
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Igor Mahlinovski 213658
Alexander Khrushkov 213651

DEVELOPING A BLOCK EXPLORER FOR THE

NEXT-GENERATION BLOCKCHAIN: A TOOL TO ENHANCE

THE NETWORK TRANSPARENCY

Bachelor’s Thesis

Supervisor: Pavel Grigorenko
PhD

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Igor Mahlinovski 213658
Alexander Khrushkov 213651

BLOCK EXPLORER’I ARENDAMINE JÄRGMISE

PÕLVKONNA PLOKIAHELA JAOKS: TÖÖRIIST VÕRGU

LÄBIPAISTVUSE PARANDAMISEKS

Bakalaureusetöö

Juhendaja: Pavel Grigorenko
PhD

Tallinn 2024

Authors’ Declaration of Originality

We hereby certify that we are the sole authors of this thesis. All the used materials,
references to the literature and the work of others have been referred to. This thesis has not
been presented for examination anywhere else.

Authors: Igor Mahlinovski, Alexander Khrushkov

20.05.2024

1

Abstract

This bachelor’s thesis presents the development of an explorer web application for Alphabill
blockchain, with the primary focus on enhancing network transparency and user interaction
with blockchain data. We describe the development process including the architecture,
used technologies, such as React, Vite, Golang and providing implementation examples
taken from the code. In the thesis we demonstrate the importance of scalability, reliability,
and performance in developing blockchain solutions, highlighting significant milestones
such as the successful implementation of a transactions and blocks tracking systems.
In addition, we also highlight the importance of effective planning, collaboration and
problem-solving to overcome the faced challenges.
Finally, we identify key areas for future development, including the support for additional
Alphabill’s transaction systems, improvements to user interface and user experience.

The thesis is written in english and is 60 pages long, including 5 chapters, 23 figures.

2

Annotatsioon

See bakalaureusetöö tutvustab veebirakenduse arendamise protsessi Alphabill’i exploreri
jaoks, keskendudes peamiselt võrgu läbipaistvuse parandamisele ja kasutajate kogemusele
blockchaini andmete töötlemisel. Kirjeldame arendusprotsessi, sealhulgas arhitektuur,
kasutatud tehnoloogiad nagu React, Vite, Golang ning koodist võetud implementeerimise
näited. Bakalaureusetöös me näitame skaleeritavuse, turvalisuse ja jõudluse tähtsust
blockchaini lahenduste arendamisel, rõhutades olulisi saavutusi nagu edukas tehingute ja
plokkide jälgimissüsteemide rakendamine.
Lisaks sellele rõhutame ka planeerimise, koostöö ja probleemide lahendamise olulisust
väljakutsetega hakkama saamisel.
Lõpuks tuvastame tuleviku arenduse valdkondi, sealhulgas täiendavate Alphabilli tehingute
süsteemidele toetuse rakendamine, kasutajaliidese ja kasutajakogemuse parendamine.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 60 leheküljel, 5 peatükki, 23
joonist.

3

List of Abbreviations and Terms

ALPHA Native currency of Alphabill
API Application Programming Interface
AVL Adelson-Velsky and Landis
BNB Binance coin
CPU Central Processing Unit
CSS Cascading Style Sheets
DAO Decentralized Autonomous Organization
Dapp Decentralized application
DeFi Decentralized Finance
DOM Document Object Model
ETH Ethereum
EVM Ethereum Virtual Machine
HMR Hot Module Replacement
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IOT Internet Of Things
JSON JavaScript Object Notation
KAS Kaspa
LTC Litecoin
MPA Multi-Page Application
MVC Model-View-Controller
NFT Non-Fungible Token
NoSQL Not only Structured Query Language
PC Personal Computer
REST Representational State Transfer
RPC Remote Procedure Call
SEO Search Engine Optimization
SHA256 Secure Hash Algorithm 256-bit
SOL Solana
SPA Single Page Application
SQL Structured Query Language
SSR Server-Side Rendering

4

UI User Interface
URL Uniform Resource Locator
USDT United States Dollar Tether
UTXO Unspent Transaction Output
UX User Experience
VM Virtual Machine
VSCode Visual Studio Code
VVM Model-View-ViewModel
WSL Windows Subsystem for Linux

5

Table of Contents

1 Introduction . 9
1.1 Background and motivation . 9
1.2 Goals . 9
1.3 Problem statement . 10
1.4 Outline of the thesis . 10

2 Prerequisites . 11
2.1 Blockchain . 11
2.2 Cryptocurrency . 12

2.2.1 Altcoins . 12
2.2.2 Stablecoins . 12
2.2.3 Non-Fungible Tokens (NFTs) 12

2.3 Block Explorers . 13
2.3.1 Transaction Tracking . 13
2.3.2 Address Monitoring . 13
2.3.3 Block Verification . 13
2.3.4 Network Health and Statistics 13
2.3.5 Multi-Currency and Multi-Chain Support 14
2.3.6 Educational Resources . 14
2.3.7 Real-Time Updates . 14

2.4 Alphabill . 14

3 System Design and Implementation . 16
3.1 User Stories . 16

3.1.1 Get a list of blocks . 16
3.1.2 Block details . 16
3.1.3 The list of transactions in a block 17
3.1.4 The list of transactions . 17
3.1.5 Transaction details . 18
3.1.6 Search bar . 18
3.1.7 Units history . 18
3.1.8 Activity and balance state . 19
3.1.9 Network statistics and status . 19

3.2 Use Cases . 20
3.2.1 Blockchain Exploration through a Blockchain Explorer 20

6

3.3 Backend Design and Implementation . 21
3.3.1 Overview . 21
3.3.2 Database and Storage . 22
3.3.3 Data Processing . 23
3.3.4 Transaction, Unit Tracking . 26
3.3.5 REST API and Endpoints . 27
3.3.6 Performance and Efficiency . 28
3.3.7 Testing and Quality Assurance 29

3.4 Frontend Design and Implementation . 30
3.4.1 Design Process . 30
3.4.2 Project Initialization . 30
3.4.3 Directory Structure . 31
3.4.4 Responsive Design . 31
3.4.5 Main User Interface Components 31
3.4.6 Routing and page components 35
3.4.7 Integration with Backend . 36

3.5 Development Tools and Practices . 36
3.5.1 Version Control . 36
3.5.2 IDE . 37
3.5.3 Code Style and Formatting . 37

4 Evaluation of approach . 38
4.1 Justification for technical implementation 38

4.1.1 Requirements . 38
4.1.2 Architecture . 39
4.1.3 Design . 41
4.1.4 Coding standards . 42

4.2 Comparison with Existing Popular Blockchain Explorers 43
4.2.1 Etherscan . 43
4.2.2 Blockchain.com . 44
4.2.3 BitInfoCharts . 45
4.2.4 Alphabill Explorer . 45

4.3 Versions controls . 46
4.3.1 Git commits and branch management 46

4.4 Evaluation of the project development process 47
4.4.1 Project management and development 47
4.4.2 Evaluation of successes and faced difficulties during the development 48
4.4.3 Overall Assessment of the Project Execution Process 49

4.5 Outlining authors’ contributions . 51

7

4.5.1 Frontend development . 51
4.5.2 Backend developement . 51

5 Conclusion . 52
5.1 Summary . 52
5.2 Future work . 52

References . 53

Appendices . 57

A Non-Exclusive License for Reproduction and Publication of a Graduation
Thesis . 57

B Example of API endpoints . 58

C Example of API endpoint . 59

D Example of a test case . 60

8

1. Introduction

1.1 Background and motivation

Blockchain technology has revolutionized the way we perceive and conduct transactions,
offering unprecedented transparency, security, and decentralization. At the core of every
blockchain network lies a distributed ledger, a tamper-proof record of transactions shared
across a network of computers. While this technology has gained widespread adoption
across various industries, its true potential can only be realized with effective tools that
enable users to navigate and understand the data stored within these ledgers. This is where
blockchain explorers come into play, enhancing the readability of blockchain data for
users.

1.2 Goals

Our goal is to provide access to information within the Alphabill blockchain, making it
transparent and accessible to everyone, regardless of their technical expertise. We envision
a platform that serves as a window into the inner workings of the blockchain, providing
users with a clear and comprehensive view of its activities and transactions. Rather than
teaching people about the intricacies of blockchain technology, our focus is on creating
a user-friendly interface that allows individuals to effortlessly explore and understand
the data stored on the Alphabill blockchain. Through intuitive design and simplified
navigation, our platform will enable users to follow the flow of transactions, monitor
blocks, and track the states of units in real-time. By removing barriers to accessing the
information and presenting it in a clear and digestible format, we aim to empower users to
engage with the Alphabill blockchain confidently. Whether they are seasoned blockchain
enthusiasts or newcomers to the technology, our platform will provide everyone with the
tools they need to explore and interact with the blockchain ecosystem. Ultimately, our
mission is to foster transparency and trust within the Alphabill community, enabling users
to verify transactions, validate data, and participate in the blockchain network with ease
and confidence. Through our efforts, we aspire to make the Alphabill blockchain a model
of transparency and accessibility for blockchain ecosystems worldwide.

