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1 Introduction
1.1 Chapter Overview
This thesis is about testing distributed real-time systems but as a background and to setthe scenewe begin with a description of the peculiarities pertaining to testing of real-timesystem in the context of model-based testing andwhy their testing is such a dominant fac-tor in the software life-cycles. We introduce “What do timeliness, latency, observability,
controllability, reproducibility and non-determinism” mean in the context of testing real-time systems.
1.2 Research Background
Real-time computer-based systems are woven into the fabric of our lives. They are of-ten embedded, distributed systems and involve heterogeneous things where millions ofsensors, actuators, and different devices interact with intelligent software.Aeronautics, astronautics, medical devices, nuclear power generation and research,transportation, etc are the traditional examples of real-time safety-critical software sys-tems. When employed in such systems, software is often responsible for controlling thebehavior of electro-mechanical components and monitoring their interactions in addi-tion to tasks such as user interface management, computer administration, and others.Sincemost accidents arise due to under-specified and/or somemismatch of the interfacesand interactions among the components, software correctness plays a direct and impor-tant role in system consistency and safety. The failure of such applications might causesignificant and possibly dramatic consequences, such as interruption of public services,significant business losses, and including the loss of life.The successful design of real-time systems is difficult and demands significant atten-tion to detail. Such systems are usually embedded and distributed because they havetiming deadlines that cannot be missed. Due to these complexities the development is avery specialized, expensive, methodical, slow, and process-driven field of software devel-opment. In most companies, software developers are primarily concerned with gettingthe software to "work", then going faster, shipping more features, and delivering morevalue. But software developers involved in the development of real time systems mustbe concerned primarily with creating safe systems which are designed, built, and testedto ensure it has ultra-low defect rates and ultra-high dependability. These applicationsrequire not only high availability, reliability, safety, and security but also regulatory com-pliance, scalability, and serviceability.Despite being all around us, safety-critical software is not on the average developer’sradar. But recent failures of Boeing’s two 737 Max crashes [60], Starliner test flight [61]
etc. have brought one of these companies and their software development practices tothe attention of the public.

Systemmust be fail safe. That is one of the fundamental principles of real-time safety-critical software systems design. This means that under any reasonable scenario wherethe system is being used in accordance with the operating instructions, it must not causea dangerous situation if something goes wrong. For many systems that means stoppingall actuators and reporting an error. For example, the blade in the food processor will stopimmediately if the lid is removed while it is spinning. That is a simple case but for othersystems, just figuring out how to fail safely is really difficult.Software quality assurance does not start and surely does not end with testing. Be-cause testing is applied to the final products of a development phase, defect discoverythrough testing always happens too late in each phase of product development. As per
9



software development/tesing life cycle, the common practice shows that defect preven-tion activities (by applying the appropriate constructive software engineering methodsduring product development in all phases) is more productive than any analytic qualityassurance at the end of the development process. Nevertheless, testing is the ultimatesentinel of a quality assurance systembefore a product reaches the next phase in its life cy-cle. Nothing can replace good, effective testing in the validation phase before the productleaves R&D to go to manufacturing (and to customers). Even if this is the only and uniquetest cycle in this phase (if the defect prevention activities produced an error-free product,which is still a vision), it has to be prepared very carefully and be well documented. Thisis especially true for safety-critical software, for which, in addition to functionality, theeffectiveness of all safeguards under all possible failure conditions has to be tested. Thereare few significant approaches to achieving reliability in a safety critical system:
• Testing. Testing is the process of identifying defects, where a defect is any variancebetween actual and expected results. Testing of real-time systems is the process ofexecuting it to determinewhether itmatches its specification and operates properlyin its intended environment. The continuous growth of systems complexity and highdemand of security and reliability in the real-time systems has made their testing abig challenge. Moreover, majority of testing and verification techniques have beendeveloped for the non-real-time systems and they cannot be applied on real-timesystems due to timing constrains and concurrency issues.
• Formal Specification and Verification. For analyzing real-time systems, designersand developers have frequently used formal verifications techniques during designand development phase of systems [41, 42]. Verification is the act of proving thecorrectness of systems by determining that a system or module meets its specifi-cation. Formal methods [10] may be used to give a description of the system to bedeveloped, at whatever level(s) of detail desired. In practice, rigorous mathemati-cal proof at the code level is only suitable for small systems due to the state spacegrowth that is exponential in the number of parallel components. Regardless theusage of several state space reduction techniques such as partial order reduction[43] and symbolic model checking [44, 45] the problem of scalability still preventsthe verification of large-scale real-time systems.
• Automatic Program Synthesis. Program synthesis is a special form of automatic pro-gramming that ismost often pairedwith a technique of formal verification. The goalis to construct automatically a program that provably satisfies a given high levelspecification. In contrast to other automatic programming techniques, the speci-fications are usually non-algorithmic statements of an appropriate logical calculus[66].
Modern large scale real-time systems have grown to the size of global geographic dis-tribution and their latency requirements are measured in microseconds or even nanosec-onds. Such applications where latency is one of the primary design considerations arecalled low-latency systems and where it is of critical importance – to time critical systems.Since large scale systems are mostly distributed systems (by distributed systems wemeanthe systems where computations are performed on multiple networked computers thatcommunicate and coordinate their actions by passing messages), their latency dynamicsis influenced bymany technical and non-technical factors. Just to name a few, energy con-sumption profile look up time (fewmilliseconds) may depend on the load profile, messag-ing middleware and the networking stacks of operating systems. Similarly, due to cachemiss, the caching time can grow from microseconds to about hundred milliseconds [62].
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In-practice, testing time critical distributed systems is a difficult and challenging task.The spatial distribution, communication and presence of numerous components intro-duce timing imperfections which, if not considered during the design and deploymentphases can lead to catastrophic outcomes that affects the reliability of the system as awhole. Building a reliable time critical systems requires a system to be tested for per-formance in the presence of these timing imperfections induced by various components.For instance, if in distributed systems, the timing latencies of the message communica-tion or the occurrence order of the events is unknown it can make testing intractable.These challenging issues may not be suitably addressed by traditional centralized remotetesting. Such challenges emerge also due to severe timing constraints, the tests have tosatisfy when the required reaction time of the tester ranges near the message propaga-tion time. These challenges restrict the capability of centralized remote testing [54] whichcannot guarantee the controllability of distributed events, and respect the strict timingconstraints. Reaching sufficient test coverage by integration testing of such systems in thepresence of numerous latency factors and their interdependency, is out of the reach ofmanual off-line testing as well. Since, off-line testing of such systems is not possible due tothe non-deterministic nature of system under test (SUT), off-line testing approaches needto be replaced by on-line distributed testing.
The need for automated online test generation and their correctness assurance havegiven rise to the use of model-based testing (MBT) and the development of several com-mercial and academic MBT tools [59]. For instance, smart connected factories with IoTbased control systems is a new technology in manufacturing industries which undergoesfrequent change in requirement specifications and tools, expecting reduction in testingefforts and costs [55]. In this context, MBT offers an automated tool support (regressiontesting) and platform independence thus aiming to lower the testing effort of IoT [63].We interpret MBT in the standard way, i.e. as conformance testing that compares the ex-pected behaviors described by the systemmodel with the observed behaviors of an actualimplementation [56, 57].

1.3 Testing Real-Time Software Systems
A real-time distributed systems (RTDS) are computer systems which typically interact withsub-systems and processes in the real-physical world. Such systems are in strong inter-action with their physical environment and must respond to externally generated inputstimuli within a finite and specified period. For example, the environment of a real-timesystem that controls a robot arm includes items coming down a conveyor belt and mes-sages from other robot control systems along the same production line. They are alsocalled reactive systems as they react to changes in their environment. These changesare recognized by sensors, and the system influences the environment through actuators.Since real-time systems control hardware that interacts closely with entities and peoplein the real world, they often need to be dependable. They have explicit time constraintsthat specify the response time and temporal behavior of real-time systems. For exam-ple, a time constraint for a flight monitoring system can be that once landing permissionis requested, a response must be provided within 30 seconds. A time constraint on theresponse time of a request is called a deadline or reaction time. Time constraints comefrom the dynamic characteristics of the environment (movement, acceleration, etc.) orfrom design and safety decisions imposed by a system implementation.
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Definition 1.1. (Timeliness): It refers to the ability of a real-time system to meet timingconstraints. It can be measured as the time interval from moment when system receivesdata, processes it, and returns results in right time as expected
Faults in the software can lead to software timeliness violations and costly accidents.Thus testers need to detect violation of timing constraints. Real-time systems usually arein strong interaction with its software and hardware components needed tomake the sys-tem behave as intended. Real-time systems are defined by a set of tasks that implementsa specific functionality of the system. Such tasks are defined in two types i.e. Periodic and

Dynamic.
• Periodic tasks, are activated at regular intervals. A task repeats itself after a fixedtime interval. A periodic task is specified by four tuples: Ti =< φi,Pi,ei,Di >where,

φi is the task’s first release time. If it is not specified then release time of first taskis assumed to be zero; Pi is the period of the task, i.e. the time interval betweenthe release times of two consecutive task activations; ei is the execution time of thetask; Di is the relative deadline of the task. For example, consider the task Ti withperiod = 5 and execution time = 3. The task is released first time at t = 0 (assumed)then it executes for 3s and then the task is released again at t = 5 which executesfor 3s and then next time again at t = 10. So the task is released at t = 5k where k =0, 1, . . ., n. Since tasks are released at fixed-interval, all the intervals in time whensuch tasks are activated are known beforehand.
• Dynamic tasks are further divided into two categories based on their criticality andknowledge about their occurrence times.—aperiodic taskswhere tasks are released at arbitrary time intervals, i.e. randomly.Aperiodic tasks have soft deadlines or no deadlines so that processes can be fin-ished after its deadline, although the value provided by completion may degradewith time.—sporadic tasks, they are similar to aperiodic tasks, i.e. they repeat at random in-stances. The only difference is that sporadic tasks have hard deadlines. To achievetimeliness in a real-time system, aperiodic tasks must be specified with constraintson their activation pattern. When such a constraint is present, the tasks are calledsporadic. A common constraint is a minimum inter-arrival time between two con-secutive task activations. Tasksmay also have an offset that denotes the time beforeany instance may be activated.

Challenges with testing real-time systems: Testing RTDS is inherently more complex thantesting untimed systems, mainly because of communication and synchronization require-ments between cooperating components/processes, whose actions may depend on ac-tions of other components and on the time and duration of these actions. Testing func-tional correctness is not just only objective of testing RTDS, rather ensuring the timelinessof results produced is equally important. In the context of testing real-time systems fol-lowing aspects of testability have been identified:
• Observability: It is the ability to monitor the behavior of system under test (SUT).It is important to determine whether the SUT performs as expected. Most impor-tant aspect to understand observability is that tester must be able to observe everysingle event (actions) generated by its environment and most importantly to deter-mine correct ordering and timing of events without probe-effect (the delays intro-duced by insertion or removal of code instrumentation may result in unpredictablebehavior). Observability can be achieved by injecting monitors (probes) into SUT
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to record relevant events (timing and the order of input/output events at differentports) and log the time stamps for global monitoring. The monitored data is col-lected and integrated to obtain a coherent view of the system. These monitors canbe called by applying input to SUT from the location where monitors are placed.However, generating and deploying the monitors for a complex distributed appli-cation is a significant engineering effort. Modifying existing distributed systems byinstrumenting themonitors may introduce delays and network overhead (probe ef-fect) but there has been lot of research on the implementation ofmonitors with theaim of obtaining a coherent view of the system and achieving this in a non-invasivemanner [51, 52, 53].
• Reproducibility & Controllability: Tester must be able to control the test executionover SUT to establish the test preconditions, create test inputs and most impor-tantly, reproduce arbitrary test scenarios. Reproducibility is when the system re-peatedly exhibits identical behavior when stimulated with the same inputs. It is avery desirable property for testing, particularly during regression testing and debug-ging. Achieving reproducibility in RTDS, is difficult due to nondeterministic behviourof SUT. It is therefore important to have possibly high degree of controllability to ef-fectively test non-deterministic behavior of SUT.
• Non-Determinism: Increasing reliance on real-time systems increases nondetermin-istic environmental inputs (e.g., from sensors) and fromcommunication delays (e.g.,in cloud and edge computing). Nondeterminismoccurswhen there is no conceptualway of pre-determining the SUT exact behavior. This can be due to overwhelmingcomplexity or to inadequate observability and controllability. It has serious impacton testability, for example running same tests (input-actions)multiple timeswith ex-act same pre-conditions can produce distinct results (i.e., different output-actionsand post-conditions). Non-determinism can have different reasons and forms: (i)
concurrent non-determinism (due to system internal and external concurrency); (ii)
emergent non-determinism (due to integration of subsystems into systems); (iii)
physical non-determinism (due to the nature of physical processes); (iv) exceptional
non-determinism (due to fault and failure behavior).

Testing for Timeliness: Majority of testing and verification techniques have been devel-oped for non-real-time systems and they cannot be applied for real-time systems due totiming constrains and concurrency issues. Timing is traditionally analyzed andmaintainedusing scheduling analysis techniques. Full schedulability analysis of real-time systemswithlack of observability, controllability and determinism is complicated and can result in un-detecting timeliness violations in the presence of timing faults. Therefore, the challengein testing is to find timed test sequences execution orders that will cause timeliness faultsthat possibly result in failure. In the past, severalmodel-based testingmethodologies havebeen proposed where testing activities are guided by the formal model of system. For ex-ample, models formalized in Real-Time UML, timed petri nets, timed automata have beenused as test oracles and to define coverage criteria such as edge, condition or path cover-age to check the violation of timeliness constraints. Having such formal models availablethe test designers and developers have combined testing with formal verification tech-niques during design and development phase of systems [41, 42]. In practice, rigorousmathematical proof at the low level of abstraction in the model is only suitable for smallsystems due to the state space growth that is exponential in the number of parallel com-ponents. Regardless the usage of several state space reduction techniques such as partial
13



order reduction [43] and symbolic model checking [44, 45] the problem of scalability stillprevents testing and verification of large-scale RTDS.In this thesis, we consider a RTDS, where a SUT is abstracted in the model up to its ob-servable behavior at test ports and related timing constraints are posed on input/outputevents. Regardless the high level of abstraction the need for testing timing correctness re-stricts the relevance of centralized remote testing methods which are commonly used inRTDS testing. This is because a centralized test architecture cannot guarantee the control-lability of distributed input injection, and respect their timing constraints, namely, mes-sage propagation time between the tester and SUT becomes the limiting factor. Anotheraspect to be considered in RTDS is that reaching sufficient test coverage by integrationtesting of such systems in the presence of numerous latency factors and their interde-pendency, is out of the reach of off-line testing. Since, off-line testing of such systems isnot possible due to the non-deterministic nature of SUT off-line testing approaches needto be replaced by on-line distributed testing. The need for automated online test gener-ation and tests correctness assurance have given rise to the combined use of MBT anddistributed testing. We interpret MBT in the standard way, i.e. as input/output confor-mance (ioco) testing [56] that compares the expected behaviors described by the sys-tem model with the observed behaviors of an actual implementation. As stressed above,due to inherent non-determinism of distributed systems the natural choice is online MBTwhere the test model is executed in lock step with the SUT. The communication betweenthe model and the SUT involves controllable inputs of the SUTand observable outputs ofthe SUT which are required to be conforming with the requirements model for detectingerrors in SUT.
1.4 Current Practice and Related Work
The continuous growth of systems complexity and high demand of security and reliabilityin the RTDS has made their testing a big challenge. Moreover, majority of testing and ver-ification techniques have been developed for non-real-time systems and they cannot beapplied on real-time systems because of not addressing the timing constrains and concur-rency issues. Testing RTDS requires an integration of computation, communication andcontrol in the test architecture. In the current practice, overall system functionality istested for conformance with requirements. The main objective of conformance testing isto determine whether a system complies with the requirements of a specification whereinputs are applied to observable ports of system and outputs from observable ports areanalyzed against expected outputs.
In the current practice, centralized remote testing methodologies [11] used to test RTDSapply test architecture as shown in Figure 1. The remote tester generates test inputs forthe distributed ports, waits for the responses, and continues the process with the nextset of inputs. Such a remote testing approach works when the communication and timingconstraints of the SUT are negligible compared to SUT reaction time. However, in mostdistributed applications, the timing constraints are significant and time-varying therebyintroducing non-determinism. This leads to situations wherein the remote tester is un-able to generate the necessary inputs for the SUT within expected time window, therebymaking the test cases incomplete in terms of timing requirements coverage [27]. Majorchallenges emerge due to several reasons:

