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töörezhiimis: juhtumiuuring Bonfire
kiipvõrgul
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Abstract

The continuous scaling in technology has caused the components of a network-

on-chip to be more vulnerable to faults; therefore, there is a need for methods to

maintain circuit performance. This dissertation propose a methodology to partition

design into control and data parts, each to be protected by different circuitry. An

increasing number of faults appear during the run-time of the system caused by

temperature-time dependent degradation and environmental effects like radiation

or electromagnetic noise. Thus, online fault monitors are required for detecting

faults during circuit’s life-time. The concurrent checkers monitor the control part

and error control code checks the data-path of the NoC. A new method and tool

framework is developed for checker qualification and minimization, which aim at

sufficient fault coverage and checker efficiency index with minimum area overhead.

Concurrent checkers and error control codes are implemented for a case study on

a TUT design project Bonfire NoC evaluating different error control mechanisms

and strategies.
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Annotatsioon

Kiibitehnoloogiate pidev miniaturiseerimine on muutnud kiipvõrgud rikete suhtes

tundlikumaks. Seega on vajadus uute meetodite järgi, mis säilitaksid kiipide jõudluse.

Käesolev dissertatsioon pakub välja metodoloogia skeemi tükeldamiseks juht- ja

andmeosaks, milledest kumbki oleks kaitstud erineva arhitektuurse lahendusega.

Üha kasvav hulk rikkeid toimub süsteemi eluajal põhjustatuna temperatuurist tu-

lenevast degradeerumisest ning keskkonnast tulenevast kiirgusest ja elektromag-

neetilistest häiretest. Seega on tarvis rikkemonitore ja veakodeerimisel põhinevaid

lahendusi skeemi eluajal tekkivate vigade avastamiseks. Monitorid jälgivad ki-

ipvõrgu juhtosa ning veakodeerimisel põhinevad skeemid jälgivad selle andmeosa.

Dissertatsioonis töötati välja uus meetod ja programne keskkond rikkemonitoride

kvantitatiivseks analüüsiks ning nende hulga minimiseerimiseks, mille eesmärgiks

on piisava rikete katte saavutamine minimaalse lisakuluga. Rikkemonitore ja veakodeer-

imisel põhinevaid mehanisme rakendati TTÜ Bonfire kiipvõrgu projektis toimunud

juhtumiuuringus, et hinnata erinevaid tõrkekindlaid strateegiaid.
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Chapter 1

Introduction

1.1 Motivation

The continuous scaling in semiconductor technology enables the amount of tran-

sistors on a single chip to be doubled in every 18 months as theorized in Moore’s

Law. Today IC’s have a high capacity of transistors and capable of connecting var-

ious components onto a single chip forming a system on chip. Conventionally, SoC

had a single processor connected to peripherals using bus or crossbar architecture.

Now, SoC also provides possibility to connect multiple processors system on chip

MPSoC.

As semiconductor technology scales down further, the SoC design problem focus

shifts from data processing towards effective communication which is now a major

contributor for SoC performance and implementation cost. Traditionally, the in-

terconnection between multiple cores in SoC followed conventional bus or crossbar

structures. However, with the increasing number of processing cores, the conven-

tional communication media become the system’s bottleneck due to their low scal-

ability. Though, to enable concurrent data transmission, busses can be segmented

[1] at the expense of higher arbitration complexity or replaced with crossbars at the

expense of a significantly larger number of wires. However, segmented buses and

crossbars are not fully scalable and thus can provide only an intermediate solution.

The Network-on-Chip NoC model [2] has been proposed and is widely accepted

as a scalable and reliable communication infrastructure replacement of buses and

crossbars[5]. NoC is not just more scalable, can also operate at much higher clock

1



CHAPTER 1. INTRODUCTION

frequency and has lower power consumption [8]. However, further scaling of inte-

grated circuits makes the NoC design more vulnerable to different kinds of faults,

thus, making design’s reliability a real challenge. For correct behavior of the sys-

tem, data integrity is important. Different error control codes are implemented and

analysed in terms of area in this work. Also, an increasing number of faults appear

during the run-time of the system caused by temperature-time dependent degra-

dation and environmental effects like radiation or electromagnetic noise. Thus,

concurrent fault monitors for detecting faults during circuit’s lifetime are needed.

These checkers would report errors within routers and would allow reconfigura-

tion of the routing infrastructure, that operate during the lifetime of system and

parallel with its normal operations. The thesis proposes a new methodology of

partitioning systems into control and datapath with the former to be covered by

online checkers and the latter with error correcting codes. In addition methods for

automated checker qualification and minimization are presented. In this chapter a

brief overview of related work about the error control codes techniques and on-line

testing is detailed.

1.2 Related work

The related work is divided into two parts one for fault detection and correction in

data and other for designing concurrent online-checkers for faults in control logic.

1.2.1 Data Error correction and Detection

Error detection and correction techniques help to maintain the data integrity of

the system. There are two well-known schemes namely, end-to-end encoding that

work at network level and switch-to-switch encoding at link level. A hybrid of both

schemes can also be used along with retransmission [10]. The error control schemes

are not efficient in case of intermittent errors. For instance, for intermittent errors

a system get stuck at retransmissions of a single piece of data due to continuous

error. The error detection and correction scheme fails in case of permanent error,

and it takes a large area overhead to develop strong error control schemes for per-

manent and intermittent errors.

2



CHAPTER 1. INTRODUCTION

This literature survey provides a large amount of useful data in order to select a

suitable error control scheme for a given NoC design. The end-to-end encoding

strategy is applied in the network interface on the entire packet at the source and

destination points. The power consumption of end-to-end error control is less than

that of hop-to-hop error control at low error rate, route length and small number

of retransmissions [21]. More errors can appear in data because of no error recov-

ery at hops in the router. Retransmission causes increase in latency, if it occurs

frequently. In end-to-end, ECC require strong error control scheme to meet the

same reliability level of hop-to-hop ECC, possibly requiring a larger codec in NI in

case of high noise conditions. A simple end-to-end ECC technique combined with a

timeout retransmission mechanism has been proposed to reduce the latency caused

by packet corruption or loss [23].

In [25] author proposed a method that makes use of the extended Hamming code

known as a Single Error Correction Double Error Detection (SECDED) code in

the NI. The method is able to improve energy efficiency for a variety of design pa-

rameters with area overhead as the main limitation. In [26], the author compares

different error detection and correction schemes to find the most efficient error

control technique from energy viewpoint, that includes Hamming codes, extended

Hamming codes, parity check codes, and CRC codes.

The number of simultaneous permanent, transient, intermittent or burst errors are

expected to increase in future with the continuous scaling of the IC’s. A multiple-

error correction code is constructed by combining Hamming codes with Duplicate-

Add-Parity (DAP) codes [29]. In this method, the outputs of a hamming encoder

are duplicated and an extra parity bit generated from the original hamming code is

added. This method requires a large number of additional interconnect wires that

greatly increases the energy consumption and link area overhead. Bose-Chaudhuri-

Hocquenghem Codes (BCH) codes are considered as an important class of linear

block codes for multiple error correction. The BCH encoder follows approach sim-

ilar to cyclic codes. Reed-Solomon (RS) codes are a subclass of BCH codes good

at correcting multiple symbol errors. The BCH and RS codes are implemented

in NoC links, that can correct multiple errors with limitation of large codec area,

power consumption and decoding time[27] .

3



CHAPTER 1. INTRODUCTION

1.2.2 Concurrent Online Testing

The faults in logic circuits and its online detection is a thoroughly studied research

area. Techniques like Double-Modular-Redundancy (DMR) or Triple-Modular-

Redundancy (TMR) are most simple way to implement online detection with re-

dundancy and are costly in terms of area overhead and increase in power consump-

tion. To minimize this overhead, selective TMR can be used to identify Single

Event Upset (SEU) in the circuits [35]. The Built-In Concurrent Self-Test (BICST)

technique[36] and Reduced Observation Width Replication (ROWR) technique [37]

achieve high fault coverage at low area overhead with limited pre-computed test

vectors. Though, these approaches are susceptible to miss faults during normal

operation of the circuit.

Checkers can be extracted from the functional logic of the design [38] , but it has

limitation of low fault coverage and large area overhead, higher than DMR scheme.

On the other hand, an approach based only on functional assertions or reuse of

verification assertions suffers from low fault coverage of structural faults, and the

obtained functional coverage is difficult to relate with the structural one [39].

