𝜇), and the message space. For more details about se-
curity parameters, PKE and KEM operations, we refer readers to
algorithms 1–6 of [10].

2.1 Baseline architectures
2.1.1 FPGA Coprocessor architecture of [10]. As introduced in Sec-
tion 1, we have used an open source crypto core for which the target
platform is FPGA. The coprocessor consists of: (i) a data memory
(BRAM with a size of 1024×64); (ii) a program memory; (iii) a dedi-
cated finite state machine based (FSM) controller for orchestrating
the SABER operations; and (iv) individual SABER building blocks.
The building blocks include: (i) polynomial Vector-Vector multiplier
wrapper; (ii) variants of secure hashing algorithms, i.e., SHA3-256,
SHA3-512, and SHAKE-128; (iii) a binomial sampler; (iv) AddPack;
(v) AddRound; (vi) Verify; (vii) Constant-time Move (CMOV); (viii)
Unpack; (ix) CopyWords; and (x) BS2POLVECp.

A BRAM-implemented memory is used to keep initial, inter-
mediate, and final results for the computation of required crypto-
graphic operations. A program memory is employed to enable the
coprocessor flexibility and its instruction set architecture (ISA) that
comprehends a number of instructions required by (the variants
of) SABER. For polynomial multiplication, inside the Vector-Vector
multiplier, a centralized schoolbook multiplier architecture is uti-
lized (described in [3]). A sampler is required to compute a sample
from pseudo-random input string for all KeyGen, Encaps, and De-
caps operations. The verify block is responsible for comparing two
byte strings of the same length. Based on the output of the verify

Workshop Short Paper ASHES '21, November 19, 2021, Virtual Event, Republic of Korea

86

unit, CMOV is responsible to either copy the decrypted session
key or a pseudo random string at a specified memory location. The
AddPack block computes coefficient-wise addition with a constant
followed by generated message. Moreover, it packs the resultant
bits into a byte string. Similarly, the AddRound block performs
coefficient-wise addition of a constant followed by coefficient-wise
rounding. The unpack unit converts a byte string into bit string.
The BS2POLVECp block converts the byte string into a polynomial
vector. A dedicated FSM is responsible for interpreting incoming in-
structions from the program memory and to communicate/activate
the individual building blocks.

2.1.2 Our baseline architecture. To achieve our design premise, i.e.,
high performance, we have constructed a baseline ASIC architecture
for evaluation on a commercial 65nm technology. The first key
difference with respect to [10] is the replacement of the BRAMwith
an SRAM. The SRAM is generated by using a commercial memory
compiler provided by a partner foundry. Initially, for the baseline
architecture, the memory size is kept identical (1024×64). We will
later show many variants where the number of memory instances
and their sizes are optimized with the aim of improving the clock
frequency.

It is important to note that our baseline architecture remains
a coprocessor architecture and that the same ISA is utilized. We
assume the program memory resides outside of the SABER accel-
erator core. The same building blocks utilized in [10] are kept in
our work, but most of them are modified during our optimizations,
which we detail in the next section.

3 DESIGN SPACE EXPLORATION PROCESS
To differentiate our generated architecture to one another, we have
adopted a different name for each design as shown in Fig. 1. In
order to provide a simple terminology for our studied architec-
tures, we make use of the prefixes DP and SP, meaning that the
architecture employs either a dual-port or a single-port memory.
Similarly, the PIP prefix implies that the architecture in question is
pipelined. Based on this terminology, the following architectures
are considered:

• Baseline { • DP_1(1024x64)

• Optimized

• DP_2(1024x32)
• DP_4(1024x16)
• DP_8(512x16)
• PIP_DP_4(1024x16)
• PIP_SP_4(256x64)

Therefore, we have presented five optimized designs originating
from our baseline architecture. The memory is structured as i(m ×
n), where 𝑖 is the number of instances,𝑚 is the number of memory
addresses, and 𝑛 is the data width of each address.

In addition to the FSM controller and building blocks shown
in Fig. 1, our design space exploration led to the creation of new
units: (i) memory manager; (ii) pipeline register; and (iii) shared
shift buffer. All these units are common to all of our studied archi-
tectures, except for the pipeline register that is employed only in
our pipeline architectures, i.e., PIP_DP and PIP_SP. Furthermore,
we have done modifications to many building blocks to synchronize
their inputs/outputs with the memory timing requirements. The
modified blocks are shown with dashed lines in Fig. 1.

P
IP

E
L

IN
E

-R
E

G

Connecting pipeline register to
sampler

SHA3-256/512
SHAKE128

Unpack

Binomial
Sampler

AddPack

AddRound

F
SM

 C
o

n
tr

o
ll

er

SABER building blocks

DP_2(1024×32)

DP_4(1024×16)

DP_8(512×16)

PIP_DP_4(1024×16)

PIP_SP_4(256×64)

Sh
ar

ed
 s

h
if

t
b

u
ff

er

DP_1(1024×64)

Memory Manager

Our contributed blocks

Blocks taken from [10]

Our modified building blocks

CopyWords

CMOV

Verify

BS2POLVECp

Multiplier

Multiplier taken from [3]

Figure 1: Block diagram of the designs generated during our
design space exploration

3.1 Memory manager
A smart memory synthesis [12] approach is investigated and imple-
mented in our Memory Manager unit. We clarify that the central
concept of smart synthesis is the observation that having smaller
and distributed memories can be advantageous in an ASIC design.
Smaller memories require simpler address decoder units (which
are faster). This, combined with the fact that part of the address
decoding is now described as logic and can be co-optimized with
the remainder of the design, leads to performance improvements
with sometimes marginal increase in area. In this work, we ex-
plore a smart memory synthesis strategy within the limitations of
a commercial memory compiler.

For KEM operations, when the security is equivalent to AES-
192, SABER requires 992, 1344, and 1088 bytes for generating a
single public-key, secret-key, and a cipher text [6]. Therefore, a
relatively large memory (1024 × 64) is employed in [10]. We have
used the same memory size in our baseline architecture. To initiate
our design space exploration process, we have divided the data
width (64 bit) of the employed memory into smaller chunks (32 and
16) and increased the number of memory instances accordingly.
With this division, the memory structure becomes DP_2(1024×32)
and DP_4(1024×16). This design choice results in an increase in
clock frequency at the expense of area and power. Thereafter, from
DP_4(1024×16) memory structure, we have constructed another
architecture where we have reduced the required number of mem-
ory addresses from 1024 to 512. In this case, the memory structure
becomes DP_8(512×16). Conversely, this design choice results in an
increase in area and power with a marginal gain in clock frequency.
Therefore, at this point, we deem that further diving the memories
is no longer of interest.

In our first pipelined architecture, i.e., PIP_DP, we have used the
same 4(1024×16) memory structure as employed in DP_4(1024×16).
Our second pipelined architecture, however, utilizes compiled Reg-
Files3. One of the limitations of the use of a RegFile is that the IP
available to us is single-port, meaning that the design has to be
3RegFiles are not flip-flops. This is a vendor-specific terminology for a compiled
6T SRAM memory that is advantageous when bit density can be traded-off with
performance. It is also termed a “high-speed” variant of SRAM by its vendor.

Workshop Short Paper ASHES '21, November 19, 2021, Virtual Event, Republic of Korea

87

modified such that all building blocks that benefit from concurrent
read and write operations now execute them sequentially, one after
the other. The consequence is that the overall number of clock
cycles for a given cryptographic operation will increase. Later, we
will show that this increase is beneficial since the improved clock
frequency still reduces the overall latency for all SABER operations.
The memory structure of the PIP_SP architecture is 4(256×64).

3.2 Pipelining
Initially, with the goal of improving clock frequency, we have em-
ployed different memory configurations until the improvements in
clock frequency were exhausted. However, as the memory configu-
rations change, the critical path of the design changes as well. In
order to shorten the critical path and to further optimize the clock
frequency, we have to explore other circuit level solutions, such as
selective pipelining.

Based on the evaluation of the critical path of several architec-
tures (details are given in section 4.1), it becomes evident that the
memory is the performance bottleneck of the design. For this rea-
son, we have placed pipeline registers at the memory output. This
guarantees that the critical path is proportional to the memory
access time (as opposed to being proportional to the memory and
to the logic that follows it). Therefore, in our PIP_DP and PIP_SP
architectures, the input to the pipeline register is from the memory
while the output is connected to the binomial sampler (not shown
in Fig. 1).

3.3 Shared shift buffer
For several building blocks of SABER, i.e., AddRound, AddPack,
BS2POLVECp, and multiplier, a shift register is required to read
from many memory addresses and accumulate (hundreds of) bits
into local registers. For example, a 320-bit long register is required
in AddPack and BS2POLVECp while a 64 and 676 bit register are
required in AddPack and Multiplier, respectively. It is important
to mention that all the SABER building blocks produce outputs
serially, so the shift buffer can be shared as there are no concerns
with concurrent access. Therefore, we have efficiently employed
a single 676-bit register that is shared by AddRound, AddPack,
BS2POLVECp, andMultiplier. The use of a shared shift buffer results
in a 10.3% decrease in the total area with no impact on performance.
All results given in the next section consider the use of this shared
buffer by all architectures.

4 RESULTS AND COMPARISONS
The synthesis results on a 65nm commercial technology for our
baseline and optimized architectures are presented in Table 1. These
results are obtained after logic synthesis in Cadence Genus. The ini-
tial power estimates are obtained by assuming constant switching
probabilities (i.e., while considering a synthetic workload).

As shown in Table 1, the concurrent use of compiled memo-
ries in a ‘smart synthesis’ fashion with logic sharing to several
SABER building blocks and pipelining allow us to achieve 1𝐺𝐻𝑧
clock frequency, albeit with overheads in area (column two) and
power (columns six to eleven). With several optimizations from
baseline (DP) to PIP_DP architectures, we have shown that mem-
ory is the actual bottleneck in our implementation. For example,

for baseline architecture, out of total dynamic power, the memory
consumes 44% while the combinational logic utilizes 19%. More-
over, increase in memory instances results increase in power (72%
of the total dynamic power, see last column of Table 1 for our
PIP_DP_4(1024×16) architecture). Therefore, one approach to over-
come this bottleneck is the use of faster memory instances as we
employed in our PIP_SP_4(256×64) architecture where combina-
tional logic is responsible for 23% of the dynamic power while
memory is responsible for 27%.

One interesting aspect of the PIP_SP_4 architecture is that the
higher clock frequency changes the behavior of the synthesis tool
considerably. We have verified that the tool then prefers to map the
logic to (numerous) simpler gates instead of complex gates. Our
analysis of the synthesis log also shows that partitioning decisions
made by the tool were more frequent. The end result is that the
PIP_SP_4 architecture has 18k more logic gates than its counterpart
PIP_DP_4. We have also verified an increase in the number of
buffers and inverters. Even for a simple gate like NAND2, we see
1626 instances in PIP_DP_4 while PIP_SP_4 has 3450 instances. It
is important to highlight that the number of flip-flops does not
change since the PIP_SP_4 design is identical to PIP_DP_4.

We have calculated clock cycles (CCs) from end to end of each
operation (KEM.KeyGen, KEM.Encaps, and KEM.Decaps). The time
required to perform one cryptographic computation determines
latency (𝜇𝑠) and is calculated using Eq. 2. The CCs information for
each SABER building block is given in Table 2. The total CCs and
latency to compute KEM.KeyGen, KEM.Encaps and KEM.Decaps
for our baseline and optimized architectures is shown in Table 3.

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝜇𝑠) = 𝑇𝑜𝑡𝑎𝑙 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (MHz) (2)

Table 2 reveals that simultaneous use of multiple optimization
approaches results in additional CCs when compared to baseline de-
sign. For example, our PIP_SP_4(256×64) architecture requires 101,
76, 128, and 151 additional CCs for the Binomial Sampler, Vector-
Vector Polynomial Multiplier, Unpack, and CopyWords building
blocks. For other building blocks, the CC count will remain identi-
cal to the original design (meaning no changes when compared to
[10]). Similarly, Table 3 shows that the increase in both CCs and
clock frequency (values given in column six of Table 1) result in a
decrease in the computation time.

4.1 Critical path analysis
The critical paths of our baseline and optimized architectures are
shown in Fig. 2. Our analysis reveals that the memories containing
longer access time result in longer critical paths for most architec-
tures (i.e., the memory presents itself as the bottleneck) while the
use of faster RegFiles result in a shorter critical path. In other words,
as shown in Fig. 2, the critical path of our baseline architectures
depend on the memory and some amount of combinational logic
(to a lesser degree). However, this is not the case for our optimized
PIP_SP architecture where the critical path is mostly combinational
logic (and the setup time of the destination flip-flop). This result
implies that our optimized architecture is saturating the memory
bandwidth thanks to our optimization strategies at architecture
and circuit levels.

Workshop Short Paper ASHES '21, November 19, 2021, Virtual Event, Republic of Korea

88

Table 1: Logic Synthesis results for CCA-secure KEM SABER

Design
Area Information Timing Information Power Information (in mW)

Area (𝑚𝑚2) Gates Clk. P (𝑛𝑠) Freq. (𝑀𝐻𝑧) Crypto core Combinational logic Memory
Lkg Dyn Lkg Dyn Lkg Dyn

DP_1(1024×64) 0.299 43336 2.000 500 0.090 86.844 0.059 16.235 (19%) 0.003 38.001 (44%)
DP_2(1024×32) 0.308 45319 1.718 582 0.091 104.835 0.059 18.499 (18%) 0.004 48.322 (46%)
DP_4(1024×16) 0.340 39981 1.638 610 0.082 135.342 0.051 18.762 (14%) 0.006 81.368 (60%)
DP_8(512×16) 0.478 45979 1.624 615 0.099 220.410 0.062 21.691 (10%) 0.010 157.490 (71%)
PIP_DP_4(1024×16) 0.365 46217 1.508 663 0.097 233.361 0.063 20.890 (10%) 0.006 168.476 (72%)
PIP_SP_4(256×64) 0.314 64230 0.998 1002 0.111 142.413 0.074 32.925 (23%) 0.006 39.060 (27%)

Table 2: CCs information for SABER building blocks

building blocks Clock cycles Reason[10] This Work
Binomial Sampler 145 246 Pipelining
Multiplier 894 970 Memory sync.
Unpack 167 295 Memory sync.
CopyWords 60 211 Single-port RegFile
Others - No change

Table 3: Total CCs and latency for CCA-secure KEM SABER
on a 65nm commercial technology

Designs Total clock cycles Latency (𝜇𝑠)
KeyGen Encaps Decaps KeyGen Encaps Decaps

DP_1 5644 6990 8664 11.2 13.9 17.3
DP_2 5644 6990 8664 9.6 12.0 14.8
DP_4 5644 6990 8664 9.2 11.4 14.2
DP_8 5644 6990 8664 9.1 11.3 14.0
PIP_DP_4 5741 7087 8761 8.6 10.6 13.12
PIP_SP_4 7154 7136 9359 7.1 7.1 9.3

Figure 2: Critical path analysis for our studied architectures.