• severe timing constraints: the tests have to perform fast enough to mimic load pro-files of the real environment. It is critical when the required reaction time of thetester ranges near the message propagation time;
14
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Figure 1 – Traditional approach for testing distributed systems

• order constraints: due to non-deterministic nature of message propagation delaysin distributed systems, maintaining same order at receiving as the messages aresent is hard to guarantee.
• test repeatability: since remote tester cannot control the simultaneous inputs atdifferent remote ports and observe the outputs of RTDS at the same time, the pos-sibility of i/o actions interleaving cannot be fully eliminated and due to this non-determinism the test repeatability is not possible;
These problems restrict the usability of centralized remote testing which has limitedcapability of controlling distributed events, and respecting the timing constraints.An alternative to the remote testing is a distributed testing. In distributed testing archi-tecture, shown in Figure 2, the remote tester is decomposed into a set of communicatinglocal testers. This modification eliminates the message propagation time between the lo-cal tester and SUT as the testers are attached directly to the ports enabling simultaneoustest inputs and it reduces the overall test response time.Most of themodern cyber-physical systems (CPS) such asmodern transportation systems,energy grids etc., are large scale systems that have a massive distributed architecture.While testing such systems in itself is a challenge, their strict real-time requirements com-plicate the testing further. Current practice to usemanual testing is error prone andexpen-sive. Therefore, automating the testing process has received considerable attention in re-cent years and themodel based testing (MBT) has emerged as a promising approach. Typi-cally aMBT uses themodel which either is the specification of the system under test (SUT)or specifies some behavioural aspect that is intended to be tested. Recent results haveshown thatMBT canbeused to test complex industrial automation systems requiring strictreal-time behaviours [28, 29] and cyber-physical systems with hybrid dynamics[30]. TheMBT approaches in the literature use either state-based or behavioural models. Their se-mantics are described mostly by the Finite State Machines (FSMs) or input-output transi-tion systems (IOTS) including additional information, e.g. time [31] -[32]. However, adopt-ing these models to emergent applications (e.g., smart grids) is becoming a challenge dueto two reasons: (i) scale, distribution and interconnections of the systems, and (ii) real-time requirements.

15



Core Part of System 

Distributed  Part Of System

Port 1

Port 2 Port 4

Full 

SUT

Distributed  Part Of System

Syst
em Ove

rvi
ew

i o

i

o

i

o

io

Port 1

Port 2

Port 3

Port 4

 Local Tester 1

 L
oc

al
 T

es
te

r 4

 Local Tester 3

 L
oc

al
 T

es
te

r 2

Syn

SynSyn

Syn

Cloud

Figure 2 – Distributed Test Architecture

Testing distributed systems has been one of the MBT challenges since the beginningof the 90s. An attempt to standardize the test interfaces for distributed testing was madein ISO OSI Conformance Testing Methodology [33]. A general distributed test architec-ture, containing distributed interfaces, has been presented in Open Distributed Process-ing (ODP) Basic Reference Model (BRM), which is a generalized version of ISO distributedtest architecture.As for broader context of distributed testing the early works focused on testing dis-tributed non real-time systems [36, 64, 40]. The theory of testing distributed real-timesystems has gained interest only in recent years when global time keeping techniquesemerged [65]. First MBT approaches represented the test configurations as systems thatcan be modeled by finite state machines (FSM) with several distributed interfaces, calledports. An example of abstract distributed test architecture is proposed in [23]. This archi-tecture suggests that SUT contains several ports that can be located physically far fromeach other. The testers are located in these nodes that have direct access to ports. Thereare also two strongly limiting assumptions: (i) the testers cannot communicate and syn-chronize with one another unless they communicate through the SUT, and (ii) no globalclock is available. In practice there is no global clock that can synchronize the testers.These ideas led to the ISO standard on distributed testing architecture [33]. The architec-ture lacked mechanism to coordinate the local testers and the concept of global clock.Works studying controllability and observability of distributed testing were studied in[35]. These notions were used in [34] to investigate fault detectability and synchroniza-tion. In contrast, the authors in [36] proposed a coordination algorithm that allows testersto exchange information employing reliable communication channels. With the introduc-tion of the extra communication messages, undesirable delays and overheads were alsocreated. To overcome the difficulties with such works, the use of offline test suites toguarantee controllability and observability was proposed in [37]. However, generating testsequences for non-deterministic SUT offline to guarantee test controllability and observ-ability is seldom possible. It is therefore, imperative to use online distributed testing asin [64]. The use of online testing approach to solve controllability and observability prob-
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lems for distributed testing was proposed in [40]. The investigation further showed thateven in the absence of critical timing constraints, the SUT should satisfy some constraintsto have controllability and observability problem decidable.
These problems occur if a tester cannot determine either when to apply a particularinput toSUT, orwhether a particular output fromSUT is generated in response to a specificinput [37]. For instance, the controllability problem occurs when the tester at a port pi isexpected to send an input to SUT after SUT has responded to an input from the tester atsome other port p j, without sending an output to pi. The tester at pi is unable to decidewhether SUT has received that input and so cannot knowwhen to send its input. Similarly,the observability problem occurs when the tester at some port pi is expected to receivean output from SUT in response to a given input at some port other than pi and is unableto determine when to start and stop waiting. Such observability problems can introducefault masking.
In [37], it is proposed to construct test sequences that cause no controllability and ob-servability problems during their application. Unfortunately, offline generation of test se-quences is not always applicable. For instance, when themodel ofSUT is non-deterministicit needs insteadof fixed test sequences online testers capable of handling non-deterministicbehavior of SUT. But even this is not always possible. An alternative is to constructtesters that includes external coordination messages. However, that creates communica-tion overhead and possibly the delay introduced by the sending of each message. Findingan acceptable amount of coordination messages depends on timing constraints and fi-nally amounts to finding a tradeoff between the controllability, observability and the costof sending external coordination messages.
The need for retaining the timing and latency properties of testers became crucial na-tively when time critical cyber physical and low-latency systems were tested. Recently,results on testing timing correctness of remote testers were proposed in [38]. The investi-gation considered a SUT with distributed ports that are remotely observable and control-lable, then the 2∆ condition was used for proving the tester’s timing correctness. Here,the 2∆ describes the communication delay upper bound requirement between the SUTand remote tester as sufficient condition for the test controllability. Though this approachworks reasonably well for systems with sufficient timing margins, but cannot be extendedto systems with the timing constraint close to 2∆ or below. This means that the messagesmay not reach the port in time and as a result, the testing becomes infeasible in such sys-tems.
More recently, the use of distributed testing for testing deterministic SUT with mul-tiple ports was studied in [58]. The approach addresses the Controllability Problems ofthe distributed test architecture, when there is not enough information at the local portsto coordinate the input sequence with its peers. It is shown under what conditions thepartial observability of SUT leads to situations where the distributed test inputs cannotbe coordinated correctly.

1.4.1 Challenges in Centralized Remote Testing
Impact of latency in remote testing: A centralized test architecture introduces challengeswhen there is significant latency compared to reaction time requirements, which meansmessages are not always received in the order they are sent. In order to manage messagepropagation delay between tester and the SUT, tester should not wait for each outputbefore sending input to SUT. However, to mimic realistic i/o traffic the test inputs to SUT
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have to be sent simultaneously or following timing patterns that cannot be reproducedby linear stimulus-response sequences.
Example 1.1. Consider the timed i/o automata specification Spec in Figure 8 (a). Assumethat the propagation latency between SUT and Spec is exactly 3 time units, which meansif Spec has to apply input to SUT, it should send that input 3 time units earlier as demon-strated in Figure 3 , so that SUT receives the input on time as specified in specification.To maintain the propagation delay, the SUT and tester shall observe the timed trace asfollows:

ρSUT: (5 · in[1]!) · (7 ·out[3]?) · (11 ·out[2]?) · (12 · in[1]!) · (15 ·out[2]?)
ρSpec: (2 · in[1]!) · (9 · in[1]!) · (10 ·out[3]?) · (14 ·out[2]?) · (18 ·out[2]?)

SUT

Tester

Tester
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cl = 5
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5 7 11
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cl = 2
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cl = 12
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12 15

out[2]?
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out[3]?
cl = 2
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cl = 3
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Figure 3 – SUT and Centralized Tester Communication with latency

As seen in ρSpec, the Spec sends second input in[1]! at 9 time units before receivingoutputs out[3]?, and out[2]? in response to previous input in[1]! at 2 time units to SUT.It seems, outputs out[3]?, and out[2]? are generated in response to second input in[1]!,though SUT produces outputs as specified in Spec and sends out[3]?, and out[2]? to Specbefore receiving the second input in[1]!. However, the emission of second input in[1]!depends on the reception of an outputs out[3]?, and out[2]?, because of latency and tomaintain it, tester should not wait to receive outputs before sending the input to SUT.This means in remote testing the propagation latency between SUT and Specmay lead tointerleaving of input/output actions. This affects the generation of inputs for the SUT andthe observation of outputs that may trigger a wrong test verdict.
Consider the remote testing architecture depicted in Figure 1 and its correspondinginput-output transition system (IOTS) model in Figure 8. The SUT has 3 ports (p1, p2,

p3) in geographically different places with inputs/outputs in[1]/out[1], in[2]/out[2] and
in[3]/out[3] at ports p1, p2 and p3 respectively. The model defines the expected globalbehavior of SUT. Each symbolic input and output is expressed as the label of some edgeof the model.
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To model simultaneous actions at different ports the edges with multiple simultane-ous communication actions are split into a series of transitions each carrying exactly onei/o action label and connected with auxiliary states labeled with "c". This notation is tospecify that all ports of simultaneous i/o actions such group are updated at the same time.Using above modelling pattern, we model a three port automata shown in Figure 4 and

Figure 4 – SUT Model

5 where the tester sends an input in[1] to the port p1 at Geographic Place 1 and re-ceives a response or outputs out[1] from SUT at same port. After receiving the output,the tester automaton is in state Wait, it gets both in[3] on port p3 and in[2] on port p2.Then, either it follows the intended path sending in[3] before in[2], or it sends in[2] before
in[3]. If tester decides to send in[3] before in[2] it receives an output out[3], out[1] at port
p3 and p1 respectively and returns to state Idle. If tester decides to send in[2], the SUTresponds with an outputs out[2], out[3] at port p2 and p3 respectively. Similarly, based onpreviously triggered inputs and received outputs the next input is sent to SUT and testercontinues with the next set of inputs and outputs until the test scenario will be finished.Suppose the described SUT is a real-time distributed system, whichmeans that it has stricttiming constraints for messaging between ports. More specifically, after sending the firstinput in[1] to port p1 at Geographic Place 1 and after receiving the response out[1],the tester needs to decide and send the next input in[2] to port p2 at Geographic Place

2 or input in[3] to port p3 at Geographic Place 3 in ∆ time. Since SUT is distributedin a way that signal propagation time is non-negligible, this can lead into a situation wherethe tester is unable to generate the necessary input for the SUT with in expected timingwindow due to message propagation latency.Another important aspect that needs to be addressed in remote testing is functional
non-determinism of the SUT behaviour with respect to test inputs. For non-deterministicsystems only online testing (generating test stimuli on-the fly) is applicable in contrastto that of deterministic systems where test sequences can be generated offline. Secondsource of nondeterminism in remote testing of real-time systems is communication la-tency between the tester and the SUT that may lead to interleaving of inputs and outputsdiscussed in Example 1.1.

Consequently, the centralized remote testing approach is not suitable for testing a real-time distributed system if the system has strict timing constraints that require reactionsfaster than 2∆. The shortcomings of the centralized remote testing approach are miti-gated with extending the ∆-testing idea by partitioning the monolithic remote tester intomultiple local testers as shown in Figure 2.
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1.5 Objectives of Thesis
The need for model-based testing methodologies in the context of real-time systems hasbeen recognized commonly by academic and industry world. However, very few of themadapted MBT as standard testing techniques. To meet the demand and advance the the-ory of distributed testing, the Thesis research has following objectives:

• Development ofmodel-baseddistributed testingmethodology, a practical andprov-ably correct distributed test architecture for time critical distributed systems possi-bly with non-deterministic behavior.
• Showing the relevance of Uppaal timed automata (UTA)1 formalism for specifyingthe behavior of real-time distributed systems. It includes

– Introducing semantic assumptions for modelling n-ports distributed systemsunder test.
– Showing how a multiple-port distributed systems timing constraints can bemodeled using UTA constructs such as urgent and committed locations, clockinvariant, clock guards etc.
– Analyzing what is needed to generate distributed testers from those models.

• As constructive part of the thesis, the objective is to create a method and algorith-mic implementation of that for generating distributed communicating tester mod-els from centralized remote tester models using partitioning algorithms and SUTconfiguration specification over geographical locations.
• Showing that the distributed tester generated from the centralized remote testernot only preserves the correctness of the centralized tester but also mitigates thetesters reaction time, i.e., the distributed testers meets (one) ∆ controllability re-quirement against 2∆ of the remote tester.
• Validating the proposed MBT approach on an industry scale case study by applyingit for functional and performance testing of flexibility contract protocol for AncillaryServices in Energy Grids.
1http://uppaal.org
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1.6 Thesis Contributions
The key task of the research and novelty lies in the elaboration of fully automated testgeneration technique for distributed online testing and its implementation in the form oftime-efficient algorithms. To achieve the objectives of this thesis, the main contributionsare:

• An efficient online model-based test architecture for real-time distributed systemmodels (with non-deterministic behavior) that satisfies the timing constraints forsolving controllability and observability issues of centralized testing architecture.
• A test scenario where a centralized testing cannot be applied. It is shown experi-mentally that the distributed test architecture ismore scalable and efficient in termsof test reaction time-wise than centralized remote test architecture for testing largenumber of geographical locations (ports) in a system.
• A semantic foundation formodellingn-portsdistributed systemsusingUppaal TimedAutomata.
• Partitioning algorithms to produce distributed local testers fromgiven remote testermodel. The generated testers not only preserves the functional correctness of thecentralized remote tester but also mitigate the testing time, i.e. the distributedtesters meets (one) ∆ controllability requirement against 2∆ of the remote testerwhere ∆ is the granted message end-to end propagation time.
• Bisimulation based verification method for proving the correctness of test distribu-tion algorithm.
• Support for regression testing, a systematic model refinement approach where al-ternative implementation configurations canbe extracted fromanabstract testmodel.We demonstrate that testing by partitioning a monolithic tester model into a set ofdistributed communicating testers makes model based testing for manufacturingautomation systems scalable.
• Demonstration of the proposed approach on a case-study using MBT tool DTRONas an available test execution platform that is practically usable for facilitating dis-tributed testers deployment and management.