A number of previous works propose error control methods for reducing faults in

a router of a NoC. Fault tolerance was added in NoC topologies for detecting er-

rors in routing logic using Logic Based Distributed Routing mechanism [42] and

its extension was used for high-radix topologies, i.e LBDRhr [43]. This method

utilizes the Inherent Information Redundancy (IIR) to reduce the area overhead,

but it did not had full fault coverage. Authors of [44] have presented a method for

online error detection and diagnosis of NoC switches. This method addresses rout-

ing faults caused by packet corruption in such a way that it forwarded to a wrong

destination port. A high-level fault model has been proposed that has fault cov-

erage only at the functional level and lacks generality with area overhead. In [45],

ForEVeR (Formally Enhanced Verification at Runtime for NoCs) method proposes

a network-level detection and recovery solution. It provides a solution to detect

functional errors in NoCs.This approach detects only 30 percent of the faults in

first clock cycle and has large latency.

4
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The work in [46] ensures network functional correctness by implementing checkers

based on using set of 32 invariance. The unexpected behavior is captured by any

one of the 32 assertion checkers. However, it is not clear how injection of faults,

fault simulation and evaluation of coverage are accomplished by this method. More-

over the approach is not automated and lacks the completeness and minimization

aspects. An automated framework is proposed which provides a minimized list of

online checkers for checking the control part of on-chip routers. This method is

closest to the idea of concurrent online detection which is considered in this disser-

tation. It makes use of 5 checkers from set of 31 and with covering only the control

part of NoC with large area overhead. In this dissertation LBDR considered for

designing checkers are more generic i.e considering all 4 ports (E, W, S, N), whereas

in [40] it considers East - LBDR. The Checkers design for this dissertation are in-

spired by the work of [40] and same method and filtering approach is used for the

input stimuli (environment).

1.3 Contribution

This dissertation propose a methodology to partition design into control and data

parts, each part to be protected by checkers and error control code respectively.

As background information fault types, its sources, classification and a survey of

fault tolerance methods are studied and presented in this dissertation. For reli-

able on-chip communication different types of error control codes are studied out

of which hamming, cyclic redundancy codes and single parity are implemented and

compared in terms of area. The thesis proposes a new methodology of partitioning

systems into control and data-path with the former to be covered by online check-

ers and the latter with error correcting codes. In addition, new method and tool

framework for checker qualification and minimization is developed.

The case study Bonfire NoC includes implementation of the ECC and Checkers

which is shown in Chapter 6 and Chapter 7. This case study is a part of a ”EU’s

Horizon 2020 Research and Innovation Action IMMORTAL” and ”EU’s FP7 Col-

laborative Research Project BASTION”. The design decisions made in the case

study will be used in the real manufacturing of the fault tolerant IC by the team

5



CHAPTER 1. INTRODUCTION

members of projects from TTÜ .

1.4 Outline of Thesis

The introduction chapter has given an overview of the thesis. The rest of thesis

is organized as follows: chapter 2 provides the basis for better understanding of

Network on Chip (NoC) describing its basic building blocks, network topologies,

routing algorithms and switching techniques. Chapter 3 classifies the types of

faults, most common fault sources are discussed. It gives basis for understanding

of fault tolerance methods divided under two categories namely static and dynamic.

In chapter 4 the basics of concurrent checkers and the new metrics used in fault

evaluation are explained. Chapter 5 explains about the ECC techniques concept

in theory. In chapter 6 selected ECC are implemented and its area is compared.

Chapter 7 discuss about the checkers devised to deal with the control faults and

its experimental results are presented with discussion. Chapter 8 Concludes about

the results and explains the possible future work.

6



Chapter 2

Network On Chip Architechture

The main components of NoC are routers, network interface and physical links that

provide communication between multiple processors on chip. The figure 2.1 shows

A 4x4 NoC example in 2D mesh topology .

Figure 2.1: A 4x4 NoC example in 2D mesh topology.

• Network interfaces act as an interface between the cores and the routers.

It accepts data in form of packets from router and de-packetize it to send

it into core. For this purpose it has a packetizer and a de-packetizer and a

buffer to store data.

7
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• Routers are considered to be the backbone of the NoC. It has five output

ports out of which four ports are connected to the four neighboring routers

and fifth port is connected to network interface. The routing algorithm, flow

control and switching techniques play a very important role in routers. A NoC

router contains of a number of input and output ports, a switching matrix

connecting the input ports to the output ports, and a local port to access the

IP resource connected to the same router.

• Links connect adjacent routers. The interconnect between two adjacent

routers are usually composed of two unidirectional links which in charge of

the outgoing or incoming traffic, respectively. It is possible to replace. The

cores in NoC can be any processing or memory units.

The factors that influence the performance of a NoC are topology that determine

the arrangement of channels and routers, routing technique defines the way a mes-

sage is transmitted from the source to the destination, flow control that tells how

are network resources allocated when packets travel through the network, router

architecture with various components such as buffers and switches, and traffic pat-

tern.

2.0.1 Topologies

Topology defines the way routers are connected to each other to form a network.

The routers can be connected in a direct or an indirect form. NoC with direct

topologies are where every node in the network is both a terminal and a switch

for example mesh, torus, hypercube, octagon topologies. The Indirect topology

are where nodes are either switches or terminal for example fat-tree and three-

stage butterfly. The mixed topology are application specific. All the topologies are

illustrated in figures 2.2 and 2.3 below for better understanding. All circular nodes

in the figures are represented as routers and black squares are resources.

The well known basic topologies are the ring where the routers connect forming a

ring and star, where all routers in network are connected to main central router.

Mesh topology is the most common form of direct topology in network-on-chip.
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Figure 2.2: Direct topologies.

In this, each cores is connected to one router via network interface. The router

is connected to its four neighboring routers in four different directions, viz. east,

west, north, south except routers in corners which are connected to two. The major

drawback of this topology is the long distance between the edge routers. This

drawback was overcome in torus topology, where routers on edges are connected

to each other directly. This topology have problem of uneven link length which

could be controlled by folded torus. The tree topology and its variations are part

of indirect topology, the two common tree topologies are binary tree and fat tree.

In the binary tree topology the top most router is the parent router or resource

and nodes below it are its descendants. Fat tree structure shows more balance and

has less traffic congestion even with more nodes added to it. However, its major

drawback is the complexity in design for real implementation.

Figure 2.3: Indirect topologies

2.0.2 Routing

Routing algorithms establish the path to travel by packets from its source to desti-

nation. There are many routing algorithms available and discussion of all is out of

9
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scope of this dissertation. In this section we will introduce some common routing

algorithms terms with main focus on XY routing which is used in our case study.

The selection of the route for a packet through the network is defined by its routing

algorithm. Based on routing decisions the algorithm can be Distributed, Source,

Hybrid or Centralized. In distributed routing, the function is calculated as the

the packet travels through the network, While in Source routing, the algorithm is

decided prior to the packet entry in the network. Hybrid is a multiphase routing

where the address can be calculated at the source but paths are decided by the

routers like in distributed routing. Centralized routing has a main router as con-

troller where all decisions are made for routing. The routing decisions are not only

limited to the address information but on the basis of adaptivity the routing is cat-

egorized as oblivious, deterministic and adaptive. In oblivious routing any change

encountered during the travel of the packet through the network does not change

the routing function. An oblivious routing can be deterministic but vice versa is

not true. In adaptive routing any change observed in path can alter the route of

packet. For example, packet can bypass the congested path with another route to

reach the destination. It offers better reliability at the cost of complex routing func-

tion. The deterministic routing algorithms have fixed predetermined route. The

common form of deterministic routing function is source routing and XY routing.

In XY routing a packet is first traveled along the x-dimension up to correct column

and then along the y-dimension up to the row. Deterministic and oblivious routing

algorithms are minimal as they provide shortest path from source to destination.

For example, let (X1, Y1) and (X3, Y4) be the source and destination coordinates

respectively. Consider a 2D mesh topology, for the X-Y routing first the packet

travel in X direction until X1 reach to X3 and then it travel in Y direction until

Y1 becomes equal to Y4 as shown in figure 2.4. Routing algorithms with complex

functions can create a situation where a packet stay in network without reaching

the destination. This state is known as livelock. Another critical situation is of

deadlock and starvation. Deadlock is a situation, where two or more packets wait

for a busy resource and at the same time also reserve a resource meant for another

packet. Therefore, the network comes to halt because of no packet movement.

Starvation is a condition in which a low priority packet may have to wait for its
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Figure 2.4: An example of XY routing algorithm.

turn forever. XY routing is best example of a deadlock-free routing algorithm with

no cyclic dependencies in packets routing.

2.0.3 Switching

Switching is a technique that decides the transmission of data from source to des-

tination nodes. Switching is broadly classified as Circuit and Packet switching. In

circuit switching approach the whole path is pre-established and reserved between

source and node before the actual transmission of data. The other switching tech-

nique is packet based, in which the flits of packets are ready for transmission once

the header makes connection between routers, this can be done again in two ways,

either by storing the flits and forwarding them when there is successful connection

between routers or making the flits transmission in a pipeline fashion. The former

method is called as the store-and-forward, sufficient buffer size is necessary to store

the whole packet before transmission permission is granted. In latter method of

wormhole switching, the flits are send over transmission path as soon as header

is encountered at the node. Wormhole switching is also a variant of virtual-cut-

through mechanism. This method require buffers for storage of packets which are

passed only upon confirmation to next node. In this dissertation, wormhole switch-

ing is used in the Noc.