4.2 Physical layout for PIP_SP
The layout of CCA-secure KEM SABER accelerator, as shown in
Fig. 3, is obtained from Cadence Innovus. The accelerator circuit
was implemented with a nominal voltage of 1.2V in a 65nm CMOS
technology. The design is placed and clock tree synthesis (CTS)
is performed. The circuit is fully routed and passes design rule
checking (DRC) with no violations. Metals M1 through M7 are used
for signal routing, while the power is distributed in M8/M9. This is

630μm

6
3
0
μ
m

R
e

g
F

il
e

 D
 (

2
5

6
×

6
4

)

R
e

g
F

il
e

 B
 (

2
5

6
×

6
4

)

RegFile A (256×64)

RegFile C (256×64)

Figure 3: Physical layout of the CCA-secure KEM SABER
Table 4: Power results for different process corners

Operations Power values (in𝑚𝑊)
SS TT FF

KEM.KeyGen 146.7 184.3 244.8
KEM.Encaps 148.9 187.0 248.3
KEM.Decaps 148.4 186.4 247.5

a typical metal stack for the considered 65nm process. The circuit
is tapeout-ready with a core utilization of 88.66%.

The results achieved after physical synthesis for different corners
are given in Table 4. These results were obtained with the aid of
value change dump (VCD) files, i.e., files that capture the activity
of the design based on representative simulation loads. Thus, the
power values reported here are more realistic. Three different cor-
ners were used for characterization: slow-slow (SS), typical-typical
(TT), and fast-fast (FF). These corners have operating conditions for
different voltages and temperatures. The results reveal, as expected,
that FF consumes more power than TT. Similary, TT consumes
more power than SS.

The comparison to existing SABER implementations is given in
Table 5. Column one provides the reference implementation while
the targeted platform is given in column two. The latency in 𝜇𝑠 for
KEM.KeyGen, KEM.Encaps and KEM.Decaps is given in column
three. Column four provides the clock frequency (𝑀𝐻𝑧). Finally, the
last column provides the area for FPGA (in terms of look-up-tables
and flip-flops) and ASIC (in𝑚𝑚2) platforms. We have placed a ‘–’
where required information is not available.

Workshop Short Paper ASHES '21, November 19, 2021, Virtual Event, Republic of Korea

89

Table 5: Comparison to existing SABER accelerators. All im-
plementation results are for security equivalent to AES-192

Ref. # FPGA/ASIC Latency (𝜇𝑠) Freq. Area
(MHz) LUT/FF (or) mm2

[1] Artix-7 –/467.1/527.6 100 6713/7363
[5] Ultrascale+ –/60/65 322 –/–
[8] Artix-7 3.2K/4.1K/3.8K 125 7.4K/7.3K
[10] Ultrascale+ 21.8/26.5/32.1 250 23.6K/9.8K
[13] 40nm 2.66/3.64/4.25 400 0.38
PIP_SP 65nm 7.1/7.1/9.3 1000 0.314

Comparison to FPGA implementations [1, 5, 8, 10]. In terms
of computation time (shown in Table 5), themost efficient implemen-
tation of SABER on FPGA is described in [10]. It takes 5453, 6618 and
8034 CCs for the computation of one KEM.KeyGen, KEM.Encaps
and KEM.Decaps which are comparatively 24%, 8% and 15% lower
than our PIP_SP architecture. Moreover, our PIP_SP architecture
require 3.07, 3.73 and 3.45 times lower latency. For same operations,
the proposed PIP_SP architecture takes 450.7, 577.4 and 408.6 times
lower latency as compared to [8]. Additionally, our PIP_SP archi-
tecture achieves 8 and 4 times higher clock frequency as compared
to [8] and [10], respectively.

On Xilinx Zynq Ultrascale+ MPSoC, a software/hardware co-
design processor architecture is presented in [5]. For KEM.Encaps
and KEM.Decaps, our PIP_SP architecture is 8.45 and 6.98 times
faster (in terms of latency). As compared to lightweight imple-
mentation of SABER, described in [1], our PIP_SP architecture
require 65.78 and 56.73 times lower latency for KEM.Encaps and
KEM.Decaps, respectively. Moreover, our PIP_SP architecture re-
sults 10 and 3.10 times higher clock frequency as compared to [1]
and [5]. Noted that the area comparison to [1, 5, 8, 10] is not possi-
ble due to distinct implementation platforms (as we have provided
synthesis on ASIC while [1, 5, 8, 10] utilizes FPGA).

Comparison to ASIC accelerator [13]. As shown in Table 5,
our optimized PIP_SP architecture has higher latency. On the other
hand, we are utilizing 1.21 times lower hardware resources on a
65nm technology while the referenced work utilized 40nm. It is
therefore likely that our design would be a fraction of the size in
the same technology. Moreover, we are achieving 2.5 times higher
clock frequency. For multiplication of two 256-degree polynomials
in SABER, we have employed a centralized schoolbook multiplier
architecture of [3]. It takes 256 CCs to compute one polynomial
multiplication. On the other hand, in [13], the use of an 8-level
Karatsuba multiplier for the same polynomial length requires 81
CCs instead of 256.

Furthermore, a high-speed Keccak module containing two par-
allel sponge functions (Keccak-f) is used in [13]. It computes two
Keccak-f[1600] computations in each clock cycle and each round
of Keccak is performed every 12 CCs. In our architectures, a single
sponge function in a serial fashion is incorporated which results in
28 CCs to generate 1,344 bits of a pseudo-random string. In addition
to aforesaid differences in performance, our implementation follows
a coprocessor architecture while a fully parallelized architecture
is described in [13]. Consequently, the decrease in clock cycles in
[13] ultimately shows decrease in computation time.

5 CONCLUSIONS
This work has presented a design space exploration of SABER
with a focus on high performance. Our design space exploration
results in 1𝐺𝐻𝑧 clock frequency with concurrent use of compiled
memories in a ‘smart synthesis’ fashion, logic sharing between
SABER building blocks, and pipelining. Moreover, we have shown
that for optimizing clock frequency with area and power overheads,
a single instance of a large memory may not be optimal, and that
numerous smaller memories can be more convenient.

Finally, we highlight that our design already is tapeout-ready and
will be sent for fabrication in early September (the packaged parts
are expected to be delivered by December). This will allow us to
extend this work with physical measurements after IC fabrication.

6 ACKNOWLEDGMENTS
This work was partially supported by the EC through the European
Social Fund in the context of the project “ICT programme”. It was
also partially supported by European Union’s Horizon 2020 research
and innovation programme under grant agreement No 952252
(SAFEST) and by the Estonian Research Council grant MOBERC35.

REFERENCES
[1] Abubakr Abdulgadir, Kamyar Mohajerani, Viet Ba Dang, Jens-Peter Kaps, and

Kris Gaj. 2021. A Lightweight Implementation of Saber Resistant Against Side-
Channel Attacks. In Third PQC Standardization Conference.

[2] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. 2019. Sapphire:
A Configurable Crypto-Processor for Post-Quantum Lattice-based Protocols.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2019, 4
(Aug. 2019), 17–61. https://doi.org/10.13154/tches.v2019.i4.17-61

[3] Andrea Basso and Sujoy Sinha Roy. 2020. Optimized Polynomial Multiplier
Architectures for Post-Quantum KEM Saber. Cryptology ePrint Archive, Report
2020/1482. https://eprint.iacr.org/2020/1482.

[4] Michiel Van Beirendonck, Jan-Pieter D’anvers, Angshuman Karmakar, Josep Bal-
asch, and Ingrid Verbauwhede. 2021. A Side-Channel-Resistant Implementation
of SABER. J. Emerg. Technol. Comput. Syst. 17, 2, Article 10 (April 2021), 26 pages.
https://doi.org/10.1145/3429983

[5] Viet B. Dang, Farnoud Farahmand, Michal Andrzejczak, and Kris Gaj. 2019. Imple-
menting and Benchmarking Three Lattice-Based Post-Quantum Cryptography
Algorithms Using Software/Hardware Codesign. In 2019 International Conference
on Field-Programmable Technology (ICFPT). 206–214.

[6] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Ver-
cauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea
Basso. 2021 (last accessed, May 19, 2021). SABER: MLWR-Based KEM. https:
//www.esat.kuleuven.be/cosic/pqcrypto/saber/index.html

[7] Malik Imran and Samuel Pagliarini. 2021. saber-chip. https://github.com/Centre-
for-Hardware-Security/saber-chip.

[8] JoseMaria BermudoMera, Furkan Turan, AngshumanKarmakar, Sujoy Sinha Roy,
and Ingrid Verbauwhede. 2020. Compact domain-specific co-processor for accel-
erating module lattice-based KEM. In 2020 57th ACM/IEEE Design Automation
Conference (DAC). 1–6. https://doi.org/10.1109/DAC18072.2020.9218727

[9] NIST. Created January 3, 2017, Updated June 24, 2020. Post-quantum cryptogra-
phy. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

[10] Sujoy Sinha Roy and Andrea Basso. 2020. High-speed Instruction-set Coprocessor
for Lattice-based Key Encapsulation Mechanism: Saber in Hardware. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020, 4 (Aug.
2020), 443–466. https://doi.org/10.13154/tches.v2020.i4.443-466

[11] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. 26, 5 (1997). https://doi.org/10.
1137/S0097539795293172

[12] H. Ekin Sumbul, Kaushik Vaidyanathan, Qiuling Zhu, Franz Franchetti, and Larry
Pileggi. 2015. A synthesis methodology for application-specific logic-in-memory
designs. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.
https://doi.org/10.1145/2744769.2744786

[13] Yihong Zhu, Min Zhu, Bohan Yang, Wenping Zhu, Chenchen Deng, Chen Chen,
Shaojun Wei, and Leibo Liu. 2021. LWRpro: An Energy-Efficient Configurable
Crypto-Processor for Module-LWR. IEEE Transactions on Circuits and Systems I:
Regular Papers 68, 3 (2021), 1146–1159. https://doi.org/10.1109/TCSI.2020.3048395

Workshop Short Paper ASHES '21, November 19, 2021, Virtual Event, Republic of Korea

90

Appendix 5

V

167

M. Imran, A. Aikata, S. S. Roy, and S. Pagliarini, “High-speed design of post- quantum
cryptography with optimized hashing and multiplication,” IEEE Transactions on Circuits
and Systems II: Express Briefs, 2023. DOI: https://doi.org/ 10.1109/TCSII.2023.3273821

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 1

High-speed Design of Post Quantum Cryptography
with Optimized Hashing and Multiplication

Malik Imran, Graduate Student Member, IEEE, Aikata Aikata, Sujoy Sinha Roy,
and Samuel Pagliarini, Member, IEEE

Abstract—In this brief, we realize different architectural
techniques for improving the performance of post-quantum
cryptography (PQC) algorithms when implemented as hardware
accelerators on an application-specific integrated circuit (ASIC)
platform. Having SABER as a case study, we designed a
256-bit wide architecture geared for high-speed cryptographic
applications that incorporates smaller and distributed SRAM
memory blocks. Moreover, we have adapted the building blocks of
SABER to process 256-bit words. We have also used a buffering
technique for efficient polynomial coefficient multiplications to
reduce the clock cycle count. Finally, double-sponge functions are
combined serially (one after another) in a high-speed KECCAK
core to improve the hash operations of SHA/SHAKE. For
key-generation, encapsulation, and decapsulation operations of
SABER, our 256-bit wide accelerator with a single sponge
function is 1.71x, 1.45x, and 1.78x faster than the raw clock
cycle count of a serialized SABER design. Similarly, our 256-
bit implementation with double-sponge functions takes 1.08x,
1.07x & 1.06x fewer clock cycles compared to its single-sponge
counterpart. The studied optimization techniques are not specific
to SABER – they can be utilized for improving the performance
of other lattice-based PQC accelerators.

Index Terms—PQC, ASIC design, hardware accelerator, cryp-
tocore, SABER.

I. INTRODUCTION
High-performance hardware-based cryptographic accelera-

tors are essential for wireless, telecom, cloud, data centers,
and enterprise systems. As examples, the 8920 and 8955 Intel
chipsets can process 5k and 40k RSA decryption operations
per second [1]. The IBM 4769 hardware security module
offers key exchange and signature generation/verification using
Elliptic Curve Cryptography (ECC) and RSA standards [2].
Even if these remarkable chips deliver thousands of operations
per second, they might become compromised since the secu-
rity strength of ECC and RSA can be broken using Shor’s
algorithm [3] on a quantum computer. Recently, Google’s
Sycamore [4] delivered a 53-qubit quantum computer that can
do in 200 seconds a task that would take a classical com-
puter 10,000 years. Different labs worldwide have developed
even more powerful quantum computers [5]. Hence, high-
speed quantum-resistant cryptographic hardware accelerators
are mandated to supersede ECC- and RSA-based devices.

This work was partially supported by the EC through the European Social
Fund in the context of the project “ICT programme”. It was also supported
by European Union’s H2020 research and innovation programme under grant
agreement No 952252 (SAFEST). It is also partially supported by the State
Government of Styria, Austria – Department Zukunftsfonds Steiermark.