1.7 Thesis Structure
The rest of the thesis is structured as follows:
Chapter 2: We present the preliminaries of this thesis and formal definitions relatedto testing of real-time distributed system in the context of model-based testing. We dis-cuss the major issues in testing distributed testing by illustrating it with examples. Weanalyze the features of online model-based testing and its advantages compared to man-ual/offline black-box testing. We show how a multiple-port distributed real-time systemmodels can be build with UPPAAL modelling formalism. We compare different aspects oftesting centralized, decentralized and distributed systems. We present a related work ontesting distributed systems and discuss different testing approaches. We present a moti-vation to adapt distributed test architecture over centralized testing. Finally, we introduce
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the concept of timed input/output conformance relationwhich is used to capture the con-formance of SUT to its specifications.
Chapter 3: This chapter present the main results of thesis. We present the test archi-tecture for testing distribute system and discuss its components such as adapter, coordi-nation between adapter and local testers. We present several hypothesis and definitionsrequired to present our approach. We elaborate the issues in distributed testing with ex-amples. We introduce the test distribution algorithms and compare their performances.
Chapter 4: The feasibility of approach is demonstrated on case study "Flexibility Con-tracts for Ancillary Services in Energy Grids". We demonstrate the proposed test approachby using MBT platform DTRON as a test execution platform.
Chapter 5: Presents the conclusions and outlines the directions for future research.
1.8 Chapter Summary
In this chapter, we have described the peculiarities pertaining to testing of real-time dis-tributed system in the context ofmodel-based testing andwhy their testing is such a dom-inant factor in the software life-cycles. We have discussed “what do timeliness, latency,
observability, controllability, reproducibility and non-determinism ”mean in the contextof testing real-time systems. We have also discussed the significant approaches such as
testing, formal specification and verification and automatic program synthesis to achievereliability in real-time systems. We have discussed the challenges and need for automatedonline test generation techniques for testing real-time distributed systems. We have pre-sented a related work on testing distributed systems. Finally, we finished the chapter bydiscussing the research objectives and presented novel contributions. We identified theimportance of requirements for the development of efficient testing methodologies forreal-time distributed systems with the aim of automation, keeping in mind constraintsimposed by academic and industry needs.
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2 Preliminaries
2.1 Chapter Overview
We introduce the basics of online model-based testing and discuss the advantages com-pared to manual/offline black-box testing. We discuss the MBT taxonomy step by stepduring which we will refine these concepts in subsequent sections. We introduce a se-mantic foundation for modelling real-time systems with timed automata. We also discusshow the specifications are transformed from timed automata to more expressive formal-ism Uppaal timed automata (UTA) to exploit the power of Uppaal simulation, verificationand testing tools. We introduce the n-ports timed automata and showhowamultiple-portdistributed real-time system test models can be build with UPPAAL modelling formalismby considering timing-constraints such as urgent and committed locations, clock invariantetc. Finally, we introduce the concept of timed input/output conformance relation whichis used as test pass criteria confirming the conformance of SUT to its specifications.
2.2 Model-Based Testing
Model based testing (MBT) technologies have emerged as a set of potentially powerfulmethods and tools which have become a standard in recent years for modern test au-tomation industry. MBT is a testing approach where test cases are automatically gener-ated from models. The models specify the expected behavior of the SUT. The modelsare also used to describe the test environments and test strategies, generating test cases,symbolic test execution and for evaluating test design quality. Amodel is an abstraction ofthe real-world function. Typically, a formal model provides an unambiguous specificationof desired SUT behavior which has clear syntactic representation and semantic meaning.These models are used to generate automatic test cases, and they represent how we ex-pect the system to behave under test.MBT is generally understood as black-box conformance testing where the models areused as specifications of required observable interactions between SUT and its environ-ment [12]. The goal is to project the abstract behaviours described in the model onto SUTby sending model generated test stimuli to SUT and observing if reactions of SUT conformto those specified in the model. During testing, test execution environment runs selectedtest cases on the SUT and emits a test verdict (pass, fail, inconclusive). The verdict showscorrectness in the sense of input-output conformance (ioco) relation between the re-quirements model and its implementation [56].An important motivator of the MBT is to stimulate the testing process towards au-tomation. In contrast with traditional manual black-box testing, MBT process can be fullyautomated by means of contemporary testing tools. MBT ensures the possibility to tracethe correspondence between requirements, models and test cases. The advantages ofMBT compared to the traditional approach are as follows:

• High degree of automation: Instead of writing hundreds of test scripts manuallyfrom specifications that is common practice in manual testing, MBT tools can beused to automatically generate test suite from the model, which saves design timeand prevents making human mistakes.
• Independent testing: Models represent the requirements to SUT and are completelyseparated from its implementation. This allows avoiding carrying potential imple-mentation errors in the test model.
• Complex test cases: Since models abstract from many implementation details they
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allow to cover much larger fragments of SUT functionality. Such models are helpfulin generating systematically unique and complex test cases.
• Unambiguous specifications: MBT helps to discover and eliminate ambiguous re-quirements. By focusing on important aspects the models improve human compre-hension of requirements intention and keep them clean from inconsistences.
• Easy maintenance: Well-structured models improve traceability of requirementsthat need to be addressed in the test cases and enhance updates when test fails.Test fails refer to the non-conformance between the model and system implemen-tation. Only corresponding model needs to be updated instead of writing all testagain when there is change in specifications.
• High test coverage: MBT enables easy specification of the different model coveragecriteria, such as all-states, all transitions, selected branching conditions etc. thatcan be used to extract the corresponding test cases. The advantage is that onecan automatically generate a variety of test cases from the same model simply bychoosing different test generation criteria.
Depending on how tests are generated and deployedMBTmethods can be divided intotwo broad groups: off-line and on-line testing. In off-line testing the tests are generatedbefore deploying and executing them. In on-line testing the test stimuli are decided andsent to test interface on-the-fly based on the SUT earlier reactions (output) and its currentstate. Regardless the generation methods the MBT process can be divided into five mainsteps as shown in Figure 6 [12].
1 Building themodel of SUT and its environment: The key decision in building amodelof SUT for testing is deciding an accurate level of abstraction, that is, deciding whichfunctionality of SUT to include or disregard in the model. It is advisable to keep themodel small in respect to the size of SUT but it must be detailed enough to spec-ify test objectives. It is also preferable to build several small partial models thanone complex model, i.e. building a model for each subsystem or design view andtest them (if possible) independently. Building a large monolithic model for fullsystem may end up with one of the most serious problems faced when applyingformal verification on the model. This problem is generally known as "state explo-sion problem". Building a model by preserving two significant properties (limitedsize and sufficient level of detail) can be difficult at times. This is why transformingthe accurate abstract behavior into a model has become an engineering challengeto decide what level of abstraction should be chosen for modelling to satisfy testobjectives. Also, it presumes deciding on how much certain functionality can beneglected and most importantly which modeling notations can encode those ab-stract details naturally. Once we have a model ready, it is advisable to verify themodel whether it is consistent and has the desired behavior. Before we start gen-erating test suites from this model, it makes sense to find flaws up front becauseflawed requirements breed bugs that needs to get rid of later, often at a high costto the project bottom line. Model checking has proven to be a successful methodto verifying correctness of model with respect to temporal logic specifications. Itallows to explore the behavior of the model exhaustively and verify its correctnessagainst given requirements.
2 Generating Abstract Tests fromModel: In principle, the models can generate an in-finite number of possible test scenarios. Therefore, test selection criteria, specified
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Figure 6 – Model-Based Testing Process

as test purpose are meant to select a finite and practically executable set of feasi-ble test cases. For example, different model coverage criteria, such as all-states, alltransitions, selected branching points etc. can be used to derive the correspondingtest cases. Note that, abstract tests generated from the model are not directly ex-ecutable since they are in the form of symbolic input-output action sequences andstates from the abstract model. Most MBT tools also generate a coverage statisticsor a requirement traceability matrix, which give some feedback about the quality ofgenerated test set or indicate which part of the model is not investigated or testedwell. For example, if some part of the model has not been explored for particu-lar test purpose, we could try to change the test parameters and repeat the samegeneration step. Also, if we want to improve the coverage of the test one can addauxilliary conditions in themodel that guide the test generation tool to find optimalcoverage test sequences.
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3 Concretizing the abstract tests to make them executable: Third step of MBT is totransform the abstract test suites into executable tests. The goal is to bridge thegap between abstract tests and the physical SUT by introducing low-level SUT de-tails that were neglected in the abstract model. This can be achieved by encodingadapters which map symbolic model inputs to executable ones and the concreteoutputs of SUT back to symbolic form to compare them with ones given in themodel. An advantage of the separation between abstract test suite and concretetest suite is the platform and language independence of the abstract test cases.Thus the same abstract test case can be reused in different test execution environ-ments. An alternative to the use of test adapters is the transformation of abstracttests to directly executable test scripts. Both approaches are in use but, as a rule,building adapters requires less effort than constructing script generators when therequirements to scripting format change.
4 Executing the tests on SUT and assigning verdicts: Next step is to execute the con-crete tests against SUT. During testing, a tester executes selected test cases on the
SUT and emits a test verdict (pass, fail, inconclusive). The verdict shows correctnessin the sense of ioco [13, 14].
Due to inherent non-determinism of distributed systems often the only option forintegration testing is on-line testing. Online MBT is executed in lock step with theSUT. The communication between the model and the SUT involves controllable in-puts of the SUT and observable outputs of the SUTwhichmakes easy to detect iocoviolations. In case of non-deterministic systems a single pre-computed (offline) testsequence may never reach the test goal, and instead of a sequence we need anonline testing strategy that is capable of reaching the goal even when SUT providesnondeterministic responses to a test stimulus. The issue is addressed in [15] wherethe reactive planning online tester synthesis method is proposed.

5 Analyzing the test results: After test execution, given results are analyzed and cor-rective actions are taken in the implementation if needed. Hereby, for each testthat reports a failure, the cause of the failure is determined and the program (ormodel) is corrected.
An example of the symbolic test execution tool for Uppaal Timed Automata is UppaalTron [52] which conceptual architecture is depicted in Figure 7. For detailed overview ofMBT and related tools we refer to [12].

2.3 Modelling of Distributed Real-Time Systems
2.3.1 Timed Automata
To define the testing architecture and algorithms formally we need to introduce a seman-tic foundation for modelling the RTDS. We describe the notions of timed automata (TA)introduced by [48] as a formalism to model the behavior of real-time systems. TA is a for-malism to annotate a transition system with timing constraints using finitely many real-valued clocks. This set of real-valued clock-variables track the time progress and can guardon transitions to restrict the behavior of automaton. We consider time domain T as set
R≥0 of non-negative reals that valuate the variables called clocks denoted by C.
Definition 2.1. (Clock valuations, operations on clocks). A clock valuation is the function
µ : cl→R≥0 mapping a clock cl from the set of clocksC to the set of non-negative reals
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Figure 7 – Online MBT Deployment Process

R≥0. Let φ represents the set of guards on clocks, a conjunction of constraints of the form
cl ./ t, and let U represents the set of updates of clocks corresponding to sequences ofstatements of the form cl := t, where cl∈C, t∈N, and ./∈ {≤,<,=,>,≥}. Guards andinvariants (I) are considered as first-order logic expressions (with predicate symbols ./ )over clocks cl and time constants t. Notation U |= I(l) means that U satisfies invariant atlocation l.
Definition 2.2. (Timed Automaton [48, 49, 50]). A timed automaton (TA) is a tuple (L, l0,
C, Σ, I, E) where

• L is a finite set of locations (or nodes);
• l0 ∈ L is the initial location;
• C is finite set of clocks;
• I : L→ φ(C) assigns invariants on clocks to locations.

• E is a finite set of edges between locationswith an action, a guard and a set of clocksto be reset. Each edge is a tuple (l, l ′ ,φ ,cl,d,a) where:
– l, l

′ ∈ L are the source and destination locations;
– φ is a guard, a conjunction of constraints of the form cl ./ x, where cl ∈ C, xis an integer constant and ./ ∈ {<,≤,=,≥,>};
– cl ⊂ C is a set of clock to reset to zero;
– d ∈ {Committed,Urgent,Normal} is the type of location; note that in themodeling we use location types as in Uppaal TA introduced by Larsen et al[18];
– a ∈ Σ is a finite set of actions, co-actions and the internal τ-action.

A timed automaton defines (possibly infinite) timed labeled transition system (TLTS) andits states are pair s= (l,v), where l ∈ L is a location and v∈RT
≥0 is a clock valuation satisfy-

ing the invariant of location l. A transition in TA is denoted as l
φ ,a,cl−−−→ l′ where (l,φ ,a,cl, l′)
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∈ E. A timed automaton can progress by executing discrete or delay transitions.
A discrete transitions of the form (l,v) a−→ (l′,v′) correspond to the execution of transition
l

φ ,a,u−−−→ l′ which is enabled if the clock constraint φ is satisfied by the clock valuation vand invariant of target location Il′ is satisfied by v′. The clock valuation v′ is obtained byapplying clock update u on v:

(l
φ ,a,cl−−−→ l′)∧φ(v)∧ Il′(v′),v′ = u(v)

(l,v) a−→ (l′,v′)
(1)

A timed transitions are of the form (l,v) d−→ (l′,v+ d), where the clock valuation v is in-cremented by some delay d ∈ T, i.e. v+ d and there exists no enabled by guard edge
(l, l

′
,φ ,cl,d,a). It can be delayable if there exists 0 ≤ d1 < d2 ≤ d such that v+ d1 � φand v+d2 2 φ or eager if v 2 φ whereas lazy denotes an edge which is neither delayable,nor eager, they cannot block the time progress. Therefore, automaton can wait in a loca-tion and letting time pass as long as the invariant Il for that location remains true.

