DOCTORAL THESIS

Fully Automated Tuning of
Microwave Coaxial Cavity
Filters

Even Sekhri

TALLINNA TEHNIKAULIKOOL
TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2024



TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS
20/2024

Fully Automated Tuning of Microwave
Coaxial Cavity Filters

EVEN SEKHRI



TALLINN UNIVERSITY OF TECHNOLOGY

School of Engineering

Department of Electrical Power Engineering and Mechatronics

This dissertation was accepted for the defence of the degree 22/04/2024

Supervisors: Prof. Mart Tamre
School of Engineering
Tallinn University of Technology, Tallinn, Estonia

Prof. Rajiv Kapoor
Electronics and Communication Department
Delhi Technological University, New Delhi, India

Prof. Anton Rassdlkin
School of Engineering
Tallinn University of Technology, Tallinn, Estonia

Industry Expert: Robert Hudjakov, Ph.D.
Software Developer
IPTE Automation OU, Tallinn, Estonia

Opponents: Dr Levon Gevorkov
Power Systems Group
Catalonia Institute for Energy Research (IREC), Spain, Barcelona

Dr Péteris Apse-Apsitis
Institute of Industrial Electronics and Electrical Engineering,
Riga Technical University, Riga, Latvia

Defence of the thesis: 30/05/2024, Tallinn

Declaration:

Hereby | declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology has not been submitted
for doctoral or equivalent academic degree.

Even Sekhri

A , signature
* "
L

L — >

European Union Investing
European Regional in your future
Development Fund

Copyright: Even Sekhri, 2024

ISSN 2585-6898 (publication)

ISBN 978-9916-80-138-3 (publication)

ISSN 2585-6901 (PDF)

ISBN 978-9916-80-139-0 (PDF)

DOl https://doi.org/10.23658/taltech.20/2024
Printed by Koopia Niini & Rauam

Sekhri, E. (2024). Fully Automated Tuning of Microwave Coaxial Cavity Filters [TalTech Press].
https://doi.org/10.23658/taltech.20/2024



TALLINNA TEHNIKAULIKOOL
DOKTORITOO
20/2024

Mikrolaine-koaksiaalfiltrite
taisautomaatne haalestamine

EVEN SEKHRI






Contents

(60o] a1 1T o | £ PO PPTRRRPP 5
List OFf PUBIICAtIONS ...eeeiiieeiii ettt st sbe e sree e 8
Author’s Contribution to the PUbliCatioNns ........cc.eeiiriiiiiiiiiicceee e 9
ADDIEVIALIONS ..ttt ettt e s e naee s 10
oY oo [0 4T ] o RO P PSPPSR 12
1.1 Motivation and BackgroUnd...........cccuiiiiiiii ettt 12
1.2 Research questions and 0bjJECtIVES ........cceiiiieeiiiiiiic e 14
L3 NOVEIIES .ttt s e st e e e s bte e e s aba e e s s abeeesnreeenn 14
2 Literature Review on Filter TUNING......cvevi i e e e 16
D R Ol F- T o1 (=T o Y7 T VT YRS 16
2.2 Scope Of the [iterature rEVIEW .......ccei ittt e 16
2.3 Review of filter tuning tEChNIQUES ......c.eeeiiiiieee e 16
2.4 Detailed comparison of tuning methods in literature .........ccccceeeeeeeiiieeeee e, 16
2.5 Review of various automated filter tuning hardware.........cccceeeviieeeciie e, 23
DTN A Y= 1T Yot (U= o | RSP 23
2.5.2 MUILIPIE @CLUATOTS . .uiiieciiee ettt e e e tr e e et e e e et e e e e nteeesnreaean 23
2.6 Analysis of the [iterature reVIiEW .........cceccieieeciiie et 25
2.6.1 Analysis related to tuning teChNIQUES.......cceiieeiciiiiieee e 25
2.6.2 Analysis related to filter tuning equipmMeNnt .........ceeeeiiiecciiieee e, 26
2.7 Chapter SUMMIAIY . ...iiiiieiee ettt e e e e ettt e e e e e e st be e e e e e e e e s ataseeeeaesseasaraeeeeaesennnnraeneas 27
3 Filter Tuning by Reinforcement Learning Simulations .........cccccceeeviieeeeciee e, 28
I Ol gF- T o1 (=T o 1Y T VT YRS 28
3.2 Overview of reinforcement learning and related algorithms ..........cccccoevieiiinnnenn. 28
3.2.1 Reinforcement |€arNiNg .........uuiiiiiii it e e e e aaaaee s 28
0 @ T ==Y o 1 = PP PPPPPPPPPRt 29
3.2.3 Deep Q-Learning (DQN) and its application to filter tuning.......cccecveevevvnvenneennee. 29
3.3 Optimal DQN algorithm applied to filter tuning .......cccoecveevieeiiiineeeeeee 30
3.3.1 The NOVEILY @SPECE .uvviiiiiiiiecetiie ettt et e e eaea e e et e e e e ta e e e enteeesnreeean 30
3.3.2 DQN algorithm and implementation ........cccceeviiinieeniiiniee e 30
3.3.3 Results obtained and coONCIUSION.......coociiiiiiiiii e 31
3.4 Double Deep Q-Learning (DDQN) applied to filter tuning .........cccoeeeeeieeeeciieeeneee. 32
3.4.1 The NOVEILY @SPECT ..uuriiiiieeeecteeee e e e e e e e et e e e e e e anraeeeas 32
3.4.2 DDQN algorithm and implementation ..........cccccciiiieii i, 32
3.4.3 RESUILS OBTAINEd. .. ciiiiiiieiieeeee e 33
R W10 L= Ao o ST PPR 34
3.5.1 Limitations of the proposed Mmethods..........ccceeeeieeeiiiiiiecee e 34
3.5.2 General limitations of reinforcement learning-based algorithms .............c........... 35
3.6 Chapter SUMMIAIY .. ...ciiiiieiee ettt e et e e e e et tr e e e e e e e e s baa b e e e e e e seeaaraeeeaaeseennnraeneas 35
4 Development of NeW Test FIlter ...cccuiii it 36
L @ o F=Y o] =T o1V VT RS 36
Lo T T ol o= VA YA 1L =T RS 36
4.3 Filter design ProCEAUIE ......uviiii ettt et e e e e e et a e e e e e e e s raaaeeaeeeenannns 37
4.4 Design of 5-pole inline coaxial cavity test filter .........ccovvieiiiiiiiii e, 37
L 0 N N o V=] AV 1Y =T ox PP UUPPRN 37



4.4.2 Introduced design ParameEters.......cceeeeeeiciiiieeeeeeeicitre e e e e e eecrere e e e e e e erraaeeaeeeennnes 38

4.4.3 Comparison with other similar designs.........ccceiieeiiiiiiii e, 38
4.4.4 Choice of EM design SOftWare..........eeeeiiiiiiiiiiiee ettt e e e 39
4.4.5 Design of filter SErUCTUIE ...o..vvieeie et 40
4.5 Designed filter in CST SOftWAIe .......vvvieciiie et e e e e 43
4.6 Fabricated 5-Pole filter.......oii e 44
4.7 Comparing performance characteristics of simulated and fabricated filter............. 44
4.8 Chapter SUMIMAIY ...cciiiiieeiiiiieeeeeeeeeiiieeeeeeeeeetraeeeeeeeesabsaseeeeeeaaassseseeaseessansssseesaseananses 45
5 The Experimental Setup for Filter TUNING .....coooeivee i 46
5.1 Chapter OVEIVIEBW ...eiieiiiieciieeeeeteeeeetee ettt e et e et e e e st e e e entaeesntaeeeentaeeeeneeeesnseaenn 46
5.2 Principle block scheme of the NeW SEtUP ....cccvvveieiieeecie e 46
5.2.1 Mechanical MOAUIE..........ooiiiiiiiiiieeeeee e 47
5.2.2 EleCtronics MOTUIE.....cciiiiiiiiiiee ettt st e e st e st e e sabee s 50
5.2.3 SOftWare MOAUIE........coiiiiiiiiiiie ettt saree s 50
5.2.4 ViSiON MOTUIE «..uiiiiiiie ettt ettt e st e e s st e e s s atee e sareee s 51
5.3 THE FAT rODOL..ccuetiiieeie ettt et ba e e sae e e ba e e saae e 51
5.4 Chapter SUMMATIY ...ciiciieieccieee ettt e eeee e sttt e e et e e s ra e e e streeeeataeesnsaeeesnsseeeenseeessseeenn 52
6 TUNING PrelimiNari®s .....uuuieeie ettt e e e et b e e e e e e e e eaarae e e e e e e e e aneaeeeas 53
6.1 Chapter OVEIVIEW . ...ttt e e et e e e e e e e taaa e e e e e e s e aaraeeeaeeseennraeneas 53
6.2 Differentiating the tuning screws using computer Vision ........ccccccoeeevvieeeeeeeeccnnneeen. 53
6.2.1 USiNg Maching LEarninNg......ccccueiiiceeee e ceeeeeeeee e sree e e tee et e e e stae e e nee e e snaeeean 53
6.2.2 Using a novel band-subtraction method.........ccccccueeeeiiiiieciee e 57
6.3 Comparison between different screw differentiating techniques............ccccceeeueeee. 62
6.4 Setting the initial position of the tuniNg SCrews .......ccccccvvveeciee e, 62
6.5 Chapter SUMMIAIY . .....ciiiiieie ettt e e e e et e e e e e e e tae e e e e e e e s eeaarbeeeeeeseennraeneas 63
7 Automated Filter TuNiNg AlgOrithms.........ooiiiiicce e s 64
7.1 ChapPLer OVEIVIEW ....viiiceieeeciieeeeetiee ettt e e et e e e sre e e e e e e stteeessntaeeeensaeeesnnseeeennsaeesnnnens 64
7.2 SMILA CAIT ettt s e st sareeea 64
7.3 Phase change of input reflection coefficient on Smith chart for tuning................... 65
7.4 Polar chart and its similarities with Smith chart .........cccoocviiiiiiii e, 67
A N o] T ol o - [ o O OO PR PRSRPPRR 67
7.4.2 Similarities between Smith chart and polar chart........c.ccooeciiiiiiiicciiee, 68
7.5 Particle filtering for rotation angle estimation .........cccccocvieeieciee e 68
T8 B o T [T 1 oY T - V= <SSR
T A LT - 1 (I - V- SRS
7.5.3 Resampling stage

7.6 Modules developed for assisting automated filter tuning.........cccceeeeeeiiiiieeeeenninnn, 71
7.6.1 Tuning screw 10calising MOAUIE ........ccoeeiiiiiiiei e e 71
7.6.2 Speed variation MOAUIE .........c.euiiiiieee e e e e 72
7.6.3 Angle comparator module for error detection ..........ccceeeeeeiiiiiiieee e, 72
7.6.4 Module for counting the SCrEW tUINS .......veeieiiie e e 73
7.6.5 NUt 10CKing MOAUIE ....eeeeeiee e 73
7.7 Polar chart based automated filter tuning algorithm .........cccccoviirciee e, 74
7.7.1VNA's polar angle fetChing...........ueeiiiiiieee e e 74
7.7.2 Automated filter tuning algorithm using polar chart..........ccccooeeeeiiiiiiiiieeceees 76
7.8 Smith chart-based filter tuning using YOLOVS .........uuiiiieiiiiccieeeeee et 79
7.8.1 YOLOVS dataset GENEration ........ccceeeeieeeiiiiiiiiee et e e et e e e e e e rarrene e e e e e esannns 79



7.8.2 Training the deep NELWOIK.........uuviiiiei e e e 80

7.8.3 Smith chart-based tUNING ... e 80
7.9 Chapter SUMMAIY .ccciceiciiieeee ettt e e e e e ettt e e e e e e e st ataeeeeeeseeaatbeseeaeeeessraaneaaeeeannnses 85
8 RESUILS aNd DISCUSSIONS. .. .veerutiiiiieeieesitesteestee st e sbeesbeesbeesabeesbeesabeesbeesareesabeesareesas 86
8.1 Filter used for testing the proposed algorithms ...........ccccooieiiiiiiiii e, 86
8.2 Results of polar chart-based automated filter tuning..........ccccovieiiieiiiiiiiiiieecees 86
8.2.1 Tuning results of the VNA’s commercial software..........cccovviviincieiiiiceeeeniec e, 86
8.2.2 Tuning results on the developed plotting module............ooociiiiiieiiiiiiiiiieeeeeees 88
8.3 Tuning results for Smith-chart based tuUNING........cccccviiiiiei e 89
8.4 Total tuning time elapsed by algorithms ..........cccooveiiiiiee e 90
8.5 DISCUSSIONS «..eeeeee ettt e e e e e e e st e e e e e s e n e e e e e e e sesnnrenneeeesesannnes 91
@ =T o1 { T @] o Tl [V ] o Yo S SRR 91
9 Conclusion, Limitations and FUTUIre WOrK ......ccoooeeeeeieiiiiiiiiieieeic e 92
9.1 CONCIUSION .ttt ittt sttt sttt sttt st sbe e st e st e sabeesabeesabeesabeesabeesabeesabeesareenas 92
9.2 LIMItatioNS e e e e s e e e e e 94
0.3 FULUIE SCOPE e s s 95
[ o] T=d U T TP UPT PP 96
LISt OF TABIES ..eeiueieeiie et sttt st at e st 98
REFEIENCES ettt s e e st e e e s bbe e e s sabaeessanaeeesnreeens 99
ACKNOWIBAGEMENTS...ceiiiiieecciiee ettt e e e e e e e ee e e set e e e esstaeeeensaeeesnseeean 109
FAY o] Tt S PR 111
LUNTKOKKUVOTE ...ttt ettt st st st e sabeesbeesabaesas 113
APPENAIX L oottt e e et e e e e e e e e e e e e e e e et b ——eeeaeeeaaatbraaaaeeeeaararaeaaaaeaan 115
PN T o= T [ A 249
APPENAIX B oot e e e e e e e e e e e e e e e e ————e e e e e e e e tbraaaaaeeeaataraaaaaaeann 250
CUTTICUIUM VITAE e iviiiiiieiiee ettt sttt sttt st e sat e st e e sat e sabeesateesabeesaseas 251
W] FoTo] T g =] [o [V LU 252



List of Publications

Vi

Vil

Vil

M. Vu, M. Tamre and E. Sekhri, “Modeling and Robust Control Algorithm for a Linear
Belt Driven System,” Open Computer Science, vol. 8, pp. 142-153, 2018, doi:
10.1515/comp-2018-0010.

E. Sekhri, M. Tamre and R. Kapoor, “Optimal Q-Learning Approach for Tuning the
Cavity Filters,” 2019 20th International Conference on Research and Education in
Mechatronics (REM), Wels, Austria, 2019, pp. 1-5, doi: 10.1109/REM.2019.8744118.

E. Sekhri, R. Kapoor and M. Tamre, “Double Deep Q-Learning Approach for Tuning
Microwave Cavity Filters using Locally Linear Embedding Technique,” 2020
International Conference on Mechatronic Systems and Materials (MSM), Bialystok,
Poland, 2020, pp. 1-6, doi: 10.1109/MSM49833.2020.9202393.

E. Sekhri, M. Tamre, R. Kapoor and D. C. Liyanage, “Novel Band-Subtraction
Technique to Differentiate Screws for Microwave Cavity Filter Tuning,” 2023 3rd
International Conference on Electrical, Computer, Communications and
Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain, 2023, pp. 1-6,
doi: 10.1109/ICECCME57830.2023.10253048.

E. Sekhri, M. Tamre, R. Kapoor and R. Kumar, “A Novel Real-time Parametric
Tracking Approach for Robust Microwave Filter Tuning,” 2023 The IEEE
International Conference on Artificial Intelligence, Blockchain and Internet
of Things (AIBThings), Mount Pleasant, MI, USA, 2023, pp. 1-5, doi:
10.1109/AIBThings58340.2023.10292473.

E. Sekhri, M. Tamre and R. Kapoor, “Data-Driven Approaches Based Microwave Filter
Tuning — A Review,” 3rd International Conference on Artificial-Business Analytics,
Quantum and Machine Learning: Trends, Perspectives, and Prospects (COM-IT-CON
2023), Faridabad, India, 2023, pp. 1-14.

E. Sekhri, M. Tamre and R. Kapoor, “An Efficient Assistance in Cavity Filter Tuning
using Filter Screw Classification,” 3rd International Conference on Artificial-Business
Analytics, Quantum and Machine Learning: Trends, Perspectives, and Prospects
(COM-IT-CON 2023), Faridabad, India, 2023, pp. 1-9.

E. Sekhri, R. Kapoor and M. Tamre, “Review of State-of-the-Art Microwave Filter
Tuning Techniques and Implementation of a Novel Tuning algorithm using Expert-
based Hybrid Learning,” Wireless Personal Communications, pp. 1-57, 2024, doi:
10.1007/s11277-024-10894-x

E. Sekhri, M. Tamre, R. Kapoor, “A Robotic System and Method for Automated
Tuning of a Cavity Filter”, Estonian Patent Application No. P202400005, filed Apr. 30,
2024.



Author’s Contribution to the Publications

VI.

VILI.

VIII.

Even Sekhri implemented the robust controller to control the linear toothed-belt
conveyor system in this work. This system is similar to the one designed under the
scope of this thesis. Also, he had major contribution in writing this journal article.

Even Sekhri is the first author of this paper in which he was responsible for reviewing
the related literature, simulating the filter tuning process and ensuring that the
system reaches the global minima. Additionally, he had a major contribution in
writing the paper. He presented this paper at 20th International Conference on
Research and Education in Mechatronics (REM 2019), Wels, Austria.

Even Sekhri is the first author of this paper. The author was responsible for literature
review, collecting the data for training the agent, implementing locally linear
embedding (LLE) technique for dimensional reduction. He presented this paper at
20th International Conference on Mechatronic Systems and Materials (MSM 2020),
Bialystok, Poland.

Even Sekhri is the first author of this paper. He was responsible for conducting the
experiments using the hyperspectral camera and monochrome camera and had
major contribution in writing the paper. He presented this paper at 3rd International
Conference on Electrical, Computer, Communications and Mechatronics Engineering
(ICECCME 2023), Tenerife, Canary Islands, Spain.

Even Sekhri is the first author of this paper where he generated the labelled dataset
for training the algorithm and collected the videos for testing the novel algorithm.
In addition, he had major contribution in writing the paper. He presented this paper
at 3rd International Conference on Artificial Intelligence, Blockchain and Internet of
Things (AIBThings 2023), Mount Pleasant, Ml, USA.

Even Sekhri is the first author of this paper in which he reviewed the various
data-driven approaches for tuning the filters. He had major contribution in collecting
and segregating the data as well as in writing the paper. He presented this paper
at the 3" International Conference on Artificial-Business Analytics, Quantum and
Machine Learning: Trends, Perspectives, and Prospects, Faridabad, India.

Even Sekhri is the first author of this paper in which he had major role in generating
the dataset, labelling the dataset and implementing the state-of-the-art ML
algorithms in addition to writing the paper. He presented this paper at the 3™
International Conference on Artificial-Business Analytics, Quantum and Machine
Learning: Trends, Perspectives, and Prospects, Faridabad, India. This paper was
awarded as the best paper in the conference.

Even Sekhri is the first author of this article in which he was responsible for compiling
the literature review for the various filter tuning techniques. He had major role in
writing the article and comparing the state-of-the-art filter tuning techniques.
Additionally, he also implemented a novel filter tuning technique in which
expert-based hybrid learning was used to tune a 5™ order filter.

Even Sekhri is the first author of this patent application. The patent application has
been submitted to the Estonian Patent Office and is under review at the moment. He
had a major role in drafting the patent.



Abbreviations

Al Artificial Intelligence

ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network

ASM Aggressive Space Mapping

BP Band Pass

BPNN Back Propagation Neural Network
CAT Computer-Aided Tuning

Cc™m Coupling Matrix

CNN Convolutional Neural Network
DoH Determinant of Hessian

DR Dielectric Resonator

DS Direct Search

DT Decision Tree

DQN Deep Q-Network

DDPG Deep-Deterministic Policy Gradient
DDQN Double Deep Q-Network

EM Electromagnetic

FAT Fully Automated Tuning

FD Frequency Domain

FF Feed-Forward

FIR Finite Impulse Response

FL Fuzzy Logic

FLS Fuzzy Logic System

FNN Fuzzy Neural Network

FVC Frequency-Variant Coupling

GA Genetic Algorithm

GD Group Delay

GE Generalisation Error

HSI Hyperspectral Imaging

IAFTT Intelligent Automatic Filter Tuning Tool
IFFT Inverse Fast Fourier Transform

IL Insertion Loss

ISM Implicit Space Mapping

KNN K-Nearest Neighbours

LLE Locally Linear Embedding

LP Low Pass

LSM Least-Squares Method

MDP Markov Decision Process

ML Machine Learning

10




MSE Mean Squared Error

MW Microwave

NFS Neuro-Fuzzy System

NN Neural Network

PCA Principal Component Analysis
PE Parameter Extraction

PF Particle Filter

PIM Passive Inter-Modulation

Qext External Q

Qu Unloaded Q

RBS Radio Base Stations

RF Radio Frequency

RL Return Loss

RLS Recursive Least Square

RZ Reflection Zero

SA Simulated Annealing

SCARA Selective Compliance Articulated Robot Arm
SGD Stochastic Gradient Descent
S-Parameters Scattering Parameters

SIR Stepped Impedance Resonator
SIW Substrate Integrated Waveguide
SM Space Mapping

SNA Scalar Network Analyser

S-L Source-Load

sQp Sequential Quadratic Programming
SVD Singular Value Decomposition
SVM Support Vector Machine

TD Time Domain

TL Transmission Line

TLS Total Least Square

TZ Transmission Zero

VF Vector Fitting

VNA Vector Network Analyser

WBS Wireless Base Station

w.r.t with respect to

Y-Parameters

Admittance Parameters

YZ-Parameters

Immittance Parameters

11




1 Introduction

1.1 Motivation and Background

Microwave (MW) or Radio Frequency (RF) filters play a sterling role in space and
ground-based wireless communication systems. They are used to separate the desired
frequency from a broad spectrum of frequencies. The production of numerous MW/RF
filter designs, including as waveguide filters, co-axial filters, microstrip-line filters,
dielectric resonator filters, varactor-based filters, etc., was prompted by the substantial
rise in the demand for communications systems. In Wireless Base Station (WBS)/Radio
Base Station (RBS) systems installations, the most prevalent is the cavity bandpass filter.
Additionally, every filter's enclosure has several interlinked resonators that are usually
fixed to filter's base. Band selectivity (sharp band transitions) of the filters can be
augmented by increasing the number of resonators. However, increasing the quantity of
resonators also leads to higher insertion losses and increased size of the filter. A few of
the industry-standard cavity filter variants are depicted in Fig. 1.1.

Figure 1.1. Samples of cavity filters used in the industry (Modelled in SolidWorks)

Higher-order filters with cross-coupled topology are commonplace in real-world
applications as they satisfy the present-day sharp frequency requirements. This cross-
coupling facilitates the creation of Transmission Zero (TZ) [1]. In addition to satisfying
strict requirements for frequency selectivity, these TZs also help with design flexibility,
achieving Chebyshev response, optimising in-band response, and reducing filter size.
Thus, having TZs ensure reduced losses, swifter manufacturing, and decreased overall
costs. The complex TZs synthesise to equalise the Group Delay (GD) and the real TZs
eliminate the undesired interfering signals. In [2], the algorithm for determining the
maximum realisable TZs for a given topology was introduced. The effectiveness of
Frequency-Variant Couplings (FVCs) in fulfilling the stringent frequency constraints has
been discussed in [3].

Due to reasons such as — inaccurate manufacturing tolerances, design mistakes,
variations in properties of material, etc., the filters mar the anticipated frequency
response. To compensate this, tuning the filter becomes inescapable [4]. A variety of
approaches, from mechanical to electronic and magnetic systems, have been utilised for

12



tuning the filters. Various characteristics, such as tuning range, tuning quality, tuning
speed, tuning complexity, power handling capacity, etc., are typically used to evaluate
tuning methods. There are benefits and drawbacks to each technique, and none
is unambiguously better than the others. The exact application and its constraints are the
sole considerations that determine the tuning strategies and methods to use.

For post-fabrication filter tuning, elements such as varactors and screws are typically
provided on the filter structure. The most prevalent type of tuning is mechanical
tuning, in which tuning screws are affixed to the filter’s surface. The “insertion depth” of
tuning elements is the primary factor that determines variations in resonance
frequencies, inter-resonator coupling between the cavities, and the filter’s overall
frequency response. The objective of tuning is to locate the tuning elements in the most
optimal possible positions to meet the desired tuning criteria. It is safe to state that filter
tuning is an optimisation problem by nature.

Filters can be classified according to:

a) type of components used — passive or active

b) filter response — low pass, high pass, band pass, band reject

c) frequency band — L-band, X-band, Xu-band, etc.

d) filter technology — coaxial, planar, dielectric filter, interdigital filters, waveguides,
Substrate Integrated Waveguide (SIW) filters, Stepped Impedance Resonator
(SIR) filter

e) ripple types — Butterworth, Elliptical, Chebyshev, Bessel, Gaussian, etc.

Given the wide range of filters available on the market, the tuning process cannot be
generalised; that is, no one technique can be used to tune every kind of filter. A study
conducted on combline filters showed that the overall response of those filters is
impacted by the tuning structure [5] and the walls [6]. When tuning complex filters, that
is, filters with higher-order and/or cross-coupled topologies, the amount of time required
and the difficulty level increase exponentially (i.e., repeated adjustments are
demanded). This is due to a highly non-linear relationship that exists between the tuning
elements and the frequency response of the filter [7].

Because the tuning process is deterministic, skilled technicians are required. These
human operators decide which tuning screw needs to be adjusted in which direction and
to what extent by looking at the Scattering parameters (S-parameters) response of the
filter, which are shown on a Vector Network Analyser (VNA). While there are some
suggestions available [8] to support these technicians, extensive training is still
mandated to achieve the requisite skill set. It's important to keep in mind that even if a
technician is proficient at tuning one kind of filter, there’s no guarantee that he or she
will be able to do the same for other types or topologies of filters. Considering everything
described above, filter tuning is now regarded as an “art” which requires experience,
knowledge, and patience. Since it is difficult to locate new tuning technicians,
the industry is also concerned about the sustainability of qualified and experienced
tuning technicians. Additionally, because tuning involves heavy wrist motions,
technicians frequently suffer wrist injuries, and the industries are responsible for paying
for their medical bills. Therefore, the researchers in the sector are fighting to remove the
manufacturing bottleneck by seeking automated ways to tune the assembled filters.

13



1.2 Research questions and objectives

This thesis aims to provide a complete automation solution to the filter tuning process

that is apt for educational as well as industrial use. The suggested approach reduces

human involvement to mounting the assembled filter in the holding fixture and initiating
the tuning algorithm. This means there will be no need to train the technicians for the
filter tuning process. The main objectives of this thesis can be summarized as:

1) To develop a simulating environment for reinforcement learning-based filter tuning
algorithm(s) for testing the feasibility of proceeding in this direction and to decide
the future strategy to solve the problem in hand.

2) To design and fabricate a universal test filter on which different automated filter
tuning algorithms can be tested.

3) Building a customized experimental setup which can tune different kinds of filter
using the automated filter tuning algorithm(s) by making only minor modifications.

4) To develop a vision-based system for distinguishing the tuning screws from the
mounting screws and localising the tuning screws so that the positional coordinates
can be used to send the tuning manipulator towards the tuning screws.

5) To develop and introduce a new fusion method(s) for tuning the MW filters which
uses the theoretical knowledge of filtering theory, and combination of theoretical
knowledge and Artificial Intelligence (Al) for tuning the filter. The sub-goals are:

a) To generate dataset(s) which can be used by the Machine Learning (ML)-based
algorithms while tuning the filter.

b) Incorporating the speed-variation logic as per the difference between the
current tuning state and the tuning target.

c) To add feedback in the system for tracking the tuning error in real-time using
ML-based methods to avoid the tuning errors.

6) To develop a real-time plotting module to kill the dependency on the VNA’s

commercial software which offers limited possibilities to make customized changes.
It is to be noted that optimising the tuning time has not been considered as an
objective in this research work currently. Even if speed variation logic has been added
into the system to reduce the overall tuning time, its optimisation has been suggested as
the future scope. The design analysis of the designed experimental structure (i.e., stress
analysis, strain analysis and vibration analysis etc.) has also been kept beyond the scope
of this thesis due to enormous work. Also, the cost analysis has not been made yet as
having a cost-effective automated tuning setup has not been the main objective of this
research.

1.3 Novelties

This work has made the following contributions to meet the abovementioned objectives:
e Simulating the filter tuning process using reinforcement learning-based
algorithms for deciding the tuning strategy. It is ensured that the key
information is not lost when the pre-processing step is included for
dimensionality reduction.
e Designing and fabricating a new test filter which allows the evaluation of
automated tuning algorithms.
e Developing an automated setup based on a relative positioning system
equipped with a customized tool-in-tool mechanism for complete tuning and
locking of the filter's tuning screws. The experimental setup has been
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designed in a way that it is suitable to tune different types of filters produced
by the industry just by making minor modifications in the designed
manipulator.

e Implementing vision-based approaches to differentiate the tuning screws
from the mounting screws.

e Testing and comparing the novel fusion algorithms which use the theoretical
knowledge and its combination with Al for automating the tuning process of
cavity filters.

e Tracking the tuning error using Particle Filters (PF) so that the robotic
manipulator is not following the instructions given to it blindly and the
potential error can be recognized in its beginning phase.

e Removing the dependence on VNA’s commercial software to get the
information about the current tuning state of the filter by developing a
customizable plotting module.

The novel filter tuning solution proposed in this thesis can be used as a standalone
universal system for fully automated tuning of iris-coupled all-pole cavity filters equipped
with quarter wavelength resonators. The proposed algorithms are evaluated on a test
filter designed in this work. The proposed solution can also deal with similar systems by
making slight modifications to software and/or hardware, but currently, they are kept
beyond the scope of this thesis due to enormous work.
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2 Literature Review on Filter Tuning

2.1 Chapter overview

Numerous researchers have put forth unique and distinctive approaches to decipher the
problem of filter tuning. This chapter aims to comprehensively assess and consolidate
the significant discoveries in filter tuning algorithms, while also acknowledging their
constraints. In pursuit of automation objectives, the research community has introduced
a range of appropriate mechanisms and diverse automated filter tuning solutions. This
chapter discusses these contributions as well.

2.2 Scope of the literature review

The extensive literature review compiled in this chapter focuses exclusively on
mechanical filter tuning (i.e., tuning with the help of screws) only. This thesis work is
solely dedicated to passive filters, particularly cavity filters as they offer higher power
handling capacity, stable operation in wide range of temperatures, and high-Q (quality
factor).
The following have been kept beyond the scope of the literature review:
e  Filters such as —active filters, microstrip filters, varactor-based filters, ferroelectric
filters, superconducting filters.
e Theses — Master studies and doctorate studies
e Patents

2.3 Review of filter tuning techniques

The filter tuning methods proposed by the researchers can be categorized into seven
major groups:

1) Filter Tuning in Time Domain

2) Sequential Filter Tuning Methods

3) Filter Tuning on the basis of Filter Diagnosis

4) Space Mapping based Filter Tuning

5) Sensitivity Analysis based Filter Tuning

6) Data-Driven Approaches for Tuning the Filters

7) Hybrid Methods

Fig. 2.1 illustrates the range of filter tuning techniques introduced by the research

community in the past in which the groups as well as the sub-groups of the filter tuning
techniques are presented.

2.4 Detailed comparison of tuning methods in literature

In [VIII], the author of the current investigation presented and discussed a detailed
analysis of the available research related to filter tuning methods. The review which is
solely dedicated to data-driven approaches is discussed in [VI]. This section aims to
synthesize the key limitations of each type of technique. Table 2.1 presents the key
limitations of the techniques proposed by the research community and the related
publications published under each category.
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Table 2.1. The key limitations of all the filter tuning techniques in literature

Techniques and Publications

Limitations

Filter Tuning in Time Domain
(TD)
[9], [10], [11], [12], [13]

Sequential Filter Tuning

[14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], 9], [10],
[11], [12], [24]

Location of Poles
and Zeros of Input

F 1 Reflection

I Coefficient

L [25], [26], [27],
T [28], [29]

E

R

Y-Parameters
2 | [30], [31], [32],
[33], [34], [35]

The TD methodology for filter tuning has limitations affecting its practicality. Challenges include difficulty in accurately
determining coupling and resonant frequency values, reliance on an equivalent circuit model prone to inaccuracies, and
the necessity of a reference “golden” filter for ideal responses, limiting adaptability. Additionally, fine-tuning adjustments
are often required, requiring operator intervention and increasing complexity, the method is incapable of dealing with
filters having asymmetrical frequency response (like multiplexers for satellite communications). Moreover, achieving the
objective of adjusting each tuning screw only once is not possible. Multiple rotations to the screws are avoided as they can
lead to Passive Inter-Modulation (PIM) effects and filter damage.

Sequential tuning techniques can help by splitting the filter tuning process into smaller sub-problems; however, the
cumulative error propagation issue prevents the commercial application of this approach. Furthermore, segregating the
resonators from the filter structure is challenging (particularly for dielectric resonator filters); shorting the resonators or
removing the screws entirely from the filter surface is yet another problem while automating the filter tuning process.
The authors of [21], [22] and [23] suggested strategies to solve the error propagation issue, but the final tuning state of
the filter after implementing the aforementioned technique is not what is intended. This means that a laborious fine-tuning
step becomes essential.

Filter tuning methods that use the location of poles and zeros is a very iterative process. The accuracy | The primary

of the locations identified for poles and zeros directly affects the correctness of the parameters | drawbacks of all
extracted using this method. Errors are also introduced by adding more resonators, implying that | filter modeling-
higher-order filters cannot be tuned using this method. Additionally, the calibration processes used | based techniques
to define the reference plane for phase measurement are the primary determinant of the system’s | are that the
accuracy. mathematical

The phase loading effects must likewise be eliminated from Y-Parameters in order to retrieve the | Mmodels are

poles and residues, just like in the filter diagnosis based on widely utilised S-Parameters. Eliminating typicaII_y simply
phase loading is a crucial step because, although phase loading is always present in a physical filter apzrox;matlons
unit, it is not incorporated into the filter models based on Coupling Matrix (CM). Furthermore, the andnotvery

. . . . . . . accurate. It is
necessity for cautious manipulations makes this methodology unsuitable for use with an automated . e
. . either difficult or
tuning solution.
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Techniques and Publications

Limitations

nw-—u»mwoz260r -0

Mm=—-—{r~=-mm

Cauchy Methods

Vector Fitting (VF)
[36], [37]

4a

4b

Optimisation-
based Filter Tuning
(501, [51], [52],
(53], [54], [55],
[56], [21], [22],
[17], [26]

Using the VF technique, further transformations such as the one suggested in [96] are required to
extract an accurate CM. Alternatively, additional optimisation of the extracted CM is required.
Furthermore, the VF approach is inappropriate for use with an automated tuning system since it only
requires frequency samples defined in the positive direction.

The last step in any research study that employs the Cauchy methodis to
synthesise the CM using conventional methods detailed in references [97], [98],
and [99]. The main problem with the Cauchy method (for diagnosing and tuning
filters) is that it cannot handle higher-order systems because the Vandermonde
matrix it uses becomes ill-conditioned and loses accuracy when the number of
[44], [45], [46], unknowns increases [100]. Although [101] discusses several helpful strategies to
[47], [48], [34], handle this issue, the accuracy of this approach is still insufficient to support the
[49] usage of this method to provide an automatic filter tuning solution.

Another variation on the Cauchy method that may handle higher-order systems
was introduced in [102], where the authors suggested preconditioning the
system’s main matrix using a suitable scaling technique. Matrix equilibration has
been proposed in [103] and [104] as a key factor in increasing numerical
computations. Thus, the approach suggested in [102] is time-consuming,
computationally demanding, and underperforming at high detuning levels.
Furthermore, the existence of second order effects generally results in a
reduction of the accuracy of the Cauchy method.

S-Parameters
based Cauchy
Method

[38], [39], [40],
[41], [42], [43],

Y-Parameters
based Cauchy
Method

[35]

All optimisation-based filter tuning techniques have the following general problems: they cannot
handle highly detuned filters; they cannot accurately detect spurious and unwanted couplings
between neighbouring elements; the process of locating the global minima is complex; and achieving
the global minima primarily depends on the number and initial guess of the optimisation variables as
well as the defined initial values. The method described in [105] is one way to overcome some of
these issues. A technique for determining the parametric model was proposed in [105]. It combined
the Differential Evolution Particle Swarm Optimisation (DESPO) algorithm with a Multiple Hidden
Layered Extreme Learning Machine (MELM). The relationship between a change in screw length and
an equivalent change in CM parameters could be demonstrated by this model.

occasionally
impossible to find
an accurate
network model
where all tuning
elements are
correctly
represented. The
fact that varying
the location of a
single tuning
element typically
impacts the
performance of
neighbouring
elements as well
is not considered
by these
approximations.
In addition, the
model-based
methods cannot
be generalised to
other filter
topologies.

The fact that
traditional CM
ignores
performance
degradation
brought on by
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Space Mapping (SM) based
Filter Tuning
[57], [58], [59], [60]

Sensitivity Analysis based
Filter Tuning

[61], [25], [62], [51], [52], [53],
[54], [33], [59]

Machine Learning
(ML)
[63]

> - >0
[N

Alternatively, a tuning model based on improved Back-Propagation Neural Network (BPNN) and | practical
Gauss Kernel Clustering presented in [106] can also be used where the use of the Shuffled Frog- | uncertainty and
Leaping algorithm can optimise the weights of the BPNN architecture. While these models may not | material

be able completely resolve the issue, they can help with filter tuning to some extent. characteristic
variations is

another
drawback of
employing this
methodology.

When employing SM as a filter tuning solution, the fine model’s information is crucial to the accuracy of the solution, or it
requires a large number of pre-assigned parameters, which can lead to poor convergence or even algorithmic failure.
Additionally, the quality of the mapping is greatly impacted by the chosen Parameter Extraction (PE) process. Briefly, PE is
the process of matching and optimising the parameters of the coarse/surrogate model to the measurement result.
Inaccurate results are the product of an erroneous PE process. Since the precise PE extraction procedure has not yet been
disclosed, this technology cannot be applied commercially.

Sensitivity analysis requires repeated measurements of sensitivity in order to be used for filter tuning. To obtain reliable
results, sensitivity analysis is followed by an optimisation technique. The research discussed in this category did not take
into account the practical aspects of tuning, such as the fact that a screw’s turning affects the frequency and coupling of
nearby screws. Instead, they were based solely on simulations. Moreover, the researchers’” models were linear, which
meant that they could only cover a certain range. In reality, though, the connection between the filter’s input and output
is non-linear. As a result, this process is time-consuming, limited to the “fine-tuning” stage, and unsuitable for tuning highly
detuned filters.

An enormous volume of precise training data is typically required for an ML system to operate well | Every data-driven
and consistently. Such data collection is costly in terms of money, computing power, and time. An | technique
additional significant issue with this method is the data's bias towards a specific kind of instrument | covered, including
(filter topology). ANNs, SVMs, FL,
ML, and heuristic
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Fuzzy Logic

Artificial Neural Network (ANN)

Heuristic Methods
(Derivative-free)
[64]

3a

3b

3c

4a

4b

Since the optimisation algorithms are lengthy and largely dependent on starting values, using the
results of direct search optimisation routines is not the best method for filter tuning. Additionally,
using heuristic approaches requires turning the screws multiple times. Automated tuning systems
should avoid repetitive screw turnings as this might cause PIM issues within the filter.

Fuzzy Logic
without using
human
experience

[65], [66], [67]
Fuzzy Logic with
human
experience

[68], [69], [70]

Dynamic Fuzzy

Supervised
Learning

[71], [72], [73],
[24], [74], [75],
[76]

Reinforcement
Learning

(771, (], [78],
[79], [111], [80]

Fuzzy-based methods for filter tuning have the following drawbacks: they are
limited to in-line and lossless filters; they depend on the initial values of the
Q-factor and CM elements; they are unable to provide information about the
extent of deviation of the tuning element or the amount of adjustment required
to bring the tuning screws to the desired tuning state; and they require a large
number of linguistic rules to be defined in order to produce reliable results.
Defining an excessive number of linguistic rules results in more complicated
calculations and thus more delay. Furthermore, it is challenging to obtain a
complex accurate model between the tuning screws and the CM elements.

ANN was used to tune MW devices and is still the most dependable multi-
dimensional approximator. Nevertheless, the main problems with this approach
are 1) it is unable to generalise; 2) a huge amount of training data is required.
ANN models are data-driven and unaffected by filter structure, but they can only
be used with filters of the same type once trained. Filters with different
topologies will require a separate trained model; 3) if the current data fall outside
the parameters of the data used to train the model, the optimal solution cannot
be obtained; 4) real-time tuning model updates are not feasible; 5) the resulting
training model may contain over-fitted data due to the conventional Back-
Propagation method and the choice of the initial weights, and 6) using too many
layers during the reinforcement learning process can result in an exponential rise
in delay. Additionally, when using ANNs, it is also necessary to have a lengthy
training period. There is now significant research being done to find an ANN-
based fully automated filter tuning solution.

approaches,
learns its models
from pre-
recorded data.
The quantity of
accurate data that
is accessible
directly correlates
with the accuracy
of the data-driven
models. The
primary problems
that negatively
impact the
effectiveness of
data-driven
strategies are
incomplete,
missing,
dispersed, and
lack of data,
among other
problems.
Furthermore, the
model's
performance is
impacted by the
strong reliance on
the techniques
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Neuro-
Fuzzy System [81]

Support Vectors
(7], [82], [83], [84],
(85]

Linear Matrix
Operator [86]

Linear
Decomposition of
Reflection
Characteristics
[87], [88]

VF + ASM [89]
Cauchy + SM-
based [90], [91],
[92]

GA + VF [93]
Cauchy + NN + ISM
[94]

VF + FNN + ISM
[95]

When using Adaptive Neuro-Fuzzy Inference System (ANFIS), the data must be pre-processed, and
the parameter convergence is poor. ANFIS models are also difficult to interpret.

The Support Vector models are not direct when it comes to filter tuning related research; that is,
S-parameters are represented by a CM rather than in their original form taken from a VNA.
The approximation of screw placements using the results of optimisation problem solutions is the
other factor that contributed to inaccuracies. Furthermore, when human intelligence is not included
in the modelling process and only filter structure is, the suggested approaches’ generalisation
capabilities suffer.

The quantity and quality of the data that is gathered greatly influences how well this methodology
performs, even if it is not required to employ the training step when this methodology is implemented.

The methodology avoided the requirement for a training phase by basing the system’s response on
the linear decomposition of the S-parameters. However, this process requires an optimisation step,
which causes a delay in providing the final value.

employed, which
frequently
prevents
generalisation to
alternative
topologies.
Additionally,
when a lot of
training data is
provided, the
processing and
calculation times
grow
substantially.

Getting the optimal tuning for the MW filters was the primary goal of employing hybrid filter tuning techniques. Even
if there are advantages of utilising multiple techniques at once, this approach brings-in disadvantages of both approaches

as well. The majority of combined techniques rely on imprecise filter modelling or PE processes.



2.5 Review of various automated filter tuning hardware

2.5.1 Single actuator

The equipment having a single actuator for tuning the screws sequentially tune the filters
by rotating the screws one after the other. These types of systems are usually mounted
on a Cartesian or SCARA (Selective Compliance Articulated Robot Arm).

Fig. 2.2 shows an automated setup introduced by COM DEV International Limited in
2003 [107]. This design has a single actuator which can rotate the screw as well as deal
with the locking nut. This setup was used to tune the filters, diplexers as well as other
multiplexers. It is mounted over a Cartesian bench. Fig. 2.3 shows ‘Robby’ robotic arm
tuning a filter [108]. This robot uses Space Mapping optimisation technique for tuning
the filter.

Figure 2.3. The ‘Robby’ robot tuning a cavity filter using ASM technique [108]

2.5.2 Multiple actuators

A multiple actuator setup allows many screws to be tuned simultaneously and hence can
assist in parallel tuning. Such a setup can help in quick tuning. Fig. 2.4 shows a parallel
tuning setup where flexible leads are used to transfer the stepper motor’s motion to
tuning screws of a waveguide filter using Fuzzy Logic (FL) technique [70] and scalar
transmission technique [109].

23



VNA

NETWORK
ANALYZER
+
FUZZY LOGIC
CONTROLLER
(COMPUTER)

Microwave Circuit Tuning Screws

>| MOTOR ARMS ]

(a)

PCw/ | GPIB Filter
LabVIEW| 3
s - Tuning
i Screws
- Servo
Rs232L Actuatorsl

@

Figure 2.4. A multi-actuator robot — (a) and (b) block diagram of the tuning environment and tuning
a waveguide filter using Fuzzy Logic [70]; (c) and (d) block diagram and tuning environment and
tuning a rectangular filter using scalar measurements-based algorithm [109]

Fig. 2.5 presents a setup where 03 stepper motors are used for 03 stub matching of a
WR-430 waveguide.
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Figure 2.5. A parallel system of the 3-stub waveguide matching network [110]
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Figure 2.6. IAFTT robot tuning the waveguide using DS + SA Algorithms — (a) block diagram; (b)
filter tuning robot [64]
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2.6 Analysis of the literature review

2.6.1 Analysis related to tuning techniques
The decade-wise segregation of research publications in the field of filter tuning
application has been compiled in Fig. 2.8. Scale of 1:1 on the y-axis of the Fig. 2.8 means
that each coloured represents one publication of that category. The reader can even get
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(b)
Figure 2.7. A parallel filter tuning system with multiple actuators — (a) Block diagram of tuning
environment [71]; (b) Filter tuning robot [111], [112]



the information of the number of publications in each category (or each decade) by
counting the number of blocks.

The main conclusions that can be drawn from the intensive literature review
summarized in Fig. 2.8 are:

Trends depicted in Fig. 2.8 show a downward trend in the research interest in
tuning the filter based on — Time Domain (TD), Sensitivity Analysis, and
Sequential Tuning techniques. One major reason contributing to this decline is
that the filter tuning based on TD need special VNAs offering inverse Fourier
transformations, and this method cannot be used to tune cross-coupled filters.
Methods based on Sensitivity Analysis rely on equivalent filter models, demand
for numerous measurements, and require various optimisation iterations, thus,
making this technique suitable for the ‘fine tuning’ stage only. The Sequential
Tuning methods proposed in the past suffer from cumulative error propagation
issues.

The techniques based on Space Mapping (SM) and Hybrid Methods have
gathered the attention of researchers in recent times. The SM-based solutions
are highly reliant on the accuracy of the fine model, and the Parameter
Extraction (PE) process. However, an accurate PE process is not available yet.
The rise in the data-driven approaches for tuning the MW filters in the last two
decades can be witnessed in Fig. 2.8. This growth can be attributed to the fact
that nowadays we have high computation capabilities provided by powerful
CPUs and GPUs, as well as the availability of efficient algorithms. Thus, there is
a potential to solve the overwhelming problems like the tuning of MW filters
with the help of data-driven techniques.

2.6.2 Analysis related to filter tuning equipment

The filter tuning equipment available in literature can be divided on the basis of
number of actuator systems. Multiple-actuator systems allow a quick method
of tuning the filters, but they need careful design of the tuning hardware. Such
systems are designed according to a particular filter topology only i.e., they do
not offer flexibility to deal with tuning of different kinds of filters available in the
market.

Single actuator-based tuning solutions are characterized by their larger tuning
time, minimal need for intricate computations, and the ability to carry out
parallel tuning operations. However, single actuator systems exhibit flexibility
in handling different kinds of filters.

Every filter tuning equipment developed by the research community operates
in a strictly directive manner, meaning they do not rely on secondary feedback
sources. The algorithm exclusively controls the stopping or restarting of the
tuning process, a decision made only when the algorithm fails to achieve the
desired tuning within the defined number of iterations.

There is currently no filter tuning system capable of adjusting all types of cavity
filters with minimal hardware and software changes, and possessing feedback
source to detect the tuning error in the initial stages is yet not available.
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Figure 2.8. Decade-wise distribution of filter tuning techniques

2.7 Chapter summary

This chapter provided an extensive review related to various filter tuning techniques and
various types of tuning equipment proposed in the literature. In light of the conclusions
derived in section 2.5.1, the author of this thesis strongly advocates continued
exploration of data-driven methods for post-production tuning of cavity filters.

The forthcoming chapter is specifically devoted to identifying the correct tuning
algorithm using simulations. The suggested methods leverage reinforcement learning
algorithms for meeting the desired frequency requirements.
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3 Filter Tuning by Reinforcement Learning Simulations

3.1 Chapter overview

In Chapter 2 of the research, it was observed that none of the algorithms were able to
fully grasp the intricate relationship between the position of the tuning screw and its
corresponding S-parameters. One of the main challenges arises from the fact that there
can be multiple combinations of screw positions that lead to the same S-parameter
response. This lack of uniqueness complicates the tuning process and makes it highly
dependent on the individual strategies of different technicians. Furthermore, it is
important to note that the market offers a wide range of filters, each with its unique
design parameters, so, generalisation of any kind is not possible. However, with the
enhanced computational capabilities of modern computers and the introduction of
several algorithms in recent years, it is feasible to explore intelligent methods to address
the filter tuning problem.

Simulations are a good way to understand the present and potential problems
occurring in the complex real-world tasks. Hence, the efforts presented in this chapter
are dedicated to exploring reinforcement learning-based algorithms for tuning the filters.
The basis of choosing reinforcement learning algorithms is the fact that they are inspired
by learning process of living beings.

3.2 Overview of reinforcement learning and related algorithms

3.2.1 Reinforcement learning

Reinforcement learning is a class of ML that doesn’t need any supervision rather it learns
the patterns from the environment in which they are implemented. Reinforcement
learning-based algorithms offer the solution to stochastic sequential decision-making
problems where accurate mathematical modelling is not possible [113].

Reinforcement learning is based on Markovinan property i.e., the current position of
an entity is independent of the steps taken in all previous timestamps. Markov Decision
Process (MDP) provides a framework for mathematical modelling when outcomes are
partly under the decision maker’s control and partly random. Selecting the optimal action
by the ‘agent’ from its current ‘state’ and aiming the maximum future ‘reward’ signal
over time in the ‘environment’ is the goal of reinforcement learning. The notations in this
context are:

s € § —State of the considered system
a € A — Action taken by the agent

r — Reward Function
b — Policy Function
Y — Discount rate € (0,1] where a smaller value means we are emphasising

more on the short-term rewards

In MDP terminology, the policy m is defined as a function which specifies the action to
be taken corresponding to each state i.e. T : S - A. At any instance the agent is in the
state s € S when action a € A is taken to take it to the next state. This has been explained
pictorially in Fig. 3.1 below.
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Figure 3.1. General sequence in reinforcement learning (also published in [l1])

3.2.2 Q-Learning
Q-learning, a model-free reinforcement learning algorithm, is an off-policy method

where an ‘Agent’ learns to take a good ‘Action’ while exploring the ‘States’. In Q-learning,
the quality i.e., Q-function (using Bellman’s Equation) is given by Equation 3.1 below
[114].