M. Imran and S. Pagliarini are with the Centre for Hardware Security,
Department of Computer Systems, Tallinn University of Technology, Tallinn,
Estonia. (e-mail: {malik.imran, samuel.pagliarini}@taltech.ee)

A. Aikata and S. S. Roy are affiliated with the Institute of Applied
Information Processing and Communications, Graz University of Technology,
Graz, Austria. (e-mail: {aikata, sujoy.sinharoy}@iaik.tugraz.at)

Existing architectures for post-quantum cryptography (PQC)
algorithms on field-programmable gate array (FPGA) and
application-specific integrated circuit (ASIC) platforms are
demonstrated in [6]–[16]. These accelerators reveal that the
PQC algorithms need secure hash functions for different
purposes, e.g., binomial sampling. For instance, the recently
standardized CRYSTALS-Kyber algorithm requires variants of
SHA3 and an extended output function (EoF), that is, SHAKE.
The execution of variants of SHA3 and an EoF depends on
a KECCAK sponge function to compute state permutations.
The building blocks of the KECCAK sponge function, that
is, theta, pi, rho, chi, and iota, can operate (only) on 64-bit
words. This encourages designers to select 64 bits for memory
width and for datapaths in their PQC accelerators. This is
the case for different PQC accelerators in [6]–[16]. Moreover,
PQC algorithms require relatively large storage elements to
keep initial, intermediate, and final results. For example, a
memory size of 1024×64 is needed to implement different
variants of SABER [17], that is, LightSABER, SABER, and
FireSABER. There are several possibilities for organizing this
memory; one choice is to use one single 1024×64 memory as
in [10]. This choice does not allow for parallel read/write oper-
ations, resulting in a higher cycle count. Another solution is to
use multiple smaller memories like those employed in SABER
designs of [11]–[15]. These implementations, however, are
not taking full benefit of the smaller memories because the
read/write operations are performed in a serial way instead
of a parallel fashion – even if the memories have different
purposes.

Hence, in this brief, we present an ASIC 256-bit accelera-
tor for SABER to showcase the advantages of wider datapaths
and the memory decisions accompanying it. These advantages
also apply to other PQC algorithms. For reducing the clock
cycle count, we employed four high-speed SRAM memories
of sizes 256×64 each and described their control logic to
allow for parallel read/write operations. The building blocks
of SABER are implemented to process 256-bit words. We
have also used a long buffer approach for multiplying polyno-
mial coefficients in parallel. Finally, double-sponge functions
are connected serially (one after another) in a high-speed
KECCAK core to improve further the studied accelerator’s
performance.

II. PROPOSED CRYPTO ACCELERATOR

Fig. 1 shows the block diagram of our proposed crypto
accelerator architecture. It includes data memory, an address
decoder unit, and a SABER crypto core. The data memory

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--II: Express Briefs. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2023.3273821

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 26,2023 at 13:54:48 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 2

D
ed

ic
at

ed
 C

o
n

tr
o

ll
er

A
d

d
re

ss
 D

ec
o

d
er

 U
n

it
 (

A
D

U
)

256

SHA3-256/512 & SHAKE128

Unpack

CopyWords

AddPack

AddRound

Multiplier

BS2POLVECP

CMOV

Verify

64

256

256

256

256

256

256

256

256

RF4
256×64

RF3
256×64

RF1
256×64

RF2
256×64

6464

64

64

64

SABER
crypto core

Data
memory

Fig. 1. Block diagram of our proposed crypto accelerator architecture.

dout 64bitdin 64bit
64bit

5
b

it

6
4

b
it

5
b

it

reg
reg∑

Buffer_Unit

Const_Gen_Unit Round_Unit64bit

Const_Gen_Unit Round_Unit64bit

64bit

din 64bit

6
4

b
it

5
b

it

64bit

Buffer_Unit

reg

Round_UnitConst_Gen_Unit

dout 64bit

Fig. 2. KECCAK optimizations. The gray diagram corresponds to the high-
speed KECCAK core of [19]. The purple diagram indicates our optimized
KECCAK where additional blocks appear in orange.

holds initial, intermediate, and final results. Each memory can
read/write one 64-bit word in one clock cycle. So, four mem-
ory instances in parallel can read/write one 256-bit word in one
cycle. The address decoder unit selects an appropriate memory
for reading/writing a 64-bit word. Also, it communicates to the
SABER controller to pass/collect 64-bit (for SHA3 variants)
or 256-bit (for other SABER blocks) data as input/output
to/from the SABER core. The SABER crypto core includes
the required building blocks and is wrapped by a dedicated
controller that handles 64-bit or 256-bit data for write/read
operations. The controller generates the control signals for
the corresponding SABER building blocks. Additionally, it
allows one SABER block to operate at a time. Next, we have
described the implementation of the SABER blocks.

A. Optimization of SHA3-256/512 & SHAKE128
Since all of the SHA3 variants utilize the KECCAK sponge

function [18], we operate the SHA3-256, SHA3-512, and
SHAKE-128 like a wrapper in our proposed architecture.
Moreover, details about the utilized KECCAK cores with
single- and double-sponge functions are described below.

The gray diagram in Fig. 2 (left) depicts the high-speed
KECCAK core of [19]. As can be seen, it needs an in-
stance each of (i) Buffer Unit, (ii) Const Gen Unit and (iii)
Round Unit. The Buffer Unit holds the initial vectors and
keeps the intermediate and final results. Const Gen Unit
generates the round vectors based on a 5-bit counter value
(coming from Buffer Unit). The Round Unit is the KECCAK
sponge function and operates the KECCAK building blocks
(theta, pi, rho, chi and iota) based on the round constants
and a 64-bit buffered value from the Buffer Unit. Moreover, it
generates a 64-bit vector as output which is further connected
as an input to a register inside the Buffer Unit. This strategy
requires 28 cycles to operate 24 rounds iteratively: 24 cycles
are for 24 KECCAK rounds and an additional 4 cycles specify
the ‘wait’ until the registers in the datapath are free. Previously,
the KECCAK core of [19] has been utilized in [10], [14], [15]
for SABER hardware accelerators.

The purple-colored diagram in Fig. 2 details how the
number of clock cycles of the KECCAK core can be reduced
by half using additional orange-colored boxes. We modify

LONG PUBLIC POLY BUFFER (LPPB)

L
O

N
G

 S
E

C
R

E
T

 P
O

L
Y

 B
U

F
F

E
R

 (
L

SP
B

)

MAC . . .
256 MAC units a,2a,3a,4a

AB1

SP1

P
B

1

MAC

DATA MEMORY

MAC . . .
256 MAC units a,2a,3a,4a

AB2

SP2

MAC

MAC . . .

256 MAC units a,2a,3a,4a
AB3

SP3

MAC

P
B

2
P

B
3

R
A

B

13 13

13 13

13 13

44

4 4

4 4

13 13

13 13

13 13

SBM2

SBM1

SBM3

M1

M3

2
1

1
3

1
3

+-

1
3

1
3

M2

1

1
3

1
3

a
2

a
3

a
4

a

Fig. 3. Fully parallelized schoolbook multiplier for SABER.

the Buffer Unit by including a register and an accumulator.
Moreover, we used additional instances of Const Gen Unit
and Round Unit. Each instance of a Const Gen Unit takes
a 5-bit counter value as input and generates a 64-bit con-
stant vector as an output. Moreover, each instance of the
Round Unit (or sponge function) takes two 64-bit inputs and
produces a single 64-bit output. The first 64-bit input to the
corresponding sponge function is from the round constants
block. The second 64-bit input to the first sponge function is
from the KECCAK buffer and its output goes as an input to the
second sponge function. This means the sponge functions are
connected serially one after another. The outputs of the first
and second sponge functions are connected as inputs to the
KECCAK buffer to accumulate the results. With this strategy,
14 clock cycles are required to operate 24 rounds of KECCAK.
Hence, the cycle count is halved compared to [10], [14], [15].

B. Fully Parallel Schoolbook Multiplier
We have utilized long public and secret polynomial buffers

to load coefficients of public and secret polynomials at once.
This one-time data loading from memory helps to reduce
the cycle count. For multiplications computation, the long
poly buffers need an m-bit shift towards left/right. We shift
left with 256-bit as our accelerator deals with 256-bit data
for reading/writing operations to/from data memory. SABER
requires a matrix multiplication for multiplying polynomial
coefficients, as presented in Eq. 1. The matrix P , S and R
hold the public, secret and resultant polynomial coefficients.

P(0,0) A(0,1) . . . P(0,255)

P(1,0) A(1,1) . . . P(1,255)

P(2,0) A(2,1) . . . P(2,255)

 ·

S0

S1

S2

 =

R0

R1

R2

 (1)

As shown in Fig. 3, our fully parallelized polynomial
multiplication architecture consists of two long polynomial
buffers (LPPB and LSPB) and three copies of a schoolbook
multiplier, that is, SBM1, SBM2, and SBM3. The length of
LPPB and LSPB is proportional to the size of the matrix P and
matrix S, respectively. Each row of matrix P contains 256 13-
bit polynomial coefficients. Each row of the matrix S contains
256 4-bit polynomial coefficients. Therefore, 768 coefficients
are in three rows of a matrix P and a matrix S. Then, the
length of LPPB is 9984 bits (768×13) and the length of LSPB
is 3072 bits (768×4). Multiplication starts with loading 768
polynomial coefficients into LPPB and LSPB buffers.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--II: Express Briefs. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2023.3273821

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 26,2023 at 13:54:48 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 3

After loading all the 768 polynomial coefficients into LPPB
and LSPB buffers, the corresponding 256 public and secret
polynomial coefficients are forwarded to multipliers SBM1,
SBM2 and SBM3. As detailed in Fig. 3, the SBM1 multiplier
consists of three buffers (i.e., PB1, SP1, and AB1) and 256
MAC (multiply-and-accumulate) units. PB1 and SP1 contain
the 256 coefficients of the first row of the matrix P and matrix
S for multiplication. Then, the execution of multiplication us-
ing the MAC units takes 256 cycles. Each MAC unit takes 13-
and 4-bit public and secret polynomial coefficients as inputs
and results in a 13-bit polynomial as output, as presented in
Fig. 3. A 13-bit output polynomial from each MAC depends
on the 4-bit secret polynomial. Two bits from the LSB side
of a secret polynomial decide between shifted 13-bit public
polynomial coefficients (a, 2a, 3a, 4a) using a multiplexer
M1. A third bit from the LSB side is a sign bit. Finally,
the last bit of a secret polynomial coefficient determines
the modular addition or subtraction operation to execute for
a 13-bit multiplication result. Moreover, AB1 accumulates
the multiplication results. The same multiplication strategy
is applied in SBM2 and SBM3 multipliers of Fig. 3. In the
SBM2 multiplier, PB2 and SP2 keep the public and secret
polynomial coefficients of the second row of the matrix P
and matrix S. Similarly, PB3 and SP3 hold the public and
secret polynomial coefficients for the third row of matrices
P and S. As presented in Fig. 3, an additional RAB buffer
accumulates the multiplication results from SBM1, SBM2, and
SBM3 multipliers before writing back on the data memory.
Since all three multipliers (SBM1, SBM2 and SBM3) operate
in parallel, 256 clock cycles are required to multiply SABER
polynomial coefficients.

In our previously implemented schoolbook multipliers of
[10], [14], [15], we utilized 256 MAC units, and these MACs
are operated serially to compute the polynomial multiplica-
tions in 768 clock cycles. In this work, our fully-parallel
multiplier utilizes 768 MAC units and takes 256 cycles. Also,
our buffer approach is beneficial to avoid frequent memory
access for read/write operations as we have a 256-bit data
bus instead of the typical 64-bit size found in the literature.
The total cycle cost of loading public and secret polynomials
from data memory is 156 and 48 for the schoolbook designs
of [10], [14], [15]. The fully-parallelized architecture of this
work reduces these costs to 39 and 12 cycles. As implied
by the block diagram of Fig. 3, the area of our multiplier is
approximately 3 times of a serialized schoolbook multiplier.
C. Other implemented SABER building blocks

A sampler is needed to compute the sample from a pseudo-
random input string. The binomial sampler in our proposed
architecture is a combinational block. It maps 256-bit pseudo-
random bits to a 256-bit sample value in one clock cycle. The
transformation from a byte into a bit string is the task of the
Unpack unit. A copy block is only needed during the KEM
key-generation process. It transforms the rows and columns to
determine a transpose of a matrix generated using SHAKE128.
The verify block is only required during the decapsulation
operation. It provides a word-by-word comparison between
the received ciphertext and the re-encrypted ciphertext. The
result of verify block is stored in a register that is used by

Key Generation

Multi
plie

r
Copy
Has

h

AddRound
Sam

pler
Oth

er
AddPac

k
UnPac

k

BS2P
OLVEC
Ver

ify

100

102

104
Encapsulation

Multi
plie

r
Has

h

AddRound

BS2P
OLVEC

Sam
pler

Oth
er

AddPac
k

UnPac
k

Copy
Ver

ify

100

102

104
Decapsulation

Multi
plie

r
Has

h

BS2P
OLVEC
Ver

ify
Oth

er

AddRound
UnPac

k
Sam

pler
AddPac

k
Copy

100

102

104

Multi
plie

r
Copy
Has

h

AddRound
Sam

pler
Oth

er
AddPac

k
UnPac

k

BS2P
OLVEC
Ver

ify

100

102

104

Multi
plie

r
Has

h

AddRound

BS2P
OLVEC

Sam
pler

Oth
er

AddPac
k

UnPac
k

Copy
Ver

ify

100

102

104

Multi
plie

r
Has

h

BS2P
OLVEC
Ver

ify
Oth

er

AddRound
UnPac

k
Sam

pler
AddPac

k
Copy

100

102

104

Multi
plie

r
Copy
Has

h

AddRound
Sam

pler
Oth

er
AddPac

k
UnPac

k

BS2P
OLVEC
Ver

ify

100

102

104

Multi
plie

r
Has

h

AddRound

BS2P
OLVEC

Sam
pler

Oth
er

AddPac
k

UnPac
k

Copy
Ver

ify

100

102

104

Multi
plie

r
Has

h

BS2P
OLVEC
Ver

ify
Oth

er

AddRound
UnPac

k
Sam

pler
AddPac

k
Copy

100

102

104

Total clock cycle counts

Key Generation Encapsulation Decapsulation
0

5000

10000

Serial + single-sponge Parallel + single-sponge Parallel + double-sponge

Fig. 4. Clock cycle distribution of SABER for serial and parallel architectures.
Serial to parallel designs with single-sponge function results in an average
39% cycle reduction. In parallel designs, moving from single- to double-
sponge functions, we obtained a 7% reduction in clock cycles.

CMOV to either copy the decrypted session key or a pseudo-
random string at a specified memory address. The AddPack
performs coefficient-wise addition with a constant followed
by the generated message and packs the resultant bits into
a byte string. Like the AddPack block, AddRound computes
coefficient-wise addition of a constant followed by coefficient-
wise rounding. The BS2POLVECp block converts the byte
string into a polynomial vector.