∀d ≤ d′ ≤ d.Il(d′)

(l,v) d−→ (l,v+d)
(2)

Time sequences. Given a finite set of actions Σ, the set (Σ∪R≥0)
∗ of all finite-lengthreal-time sequences over Σ will be denoted TS(Σ). A empty sequence is denoted by ε ∈

TS(Σ). Given Σ′ ⊂ Σ and ρ ∈ TS(Σ), PΣ′ (ρ) denotes the projection of ρ to (Σ′ ∪R≥0)
∗,

obtained by erasing from ρ all the actions not in (Σ′ ∪R≥0)
∗. Similarly, DPΣ′ (ρ) denotesthe (discrete) projection of ρ to Σ′ . For example, if Σ = {x,y}, Σ′ = {x} and ρ = x1y2x3,then PΣ′ (ρ) = x3x3 and DPΣ′ (ρ) = xx. The time spent in a sequence ρ , denoted time(ρ)is the sum of all delays in ρ , for example, time(ε) = 0 and time(x1y0.7) = 1.7. According

to TLTS, a state s ∈ SA is reachable if there exists ρ ∈ TS(Σ) such that sA0
ρ−→ s. The set ofreachable states of A is denoted by RS(A).

Definition 2.3. (Timed Input/Output Automata). A timed input/output automaton (TIOA)
(L, l0,C,Σi,Σo,I,E) is a timed automata where the set of actions is classified into threedisjoint sets, i.e. Στ = Σi ∪ Σo ∪ {τ}, where Σi denotes the set of input actions; Σo set ofoutput actions. Actions in Σi ∪ Σo are observable actions and TIOA is called observableif none of its edges is labeled by τ . For the formal syntax and semantics of TIOAwe referthe reader to [17] and [19].

Input-enabled TIOA: A TIOA A is called input-enabled w.r.t Σ′ ⊆ Σi if it can accept anyinput in Σ′ at any state, i.e. ∀s ∈ RS(A).
A is deterministic, iff ∀l, l ′ , l ′′ ∈ RS(A).∀a ∈ (Σ∪R≥0) (delays or actions), whenever

l a−→l′ ∧ l a−→l′′ then l′ = l′′, which means for each timed word, the target location of actionis always uniquely known. Actions and time in A are two important parameters that canaffect the determinism of automaton. Figure 8 (a) shows the non-deterministic behaviorof the TIOA. There are two distinct transitions outgoing from location l2 that are labeledby two time words which are not disjoint, i.e at time cl == 6, there will be two possible
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target locations, hence non-determinism. Similarly, in location l8, there are two distincttransitions labeled by action in[2]!which shows non-deterministic behavior of automaton.
A TIOA is non-blocking, if for any location l and any t such that ∀l ∈ RS(A).∀t ∈R≥0.∃ρ

∈TS( Σo ∪ {τ}) : time(ρ)= t∧ l
ρ−→. The non-blocking property ensures that Awill not blocktime in any environment. This property ensures that a systemwill not force or rush its en-vironment to deliver an input, and vice versa, the environment will never force outputsfrom the system. Time is common for both the system and its environment, and neithercontrols it.

A timed word (σ ,ρ) of length n is an element of (T∗ × Σ∗), where actions σ = σ1 ·
σ2·...·σn are paired with time sequence ρ = ρ1 · ρ2·...·ρn such that ρ is strictly monoton-ically increasing. A timed word pair (σ ,ρ) is viewed as an action σi taken by automata
A after ρi time units since A is started. The elapsed time ρi is called a time-stamp of theaction σi. A timed trace is a sequence of time stamped actions followed with a delay
T Traces(A) = (σ1,ρ1) · (σ2,ρ2)·...·(σn,ρn), where ∀0 ≤ i ≤ j ≤ |n| such that if (σi,ρi),
(σ j,ρ j) ∈ A, then condition (σi,ρi)≤ (σ j,ρ j) is satisfied.

A path in A is a finite sequence of consecutive transitions:

P = l0
φ1,a1,u1−−−−→ l1

φ2,a2,u2−−−−→ ·· · ln−1
φn,an,un−−−−→ ·· · ln

where li−1
φi,ai,ui−−−−→ li ∈ E for every 1≤ i≤ n. A path is correct and accepting if it starts froman initial location and ends in a final location.

A run of A with initial location l0 and a clock valuation v0 is a sequence of states and
transitions (l0,v0)

d1,a1−−−→ (l1,v1)
d2,a2−−−→ ·· · (ln−1,vn−1)

dn,an−−−→ (ln,vn) where v0 � I(l0), and
for each 1 ≤ i ≤ n (ln−1,vn−1)

d1,a1−−−→ (ln,vn) is associated with the transition (ln−1,vn−1)
φi,ai,ui−−−−→ (ln,vn). We consider that the behavior of real-time systems can be described usingtimed traces, where each delay refers to the time elapsed since the automata A started.

The set of timed traces ofTIOA isT Traces(A) = {ρ |ρ ∈TS(Στ )∧ lA0
ρ−→ }. The set of ob-

servable timed traces of A is defined to beObsT Traces(A) = {PΣ(ρ) | ρ ∈TS(Στ )∧ lA0
ρ−→ }.

Example 2.1. Consider the timed I/O automata specification Spec shown in Figure 8 (a)where in[1]!, in[2]!, in[3]! denote the inputs to the system and out[1]?, out[2]?, out[3]?denote the outputs produced in response to those inputs. The Spec can be expressedin natural language as follow: exactly at 5 time units after start the system receives theinput in[1]! and produces either output out[3]? exactly at 2 time units or, failing to dothat, produces output out[1]? exactly at 3 time units. The clock cl is set to 0 just af-
ter passing each transition. A run of Spec is R = (l0,0)

0.2−→(l0,0.2)
3.8−→(l0,4)

1−→(l0,5)
in[1]!−−−→(l1,0)

2.5−→(l1,2.5)
0.5−→(l1,3)

out[1]?−−−→(l5,0)
3.5−→(l5,3.5)

3.5−→(l5,7)
in[2]!−−−→(l7,0)

2−→(l7,2)
1−→(l7,3)

out[2]?−−−→(l6,0), the timed trace associated with R is Seq(R) = 0.2 ·3.8 ·1 · in[1]! ·2.5 ·
0.5 · out[1]? · 3.5 · 3.5 · in[2]! · 2 · 1 · out[2]?. The associated time trace is Traces(Seq(R)) =
(5 · in[1]!)· (8 · out[1]?)· (15 · in[2]!)· (18 · out[2]?) · 0. From statement (3), (4), we have
Spec After (5 · in[1]!) · 0 ={(l1,0)}, Spec After (5 · in[1]!) · (8 · out[1]?).0 = {(l5,0)} Out(
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Figure 8 – Models of TIOA specification and implementations

Spec After (5 · in[1]!) · (7 · out[1]?).0) = T, Out( Spec After (5 · in[1]!) · (8 · out[1]?).15) =
{in[2]!}∪T.

Parallel composition of TIOA. Given a specificationTIOAmodelSpec = (L, l0,C1,Σi,Σo,E)and implementation model Impl = (Q,q0,C2,Σo,Σi,E) where the set of input (output)actions in Impl and output (input) actions in Spec are denoted with identical names butwith different suffices ("!" and "?"). TIOA define three kinds of actions: the emission of aninput i, the reception of an output o, and the occurrence of an internal action. Inputs andoutputs are observable, whereas internal actions are unobservable. The emission of anaction (act) is denoted by act! and its co-action i.e. reception is denoted by act?. Thus, theinput i! send (emission) by Spec is received (reception) by Impl as its co-action i?. Sim-ilarly, output o! send (emission) by Impl is received (reception) by Spec as its co-action
o?. The parallel composition of two TAIO Spec and Impl is denoted by Spec ‖ Impl =
(L×Q,(l0,q0),C1∪C2,Σi,Σo,E) where transition relation E is defined as

l a−→ l
′

q a−→ q
′

(l,q) a−→ (l ′ ,q′)

l τ−→ l
′

(l,q) τ−→ (l ′ ,q)

q τ−→ q
′

(l,q) τ−→ (l,q′)

l d−→ l
′

q d−→ q
′

(l,q) d−→ (l ′ ,q′)
(3)
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Issues with parallel composition for real-time systems. The parallel composition of twoTAIO assumes that the communications between the tester (which runs the specificationmodel) and the SUT (which is represented by the Implementation) are synchronousmean-ing that the tester blocks upon transmitting an input to (receiving an output from) theimplementation. It is also assumed that the SUT and the tester are located at the samesite and there is no communications latency. Consequently, the time instants at whichthe tester sends available inputs or receives expected outputs should be exactly thosedescribed by the specification. Local testers that do not tackle with non-deterministiccommunication delays control the tests, i.e. each time a tester observes an output, thatoutput depends deterministically only on its inputs. The controllability of the test is animportant property giving the possibility to lead the SUT into a intended situation. In thecontext of testing real-time systems with traditional centralized remote testing where the
SUT and the tester are not located at the same site and communications may be delayed,the synchronous communication (in its strict sense) between SUT and testermodel cannotbe implemented due to the practical communication delays/latency. Therefore, commu-nication latency is an essential challenge of remote testing that may lead to unintendedinterleaving of inputs and outputs. This affects the generation of inputs for the SUT andthe observation of outputs that may trigger a wrong test verdict. We discuss the limita-tion of synchronous testing and testing with asynchronous semantics to overcome themin section 2.3.3.
2.3.2 Uppaal Timed Automata
In this work, we use UPPAAL Timed Automata [18] that extend the modeling power of
TIOA with additional data types and several usability features. UPPAAL TA are based onthe definition of timed automata, which is introduced in [48]. A real-time system consistof multiple, possibly concurrent components and for modelling such concurrent compo-nents, the timed automata are composed into a network of timed automata (NTA) over acommon set of clocks and actions of n timed automata. Let the tuple (Li, l0

i ,C,Σ,Ei,Ii)denote an automaton Ai of the NTA, where, 1≤ i≤ n, a location vector for the whole net-work ‖i Ai is l = (l1, · · · ln) and the invariant of the network is a conjunction over locationsvector invariants I(l) = ∧
i I(li).UTA extend the expressiveness of NTA by introducing richer variable types and a set ofstandard functions and predicates used in the guards and update functions of edges andin the invariants. Expressions in UTA range over clocks, booleans and integer variablesand their arrays. The advantage of this extension is that the model has rich enough mod-elling power to represent real-time and resource constraints and at the same time to beefficiently decidable for reachability analysis. The expressions are used with the followinglabels:

Invariant: is an expression that refers only to clocks, constants and integer variables;it is a conjunction of conditions of the form cl < t or cl ≤ t where cl is a clock and t ∈ Nevaluates to non-negative integer.
Guard: is an expression that evaluates to a boolean; it includes terms such as clocks,integer variables, constants and function symbols (standard Uppaal functions and thoseimplemented in the given model); clocks and clock differences are compared only to in-teger expressions; guards over clocks are essentially conjunctions although expressions
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over integers can be in disjunction.
Assignment: is a comma-separated list of variable updates where the expressions must only refer to clocks, boolean and integer variables and their arrays, functions of them and constants. The clocks can be updated only with integer constants.
Synchronization: Synchronous communication between concurrent components is modeled in UTA by co-use of synchronization channels and shared, bounded data variables. The label of channel on synchronized edges has either of the form Expression! or Expression? or an empty label. The expression must be side-effect free, evaluate to a channel, or channel arrays. Guard conditions declare that an edge may only be fired if a matching synchronizing second edge is enabled for firing. Time transitions are only possible in locations and are not represented by edges in the UTA graph. This is why locations are annotated with invariants. A state of the system may only stay in a certain location while the clock invariant is satisfied.
The UTA models are defined as a closed network of extended timed automata that are called processes. The processes are combined into a single system by the parallel composi-tion. An example of a system composed of two automata instances referred as processes is given in Figure 9 (ProcessA on left and ProcessB on right, respectively). The state of

Figure 9 – A synchronous composition of two Uppaal automata

an automaton consists of its current locations and assignments to all variables, includingclocks. The initial locations of the automata (of the parallel composition) are graphicallydenoted by an additional circle inside the location. The automata in Figure 9 have chan-nels I_in!, O_out?, rePlay? and alarm?, where I_in, O_out, rePlay and alarm arethe names of the channels. In Figure 9,ProcessB, initially at locationWait, initiates the callby executing the send action I_in! that is synchronized with the receive action I_in?in ProcessA, that is initially at location Idle. The location Compute denotes the situationwhere ProcessA computes the output.
The duration of the execution of the result is specified by the interval [0,UB] whichis split by guards of outgoing edges into two non-intersecting sub-intervals [0,LB] and

(LB,UB], where the upper bound UB is given by the invariant cl<=UB, and the lowerbound LB by the condition cl>LB of the transition Compute→ Sa f e. The model gener-ates time words which are disjoint, i.e if cl<=LB the control passes to committed location
Fail fromwhich the control returns back immediately to initial location Idle by synchroniz-ing with the receive action alarm? in ProcessB. Committed locations are indicated by alocation with an encircled “C”. A committed location must be left immediately by execut-ing the next transition taken in the system. If cl>LB the control passes to urgent location
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Safe and returns to Idle by synchronizing with the receive action rePlay? in ProcessB .An urgent location (encircled “U”) must be left without letting time pass, but allows inter-leaving with enabled transitions from urgent locations of other automata.
The assignment cl=0 on the transition (Idle cl:=0−−−→Compute) ensures that the clock clis reset when the control reaches the location Compute. The internal action is indicatedby an absent action-label. In the following, the UTA notions described in examples abovewill be defined formally. For the full definition of formal syntax and semantics of UTA werefer the reader to [19] and [17].

Definition 2.4. An UTA modelM is a tuple (−→A ,Vars,Clocks,Chan,Type) where:
• −→A is a vector of processes A1,A2, · · ·An (when the automaton template of a pro-cess needs to be made explicit we use double indexes, e.g. a process Ai

j denotesj-th instantiation of an automaton template Ai; for better readability we ignore theindexes of templates when it is clear from the context and the elements of a process
A j are referred to by applying the index of the process, e.g. L j,l0

j , Tj.
• Vars is a set of variables (except clocks) defined in themodel. It is a union overVars jof processes and global variables of the model.
• Clocks is a set of clocks such that Clocks ∩ Vars = /0. Like Vars, Clocks is the union ofallClocks j in the processes and global clocks of NTA.
• Type is a type function mapping locations to types. The location types are ’commit-ted’, ’urgent’ and ’normal’ (their semantics is defined in [18]).