Q(Snow' anow) = Thow + ymax Q(Sfuturer afuture) (3-1)
—— Afuture
Immediate
reward Discounted/Future Reward

The update rule is defined by equations 3.2 and 3.3 [114].

Qest(snowr anow) — Qest(snowr anow) +
& Thow + yglaxQest (Sfutureu afuture) - QeSt(SnOWJ anow)]
uture

(3.2)

Snow < Stuture (Until termination) (3.3)

where: o, = learning rate or step size (0,1].

3.2.3 Deep Q-Learning (DQN) and its application to filter tuning

Deep Q-Learning (DQN) algorithms came into existence by combining Q-learning with
Neural Networks (NNs) as a result of advancements in Deep Learning [115]. Feed-forward
NNs are used in this architecture for predicting the best possible Q-Values. Since DQN
doesn’t have initial data, the ‘Agent’ keeps past episodes — experiences pertaining to the
state-action-reward-new state sequence —in a local memory. This local memory is called
a data repository or experience replay. This information is then utilised as input to train
the designed network architecture later on.

In reinforcement learning-based filter tuning, the filter is a “black box” and some
requirements regarding the desired filter response are set for the filter to be considered
as tuned. Rotating a screw correspondingly brings some change in the tuning state
(the S-parameters would change). DQN was first applied to filter tuning process by Weng
et al. in [77] however, the main limitations in that work were: a) the solution was often
falling into local minima; and b) a Feed Forward (FF) structure was chosen. To solve the
above-mentioned problems, the author of this thesis proposed an optimal Q-learning
based algorithm as discussed in the next subchapter.
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3.3 Optimal DQN algorithm applied to filter tuning

3.3.1 The novelty aspect

Considering the benefits of Reinforcement Learning; and the need of simulations to decide
the future strategy in filter tuning process, the author implemented an optimal DQN
algorithm. To overcome the limitations by Weng et. al in [77], the following changes were
made by the author:

a) Forincreasing the accuracy, a CNN architecture was used.
b) Agreedy policy was chosen for taking the ‘actions’ to explore the ‘environment’.
c) Lagrangian Optimiser was used to find the global minima.

The results obtained in this work were published in [Il]. The obtained results were
better as compared to the ones obtained in [77]. The results are discussed in sub-section
3.3.3.

3.3.2 DQN algorithm and implementation
The reinforcement learning terminology mapped to filter tuning process can be
described as:

e “Agent” (i.e., the learner) is the proposed algorithm.

e “Environment” (i.e., the Agent’s world) is the simulated world.

e “States” (i.e., Agent’s position) are various points considered on the S-parameter
curve. Each state was represented by 501x1 vector, and the raw data was given to
PCA algorithm to extract the features. Then, after PCA, the data was given to a 1-D
CNN architecture.

e “Actions” (i.e., Agent’s Input steps in Environment) are clockwise and
counterclockwise turning angles of the screws.
e “Reward” (i.e., the Environment’s feedback) is a numeric score.

e “Gamma” defined by the symbol “y” (i.e., the discounted rate of reward) has been
set as 0.95 in this work.

e “Policy” is the Agent’s behaviour function (map from state to action).

The Q-Learning gradient is computed by Equation 3.4 [114]:
oL(w) E [<

ow

Thow + ymax Qest (sfuture' Afuture W)

Afuture
a Qest (Snow' Anows W)
- Qest(snow' Anow» W) ow

(3.4)
The proposed DQN algorithm implemented in this research work is presented in
Fig. 3.2. To deal with non-exploration i.e., to update a (see Equation 3.2 for clarity), we
used random exploration. At the stated probability of% where N = number of trials i.e.,

number of times we have used “(s, a)-pairs”, the programme took random action instead
of optimal one and later, the probability of a was lowered automatically.
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Algorithm parameters: step size a<(0, 1), €>0
Initialize Q (ss, aa), for all ss€S, aacA(s), randomly except that Q (terminal, -) =0
Loop for each episode:
Initialize ss
Loop for each step of episode:
Choose A from S using policy derived from Q (&-greedy or
random exploration)
Take action aa, observe rr, ss -
Q(ss,aa) < Q(ss,aa) + a[rr + ymax,,Q(ss’, aa) — Q(ss, aa)]
58 <85’
until ss is terminal
Optimise the loss function L using Lagrangian Optimiser

dL
Equate v 0 for finding the global optimum value using the constraint
Loss Function > Threshold Value

Figure 3.2. Proposed Q-learning Algorithm

3.3.3 Results obtained and conclusion

The results of the proposed algorithm are presented in Fig. 3.3. The condition for
successful tuning is to have all the poles below the target return loss value. It was found
that after training the network, the proposed algorithm could successfully drive the
return loss curve below the —16 dB target value in 43 steps. Reaching the global minima
was ensured using Lagrangian multiplier.

Testing tuning of the filter using our algorithm

I
Y] e —— =
'f —Step 1
5 — Step 20
@ 10f-- — Step 35
Q Step 43
=20} -- —szu'geL L
5 I
o |
2 30} ---4-------

|
|
1780 1800 1820 1840 1860 1880
Frequency (in MHz)

Figure 3.3. Results of implementing Optimal Q-Learning (also published in [Il])

As compared to the algorithm presented by Weng et. al in [77] which took 48 steps,
the algorithm proposed by the author could successfully tune the filter in 43 steps. Also,
our algorithm ensured that it finds the global minima which was not the case with the
technique presented in [77].

Even if the results of this proposed algorithm were better (i.e., lesser number of steps
taken to reach the target value) as compared to the ones in [77], the major limitation of
our research included the presence of “max” operator used in equation 3.2. The “max”
component causes the algorithm to suffer the overestimation of Q-values for specific
actions, resulting in biasness in the Agent learning. The action taken by the algorithm is
beneficial for the near-term, but it ultimately results in a policy of lower quality
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(i.e., smaller rewards later). Hasselt et. al in 2010 provided a solution to this “max” issue
by introducing Double Q-Learning [116]. In 2016, the said author along with his
co-authors demonstrated the overestimation bias in experiments conducted across
multiple Atari Games Environments in [117] where DDQN was proposed. The core task
of Double Q-Learning is to reduce the over-estimations in Q-value by decomposing the
“max” operator into ‘action selection’ and ‘action evaluation’. Hence, one network
selects the action for the next state and another network provides the Q-value for that
action. The ‘selector’ is “Q-Network”, and the ‘evaluator’ is “Target-Network”.

To overcome the limitations mentioned in the previous paragraph, the author of this
thesis proposed and implemented a Double Deep Q-Learning (DDQN) algorithm to solve
the problem in hand as discussed in the next sub-section.

3.4 Double Deep Q-Learning (DDQN) applied to filter tuning

3.4.1 The novelty aspect
As compared to our solution presented in [II] where DQN algorithm was proposed and
implemented, the following changes were made by the author:

a) We have used DDQN with a CNN structure.

b) A dataset comprising of 998 states from a commercial filter to define the input
“States”. Each state had 501x1 vector (obtained from VNA's curve. The length
could be varied by changing the sampling frequency if needed).

c¢) While performing dimension reduction, the Locally Linear Embedding (LLE)
Technique [118] was used. LLE is better than PCA as the method ensures that we
are not losing the feature information.

The results obtained in this research work were published by the author of this thesis
in [III] which were better (i.e., lesser steps in tuning a higher filter order) as compared to
the ones obtained in all the related publications. The results are discussed in details in
sub-section 3.4.3 of this thesis.

3.4.2 DDQN algorithm and implementation
The Pseudo Code for the proposed solution used in this research is presented in Fig. 3.4.

Initialize main Q -network Qg, Target-network Q¢, Memory buffer D, r<<1
for each iteration do
for each environment step do
Observe ss and select aa ~ 7 (aa, ss)
Execute aa and observe ss'and reward rr = R(ss, aa)
Store (ss, aa, rr, ss') in memory D
for each update step do
sample e; = (ss, aa, 17, ss') ~D
Compute target Q-value:
Q*(ss,aa) = rr +yQy (ss', argmax,,., Qg (ss’, aa'))
Perform gradient descent step on (Q* (ss, aa) — Qo( ss, aa))?
Update Target-network parameters:
0'< 70+ (1-7)0'

Figure 3.4. Double Deep Q-learning Algorithm
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DDQN algorithm used in this work aims to minimise the mean-square error between
Q and Q* but Q’ is slowly copying the parameters of Q using Polyak Averaging as
mentioned in equation 3.5 [119].

010+ (1-1)8 (3.5)
where: 6: Primary Network Parameter

0": Target Network Parameter
t : Rate of Averaging

In equation 3.5, following each run of the experience replay, the online network
weights are reflected in the target network weights. In this work, t = 0.05 was used.
Thus, the methodology used 95% of the old weights and updated 5% of the new weights.

Table 3.1. Attempted t-value analysis

S.No. t-value Result
1. t<5% Slower convergence
2. t=5% Optimal results
3. t>5% Bigger errors

For reducing the dimensions yet keeping the features information intact, LLE
technique [118] was implemented in this work. The analysis made regarding the choice
of k-value i.e., the number of nearest neighbours for Dimensionality Reduction has been
presented in Table 3.2 below.

Table 3.2. Attempted k-value analysis [IIl]

S.No. k-value Result
1. k<5 Disjointed curves, lost global properties
2. k=5 Optimal Result (and hence used in this work)
3. k>5 Smoothing of curve
4, k>8 Behaviour like traditional PCA approach

3.4.3 Results obtained

Fig 3.5 provides the results of our algorithm. The filter is considered to be tuned when
the dips in the return loss are below the defined target line. After the network was
trained, it emerged that the network could drive the curve below the —26 dB return loss
target in just 23 steps.

The obtained results were compared with other publications in [77] and [Il]. Table 3.3
is the presents the comparison. The effectiveness of the suggested DDQN algorithm is
demonstrated by the fact that it is essentially more efficient in terms of the number of
tuning steps and has the ability to learn superior strategies for tuning more complex
filters than the ones that were previously employed.
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“losting Filter Tuning with our Algorithm
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Figure 3.5. Results of implementing the DDQN algorithm (also published in [lI1])

The results of the simulated experiment found clear support for the proposed
algorithm viz. DDQN algorithm as mentioned in Table 3.3. Overall, as compared to other
methods, the proposed DDQN method was the one that obtained quite robust results
(i.e., fewer tuning steps were needed to tune a higher ordered filter).

Table 3.3. Comparison with related research works

Dimension Reduction Tuning Filter No. of
Reference Number ) i R
Algorithm Algorithm Order Tuning Steps
[77]
PCA DQN 4 48
(Weng et al. results)
Optimal
[ PCA P 4 43
(author’s results) DQN
1
[l LLE DDQN 9 23
(author’s results)

3.5 Limitations

3.5.1 Limitations of the proposed methods
While working on implementation of reinforcement learning-based algorithms,
the following conclusions were drawn:

a) Within the scope of this research work, simulating reinforcement learning-based
algorithms in filter tuning was limited only to the reflection parameters (Si:) of
bandpass filters.

b) The number of screws were also limited to a small number as only resonator
screws were tuned.

c) Both the reinforcement learning-based algorithms proposed and implemented in
this work stopped when the required specifications were met.

d) We limited the training of Q-networks to 150 epochs with maximum tuning steps
being 1500. The hyperparameter tuning could be considered as a future work.

e) Q-learning-based methods tend to become ill-defined when we have continuous
action space. In any on-policy method like Deep Deterministic Policy Gradient
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(DDPG), the existing policy is improved. The next action is then taken from the
improved policy i.e., it is not random. But this part was left for future research.

3.5.2 General limitations of reinforcement learning-based algorithms

a) High computation power is a prerequisite for implementing any reinforcement
learning-based algorithm because the reinforcement learning ‘agents’ need an
enormous amount (almost going towards infinity) of ‘states’ to accurately learn
the correct strategies.

b) In all the reinforcement learning-based algorithms, some biasness is always
induced when an ‘agent’ fails to fully explore the ‘environment’.

c) The choice of reward function plays a big role in the final result. Since no set
instructions are available to decide the rewards, this brings inaccuracies as well.

3.6 Chapter summary

In this chapter, the author introduced and implemented two reinforcement learning-
based filter tuning algorithms within a simulated environment. The outcomes
demonstrated that the algorithms devised in this study outperformed other comparable
techniques in terms of efficiently tuning more intricate filters in fewer steps. However,
in light of various constraints outlined in section 3.5, the author made the strategic choice
to cease further exploration of reinforcement learning-based solutions for resolving the
filter tuning problem. Instead, the decision was made to embark on investigating filter
tuning algorithms that use theoretical knowledge and integration of both theoretical and
Al-based approaches and apply them to physical filter units.

Since the commercial filters are designed according to a particular application, their
design is unique which offer no or small variation in the tuning state. Therefore, it was
decided that a new universal test filter will be designed which will allow us to investigate
different tuning algorithms. The design of such a test filter design is presented in next
chapter.
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4 Development of New Test Filter

4.1 Chapter overview

Currently available commercial filters in the market are typically tailored for a specific
application. They often come equipped with tuning screws, which serve the purpose of
tuning the filter’s frequency band and/or bandwidth, albeit within predefined limits.
Achieving the desired frequency response involves altering the resonant frequency and
inter-resonator coupling using these tuning screws. However, certain filter versions
are deliberately designed without tuning screws, as their inherent design restricts
their functionality to a specific frequency band. Consequently, a significant portion of
commercial filters either does not facilitate the testing of new tuning algorithms or
provides limited flexibility in parameter adjustments. Given this backdrop,
the development of a new universal test filter, which can be used to evaluate and refine
automated filter tuning algorithms, assumes paramount importance.

To test any new tuning methodology, a simpler filter topology with only the resonance
adjusting screws is a good starting point. The inter-resonator coupling can be adjusted
during the design phase where iris (horizontal or vertical or both) may be used. The size
of iris opening determines the reactance magnitude of the filter. Designing an iris-coupled
filter reduces the total number of screws over the filter’s top plate. Also, a cavity filter
with designed with solid resonators might serve various purposes like: a) preventing the
screws from falling into the cavity; b) shorting the resonator if needed; c) helps in
preventing the losses (increasing the screw penetration degrades the Q-value); and,
d) helps in reducing the number of cases to be learnt by Al-based algorithms since
there is a bottom limit for the screw penetrating inside the cavity. In case of a hollow
resonator, the possible combinations of screw positions can grow exponentially high.
The case of complete withdrawal of the screw from the filter’s top plate can be controlled
either by adding a special module in the computer programme or by using mechanical
stoppers.

Considering all the factors mentioned in the previous paragraph, an all-pole L-band
Chebyshev bandpass test filter having quarter-wavelength resonators was chosen to be
designed. The test filter has been designed with solid resonators which ensures that the
tuning screw will not fall into the cavity structure. The case of screw completely coming
out of the filter plate was decided to be handled through the software part and has been
discussed in Chapter 7. In this chapter, the author presents a newly designed universal
filter, detailing its development process and performance assessment. This filter is
intended to serve as a testing platform for evaluating the automated filter tuning
algorithms.

4.2 Basic cavity filter

A cavity filter is a combination of various resonators coupled to each other. The property
of resonator circuits which can be manipulated is capacitance. Tuning screws are usually
mounted over the top surface of the cavity filters to change the capacitance externally.
Some tuning screws are directly mounted over the cavities and are responsible for
changing the resonance frequencies. Other screws include coupling and cross-coupling
screws to alter the inter-resonator couplings.
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Increasing the filter order (i.e., number of resonators) helps in achieving sharper band
selectivity (which is a key characteristic of cavity filters) but it also increases the filter’s
Insertion Loss (IL) and filter’s size. Optimisations are required for obtaining good filter
performance while keeping the size of the filter small.

4.3 Filter design procedure
For designing a combline filter, the following steps are generally performed:

1. We start from choosing the correct filter type (Butterworth, Elliptic,
Chebyshev etc.) according to the type of response expected from the filter.

2. The center frequency, BW, filter order, requirements for insertion loss and
return loss are defined.

3. The structure of the filter is decided as per the constraints provided by the
customers (if any).

4. The material and the geometry of the cavity, resonators, tuning screws are
then decided. For simplicity, it is usually preferred to have the resonators
of the same cross-section.

Historically, the engineers used various design tables and empirical formulas for
designing the filters as presented in textbooks like [120]. With the advancement in
computer technology these days, the designers are liberated to use filter designing
software like ADS, CST, HFSS etc. However, to avoid the iterative ‘hit-and-trial’ in
software-based filter designing, a combination of approaches is also sometimes used.

Within in allowed passband, the value of return loss must be minimized (it is expected
to be <=-20 dB usually) whereas the insertion loss value should be maximized (expected
to be close to 0 dB).

4.4 Design of 5-pole inline coaxial cavity test filter

4.4.1 Novelty aspect

The filter designed in this work is a universal test filter to test various algorithms as the
commercial filters present either no or very limited possibilities to implement different
algorithms. The choice of the filter order is determined based on introduced design
requirements presented in section 4.3.2.

In this research work, the author designed a 5% order all-pole inline coaxial cavity
filter. The hollow cavity structure was machined within the aluminium enclosure.
The extruded quarter-wavelength solid cylindrical posts within the conducting cavity
walls act as resonators. The advantages of having solid resonators in the structure are
already discussed in Section 4.1. To achieve the desired frequency response, tuning
screws which are fixed within the cover plate and placed vertically above the individual
resonators are provided. The cavity structure has not been plated from inside by any
conducting material as commonly seen, however, the M4 sized tuning screws are plated
with 3 um layer of silver which assists in increasing the filter’s overall performance.
The inter-resonator coupling has been adjusted with the help of vertical iris as opposed
to the commonly used coupling screws. The position, shape, orientation, and dimension
of iris has been designed to achieve the desired frequency response. Adjusting the
coupling between the resonators with the help of iris reduced the number of screws
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mounted over the filter’s top plate. Direct probe-touching method was used to achieve
the desired I/O coupling and its distance (height) from the base is determined using the
eigenmode solver of the considered design simulator.

4.4.2 Introduced design parameters
The basic design specifications from a filter to be realized are as under:

e Centre Frequency: 1,59 GHz (L-band)

e Bandwidth: 50 MHz

e |nsertion loss: 0,5-0,9 dB

e Returnloss: >18 dB

e Number of resonators: 4 to 5

e Resonator length: Quarter wavelength

e Inter-resonator coupling adjustment mechanism: Iris
e Filter type: Cavity filter

e  Filter topology: Coaxial

e Tuning Screws: Yes

4.4.3 Comparison with other similar designs

Two similar cavity filter designs are discussed in [121] and [122]. The approach for
designing a MW cavity filter by researchers in [121] is different than the one presented
in [122]. In [121], the filter is designed on the filter designing software, but the filter
dimensions were mainly calculated using analytical formulas and g-value tables in [120].
The resonator length was calculated using A/8 criteria. After deciding the cavity
dimensions, the other dimensions like screw diameter, hole diameter, depth etc. are
calculated using theoretical formulas. The approach in [122] used just a few analytical
formulas but mainly relied on simulation solvers to obtain the filter dimensions. The final
dimensions are found by Space Mapping (SM) optimisation technique using a
combination of ADS software and HFSS software. ABCD parameters are also involved
while optimisation. The author didn’t fabricate the filter and didn’t use tuning screws in
their filter design.

The filter designed in this thesis work is a mix of [121] and [122] but also exhibits its
uniqueness in some of the design aspects. The comparison of the designed test filter with
other main filter design methodologies available in [121] and [122] is presented in Table
4.1. The main difference as compared to [122] is that the test filter designed in this
research work is equipped with tuning screws as it was the case in [121]. The presence
of tuning screws allows to achieve the desired frequency response.

It can be seen in Table 4.1 that the design of filter in this research work is a mix of
design methodology presented in [121] and [122] in most of the criterion mentioned but
possesses uniqueness in terms of the criteria for length determination. The input-output
coupling method, resonator technology, and cavity material are common for all the
designs discussed.
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Table 4.1. The test filter design compared with other similar designs

Criteria Design in [121] Design in [122] In this work
Frequency Band S-band L-band L-band
Cavity Material Aluminium Aluminium Aluminium
No. of Resonators 5 4 5
Resonator Material Copper Aluminium Aluminium
Re.son.ator Length Determination A8 Eigen mode ~ )4
Criteria solver
Resonator Size Variation No Yes No
Resonator Shape Hollow Cylinder Solid Cylinder Solid Cylinder
Resonator Technology Coaxial Coaxial Coaxial
Resonator Mountin Screws Drilled at Cut within the Cut within

J the Bottom Cavity the Cavity
Tuning Screws Yes No Yes
Inter-resonator Coupling . .
Adjustment Method Screws Iris Iris
Filter Structure Cylindrical Square Cylindrical
Direct Pin Direct Pin
| t-Output li Direct Pin Contact
nput-Output coupling irect Pin Contac Contact Contact
Designing Software CST ADS + HFSS CST
Design Optimisation No ves No
enop (Space Mapping)

1/0 Connectors N-type SMA SMA
Filter Fabrication Yes No Yes
Silver Plating of Cavity Walls Yes No No

Note: The design similarities between different designs are depicted by the bold text

4.4.4 Choice of EM design software
In this work, CST Microwave Studio EM simulator by Dassault Systems (interchangeably
used as CST software in this thesis) was used. CST software is based on Finite Integration
Technique (FIT) which utilises integral form of the Maxwell’s equations. For solving the
EM-based problems, CST software has many kinds of solvers available which includes
Time Domain Solver; Transient Solver, Eigenmode Solver, Frequency Domain Solver.

While designing the test filter, the Eigen-mode values of the design were checked in
CST software. The design parameters were altered until the desired center frequency
and Unloaded-Q of the resonators were obtained. This design was optimised i.e., the
loop of changing the dimensions was repeated until the desired specifications were

achieved.
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4.4.5 Design of filter structure
A. Cavity Design

Key considerations: The shape and size of the cavity.
e  For a cubical cavity — length, width, and height
e  For a cylindrical cavity — the diameter and height
In this work, the author designed a cubical cavity which is connected to the test
equipment and outer world with the help of SMA Connectors.
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Figure 4.1. Cubical cavity dimensions — (a) Length and Width; (b) Height

B. Resonator Design

Key considerations: The shape and size of the resonator. The resonator is usually kept at
the center of the cavity structure but can be arranged in a zig-zag pattern or in straight line.

e For a hollow resonator — outer diameter, inner diameter, and height

e For a solid resonator — diameter and height

In this work, the author designed solid resonators with their length approximately

equal to quarter-wavelength of the center frequency. So, for 1,59 GHz center frequency,
A = 188,55 mm (A = c/f, where c = Speed of light). Correspondingly, the quarter-
wavelength resonators i.e., A/4 is 188,55/4 = 47,14 mm. Using Eigen-mode solver
calculations in CST software and considering all the design and tuning requirements, the
optimised resonator’s length for the resonance frequency to be exactly as per the
required center frequency of 1.59 GHz was found to be 40,35 mm for the designed 5%
order filter. The main factor contributing to difference between these theoretical and
optimised lengths is the capacitive load on the top end (open side) of the resonator.
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Figure 4.2. Solid resonators — (a) isometric view; (b) top view
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C. Tuning screws and their positions

Key considerations: The shape, size, positioning, material, and plating of the screws
e For screws without any tail-end disc — diameter of the screw, and the tail end
towards the resonator)
e For screws with a tail-end disc attached — screw diameter, disc diameter,
thickness of the disc, shape of the disc head (the end towards the resonator)

In this work, M4 screws plated with 3 um silver plating without the disc have been
used owing to being readily available. The screws used in this work are made of steel
alloy and have Torx6 head on which screwdriver would be attached to tune the filter.
The screws penetrate through the holes drilled in the filter’s top plate and are placed
exactly above the resonator posts.
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(a)

126.00 mm
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Figure 4.3. Tuning screws — (a) diameters; (b) tuning screws positions (shown over the top plate)

D. Inter-resonator coupling design

Key considerations: Shape, dimension, and the position in the cavity

e Horizontal iris — length, width, and height

e Vertical iris — width and height

For combline filters, capacitive coupling is achieved via probe (or wire) and the

Inductive coupling is attained via iris. Not only probe/iris dimension but its position is
also very important. Changing the iris gap brings change in both electric field distribution
and magnetic field distribution within the cavity. This in turn changes the inter-resonator
coupling strength. Generally, this gap is kept adjustable with the help of tuning elements.
Iris can be horizontal or vertical. It has been observed that the horizontal iris is not
suitable for the filters with large BW as they can’t provide the required high values of
coupling.
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In this work, the iris gap is kept fixed by finalizing the iris dimensions while designing
the test filter. This implies that the coupling value remains almost constant within the
tuning range. In our case, we have vertical iris which are simpler in their design as
compared to the horizontal ones.
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Figure 4.4. Vertical iris

E. 1/0 coupling design
Key considerations: Type of coupling, dimension, and its vertical positioning on the filter’s
wall
The Input/Output (I/0) ports can be connected by three possible ways:
a) Parallel coupling
b) Disc type coupling
c) Directly touching the connector pin to the I/O resonators
It was observed that the distance between feed line and resonator directly affects the
electrical coupling. The smaller distance between them leads to stronger electrical
coupling which correspondingly means lower external-Q value of the resonator.
In the designed test filter, the author used the direct touching method to achieve the
desired frequency response. The position of the probe (its height from the base) is
determined using the Eigen mode solver in CST Software.
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Figure 4.5. Probe/pin — (a) Probe length (inside cavity) and diameter; (b) Probe position w.r.t to
ground/base
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The final dimensions of the various parts of the designed filter sent for manufacturing
are given in Table 4.2. It should be noted that the gap between the cavity wall and the
I/O resonators (also commonly known as ‘end gap’) cannot be determined empirically.
In this design, we assumed it to be 6,5 mm. Only after having the value of end gap,
we can find the overall length of the filter structure.

Table 4.2. Various dimensions of the designed test filter

Entity Parameter D||.11en5|on
(in mm)
Length 126
Cubical Cavity Width 32
Height 50,35
Height 40,35
Solid Resonator
Diameter 9
Tuning Screw Diameter 4
Distance from outer wall 7,90
Iris 12 and Iris 45 Length 16,20
Height 45,35
Iris
Distance from outer wall 9,40
Iris 23 and Iris 34 Length 13,20
Height 45,35
Length (inside the cavity) 7
Probe Diameter 1,50
Height (from the base) 9

4.5 Designed filter in CST software

The overall 3D filter structure designed in CST Software was simulated with Frequency
Domain Solver feature. For dealing with the meshing used in the simulations, adaptive
tetrahedral mesh was used. The complete structure of the designed filter is presented in
Fig. 4.6. The S-parameter parameters were observed to check the accuracy of the design
and are shown in Fig. 4.8 in Section 4.7. The design parameters and penetration depth of
tuning screws are iteratively varied in the simulations until the desired frequency
response was met.

B 5 resonators ot end_Tuner_E.sekbs £ S 5 resonators fot end_Tuned_E.Sekiri 3]

a) With top cover (toplet) b)  Without toplet

Figure 4.6. Simulated 5-pole filter
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4.6 Fabricated 5-pole filter

After finalizing the filter dimensions in CST Software, it was fabricated on a VMC (CNC)
machine. Since the filter’s cavity block has been manufactured as a single piece of
aluminium with the resonator cylinders extruded from the base, the cutting speed of the
tool was carefully chosen. The filter’s top plate made from 3 mm thick aluminium sheet
was cut separately. This top plate is firmly mounted over the cavity block to avoid the
MW energy leakage. The commercially available M3-sized plate mounting screws made
of normal alloy-steel don’t bear any role other than holding the top plate. However,
the M4 screws used for tuning are plated with 3 um silver layer. The tuning screws are
surrounded by nuts which ensure that the filter structure is airtight. Also, these nuts are
locked tightly when the filters are tuned so that the tuning state of the filter won’t change
during its delivery phase.

Owing to their low cost and high frequency applications, SMA connectors were
connected to the fabricated filter for sending and receiving the signals where the center
pin touched the I/0O resonators. Fig. 4.7 shows the assembled filter.

Figure 4.7. Fabricated 5-pole filter

Although the frequency of designed filter is centred around 1,60 GHz offering BW of
50 MHz, these values can be modified a bit with the help of tuning screws to make it
suitable for a particular application requirement.

4.7 Comparing performance characteristics of simulated and fabricated
filter

The following options are available for measuring the performance of MW Filters:
a) Vector Network Analyser (VNA)
1) Scattering Parameters (S-parameters)
2) Voltage Standing Wave Ratio (VSWR)
3) Smith Chart
4) Polar Plot
5) Phase Plot
b) Spectrum Analyser
c) Special Waveguide Test Bench
In this work, we used the most common device among the ones mentioned above i.e.,
a VNA. To check the accuracy of the designed test filter, the S-parameters were chosen
as an observation criterion. KEYSIGHT N9914A VNA [123] was used for testing the
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performance of the filter. The fabricated filter was connected to a VNA, and its
S-parameters were measured as shown in Fig. 4.8. Also, the simulated S-parameters
captured from CST software while designing the filter are also shown in the same image.
A good match between the S-parameters of a fabricated and simulated filter confirms
the accuracy in the design. After tuning, the fabricated filter working as per the stated
requirements. Fig. 4.8 shows that with-in the passband, the insertion loss of the filter is
0,7 dB and the value of return loss is found to be under -18 dB. The BW of the fabricated
filter is also under the requirements set while designing the filter.

Simulated and Measured Scattering Parameters V/S Frequency
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Figure 4.8. The difference between response of simulated and fabricated filters

4.8 Chapter summary

A new 5™ order tuneable test filter having cubical cavity and quarter-wavelength long
solid cylindrical resonators was designed to test the filter tuning algorithm(s). Varying
the height of the tuning screws allowed us to vary the center frequency and BW. The I/0
coupling has been realized using a touching pin and the inter-resonator coupling is
adjusted with designed vertical iris as opposed to commonly used coupling adjustment
screws. The choice was based on the fact that the designed iris reduced the total number
of screws installed on the filter’s top plate. The tuning screws were surrounded by nuts.
These nuts serve two purposes: a) avoiding the RF energy leakage; and b) ensuring that
the tuning state won’t change when the tuned product is delivered to the customers.
The designed test filter was then fabricated using an aluminium block. A good match was
found between the response obtained from the simulated filter and the fabricated filter.
In order to assess the effectiveness of a novel algorithm designed for automating the
filter tuning process, the development of an experimental setup is a requisite. To overcome
the limitations of other filter tuning equipment available in the literature (presented in
Chapter 2), coming up with a new experimental setup becomes inevitable. The ensuing
chapter delineates the inception of this precise and versatile setup, distinguished by its
precision and flexibility to fine-tune wide array of filters with minor modifications.
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5 The Experimental Setup for Filter Tuning

5.1 Chapter overview

The tuning components in MW filters facilitate adjustments to achieve the specific
frequency band required for a given application. Among these, tuning screws are the
predominant choice for cavity filters. By altering the penetration depth of these screws,
one can modify the resonance frequency and inter-resonator coupling values. To automate
the filter tuning process, a robotic setup is needed. As discussed in Chapter 2, all the
automatic filter tuning setups available in the literature exhibit certain limitations in
terms of hardware and/or software which excludes the possibilities of incorporating
them within the filter production lines. To have a generalised solution, a new
experimental setup is needed which would allow its industrial usage and is apt for testing
and comparing different filter tuning algorithms while being precise and resistant to
environmental interference.

The new experimental setup should be designed so that it can tune not only the test
filter designed in Chapter 4 but also should tune the other existing and upcoming
commercial filters by making minor modifications. Having a flexible automated filter
tuning system is also vital for increasing the volume of filter production in the industry.
The main considerations while coming up with the new setup are full penetration and
full withdrawal of tuning screws; simultaneously driving the screwdriver and outer nut;
wider working range etc.

Taking all factors into account, this chapter introduces the design of a novel
experimental configuration in which relative-positioning system has been used. This
setup, as detailed within the chapter, offers adaptability for handling filters of various
shapes, sizes, and topologies, requiring only minor modifications to accommodate them.

5.2 Principle block scheme of the new setup

Vector Network Analyzer

grbl
firmware

usB Upload

Arduino

Stepper Motor Driver

Holding Fixture

Figure 5.1. Principal block scheme

The main scheme of the new experimental setup is presented in Fig. 5.1. Once the
required device drivers are installed, VNA is connected to that configured computer via
LAN cable. The configured VNA is then connected to the test filter. The desired filter
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characteristics are fetched into the computer. The connected computer sends G-codes
via USB port to the microcontroller board (ATMEGA 328P) controlling the motors.
Broadly, the whole setup can be seen as a combination of four different modules as
following and are discussed in detail in the forthcoming sub-sections:

1. Mechanical module
2. Electronics module
3. Software module
4

Vision module

5.2.1 Mechanical module

5.2.1.1 Basic structure and configuration

The mechanical aspect of the experimental setup has been designed so that it can tune
various types of commercial filters just by making small modifications. Most of the
commercial filters have tuning screws and locking nuts around each of them to avoid —
a) RF energy leakage, and b) detuning of the filter while transporting it to the customer.
In case when the filter version is equipped with self-locking tuning screws, the nut driving
motor can be easily disabled. Also, the design allows easy replacement of tuning screw
head with the desired shape to tune different filter topologies.

After considering the design limits, the dimensions of the experimental setup were
decided. The tuning screws were to be rotated using the torque provided by stepper
motors. Due to presence of numerous screws (tuneable screws and plate mounting
screws), there were spacing-related constraints. Considering space limitations and to
avoid complex parallel computations, a single tuning actuator-based system was
designed. The actuator approaches the tuning screws sequentially (one screw after the
another). The sequential-tuning approach is slower, but it ensures high tuning accuracy as
compared to parallel tuning approach in which many screws can be tuned simultaneously.

The author chose the cartesian configuration while designing the setup owing to its
advantages such as — precision, wider working envelope (wide range of rectangular
movement in X-, Y- and Z-direction) so that the higher ordered filters could also be tuned
when needed, easy programming, high payload bearing capacity, and overhead grid
offering bigger floor space. For the precise movement of the setup in X-, Y- and
Z- direction, ball screw with small pitch size has been connected to stepper motors using
the shaft couplers. The ‘home’ position of the machine is set using the limit switches.
The relative-positioning system as used in [107][112] has been used in this work.

5.2.1.2 Tool-in-tool actuator

The tuning actuator designed in this work has a tool-in-tool arrangement where the inner
tool is a screwdriver which is responsible for rotating the tuning screws and the outer
tool deals with locking and unlocking the outer nut. This outer nut restricts the
undesirable detuning of the filter while the other screws of the filter are being tuned or
when the fully tuned filter is delivered to the customer. For tuning the filters without
the locking nuts, the motor responsible for locking the nut can simply be disabled.
The tool-in-tool manipulator is shown in Fig. 5.2.

a7



Outer tool —

Inner tool

Figure 5.2. Basic structure of tool-in-tool actuator

The designed tool-in-tool actuator assembly allows the tuning of filters mounted with
different kinds of screw heads just by replacing the screwdriver head, thus making the
setup flexible. While tuning, the continuous contact between screwdriver and screw
head is maintained with a spring-assisted sliding mechanism. This sliding mechanism
allows the vertical movement of actuator as well as simultaneous movement of the
tuning screw along its axis. The proposed actuating mechanism allows simultaneous and
independent control of servomotor-based screwdriver as well as the lock-nut mechanism.
Once the desired tuning state is achieved, the screwdriver is kept stable with the help of
corresponding motor’s holding torque while the other motor tightens the outer nut. This
ensures that the current tuning state is retained, and repetitive rotations of tuning
screws is avoided. The detailing of designed tool-in-tool is shown in Fig. 5.3.
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Figure 5.3. Designed tool-in-tool
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The description of the various parts of the tool-in-tool mechanism has been explained
in Table 5.1.

Table 5.1. Details of the parts of the tool-in-tool

Part Description Part Description

Number Number

1 Magnetic Screwdriver Head 12 Shaft Coupler

2 Magnetic Lock-nut Adapter 13 Motor Shaft

3 Adapter Coupling 14 Bush

4 Extension Shank Spring 15 Nema 23 Motor

5 Adapter Coupling Spring 16 Toothed Belt

6 Bush 17 Bush

7 Pulley Bearing 18 Drive Shaft (Pulley A)

8 Bearing Mounting Shaft 19 Shaft Coupler

9 Sleeve-type Bush 20 Motor Shaft

10 Auxiliary Coloured Disc 21 Bush

11 Drive Shaft (Screw Head) 22 Nema 23 Motor

To avoid a dense bunch of motors and wiring near the tool-in-tool structure, the
servomotor responsible for driving the locking nut is placed at a distance from the axis
of screwdriver motor. For transmitting the power from the unaligned stepper-motor to
nut-driver, a belt-pulley system has been used. The use of timing belt over a spur gear
minimizes the belt slippage when high torque is applied to lock/unlock the nut.

5.2.1.3 Auxiliary disc
The auxiliary disc shown as part number 10 in Fig. 5.3 is attached to the shaft which is
rotating the screwdriver carrying out the actual tuning of the filter i.e., this disc rotates
with the rotation motion provided by the stepper motor. A coloured strip has been
pasted on this disc. The coloured strip is designed with a continuous pattern of
Red-Green-Blue (R-G-B) coloured strips. This disc estimates the rotation angle as well as
it determines the direction of screwdriver’s rotation. The diameter of the disc on which
the strip is pasted is chosen in a way that it meets the requirement of minimum angle
resolution needed. The exact use of this auxiliary disc has been presented later in
sections 7.6.3 and 7.6.4. For determining the direction of rotation, if the ‘Green’ colour
strip is followed by a ‘Blue’ colour strip, it means the screwdriver is moving in
counterclockwise (CCW) direction. However, if ‘Green’ colour strip is followed by a ‘Red’
coloured strip, the direction of rotation is clockwise (CW).

The outer diameter, D of this auxiliary disc is 38 mm and the thickness, T of the
auxiliary disc is kept being 12,5 mm. The calculations related to this disc are given by
equations 5.1 to 5.4:

Circumference of the auxiliary disc, C is given by:
C =2nR (5.1)
Substituting radius of the auxiliary disc, R = 19 mm gives:
C =119,32 mm (5.2)
In order to have an angle resolution of 5°, the total coloured RGB strips (S) needed were:
360°
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The width of each strip (W) could be calculated using:

119,32
W =

= 1,65 mm (5.4)
The auxiliary disc is shown in Fig. 5.4.

°

Figure 5.4. Auxiliary disc with continuous RGB pattern

5.2.2 Electronics module

By considering the flexibility related requirements in terms of torque and resolution
(to allow the setup to tune wide variety of filters), NEMA 23 stepper-motors were
selected. These motors offer high precision, provide the torque necessary to drive the
setup, and offer sufficiently high holding torque. In our tuning setup design, 06 stepper
motors have been used. Table 5.2 gives a small description of their use.

Table 5.2. Details of the usage of the motors in the experimental setup

S. No Nomenclature Used Position in the setup
1 M1 Controlling the X-axis (left side of setup)
2 M2 Controlling the X-axis (right side of setup)
3 M3 Controlling the Y-axis
4 M4 Controlling the Z-axis
5 M5 Controlling the Movement of Nut Fastener/Loosener
6 M6 Controlling the Tuning Screwdriver

Note: Motors M1 and M2 are wired together for smooth and precise motion of the setup in
X-direction.

The motors are driven by a TB6600 stepper motor driver which gets control signals
from the microcontroller.

5.2.3 Software module

From bird-eye view, Python programming language has been chosen to control the
experimental setup as well as to test the new filter tuning algorithms on the designed
experimental setup. With the increase in computation power, introduction of various
Al-related libraries, it is possible to involve learning algorithms to the processes where
an accurate mathematical model is not available (i.e., when the system can be
considered as a ‘blackbox’). The process of filter tuning falls under the same umbrella
and hence there was a potential of finding a novel tuning solution.

After calibration, the VNA is connected to device under test (DUT) i.e., filter. The IP
address of VNA allows real-time data transfer from VNA to computer through LAN cable.
This data contains the information of current tuning state of the filter. The developed
tuning algorithm compares the current state with the desired one and sends G-codes to
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the microcontroller (Arduino). With the help of ‘grbl’ firmware, the microcontroller
drives the specific stepper motor. The controller discussed in [124] has been used to
control the speed of system as discussed later in detail in section 7.6.2.

The ‘home’ position has been defined to be one corner of the filter holding fixture
which is made of wood. The presence of 06 limit switches assists in homing the machine.
While tuning the filter with solid resonators, the tuning screw can’t fall into the cavity.
However, a special scenario where the screw may completely come out of the top plate
is handled by measuring the pitch of the screw thread and monitoring the number of
screw rotations through the developed program.

5.2.4 Vision module

A vision module has been added to the experimental setup to track the rotation angle as
well as direction of rotation of screwdriver. A generic web-camera looks at the
customized auxiliary disc as shown in Fig. 5.5.

Figure 5.5. Camera looking at the auxiliary disc with coloured strip

5.3 The FAT robot

The experimental setup i.e., the FAT robot has been shown in Fig. 5.6.

Figure 5.6. Overall experimental setup — (a) SolidWorks Assembly; (b) Realized FAT Robot
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5.4 Chapter summary

For implementing filter tuning algorithms, an experimental test setup was built.
A customized tool-in-tool actuating mechanism was designed for finding the optimal
positions of the tuning screws and then finalizing the locking of the nut of the test filter.
To have bigger working envelop, cartesian configuration was selected. The details about
the mechanical design and analysis of the structure are not discussed to stay aligned
mainly with the topic of this thesis. As compared to other solutions proposed in the
literature, the setup designed under this research work is flexible in terms of modifying
the screw head to match various kinds of screw heads of the industrial filters and has a
vision module dedicated to serve as an error detecting source so that the tuning error
can be identified as soon as it occurs.

To deal with filters of different kinds, the stepper motors were chosen so that the
torque and resolution requirements by various existing and upcoming industrial filters
can be dealt. The movement of the designed Fully Automated Tuning (FAT) robot in 05
different axes have been controlled by 06 stepper motors (2 motors have been used for
smooth movement in the X-direction). Each stepper motor is equipped with their
dedicated motor driver which receives the control signal from the microcontroller.
The whole system is mainly controlled by Python programming language and an HMI has
been built to ease the movement of the robot. The homing process is assisted by the
limit switches in all the linear translation axes.

Prior to applying any tuning algorithm to the filter, two essential preparatory steps
must be completed:

1. Distinguishing the tuning screws from the plate mounting screws.
2. Manually configuring the tuning elements to their initial positions.

The subsequent chapter will expound on these essential tuning preliminaries.
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6 Tuning Preliminaries

6.1 Chapter overview

The surface of the MW cavity filter, as depicted in Fig. 6.1, features an array of screws.
Among these, some are tuning screws, which facilitate adjustments to the filter’s tuning
state. The remainder are mounting screws, primarily responsible for securing the top
plate of the filter in place. Before commencing the automated tuning process, it is
imperative for the algorithm to discern the position of each tuning screw on the filter.
Achieving this necessitates the development of a method for distinguishing tuning and
mounting screws. Once the tuning screws are identified, their position coordinates are
sent to the algorithm to direct the tuning manipulator.

This chapter provides the insight to vision-based methods for detecting and localising
the tuning screws of the filters. For testing the proposed methodologies, a used
commercial filter shown in Fig. 6.1 was used.

(a) (b)

Figure 6.1. A commercial MW cavity filter — (a) top view; (b) perspective view

6.2 Differentiating the tuning screws using computer vision

6.2.1 Using Machine Learning

Before automating the filter tuning process, every screw fitted over the cavity filter must
be efficiently classified either as a tuning screw or a mounting screw. To do this, a ML
classifier may be used. The ML classifier based on supervised learning can build a model
which would divide the given data into desired number of distinct classes. ANNs [125],
Bayesian Networks [126], Decision Trees (DT) [127], K-Nearest Neighbours (KNNs) [128],
Support Vector Machine (SVM) [129] are a few of the widely used classification
techniques documented in the literature. The various steps to classify the screws using
ML-based model are explained in the following sub-sections.

6.2.1.1 Setup used

For extracting the features of the screws correctly, a unique imaging setup was needed.
The images used to generate the dataset for the ML-based classifier for localising the
tuning screws were captured using a Logitech C525 HD 720p webcam. Since a powerful
light source was necessary for proper illumination and for homogeneous reflection on
the top plate (to create higher contrast), halogen lighting was used during the
experiments. The overall setup is depicted in Fig. 6.2. The various parameters used in
Fig. 6.2 were defined to be as following:
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Figure 6.2. Imaging setup for ML-based screw differentiation (also published in [VI])

To prevent any screws being occluded i.e., the front screw covers the one(s) behind
it, the camera mounting angle defined by a was chosen to be 45°.

6.2.1.2 Preprocessing

The procedure for preprocessing the acquired image processing is shown in Fig. 6.3. The
acquired image i.e., RGB image of the commercial MW cavity filter is first converted into
a binary image. The rusty mounting surface seen in Fig. 6.1 (we have considered a used
MW filter in this chapter as stated earlier) was compensated by adjusting the brightness
and contrast of the binary image. The ‘value plane’ was subsequently used to extract the
grey image. The key reason for choosing this plane was that the tops of the screws were
a little brighter than the rest of the filter assembly. Finally, the thresholding step assisted
in separating all the screws (mounting screws as well as the tuning screws) from the
filter’s top surface. The resulting processed image was then used for further analysis.

Image Canture Contrast and Greyscale — Value
gemep Brightness Plane

Processed Image +——————— Thresholding

Figure 6.3. Image preprocessing steps (also published in [VI])

The original image and the corresponding processed image of the filter considered for
testing the are displayed in Fig. 6.4 on the left and the right side respectively.
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(b)
Figure 6.4: The original image (left), and Processed image (right) (also published in [VI])

6.2.1.3 Screw classification

For classifying the screws correctly, features of all the screws must be extracted. To do
this, Determinant of Hessian (DoH) method has been used. The Hessian matrix provides
insights about the local variations and structures within the data. The determinant of this
matrix leads to a matrix composed of second-order partial derivatives. For the image
represented by f(x,y), the DoH is calculated as presented by equation 6.1.

fxx fxy
detH = ¢ (6.1)
yx Yy

In this work, when the processed image was given to the proposed solution, DoH
method provided area as a feature vector. The screw dimensions were then manually
measured and labeled as tuning screws or mounting screws depending on the area of
the feature vector. Additionally, the classification of tuning and mounting screws was
made easier by extracting the height parameter from the feature vectors obtained using
DoH. Labeling took 92 minutes to complete. This linear SVM classifier, which was trained
using the parameters presented in Table 6.1, used this labeled data for training the
model. The SMO solver, which minimizes the one-norm problem by considering a series
of 2-point minimizations, was used to implement the SVM algorithm.

Table 6.1. SVM algorithm parameters

Entity Value
Lagrangian Multiplier 26 x 1 array
Bias Term for Hyperplane -13.9878
Solver SMO

After the model is trained using the labeled data, the screws in given image can be
classified. The overall methodology for classifying the screws is presented in Fig. 6.5.

| Features Extraction | Feature Vector | Manual Labeling of
by DoH Feature Vector

Processed Image

Prediction of Screw
Type

Trained Model SVM Classifier

Figure 6.5. Screw classification methodology (also published in [VI])
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The proposed methodology was tested on a commercial cavity filter shown in Fig. 6.1
on which a total of 144 screws are present. Out of these, 58 screws were the tuning
screws and rest were the mounting screws. The goal of implementing the supervised
learning algorithms on the processed image was to have a bounding box around the
tuning screws.

6.2.1.4 Results and Discussions

Initially, the processed image and the feature vectors from DoH are given as an input to
the trained SVM model and the resultant image with the predictions is shown in Fig. 6.6
where the bounding boxes are encapsulating the tuning screws. It can be seen in Fig. 6.6
that the proposed SVM model predicted a total of 60 tuning screws i.e., two false-positive
results were predicted by the SVM algorithm.

Figure 6.6. Tuning screws predicted by SVM model (also published in [VI])

The performance of the SVM algorithm was compared with the KNN and DT models.
While implementing the KNN algorithm, the number of neighbours were defined to be 5
and the Euclidean distance between the nearest neighbours is used as a criterion. In the
DT algorithm, the cross-validation was not considered. The predictor selection for DT was
set to consider all the splits. The predictions made by KNN model and DT model are
presented in Fig. 6.7 and Fig. 6.8 respectively.

Figure 6.7. Tuning screws predicted by KNN model (also published in [VI])
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Figure 6.8. Tuning screws predicted by DT model (also published in [VI])

The results obtained by implementing KNN and DT algorithms on the processed image
show the presence of 5 false-positive results i.e., a total of 63 tuning screws were
predicted by both the algorithms.

The classification results for tuning screws obtained using different ML algorithms
implemented are demonstrated in Table 6.2. Upon inspection, it becomes clear that the
SVM model exhibited superior classification performance, with only 2 misclassified
screws. In contrast, the other two state-of-the-art algorithms viz. KNN and DT which
misclassified 5 screws each.

Table 6.2. Number of tuning screws obtained using the ML-based algorithms

ML Algorithm Number of Screws Detected by the Incorrectly
proposed classifier Classified Screws
(True Count = 58)
SVM 60 2
KNN 63 5
DT 63 5

Upon close examination of Figs. 6.6, 6.7, and 6.8, became evident that all three
algorithms not only incorrectly classified some of the mounting screws as tuning screws,
but also erroneously identified a similar shaped shadowed area as a tuning screw (as clear
from the bottom portions of Fig. 6.6 to Fig. 6.8). Hence, a more robust and accurate method
was required, one that does not hinge on the template matching or the trained ML model.

6.2.2 Using a novel band-subtraction method

Fig. 6.9 shows a magnified version of a small portion of the cavity filter that is the subject
of this chapter (see to Fig. 6.1). The tuning screw is located on the top-right corner, and
the mounting screw is located at the bottom-left corner.

Figure 6.9. Different types of tuning screws on a cavity filter (also published in [IV])
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Since the screws in Fig. 6.9 have distinct shapes, it may be possible to distinguish them
using image processing techniques such as contour matching, shape detection, and
pattern matching. It is not always the case, though, that mounting screws and tuning
screws have different forms. Rather, commercial filters occasionally use the same screw
head for every screw that is provided on the cavity filter. Therefore, a robust method is
required to locate and categorise the screws that are attached to the filter structure.

To prevent losses, conductive materials are coated on tuning screws provided on the
commercial filters. Because every material or compound has a unique reflectance to
electromagnetic (EM) waves, these screws can be identified by their material properties.
Thus, utilising the material composition, a novel vision-based technique may be
applied to differentiate the tuning screws of a cavity filter from the mounting screws.
As hyperspectral imaging can produce images in contiguous spectral bands, the materials
can be characterized using their reflectance within certain spectral range of the EM
spectrum. In this work, images from a hyperspectral camera were used to examine the
characteristic image bands of screws from a commercial cavity filter. The datacube of a
hyperspectral camera was used to extract information about relevant bands.