9

1.3 Problem statement

The problem lies in the lack of transparency within Alphabill’s blockchain, hindering users’
ability to access and interpret crucial information about transactions, blocks, and network
activity. This opacity not only undermines user trust but also impedes the blockchain’s
potential for widespread adoption and utilization.

1.4 Outline of the thesis

Prerequisites
This part describes the concepts and technologies crucial for the project’s implementation
and evaluation.

System Design and Implementation
This chapter describes the technical aspects of the built application, including the chosen
technologies, software architecture, development tools, and UI design.

Evaluation of approach
In this part, we assess the results of the project, the development process, management,
and communication.

Conclusion
We highlight the significance of the given work and describe areas for future research and
development.

10

2. Prerequisites

2.1 Blockchain

Most people associate blockchain with Bitcoin [1], but it is actually a much broader
technology. Imagine a giant, digital record book — that’s essentially what blockchain is.
This record book keeps track of transactions, but unlike a regular bank ledger, it is not
stored in one place. Instead, copies are spread out across a network of computers around
the world. Figure 1 represents the difference between the centralized and decentralized
network working principles. This means there’s no single person or bank in control.
Instead, everyone on the network can see the same information, making it very secure
and difficult to tamper with [2]. Transactions are grouped into "blocks" and a block gets
linked to the previous one using a cryptographic hash, forming a chain — hence the
name "blockchain." Think of it like a chain of building blocks, where each block contains
information about transactions. Since everything is linked together, it is almost impossible
to change or erase a transaction once it is added to the chain. While Bitcoin uses blockchain
for its digital currency, the technology itself has many other potential uses. It can be used
as a secure registry for anything from ownership of assets to tracking the movement of
goods.

Figure 1. Client-Server vs P2P Network [3]

The year 2008 marked a turning point in technology with the publication of a paper titled

11

"Bitcoin: A Peer-to-Peer Electronic Cash System." This paper, published by Satoshi
Nakamoto, introduced the concept of blockchain. Nakamoto’s vision was revolutionary —
a system for direct online payments between individuals, bypassing the need for traditional
financial institutions. This groundbreaking idea relied on cryptography, a complex form of
digital encryption, to ensure security and trust [1, 4, 5].

2.2 Cryptocurrency

Cryptocurrency is a digital currency that uses cryptography to secure transactions and
control the issuance. This technology allows users to transact directly between themselves
without having to trust a third party, such as a bank or payment services [6, 7].
Nowadays Bitcoin and Ethereum are the most popular cryptocurrencies in the world.
Bitcoin was the first cryptocurrency and is still the most valuable by market capitalization.
Ethereum is notable for introducing the concept of smart contracts, allowing developers to
create decentralized applications on its platform [7, 5].

2.2.1 Altcoins

The term "altcoin" is a blend of "alternative" and "coin," and it encompasses all cryptocur-
rencies and tokens except the original - Bitcoin. Many altcoins are actually "forks" of
existing blockchains, particularly Bitcoin and Ethereum. These forks often arise from
disagreements within the developer community, leading them to create altcoins with unique
features or functionalities [8].
Examples of altcoins: ETH, LTC, SOL, BNB, KAS.

2.2.2 Stablecoins

Stablecoins are a type of cryptocurrency made to minimize volatility by pegging their
market value to the fiat or other assets [9]. This pegging mechanism helps maintain a
stable value, which is useful for common transactions, DeFi services and allows the use of
stablecoins as a payment method for goods and services.

2.2.3 Non-Fungible Tokens (NFTs)

NFTs represent a unique concept in digital ownership. Unlike traditional currencies where
every unit is fungible, each NFT is one-of-a-kind and cannot be directly replaced by
another NFT of the same type. NFTs are stored on a secure blockchain ledger, ensuring a
transparent and tamper-proof record of ownership. This system guarantees that only one

12

person can own a specific NFT at a time. This unique ownership model opens doors for
buying, selling, and trading unique digital assets within the ever-evolving digital world
[10].

2.3 Block Explorers

To enhance the readability of blockchain data for users, numerous block explorers exist.
These tools list all blocks and transactions, providing users with the ability to verify
transactions and assess the network’s status [11, 12].

2.3.1 Transaction Tracking

Explorers allow users to track the details of transactions, including the unique transaction
hash, the amount of cryptocurrency transferred, and the time of the transaction. They
can also show the fees associated with each transaction and the current state, whether it’s
pending or confirmed in the blockchain [11].

2.3.2 Address Monitoring

Users can monitor any cryptocurrency address, viewing the balance and all incoming
and outgoing transactions. This allows to verify if a transaction has reached its intended
destination or analyze the address interactions with other addresses or smart contracts.

2.3.3 Block Verification

Block Explorers enable observation of individual blocks, revealing information such as
when the block was proposed, the validator’s address, and the block’s size. This data is
important for those interested in mining.

2.3.4 Network Health and Statistics

Some explorers offer comprehensive charts and data visualizations that reflect the network’s
overall status. These may include metrics like transaction fees over time, the average value
of transactions, mining difficulty, and hashrate.

13

2.3.5 Multi-Currency and Multi-Chain Support

While some explorers are dedicated to a single cryptocurrency, others support multiple
blockchains, offering a unified interface to explore different networks. This multi-chain
functionality is particularly beneficial for users dealing with various cryptocurrencies.

2.3.6 Educational Resources

In addition to exploring blockchain data, some platforms provide educational resources
about the blockchain and cryptocurrency space. These can include guides on smart
contracts, tokenomics, and decentralized finance, helping users expand their knowledge.

2.3.7 Real-Time Updates

Explorers often provide real-time information, such as the latest blocks mined and uncon-
firmed transactions waiting to be added to blocks. This helps users stay updated with the
most recent activities on the blockchain [11].

2.4 Alphabill

Alphabill is a next-generation blockchain platform aiming to overcome limitations in
existing technologies. At the heart of AlphaBill’s architecture lies the concept of partitions,
which represent sub-trees of the global state tree within the network as provided in Figure 2.
The partitions are shardable and serve to optimize workload distribution and enable parallel
transaction processing, enhancing the platform’s scalability and performance. Among the
various types of partitions in AlphaBill, the Money partition governs the management of
the platform’s native currency, ALPHA, and provides an ability to make payments from
one wallet to another, manage bills in the wallet, and swap smaller bills into one larger
bill. Aplhabill also has an Atomicity Partition which ensures atomicity of transactions
across different transaction systems, a User Token Partition provides management for
user tokens, and an EVM Partition provides execution of smart contracts based on the EVM.

14

Figure 2. Alphabill Partitions showing system and user defined Partitions [13].

One of the key innovations of AlphaBill is its unique transaction model, similar to physical
currency bills. This model allows for concurrent token updates and verification, avoiding
the need for coordination between machines during transaction execution. Unlike the
UTXO and account-based models used in Bitcoin and Ethereum, respectively, AlphaBill’s
bill model offers improved scalability and performance, making it suitable for applications
requiring high transaction throughput.
The platform’s state tree, based on a self-balancing AVL tree, further enhances its efficiency
and flexibility. Each node in the tree represents a token, enabling independent token
verification and sharding. This decentralized approach to state management ensures the
integrity and security of the platform, while also facilitating offline token verification and
autonomous operation as provided in Figure 3 [14, 13, 15, 16].

Figure 3. Ethereum uses a state tree of accounts. Alphabill uses a state tree of tokens [13].

15

3. System Design and Implementation

In this section, we provide a detailed overview of the design and implementation of
the Alphabill explorer. This includes user stories that describe the specific features and
functionalities from a user perspective, use cases that outline how these features are utilized,
backend and frontend development processes.

3.1 User Stories

3.1.1 Get a list of blocks

As a user, I want to get a list of blocks with the general details for each block, so I can get
an overview of activity in the blockchain.
Endpoint
GET /blocks?start={startBlock}&limit={limit}
Parameters:
startBlock (optional): The block number from which the list begins. If not specified, the
output starts from the most recently added block.
limit: The number of blocks to display.
Output
A list of blocks containing block number, hash, amount of transactions in the block, and
total volume of transactions for each block in the list.
Result
The user receives a list of blocks with general details, allowing them to gain an overview
of activity in the blockchain.