Definition 2.5. (Configuration ofUTA)Configuration of anUTAmodel (−→A ,Vars,Clocks,Chan,Type)
is a triple (−→l ,e,v)where−→l is a vector of locations, e is the valuation function of discretevariables and v is a clock valuation:

• −→l = (l1, l2, · · · ln) where li ∈ Li is current location of process Ai;
• Vars→∏i dom(vi)maps every variable vi ∈ Vars to its value;
• Clocks→ R≥ 0 maps the clocks to non-negative real numbers.
Configuration of the model corresponds to the state in the definition of NTA. The vec-tor l is called situation (currently occupied locations in the automata of the model), pair

(l,e) denotes the discrete part and v the continuous part of the configuration.
UTA state like TA state evolves either through enabled actions or delays. These steps

define the behavior of the model. For configuration (
−→
l ,e,v) a local action is enabled ifthere is an enabled internal transition in the underlying NTA. A synchronized action stepis enabled iff for a channel b there exists synchronizable by channel b transition in theunderlying NTA. A delay step with delay d is enabled iff such delay step is allowed in theunderlying NTA.
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Definition 2.6. Let M= (
−→
A ,Vars,Clocks,Chan,Type) be a UTA model. A sequence ofconfigurations:

〈(−→l ,e,v) 〉K = 〈(−→l ,e,v)0, (−→l ,e,v)1,· · · 〉 of length K ∈ N ∪ ∞ is called a well-formedsequence forM iff
• (
−→
l ,e,v)0 = (l0

1 , · · · l0
n), [Vars 7→ (0)|Vars|], [Clocks 7→ (0)|Clocks|])

• if K < ∞ then for 〈(−→l ,e,v) 〉K no further steps is enabled
• if K =∞ and 〈(−→l ,e,v) 〉K contains finitelymany k such that (−→l k,ek) 6=(

−→
l k+1,ek+1),then eventually every clock exceeds every bound (∀x ∈Clocks,∀c ∈N,∃k : vk(x)>

c)

Definition 2.7. (Timed trace of UTA). A well-formed sequence ofM is a timed trace if forevery k < K, the two subsequent configurations k and k + 1 are connected via a simple
action step, a synchronized action step, or a delay step, i.e. (−→l k,ek)

a−→(
−→
l k+1,ek+1) or

(
−→
l k,ek)

d−→(
−→
l k+1,ek+1) or (−→l k,ek)

τ−→(
−→
l k+1,ek+1). Let M be a UTA model, then thetrace semantics ofM, denoted TTraces(M), is the set of well-formed traces.

n-Ports UTA, we represent a multi-ports TIOA in UTA by splitting the transition withmultiple simultaneous synchronization actions to a sequence of transitions each labeledwith exactly one I/O-action and connected via committed locations, so that all ports ofsuch group are updated instantaneously in the order they are specified in the tuple. InFigure 10, the labels on the i/o actions (encoded as elements of channel arrays ’in’ and’out’) represent the transitions and the transition tuple (l0, l′, in[1]! /(out[1]?, out[3]?))is represented by sequence of transitions each labeled with exactly one action and con-nected via committed locations, l0 represents the idle, and l′ represents theDone location.Let Pln denotes a set of ports accessible in some geographic location ln where n ∈ N; I is

Figure 10 – Modelling pattern of multiport timed automata

a n-tuple (I1, I2,...In), where Ii is finite set of inputs at port i, Ii∩ I j = φ for i 6= j and i, j =1,...n ∈ N. Similarly, O is a n-tuple (O1, O2,...On), where Oi is finite set of outputs at port
i, Oi∩O j = φ for i 6= j and i, j = 1,...n ∈ N. Each port may receive outputs of other port,i.e O = (O1 ∪ {ε})× (O2 ∪ {ε})×...× (On ∪ {ε}), here {ε} denotes the empty output inresponse to input to SUT.
2.3.3 Timed Input/Output Conformance Relation
The MBT theory makes an assumption that system under test can be represented by for-mal model that is system representation on appropriate level of abstraction. This assump-tion is referred to as a test hypothesis. Given two models - the specification Spec and thesystemmodel Impl, MBT theory studies the problem of how these two are relate to each-other. Specifically, the testingmethods applied in the thesis rely on the timed input-outputconformance (tioco) relation, an extension of ioco [46].
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IOCO theory reasons about black-box conformance testing. Themain difference is thatioco uses the notion of quiescence, according to which the absence of outputs is observ-able. In tioco we do not use quiescence because we want timeouts to be explicitly speci-fied. For instance, we do not allow specifications stating “an eventmust eventually occur”but “an event must occur within x time units”. Apart from this important difference, ti-oco is similar in spirit to ioco: intuitively Impl conforms to Spec if for each observablebehavior specified in Spec, the possible outputs of Impl after this behavior is a subset ofthe possible outputs of Spec. In tioco time delays are included in the set of observableoutputs. This permits to capture the fact that an implementation producing an output tooearly or too late (or never, whereas it should) is non-conforming.From definition 2.3 of TIOA, we assume that the specification Spec of the system tobe tested is given as a non-blocking TAIO and the SUT Impl can be modeled as an input-complete, and non-blocking. In order to define the conformance relation, we recall thetimed input/output conformance relation (tioco) introduced by [13, 14, 21]. They proposeextension of ioco relation with timing constraints including clock valuations with the setof observable actions. Given TIOA A and timed traces T Traces(A), A After ρ is the set ofall location that can be reached after timed sequence ρ , the tioco relation is defined as:
Impl tioco Spec≡ ∀ρ ∈ TTraces( Spec) : Out(Impl After ρ)⊆ Out(Spec After ρ)

During testing, tester emulates the specification either by letting time elapsing or by ap-plying input to the SUT and waiting for the expected outputs from SUT. Upon receptionof expected outputs, the tester emits a test verdict (pass, fail, inconclusive). The verdictshows correctness in the sense that SUT conforms to the specification if the expectedoutputs (specified and correct time instants) exactly those described by the specificationare observed. Due to inherent non-determinism of distributed systems the natural choiceis online testing where the tester model is executed in lock step with the SUT. The com-munication between the tester and the SUT involves controllable inputs of the SUT andobservable outputs of the SUT which makes possible to detect tioco violations.
Example 2.2. Consider the timed I/O automata specification Spec and implementations
Impl1, Impl2 shown in Figure 8. Based on tioco relation, we can verify that if Impl1 and
Impl2 conform to Spec as shown in Table 4, 2.

Table 1 – Impl1 tioco Spec

Out( Spec After (5 · in[1]!)) = T
Out(Impl1 After (5 · in[1]!)) = T
Out( Spec After (5 · in[1]!) ·8)= {out[1]?}∪T
Out(Impl1 After (5 · in[1]!) ·8)= {out[1]?}∪T
Out( Spec After (5 · in[1]!) ·7)= {out[3]?}∪T
Out(Impl1 After (5 · in[1]!) ·7)= {out[3]?}∪T

Table 2 – Impl2���tioco Spec

Out( Spec After (5 · in[1]!) · (7 ·out[3]?)) = T
Out(Impl2 After (5 · in[1]!) · (7 ·out[3]?))= {in[2]!}∪T
Out( Spec After (5 · in[1]!) · (8 ·out[1]?).18) = {out[2]?}∪T
Out(Impl2 After (5 · in[1]!) · (8 ·out[1]?).18)= ˘
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Synchronous Testing: According to UTA channels semantics the synchronization by us-ing channels cannot be fully implemented due to realistic communication delays. Onlywhen assuming theSUT and tester are located at the same site and there is no communica-tions latency the synchrony assumption holds. In the context of testing real-time systemswith centralized remote testing where the SUT and the tester are not located at the samesite and communications may be delayed, the synchronous communication between SUTand tester model cannot be implemented in rigorous sense due to the communicationdelays.To address the problem, [38] proposed an asynchronous semantics with explicit com-munication delays. They proposed ∆-testability criterion (where ∆ describes the com-munication latency) with two additional assumptions about the communication in TAIOparallel composition model. The model is centered around a 2FIFO(./, ∆) architecturethat consists of:
1. One first-in-first-out (FIFO) queue for each direction of the communication be-tween the SUT and the tester.
2. A communication latency bounded by ∆. The symbol ./ stands for either ≤ or =.The tioco relation for asynchronous parallel composition ‖async is defined in termsof asynchronous trace semantics [38] as in Definition 2.8.

Definition 2.8. (Asynchronous semantics for TIOA). Let A = (L, l0,C,Σi,Σo,I,E) be aTIOAwith no silent actions. Let ./ ∈ {≤,=} and ∆ ∈N. The asynchronous semantics for A thatis an IOTTS (Σi,Σo,ΛΣi∪Σo ) is defined as follows
〈|A|〉./∆ = 〈(L×RC

≥0)×(R≥0×(Σi∪Σo))
∗×(R≥0×(Σi∪Σo))

∗,(l0,0),(Σi,Σo,ΛΣi∪Σo),M./∆〉

where ΛΣi∪Σo = τa | a ∈ Σi∪Σo is the set of silent actions. An asynchronous state is ofthe form ((l,v), p,q) where p and q are input and output queues respectively. The set ofasynchronous moves, M./∆ is defined by the following five rules:
((l,v), p,q) a?−→ ((l,v), p.(0.a?),q) (r1)

((l,v),(δ .a?).p,q) τa?−−→ ((l
′
,v[C := 0]), p,q)

l
φ ,a?,C−−−→ l ′ ∧ v |= φ ∧δ ./ ∆

(r2)
((l,v), p,q) t−→ ((l,v+ t), p+ t,q+ t) (r3)
((l,v), p,(δ .b!).q)

τb!−→ ((l,v), p,q)
δ ./ ∆

(r4)
((l,v), p,q)

τb?−−→ ((l
′
,v[C := 0]), p,q(0.b!))

l
φ ,b!,C−−−→ l ′ ∧ v |= φ

(r5)

The rules r1 and r2 (resp r5 and r4) are dual and they correspond to the transmission andthe reception of an input (resp. output). The rule r3 corresponds to the time elapsing. Thetime elapsing operation on a queue is defined by ((δ ·a).p)+ t = (δ + t,a).(p+ t). Notice
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that 〈|A|〉./∆ is input-complete because the transmissions of the inputs do not require tocheck the clock constraints. The receptions of the pending inputs require to check for thevalidity of clock constraints. The length of each queue is unbounded. Based on 〈|A|〉./∆,we can define asynchronous runs, asynchronous execution sequences and asynchronoustimed traces inAT Traces./∆(A) = TTraces(〈|A|〉./∆). Asynchronous timed traces are remoteobservations of local timed traces at communicating automata. The execution order ofactions may differ from the observation order: this happens when inputs and outputs in-terleave in the communication channels. We characterize remote observations that maylead to action interleaving by introducing the notion of ∆-testability [38].
Definition 2.9. (∆-testability). Let A∈TIOA and T Traces(A) = (ti ·ai)i=1.n·tn+1. The timedtraces in T Traces(A) are ∆-testable if,

• either n = 0,
• or (ti ·ai)i=1.n−1 is ∆-testable and an ∈ Σo,
• or (ti ·ai)i=1.n−1 is∆-testable and if an ∈Σi, then for every tb ∈R≥0, every b∈Σo, andevery k∈ [1..n−1] such that b! ∈ out ([A] after ρ[1..k] ·tb), it holds that tn−tb > 2∆.
A is ∆-testable if every trace in T Traces(A) is ∆-testable.

Proposition 2.1. Let A be a TIOA and l, ρ ∈ TS(〈|A|〉./∆) such that l0 ρ−→ l. A is ∆-testable
iff p(s) is non empty implies q(s) is empty.

According to Proposition 2.1, ∆-testability implies that at most one queue is non emptyat every reachable state. However, ∆-testability does not guarantee that the sizes of thequeues are bounded. A fast environment can increase the size of the input queue bysending repetitively the inputs faster than the latency. It is shown in [38] under whatconditions ∆-testability specifications are controllable. Indeed, having the condition thatoutput response to each input stimulus arrives before the next input is given the outputstransmitted earlier are received before the transmission of new inputs. Thus, each ob-served output depends on input transmitted earlier and the under this assumption test iscontrollable. Given themaximum signal propagation delay is∆ the delay between the twoconsecutive test inputs must be strictly greater than 2∆. In brief, ∆-testability criteriontakes advantage of the timing information that is not available in untimed models. An-other important corollary of ∆-testability criterion is that if the specification is ∆-testablethen, the asynchronous execution of the synthesized test cases is as simple as the syn-chronous execution, the tioco conformance is preserved and the tester can control thetest. This result provides one of main motivations of current thesis to implement thedistributed test execution environment that can implement the criterion of ∆-testabilityinstead of 2 ∆ testability.
2.4 Chapter Summary
In this chapter, we have discussed the basics of online model-based testing and discussedthe advantages compared to manual/offline black-box testing. We have also discussedthe MBT taxonomy step by step including: building the SUT model and its environment,
verification of models, generating abstract tests and concretizing them into executableon SUT tests and analyzing test results. We also discussed the semantic foundation formodelling real-time systems with timed automata. We showed how the specifications
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are transformed from timed automata to more expressive formalism Uppaal timed au-tomata (UTA) to exploit the power of Uppaal simulation, verification and testing tools.We introduced the n-ports timed automata and showed how a multiple-port distributedreal-time system test models can be build with UPPAAL modelling formalism by consid-ering timing-constraints such as urgent, committed states, clock invariant etc. Finally, weintroduced the concept of timed input/output conformance relation which is used as testpass criteria confirming the conformance of SUT to its specifications.

38



3 Distributed Testing
3.1 Chapter Overview
In this chapter, we present the main results of thesis. We present the test architecture fortesting distributed systems and discuss its components such as adapter, coordination be-tween adapter and local testers. We discuss several hypothesis and definitions requiredto implement our approach. We also discuss in detail the issues in distributed testingand elaborate themwith examples. We introduce the centralized tester partitioning algo-rithms and compare their performances. We propose constructive algorithms to generatea set of synchronizing local testers and demonstrate how distributed synchronizing testermodels are deployed across geographical locations. We present test scenario where acentralized testing cannot be applied. We also demonstrate how the presented approachis capable of addressing controllability and observability issues and discuss the limits ofproposed algorithms.
3.2 Communication and Coordination Hypothesis of Distributed Testing
In this chapter, model-based testing of distributed real-time systems is considered underthe assumptions that test and SUT interact via physically distributed interfaces and thereis possibility to synchronize the local testers to coordinate test activities. We consider adistributedSUTwhich consists of several geographically distributed locations and providesaccess to any of its ports needed for test input/output communication. An example of lo-cal test configuration is depicted in Figure 11. A local tester at each location communicateswith SUT local port via (customized for the tester) adapter.

Figure 11 – New Distributed Test Architecture
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Assume the SUTmodel has an input actions alphabet I, output actions alphabet O andinternal actions. Since internal actions are not observable at ports we defer them unlessthey influence observable behavior at ports. Sets I and O aremapped to the set P of ports,
p: I ∪ O 7→ P, which satisfies following conditions:

• I ∩ O = /0

• p is surjective and
• p(acti) = p(act j) implies acti = act j, where acti , act j ∈ I ∪ O.

The emission of an action (act ∈ I or act ∈ O) is denoted by act! and its co-action i.e.reception is denoted by act?. Let O = (o1, o2, ·, on) be a n-tuple, where ok is an output atport k. A transition triggered by a single input can lead to outputs at more than one portin any order, i.e (o1, ..., on)∈O. The input i! sent by tester is received as a reception actionby SUT (denoted by i?). Similarly, output o! send (emission) by SUT is received (reception)by tester as its co-action o?. For coordinated input actions at different (geographicallyseparated) ports the local tester models synchronize actions on symbolic level using UTAchannels. For instance in Figure 11, ASi1! and ASo1? denote local channels between SUTand local adapter at port 1; ATi1! and ATo1? are channels between the local adapter andlocal tester; and ASyn_1n is the channel for coordination between the local adapter andother local adapters to synchronize the local testers where n represents the port number.It is assumed that each local adapter communicates with the SUT through its local portand with other adapters through a reliable communication medium independent of the
SUT, i.e. the coordinationmessage delivery is assumed to be reliablewhichmeans there isno message loss and propagation delay larger than ∆ that may violate the test run timing.To formalize these considerations following assumptions are made:
(A.1) The MBT is interpreted in a standard way, i.e. as conformance testing that com-pares the expected behaviors described by the Spec model with the observed be-haviors of an actual implementation (SUT). The Spec is described by Uppaal TimedAutomata (UTA) which can express the non-deterministic behavior of distributedsystems. Further, it is assumed that the behavior of SUT can be depicted by the

Specmodel and it is assumed that SUT is input-enabled but Spec does not have tobe [56].