III. RESULTS AND COMPARISONS
In Fig. 4, we show the clock cycle count for serial and

parallel SABER architectures. From left to right, the first row
with three panels in Fig. 4 specifies the key generation, en-
capsulation and decapsulation operations for a serial SABER
architecture. Similarly, the second row includes three panels
for the same three operations on a parallel SABER architecture
with a single sponge in its KECCAK block. The considered
SABER architecture has double-sponge functions in the third
row of Fig. 4. The bottom panel of Fig. 4 provides the total cy-
cle counts for key generation, encapsulation, and decapsulation
operations of all three considered designs. Moreover, in Fig. 4,
hash determines the SHA3-256/512 and SHAKE128 functions.
Notably, the multiplier and hash operations dominate the
computation time, so they are prime targets for optimizations.

As expected, Fig. 4 shows a decrease in clock cycles for
key generation, encapsulation, and decapsulation operations
when moving from a serial to a parallel design with a single-
sponge function (see blue and red bars). Similarly, we have a
decrease in clock cycles for hash operation when comparing
two parallel SABER designs with single- and double-sponge
functions in the KECCAK (see red and green bars). The
last panel in Fig. 4 highlights the total cycle count for each
operation on all architectures. On average, the number of
clock cycles required to execute key generation, encapsula-
tion, and decapsulation operations using a parallel accelerator
with one sponge function is 1.65× lower compared to the
serial SABER architectures of [14], [15]. The use of double-
sponge functions in our parallel accelerator further reduces
the clock cycle requirement by 1.07× when compared to a
parallel implementation with one sponge function. Therefore,
a significant decrease in the clock cycle count when moving

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--II: Express Briefs. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2023.3273821

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 26,2023 at 13:54:48 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 4

TABLE I
RESULTS OF PROPOSED CRYPTO ACCELERATOR ON 28NM TECHNOLOGY.

Implementation details single-sponge double-sponge
Maximum Frequency (MHz) 2500 2500
Latency (KG/ENC/DEC) (µs) 1.66/1.96/2.09 1.53/1.82/1.96
Utilized Area (mm2) 0.251 0.255
Power (Lkg/Dyn) (mW) 10.96/556.25 11.49/597.05
Energy (µJ) 0.923/1.090/1.162 0.913/1.086/1.170

TABLE II
ASIC COMPARISON WITH EXISTING ACCELERATORS FROM LITERATURE.

Ref. Cycles (K) Latency (µs) Freq Area Pow
KG/ENC/DEC KG/ENC/DEC MHz mm2 mW

65nm technology
[14] 7.1/7.1/9.3 7.1/7.1/9.3 1002 0.314 142.5
[12] 14.3/18.7/23.3 89.6/116.9/146.1 160 0.158 –
[15] 7.1/7.1/9.3 10.0/9.9/13.0 715 1 153.6
[16] 350/405/425 7740/9011/9437 45 0.840 2.6
TW† 4.1/4.9/5.2 4.1/4.9/5.2 ✔ 1002 0.944 647.2
TW‡ 3.8/4.5/4.9 4.0/4.8/5.2 ✔ 936 1.026 860.9
40nm technology
[11] 1.0/1.4/1.6 2.6/3.6/4.2 400 0.380 –
TW† 4.1/4.9/5.2 2.45/2.90/3.09 ✔ 1694 0.846 163.2
TW‡ 3.8/4.5/4.9 3.47/4.10/4.47 1095 0.767 137.0

28nm technology
[9] 9/11/13 4.54/5.67/6.95 2000 0.263 367.1
[13] –/–/– –/–/– 500 3.6 39–368
TW† 4.1/4.9/5.2 1.6/1.9/2.0 2500 0.251 567.1
TW‡ 3.8/4.5/4.9 1.5/1.8/1.9 ✔ 2500 0.255 608.4
TW† & TW‡: our designs with single- & double-sponge, Fabricated: [12],
[13], [15], Technology mapped: [9], [11], [14], [16], TW† & TW‡,
Area (chip size): [13], [15], CRYSTALS-Kyber: [9], [16], SABER: Others.

from a serialized design to parallel architectures, reveals that
the realized approaches in this work can be utilized in other
PQC algorithms for performance improvements.

On a commercial 28nm ASIC technology, the frequency,
latency, area, power, and energy results (after synthesis) of
our proposed parallel SABER architectures are given in Ta-
ble I. KG, ENC and DEC in Table I define the SABER
key-generation, encapsulation, and decapsulation operations.
Similarly, Lkg and Dyn are the leakage and dynamic power
consumption. We have utilized the Vivado IDE tool for
simulations and Cadence Genus for logic synthesis. Both
implementations operate at 2500MHz. The use of a double-
sponge function allows us to minimize the computation time
(i.e., latency, calculated as clock cycles over frequency) at a
modest increase in power (+4.63% and +6.84% for leakage
and dynamic power, respectively) and area (+1.57%). The max
frequency is obtained by pushing the timing constraint until
the slack is close to zero. Despite the small area and power
increase, the double-sponge function has higher merit as it
consumes nearly the same energy (product of dynamic power
and computation time) than the single-sponge version.

ASIC implementations of recent PQC accelerators are
compared in Table II. The clock cycles (CC) and latency
(Lat) values are reported for KG, ENC, and DEC operations.
Moreover, the architectures marked with the blue checkmark
in Table II give the best-in-class results.

Due to the parallel use of smaller SRAM memories, our
architecture with a single-sponge function requires 1.73, 1.44
and 1.78 times lower clock cycles for SABER key-generation,
encapsulation and decapsulation operations when compared to
[14]. Our SABER design with double-sponge functions results

in 1.86, 1.57 and 1.89 times lower cycle count. Our single-
sponge SABER design requires 1.73, 1.44 and 1.78 times
lower computation time (i.e., latency). Similarly, when using a
double-sponge function, the latency values are 1.77, 1.47 and
1.89 times lower. As seen in the last two columns of Table II,
the area and power values of our designs are higher than [14]
as we are utilizing a parallelized 256-bit architecture.

A 64-bit SABER chip fabricated in [12] requires 3.48,
3.81, and 4.48 times higher clock cycles compared to our
parallel SABER design with a single-sponge function. With
double-sponge functions, the cycle requirement of our design
is 3.76, 4.15, and 4.48 times lower than [12]. Our 256-bit
implemented SABER design with single-sponge and double-
sponge functions show 6.26 and 5.85 times speedup in clock
frequency. Moreover, our single-sponge SABER design dis-
plays 21.85, 23.85, and 28.09 times lower latency. For double-
sponge functions, the required computation time is 22.4, 24.35,
and 28.09 times lower. We utilize 5.97 and 6.49 times more
hardware resources with single and double-sponge functions.
Two different operating frequencies, 160MHz, and 10MHz
are reported in [12]. For 160MHz, the consumed power is not
reported in the reference design. However, for 10MHz, the
consumed power is 0.3339mW . Our parallel SABER architec-
tures with single- and double-sponge functions consume 647.2
and 860.9mW power at 1002 and 936MHz clock frequency.
This increase is expected given that our frequency of operation
is 1-2 orders of magnitude higher.

If we compare our results to [15], our proposed design
with a single-sponge function takes 1.73, 1.44, and 1.78
times lower clock cycles. The design with double-sponge
functions requires 1.86, 1.57, and 1.89 times fewer clock
cycles. The reasons are the parallel use of smaller memories
and a fully parallel multiplier in our SABER design. On the
other hand, in [15], smaller memories are accessed serially
and an iterative schoolbook multiplier is utilized. Our single-
sponge and double-sponge implemented SABER designs are
1.40 and 1.30 times faster (in frequency). As shown in column
three of Table II, the computational cost of our SABER design
is much lower than [15]. Column five shows that our SABER
core utilizes an area (almost) equivalent to the chip size of
[15]. Due to parallel computations in this work, our single-
sponge and double-sponge functions consume 4.21 and 5.60
times higher power than [15]. There is always a trade-off
between processing speed and area/power parameters.

We have achieved very interesting results on 40nm process
technology. SABER designs with single-sponge and double-
sponge functions utilize 0.079µm2 and 0.115µm2 area for
SHA3-256/512 and SHAKE128. For identical SABER de-
signs, the hardware utilization of our fully parallelized mul-
tiplier is 0.637µm2 and 0.523µm2. In Table II, if we see
the total utilized area and consumed power of our design
with single-sponge and double-sponge functions, the SABER
design with double-sponge functions takes lower resources and
consumes less power than the SABER design with single-
sponge function. This is counterintuitive at first but becomes
clear once we notice the significant frequency decrease, from
1694MHz to 1095MHz, in column four of Table II. This
happens due to the different critical paths shifting from one

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--II: Express Briefs. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2023.3273821

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 26,2023 at 13:54:48 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 5

design to another (the double-sponge becomes the critical
path).In other words, the critical paths of the synthesis of
our single- & double-sponge functions lie in the KECCAK
but with different start & end points. Additionally, the choice
between single- and double-sponge is a function of the tech-
nology: the relative speed of logic versus that of the memory
dictates where the critical path lies and whether the design can
accommodate a double-sponge KECCAK. This consideration
applies not only to SABER but also to other PQC accelerators.

Compared to [11], our parallel designs take more clock
cycles for KG, ENC, and DEC operations of SABER. The
reason is the parallel use of smaller memories in our design
while dedicated memories for specific SABER computations
are utilized in [11]. Our SABER design with single-sponge
and double-sponge functions is 4.23 and 2.73 times faster in
clock frequency. Moreover, our implementation with a single-
sponge function requires lower computation time (see column
three in Table II). We are utilizing more area than [11] because
our focus was to reduce the computation time and improve
the circuit frequency. The comparison with power results is
impossible as they are unavailable in the reference design.

A flexible design [13] for SABER, NTRU, Dilithium, Rain-
bow, CRYSTALS-Kyber and McEliece PQC algorithms is five
times slower in clock frequency than our dedicated SABER
design. The utilized area is in chip size (3.6mm2), as seen
in Table II, so a fair one-to-one comparison is impossible.
Similarly, a reasonable comparison with consumed power is
impossible as the power values (are given in a) range from
39mW to 368mW . The information about the clock cycle
and latency parameters is not reported in the reference design
of [13]. Therefore, this comparison is (also) not possible.

On 65 and 28nm technologies, the flexible accelerators of
[9], [16] implement multiple PQC algorithms and, as expected,
their area is higher than in our SABER accelerators. If we
consider a variant of CRYSTALS-Kyber (i.e., Kyber-1024)
from these accelerators for comparison, Table II shows that our
accelerators outperform in clock cycles, latency and frequency.
The consumed power of our accelerators is high because we
operate related operations on a much higher frequency.

IV. LESSONS LEARNED & CONCLUSIONS

The comparison and discussions reveal that the parallel
use of several smaller memories is more beneficial to reduce
frequent read/write access from the data memory. One-time
data loading from data memory helps to decrease clock cycles.
Also, the one-time loading benefits the design of a compact
and a parallel NTT (number-theoretic-transform) multiplier
for CRYSTALS-Kyber and CRYSTALS-Dilithium PQC stan-
dards. The PQC algorithms involve secure hash computations;
hence, efficient hash computations allow optimization of the
circuit frequency and also help to minimize the cycles.

This article shows that our SABER design with a single-
sponge function performs better in achieving higher clock
frequency on 65nm and 40nm process technologies. However,
on a 28nm technology, our SABER designs with single- and
double-sponge functions outperform the state-of-the-art in fre-
quency and latency. The adopted wider datapath strategy, one-
time data loading approach and KECCAK optimizations can

be considered in high-speed implementations of CRYSTALS-
Kyber and CRYSTALS-Dilithium accelerators.

REFERENCES

[1] Intel, “Integrated cryptographic and compression accelerators on
intel architecture platforms,” last accessed on September 29,
2022, available at: https://www.intel.com/content/dam/www/public/us/
en/documents/product-briefs/quickassist-adapter-8920-brief.pdf.

[2] IBM, “Ibm cex7s / 4769 pcie cryptographic coprocessor (hsm),” last
accessed on October 20, 2022, available at: https://public.dhe.ibm.com/
security/cryptocards/pciecc4/docs/4769 Data Sheet.pdf.

[3] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26,
no. 5, p. 1484–1509, 1997.

[4] F. Arute, K. Arya, R. Babbush, and et al, “Quantum supremacy using a
programmable superconducting processor,” Nature, vol. 574, pp. 505–
510, 2019.

[5] M. Gong, S. Wang, C. Zha, and et al, “Quantum walks on a pro-
grammable two-dimensional 62-qubit superconducting processor,” Sci-
ence, vol. 372, no. 6545, pp. 948–952, 2021.

[6] L. Beckwith, D. T. Nguyen, and K. Gaj, “High-performance hardware
implementation of crystals-dilithium,” Cryptology ePrint Archive, Paper
2021/1451, 2021.

[7] G. Land, P. Sasdrich, and T. Güneysu, “A hard crystal - implementing
dilithium on reconfigurable hardware,” in Smart Card Research and
Advanced Applications: 20th International Conference, CARDIS 2021,
Lübeck, Germany, November 11–12, 2021, Revised Selected Papers.
Berlin, Heidelberg: Springer-Verlag, 2021, p. 210–230.

[8] Z. Zhou, D. He, Z. Liu, M. Luo, and K.-K. R. Choo, “A soft-
ware/hardware co-design of crystals-dilithium signature scheme,” ACM
Trans. Reconfigurable Technol. Syst., vol. 14, no. 2, pp. 1–21, 2021.

[9] A. Aikata, A. C. Mert, M. Imran, S. Pagliarini, and S. S. Roy, “Kali:
A crystal for post-quantum security using kyber and dilithium,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 2,
pp. 747–758, 2023.

[10] S. Sinha Roy and A. Basso, “High-speed instruction-set coprocessor for
lattice-based key encapsulation mechanism: Saber in hardware,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol.
2020, p. 443–466, 2020.

[11] Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei, and L. Liu,
“Lwrpro: An energy-efficient configurable crypto-processor for module-
lwr,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 68, no. 3, pp. 1146–1159, 2021.

[12] A. Ghosh, J. Mera, A. Karmakar, D. Das, S. Ghosh, I. Verbauwhede, and
S. Sen, “A 334µw 0.158mm2 saber learning with rounding based post-
quantum crypto accelerator,” in 2022 IEEE Custom Integrated Circuits
Conference (CICC), 2022, pp. 1–2.