3.1.2 Block details

As a user, I want to select a block and see the detailed information, so I can analyze activity
in the specific block.
Endpoint
GET /blocks/{blockNumber}
Parameters:
blockNumber: the number of a specific block
Output

16

Detailed information about the block, including block number, hash, creation time, block
size, and total number of transactions in the block.
Result
The user can analyze activity in the specific block.

3.1.3 The list of transactions in a block

As a user, I want to get the list of all transactions processed within a specific block, so I
can analyze each transaction in the block.
Endpoint
GET /blocks/{blockNumber}/txs
Parameters:
blockNumber: the number of a specific block
Output
A list of all transactions contained in the specified block. For each transaction, its details
are returned, including hash, sender, recipient and transfer amount.
Result
The user gains the ability to explore operations within the selected block.

3.1.4 The list of transactions

As a user, I want to get a list of transactions with the general details of each transaction, so
I can get a clear understanding of activity in the network and analyze the transfers.
Endpoint
GET /txs?start={startTxId}&limit={limit}
Parameters:
startTxId (optional): The transaction identifier from which the list begins. If the parameter
is not specified, the list starts from the latest transaction.
limit: The number of transactions to display.
Output
A list of transactions that meet the query criteria containing hash, sender, recipient, transfer
amount and fees for each transaction.
Result
The user gains access to a detailed list of transactions, being able to analyze activity in the
blockchain, explore transfers, and identify suspicious transactions.

17

3.1.5 Transaction details

As a user, I want to see the detailed information of the selected transaction, so I can get a
complete understanding of how and where tokens are moving in the blockchain.
Endpoint
GET /txs/{txHash}
Parameters:
txHash: The hash of a specific transaction
Output
Details of the specified transaction, including transaction hash, sender, recipient, transfer
amount, fees, date and time.
Result
The user gains a complete understanding of the transaction, including how and where
tokens are being transferred.

3.1.6 Search bar

As a user, I want to look for blocks, transactions, addresses, and units through a search bar,
so I can easily access the needed information.
Endpoint
GET /search/{query}
Parameters:
query: Searching parameter such as block number, transaction hash, etc.
Output
Search results for blocks, transactions, addresses, and units based on the entered query.
Result
The user quickly finds the necessary information without the need to navigate through
complex interfaces.

3.1.7 Units history

As a user, I want to find out the transactions a specific unit has been involved in, so I can
track the unit’s path and analyze its usage in the network.
Endpoint
GET /units/{unitID}/txs
Parameters:

18

unitId: The specific unit’s identifier
Output
A list of transactions in which the specified Unit participated
Result
The user can track the path and usage of Units in the network.

3.1.8 Activity and balance state

As a user, I want to get the balance state and all the transactions by public key, so I can
analyze it’s activity.
Endpoint
GET /address/{pubKey}/bills
Parameters:
unitId: The specific unit’s identifier
Output
Information about the balance state and a list of all related transactions for the specified
public key.
Result
The user receives a complete understanding of the activity by the public key.

3.1.9 Network statistics and status

As a user, I want to see the statistics of the blockchain and status of the network, so I can
assess it’s state, health, and development dynamics.
Endpoint
GET /status
Parameters:
unitId: The specific unit’s identifier
Output
Overall blockchain statistics, including the number of blocks, total number of transactions,
current fees per transaction and other important metrics.
Result
The user evaluates the state, health, and development dynamics of the blockchain.

19

3.2 Use Cases

3.2.1 Blockchain Exploration through a Blockchain Explorer

Figure 4. Use Case of Alpabill Explorer

Actor: User (includes cryptocurrency holders, investors, researchers, analysts, developers)
Invariants:
The user has access to the blockchain explorer interface through a web browser or mobile
app.
Blockchain explorer is updated and synchronized with the latest blockchain state.
Main flow of events:
Search and Browse Information through the Search Bar: The user enters a relevant
query (block number, transaction hash, wallet address, Unit ID) into the search bar. The
system processes the request and displays the corresponding information depending on the
query type.
View Transaction Details: As a result of the search or through navigation, the user
can select a specific transaction to view it’s detailed information.The system provides

20

transaction details, including the hash, fee, date, and time of execution.
Explore Blocks and Their Contents: As a result of the search or through navigation, the
user selects a block to view it’s details.The system displays information about the block,
including its number, hash, previous block hash, creation time, and a list of all transactions
within the block.
View Public Key Balance: The user enters a wallet address to track its activity. The
system displays the wallet balance and a list of associated transactions, providing a detailed
view of the address’s activity.
Track Unit Movement: The user searches for a Unit ID to view it’s transaction history.
The system displays all transactions involving the given Unit, allowing the user to analyze
it’s path through the blockchain.
Alternative Flows:
If the system cannot find information based on the user’s request, it provides an error
message.
Result:
The user receives comprehensive information based on their query, enabling them to gain
deeper insights and analyze blockchain data.

3.3 Backend Design and Implementation

3.3.1 Overview

The backend of the Alphabill block explorer is engineered using GO, leveraging its
performance efficiency and concurrency capabilities, which are crucial for handling the
extensive data processing required by blockchain technology. The backend architecture
is designed to interface directly with the Alphabill blockchain, facilitating seamless data
synchronization and real-time transaction monitoring.
To enhance the development environment, the backend was developed on WSL using
Ubuntu [17]. This setup allowed the team to utilize Linux’s powerful features and
tools while still operating within a Windows environment, providing a flexible and robust
development platform. The use of WSL helped in achieving a more consistent development
environment, closely mirroring the production servers, and simplifying the process of
managing dependencies and testing cross-platform functionalities.

21

Figure 5. Architecture Diagram of the Alphabill Block Explorer Backend.

The architecture diagram provided in Figure 5 illustrates that Explorer Backend is centrally
positioned within the architecture, acting as a bridge between the raw data from the
Alphabill Blockchain and the processed information delivered to the UI through the REST
API. This setup underscores the backend’s role in data processing and distribution, ensuring
efficient data flow across the system.

3.3.2 Database and Storage

The backend utilizes BoltDB, a lightweight key-value store, to manage the local storage of
blockchain data. The choice of BoltDB is motivated by its simplicity and its efficiency
in storing large sets of immutable data, which are common in blockchain environments.
Data is organized into buckets—a form of storage that BoltDB handles as a collection of
key-value pairs—allowing efficient data retrieval necessary for a block explorer.

22

Figure 6. Class Diagram of the ExplorerBackend.

Class diagram provided in Figure 6 illustrates the various components of the ExplorerBack-
end, describing the interactions and relationships between different classes and highlighting
the methods and properties of each class such as MoneyRestAPI, ExplorerBackendService,
ExplorerBackend, ABIClient, and BillStore.

3.3.3 Data Processing

A key component of the backend is the block processor, which scans the Alphabill
blockchain to fetch block information. This process involves:

23

■ Decoding: Each block’s data structure is decoded.
■ Transformation: The data is transformed into a suitable format for storage.
■ Storage: Transformed data is saved into BoltDB buckets for efficient retrieval.

The block processor uses a mapping system where each block number maps to a BlockInfo
object stored in the blockInfoBucket. This object mirrors the block’s structure but replaces
transaction objects with a list of SHA256 hashes. Transactions are stored separately in the
txInfoBucket using transaction hashes as keys, which are related to detailed txInfo objects.

Figure 7. Class Diagram of the BlockInfo.

This class diagram provided in Figure 6 represents the structure and components of the
BlockInfo class, visualizing its relations with other classes such as Header and UnicityC-
ertificate. It highlights the methods and attributes used to process and store block data
efficiently within the backend.

24

Figure 8. Class Diagram of the TxInfo.

The class diagram provided in Figure 8 represents the structure of the TxInfo class and its

25

associated classes, such as TransactionRecord, ClientMetadata, and TransactionOrder. It
describes the relations and data flow between these classes within the backend.
After data is processed and stored in BoltDB, it is becoming accessible through the REST
API, implemented using Gorilla Mux. This API plays a crucial role in retrieving processed
data from the database, allowing for efficient data delivery to the Frontend. Through this
API frontend fetches the necessary block and transaction data. This end-to-end handling
of data not only ensures accuracy and efficiency but also enhances the user’s ability to
interact with and analyze the blockchain data effectively.