As per the architectural parameters discussed above the case study use 2x2 mesh

topology with XY-Routing and Wormhole switching. The message is divided into

packets of maximum length 212 with each flit of 32 bit. The Packet format chosen

for the case study is shown in the figure 2.5. In figure 2.5 Type = Type of the packet

11
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Figure 2.5: Packet structure for NoC

(one-hot), length= Length of the packet in number of flits = Header+Body+Tail,

Destination = Address of the destination Node, Source = Address of the source

Node, ID = One-hot Counter that is generated by NI and keeps track of the order

of sent packets, Data = The DATA (Payload). In this work we have used router

design that utilize a simple architecture without Virtual Channels (VCs) with 4

pipeline stages. It is written in VHDL with simple design (without Virtual Chan-

nels (VCs)) and with CTS/RTS handshaking for flow control.The high level NoC

router architecture is shown below in figure.2.6. With the knowledge of above flit

Figure 2.6: Architecture of router for NoC.

structure and NoC router architecture the ECC techniques and Checkers design is

decided.
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Chapter 3

Faults and Fault Tolerance

In electronics a fault is defined as a flaw that occur in a hardware or software

component. A fault not necessarily causes an error in the system, whereas failure

can occur due to an error [48]. In this chapter the fault types are classified and the

most common fault sources are discussed and different techniques for fault tolerance

are explained from which we can choose for the target NoC [6].

3.1 Fault sources and classification

Faults are broadly classified into transient, intermittent and permanent faults de-

pending upon the duration and location of their occurrence. The source of faults

generally depends on the phenomenon causing it, for example, It can occur during

a manufacturing process due to lithography variation, resulting in spot or bridg-

ing defects, which are permanent in nature. Also other sources include physical

changes in the circuit during operation due to electro-migration or increased power

consumption. Among other sources are the internal noise in the circuit that can

be caused by high frequency, timing uncertainty, crosstalk or due to other parts in

the circuit whereas external noise, which is not considered as severe noise is due

to the medium radiations in which chip is to be used for e.g. space, nuclear plants

etc. These fault types are described briefly in the following subsections.
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3.1.1 Transient faults

Transient faults (soft errors) are temporary faults also known as Single Event Upset

(SEU). The term SEU explains the fact that soft errors are caused by single events

such as absorbed radiation, etc. Such errors occur for a short duration of time

due to various factors such as process and temperature variations [14] , capacitive

and inductive crosstalk noise [15], alpha particles, neutrons or other radiations [16],

other noise sources such as Electro-Magnetic-interference (EMI), voltage fluctua-

tion, and electrostatic discharge[17]. The most common example of transient fault

is flip of single bit. It is difficult to detect its occurrence because of its random

nature. It is generally measured in terms of soft error rate (SER), that tells the

probability of error occurrence. Transient faults are the most frequently occurring

fault in NoC; up to 80% of all the system failures are associated with transient

faults[13].

3.1.2 Intermittent faults

Intermittent faults are periodic in nature but not continuous like permanent faults.

It can occur at any time due to temporary environmental change, certain input

combinations or conditions making it hard to detect in system. For example, It can

be caused by change in certain parameters of the environment such as temperature

or voltage change, that alter the normal behavior of the chip. In some cases it can

be a considered prior stage to the permanent faults. For instance, due to repeated

increase in the resistance wire, it can in turn cause permanent breakdown of wire.

The general way to recover from it is to either replace or bypass the faulty circuit

in the system [3],[4].

3.1.3 Permanent faults

Permanent faults once occurred cannot disappear from the system. It usually

results from manufacturing defect or due to electro-migration, aging of components

or due to broken components. Intermittent faults when occur repeatedly for longer

duration can lead to the occurrence of permanent errors. Generally, chips are

tested during manufacturing in order to detect the permanent faults and rejecting
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the faulty circuits. If fault is observed during the operation of a circuit, it either

has to be replaced or provided with very strong fault tolerance techniques[3], [4].

3.2 Fault Tolerance Techniques

Fault tolerance strategy is broadly divided in two categories. static fault tolerance,

and dynamic fault tolerance. [48], [52], [6].

3.2.1 Static Fault Tolerance

The Static fault tolerance methodology is built into the system to counter the effect

of faults. This method usually make use of some type of redundancy which is cate-

gorized into hardware, information and time redundancy. The type of redundancy

to be used depends upon the particular requirement of the system, sometimes a

combination of these can also be used.

Hardware Redundancy : This methodology makes use of a physical redundant

module with a verifier circuit. The size of module can vary from complete physical

circuit to a certain part of the circuit or a logic gate. The most common example

of this methodology is triple-modular-redundancy(TMR) that has three redundant

modules with a verifier. n-modular redundancy is a more generalized form, with N

number of redundancy. In case a module fails to give correct output, the verifier

compares the result with other redundant modules output, deciding correct output

for the system. The major drawback of TMR is if there is an error in voter circuit,

it can result in complete failure of the system. Online testing of the verifier cir-

cuit could solve the purpose of internal faults detection, but crosstalk between the

module output and verifier input has severe impact resulting in the wrong verifier

decision [48].

Time Redundancy : In this methodology the redundancy is in terms of time

where the system is made to perform same operation for certain time and later the

results are compared. This method does not have any extra copy of circuit resulting

in no area overhead but huge latency.

Information Redundancy :The redundancy in this methodology is added as ad-

ditional bits to the information bits, based on ECC techniques. These techniques
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are described in detail later in chapter 5. The forward error correction (FCC) is a

technique that makes use of ECC to detect errors and correct at its location.

3.2.2 Dynamic Fault Tolerance

Dynamic fault tolerance is a methodology implemented on active operations of the

system. This method follows a set of sequences in its operation as shown below:

[13], [6].

Fault detection → Fault Location→ Fault Containment → Fault Recovery

This method requires special control circuitry and elements to be built for the

system, which are usually very complex in its design, but offers better reliability

in terms of detecting simultaneous permanent and multiple errors with small area

overhead as compared to static fault tolerance approach. It is considered as a

promising method for networks-on-chip. Each step of the sequence is explained

below.

Fault Detection : The fault detection can be implemented in any one of the

following forms [52].

• periodic tests : Tests are performed occasionally and output is verified.

• self-checking circuits: Duplication in terms of circuit or time with comparison

for output verification.

• watchdog timers : It checks the timer value and resets when its value has

exceeded. It is commonly used in multiple processor systems.

The fault tolerance mechanism is decided depending upon the type of error being

addressed. Error can be unidirectional, bi-directional, single or burst and various

codes for error detection are discussed here. A code with total n number of bits

will have m ones and n-m zeros. These code are useful in single and multiple uni-

directional errors detection, for example in an online error detecting adder a code

of 1-out-of-3 has been used [28]. The berger code is another way to detect all the

possible unidirectional errors. This code count the number of 1’s in the word and

append a complement of the count to the word. For this code the number of check

16



CHAPTER 3. FAULTS AND FAULT TOLERANCE

bits are calculated as [log2(k+1)] which is least as compared to all available separa-

ble codes for detecting unidirectional errors [52]. In order to have much less check

bits codes for e.g. the modified berger code, borden code and bose-lin codes were

formulated [52].

Error control codes are widely used to detect errors in data. The most common

form of ECC is single parity where one bit is appended to the data based on even

or odd parity. There are many more sophisticated ECC available which will be

discussed later in this section [52].

Checkers are special circuits with robust design used to determine error by com-

parison of the two values which are generated as per the concept of fault-secure or

self-testing design methods. These method ensures that a valid input generates a

valid output through the circuit. An invalid result is easily observed by this method

as they do not fulfill the codeword requirement of this method. A self-testing circuit,

indicates fault for certain combination of inputs. In this dissertation the concept

of checkers are used and implemented in the case study and is described in more

detail in this chapter [52].

Fault Location: This step is necessary for error correction and recovery. Some-

times fault location can be found during detection or using self diagnostic methods

after detection [52] . ECC can also be used in different combination in NoC for

locating the faults.

Fault Recovery : There are three common ways to accomplish fault recovery

namely, ARQ, FEC and Hybrid ARQ. ARQ is a method that request for a retrans-

mission upon an error detection. ARQ is suitable for error recovery from transient

and intermittent errors but not permanent error because it will give same error no

matter how many times it is repeated. FEC techniques are used to recover from er-

ror by its correction. FEC schemes cause area overhead because of complex encoder

and decoder designs whereas, ARQ method result in huge latency. However, third

type of error recovery is popular but costly where Combinations of FEC schemes

can be used with timeout ARQ [52], [28]. In the following chapters the concept of

error control codes and checkers for NoC is explained.
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Chapter 4

Concurrent Online Checkers

This chapter provides basics for the understanding of checkers. Its implementation

with the functional module and role in fault detection is explained. In figure 4.1

checkers are connected with the functional module through its input and output

ports. Checkers contain logical assertions based on the input and output ports of

the functional module [40].