[13] Y. Zhu, W. Zhu, M. Zhu, C. Li, C. Deng, C. Chen, S. Yin, S. Yin,
S. Wei, and L. Liu, “A 28nm 48kops 3.4µj/op agile crypto-processor for
post-quantum cryptography on multi-mathematical problems,” in 2022
IEEE International Solid- State Circuits Conference (ISSCC), vol. 65,
2022, pp. 514–516.

[14] M. Imran, F. Almeida, J. Raik, A. Basso, S. S. Roy, and S. Pagliarini,
“Design space exploration of saber in 65nm asic,” in Proceedings of the
5th Workshop on Attacks and Solutions in Hardware Security, 2021, p.
85–90.

[15] M. Imran, F. Almeida, A. Basso, S. S. Roy, and S. Pagliarini, “High-
speed saber key encapsulation mechanism in 65nm cmos,” Journal
of Cryptographic Engineering (JCEN), 2023. [Online]. Available:
https://doi.org/10.1007/s13389-023-00316-2

[16] T. Fritzmann, G. Sigl, and J. Sepúlveda, “Risq-v: Tightly coupled risc-
v accelerators for post-quantum cryptography,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2020, no. 4, p.
239–280, Aug. 2020.

[17] A. Basso, J. M. B. Mera, J.-P. D’Anvers, A. Karmakar, S. S. Roy, M. V.
Beirendonck, and F. Vercauteren, “Saber: Mod-lwr based kem (round
3 submission),” last accessed on March 23, 2022, available at https:
//www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf.

[18] NIST, “Sha-3 standard: Permutation-based hash and extendable-output
functions,” FIPS PUB 202, last accessed on March 9, 2022, available at
https://doi.org/10.6028/NIST.FIPS.202.

[19] K. Team, “Keccak in vhdl: High-speed core,” last accessed on September
16, 2022, available at: https://keccak.team/hardware.html.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--II: Express Briefs. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2023.3273821

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 26,2023 at 13:54:48 UTC from IEEE Xplore. Restrictions apply.

Appendix 6

VI

175

M. Imran, F. Almeida, A. Basso, S. S. Roy, and S. Pagliarini, “High-speed SABER
key encapsulation mechanism in 65nm CMOS.” Journal of Cryptographic Engineering,
2023. DOI: https://doi.org/10.1007/s13389-023-00316-2

Journal of Cryptographic Engineering
https://doi.org/10.1007/s13389-023-00316-2

REGULAR PAPER

High-speed SABER key encapsulation mechanism in 65nm CMOS

Malik Imran1 · Felipe Almeida1 · Andrea Basso2 · Sujoy Sinha Roy3 · Samuel Pagliarini1

Received: 29 August 2022 / Accepted: 14 March 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Quantum computers will break cryptographic primitives that are based on integer factorization and discrete logarithm prob-
lems. SABER is a key agreement scheme based on the Learning With Rounding problem that is quantum-safe, i.e., resistant
to quantum computer attacks. This article presents a high-speed silicon implementation of SABER in a 65nm technology
as an Application Specific Integrated Circuit. The chip measures 1mm2 in size and can operate at a maximum frequency
of 715MHz at a nominal supply voltage of 1.2V. Our chip takes 10, 9.9 and 13µs for the computation of key generation,
encapsulation, and decapsulation operations of SABER. The average power consumption of the chip is 153.6mW. Physical
measurements reveal that our design is 8.96x (for key generation), 11.80x (for encapsulation), and 11.23x (for decapsulation)
faster than the best known silicon-proven SABER implementation.

Keywords ASIC · Post-quantum · Crypto accelerator · Silicon-proven · SABER

1 Introduction

Using Shor’s quantum factoring algorithm [1], the most
prevalent public-key cryptographic primitives such as RSA
[2], Diffie–Hellman [3], and Elliptic Curve Diffie–Hellman
protocols [4] are vulnerable to attacks by sufficiently power-
ful quantumcomputers [5, 6]. These protocols are extensively
used, in practice, to protect secure web pages, encrypt
emails, and other sensitive information. Therefore, break-
ing these systems would have significant consequences for
digital security and privacy. To secure future information
and communication systems, researchers and developers are

B Malik Imran
malik.imran@taltech.ee

Felipe Almeida
felipe.almeida@taltech.ee

Andrea Basso
a.basso@pgr.bham.ac.uk

Sujoy Sinha Roy
sujoy.sinharoy@iaik.tugraz.at

Samuel Pagliarini
samuel.pagliarini@taltech.ee

1 Department of Computer Systems, Tallinn University of
Technology, Tallinn, Estonia

2 School of Computer Science, University of Birmingham,
Birmingham, UK

3 IAIK, Graz University of Technology, Graz, Austria

constructing new reliable quantum-resistant cryptographic
protocols. In this context, in 2017, the National Institute
of Standards and Technology (NIST) initiated a new com-
petition process to standardize post-quantum public-key
algorithms. SABER remains one of the competing quantum-
resistant key encapsulation mechanisms in the NIST compe-
tition process [7]. A silicon demonstration of SABER is the
central piece of this work.

The design characteristics of SABER have been investi-
gated over different implementation platforms. Field-
programmable gate array (FPGA) accelerators are described
in [8–10]. Performance-oriented implementations of SABER
on a RISC-V processor and on a GPU are shown in [11] and
[12], respectively. Some resource-constrained implementa-
tions on ARM platforms are given in [13–15]. Side-channel
protected software implementations are presented in [16, 17].
Similarly, a side-channel protected hardware implementation
of SABER is described in [18]. An efficient implementation
of SABER on an embedded microcontroller is presented in
[19].

Additionally, SABER has been considered and demon-
strated as an application-specific integrated circuit (ASIC)
in [20–23]. ASICs provide a platform that is specialized to
compute a specific cryptographic operation and thus, yield
superior performance than other platforms. In turn, the effort
and cost to produce an ASIC is much higher. For this reason,

123

Journal of Cryptographic Engineering

the authors of [20, 23] report implementation results from
simulations instead of physical measurements.

An energy-efficient crypto processor architecture for sup-
porting all variants of SABER is described in [20]; the
authors perform energy optimizations by employing a hier-
archical Karatsuba framework for multiplying polynomial
coefficients. Moreover, they have presented a layout imple-
mentation of SABER on 40nm technology with an area of
0.38mm2 and a maximum frequency of 400MHz. Recently,
in [21], the authors present a low-area and low-power silicon-
verifiedSABERdesign on65nmcommercial technology. For
SABER 256-degree polynomial multiplications, their chip
incorporates a Toom–Cook multiplier with a striding of 4.

For several hardmathematical problems, i.e., lattice, code,
and multivariate, a flexible crypto processor design is fabri-
cated on a 28nm process technology in [22]. The supported
cryptographic algorithms are SABER, NTRU, Dilithium,
Rainbow, Kyber and McEliece. At a 0.9V supply voltage,
their design can operate up to a maximum frequency of
500MHz and displays a chip size of 3.6mm2.

Earlier in [23], we have performed a design space explo-
ration of SABER on a 65nm commercial technology with the
goal to maximize performance. Our pre-silicon results indi-
cated that a 1GHz clock frequency could be achieved with
the careful use of pipelining, some notion of resource shar-
ing, and different memory arrangements. This work expands
on these initial results.

In this article, we have chosen the most promising archi-
tectures from our design space exploration of [23] in order
to execute a silicon validation on a commercial 65nm tech-
nology.1 Therefore, the contributions of this article include:
(i) physical synthesis of the SABER core on a targeted 65nm
technology (i.e., chip design); (ii) more realistic results for
area, timing, and power characteristics after physical mea-
surements on the fabricated ASIC; and (iii) a fair comparison
against other works that also perform measurements instead
of simulations.

The key findings after physical measurements revealed
that the fabricated chip can operate in the range of 0.6V to
1.4V. At nominal 1.2V, a frequency of 715MHz is achieved.
The average power consumption and chip size are 153.66mW
and 1mm2, respectively. For security equivalent to AES-192,
the processing time for one key-generation, encapsulation,
and decapsulation operation is 10μs, 9.98μs, and 13.28μs,
respectively.

The structure of this paper is organized as follows:
Sect. 2 describes the related background. Our chip’s architec-
ture is presented in Sect. 3. Chip measurements and results
are shown in Sect. 4. The comparison with state-of-the-art

1 The Verilog HDL code is already available in our saber-chip reposi-
tory on GitHub [24].

SABER implementations is given in Sect. 5. Finally, the crit-
ical findings of this work are discussed in Sect. 6.

2 Related background

2.1 Notations

This section presents the symbols used throughout the paper.
Let p and q are moduli powers of 2. The set of integers is
presented with Z. The rings of integers modulo p and q are
Zp and Zq , respectively. Similarly, the ring of polynomials
for an integer N is presented with Rp = Zp[x]/〈xN + 1〉
and Rq = Zq [x]/〈xN + 1〉 where N is a fixed power of 2.
Vectors are shown in bold and lower case font (e.g., a).

2.2 Security hardness

The security strength of SABER depends on the hardness of
the module Learning With Rounding (Mod-LWR) problem
[9]. A Mod-LWR sample is given as follows:

(
a, b =

⌊
p

q
(aT s)

⌉)
∈ Rl×1

q × Rp (1)

Where a is a vector of uniformly random polynomials in
Rq , s is a secret vector of polynomials with coefficients from
an error distribution, and the modulus p < q. The result of
the vector-vector multiplication aT .s is a polynomial in Rq .
It is then rounded using the scaling by p

q where p < q to pro-
duce b in Rp. The rounding operation introduces a noise to
the system. The decision mod-LWR problem asks to distin-
guish between mod-LWR samples generated using Eq.1 for
a fixed secret, and uniformly random samples inRl×1

q ×Rp.
The Mod-LWR problem is presumed to be computationally
infeasible to solve.

2.3 Supported operations

SABER is aChosen-CiphertextAttack, i.e., IND-CCA, resis-
tant key encapsulation mechanism (KEM) built on module
lattices. Moreover, it uses the Mod-LWR problem with both
p and q power-of-two to construct a Chosen PlaintextAttack,
i.e., IND-CPA, secure public-key encryption (PKE) scheme.
The related cryptographic operations for PKE are the gener-
ation of a pair of public and private keys (PKE.KEYGEN),
encryption (PKE.ENC) and decryption (PKE.DEC) and the
corresponding algorithms are 1, 2, 3. Similar to PKE oper-
ations, the supported KEM operations are a generation of
pairs of public and private keys (KEM.KEYGEN), encapsu-
lation (KEM.ENCAPS) and decapsulation (KEM.DECAPS)
and the respective algorithms are 4, 5, 6.

123

Journal of Cryptographic Engineering

In algorithms 1 to 6, the coefficients of the secret vectors s
and s’ are sampled according to a centered binomial distribu-
tion βμ(Rl×1

q) with parameter μ, where μ < p. Moreover,
F , G and H determine the hash functions that are used in
the SABER protocol. Functions F and H are implemented
using SHA3-256, while G is implemented using SHA3-512.
A U is a variant of SABER that samples the secret vectors s
and s’ from the centered uniform distribution rather than the
binomial distribution. The advantage of the use of uniform
distribution is that the secret generation becomes more effi-
cient as sampling from U is simpler than sampling from βμ.
The h1 and h2 are the constant polynomials used in SABER.
Finally, the l, εq , εp and εT are the implementation con-
stants and their corresponding values for SABER are 3, 13,
10 and 4.

Algorithm 1 SABER.PKE.KEYGEN() [9]
Require: SABER Parameter Lengths
Ensure: pk ⇐ (seedA, b), sk ⇐ (s)
1: seedA ⇐ U({0, 1}256)
2: A ⇐ gen(seedA) ∈ Rl×l

q

3: r ⇐ U({0, 1}256)
4: s ⇐ βμ(Rl×l

q ; r)
5: b ⇐ ((AT s + h) mod q) � (εq − εp) ∈ Rl×l

p

Algorithm 2 SABER.PKE.ENC() [9]
Require: pk ⇐ (seedA, b),m ∈ R2; r)
Ensure: c ⇐ (cm , b′)
1: A ⇐ gen(seedA) ∈ Rl×l

q
2: if r is not speci f ied then
3: r ⇐ U({0, 1}256)
4: end if
5: s′ ⇐ βμ(Rl×l

q ; r)
6: b′ ⇐ ((As′ + h) mod q) � (εq − εp) ∈ Rl×1

p

7: v′ ⇐ bT (s′ mod p) ∈ Rp
8: cm ⇐ (v′ + h1 − 2εp−1m mod p) � (εp − εT) ∈ RT

Algorithm 3 SABER.PKE.DEC() [9]
Require: sk ⇐ s, c ⇐ (cm , b′)
Ensure: m′
1: v ⇐ b′T (s mod p) ∈ Rp
2: m′ ⇐ ((v − 2εp−εT cm + h2) mod p) � (εp − 1) ∈ R2

KEYGEN: PKE.KEYGEN begins by randomly gener-
ating a seed that defines an l × l matrix A comprising l2

polynomials in Rq . A function gen of Algorithm 1 is used
to generate a matrix from the seed based on SHAKE-128.
A secret vector s of polynomials is also generated. These

Algorithm 4 SABER.KEM.KEYGEN() [9]
Require: SABER.PKE.KEYGEN()
Ensure: pk ⇐ (seedA, b), sk ⇐ (s,z,pkh)
1: pk ⇐ (seedA, b)
2: pkh ⇐ F(pk)
3: z ⇐ U({0, 1}256)

Algorithm 5 SABER.KEM.ENCAPS() [9]
Require: pk ⇐ (seedA, b)
Ensure: c, K
1: m ⇐ U({0, 1}256)
2: (K̂ , r) ⇐ G(F(pk),m)

3: c ⇐ SABER.PKE.ENC(pk,m; r)
4: K ⇐ F(K̂ , c)

Algorithm 6 SABER.KEM.DECAPS() [9]
Require: sk ⇐ (s, z, pkh), pk ⇐ (seedA, b), c
Ensure: K
1: m′ ⇐ SABER.PKE.DEC(s, c)
2: (K̂ ′, r ′) ⇐ G(pkh,m′)
3: c′ ⇐ SABER.PKE.ENC(pk,m′; r ′)
4: if c = c′ then
5: K ⇐ H(K̂ ′, c)
6: else
7: K ⇐ H(z, c)
8: end if

polynomials are sampled from a centered binomial distribu-
tion. The generated public key contains a matrix seed and
rounded product AT s, while the secret key contains a secret
vector s. KEM.KEYGEN follows the same acts as used for
the PKE.KEYGEN, except that it appends a secret key with
a hash of the public key and a randomly generated string z.