Spectroscopy and digital imaging are combined in hyperspectral imaging (HSI).
By using this imaging approach, the scene is captured in discrete narrow bandwidths,
allowing for the datacube to be processed further by selecting the appropriate image
bands [130]. Different materials have distinct signatures across different wavelength
bands due to their differing reflectance characteristics. Taking into account the scope of
the current study activity, Fig. 6.10 shows the reflectance behaviour of carbon steel and
silver (Ag) at wavelengths ranging from 0.2 um (200 nm) to 20 um (20000 nm). There are
noticeable differences in the reflectance curves for the two metals. This spectral
signature can be used to identify comparable materials.

Reflectance R,

v W HPOL

02 04 1 2 4 10 20
Wavelength (um)

Figure 6.10. Reflectance curve for different metals [131]

As tuning screws used in industry are normally coated with a 3 um silver layer
(to enhance the conductivity) and mounting screws are usually composed of an alloy of
steel, it is possible to distinguish between them using their reflectance signatures.
The imaging setup utilised to carry out this task is shown in the following subsection.
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6.2.2.1 Imaging setup
A Specim IQ Mobile Hyperspectral Camera [132] was used to differentiate the mounting
screws and the tuning screws. This hyperspectral camera covers the 400-1000 nm
wavelength range, has 204 picture bands (per pixel), and has a spectral resolution of
7 nm. The reflectance values for all the bands can be displayed in the spectral distribution
of each pixel This camera was calibrated for white reference using a calibrated tile with
99% reflectance. On HSI images, no additional image processing procedures were carried
out after the initial calibration. But unlike RGB, HSI cannot determine the objects’ shape.
Rather, only the necessary bands are selected and sent on for additional processing.
The entire setup that was used to capture the image from the hyperspectral camera
has been shown in Fig. 6.11. The reference plate used for Specim IQ camera calibration
is also shown in the same figure. Since in the EM spectrum, the wavelength of halogen
light covers wider spectrum of wavelength spanning from the UV to the IR, two
400W halogen projectors were selected as the light source. The diffusing sheet was
employed to guarantee homogeneous lighting.

# Light
Diffusion =g
Sheet

Specim IQ
Hyperspectral
Camera

Specim
Calibration
Sheet

ik

Microwave Cavity Filter

Figure 6.11. Setup for screw differentiation using hyperspectral imaging (also published in [IV])

6.2.2.2 Reflectance Trends

The material composition of a MW filter's mounting and tuning screws differs. Thus,
different band options must be analysed in order to determine the effective spectral
image bands. This allows the two types of screws to be distinguished from one another,
as each material has unique spectral characteristics.

For fetching the reflectance information from the screws present on the filter
considered, one screw of each category (tuning screw and mounting screw) was selected.
Fig. 6.12(a) shows the locations of both the screws selected in one of the bands.
The circle marked with blue colour presents a mounting screw and other orange coloured
point is marked over a silver-plated tuning screw. The corresponding reflectance plots
for both these screws are presented in Fig. 6.12(b) covering the wavelength ranging from
400 nm to 1000 nm.

A significant difference between reflectance value of both the screws can be seen in
Fig. 6.12(b) within the pre-defined wavelength range. These results were obtained when
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only one mounting screw, and one tuning screw were sampled which might not be
sufficient to draw any conclusion. Thus, an average of 05 samples selected for each
screw category was used to get more meaningful results. The locations and the
corresponding bands of selected screws is reported in Fig. 6.13.

The goal was to use the mean reflectance value to precisely choose the right bands by
considering numerous screws from each category. The locations of selected screws in
one of the bands are displayed in Fig. 6.13(a). Figure 6.13(b) displays the relevant
reflectance plots for each of these screws over the 400—1000 nm wavelength range.
The average reflectance value was then used to choose the bands, as will be discussed in
the following subsection.
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Figure 6.12. Location and reflectance characteristics for 01 screw sampled from each type —
(a) Screw Locations on a Band Image; (b) Reflectance-Wavelength Plots
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Figure 6.13. Sampled 05 screws from each screw category and their reflectance response —
(a) Screw Locations on a Band Image; (b) Reflectance-Wavelength Plots (also published in [IV])

6.2.2.3 Selection of bands

Hundreds of narrow bandwidth spectral bands make up HSI; most of them are
correlated and produce redundant data. Processing a large amount of data decreases the
computational efficiency [133] due to the Hughes phenomenon [134]. Therefore,
selecting the spectral bands that offer unique characteristic information makes sense
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[135]. In addition to increase in computation efficiency, the primary benefits of utilising
a band selection strategy are the increase in classification accuracy [136] while ensuring
preservation of the intrinsic information of the original pixel [137].

Band 25 and Band 190 were selected from the datacube by averaging the reflectance
values of the selected tuning and mounting screws, as can be seen in Fig. 6.13. Due to
the fact that Band 25 has the most distinguishing features that set it apart from the other
screw type. This is shown in Figs. 6.12(b) and 6.13(b) where a notable difference in
reflectance between the two screw groups can be seen. The wavelength of band 25 is
roughly 467 nm. From the other end of the datacube, Band 190, having a wavelength of
approximately 930 nm was selected. This is because Band 190 exhibits feature similarities
between the two screws. This aspect can be observed from Figs. 6.12(b) and 6.13(b)
where the reflectance characteristics show a slight variation in Band 190’s reflectance
properties.

It is noteworthy that the authors selected Band 190 even though the difference
between the two curves was minimum around Band 197. The Band 190 was selected to
exclude any potential spectral noise that could have been present in the last few bands
near to the image’s end. Images of Band 25 and Band 190 are shown in Figs. 6.14(a) and
6.14(b), respectively.

6.2.2.4 Band subtraction

It was discovered, empirically, that it was possible to distinguish between mounting
screws and tuning screws by subtracting one band from the blue region (Band 25) and
another band from the infrared (IR) region (Band 190) of the datacube could clearly
differentiate tuning screws and mounting screws. As presented by equation 6.2, the
image lresur Was obtained when a 467 nm image (/467) was subtracted from a 930 nm
image (/930).

Tresute = 1o30— Lis7 (6.2)

When compared to the silver-plated tuning screws, the mounting screws seemed
much darker, as seen in Figure 6.14(c), which is an image produced after implementing
the band subtraction. Using this information, one may find the coordinates for the
location of each tuning screw and this information can then be used to tune the filter
autonomously.

Figure 6.14. Band selection and band subtraction results — (a) Band 25 image; (b) Band 190 image;
(c) Resultant Image after Band Subtraction (also published in [IV])
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6.2.2.5 Experimentation results and analysis

Results of applying the band subtraction technique to the Specim hyperspectral camera
image are shown in Fig. 6.15. For easy comparison, the RGB and the processed image —
the outcome of band subtraction — are shown next to one another.

Processed

Figure 6.15. Classification of screws using Specim hyperspectral camera — (a) RGB image; (b) final
image (also published in [IV])

The suggested band-subtraction method led to encouraging findings as demonstrated
in Fig. 6.15. Because they seem darker than the tuning screws, the mounting screws are
easier to distinguish.

6.3 Comparison between different screw differentiating techniques

The classification accuracy of the various techniques implemented for distinguishing the
tuning screws from the plate mounting screws are compared in Table 6.3.

Table 6.3. Screw classification accuracy of different algorithms implemented

Algorithm ScrewA((‘;Icausrs;fci;ation
SVM 96.66%
KNN 92.06%
DT 92.06%
Band-Subtraction 100%

The novel band-subtraction method demonstrated a remarkable 100% success rate in
classification of the tuning screws as shown in Table 6.3. This breakthrough suggests that
efforts to automate cavity filter tuning can greatly benefit from the adoption of this novel
technique. With the tuning screws accurately identified, a robotic manipulator can then
be instructed to tune the filter using the precise spatial coordinates of the tuning screws.

6.4 Setting the initial position of the tuning screws

Since an automatic screw feeding mechanism which will mount the screws on the filter’s
top plate is beyond the scope of this thesis, so the tuning screws are installed manually.
Each screw is tightened until it touches the solid resonator below it, thus leading to
shorting of the resonators. This has been decided to be the initial position of the tuning
screws when the filter is assembled. Each tuning screw is then installed with a locking
nut. The nuts are kept loose at this stage so that the tuning screws can rotate freely.
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These nuts need to be tightened only when the resonator has been tuned. This ensures
that, once the required filtering parameters have been achieved, the position of the
tuning screw stays intact when the filter is delivered to the customer.

6.5 Chapter summary

This chapter presented the prerequisites which were needed before initiating the tuning
process viz. — differentiate and localise the positional coordinates of all the tuning screws
mounted on the filter using camera vision; and setting the initial state of the tuning
screws. For differentiating the tuning screws from the plate mounting screws, various
vision-based methodologies based on ML and band-subtraction method were
implemented. The imaging setup and the image processing techniques were also
discussed. The methodologies to localise the tuning screws have been validated on a
commercial filter. It was found that the novel band-subtraction method proposed in this
work led to 100% classification accuracy. The initial position of the tuning screws has
been set in a way that each tuning screw touches (shorts) the resonator under it.

In the next chapter, a comprehensive overview of the automated filter tuning
algorithms is provided. These algorithms are employed to fine-tune the filters utilising
the FAT robot introduced in Chapter 5. The tuning process integrates theoretical
knowledge and combination of theoretical principles with Al to tune the filter. Particle
filtering has been used to dynamically track the tuning errors in real-time.
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7 Automated Filter Tuning Algorithms

7.1 Chapter overview

While the filter tuning algorithms introduced by the research community have certainly
contributed to the tuning process, they are often constrained by various limitations.
These limitations include factors such as the need for human intervention during the
filter tuning, the time-consuming nature of optimisation routines, and the iterative
visitation and adjustment of screws. Continuous rotation of the tuning screws is also
undesirable as it may result in undesirable Passive Inter-Modulation (PIM) effects.
Moreover, many of these algorithms operate without any feedback from the system,
essentially following the instructions blindly.

In light of these challenges, there arises a compelling need for a more universal
solution. This solution should be capable of automatically tuning assembled filters,
minimizing human involvement to the initiation of the tuning algorithm. It should also
circumvent the need for repetitive screw adjustments. Additionally, an essential
component of this solution is the inclusion of a feedback mechanism, enabling the early
detection and rectification of potential tuning errors. Such a system not only streamlines
the tuning process but also conserves time and valuable resources.

The solution presented in this work uses the information related to phase change of
the input reflection coefficient is used for sequential tuning of the resonators of the
all-pole filters. The proposed automated filter tuning solutions use either the Smith chart
or the polar chart for tuning of the filters using the reflected signal (since shorting the
resonators means no signal is getting transmitted). When moving from the input port to
terminating port of the filter, all the resonators are brought to their resonance state
successively with the help of the tuning screws. The proposed tuning algorithms use the
theoretical knowledge in Polar chart based algorithm and the conjunction of theoretical
knowledge and Al in Smith chart based algorithm to correctly tune the filter without
visiting the screws iteratively. In both these algorithms, PFs-based algorithm ha been
used to track the potential tuning errors in real-time using the developed vision module.
Thus, the error can be detected and rectified during the early stages only. None of the
previously published automated filter tuning solutions reported in the literature have
used vision-based error compensation in real-time while tuning the filters based on Smith
chart or polar chart.

7.2 Smith chart

One of the display modes to measure the filter’s performance in terms of scattering
coefficients is the Smith chart. This chart allows the calculation of transformation of a
complex load impedance through any arbitrary length of the transmission line (TL).
The Smith chart can be presented in terms of impedance (i.e., Z) or its reciprocal
(admittance i.e. Y). Other than these charts, Immittance (YZ) Smith charts are also
sometimes used in which both Y and Z entities are presented simultaneously.

It is common to find the normalized Smith charts for impedance, admittance and
immittance. In this work, we restricted our discussion to impedance Smith charts only.

The normalized impedance, z is expressed by equation 7.1 as:

Z_£ 7.1
= (7.1)
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where Zo = The characteristic impedance
Z = Impedance at any point on the Smith chart
z = Normalized impedance

One full rotation on the Smith chart presents an electrical line length of A/2 or it
radians on the phase scale. In impedance Smith chart, the upper half presents inductive
reactance and corresponds to positive imaginary part of impedance. On the other hand,
the lower half depicts capacitive reactance and corresponds to the negative imaginary
part of impedance. A normalized impedance Smith chart is shown in Fig. 7.1.
The right-most point on the impedance Smith chart presents an open circuit with
impedance, z = infinity. Moving electrical length of A/8 towards the load (moving
anticlockwise) from open circuit point represents z = 0 + 1j i.e., inductive reactance. A/4
anticlockwise movement from open circuit point represents a short circuit with z=0and
3M\/8 anticlockwise movement from the open circuit point represents z = 0 - 1j. Moving
A/2 anticlockwise from the starting point brings us back to the same point where
z = infinity. The center point of Smith chart presents z = 1 + Oj i.e., matched impedance.
The open circuit point, the short circuit point, and the matched load point are all located
on the real axis which defines the purely resistive line.

Z=00

‘o

Matched load

Figure 7.1. Impedance Smith chart

The green arcs in Fig. 7.1 represent the locus of constant reactance and the black
circles are the locus of constant resistance.

7.3 Phase change of input reflection coefficient on Smith chart for
tuning

For the all-pole filters designed with quarter-wavelength (A/4) long resonators, like the
one designed in Chapter 4, the quarter wavelength movement on the Smith chart can be
used to tune the filters. This is because, as per the maximum power transfer theorem for
complex network (a network consisting of real (resistive) and imaginary parts (reactive)
from its components), the maximum power transfer occurs from source to load when
the load impedance (Z1) is equal to the complex conjugate of the source impedance (Zs).
Reaching the complex conjugate state by moving A/4 on Smith chart signifies that the
phase of the signal has been changed i.e., if the initial phase was capacitive, then, now
we are in inductive zone and vice versa as briefly explained in section 7.2.

The input impedance of a Transmission Line (TL) is dependent on characteristic
impedance, load impedance, length of the TL, and phase constant of the signal
propagating through this TL. This relationship has been expressed by equation 7.2.
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Z1+jZg tan Bl
Zin 0 .
Zo+jZ tan Bl
where, Z. = Inputimpedance
1743

Z, = Characteristic impedance

Z; = Load impedance
[ = Length of TL

2T
b = Phase Constant = -

(7.2)

For quarter-wavelength long resonators, the relation between wavelength scale and

electrical length ( bl) can be expressed as:

2w A T .
Bl = =— X === radians
274 2

Now, rearranging and solving 7.2 and using equation 7.3 gives:

Zo .
Z _ Z tan/.?l [;anBl+JZO
in ™ 0 ¢an 1 | _Zo +jZ
tan Bl L

s
Now incorporating the fact that tan (E) = oo we get

ZZ
7 =%
mn ZL

If we assume that the load impedance to be:

Z, =A+Bj

Putting equation 7.6 into equation 7.5 gives:
Zin = Z [A-i-lBj]
Zin = 28 |Gy oo
Zin = 28 [355)
Zin = Z5 _AZiBZ B AzlijBZ]
Zin =2 (A~ B))

Zyn = A Constant Value X (4 — Bj)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

It is to be noted that Z, in Equation 7.12 is a complex conjugate of the Z; value

assumed in equation 7.6 which is in conformity with the maximum power transfer

theorem.

The A/4 wavelength on electrical wavelength scale or /2 radians on the phase scale
represents half rotation on the Smith chart when reflection coefficients are considered.
This A/4 movement on the Smith chart is to be executed for all the resonators of an
all-pole filters. While moving from input side to output side, the collective result after
tuning all the resonators in this way is the matched impedance between the source and
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the load. This implies that the return loss (RL) is small and insertion loss (IL) is closer to
zero. This theoretical knowledge can be used to tune the iris-coupled all-pole
quarter-wavelength filters.

Impedance can be expressed in terms of rectangular coordinate formi.e., Z=R + Xj
(as already discussed in section 7.2) or in terms of polar form as magnitude and phase
angle i.e., Z = |Z]| £ . This implies that the Smith chart as well as the polar chart are
suitable to observe the impedance matching. The detailed discussion on polar chart is
presented in the section 7.4 where the basic information of this chart as well as its
similarities with Smith chart are highlighted.

7.4 Polar chart and its similarities with Smith chart

7.4.1 Polar chart

Concentric circles around the Smith chart’s center point represents constant reflection
factors. These circles are not presented on the Smith chart (refer Fig. 7.1). A chart which
presents these circles is referred to as polar chart shown in Fig. 7.2 in which the radius of
reflection circles is directly related to magnitude of reflection coefficient, T.
The outermost circle presents I' = 1 i.e., full reflection of the signal. A circle with I = 0,5
(although not shown) presents a 3-dB circle i.e., half of the entered signal is reflected.
At the center point of the polar chart, no signal is getting reflected i.e., [ = 0.

— =1
— =08
— |[]=06

[1]=04
—_— =02

— I1=0

o

o
o

Figure 7.2. Polar chart

Theoretically, I is defined as ratio of reflected voltage to the input voltage at the load
terminal. Thus, also known as voltage reflection coefficient. Mathematically, T is
expressed as:

_n
=7

r (7.13)

In terms of electric field strength, I is defined as the ratio of reflected wave’s electric
field strength to the electric field strength of the forward traveling wave.

__ Electric Field Strength of a Reflected Wave

Electric Field Strength of a Forward Wave (7.14)

This quantity i.e., [ plays its role when the line is unmatched i.e., it is terminated in a
load Z. which is not equal to the characteristic impedance Zo, thus leading to reflections.
In other words, the complex impedance encountered by the forward signal (incident
wave) determines the reflections. Thus, the difference between Zoand Z. defines the size
of reflected wave. The expression defining I in terms of Zoand Z.is given by:
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_Z1—Zy

= (7.15)
Z1+Z
Usually, it is a polar quantity and is expressed as:
r=|Ie/® (7.16)

In equation 7.15, the cases of open circuit, short circuit and matched load can be
presented as:
e Foropen circuit, Z, = eo. Thus,I' = 1.S0, || =1and § =0
e Forclosecircuit,Z, = 0.Thus, ' = —1.S0, || =1and =7
e For matched load, Z; = Z,. Thus,I' =0

7.4.2 Similarities between Smith chart and polar chart

Although the output value provided by Smith chart and polar chart are considerably
different, but both are similar in terms of the position of marker (angle as well as
magnitude) at any instance. This can be seen in the images taken from Smith chart and
polar chart of Keysight Fieldfox RF Analyser 9914A — 6,5 GHz [156] as shown in Fig. 7.3.

Ref 1.000 ) GH 1.4Q +9 Ref 1.000

(a) (b)

Figure 7.3. Keysight 9914A VNA's Smith chart (left) and Polar display (right)

Knowing the fact that the scale to present resistance and reactance values on the
Smith chart is exponential in nature; and that the Smith chart has infinity term involved
which can be seen in Fig. 7.1 and Fig. 7.3, the information provided by the Smith chart
cannot be directly used to automate the filter process. However, owing to the similarity
in marker positioning in Smith chart and polar chart, the angle information from the polar
chart of VNA can assist in automating the filter tuning process.

7.5 Particle filtering for rotation angle estimation

To estimate the rotation angle, colour-based particle filtering approach has been used in
this work. The Particle Filters (PFs) track the colours on the RGB strip pasted on the
auxiliary disc as discussed in section 5.2.1.

Particle filtering is based on Bayes theorem and can represent the posterior density
function by random samples representing the i" object’s hypothetical state i.e., s and
its associated weight w® where i ranges from 1 to N (and N = No. of samples).
The expected state X of the object estimated by the set of particles is presented by 7.17.

X=yN sOw® (7.17)

where, Now®=1
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In this work, we are modelling the target by a rectangular box given by 7.18.

s={C*,CcY,W* HY} (7.18)
where, C*,CY = x and y coordinates of centre position of the box
W?*, HY = Width and height of the rectangular box

The overall process of colour-based particle filtering used in this work estimates the
posterior probability density function by using the cyclic process of Prediction — Update
— Resampling. The implementation details of this have been discussed in the following
sub-sections:

7.5.1 Prediction stage
The system model is used to predict each sample's distribution using the constant motion
model given by equation 7.19 [138].

Sk =1esp_q+ V4 (7.19)
where, S} = State at time k

Sk_1 = State at time k-1

Vy_1 = Zero mean Gaussian Noise with a constant variance-

covariance matrix ‘R’ at time k-1
I = Identity Matrix of size 4

7.5.2 Update stage

The measurements are used in update stage which modifies the prior density using
importance sampling. Thus, new weights are computed and allocated to the corresponding
samples. To achieve this, for the k™ sample s, the similarity D between the reference
target model hrer and sample target model hsk(i)Of ith particles is evaluated.

To be specific, the image region under the rectangular box for the state vector s« is
used. For constructing the associate probability distribution m-colour histogram of the
rectangular region is used. Thus, the similarity for bin j in the histogram of /" particle and
reference model is calculated using 7.20 [138].

D?(hg 0, hyes) =1— ;00 /hskm(j). hrer (7) (7.20)

If we call D? (hsk(i), href) = D?, the weights of the particles are extracted by
equation 7.21 [138].

—LeD2 .
a)(l) = e Leb (hsk(L)' href) (721)

The estimated state 31( is obtained by equation 7.22 [138].

S~ w50 (7.22)
o) w® . )
where, = W = normalized weights
i=1
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The choice of L controls the number of higher weight particles that can be generated.
The analysis made on the choice of L-value is presented in Table 7.1.

Table 7.1. L-value analysis

S.No. I-value Result
1. High L More particles having weights closer to zero
2. Low L Almost equal weights of the particles
3. L=1 Optimal value which avoids under-fitting and over-fitting

7.5.3 Resampling stage
In this stage, the particles with small weights are discarded so that:
(a) The degeneracy problem can be avoided
(b) Computations are reduced
The resampling method comprises of three steps [138]:
(i) Generate N-ordered uniform random numbers for selecting the particles (r =1 to N)
_ (r—-1D+l

L ~

(7.23)

where | is a single random drawn from uniform distribution with the condition /C [0,1)
(ii) For r=1to N, find an integer j such that

1 i ,
l. € [Z{zl w® ,Z{zlw(‘)] (7.24)

Next, set r (i) = .

(iii) For i = 1 to N, set new particles s *g) such that s,:(l) =s *,({l) and set new weights
wl® = % (7.25)

The angle is estimated based on the change in colour detection through the window
of PF. The angle is a multiple of positive integer /, and the maximum offset between the
colour change will persist 4.99°, thus is not accumulated with the progressive moments
of the colour strip. The method of estimating the rotation angle using the coloured strip
is depicted in Fig. 7.4.
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Count =1, Angle = 5°, Error =0° Count = 1, Angle = 5°, Error =2°
a) The rectangular box completely covering b) The rectangular box is between red and
the red strip green strip
Count =1, Angle =5°, Error = 4° Count =2, Angle =10°, Error = 0°
c) The rectangular box is about to reach the d) The rectangular box covered the green
green strip strip completely

Figure 7.4. The estimating of rotation angle on the coloured strip

The pseudo code for the angle estimation based on strip count of the RGB pattern is
shown in Fig. 7.5.

Initialize Count =0

If color_change_detect == True
Count = Count +1
Epr=Count x5

Else
Count = Count
Epr= Epr

Figure 7.5. Strip count based angle estimation

7.6 Modules developed for assisting automated filter tuning

To automate the filter tuning process and for ensuring the smooth and optimised
performance of the tuning algorithms, a few modules were developed. These modules
are:

1) Tuning screw localisation module

2) Speed variation module

3) Angle comparator module for error detection

4) Module for counting the screw turns

5) Nut locking module

7.6.1 Tuning screw localising module

As stated earlier in this chapter, before starting the implementation of any phase
change-based filter tuning algorithm, the tuning screws must be differentiated from the
plate mounting screws. The coordinates of the tuning screws are then used by the FAT
robot so that the tuning manipulator can reach to the desired tuning screw and start
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rotating it. Various methods for distinguishing the tuning screws from the mounting
screws are discussed in Chapter 6 but owing to the 100% accuracy and reduced
computation complexity, the band-subtraction technique has been used to detect and
localise the tuning screws in this work.

7.6.2 Speed variation module

A strategy to optimise the tuning time was devised which was based on reducing the
speed of the robot considering the difference between the current angle and the target
angle value. The strategy was made so that the required 180° movement (A/4 movement)
was divided into 06 equal segments. During the beginning of the tuning, the speed value
was set to be 6 and gradually decreasing by a unit (i.e., by 1) with progression to every
next segment. Table 7.2 presents the summary of the logic used in this work.

Table 7.2. Variation of actuator speed as per the phase angle

Segment Number Phase Angle Speed Value
Movement Range
6
! 0" to 30° (Starting Speed)
2 31°to 60° 5
3 61° to 90° 4
4 91°to 120° 3
5 121° to 150° 2
6 151° to 180° 1
i Above 180° (Stop Suning)

Note: The speed levels can further be optimised as needed. However, the only factor to
consider while deciding the speed levels is the fact that setting the faster speeds might
present the case where the rotation angle crosses (i.e., jumps) the target value of 180°.
This error is accumulated and ultimately leads to inaccurate tuning results at the end of
tuning process.

7.6.3 Angle comparator module for error detection

In automated filter tuning solution without any feedback, the designed system will rely
solely on the machine code instructions. This means that even if there is an error/fault,
the machine will keep following the instructions blindly and would lead to inaccurate
tuning results at the end. Therefore, feedback is important to detect the error to reduce
the wastage of time and resources. Also, the error detection would eliminate the need
of having a manual supervision while tuning.

As discussed in section 7.3 that the information about phase change is to be used by
the FAT robot, the angle information from polar chart or Smith chart is the primary factor
that drives the whole tuning system. To ensure that this angle information is correct,
real-time feedback from the system must be used so that the tuning error can be
detected as soon as it occurs.

In this work, PFs are used as a feedback source to detect the error in the rotation angle
as no dataset is needed; support non-linearity easy implementation; are parallelizable
which allow faster computation; and are independent of size of the system. The
implementation details of PF have been explained in section 7.5. The vision module
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discussed in section 5.2.4 estimates the rotation angle using the colour strip pasted on
the auxiliary disc shown in Fig 5.4. The estimated angle is compared with the updated
rotation angle provided by VNA when the tuning screws rotate and accordingly,
the control signal is sent to the FAT robot as shown in Fig. 7.6.

Actuator

Initial Angle Movement Rotated Angle
= FAT Robot > Filter -
Control
Signal
Estimated
Angle using - . Angle -
Particle Filters, Comparator IF'eedback Signal
By

Figure 7.6. Angle comparison to detect the tuning error

7.6.4 Module for counting the screw turns

Once the tuning screws are localised, the tuning screws are made to touch the solid
resonator beneath them i.e., the resonators are shorted. To avoid the case that the
tuning screw comes off the filter surface while tuning, the number of turns made by the
tuning screws are counted. The rotation of tuning screw is caused by the rotation of the
screwdriver. Thus, PF-based colour tracking of the rotations of the same auxiliary disc
attached on the screwdriver (which was used to compare the rotation angle in previous
sub-section 7.5.3 using the vision module 5.2.4) was used to count the turns of tuning
screw. The permissible turns of the screws were defined to be 07 turns (can be changed
easily as per the need) which ensure that the screw is not coming-off the filter surface.
This has actually been tracked using the rotation angle where the limiting angle is 2520°
(7 full rotations = 7 X 360° = 2520°). The algorithm has been made so that if the number
of turns made by a screw exceeds the defined value, the tuning is aborted immediately
after displaying an error message - “Tuning is aborted as screw turns exceed the defined
limit” on the computer screen. In such a case, the filter structure must be inspected for
the root cause. Once the fault is rectified, the screws are shorted again, and the tuning
process must restart.

7.6.5 Nut locking module

Locking the nuts ensures the product consistency i.e., the tuning state remains
unchanged when the filter is under its delivery stage to the customer as well as during
its use phase. When the last resonator is tuned to the state that the desired band
specifications are met, the nut locking process which is to be executed by motor M5 in
this work is initiated.

When the last tuning screw is brought to its optimal position and the correct tuned
state of filter is achieved, the FAT robot doesn’t move towards its set initial position or
towards its defined home position. Rather, FAT robot starts moving vertically downwards
(i.e., towards the filter’s top plate). The tuned position of that tuning screw is retained
using the holding torque of screwdriver motor (motor M6 in this work). The FAT robot
continues to move downwards until the nut-tightener part i.e., outer tool of the designed
tool-in-tool mechanism touches the thin metallic plate installed on the top plate of the
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filter as shown in Fig. 7.7. When an electrical contact is made between nut tightener tool
and the thin metal sheet on the filter base, the nut is tightened by motor M5.

Figure 7.7. A thin metallic sheet on the filter's top plate to implement the nut locking strategy.

The nut-locking strategy used in this work has been implemented in a way that once
the filter meets the desired tuning state, the nuts are locked starting from the last screw
and then sequentially locking the previous nuts all the way to the first screw i.e., from
the output side of the filter to the input port side. The reasons for this choice are:

e The correctness of filter’s final tuning state can only be verified once the last
resonator is un-shorted, and the tuning screw is brought to its optimal state
(as all the resonators are shorted initially). Thus, the unnecessary tightening of
nuts can be avoided if the filter is not tuned to its desired state at the end due
to fault in the filter structure e.g., soldering mistakes; RF energy leakage due to
fault in connectors; insufficient shorting of the resonators in the beginning
state; loose mounting of the filter’s top plate etc.

e The FAT robot is already positioned above the last tuning screw (the one
towards the output port of the filter) and thus it can start tightening nuts
starting from that screw.

e When all the nuts are tightened from output port towards the input port,
the FAT robot would be tightening the nut around the first tuning screw (the
one towards the input port of the filter). Since the tuning of next filter unit starts
from the first screw of the shorted filter, the FAT robot would already be close
to its defined home position which would be closer to first tuning screw of the
filter.

The above-mentioned modules are common for both of the automated filter tuning
algorithms proposed in this work. The exact implementation of both these modules is
described in the proposed algorithms themselves. Other than these common modules,
some algorithm specific modules are also developed which are explained in detail in
those corresponding sub-chapters.

7.7 Polar chart based automated filter tuning algorithm

7.7.1 VNA’s polar angle fetching

In this work, Keysight Fieldfox RF Analyser 9914A — 6,5 GHz [156] has been used which is
a Vector Network Analyser (VNA). This considered VNA is a 2-port device which allows
the measurement of S-parameters in Logarithmic Magnitude (Log-Mag) scale, Linear
magnitude scale, Group Delay (GD), Phase Response, Voltage Standing Wave Ratio etc.
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The polar chart of the considered VNA shows the angles in a way that the bottom of
the chart depicts negative angle values between 0° and 180° and positive angle values
between 0° and 180° for values on the top half of the chart as presented in Fig. 7.8.
The point presenting 180° in Fig 7.8 actually represents £180°.

180

Figure 7.8. Angle distribution of the considered VNA

As mentioned in Section 7.3, we are interested in determining the phase change of
the input reflection coefficient when traveling A/4 (180°) on the polar chart from the
starting position of the VNA’s centre frequency marker. This position is an arbitrary point
on the polar chart when the filter with shorted resonators is connected to the VNA. So,
for accurately fetching the rotation angle information from the considered VNA, the logic
presented in Fig. 7.9 has been used.

Siore Initial Angle Locked (TI) with its Sign ( + or )

—ve +ve
Felch Current VNA Feich Current VNA
Angle (L) Angle (L))

!

| Rotated Angle ®) = U 1 |

Rotated Angle (R) = 360° = (U - 1) I ’ Rotated Angle ) =U -1

Figure 7.9. Rotation angle determination for tuning
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In the beginning, when the filter with all the resonators shorted is connected to the
filter, the angle information of the centre frequency marker position is stored as the
initial angle (I). When the tuning screws of the filter are rotated, the marker position on
the polar plot changes. The updated angle (U) and the initial angle are used to find the
amount by which the screw has been rotated already. The sign of this initial angle is then
used to determine the correct rotation angle. When I is negative or when the sign of both
I and U is positive after the rotation, the rotation angle, R is obtained using equation
7.26.

R=U-1 (7.26)

However, for the case when I is positive, but U gets a negative value, then the rotation
angle is calculated by equation 7.27 i.e.:

R =360°+(U- 1) (7.27)

Thus, when I is +174° and U is -174°, equation 7.27 gives the correct rotation angle
value of 12°.

7.7.2 Automated filter tuning algorithm using polar chart
The proposed algorithm for automated tuning of the all-pole filters using the polar chart
of the VNA is presented in Fig. 7.10. The working of the proposed algorithm can be
divided into following 03 different stages:

1) Performing tuning preliminaries and initializing

2) Filter tuning

3) Locking the screw nuts

These stages are now explained in the following sub-sections.

7.7.2.1 Tuning preliminaries and setting-up the FAT Robot and VNA

Initially, the tuning screws of the assembled filter are localised, and number of tuning
screws mounted on the filter are stored in the variable Ns. Then, all the resonators of the
filter to be tuned are shorted (the tuning screws are made to touch the top surface of
solid resonators under them). The hexagonal screw nuts are not tightened at this stage
so that the tuning screws can rotate easily. Once this process finishes, the FAT robot
(which will conduct the actual tuning of the filter) is unlocked and brought to its defined
‘home’ position. The calibrated VNA is then connected to the filter via RF connectors and
the connection between VNA and the PC is made using a LAN cable. The algorithm sets
the VNA display format to the polar chart. Then, the VNA screen is set to display the
parameters related to the filter to be tuned i.e.: start frequency (fswart), stop frequency
(fstop), centre frequency (fo), the bandpass filter’s lower cut-off frequency (f1) and upper
cut-off frequency (f2). The number of plotting points (Npoints) displaying the filter’s tuning
state are then defined. The frequency marker is initialized at the centre frequency of the
filter. Then, the screw number (i), machine’s speed when moving upwards (MUS),
machine’s speed when moving downwards (MDS), screwdriver’s speed when moving
upwards (SUS), screwdriver’s speed when moving downwards (SDS), nut’s locking speed
(NLS), nut’s unlocking speed (NUS), pre-defined value (P) to detect the start of rotation,
and limiting angle difference value (L) specifying the maximum allowable difference
between estimated angle and updated VNA angle are initialized as per the values defined
in Table T-1 in Fig 7.10.
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7.7.2.2 Filter tuning stage

Once the filter, the VNA, and the FAT robot are ready, the tuning process is initiated.
The particles to estimate the rotation angle (Err) of the screwdriver are initiated to detect
the tuning error and to count the numbers of screw turns as explained in previous
subsections. The FAT robot is then positioned above screw number 1 and threshold angle
(Th) responsible for varying the speed of tuning is set to 30°. Additionally, the rotated
angle (R) and Eprare both set to 0° at this stage. The initial angle depicted by the current
position of the VNA’s frequency marker is stored as 1. Then, the tool-in-tool assembly is
lowered with MDS so that the screwdriver mates within the tuning screw’s head. While
moving vertically downwards, the screwdriver is made to continuously rotate in
counterclockwise (CCW) direction with the defined SDS value for unscrewing/un-
shorting the resonator. As rotation of tuning screw would change the angle on the VNA,
the new VNA angle (N) is continuously fetched. As per the implemented strategy, the
whole actuator mechanism will continue moving downwards until the difference between
N and L is less than P. Once the difference between N and I is greater than or equal to P,
the FAT robot will reverse its direction (i.e., it will start moving in upward direction) to
un-short the resonator with the defined upward motion speeds for machine (MUS) and
screwdriver (SUS). The rotation of tuning screws changes the VNA’s angle, and the PFs
start estimating the rotation angle. This updated rotation angle is stored as (U). Particle
filtering is used to estimate the angle (Ere) as explained in section 7.5. If Epr exceeds the
value of 2520°, the tuning stops with an error message mentioning that the maximum
permissible turns of the tuning screw have been exceeded is displayed on the PC screen.
If Epr is less than 2520°, the difference between the PF-estimated values of current angle
(Epf)now and the previous angle (Err)previous is calculated to determine the rotation angle
AEpr. The rotated angle (R) is calculated using the VNA's polar chart angle calculation logic
explained in section 7.7.1. It is to be noted that the rotation angle determination logic
presented in Fig. 7.9 has been depicted in a more detailed way in Fig. 7.10 for the clear
understanding of the reader. The rotated angle calculation formulas given in both figures
(Fig. 7.9 and Fig. 7.10) will bring us to the same value of rotation angle R.

The speed of the filter tuning is also varied on the basis of angle R as stated in section
7.6.2. The difference between the values of R and AEpr is checked if it is less than the
defined L value. This L value is taken according to the resolution provided by the RGB
strip pasted on the auxiliary disc. This acts as the secondary source to verify the
correctness of the angle provided by the VNA. If the difference is greater than L, an error
message mentioning the discrepancy between both the angles is displayed and the
tuning process stops. However, if the difference between the angles R and AEpr is found
to be less than L, the tuning process continues. The algorithm checks for angle R and
keeps varying the speed of the FAT robot according to logic explained in 7.6.2. Once the
complex conjugate value +0,5° is approached (180° rotation with a tolerance limit of
+0,5° is completed), the FAT robot goes to the next screw and threshold value (Th) is
again set to 30° and the angles R and AEps are set to 0°. The tuning continues until the
last screw is brought to the complex conjugate of the previous resonator.

7.7.2.3 Locking the nuts of tuning screws

Once all the tuning screws are tuned, the outer nuts of the tuning screws are locked with
defined nut locking speed (NLS) defined in Table T-1 as per the strategy mentioned in
7.6.5. The screwdriver sits into the tuning screwhead groove and holds the tuning screw
position using the motor’s holding torque while the nuts are tightened. Once all the nuts
are locked, the filter tuning process is terminated.
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Figure 7.10. Proposed automated filter tuning using polar chart
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7.8 Smith chart-based filter tuning using YOLOvV5

7.8.1 YOLOV5 dataset generation

As already stated in section 7.4 that due to complexity involved in dealing with the
exponential scale as well as the infinity term of the Smith chart, the information provided
by the Smith chart cannot be directly used. Thus, there is a need to have parametric
tracking approach to come-up with an automated filter tuning algorithm based on Smith
chart.

Owing to its high tracking accuracy, YOLOv5 model was used to track the tuning
parameters represented by frequency marker on the Smith chart. The frequency marker
is set at the centre frequency for tuning the filter. This frequency marker is shown within
the bounding box in Fig 7.11.

Figure 7.11. The frequency marker shown within the boundary box (also published in [V])

A labelled marker dataset was created in order to tune the filter using the frequency
marker movement. While the cavity filter was being manually tuned, the dataset images
were captured. The images were labelled once they had been acquired. Fig. 7.12 shows
the process for obtaining images for the dataset where the smartphone camera is placed
to capture the VNA’s Smith chart when the filter is being manually tuned. The dataset is
available publicly?.

. B

Figure 7.12. Generation of dataset while filter is being tuned manually

lhttps://ieee-dataport.org/documents/labelled-marker-dataset-smith-chart-image-processing-based-
intelligent-tuning-microwave
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Total dataset comprises of 4967 labelled images and the bifurcation of the dataset is

presented in Table 7.3.

Table 7.3. YOLOVS dataset (also published in [IV])

Category Number Split
Training Dataset 3475 70%
Validation Dataset 992 20%
Testing Dataset 500 10%
Total 4967 100%

7.8.2 Training the deep network

Before training the network, the labelled images without implementing any pre-processing
were used and without using cross-validation stages. The details of hardware and software
of the system used for implementing the proposed Smith-chart based automated filter
tuning solution are presented in Table 7.4. The hyperparameters for deep network

training are presented in Appendix 3.

Table 7.4. PC specifications

Entity Version
RAM 16 GB
Hardware Processor Ryzen-9 5800 HS
GPU RTX 3060 — 6 GB
System Linux — Ubuntu 20
Software CUDA Core 3840
Programming Python 3.8

In a batch size of 16, images with the size of 640 x 640 were used to train the model
for 100 epochs. In regard to this, 1 epoch meant that both Feed Forward Neural Network
(FFNN) and Back Propagation Neural Network (BPNN) have finished for the entire dataset
for training. The Stochastic Gradient Descent (SGD) optimiser with a decaying factor of
0,005 and learning rate of 0.01 was used in model training process. With these
parameters it took 1 h 37 min to train the YOLOvV5 model. The curves depicting the
effectiveness of the model training are illustrated in Appendix 2.

7.8.3 Smith chart-based tuning
The proposed algorithm for automated tuning of all-pole filters using the parametric
tracking of the VNA’s Smith chart is presented in Fig. 7.13. The working of the proposed
algorithm has been divided into following 04 different stages:

1) Tuning preliminaries and initializing stage

2) Visual data acquisition and image processing stage

3) Filter tuning stage

4) Nuts locking stage

These stages are discussed in detail in the following subsections:

7.8.3.1 Tuning preliminaries and Initialization FAT robot and VNA

The algorithm starts with localisation of tuning screws using the band-subtraction
method discussed in Chapter 6 and storing number of tuning screws as Ns. Initially all the
tuning screws are made to touch the solid resonators (shorting process is executed).
The nuts of the tuning screws are not tightened so that the tuning screws can be rotated
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easily. The FAT robot is then unlocked and brought to its defined ‘home’ state. The VNA
is then connected to PC via LAN cable and the VNA is connected to the filter through RF
connectors and cables. The VNA’s display is then set to Smith chart. The VNA display is
set according to the following filter parameters: start frequency (fswart), stop frequency
(fstop), centre frequency (fo), the bandpass filter’s lower cut-off frequency (f1) and upper
cut-off frequency (f2), and number of plotting points (Npoints) to display the tuning state.
Once VNA parameters are initialized, the frequency marker of VNA is initialized at fo.

Then, the screw number (i), machine’s upward moving speed (MUS), machine’s
downward moving speed (MDS), screwdriver’s speed when the machine is moving
upwards (SUS), screwdriver’s speed when the machine is moving downwards (SDS), nut’s
locking speed (NLS), nut’s unlocking speed (NUS), pre-defined value (P) to detect the start
of screw rotation, and limiting angle value (L) specifying the maximum allowable
difference between estimated angle by YOLO-based marker tracking (Evoio) and
estimated angle by PF (Epf) are initialized as per the values defined in Table T-2 in
Fig 7.12. To estimate the rotation angle using particle filtering, the particles are then
initialized.
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Figure 7.13. Proposed Smith chart-based filter tuning algorithm
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7.8.3.2 Visual data acquisition and its image processing

A smartphone is setup in a way that its camera acquires the real-time video of the VNA's
screen depicting the Smith chart. This camera works as an IP camera. Thus, adding vision
into the system allows the system to work without the need of modifying the VNA's
internal software. This setup is shown in Fig. 7.14.

Figure 7.14. Smartphone camera looking at VNA’s Smith chart

The YOLOVS dataset created (presented in section 7.8.1) for automating the filter
tuning process was trained on the raw images captured for dataset generation. However,
to increase the accuracy of the results and to remove the noise, a Region of Interest (ROI)
was selected. To remove the inaccurate classification of the marker, a 2" pre-processing
step i.e., a multi-level thresholding step (a segmenting approach) was added to the
system. This 2" step allowed the accurate tracking of the frequency marker even when
the marker is obscured by several circles appearing on the VNA screen while the filter is
being tuned. The results before and after the ROl selection and multilevel thresholding
steps are presented in Fig. 7.15. Thus, everything required to tune the filter is set by this
stage. A video showing the tracking of VNA marker on the Smith chart in real-time is
made publicly available2. The robustness of this approach was also tested on the polar
chart of the VNA even if the dataset related to polar chart was not created. The test
results for polar chart are also made available in public domain® where even the ROI was
also not selected proving the tracking robustness.

21 Feb 2023 1255:10 PM

G 752041180
1.195nH

Figure 7.15. Original image (left) and Results of ROI selection and multilevel thresholding (right)

2 https://drive.google.com/file/d/1wzAYKqaHbO9KfMKulodRXBITISt6x7-n/view?usp=sharing
3 https://drive.google.com/file/d/1G8V770R8zpIWrSALVRIRGjUMv4s)4gzw/view?usp=sharing
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7.8.3.3 Filter tuning stage with angle change and reference line switching logic

The tuning starts by selecting two points on the Smith chart by computer mouse —
a) the centre of the marker, and b) centre of Smith chart (matched load point on the
Smith chart). This step helps in accelerating the image processing operation speed and
avoiding time wastage in searching for the centres. Selecting these two points initialize
the reference line having the distance (D) between marker’s centre and Smith chart’s
centre. This reference line is used to track the rotated angle as well as the distance D.
It must be noted that D is directly proportional to the amount of signal reflected by the
filter. As more and more resonators are tuned, the marker converges towards the
matching point i.e., center of the Smith chart thus simultaneously reducing the D value.

Then, the FAT robot is positioned above screw number 1 and the threshold angle (Th)
responsible for speed variation is set to 30°. At this stage the angle estimated by
YOLO-based marker tracking (Evoo) and the angle estimated by PF (Ep) is set as 0°.
The FAT robot is then brought down towards the filter surface with MDS while the
screwdriver is moving in CCW direction with SDS. The marker of the VNA is tracked in
real-time using the trained YOLOv5 model which estimates the angle Eyoo w.r.t to
reference line and estimates the value of D. The algorithm checks if angle estimated by
YOLO, Evovo is greater than or equal to pre-defined value (P). If angle Evovo is less than P,
the FAT robot will continue moving downwards with MDS and SDS. Once the value of
Evolo is greater than or equal to P, it symbolizes that the screwdriver is in contact with
the tuning screw’s head. Thus, the FAT robot will reverse its direction (i.e., it will start
moving in upward direction) to un-short and tune the resonator with the defined upward
motion speeds for machine (MUS) and screwdriver (SUS).

While rotating the tuning screw, the updated values of angle Evoo and D are fetched
and the angle Epr is also estimated. The value of Epris used to track the rotated angle
which is to be used to detect the rotation angle error as well as the number of turns
made by the screw. This Epr value has the limiting value of 2520° which symbolizes the
07 full turns of the tuning screw. If Epr exceeds this value, an error message mentioning
the turns exceeding message is displayed and the tuning algorithm stops. Else, if this
value is less than 2520°, the value of estimated rotated angle by PF (AEp) is calculated
using the current value (Epr)now and the previous value (Er)previous. If the difference
between Evoro and AEpr is greater than the limiting angle value L (defined by minimum
angle resolution provided by the RGD strip attached to the auxiliary disc), the tuning
stops after displaying the angle error message. However, if the difference between both
the estimated angles Evoio and Epr is lesser than L, condition of reaching the complex
conjugate value (180°) is checked with the set tolerance of +0,5° or if the distance D of
the reference line is under the pre-set value of 0.1 (i.e., the marker is quite close to the
matching point of the centre line). The 2" condition defined here i.e., checking if the
distance D is below a pre-set value provides robustness to the tuning system. If any of
the conditions is not met, the FAT robot continues to tune the resonator using the speed
variation logic presented in 7.6.2. Once any of these conditions is met, the resonator is
tuned, and the reference line switches itself from the previous point to its complex
conjugate point on the Smith chart with new distance D. The FAT robot then continues
to tune the rest of the resonators by setting the Th to 30°, and the angles Evoo and Epr
are set to 0°.
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7.8.3.4 Locking the outer nuts of tuning screws
When all the tuning screws are successfully tuned using the complex conjugate point,
the nut surrounding each of the tuning screw is locked with the defined speed of NLS
which ensures that the required amount of torque is provided to lock the nuts tightly.
These nuts are locked as per the nut-locking strategy discussed in 7.6.5. The tuning
algorithm stops once all the nuts are tightened.

7.9 Chapter summary

In this chapter, automated algorithms to sequentially tune the all-pole filters on the basis
of phase change of the input reflection coefficient (S11) were presented. Before tuning
the filter, all the resonators were shorted. By sequentially tuning the resonators from the
input side of the filter to the output side, the filter can be tuned without visiting the
tuning screws iteratively. Two different automated filter tuning algorithms have been
presented. The polar chart-based algorithm uses the angle information from VNA as a
primary factor for tuning. For implementing the Smith chart-based algorithm, YOLOvV5
dataset was generated to train the deep network. The VNA’s frequency marker (set at
the centre frequency of the filter) has been tracked in real-time using an IP camera to
estimate the rotation angle. Both these algorithms compare the angle rotation
information provided by them with the rotation angle estimated by PFs so that the
tuning error can be detected at the early stage. Some other common modules — for
differentiating the tuning screws from mounting screws; for varying the tuning speed as
per the targeted rotation angle; for comparing the correctness of rotated angle; for
counting the turns made by the tuning screws; and, for locking the position of tuning
screws using the nuts have been developed to assist the filter tuning process by both
proposed algorithms.

The next chapter presents the results obtained from tuning the test filter designed in
Chapter 4 using the FAT robot presented in Chapter 5, thus validating the accuracy and
efficiency of the proposed tuning methods and the developed FAT robot.
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8 Results and Discussions

8.1 Filter used for testing the proposed algorithms

The automated filter tuning algorithms proposed in this work can be implemented to any
all-pole filter with quarter wavelength long solid resonators which are iris-coupled.
The solid resonators allow the shorting of resonators before initiating the tuning
algorithm and setting the inter-resonator couplings through vertical iris reduces the
number of tuning screws.

To test the proposed automated filter tuning algorithms, the 5™ order all-pole filter
designed and fabricated in Chapter 4 has been used. The tuning process is performed by
the robotic system designed and discussed in Chapter 5.

8.2 Results of polar chart-based automated filter tuning

8.2.1 Tuning results of the VNA’s commercial software

As shorting the resonators is the first step while testing the proposed algorithms,
Fig 8.1(a) presents the case when the all the resonators are brought to their shorted
state. The VNA is not fully calibrated and hence the initial state of marker is not appearing
at the outermost circle of the polar chart). For tuning the filter, the resonators are tuned
sequentially from the input side of the filter to its output side. While considering the
phase-change of the input reflection coefficient viz Si1, resonator number 1 is considered
to be tuned when we rotate the centre frequency marker by an electrical length of A\/4
i.e., 180° rotation on the polar chart. Fig. 8.1(b) shows the case when the resonator
number 1 of the test filter is tuned. At this stage, resonators 2, 3, 4, and 5 are shorted
(or strongly detuned). Fig. 8.1(c) presents the case when resonators 1 and 2 are tuned
while all the next resonators are still in highly detuned state. Next, Fig. 8.1(d) and 8.1(e)
show the state when resonators 3 and 4 are tuned in the sequential manner while
maintaining the tuned state of all the screws previously tuned as it is. While tuning
the last resonator, the curve converges to the centre point of the chart which is a point
showing the state where the reflection coefficient is close to zero i.e., most of the signal
is getting transmitted. In Fig. 8.1(f), the converged state of input reflection coefficient
towards the centre of the polar chart shows the case when the filter is tuned.
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(e) (f)
Figure 8.1. Results of automated tuning of a 5t order all pole filter on polar chart—(a) all resonators
shorted; (b) after tuning resonator 1; (c) after tuning resonator 1 and 2; (d) after tuning resonator
1, 2 and 3; (e) after tuning resonator 1, 2, 3, and 4; (f) after tuning resonator 1, 2, 3, 4, and 5

The introduced design parameter presented in section 4.3.2 defined the limits for
magnitude of RL to be > 18 dB and permissible IL range to be between the range of 0,5
to 0,9 dB. The results of RL and IL are presented in Fig. 8.2(a) and (b) respectively.