3.3.4 Transaction, Unit Tracking

Transactions within the blocks include units that are also tracked. Each unit’s participation
in transactions is recorded in the unitIDBucket, mapping unit IDs into lists of hashes.
This structure supports queries for transaction history and unit tracking. Additionally,
managing unitIDBucket allows the application to track the states of different units across
transactions, enhancing the explorer’s ability to provide detailed insights into asset flows
and relations within the blockchain.

26

Figure 9. Class Diagram of the Bill.

The class diagram provided in Figure 9 highlights the structure of the Bill class, describing
its relations with other classes such as UnitID and BillData. It emphasizes the methods and
attributes involved in tracking and managing blockchain units within the backend system.

3.3.5 REST API and Endpoints

The backend provides a RESTl API, implemented using Gorilla Mux, a popular and flexi-
ble HTTP routing package for Golang. This technology drives the backend’s modularity
and scalability, enabling easily extend API functionalities as needed. The API’s endpoints
are documented using Swagger, making it easy for both internal developers and external
users to understand and use the interface.
API endpoints include:

27

■ GET requests for blocks, transactions, and units information: These endpoints
provide detailed data about blocks, transactions, and units, helping to ensure trans-
parency and promote user engagement.

■ Direct blockchain interactions: Our integration with the blockchain’s native RPC
client, developed by the Alphabill team, enables the implementation of wallet balance
checks and network status queries, providing actual, secure, and reliable data.

Data Handling Across Endpoints:

■ Data Format: Information from the endpoints is output in JSON format, enhancing
the ease of integration with other systems and services.

■ Encryption and Encoding: Text information received from the backend is encrypted
and sent as []byte arrays. In the frontend, this encrypted data needs to be converted
from text to Base64 and then to Bytes to be usable. This process is crucial for
maintaining the security and integrity of data as it moves from the backend to the
frontend, ensuring that sensitive information remains protected from unauthorized
access.

Endpoint Testing: Pre-Swagger Testing: Before integrating Swagger, endpoints were
manually tested under various scenarios through Postman, ensuring their robustness before
documenting and publishing them through Swagger Example of API endpoints set up
using Gorilla Mux: Appendix B
Detailed Example of an Endpoint Documentation Using Swagger: Appendix C
By implementing these practices, the backend represents a secure, scalable, and user-
friendly interface that aligns with modern web standards and security practices. The use
of JSON and encrypted byte arrays for data transfer, alongside the robust documentation
provided by Swagger, creates a transparent and efficient pathway for accessing blockchain
data, supporting a wide range of user requests from simple queries to complex transactions.

3.3.6 Performance and Efficiency

Our backend design prioritizes performance and efficiency, leveraging Go’s performance
characteristics to effectively handle processes and respond quickly to real-time data pro-
cessing and API requests. BoltDB’s architecture also enables fast read and write operations,
essential for handling high-frequency data updates common in blockchain environments.

28

3.3.7 Testing and Quality Assurance

Testing is a crucial component of the development process, ensuring that all backend
functions perform as expected under various conditions. The backend uses unit testing
frameworks such as the Go testing package and Testify library for assertions and mock
behaviors.
The testing process involves writing test scripts that simulate both successful and error
scenarios using mock data after implementing a specific method.
Example of a test case for retrieving block information: Appendix D
This test ensures the API correctly handles requests for block information, validating both
the server response and the accuracy of the data returned. It is part of a test suite that
verifies functionality across all endpoints, ensuring the backend maintains high reliability.

Figure 10. Sequence Diagram for getBlock Method.

The sequence diagram provided in Figure 10 describes the sequence of interactions between
the UI, MoneyRestAPI, ExplorerBackend, and BillStore during the execution of the
getBlock method. It highlights the flow of data and the responses at each stage, providing
a clear picture of the process involved in retrieving block information from the backend.

29

3.4 Frontend Design and Implementation

3.4.1 Design Process

The frontend development for the Alphabill block explorer began with an extensive review
of the existing design elements of the official Alphabill website and wallet interface. This
initial review helped to maintain brand consistency and usability standards. The team
utilized Figma to sketch the initial design concepts, selecting appropriate fonts, colors, and
layout structures to create a cohesive and user-friendly interface.
Figma Mockups: Detailed mockups were created in Figma to outline the visual hierarchy
and components of the home page, including the background, navigation bar, footer, search
bar, logo, and headings as provided in Figure 11. This step ensured all design elements
were aligned with the user’s needs and expectations before development began.

Figure 11. Figma mockup of project’s visualization.

3.4.2 Project Initialization

The project was initiated with a modern tech stack specified by Alphabill’s team to
optimize performance and development efficiency:

■ Vite: Chosen for its fast build times and out-of-the-box features for modern web
development like HMR [18].

■ React: Used for its component-driven architecture, enhancing the maintainability
and reusability of code [19].

30

■ TypeScript: Selected for its strong typing features, reducing potential bugs and
improving code quality [20].

■ ESLint: Ensures code quality and consistency throughout the project, enforcing a
uniform coding standard among developers [21].

■ TailwindCSS: Chosen for its utility-first approach, facilitating rapid UI development
without sacrificing the maintainability of style sheets [22].

■ Axios and TanStack Query: Axios was integrated with TanStack Query for fetching
backend data, combining Axios’s promise-based HTTP capabilities with TanStack
Query’s powerful data synchronization and caching features [23, 24].

■ TanStack Table: TanStack Table was integrated to create a general table component
with a unified design, headers, and pagination for displaying tabular data such as
blocks and transactions [25].

■ React Router: Implemented for handling in-app routing efficiently, ensuring that
users can navigate through the application’s different views seamlessly [26].

■ Chart.js: Used for data visualization helping users more quickly understand the
information [27].

These technologies were chosen to ensure robustness, scalability, and ease of development.
TailwindCSS was immediately configured to include the necessary fonts and colors defined
in the Figma designs to maintain visual consistency.

3.4.3 Directory Structure

A Feature-Sliced Design approach was adopted to organize the codebase effectively. This
enhances scalability and maintainability by segregating the codebase into distinct layers
based on feature functionality.

3.4.4 Responsive Design

The development followed a desktop-first approach, initially focusing on wide-screen
layouts before adapting designs for mobile devices. This strategy ensures an optimal user
experience across all device types.

3.4.5 Main User Interface Components

The UI is built with reusable UI components that can be integrated into the different
parts of the application. This modular approach aligns with the feature slice architecture,

31

making the codebase easier to maintain and update. Here’s a look at the key UI components:

■ Navigation bar - This essential element sits at the top of the screen, providing users
with navigation through the different sections of the application.
Figures 12 and 13 provided below describe the desktop and mobile views of the
navigation bar component.

Figure 12. Desktop view of Alphabill Explorer’s navigation bar component.

Figure 13. Mobile view of opened Alphabill Explorer’s navigation bar component.

■ Footer - Located at the bottom of the page, the footer consists of secondary links
that complement the overall design. This includes links to the Alphabill’s official
website, whitepaper, and social media.
Figures 14 and 15 provided below describe the desktop and mobile views of footer
component.

Figure 14. Desktop view of Alphabill Explorer’s footer component.

32

Figure 15. Mobile view of opened Alphabill Explorer’s footer component.

■ Background with Animations - The home page background features subtle anima-
tions to enhance visual appeal without detracting from the user experience.

■ Search Bar - A search bar empowers users to find specific blocks, transactions, or
addresses quickly and efficiently by providing the block number, transaction hash or
public key.
Figure 16 provided below describes the view of Alphabill Explorer’s search bar
component.

Figure 16. The view of Alphabill Explorer’s search bar component.

■ Block and Transaction Tables - Specific components for blocks and transactions
were developed, including "mini" tables for displaying summarized data and detailed
components for individual records.
Figure 17 provided below describes the view of Alphabill Explorer’s table compo-
nent.

33

Figure 17. The view of Alphabill Explorer’s table component.

■ Network state and metrics - A component represents the overall health and key
metrics of the network, providing users with an overview of performance and
activity.
Figure 18 provided below describes the view of Alphabill Explorer’s state and
metrics component.

Figure 18. The view of Alphabill Explorer’s network state and metrics component.

■ Transaction details - Component was designed to display detailed information about
the transaction selected by the user.

■ Block details - Component was designed to display the detailed information about
the block selected by the user. Figure 19 provided below describes the view of
Alphabill Explorer’s block details component.

34

Figure 19. The view of Alphabill Explorer’s block details component.