Figure 4.1: Concurrent checker logic.

In figure 4.1 the logic checks for fault at input or output of each gate of the functional

logic, as shown in green circle. On the other hand it do not check faults occurring

in functional inputs and output. The terminology for the possible scenarios of fault

detection of the injected faults [40] are describes as follows:

• True Detection : The fault is detected both by circuit and checkers.

• True Miss: The fault is detected only by circuit but not by checkers.

18



CHAPTER 4. CONCURRENT ONLINE CHECKERS

• False Positive : The fault is detected only by checkers but not by circuit.

• Benign Miss : The fault is detected neither by circuit nor by the checkers

The faults detected by the circuit is a case, in which for a given fault and input

test pattern the fault is propagated to functional outputs of the circuit. In order

to check the effective behavior of the checkers model, indices used in this work are

taken from the work of [40], [53] denoted as, CEI - Checkers Efficiency Index, FC -

Fault Coverage, FPR - False Positives Ratio. If we denote D as true detections by

checker for a set of input pattern. F is the fault positive, W and X as true misses

and benign misses. Based on these notations, mathematically the indices are given

as follows:

CEI =
D

(D +W )
, FC =

D +X

(D +X +W )
, FRP =

F

(F +X)

These indices values are obtained in form of outputs from the evaluation tools

Turbo Tester (TT) and set of tools used in this work. TT is a software package

with low cost approach used for testing and diagnostic purposes. In this work,

TT is used to analyze the set of input test patterns using ’analyze’ command and

to perform fault simulations on the design circuit-under-test. TT can read the

schematic from various VLSI tools (in this work synopsis). It present the circuit

design in terms of Structurally Synthesized Binary Decision Diagrams (SSBDD).

The concept of SSBDD is explained in following section [55], [32]. To learn more

about the tool, please refer to [51].

4.1 Structurally Synthesized Binary Decision Di-

agrams (SSBDD)

4.1.1 SSBDD Structure

SSBDD is an extended class of Binary Decision Diagrams (BDD). Unlike BDD,

it is not canonical, but provides the complete structural information necessary to

identify any problem in circuit and it do not suffer from memory explosion. SSBDD

representation is best suitable for complex designed circuits, and it guarantees
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improved test generation and fault simulation efficiency. It is based on the concept

of macros i.e sub-circuits with fan-out free regions (FFR). This model is suitable

for Logic level simulations, unlike gate level simulations done in conventional BDD.

A SSBDD is constructed using a graph superposition procedure. For this a circuit

with gate level description is divided into sub-circuits with FFR. Each sub-circuit

has its own SSBDD, thus the final circuit is set of SSBDD’s [55]. Explanation of

FFR is given in appendix B.

4.1.2 SSBDD Simulation

The baseline TT suite provides a tool named analyze, to perform fault simulation

for combinational circuits. This is done using Algorithm 1 [55] as explained below:

The enhanced analyze is used in order to identify the presence of online checkers

Algorithm 1 Fault Simulation

1: Perform fault-free Logic Simulation (Alg.2)
2: for each SSBDD in the model do
3: take the first node of current SSBDD
4: while current node is not a terminal node do
5: evaluate the current node
6: inject corresponding fault
7: perform logic simulation to evaluate output (to evaluate fault prop.)
8: If current output differs from fault-free output then
9: mark currently considered fault as detected

10: end if
11: remove currently considered fault
12: move to next node
13: end while
14: end for

Algorithm 2 Logic Simulation

1: for each SSBDD in the model do
2: take the first node of current SSBDD
3: while current node is not a terminal node do
4: evaluate the current node
5: move to proper next node
6: end while
7: save output value of current SSBDD
8: end for

logic in the considered design, and thus produces new statistics and information
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concerning detection capability of the checkers. Since analyze simulates stuck-at

faults in combinational circuits, for a sequential circuit, a pseudo-combinational

version of it is devised, which can be obtained by breaking the flip-flops in design.

Baseline analyze tool requires the description of currently considered design, in

terms of .agm SSBDD representation file, and an appropriate file listing the test

patterns is provided with .inp extension. The current extended version of analyze

considers no parallelization during fault simulation, in order to avoid memory issues

and grant the possibility to evaluate large designs. Also, it considers no fault

dropping, every fault is simulated with every input vector (test pattern). This is

because in case of using the concurrent online checkers, we want each single fault

to be simulated using all the possible input test patterns to calculate the final

fault coverage, therefore, in our fault simulation tool (analyze), no fault dropping

is performed. It is also worth noting that during normal (fault-free) simulation of

the circuit, the checkers should not fire, otherwise, that would mean either there is

a bug in the checkers themselves, or the test pattern environment is not correctly

specified, i.e. it contains some invalid test patterns. It is important to stress the

fact that checker logic is meant to be effective during the normal operation activity

of the functional logic to which it is applied, when inputs are totally unpredictable.

Only in the evaluation of their behavior, checkers are fed with a predetermined

set of stimuli. These considerations led to the introduction of new paradigm of

statistics to describe fault detection capabilities of concurrent online checker logic,

including a reformulation of fault coverage (FC) and introduced of two other new

metrics, checkers efficiency index (CEI) and false positive ratio (FPR), explained

on page 19.

The possible detection outcomes after the injection of a fault, are extended to an

alphabet consisting of 7 symbols, to be used in the computation and evaluation of

the outputs of the tool, listed as follows:

• 0 - stuck-at-zero fault is detected by the circuit and by the checkers (True

Detection).

• 1 - stuck-at-one fault is detected by the circuit and by the checkers (True

Detection).
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• w - stuck-at-zero fault is detected by the circuit and not by the checkers,

which can be a critical case. (True Miss).

• W - stuck-at-one fault is detected by the circuit and not by the checkers,

which can be a critical case (True Miss).

• o - stuck-at-zero fault is not detected by circuit and is detected by the checkers

(False positive), which can cause some performance degradation.

• i - stuck-at-one fault is not detected by circuit and is detected by the checkers

(False positive), which can cause some performance degradation.

• X - none of the stuck-at-faults is detected, nor by the circuit, neither by

the checkers, i.e. the node is not tested with the considered input pattern

(Benign Miss). Based on the introduced alphabet of symbols, the newly

devised metrics for coverage - CEI, FC, and FPR, are defined as follows.

CEI =
Σ[0, 1]

Σ[0, 1, w,W ]
, FC =

Σ[0, 1, X]

Σ[0, 1, w,W,X]
, FPR =

Σ[o, i]

Σ[o, i,X]

where each symbol represents the number of occurrences of the symbol itself, i.e.

of the corresponding situation. FC, CEI and FPR are among the outputs of the

enhanced analyze tool for concurrent online checkers evaluation, but the previously

introduced alphabet of symbols, to describe detection outcomes after the injection

of a fault, led to devise further useful information as output of the tool.

4.2 Enhanced analyze tool outputs

In addition to the previously introduced newly devised statistics, CEI, FC and

FPR, the tool generates the following output information [40]:

4.2.1 Fault Table

Fault table presents one row for each input vector and one column for each node

in the SSBDD representing the considered design. Detection of Stuck-At-Faults

(SAFs) is extensively described, marking with the previously introduced alphabet

of symbols the detection outcome for each node where faults are injected, using the
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input pattern corresponding to the row. Further symbols are introduced to label

those nodes where faults are not injected: ∗ : fan-out input nodes , #: fan-out

output nodes and − : checker logic nodes.

4.2.2 Nodes Detection Information

Nodes detection information is extracted from the fault table, for those nodes where

faults are injected, while the remaining nodes are simply listed. For any node the

number of occurrences of the introduced alphabet is reported, omitting zero entries.

This information allows to spot those nodes which eventually present a large amount

of true misses (w and W occurrences), the worst situations in which checkers do not

detect critical faults, thus suggesting where to act in order to increase the detection

effectiveness of the checking logic.

4.2.3 Checkers Detection Information

Checkers detection information portrays the capabilities of each checker in detecting

faults, in form of a table, with a row for each checker and a double column for

each node. Each double column gives information for stuck-at-0 fault on the left

side and stuck-at-1 fault on the right side, for the corresponding node, if faults

are injected in that node. Each intersection between a row and a double column

provides the numbers of detection for stuck-at-0 and stuck at-1 faults, injected in

the node corresponding to the column, provided by the checker corresponding to

the row. Checkers detection table could also be used to spot eventual overlapping

or independence in the action of different checkers.