Figure 8.2. VNA's curves of return loss and insertion loss after the tuning — (a) Return Loss (S11);
(b) Insertion Loss (S21)
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8.2.2 Tuning results on the developed plotting module

The commercial VNA's software for plotting the tuning results, a customized plotting
module was developed under the scope of this work. This allows to possibility to add
more features if needed later. Fig 8.3 shows the tuning results on a polar chart developed
by the author. The details of Fig 8.3(a) to 8.3(f) are same as discussed in section 8.2.1.
Before starting the tuning process on the FAT robot, all the resonators are shorted as
shown in Fig. 8.3(a). Then all the resonators are tuned sequentially starting from the first
resonator till the last one. When a resonator is getting tuned, all the other next
resonators are kept in the shorted state. Once a resonator is tuned, all the previously
tuned resonators are kept in the same tuned state. No fine-tuning is needed in this case

for any of the resonators.

Polar Chart

(a)

270"

(e)

Polar Chart

2259 .///

270"

(b)

Polar Chart
e

Figure 8.3. Tuning results on a developed module for plotting the polar plot — (a) all resonators
shorted; (b) after tuning resonator 1; (c) after tuning resonator 1 and 2; (d) after tuning resonator
1, 2 and 3; (e) after tuning resonator 1, 2, 3, and 4; (f) after tuning resonator 1, 2, 3, 4, and 5



The results of RL and IL are also plotted using the custom developed module as
presented in Fig. 8.4(a) and (b) respectively. Meeting the IL and RL tuning requirements
stated in section 4.3.2 confirms that the filter has been tuned.
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Figure 8.4. Curves depicting the return loss and insertion loss after tuning using the developed
plotting module — (a) Return Loss (S11); (b) Insertion Loss (Sz1)

Return Loss {dB)
Insertion Loss {dB)

8.3 Tuning results for Smith-chart based tuning

As already stated, before initiating the filter tuning process, the resonators of the filter
are shorted first. The filters are tuned based on angle information fetched by the
movement of marker over the Smith chart of the VNA. The marker is tracked by the
trained YOLOvV5 model using IP camera. The angle between the initial position of the
marker and the moving marker is estimated in real-time and the reference line switching
logic was implemented as shown in Fig. 8.5.
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Figure 8.5. Results of automated tuning of a 5th order all pole filter on Smith chart — (a) all
resonators shorted; (b) after tuning resonator 1, (c) after tuning resonator 1 and 2; (d) after tuning
resonator 1, 2 and 3; (e) after tuning resonator 1, 2, 3, and 4; (f) after tuning resonator 1, 2, 3, 4,
and 5

8.4 Total tuning time elapsed by algorithms

The total tuning time taken by the proposed automated filter tuning algorithms on the
designed FAT robot when a filter with shorted resonators is placed for tuning was noted.
While testing this, the readings of the proposed algorithm with as well as without the
speed variation logic were noted. The total time taken by the proposed algorithms in
both the cases is presented in Table 8.1.
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Table 8.1. Time taken for tuning a 5th order filter using the proposed algorithms

Time Without Speed Time With Speed Variation
Variation
Polar chart-based tuning 17 minutes 49 seconds 9 minutes 32 seconds
Smith chart-based tuning 17 minutes 10 seconds 9 minutes 38 seconds

8.5 Discussions

With successive tuning of the resonators, a spiral shape converging towards inside can
be observed. This inward convergence is because of the fact that the since more
resonators are involved so the amount of reflected signal reduces. Since the radius of
constant reflection circles is directly proportional to amount of reflected signal, so, less
reflections are depicted by the inward trend.

The tuning times can also be optimised further as per the need of the task while
assuring that the final rotated angle is not exceeding the target angle beyond the defined
tolerance. A higher speed of rotation may bring us the case where the final rotated angle
jumped the target angle before the robot stops, thus leading to error accumulation.

8.6 Chapter Conclusion

The results of automated filter tuning algorithms proposed in this work are evaluated on
the test filter designed and fabricated in Chapter 4 using the FAT robot presented in
Chapter 5. The proposed algorithms can be used to tune the all-pole filters with quarter
wavelength long solid resonators in which the inter-resonator coupling between the
resonators was adjusted with the help of designed iris.

The tuning times for both the algorithms are compared with and without the speed
variation logic implementation. The reliance on commercial VNA's software is eliminated
by introducing a real-time plotting module for polar plot.
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9 Conclusion, Limitations and Future Work

9.1 Conclusion

MW bandpass filters play a sterling role in Radio Base Stations (RBS) and radar systems
by effectively isolating desired signals from the crowded electromagnetic spectrum. With
the rapid expansion of cellular communication networks in recent years, there is an
increased need for filters that meet specified frequency criteria. As a result, there is a
pressing need in the industry to efficiently manufacture a substantial quantity of
precisely calibrated filters at competitive prices. Subsequent to production, these filters
must undergo tuning to address any discrepancies stemming from their design,
manufacturing process, and material properties.

Various types of filters exist in the market. The main characteristics desired from a
MW filter are - a) Sharp Out-of-band Selectivity (sharp rejection beyond the passband
limits); b) High-Q-value (low loss value); and c) Compact size (small form factor). Among
the common filter structures available, the cavity filters are most widely used in
terrestrial communication industry owing to their robust behaviour; capability of
handling high power; high Q-value (high quality); and temperature stability. At MW
frequencies, the cavity filter structures are often used because at high frequencies the
values of inductors (L) and capacitors (C) becomes impractical. While designing a cavity
filter, the main considerations related to size of the filters are — the size of the filter
becomes very large at the low frequencies; at high frequency, the size becomes very
small and leads to appearance of higher modes.

Following an extensive review of the literature, it became evident that over the past
two decades, the research community has gravitated towards data-driven approaches
for filter tuning. This shift can be attributed to the enhanced computational capabilities
provided by modern, powerful CPUs and GPUs, as well as the emergence of new algorithms
capable of tackling intricate problems. Therefore, to test the possibility of using
reinforcement learning in tuning the cavity filters, two reinforcement learning-based
filter tuning algorithms i.e., Optimal Deep Q-Learning (DQN) and Double-Deep Q-Learning
(DDQN) were proposed by the author. When implemented, the results of both these
algorithms outperformed the related works presented by other researchers. Given the
constraints identified within reinforcement learning-based tuning algorithms, the author
opted to cease further exploration of this approach for resolving the filter tuning
challenge. Instead, the decision was made to assess various filter tuning algorithms on
physical filter units.

Commercial filters are meticulously crafted for specific applications, resulting in
unique designs that provide little to no flexibility in terms of tuning adjustments.
Therefore, a new 5" order tuneable test filter having solid resonators of the size of
quarter-wavelength was designed in CST software to test the automated filter tuning
algorithms. Varying the height of the tuning screws allowed to vary the center frequency
and BW of the filter. The inter-resonator coupling was adjusted with the designed vertical
iris which reduced the total number of screws installed on the filter’s top plate. The tuning
screws were surrounded by hex-nuts to avoid the RF energy leakage and to ensure the
product consistency during its transportation and during the use phase. The designed
test filter was fabricated using an aluminium block cut by a CNC machine as per the
designed dimensions. A good match was found between the response obtained from the
simulated filter and the fabricated filter.
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To test any new algorithm for automating the filter tuning process, an experimental
setup is needed. Since all of the filter tuning equipment in the literature follow the
instructions blindly i.e., no feedback system was introduced; and most of these solutions
were designed to tune a particular filter topology; so, the need of having a new
experimental setup becomes inevitable. Thus, an automated filter tuning robot (FAT
robot) was built. To have bigger working envelop, cartesian configuration was selected.
The use of limit switches provided the safety as well as assistance in ‘homing’ the robot.
To deal with filters of different kinds, the stepper motors are chosen so that the torque
and resolution requirements by various industrial filters can be dealt. The stepper motors
are equipped with their dedicated motor driver which receives the control signal from
the microcontroller. The whole system is mainly controlled by Python programming
language. A customized tool-in-tool actuating mechanism was designed for bringing the
tuning screws to their optimal positions followed by locking the outer nut (hex nut) of
each tuning screw. The designed system allows accurate tuning of the filters. The detailed
analysis of the mechanical design is not considered in this research work. As compared
to other solutions proposed in the literature, the setup designed under this research
work tracked the screw driver’s angle rotation in real-time using the customized vision-
module added to the system; and offers flexibility to tune different kinds of industrial
filters by making minor adjustments.

Before even initiating filter the tuning process, the two obligatory steps are needed
viz. — a) to differentiate the tuning screws of the filter from the plate mounting screws
and storing the positional coordinates of all the tuning screws; and b) setting the tuning
screws to their initial state. The detection and localising of tuning screws were performed
using the introduced vision-based methods, where-in, the imaging setup and the image
processing techniques were also discussed. The state-of-the-art ML algorithms and a
novel band-subtraction method were tested to differentiate and localise the tuning
screws. Both these methodologies of localising the tuning screws have been validated on
a commercial filter. The initial position of the tuning screws has been set to be the one
in which each tuning screw touches (shorts) the resonator under it.

Once the tuning pre-requisites were met, two automated algorithms were proposed.
These tuning algorithms incorporated theoretical knowledge while tuning the filters
using polar chart, and combination of theoretical knowledge and Al to tune the filters
based on change in phase of the input reflection coefficient (S11) on polar chart and Smith
chart. The polar chart-based algorithm uses the angle information from VNA connected
to the filter as a primary factor for tuning. For implementing the Smith chart-based
algorithm, YOLOVS dataset is generated to train a deep network. The VNA’s frequency
marker (set at the center frequency of the filter) was tracked in real-time to estimate the
rotation angle using an IP camera in Smith-chart based tuning algorithm. Both these
algorithms compared the rotated angle provided by them with the rotation angle
estimated by PFs so that the tuning error can be detected at the early stage. Some other
common modules i.e. — for differentiating the tuning screws from mounting screws; for
varying the tuning speed as per the targeted rotation angle; for comparing the
correctness of rotated angle; for counting the turns made by the tuning screws; and,
for locking the position of tuning screws using the nuts have been developed to assist
the filter tuning process by both proposed algorithms. The proposed algorithms can be
used to tune the all-pole filters equipped with quarter wavelength long solid resonators
in which the inter-resonator coupling between the resonators is adjusted with the help
of designed iris.
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The results of automated filter tuning algorithms proposed in this work are evaluated
on the test filter designed and fabricated in Chapter 4 using the FAT robot presented in
Chapter 5. By sequentially tuning the resonators from the input side of the filter to the
output side, the filter is tuned without visiting the tuning screws iteratively. The tuning
times for different algorithms are compared for the cases when the speed variation logic
is not implemented as well as for the case when the speed is varied as per the amount
of angle a tuning screw has been rotated. The reliance on commercial VNA’s software is
eliminated by introducing a real-time plotting module for polar plot.

Thus, the following objectives were achieved:

e Two reinforcement learning-based algorithms for filter tuning i.e., DQN and
DDQN were simulated to decide the strategy of moving further.

e Anew universal test filter to evaluate the automated filter tuning algorithm was
fabricated.

e An experimental setup i.e., FAT robot equipped with customizable actuator
mechanism was developed.

e Vision-based methods to distinguish the tuning screws and mounting screws
and obtaining the positional coordinates of tuning screws were developed.

e Novel automated filter tuning algorithms with a provision of varying the tuning
speed as per the target angle were tested and compared. The algorithms use
the theoretical knowledge and its conjunction of Al to tune the filters.

e  Particle filtering was used to track the tuning error in real-time.

e A customizable real-time plotting module was developed to fetch the current
tuning state of the filter without relying on the VNA’s commercial software.

Thus, this thesis offered a complete solution to automate filter tuning, useful in both
educational and industrial settings. The proposed solutions limit human involvement to
mounting the filter and initiating the automated tuning algorithm, thereby obviating the
necessity for technician training in the filter tuning process.

9.2 Limitations

Every research endeavour carries inherent limitations, serving as stepping stones for
future exploration and refinement. The main limitations of this research are:

e One of the major limitations of the current work is that the process of shorting
the resonators is performed manually.

e The proposed algorithm lacks the capability to effectively tune cross-coupled
filters.

e Another limitation of the current setup is that the tuning speed is not optimised,
resulting in extended tuning times.

e Another noteworthy limitation is that a comprehensive mechanical analysis of
the experimental setup has not been conducted, which means important
structural considerations have not been thoroughly explored.

e Additionally, an in-depth cost analysis has not been performed, leaving the
financial implications of automated filter tuning process unexplored and
unexamined.
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9.3 Future Scope

Research is the bridge to the future, and its scope knows no bounds. With every
discovery, we unlock new doors of possibility paving the way for innovations and
breakthroughs that will shape tomorrow. This final section of the thesis elucidates the
forthcoming potential. The avenues for further exploration within the research domain

are:

For tuning more complex filters, Coupling Matrix (CM) approach can be used.
A potential avenue for improvement lies in fine-tuning the speed variation logic
to align with the specific requirements of each filter unit, potentially yielding
even greater efficiency gains.

A comprehensive analysis of the experimental setup can be conducted to
thoroughly explore the important structural considerations.

Cost-analysis can be made to come-up with a cost-effective automated tuning
setup.

An upgrade to servo motors, controlled by PLC, holds promise for achieving
heightened precision compared to the current use of stepper motors. Also, this
advancement could lead to more accurate and reliable tuning processes.
Vision system can be used to make the system more robust so that the FAT
robot can calibrate itself according to the orientation angle of the filter.
Currently we have a wooden fixture for holding the filter at its desired place and
the positional coordinates obtained using the proposed vision-based methods
take the tuning manipulator towards the tuning screws. Also, incorporating the
camera to determine the rotation angle and height of tuning screws can make
system more adaptable.

For production lines, with exceptionally high demand, implementing a
multiple-actuator system could enable simultaneous tuning of screws leading to
significant reduction in the tuning time.

A screw feeding mechanism can be introduced to the system. This system will
place the tuning screws over the filter’s top plate.

Currently, the feedback has been taken via particle filtering. An encoder may be
added to the designed system for receiving the primary feedback and PFs can
serve as the secondary feedback source.

Smith-chart based tuning needs the centres of the Smith chart as well as the
center of the frequency marker set at the center frequency fo. This step can be
automated by a proper vision setup so that the offset introduced by the VNA’s
Smith chart display can be compensated.

Bigger dataset maybe generated for tracking the marker. This will increase the
confidence level of the marker and can deal with the cases where the marker
disappears momentarily.

The manual shorting of the screws can be replaced by shorting them with the
help of a computer programme. The algorithm could automatically set the initial
position of the tuning screws either by turning them a set number of times,
or by ensuring the deflection change stays within a certain range.
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Abstract

Fully Automated Tuning of Microwave Coaxial Cavity Filter

The present day’s increased connectivity requirements have led to rapid production of
the components related to communication. Microwave (MW) cavity filters are widely
used in Wireless Base Stations (WBS) and radar systems to segregate the desired
frequency from the crowded electromagnetic (EM) spectrum. To meet the evolving
communication requirements, a huge variety and copious amount of filters are produced
by the companies.

To compensate the design flaws and manufacturing tolerances, the assembled filters
are tuned to meet the stated frequency requirements. Filters are usually equipped with
tuning elements to vary the frequency response. Among various tuning elements,
silver-coated screws are most widely used. Adjusting the vertical height of these tuning
screws varies the resonant frequency as well as the inter-resonator coupling between
the resonators. Being stochastic in nature, the filter tuning process is performed
manually by the trained technicians. To acquire the required skillset, an intensive training
is provided to these technicians. However, completing the training does not guarantee
the proficiency of technicians in tuning the filters, and sustaining the competent
technicians is also a major concern for the industry. Additionally, the wrists are heavily
loaded while tuning the filters which often leads to injuries, and hence, a financial burden
on the industries to bear the surgery expenses. Thus, automating the filter tuning process
is a buzzword in the research community actively working in the field of MW filters.

After conducting an extensive literature review it was found that the existing filter
tuning techniques were limited either to a particular filter topology, or they required
numerous complex computations and/or optimisations on equivalent mathematical
models. Additionally, the filters are tuned using the programmed insructions only
without any feedback from the system. In terms of hardware, the automated filter tuning
solutions developed by research community were not flexible to tune different
topologies of filters. Also, an important aspect in automating the filter tuning process
i.e., distinguishing the tuning screws from the plate mounting screws yet remained
explored.

This research work aimed to provide complete solution to automate the filter tuning
process. To differentiate between the different kinds of screws installed on the filter’s
top plate, a novel vision-based method was developed. In this work, two novel
automated filter tuning fusion algorithms were presented in which the theoretical
knowledge and its conjunction with Al were combined to tune the filter on the basis of
change in phase of the filter’s input reflection coefficient. The use of Smith chart and
polar chart for automating the filter tuning process have been presented for the first
time. Customized dataset has been curated to track the variation of tuning parameters
on the Smith chart in real-time. The FAT robot designed in this work offers flexibility in
tuning different kinds of filters by attaching the required tool in the magnetic socket of
the manipulator. The use of colour-based particle filtering has been used to detect the
tuning error in the initial stage of its occurance with the help of customized vision
module. This vision module also counts the screw turns using the rotation angle
information of the screwdriver, thus avoiding the condition where the tuning screw
comes out of the filter’s top plate. A dedicated plotting module has also been developed
to eliminate the dependence on commercial VNA’s software offering limited capabilities.
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The developed algorithms have been evaluated on a 5% order all-pole test filter
fabricated under the scope of this work. The test filter is equipped with quarter-
wavelength long solid resonators (having solid resonators ensured that the screws will
not fall inside the cavity filter). The proposed algorithms could sequentially tune the
resonators of the filters without iteratively visiting the tuning screws autonomously.
Although optimising the tuning time has not been considred as the primary objective, a
logic to vary the tuning speed on the basis of target angle was implemented. The tuning
times of the algorithms with and without speed variation have been compared.

The automated filter tuning solution presented in this work eliminated the need of
training the technicians to tune the filters. The human involvement was restricted to
mounting the filter and starting the algorithm. This solution presented in this work can
be used for educational as well as industrial purposes.
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Lihikokkuvote

Mikrolaine-koaksiaalfiltrite taisautomaatne hailestamine

Tanapdeva kasvanud Ghenduvusnduded on viinud sidetehnikaga seotud komponentide
tootmise kiire kasvuni. Mikrolaine-koaksiaalfiltreid kasutatakse laialdaselt traadita
slisteemide tugijaamades ja radarisiisteemides, et eraldada soovitud sagedus
taistuubitud elektromagnetilisest spektrist. Ettevotted toodavad tohutuid variatsioone ja
suures koguses filtreid, et vastata arenevatele sidenGuetele.

Projekteerimisvigade ja tootmistolerantside kompenseerimiseks haélestatakse
kooostatud filtrid vastama kindlaks maaratud sagedusndéuetele. Filtrid on tavaliselt
varustatud haalestuselementidega sageduskarakteristiku muutmiseks. Erinevatest
haadlestuselementidest kasutatakse enim hdbedaga kaetud haalestuskruvisid. Nende
haalestuskruvide vertikaalse kdrguse reguleerimine muudab nii resonantssagedust kui
ka resonaatoritevahelist koost6od. Olles oma olemuselt stohhastiline, viivad filtri
haalestamise protsessi ldbi koolitatud tehnikud kasitsi. Vajalike oskuste omandamiseks
korraldatakse neile tehnikutele intensiivne koolitus. Koolituse ldbimine ei taga aga
tehnikute vilumust filtrite hdalestamisel ning ka kompetentsete tehnikute tlalpidamine
on toostuse jaoks suur murekoht. Lisaks on hadalestajate randmed filtrite hadlestamise
ajal tugevalt koormatud, mis pdhjustab sageli kutsehaigusi ja vigastusi ning on seega
toostusharule tdiendav rahaline koormus. Seega on filtrite hddlestamise protsessi
automatiseerimine mikrolaine-koaksiaalfiltrite valdkonnas oluline Ulesanne aktiivselt
tegutsevatele teadlastele. Ulatuslikku kirjanduse (levaate baasil leiti antd t66s, et
olemasolevad filtri hailestamise tehnoloogiad olid piiratud kas konkreetse filtri
topoloogiaga voi ndudsid arvukalt keerulisi arvutusi ja/vdi optimeerimisi samavaarsete
matemaatiliste mudelite puhul. Lisaks hé&alestatakse filtreid ainult eelkoostatud
instruktsioonide abil ilma slsteemi tagasisideta. Riistvara osas ei olnud seni teadlaste
poolt vidlja tootatud automatiseeritud filtrite hdalestamise lahendused paindlikud
erinevate filtrite topoloogiate hdalestamiseks. Samuti on jddanud veel lahendamata
oluline aspekt filtri hadlestamise protsessi automatiseerimisel, st hdalestuskruvide
eristamine plaadi kinnituskruvidest.

Selle uurimisto6 eesmark oli pakkuda taielikku lahendust filtri hddlestamise protsessi
automatiseerimiseks. Filtri pealmisel plaadil asuvate erinevat tidpi kruvide eristamiseks
tootati valja uudne masinndgemise pdhine meetod.

Selles t66s on pakutud vidlja kaks uudset automatiseeritud filtri hddlestamise
hibriidalgoritmi, milles kombineeriti Al teoreetilised teadmised ja elemendid, et
haalestada filtrit tema sisendpeegeldusteguri faasimuutuse alusel. Smithi diagrammi ja
polaardiagrammi kasutamist filtri h&alestamise protsessi automatiseerimiseks on
kasutatud esmakordselt. Kasutatakse kohandatud andmestikku, et jalgida Smithi
diagrammi haéalestusparameetrite muutumist reaalajas. Selles t66s valja téétatud
tdisautomaatne haalestusrobot, kus vajalik tooriist kinnitatakse manipulaatori
magnetpesasse, tagab paindlikkuse erinevate filtrite haddlestamisel. Haalestusvea
tuvastamiseks selle esinemise algfaasis on kasutatud varvipdhist osakeste filtreerimist
kohandatud masinndgemise mooduli abil. See masinndagemise moodul loendab ka kruvi
poordeid, kasutades kruvikeeraja poordenurga infot, véltides nii olukorda, kus
h&alestuskruvi valjub filtri Glemisest plaadist. Samuti on valja t66tatud spetsiaalne
graafikamoodul, et kdrvaldada soltuvus kaubanduslikust vektor- vdrguanallisaatori
piiratud vGimalusi pakkuvast tarkvarast. Valjatootatud algoritme on hinnatud kaesoleva
t66 raames valmistatud 5. jarku tadis-pooluste testfiltril. Testfilter on varustatud
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veerandlainepikkusega pikkade monoliit-resonaatoritega (monoliit-resonaatorite
olemasolu tagab, et kruvid ei kukuks filtri sisse). Kavandatud algoritmid vdivad
hadlestada jarjestikku filtrite resonaatoreid ilma iteratiivselt ja soltumatult
haalestuskruvide asukohti kilastamata. Kuigi hdalestusaja optimeerimist ei ole selles
t66s peetud esmaseks eesmargiks, rakendati loogikat haalestuskiiruse muutmiseks
sihtnurga alusel. Samuti vorreldi t606s algoritmide haalestusaegu kiiruse variatsiooniga ja
ilma.

Kaesolevas t00s esitatud uus automatiseeritud filtrite hddlestamise lahendus valistab
vajaduse koolitada tehnikuid filtrite haadlestamiseks. Inimese osalus piirdub filtri
paigaldamise ja algoritmi kdivitamisega. Antud t66s toodud lahendust saab kasutada nii
hariduslikel kui ka td66stuslikel eesmarkidel filtreid tootvates ettevdtetes.
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Abstract: This paper proposes the mathematical model-
ing and robust control algorithms for linear belt system
with the help of sliding mode control approach. Due to
the elasticity of the belt, the presence of frictions, and
the un-modeled dynamics, conventional controllers can-
not provide precise position control of carriage. Dealing
with this kind of system, a robust controller is needed and
the chattering-free sliding mode control (SMC) approach
is used to design the robust controller. A belt stretching
estimator is also incorporated into the control law. Simu-
lations show that the system is free from chattering and
robust to disturbances. The reference tracking position is
performed with the minimal errors to an extent that can
be considered negligible. The time for reaching the refer-
ence tracking position is very fast. The system is safe for
all mechanical and electrical devices.

Keywords: robust controller, linear belt, sliding mode
control, chattering free, un-modeled dynamics, friction
model, equivalent control

1 Introduction

Usage of belt drives has gathered significant attention and
become the most common method of power transmission
used in most common systems/devices. Another signifi-
cant sphere where the belt drives are exhaustively used in-
cludes industrial transportation systems where they are of-
ten called conveyor belts. Belt drives are better and more
popular than other power transmission mechanisms such
as the chains or the gears because they have a number of
advantages including low cost, simple, low maintenance,
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smooth operation, fast and flexible installation, noise-
free, cleanliness, no lubrication needed, can absorb sud-
den shocks, wide speed ratio range operations, easy to vi-
sualize the failure, etc. in [1].

Presently, toothed belts (also called as timing belts)
are a leading edge in industrial applications for power
transmission with precise position tracking and rapidly
changing dynamics (such as in 3D printers). The main ad-
vantages of toothed belts are high efficiency, long travel
length, suitability to high speed applications and low cost.
However, the main disadvantages of the belt drives are
high tracking errors, uncertain dynamics and vibrations.
The motion equations and the mathematic modellings of
such a linear belt driven system is discussed in [2].

The controllers for belt drives are considered like PIDs
by re-designing to cope-up higher-order-node in [3]. How-
ever, these controllers become unstable with high reso-
nant frequencies. Further, they are not sufficient enough
to deal with the tracking errors. Some additional meth-
ods such as signal processing and noise filtering are used
to improve the belt drive performances in [4], but they
are not sufficient for mechanical vibrations, plant varia-
tions, load-torque disturbances and uncertain dynamics.
A number of other approaches like linear quadratic regu-
lator (LQR), composite non-linear feedback (CNF), adap-
tive control and sliding mode control (SMC) have provided
better control performances.

Every controller has its advantages and disadvan-
tages. SMC has also a major drawback of discontinuous
switching action so as to keep the system stable and to
operate in accordance to the desired expectations. This
means that the control must switch with infinite frequency
to provide the total rejection to the uncertainties present
in the system. This discontinuous mode leads to a phe-
nomenon called “chattering” in [5], which is dangerous for
mechanical systems and may lead to wear and tear of the
parts involved and in extreme cases may even lead to the
failure of the whole system.

In this research, a chattering-free SMC is considered to
control the belt drive. Belt- stretch and its control are im-
portant to achieve the vibration-free performance in [6].
Thus, paramount importance is given to the belt-stretch
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in the present research endeavor. The control law is de-
rived by the combination of the Lyapunov function and the
SMC theory. The use of Lyapunov function allows stabiliz-
ing the system upon any uncertainties and disturbances.
Therefore, the Lyapunov applications in [7] and in [8] are
used to design the SMC.

Owing to its simplicity and robustness, SMC approach
has attracted significant attention from researchers since
1980s. The achievements include almost all kinds of sys-
tems such as the SMC for the non-linear systems in [9],
SMC for discrete systems in [10], SMC for time-delay sys-
tems in [11], and SMC for large systems in [12]. To address
the problems of chattering and unknown bound of the un-
certainties present, various methods such as the higher or-
der SMC in [13], the adaptive SMC in [14], and the adaptive
fuzzy SMC which combine the advantages of both SMC and
fuzzy logic controllers are discussed in [15] and in [16].

The objective of this research is to design a robust con-
troller for a linear belt driven system based on SMC to con-
trol the position and velocity of a carriage on with the ship
model tagged. This is from a real project in Kuressaare,
Estonia, to build a water cannel to test the ship naviga-
tional and hydrodynamic properties, such as the ship be-
havior/friction in the waves. The carriage is driven by two
toothed belts and two motors as seen in Figure 1. The mo-
tive is to make the system robust enough to deal with the
unknown parameters and disturbances whilst keeping the
tracking position and velocity errors as low as possible.
Advanced robust, adaptive control designs are referred to
in [17], [18] and [19].

Figure 1: Real linear belt driven system in Kurresaare, Estonia.

The contents of this paper are as follows: Section 2
develops the mathematical model formulation of the sys-
tem; Section 3 presents the SMC controller design; Section
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4 presents the results of simulation; Section 5 draws the
conclusions and recommendations.

2 Mathematical model

The considered system consists of a DC motor which pro-
vides the main motive force to the system, two pulleys with
same dimensions that stretch the belt where the one which
is connected to the motor and is the driving pulley, and the
other is the driven pulley; a carriage (which is considered
as the load-side of the system) whose tracking position
and velocity errors are to be minimized ultimately; and
the belt for force transmission from the driven pulley to
the load carriage. The arrangement represents a complex-
cum-nonlinear distributed parameter system.

The following assumptions are made for the system:
gear reduction ratio has its value equal to unity in the
simulated system; the motor has negligible delay in pro-
viding high-dynamic torque response; the system is free
from backlash of belt drives due to pre-tensioning; the
link between motor shaft and belt drive’s driving pulley
is rigid; the belt elasticity is equivalent to a mass-less
spring; the unknown disturbances/noises consist of fric-
tion present between DC motor and the driving pulley and
carriage guiding rail transmission guiding channels. Fig-
ure 2 shows the diagrammatic representation of the equiv-
alent spring-mass system in lieu of these underlying as-
sumptions.

Motor

?51 Speed
@h reducer
(®/

Pulley

Figure 2: Equivalent spring-mass system.

Using modal analysis, the sixth-order dynamic equa-
tions for the system are depicted in equations (1), (2), and
(3) in [2]. For generating these equations the detailed anal-
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ysis is made in [6].

U1+ G*Ug +Jm)id1 + 11 = G(-RIK1 (x)(Rq1 — x)
—Ks(qu _qu)]s 1)

Jag, + T2 = RIK;()(x - Rq,) - K3(Rg, - Rqy)l, ()

McX + fr = K1()(Rqy - x) - K2(x)(x - Rgqy),  (3)

where, J;, Jm — Moment of Inertia of the speed reducer
and the motor, respectively; /1, J, — Moment of Inertia of
driving and the driven pulley, respectively; M. — Carriage
mass; G — Speed reducer gear ratio; R — Radius of the pul-
leys; K1, K>, K3 — Position dependent belt elasticity coef-
ficients; g1, g2, ¢ — Angular position of the driving pul-
ley, driven pulley, and the motor, respectively; x — Position
of carriage; T — Torque developed by the motor; 751, 752 -
Friction torque which affects the pulleys; f; - Friction force
on the carriage.

The 6 order model discussed above is a three-mass
model and it is a highly-coupled and non-linear system
with external disturbances which enter both in the driving-
side, i.e., motor-side and also on the load-side of the sys-
tem. An important point to be considered is that the iner-
tias at the load-side and the motor-side are high as com-
pared to those at the driving and driven pulleys [6]. So, the
6 order model is reduced to 4™ order model (two-mass
model) as described in equations (4), (5), and (6). The two-
mass model includes only the first resonance.

J@ + 15 =7~ LKw, (4)
MX + f = Kw, (5)
w=Lp-x, 6)

where: J — Motor inertia; M — Mass on the load side (ap-
prox. to the Cart Mass); 7, — Motor Side friction torque that
perturb the system ; f; — Force of friction in the system; K
— Coefficient of Elasticity of the belt; w — Belt-stretch; L —
Transmission constant of the linear belt-drive = R/G;

Belt-stretch is an important consideration. The model
can hence be modified according to the vibration analysis.
It is to be noted that to simplify the calculations, the pa-
rameter “L”, i.e., transmission coefficient is assumed to be
unity while finding the new set of equations for the modi-
fied model. The modified model can be written as:

JW+ Kww =T — Ty, @)

MX +f; = K, (8)
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where: T, = 75 — k ff, Kw = K (1+x), k = J/M (inertia ratio).
The resonance frequency of the elastic belt-drive sys-
tem is given by Equation (9):

wo = ,/’Jf(l +5). ©

The control model for the modified system where belt-
stretch is considered is shown in Figure 3. The system has
a control input signal 7. It has two parts where the first one
is for the Belt-Stretch Dynamics and the second one is for
the Load Side Dynamics. Both these parts are described by
their independent nominal and linear 2°¢ order dynamics.
The disturbance torque perturbs the belt-stretch side and
the friction force perturbs the load side.

In real life, the main problems in such a system arise
from many factors some of which include: Elasticity of the
belt; Load-position dependent friction; Non-linearity of in-
duced belt forces; Large friction effects; etc. The prime in-
terest is to generate the control scheme for the system men-
tioned in Figure 3 so that the position tracking can be simu-
lated and the position error of the cart position can be min-
imized. Also, from the simulation, results of various other
parameters can also be fetched.

3 Free chattering SMC design

The design of SMC is two-stepped process: Defining the
switching hyperplane or switching surface or sliding sur-
face; and Designing the control law. First, the switching
hyperplane often designated by “0” is defined which is
basically dependent on the desired dynamical behavior
of the system. This o actually provides a measure of the
distance of the state-trajectory from the sliding surface
located at o = 0. Secondly, a control law is designed to
drive the states onto the pre-defined sliding surface. Also,
it makes sure that they remain there and slide along the
sliding surface or in the bounded vicinity of that sliding
surface. The control is continuous in all the segmented re-
gions but it alters the structure when the dynamics of the
state-trajectory crosses the boundary defined by the slid-
ing surface, i.e., sliding manifold.

The ultimate goal is to find the control input which
takes the system towards the sliding surface manifold and
then restricts it there despite of the perturbations present
in the system which basically include all the uncertainties
of the system.

Let a Single Input-Single Output (SISO) non-linear
considered mechanical system in the state-space be de-
fined as:

Zi = Zis1, (10)
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Zn = f(2) + b(2)u + d(t), (11)

where:i=1, ..., n-1; 27 = [z ..., z4] is a system state vec-
tor; u — scalar input; f (z) — the bounded non-linear driving
term of system-state vector; b(z) — the bounded non-linear
control gain of the system-state vector; d(t) — the bounded
scalar disturbances.

Now, the prime goal is to determine control signal “u”
that restricts the motion of the system-states z to the pre-
defined sliding surface o(z,t) = O even in the presence of
f(2), b(z) and d(t). The convergence (of system states) to the
sliding surface is called the reaching phase. The motion
within the sliding manifold is called the sliding phase.

The control with discontinuities on sliding manifold
is working on the following defined principles (termed as
switching function):

o(z, t)>0,
o(z, t)<O0.

u,
u,

(12)

Here, u* and u~ are selected such that the Lya-
punov function candidate has its derivative to be negative-
definite. But, the discontinuous control in many applica-
tions leads to failure of VSS which further leads to “chat-
tering” which is an important issue while dealing with
the system under consideration. Hence, the chattering-free
SMC is to be used in this task. For this purpose, another ad-
ditional state of the system is needed as introduced in [7]
and also discussed in [9] to eliminate the discontinuities
on the control signal. So, it yields,

Zi=2zj1, (13)

Zne1 = 8(z, u) + b(2)i + d(¢), (14)

where g(z, u) =f@)+b@u,i=1,...,n
The condition which is to be fulfilled so that the system
states start moving towards; and finally reach the sliding

[

Modeling and robust control algorithms for a linear belt driven system =—— 145

)

Welocity

e

Integrator? Integrators P osition

175

Gain3
ff

Load Side Dynamics

surface is called the reaching condition. The solution given
by o = 0 will have at least asymptotic stability if the con-
trol satisfies the condition that the derivate of any assumed
Lyapunov’s candidate function will be semi-negative defi-
nite. To meet this criterion, considering the Lyapunov can-
didate of the form:

V(o) = 6?/2. (15)

The squared distance to the surface (as measured with
term 02) decreases along the system trajectory. Hence, it
will constrain the trajectories to actually point towards the
pre-defined sliding surface. Once the system reaches the
surface, the system trajectories will then be on the surface.

The reachability condition can be proved when the
condition g, 6< 0 is fulfilled. The robust law is chosen with
proportional rate given by & = -Do, D > O where D is
the damping coefficient arbitrarily chosen to achieve a re-
quired rate of robustness of the closed-loop system. The
value of D determines the disturbance rejection and ide-
ally the value of gain D should be as high as possible. But,
it is not possible in the practical applications. The value of
D is limited by various factors including: un-modeled dy-
namics of electro-magnetic torque; noise levels; discrete
control algorithm implementation.

The derivative of Lyapunov’s candidate function V as
stated by Equation (15) will thus have the form:

V =-Do*,D>o0. (16)

Now, from the condition V= 06= — Do? and by appli-
cation of the knowledge regarding the equivalent control
method in which the equivalent control signal ueq is not
the control action applied to the nominal plant. It can be
imagined as representing (at an average) the same effect as
shown by the applied discontinuous control and can hold
the system on the sliding surface:

il = ileq + Do. 17)
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The obtained equivalent control ueq is actually the so-
lution of ¢{,_, = 0.
The control law u can be obtained as:

t
u= /udt.
0

This control assures invariant motion of the system in
the sliding mode if the value of the disturbance d(t) com-
plies to matching conditions. The control will be achieved
when the derivative of Lyapunov candidate is negative,
ie,

(18)

V =06=-Do’<0. 19)

The task of designing the sliding surface or sliding
manifold is an important step which is constructed in
a system state-space. Thus, o combines system’s state-
variables in such a way that the system’s motion in the
sliding manifold is asymptotically stable. The definition of
the system states is in accordance to the adopted system
model. In case of higher-order sliding mode approach, the
original system states can be extended so as to achieve the
smooth control.

For the system considered, the conventional SMC de-
sign approach involves switching function of first order
which could be taken as:

0 = Ax - cAx, (20)

where: Ax — the error signal = r (t) - x, i.e., reference posi-
tion — actual position; ¢ — our design variable.

The SMC which is free from chattering for the lin-
ear belt-driven system must have a switching function
of second-order in the motion control. Hence, taking the
switching function to be:

0 = Ax + KvAx + KpAx, (21)

where: Ax — corrected position; Ax — corrected velocity;
AX — corrected acceleration; Ky and K — positive control
gain values to shape the second-order dynamic behavior
of the error in desired position.

But for elastic systems, the switching function is given
by:

0 = AX + KvAx + KpAx + ~(W + aw), (22)

where a and v - arbitrarily chosen positive control gains
in order to reduce the vibrations due to belt compliance
and elasticity so as to shape asymptotically stable motion
dynamics on the sliding manifold.

The portion of belt-stretch dynamics is added to
switching function definition (W + aw). It basically aims
at coping with resonant frequency w, and also to achieve
asymptotically stable dynamics of motion.

DE GRUYTER

A little consideration to equation (22) says that if the
belt is stiff then both W and w = 0 and we will reach equa-
tion (21).

For the controller implementation, the only signals we
require are position and the velocity of the system. The
other required model parameters are the equivalent mass,
i.e., ] + M, the moment of inertia of the motor, i.e., J and
lastly the resonance frequency, i.e., wg of the system. And
then the other control parameters, i.e., Ky, Kp, a, v are de-
signed.

The Simulink description of the belt-stretch considera-
tion being implemented and the calculation of the control
law for the system is as shown in Figure 4.

The constructed sliding manifold as described in
Equation (22) allows the steady state position error to
reach the zero value assuring the operation to be vibration-
free. In order to give a little more explanation about choice
of the switching function, ¢ has been opted such that it
complies with the order of the system. Also, it involves po-
sition tracking error and its order up to the 2" order along
with the dynamics of vibration suppression, i.e., w and w.

It is to be noted here that higher order derivatives of
position error are simply not available in the practice. All
the variables involved in o are then available in the imple-
mented control law which actually requires the integral of
g.

Considering control engineer’s perspective, o is a
measure for a distance to sliding manifold. The sliding
manifold is constructed so as to bring the driving posi-
tion error to zero while operating at vibration-free mode.
In practice, the ultimate convergence is hard to guarantee,
especially, in the case of simplified version of the control
law. However, by the high-gain approach, it can asymptot-
ically converge to a vicinity of the sliding manifold at a fair
robustness.

In practical scenarios, it is difficult to observe belt-
stretch’s first and second order derivatives. So, Equation
(8) belt-stretch is computed as:

M

L1
w = ? +Rff. (23)

The first and second order derivatives are hence calcu-
lated by differentiating “w”. In MATLAB Simulation, it can
be done by using the “Derivative” blocks from Simulink li-
brary (in Figure 4).

Now, as discussed earlier that the control law needs
the derivative of switching function o. So, differentiating
Equation (22),

0 = A% + KyAX + KpAx + ~(W + aw). (24)
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Here, W is obtained by rearranging the terms involved in
Equation (7) as:
T—Tyf
J
W is calculated by differentiating the Equation (25), i.e.,
calculating dw/dt.
So,

W= —w(z)w + (25)

T-T
G =A% + KvAX + KpAXx + <—w(2)v'v + % + mh'/) .
(26)

Now, from condition & = 0 where 7 becomes Teq:

Teqg—T
0 =A% + KyA% + KpAk + 7 (—w%v’v+ ea—Twf +m}1'/> .

J
@7)
Re-arranging the terms leads to:
Yieq = ~J[AK + KyAX + KpAX] + Jywiwv - Jyaiv + v .
(28)
Further rearrangement of terms yields:

toq = —% [A% + KyA% + KpAx)+] [w?,w - m'/i/} + iy (29)
Using the knowledge of resonance frequency (from

Equation 29) we can deduce that,

K(M+]))
J oM

Rearranging the terms in Equation 21 above gives the
following:

wh = (30)

M_M+]) 1

i 7wt (31

Multiplying and dividing the equation of Teq by % we
get:

Foq = —%]ﬁ (A% + K%+ K] +] [ - b + 7,
(32

where = K/My = A gain value.

High value of 8 can extend the robust bandwidth of the
operation but it is always limited in the real life. For exam-
ple, in belt-drives, it is normal to have force-transmission
delay which may lead to unstable belt response. Hence, 8
value is actually a result of design compromise. Also, f§ =
~~YK/M > 0 is the design parameter which shapes the dy-
namics of the system motion when o = 0.

Substituting % from Equation (31) to Equation (32):

Toq = —%(MH) [A% + K A% + KpAx]+] {méw - aﬁ/} Ty
0

(33)
Now, equivalent control torque signal can be obtained
by integrating the 74 over the time limit O to ¢, i.e.

t
Teq = /i’eth.
0

So, integrating Equation (33),

(B34

Teq = —%(MH) [AX + KyAx + KpAX]+] [(u(z)w - av'v] FTyf.

0
(35)
Here, in Equation (35), we can see that we need accel-
eration signal which is generally not available. We have
only position and velocity sensors installed with-in the
system.
So, to find X we have to use Equation 28 where rear-
ranging the terms provides:

_ KW—ff

AX 7

(36)

Hence,

Kw -
Teq =~ a%(M+]) [KvAx + KpAx] - wﬂ(z)(MJr]) ( WM ff)

+J {w(z)w - av'v} + Ty, (37)
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Teq=— %(M +]) [KvAx + KpAx] - O%(KW -fp)

%M(KW -fp+] {w%w - av'v] + Ty, (38)
Teq =~ Q%(M +]) [KvAx + KpAx] - ﬁKW + £ff
£21{7[KW + ﬁfff +] [a}ow aw] +Typ. (39)

Now, substituting the value of 7,,¢ in Equation (39) we
get:

Teq = — a%(M+]) [KvAx + KpAx] - £Kw + £ff

- %%KW+ £—ff +] [wow aw] +Tp - K ff.
(40)
After re-arranging the terms we get:
Teq=— a%(M +]) [KvAx + KpAX] - a%Kw - %M Kw
20 i BB
+Jwgw = Jaw + Tp + | S5 + Sk -k| ff, (41)
Wy W5
Teq =— %(M +]) [KvAx + KpAX]
0
-J [av’v+ (ﬁg ﬁﬁ —w%) w} +1p+ &,
W
(42)

where & = x(£—1> + L
Solving the Equatlon (42) and substituting w3 =
7 {M*] ] we get:

Teq = —%(M +]) [KyAx + KpAx]-J |aoiv + (B - wd)w | +745",
0

(43)
where 7% = 7/ + &f; — the system disturbance signal.

It is to be noted that ¢ is related to both the plant-
model parameters and enforced belt-stretch dynamics pa-
rameters.

In order to obtain a continuous control of the signal o,
the control law applies the condition ¢ = -Do in order to
obtain control signal of the form u = ueq + Do as explained
earlier.

But we do not have the perfect knowledge about the
whole system and in reality, 7% is not a measurable en-
tity so, Teq is replaced with the estimated value 7¢4. The
estimate 7.4 does not assure the convergence to the slid-
ing surface hence the discontinuous term is also added to

dist
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it as described in Equation (44).

T="Teq+ ﬂz(] +M)Do. (44)
Wy
Performance of robust controller as obtained from
Equation (44) plays an important role in desensitizing the
system from the disturbances. This also allows for imple-
mentation of the rapid vibration-free belt response which
can further aid in rejecting the load side equation.
Equivalent control estimation is determined by:
teg = LU M s+ B-odpw), @)
0
where a¢ = KyAx + KpAXx.
Now, the control torque signal is given by Equation

(46) as:
t

t
T= /Tdt = feq + /i-SMCdt'
0

0

(46)

The Equation (46) has 2 components: estimation of
equivalent control; and estimation of disturbance and con-
vergence to pre-defined sliding manifold.

Using Equations (44) to (46), the system motion pro-
jection on o-space is governed by:

(U(Z) .'rdl'st

BI+M

Equation (47) in combination with the condition
06 = -Da?; D > 0, proves the system’s asymptotically
stable reaching phase. The convergence is dictated by the
right side of Equation (47).

Having a stable solution where ¢ = 0 can be guaran-
teed if 795! = 0, i.e., it should be constant. Also, then the
derivative of considered Lyapunov’s function candidate is
negative definite, i.e.,

6+Do= (47)

V =-Do?, D>0.

In systems with fast sampling rate, the fast conver-
gence rate can be achieved. If the rate of change of distur-
bance is low, i.e., %! = 0 then the control law will keep
the system states in the vicinity of the pre-defined sliding
manifold.

4 Simulation results

The system considered in the research being simulated in
MATLAB-Simulink is depicted in Figure 5.

The control and simulation system as shown in Fig-
ure 5 consisted of four main blocks: The nominal plant (I)
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Figure 5: The control and simulation system.

in Figure 6; Equivalent control block for eliminating the
chattering (II) in Figure 7; Control creation signal (III): and
Friction model (IV) in Figure 8.

In the nominal plant (Figure 5), a noise/disturbance
signal with a magnitude of 1 and frequency of 0.5 rad/sec
was added to check the robustness and the chattering free
for the control system.

The Belt stretch; Friction torque; and the Control
torque to the nominal plant is shown in Figure 9. It can be
seen that the Belt stretching block in Figure 8 helps to es-
timate and minimize the belt stretching to very low value
from 3e-03 m and then later it oscillates around the mag-
nitude of 1e-03 m in correspondence to the varying refer-
ence input signal. The control torque, thus, is calculated
to minimize the position errors. At the starting point, the
torque magnitude is quite high with the approximate mag-
nitude of 985 Nm, and later stays within the range of +200
to —200 Nm.

Now, to check the robustness of this system, a phase-
ship of pi/2, i.e., 90° is induced to the reference signal as
shown in Figure 10.

In Figure 10, it can be seen that the system is robust
enough to deal with the initial offset. It took 1.6 secs to
track the reference path and the tracking results are free
from chattering.

The system is now tested further with the square track-
ing. Fiction torque is estimated in the friction mode and
used to calculate the friction torque and the control torque.
Figure 11 shows the results of belt stretch, friction torque
and the control torque for tracking a square reference.

Figure 12 shows the system output performance when
it tracks a square reference. Similarly to Figure 10 at the
starting point, a high different jump took place because
of the initial offset. The output rapidly tracks the refer-
ence line. And at time line in 6 s, the reference suddenly
is falling and the output follows with a small offset error.
Butin 13 s and 19 s, this error is eliminated. The overshoot-
ing values are kept at small levels.

Finally, the system is tested tracking on a saw refer-
ence with the same magnitude and frequency as the sin-
uous and square signals. Results in belt stretch, friction
torque and the control torque show that the system per-
forms better than previous tracking references. The input
torque to keep the belt tracking to the reference is also
smaller as shown in Figure 13.

Figure 14 shows the saw tracing performance. At start-
ing point and at 13 s, the tracking overshoots are high due
to the big sudden fall of the reference line. However the
output very fast tracks to the reference without error.

The above simulations show that the controller has
provided chattering-free input in the control torque. The
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tracking errors are small and the system can detect the
reference switching and generate the control torque corre-
spondingly. The tracking overshoots become smaller since

the system has adapted to those changes.

Constant2

5 Conclusion

This study has included the use of chattering free SMC as
in equivalent controller and the belt stretching estimation
as in internal friction model into the control law. This SMC
provides free chattering and then, the system is safe for all
mechanical and electrical devices. The tracking errors are
very small. The reference tracking position is achieved at
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quite a fast pace and the controller can be able to elimi-
nate any disturbances entering into the system. The mag-
nitude of belt stretching is considerably reduced after the
belt stretch control estimator is incorporated into the con-
trol law. Experiments are also conducted to test the ro-
bustness of the system by changing the initial positions at
the starting point. The system swiftly detected and conse-
quently responded to those changes.

In future research, a combination of chattering free
SMC and a disturbance observer can be used together to
reduce the tracking errors and to deal with the problem of
friction as well as disturbance dynamics. Further compar-
ative study of the time delay control in the sliding mode
(TDC-SMC) and other control methods can be applied and
analyzed to select a better chattering free SMC solution.
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Abstract—The current research paper elucidates the
optimal approach for tuning the Microwave Cavity Filters. The
proposed solution uses Q-learning approach which is a special
case of Temporal Difference used in Reinforcement Learning.
The results are optimized using Lagrangian Multiplier. The
proposed algorithm is tested on a commercially used filter. In
this research work, only four screws were used for training the
algorithm and for testing it. The algorithm could understand
the strategies and could tune the reflection characteristics of
the considered filter in 43 steps which proves the effectiveness
of the algorithm to assist in the tuning process.

Keywords— Q-Learning, Microwave Cavity Filter Tuning,
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I.  INTRODUCTION

Due to the recent rise in cellular communication, the
network providers are motivated to install new Radio Base
Stations (RBS) to manage the data traffic and to provide
better connectivity. The spectrum is crowded now, and the
need to filter out the desired frequency is high. Microwave
(MW)/Radio frequency (RF) cavity filter is one of the major
components in the RBS because of its High-Q factor,
stability against environmental effects, reliable operation and
robustness. To meet the connectivity requirements, raised by
the substancial increase in the number of users, numbers of
installed filter units have increased exponentially. As a
consequence, the need for having high volume production of
these filters is all-time high.