3.4.6 Routing and page components

Alphabill explorer leverages a single-page application (SPA) architecture. This means the
application updates content dynamically without full page reloads, providing a smoother
and more responsive user experience compared to traditional websites.
Main Layout: Component represents the application’s base layout, displaying the navi-
gation bar, footer, and animated background throughout the app. Within this layout, the
content area dynamically renders the appropriate page component based on the chosen
route.
The initial routing setup established core pages with corresponding components:

■ Home - Component represents a main landing page featuring a search bar, network
health metrics, and summarized block and transaction data.

■ Bills - Component represents a page designed to provide an overview of metrics,
blocks, and transactions related to a specific "money partition".

■ Blocks - Component represents a page showcasing a table of all blocks within the
money partition.

■ Transaction - Component represents a page displaying a list of transactions related
to the money partition, including essential details for each transaction.

■ Block details - Component represents a page with the details of the certain block
selected by the user. Page contains all necessary information about the chosen block,
that allows user to analyze the data.

■ Transaction details - Component represents a page with the details of the certain
transaction selected by the user. Page contains all necessary information about the

35

chosen transaction, that allows user to analyze the data.
■ 404 not found - Component represents a page displayed when users attempt to access

an invalid route.
■ Coming soon - Component represents a page displayed when user requests content

is not implemented yet and will be available in the future.

3.4.7 Integration with Backend

Once backend endpoints began to be available, the frontend integrated these using environ-
ment configurations stored in env.localhost. The fetching mechanisms involve TanStack
Query calling Axios, with responses being processed by a transformObject function to
handle data encoding and decoding, such as converting Base64 to bytes and handling
BigInt types, ensuring accurate data representation in the frontend.

Advanced Features and Final Touches

■ Theme Switching - To enhance user experience, theme-switching capabilities were
added, allowing users to choose between light and dark modes.

■ Charts - Components displaying charts (using Chart.js) were added to provide users
with insightful data visualizations.

3.5 Development Tools and Practices

For the development of both the frontend and backend of the Alphabill block explorer,
was utilized a streamlined set of tools and practices to ensure consistency, quality, and
efficiency throughout the project lifecycle.

3.5.1 Version Control

GitHub was chosen as the primary tool for version control. It facilitated collaborative
coding, feature branching, code reviews, and the management of changes throughout
the development process. The use of GitHub ensured that all team members could work
simultaneously on different features without disrupting the main development flow, while
also maintaining a historical record of changes and decisions.

36

3.5.2 IDE

Visual Studio Code (VSCode) was the preferred IDE for both frontend and backend devel-
opment. VSCode’s rich ecosystem of extensions, including support for Go, TypeScript,
and React, provided the developers with powerful tools for code editing, navigation, and
debugging, directly within the IDE. It’s lightweight nature and customizability made it an
ideal choice for rapid development cycles.

3.5.3 Code Style and Formatting

To maintain a consistent code style and ensure that the codebase remained clean and read-
able, Prettier was integrated into the development workflow. Prettier is a code formatter
that supports many languages and integrates well with VSCode. It automatically formats
the code on save, aligning with predefined style guidelines, which helped in reducing the
time spent on styling discussions during code reviews and increasing overall productivity.
By leveraging these tools, the development team was able to focus more on building
features and less on the managing project configurations and inconsistencies in coding
styles. This chapter underscores the importance of choosing the right tools to support a
development environment while ensuring high standards of the code quality and collabora-
tion.

37

4. Evaluation of approach

4.1 Justification for technical implementation

4.1.1 Requirements

Frontend development

For the frontend, requirements were chosen to ensure high performance, adaptability and
ease of use:

■ UI performance
Utilizing Vite and React with TypeScript support provides instant module reloading
and optimized project bundling, which is crucial for projects with a large volume
of interactive elements. React enabled the creation of dynamic user interfaces with
high performance, thanks to efficient DOM updates.

■ Responsible UI
Utilizing TailwindCSS for managing styles.Rationale simplifies the creation of
responsive designs through utility classes, enabling quick adaptation of the interface
to any screen sizes and devices.

■ User friendly UI
Prototyping in Figma enables the creation of detailed interactive prototypes, facilitat-
ing the visualization of the user interface before development begins and gathering
feedback from potential users.

■ REST API
Utilizing Axios for HTTP requests and TanStack Query for managing data state
provides convenient interaction with REST API, while TanStack Query assists in
managing, caching, and synchronizing data, enhancing performance and improving
user experience by reducing data loading and updating time.

Backend development

For the backend, the requirements were reliability, scalability, and performance.

■ Data reliability
Utilizing BoltDB provides high performance and reliability for storing immutable
blockchain data, thanks to its simplicity and efficiency in handling large volumes of

38

data
■ Scalability

Implementation of microservices architecture in Go allows scaling individual com-
ponents of the system independently, providing flexibility in resource management
and performance optimization as the load increases.

■ Performance
GO for server-side development and Gorilla Mux for routing offers built-in support
for concurrency and efficient resource management, which is crucial for high-load
systems. Gorilla Mux provides powerful routing capabilities, enhancing performance
in handling a large number of requests.

4.1.2 Architecture

Frontend development

For the frontend, the architecture chosen was SPA based on React. The main reasons for
choosing this architecture include:

■ Meaningful and relevant UX
SPA allows for loading all necessary JavaScript, HTML, and CSS once and then
dynamically updating content on the page without full page reloads. This provides
instant response to user actions.

■ Convenience of development and maintenance
React enables the separation of the interface into independent, reusable components.
This facilitates the development, testing, and maintenance of code.

■ Scalability
Prototyping in Figma enables the creation of detailed interactive prototypes, facilitat-
ing the visualization of the user interface before development begins and gathering
feedback from potential users.

■ REST API
SPA can easily scale by adding new components and features without the need for
significant changes to existing code.

Alternatives

■ MPA
MPA provides better SEO optimization and simpler analytics, as each page has its
own URL. However it brings complicated development and maintenance due to the
necessity of page reloading and resource re-fetching, which increases delays and

39

reduces performance.
■ SSR

SSR provides improved performance for users with slow internet connections and
better SEO.However it brings more complicated infrastructure and development,
especially when synchronizing client-side and server-side logic. Examples of tech-
nologies: Next.js.

Backend development

The backend architecture is based on microservices using Golang and BoltDB. The main
reasons for choosing this architecture include:

■ Modularity and manageability
Microservices architecture allows breaking down the system into independent ser-
vices that can be developed, deployed, and scaled independently of each other.

■ Performance
Golang offers high performance due to its compilation to machine code and efficient
management of concurrency.

■ Ease of storing data
BoltDB, as an embedded database, offers a simple interface and high performance
for storing immutable blockchain data.

Alternatives

■ Monolithic architecture
Simplification of the development and deployment process, as all logic and function-
ality are contained within a single application. However it increases complexity of
scaling and maintaining the system, especially with the growth of features and data
volume.

■ SQL
SQL allows the execution of complex queries and transactions. However it brings
less efficient management of large volumes of immutable data, high performance
overhead with frequent write operations.

■ NoSQL
NoSQL brings flexibility in managing various data types and high performance
scalability. However there is more complicated setup and management, especially in
distributed systems requiring data consistency assurance.

40

4.1.3 Design

Frontend development

For the frontend was chosen design that ensures high performance and usability. The main
reasons for choosing such a design were:

■ Component-Based Architecture
Pattern: Component-Based Architecture
React provides a component-based approach, allowing the interface to be divided
into independent and reusable blocks. This simplifies the development, testing, and
maintenance of the code.

■ Logic Separation
Pattern: MVC or MVVM patterns
The approach of separating application logic and data presentation is often used in
React. This improves code readability and maintainability.

■ Responsive design
Pattern: Responsive Design
Utilizing TailwindCSS utility classes to create adaptive interfaces that adapt to
different screen sizes.

■ Feature-Sliced Design
Pattern: Feature-Sliced Design
This approach structures the project into functional modules, each of which includes
all necessary elements (components, state, styles, API calls) to implement specific
functionality. This improves code modularity and manageability, simplifies scaling
and implementing new features, and enhances coordination between developers.

■ React Hooks and Context API
Pattern: React Hooks and Context API
Utilizing React hooks and Context API for managing application state and passing
data between components.

Backend development

For the backend, a design was chosen to ensure reliability and scalability. The main reasons
for choosing such a design were:

■ Microservices Architecture
Pattern: Microservices Architecture
Splitting the application into small independent services, each responsible for its
own functionality. This facilitates scalability and system support.

41

■ Request Processing
Pattern: REST API
Using REST API for communication between frontend and backend, providing a
standardized approach to data transmission. This brings ease of integration and
scalability, standardization of interactions.

■ Data Storage
Pattern: Key-Value Store
Using BoltDB to store blockchain data in key-value format, providing fast data
read and write operations, helps to achieve high performance and reliability in data
storage.