4.2.4 Checkers Detection Absolute Weights

Processing the previously introduced table row by row, information about the abso-

lute weights of checkers detection is produced. Absolute weight is evaluated for each

checker, as the number of provided detections over the considered set of stimuli,

giving a first hint on the capabilities of detection of the checker itself. On one hand

it would be wrong to suppose a checker better than another one only considering

the number of provided detections, because a checker firing for a limited number of
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faults could be the only one detecting those faults. On the other hand this infor-

mation may suggest some optimization work, based on a heuristic approach, trying

to use a limited set of checkers derived from the whole. For instance, it could be

interesting to start using at first only the checker providing the highest number of

detections, and gradually increasing the size of the used set of checkers, keeping

trace of the evolution of both coverage information and area overhead.

4.2.5 Fault Free Checker Firing Information

The fault free simulation behavior of checkers is evaluated, in search of eventual

undesired firings. This information is not related to the evaluation of the detection

capability of the checkers, but it could be useful to catch two different possible

erroneous situations. First, an input vector represents an incorrect situation, thus

suggesting the possible need of change in the test set of input patterns. Second,

a checker is either meaningless or wrongly designed, thus suggesting the need of

removing, replacing or modifying it.

4.2.6 Input Patterns True Misses Count

There is a strong dependence of the behavior of each checker from the considered

set of inputs stimuli. For this reason it is reasonable to keep track of the number of

occurrences of true misses, depicted by symbols w and W, for each input pattern.

This way the distribution of true misses over the adopted set of vectors could

be outlined, highlighting two different classes of patterns . First is, true misses

free patterns, which could be eventually used to check periodically the correct

functionality of the checker logic, that could begin missing some faults in case

of damages or failures in its circuitry. Second as,true misses suffering patterns,

which could outline the most critical valid operative conditions for the functional

logic under study. Finally the tool reports the number of meaningful nodes over

the total, altogether with the corresponding number of SAFs injected during fault

simulation, and the number of evaluated input stimuli.
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Error Control Codes

Error control codes (ECC) have been widely used in communication systems. In

ECC redundant check bits are calculated based on input data. The input data and

check bits are transmitted across a noisy channel. In the receiver, an ECC decoder

is used to detect errors induced during transmission. A powerful ECC usually

requires more redundant bits and more complex encoding and decoding processes

which increases the area overhead. For better reliability and performance, ECC

must be carefully selected to meet the expected requirement of the NoC.

5.1 Single Parity

The single parity (SP) is one of the simplest error control code. In SP, an additional

parity bit is added to a k−bit data block such that the resulting (k+1)-bit codeword

has an even number (for even parity) or an odd number (for odd parity) of 1’s. SP

codes can be used only for error detection. In the decoder, an even/odd parity

check bit is recalculated and compared to the transmitted parity check bit. If

the recalculated parity check bit is different from the transmitted parity check bit,

errors are detected. SP codes can detect all odd numbers of errors in the codeword.

The encoding and decoding process of SP codes can be easily realized by simple

XOR trees [7].
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5.2 Cyclic Redundancy Codes

Cyclic codes are the redundancy check codes used for only detecting errors in data.

Cyclic codes are a type of linear block code where a cyclic shift of a input data

generates a new code which is appended with the output data as redundancy bits

before transmission. It is realized through a process of long division which can be

implemented using a digital logic circuit consisting of XOR gates and linear feed-

back shift registers.

In CRC, to verify data integrity, the frame is treated as one very large binary

number, which is then divided by a generator polynomial number. This division

produces a remainder, which is transmitted along with the data. At the receiv-

ing end, the data is divided by the same generator number and the remainder is

expected to be zero this time. If the remainders is not zero, then an error has

occurred during the data transmission.[11]. To learn more about CRC algorithms

refer to [9] [11]. The implementation of CRC is shown in chapter 6.

5.3 Hamming Codes

Hamming codes are a family of linear error-correcting codes invented by Richard

Hamming in 1950. Simple hamming codes can detect and correct errors when the

error rate is low. For instance, in computer memory, where bit errors are extremely

rare, hamming codes are widely used. An extended hamming code with one extra

parity bit is often used. Extended hamming codes allows the decoder to distinguish

between when at most one one-bit error occurs and when any two-bit errors occur.

In this sense, extended hamming codes are single-error correcting and double-error

detecting (SECDED).

It involves transmitting data with multiple check bits and decoding the associated

check bits when receiving data to detect errors. The check bits are parallel parity

bits generated from XORing certain bits in the original data word. If bit error(s) are

introduced in the codeword, several check bits show parity errors after decoding the

retrieved codeword. The combination of these check bit errors display the nature

of the error. In addition, the position of any single bit error is identified from the

check bits. To know more about SECDED refer to [20]. The implementation of
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Hamming code is explained in chapter 6.

5.4 Bose-Chaudhuri-Hocquenghem Codes

Error correcting codes capable of correcting multiple errors are needed. Popular

linear block codes for multiple error correction are the BCH codes, which are also

class of cyclic codes. They can be easily constructed according to specifications

for correcting as many errors as is required. The BCH code is similar to Hamming

code when used as a single error correcting code, actually Hamming codes are BCH

codes with tc = 1, but commonly codes with tc = 2 are called BCH codes. In on-

chip signaling, where only two logic states are possible, only binary BCH codes are

of interest [27].

The syndrome decoding in hamming is limited by the size of the minimum error

vector table. When the number of check bits is high the table is impractically large,

and therefore alternative decoding methods should be used. The decoding of BCH

codes can be done using the Berlekamp-Massey (B-M) algorithm. The algorithm

is iterative requiring 2tc iterations, where tc is the error correction capability of the

code. The calculations are done in Galois Field (GF )2m, where m depends on the

length of the code (2m ≥ n). In addition to the actual algorithm a pre-processing

circuit is needed. Using Fourier transform in GF (2m)2tc syndromes are calculated.

To read more about BCH refer to [6],[27].

5.5 Reed-Solomon Codes

The Reed-Solomon codes are other cyclic codes that can be used to correct multiple

errors. The codes are non binary, which means that instead of bits, groups of m bits

are used as symbols for the codes. The Reed-Solomon codes are optimal meaning

that they provide the maximum distance at the used number of check symbols. If

a word contains k groups of data and its length is n groups, at most [(n − k)/2]

errors can be corrected. Because on-chip signals are binary, each symbol must be

coded by binary bits. These binary-coded non binary codes are especially effective

in correcting burst errors, since the detection and correction is based on symbols

which consist of many adjacent bits. On the other hand, they are not very effec-
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tive in single error tolerance because a single bit fault in a binary-coded symbol

takes the whole correction capability of that symbol. Binary codes, such as binary

BCH, provide the same tolerance against single faults with a lower number of check

bits[27] .

Decoding of Reed-Solomon codes is also based on the Berlekamp-Massey algorithm.

The main difference is that in addition to the error vector e also the error values

are needed to perform the error correction. The error vector ~e points the erro-

neous GF (2m) symbol and the actual correction is done by adding the error value

of that particular symbol and the transmitted symbol itself. The error values can

be extracted using the Forney algorithm with inputs obtained from the B-M al-

gorithm. Also the fourier transform requires slight changes compared to the one

used for BCH decoding. In Reed-Solomon decoding all the calculations are done

with GF (2m) symbols while for binary BCH codes the syndrome calculation is just

calculating parities of different sets of bits [27].
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Implementation of ECC

6.1 Hamming Codes Implementation

In this proposed method 8 parity bits are generated for 32 bit information data

to send 38 bit data string for transmission at source by using even parity check

method [20]. The minimum number of check bits required for a single bit error

correction is derived from the following equation:

D + P + 1 ≤ 2P

The above equation is of extended hamming code which can correct single bit er-

rors and detect double bit errors also known as single error correction and double

error detection (SECDED). Parity bits are added to a D-bit data word, forming

a code word of D+P+1 bits. Parity bits are calculated by XOR operation based

of combination of data bits. Combination of data bits are shown in Table 6.1 and

calculation of parity is shown in following equations.Calculation of parity is done

using the combinations as mentioned in table, represented for p0 in following equa-

tion [20].

p0 ≤ datain(0) ⊕ datain(1) ⊕ datain(3) ⊕ datain(4) ⊕ datain(6) ⊕ datain(8) ⊕

datain(10) ⊕ datain(11) ⊕ datain(13) ⊕ datain(15) ⊕ datain(17) ⊕ datain(19)) ⊕

datain(21)⊕ datain(23)⊕ datain(25)⊕ datain(26)

Data word is applied as an input in the encoder circuit which performs XOR oper-

ations on the given data word and thus the required parity bits are generated from

the parity generator. Parity bits and data bits together form the code word.This
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Table 6.1: 32 bit data combination for parity calculation.