ENC and ENCAPS: The PKE.Enc operation consists
of generating a new secret s’ and adding message to the
inner product between the public key and the new secret
s’. This forms the first part of the ciphertext, while the sec-
ond part contains the rounded product As’. TheKEM.Encaps
operation starts by randomly generating a message m and
obtaining from that the public key. The ciphertext c contains
the encrypted message and a value achieved from the mes-
sage and public key.

DEC and DECAPS: PKE.Dec requires the secret key s
to extract original message from the inner product between
the public and secret keys. PKE.Dec is the counterpart to
PKE.Enc. KEM.Decaps re-encrypts the obtained message
with the randomness associated with it and checks whether
the ciphertext corresponds to the one received.

2.4 SABER variants

For security equivalent to AES-128, AES-192, and AES-
256, SABER supports three different variants: LightSABER,
SABER, and FireSABER. All three variants use polynomial
degree N = 256 and moduli q = 213 & p = 210. They

123

Journal of Cryptographic Engineering

differ only in the module dimension, binomial distribution
parameter (μ), and the message space. For additional details
about security parameters, PKE and KEM operations, we
refer readers to [25].

3 Architecture of our SABER design

First, we clarify that in order to demonstrate a chip that imple-
ments the SABER protocol, our design has to be augmented
with appropriate interfaces for control purposes and debug
purposes. At the center of our chip lies a coprocessor-styled
crypto core and its many specialized blocks for SABER. The
entire architecture of our SABERaccelerator design is shown
in Fig. 1. At the highest level, it consists of awrapper, a serial-
in/out interface, and the SABER crypto core itself.

The wrapper acts as a controller to operate the required
cryptographic operations. As the name implies, serial-in/out
bears inputs serially from outside to the chip and also results
in a serialized output. The SABER crypto core is responsi-
ble for the computations of corresponding operations such
as KEYGEN, ENCAPS and DECAPS. Moreover, it com-
prises a data memory, a routing network, a pipeline register,
a shared shift buffer, several specific building blocks, and
an FSM-based dedicated controller. The building blocks of
SABER read input operands from the data memory and, after
computations, write the result back onto the same memory.
The used data memory is of 8KB size such that all SABER
variants (LightSABER, SABER, and FireSABER) can be
operated. An essential design parameter is the word size of

inferred memory. We remind the reader that the SABER
protocol requires hash computations using SHA3-256/512
and SHAKE128. These hash functions operate on the kec-
cak sponge function that reads/writes data in 64-bit words.
Therefore, we use the same word size of 64-bit as utilized in
the SABER accelerators described in [9, 23]. All the blocks
of Fig. 1 support 64-bit data for reading/writing operations.
More insights and details of several blocks of our SABER
chip architecture are described in the following subsections.

3.1 Wrapper

The wrapper of our chip contains 16 single-bit I/O pins, not
shown in Fig. 1 for the sake of clarity. The input pins are
clk1, clk2, rst , start , we, cont , addr , addr_ready, din,
lad1, lad2, crypto_op_1, crypto_op_2 and crypto_op_3.
Similarly, the output pins are dout and done.

As we are interested in operating the SABER crypto core
at a high frequency, it becomes difficult to communicate with
the outside environment also at a high frequency. Therefore,
two different clocks (named clk1 and clk2) are utilized. The
clk1 pin drives a slower clock that feeds the serial I/O inter-
face of the chip. Similarly, clk2 drives the faster clock that
is connected to the inner SABER crypto core. The names of
various other I/O pins are intuitive: rst is a reset signal, start
is a trigger signal for starting cryptographic operations, we
is a write-enable, din is data in, dout is data out, addr is
address. The pins addr_ready and done inform when oper-
ations are finalized, either loading an address or an entire
crypto operation.

Fig. 1 Block diagram of our fabricated SABER chip. The I/O pins are not shown for clarity

123

Journal of Cryptographic Engineering

The purpose of the use of a cont pin is to measure
the power consumption of our chip when the KEYGEN,
ENCAPS and DECAPS operations are executed continu-
ously (i.e., in an infinite loop). By doing so,wemake sure that
the power measurement is not affected by I/O limitations.

The combined use of lad1 and lad2 allows us to drive
four possible combinations: (i) 2’b00 means “no-operation",
(ii) 2’b01 means load read/write address on the chip using
addr , (iii) 2’b10 means load input data vector from outside
on the chip using din, and (iv) 2’b11means reading data back
from the chip on dout . The crypto_op_1, crypto_op_2, and
crypto_op_3 signals are used to select the crypto operation,
either KEYGEN, ENCAPS, or DECAPS.

The wrapper of our chip is an FSM-based dedicated con-
troller. It is responsible to execute the KEYGEN, ENCAPS
and DECAPS operations by properly orchestrating the
sequential use of the SABER blocks. The chip remains
in an IDLE mode until the start signal is asserted. Next,
based on the values of crypto_op_1, crypto_op_2, and
crypto_op_3, the FSM begins to execute the correspond-
ing sequence of instructions for computation of KEYGEN,
ENCAPS andDECAPS operations.When the requiredKEM
operation completes its execution, the FSMswitches back the
chip into an IDLEmode (if cont is 0, otherwise the operation
is continuously executed non-stop when cont is 1).

3.2 Serial-in/out interface

The purpose of the serial interface is to load or read data
serially. The same interface is used for loading user input
and for debugging purposes. For this reason, the serial inter-
face gives access to the entire 8KB memory addressing
space. To achieve this, the interface accumulates incoming
bits into desired vector lengths (i.e., 10-bits for read/write
addresses, and 64-bits for read/write data). To accumulate a
10-bit address or a 64-bit input/output data, the serial-in/out
interface employs three shift registers: (i) one for read/write
address, (ii) one for data input and (iii) one for data output.
More precisely, the addr , din, and dout pins of our fab-
ricated chip are connected to the corresponding read/write
address, data input, and data output shift registers. The cor-
responding values on lad1 and lad2 are utilized to mux the
corresponding shift register to the right pins.

3.3 SABER crypto core

The intention of the SABER crypto core is to perform the
related cryptographic operations, i.e., KEYGEN, ENCAPS,
and DECAPS, of the SABER protocol. As shown in Fig. 1,
it consists of several blocks, i.e., a data memory, routing net-
work, a pipeline register, a shared shift buffer, building blocks
and a dedicated controller. We provide the relevant details of
these blocks in the following subsections.

3.3.1 Data memory

In [9], a BRAM-based dual-port data memory of size
1024×64 is utilized in a coprocessor architecture. Recently,
we have optimized this FPGA-targeted coprocessor archi-
tecture of [9] for evaluation as an ASIC on a commercial
65nm technology [23].We replace theBRAMwith anSRAM
with the same overall size of (1024×64) but different imple-
mentation. The SRAM is generated by using a commercial
memory compiler of a partner foundry. Moreover, a smart
memory synthesis process is (also) explored to minimize
the critical path and eventually to maximize the clock fre-
quency. The concept of smart synthesis determines that
smaller and distributedmemories in anASIC design could be
more advantageous as the smaller memories require simpler
address decoder units (which are faster and leads to perfor-
mance improvements with area and power overheads). Based
on this observation, five optimized architectures of SABER
with different memory configurations are presented in [23].
The highest clock frequency is achieved when using four
instances of a single-port SRAM-based RegFile. The Reg-
File is not an array of flip-flops. It is a “high-speed” variant
of SRAM according to its vendor.

Based on the aforesaid concept, and as also highlighted in
Fig. 1, our architecture utilizes four instances of 256× 4 size
of a single-port SRAM-based RegFile as a data memory to
retain initial, intermediate, and final results for the execution
of required cryptographic operations. The total size of our
four memory instances is (256× 4) × 4 = 65Kbits.

3.3.2 Routing network

The proposed SABER chip splits the memory address space
in multiple memory blocks. However, each memory requires
a unique write enable, read/write address and input/output
data signals. Thus, a unified routing network is necessary for
several building blocks of the SABER to communicate with
the corresponding memory instance(s) transparently. Con-
sequently, the routing network of our proposed architecture
consists of several multiplexers to deal with the correspond-
ing memory instances for reading and writing operations.

3.3.3 Pipeline register

The use of different memory configurations results in a
change in the critical path of the SABER design, as pre-
sented in [23]. In our architecture, the critical path becomes
from the output of a memory instance to dout (a chip output)
through the binomial sampler. Therefore, to shorten the crit-
ical path and to eventually improve the clock frequency, we
have placed a pipeline register between the routing network
and the binomial sampler, as shown in Fig. 1.

123

Journal of Cryptographic Engineering

3.3.4 Shared shift buffer

The many building blocks of SABER require shift registers
with different lengths to acquire data from many memory
addresses and then accumulate into local registers. For exam-
ple, a 320-bit long register is required in AddRound and
BS2POLVECp while a 64 and 676-bit register is required
in AddPack and multiplier, respectively.

The use of different buffers in different building blocks of
SABER results in higher hardware resources and consumes
more power. Therefore, a better solution is to use a single
shared buffer. The difficulty is in determining an appropri-
ate length for such buffer. As SABER requires polynomial
multiplications over 256 13-bit coefficients, a serialized
architecture is more beneficial to load some partial coeffi-
cients for multiplication and then, load the next coefficients.
In our case, we have loaded 52 13-bit polynomial coeffi-
cients in a 676-bit buffer for multiplications. After that, the
next coefficients are loaded for multiplications, and so on
until the completion of 256 coefficients. As in [23], we have
shared a single 676-bit register across AddRound, AddPack,
BS2POLVECp , and multiplier in our SABER chip archi-
tecture. This saves area at no cost in performance since the
critical path lies elsewhere.

3.3.5 SABER building blocks

As shown in Fig. 1, the required building blocks are, polyno-
mial multiplier wrapper, variants of secure hash algorithms,
(i.e., SHA3-256, SHA3-512, and SHAKE-128), a bino-
mial sampler, AddRound, AddPack, Unpack, Constant-time
Move (CMOV), CopyWords, BS2POLVECp and Verify.
Somemore insight details for these building blocks are given
as follows.

The multiplier wrapper incorporates a centralized multi-
plier architecture based on a schoolbook multiplication for
multiplying polynomial coefficients. The idea for the central-
izedmultiplier architecture is precomputation of severalmul-
tiples of multiplicands at once and then, forwarding of these
multiples to the parallel MAC (multiply-and-accumulate)
units. Next, the employed MAC instances select their right
multiple of a multiplicand depending on their corresponding
bits of the multiplier and then, add to the accumulator. It is
important to note that the proposed SABER chip architecture
utilizes the centralized multiplication architecture of [26].
Therefore, we direct readers to [26] for complete algorith-
mic and architectural details of centralized schoolbook-based
polynomial multiplication.

SABER requires variants of hash functions (SHA3-
256/512) that were standardized in [27]. Moreover, to
generate pseudorandom numbers, an extendable output func-
tion SHAKE-128 is also required and is standardized in
[27]. Since all of these functions utilize the Keccak sponge

function [27], we operate the SHA3-256, SHA3-512 and
SHAKE-128 like a wrapper in our SABER chip architecture
as implemented in [9]. For the detailed unified architecture of
SHA3-256, SHA3-512 and SHAKE128, we redirect readers
to [9].

A sampler is mandated to compute the sample from a
pseudo-random input string for all (supported) PKE and
KEM operations. Similar to [9], the binomial sampler in our
proposed SABER chip architecture is a combinational block
that directly maps pseudo-random bits from an input buffer
to a sample value.

The verify block of the SABER crypto core is only
required during the decapsulation operation of KEM. It is
responsible to provide a word-by-word comparison between
the received ciphertext and re-encrypted ciphertext. The
result of verify block is stored in a register that is used
by CMOV to either copy the decrypted session key or a
pseudo-random string at a specified memory address. The
AddPack performs coefficient-wise addition with a constant
followed by the generated message, and it packs the resul-
tant bits into a byte string. Similar to the Addpack block,
AddRound computes coefficient-wise addition of a constant
followed by coefficient-wise rounding. The conversions from
byte into a bit string are the responsibility of unpack unit. The
BS2POLVECp block converts the byte string into a polyno-
mial vector.

For more insight into the details and architectures of the
building blocks of SABER, we refer readers to [9, 23].

3.3.6 Controller

Based on the instructions from the wrapper for the computa-
tion of KEYGEN, ENCAPS and DECAPS, the controller
generates the corresponding control signals to the inner
SABER core.Moreover, it controls the use of the shared shift
buffer and the routing network. Since the binomial sampler
is connected through a pipeline reg (highlighted with green
color in Fig. 1), this creates execution bubbles. The controller
also handles the synchronization effort between blocks.

4 Results and chipmeasurements

The silicon demonstration of our proposed SABER archi-
tecture is carried out in a 65nm CMOS technology. For
RTL (register-transfer level) description and verification,
Verilog is used. Next, the top-level design was synthesized
usingCadenceGenus and a foundry-provided 65nm standard
cell library. After that, the generated netlist was loaded for
physical implementation in Cadence Innovus. For physical
verification (DRC and LVS), Calibre was used. Later on, the
GDSII file was submitted to the foundry for fabrication.

123

Journal of Cryptographic Engineering

A total of one hundred chips were fabricated, and twenty-
five were packaged in a Dual-In-Line-28 (DIP-28) form
factor.

In Fig. 2, we show the layout of our chip in which the
four memory instances are highlighted around the corners
across the core. We used M2 to M7 for signal routing pur-
poses.M7 is also utilized for creating a power ring around the
core.Moreover, the power is distributed across the core using
stripes in M8 and M9. The die size is 960μm × 960μm. The
SABER design barely fits in this size. The placement density
of the core area is 93.4%, with the remaining 6.6% occupied
by decap and filler cells. This incredibly high density made
the design very challenging for timing closure. Note the high
density zone shown by the yellow dotted lines in Fig. 2. The
image inset shows the few empty spaces in orange. For the
sake of visibility, all signal routing layers were excluded.
Moreover, the I/O pins (seven on each side of the chip) and
power stripes routed across the entire chip, horizontally and
vertically, are visible. Similarly, we show a die shot of an
unpackaged chip taken with the aid of a microscope in Fig. 3.
It is possible to recognize the same power routing stripes and
IOs as in the layout.