(A.2) The propagation time d which is required to exchange message between differentcomponents of distributed systems is bounded by a finite time interval [Tlb, Tub],where lb and ub denote lower and upper bound respectively. In addition, dtt rep-resents the propagation time between local testers and dst between a local testerand the SUT in case it is not negligible.

(A.3) The SUT is reactive and cannot produce outputs autonomously, which means out-puts are produced only in response to reception of input as specified in Spec. SUTreacts to input by producing at most one output at each port within certain timebound.
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(A.4) Both centralized and distributed tester models are deterministic. The SUT modelsin both cases are assumed to be equivalent and if they include control flow non-determinism then corresponding non-deterministic edges in both SUT models aremutually synchronized to avoid diverging reactions in the SUTmodels.

TR

TE

Input Reception
at SUT 

Output Emission
at SUT

TE - TR

Figure 12 – Computation Time of SUT

Property 3.1. From the assumptions A.1 - A.3, we conclude that the computation time
CSUT of SUT is bounded by finite values where CSUT represents the time interval from the
moment when an input is received (TR: reception of input) by the SUT, until its process-
ing terminates and the output is produced at TE . Thus, SUT response is assumed to be
bounded by CSUT i.e. CSUT ≥ TE − TR as shown in Figure 12. We assumed that SUT re-
sponse time to given test input does not depend onwhether the input is sent by centralized
remote tester of by some local component of the distributed tester.

Property 3.2.
The maximum progress of test execution means that both the centralized remote tester
and distributed testers try to execute their i/o actions without exceeding their enabling
time intervals. Due to the fact that the remote tester is not at the same geographical loca-
tion with SUT ports, the propagation latency may affect the arrival time of inputs to SUT
test ports and thus trigger unintended reactions. Therefore, in the presence of propaga-
tion latency, remote tester has to be fast enough to produce inputs so that they will be
received by SUT in an expected time window. This is not the case with distributed local
testers as they are directly attached to the SUT local ports and their communication delay
with SUT local component may be assumed to be negligible.

Property 3.3.
In IOCO testing it is generally assumed that SUT can wait for input in any state unbounded
time. In real time systems input waiting time (e.g. for sensor data) is strictly bounded.
From the assumptions and property 3.2, we conclude that the waiting time WSUT of the
SUT is bounded by finite values and the propagation time dst between tester and SUT also
must have upper bound. In untimed systemmodels the WSUT cannot be quantified, instead
the abstract property quiescence is used to express bounded input receiving enabledness
time of the SUT after it has processed its previous input and terminated.
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Property 3.4.

By assumptions each local tester receives two kinds of inputs: coordination message from
other local testers and outputs from the local component of SUT. We assume that the
waiting time Wst of the tester for every expected output from SUT and waiting time Wtt of
receiving synchronization signals from other local testers is bounded by finite values. This
is essential for concluding any verdict whether SUT conforms to Spec, and it can be done
only if CSUT and propagation time dt have upper bounds.

Example 3.1.

Consider two actions actp and actq executed at SUT ports in location `ocp and `ocq respec-tively. Let assume action actp has order constraint "actp must be executed before actq"or timing constraints relatively to action actq. Any time the tester at `ocp applies an in-put to SUT, it has to send a coordination message (ASyn_pq) immediately to local testers atother locations `ocq. CoordinationmessageASyn_pq contains themodel status informationwhich allows tester at location `ocq inject its message timely, i.e. assure the controllabilityand observability of actions at SUT ports.
Property 3.5.

If an action actq after the occurrence of input actp is an output produced at `ocq by SUT
in response to input actp applied at `ocp, then tester at location `ocq allows to receive
actq from SUT and synchronization actions ASyn_pq in any order. After receiving ASyn_pq at
`ocq local tester can verify whether timing constraints of actq are respected. In this case,
it is not required that the maximum propagation time dtt among tester has to be smaller
than the minimum computation time CSUT of SUT but both receiving events should fit into
∆, and interpreted as a pair of simultaneous events. Hence, waiting by tester to receive
ASyn_pq is not blocking timing-wise.

Property 3.6.

If an action actq after the occurrence of input actp is an input to the SUT, then local tester
at `ocq has to wait for a coordination message ASyn_pq from local tester at `ocp which sig-
nals that tester at `ocq can proceed with its input action actq.

To guarantee the order of actions and timing constraints at different local ports, it is
required in general that the maximum propagation time of ASyn_pq between testers has
to be smaller or equal to the minimum computation time CSUT of the SUT to guarantee
that waiting by local tester to send/receive action is not blocking. According to Property
3.5, for ∆-testability it suffices that the waiting time for ASyn_pq does not exceed ∆ - CSUT .

Controllability. Controllability in distributed MBT is the capability of local testers tomanage the test activity by sending inputs to SUT and receiving outputs from SUT in aspecific order and timing specified by the test model. For instance, given a test sequence
〈ip/{op}〉· 〈iq/{oq}〉 · · · 〈il/{ol}〉 where l ∈ N, the controllability problem occurs whenthe testers at ports p and q cannot guarantee that SUT will receive the inputs in givenorder, i.e ip before ip+1, ∀n ∈ l. This problems occur due to: (i)when port of in is differentfrom port of in+1 (i.e., q 6= p) and (ii) when tester at port q (ready to send iq but does notknow when to send an input) has not received any coordination information about theoccurrence of input in or output on from SUT in response to previous execution 〈ip/{op}〉triggered from port p.
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Observability. It is the property of local testers to observe the outputs of SUT and todetermine the input which causes each of the outputs. For instance, given a consecutivetests for a port p: 〈in/{op,oq}〉· 〈in+1/{op}〉 or 〈in/{op}〉· 〈in+1/{op,oq}〉. Observabilityproblem occurs when the tester at port q receives output op and is not able to determinewhether this output is produced by SUT in response to input in or in+1. The sequencingof two consecutive test inputs such that only one of them contains an output leads tooutput-shift faults.
3.3 Generating Distributed Testers
As discussed in previous chapter, the shortcoming of the centralized remote testing ap-proach ismitigatedbydecomposing themonolithic remote tester intomultiple local testerswhich can coordinate between themselves. These local testers are directly attached to theports of the SUT. Thus, instead of bidirectional communication between a remote testerand the SUT, only unidirectional synchronization between each local tester with others isrequired to update the other testers about one’s local observations and control actions. Inthis work we suggest a two step approach to distributed tester generation where at first,a centralized remote tester is generated by applying the reactive planning online-testersynthesismethod of [64], and second, a set of synchronizing local testers is derived from itby decomposing the monolithic tester into a set of location specific tester instances. Eachtester instance needs to know now only the occurrence of those i/o events at other portswhich determine its own behavior. Possible reactions of the local tester to these eventsare already specified in the centralized testermodel produced in step one and do not needfurther return communication to the event observer. An important concern of this parti-tioning transformation is that it should preserve the correctness if proved once about thecentralized tester so that if the centralized remote tester meets 2∆ requirement then thedistributed testers with same functionality meet (one) ∆-controllability requirement.In the following, we propose partitioning algorithmswith different sets of assumptionsto generate distributed local testers. The algorithms assume that the first step (generat-ing the test model for centralized remote tester) is accomplished and the tester satisfies
∆ control criteria. We discuss how the partitioning algorithms and more specifically a co-ordination of local testers is able to avoid distributed testing issues.

Figure 13 – SUT and Remote Tester Model
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Figure 14 – Distributed Local Testers
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3.4 Algorithms
Consider the remote testing architecture depicted in Figure 1 and its corresponding UTAmodel in Figure 13. The SUT shown in figure has 3 ports (p1, p2, p3) in geographicallydifferent places with inputs/outputs in[1]/out[1], in[2]/out[2] and in[3]/out[3] at ports p1,
p2 and p3 respectively.Let MRT denote a monolithic remote tester model generated by applying the reactiveplanning online-tester synthesis method [64]. Loc(SUT) denotes a set of geographicallydifferent port locations of SUT. The number of locations ranges from 1 to n, where n ∈ Ni.e. Loc(SUT) = {ln|n ∈ N}. Let Pn denotes a set of ports accessible in the location ln.
Algorithm 1 Automated Construction of Adapter and Local Testers

input: MRT ;
output: qnMDT n ∈ N ;

1: For each l, l ∈ Loc(SUT) we copy MRT to Ml to be transformed to a location specificlocal tester instance.
2: For eachMl we go through all the edges inMl . If the edge has a synchronizing channeland the channel does not belong to the the set of port Pl , we do the following:

• if the channel’s action is send, we replace it with the co-action receive.
• if the channel’s action is receive, we do nothing.

3: For each Ml we add an adapter automaton (an example is shown in Figure 14) thatduplicates the input signals fromMl to SUT, attached to the set of portsPln and broad-casts the duplicates through adapter to other local testers to synchronize the test runsat their local ports.

3.4.1 Algorithm 1
Algorithm 1 proposed in [6] transforms the centralized testing architecture to a set ofcommunicating distributed local testers. The resulting architecture mitigates the timingissue by replacing the bidirectional communication with a unidirectional broadcast of the
SUT local i/o actions to local testers at other ports. Self-explanatory conceptual descrip-tion of the algorithm is depicted in Algorithm 1. An example of how generated fromcentralized tester model of Figure 13 local tester models look like is shown in Figure 14.

Correctness of Tester Distribution Algorithm: To verify the correctness of distributedtester generation algorithm we check the bisimulation equivalence relation between themodel of monolithic centralized tester and that of distributed tester. For that the modelsare composed by parallel compositions so that one has a role of timed words generatoron i/o alphabet and other the role of timed words acceptor machine. If the i/o languageacceptance is established in one direction then the roles of models are reversed. Sincethe i/o alphabets of remote tester and distributed tester differ due to synchronizing mes-sages of distributed tester the behaviors are compared based on the i/o alphabet that isobservable on SUT ports only. Second adjustment of models to be made for bisimulationanalysis is the reduction of message propagation delays to uniform basis either on ∆ or2∆ in both models. Assume (due to closed world assumption used in MBT):
• themodel for centralized testing is composed using parallel composition of SUTUTAmodel and remote tester UTA model: MRT = TASUT ‖ TAr−T ST
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• The model MDT for distributed testing consists of the parallel composition of localtester models and SUT model: MDT = TASUT ‖ qi TAd−T ST
i i = [1, n], n - number ofports locations.

• to unify the timedwords TW (MRT ) and TW (MDT ) the equal communication delaybetween SUT and Tester is assumed.
• The SUTmodels in centralized and distributed tester cases are assumed to be equiv-alent and if they include control flow non-determinism then corresponding non-deterministic edges in both SUTmodels are mutually synchronized to avoid diverg-ing reactions by SUTmodels.

Definition 3.1. (correctness of tester distribution): The mapping MRT Algorithm7−−−−−→ MDT iscorrect if TAr−T ST and qi TAd−T ST
i are observationally bisimilar, i.e. if TAr−T ST and qi

TAd−T ST
i are respectively generating and accepting automata on common i/o alphabet

Σi∪Σo then all timed words TW (TAr−T ST ) are recognizable by qi TAd−T ST
i and all timed

words TW(qi TAd−T ST
i ) are recognizable by TAr−T ST . Here, alphabet Σi∪Σo includes i/osymbols used at SUT-TESTER interfaces of Mremote and Mdistrib.

Correctness verification of the distribution mapping:
Step 1: (Constructing generating-accepting automata synchronous composition):

• label each output action of TAr−T ST with output symbol a! and its co-action in qi
TAd−T ST

i with input symbol a?;
• define parallel composition TAr−T ST ‖ qi TAd−T ST

i with synchronous i/o actions.
Step 2: (Bisimilarity proof by model checking): TAr−T ST and qi TAd−T ST

i are observa-tionally bisimilar if following holds: MRT � not deadlock ∧ MDT � not deadlock⇒
TAr−T ST ‖ q j TAd−T ST

j � not deadlock j = [1, n], n - number of local testers, i.e. thecomposition of bisimilar testers must be non-blocking if the testers composed with SUTmodel separately are non-blocking.
Solving Controllabilty and Observability Problems: The distributed test controllabilityproblem arises when tester is not able to control the test execution over SUT, i.e. to emittest stimuli duly. Observability issues emerge when a local tester which sends acti+1 doesnot know whether acti has been received by SUT via other location port. In centralizedtest architecture, tester can generate inputs only consecutively waiting each time for SUToutput before sending next input for the result and continues then with the next set ofinputs and outputs until the test scenario has been finished.
As will be shown in Lemma 3.1, Algorithm 1 generates the distributed testers thatprovides same test coverage as centralized remote tester.

Lemma 3.1. (Equivalence of observable test traces)
Let T Traces(T R)|P and T Traces(T D)|P denote timed traces mapped on ports in P of cen-
tralized remote tester T R and the distributed tester T D generated by Algorithm 1 re-
spectively. Then distributed tester T D has same controllable test coverage as T R, i.e.
T Traces(T R)|P = T Traces(T D)|P .

46



Note. Here we characterize the coverage in terms of test traces (mapped onto observ-
able test ports) that are controllable by test inputs.

Proof. (by induction on the length of the sequenceof i/o actions in traceπ ∈T Traces(T R))
Let T D

r and T D
s be the freely chosen local tester models at ports r and s (r 6= s), respec-tively and performing i/o actions acti and acti+1. Then the communication scenario π ∈

T Traces(T R) can consist of following cases:
Base case:If no action has occurred in π then no action has taken place also in any of local testers
T D

j traces (π1,..., π|P|) mapped on ports p j ∈ P , j = 1, |P| because the initial conditions
in centralized remote tester model T R and in local tester models T D

j are the same.
Inductive step:Assume the coverage of test sequence π and sequences in (π1,..., π|P|)has been same upto i-th step of π then there are following cases:
case 1 : i-th step in π has been actO

i ?, then there are two possibilities of mapping it todistributed tester traces:
case 1.1 : actO

i ? occurred in port pr that is local to tester T D
r

case 1.2 : actO
i ? occurred in port ps that observable by tester T D

r remotely via tester’scoordination action.
In Case 1.1 the action actO

i ? is local event toT D
r andbyAlgorithm 1 themodel

T D
r copies the edge with label actI

i+1! in the trace directly from centralized re-mote tester model T R. More specifically, in Case 1.1 Algorithm 1 substitutesthe edge of T R with label actO
i ? with a pair of consecutive edges connectedvia a committed location where the first edge has label actO

i ? and the sec-ond edge is labeled with broadcast channel label actO
i ?∗! to communicate theevent actO

i ? to other local testers.
In Case 1.2 the edge with label actO

i ? of centralized remote tester model T R issubstituted in T D
r by Algorithm 1 with synchronization action label actO∗

i ?that has co-action actO∗
i ! in local tester T D

s which is triggered instantaneouslyafter actO
i ? has occurred at port ps (symmetric with Case 1.1).

case 2 : i-th step in π has been actI
i !, Similarly to Case 1, in Case 2 there are two sub-casesCase 2.1 where actI

i ! occurs in the local tester that takes i+ 1 step of the trace πand Case 2.2 where actions actI
i ! actI

i+1! occur at different ports. The proof of thesecases is analogous to Case 1.1 and Case 1.2 respectively.