Input P0 P1 P2 P3 P4 P5 P6
d0 X X X
d1 X X X
d2 X X X
d3 X X X X
d4 X X X X
d5 X X
d6 X X X X
d7 X X X
d8 X X X X
d9 X X X X
d10 X X X X X
d11 X X X
d12 X X X
d13 X X X X
d14 X X X
d15 X X X X
d16 X X X X
d17 X X X X X
d18 X X X
d19 X X X X
d20 X X X X
d21 X X X X X
d22 X X X X
d23 X X X X X
d24 X X X X X
d25 X X X X X X
d26 X X X
d27 X X X
d28 X X X X
d29 X X X
d30 X X X X
d31 X X X X

codeword is the input for the decoder. The incoming 28-bit data along with the

8-bit parity are XOR’d together to generate the 8-bit syndrome (S1 through S8).

Syndrome first bit equation is shown below:

syndrome(0) = decin(0)⊕ decin(1)⊕ decin(3)⊕ decin(4)⊕ decin(6)⊕ decin(8)⊕

decin(10)⊕decin(11)⊕decin(13)⊕decin(15)⊕decin(17)⊕decin(19)⊕decin(21)⊕

decin(23)⊕ decin(25)⊕ decin(26)⊕ decin(28)

Then the syndrome search for the error type and the error location. The value of
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Table 6.2: Syndrome values for error detection.

syndrome Overall Parity (P5) Error Type Remarks
0 0 No Error

!=0 1 Single Error Correctable.
!=0 0 Double Error Not correctable.
0 1 Parity Error Overall Parity.

the syndrome indicate the bit position in error. If all of the elements of the syn-

drome vector are zeros, no error is reported. Any other non-zero result represents

the bit error type and provides the location of any single bit errors. It is then

used to correct the original incoming data. Table 6.2 illustrates the value of the

syndrome and overall parity bit in detecting both single and double errors.

6.2 CRC Implementation

The cyclic redundancy check (CRC) is a technique used for detecting errors in dig-

ital data, but not for error corrections. In the CRC method, a specific number of

check bits are concatenated with the data stream before transmission. In receiver,

check bits are verified for any error. In CRC, the input data is treated as binary

number, which is divided by a generator polynomial number. This division pro-

duces a remainder, which is transmitted along with the data. At the receiving end,

the data is divided by the same generator number and the remainder is expected to

be zero. If the remainders is not zero, then an error has occurred during the data

transmission.[11]

The encoder generates a check sequence number from the given input data stream.

The encoding process starts by dividing the information bits by the predefined gen-

erator number. The encoder then concatenates the check sequence number with

the input data. The serial division requires a number of clock cycles equal to the

number of information bits in order to calculate the check sequence, however the

parallel one requires only one clock cycle but number of wires equal to the number

of data bits[11].

The CRC decoder is similar to encoder, based on division method. The decod-

ing process starts by dividing the received check sequence number by the generator

number. If the remainder is zero, assume there is no error detected. For nonzero re-
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mainder, it means that the received check sequence number got an error detected.[9]

[11].

Figure 6.1: CRC encoder and decoder block diagram.

Choosing a good generator polynomial is something of an art and for our imple-

mentation we choose CRC8 : the ATM-8 HEC polynomial 0x83 =x8 + x2 + x+ 1,

is said to be from ITU standard I.432 in bits it is written as ”100000111”. The

input data of 20 bits is divided by this polynomial to obtain a CRC of 8 bits which

is appended with output data before its transmission. The CRC code is generated

through a process of long division. This is implemented using a digital logic cir-

cuit consisting of exclusive-or (XOR) gates and shift registers.The shift register is

a string of 1-bit storage devices, each with an input line and an output line. At

specific clock times, the stored bit in each register is shifted out and is replaced

by a new bit from the input line. After complete frame of data pass through all

the registers it gives the final value of CRC. The xor gates position with the shift

registers depends on the polynomial. For x8 + x2 + x + 1 the xor gate is present

before and after first,second and third shift register. Figure 4.2 shows the block

diagram of CRC encoder and decoder[9] [11].

6.3 Single Parity Implementation

The single parity is the most widely used error detection techniques for the data

transmission. It can detect single bit errors. When binary data is transmitted, it
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may be subjected to noise that can change 0′s to 1′s and 1′s to 0′s. Hence, a parity

check bit is added to the data stream that makes the number of 1′s either even or

odd. A parity generator is a combinational logic circuit. The parity bit is generated

in the transmitter and checked in receiver.

In the implementation of parity circuits the sum of data bits is checked by xor of all

bits. If it is odd number of 1s its sum results in 1 and 0 if even. It is combinational

circuit that add one extra bit (parity bit) to the input data stream by xor all input

bits. In proposed design we used even parity bit which is calculated as 0 if there

are even number of 1′s and 1 if there are odd number of 1′s in the data stream.

The design is made using VHDL and simulated in Xillinx ISE 10.1. The simulation

results are shown in the appendix A.4.
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Implementation of Checkers

7.1 Online fault detection in NoC Router

In this dissertation, we have utilized the concept of online fault detection. It is

introduced as an additional circuitry to detect single stuck-at faults (stuck-at 0

(SA0) and stuck-at 1 (SA1)) during the operation of the system. In general, we

exploit two types of checkers, one group for the data-path and the other group

for the control part of the NoC router. The circuit-under-test is made pseudo-

combinational, in which all the sequential components (such as registers or Flip-

Flops (FFs)) are broken. The final circuit-under-test obtained would have a set of

primary inputs/outputs, plus some pseudo- inputs/outputs. This way we can eval-

uate the checkers for all possible combinations of valid input stimuli to the circuit,

when single stuck-at faults occur at different locations in the circuit. The evalua-

tion of the checkers is based on a framework which takes into account an initial set

of checkers for the module under examination. These checkers are introduced based

on the functionality of the circuit and the properties that should hold between the

inputs and outputs of it (in form of hardware assertions). The main goal is to

keep the logic of checkers as simple as possible, thus, it would be desirable that the

total area of a checker would not exceed the area of the module it is checking. The

framework used for evaluating the checkers tries to find the set of checkers that can

achieve a target CEI And FC, while considering the minimization aspect. For more

details regarding the checkers and the framework for evaluation of the checkers, the

reader is referred to the following publications[40], [46] .
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Figure 7.1: HIgh level NoC router architecture for control part.

NoC Router The control part of the NoC router in this dissertation consists of

the following components which are also depicted in the figure 7.1:

• FIFO control part : It is the input buffer for the NoC router which is

sequential in nature, used to store incoming bits. The control part of FIFO

contains the read and write pointers, status signals like empty and full, and

the read and write enable signals indicating the reading from and writing to

FIFO. The FIFO architechture considered in this case is one-hot. To learn

more about FIFO refer to[49].

• Routing Logic (LBDR): It is the routing computation unit of the NoC

router. it is based on a distributed routing mechanism and our case study

use XY dimensioned ordered-routing algorithm. The concept of distributed

routing mechanism is explained in section 2.3. To learn more about LBDR

refer to [43]

• Arbitration logic (Arbiter) : It decide the output port to which the data

is to be directed based on the logic it is devised. In this work, we have

assumed a finite state machine (FSM) based round-robin (RR) arbiter which

is based on dynamic prioritizing, giving highest priority to the L input port,

35



CHAPTER 7. IMPLEMENTATION OF CHECKERS

then N, E, W and finally S and again it starts from L input port. This way of

circular prioritizing can guarantee that there would not be any starvation and

all input ports will eventually get access to their requested output port.To

learn more about Arbiter refer to [49].

In this work, the NoC router architecture is first divided into data-path and con-

trol path, On the basis of which we devise checkers for the control part of NoC

router. The inputs and outputs extracted from the pseudo-combinational circuit

are described in the following sections.All the checkers are devised for the pseudo-

combinational version of the circuit. The results of checkers evaluation is shown

below in terms of Absolute weight (the number of detections of faults) for FIFO,

LBDR and arbiter in figure 7.2, 7.3, 7.4 respectively. The evaluation results for

arbiter is shown in appendices.

7.2 Pseudo-combinational version of FIFO con-

trol part

We separated the data-path of FIFO from its control part, and propose checkers

for the control part. The control part of the FIFO includes the following input and

output ports at its interface[50]:

• Inputs

DRTS (Detect Ready To Send) from previous router/NI

Read en (Read Enable) signals from the arbitration modules (read en N,

read en E, read en W, read en S, read en L)

• Outputs

CTS (Clear to Send) to previous router/NI

empty out (Empty signal) to routing logic

Some of the inside components had generated memory modules, which are broken

and takes as pseudo-inputs and pseudo-outputs to the interface of the module.