The testing setup utilized to bring-up our chip is shown in
Fig. 4. A custom PCB was fabricated to facilitate the test and
enable measurements. The packaged chip is placed on the
PCB on a DIP-28 socket. Two power sources are connected
to the PCB via BNC connectors. Then, the PCB distributes
power to the core logic (1.2V) and IO cells (2.5V). On the
PCB, small decoupling capacitors are mounted manually for
bothVDDs.TheSTM32F446RE [28]microcontroller is inte-
grated with the PCB to drive all the input signals except the
faster clock (i.e., clk2). The microcontroller also collects the
outputs of the chip. To generate the fast clk2, we have used
a high frequency generator (shown between the two power
sources in Fig. 4). Our chip does not contain an internal clock
generator.

As illustrated in Sect. 3.3.1, we employ four smaller mem-
ories. The addressing ranges of the memories are [0-255],
[256-511], [512-767], and [768-1023]. Unfortunately, due
to a logic bug, the first address of memories 2, 3, and 4 is
incorrectly decoded and data are overwritten. Thisminor log-
ical error results in a few flipped bits on the output of the
chip when compared with the expected results. This issue
could be bypassed for lightSABER by avoiding these mem-
ory addresses, but theSABERandfireSABERvariantswould
still encounter this limitation. In either case, the computa-
tional blocks of SABER are not affected, nor is the number
of memory accesses changed. For this reason, we are con-
fident that the power values reported in this manuscript are
representative.

Fig. 2 Screenshot of the chip layout from Cadence Innovus

4.1 Leakage current measurement

In Fig. 5, we plot a normal distribution of the average leak-
age current measurements of the twenty-five packaged chips.
We remind the reader that leakage (or state-off) current
is the current that flows through a device even when the
device is not actively computing. The average leakage cur-
rent is 0.2099mA, and the standard deviation is 0.0409.
The measured data points are plotted as red circles over
the normal distribution (black line). The pre-silicon leakage
current results (obtained from Innovus) for three different
corners, i.e., typical, worst, and best, are 0.164mA (on 1.2V),
0.450mA (on 1.08V) and 3.20mA (on 1.32V), and these val-
ues are relative to temperatures of 25◦C , 125◦C and 0◦C ,
respectively. The blue vertical line in Fig. 5 shows the pre-
silicon leakage current value for typical corner. It appears that
the measurement results are a bit more pessimistic than the
simulated value predicted, butwithin the expected range. The

123

Journal of Cryptographic Engineering

Fig. 3 Microscope view of an unpackaged die where we can identify
the IOs (7 on each side) and horizontal & vertical power stripes on the
top metal layers

Fig. 4 Testing setup used to validate our fabricated SABER chip

best and the worst measured data points are also highlighted
in Fig. 5.

4.2 Area, timing and power results

To identify the highest possible frequency of operation and
the corresponding power consumption, we place the sam-
ple identified as ‘best case’ on the PCB. At 1.2V, the
KEM-supported operations, i.e., KEYGEN, ENCAPS, and
DECAPS, of SABER can be executed on 770, 715 and
840MHz. On identical operational conditions, correspond-
ing power values for KEYGEN, ENCAPS and DECAPS
operations are 151, 158 and 157mW . The reported power
values are obtained using a high-precisionmeasurement unit,
highlighted with a red portion in Fig. 4. Therefore, we have
determined that 715MHz is the optimal clock frequency

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Leakage current (mA)

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty

Normal distribution
(μ = 0.2099, σ = 0.0409)
Leakage current (Measured)
Leakage current (Simulation)

Worst case

Best case

Fig. 5 Average leakage current measurement plotted as a normal dis-
tribution. Each red circle corresponds to a single sample or chip. Best
and worst values are highlighted

Table 1 Timing results for CCA-secure KEM SABER after physical
measurements at 715MHz, nominal 1.2V

Operation KEYGEN ENCAPS DECAPS

Clock cycles 7154 7136 9359

Latency1 (in μs) 10.00 9.98 13.08

The detailed clock cycles description is available in our earlier work
[23] 1The latency values are calculated using clock cycles

715MHz

Table 2 Top level area breakdown of our SABER chip

Design unit(s) Utilized area (mm2)

Pads and I/O ring 0.350

Wrapper + serial interface 0.041

SABER core 0.232

Memories 0.104

where KEM-associated KEYGEN, ENCAPS and DECAPS
operations perform correctly.

On 1.2V@715MHz, the consumed power of our SABER
chip is 151mW (for KEYGEN), 158mW (for ENCAPS) and
152mW (for DECAPS). Therefore, the average power con-
sumption is 153.6mW . The timing results in terms of clock
cycles and latency for KEM supported operations are pro-
vided in Table 1. Similarly, the top-level area breakdown of
our fabricated SABER design is shown in Table 2 where col-
umn one provides the design units and column two shows
the utilized area.

Table 2 shows that the I/O placement, serial-in/out inter-
face, SABER crypto core, and four instances of small
memories utilize 0.350, 0.041, 0.232 and 0.104mm2 area
out of the total 1mm2 chip size. If we calculate the sum of
the areas of these blocks, the net area becomes 0.727mm2.
Most of the remaining area is wasted with mandatory empty
spaces between the IO cells and the seal ring, the IO cells
and the core, and power rings.

123

Journal of Cryptographic Engineering

200 400 600 800
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Frequency (MHz)

S
u
p
p
ly

(V
)

Fig. 6 Graphical representation of the entire range of operation that the
chip supports (Shmoo plot)

The graphical representation of the complete range of
operation that our fabricated SABER chip supports is illus-
trated in Fig. 6. The horizontal axis is the frequency of
operation (in MHz), where each tick represents an incre-
ment of 10MHz. The supplied voltage (in V) is shown on
the vertical axis in steps of 0.05V.

Figure6 demonstrates that the chip is fully operational at a
very small clock frequencyof 10MHzwith a suppliedvoltage
of 0.65V. The increase in VDD (from 0.65 to 1.4) results in
an increase in the operational frequency (from 10MHz to a
bit more than 800MHz).

5 Comparison and discussion

The comparison of area, timing and power to existing ASIC
implementations of SABER is shown in Table 3. The refer-
ence design (Ref) is presented in column one. Column two
provides the targeted implementation technology (Tech). The
area utilization (inmm2) is shown in column three. Columns
four and five present the clock cycles and frequency (Freq.
in MHz) values, respectively. The latency (Lat. inμs) values
are given in column six. Finally, the last column shows the
total consumed power (Pow. in mW).

Fully parallelized architecture of [20]: On amore recent
40nm technology, the implementation results reported in [20]
are after logic synthesis. The comparison shows that our
fabricated SABER design on 65nm technology utilizes 2.63
times higher hardware resources because we have presented
a real chip while in [20] appears to be a block design (i.e.,
no I/Os). Additionally, we have a serialized infrastructure for
communication and debug purposes that also requires a small
amount of area.

The clock cycles, reported in [20], for KEYGEN,
ENCAPS and DECAPS operations are 6.87, 4.95 and 5.57
times lower than our fabricated SABER design. Let us

explore the reasons for the clock cycles utilization. Formulti-
plying two 256-degree polynomials in SABER, a centralized
schoolbook multiplier architecture of [26] is used in our
SABER design. It takes 256 clock cycles to perform one
polynomial multiplication. On the other hand, in [20], the use
of an 8-level Karatsuba multiplier for the same polynomial
length requires 81 clock cycles rather than 256. Despite the
different polynomial multiplier, another reason is the use of a
high-speed Keccak module comprising two parallel sponge
functions (Keccak-f) in [20]. It performs twoKeccak-f[1600]
computations in each clock cycle, and each round of Keccak
is performed every 12 clock cycles. A single sponge function
in a serial fashion is incorporated in our SABER chip archi-
tecture which requires 28 clock cycles to generate 1,344 bits
of a pseudo-random string. The lower clock cycles utiliza-
tion in [20] results in lower latency values (shown in column
six of Table 3). Naturally, these numbers have to be analyzed
with the immense caveat that we are comparing pre-silicon
data in 40nm to silicon measurements in 65nm.

High-speed SABER architecture of [23]: Our SABER
crypto core employs the same architecture of [23]. The dif-
ference is the real chip that we have presented in this work
where it contains the real I/Os, serial-in/out interface and
three shift registers for accumulating inputs/outputs to/from
the fabricated chip. Then, as expected, the utilized hardware
resources in [23] are comparatively 3.22 times lower than
our fabricated chip. As shown in column four of Table 3, the
number of clock cycles is the same between this work and
[23].

Concerning comparison with the clock frequency, the
value obtained after logic synthesis in [23] is 1GHz which is
comparatively 1.39 times higher than our fabricated SABER
chip architecture (wherewe achieved 715MHz). This drop in
frequency is somewhat expected since logic synthesis can be
toooptimistic, specially for a verydensefloorplan like theone
in our chip. A portion of the drop can also be attributed to pro-
cess variation, which is also expected. Due to the reduction
in clock frequency, the total average power of our fabricated
SABER chip is 1.21 times lower as compared to the value
obtained after logic synthesis in [23]. In summary, in this
work, the presented results for area, timing, and power are
more realistic than the synthesis results reported in [23].

SABER design fabricated in [21]: To provide a realistic
comparison on an equivalent 65nm technology, as shown in
Table 3, we have also used the same conditions (160MHz@
nominal 1.2V and 10MHz@ 0.7V) for measurement results
as used in [21]. The comparison is given below.

F = 160MHz,VDD = 1.2V . For the computation of
KEYGEN, ENCAPS and DECAPS operations of SABER,
our chip is 2, 2.62 and 2.50 times faster in terms of clock
cycles and computational time (latency). Because, for mul-
tiplying two 256-degree polynomials in SABER, we used a
centralized schoolbookmultiplier of [26] which requires 256

123

Journal of Cryptographic Engineering

Table 3 Comparison of our SABER accelerator with existing ASIC implementations

Refs. Tech/Fab? Area (mm2) Clock cycles Freq. (MHz) Lat. (in μs) Pow. (mW)

[20] 40nm/No 0.38 1040/1440/1680 400 2.6/3.6/4.2 –

[23] 65nm/No 0.31 7154/7136/9359 1000 7.1/7.1/9.3 185.9

[21] 65nm/Yes 1.6 14336/18704/23376 160 @ 1.1V 89.6/116.9/146.1 –

[21] 65nm/Yes 1.6 –/–/– 10 @ 0.7V –/–/– 0.334

[22] 28nm/Yes 3.6 –/–/– 500 @ 0.9V –/–/– 39–368

TW 65nm/Yes 1 7154/7136/9359 160 @ 1.2V 44.7/44.6/58.4 43.5

TW 65nm/Yes 1 7154/7136/9359 10 @ 0.7V 715.4/713.6/935.9 0.855

TW 65nm/Yes 1 7154/7136/9359 715 @ 1.2V 10/9.9/13 153.6

All implementation results are for security equivalent to AES-192. Clock cycles and latency values are for KEYGEN/ENCAPS/DECAPS. The area
of SABER crypto core is reported for [20] and [23] while chip size is reported for [21] and [22]. For this work (TW), chip size is also reported
as areaThe Fab? entry determines if the reported results are from simulation/synthesis or from measurement of fabricated chips. For [21], we
calculated clock cycles by multiplying the corresponding latency values with 160MHz clock frequency

clock cycles to perform one polynomial multiplication. On
the other hand, in [21], the use of Toom–Cook with striding
of 4 is utilized to reduce the memory requirement to half
but with an excess of clock cycles (i.e., 1298 for one polyno-
mialmultiplication). As investigated in [29], the Toom–Cook
multiplier is inherently more expensive in the hardware area
as compared to the schoolbook multiplier. Then, the use of a
schoolbookmultiplier and a shared shift buffer across various
building blocks of SABER results in 1mm2 chip size which
is comparatively 1.6 times lower as compared to [21]. The
power comparison is not possible as the relevant information
is not reported.

F = 10MHz,VDD = 0.7V . The comparison with clock
cycles and latency parameters is not possible as the cor-
responding information is not available in [21]. Only the
comparison with power is feasible. Comparatively, our fab-
ricated chip consumes 2.55 times more power. The reason is
that we fabricated the SABER chip with aid to obtain higher
clock frequency, while the objective in [21] was low area and
power reduction.

If we provide a comparison of 715 MHz@ 1.2V with the
highest obtained clock frequency (i.e., 160MHz @ 1.1V) of
[21], our fabricated chip is 8.96, 11.80 and 11.23 times faster
for the computation of KEYGEN, ENCAPS and DECAPS
operations, respectively.

Flexible design fabricated in [22]: As shown in Table 3,
a realistic and reasonable comparison with area, timing, and
power parameters is not possible as the implementation tech-
nologies are different (we use 65nm while a modern 28nm
is used in [22]). Moreover, our proposed design is specific
to SABER while a flexible design for several cryptographic
primitives (SABER, NTRU, Dilithium, Rainbow, Kyber and
McEliece) is demonstrated in [22]. Depending on the execu-
tion of a specific cryptographic protocol, the power values
are in the range of 39–368mW . Therefore, this comparison
is also not possible to provide.

6 Conclusions

This article has presented a fabricated design of the SABER
protocol on 65nm technology. The main features of the
design are a centralized schoolbookmultiplier for 256-degree
polynomial multiplications, a shared buffer across several
building blocks, pipelining, and distributed memories. Over-
all, the chip size is relatively small at 1mm2, but the achieved
frequency is the highest among the considered works. This
confirms that our smart memory strategy and pipelining deci-
sions appear to be very beneficial. As future work, we believe
there remain many optimizations possible, including better
using the distributed memories for improved throughput.

Funding This work was partially supported by the EC through the
European Social Fund in the context of the project “ICT programme”.
It was also partially supported by European Union’s Horizon 2020
research and innovation programme under grant agreement No 952252
(SAFEST). Sujoy Sinha Roy received funding by the State Government
of Styria, Austria - Department Zukunftsfonds Steiermark.