■ Data Processing
Pattern: Data Processing Pipeline
Processing blockchain data through multiple stages (decoding, transformation, stor-
age), improving code structure and manageability, brings structured and scalable
data processing.

4.1.4 Coding standards

Rules for writing code and code metrics play a key role in maintaining code quality,
simplifying its maintenance, and improving collaboration within the team. In the Alphabill
Explorer project, the following rules and metrics were chosen:

Frontend development

■ Consistent code style
Tool: Prettier
Prettier provides automatic code formatting, which helps maintain consistency in
the codebase, improves code readability and reduces code review time.

■ Correct syntax
Tool: ESLint
ESLint detects syntax errors and code style violations, helping to identify potential
issues at an early stage of development, reducing the number of errors and improving
code quality.

■ Typed coding language
Tool: TypeScript
TypeScript adds static typing to JavaScript, helping to prevent type-related errors
while compiling and making the code more reliable.

42

Backend development

■ Consistent code style
Tool: Go fmt
Go fmt automatically formats code according to the Go standards, helping to main-
tain consistency and readability.

■ Correct syntax
Tool: Golint
Golint detects syntax errors and coding style violations in Go, helping to identify
potential issues at an early stage of development, reducing the number of errors and
improving code quality.

■ Tested code
Tool: Go testing package and Testify
Regular testing helps detect and eliminate errors at early stages of development.
Using Testify simplifies writing tests with convenient assertions and functions.

These rules were chosen to ensure high code quality, improve team collaboration, and main-
tain system performance, which are crucial for the successful operation of the blockchain
explorer.

4.2 Comparison with Existing Popular Blockchain Explorers

4.2.1 Etherscan

Etherscan is one of the most popular blockchain explorers for the Ethereum network. It
provides users with the ability to view information about transactions, blocks, addresses,
smart contracts, and other data related to the Ethereum blockchain [28].
Architecture of Etherscan includes the use of MPA to improve SEO. This allows each page
to have a unique URL, making it easier for search engines to index and increasing the
visibility of the resource on the internet.
Additionally, Etherscan uses SSR, which enables faster page loading, improving the site’s
performance and user experience. The data storage is implemented using a combination of
various databases and caching technologies, ensuring high performance and scalability of
the system [29]. Figure 20 provided below represents UI of the Etherscan’s home page.

43

Figure 20. Etherscan’s home page.

4.2.2 Blockchain.com

Blockchain.com Explorer is one of the oldest and most popular blockchain explorers.
It supports multiple blockchains, including Bitcoin, Ethereum, and Bitcoin Cash [30].
Blockchain.com Explorer uses an MPA architecture to improve SEO and navigation ease.
SSR also contributes to fast page loading, which enhances user experience and interaction
with the site. For processing and storing data, Blockchain.com Explorer utilizes various
databases, including both relational and non-relational databases. This enables the system
to handle large volumes of data and ensure high performance. Figure 21 provided below
represents UI of the Etherscan’s home page.

Figure 21. Blockchain.com’s home page.

44

4.2.3 BitInfoCharts

BitInfoCharts provides statistical data and charts for various cryptocurrencies, including
Bitcoin, Ethereum, Litecoin, and others. It also utilizes the MPA architecture, which helps
improve SEO and provides static URLs for each page, making them easier to access for
search engines. SSR in this case enables faster page loading, which has a positive impact
on the user experience [31]. For storing and analyzing large volumes of data, BitInfoCharts
utilizes relational databases, which ensures reliability and efficiency in working with large
datasets and executing complex analytical queries. Figure 22 provided below represents
UI of the Etherscan’s home page.

Figure 22. BitInfoCharts’s home page.

4.2.4 Alphabill Explorer

Alphabill Explorer differs from the previously mentioned explorers. It is built utilizing
the SPA architecture on a React basis, which enables the creation of a more dynamic and
interactive interface for users. The microservice architecture ensures high performance
and scalability. For storing data, Alphabill Explorer uses BoltDB, a high-performance and
lightweight database optimized for fast operations on keys and values. This enables fast
data access and processing, which is particularly important for ensuring meaningful and
relevant experience [14, 13]. Figure 23 provided below represents UI of the Etherscan’s
home page.

45

Figure 23. Alphabill Explorer’s home page.

4.3 Versions controls

The project management process and completed tasks were recorded using the version
control system “GitHub”. The project was divided into two separate repositories, one
for frontend1 development and another for backend2 development. Each team member
followed certain rules and procedures to ensure orderly and transparent work.

4.3.1 Git commits and branch management

Before implementing new functionality, developers created separate branches in the reposi-
tory, allowing them to work independently without affecting the main branch.

■ Consistent code style
Each developer created a branch with a name reflecting the essence of the new
functionality or fix (for example, "block" or "table").

■ Development and commits
In the process of working on the functionality, developers made regular commits,
documenting incoming changes or fixed parts. Examples of commit messages:
"NavBar PC Dropdown added", "Fix getBillsByPubKey", "Add test TestGetBlock_-
latest_Success".

■ Code review and verification
After the development process was completed, the branch was sent to a code review

1https://github.com/alphabill-org/alphabill-explorer
2https://github.com/alphabill-org/alphabill-explorer-backend

46

done by our mentor. Code review consisted of reviewing the commits, writing
comments and making suggestions for the code improvements. If necessary, changes
and improvements were made according to the feedback provided during the code
review process.

■ Branch merge
Once the code review was completed and all changes were approved, the new feature
branch was merged into the main "main" branch, ensuring a smooth integration of
the new functionality without any conflicts.

■ Local environment and future plans
The project is currently running locally, providing a secure environment for testing
and debugging. Future plans include creating a testnet branch, which will serve as a
testing ground for new features before they are merged into the main branch.

4.4 Evaluation of the project development process

4.4.1 Project management and development

The development of a blockchain explorer for Alphabill began in October 2023 and is
ongoing. However, progress was temporarily halted in January 2024 to accommodate
changes in the blockchain architecture. The development was resumed by March 2024.

Planning and initialization (October - November 2023)

The team gathered to determine the main goals and requirements of the project. A primary
plan was developed, including the roles and tasks of the participants. In October was
also discussed and selected the technology stack and architecture of the future application.
It was decided to use React and Vite for the frontend and Golang with BoltDB for the
backend. November passed, setting up a WSL-based development environment,initializing
the project on GitHub,installing ESLint and Prettier tools.

Development and integration (December 2023 - May 2024)

From December to January, the development team actively worked on creating initial
components and APIs for the Alphabill blockchain explorer. However, in January, progress
was halted to accommodate changes in the blockchain, which required a revision of the
architecture and algorithms. After the revision, the team resumed development, adopting a
microservice structure to enhance scalability. The project then shifted focus to integrating
the updated frontend and backend, optimizing performance, and conducting initial testing,
with work commencing in early April.

47

Testing and optimization (May 2024)

To ensure the quality and reliability of the Alphabill blockchain explorer, the development
team employed various testing tools. For the frontend, Jest, React Testing Library, and
Cypress were utilized for unit testing and integration testing. Meanwhile, the Go testing
package and Verify were used for the backend. To evaluate the system’s performance
under heavy loads, Apache JMeter and Locust were used for load testing.

Working process

The project management process included regular team meetings, the use of Agile method-
ologies to flexibly respond to changes and ensure close interaction between the front-end
and back-end developers. This made it possible to successfully adapt to changes in require-
ments and complete the current stages of the project with high quality. In the next stages,
it is planned to continue the development of the system, expanding its functionality and
providing scalability to meet the needs of users in the future.

4.4.2 Evaluation of successes and faced difficulties during the devel-
opment

Successes

Using our existing experience in developing web applications, it didn’t take much time to
initialize the project on the frontend, importing all the necessary tools and libraries.
Effective communication and the enthusiasm of all team members towards achieving the
goal accelerated the development process and eliminated misunderstandings within the
team. The project leader quickly responded to emerging questions and provided valuable
advices on implementing solutions. Additionally, regular meetings were held to discuss
the progress made, problems appeared through the development process and set the goals
for the next sprint.
It’s also worth noting the great teamwork of all team members. Team members always
helped each other as needed to resolve issues that were appearing during the development
process, and their ability to coordinate tasks and responsibilities effectively ensured a
streamlined development process.

Challenges

Resuming the project after being on hold proved to be a challenging task. Changes in
the blockchain architecture caused significant changes in the backend, including classes,
structures and functional components.