After the production, filters are assembled and pre-tuned.
Due to various imperfections in the design, filter tolerances
and material’s dielectric constants, the filter needs to be
properly tuned. Currently, tuning is done manually by the
trained technicians and is a highly iterative, time-consuming
and monotonous process. This process may vary from 15
minutes to a few hours by studying the scattering parameters
(also called as S-parameters) response of the filter [1].
Attaining ample proficiency is also equally time-consuming
even if some guiding documents are available in [2]. While
rotating the screws, the technicians observe the S-parameters
response of the filter on the Vector Network Analyzer
(VNA) with the aim of tuning the filter in the well-defined
frequency limits. Lot many filter topologies, with different
frequencies and bandwidth, are available in the market which
makes generalization next to impossible.
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At times, even after being trained for a few months, some
trainees remain inefficient in performing the task. The
sustainability of the tuners also poses a big concern
especially because finding new tuners is not a cakewalk. The
major reason why tuning is difficult is because there is a
complex correlation between the tuning elements and the
filter response [3]. The beforementioned paragraphs suggest
that tuning is a cumbersome task. Hence, searching
automated means of doing this process is the bone of
contention of the researchers in the field to remove the
bottleneck of production.

The next section discusses all the potent efforts made by
the researchers for the advancement in the field.

II.  LITERATURE SURVEY

Automating the cavity filter tuning by using Machine
Learning (ML) has been studied quite exhaustively by the
researchers for decades. The concept of using ML Algorithm
for finding the solution to this tuning problem was first
presented in 1989 [4], in which the researchers did not use
any Mathematical Modeling or Coupling Matrix Extraction
procedure. They used waveguide filter and presented an
algorithm that could only assist the human operator to fast
tune but could not tune the filter automatically. The major
drawback of their time was the assumption that the coupling
screws are already correctly pre-adjusted. Continued
researches in the area many other techniques were proposed.
These included algorithms based on Adaptive Models [5]
which was based on the approximate network models that
were derived using the prototype network. This is not
feasible to implement in real life. Fuzzy Logic was also
implemented in this area [6]-[10] which although gave more
flexibility, but no consideration was given to human
experience in [6] and [7]. The usage of inevitable human
experience came only in [8][9] and [10] which could assist in
the accurate tuning. The major issue with the methods used
by these researchers was that they were based on coupling
matrix extraction from the mathematical model. However,
the accurate mathematical model for the cavity filter is not
reported into the literature yet. Another major issue with
these researches was related to having an insufficient amount
of linguistic rules. Both these factors limited this method to
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be used in real life. Artificial Neural Networks (ANN) was
used to get the inverse model of the filter [11]-[14]. This
method was also not without its shortcomings as it required
huge amount of training data, which further led to increased
time in the filter tuning. Later, a hybrid approach of
combining two or more techniques was proposed in [15]. In
recent times, researchers are resorting to Reinforcement
Learning (RL) [16] in which they had used only two screws
for training their model. Selection of the reward cost was
their key concern. The same authors also tried a vector field
approach [17] but the algorithm was not at all intelligent.
Later in [18] the authors combined the techniques in [16] and
[17] and used DDPG framework to have continuous RL but
used a simple filter model. They turned only four screws that
too in a limited range, with the curve that chaged only on the
vertical side.

The above overview indicates the amount of efforts put
forth by the researchers for the advancement in the area.
However, the findings of these numerous analytical and
practical approaches were either incomplete or deficient or
nonviable; as none of the researches were able to find the
solution that could tune the complex filters automatically.
The reason why most of the methods proposed by
researchers cannot be implemented in real life is that they
modelled the filters only but did not focus on the role of
human intelligence. The role of an experienced tuner is
inevitable. The data from the human experience can
exponentially increase the performance of the system. This
approach has been discussed in recent times in [10] and [16]
but, yet, it needs to be explored further to achieve Automated
Filter Tuning.

Developing a meaningful algorithm can reduce the time
and fabrication costs significantly. Computerized Automatic
Tuning (CAT) of MW filters is challenging but it indeed will
meet the demands of rapidly increasing market [19][20][21].
It will have the potential of not only tuning the filter
automatically and reduce human dependency but, it also can
open the path for understanding the patterns behind this
process. The ideal automated CAT must not have any human
mathematical filter modeling should be
avoided; and finally, the filter must reach its optimum state
of tuning. Considering all these requirements, and
understanding the fact that the humans train their Natural
Neural Network while they learn and try to tune the filter
makes the usage of ANN the basis of this research work.
Reinforcement Learning (RL) does not need any supervision
rather it learn the patterns from the environment in which
they are implemented. In this research work, RL has been
used and the Reflection Curve (S;;) is considered. Q-
Learning is used in this research work and the Loss function

involvement;

is optimized using Lagrangian Multiplier to obtain the
Global Minima. The subsequent section illustrates the Q-

Learning approch and discusses the Learning Model used in
this current research work which is then optimized.

III.  Q-LEARNING ALGORITHM BASED TUNING

A. Preliminaries

The Device Under Test (DUT) is a cavity filter which is
connected to Vector Network Analyzer (VNA) using
input/output ports. VNA is the device which provides input
to the filter and then also depicts the current frequency
response of the filter in the form of S-parameters curves. The
data can be extracted in terms of Insertion Loss (the useful
energy dissipated as heat), Return Loss (the signal reflected
back towards the source), Passband Signal (the absolute
value should be as close to 0 dB as possible) and the Band-
Reject Signal (with or without Transmission Zeros). In this
research work, we considered only Return Loss Curve (S;;)
as the state. The goal of the tuning is only to minimize the
absolute value of the Return Loss and to ensure it is below
the target value of -16dB in the passband zone.

B.  Formulation

Markov Decision Process (MDP) provides a framework
for mathematical modeling when outcomes are partly under
the decision maker’s control and partly random. In [16],
researchers used Q-Learning in the field of Filter Tuning
which was based on Stochastic Gradient Descent (SGD)
Algorithm. The filter model used by them was very simple
and often faced the problem of trapping into local minima. In
this work, authors decided to use Q-learning approach
considering  Convolutional Network  (CNN)
architecture so as to reach towards the Global Minima of the

Neural

defined Cost Function using Lagrangian Multiplier. In MDP,
the Learner and the Decision-Maker is named as “Agent”
and it interacts with the “Environment”. MDP is basically
defined by s,a,r,p and y where:

s € S— the State of the considered system
a € A —the Action taken by the agent
r: SXA- R —the Reward Function

P (Stuture | Snows @now) — the state transition (probability)

function or system dynamics

y — the discount factor € (0,1]

In MDP (and RL), the policy 7 is defined as a function
which specifies the action to be taken corresponding to each
state i.e. - S > A. At any instance the agent is in the state
sE S, action a € 4 and then its future state is Sz This has
been explained pictorically in Fig. 1 below.

[ 53 _|— 2

[~]

Fig. 1: General Sequence in RL
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In our case, agent is the designed algorithm; states are the
points considered on S-parameter curve; actions are
clockwise and anti-clockwise turning angles of the screws;
the discount factor y is set to 0.95 in this research. The target
of the Q-Algorithm is to maximize the future rewards after
learning the policy m(s,,,) = d,,, - In this research work, the

now
target of the Q-algorithm is to ensure that the return loss i.e.
Si; parameters of the filter is below the target value which is
-16 dB in our case. The s-parameters of the DUT are
obtained and are compared with the target value in the
passband zone. In case, the S;; parameters of DUT are
already below the target line, then, the distance is defined to
be zero. But, in alternate case, the distance d is recorded by
taking the absolute value of the difference between the two
curves. If this d value is getting smaller, the system receives
a reward point of 1 else it gets a zero as its reward. When the
system is presented with a state, the system takes an action
against it and receives the corresponding reward and reaches
the next (future) state and saves this sequence. After this, a
mini-batch of the saved sequence is extracted to train the
designed network. Further, the future action @y, which
actually maximizes the Q-value of state sy, is selected for
the future cycle.

C. The Q-Learning Model
The quality i.e. Q-function (using Bellman’s Equation) is
given by (1) below.

M
QSpows dpon) = Toow T 7M. Qe s Furure)
. future
reward Discounted/Future Reward

Keeping optimal value V* (stated in (3)) then an optimal
policy is to decide deterministically, and the optimal action
is given by (2).

a * (SHOW) = a'rg max Q * (SHOW ’ anow) (2)

Anow

(where a is the optimal action and Q* is the optimal Q-

value)

i'e' V * (SHOW) = max Q * (SHOW 2 allOW) (3)

Anow

The Q-Algorithm used is drawn in Fig. 2. The update rule
is defined by (4) and (5).

Qest (Snow > dnow ) < Qest{Snow - @now)

4

+ @ fow +¥ Max Qusr(Stutures @uture) ~ Qest (Snow > Tnow
Afuture

&  Spow <—Sfuture UnNtil termination 5)

where: a = learning rate or step size (0,1].

To deal with non-exploration i.e. to update o, we used

random exploration. At the stated probability of % where N

= number of trials i.e. number of times we have used “(s, a)-
pairs”, the program took random action instead of optimal
one and later, the probability of a was lowered automatically.

| Sel v parameter, Environment Rewards in matrix R |

| Tnitialize Q(s,. a,..) randomly for all acA and s€8 |

'

‘ Choose Action from state using policy derived from Q‘

l

‘ Perform an Action ‘

l

| Obtain and Measure the Reward and New State |

—<—‘ Update the @ values |
Fig. 2: The proposed Q-Learning Algorithm

The loss function is defined by (6) as:

oSt Tmows mow:
estimated
target

2
L(w)=E| [?;mw +7 max Qe (Stuture > Fruture » W) ~ Qest (Snow » Fnow ,w)] 1
urure

Then, the Q-Learning gradient is computed by (7) as:

}fQ( ]

arow
%zﬂsﬂ oo+ 18 Qe St s W)~ Qe o o) {22222
¢ \ Afyture ; d
)
To remove correlation, we built the data set from agent's
own experience and we took the following action:
1. Taking action a,,, using greedy policy
2. Store the transition T Sy duows Fisrer Spd) i0

replay memory D.

3. Taking sample random mini-batch from the stored
transition

4.  Optimizing MSE between Q-network and Q-
learning targets given by (8)

Lw)=E

| [Faow * ¥ 18% Qe (Sfutures Future: ) = estEnow» Gnow )
e e sr—

estimated

®)

The loss function is optimized end-to-end by Lagrangian
optimization mentioned in (9) i.e.

LG px)=f(ty)+yxty) )

target

and, later we equated% =0to find the global optimum

value with the constraint given in (10) i.e. :
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Loss Function > Threshold Value (10)

The next section of this research paper is dedicated to the
experimentation methodology used and the results obtained
henceforth. A detailed discussion of the results is also
presented.

IV. EXPERIMENTATION

A.  General Implementation Details

In this research work, the DUT is a version of Huawei
Cavity Filter with two channels. We used only one channel
i.e Receiver Side (RX Side) and four resonator screw of RX
Side for performing the actions. Hence, we had eight actions
to be performed (rotation angles of all the four screws in both
directions by one full rotation i.e. 360°). The environment
used in this research work is simulated, where we generated
training samples by randomly inserting the screws one by
one manually.

As a function approximator, we used CNN Architecture
where the input is the passband section of the S-parameters.
The input of Q-network was set at 25 artificial neurons and
the output layer consisted of eight neurons indicating the
eight valid actions for the Q-values.

For training the network, we randomly drew 35
sequences from the collected database D. A greedy policy

was used so as to obtain the biggest estimated Q-value.

B. Results

We trained the defined network for 150 epochs each with
1000 tuning steps as the maximum value. After training the
network, it was tested with 50 random states. After 100
training epochs, the algorithm was tested with 100 random
states.

Fig. 3 provides the results of our algorithm. It was found
that after training the network it could successfully drive the
curve below —16 dB return loss target and just after 43 steps
the filter was successfully tuned. Global Minima was
ensured by the use of Lagrangian Multiplier.

Testing tuning of the filter using our algorithm

T

]
. e e
= —Step 1
& yof - |35t 2
1{10 “TStep 3
Q " Step 43
& :
90} - - S Target
) 1
5 i
& |
Q 1
B 3(0f=mmAmmm————

| |
L |
1780 1800 1820 1840 1860 1860
Frequency (in MHz)
Fig. 3: The experimentation results

C. Discussion of the Results

The current research proved the effectiveness of Q-
learning, the proposed algorithm could successfully find the
correct screw position and global optimum. The major
limitations and hence, further implications of our research
include:

reflection
without

a) In this present research, only
characteristics ~ are  considered
considering the forward insertion loss.

b) Further, only the distance between the current
reflection characteristics and the target value
within the passband was used. The limit lines on
the sides (for sharper transition between
stopband and passband),
unobserved.

however, were

¢) Our reward policy considers only the distance
between current and target values, the penalty
for complete removal or insertion of the tuning
screw, however, is not considered. This is a
major consideration in real scenarios and hence
must be given a heavy penalty. In addition, no
reward was assigned to successfully tuning the
filter.

V. CONCLUSION

The current research highlighted the difficulties of
manual tuning of cavity filters which led to the need of
tuning the filters by autonomated means. A Q-learning
algorithm was propsed as a viable solution. The designed
algorithm could learn the tuning strategies and updated the
estimated Q-values iteratively. The effectivess of the
algorithm was ensured by experiments. The designed
algorithm could successfully tune the raw filter (using only
four resonator screws) after 43 steps.
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Abstract — From past two decades, Microwave Cavity
Filter is the buzzword in communication arena. They are
highly valued owing to their high-Q factor and robustness.
Once assembled, the filter needs to be properly tuned to
compensate  for various design imperfections and
manufacturing tolerances, which till date is carried out
manually. To overcome these limitations a Computer-Aided
Tuning (CAT) method has been proposed using Double Deep
Q-Learning (DDQN) Algorithm to fine tune Microwave Cavity
Filters. Owing to copious data obtained using a commercial
filter, the researchers have used Locally-Linear Embedding
(LLE) approach for dimension reduction. The algorithm has
been tested via simulation of a 9" order filter. Furthermore,
four screws were used for training and testing the algorithm.
The proposed algorithm could tune the considered filter in 23
steps only. The quick tuning, received towards the end of the
research, proves that the algorithm is effective in facilitating
the tuning process.

Keywords— Microwave Cavity Filter Tuning, LLE, DDQON,
RL, Computer-Aided Tuning, Q-Learning, Deep Learning (DL).

I INTRODUCTION

Microwave Cavity Filters are widely used in satellite and
wireless communication owing to its High-Q, reliability and
stable operation under various kinds of environment
situations. Even if filter theory is already well established,
still, the output falls short of the expected standard results.
Various factors including, but not limited to, design
imperfections, manufacturing tolerances and influence of
material characteristics, inculpate the achievement of desired
results. Hence, paramount importance has been given to
post-production filter tuning [1]. Filter Tuning is an
expensive, boring and time-consuming activity and trained
technicians are needed for it. To meet the stringent frequency
selection requirements, enhanced communication quality and
to avoid signal cross-talk, more and more-higher order filters
(means more tuning screws) are installed these days. Also, to
meet these strict requirements, there are restrictions on both
sides of the passband too which are realized using cross-
couplings [2]. These cross-couplings make the tuning task
even more difficult and tedious.

In most cases, the tuning is done using mechanical screws
in the circuit package which allows the variation of center-
frequency of the resonator and sometimes also the coupling
between them. Presently, tuning is done manually by the

Delhi Technological University
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Tallinn University of Technology
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trained technicians where they inspect the filter response i.e.
scattering parameters on Vector Network Analyzer (VNA).
The goal is to meet the desired output response. This highly
iterative process relies solely on the experience a technician
has.

The complex correlation between the tuning screws and
filter output makes the tuning a difficult task. Also, due to
various applications and hence various filter topologies,
generalization is not
technicians and finding new tuning technicians is a major
concern for the industry. To overcome the above mentioned
problems and in favor of having fully automated filter
production, a Computer-Aided Tuning (CAT) is highly
desired.

possible. The sustainability of

The current paper advocated the usage of DDQN
Algorithm for tuning the filters, and rest of the paper is
structured as follows - the second section gives a detailed
overview of the related literature; the third section presents
the data collection and Q-learning algorithms; the
methodology used is outlined in the fourth section wherein
LLE technique for dimension reduction and the used DDQN
Algorithm are discussed; presentation of the results and
conclusions are drawn in final section of the paper.

II. LITERATURE SURVEY

A lot of tuning algorithms were developed by the
researchers in last 03 decades. Majority of the efforts were
made in the field of Frequency Domain (discussed in next
paragraph). However, Dunsmore made a few efforts in Time
Domain (TD) approach where the research works were
published under the category of band-pass filter design [3] as
well as regarding their tuning methods [4], [5]. However, this
TD method is not efficient for filters having various cross-
couplings. In majority of real world applications, filters with
cross-couplings are employed.

Various techniques based on Frequency Domain were
proposed by researchers in the past. Many researchers used
coupling matrix (CM) extraction (filter diagnosis) to
determine the detuning elements and the needed adjustment
amounts. This is done by comparing theoretical CM with
untuned filter’s CM. The major contribution in extracting

978-1-7281-6956-9/20/$31.00 ©2020 IEEE
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CM was proposed by in [6] where source and load coupling
elements were not considered which was later modified and
the advanced version is presented in [7]. But both these
methods were applicable to lossless filters. Some other
methods in [8][9] but were
applicable to lossless filters only too whereas
commercial filters are lossy. A technique for tuning lossy
microwave filters (with uneven Qs) was proposed recently
[10] and a CM extraction technique to assist in tuning of
highly lossy microwave filters was proposed in 2018 [11] but
the magnitude of loss considered in both the researches is

diagnosis are discussed

most

less than real life filters.

Automating the cavity filter tuning by using Artificial
Intelligence (AI) has been reported in the related literature.
The first Machine Learning (ML) Algorithm for finding the
solution to this tuning problem of waveguide filters was
presented in 1989 [12]. But, the coupling screws were pre-
adjusted and the influence of coupling screws was not
considered. Tuning using Fuzzy Logic was also implemented
in [13]-[17] which although provided solution, but these
techniques couldn’t map the strategies implemented by
technicians into linguistic rules. Rather, all these solutions
were just a qualitative analysis. Another limitation of this
approach was to use approximate mathematical models
which lead to poor tuning accuracy. Artificial Neural
Network (ANN) was used to get the inverse model of the
filter [18]-[21]. Therein, discrete filter characteristics were
the inputs and corresponding screw positions were the
network outputs. But, the need of a large amount of training
data makes the technique computationally expensive. Later,
Neuro-Fuzzy approach was proposed in [22] which although
reduced the learning vector data but it was not sufficient to
bring the strongly detuned filter to tuned state. Recently, a
CAT method by combing TS-Fuzzy Neural Networks and
Improved Space Mapping was presented in [23] which had a
fast convergence speed of the optimization algorithm but the
radius of confidence and the need of pre-adjustment of initial
value restricted the usage of this method in industry.

Reinforcement Learning (RL) for tuning the filters was
initially proposed in [24] in which authors had used only two
screws for training their model. Reward selection was not so
well dealt there and the algorithm was trapping into local
minima. Later, same authors combined the techniques in [24]
and [25] and presented a DDPG framework for continuous
RL. The key concern was the fact that they had used a simple
filter model and turned four screws but in a limited range. An
optimal Q-learning technique (using DQN) was presented by
us in [26] where we used 04 screws and Lagrangian
Multiplier to ensure the global minima. But the reward for
reaching the tuning target and punishment for complete
removal/full insertion of tuning screws was missing.

All the aforementioned studies indicate that seminal
contributions have been made by the researchers to take the

one notch above his/her predecessor. However, previous
studies cannot be considered as conclusive as the researchers
were unable to find the solution that could tune the raw
complex filter automatically. The major shortcoming of
previous researches, according to authors of current paper, is
its under-emphasis to human Previous
researches, however, can only be considered as the first step
towards a more profound understanding of achieving

Automated Filter Tuning.

intelligence.

The first step to meet the desired goal is the development
of a robust algorithm that is not only time-efficient but also
cuts the fabrication cost significantly. The current research
work is the continuation of work presented in [26]. In this
research, the authors propose the usage of DDQN algorithm
for filter tuning. DDQN falls under the category of ANN
based Reinforcement Learning (RL). We have considered
only the filter’s reflection character (S;;) to come-up with a
robust algorithm which minimizes the Loss function.

This algorithm is expected to tune the filter automatically,
will have less reliance on humans and enables future
researches to understand the patterns behind this complex
tuning process.

The next section is dedicated to data collection; relating
the Q-Learning terminology as per the current task; and
understanding the Q-Learning approach via various Q-
learning algorithms.

IM.  DATA COLLECTION AND Q-LEARNING FRAMEWORK

A. Data Collection

2000 samples of scattering parameters were extracted
from a 9™ order commercial filter with 02 cross-couplings
(i.e. 9p2z filter) by randomly inserting the screws on various
positions. We used Planar 304/1 VNA for fetching the data
related to the chosen filter where we extracted the
information related to Return Loss of a two-port filter i.e. Sy;
parameter only. The commercial filter has 900 MHz as its
centre frequency. For testing the proposed DDQN
Algorithm, a 9% order filter was simulated.

B. Q-Learning Terminology Used

Q-Learning which is categorized under Reinforcement
Learning becomes an obvious choice when decision making
is sequential and we have long term goal. In RL terminology
and as shown in Figure 1:

e “Agent” (i.e. the learner) is the proposed DDQN
Algorithm.

e “Environment” (i.e. the Agent’s world) is the simulated
world.

e “States” (i.e. Agent’s position) are various points
considered on S-parameter curve.

e “Actions” (i.e. Agent’s Input steps in Environment) are

clockwise and counter-clockwise turning angles of the
SCrews.
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e “Reward” (i.e. the Environment’s feedback) is a
numeric score.

e “Gamma” defined by symbol “p” (i.e. the discounted
rate of reward) has been set as 0.95 in this work.

e “Policy” is the Agent’s behavior function (map from
state to action).

The goal of Reinforcement Learning is to choose the optimal
action by the Agent from its current State while targeting the
maximum future Reward in the Environment. The notation,
in this context, which is used in this research work, is:

ss € § — State of the considered system
aa € A — Action taken by the agent

r — Reward Function
’ — Transition at # +1
Tt — Policy Function
y — Discount rate € (0,1]

The target of the proposed algorithm is to ensure that the Sy,
value is less than -26 dB by learning the optimal Policy.

As compared to our solution proposed in [26] we have used
DDQN with CNN structure rather than 2-layered DQN
structure. In addition, we have a bigger dataset from a
commercial filter to define the input “States”. While
performing dimension reduction, Locally Linear Embedding
(LLE) Technique [27] has been used in this paper to ensure
that we are not loosing features information.
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Figure 1: Agent-Environment Interaction

In our current algorithm, collected and dimensionally
reduced S, parameters are compared with the set target with-
in the passband zone. If S;; parameters are already below the
target line, then, the distance d obtains the zero value. But if
current scattering parameters are above the target line then
the d is taken as an absolute value of the difference between
the current and target line. Using 1, norm of all these d
values, the distance of whole S;; curve is fetched. For
rewarding the Agent, if d value gets smaller, the Agent
receives a reward point of +10 else it gets a zero. Also, if the
screw turning was over 720° (which mimics the full insertion
or complete removal of the screw) then a reward of -2 (a
penalty) was given to the Agent to discourage such actions.

C. Q-Learning and Deep Q-Learning (DQN)

The Q-function defined using Bellman’s Equation is
mentioned by Equation (1). The equation reveals that the
maximum future reward an Agent will receive is the reward

for entering the current state ss plus the maximum future
reward for ss’ i.e. for next state.

Q(ss,aa)= rr + ymax Q(ss',aa’) (0
1 H: aa'
reward Discounted Future Reward

The update rule is defined by (2).
Q(ss, aa)<—Q(ss,aa) + a[rr +ymax Q(ss',aa") —Q(ss,aa)] @
where: & = learning rate (0,1]

The rule i.e. (2) terminates when: ss<——ss'

The Pseudo Code for generic Q-Algorithm is presented in
Algorithm 1 below.

Algorithm 1: Original @-learning (Pseudo Code)

Algorithm parameters: step size ¢ € (0, 1), ¢>0
Initialize § (ss, aa). for all ss €85, aa € Als). randomly except that & (fermfnat, ) =0
Loop for each episode:
Initialize ss
Loop for each step of episode:
Choose 4 [rom S using policy devived from @ (r-greedy or random exploration)
Take action aa, observe rr, ss'
Q{ss, aa) « Qiss, ua) + «frr+ymax,, Qlss’, aa) - (s, aa)]
8§ e 88

until 5 1s terminal

It is to be noted that Q-Learning is associated with
updating Q-Tables. The Q-table is initialized randomly and
later, with experience, this Q-Table is updated.

With the advancement in the area of Deep Learning, Q-
Learning was inter-mixed with Neural Networks which
brought Deep Q-Learning (DQN) Algorithms into existence.
This architecture has feed-forward neural networks to predict
best possible Q-Values. DQN doesn’t have any initial data
hence Agent stores previous episodes (experiences related to
the sequence of state-action-reward-new state) in a local
memory called as data repository or experience replay. Later,
this information is utilized as an Input Data and to train the
designed network.

But, Q-Learning often performs poor in stochastic
environments. The “max” operator used in Equation (2) is
the problematic factor. The same problem applies to DQN.
Because of this factor, the algorithm suffers
overestimation of Q-values for certain actions i.e. there is a
bias in the Agent learning. Algorithm takes such an action
which is good for short-term but ultimately leading to lower
quality policy (i.e. lower rewards later).

The solution to this bias problem is to use Double Q-
Learning introduced in 2010 by Hasselt [28]. In 2016, the
overestimation bias was illustrated in experiments across
various Atari Games Environments by the same author with
his co-authors [29]. The core task of Double Q-Learning is to
reduce the over-estimations in Q-value. This is achieved by

“max”

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on February 20,2024 at 14:06:11 UTC from IEEE Xplore. Restrictions apply.



having one network to select the action for the next state and
other network to provide the Q-value for that action. The
‘selector’ is “Q-Network” and ‘evaluator’ is “Target-
Network”.

The next section deals with methodology used in this
research wherein LLE and DDQN are discussed in detail.

IV.  METHODOLOGY
A. Locally Linear Embedding (LLE)

LLE is a method involving non-linearity for
dimensionality reduction. Given enough data points in high
dimensions, LLE projects the data to lower dimensions. It is
assumed that the data point and its neighbors lie ‘on’ or ‘very
close’ to a locally linear patch. Hence the data point is
assumed to be approximated as a linear weighted
combination of its neighbors. The basic idea states that this
linear combination is invariant to the transformation and
remains unchanged when unfolded (to lower space). Two
constrained least-squared optimization problems are solved
for having low dimensioned configuration.

There are three main steps in LLE Algorithm. Firstly, k-
neighbors are identified for every data point X, (mostly
Euclidean Distance is used). Secondly, weights W, are
computed to reconstruct X, from its neighbors using

equation (3).

" 3
s=3]5-3 ©
This weight matrix W is found by minimizing the residual
sum-of-squares for reconstructing each x, data point.

In the third step, X, is mapped to low dimensional

vector i.e. Y;to preserve the geometry of high-dimensional
neighborhood. The cost function presented by equation (4) is
minimized using constraints.

@(y)=21|y172]w,,y',|2 @

The coordinates of Y are found by using the same weights for
minimizing the reconstruction errors.

The most important step in LLE Algorithm is to define
the kK number of nearest neighbors. Selection of ‘k” has direct
influence in the transformations i.e. scaling, rotation and
translation. It depends mainly on the data features like
sampling density and geometry of the curve. In our research
problem, different values of k were visually tested on various
values to find the optimal number of nearest neighbors. The
optimal k was found to be 5 and it was hence used in this
research.

B. Double Deep Q-Learning (DDQN) Algorithm Used

In the original Double Q-Learning Algorithm introduced
in 2010 [28], Q-Network is calculating Q(ss,aa) while the
Target-Network is calculating Q(ss’,aa).

In this research work, we have rather used Modified
Deep Double Q-learning (DDQN) Algorithm. We have a
model Q for evaluation and a target model Q’ for action
selection. Q* is the optimal Q model (refer equation (5)).

Q*(ss, aa) = rr+yQ(ss',argmax ,, Q'(ss,aa)) (5)

In equation (5), Q network is used for selecting the actions
based on current state of the environment. Q' network is
retrieving the Q values.

The Pseudo Code for the proposed solution used in this
research is presented in Algorithm 2 below.

Algorithm 2: Double Deep Q-learning Algorithm
Initialize main Q-network @Q,, Target-network Qs, memory
buffer D, t<<1
for each iteration do
for each environment step do
Observe ss and select aa ~ n{aa, ss)

Execute aa and observe ss' and reward rr = R (ss, aa)
Store (ss, aa, rr, ss') in memory D
for each update step do
sample e, = (ss, aq, rr, s8'Y~ D
Compute target Q-value:

Q*(ss, aa) = rr +y Q, (ss', argmaz.. Qy (ss', aa’)
Perform gradient descent step on (Q* (ss, aa) — Q, (ss, aa))?
Update Target-network parameters;

0 <rh+(1-1)6

The Algorithm 2 presented above is trying to minimize the
mean-square error between Q and Q* but Q’ is slowly
copying the parameters of Q using Polyak Averaging as
mentioned in equation (6) below.

0 <10+(1-1)0' (6)

In equation (6), the target network weights are reflecting the
online network weights after every run of the experience
replay. 6 is Primary Network Parameter and 6'is Target
Network Parameter. 7 is the Rate of averaging.

We have used 7 = 0.05. This means that we are updating
5% of new weights and using 95% of the old weights.

The information flow in the tuning process used in this
research work has been described in Figure 2 pictorially.

The next section i.e. Section V focuses on research
design and results obtained henceforth. A detailed discussion
of results and comparison with other closely related research
works is also presented thereafter.
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Figure 2: Information flow in proposed DDQN Algorithm

V. EXPERIMENTATION

A. General Implementation Details

For testing the algorithm, a 9™ order filter was simulated.
For performing the actions, four resonator screws were used
which means eight actions (rotation of screws) to be
performed. The screws were allowed to have two full
rotations on each side i.e. clockwise and counter-clockwise
rotations. The environment used in this research work is
simulated, but the training data was fetched from a
commercial cavity filters by randomly inserting the resonant
screws one by one manually for 2000 times.

The analysis made regarding the choice of k-value i.e.
number of nearest neighbors for Dimensionality Reduction
has been presented in Table 1 below.

Table 1: Attempted k-value analysis

Testing Filter Tuning with our Algorithm

700 750 800 850 900 950 1000 1050 1100
Frequency (MHz)

Figure 3: The experimentation results

C. Comparison of Results with Other Similar Researches

This section deals with comparison of obtained results
with other similar results. The comparison has been
compiled into Table 2. The proposed tuning algorithm is
essentially more efficient in terms of number of tuning steps
and is able to learn better strategy for tuning a more
complex filter than the ones used previously which proves
the effectiveness of the proposed algorithm.

Table 2: Comparison with related research works

Reference Dimension Tuning Filter No. of
Number Reduction Algorithm Order Tuning
Algorithm Steps
[24] PCA DQN 4 48
[26] PCA Optimal 4 43
DQN
This paper LLE DDQN 9 23

S.No k-value Result
1. k<5 Disjointed curves, lost global properties
2. k=5 Optimal Result (and hence used in this work)
3. k>5 Smoothing of curve
4. k>8 Behavior like traditional PCA approach

As a function approximator, we used CNN Architecture
where the input is the dimensionally reduced S;; parameters
in the pass-band. The input of Double Deep Q-network was
set as 30 artificial neurons and the output layer consisted of
eight neurons indicating the eight valid actions for the Q-
values.

For training the network, we randomly drew 40
sequences from the repository. A random exploration policy
was used so as to obtain the biggest estimated Q-value.

B. Results

We trained the defined network for 200 epochs each with
1500 tuning steps as the maximum value. After training the
network, it was tested with 250 random states.

Figure 3 provides the results of our algorithm. It was
found that after training the network, it could successfully
drive the curve below —26 dB return loss target in just 23
steps.

D. Discussion of the Results

The results of the simulated experiment found clear
support for the proposed algorithm viz. DDQN algorithm.
Overall, our method was the one that obtained quite robust
results. The major limitations which may further be used as
prescriptions for future work include, but are not limited to:

a) The current research focused only on S
characteristics (reflection parameter) without giving

due consideration to filter’s insertion losses.

b) Distance between the current S;; parameters and the
target value within the passband was used without
considering the side limit lines for sharper transition
between stopband and passband.

VI. CONCLUSION

The current research highlighted the difficulties of
manual tuning of cavity filters which led to the need of
tuning the filters by automated means. Double Deep Q-
learning algorithm was proposed as a viable solution. The
designed algorithm could learn the tuning strategies. The
effectiveness of the algorithm was ensured by experiments.
The designed algorithm could successfully tune the
simulated raw filter (using only four resonator screws) after
only 23 steps.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on February 20,2024 at 14:06:11 UTC from IEEE Xplore. Restrictions apply.



(11

(2]

(31

[4]

(51

[6]

(71

(8l

[91

[10]

[11]

[12]

[13]

[14

[16]

REFERENCES

W. H. Cao, C. Liu, Y. Yuan, and M. Wu, “Extracting
Coupling Matrix From Lossy Filters With Uneven-Qs
Using Differential Evolution Optimization
Technique,” Int. J. RF Microw. Comput. Eng., vol. 28,
no. 6, pp. 1-10, 2018.

J. Brian Thomas, “Cross-coupling in coaxial cavity
filters - A tutorial overview,” IEEE Trans. Microw.
Theory Tech., vol. 51, no. 411, pp. 1368-1376, 2003.
J. Dunsmore, “Novel filter design method using time
domain transforms ms,” 1999 29th Eur. Microw. Conf.
EuMC 1999, vol. 3, pp. 211-214, 1999.

J. Dunsmore, “Tuning Band Pass Filters in the Time
Domain,” IEEE MTT-S Int. Microw. Symp. Dig., pp.
1351-1354, 1999.

J. Dunsmore, “Advanced filter tuning using time
domain transforms,” 1999 29th Eur. Microw. Conf.
EuMC 1999, vol. 2, pp. 72-75, 1999.

R. J. Cameron, “General Coupling Matrix Synthesis
Methods for Chebyshev Filtering Functions,” IEEE
Trans. Microw. Theory Tech., vol. 47, no. 4, pp. 433—
442, 1999.

R. J. Cameron, “Advanced Coupling Matrix Synthesis
Techniques for Microwave Filters,” [EEE Trans.
Microw. Theory Tech., vol. 51, no. 1, pp. 1-10, 2003.
P. Harscher, R. Vahldieck, and S. Amari, “Automated
filter tuning using generalized low-pass prototype
networks and gradient-based parameter extraction,”
IEEE Trans. Microw. Theory Tech., vol. 49, no. 12,
pp. 25322538, 2001.

H. T. Hsu, Z. Zhang, K. A. Zaki, and A. E. Atia,
“Parameter extraction for symmetric coupled-
resonator filters,” IEEE Trans. Microw. Theory Tech.,
vol. 50, no. 12, pp. 2971-2978, 2002.

R. Das, Q. Zhang, A. Kandwal, and H. Liu, “Coupling
Matrix Extraction Technique for Auto Tuning of
Highly Lossy Filters,” in IEEE MTT-S International
Microwave Symposium Digest, 2018, vol. 2018-June,
pp. 697-700.

R. Das, Q. Zhang, A. Kandwal, and H. Liu, “Coupling
Matrix Extraction Technique for Auto Tuning of
Highly Lossy Filters,” IEEE MTT-S Int. Microw.
Symp. Dig., vol. 2018-June, pp. 697-700, 2018.

A. R. Mirzai, C. F. N. Cowan, and T. M. Crawford,
“Intelligent alignment of waveguide filters using a
machine learning approach,” Microw. Theory Tech.
IEEE Trans., 1989.

V. Miraftab, S. Member, and R. R. Mansour,
“Computer-Aided Tuning of Microwave Filters using
Fuzzy Logic,” in Miraftab, Vahid Mansour, Raafat R,
2002, vol. 50, no. 12, pp. 2781-2788.

V. Miraftab and R. R. Mansour, “A robust fuzzy-logic
technique for computer-aided diagnosis of microwave
filters,” IEEE Trans. Microw. Theory Tech., vol. 52,
no. 1 II, pp. 450-456, 2004.

V. Miraftab and R. R. Mansour, “Tuning of
microwave filters by extracting human experience
using Fuzzy Logic,” IEEE MTT-S Int. Microw. Symp.
Dig., vol. 2005, no. C, pp. 1605-1608, 2005.

V. Miraftab and R. R. Mansour, “Automated
microwave filter tuning by extracting human
experience in terms of linguistic rules using fuzzy

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

controllers,” IEEE MTT-S Int. Microw. Symp. Dig., pp.
1439-1442, 2006.

V. Miraftab and R. R. Mansour, “Fully automated
RF/microwave filter tuning by extracting human
experience using fuzzy controllers,” [EEE Trans.
Circuits Syst. I Regul. Pap., vol. 55, no. 5, pp. 1357—
1367, 2008.

J. J. Michalski, “Artificial Neural Networks Approach
in Microwave Filter Tuning,” Prog. Electromagn. Res.
M, vol. 13, pp. 173-188, 2010.

J. J. Michalski, T. Kacmajor, J. Gulgowski, and M.
Mazur, “Consideration on Artificial Neural Network
Architecture in Application for Microwave Filter
Tuning,” Piers Online, vol. 7, no. 3, pp. 271-275,
2011.

J. Gulgowski and J. J. Michalski, “The analytic
Extraction of The Complex-Valued Coupling Matrix
and its Applcation in the Microwave Filter Modeling,”
in Progress In Electromagnetics Research, 2012, vol.
130, no. July, pp. 131-151.

J. J. Michalski, “Inverse Modeling in Application for
Sequential ~ Filter =~ Tuning,” in  Progress In
Electromagnetics Research, 2011, vol. 115, no.
February, pp. 113-129.

T. Kacmajor and J. J. Michalski, “Neuro-fuzzy
approach in microwave filter tuning,” IEEE MTT-S
Int. Microw. Symp. Dig., pp. 2-5, 2011.

S. Wu, W. Cao, M. Wu, and C. Liu, “A Tuning
Method for Microwave Filter via Complex Neural
Network and Improved Space Mapping,” Int. J.
Electron. Commun. Eng., vol. 12, no. 3, pp. 218-224,
2018.

Z. Wang, J. Yang, J. Hu, W. Feng, and Y. Ou,
“Reinforcement learning approach to learning human
experience in tuning cavity filters,” 2015 IEEE Int.
Conf. Robot. Biomimetics, IEEE-ROBIO 2015, pp.
2145-2150, 2015.

Z. Wang, S. Jin, J. Yang, X. Wu, and Y. Ou, “Real-
time tuning of cavity filters by learning from human
experience: A vector field approach,” Proc. World
Congr. Intell. Control Autom., vol. 2016-Septe, pp.
1931-1936, 2016.

E. Sekhri, M. Tamre and R. Kapoor, "Optimal Q-
Learning Approach for Tuning the Cavity Filters,"
2019 20th International Conference on Research and
Education in Mechatronics (REM), Wels, Austria,
2019, pp. 1-5, doi: 10.1109/REM.2019.8744118.

S. Roweis and L. Saul, “Nonlinear dimensionality
reduction by locally linear embedding,” Sci. v.290,
vol. 290, no. 5500, pp. 2323-2326, 2000.

H. Van Hasselt, “Double Q-learning,” Adv. Neural Inf.
Process. Syst. 23 24th Annu. Conf. Neural Inf.
Process. Syst. 2010, NIPS 2010, pp. 1-9, 2010.

H. Van Hasselt, A. Guez, and D. Silver, “Deep
reinforcement learning with double Q-Learning,” in
30th AAAI Conference on Artificial Intelligence, AAAI
2016, 2016, pp. 2094-2100.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on February 20,2024 at 14:06:11 UTC from IEEE Xplore. Restrictions apply.



Publication IV

E. Sekhri, M. Tamre, R. Kapoor and D. C. Liyanage, “Novel Band-Subtraction Technique
to Differentiate Screws for Microwave Cavity Filter Tuning,” 2023 3rd International
Conference on Electrical, Computer, Communications and Mechatronics
Engineering (ICECCME), Tenerife, Canary Islands, Spain, 2023, pp. 1-6, doi:
10.1109/ICECCME57830.2023.10253048.

145






2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering ICECCME) | 979-8-3503-2297-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICECCME57830.2023.10253048

Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2023)

19-21 July 2023, Tenerife, Canary Islands, Spain

Novel Band-Subtraction Technique to Differentiate
Screws for Microwave Cavity Filter Tuning

Even Sekhri*
Department of Electrical Power
Engineering and Mechatrocnics

Tallinn University of
Technology
Tallinn, Estonia
ORCID: 0000-0002-2578-1910

Mart Tamre
Department of Electrical Power
Engineering and Mechatrocnics

Tallinn University of

Technology

Tallinn, Estonia
ORCID: 0000-0002-7489-9683

Abstract— Frequency response of a Microwave (MW) cavity
filter is changed by rotating the tuning screws installed on the filter
surface. Numerous screws are present on the surface of the filter,
not all of which contribute to the alteration of tuning state as some
of the screws are just the plate mounting screws. This paper
presents a vision-based method for distinguishing the tuning
screws of a cavity filter from the mounting screws. The tuning
screws used in industry are coated with a conducting material to
avoid losses. In this work, through hyperspectral imaging,
characteristic image bands of screws of a commercial cavity filter
were analyzed. From this analysis, the tuning screws were
identified using their material properties since every material or
compound has its own reflectance to Electromagnetic (EM) waves.
The novel band subtraction technique proposed in this work
distinguished all the tuning screws from the mounting screws. This
proposed technique was then validated using a monochrome
industrial camera attached with suitable optical bandpass filters.
Achieving the classification accuracy of 100% with a monochrome
camera proved the effectiveness of the proposed method. The
results obtained can be used to identify and locate the tuning
screws especially for the case when the technical drawing of the
filter is not available. These extracted positional coordinates of
tuning screws can assist in Fully Automated Tuning (FAT) of the
cavity filters.

Keywords— Bandpass filters, Band Subtraction, Cavity Filter,
Feature Extraction, Filter Tuning, Hyperspectral Imaging,
Microwave filter, Monochrome camera, Screw Detection.

[. INTRODUCTION

Microwave (MW) cavity filters are used in Radio Base
Stations (RBS) for separating the desired frequencies from
tensed communication spectrum. To compensate for the
mistakes like manufacturing defects, design errors, variations in
material properties, mechanical tolerances etc., the assembled
filters require tuning. Mechanical tuning, that uses tuning
screws, is the most common way to tune the cavity filters. The
frequency response of the filter is determined by the depth at
which the tuning elements are inserted within the cavity. Now
since, the filter tuning process is stochastic in nature, it is time
consuming, laborious and requires skilled technicians to tune the
filter to the desired frequency range [1].
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A cavity filter is usually made up of a metallic block with
screws on its top plate. Fig. 1 shows ta commonly used cavity
filter. One can observe the presence of several screws on the
assembled filter. Among these, the ‘mounting screws’ serve the
purpose of holding the top metallic plate over the whole
structure. The remaining screws are the ‘tuning screws’ which
are used to alter the performance of the filter. The present
research focuses on the filter type shown in Fig. 1

Fig. 1. A commercial MW filter

Fig. 2 presents the magnified portion of a small region of
the cavity filter presented in Fig. 1. Noticeably the screws
shown in Fig. 2 have different shapes (a mounting screw on
bottom left corner and a tuning screw on the top right corner).

Fig. 2. Different types of screws of a cvity filter

The screws shown in Fig. 2 have different shapes and hence
image processing techniques like shape detection/pattern
matching/contour matching etc. could be used to differentiate
them. However, the difference between the shapes of tuning
screws and mounting screws is not guaranteed. Rather,
commercial filters sometimes have same screw head for all the
screws (tuning screws as well as mounting screws). Hence, a
robust technique is needed to identify and classify the screws
present on the filter structure.

This research work presents a novel band-subtraction
technique for distinguishing the tuning screws and mounting
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screws of a MW cavity filter. The information about relevant
bands was extracted using the datacube of a hyperspectral
camera. The suggested methodology can assist in
discriminating the screws on the basis of their material
composition. The methodology plays crucial role for the case
when no technical information about the filter and its screws is
available. An in-depth analysis of the existing research reveals
that no such methodology has been used or presented in the
literature yet.

The remainder of the paper is structured in five sections.
Section II presents the literature review of various screw
detection techniques; Section III presents hyperspectral
imaging (HSI) along with its application in metal detection. In
section IV authors discuss the novel band-subtraction
methodology for differentiating the screws. Experimentation
results and their analysis is discussed in Section V. Section VI
concludes the paper and provides future recommendations.

II. LITERATURE REVIEW: SCREW DETECTION

In [2], authors used Canny operator-based edge detection
technique to extract the contours and then template matching
step was used to classify the screws. [3] presents a multi-
template matching algorithm for the detection of screws and
their semi-autonomous removal from the ceiling panel. The
technique didn’t hold firm grounds because of the following
reasons — any change in color or illumination yielded inaccurate
results; there was always a reliance on a fixed template and;
every application would require a new template which is both
tedious and time consuming. Hence, the major drawback of this
technique was its lack of generalizability.

A combination of grayscale, color depth and HSV
characteristics were used to achieve high accuracy in screw
detection [4]. The algorithm was invariant to scale, translation
and rotation but relied on Harris corner detection and HSV
analysis, both getting influenced by the lighting conditions.
Also, RGB depth sensor (Kinect) was needed to remove holes
which demanded extra computations.

In 2018, a screw detection technique utilizing Hough circle
detection was introduced [5]. However, its effectiveness was
limited when dealing with multiple circular components. The
commercial application of this method was further constrained
due to the requirement of adjusting multiple parameters such as
the camera’s brightness settings. In [6], a fusion technique
which combined the features extracted from Hough transform,
and from Deep Learning (DL)-based classifier was presented.
The work in [6] was then extended where the algorithm could
additionally do the classification of 12 different types of
screwheads [7]. While this work successfully eliminated the
need for a depth sensor, the detection setup requirements were
unsuitable for the production lines.

Some researchers used CNN-based techniques for screw
detection applications. A combination of Faster R-CNN and
RES (Rotation Edge Similarity) was used for classifying the
screws [8] but the technique’s commercialization was hindered
by its paltry computational speed. Another Faster-RCNN-based
model used general screw features for detecting the screws [9]
using a DSLR camera. The authors combined image pre-
processing and object detection steps with visual reasoning to

achieve accurate results. The model’s performance was
enhanced by retraining it with true-negative results.
Nevertheless, the image processing steps executed in this study
had a substantial impact on the proposed model’s performance.

The work presented in [10] is closely related to the one
discussed in the current research. The authors of [10] used basic
image processing techniques for detecting the tuning screws on
the basis of its geometry. However, their work was reliant on a
particular type of screw.

The dependencies of various screw detection techniques
discussed above are listed in Table 1. Each technique is
constrained by one or more of these specific issues.

TABLE L. DEPENDENCIES OF SCREW DETECTION TECHNIQUES

AVAILABLE IN LITERATURE

Specification Related Example

Device Specific Electric motor screws, battery screws, etc.

Screw Specific Shape and/or size of its head

Environment Specific Illumination state, shadows, shiny objects

Methodology Specific | Stickers or other round objects detected as

screws, damaged screws are not detected etc.

From Table I, it can be inferred that all the aforementioned
methods of detecting the screws lack generalizability.
Therefore, a more robust screw detection technique is needed
to differentiate between the tuning and mounting screws.

Since the tuning screws are plated with silver and mounting
screws are made of steel alloy, analyzing their reflectance
characteristics by HSI can help in differentiating them. To date,
this approach of tuning screw detection has not been reported
in scholarly research. In the next section authors discuss
research in the field of HSI and its application in detecting the
coatings, metals and compounds.

III. HYPERSPECTRAL IMAGING-BASED DETECTION

y v

[ A A

Imaging

Nohod Monochrome RGB Multispectral Hyperspectral
Color

1 3 3-~10 ~10-~100
Channels
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spectral spectral

Fig. 3. Different image methods and their characteristics [11]

Fig. 3 displays various imaging techniques and their
features. A monochrome camera considers the whole visible
spectrum and only measures its integral intensity. Only the
visible portion of EM spectrum (400-700 nm) is covered by
RGB, which primarily contains spatial information. The RGB
band is not appropriate for all applications, hence multispectral
or hyperspectral cameras are employed instead. Multispectral
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images are a collection of images captured in a continuous
spectrum at several wavelength bands that form a datacube.
Datacube is a 3D representation of spatial data (x and y
coordinates) and spectral data (in the z-axis). A hyperspectral
image is a multispectral image with hundreds of bands [12] that
contains the entire wavelength spectrum for each pixel.
Additionally, the wavelength range of hyperspectral images
encompasses the ultraviolet to mid-infrared spectrum in
addition to visible range. HSI combines spectroscopy and
digital imaging. With this imaging technique, the scene is
captured in narrow bandwidths, and necessary image bands can
be selected from the datacube for further processing [13].

The reflectance characteristics of different materials
produce a unique signature at different wavelength bands.
Considering the scope of the current research work, the
reflectance behavior of Silver (Ag) and Carbon Steel from 0.2
pum (200 nm) to 20 pm (20000 nm) wavelength can be seen in
Fig. 4. Significant variations between the reflectance curves for
two metals are visible. On the basis of this spectral signature,
similar materials can be identified.

Carbon
steel

o,

Reflectance R,

02 04 1 2 4 10 20

. ‘Wavelength (um)
Fig. 4. Reflectance curve tor ditterent metals | 14]

Since HSI contains hundreds of narrow bandwidth spectral
bands, the majority of them are correlated and provide
redundant information. Processing a large amount of data
decreases the computational efficiency [15] due to the Hughes
phenomenon [16]. Hence, it makes sense to choose the spectral
bands that provide distinct characteristic information [17]. The
main advantages of utilizing a band selection technique are the
increase in classification accuracy [18] while preserving the
intrinsic information of the original pixel [19], in addition to
increase in computation efficiency.

In related literature, band selection technique has been used
in determining the aluminium oxide thickness [20]. Several
research groups have employed the HSI technique for detection
of corrosion. Using HSI, corrosion on carbon steel samples
[21][22], mild steel used in the aeronautical industry [23],
copper [24] etc. has been detected. Researchers have also
provided an SVM classifier-based Metal Object Detection
(MOD) approach for identifying ferromagnetic, non-
ferromagnetic, and non-metallic items [25].

A hypothesis that the tuning and mounting screws of a
cavity filter can be differentiated using HSI was developed after
reviewing the research into HSI-based methods for detecting
the metals, metal coatings, and alloys. Since mounting screws

are typically made of an alloy of steel and tuning screws used
in industry are usually coated with a 3 pm silver layer (to
increase the conductivity), their reflectance signature can be
utilized to differentiate them from each other.