Data Availability The data (RTL codes) generated during and/or imple-
mented during the current study are available in the saber-chip reposi-
tory, https://github.com/Centre-for-Hardware-Security/saber-chip.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Shor, P.W.: Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer. SIAM
J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/
S0097539795293172

2. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM
21(2), 120–126 (1978). https://doi.org/10.1145/359340.359342

123

Journal of Cryptographic Engineering

3. Diffie, W., Hellman, M.: New directions in cryptography. IEEE
Trans. Inf. Theory 22(6), 644–654 (1976). https://doi.org/10.1109/
TIT.1976.1055638

4. Merkle, R.C.: Secure communications over insecure channels.
Commun. ACM 21(4), 294–299 (1978). https://doi.org/10.1145/
359460.359473

5. U.S. NSA. Commercial national security algorithm suite
and quantum computing faq (last accessed on March 17
). Available at: https://cryptome.org/2016/01/CNSA-Suite-and-
Quantum-Computing-FAQ.pdf (2022)

6. Yeniaras, E., Cenk,M.: Faster characteristic three polynomial mul-
tiplication and its application to ntru prime decapsulation. J. Cryp-
togr. Eng. (2022). https://doi.org/10.1007/s13389-021-00282-7

7. NIST. Round 3 finalists: Public-key encryption and key-
establishment algorithms (last accessed on March 11). Avail-
able at: https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions (2022)

8. Basso, A., Aydin, F., Dinu, D., Friel, J., Varna, A., Sastry, M.,
Ghosh, S.: Where star wars meets star trek: Saber and dilithium on
the same polynomial multiplier. Cryptology ePrint Archive, Report
2021/1697 (2021). https://ia.cr/2021/1697

9. Roy, S. Sinha., Basso, A.: High-speed instruction-set coprocessor
for lattice-based key encapsulation mechanism: Saber in hardware.
In: IACR Transactions on Cryptographic Hardware and Embedded
Systems 2020, 443–466 (2020). https://doi.org/10.13154/tches.
v2020.i4.443-466

10. Mera, J. Maria Bermudo., Turan, F., Karmakar, A., Roy, S. Sinha.,
Verbauwhede, I.: Compact domain-specific co-processor for accel-
erating module lattice-based kem (2020). In: Paper presented at
the 57th ACM/IEEE Design Automation Conference (DAC), San
Francisco, CA, USA, pp. 1–6, July 20–24 (2020)

11. Fritzmann, T., Sigl, G., Sepúlveda, J.: Risq-v: Tightly coupled risc-
v accelerators for post-quantum cryptography. Cryptology ePrint
Archive, Report 2020/446 (2020). https://ia.cr/2020/446

12. Lee, W.K., Seo, H., Hwang, S.O., Karmakar, A., Mera, J.M.B.,
Achar, R.: Dpcrypto: Acceleration of post-quantum cryptographic
algorithms using dot-product instruction on gpus. Cryptology
ePrint Archive, Report 2021/1389 (2021). https://ia.cr/2021/1389

13. Becker, H., Mera, J.M. Bermudo., Karmakar, A., Yiu, J., Ver-
bauwhede, I.: Polynomial multiplication on embedded vector
architectures. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2022, 482–505 (2021). https://doi.org/10.
46586/tches.v2022.i1.482-505

14. Abdulrahman, A., Chen, J.P., Chen, Y.J., Hwang, V., Kannwischer,
M.J., Yang, B.Y.: Multi-moduli ntts for saber on cortex-m3 and
cortex-m4. Cryptology ePrint Archive, Report 2021/995 (2021).
https://ia.cr/2021/995

15. Karmakar, A., Mera, J.M.B., Roy, S.S., Verbauwhede, I.: Saber
on arm cca-secure module lattice-based key encapsulation on arm.
Cryptology ePrint Archive, Report 2018/682 (2018). https://ia.cr/
2018/682

16. Beirendonck, M.V., D’anvers, J.P., Karmakar, A., Balasch, J., Ver-
bauwhede, I.: A side-channel-resistant implementation of saber. J.
Emerg. Technol. Comput. Syst. 17(2), 1–26 (2021). https://doi.org/
10.1145/3429983

17. Fritzmann, T., Beirendonck, M. Van., Roy, D. Basu., Karl, P.,
Schamberger, T., Verbauwhede, I., Sigl, G.: Masked accelera-
tors and instruction set extensions for post-quantum cryptography.
IACR Transactions on Cryptographic Hardware and Embedded
Systems 2022, 414–460 (2021). https://doi.org/10.46586/tches.
v2022.i1.414-460

18. Abdulgadir, A., Mohajerani, K., Dang, V.B., Kaps, J.P., Gaj, K.: A
lightweight implementation of saber resistant against side-channel
attacks In: Adhikari, A., Küsters, R., Preneel, B. (eds) Progress
in Cryptology—INDOCRYPT 2021. INDOCRYPT 2021. Lec-
ture Notes in Computer Science, vol. 13143. Springer, Cham.
(2021).https://doi.org/10.1007/978-3-030-92518-5_11

19. Wang, B., Gu, X., Yang, Y.: Saber on esp32. Cryptology ePrint
Archive, Report 2019/1453 (2019). https://ia.cr/2019/1453

20. Zhu, Y., Zhu, M., Yang, B., Zhu, W., Deng, C., Chen, C., Wei, S.,
Liu, L.: Lwrpro: An energy-efficient configurable crypto-processor
for module-lwr. IEEE Trans. Circuits Syst. I Regular Pap. 68(3),
1146–1159 (2021). https://doi.org/10.1109/TCSI.2020.3048395

21. Ghosh, A., Mera, J., Karmakar, A., Das, D., Ghosh, S., Ver-
bauwhede, I., Sen, S.: A 334μw 0.158mm2 saber learning with
rounding based post-quantum crypto accelerator (2022). Preprint
at https://arxiv.org/pdf/2201.07375.pdf

22. Zhu„ Zhu, W., Zhu, M., Li, C., Deng, C., Chen, C., Yin, S., Yin, S.,
Wei, S., Liu, L.: A 28nm 48kops 3.4 μ j/op agile crypto-processor
for post-quantum cryptography on multi-mathematical problems
(2022). In: IEEE International Solid State Circuits Conference
(ISSCC), San Francisco, CA, USA, pp. 514–516, February 20–26,
(2022)

23. Imran,M., Almeida, F., Raik, J., Basso, A., Roy, S.S., Pagliarini, S.:
Design space exploration of saber in 65nm asic (2021). In: Paper
Presented at the Proceedings of the 5th Workshop on Attacks and
Solutions in Hardware Security, Virtual Event, Republic of Korea,
pp. 85–90, November 19, (2021)

24. Imran, M., Pagliarini, S.: saber-chip (last accessed on March 21
). (2022) Available at https://github.com/Centre-for-Hardware-
Security/saber-chip

25. Basso, A., Mera, J.M.B., D’Anvers, J.P. , Karmakar, A., Roy,
S.S., Beirendonck, M.V., Vercauteren, F.: Saber: Mod-lwr based
kem (round 3 submission) (last accessed on March 23).(2022)
Available at https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
files/saberspecround3.pdf

26. Basso, A., Roy, S.S.: Optimized polynomial multiplier architec-
tures for post-quantum kem saber (2021). In: Paper Presented at
the 58th ACM/IEEE Design Automation Conference (DAC), San
Francisco, CA, USA, p. 1285–1290, December 5–9 (2021)

27. NIST.: Sha-3 standard: Permutation-based hash and extendable-
output functions. FIPS PUB 202 (last accessed onMarch 9) (2022).
Available at https://doi.org/10.6028/NIST.FIPS.202

28. STM32.: Nucleo-64 development board with stm32f446re mcu
(last accessed on February 19) (2022). Available at https://www.
st.com/en/evaluation-tools/nucleo-f446re.html

29. Imran, M., Abideen, Z.U., Pagliarini, S.: An open-source library
of large integer polynomial multipliers (2021). iN: Paper Presented
at the Proceedings of the 24th International Symposium on Design
and Diagnostics of Electronic Circuits Systems (DDECS), Vienna,
Austria, pp. 145–150, April 7–9 (2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

Curriculum Vitae
1. Personal data

Name Malik Imran
Date and place of birth 28 November 1988 Abbottabad, Pakistan
Nationality Pakistani
2. Contact information
Address

E-mail

Tallinn University of Technology (TalTech), School of Information Technologies,
Department of Computer Systems,
Ehitajate tee 5, 19086 Tallinn, Estonia
malik.imran@taltech.ee

3. Education
2020–2023

2012–2015

2007–2011

Tallinn University of Technology, School of Information Technologies,
Information and Communication Technology, Ph.D. studies
Abasyn University, Faculty of Electrical Engineering,
Telecommunication and Networks, MSc
Comsats Institute of Information & Technology, Faculty of Electrical Engineering,
Computer Engineering, BSc

4. Language competence
Urdu native
English fluent
5. Professional employment
Nov 2019–Aug 2023
Jan 2019–Oct 2019
Dec 2017–Dec 2018
May 2015–May 2017

Center for Hardware Security (CHS), Early Stage Researcher
Cyber Reconnaissance and Combat Lab (CRC-Lab), Research Associate
Bahria University, Lab Engineer + Teaching Assistant
Umm Al-Qurrah University, Research Consultant

6. Honors and awards
• 2021, Premium Award for Best Paper in IET Computers & Digital Techniques,

“Throughput/area optimised pipelined architecture for elliptic curve crypto proces-
sor” [Online] details can be accessed at the following link: https://ietresearch.
onlinelibrary.wiley.com/hub/prizes

7. Defended theses
• 2015, Optimization of Hardware Design and Implementation of Elliptic Curve

Cryptography (ECC) for Scalar Multiplication on FPGA, MSc, supervisor Prof.
Dr. Imran Shafi (imranshafi@ceme.nust.edu.pk), Abasyn University, Institute
of Information Technology

• 2011, Design and Simulation of 32 Bit Microprocessor for Computation of Complex
Numbers, BSc, supervisor Prof. Dr. Mohsin Fayyaz (mohsin1900@gmail.com),
Comsats University, Institute of Information Technology

8. Field of research
• Cryptography, including Post-Quantum
• Hardware Designs and Implementations
• FPGA and ASIC synthesis

188

https://ietresearch.onlinelibrary.wiley.com/hub/prizes
https://ietresearch.onlinelibrary.wiley.com/hub/prizes
imranshafi@ceme.nust.edu.pk
mohsin1900@gmail.com

Elulookirjeldus
1. Isikuandmed

Nimi Malik Imran
Sünniaeg ja -koht 28 November 1988 Abbottabad, Pakistan
Kodakondsus Pakistani
2. Kontaktandmed
Aadress Tallinna Tehnikaülikool (TalTech), Infotehnoloogia kool,

Arvutisüsteemide Osakond,
Ehitajate tee 5, 19086 Tallinn, Eesti

E-post malik.imran@taltech.ee
3. Haridus
2020–2023

2012–2015

2007–2011

4. Keelteoskus
Urdu keel
Inglise keel

Tallinna Tehnikaülikool, Infotehnoloogia kool,
Info- ja kommunikatsioonitehnoloogia, Ph.D.
Abasõni Ülikool, Elektrotehnika teaduskond,
Telekommunikatsioon ja võrgud, MSc
Comsatsi info- ja tehnoloogiainstituut, elektrotehnika teaduskond,
Arvutitehnika, BSc

emakeel
kõrgtase

5. Professionaalne töökoht
Nov 2019–Aug 2023 Riistvaraturbe keskus (CHS), varajases staadiumis uurija
Jan 2019–Oct 2019 Küberluure- ja võitluslabor (CRC-Lab), teadur
Dec 2017–Dec 2018 Bahria ülikool, laboriinsener + õppeassistent
May 2015–May 2017 Umm Al-Qurrah ülikool, teaduskonsultant
6. Autasud ja auhinnad

• 2021, Premium auhind jaoks parim paber in IET Computers & Digital Tech-
niques, “Throughput/area optimised pipelined architecture for elliptic curve
crypto processor” [Võrgus] üksikasjad on kättesaadavad järgmisel lingil: https:
//ietresearch.onlinelibrary.wiley.com/hub/prizes

7. Kaitstud teesid
• 2015, Elliptilise kõvera krüptograafia (ECC) riistvara disaini ja rakendamise opti-

meerimine skalaarseks korrutamiseks FPGA, MSc, juhendaja Prof. Dr. Imran Shafi
(imranshafi@ceme.nust.edu.pk), Abasõni Ülikool, Infotehnoloogia Instituut

• 2011, 32-bitise mikroprotsessori projekteerimine ja simulatsioon kompleksarvude
arvutamiseks, BSc, juhendaja Prof. Dr. Mohsin Fayyaz (mohsin1900@gmail.
com), Comsats University, Infotehnoloogia Instituut

8. Uurimisvaldkond
• Krüptograafia, sealhulgas Post–kvant

• Riistvara projekteerimine ja rakendamine

• FPGA ja ASIC süntees

189

https://ietresearch.onlinelibrary.wiley.com/hub/prizes
https://ietresearch.onlinelibrary.wiley.com/hub/prizes
imranshafi@ceme.nust.edu.pk
mohsin1900@gmail.com
mohsin1900@gmail.com

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-030-0 (PDF)

	List of Publications
	Abbreviations
	Introduction
	Novelty, Contributions & Summary of the Thesis

	Background
	Lattice-Based Post-Quantum Cryptography
	Building-Blocks for Lattice-Based Crypto Systems
	SABER PQC KEM Protocol
	Implementation Platforms and Hardware Accelerators

	A Generator of Large Integer Polynomial Multipliers
	Supported Features
	Proposed Multiplier Generator Architecture
	Implementation Results
	Figures of Merit and Trade-offs
	Comparison and Discussion

	Design Space Exploration of SABER
	Serial and Parallel SABER Architectures
	Memory Manager
	Pipelining
	Shared Shift Buffer
	Address Decoder Unit (ADU)
	SABER Building Blocks

	Implementation Results
	Comparison and Discussion

	High-Speed SABER Chip Design
	Chip Architecture
	Wrapper
	Serial-in/out interface
	SABER crypto core

	Measurement Results
	Chip Layouts and Experimental Setup
	Leakage Current Measurement
	Area, Timing and Power Results

	Comparison and Discussion

	Conclusions and Future Directions
	List of Figures
	List of Tables
	References
	Acknowledgements
	Abstract
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Curriculum Vitae
	Elulookirjeldus