48

Refactoring the architecture took significantly longer than expected. It required a thorough
review and restructuring of many classes and functions, which slowed down the overall
development process.
Also changes in endpoint requirements led to the need to review and standardize data
formats between the frontend and backend. This included a complete overhaul of all data
types and setting up new endpoints. The process of setting up and testing new endpoints
was time-consuming and required more time than expected, which slowed down the overall
development process.

4.4.3 Overall Assessment of the Project Execution Process

The overall project execution process

The project to develop a blockchain explorer for Alphabill was carried out within a well-
organized plan, which included phases of planning, development, testing, and preparation
for deployment. Overall, the project execution process can be characterized as successful,
despite the challenges and delays that appeared.

Team leader

Team leader, who was an advisor from both the company and university, actively partici-
pated in the project, providing us with the feedback and support. This helped to resolve
emerging issues promptly and maintain high team motivation among the team members.
In addition to this, regular meetings and discussions with the team leader contributed to
clear coordination and effective task distribution.

Frontend developer

The frontend developer actively participated in the project, implementing UI components,
integrating with APIs, and implementing Feature-Sliced Design. The work was completed
with high quality and attention to detail. Regular commits and close collaboration with the
teammate contributed to the project’s success.

Backend developer

The backend developer was responsible for updating classic structures and setting up new
endpoints, as well as refactoring types in the frontend. Despite the complexities related to
the transition to a new architecture, the developer successfully completed tasks, ensuring
system reliability and performance.

49

Teamwork

Open and regular communication between team members facilitated the prompt resolution
of problems and increased work efficiency. In addition to this team members supported
each other, which helped to maintain a high level of motivation and achieve set goals.

Notes and suggestions

■ Planning
In the future, it would be beneficial to pay more attention to planning and determining
potential risks to minimize the impact of unexpected changes on the project.

■ Testing
In the future, it would be beneficial to increase the volume and variety of testing at
early stages of development to promptly identify and eliminate errors.

■ Documentation
More detailed and structured documentation at each stage of the project will help
avoid misunderstandings and simplify the process of integrating new team members.

■ Training and development
Regular training sessions and seminars on new technologies and methodologies will
help the team stay up-to-date with the latest trends and improve their qualifications.

Overall, the project to develop a blockchain explorer for Alphabill was successful due to
clear planning, active support from the project leader, and great teamwork. Despite the
challenges that appeared, the project is being completed with high quality.

50

4.5 Outlining authors’ contributions

Both authors demonstrated high levels of professionalism and responsibility, and their
contributions were equal, reflecting their overall contribution to the successful completion
of the project.

4.5.1 Frontend development

Igor Mahlinovski
Igor actively participated in developing the design, layout, and UI components develop-
ment, integration with API, and implementation of Feature-Sliced Design. His work was
done with high quality and attention to detail, contributing to the successful completion of
the project.

4.5.2 Backend developement

Alexander Khrushkov
Alexander made a significant contribution to restructuring the back-end architecture to a
microservices-based one, updating class structures, setting up new endpoints and integrat-
ing data types into the frontend. Despite the complexities associated with transitioning to a
new architecture, Alexander successfully completed his tasks, ensuring system reliability
and performance.

51

5. Conclusion

5.1 Summary

The aim in creating an explorer for the Alphabill blockchain was to increase the trans-
parency of the network. The goal of the project was to develop a reliable and scalable
blockchain explorer tool for efficiently processing and displaying blockchain data. For the
implementation, modern technologies were chosen, such as microservice architecture, Go
programming language and BoltDB for the backend, React, Vite and TypeScript for the
frontend. The development process included phases of planning, design, implementation,
integration, testing and documentation.

The main achievement was the successful implementation of the functionality for the
interaction with the money partition of the Alphabill blockchain, allowing clients to track
transactions and blocks. The analysis of the work showed that the selected technologies
and architectural solutions provide high performance and flexibility of the system, which
is a good basis for further expansion of functionality.

5.2 Future work

Within the scope of this work, only a part of the functionality related to the Money
partition has been implemented. The current version does not provide users with detailed
information about what exactly happened to the unit during a transaction. In the future, it
is planned to:

■ Add other partitions, such as User Tokens and EVM, each with own shards, blocks
and transactions.

■ Implement detailed flow for all types of units, allowing users to see the complete
history.

■ Improve the UI and UX, including data visualization and integration of additional
analytical tools.

■ Optimize performance and scalability of the system to support growing data volume.
■ Conduct additional testing and implement features to enhance the security and

reliability of the blockchain explorer.

52

References

[1] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Whitepaper.
Accessed: 24-04-2024. bitcoin.org, 2008. URL: https://bitcoin.org/
bitcoin.pdf.

[2] Joseph Abadi and Markus Brunnermeier. Blockchain economics. Tech. rep. National
Bureau of Economic Research, 2018.

[3] Understanding Peer-to-Peer Architecture. [Accessed: 24-04-2024]. URL: https:
//systemdesignschool.io/blog/peer-to-peer-architecture.

[4] Simanta Shekhar Sarmah. “Understanding blockchain technology”. In: Computer

Science and Engineering 8.2 (2018), pp. 23–29.

[5] Melanie Swan. Blockchain: Blueprint for a new economy. " O’Reilly Media, Inc.",
2015.

[6] Ingolf Gunnar Anton Pernice and Brett Scott. “Cryptocurrency”. In: Internet Policy

Review, Glossary of decentralised technosocial systems 10.2 (2021).

[7] Shubhani Aggarwal and Neeraj Kumar. “Cryptocurrencies”. In: Advances in Com-

puters. Vol. 121. Elsevier, 2021, pp. 227–266.

[8] Altcoin Explained: Pros and Cons, Types, and Future. [Accessed: 24-04-2024].
URL: https://www.investopedia.com/terms/a/altcoin.asp#:
~:text=Pros%20and%20Cons%20of%20Altcoins&text=Altcoins%

20are%20%22improved%20versions%22%20of,uses%2C%20such%

20as%20Ethereum’s%20ether..

[9] Douglas W Arner, Raphael Auer, and Jon Frost. “Stablecoins: risks, potential and
regulation”. In: (2020).

[10] Andrei-Dragos Popescu. “Non-fungible tokens (nft)–innovation beyond the craze”.
In: 5th International Conference on Innovation in Business, Economics and Market-

ing Research. Vol. 32. 2021.

[11] Robert Werner, Sebastian Lawrenz, and Andreas Rausch. “Blockchain analysis tool
of a cryptocurrency”. In: Proceedings of the 2020 The 2nd International Conference

on Blockchain Technology. 2020, pp. 80–84.

[12] Daniel Fernando Arevalo Espinel. “How Usable are Block Explorers for Attesting
Agreements Registered on Blockchains?” MA thesis. NTNU, 2019.

53

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://systemdesignschool.io/blog/peer-to-peer-architecture
https://systemdesignschool.io/blog/peer-to-peer-architecture
https://www.investopedia.com/terms/a/altcoin.asp#:~:text=Pros%20and%20Cons%20of%20Altcoins&text=Altcoins%20are%20%22improved%20versions%22%20of,uses%2C%20such%20as%20Ethereum's%20ether.
https://www.investopedia.com/terms/a/altcoin.asp#:~:text=Pros%20and%20Cons%20of%20Altcoins&text=Altcoins%20are%20%22improved%20versions%22%20of,uses%2C%20such%20as%20Ethereum's%20ether.
https://www.investopedia.com/terms/a/altcoin.asp#:~:text=Pros%20and%20Cons%20of%20Altcoins&text=Altcoins%20are%20%22improved%20versions%22%20of,uses%2C%20such%20as%20Ethereum's%20ether.
https://www.investopedia.com/terms/a/altcoin.asp#:~:text=Pros%20and%20Cons%20of%20Altcoins&text=Altcoins%20are%20%22improved%20versions%22%20of,uses%2C%20such%20as%20Ethereum's%20ether.

[13] Alphabill Whitepaper: Public Token Infrastructure. Whitepaper. Accessed: 10-03-
2024. alphabill.org, 2024. URL: https://docs.alphabill.org/files/
ab-whitepaper-2024-v15.pdf.

[14] Alphabill Documentation. [Accessed: 10-03-2024]. URL: https : / / docs .
alphabill.org/docs/welcome.

[15] Ahto Buldas et al. “A Unifying Theory of Electronic Money and Payment Systems”.
In: (July 2021). DOI: 10.36227/techrxiv.14994558.v3.

[16] Ahto Buldas et al. “An Ultra-Scalable Blockchain Platform for Universal Asset
Tokenization: Design and Implementation”. In: IEEE Access 10 (2022), pp. 77284–
77322. DOI: 10.1109/ACCESS.2022.3192837.