Also, for the sake of higher FC and CEI, we took some of the other internal signals

36



CHAPTER 7. IMPLEMENTATION OF CHECKERS

out to the interface in order to check some properties that must hold for them. The

resulted pseudo-combinational version of the control part of the FIFO includes the

following inputs and outputs.:

• Inputs

– DRTS (Detect Ready To Send) from previous router/NI

– Read en (Read Enable) signals from the arbitration modules (read en N,

read en E, read en W, read en S, read en L)

– CTS out (Clear To Send) (which is a pseudo-input, denoting the previ-

ous value of CTS)

– read pointer (Read pointer of FIFO) taken from internal signals of FIFO

(which is a pseudo-input, denoting the previous value of the read pointer)

– write pointer (Write pointer of FIFO) taken from internal signals of

FIFO (which is a pseudo-input, denoting the previous value of the write

pointer)

• Outputs

– CTS in (Clear To Send) to previous router/NI (which is a pseudo-output,

denoting the current value of CTS)

– read pointer in (Read pointer of FIFO) taken from internal signals of

FIFO (which is a pseudo-output, denoting the current value of the read

pointer)

– write pointer in (Write pointer of FIFO) taken from internal signals of

FIFO (which is a pseudo-output, denoting the current value of the write

pointer)

– empty out (Empty signal) to routing logic

– full out (Empty signal) taken from internal signals of FIFO (taken to

the interface for evaluating CEI and FC by checkers)

– read en out (Empty signal) to routing logic (taken to the interface for

evaluating CEI and FC by checkers)

– write en out (Empty signal) to routing logic (taken to the interface for

evaluating CEI and FC by checkers)
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7.2.1 FIFO control part checkers

Based on the primary inputs/outputs and pseudo-inputs/outputs inferred from the

logic of the control part of the FIFO, the following checkers are introduced, which

correspond to the properties that must always hold. In other words, if the property

in a checker does not hold, it becomes one, otherwise, if the logic is working properly,

it becomes zero:[50]

• err FIFO control part DRTS CTS: When FIFO has not received a request,

it can not send Clear to Send (When DRTS is zero, CTS must be zero).

• err FIFO read pointer update: If there is a request for reading from the FIFO

(one of the read en signals is active) and the FIFO is not empty, read pointer

must be updated.

• err FIFO read pointer not update: If there is no request for reading from the

FIFO or the FIFO is empty, read pointer must not be updated, it must remain

the previous value.

• err FIFO write pointer update: If there is a request for writing to the FIFO

and the FIFO is not full, write pointer must be updated.

• err FIFO write pointer not update: If there is no request for writing to the

FIFO or the FIFO is full, write pointer must not be updated, it must remain

the previous value.

• err FIFO full empty: The FIFO cannot be full and empty at the same time.

• err FIFO empty: If read pointer and write pointer are pointing to the same

location, empty must be high (active).

• err FIFO full: If read pointer is pointing to one location after write pointer

in a circular manner, full must be high (active).

• err FIFO write pointer onehot: The read pointer of FIFO must follow the

one-hot fashion (both the previous value and the current value).

• err FIFO read pointer onehot: The write pointer of FIFO must follow the

one-hot fashion (both the previous value and the current value).
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Table 7.1: FIFO Control Part checkers’ Detection Absolute Weight.

Checker name Checker Weight (no. of detections)
err FIFO write pointer onehot 4350
err FIFO read pointer onehot 4160
err FIFO write pointer not update 3445
err FIFO empty 1200
err FIFO read pointer not update 1120
err FIFO read pointer update 560
err FIFO control part DRTS CTS 380
err FIFO full 300
err FIFO full empty 160
err FIFO write pointer update 135

Figure 7.2: FIFO control part checkers detection absolute weights

7.3 Pseudo-combinational version of LBDR

The pseudo-combinational version of the routing logic (LBDR) has the following

primary and pseudo- inputs and outputs at its interface [50]:

• Inputs

– empty, from the input FIFO
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– flit type, encoded as one-hot, which is extracted from the data coming

from FIFO and going to the crossbar switch (XBAR) (001: Header flit,

010: Body flit, 100: Tail flit)

– dst addr, which is extracted from the header flit of the packet coming

from the FIFO and going to the crossbar switch (XBAR), and denotes

the destination address ID of the packet. It is parameterized based on

the network size (NoC size). By default, it can be set to 4 bits, which

can cover the address ID from 0 to 15 (0000 to 1111 in binary)

– Req N FF, Req E FF, Req W FF, Req S FF, Req L FF, which store

the previous values of the requests for output generated by the LBDR

logic (because of using XY routing, they must follow the one-hot fash-

ion).

• Outputs

– Req N in, Req E in, Req W in, Req S in, Req L in, which store the cur-

rent values of the requests for output generated by the LBDR logic (be-

cause of using XY routing, they must also follow the one-hot fashion).

7.3.1 LBDR checkers

Based on the primary inputs/outputs and pseudo-inputs/outputs inferred from

the LBDR logic, the following checkers are introduced (which correspond to the

properties that must always hold). Similar to the previous checkers, if the property

in a checker does not hold, it becomes one, otherwise (if the logic is working), it

becomes zero:[50]

• err LBDR Req onehot: If empty is zero (If FIFO is not empty), Request

outputs of LBDR must be one-hot.

• err LBDR Req allzero: If empty is one (If FIFO is empty), all the Request

outputs of LBDR must be zero.

• err LBDR dst addr checker: Depending on the location of the destination

node with respect to the current node, if wrong requests from LBDR go

active, there is a fault.
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• err LBDR Req Local: If the header flit has reached its destination node, the

L output request of LBDR must go active and others must be zero

Table 7.2: LBDR checkers detection absolute weights.

Checker name Checker Weight (no. of detections)
err LBDR Req onehot 1276
err LBDR Req allzero 832
err LBDR dst addr checker 436
err LBDR Req Local 46

Figure 7.3: LBDR checkers detection absolute weights.

7.4 Pseudo-combinational version of Arbiter

The pseudo-combinational version of the arbitration logic (Arbiter) has the follow-

ing primary and pseudo- inputs and outputs at its interface:[50]

• Inputs

– Req N, Req E, Req W, Req S, Req L, which denote the requests coming

from the LBDR modules of different input ports (because of using XY

routing, they must follow the one-hot fashion).

– DCTS (Detect Clear To Send), which detects the CTS signal from the

input FIFO of the next router/NI (for hand-shaking)
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– RTS FF, which stores the previous value of the RTS signal (used for

signaling the next router that the data on the output port is valid)

– state, which is taken from the internal signal of the Arbiter, it shows

previous value of the state of the arbiter (normally it is not encoded as

one-hot, but for better detectability of faults, we can assume them as

one-hot). State shows the arbiter has in which condition according to

the grant given previously (maybe) to one of the requesting inputs.

• Outputs

– Grant N, Grant E, Grant W, Grant S, Grant L, which are the grant

signals from the Arbiter sent to the corresponding FIFOs. Each grant is

generated based on the request that comes from the LBDR of an input

port. Only of the grant signals can go active at a time.

– Xbar sel, which is encoded as one-hot, and controls the select line of the

XBAR. The XBAR is implemented as a one-hot Multiplexer (MUX).

The reason for choosing one-hop is better detectability of single stuck-at

faults.

– RTS FF in, which stores the current value of the RTS signal (used for

signaling the next router that the data on the output port is valid)

– state in, which is taken from the internal signal of the Arbiter, it shows

the current value of the state of the arbiter (normally it is not encoded

as one-hot, but for better detectability of faults, we can assume them as

one-hot). State shows the arbiter has in which condition according to

the grant given previously (maybe) to one of the requesting inputs.

7.4.1 Arbiter checkers

Based on the primary inputs/outputs and pseudo-inputs/outputs inferred from

the Arbiter logic, the following checkers are introduced,which correspond to the

properties that must always hold. Similar to the previous checkers, if the property

in a checker does not hold, it becomes one, otherwise if the logic is working properly,

it becomes zero:[50]

42



CHAPTER 7. IMPLEMENTATION OF CHECKERS

• err Arbiter Grants onehot: Arbiter Grants must be one-hot.

• err Arbiter Xbar sel onehot: Arbiter select lines for Crossbar Switch must be

one-hot.

• err Arbiter state onehot: If we make the state variable of the arbiter (state in)

one-hot, it must follow the one-hot fashion.

• err Arbiter no req Grant: If there is no request for arbitration and the next

router/NI is also not ready to receive any flits, the arbiter must not active

any Grant signals in its output.

Table 7.3: Arbiter checkers detection absolute weights.

Checker name Checker Weight (no. of detections)
err Arbiter state onehot 18239
err Arbiter Xbar sel onehot 5084
err Arbiter Grants onehot 1891
err Arbiter no req Grant 15

Figure 7.4: Arbiter checkers’ detection absolute weights

7.5 Experiment Results

All the checkers were devised for the pseudo-combinational version of the circuit-

under-test. The experiments are carried out on the pseudo-combinational circuit
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using the Turbo Tester tools as described in chapter 4. First the initial set of check-

ers and the set of input stimuli are prepared in order to perform fault simulation to

evaluate the checkers logic. The maximum exhaustive set of input stimuli presented

in this work is 211 = 2048 vectors, which is reduced by the filtering scheme to valid

input vectors, 320 vectors for FIFO, 768 vectors for Arbiter, and 288 for LBDR.