IV. METHODOLOGY

A. Imaging Setup

The initial attempts to detect the tuning screws were made
using a Specim IQ Mobile Hyperspectral Camera [26]. In total,
this hyperspectral camera has 204 image bands (for each pixel),
a spectral resolution of 7 nm, and operates in the 400—1000 nm
wavelength range. The reflectance values for all the bands can
be displayed in the spectral distribution of each pixel. Using a
calibrated tile with 99% reflectance, this camera is calibrated
for white reference. After initial calibration, no further image
processing steps are performed on HSI images. However,
unlike RGB, HSI is unable to detect the geometry of the objects.
Instead, the required bands are selected and forwarded to be
processed further.

The overall configuration utilized to capture the image from
the hyperspectral camera is shown in Fig. 5. A reference plate
used for calibrating the Specim IQ camera can also be seen in
Fig. 5. Two 400W halogen projectors were used for lighting,
along with a light diffusing sheet. The halogen projectors were
chosen as the light source since they cover a wider spectrum of
wavelengths. The wavelength covered by halogen light spans
from the UV region to the IR region in the EM spectrum. To
ensure homogeneous lighting, the diffusing sheet was used.

5 ?'.Light
Diffusion =g
Sheet

Specim IQ
Hyperspectral
Camera

Microwave Cavity Filter

Fig. 5. Image acquisition setup

Even though a built-in RBG camera exists in the Specim [Q
hyperspectral camera, the RGB image it produces has a
different spatial resolution. Additionally, there can be
misalignments between the RGB image and hyperspectral
image in the vertical and/or horizontal direction. The RGB
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scene of an image taken with a hyperspectral camera is
displayed in Fig. 6, but only the marked area was used for HSI
processing, as is the case with all only the marked area was used
as shown in all other images in the following sections of this

paper.

Fig. 6. RGB scene captured by a hyperspectral camera

B. Reflectance Trends

Tuning screws and mounting screws of a MW filter have
different material composition. Since each material has its
unique spectral characteristics, different band alternatives have
to be tested in order to identify the effective spectral image
bands to distinguish between the two types of screw.

Five screws from each category (05 tuning screws and 05
mounting screws) were chosen in order to retrieve the
reflectance data from the screws that were installed on the filter
under consideration. The purpose of considering many screws
from each category was to precisely choose the appropriate
bands using the mean reflectance value. Fig. 7a shows the
locations of selected screws in one of the bands. The
corresponding reflectance plots for all these screws are
presented in Fig. 7b for the wavelength range of 400 nm to 1000
nm. The choice of bands was then made using the average
reflectance value, as is covered in the next subsection.

C. Selection of Bands

After averaging the reflectance values of the chosen tuning
and mounting screws were averaged, band 25 and band 190 were
selected from the datacube. Band 25 has been chosen because it
has the most distinguishing features for both types of screws (see
a significant variation in reflectance between the two categories
of screws in Fig. 7b). Band 25 has an approximate wavelength
of 467 nm. Band 190, having wavelength of roughly 930 nm,
was chosen from the opposite end of the datacube because it
exhibits some similarities in features between the two screws
(see Fig. 7b for a modest variation in reflectance characteristics
in this band). It is significant to note that the authors chose band
number 190 even though the difference between the two curves
was minimal around band 197. This band was chosen in order to
get rid of any spectral noise that might have been present in the
last few bands near the end of the image. Images of bands 25
and 190 are shown in Figs. 8a and 8b, respectively.

D. Band Subtraction

Empirically, it was found that subtracting one band from the
blue region (band number 25) and another band from the
infrared (IR) region (band number 190) of the datacube could
clearly differentiate tuning screws and mounting screws. As
presented by (1), lresur image was obtained when a 467 nm
image (/457) was subtracted from a 930 nm image (/930).

Tresute = 1oso— L7 (1)

Figure 8c, which shows the image produced adhering to
band subtraction, makes it evident that the mounting screws
looked noticeably darker when compared to the silver-plated
tuning screws. With the aid of this knowledge, one can
determine the coordinates for each tuning screw's location and
tune a filter autonomously.

Reflectance

7 (a): Screw Locations on a Band Image

Fig. 7. Sampled 05 screws from each screw category and their reflectance response
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7 (b): Reflectance-Wavelength Plots
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Fig. 8. Band selection and band subtraction results

V. EXPERIMENTATION RESULTS AND ANALYSIS

A. Specim Hyperspectral Camera

Fig. 9 displays the outcome of the band subtraction method
applied to the image captured with the Specim hyperspectral
camera. Both the RGB and the processed image, which is the
result of band subtraction, are displayed next to each other for
convenience.

Processed

Fig. 9. Classification of screws using Specim hyperspectral camera

Fig. 9 demonstrates that using the suggested methods led to
encouraging findings. The mounting screws stand out from the
tuning screws owing to their darker appearance. As detailed in
the following subsection, the efficiency of the postulated band
subtraction methodology was then assessed on an industrial
monochrome camera.

B. Besler Monochrome Camera

The analysis done on the hyperspectral images showed that
the most effective spectral bands for the application considered
in this work are band 25 and band 190, and they must be
subtracted. This methodology was tested on the images
acquired by an industrial monochrome camera.

To apply the suggested band subtraction process, the Basler
camera with a progressive scan CCD-sensor for capturing
VGA-640 x 480 images was used. The camera’s connection
with a compatible PC was made via an IEEE 1394 firewire
interface. Two optical bandpass filters i.e., blue bandpass filter
(associated to band 25) and IR bandpass filter (corresponding
to band 190), were attached to the camera. Fig. 10 shows a
Basler monochrome camera used in this work on which the
light (optical) filters were mounted.

‘6 » 8 Py

e
P

8 (b). Band 190 Image

Vow o of
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8 (c). Resultant Image after Band Subtraction

[ Basler , j
Monochrome
e b

Fig. 10. Basler monochrome camera mounted with optical bandpass filters

It is evident from the findings displayed in Fig. 11 that the
classification accuracy of 100% was reached by using the light
bandpass filters (decided by our suggested methods) with a
monochrome camera. As shown in Fig. 11, the mounting
screws appear to be darker than the tuning screws.

Processed

Fig 11. The results screws classified by the Besler monochrome camera

A monochrome camera, which is significantly less
expensive and computationally efficient than a hyperspectral
camera, can attain the same classification accuracy as a
hyperspectral camera, as shown in Figures 10 and 11. The
technique of automating cavity filter tuning can benefit from
this study's conclusions. Once the tuning screws have been
differentiated, a robotic manipulator can be instructed to tune a
filter based on their spatial coordinates.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on February 20,2024 at 14:06:59 UTC from IEEE Xplore. Restrictions apply.



VI. CONCLUSION

In this research, the tuning screws, that are used to tune a
MW cavity filter, were distinguished using a novel band
selection method. The analysis made on the images acquired
from a hyperspectral camera helped in selecting the most
efficient spectral bands from the hyperspectral datacube.
Empirically, it was found that the suggested band subtraction
methodology could distinguish between the screws according
to their material composition. The process was subsequently
tested on an industrial monochrome camera fitted with the
appropriate optical bandpass filters. The conclusions were
validated by the results, which showed that a monochrome
camera—which is less expensive and computationally more
effective than a hyperspectral camera—was able to detect and
classify screws with 100% accuracy. Based on a comprehensive
analysis, it can be concluded that the methodology utilized in
this study is highly effective in distinguishing and categorizing
various types of screws. The proposed methodology plays a
pivotal role for the case when the technical drawings of the filter
is not available. The camera can be set in perspective view or
can be mounted overhead. The position coordinates of tuning
screws thus determined can be utilized in a FAT system for
MW filters.
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Abstract—The robust tracking of tuning parameters is
crucial in enhancing the efficiency of automated filter tuning.
The existing automated filter tuning methods use the phase plot
information at the center frequency of filter and extract tuning
parameters represented by the marker position. This paper
presents a vision-based approach for tracking the tuning
parameters over the Smith chart display of Vector Network
Analyzer (VNA) using Deep Learning (DL). Using a camera to
detect the marker allows the ease in presenting the proof of
concept without accessing or modifying the commercial VNA’s
software. The realm of microwave cavity filter tuning has yet to
incorporate real-time parametric tracking of tuning parameters
on a Smith chart. For training the DL network, a labeled dataset
has been curated. Manual tuning of a 5" order cavity filter (a
filter with 5 tuning screws) was used to test the proposed
method. Results obtained in this research demonstrates that the
proposed method outperforms the state-of-the-art techniques in
terms of tracking performance. The mAP value was determined
to be 98.2% using YOLOVS. The robustness of the suggested
method has been demonstrated through rigorous testing of the
proposed technique on the polar plot display of the VNA. This
methodology holds the potential for complete automation of the
filter tuning process.

Keywords—filter tuning, marker detection, microwave filter
tuning, parametric tracking, robust tracking, Faster-CNN, Single-
Shot Detector (§SD), YOLOvS5

1. INTRODUCTION

Microwave (MW) cavity bandpass filters are commonly
employed to isolate the desired signal amidst a crowded
frequency spectrum. These filters require tuning to
compensate for design imperfections and manufacturing
errors [1]. Tuning a filter using the phase response of the
reflection coefficient (S;, where i = number of ports) is a
common way of tuning all-pole filters [2]. To determine the
phase change, the tuning parameter variations at the center
frequency of the filter are observed. Using the Smith chart plot
on the Vector Network Analyzer (VNA) equipment is another
approach to monitor the phase change. Researchers striving to
automate the filter tuning process often overlook Smith chart-
based tuning due to two primary reasons: a) the complexity
involved in dealing with the “infinity” term on the short-
circuit side of the Smith chart; and, b) the simultaneous
variation of the resistance value and reactance value
(capacitive reactance or inductive reactance) while tuning the
filter. However, by precisely tracking the marker movement
on the Smith chart, there is a possibility for achieving
autonomous filter tuning.

The research community has put forth numerous
techniques for Computer-Aided Tuning (CAT) of MW filters,
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offering a wide array of options for the tuning process
including filter diagnosis [2][3][4][5][6][7], Time Domain
(TD) [8][9], Group Delay (GD) [10], Space Mapping (SM)
[11][12][13][14], Fuzzy Logic (FL) [15][16][17][18],
Artificial Neural Network (ANN) [19][20][21][22], etc. TD-
based tuning solutions needed a human operator to actually
tune the filter. The filter diagnosis-based solutions rely on
circuit models, which are inherently inexact. The automated
filter tuning was attempted on data-driven algorithms based
on SM [12] and FL [18]. The accuracy of SM-based filter
tuning approach is dependent on the complexity of the coarse
model and the fine model. The commercialization of FL-based
filter tuning was hampered by the necessity of a large number
of ‘IF-THEN” linguistic fuzzy rules. Despite the wide range
of CAT-based filter tuning techniques and automated filter
tuning solutions documented in the literature, none of the
existing approaches have addressed the tracking of tuning
parameters variation at the filter’s center frequency. Also, the
utilization of Smith chart for automated filter tuning has not
been considered.

With the significant boost in computational power over
the recent years, DL-based algorithms have gained prevalent
traction in the fields of object detection and tracking [23].
DL-based approaches not only possess powerful learning
capabilities but also excel at handling challenges such as
occlusion, scale transformation, and varying background etc.
The DL-based object detection approaches can be divided
into two categories i.e., region-based methods; and regression
model-based methods. The region-based methods include
Region-based Convolutional Neural Network (R-CNN) [24],
Spatial Pyramid Pooling network (SPP-net) [25], Fast R-
CNN [26], Faster R-CNN [27], Region-based Fully
Convolutional Networks (R-FCN) [28], Feature Pyramid
Networks (FPN) [29], Mask R-CNN [30] etc. Each region-
based method follows a two-step process. In the initial step,
an attention mechanism scans the entire image, mimicking
the operation of a human brain. In the second step, focus is
directed towards the Region of Interest (ROI). In contrast,
regression-based methods like MultiBox [31], AttentionNet
[32], G-CNN [33], Different versions of YOLO [34], Single
Shot Detector (SSD) [35], Deconvolutional Single Shot
Detector (DSSD) [36], and Deep Supervised Object
Detectors (DSOD) [37] use regressive technique in a single
stage for drawing the bounding boxes. However,
aforementioned algorithms have primarily been developed
for the detection and/or tracking of specific entities such as
persons, cars, Unmanned Aerial Vehicles (UAVs), animals,
and more. The use of any of these tracking techniques as a
VNA marker detector (a representative entity of tuning
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parameter variation) still remains unexplored and lacks
published research.

The current research proposes a novel and robust method
for tracking the variation in the tuning parameters on the
Smith chart using YOLOvS5. To train the DL model, a
meticulously labeled dataset containing approximately 5000
images was specifically created (uploaded at IEEE dataport
[38]). To increase the accuracy, a pre-processing stage was
carried out to select the Region of Interest (ROI). The
accuracy was further improved by incorporating multilevel
thresholding in the pre-processing phase. The performance of
the proposed method was compared with state-of-the-art
tracking techniques. The accuracy of the results serves as
compelling evidence for the robustness of the proposed
methodology.

The remainder of the paper is structured as follows:
Section II presents the proposed marker tracking
methodology. The results of the current research work are
discussed in Section III, along with a comparative analysis
with other state-of-the-art tracking methodologies. Section IV
provides the conclusion of the research conducted, along with
a delineation of future prospects and potential areas for further
exploration.

II. PROPOSED METHODOLOGY

A. Dataset generation

For tuning the filter using the marker tracking approach,
a labeled marker dataset was created using Keysight Fieldfox
RF Analyzer 9914A — 6.5 GHz [39]. The dataset images were
taken whilst the cavity filter was being manually tuned. After
collecting the images, they were labeled. The total dataset
comprises of 4967 labeled images. The procedure for
gathering the images for dataset is depicted in Fig. 1.

Fig. 1. Dataset generation while manual tuning the filter. A smartcamera
looking at VNA is capturing the frames

The bifurcation of the dataset in terms of number of
images and training-validation-test dataset split is presented
in Table I.

TABLE L. DATASET DETAILS
Category Number Split
Training Dataset 3475 70%
Validation Dataset 992 20%
Testing Dataset 500 10%
Total 4967 100%

B. Deep Network Training

Before training the network, the labeled images were not
preprocessed. Cross-validation stage was not utilized in this
work, either. The implementation of the deep networks was
performed using the system possessing the configuration
Ryzen-9 5800 HS CPU, 16 GB RAM and NVIDIA -
RTX3060 with 6 GB GPU.

With a batch size of 16; 640 x 640 sized images; and 100
epochs, the model was trained using YOLOVS. This model
was trained with Stochastic Gradient Descent (SGD)
optimizer with a learning rate of 0.01 and a decaying factor of
0.005. Completion of one epoch meant that both Feed
Forward (FF) and Back Propagation (BP) have finished for the
entire dataset for training. With a learning rate of 0.01 it took
1 h 37 min to train the YOLOvVS5 model. The precision-recall
curve obtained after training the deep network is illustrated in
Fig. 2. The descending slope confirms the effectiveness of the
network training.
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Fig. 2. The Precision-Recall Curve

C. Detection of Marker

After training of the deep network, the trained model was
evaluated on the Smith chart of the VNA. A 5-pole cavity
filter (filter having 5 tuning screws) that was being manually
tuned was connected to the VNA. The phase change of the
input reflection coefficient (S;;) on Smith chart plot was
tracked in real-time.

For tracking the marker, a smartphone’s camera was used
as an [P web-camera to acquire the real-time video of a
VNA’s Smith chart plot. Adding a camera into the system
allows us to present the proof of concept without accessing or
changing the commercial VNA’s software. As mentioned in
Section II B, the dataset was trained on the raw images.
However, for testing the model, the ROI was selected to
remove the noise, thus, increasing the accuracy of results.
Though some incorrectly classified marker occurrences were
seen, the tracking results were considered to be encouraging.
Therefore, another segmenting approach i.e. a multi-level
thresholding step was added as an additional pre-processing
step to further improve the accuracy of the marker tracking.
The overall tracking scheme is presented in Fig. 3.
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Fig. 3. Tuning Parameter Variation Detection Process

Adding multi-level thresholding assisted in tracking the
marker accurately. The multi-thresholding technique also
ensured that the marker is clearly visible throughout the filter
tuning and is not obscured by several circles on the VNA. The
resultant images after applying the pre-processing steps on
the acquired images are presented in Fig. 4 and Fig. 5.

Fig. 4. Defining the marker entity and its position before ini{iating the
tuning (VNA not calibrated)

Fig. 5. Marker position when the last screw is about to be tuned

Fig. 4 presents the initial position of the marker prior to
tuning the filter and Fig. 5 presents the scenario when the last
screw is nearly tuned.

The overall setup for tracking the marker in real-time is
displayed in Fig. 6. The marker is being tracked on the
considered system while the filter is being manually tuned.

Fig. 6. The overall setup for tracking the marker in real-time
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III. RESULTS AND COMPARATIVE ANALYSIS

After video acquisition and preprocessing, the movement
of marker within the ROI was tracked while tuning the filter.
The trained DL-based model drew a bounding box around the
center frequency marker as depicted in Fig. 7 and Fig. 8. The
marker tracking result shown in Fig. 7 is for the case when
the first screw was tuned starting from the marker’s initial
position (shown in Fig. 4). All the tuning screws were tuned
sequentially in this work, starting from the filter’s input side
to its output side i.e. from first resonator to the last resonator.
Fig. 8 depicts the marker being tracked while the filter’s final
tuning screw is turned (all the previous screws have been
tuned). A video showing the real-time marker tracking on the
Smith chart is publicly available!.

M1: 15709833 GHz 50.5Q +1146.3 Q]
1482

Fig. 8. Marker tracking when last screw is tuned

The green lines in Fig. 7 and Fig. 8 show the marker
tracking results w.r.t. a reference line. Among both green
lines, the reference line is the one which is drawn between the
center of Smith chart (50 Q point) and the centroid of marker
at its initial position (shown in Fig. 4). This reference line
holds its position throughout the tracking process. When the
filter is tuned manually, the second green line tracks the
marker movement on the VNA’s Smith chart in real-time.

The output of the YOLOv5-based model was compared to
those of the Faster R-CNN and SSD techniques. The specifics
of training the YOLOvVS5 model are previously covered in

! https:/drive.google.com/file/d/1wzAYKqaHbOIKfMKuJodRXBITISt6x7-
n/view?usp=sharing
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Section II B. The same batch size and image size were
considered for the comparative analysis. While training the
Faster R-CNN model, the Stochastic Gradient Descent (SGD)
optimizer with a momentum value of 0.9 and the weight
adjusting parameter of 10 were used. With a learning rate of
0.001, and 1500 epochs, the Faster-CNN model took almost 5
h 40 min for completion of training. The SSD model used
RMSProp optimizer and the SSD model training took 4 h 43
min when 1500 epochs, decay factor 0.9, and learning rate
0.001 were defined.

Table II provides the comparative analysis of the results.
The outcomes are for the scenario in which the
aforementioned pre-processing steps were also implemented
while testing the different tracking methodologies.

TABLE II. COMPARITIVE ANALYSIS

Tracking Technique Entity Value

0,
With YOLOVS mAP 98.2%
(Proposed) Precision 97.7%
Recall 97.3%
mAP 95.8%
Faster R-CNN [27] Precision 94.7%
Recall 93.4%

0,
Single-Shot Detector mAP 94'00/0
(SSD) [35] Precision 93.2%
Recall 93.1%

As evident from Table II, the mAP, Precision and Recall
values of the model trained using YOLOVS are better as
compared to Faster R-CNN and SSD techniques. Using
YOLOVS tracking, the maximum mAP of 98.2% was attained
during testing. While testing the trained YOLOvVS model,
only one misclassification occurrence is seen in the video link
mentioned in footnote 1 (on previous page). By increasing the
dataset, the tracking accuracy can further be increased.

To test the robustness of the proposed methodology, the
tracking was tested on polar display of the marker without
implementing the pre-processing techniques used. The
overall performance got reduced by approximately 1.27%
when pre-processing step was excluded. As evident from Fig.
9, the confidence level of the marker also went down when
compared to Fig. 7 and Fig. 8. The polar display of the VNA
shows the concentric reflection circles (whereas the Smith
chart display presents superimposed resistance and reactance
circles). The tuning parameter tracking results for the polar
chart are made publicly available®. Even though the dataset
was generated using the Smith chart display, the proposed
methodology nevertheless produced promising tracking
results on a VNA polar plot, demonstrating its robustness.

on CHH Set, 13 Moy 2003 12:53:36 M
M1 15300000 G 0803, 4900

Fig. 9. Tracking the tuning parameters in polar plot without implementing
the preprocessing block presented in Fig 3.

During the evaluation of the methodology on a polar
chart, it was observed that the accuracy of marker detection
was lower compared to that on the Smith chart. Furthermore,
there were occasional misclassifications and brief instances
where the marker disappeared from the frame. By
incorporating a polar chart image dataset and expanding the
number of images in the dataset, the efficiency of tracking-
based filter tuning can be enhanced.

IV. CONCLUSION AND FUTURE SCOPE

Accurate marker tracking is pivotal for achieving efficient
tuning of the MW filters. This research focused on
developing a robust vision-based technique to track the
marker position in the Smith chart of the VNA. A labeled
dataset was curated to train the deep network. While testing
the proposed methodology on a cavity filter with 5 tuning
screws, YOLOV5 showed the highest mAP value of 98.2%
when compared with other state-of-the-art tracking
techniques. The methodology was also tested on the VNA’s
polar chart without implementing the pre-processing stage
and without creating the dataset specifically related to polar
chart display of the VNA. The demonstrated accuracy of the
results serves as testament to the robustness of the proposed
method.

In future, this research will be expanded to encompass
automated filter tuning through a marker tracking-based
approach. Researchers also aim to curate a more extensive
dataset, which will serve to improve the tracking accuracy
and boost the marker’s confidence level while tracking.
Additionally, a specific module will be introduced to
commercial VNA’s software for tracking the tuning
parameter variations.
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Abstract. The process of post-production tuning of microwave (MW) filters is
imperative to meet the desired frequency requirements. Currently, this intricate
task is carried out by the expert technicians who possess the necessary training
and expertise to manually tune these filters. A rapid surge in communication re-
quirements due to an increased number of users in the last 25 years posed a need
to automate the filter tuning process. Current research endeavors to comprehen-
sively investigate the research studies conducted in the domain of data-driven
microwave filter tuning. The data-driven methods rely on historical or experi-
mental data to build the complex models, thus, has attracted the researchers en-
gaged in the advancement of data-driven techniques for tuning the microwave
filters. With the aim to meticulously examine and synthesize the various ap-
proaches, methodologies and findings proposed by the researchers in this field,
this research undertaking aspires to serve as a pivotal reference for scholars, en-
gineers and practitioners trying to automate the filter tuning process using state-
of-the-art data-driven techniques.

Keywords: ANN, Cavity Filter, Data-Driven Techniques, Filter Tuning, Fuzzy
Logic, Liner Decomposition, Linear Matrix Operators, Machine Learning,
Neuro-Fuzzy System, Reinforcement Learning, SVM, Supervised Learning

1 Introduction

Microwave (MW) bandpass filters hold significant importance in Wireless Base Sta-
tions (WBSs) as they are responsible for isolating the desired frequency from the com-
plex communication spectrum. In order to meet the evolving communication require-
ments, industries produce a wide variety of commercially available and customized fil-
ters. However, despite the careful design and manufacturing process, the frequency re-
sponse of the assembled filters is not as desired. To compensate the discrepancies and
for meeting the stated frequency response, these filters need to undergo a precise tuning
process [1]. The tuning elements are adjusted until the desired output waveform is
achieved. To achieve sharp out-of-band rejection, cross-coupled filters [2] or Fre-
quency-Variant Couplings [3] are used. The fine tuning of these filters requires the ex-
pertise of trained technicians, despite the availability of tuning guidelines outlined in



[4]. Further, the filter tuning process is solely based on the experience of these techni-
cians, thus, considered to be an art.

For automating the filter tuning process, COM DEV Ltd. presented their solutions
in [5], [6] and [7] but their solution needed a script and did not consider all the potential
screw positions. The intricate task of tuning the filters becomes even more complex due
to diverse array of design, encompassing different topologies, shapes and sizes tailored
to meet specific frequency response requirements. This level of variability makes it
impractical to rely solely on traditional methods for a generalized tuning process. As a
result, there is a compelling need to delve into data-driven approaches for filter tuning.
This is because the data-driven methods have the capability to handle processes where
a direct relationship between the variables is not elusive.

This work represents an initial endeavor to review and consolidate the existing body
of knowledge on data-driven techniques for tuning MW filters. This comprehensive
literature review encompasses an extensive range of data-driven approaches presented
by various research groups over the past 38 years. To the best of researcher’s
knowledge, this review is first of its kind, as no prior reports have provided such an
exhaustive analysis in this field. The existing data-driven filter tuning techniques are
categorized into seven different categories. The tuning of active filters is beyond the
scope of this review. The last literature review on MW filter tuning, published in 1991
[8], exclusively focused on lumped element-based low pass filters only.

The structure of the paper is outlined as follows: Section 2 provides an overview of
the current challenges encountered in the MW filter tuning process. In section 3, the
existing data-driven techniques for MW filter tuning process are presented. These tech-
niques are bifurcated into seven different categories, and the limitations of each meth-
odology are also discussed. The findings derived from this comprehensive study are
discussed in section 4. Lastly, section 5 concludes the paper by summarizing the key
insights and drawing overall conclusions from the research.

2 Challenges

Microwave filters are sensitive to the mechanical adjustments of the screws, which in-
troduces a significant challenge during the tuning process. The expertise of trained tech-
nicians is crucial, as the relationship between screw position and the corresponding
filter response is intricate and complex. However, this task not only becomes monoto-
nous over time but also poses wrist-joint related problems and challenges to the sus-
tainability of technicians in the industry. Consequently, there is a pressing need to au-
tomate the filter tuning process.

Data-driven approaches offer a promising solution, as they can discern the complex
relationships between screw positions and frequency waveform of the filter. By lever-
aging these data-driven techniques, the reliance on expert-level technicians can be re-
duced, potentially addressing the challenges faced during the manual tuning. This mo-
tivation prompted the authors of the current research paper to conduct a thorough re-
view of various data-driven techniques related to MW filter tuning.



3 Various Data-Driven Filter Tuning Strategies

3.1  Machine Learning

In [9], the application of ML was explored for Finite Impulse Response (FIR) wave-
guide filter tuning, utilizing pattern recognition algorithms and adaptive signal pro-
cessing techniques. While implementing this algorithm, features were collected from a
perfectly tuned filter as well as from a filter which is deliberately detuned by a known
quantity. This dataset, encompassing feature information and detuning amount, was
inputted into a Recursive Least Square (RLS) algorithm. The algorithm then estimated
the weight factor of the filters linked to the parallel-connected adaptive combiners. The
algorithm's output specified the tuning element requiring adjustment and the necessary
adjustment magnitude. The Si; polar plot served as the tuning basis, providing phase
and signal amplitude information. The implemented RLS algorithm aimed to minimize
the Mean Square Error (MSE) to reduce detuning by adjusting only the screw causing
the maximum error in each iteration. This method was robust, also enabling Group De-
lay (GD) tuning. However, the technique had several drawbacks: the influence of cou-
pling screws was not investigated; the publication lacked the details about calibration
and other manipulations performed on all coupling screws during implementation; and,
a skilled technician performed the coarse filter tuning and this method was only appli-
cable in the fine-tuning stage.

3.2 Fully Logic (FL)

FL [10] can aid in the creation of a comprehensive model that encompasses objective
knowledge (mathematical models and measurement data) and subjective knowledge
(rules based on expert insights). In FL, numerical data is interpreted as 'Linguistic
Rules' where a membership value of ‘0’ signifies that the element doesn't belong to the
set, and ‘1’ indicates the opposite.

The complexity of the filter tuning process prevents the direct use of Boolean or
Classical Logic. Thus, researchers have investigated the use of fuzzy logic or sets for
filter tuning applications. The initial proposition of using FL in filter tuning was at-
tributed to technicians in the industry who use knowledge like 'Sets Theory' to adjust
coupling values. These technicians are adept at interpreting the measured response from
the VNA and determining which 'Set' the present coupling element belongs to. This
method has made it possible to create a comprehensive model that incorporates not only
empirical data but also theoretical models and human expertise.

Researchers presented two FL methods for filter tuning: FL without human experi-
ence and FL with human experience. Subsections discuss both categories successively.

Not Considering the Human Experience

The S-parameters of the filter are sampled at fixed frequencies and used as input into
the model in FL. A Coupling Matrix (CM) is the result of the model's tuning variables.
Filter detuning can be traced back to the tuning elements by comparing the produced
CM with the corresponding ideal CM.



A Mamdani-type FLS [11] was presented in [12] and [13]. S-parameters and cou-
pling elements were respectively the linguistic antecedents and consequences of "if-
then" rules. I/O fuzzy sets were assigned triangular membership functions. Training
pairings helped extract CM and identify detuned tuning elements. This method had
considerable drawbacks: the method used two FLSs for less and highly detuned prob-
lems, and required enough data pairs before building the FLS.

Authors of [14] diagnosed and tuned the filters using a Sugeno type FLS [15] with a
single FLS capable to deal with slightly detuned as well as highly detuned filters. The
researchers used a Gaussian Membership Function. Subtractive clustering [16] was
used to minimize "if-then" rules and discover the center of each membership function.
The S-parameters could generate the CM elements at predefined frequency sampling
locations in the FLS which aided in finding the detuned screw element. The key draw-
backs of [12], [13] and [14] were the requirement to develop sophisticated fuzzy logic
rules, the proposed method's inability to attain the correct tuning state, and the lack of
technician experience consideration.

Considering Human Experience

The intent behind incorporating the human-expert knowledge for filter tuning was to
model the filter as well as the thought process of experts during filter tuning. Using
human experiences, an intelligent, efficient, and fast-automated algorithm for tuning
filters was anticipated.

The authors in [17] presented a method incorporating the knowledge of a filter tuning
expert for the first time. Human intelligence served as a Fuzzy Logic Controller. The
First-Order Sugeno FLS [15] in this work used Gaussian type membership functions
and variable standard deviations. After successful tuning of a filter by an expert, the
corresponding input-output data-pairs were used to build a FLS. After tuning several
filters, many such FLS were built i.e. there were several sub-controllers which helped
in avoiding the conflicting rules, few data-pairs, and option to increasing more data-
pairs. Data pairs were categorized using Subtractive Clustering [16]. The approach
identified detuned tuning elements. Nevertheless, successful implementation of the
method required sufficient learning data scenarios, but gathering all possible scenarios
is practically impossible, rendering the method unsuccessful in meeting the desired ob-
jective. Also, this work only utilized the Si; parameter of the filter which limited its use
in tuning real-world filters.

A two-step filter tuning method consisting of coarse tuning stage and fine-tuning
stage was presented in [18]. Both tiers used fuzzy controllers separately. For the first
time the human intelligence was captured as linguistic "if-then" rules utilizing triangle
membership functions during filter tuning. GD was used to measure the phase offset
before initiating the tuning process, with the phase response aiding in the ‘coarse tun-
ing’ stage. The defined 'if-then' rules assisted the Fuzzy Logic Controllers in initially
‘coarse tuning’ and then ‘fine tuning’ the filter. The authors of this method presented
the possibility of adding more expert rules. In [19], a completely automated filter tuning
system based on FL used the same approach as [18] but could handle more complex
filter topologies. However, the approach couldn't address resonator loss, and the



solution was practical in limited settings. Thus, this procedure was not apt for industrial
filter tuning.

Simulated Intelligent Fuzzy Logic

Recently, a method to tune a 4™ order waveguide cavity filter was presented in [20].
The authors used Mamdani type FLS with triangular membership function while im-
plementing this method. However, the methodology was evaluated in a simulated
Matlab environment and used a simpler filter to prove the effectiveness of their method.
This method is not apt to tune the complex commercial filters.

Adaptive Fuzzy

The accuracy of filter tuning using FLS relies solely on the number of scenarios used
in defining the fuzzy rules. To avoid this dependency and to come-up with a robust
tuning system, variable universe adaptive FL was presented in [21] in which the uni-
verse could contract or expand. However, each screw was iteratively as well as sequen-
tially tuned for meeting the desired frequency response. The main issue with sequential
tuning process is the propagation of error.

A heuristic FLS which was based on dynamic attention was presented later [22]
which could modify the tuning goals dynamically and could adaptively regulate the
evaluation function without altering the defined fuzzy rules. The proposed method was
accurate, fast and effective in tuning the complex filters. Nonetheless, the versatility
of the proposed FLS was limited by its lack of adaptability in optimizing the critical
parameters and its inability to self-learn the strategies of tuning.

3.3  Artificial Neural Networks (ANNs)

ANNS, being remarkable universal approximators, have become a reliable tool for the
multidimensional design and tuning of MW components. These networks establish a
distinct mapping between the S-parameters and the tuning screw discrepancy, leading
to an inverse black-box model. ANNs can learn from training samples obtained from
correctly tuned filter units or "golden filter" units. This trained model then uses raw
(detuned) S-parameters as inputs to approximate the tuning screw error. Research in
this domain is split into two key categories: a) Supervised Learning, and b) Reinforce-
ment Learning.

Supervised Learning based Filter Tuning

The initial use of ANNs for tuning MW filters was detailed in [23]. They built an in-
verse model between S-parameters and screw deviations using a Back Propagation (BP)
FF-ANN. Despite some limitations, the proposed algorithm managed to tune the filter
to some extent. This method was further refined by the same author in [24] using mul-
tiple golden filters for improving the generalization abilities, better training vectors, and
efficient tuning algorithm. However, while implementing [23] and [24], the inter-reso-
nator couplings were pre-tuned, and the correct ANN architecture was not investigated.



[25] expanded on the previous works ([23] and [24]), providing an analysis of the ANN
structure for FT applications, which included an optimal method for selecting the num-
ber of frequency sampling points. However, this approach still had limitations, partic-
ularly regarding the selection of tuning screws (as couplings between resonators were
pre-adjusted), which hindered its commercial use. Innovative techniques, like the use
of Principal Component Analysis (PCA) in [26] and Wavelets in [27], were later intro-
duced to efficiently tune the filters. PCA reduced the input layer neurons, speeding up
the ANN training without impacting the network's generalization ability. Shortening
the ANN input vector length with Daubechies Wavelet (D4) compressed the S-Param-
eters. Thus, the ANN structure was trained faster without losing generalization capac-
ity. Nevertheless, the Wavelet-based method could only handle simpler ANN topolo-
gies and not higher-order cross-coupled filters.

The authors of [23, 24] and [25] had chosen a Feed-Forward (FF) ANN structure
with a single hidden layer as the network blueprint. These papers leveraged Sii charac-
teristics for filter tuning and employed an IAFTT Robot [28] to gather training data by
detuning the filter. Even if the training vectors were improved using [26] and [27], the
key issue with this approach was that the model could not be updated in real time, and
the algorithm was restricted by filter topology.

Another NN inverse modeling-based filter tuning approach based on 3-layered FF
architecture was presented in [29]. The S-parameters of a cross-coupled filter were
mapped to the relevant tuning screw position. In order to account for N tuning elements
(1.e., resonator cavities, inter-resonator couplings, and cross-couplings), N inverse sub-
filter models were created. Each tuning element of a finely tuned physical filter was
detuned in both directions to collect the training vector set for the NN architecture. Only
one sub-filter was used at a time, hence there was only one neuron in the output layer.
The next sub-filter was taken into consideration when the trained ANN had provided
the necessary amount of adjustment to tune the sub-filter under consideration. It was
suggested that the filter's tuning process should move from its input side to its output
side. However, the practical application of this technology was constrained by the re-
quirement for a large quantity of training datasets.

To deal with tuning of filters with different center frequencies, an inverse modeling
was also introduced by the researchers [30]. This model enhanced the generalization
capabilities but was still limited to S;; parameter for tuning, thus, unable to provide a
comprehensive solution for automatic filter tuning.

Reinforcement Learning (RL)-based Filter Tuning
RL models, inspired by animal learning processes, were introduced to the field of ma-
chine learning. The RL models use Neural Networks to reinforce learning through a
Temporal Difference (TD) approach. The TD process was first mathematically outlined
in [31] and further developed into Q-learning in [32]. When the Q-learning agent ex-
plores the states of the environment while learning to maximize the positive reward in
the future, the bias and weights of the ANN architecture are iteratively updated.
Getting inspiration from the work presented by DeepMind [33], the authors of [34]
trained a Deep Q-Network (DQN) with a 20-20-4 Feed Forward-Back Propagation
Neural Network (FF-BPNN) structure. Despite certain limitations like discontinuous



reward function, the solution tripping into local minima, and being restricted to consid-
eration of only S;; parameter, this research marked the first step towards RL-based filter
tuning.

Following this, various improvements to RL-based filter tuning were introduced by
the research community. This included: CNN-based filter tuning method using Lagran-
gian multiplier [35] ensured the global minima; the use of Deep-Deterministic Policy
Gradient (DDPG) algorithm [36] used continuous action space in conjunction with
[37]; and, double deep Q-learning (DDQN) techniques [38] discarding the maximiza-
tion bias problem. However, all these methods were also restricted to Si; characteristics
only. Tuning the filters while simultaneously considering the Si; and S parameters,
researchers proposed a method based on tuning using a DQN network [39]. This
method used discontinuous reward function as in [34] and DDPG algorithm as in [36].
However, this method still had limitations, particularly when it came to higher-order
filters.

Recently a method capable of learning of human tuning strategies using continuous
RL was presented [40] where the authors collected the training data from one channel
of the combiner using a robotic system. All the other previous methods where RL was
used to simulate the filter tuning, the simpler reward functions were used. In [40], the
authors compared the tuning performance and tuning time with 03 different reward
functions. The addition of human-inspired shaping reward function reduced the explo-
ration, thus, ensuring better system performance. Nevertheless, the methodology was
limited by its simpler model and captivating the changes in the curve only in the vertical
direction. Additionally, just like other RL-based filter tuning methods, this method was
also limited to simulation environment only.

3.4  Filter tuning using a Neuro-Fuzzy System (NFS)

For tuning the filters using a hybrid of Neural Networks and Fuzzy Logic (of Sugeno
type), researchers introduced a novel multi-dimensional estimator [41]. The adaptive
network-based fuzzy inference system (ANFIS) [42] was found capable of correlating
the S-parameters of a filter with the variance in tuning screws. This system required
fewer learning vectors while also delivering smaller Learning Error (LE) and General-
ized Error (GE) compared to the GE value from [23] that used only the ANN structure.
The couplings were considered to be pre-tuned. However, the methodology's draw-
backs included its lengthy training process, the authors only considered the S| charac-
teristics, and inability of the model in getting updated in real time.

3.5  Filter tuning using Linear Matrix Operator

To avoid the prolonged training process as in the case of ANN and NFS based tech-
niques, a strategy based on linear mapping was introduced in [43]. With the linear ma-
trix operator, the model could illustrate the connection between the alterations in S-
parameters and changes in the tuning screw position. The samples utilized in this re-
search were gathered using IAFTT [28]. PCA was used for dimensionality reduction.
The matrix to establish linear mapping was determined using the Least-Squares Method



(LSM) [44], with the approximation error minimized through 'outliners elimination'.
However, its limitations included the random collection of datasets, the consideration
of only cavity tuning within a limited range, the inter-resonator coupling and cross-
couplings were pre-tuned, and not considering the inter-resonator coupling while col-
lecting the datasets.

3.6  Filter tuning based on Linear Decomposition of Reflection Characteristics

The concept of employing the Linear Decomposition technique in filter tuning applica-
tions assumes that the relationship between data pairs can be expressed by a sum of
polynomial functions. The research in [45] successfully mitigated two major limitations
of ANN-based and Linear Matrix Operator-based techniques — the necessity for random
detuning of a filter for data pair collection, and the requirement for numerous data pairs.
Yet, this research had its own limitations, including the consideration of only the Si;
parameter, the tuning of only the cavity screws (inter-resonator couplings and cross-
couplings were not considered), and its implementation on slightly detuned filters only.
The research in [46] expanded upon [45] by considering: Si; as well as Sy characteris-
tics of the filter response, and considering the cross-couplings. The linear optimizer
developed in this research was based on a coarse set that could generate deviations
corresponding to cavities and cross-couplings. The proposed method did not need train-
ing but the overall response of this methodology was slower as compared to the ANN-
based filter tuning methods when finding the amount of detuning.

3.7  Filter tuning using Support Vectors

In the domain of microwave (MW) filter tuning, Support Vector Regression (SVR)-
based models have been developed to construct electromagnetic (EM) coupling models.
The use of Support Vector Algorithms presents several advantages over ANNs includ-
ing their ability to find an optimal solution even with a small sample size.

In [47], the first wavelet kernel mechanism model-based Least Squares Support Vec-
tor Regression (LS-SVR) was used to create a model to understand the relationship
between the tuning screw length changes and the corresponding changes in the coupling
matrix (CM). The limitation here was that screw positions were approximated rather
than directly measured, and discrepancies existed between ideal models and real prod-
ucts. Additionally, the method was applicable only for simple filter topologies where
each output port could be examined separately. In response to this, Multi-output LS-
SVR (MLS-SVR) was developed to handle devices with multiple output MW Filters.
For example, the use of Multi-Kernel Linear Programming Support Vector Regression
(MKLP-SVR) allowed for an effective EM coupling model for filter tuning [48]. The
data related to success as well as failure of the manual filter tuning process was rec-
orded. Despite its effectiveness in terms of moderately complex filters, this method
relied heavily on time consuming optimization routines which are not suitable for au-
tomating the filter tuning process.

Further research led to the development of a hybrid model, MKPLP-SVR [49],
which incorporated prior knowledge and multi-kernels in LP-SVR. The Coupling



Matrix (CM) was extracted using [50] and [51]. The model was trained using the data
collected during the manual tuning process. This methodology was evaluated on elec-
trically tunable filters. However, this model was not without its challenges. Firstly, the
CM was extracted in an ideal state, the method did not provide an accurate CM when
the filter was highly detuned. Furthermore, the criteria of model and hyperparameter
selection were not discussed.

Further modifications led to the development of another hybrid MKPLP-SVR mod-

eling approach for filter tuning [52], combining the Coarse Model and the SVR model.
When tested on electrically tunable filters, the proposed methodology could improve
the accuracy and extrapolation capability of the model. But this method could also not
deal with highly detuned filters.
A common limitation of all these support vector-based filter tuning methods i.e. [47],
[48], [49] and [52] could only tune slightly detuned filter only. To address this limita-
tion, authors of [53] proposed a model for highly detuned filters was proposed, using a
pole-residue-based Multi-output Least Squares Support Vector Regression (MLS-
SVR) methodology [54]. However, this approach was also limited by its reliance on
simulation software data, which might not always accurately reflect real-world scenar-
ios. The method was also restricted to simpler filter topologies, limiting its practical
application.

4 Discussion

The first publication related to data-driven approach was reported in 1989 by Mirzai et
al. which used ML to tune the waveguide filters but could only assist the manual tuning
during the fine-tuning stage. To find a fully automated solution, later, the focus of re-
searchers was then shifted towards FL-based techniques which allowed the possibility
of adding human experience in terms of the fuzzy rules. But FL-based filter tuning
relied on the CM extraction process and could tune only the simpler filter topologies.
Due to advancements in algorithms and computation power, the researchers started
considering ANNs to map the relationship between screw deviations and corresponding
S-parameters of the filters. With the use of data-truncation techniques like PCA and
wavelets, the architecture training time was reduced but the key problem with this tech-
nique was that the trained model could only tune exactly the same filter from which the
training vector was generated. RL-based filter tuning solutions were only limited to
simulations only due to its reliance on the reward function and problems in training the
agent to learn all the possible states. Filter tuning based on NFS needed lengthy training
time and the model could not be updated in real-time. For avoiding the network training
process, the researchers presented a linear matrix operator and linear decomposition of
reflection characteristics as potential solutions but selective approach in deciding the
tuning elements and slower response of the algorithms restricted the further use of these
methods. SVMs were also considered to find the solution to problem in hand but they
could not deal with tuning of complex filters. Recently, the paradigm has shifted to-
wards adaptive fuzzy-based techniques as it offers an effective and versatile approach
for dealing with this complex and uncertain filter tuning task. An increase in research
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interest for data-driven filter tuning techniques can also be inferred from Fig. 1 which
depicts a decade-wise distribution of the publications presented by the research com-
munity.

Data-Driven MW Filter Tuning Techniques
Published in Different Decades
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Fig. 1. Various data-driven techniques of MW filter tuning presented by the research community

The data-driven techniques can handle the complex relationship between tuning ele-
ments and electrical response of the MW filters. The upward trend seen in Fig. 1 for
exploring the data-driven techniques of filter tuning can be attributed to the fact that the
data-driven approaches are not restricted by the filter topology or the size of filter when
finding the hidden relation between the variables.

5 Conclusion

Data-driven approaches offer notable advantages in terms of efficiency, speed and ac-
curacy — making them well-suited for handling complex relationships between the var-
iables. Recognizing these benefits, the authors of the current research conducted an
extensive literature review spanning the past 38 years, exploring various data-driven
techniques for MW filter tuning. The reviewed data-driven approaches were catego-
rized into seven categories, thereby furnishing a comprehensive panorama of available
methodologies. A notable finding from the research analysis was an upward trend in
the research interest over the last two decades. This trend can be attributed to advance-
ments in computing power and emergence of powerful algorithms capable of handling
vast amounts of complex data. Some key advantages of the data-driven techniques are
adaptability and ease of customizations that allows for scalability. These characteristics
distinguish them from traditional filter tuning methods, which often lack such flexibil-
ity. By harnessing data-driven techniques, the bottleneck in filter production lines can
potentially be eliminated, paving the way for automating the filter tuning process.
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To summarize, the extensive review of literature reveals the potential of data-driven

techniques in MW filter tuning. Their efficiency, adaptability, and scalability made
them a promising avenue for addressing challenges faced in traditional filter tuning
methods.
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Abstract. The research community is primarily focused on automating the filter
tuning process. Effectively distinguishing the tuning screws from the mounting
screws present on the surface of cavity filters is one of the key factors to improv-
ing the efficiency of automated filter tuning process. Since the tuning state of the
filter is altered only by rotating the tuning screws, it is imperative to detect and
localize the position of these tuning screws. This paper presents a supervised Ma-
chine Learning (ML)-based approach to differentiate between the tuning screws
and mounting screws of a cavity filter. The proposed methodology underwent
evaluation on a commercial cavity filter, achieving an impressive precision of
96.66%. Other state-of-the-art supervised learning-based algorithms have been
tested against the Support Vector Machine (SVM) classifier. The empirical find-
ings unequivocally demonstrate the superiority of the proposed methodology in
comparison to alternative approaches. The findings of this research work can as-
sist in automating the filter tuning process.

Keywords: Cavity Filter, Classification, Decision Trees, Filter Tuning, KNN,
Machine Learning, Screw Classification, SVM, Supervised Learning

1 Introduction

Mechanical tuning of Microwave (MW) cavity filters, using the tuning screws, is the
most common way to compensate the manufacturing flaws, differences in material
properties, mechanical tolerances etc. The frequency response of the filter can be al-
tered by altering the insertion depth of tuning screws [1]. The filter tuning process aims
to set the filter to a state which ensures the separation of desired frequency band from
the congested communication spectrum. Currently, trained technicians carry out the
filter tuning process [2].

Typically, a cavity filter is constructed of a metallic block. To prevent energy leak-
age, a metallic plate is used to cover the filter. Fig. 1 shows a used cavity filter. One
can observe the presence of several screws on the assembled filter’s top plate. These
screws can be broadly classified into two categories — tuning screws and mounting
screws. The tuning screws alter the performance of the filter [3], while the mounting
screws just hold the top metallic plate over the filter structure.



Fig. 1. A Commercial Cavity Filter

In the context of a cavity filter, the term ‘tuning screws’ includes screws like tuning
screws, coupling screws, cross-coupling screws, and duplexer screws. Each tuning el-
ement has a particular function and can come in a variety of shapes, sizes, and materials.
The tuning screws located just over the resonators assist in achieving the resonance
frequency and, the coupling screws are used to adjust the EM coupling strength between
the neighboring cavities. It should be noted that not all types of tuning screws are al-
ways present on the cavity filter unit. The type(s) of tuning screws to be mounted over
the filter are chosen by the filter designers while taking the design requirements into
consideration [4]. The tuning screws and coupling screws used in the filter type de-
picted in Fig. 1 have the same shape, material, and size, and they are collectively re-
ferred in this work as “tuning screws”.

The goal is to construct a Fully Automated Tuning (FAT) system for filters that can
extract the exact position coordinates of each tuning screw using a vision system. This
system further sends this data to the filter tuning algorithm, which in turn instructs the
robot manipulator to travel to the designated coordinates and accurately turn the corre-
sponding tuning screw(s) to alter the tuning state of the filter. The process is repeated
until the desired frequency response of the filter is attained. Every screw fitted over the
cavity filter must be efficiently classified as either a tuning screw or a mounting screw
while automating the filter tuning process.

The Machine Learning (ML) classification is a supervised learning-based approach
for building a model to divide the given data into desired number of distinct classes.
Artificial Neural Networks (ANNs) [5], Bayesian Networks [6], Decision Trees [7], K-
Nearest Neighbors (KNNs) [8], Support Vector Machine (SVM) [9] are a few of the
widely used classification techniques documented in the literature. The presence of
noise in the data used for training process has an impact on the trained ANN model
[10]. Although decision tree-based classifiers are faster than ANNSs, they do not offer
flexibility to modeling parameters. KNNs are easy to implement but are slow when
dealing with huge amounts of the input data. KNNs are also sensitive to irrelevant pa-
rameters present in the system. Owing to their strong theoretical foundation, and excel-
lent generalizability, SVMs perform superior to other methods mentioned [11].

SVM, a supervised learning model widely used for binary classification tasks, was
introduced by Vapnik and Chervonenkis in 1964 [12]. Its popularity has soared due to



its superior performance in high-dimensional spaces, robustness against overfitting, and
flexibility in modeling diverse sources of data [13]. The SVM algorithm finds an opti-
mal hyperplane to separate the data into different classes. The goal is to find the hyper-
plane with the maximum margin [14]. This maximum margin hyperplane notion is cru-
cial since it improves the model's generalizability and mitigates overfitting [15]. The
foundational idea behind SVMs is Structural Risk Minimization (SRM), a concept from
the theory of statistical learning. By minimizing the generalization error of the model
(instead of frequently used mean squared error), SRM aims to maximize the margin
between several classes, enabling them to generalize effectively on unseen data [16]. to
tackle noisy data and outliers, Cortes and Vapnik [17] introduced the idea of soft mar-
gins which significantly enhanced the SVM's applicability.

SVMs have been effectively used in variety of fields, including text categorization
[18], image recognition [19], fault diagnosis [20], and image classification [21]. How-
ever, despite their effectiveness, SVMs are often criticized for their poor computational
efficiency and lack of interpretability [22]. The development of Sequential Minimal
Optimization (SMO), which more efficiently solves the SVM optimization problem, is
one study which focused on resolving these limitations [23].

In this paper, SVMs have been used to distinguish the tuning screws from the mount-
ing screws. A unique imaging setup with preset parameters has been employed. The
performance of the SVM classifier has been evaluated against other supervised learn-
ing-based classifiers.