Example 3.2. Consider a faulty SUT test sequence and correct specification test sequencefrom remote tester shown in Figure 13
RT SSUT = { in[1]! . (out[1],out[3])? . in[2]! (out[1],out[2])? . in[3]! . (out[1],out[3])? . in[1]! .(out[2],out[3])? . in[3]! . (out[1],out[3])? }
RT SSpec = { in[1]! . (out[1],out[3])? . in[2]! (out[1],out[2])? . in[3]! . (out[1],out[3])? . in[1]! .(out[1],out[3])? . in[3]! . (out[2],out[3])?}.
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After feeding RT SSpec to algorithm 3.4, we get the following distributed test cases:
Tester1 = { in[1]! . out[1]? . out[3]? . ASyn_21[in_[2]]? . out[1]? . out[2]? . ASyn_31[in_[3]] ? .out[1]? . out[3]? . in[1]! . out[1]? . out[3]? . ASyn_31[in_[3]] ? . out[2]? . out[3]?}
Tester2 = { ASyn_12[in_[1]] ? . out[1]? . out[3]? . in[2]! . out[1]? . out[2]? . ASyn_31[in_[3]] ? .out[1]? . out[3]? . ASyn_12[in_[1]] ? . out[1]? . out[3]? . ASyn_31[in_[3]] ? . out[2]? .out[3]?}
Tester3 = { ASyn_13[in_[1]] ? . out[1]? . out[3]? . ASyn_21[in_[2]] ? . out[1]? . out[2]? . in[3]!. out[1]? . out[3]? . ASyn_12[in_[1]] ? . out[1]? . out[3]? . in[3]! . out[2]? . out[3]?}

Each tester is waiting for coordination message ASyn_rs[in_[i]] ? from other tester be-fore applying any input to SUT, since we broadcast the coordination message (duplicates)to other local testers to synchronize the test runs at their local ports. This approach guar-antees that each tester is aware of test execution status at other portswithin∆. Therefore,in RT SSUT any controllability problems are avoided and detected if coordination messagemissing at ∆ after expected occurrence of an i/o event at any other port. Thus, the ob-servability issues can be detected locally at each port by executing local tester models insync with other testers. Due to coordinationmessages the local testers can determine theinput which is the cause of any output, therefore output faults are detected at locationswhere they are expected to occur. In the given faulty RT SSUT, the following part of testsequence has faults.
RT SSUT = { in[1]! . (out[1],out[3])? . in[2]! (out[1],out[2])? . in[3]! . (out[1],out[3])? .output fault 1︷ ︸︸ ︷

in[1]!.(out[2],out[3])? .
output fault 2︷ ︸︸ ︷

in[3]!.(out[1],out[3])? }
Output fault 1 detection: As explained in case 5, the moment Tester1 apply in[1]!, itsynchronizes with other local testers by sending coordination messages and makes themaware that in[1]! is sent to SUT and outputmay arrive. As the local testers are using replicaof the same model, any wrong output receive will not conform to local tester model.Hence, output faults are detected. We proved that the synchronous messages added by

Algorithm 1 are sufficient to guarantee that distributed test architecture has the samecoverage, control and observation power as centralized remote test architecture.
Algorithm analysis: We consider that the major drawback of this Algorithm 1 is theextra communication overhead created by coordination messages among local testers.Each local tester representing the copy of original remote tester model is extended withauxiliary channels that are broadcasting the duplicates of locally observed events throughchannels between testers to other local testers to synchronize the test runs at their localports. This results in extra communication overhead over the network.

3.4.2 Algorithm 2We further optimizeAlgorithm 1 inAlgorithm 2by reducing the communication over-head, i.e. the amount of coordination broadcast messages by keeping only the messagesthat concern those local testers the progress of which depends directly on i/o actions ofthe others. The Algorithm 2 implements the concept as following: each local tester needsto know only the occurrence of those i/o events at other ports that influence its behavior.Possible reactions of the local tester to these events are already specified in the initialremote tester model. The local testers project the global test sequence to that of ob-servable on local ports of the SUT, and inter-location synchronization events are linked
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to them. Due to multi-cast communication mode, it is possible to reduce the coordina-tion overhead by sending synchronization messages to other testers selectively so thatonly the synchronization signal is sent to those testers which further action depends onit. Details of the algorithm are presented in Algorithm 2.

Figure 15 – Parameterized Adapter and Local Tester Models.

Algorithm Description: Line 4-11 adds an adapter automaton to each local tester in-stance. The purpose of adding an additional adapter instances to each local tester instanceis that it synchronizes the local communication between SUT local ports and a local testerwith other testers in different locations. Its model is derived from remote tester modelby adding original channels of SUT and by renaming channels of local testers. For clar-ity, notations Tl and Al represents local tester and local adapter respectively; To and Aorepresents the tester and test synchronization adapter at other ports respectively.
Note: To avoid terminological confusion, we use in this section term "adapter" when

referring to the test synchronization adapter not to the "test adapter". While test adapter
interfaces testmodel and real SUT the test synchronization adapter automaton serves only
to synchronize between local tester models.

The channel in[ln] denotes the input at location ln, E represents Emission of chanand R represents Reception of chan. The in_[ln], out_[ln] are the channels betweenlocal synchronization adapter automaton adapter and local tester automaton. The chan
in_[ln]? represents the reception R of input i.e. Tl

in_[ln]?−−−−→ Al and chan out_[ln]!
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Algorithm 2 Automated Construction of Adapter and Local Testers
1: input: MRT ;
2: output: qnMDT n ∈ N ;
3: //build a new model (adapter) by adding below channels
4: for all ln ∈ Loc(SUT ) do . n ∈ N
5: Add chan in_[ln]? . R: Tl → Al6: Add chan in[ln]! . E: Al → SUT
7: Add chan out[ln]? . R: SUT → Al8: Add chan out_[ln]! . E: Al → Tl9: Add chan sYn_[ln][lp]! . E Al→Ao, p : int[1,N]
10: Add chan sYn_[lp][ln]? . R Al→Ao11: end for
12: //construction of local tester models
13: copy MRT to Mln . take clone at each location
14: for all Mln , n ∈ N do
15: for all chan[l]: in[ln]/out[ln] pairs ∈Mln do
16: Case 1:
17: if edge.in[ln] ∧ edge.out[ln] ∧ ln ∈ Pln then18: Rename chan in[ln]!, out[ln]? to in_[ln]!, out_[ln]?19: for all edge.out[li] ∈ Loc(SUT ) ∧ i 6= n do . output for other ports
20: Remove chan out[li]?21: end for
22: end if
23: Case 2:
24: if (edge.in[li] ∧ li /∈ Pln ) then . i 6= n
25: Replace chan in[li] to chan sYn_[lp][ln]?26: if (edge.out[li] ∧ li ∈ Pln ) then27: Rename chan out[li]? to out_[li]? at Pli ∈ out[li]28: end if
29: if (edge.out[li] ∧ li /∈ Pln ) then30: Remove edge.out[li]? from Pln31: end if
32: end if
33: pass control: to Mli ∈ in[li]!34: repeat Case 1.
35: end for
36: end for
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represents the emission E of output i.e. Al
out_[ln]!−−−−−→ Tl . Similarly, the channels in[ln]?

out[ln]! are the channels between SUT and synchronization adapter. In order to coor-dinate with testers at other ports through adapter, chan sYn_[ln][lp]! is added to theadapter model in Line 9-10, local adapter sends sYn_[ln]! to each adapter and synchro-nize with its co-action at other local adapter sYn_[lp][ln]?.Now, the construction of local testers, for each port locations ln, we take clone of cen-tralized remote tester model MRT to be transformed into a location specific local testerinstance Mln (Line 13). The loop in Line 15 says for each clone testers model Mln , we gothrough all the edges i/o pair. For clarity, we divided the distribution into two cases, in Line17, Case 1 says if the edge has a synchronizing channel i.e in[ln]/out[ln] and the channelbelongs to same port location ln ∈ Pln then we Rename the chan in[ln]!, out[ln]? to
in_[ln]!, out_[ln]? as shown in Figure 15 and Remove the output channels out[li]?generated in response to in[ln]! where i /∈ n. Basically, idea is to minimize the automata
Mln by removing all synchronizing channels that do not belong to local actions at this lo-cation.

Case 2 In line 24, if input chan edge.in[li]! where i 6= n, does not belong to Pln ,
Replace chan edge.in[li]! with sYn_[lp][ln]?. This helps to minimize the unnecessarychannels from local tester which do not belong to particular port. Also, adding channel
sYn_[lp][ln]? avoids controllability and observability issues. For instance, this case canhave two major subcategories: (i) edge.in[li]! where input does not belong to Pln butit produce output edge.out[lm]! where m = n, belongs to Pln . In this case, we renamethe channel out[lm]! to out_[ln]?. (ii) edge.in[li]! where input does not belongto Pln but it produces output edge.out[lm]! where m 6= n, does not belongs to Pln . Weremove the channel from automaton.

Finally, repeat the similar steps for other local testers. Figure 15 represents the gen-erated local testers with corresponding parameterized synchronization adapter modelwhere parameter L denotes the geographical location.
By applying Algorithm 2 it is possible to reduce the coordination overhead by send-ing synchronization messages to other testers selectively so that only the synchronizationsignal is sent to those testers which further action depends on it. It presumes preliminarystatic analysis of the model to extract the dependencies between actions that may followeach other in the timed traces. Since standard algorithms for dependency analysis [67]can be applied for this task we refer its detailed discussion in the Thesis.

Theorem 3.1 (Distributability of centralized remote tests) Let T R and T D denote Uppaaltimed automatamodels of a centralized remote tester and distributed tester derived from
T R (by using distribution algorithms), respectively and let T Traces(.)|p denotes the pro-jection of T Traces(.) onto test ports P, then T Traces(T T R)|p = T Traces(T D)|p implies
T R tioco T D and T D tioco T R.

Proof. By Lemma3.1we conclude that Algorithm 1 and Algorithm 2 assure the equiv-alence of timed traces T Traces(T R)|p = T Traces(T D)|p. By Lemma 3.1 and definition of
tioco (Impl tioco Spec ≡ ∀ρ ∈ TTraces( Spec) : Out(Impl After ρ) ⊆ Out(Spec After
ρ)) we can conclude that T Traces(T R)|p = T Traces(T D)|p implies T R tioco T D . Simi-larly by symmetry of equivalence T Traces(T R)|p= T Traces(T D)|p the conformance T D

tioco T R follows.
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3.5 ∆ - Delay Controllability
While Lemma 3.1 and Theorem 3.1 stated the equivalence of observable traces andconformance relation between remote centralized tester and distributed tester derivedfrom it by Algorithm 1 and Algorithm 2, the proofs were based on the assumptionof neglecting real message propagation delay ∆. The delta controllability correctness isexpressed by the following Proposition 3.1.
Proposition 3.1. A model-based remote tester that satisfies 2∆ delta test controllability
requirement can be transformed to an observationally equivalent set of distributed and
internally coordinating local testers which satisfies (one) ∆ controllability requirement,
provided the coordination latency does not violate the model original timing constraints.

From the hypothesis and definitions explained in Section 2.2.1, if the remote testerwants the SUT to receive input at global time it must satisfy the timing constraints:
clock constraints at tester︷ ︸︸ ︷

g(v)∧ Invl′(v
′) +

propagation latency︷︸︸︷
d∆ ≤ Wmax

SUT (1)
And to receive outputs from SUT, tester must satisfy:

computation time of SUT︷︸︸︷
CSUT +

propagation latency︷︸︸︷
d∆ ≤ Wmax

st (2)
By Definition 2.1, the clock constraint g ∈ G(T) is satisfied by the clock valuation v ∈

RT
≥0 and invariant of target location Invl′ is satisfied by v′ where the clock valuation v′ isobtained by applying clock update u ∈ U(T) on v. From equation 1, we conclude that ifthe remote tester wants the SUT to receive input by some deadline it must send the nec-essary inputs P∆ earlier (because of latency) so that SUT receives it within the expectedtimingwindow. Similarly, by inequation (2) SUT sends output and remote tester receives itat time (CSUT +P∆)whichmust be not greater thanmaximumwaiting time of tester Wmax

st .
The communication pattern modification due to distributed test architecture elimi-nates the message propagation time between the local tester and SUT. We assume that,communication delay between a local tester adapter and the SUT port is negligible andone ∆ communication delay among local testers which is independent of SUT. Using hy-

pothesis 1 and 2, if the local tester wants the SUT receives input timely it must satisfy thefollowing timing constraints:
clock constraints at tester︷ ︸︸ ︷

g(v)∧ Invl′(v
′) ≤ Wmax

SUT (3)

From the assumptions defined in Section 3.2, each local tester react to two kinds ofactions: coordination message from other local testers and output action from the SUT.We assume that these two actions must be received by each tester in less than the max-imum waiting time of tester. This is essential and adequate (amount of time testers hasto wait for reception) before concluding any verdict whether SUT conforms to Spec, andit is true only if CSUT and propagation time Pt are within certain time bounds. Therefore,
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each local tester must satisfy:
condition1∗︷︸︸︷
CSUT +

condition2∗︷ ︸︸ ︷
[P∆ ·Σn

i=1(MSyn)]≤ Wmax
tt (4)

Condition1∗ : TE −TR ≈ negligible

Condition2.1∗ : actq ∈ Out puti & Pmax
tt ≤ClockTick(Tub)

Condition2.2∗ : actq ∈ Inputi & Pmax
tt ≤ClockTick(Tub)

Since the local testers are attached directly to the ports of SUT and the message propa-
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Figure 16 – Algorithm Performance

gation time and computation time are assumed to be negligible. Hence communicationdelay at SUT output is also considered negligible as expressed in Condition 1. Each lo-cal tester may block its test execution at step which depends on the occurrence of next
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action on its port. We divided Condition 2 further into important two cases. First, we as-sume that there is no restriction on the order of receiving simultaneous outputs from SUTand coordination message from other local testers but the coordination messages aboutthe arrival of their locally observable SUT outputs must be received by other local testerswithin maximum waiting time of each local tester. In our case maximum waiting time ofeach local tester is assumed to be one clock tick as shown in clock tick gen model.
From inequations (1) and (2), since there is latency between tester and the SUT, testershould not wait to receive outputs before sending the input to SUT. Hence 2∆-conditionis sufficient for satisfying timing correctness of the test. From conditions (3) and (4), weconclude that, in order to guarantee one ∆ controllability of distributed local testers, theyhave to respect timing constraints given in inequation (4). Since the local testers are at-tached to the test port directly the communication delay between a local tester adapterand the SUTport is negligible (one P∆ eliminated) and only one P∆ (which should be lessthan Wmax

s ) is required to coordinate the test activity.
Solving Controllabilty and Observability Problems: By considering all inequations dis-cussed above, we demonstrate Algorithm 2 performance where local testers commu-nication helps to overcome distributing testing issues as shown in Figure 16.