The results of the evaluation process in terms of Absolute weights are reported in

figure 7.2, table 7.1 for FIFO, in figure 7.3, table 7.2 for LBDR and figure 7.4 and

table 7.3 for Arbiter. The fault coverage and checkers efficiency index obtained

from the set of checkers for each unit of router is mentioned in Table 7.10. No

false positives ratio were reported in output of evaluation during this experiment,

so FPR metric is not considered. All the results in tables are in µm2 based on AMS

0.18 um CMOS technology library.

Table 7.4: Area report for NoC router modules.

Module Combinational (µm2) Sequential (µm2) Sum (µm2)
Arbiter 601 259 860
LBDR 211 324 536
XBAR 2173 0 2173
FIFO one-hot 5105 8893 13999
Router 40515 47388 87903

The information about the combinational and sequential area of each module of

NoC router is reported in Table 7.4. The table shows the maximum area is taken

by FIFO followed by XBAR, Arbiter and then LBDR. The XBAR reported zero

combinational area. Also the total area of router is shown.

Table 7.5: Area report for error control codes.

Module Combinational(µm2) Sequential(µm2) Sum(µm2)
Parity 663 0 663
Hamming encoder 1484 0 1484
Hamming decoder 7064 0 7064
CRC 299 908 1207

The area for error control codes is reported in Table 7.5. It indicates the least

area for Parity, due to the fact only one redundant bit is added to the input data
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stream. The area for CRC is less than Hamming. The high area of Hamming

can be explained due to the presence of decoder which also correct single bit er-

rors and detect double bit errors, which is absent in the other two Error Control

Codes,Parity and CRC.

Table 7.6: Area report for pseudo-combinational circuits.

Module Area(µm2)
LBDR 217
Arbiter 685
FIFO Control part 5582

Table 7.7: Area report for checkers.

Module Area(µm2)
LBDR checkers 338
Arbiter checkers 392
FIFO Control part checkers 973

In Table 7.6, the area report for the pseudo-combinational circuits of router mod-

ules is shown. The pseudo-combinational circuits were devised as circuit-under-test

for checkers evaluation. The Table 7.7 shows the results of area for checkers. The

checkers have purely combinational architecture. The Arbiter checker occupies only

50% of the total area of pseudo-combinational Arbiter circuit. Similarly FIFO oc-

cupies 17.4% of psedo-combinational. It is observed that the the area of the LBDR

larger that its circuit-under-test. At the same time with higher area-overhead,

LBDR provides 98.98% percent of CIE and 99.7% FC, followed by FIFO with CIE

of 90.901% and FC 96.157% as shown in Table 7.8.

Table 7.8: checkers efficiency index (CEI) and fault coverage(FC) results.

Module CEI (in %) FC (in %)
LBDR checkers 98.985 99.755
Arbiter checkers 73.795 92.284
FIFO Control part checkers 90.901 96.157

In the end, checkers efficiency index (CEI) and fault coverage(FC) are obtained

which is indicated in Table 7.8. With the present set of checkers maximum CEI

and FC was obtained for LBDR. The least CEI and FC is shown in case of Arbiter.
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CHAPTER 7. IMPLEMENTATION OF CHECKERS

7.6 Result Analysis

The results and analyses are provided to determine the appropriate error con-

trol scheme for the case study. For the implemented error control codes area was

calculated and provided in terms of two types of encoding schemes, namely hop-

to-hop and end-to-end. These codes are proposed for tolerating transient faults in

data-path. The end-to-end encoding scheme shows less area overhead compared to

hop-to-hop. This can be explained on the fact that end-to-end encoding scheme

includes ECC in network interface of source and destination router. In hop-to-hop,

ECC is incorporated at all the 5 ports of the router resulting in more area-overhead.

In end-to-end the area-overhead with hamming, CRC and SP is 7.11%, 2.85% and

1.11% respectively. End-to-end encoding scheme do not detect or correct errors in

the router, it is suitable for short network size with short link paths [21]. Strong

error control codes are required in this case. Therefore, among the presented ECC

codes, hamming or CRC are best suitable for end-to-end. In hop-to-hop the area-

overhead with hamming, CRC and SP is 36.61%, 11.15%, and 6.45%. In hop-to-hop

simple ECC codes are required, complex codes can increase circuit complexity and

power consumption [19]. Therefore, from the presented ECC methods,SP or CRC

are best suitable for hop-to-hop.

Concurrent online checkers are proposed to handle both transient and permanent

faults occurring during the life-time of a system. The checkers are devised for

different pseudo-combinational module of NoC routers and evaluated using Turbo

Tester tool. The highest CEI of 99.98% and FC of 99.75% is obtained for LBDR.

The proposed checkers for FIFO provided efficiency of 90.90%. It was possible

to achieve FC of 92.2% for Arbiter which had area overhead of only 50% of the

circuit-under-test. The checkers provide a constant area overhead in routers.
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Chapter 8

Conclusion

This dissertation propose a methodology to partition design into control and data

parts, each to be protected by checkers and error-control-codes respectively. Pre-

sented methods include error control codes implementation and online checkers

designs, to handle the faults in both data-path and the control part of the NoC.

The concurrent checkers monitor the control part, and error detection and/or cor-

rection code checks the data-path of the NoC. The results and analyses are provided

to determine the appropriate error control scheme for the case study. For the imple-

mented error control codes area was calculated and provided in terms of two types

of encoding schemes, namely hop-to-hop and end-to-end. These codes are proposed

for tolerating transient faults in data-path. The end-to-end encoding scheme shows

less area overhead compared to hop-to-hop. This can be explained on the fact that

end-to-end encoding scheme includes ECC in network interface of source and des-

tination router. In hop-to-hop, ECC is incorporated at all the 5 ports of the router

resulting in more area-overhead. In end-to-end the area-overhead with hamming,

CRC and SP is 7.11%, 2.85% and 1.11% respectively. End-to-end encoding scheme

do not detect or correct errors in the router, it is suitable for short network size

with short link paths [21]. Strong error control codes are required in this case.

Therefore, among the presented ECC codes, hamming or CRC are best suitable

for end-to-end. In hop-to-hop the area-overhead with hamming, CRC and SP is

36.61%, 11.15%, and 6.45%. In hop-to-hop simple ECC codes are required, com-

plex codes can increase circuit complexity and power consumption [19]. Therefore,

from the presented ECC methods,SP or CRC are best suitable for hop-to-hop.
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CHAPTER 8. CONCLUSION

Concurrent online checkers are proposed to handle both transient and permanent

faults occurring during the life-time of a system. The checkers are devised for

different pseudo-combinational module of NoC routers and evaluated using Turbo

Tester tool. The highest CEI of 99.98% and FC of 99.75% is obtained for LBDR.

The proposed checkers for FIFO provided efficiency of 90.90%. It was possible

to achieve FC of 92.2% for Arbiter which had area overhead of only 50% of the

circuit-under-test. The checkers provide a constant area overhead in routers.

To summarize, an optimal fault detection/correction solution is a carefully selected

set of methods.The set consists of methods targeted for transient and permanent

faults that appear during the life time of the system. Furthermore, the selection of

these methods for the case study is influenced by design choice of NoC as well as

the desired fault coverage and efficiency for the system.

For future, this work can be extended by the optimization of the checkers using a

greedy heuristic approach, which select checkers with maximum absolute weights

and adding them one by one to the set of accepted checkers, until the maximum

CEI and FC are achieved, while at the same time making sure that the total area

of the obtained checkers does not exceed the area of module under test. For better

efficiency and fault coverage in FIFO, It’s architecture can be changed from one-

hot. For end-to-end encoding schemes, other complex ECC like BCH, RS can be

implemented and area can be provided for analysis.
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Appendix A

Simulation Results for SP,

Hamming and CRC

Figure A.1: Simulation report for Hamming encoder and decoder.

Figure A.2: Simulation Report for CRC encoder.

Figure A.3: Simulation Report for CRC decoder.

Figure A.4: Simulation Report for Single Parity.
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Appendix B

Definitions

1. Fan-out: Fan-out of a logic gate output is the number of gate inputs it can feed

or connect to. In this case logic gates are connected to form more complex circuits.

It is a case, where one output is connected to several inputs of the logic gates.

Figure B.1: Concept of Fan-out

2. Fan-out Free Regions : The circuits without fan-out points are the fan-out free

circuits/regions.

Figure B.2: Fan-out Free Regions Constructed using Superposition Algorithm
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Appendix C

Evaluation Results for LBDR

Figure C.1: Input test pattern

Figure C.2: Checkers output

Figure C.3: SSBDD representation file
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