The remainder of the paper is structured as follows: the suggested methodology is
discussed at length in Section 2. After implementing the preprocessing steps, the pre-
processed image is then used in the subsequent steps to classify the tuning screws and
mounting screws. Section 3 provides the findings of this research work. The conclu-
sions are drawn in Section 4 followed by the future scope.

2 Methodology

2.1  Setup

The images used in this research work were captured using a Logitech C525 HD 720p
webcam and they were then processed. Since a powerful light source was necessary for
proper illumination and for homogeneous reflection on the mounting plate (to create
higher contrast), Halogen lighting was used during the experiments. The overall setup
is depicted in Fig. 2. The various parameters used in Fig. 2 were defined to be as fol-
lowing:

o =45°
L(): 250 mm
Wy= 350 mm
Wi =190 mm
L;=240 mm

Le= 38 mm
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Fig. 2. Experimental Setup used in this work

In order to prevent any screws being occluded i.e. covering up the one(s) behind it, the
camera mounting angle i.e. o= 45° was chosen.

2.2 Preprocessing

The procedure for preprocessing the acquired image processing is shown in Fig. 3. The
acquired RGB image of the commercial MW cavity filter is first converted into a binary
image. The rusty mounting surface seen in Fig. 1 (we have considered a used MW filter
in this work) was compensated by adjusting the brightness and contrast of the binary
image. The ‘value plane’ was subsequently used to extract the grey image. The key
reason for choosing this plane was that the tops of the screws were a little brighter than
the rest of the filter assembly. Finally, after thresholding, all the screws were success-
fully separated from the filter surface. The resulting processed image was then used for
further analysis.

Contrast and Greyscale — Value
Image Capture .
Brightness Plane
Processed Image Thresholding

Fig. 3. Image Preprocessing Steps

2.3  Screw Classification

The Hessian matrix provides insights about the local variations and structures within
the data. In multivariate calculus, the Determinant of Hessian (DoH) refers to a matrix



composed of second-order partial derivatives of a determinant function. For the image
represented by f{x,y), the DoH is calculated as presented by (1).

fxx Xy
detH = (1)
fyx fyy

In this work, when the processed image was given to the proposed solution, DoH
method provided area as a feature vector. The screw dimensions were then manually
measured and labeled as tuning screws or mounting screws depending on the area of
the feature vector. Additionally, the classification of tuning and mounting screws was
made easier by extracting the height parameter from the feature vectors provided by
DoH. Labeling took 92 minutes to complete. This linear SVM classifier, which was
trained using the parameters presented in Table 1, used this labeled data for training the
model. The SMO solver, which minimizes the one-norm problem by considering a se-
ries of 2-point minimizations, was used to implement the SVM algorithm.

Table 1. SVM Algorithm Parameters

Entity Value
Lagrangian Multiplier 26 x 1 array
Bias Term for Hyperplane -13.9878
Solver SMO

After the model is trained using the labeled data, the screws in the given image can
be classified. The overall methodology for classifying the screws is presented in Fig. 4.

Features Extraction | FeatureVector | Manual Labeling of
Processed Image
by DoH Feature Vector
PIEdStional SarEw Trained Model SVM Classifier
Type
Fig. 4. Screw Classification Methodology
3 Results

The proposed methodology was tested on a commercial cavity filter with a total of 144
screws. Out of these, 58 screws were the tuning screws and rest were the tuning screws.
The original image and the corresponding processed image of the filter considered for
testing the are displayed in Fig. 5 on the left and the right side respectively. The goal of



implementing the supervised learning algorithms on the processed image is to have a
bounding box around the tuning screws.

Fig. 5. The Original Image (Left), and Processed Image (Right)

The processed image and the feature vectors from DoH are given as an input to the
trained SVM model and the resultant image with the predictions is shown in Fig. 6
where the bounding boxes are encapsulating the tuning screws. It can be seen in Fig. 6
that the proposed SVM model predicted a total of 60 tuning screws in the processed
image. Two false-positive results were predicted by SVM algorithm.

Fig. 6. Tuning Screws Predicted by SVM

The performance of the SVM algorithm was compared with the state-of-the-art su-
pervised ML-based algorithms viz. k-Nearest Neighbor (KNN) and Decision Tree
(DT). While implementing the KNN algorithm, the number of neighbors were defined
to be 5 and the Euclidean distance between the nearest neighbors is used as a criterion.
In the DT algorithm, the cross-validation was not considered. The predictor selection
for DT was set to consider all the splits. The predictions made by KNN model and DT
model are presented in Fig. 7 and Fig. 8 respectively.



Fig. 7. Tuning Screws Predicted by KNN Classifier

Fig. 8. Tuning Screws Predicted by DT Classifier

The results obtained by implementing KNN and DT algorithms on the processed
image show the presence of 5 false-positive results i.e. a total of 63 tuning screws were
predicted by both the algorithms. The comparative analysis of different algorithms is
compiled in Table 2 where it is evident that the proposed SVM model provided better
results in terms of the precision as compared to other algorithms.

Table 2. Comparative Analysis of Tuning Screw Detection Precision

ML Algorithm Number of Screws Detected by the Precision
proposed classifier
SVM 60 96.66%
KNN 63 92.06%

DT 63 92.06%




4 Conclusion

This work presents a supervised learning-based method to differentiate the tuning
screws of a microwave (MW) cavity filter from the mounting screws. The efficacy of
automating the filter tuning process relies heavily on the precise maneuvering of the
robotic manipulator over the tuning screws. The outcomes of this research present com-
pelling evidence showcasing the feasibility of employing a machine learning-based
model for accurate classification of tuning screws and mounting screws. The SVM al-
gorithm demonstrates the classification precision value of 96.66%, surpassing other
state-of-the-art algorithms. To augment the system’s performance in the future, the re-
searches aim to incorporate an optimal and efficient algorithm for measuring the height
of the tuning screws with an optimal and efficient algorithm.
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Abstract

Present-day demand and supply of connectivity necessitate the rapid production of Micro-
wave (MW) filter units. The production of these filters is then followed by the step of utmost
importance in the assembly line, viz., the ‘tuning of the filter’, as tuning is crucial to meeting
the selectivity requirements of the band. Since the advent of filters, tuning has always been
done manually, and hence it is considered a bottleneck by experts in the field. Thus, the need
to automate the system is highly implied. The goal of the current work is to outline various
MW filter tuning techniques that have been advocated by the community of researchers. The
limitations of the said research works and their comparative analysis are also encapsulated
in tabular form in the present paper. The paper ends with the implementation of an Expert-
Based Hybrid Deep Learning Algorithm to fully automate the filter tuning process.

Keywords Cavity filters - Computer-aided tuning (CAT) - Filter tuning - Microwave filter
tuning - RF filter tuning - Review paper

1 Introduction

MicrowavE/RaDIO FREQUENCY (MW/RF) filters, used for segregating the desired frequency
from a plethora of frequencies, are the mainstays of space and ground-based wireless com-
munication systems. A rapid surge in the demand for telecommunication systems resulted
in manufacturing copious amounts of MW/RF filter layouts, which include but are not
limited to waveguide filters, co-axial filters, microstrip-line filters, dielectric resonator
filters, varactor-based filters, and so on. Of these, coaxial cavity bandpass filters are the
most widely used in Wireless Base Station (WBS) filter installations. Furthermore, the
casing of any filter comprises several coupled resonators. Since higher-order filters with
cross-coupled topology meet the sharp frequency requirements of today’s time, they are
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commonplace in real-world applications. This cross-coupling facilitates the creation of
Transmission Zero (TZ) [1]. Other than meeting sharp frequency selectivity requirements,
these TZs also contribute to design flexibility; optimal in-band response; achieving Che-
byshev response; and reducing the size of the filter (which further means low insertion
losses, scaling down of manufacturing time, and an overall low cost). Furthermore, the
presence of real TZ weeds out unwanted interfering signals, and complex TZs synthesize
to equalize the Group Delay (GD). The algorithm to determine maximum attainable TZs
for a particular topology had been presented in [2]. Fairly recent research sheds light on
the effectiveness of Frequency-Variant Couplings (FVCs) in meeting the strict frequency
requirements for which TZs were initially used [3].

The design and manufacturing errors that occur during the assembly of these filters mar
the expected frequency requirements, making the tuning process inevitable [4]. Since time
immemorial, various strategies, including mechanical, electronic, and magnetic systems,
have been used to tune filters. However, the tuning elements, which include screws and var-
actors, are provided on the casing of the filter unit. The major factor that confers changes in
resonance frequency coupling between the cavities and the overall frequency response of a
filter is the insertion depth of tuning elements. The goal henceforth is to find optimal posi-
tions of the tuning elements so that the desired tuning specifications are met. Synoptically,
we can safely say that by nature, filter tuning is an optimization problem.

Further, filters can be differentiated based on their layouts, bandwidth insertion loss,
mid-band frequency, ripples, slope selectivity, etc. With such a huge variety of filters exist-
ing in the market, non-generalization of the tuning process can be safely inferred, i.e., one
technique cannot serve the purpose of tuning all types of filters. In addition, the overall
response of comb line filters is affected by the tuning structure [5] and the walls [6]. Dur-
ing tuning, the time elapsed and the difficulty level increases exponentially when complex
filters (i.e., filters with higher-order and/or with cross-coupled topology) are to be tuned.
This is because of the highly non-linear relationship existing between the filter’s frequency
response and the tuning elements [7].

The deterministic nature of the tuning process demands trained technicians and human
operators. These human operators observe the scattering parameters response of the fil-
ter displayed on a Vector Network Analyzer (VNA). Although some guidelines for assist-
ing these technicians are available in [8], intensive training is still mandated to acquire the
necessary skillset. Furthermore, it is worth noting that completion of training in no way
guarantees proficiency in the field, as some trainees, even after receiving months of train-
ing, fail to tune simple filters. In other words, these technicians are not certified MW engi-
neers, and favorable outcomes are heavily based on their training and experience. Another
pertinent factor worth noting is that if a technician is proficient in tuning one type of filter,
there is no assurance that he/she will be able to tune other types as well. Considering all
the aforementioned factors, filter tuning is now considered an “art” that needs time, train-
ing, and expertise. Industry’s continuous need for competent and skilled tuning experts is a
further worry, as finding new technicians is an arduous task. Also, as tuning requires heavy
use of wrists, technicians often injure their wrists, and the industry has to bear the expense
of their surgeries.

The attempts to find automated or semi-autonomous methods of filter tuning were initi-
ated around the early 90 s. Using parameter extraction techniques, COM DEV Ltd. pre-
sented an intelligent filter tuning software in 1994 [9]. This software was deployed on the
production line in 1995 [10], and could help technicians tune satellite multiplexers. Later,
this solution was improved and was named ‘RoboCAT’. In 2003, RoboCAT was used in
commercial filter tuning [11] where the Coupling Matrix (CM) was extracted using phase
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cloning and time domain techniques. However, the major limitations of the tuning solution
provided by COM DEV Ltd. were—the decision making was script-driven; in the case
when maximum tuning time was reached, an error flag was generated by the software, and
the tuning software was made to restart; and the scenario of complete insertion or com-
plete removal of the tuning screw was not considered. Considering all the above-stated
shortcomings, one can easily infer that the solution provided by COMDEYV Ltd. cannot be
treated as autonomous or autonomous; hence, the need to find a more flexible, reliable, and
self-sustaining solution is required.

Several researchers have proposed unique and distinctive solutions to solve or decipher
the problem of the filter tuning process. This paper intends to review and summarize the
major findings, furtherance, and development of various proposed techniques. What fur-
ther adds to the compilation of this paper is the fact that the last of this kind was published
three decades ago [12]. Furthermore, the mentioned paper was distinctly related to the pre-
sent research as it only focused on LC (i.e., Inductor-Capacitor) based Low Pass Filters.

Every study, no matter how well it is conducted and constructed, has certain limitations.
This research is also not without its pitfalls. The major limitation of this paper is that it
focuses exclusively on filter tuning of band-pass filters and in line, the diagnostic methods
that aid CAT of band-pass filters are also considered. Besides, most barring a few kinds of
research considered in the present paper focus solely on the mechanical tuning of filters.
But some research works presented in the ‘Support Vectors Assisted Filter Tuning’ cat-
egory i.e., section ‘4F. 6)’ of this paper were also tested over the electrical filters as well, so
they have been included in this review.

Additionally, active filters, ferroelectric filters, superconducting filters, and varactor-
based filters were beyond the scope of this paper and hence aren’t considered here. The
tuning of microstrip filters is also not reviewed (because the correct tuning of microstrip
filters can be achieved during the design stage, i.e., by varying the dimensions of resona-
tors, by changing the thickness of the dielectric substrate, by making gap ports in series
for tuning, by adding cells, drilling holes, etc.). No tuning elements are directly attached to
microstrip filters usually. Likewise, since master and doctorate theses failed to provide any
autonomous solution to the problem at hand, the researchers decided not to include them
in the periphery of the present research. To avoid copyright infringements, patents are also
not reviewed in this document. The research publications that were solely dedicated to MW
filter design are not looked at here.

The blueprint of the present research is as follows; Sect. 2 of the document extensively
surveys the literature available in the field of filter-tuning. Section 3 compares and con-
trasts various techniques to tune the filters; the major limitations of these techniques are
also presented in the same section. Section 4 presents the discussion on the recent trends
and advocates the usage of Deep Learning as the future of the filter-tuning process. Con-
cluding remarks are indicated in the final section of the article.

Note: The terms resonator, cavity resonator, and cavity have been used interchangeably
in this paper.
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2 Detailed review

The past few decades are testimony of the efforts laid in the advancement of filter tuning,
with a battalion of researchers presenting varied techniques that can be used to tune the fil-
ters. Figure 1 shows the bifurcation of these techniques. The present section will deal with
these methods one at a time.

The layout of the current section is as follows: the first paragraph of each category
will provide a short introduction to a specific technique, followed by the research works
reviewed by the authors under that.

2.1 Filter Tuning in Time Domain (TD)

For tuning of MW filters using the TD approach, a special discrete Inverse Fast Fourier
Transform (IFFT) of the frequency response of reflection characteristics, i.e., S;; (@) is cal-
culated. The resulting TD response, i.e., S;(f), distinguishes the evaluated resonator reso-
nance and inter-resonator coupling aperture response for both filter ports. Distinct ‘Peaks’
and ‘Dips’ seen on a network analyzer help in tuning each of the resonators individually.
Referring to Fig. 2, each dip corresponds to resonator and the peaks represent inter-resona-
tor coupling.

For <0, these dips and peaks are meaningless; therefore, the first dip and the first peak
closest to t=0 are considered the first resonator and the first coupling, respectively. In
TD, the response of turning each tuning screw can be immediately seen, and hence can be
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Fig.2 Filter tuning in time domain [14]

accounted for. Such visualization and cause-and-effect relationship cannot be obtained in
Frequency Domain (FD) based methods.

The first publication where the TD method was used for MW filter tuning was presented
in 1999 [13]. The response of the reflection characteristics (S;;) of a perfectly tuned filter
(also called a ‘golden filter’) was compared with the response of the Device Under Test
(DUT), that is, the filter that we are interested in tuning to find the correct position of the
tuning screws. The technique was validated on a 5-cavity in-line coupled resonator filter.
Later, in [14], the same author came up with three more examples that demonstrate the
ease of the TD method in tuning the coupled-resonator BP filter deterministically. Turn-
ing a screw caused the change only in one portion of the curve, and it was shown that the
sharpness of the depth of the dip was directly proportional to the extent of resonator tun-
ing. Both these research works ([13] and [14]) were limited to filters with low losses and
filters without cross-couplings. In [14], only the theoretical steps for tuning cross-coupled
filters and the duplexers were presented, but those steps were not tested via simulations or
experiments. The solution to one key limitation of the publications [13] and [14], namely,
the tuning of duplexers, was then later presented by the same author in publication [15].

To overcome another limitation of [13] and [14] i.e., the tuning of cross-coupled filters
(having symmetrical or asymmetrical transmission zeros) was dealt with in publications
[16] and [17]. The effects of the presence of a cross-coupling were also well presented, and
it was shown that for such complex (cross-coupled) filters, the depth of dips does not sym-
bolize the current tuning state of the filter. To tune such untuned complex filters, a ‘golden
filter’ or the simulated S-parameters of the desired filter were needed. Two approaches for
strongly coupled filters were also presented in [17] but both of these approaches were not
verified by any example.

Although the TD-based methods presented in [13, 14, 16] and [17] were flexible and
robust, the major fallibilities of all these research works included: a) the coupling value
considered for a cross-coupling was quite less than the main-line coupling and b) the tun-
ing direction was uncertain. To overcome this uncertainty about the tuning direction, an
advanced TD tuning method that relied on the phase of the reflection parameters was pre-
sented in [18]. The direction of phase-shift directly related itself to the difference between
the resonance frequency and the center frequency. This information (i.e., whether the value
is above or below the center frequency) helped to tune the filter quickly. But the method
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presented in [18] could only be implemented on low-order all-pole filters. It could not be
used to tune commonly used complex filters.

It is important to note that, with the exception of the TD methods mentioned in [13,
14, 16, 17], and [18], all of the other filter tuning methods presented in this document are
based on FD tuning. For having a detailed literature review and a clear understanding of
the reader, the authors of this review intentionally left out the bifurcation based on TD
methods and FD methods.

As opposed to TD tuning methods which rely solely on reflection characteristics (S;;)
parameter of the filters for tuning, the FD tuning methods use reflection characteristics and/
or transmission characteristics (i.e. S; and/or S) to tune the filters. All the FD tuning meth-
ods use a common type of frequency response curve to tune the filters. Such a simulated
frequency response is depicted in Fig. 3 which represents the insertion loss and return loss
for a 5th order filter in FD. In Fig. 3, the red solid curve shows the transmitting signal, and
the blue dashed curve presents the reflecting signal.

2.2 Sequential Filter Tuning

The publications mentioned under this category are the ones in which the authors advo-
cated to either ‘short’ (strongly detune) the resonators or to tune the resonator and coupling
screws in a particular order and/or direction. The intent behind using this technique was
that with such a ’divide-and-conquer’ technique, the tuning time will drop; the tuning dif-
ficulty will reduce, and the tuning process will be simplified.

The first sequential filter tuning method was proposed in 1951 [19], where an alter-
nating short-circuit-based technique was proposed. This process dealt with minimizing
the return loss for tuning the filter (as the ’short’ resonator will stop the transmission of
the signal in the forward direction). Regarding the direction of adjustment, the authors
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proposed that the adjustment must be performed from the input side of the filter (I / P)
to the output side (O / P) by analyzing the voltage value at the center frequency of the
filter. According to changes in input impedance (i.e., open or short), the author proposed
observing the maximum voltage of all the ‘odd’ resonators and the minimum voltage for
all the ‘even’ resonators. The method could tune BP filters, but a similar method could
be extended to other types of filters as well (i.e., High-pass filters, Low-pass filters, and
Band-reject filters). However, the key limitations of this research work were—the tuning
process was manual; no information about the coupling values was available; a loosely
coupled detector was required to measure the amplitude; this method was inefficient for
tuning filter designs including resonators with varied resonant frequencies, and the pro-
cess was highly iterative.

Atia and Williams in [20] presented another sequential tuning method wherein they had
combined their methodology with the work presented by Dishal in [19]. The authors of
[20] proposed to measure the resonant frequency and inter-resonator coupling of short-
circuited filters using the filter synthesis technique proposed by them in [21]. The values
were measured when the phase response of the input reflected coefficient (i.e., S;;) crossed
0° or 180° on the polar plot. This methodology was quite accurate, but achieving the same
resonant frequency by synchronous tuning of every resonator required many trials, which
made this process time-consuming. In addition, this method could not tune the filters with
different resonant frequencies of the resonators. Also, during implementation, this method
needed special care when dealing with cross-coupled cavities. The methodology presented
in [20] was later used in [22] for tuning the singly as well as doubly terminated filters.
Using the information of measured input impedance (matched to the condition of reso-
nance), the resonant cavities and coupling elements were adjusted, but the tuning process
was slow and tedious.

The work presented in [20] was then used for filter tuning purposes in 1986 [23], where
a CAT system and the synthesis of lossless networks were presented. The method proposed
in [23] was in conjunction with LCX i.e., Inductance, Capacitance, and Reactance synthe-
sis which could determine the inter-cavity couplings as well as the resonant frequencies
for a short-circuited network. However, the major shortcomings of [23] were—each cavity
needed an I/P and O/P probe, and hence frequent cable changes were to be made; there was
a need for prior characterization and calibrations of the tuning elements; and optimization
routines were needed to optimize the filter’s transfer function.

By modifying the method proposed in [19] and using the knowledge from [20], J. B.
Ness in 1998 proposed a unique sequential method for tuning highly detuned resonators
in [24]. The filter was divided into various sub-circuits. Then, the theoretically extracted
Group Delay (GD) information of each sub-circuit was used one by one while maintaining
the GD symmetry simultaneously. For a quick recall to the reader, theoretically, the GD of
a reflected signal refers to the time delay of the amplitude and is a function of frequency.
And, mathematically, GD is defined as a negative phase derivative with respect to (w.r.t.)
angular frequency. This GD information was used for tuning resonant frequencies as well
as inter-resonator coupling values of a filter starting from the input end to the output end.
For fetching accurate results, while computing the absolute GD of one resonator, all the
other resonators needed to be shorted completely, and hence, the magnitude of the GD of
reflection characteristics was used for extracting the corresponding coupling values of the
filter. However, the method in [24] was restricted to in-line filters only; and dealing with
cross-coupled filters was tricky. Later, the scope of [24] was extended to parallel and cross-
coupled filters in [25], but the proposed tuning process was complex, and the ‘shorting’
process was infeasible for practical cases.
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Unlike [24] and [25] (where reflection characteristics were used to measure ‘absolute’
or ‘actual’ GD), the authors in [26] shorted the filter and measured ‘relative’ GD using
transmission (i.e. forward) characteristics. The measurement was done with ‘careful and
limited’ shorting (detuning) of the resonators so that the GD still exists. The relative GD
was derived using the Hilbert Transformation [27] of the forward coefficient module. This
allowed the use of low-cost hardware, i.e., a Scalar Network Analyzer (SNA) instead of
using a Vector Network Analyzer (VNA), which is an expensive instrument. The method in
[26] could eliminate the need for a directional coupler, which was mandatory to use in [20,
22], and [23]. However, the precision of this method suffered when incomplete or uncon-
trolled detuning was caused. Also, this method was not effective in tuning the higher-order
filters.

The methods presented in [24] and [25] could deal with one reflection S-parameter only,
but the methodology in [16] could use both I/P and O/P reflection coefficients (i.e., S;;
and S,,, respectively) for tuning a filter. The same authors published the extended version
of [16] in publication [28]. The proposed method could deal with singly terminated and
doubly terminated filters that have an asymmetric frequency response with GD equaliza-
tion. For N number of tuning elements, ‘N’ inverse sub-filter models were built. In terms of
the tuning direction, this method could provide flexibility since tuning from both sides was
possible (i.e., using the I/P reflection coefficient (S;;) or by using the O/P reflection coef-
ficient (S,,)). The key limitations of [16] and [28] were—the method was time-consum-
ing; only moderately complex in-line and waveguide filters could be tuned; and like other
methods discussed above under this category, this method could not deal with higher-order
cross-coupled filters.

To assist the tuning technicians in tuning the cross-coupled filters, a sequential tuning
concept depending on frequency domain data cloning was presented in [29]. This work had
used the circuit model presented in [20] to develop this tuning method (although, for accu-
racy, even a golden filter could also be used instead of using an approximate circuit model).
In [29], it was mandatory to manually short or to highly detune the resonators, but cou-
plings were allowed to be set to ‘weak state’. The method could tune the filters using linear
scaled polar plots. In terms of tuning direction, the filter was tuned sequentially from both
outer sides (I/P and O/P screws) towards the middle screw. However, the limitations like
the careful selection of frequency cloning points; inaccuracies due to—increased order;
increased complexity (position of cross-couplings), etc.; bandwidth limitations; and the
need for manual shorting of resonators were the main reasons for restricting the implemen-
tation of this work in filter tuning application.

In the TD methods [13, 14, 16], and [17], the authors proposed tuning the filters in
a particular order. The author proposed the tuning direction to be ’inward’, that is, start-
ing from the outer tuning screws of both sides and gradually moving towards the center
screw(s). Publications [13] and [14] presented TD-based filter tuning of all-pole filters,
while complex filters were discussed in publications [16] and [17]. In publications [16]
and [17], it was required to find the node frequency. For quick recall, the resonant fre-
quency with every coupling connected is known as the node frequency (i.e., main and
cross-couplings, being grounded for each resonator). For finding the node frequency of
complex filters, the author of publications [16] and [17] proposed to set the VNA to dual-
channel mode i.e., with one channel in FD; and the other one in TD. To perfectly tune the
filter, a repeated process of setting the VNA’s center frequency to each node frequency was
a mandatory step for reaching the maximum dip level. The need for changing the center
frequency from time-to-time restricted the implementation of this sequential filter tuning
methodology in the industry.
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Another sequential tuning method, based on the Neural Network (NN), was presented
in [30]. In this work, the authors presented a NN inverse model for mapping the S-param-
eters of a cross-coupled filter to the corresponding tuning screw position. So, ‘N’ inverse
sub-filter models were built for N number of tuning elements (i.e., resonator cavities; the
inter-resonator couplings; and the cross-couplings). For collecting the training vector set
for the NN architecture, each tuning element of a perfectly tuned physical filter was made
to detune slightly in both directions. The collected training vectors were limited to reflected
S-parameters of the input side only, but they could be extended to other parameters as well.
A 3-layered (input-hidden-output layers) Feed-Forward (FF) architecture was used in this
work. Since only one sub-filter was taken at a time, the output layer had only one neuron.
The trained ANN could provide the amount of adjustment needed to tune the sub-filter
under consideration, and then the next sub-filter was considered. The tuning direction was
proposed to propagate from the I/P side to the O/P side of the filter. But the need for a vast
number of datasets for training purposes limited the implementation of this method at the
industrial level.

2.3 Filter Tuning Based on Filter Diagnosis

The filters we see today are based on the initial model proposed by Atia and Williams in
the 1970s [31] and can be expressed in the form of a Coupling Matrix (CM). CM reflects
GD as well as the magnitude of the filter’s frequency output response. The elements of
CM have a one-to-one correspondence with tuning elements and can assist in the filter
tuning process. So, filter diagnosis (i.e., extracting the CM elements) is an essential and
crucial step for effective tuning of a filter. The difference between the desired CM and the
extracted CM can determine the tuning direction as well as the magnitude of turn needed
for each tuning screw. The desired CM is an ideal CM that meets the stated requirements
with a realized topology. For filter diagnosis, various techniques have been proposed in
the literature. They are based on following methods: 1) Location of Poles and Zeros of the
Input Reflection Coefficient; 2) Admittance Parameters (Y-Parameters); 3) Vector Fitting
(VF); 4) Cauchy Method; and 5) Optimization process for CM extraction. All these tech-
niques are described sequentially in the following sub-sections.

2.3.1 Filter Diagnosis Using the Location of Poles and Zeros of the Input Reflection
Coefficient

During the implementation of this technique, all tuning screws are initially inserted deeply
within the filter cavities (also called ‘shorting’) to bring a large difference between the ini-
tial frequency response and the desired response. This methodology allows the use of polar
plots for tuning. While attempting to tune the filter, the polar display of VNA is observed
until the reflection coefficient starts to appear as a ‘spot’. During this time, the frequency is
swept many times the bandwidth (around the desired center frequency), and then the phase
reference plane is adjusted to find the best spot on the sweep. The phase reference plane is
subsequently modified to locate the optimal location on the sweep after the frequency is
swept numerous times the bandwidth (around the intended center frequency). This is then
considered the reflection coefficient’s *zero’ or ‘reference’ position. Only after performing
this calibration process, the tuning procedure is initiated.

In [32], a CAT algorithm based on regular network functions of an equivalent filter
circuit was presented to find the relationship between filter response and tuning screw
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depth. The developed model could provide the compensation matrix (also called correc-
tion matrix). Finding the locations of poles and zeros, and tuning direction was based on
the phase of the input reflection coefficient (with short-circuited output). It is important
to mention here that in the case of direct measurement, the definition of poles and zeros
refers to 0° and & 180° phase-crossings of the input reflection coefficient. However, the
major limitations of the work presented in [32] were: the strongly detuned filters could
not be tuned; the proposed algorithm could provide assistance in the tuning phase but
the actual tuning was to be finally performed by a human operator; removing the ‘short’
and correspondingly connecting the absorber was an important step to tune the last ele-
ment (which earlier was ineffective due to shorting); and the authors neglected the fur-
ther tuning of the filter once the tuning was in the acceptable tuning range (i.e., even if
the filter was still not perfectly tuned at that state).

To avoid the cumbersome method of finding the location of the poles and zeros using
phase crossings of 0° and 180°, a filter diagnosis method based on FD was presented in
[33]. This work was a generalized form of the work presented in [20]. In [33], after per-
forming the calibration task, the resonant frequencies and inter-cavity couplings of the
cascaded coupled resonators were determined. By comparing the extracted values with
the measured values, the desired frequency response was obtained. This method was
suitable for tuning the cross-coupled cascaded filters. However, the proposed method
was not capable of providing a convergent solution when the resonant frequency of one
resonator was strongly dependent on the neighboring resonators. Therefore, the method
was limited to lower-order filters only.

The work in [33] was extended in [34], where phase-loading effects were also
removed for accurate filter tuning. Closed-form recursive formulas for determining the
resonant frequency and inter-cavity couplings (using an equivalent-circuit model) were
provided in [34] and [35]. The authors of the publication [34] used a modified equiva-
lent-circuit model, while the authors of [35] used symmetrically bisected networks (sin-
gly terminated). As in [24], the phase-derivative w.r.t. frequency (i.e., GD) was used in
[34] and [35] for determining poles and zeros accurately. In [24], GD information was
used for co-relating coupling values between the physical model and the circuit model.
The use of phase-derivative removed the phase-loading effect unintentionally in [34,
35], and [24] but it was not systematic. For quick reference of the reader, while simulat-
ing GD, ‘poles’ are the values of frequencies at which phase-derivative is minimum.
And, correspondingly, where the phase derivative value is maximum, are the ‘zeros’.
The authors of [34] and [35] provided design examples and measurement examples to
demonstrate the effectiveness of their method. However, the main shortcomings of [34]
and [35] were: the effects of phase-shift and losses were not discussed; both these meth-
ods relied on a mathematical model that was not exact; the method was limited to cas-
caded and symmetrically coupled filters only; and there was a requirement for having
an additional transmission line at the O/P or I/P port of the filter because the reference
plane for phase-measurement was not easily accessible. Due to these limitations, both
methods were unsuitable for practical use.

Similar to the methods discussed in [34] and [35], the CM extraction method presented
in [36] also needed an additional transmission length. By using information about the loca-
tion of poles and zeros, a simple computer program was developed. The method in [36]
was implemented on directly coupled Dielectric Resonator (DR) filters. The concept of
using ‘coupling matrix rotation’ was presented for the first time in this publication. The
Q, value of the resonant cavity (i.e., the loss for each resonator) was consistent in the CM
extraction process. However, it was restricted to specific filter topologies only.
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2.3.2 Filter Diagnosis Using Admittance Parameters (Y-Parameters)

When connected to a measurement device (usually a VNA), the output obtained from MW
filters is in the form of scattering parameters (abbreviated as S-parameters). But some
researchers proposed the conversion of these S-parameters to Y-parameters for tuning the
filters. The reason for this conversion can be attributed to the fact that Y-parameters are
more accurate; are in dimensionally reduced form, and their model sensitivity is better. The
poles and residues obtained from the transfer function of Y-parameters can then be synthe-
sized easily to fetch the corresponding CM by the techniques proposed in [37] and [38].

The analytical method of extracting CM using partial-fraction expansion of the
Y-parameters was investigated in [39] in which poles and residues were used. This method
did not need extra calibrations for determining the loading effects. The notion of constant
phase-loading was introduced in this paper; however, it was not explained how to deter-
mine the constant’s value. In addition, a very basic procedure for the extraction of Q, was
presented, and the application of this method was limited only to lossless cases. Later, these
problems were addressed in [40] but the authors of [40] mainly introduced the concept of
phase-loading and only provided the basic procedure of extracting unloaded Q value.

The concept of phase-loading introduced in [39] and [41] was later explained in terms
of theory and implementation (mathematical model as well as the analytical formulas) by
the same authors in [42]. The CM extraction method presented in [42] was appropriate for
lossy filters with non-uniform Q,. This work provided information regarding de-embed-
ding techniques for unknown transmission lines section and dealt with the degenerate
poles in terms of Y-parameters. The process was deterministic without needing any initial
guess of the value. The proposed algorithm could determine the tuning element responsible
for detuning, but the main limitations of this work were: the method could not deal with
Source-Load (S-L) coupling of the filters; the procedure for phase-shift removal required
careful selection of frequency samples; the method was applicable mainly to low-loss fil-
ters only as the poles were not easily distinguished from the magnitude of Y-parameters;
even if the method had been proposed for filters with non-uniform Q, values, the imple-
mentation was restricted to filters having nearly the same Q, (i.e., short range of variation
only); and the assumption of having ‘pure real residues’ for the system while fetching the
‘imaginary portion of poles’ of the Y-parameters limited the use of this method. This is
because such an assumption is not true for filters with non-uniform Q values.

To overcome two major limitations of [42], that is, to avoid the need to deal with degen-
erate poles of Y-parameters; and to deal with S-L coupling, the researchers proposed
another method in [43]. The method presented in [43] could deal with the lossy cross-cou-
pled BP filters and could also avoid the noise issues that occurred during the measurements.
Characteristic polynomials were obtained using the S-Parameters based Cauchy Method
(discussed later in sub-section ‘4a’ of this paper) after removing the phase-shift effects of
the measured S-parameters. These phase-shift effects were caused by the unknown length
of the transmission lines at I/P and O/P ports. Then, these S-parameters were converted to
Y-Parameters (having normalized characteristic impedance) using standard conversion pro-
cedures presented in [44] for obtaining the CM and unloaded Q,. However, in [43], the O,
factors were inaccurately obtained and hence the process was inefficient.

To increase the efficiency of the CM extraction process, the Y-Parameters-based Cauchy
method [45] (discussed later in sub-section ‘4b’ of this document) was used to obtain the
characteristic polynomials of a lossy cross-coupled filter. The method in [45] was capa-
ble of being used for filter tuning as it did not require the removal of filter losses while
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extracting the CM and uneven Q, value of each resonator. However, the main limitations of
this work were: the phase-shift still needed to be removed, and this method required careful
selection of frequency points for finding an accurate CM, which restricted the commercial
usage of this method.

2.3.3 Filter Diagnosis Using Vector Fitting (VF)

Vector fitting [46] or its modification [47] uses a measured or numerically simulated filter
response to create reduced-order models. The approximate rational function polynomial
generates a partial fraction expansion form instead of directly fitting the data into polyno-
mials, and VF guarantees the stability of poles and zeros (as they are iteratively identified).
So, the researchers tried to use this methodology in the field of MW filter tuning.

A diagnosis method for the synthesis of Y-parameters of lossy cross-coupled filters with
a transverse network model was presented in [48]. The method could identify the posi-
tion of poles and residues of obtained Y-parameters. The real part of the obtained complex
poles provided all the information regarding the approximated uniform Q-factor, while the
residues of partial expansion of the Y-Parameters were assumed to be real. The authors of
this method just talked about the diagnosis of filters with S-L coupling but did not present
any examples to justify it. Another limitation of this work was that Q, was assumed to be
constant. Such an assumption is not correct for commercial communication filters.

To deal with lossy filters with uneven Q, values, researchers proposed another method
in [49]. The method could provide accurate Q, values and could also extract complex
poles and residues. To do this, the rational polynomials for a general practical filter were
solved in terms of Y-parameters by using measured or simulated S-parameters. However,
the main issues with this research were: frequency samples could be specified only on the
positive side; inclusion of error occurred while performing BP to LP transformation of the
obtained poles and residues, and obtaining these complex poles and residues was an itera-
tive procedure.

2.3.4 Filter Diagnosis Using Cauchy Method

‘Simple Cauchy Method’ is a fast, accurate and convenient technique for converting meas-
ured or simulated S-parameters of lossless, reciprocal 2-port passive devices to reduced
ordered rational functions (i.e., interpolants or extrapolates) [50]. It is possible to use the
reduced number of data samples for such conversion [51]. Starting from the BP response,
these rational functions are further used to generate a polynomial model in the normalized
LP frequency domain (having the minimum order of the model and minimum error) [52].
The number of resonators and the total number of TZs are the ones which are respon-
sible for deciding the degree of characteristic polynomials. The Cauchy method uses
a Vandermonde Matrix for converting the systems of equations into a simplified matrix
form. But unlike other passive devices, for MW filters, two sample sets, i.e., (S;,(f)) and
(S51(H) (wherein f being the frequency variable) are fitted simultaneously. According to
filter theory in [53], both these S-parameters should share a set of common poles (building
two independent models is not the optimal way because some useful information might get
lost or not fully exploited). Thus, to deal with MW filters, the ‘Simple Cauchy Method’
was modified by research community for considering both the sample sets simultaneously.
Some authors used a special polynomial *K(s)’, also known as a characteristic function
or filtering function. This K(s) is the ratio of Transmission Zero (TZ) to Reflection Zero
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(RZ). In general, the use of K(s) ensures that the sets of zeros are independent of losses
in the filter. This ‘Modified Cauchy Method’ has been termed as *Cauchy Method’ in this
document.

It is important to note that for solving the systems using Cauchy Method, the technique
of Total Least Square (TLS) [54] is often used in conjunction with Singular Value Decom-
position (SVD). The use of TLS ensures optimum solution when the matrix of a given
system is noisy, and the use of SVD makes the method capable of solving over-determined
systems. Usually, the characteristics of polynomials are solved using a two-step procedure.
In this two-step procedure, the numerator coefficients of the polynomials are obtained in
the first step using TLS and/or SVD. Then, in the second step, Feldkeller’s equation (which
is an energy conservation equation) is used to find the common denominator coefficient.

For filter diagnosis, researchers have proposed two variations of the Cauchy methods.
They are—a) S-parameters based Cauchy method, and b) Y-parameters based Cauchy
method. The publications published under both methods are discussed below sequentially.

2.3.4.1 S-Parameters based Cauchy Method In [55], both (S,,(f)) and (S,,(f)) were simul-
taneously used for finding the filter model. While obtaining the CM, the authors also con-
sidered the S-L coupling coefficients. In this work, TLS was used to solve the system, but
the main limitations of this research work were—the stability of the rational model was
not guaranteed; there was no constraint on the behavior of the model outside the frequency
measurement band; and this work was limited to modeling the filter only (i.e., did not con-
sider filter tuning within the scope).

Later, the methodology proposed in [55] was used to assist in filter tuning in [56]. A
fast algorithm based on model optimization had been proposed in this work, where the
researchers could generate the polynomial models of S-parameters by using a two-step
procedure. The authors of [56] used a special polynomial ratio i.e. K(s) instead of using
normal S-parameters. After extracting the model, the algorithm approximated the sec-
ond-order effects on the response of the filter and eventually derived two different CMs
(including S-L coupling), i.e.: a) Extracted CM; and b) Objective CM. After comparing
these matrices (in every tuning iteration), the Jacobian Inverse of the obtained error vec-
tor related the circuital errors with the physical deviations of tuning screws. The method
proposed in [56] used the ‘Simple TLS Method’. After using TLS, the use of SVD solved
the over-determined system. Finally, CM synthesis was done using analytical methods, and
this method could tune cross-coupled filters. The main limitations of the work presented
in [56] were—the very simple design was chosen for validation; initial adjustments were
made; the method required lossless measured data; the proposed method was unable to
determine the amount of loss in the filter; the use of K{(s) required posterior reconstruction
of common poles; and the method was limited to no or low loss filters only (as lossless
Feldkeller’s equation had been used).

The work presented in [57] is an improved version of [56] and could extract the char-
acteristic polynomials of lossless and lossy filters. The numerators and denominators were
solved in one step only in this research work. The key differences between [56] and [57]
were—the authors of [57] used the *Constrained TLS Method’, and [57] did not consider
the polynomial ratio of K(s). The main limitations of the work presented in [57] were:
the proposed method could not diagnose the filters having S-L coupling; the second-order
effects (i.e., the presence of spurious pass-bands as well as the frequency-depending cou-
plings) could not be dealt with; the lossy polynomials given by this method were not apt for
the synthesis of lowpass prototypes using the well-established techniques in [37] and [38]
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(because phase-shift is included when raw data of S-parameter measurements are used);
and, the TZs were not realizable.

To overcome the limitation of [57], a special condition for having realizable TZs pre-
sented in [58]. In [58], the forward transmission coefficients (i.e., S,;) alternated between
pure imaginary and pure real values. The model proposed in [58] was a reduced-order
model and was independent of the type of measurements (i.e., lossless or lossy measure-
ments). In addition, the method could synthesize the lossless circuit model from the meas-
ured data of a lossy system. The combination of TLS +SVD was used to obtain polynomial
characteristics (as was used in [56]) to obtain a good match between the measured val-
ues and the model values. However, to find this good match, this method required careful
selection of the frequency points (i.e., frequency points close to the desired passband, as
the presence of second-order effects may reduce the accuracy). Furthermore, the research-
ers used constant Q, values in this work. But the methods proposed in [57] and [58] could
deal with low to moderate loss filters only (but not the commercial filters) and be limited to
filter modeling only.

The methods proposed in [56] and [57] were tested for the tuning of GSM filters in [59].
The equations were solved using TLS+SVD (as in [56] and [58]) and then Feldkeller’s
equation was used to find characteristic polynomials. This method could successfully iden-
tify the detuned elements by comparing the extracted CM with the desired CM using the
characteristic function K(s). The desired CM was obtained using a golden filter unit. But
during the CM synthesis process, matrix rotations [60] were needed. The use of the golden
unit was also important in determining the tuning sequence on Device under Test (DuT).
The main benefits of this whole process were—no optimization was required after synthe-
sizing the CM, and a minimal amount of pre-tuning was needed. However, the method was
limited to the pre-tuning stage only.

To increase the capability of the methodology presented in [56-58], and [59], that is,
to also consider lossy filters, the researchers proposed a method in [61]. In this work, the
characteristic polynomials corresponding to the lossy S-parameters were extracted using
measured or simulated data. The filtering function K(s) was used in [61] and the effects of
losses were removed by shifting the poles and zeros of K(s) to find a lossless model or loss-
less polynomials as the first step. In this work, the characteristic polynomials were found
using a two-step procedure. SVD was initially used to solve the system matrix, and then
Feldkeller’s equation was used to obtain the rational functions in the second step. General
CM was synthesized using [38], but the final CM was then extracted using eigenvalue-
based optimization [62]. From the extracted CM, the proposed method could provide the
external quality factors (i.e., Qpyp) and the unloaded Q (i.e., Q,). However, in [61], all reso-
nators were assumed to have the same Q, and the method was restricted to low loss filters
only.

To overcome the limitations of [61], i.e., to accurately deal with the filters with large
losses, the researchers proposed a method in [63]. The authors of [57] also talked about
removing losses from the extracted polynomials, but the process proposed by them was
slow or had lower accuracy. The method presented in [63] used a modified BP to LP
transformation from the frequency domain to the normalized lowpass domain i.e., from
f-domain to s-domain (including losses defined by Q,,) for extracting the CM. This transfor-
mation provided a lossless response of the filter by shifting the roots of lossy polynomials
to the right-hand side of the s-plane. From this lossless response, CM was extracted. Again,
K(s) was used and the three characteristic polynomials (i.e., F, P, and E) were solved with a
two-stepped procedure. Numerator polynomials F and P were obtained using TLS +SVD.
Then, in the second step, Feldkeller’s equation was used to find the denominator E. The
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application of Feldkeller’s Equation was better as compared to the ones used in [57] and
[58] (as they have F and P in normalized lossy domain with some approximations in Feld-
keller’s Equation). With the method presented in [63], losses associated with all the resona-
tors in a filter could be obtained, and there was no need to apply the de-embedding tech-
niques presented in [42]. However, the main limitations of the method presented in [63]
were: the method was again limited to cases where O, was the same for all resonators (i.e.,
uneven Q effect was not handled effectively); this method failed to diagnose filters pos-
sessing the S-L coupling; this method could not deal with second-order effects (i.e., the
presence of spurious passbands as well as frequency-dependent couplings); and phase-shift
effects were not considered.

It is important to note that for extracting an accurate CM, the phase-shift effects need
to be removed. Phase-loading and transmission lines at the filter’s I/P and O/P ports are
the sources of phase-shift effects. The widely used CM synthesis method presented in [38]
doesn’t provide a correct CM unless the phase-shift effects are not removed. In this regard,
some methods, such as those presented in [34, 35] and [42] were proposed for phase-shift
removal. To remove phase-shift effects, the methods presented in [34] and [35] required
additional transmission lines, while the work presented in [42] needed careful selection of
frequency samples, and therefore these methods could not be used practically. Other meth-
ods where phase-shift effects were removed using GA (Genetic Algorithm) optimization
were then presented in [64, 65], and [66]. The use of an optimization routine could improve
the accuracy of CM and Q values.

To remove the phase-shift effects and to obtain Q, values, the authors of [64] used
3-parameter optimization; researchers of [65] presented a 5-parameter optimization pro-
cedure (characteristic polynomials are solved in one step using the method presented in
[57]); and then, the authors of [66] used a 6-parameter optimization procedure (in two
stages). The authors in [64] didn’t consider the effect of the presence of S-L coupling at
all, but this effect was later considered in [65]. The work presented in [66] is an exten-
sion of the reference [65] where S-L coupling was handled specifically for the case when
the number of transmission zeros is equal to the order of the filter. In all these methods
(i.e., in [64, 65] and [66]),,the common things were: a) the modified BP to LP transforma-
tion presented in [63] was used for converting the measured or simulated S-parameters
from the f-domain to the s-domain; b) after removing the phase-shift, the characteristic
polynomials were obtained in one step using [57] by simultaneously solving the system’s
equations using TLS 4+ SVD; c) for meeting the accuracy levels, all these methods needed
the frequency samples to be chosen near the passband; and measurement of noise was not
necessary. Having the samples far from the passband may lead to poor accuracy because
of the second-order effects; d) all the methods presented were simpler than the ones pro-
posed in [42] as there was no need to deal with degenerated poles of the Y-parameters and
they didn’t require any additional Transmission Lines (TL) as was needed in [34] and [35].
However, the authors of [64] and [65] assumed the same value of Q, for all resonators.
The assumption of having the same Q, was removed in the second stage of the optimiza-
tion of [66], but this methodology was complicated, and it needed a lot of time to reach
the optimal solution. Furthermore, the convergence rate of GA is slow when variables are
approaching the solution.

To further increase the accuracy of [66], a different variation of the Cauchy Method
was proposed in [67]. For obtaining an accurate lossy CM, the Differential Evolution
(DE) optimization was used, wherein uneven Q, and non-ideal effects were taken as the
unknown parameters to be optimized. DE was found to be fast in converging and was accu-
rate as compared to GA (as there were fewer parameters in DE which needed adjustment).
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In addition, the initial values did not have a great influence on the final results. In addi-
tion to GA, the authors also implemented Particle Swarm Optimization (PSO) to prove the
effectiveness of the proposed method. The method also presented the relationship between
non-ideal and ideal S-parameters (the non-ideal effects were obtained using [42]). The BP
to LP transformation was different as compared to [51] for finding the model of the lossy
polynomial. In the used transformation, the resonator loss effect (by uneven Q,) was not
considered. The measured S-parameters were transformed to ideal form. In this work, K{(s);
TLS +SVD; and Feldkeller’s equation were used to find characteristic polynomials. Later,
CM (with losses included) was synthesized from the characteristic polynomials. However,
this method assumed that the forward and reverse characteristics were equal, which is not
true for highly detuned states. Furthermore, Feldkeller’s equation was not suitable to find
the characteristic polynomials.

A different variation of the Cauchy-based method was proposed in [43], which allowed
the filter diagnosis (while also considering S-L coupling) with the help of Y-parameters.
In this investigation, 05 complex coefficients were solved in one step using SVD. Initially,
S-parameters were used to obtain the characteristic polynomials after removing the phase-
shift effects with the help of 4-parameter GA optimization. These characteristic polynomi-
als later helped in calculating the Y-parameters and then CM was extracted for the desired
filter topology. The method could deal with uneven Q, filters, but the Q, factors were not
accurately obtained using this method. Furthermore, this research was restricted to the S;;
and §,; parameters only.

The method presented in [68] considered the measurement of S;;, S,;, and §,, data
together for the first time and could deal with uneven Q,, filters. A point to note here is that
the non-reciprocal nature of the filters is not affected by considering the lossy effects, which
implies that the condition S,; =S, still holds. In this work, the Y-parameters were used to
determine rational polynomials, and those Y-parameters were converted to S-parameters
using standard formulas for finding the coefficients. Then, by using TLS +SVD, the CM
was obtained by performing a few matrix transformations presented in [69]. The imaginary
part of the CM provided information about the level of power dissipation, while the real
part of the CM indicated the current coupling values. For mapping, the BP response to
the corresponding LP prototype domain, the transformation presented in [61] was used.
However, the method was complex and time expensive as it needed the calculation of the
positive scaling factor also.

The S-parameters-based Cauchy methods could not provide the solution to the funda-
mental problem of having a CAT system. Hence, some authors tried working with Admit-
tance parameters (Y-parameters) based on Cauchy methods to come up with the solution.
Such research works are discussed in the next sub-section of the paper.

2.3.4.2 Y-Parameters Based Cauchy Method The Y-parameters have reduced dimensions
and offer enhanced stability in extracting the CM. Unlike the case of use of the S-parameters
based Cauchy Method (like the ones discussed in the previous subsection), we do not need
to deal with the removal of filter losses while extracting the CM and uneven Q,, value of each
resonator when Y-Parameters are used.

In [45], the Cauchy method was used for the first time exclusively in terms of Y-param-
eters (i.e., conversion to or from S-parameters was not required). This analytical method
could deal with filters with uneven Q, for each resonator. The characteristic polynomials U,
V, and W were obtained in one single step. While the CM and uneven Qu were extracted,
the filter losses were not to be considered separately. Poles and residues could also be
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obtained in just one step only i.e., iteration cycles were not needed. However, even in case
of the use of Y-parameters, the phase-shift still needed to be removed, and this method
required the frequency samples to be chosen near the passband for accurate results.

2.3.5 Filter Diagnosis Using Optimization

The basis of this filter diagnosis technique is to optimize the defined circuit model’s param-
eters to ensure that the response it produces matches the intended response. The main idea
is to compare the parameters between an ideal filter and those that are extracted from a
filter model (or from a real filter). By comparing these parameters, the tuning element(s)
which is(are) responsible for the detuning can be identified and the defined objective func-
tion (error function) is minimized at the sampled frequency points. The process continues
until the error between the ideal and measured/extracted coupling elements is reduced to an
acceptable value. This methodology allows for the tuning of all elements simultaneously,
and the error is compensated at each iteration.