[17] The full Ubuntu experience, now available on Windows. [Accessed: 24-04-2024].
URL: https://ubuntu.com/desktop/wsl.

[18] Why Vite. [Accessed: 24-04-2024]. URL: https://vitejs.dev/guide/
why.html.

[19] React - The library for web and native user interfaces. [Accessed: 24-04-2024].
URL: https://react.dev/.

[20] The TypeScript Handbook. [Accessed: 24-04-2024]. URL: https : / / www .
typescriptlang.org/docs/handbook/intro.html.

[21] Find and fix problems in your code. [Accessed: 24-04-2024]. URL: https://
eslint.org/.

[22] Core Concepts. [Accessed: 24-04-2024]. URL: https://tailwindcss.com/
docs/utility-first.

[23] Getting Started. [Accessed: 24-04-2024]. URL: https://axios-http.com/
docs/intro.

[24] Overview. [Accessed: 24-04-2024]. URL: https://tanstack.com/query/
latest/docs/framework/react/overview.

[25] Overview. [Accessed: 24-04-2024]. URL: https://tanstack.com/table/
latest/docs/overview.

[26] Overview. [Accessed: 24-04-2024]. URL: https://reactrouter.com/en/
main/start/overview.

[27] Chart.js. [Accessed: 24-04-2024]. URL: https://www.chartjs.org/docs/
latest/.

[28] What is Etherscan. [Accessed: 24-04-2024]. URL: https://info.etherscan.
com/what-is-etherscan/.

54

https://docs.alphabill.org/files/ab-whitepaper-2024-v15.pdf
https://docs.alphabill.org/files/ab-whitepaper-2024-v15.pdf
https://docs.alphabill.org/docs/welcome
https://docs.alphabill.org/docs/welcome
https://doi.org/10.36227/techrxiv.14994558.v3
https://doi.org/10.1109/ACCESS.2022.3192837
https://ubuntu.com/desktop/wsl
https://vitejs.dev/guide/why.html
https://vitejs.dev/guide/why.html
https://react.dev/
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.typescriptlang.org/docs/handbook/intro.html
https://eslint.org/
https://eslint.org/
https://tailwindcss.com/docs/utility-first
https://tailwindcss.com/docs/utility-first
https://axios-http.com/docs/intro
https://axios-http.com/docs/intro
https://tanstack.com/query/latest/docs/framework/react/overview
https://tanstack.com/query/latest/docs/framework/react/overview
https://tanstack.com/table/latest/docs/overview
https://tanstack.com/table/latest/docs/overview
https://reactrouter.com/en/main/start/overview
https://reactrouter.com/en/main/start/overview
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://info.etherscan.com/what-is-etherscan/
https://info.etherscan.com/what-is-etherscan/

[29] Wren Chan and Aspen Olmsted. “Ethereum transaction graph analysis”. In: 2017

12th International Conference for Internet Technology and Secured Transactions

(ICITST). 2017, pp. 498–500. DOI: 10.23919/ICITST.2017.8356459.

[30] Relentlessly building the future of finance since 2011. [Accessed: 24-04-2024]. URL:
https://www.blockchain.com/about.

[31] bitinfocharts. [Accessed: 24-04-2024]. URL: https : / / bitinfocharts .
com/.

55

https://doi.org/10.23919/ICITST.2017.8356459
https://www.blockchain.com/about
https://bitinfocharts.com/
https://bitinfocharts.com/

Appendices

56

A. Non-Exclusive License for Reproduction and Publica-
tion of a Graduation Thesis1

I Igor Mahlinovski and I Alexander Khrushkov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Developing a block explorer for the next-generation blockchain: a tool to
enhance the network transparency”, supervised by Pavel Grigorenko
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. We are aware that the authors also retain the rights specified in clause 1 of the
non-exclusive licence.

3. We confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

20.05.2024

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

57

B. Example of API endpoints
// version v1 router

apiV1 := apiRouter . PathPrefix (" /v1") . Subrouter ()

// block

apiV1.HandleFunc("/blocks/{blockNumber}", api .getBlock) .Methods("GET", "OPTIONS")

apiV1.HandleFunc("/blocks" , api . getBlocks) .Methods("GET", "OPTIONS")

// tx

apiV1.HandleFunc("/txs /{txHash}", api .getTx) .Methods("GET", "OPTIONS")

apiV1.HandleFunc("/txs" , api .getTxs) .Methods("GET", "OPTIONS")

apiV1.HandleFunc("/blocks/{blockNumber}/txs",

api .getBlockTxsByBlockNumber).Methods("GET", "OPTIONS")

apiV1.HandleFunc("/units /{unitID}/ txs" , api .getTxsByUnitID).Methods("GET",

"OPTIONS")

// bill

apiV1.HandleFunc("/address /{pubKey}/bills " , api .getBillsByPubKey).Methods("GET",

"OPTIONS")

58

C. Example of API endpoint
// @Summary Retrieve a blockchain block by number, or the latest if unspecified

// @Description Retrieves a block by using the provided block number as a path

parameter , or retrieves the latest block if no number is specified .

// @Tags Blocks

// @Accept json

// @Produce json

// @Param blockNumber path string false "Block number (’ latest ’ or a specific

number)"

// @Success 200 {object} api .BlockInfo "Block information successfully retrieved "

// @Failure 400 {object} string "Missing or invalid block number"

// @Failure 404 {object} string "No block found with the specified number"

// @Failure 500 {object} string " Internal server error , such as a failure to

retrieve the block"

// @Router /blocks/{blockNumber} [get]

func (api *MoneyRestAPI) getBlock(w http.ResponseWriter, r *http .Request) {

// Implementation of the endpoint

}

59

D. Example of a test case
func TestGetBlock_Success(t testing .T) {

r := mux.NewRouter()

restapi := &MoneyRestAPI{Service: &MockExplorerBackendService{

getBlockFunc: func(blockNumber uint64) (api .BlockInfo, error) {

require .Equal(t , uint64 (1) , blockNumber)

return &api.BlockInfo{TxHashes: [] api .TxRecordHash{{0xFF}}}, nil

},

}}

r .HandleFunc("/blocks/{blockNumber}", restapi .getBlock)

ts := httptest .NewServer(r)

defer ts .Close()

res , err := http .Get(fmt. Sprintf ("%s/blocks/1" , ts .URL))

require .NoError(t , err)

require .Equal(t , http .StatusOK, res .StatusCode)

body, err := io .ReadAll(res .Body)

require .NoError(t , err)

result := &api.BlockInfo{}

require .NoError(t , json .Unmarshal(body, result))

require .Equal(t , &api.BlockInfo{TxHashes: [] api .TxRecordHash{{0xFF}}}, result)

}

60

	Introduction
	Background and motivation
	Goals
	Problem statement
	Outline of the thesis

	Prerequisites
	Blockchain
	Cryptocurrency
	Altcoins
	Stablecoins
	Non-Fungible Tokens (NFTs)

	Block Explorers
	Transaction Tracking
	Address Monitoring
	Block Verification
	Network Health and Statistics
	Multi-Currency and Multi-Chain Support
	Educational Resources
	Real-Time Updates

	Alphabill

	System Design and Implementation
	User Stories
	Get a list of blocks
	Block details
	The list of transactions in a block
	The list of transactions
	Transaction details
	Search bar
	Units history
	Activity and balance state
	Network statistics and status

	Use Cases
	Blockchain Exploration through a Blockchain Explorer

	Backend Design and Implementation
	Overview
	Database and Storage
	Data Processing
	Transaction, Unit Tracking
	REST API and Endpoints
	Performance and Efficiency
	Testing and Quality Assurance

	Frontend Design and Implementation
	Design Process
	Project Initialization
	Directory Structure
	Responsive Design
	Main User Interface Components
	Routing and page components
	Integration with Backend

	Development Tools and Practices
	Version Control
	IDE
	Code Style and Formatting

	Evaluation of approach
	Justification for technical implementation
	Requirements
	Architecture
	Design
	Coding standards

	Comparison with Existing Popular Blockchain Explorers
	Etherscan
	Blockchain.com
	BitInfoCharts
	Alphabill Explorer

	Versions controls
	Git commits and branch management

	Evaluation of the project development process
	Project management and development
	Evaluation of successes and faced difficulties during the development
	Overall Assessment of the Project Execution Process

	Outlining authors' contributions
	Frontend development
	Backend developement

	Conclusion
	Summary
	Future work

	References
	Appendices
	Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Example of API endpoints
	Example of API endpoint
	Example of a test case