In [70], a method was presented to determine center frequencies and coupling coeffi-
cients using element optimization routines. Initially, the filter response was measured, and
then an optimized circuit model was generated using network element values to meet the
measured filter response. This optimized model helped to perform the diagnosis and align-
ment of the filter. The process was repeated until the desired filter response was achieved.
The major drawbacks of this approach were that the method was: a) iterative (hence time-
consuming); b) needed precise calibration and previous characterization; and c) it could
not be generalized to different filter topologies.

In [16] and its extended version [71], the researchers presented a tuning algorithm based
on an approximated/equivalent network representation that consisted of lumped elements.
The representation was derived using the prototype network model presented in [53] (as
one of the examples) and the model investigated the effects of I/O couplings. The values
of lumped elements were obtained using standard filter tables for deriving the models, and
resistive elements were used to include the losses. The model values were extracted from
S-parameters using gradient-based optimization. The optimization routine was aimed at
minimizing the Mean Squared Error (MSE) between the measured and simulated responses
at the selected frequency points in [16] and [71]. Variations of the S-parameters were
assumed to be linear w.r.t. frequency. The algorithm could provide optimized tuning ele-
ments and correct tuning screw positions using another gradient-based optimization. How-
ever, the major pitfalls of [16] and [71] were—there was a need for pre-adjustments and the
careful selection of initial values for optimization. The response of the DUT needed to be
close to the desired response, and only the magnitudes of the S-parameters (i.e., S;;, S,;
and §,,) were considered when implementing this method.

Instead of using an equivalent network as in [16] and [71], the researchers proposed the
direct use of generalized filter prototype models for parameter extraction in [72] and its
extended version [73]. The method presented in [72] was limited to direct-coupled filters
only, whereas higher-order and cross-coupled filters were also considered in [73]. Both these
research works ([72] and [73]) considered the magnitude and phase of the S-parameters. The
phase shift by the I/P and O/P probes was modeled by adding transmission lines on both sides
(I/P and O/P sides) of the filter (which is not possible when EM simulations are used). This
non-linear gradient-based optimization could minimize the MSE between the extracted and
desired responses. The values of the extracted parameters were then used to adjust the tuning
screws. After the sensitivity analysis, the optimal parameter values were finally found using
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another gradient-based optimization procedure. However, this method needed a pre-tuned
filter whose response (S-parameter response) was quite close to the ideal response, i.e., pre-
tuning was important.

Later, in [74] and [75], the researchers used the Model-Based Parameter Estima-
tion (MBPE) technique [76] for reducing the frequency-domain response of the measured
S-parameters to the corresponding polynomial coefficients to obtain TZs and RZs. The key
idea of using MBPE was to minimize the cost of measurement and computation (to acquire
and represent the frequency response) within the specified frequency range. The concept
of using a constrained search minimization routine (i.e., sequential quadratic programming
(SQP) [77]) was used for filter diagnosis and tuning in [74] and [75]. The locations of the RZs
and TZs were determined and then optimized using multilevel optimization, but the ripple
losses and return losses of the filter were not considered in either of these research works. The
method of TLS based on SVD had been used for handling the overdetermined system (lin-
ear), which made the method insensitive to the noise in measurements. In [74], the measured
S-parameters were approximated using a polynomial ratio with real coefficients, but the ratio
was not accurate. The ratio (and henceforth the modeling) can be accurate only when the poly-
nomials have a complex coefficient. In addition, [74] did not investigate the diagnosis and tun-
ing of a real/measured filter. In [75], the researchers used an adaptive frequency sampling (for
MBPE) that was sensitive to parasitic effects. The rational function model of the S-parameters
was built and then CM was extracted. This led to error diagnosis and filter tuning of lossless
or low loss filters based on the estimated lumped-element model and multi-level optimization.
But methods proposed in [74] and [75] were restricted to limited solutions because they relied
on pre-tuned filters whose frequency response was quite close to the ideal response (ensuring
that the system wasn’t trapping into local minima). Consequently, this method failed to pro-
vide the correct solution for actual filter tuning.

The non-linear optimization algorithms presented in [16] and [28] could provide infor-
mation about the detuned parameter and the amount of detuning. The solution in [16] was
implemented in the filter production line of Tesat-Spacecom GmbH & Co. KG. But many
multi-level parameter optimization cycles were needed, which made this process time-con-
suming; and the methodology could be implemented only on low-ordered filters with simpler
topologies.

In [23], pattern search optimization was needed to optimize the singularity of the filter
transfer function. A model was used to find the resonant frequencies and the inter-cavity cou-
plings. This was the first CAT method presented to tune the MW filters. But the method was
quite basic and time consuming.

The method presented in [23] was later used in [33] to find the optimized values of res-
onant frequency and inter-cavity coupling at the specified number of frequencies. But this
method was also suitable for lower-order filters only.

The ROBOCAT presented in [11] relied on the Coupling Matrix (CM) extraction process
for filter tuning. The method of phase cloning was used in conjunction with the time domain
to come up with this non-linear optimization-based tuning method. But the process was also
quite time-consuming and had other limitations that were presented earlier in this review

paper.
2.4 Space Mapping (SM)-Based Filter Tuning

Application of the Space Mapping (SM) technique in the field of MW filters can be
traced back to the year 1994 [78] when EM optimization problems were solved using this
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approach. Later, the research community also presented an advanced version of this tech-
nique, i.e., Aggressive Space Mapping (ASM) [79] and Implicit Space Mapping (ISM)
[80]. For the convenience of the reader, the SM has been briefly recalled here. SM has
two separate models, where the physics-based model that is fast but has low accuracy is
called the ‘coarse model’; while the model that is computationally intensive and accurate
is termed as ’fine model’. The coarse model handles the burden of the main optimization
simulations, while the fine model is used for validation purposes. Iterative updates of the
mapping provide a quick and accurate matching between both models. Details of the SM
approach have been presented in [81]. A review of methods for reducing the differences
between the coarse model and the fine model by managing the preset parameters, and con-
tinuously optimizing the coarse model to reach the defined ideal target was presented in
[82].

In [83], the ASM methodology was used to tune a 04-pole waveguide filter based on an
electromagnetic model (EM). For practical applications, ASM is commonly used due to its
ease of implementation and simplicity [83]. However, such EM-based models are compu-
tationally heavy compared to the total time taken for the direct measurements, and thus are
not used for commercial filter tuning applications.

In [84], a simple SM approach presented in [85] was used for generating a ‘Compen-
sation Matrix’. This matrix provided the relationship between the CM elements and the
deviation of the tuning screw. The use of the SM approach helped in excluding the cross-
dependencies between resonators and adjacent couplings. Thus, the approach to itera-
tively finding the correct tuned state was improved. The inverse compensation matrix gave
access to the compensation effect. The coarse model had entries related to CM, whereas
the advanced fine model had information about tuning screw positions. This method
showed cross-dependencies between various adjacent elements, but this method assumed
a linear relationship between CM elements and tuning screw depth. Thus, the method was
restricted to simple and lower ordered filters only.

In [86], the SM technique was used to create a surrogated model for tuning the filter.
The mapping was iteratively updated to approximate the fine-model solution using a surro-
gate. The surrogate was established using an EM-based circuit simulation software named
ADS, while the fine model was a manufactured component. In this work, the tuning param-
eters were needed to be pre-set to acceptable reference values in the beginning. In addition,
the initial parameters of the surrogated model were taken from the datasheets as well as
from the theoretical aspects. Such a pre-characterization is not possible with the tuning of
real-world filters, and the simulation cannot completely establish the tuning rules for real
filters. These pitfalls limited the commercial use of this method.

To overcome the limitations of [87] and [86]; and also, to deal with unexpected vari-
ations in filter behavior, the authors in [88] used a circuit-based coarse model instead of
an EM model. This constrained surrogate model was established by combining an ISM-
based coarse model with a linearly approximated measured response w.r.t. tuning param-
eter change (i.e., change from the basis point). Then, the recursive multipoint parameter
extraction techniques proposed in [89] and [90] ensured the reliability of this surrogated
model as well as the uniqueness of the solution obtained from each parameter extraction
step. The robustness of the proposed approach was improved by simultaneously mapping
the response as well as its first derivative w.r.t. tuning parameters. Since the number of fine
model perturbations is directly related to the possibility of finding a unique solution, [16]
was used to add the perturbations when iterations failed. But this work considered only a
single basis point, and hence the model was not very reliable. Additionally, this algorithm
converged only when the basis point considered was close to the desired point.
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2.5 Filter Tuning Based on Sensitivity Analysis

The idea behind using the concept of Sensitivity Analysis in filter tuning is to find the
coupling model that can reveal the relationship between the tunable screws and the fre-
quency response of the filter. In 1945, Bode [91] highlighted the importance of having
information on network analysis. He showed that network sensitivity can be reduced by
feedback. Generally, sensitivity comprises the relationship between the change in the
defined function and its variable parameters. In the case of filter tuning, the function
could be a model to map the filter response when the positions of the tuning screws
were varied.

In [92], a CAT algorithm for MW filter tuning had been proposed. This algorithm
combined the use of sensitivity analysis and linear-search technique on MW filters for
predicting—the detuned component; tuning direction; and amount of tuning needed.
The authors of this work calculated the response sensitivity of each component (i.e., var-
iable component) at each specified frequency. This method was superior to techniques
involving the usage of pattern-search or sequential linear search. In [92], the adjustment
size was determined using a linear search. The procedure was to seek a different compo-
nent in every iteration until the desired response was achieved. But this method was not
aggressive as perturbations from only known values were considered. In addition, no
backup plan was presented in the event of a primary system failure. Thus, this method
could not be applied in commercial applications.

In [32], an equivalent filter circuit-based CAT algorithm was proposed to find the
relationship between the filter response and the depth of the tuning screw. The devel-
oped model used the combination of a compensation matrix and a sensitivity matrix for
tuning. The tuning criterion was derived using a method that depended on the phase of
the input reflection coefficient of a singly terminated filter. However, this method suf-
fered because—repeated sensitivity measurements were needed; pre-tuning/calibration
was mandatory to adjust the level of detuning of the elements (to a nearly linear state);
the strongly detuned filters could not be tuned; the presence of humans was inevita-
ble (to tune the filter); fine-tuning was needed to obtain reasonable solutions; and, the
method was based on a filter model which was not exact.

To avoid the complex processes of filter modeling, previous characterization and
calibration, another filter tuning algorithm based on sensitivity analysis was presented
in [93]. This algorithm used the Gauss—Newton solution of the equations to provide the
required adjustment as an output. The algorithm could be successfully implemented on
various filter networks that met the condition of having a linear relationship between fil-
ter response and the tuning element. However, such a linear relationship is valid for only
a small tuning range, and therefore this method was implemented only in the fine-tuning
stage (as the coarse tuning in this research work was performed using [19]).

Gradient-based optimizations were used in [16]—[73] to find the filter model values
from the measured S-parameters. An approximated network representation (consisting
of lumped elements) was presented in [16] and its extended version in [71] to come up
with a tuning algorithm. The research work presented in [72] and its extended version
[73] rather used the basic model proposed in [31]. The sensitivity of each tuning screw
was determined by the corresponding element value in the model. This mathematical
coupling model revealed the relationship between tuning screw position and the filter’s
response for CAT. However, pre-tuning was done before applying the proposed algo-
rithm in the selected frequency range, and hence the tuning range was restricted.
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A Y-parameter-based CM extraction method which was applied to lossless filters had
been presented in [42]. The authors of this publication advocated the use of Sensitivity
Analysis for all coupling elements present in the extracted CM. However, this step was
needed only in the fine-tuning stage, i.e., when the difference between the ideal and
extracted coupling elements was very small. Like in [42], the method presented in [86]
could also use the sensitivity information during the fine-tuning stages only.

2.6 Data-Driven Approach for Filter Tuning

When provided with abundant data, all the data-driven models like Machine Learning
(ML), Fuzzy Logic (FL), Artificial Neural Network (ANN), Support Vectors, etc. can
build the relationship coupling model between S-Parameters and screw deviations. The
performance of this obtained model is directly proportional to the amount of input data
and the method (or the algorithm) used. Data-driven methods usually consider the filter a
’black box’ and do not analyze the collected S-parameters. Thus, the ideal benefit of using
this approach is that, in this case, the error that occurs while generating the mathematical
model of a physical filter is eliminated.

In the following sub-sections, all data-driven approaches proposed for filter tuning
applications have been compiled sequentially.

2.6.1 Machine Learning (ML)

In [94], researchers tried to tune the waveguide filters using the ML approach, where the
pattern recognition algorithm and adaptive signal processing techniques were used. The
initial/coarse tuning was done by the human operators, and the final tuning (the fine-tuning)
was carried out with the help of adaptive combiners. While implementing this algorithm,
the features were collected both from a perfectly tuned filter; and from a filter that was
detuned by a known amount. This dataset (i.e., information about features and the amount
of detuning) was given as an input to a Recursive Least Square (RLS) algorithm. This algo-
rithm then estimated the weight factor of the Finite Impulse Response (FIR) filters attached
to adaptive combiners. These combiners were implemented using many FIR filters con-
nected in parallel. Consequently, the algorithm indicated the tuning element to be adjusted
and the amount of adjustment needed to be performed as an output. The proposed RLS
algorithm minimized the MSE for reducing the amount of detuning. The polar plot of S;;
was chosen as the basis of tuning as it contains information about the phase as well as the
amplitude of the signal. In each iteration, only the screw that generated the maximum error
value was adjusted. The proposed algorithm was robust in the sense that GD could also be
tuned with this method. Nevertheless, the major limitations of this work were: a skilled
technician was needed to tune the filter; the publication did not mention the amount of
calibration and other manipulations that were performed on all the coupling screws while
implementing this method; the influence of coupling screws was not investigated in this
work; this method did not provide the whole solution to the problem (as some tolerances
were ignored); and, the method could be used in the fine-tuning stage only.

2.6.2 Heuristic Filter Tuning (Derivative-free)

For avoiding modeling; sensitivity analysis; and, any kind of special measurement, the
authors in [94] used the combination of two derivative-free optimization-based methods,
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i.e., Simulated Annealing (SA) [95] and Direct Search (DS) [96] to tune the filter. SA was
used for pre-tuning and then DS was used during the fine-tuning stage. The tuning screw
positions were defined as independent variables in the optimization routine. For experi-
mentation purposes, the Intelligent Automatic Filter Tuning Tool (IAFTT) [97] was used.
But major limitations of this work were: the authors only considered the input reflection
characteristics (S;; parameter) of the filter as a tuning criterion and numerous repeated
turnings of the same screws were needed, which is unsuitable for having a CAT system.

2.6.3 Fuzzy Logic (FL)

Boolean/Classical Logic cannot be used directly in filter tuning applications because of the
complexity of this process. So, researchers tried fuzzy logic/sets for filter tuning applica-
tions. FL can help to have a comprehensive model which comprises 1) objective knowl-
edge (i.e., mathematical model and measurement data); and 2) subjective knowledge (i.e.,
rules based on expert information). In FL, the numerical data are interpreted as ’Linguistic
Rules’ where the membership value of ‘0’ implies that the element is not belonging to the
set and vice versa for the value ‘1°. The initial idea of using FL in filter tuning was attrib-
uted to the fact that technicians responsible for filter tuning in the industry use knowledge
such as ’Sets Theory’ to adjust coupling values. These technicians are experts in this task
and possess the sense of quickly observing the measured response they are seeing in VNA
to conclude the specific ‘Set’ to which this current coupling element belongs. This tech-
nique opened the possibilities of integrating measured data, theoretical models, and human
experience into one unique model.

When dealing with the problem of filter tuning using FL, the researchers proposed two
different kinds of methodologies. They are—a) FL without considering the human experi-
ence, and b) FL with human experience taken into consideration. Both these categories are
now discussed one by one in the following sub-sections.

2.6.3.1 FL without considering Human Experience While using FL, the S-parameters of
the filter at pre-defined frequency sampling points are given as input to the model. This
model then provides tuning variables as its output, which further provides us with a CM.
By comparing the generated CM elements with the corresponding ideal CM, the tuning ele-
ments which are responsible for filter detuning can be obtained.

In [98] and its extended version [100], the Mamdani type Fuzzy Logic System (FLS)
was presented (Mamdani type is referred to as the one in which centroid defuzzification
gives crisp outputs). The linguistic antecedents of the ‘if-then’ rules were the S-parame-
ters, while the linguistic consequences were the coupling elements. The authors set the /O
fuzzy sets with triangular membership functions. Training pairs helped in the CM extrac-
tion process, which further helped in knowing the de-tuned tuning elements. However, the
major drawbacks of this approach were the following: the method did not tell the amount of
adjustment needed; the method had difficulty in tuning higher-order filters and filters with
cross-couplings; since no iteration was performed once the FLS was ready, the method
required enough data pairs before building the FLS; and this method used two separate
FLSs for dealing with less detuned problems and highly detuned problems.

Different than the method proposed in [98] and [99], the method in [100] used only
one Sugeno type FLS for diagnosis and tuning of slightly detuned as well as highly
detuned problems (Sugeno type FLS is the one which is more flexible and uses a
weighted average of each rule’s output for the final output). In this research work, the
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Gaussian Membership Function was used. To minimize the number of ‘if-then’ rules,
and to find the center of every membership function, the subtractive clustering [101]
technique was used by the researchers, where each cluster defined a rule itself. The
designed FLS used S-parameters to generate the CM elements at the predetermined fre-
quency sampling points. CM elements helped identify the screw element that caused
detuning. However, the main limitations of this research work were—there was a need
to establish complex fuzzy logic rules; the proposed method was not effective enough
to reach the level of correct tuning state; and the experience of the technicians was not
taken into consideration in [98, 99] and [100].

2.6.3.2 FL with Human Experience Consideration The use of human-expert knowledge
for filter tuning was inevitable and was discussed in FL-based systems presented in [16,
102], and [103]. The intent behind using this approach was to model the filter as well as
the thinking process of experts while they are tuning the filters. Using human experience,
an intelligent, efficient, and fast-automated algorithm for tuning the filters was expected.

The authors in [16] presented a method in which the knowledge of a filter tuning
expert was used to propose a filter tuning algorithm for the first time. Human intel-
ligence was used as a Fuzzy Logic Controller. The First Order Sugeno type FLS pre-
sented in this work used Gaussian type membership functions and variable standard
deviations. The technique of Subtractive Clustering [101] had been explored for group-
ing the data pairs to several rules. The method could identify the tuning elements that
were the source of detuning, but in this work, only the return loss of the filter was used,
i.e., the §;; parameter. For the method to be successfully implemented, the learning data
required enough scenarios. But having all the possible scenarios is practically impos-
sible and hence this method failed to meet the desired objective. Also, the method was
restricted to the in-line topology-based lossless filters only, which again limited the
implementation of this process for tuning the real-world filters.

The filter tuning method proposed in [102] used a two-step tuning procedure: (1)
Coarse tuning; and (2) Fine tuning. On both these levels, fuzzy controllers were used
separately. During filter tuning, human intelligence was captured for the first time in
terms of linguistic ‘if—then rules’ by using triangular membership functions. The method
was quite similar to the one proposed by Ness in 1998 [24] where GD information was
used to tune the couplings and the resonating frequency (when all resonators were
shorted before tuning the filters). But in [102], the purpose of using GD was to measure
the phase offset before initiating the tuning process, and the phase response helped in
the ‘coarse tuning’ stage. The defined if—then rules helped the Fuzzy Logic Controllers
to initially ‘coarse tune’ and then ‘fine tune’ the filter. The authors of this method also
presented the possibility of adding more expert rules. The author had designed special-
ized hardware and software to enable complete automation of the project. Nevertheless,
this method was also restricted to lossless in-line configuration filters.

Later, a customized fully automated filter tuning system based on FL was presented
in [103], which used the same concept as in [102] but could deal with more complex
filter topologies. Similar to [102], linguistic ‘if-then rules’ with triangular member-
ship functions were also used in [104]. But the main limitations of this work were: the
method could not deal with resonator loss; the implementation was again limited to the
tuning of in-line filter configuration only; the solution could be used in limited condi-
tions, and there was difficulty in extracting the filter parameters. Therefore, this method-
ology could not be used in the industrial filter tuning process.
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It is important to mention here that in all the FL-based methods (i.e., [98]—[103]) pre-
sented above, extracting the CM was a must to tune the filters correctly.

2.6.3.3 Dynamic Fuzzy Logic The only thing that affects the accuracy of filter tuning with
FLS is the number of cases used to define the fuzzy rules. In [104], variable universe adap-
tive FL was introduced, which allows the universe to contract or expand. This helps in
overcoming this dependency and provides a reliable tuning scheme. However, each screw
had to be adjusted sequentially and progressively in order to achieve the desired frequency
response. The sequential tuning procedure suffers from error propagation as its main prob-
lem.

In another study [105], an innovative fuzzy logic system (FLS) was proposed that incor-
porated dynamic attention for improved performance. This approach offered the advantage
of adaptively regulating the evaluation function and modifying tuning goals in real-time,
all without requiring modifications to the existing set of fuzzy rules. The suggested meth-
odology also provided a precise, rapid, and efficient technique for tuning complex filters.
Nevertheless, it should be noted that this FLS had limitations in terms of its capacity to
autonomously learn tuning procedures and adjust critical parameters during optimization
processes.

2.6.4 Artificial Neural Networks (ANNs) Based Filter Tuning

When talking about a multidimensional universal approximator for MW component design
and their tuning, ANNs are considered to be the most reliable ones. Using ANNs, the
unambiguous mapping between the S-parameters and the tuning screw deviation is built
to yield an inverse black-box model. ANNs can be trained using ‘training samples’ from
a properly tuned filter unit or a "golden filter’ unit. Later, using this trained inverse model,
raw (detuned) S-parameters can be given as input to the approximator, and the output will
be the individual tuning screw error (i.e., the deviation needed in tuning screws to meet
the desired filter characteristics). Research in this area is divided into two categories: a)
Supervised Learning; and b) Reinforcement Learning. The next sub-sections are dedicated
to these different approaches.

2.6.4.1 Supervised Learning In publications [106, 107], and [108], a Feed-Forward (FF)
ANN structure with a single hidden layer had been chosen as the network architecture. All
of these publications considered S;; characteristics to tune the filter and used IAFTT Robot
[97] for detuning the filter to collect training data. A common term, namely generalization
error (GE), has been used in all these publications, which refers to the ability of an ANN
structure to tune the ‘test elements’ even if those inputs were not used while training the
ANN. The smaller GE value ensures a better ability of the algorithm to tune the filter cor-
rectly. However, this further means that there should be a sufficiently high number (i.e., as
high as possible) of ‘training vectors’.

The use of ANN for tuning the MW filter was first presented in [106], where an inverse
model between S-parameters and screw deviations was built using a Back Propagation
(BP) FF-ANN. Researchers could analyze the generalization abilities of the model for the
case where learning vectors were extracted from one filter and the tests were performed on
other filters (but both having the same topology). Unlike [30], the samples were collected
randomly in this work. When detuned S-parameters were presented to the NN structure, the
proposed algorithm could provide the amount of tuning needed for all the tuning elements
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simultaneously. ANN, being a universal approximator, could tune the filter, but the algo-
rithm presented in this publication was very basic, i.e., almost all filters needed some fine
tuning (even some of the filters could not be properly tuned by the proposed algorithm).
Also, the analysis regarding the correct ANN structure was not studied.

The approach presented in [106] was extended further by the same author in [107] to
improve the generalization abilities of the proposed ANN structure with the usage of many
golden filters. This helped in preparing better quality training vectors to improve the over-
all efficiency of the ANN tuning algorithm, i.e., by reducing the GE. However, the main
limitations of [106] and [107] were—the generated model could not be updated in real-
time, the algorithm was required according to the filter topology; only cavities were tuned
while the couplings were fixed (i.e., the couplings were pre-tuned); and only S, character-
istics were used. In addition, just like [106], this work also didn’t analyze the correct ANN
architecture.

The scope of the work published in [106] and [107] was further expanded in [108],
where the authors presented an analysis of the structure of the ANN for FT applications.
In this work, the method for choosing an optimal number of frequency sampling point was
presented. Thus, the optimal number of input neurons needed to train the ANN structure
according to the selected topology was presented. After having the optimal number of neu-
rons, the following benefits were obtained: the ANN structure had been optimized and the
number of weights could be reduced; the GE was reduced; and the algorithm learning time
was improved. However, the inter-resonator couplings were assumed to be pre-tuned (as in
[107]) and only the cavity screws were tuned with this approach. This selective approach in
choosing the screws limited the use of this method commercially.

The use of PCA in ANN-based filter tuning (non-linear) was first presented in [109].
PCA helped in truncating the less effective data points and reduced the number of input
vector dimensions without downgrading the generalization ability of ANN. Another
method to reduce the number of neurons in the Input Layer of an ANN structure is to use
Wavelets [110]. The Daubechies Wavelet (D4) was transformed to compress the S-Param-
eters by shortening the ANN’s input vector length. By doing so, the ANN structure could
be trained faster, and the generalization ability was not lost. However, the Wavelet-based
technique was applicable to simpler ANN topologies only and cannot deal with higher-
order cross-coupled filters.

All the methods presented above were applied to simple filters or duplexers with a
clearly defined center frequency. Later, an inverse model was proposed to tune the filters
with different center frequencies was proposed for the first time in [111]. It had been shown
that the working signal must undergo a phase transformation (after performing the fre-
quency shift proposed in this work). Among the five proposed phase compensation meth-
ods, the 3-line method gave the minimum Root Mean Squared Error (RMSE). This 3-line
method was applied to model the phase-difference between the complex signals before and
after the change in frequency. This compensation was then used to tune variable-frequency
filters (i.e., the filters that can be tuned in a certain frequency range). This method could
provide better generalization abilities, but was again limited to the S;; parameter only, and
hence could not solve the fundamental problem of automatically tuning the filters.

2.6.4.2 Reinforcement Learning (RL) The use of RL in ML today’s models is inspired
by the learning process of animals. In principle, when an animal is given a reward (posi-
tive or negative) for doing a particular action, it triggers (and simultaneously trains)
its biological neurons. Then the animal tries to retake the positive actions to obtain the
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maximum amount of positive reward. This is how the trend is reinforced. The idea of
using this biology-inspired method in problem-solving algorithms had been made pos-
sible with the help of Neural Networks (NNs). The process itself is a Temporal Differ-
ence (TD) approach and was first presented in a mathematical sense in [112]. Later,
this mathematical approach was further developed in [113] and was named Q-learning.
The Q-learning ‘agent’ (i.e., the algorithm) works in an ‘environment’ (i.e., a simula-
tion environment). An agent explores the environment by taking ‘actions’ (i.e., possible
movements) and by entering different ‘states’ (i.e., inputs of the learning ANN model).
The agent simultaneously obtains the corresponding positive or negative ‘rewards’ (that
is, Q values) for entering that state. This is how better values of weights and bias of an
ANN structure are updated iteratively while the agent learns to maximize the positive
future reward.

The use of reinforcement for modeling of the filter tuning process was presented for the
first time in [114]. This work was motivated by the research work presented by DeepMind
[115] (which in itself was a modified version of [116]). In [115], it was shown that the
proposed algorithm could beat human experts in playing Atari games by learning those
games using ANN models. The authors in [114] simulated a 20-20-4 FF-ANN. This net-
work was used as a Deep Q-Network (DQN) and was trained using a Back Propagation
Neural Network (BPNN) algorithm. Before training, the use of PCA technique reduced the
dimensionality of input data. In the filter example, the authors used a 04-channel combiner
but considered only one channel of the combiner. The researchers used 02 main screws
(resonators) to test their algorithm. The major limitations of this research work were—1)
only S;; characteristics were considered; 2) the reward strategy was discontinuous and not
well defined; and 3) the solution often fell into local minima. Later, we (the authors of
this review paper) presented an optimal filter tuning method in [117] where the use of a
Lagrangian multiplier in DQN ensured that the DQN algorithm finds the Global Minima.
The algorithm presented in [117] was quick and efficient compared to [114], and a CNN
architecture was used in this work. However, this research work was also limited to S;;
characteristics only; and the reward strategy was not continuous.

Later, the researchers used the Deep-Deterministic Policy Gradient (DDPG) algorithm
to tune the filter in continuous action space. The authors of [118] included knowledge of
the controlled *Vector field” approach [16] for having a better reward function and good
generalization abilities. The vector field had been initially obtained by tuning all the screws
independently. The work in [118] considered 04 screws for tuning the filter with their algo-
rithm, but again, the key issue with this research work was that the authors limited the
scope of this work to the return loss characteristics of the filter only. Also, the decision
of step size as well as the idea of curve truncation while using a controlled vector field
approach was not straightforward.

We proposed another approach of using double deep Q-learning (DDQN) for filter tun-
ing in [119]. The use of the DDQN algorithm ensured that there was no maximization bias,
and the algorithm could learn the optimum strategy to tune the filter. The Locally Linear
Embedding (LLE) technique [120] was used in this research work for reducing the dimen-
sion of the collected data. This proposed algorithm was quick and accurate as compared to
other proposed algorithms based on RL, but this work was again limited to S;; characteris-
tics only.

Different from other ANN-based methods, Recently, the authors of [121] proposed a
method where §;; and S;, parameters were used together to correctly tune the filters. The
authors used a discrete reward function in their algorithm (as in [114]) and had used the
DDPG algorithm proposed in [116]. The outcome of their algorithm was provided by a
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DQN algorithm, but again, the method was restricted to lower-order filters only and cannot
be implemented on real-world filters directly.

In a recent study [122], researchers introduced a new approach that enables machines
to learn from human tuning strategies through continuous reinforcement learning (RL). To
gather training data, the authors employed a robotic system to collect information from one
channel of the combiner. Previous methods that utilized RL for filter tuning predominantly
relied on simpler reward functions. However, in their study [122], the authors conducted a
comparison of tuning performance and time using three distinct reward functions. Notably,
they observed that incorporating a reward function inspired by human behavior resulted in
reduced exploration and consequently improved system performance. However, the meth-
odology faced limitations due to its simplistic model and its ability to capture only the
vertical changes in the curve. Moreover, similar to other methods that rely on reinforce-
ment learning for filter tuning, this approach was constrained to a simulated environment
exclusively.

2.6.5 Filter Tuning Based on Neuro-Fuzzy System (NFS)

The method presented in [123] was motivated by [106], where the researchers wanted to
come up with a new multi-dimensional approximator for filter tuning application. The
idea of using Fuzzy Logic (Sugeno type) and Neural Networks hybridization was initially
proved to be a universal approximator for various applications by Jang in 1993 [124].
Such a system exploits the capabilities of ANNs to get the parameters of a FLS and pro-
vides—online-learning, fast learning, small computational complexity, and smaller errors.
In [123], the proposed adaptive network-based fuzzy inference system (ANFIS) structure
could map the S-parameters of a filter to the deviation of the tuning screws. This sys-
tem used a decreased number of learning vectors and also produced a smaller Learning
Error (LE) and Generalized Error (GE) compared to the GE value obtained when only the
ANN structure was used in [106]. However, in general, the method was presented only in
terms of the reflection coefficient, i.e., §;; and assumed the couplings to be pre-tuned. The
authors mentioned that the proposed algorithm could be used when forward characteris-
tics are used, but the consideration of main and cross-couplings was a must. However, the
pitfalls of this methodology were that the training process was time consuming, and the
model could not be updated in real-time.

2.6.6 Support Vectors Assisted Filter Tuning

Support Vector Algorithms are powerful even if they are based on tiny sampled statistical
theory for learning. Such algorithms can find an optimal solution (i.e., SVR-based models
do not fall into local minima) even by using a small number of samples, and hence are
advantageous as compared to ANNSs. Various researchers used this technique to come up
with EM-based coupling models that could aid in filter tuning.

For filter tuning, the first wavelet kernel mechanism model based on Least Squares
Support Vector Regression (LS-SVR) was presented in [7]. The LS-SVR technique is
apt to have a mathematical model when we have smaller samples of high-dimensional
nonlinear data. In [7], the authors came up with a model that deals with the relation-
ship between the change in the length of the tuning screw and the corresponding change
in CM. The major shortcomings of this work were: instead of measuring the screw
positions directly, the positions were rather approximated by solving the optimization
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problems; and some discrepancies always exist between an ideal model and a real prod-
uct. These two factors led to error generation and affected the generalizability of the
proposed model. In addition, the proposed method was limited to simple filter topolo-
gies only, where each output port could be considered separately.

In the case of devices with multiple output MW Filters, the traditional SVR approach
(like LS-SVR) is not effective enough as it treats every output separately. By treating
the outputs separately, the relationship between different outputs cannot be obtained.
Different LS-SVRs are needed to individually learn each output and correspondingly
improve modeling accuracy. The various Multi-output LS-SVR (MLS-SVR) algorithms
proposed by researchers in filter tuning applications have been described in the follow-
ing paragraphs.

In [125], by using Multi-Kernel Linear Programming Support Vector Regression
(MKLP-SVR), an efficient EM coupling model for filter tuning has been presented. While
human experts were performing the manual tuning of the filter, the data about the success
and failures of that tuning process was recorded. In this work, the researchers used exist-
ing knowledge of the S-parameters in terms of the corresponding CM discussed in [126] to
come up with this intelligent method. The model presented in [125] revealed the relation-
ship between the tuning screws and the electrical performance of the filter. To have a multi-
output regression model, they used multi-kernels and the method presented in [7]. For
extracting CM, the authors of this work used the technique presented in [48]. The method
proposed in [125] was effective and could even deal with cross-coupled filters of moder-
ate order. However, the main limitation of this research work was that the method relied
on expensive optimization routines to obtain the required amounts of deviations needed to
tune the filters.

Different from the MKLP-SVR model presented in [125], a hybrid modeling method
that incorporated prior knowledge and multi-kernels in LP-SVR, i.e., an MKPLP-SVR
model was proposed in [127]. In [125], the methodologies presented in [48] and [63] were
used for the extraction of CM. The data for training the model was collected from measure-
ments carried out during tuning process (and then there was even a possibility of expand-
ing the data by experiments or by a prior simulator model). The proposed methodology
was tested on an electrically tunable filter. However, the major shortcomings of this work
were—1) CM was extracted in an ideal state; 2) the approach does not provide an accurate
CM when the filter is in a highly detuned state; and 3) the criteria of model and hyper-
parameter selection for the algorithm proposed in this research work was not discussed.
To further increase the accuracy of the model with the shortage of data, another hybrid
MKPLP-SVR modeling approach was later proposed in [128]. It is important to mention
here that only the modeling technique was hybrid but not the methodology used (and for
this reason, the publications [127] and [128] are not listed in the category of ‘G. Hybrid
Methods for Filter Tuning’ (discussed later in this review). The authors of [128] advocated
the use of two models complementing each other, that is, a) the Coarse Model (empiri-
cal formulas or equivalent models), and b) the SVR model. The coarse models are fast
but are inaccurate. Hence, the SVR model was trained to learn and simultaneously correct
the difference between the two models. The proposed model could use prior knowledge
to improve the accuracy of the model and the extrapolation capabilities of the model even
outside of the training data. A 4-pole electrically tunable filter was used as an example
for validation purposes. But again, the approach presented in [128] could only provide the
S-parameters in terms of a CM (but not directly as S-parameters read from VNA, as was in
the case of [7, 125], and [127]). Also, all these methods, i.e. [7, 125, 127], and [128] were
suitable only when the filter was slightly detuned.
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To come up with a model for highly detuned filters, the authors of [129] used a pole-
residue-based Multi-output Least Squares Support Vector Regression (MLS-SVR) [130]
methodology. This method used the information about poles and residues as they are less
sensitive and more accurate than other rational coefficients. To obtain an accurate CM,
the input to the proposed algorithm was the changes in the length of the tuning screws
and the information about the frequency. And the outputs were poles or residues of the
Y-parameters (converted from S-parameters for reducing the dimensions and increasing the
accuracy) by using a modified version of the VF method presented in [47]. The extracted
CM considered phase-shift inconsistency as well as cavity losses. A full-wave EM simula-
tion software named ‘HFSS’ was used to generate the training data set. However, data from
software (physics-based EM models) generally does not reflect the exact tuning rules of
real-life filters. Also, the method was limited to be used with simpler filter topologies only,
which restricted the practical implementation of this method.

2.6.7 Linear Matrix Operator Based Filter Tuning

Unlike other data-driven model-based approaches, a methodology based on linear mapping
was proposed in [131]. Using the Linear Matrix Operator, the model could map the rela-
tionship between variations in S-parameters while changing the tuning screw’s height. The
samples used in this research work were collected using IAFTT [97]. The matrix to deter-
mine the linear mapping was determined with the help of the Least-Squares Method (LSM)
[132], and the approximation error was minimized in this work by using the procedure of
‘outliners elimination’. Eliminating the outliner helps to remove ’unsuitable’ candidates for
building the linear operator. These ‘unsuitable’ candidates or the ‘outliners’ are the ones
that are far from the rest of the data, or they are responsible for impairing the quality of
the approximation. In [131], the tuning efficiency was improved by using Principal Com-
ponent Analysis (PCA), which helped to transform the information from a data space to a
feature space. PCA helped in dimensional reduction (or compression) of the data, which
further led to a quicker tuning process. Compared to ANN-based filter tuning methods, the
method presented in [131] was quick because it did not require a lengthy training process.
However, the main limitations of this research work were—the datasets were collected ran-
domly; the authors only considered the tuning of the cavities and that too in the limited
range; the cross-couplings and the main couplings were pre-tuned, and they were not used
for collecting the datasets. Hence, this method was not apt to tune a raw filter.

2.6.8 Filter Tuning Using Linear Decomposition of Reflection Characteristics

The basic idea of using the Linear Decomposition technique in filter tuning application
was that the research community assumed that the relation between data-pairs could be
expressed by functions composed of a sum of the polynomials.

In [16], two major limitations of ANN-based and Linear Matrix Operator-based tech-
niques were removed, i.e., 1) the need to conduct a random detuning of a filter for col-
lecting data-pairs for training, and 2) the need for a lot of data-pairs. In the approximator
proposed in [16], very coarse data pairs of tuning screw deviations and the corresponding
S-parameters were collected in a ‘controlled manner’ using a robot. While extracting data
pairs, only one screw was turned at a time in this research work. However, there were three
major limitations in this research work: 1) only the §;; parameter was considered; 2) only
the cavity screws were tuned, that is, it was assumed that there was no need to tune the
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coupling and cross-coupling screws; and 3) the proposed solution could be implemented
on slightly detuned filters only.

The work in [16] was extended in [133], where the authors considered reflection and
transmission characteristics of the filter response to tune the filters that were closer to the
real-world filter tuning application. The method of collection of S-parameters was the same
for both these publications, and the model for the relationship between S-parameters and
corresponding screw positions was a sum of an argument polynomial function. Further-
more, the linear optimizer built in this research work was based on a coarse set that could
generate deviations corresponding to cavities and cross-couplings (cross-coupled filters
were not considered in [16]). The method was fast as compared to CM Extraction-based
tuning methods because the training was not needed, but the response of this optimizer was
slower than ANN-based tuning methods to find the proper screw deviation values.

2.7 Hybrid Methods for Filter Tuning

Filter tuning using the combination of two or more different approaches was implemented
by various authors. Theoretically, by using a hybrid approach, better results are expected
as compared to results that are obtained while using a single approach/methodology. Such
publications are listed in this section of the article.

2.7.1 Filter Tuning Using VF + ASM Technique

The authors of the publication [134] proposed a hybrid method in which the VF method
and the ASM technique were used together to adjust the filters. VF was responsible for
extracting the filter parameters (filter diagnosis) from a general cross-coupled network in
terms of Y-Parameters. Then, the ASM technique was used to calculate the optimal screw
positions, and hence ASM guaranteed the correctness of the tuning direction (clockwise
or counterclockwise). The method was validated on higher-order filters, but the key issue
with this approach was that quite a lot of sample points were needed to achieve the desired
amount of accuracy, and hence, the method was slow.

2.7.2 Filter Tuning Using Cauchy Method + SM-Based Techniques

In [135] and [16], a combination of the Cauchy Method and the ASM Method was pre-
sented for filter tuning. The frequency-based sampled S-parameters were converted to
rational functions (i.e., a ratio of polynomials) with the help of the Cauchy method. Then,
CM was extracted from those polynomials. The optimized ASM model helped in deter-
mining the correct direction of screw turning in both these research works. The method
in [135] was fast and simpler compared to the method presented in [134]. Furthermore,
the method in [135] considered the S-L coupling factor and was reproducible. However,
the method presented in [135] was iterative and required the condition of having sampling
frequency points close to the passband and should be adjusted iteratively. The method in
[16] talked about Asymmetrical Phase shifts that were not considered in [134] and [135].
In [16], phase-shift was removed before applying the Cauchy Method. However, the main
limitations of [135] and [16] were that the application of the method was limited only to
lower-order filters with no or fewer cross-couplings only.

In [136], a hybrid tuning method based on human experience and the ISM-based data
optimization method was proposed. When the detuning level was high, the initial tuning
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was carried out by a human operator whose task was to meet the desired frequency
range only (i.e., ‘coarse tuning’). This manual step helped to eliminate the computa-
tional complexity that may arise due to huge initial deviations. After coarse tuning, the
fine-tuning is usually time-consuming for humans, and to deal with the ‘fine tuning’
stage, the authors of this work used the ISM algorithm. The inputs to the proposed
algorithm were extracted coupling values, i.e., the values generated using the Cauchy
method (after removing the phase effects and loss effects with the help of the GA Algo-
rithm). The modified transformation presented in [63] was used, and a two-step proce-
dure was used to find the polynomial of the common denominator once the numerators
were obtained. The algorithm established the mapping between CM value variation and
the deviation of tuning screws. However, the main drawback of this approach was that
the resonators were assumed to have the same Q,,.

2.7.3 Filter Tuning Using GA +VF Techniques

The method in [137] proposed to use GA optimization to remove the phase-shift from
the measured (or simulated) Y-parameters of a coupled narrow-band BP filter. Then, the
use of the VF methodology helped in determining complex poles and residues from the
Y-parameters for extracting the CM. The standard transformation formulas presented in
[44] were used to convert the S-parameters to the Y-parameters. The frequency trans-
formation presented in [61] was used to convert the bandpass domain to the lowpass
domain. The work presented in [137] used a lesser number of optimized variables as
compared to [65] and [66] and could deal with filters with uneven Q, and S-L couplings,
but this method also could not deal with filters having high Q values. Also, the method
worked correctly only when frequency samples were chosen around the passband.

2.7.4 Filter Tuning Using Cauchy Method + NN +1SM Techniques

In [138], the initial tuning (when the filter was highly detuned) was performed using
poles and zeros of the input reflection parameter. The phase of the poles and zeros of the
input reflected parameters was improved by using iterative optimization. The S-parame-
ters taken from VNA were converted to Y-parameters using the standard transformation
formulas presented in [61]. Phase-shift removal ensured that the positioning of poles
and zeros of the Y-parameters was improved. Then, the Y-parameters-based Cauchy
method [45] was used to extract the CM elements in the second stage of tuning (i.e., in
the fine-tuning stage) to reduce the residual errors. After finding the characteristic poly-
nomials, the Y-matrix was found using the partial expansion method discussed in [38].
Then, a tuning model was established using a complex NN structure where the Gradi-
ent-Descent method was used for training purposes. Finally, the mapping relationship
between the ideal and actual model was obtained using ISM. This relationship could
provide the magnitude and direction of the tuning needed to successfully tune the filter.
Iterative optimization of the cost function discussed in [82] was used to find the correct
position of the tuning screws. However, the extracted CM then needed a rotation trans-
form to be performed, and the method was limited to coaxial filters only.
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2.7.5 Filter Tuning Using VF + FNN +ISM Techniques

The authors of [138] then proposed another hybrid method to tune the cavity filters in
[139]. The tuning was again divided into two stages, i.e., ‘initial tuning’ and ‘fine tun-
ing’. To avoid the system being trapped in local minima, the Quantum Greed Algorithm
[140] was used in this work. Then, after the removal of the phase shift, CM was extracted
using the VF technique. The key benefits offered by the VF technique for CM Extraction
were that the technique was: simple; quick; and the poles and zeros positions were opti-
mized iteratively, hence they were accurate. In addition, the higher-power polynomial coef-
ficients did not pose any problem in CM Extraction. The combined Fuzzy and Neural Net-
work (FNN) based on the T-S model ensures the accuracy of the tuning model. The use of
iterative ISM methodology on top of this FNN tuning model provides the optimal screw
positions.

3 Detailed Comparison

In Sect. 2, the authors of the current investigation presented and discussed a detailed analy-
sis of the available research. This section aims to synthesize the key limitations of each
type of technique discussed in the previous section (see Table 1). The decade-wise seg-
regation of research publications in the field of filter tuning application has also been pre-
sented in Fig. 4. Each colored block in Fig. 4 presents one publication of that particular
category in the decade (i.e. the reader can count the number of publications in a particular
category by counting the blocks).

The comparative analysis of various techniques has been summarized in Table 2. The
various filter tuning techniques are analyzed on the basis of following parameters:

The tuning technique used.

The complexity of the implemented algorithm.

Ability to reach the optimized tuning state.

Ability to tune complex filters which can help in attaining sharp band selectivity.

The literature analysis is presented in Sect. 3 and the information compiled in Table-1
indicates that there is a lot of scope in finding an effective method of tuning the MW filters.
The comparative analysis of various filter tuning techniques presented in Table 2 can be
used for deciding the future steps. The next section presents a summary of recent trends in
tuning the MW filters and the reasons underlying those trends.

4 Discussion

The downfall of Selective Techniques

The trends depicted in Fig. 4 show a downward trend in the research interest in Time
Domain (TD), sensitivity analysis, and sequential filter tuning techniques. The TD tuning
is not suitable to tune the complex filter and requires a reference frequency response and a
tuning technician is needed to tune the filters. The sequential filter tuning methods suffer

@ Springer
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Fig.4 Decade-wise research trends of the various techniques presented

from cumulative error propagation issues. The tuning methods based on sensitivity analy-
sis require numerous measurements and various optimization iterations, and hence they are
suitable for the ‘Fine Tuning’ stage only.

4.1 Technological Choices of Researchers

The trend shown in Fig. 4 is that the techniques based on Space Mapping (SM) and Hybrid
Methods have gathered the attention of researchers in recent times. SM-based solutions are
highly reliant on the accuracy of fine model and PE process whereas the hybrid methods
are computationally expensive.

Another trend revealed by Fig. 4 is the interest of researchers in implementing data-
driven methods to tune the filters. The reason for this inclination is the increased compu-
tational power offered by the CPUs and GPUs of these days as well as the availability of
efficient algorithms.

After carrying out the literature review it was found that a Hybrid Learning category is
still missing in the literature for the filter tuning applications. Hybrid Learning is a new cat-
egory which fuses theoretical tuning knowledge with video analysis-based learning from
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the best tuning technician. This technique is manually followed by the industries where the
best tuning technician teaches others to tune the filters correctly.

The following sub-section presents the implementation of such an expert-based hybrid
learning technique to tune the filters efficiently.

4.2 Expert Driven Hybrid Deep Learning

To overcome the limitations observed from the literature review, a new filter tuning method
is needed. Using the experience of authors of the current investigation with data-driven
filter tuning methods (presented in [115] and [118]), a new method in which fusion of theo-
retical knowledge and knowledge from video analysis of best tuning technician has been
proposed.

Figure 5 presents an expert-driven hybrid deep learning algorithm in which a combina-
tion of theoretical and practical knowledge were used for tuning the filters. The filter under
consideration was an iris-coupled 5th order commercial filter equipped with solid cylindri-
cal resonator posts. This theoretical knowledge from filter design was used as one of the
learning criteria and the video analysis from the videos were used to collect the features
for learning. Multiple filters were tuned by one of the best tuning technicians, and several
videos were captured. Data related to S;; and S,; parameters of a filter were accumulated
simultaneously. The hybrid learning method in which the theoretical and practical learning
was fused proved to be highly beneficial in the initial stage of tuning (when the filter was
highly detuned). This is because the RL agent had some initial idea of the environment,
and the decision regarding the exploration and exploitation strategy was made accordingly.
The use of Semi-Decoupled Deep Q-Network (SD-DQN) [148] ensured the stability aspect
which was missing in [118]. The policy generated by the proposed algorithm helped in
tuning the filter accurately and efficiently. While implementing the algorithm, the discount
factor was set to be 0.95 and the replay buffer was set to 150,000. The maximum permis-
sible screw turns were set to four full rotations i.e. 1440°. A convolutional neural network
(CNN) architecture with 2 hidden layers and ReL.U activation function was used. The sim-
ulation was run on a system with the hardware configuration 16 GB RAM, Ryzen-9 5800
HS CPU and NVIDIA RTX3060 — 6 GB GPU. The results obtained after tuning the filter
using the proposed algorithm are presented in Fig. 6.

In Fig. 6, the dotted red line presents the insertion loss, and the solid blue line presents
the return loss after the Sth order filter is tuned. The return loss target line is drawn with
magenta color and the black line defines the insertion loss limit. The filter is considered
to be tuned when the reflection curve is below the target line of -18 dB and the insertion

Environment
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Hybrid I/P Data
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S-Parameters o fat Processed ¥ v

reprocessing of Data ifi i
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Fig.5 The proposed fusion algorithm
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curve is over the -1 dB value. It can be observed that both these criteria are simultaneously
met in Fig. 6 i.e. the filter has been tuned using the proposed hybrid learning method.

After differentiating the tuning screws from the plate mounting screws using the meth-
odology presented in [149], this expert driven hybrid deep learning algorithm can be used
to automate the filter tuning process.

5 Conclusion

Conclusively, the prime objective of the current research paper was to review and compile
the research works conducted in the field of MW/RF filter tuning. To this aim, approx-
imately 150 papers published in various journals and conferences were reviewed by the
authors. Additionally, a novel architecture with modified Deep Learning specifically for
MW filter tuning has been proposed. All researchers collectively emphasize that filter tun-
ing is a complex and expensive process, and finding a suitable automated filter tuning pro-
cess can remove the bottlenecks in the production of these filters. In this paper, the authors
have highlighted the blockages of filter tuning, and a discussion of limitations associated
with different topologies has also been mentioned. Additionally, the comparative analy-
sis of various filter tuning techniques is also presented. The paper ends with the novel
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expert-based hybrid learning method for tuning the MW filters. The proposed method
could tune a 5th order all pole cavity filter more effectively.
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Appendix 3

Training hyperparameters for training YOLOv5

Table Appendix3: Training hyperparameters

Hyperparameter Value Hyperparameter Value
Ir0 0,01 fl_gamma 0,0

Lif 0,01 hsv_h 0,015
Momentum 0,937 hsv_s 0,7
weight_decay 0,0005 hsv_v 0,4
warmup_epochs 3,0 degrees 0,0
warmup_momentum 0,8 translate 0,1
warmup_bias_Ir 0,8 scale 0,5
Box 0,05 shear 0,0
Cls 0,5 perspective 0,0
cls_pw 1,0 flipud 0,0
Obj 1,0 fliplr 0,5
obj_pw 1,0 mosaic 1,0
iou_t 0,2 mixup 0,0
anchor t 4,0 copy paste 0,0
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