3.6 Chapter Summary
In this chapter, we have presented the main results of thesis. We presented the test ar-chitecture for testing distribute system and discussed its components such as adapter, co-ordination between adapter and local testers. We have presented several hypothesis anddefinitions required to present our approach. Wehave also discussed in detail the issues indistributed testing and illustrated them with examples. We introduced centralized testerdistribution algorithms and discussed their improvements in terms of performance. Wepresented test scenario where a centralized testing cannot be applied. The experimentsshow that the distributed test architecture ismore scalable and efficient in termsof test re-action time (assuring ∆ controllability) than centralized remote test architecture. We alsodemonstrated how synchronizing tester models is capable of detecting controllability andobservability issues in faulty SUT. The major drawback of Algorithm 1 is the extra com-munication overhead created by coordination messages exchanged among local testers.Each local tester model copying the local activities of the original remote tester model isextended with auxiliary channels that are broadcasting the duplicates of locally observedevents through inter-tester channels to other local testers to synchronize the test runs attheir local ports. This results in extra communication overhead over the network, thatwe further optimize in Algorithm 2 by reducing coordination broadcast messages withtargeted messages that concern only those local testers the progress of which dependson remotely observed i/o actions. The Algorithm 2 implements the concept where eachlocal tester needs to know only the occurrence of those i/o events at other ports that in-fluence its behavior. The usage of tester distribution algorithms is demonstrated furtherin Chapter 4 where they are discussed in the context of an industry scale case study.
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4 Case study: Testing Flexibility Contracts forAncillary Services
in Energy Grids

4.1 Chapter Overview
In this chapter, we demonstrate the elaborated distributed testing approach on industrialcase study. We present the short description of main concepts such as energy flexibility,flexibility load and contracts, buildings energy management systems (BEMS), automaticgain controllers (AGC), rate of frequency change (ROCOF) etc. and their roles in SUT. Wedemonstrate how industrial requirements can be transform into model (SUT and RemoteTester) and used to generate local testers. We apply the proposed test architecture usingMBT platform DTRON for facilitating distributed testers deployment and execution.
4.2 System Description
Electric grids are prototypical examples of CPS having interdependent physical and cybercomponents. Current practice to operate energy grids reliably requires matching gener-ation with demand at all times. In effect, this reduces the energy efficiency of the gen-erators, diminishes the benefits of the renewable sources, and increases energy cost. Analternative is to leverage the presence of flexible loads, i.e. components whose consump-tion or its pattern can be changed. The Heating, Ventilation and Air-Conditioning (HVAC)systems by arbitraging around their comfort bands can provide flexibility to the energygrids. The use of HVAC systems for providing ancillary services (frequency regulation) toenergy grids is a recent research topic. Much of the existing results is mainly focussedon computing the flexibility by solving a large optimization problem, whose scalability isrestricted by the size of the building.

To guarantee reliability such flexibility computation algorithms should be verified fortiming performance. However, the distributed nature of the flexible loads and fast timeframes emerge as a key challenge in verifying their timing performance. Centralized ap-proaches for testing such systems often do not meet timing constraints and therefore,methods wherein the functionality of the centralized remote tester should be distributedat the local nodes providing flexibility as required. Our motivation here is to validate anddemonstrate the usability of the distributed testing method by applying it on SUT whereflexibility contracts in energy grids are providing ancillary services.
Flexible Load: The flexible load considered in this investigation is the HVAC system inthe commercial buildings. It has a centralized air-handling unit (AHU) that supplies air toindividual zones and there is a chiller that supplies cooled water to the plant that passesthrough a heat exchanger to absorb the latent heat to provide the cooling. The HVAC con-sumption is mainly due to the fan and chiller coil. The fan consumption can be changedby varying the speed using a speed drive.
The Baseline Contract: This investigation considers the commercial building that hasa HVAC system supplying air to individual zones. These zones are controlled by a modelpredictive controller that aims to reduce the energy cost without violating the thermaldynamics of the building, comfort margins provided by the user and temporal constraintsthat model the user preferences. The energy cost of the zone is composed of two parts:fixed and variable time-of-use charges that vary depending on the time of the day. Thecosts are generally published 24 hours in advance for a particular day based on marketclearing prices in the day-ahead markets.
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Flexibility Contracts The method of contracting flexibility in our investigation is based on the market-based control, a distributed control strategy wherein a virtual market cre-ates competition among agents for “commodities”, such as electricity power or cooling/heating energy. Each of the entities in the transaction are modelled as a self-interested agent trying to maximize its benefit. In our case, there are four agents: the utility, buildings, market and building energy management system as shown in Figure 17.The market agent is a virtual one that is created to provide competition between agents for commodities i.e., cooling energy and electric power in our case. The market 
agent is designed to have a sort of double-blind auction, in which each agent bids for a flexibility curve and not for a single price-quantity pair. The zone agent models the variable-air-volume (VAV) and they bid demand curve defined by three points: minimum desired cooling rate (maximum desired set-point), maximum desired cooling rate (mini-mum desired set-point) and baseline (optimal computed for a given temperature band). To avoid discomfort to the user the minimum and maximum deviations from the set-points are bounded. In addition, cooling supplied to the zone is also bounded by the flow capacity of the VAV. Therefore, the minimum and maximum flow-rate of VAV terminal box can be used to calculate the absolute boundaries for the cooling demand curve submitted by each zone agent. To compute the cooling energy required, the zone agent uses the predictions on cooling energy.The building energy management system (BEMS) agent provides the cooling power required for solving an optimization problem with the baseline contract as the energy requirement. In addition, it provides the upper and lower bound on the total energy con-sumption using the demand requests placed by the zones. To compute the optimal cooling energy distribution, it considers the air-handling unit constraints and uses the optimiza-tion model to compute the flexibility provided by each zone for a given time-interval τk. This is transmitted back to the zone controller as accepted nominal, up-and-down flexi-bility allotment for each zone. This aggregate of the base-line, maximum and minimumflexibility is used to define the market clearing prices for the flexibility curve. These agents deployed for performing market-based control work in two-modes: 1. off-line mode and2. On-line mode.In the off-line mode, the zones compute their flexibility and time-slots in which theflexibility is available by solving an optimization problem. Once the flexibility is computed, the base-line contracts which involve the optimal consumption details of the zones are informed to the BEMS. The external inputs required during off-line mode are sent by the BEMS for the duration it senses the demand to be high. The triggers sent during off-line mode are given by pairs (5)

T = {τk,γk} (5)
where τi and γi indicate the time-slot and trigger condition for a particular time-slot of anhour, respectively. Based on the trigger T , off-line the baseline contracts are publishedwhich minimizes the cost of the cooling requests. In addition, the zones also publish theflexibility available during each time-slot to the central controller by solving the optimiza-tion model with the temperature bounds that they can arbitrage (up/down) for providingflexibility.
4.3 Online Operation Scenario
In the on-line mode, the utility agent that models the automatic gain controller (AGC)sends triggers when it senses that there is a need for additional reserves due to rate-of-change of frequency (ROCOF) being critical as shown in Figure 17. This is an external trigger
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Figure 17 – Distributed flow of generating flexibility contracts in online mode

to the SUT. On receiving the triggers, the BEMS agent requests for bids from zone agents.The zones on receiving the requests forward their flexibility bids to the BEMS by solvingThe aggregated flexibility bids from the zones are published in the market by the BEMSagent. The AGC then accepts the bid based on the cost (lowest bid is accepted first) fromdifferent zones. The sequence of operations is explained in Figure 17 by sequencing theinteractions between agents.An important criteria for harnessing flexibility for providing ancillary services to the gridis that the computations should be completed within a pre-specified time bound and theVAV should be commanded to provide the flexibility. Verifying the timing performancewith a centralized tester for multiple buildings may not be feasible due to unability toapply scenarious where multiple interactions with SUT occur simultaneously. A betteralternative in this case is to distribute the testing to remote testers, i.e. zone agents. Thenumerical values of the computation time shown in Figure 18 are used for equipping thetest model with timing information. The sequence of operations is explained step by stepas follows:
• Step 1: When there is a ROCOF (rate of change of Frequency) an external inputoccurs. The Automated Generation Control (AGC) sends triggers to the BEMS forgetting flexibility.
• Step 2: The BEMS commands the flexibility in the online mode by changing thepower supplied to the fan or changing the Variable Air Volume (VAV) .
• Step 3: The BEMS agent requests for bids from zone agents. The zones on receiving
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Figure 18 – Sequence of Operation

the requests forward their flexibility bids to the BEMS by solving the zone optimiza-tion constraints.

• Step 4: The contracted flexibility is informed to the Utility (AGC), i.e., contracts arepublished.The contracts are accepted until the ROCOF is done away with based onthe merit (low cost flexibility is accepted first)

The computation times of described steps shown in Figure 18 are for 100 zones. Formore than 50 zones, the current algorithms practically do not work due to computationcomplexity reasons. We need to make use of the token algorithm in which only the off-line computation phase may differ, but the online computation should remain the same.

4.4 Formalization of Distributed SUT Observable Behavior and Central-
ized Remote Tester

We start modelling the test scenario, at first, with specifying the behavior at i/o ports of
SUT model shown in Figure 19. In distributed testing architecture all distributed location
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i/o ports of AGC, BEMS and Zones all together form the SUT. Each building may typicallycontain 5 AHU and each AHU has 20 zones, which means each building has 100 zones ofmedium scale.

Figure 19 – SUT and Centralized Remote Tester Model.

4.4.1 Specification of Test PurposeWe assume in current test case that the interaction between BEMS and multiple zones isbased on the protocol according to which all zones are sending their flexibility contractsdepending on the number of zones in AHU either:
• simultaneously;
• at random time instances;
• deterministically using some token passing protocol (number of zones is> 50);

Table 3 – The Flexibilities Provided By Each Zones

Case 1: int zHold_Flexs[N+1]={0,5,5,5,5,5,5,5,5,5,5};Case 2: int zHold_Flexs[N+1]= {0,5,2,5,3,5,5,5,7,5,10};Case 3: int zHold_Flexs[id_zB] = {2,5,5,5,2,5,1,5,1,5};
Three test scenarios are studied:
• Scenario 1- All the zoneswhich offer flexibility in a given time interval, use the choiceby merit (the zone with lowest bid is engaged first). As shown in Table 3 and inTable 4, Cases 1 and 2 are used to show that their sum of flexibilites by differentzones satisfies the ROCOF. Note, numbers presented in the tables are encoded inUTA model arrays of type integer as arrays of flexibilites and bids.
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Table 4 – The Flexibility Bid Provided By Each Zones

Case 1: int zBids[N+1] = {0,1,1,1,1,1,2,1,1,2,1};Case 2: int zBids[N+1] = {0,1,1,2,1,3,1,2,1,3,1};Case 3: int zBids[N+1] = {0,0,2,1,1,1,3,0,1,0,1};

• Scenario 2- Not enough flexibility bids, increases the incentives (motivators) to ob-tain the flexibility. As shown in Table 3, 4, Case 3 used to show sum of flexibilites bydifferent zones less than ROCOF
• Scenario 3- Zero bids, then the system command the generator or secondary re-serves (Solar panels, storage etc.)

4.4.2 Test Case for Remote TesterThe goal of the test case is to sample the above scenarios, we specify the test purpose as:
E<> SUT.send_Cntrct_Flex && gCl<= Stopwatch.Passtext

The test sequences and simulation of the SUT and MRT are shown in Figure 20, 21 respec-tively. The traces are generated with Uppaal model checker option fastest.
4.5 Distributed Local Testers and Test Purpose
To demonstrate the usability of proposed testing approach we apply Algorithm 2 for gen-erating the distributed tester. After applying the Algorithm 2, the centralized remote test-ing architecture depicted in Figure 19 is transformed into a set of distributed testers and ex-tended with their coordination adapters. The corresponding local testers composed withtheir adapter model are depicted in Figure 22. As discussed in Chapter 3, this results inreducing the tester reaction time and enables testing a real-time distributed system underthe timing constraints close to the message propagation time range.
4.5.1 Test Case 1 for Distributed TesterThe goal of the test case is sample the Scenario1. We specify the test purpose as TCTLquery:

E<> SUT.send_Cntrct_Flex && gCl<= Stopwatch.Passtext

The test sequences of the SUT and M‖DT are shown in Figure 23. The traces are gener-ated with Uppaal model checker option fastest.
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Figure 20 – Fastest Trace that satisfy the test purpose
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Figure 21 – Full Simulation View of SUT and MRT

Figure 22 – Parameterized Distributed Local testers and Adapter Models.
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Figure 23 – Full Simulation View of SUT and MDT63



4.6 Experiment Setup

4.6.1 Distributed Test Execution with DTRON

For testing the distributed ancillary services in energy grid a distributed testing tool DTRON[8] is used. A DTRON instance running at one port serves as a local tester execution engineand the publish–subscribe messaging allows the observation of a global trace. Figure 24shows a conceptual view of the distributed runtime deployment configuration of DTRON.From bottom up, there is a SUT or a set of distributed SUT components that have testports. Each port used in the test is directly connected to a DTRON instance running againstit. This instance can be an Adapter, a Model execution engine, or a combination of both.DTRON instances communicate over Spread [9], which can be clustered. The local tester

Figure 24 – Distributed testing data-flow in DTRON.

models embedded into DTRON instances are interfaced to SUT ports via test adapters andsubscribed to their corresponding Spread broker. There can be many brokers while pre-serving the correctmessage serialization over all brokers. DTRONbinds its communicationsocket to a specific broker to publish and subscribe for messages. Spread takes care of thenetwork route discovery and planning. So, a message published to one broker can be re-ceived by a subscriber to another broker in another network segment. Uppaal TRON usesthe socket based interface for API integration since it provides support for Java integra-tion and for virtual clocks. These are the mechanisms to agree on howmodel time passesand allow for delta-testability. The usage of spread addresses also the problem of non-uniform message transmission delays between distributed DTRON testers. Consider theFigure 24, we would normally expect that if DTRON-1 publishes a message at time point t1and DTRON-2 after that at t2, then t1 < t2. However, if DTRON-1 exhibits an internal delaylonger than DTRON-2, it could happen that t2 is actually published before t1 and therefore
t2 < t1. This may lead to a conformance violation with the model. But with DTRONwe canmeasure the delays at the adapter level and use virtual time to agree that t1 < t2 even ifby receiving side observations it was t2 < t1 instead. We refer to ∆ as the time intervalduring which we allow events to be swapped in this manner.

Experiments and DTRON working are shown here2
2https://www.youtube.com/watch?v=4_JLrSojUjE
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4.7 Chapter Summary
In this chapter, we demonstrated the feasibility of approach on an industrial case study.We presented the short description of main concepts such as energy flexibility, flexibilityload and contracts, buildings energy management systems (BEMS), automatic gain con-trollers (AGC), rate of frequency change (ROCOF) etc. and their roles in SUT. We demon-strated how industrial requirements can be transform intomodel (SUT and Remote Tester)and used to generated local testers. We demonstrate the proposed test architecture usingMBT platform DTRON as a test execution platform used for facilitating distributed testersdeployment and management.
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5 Conclusions
In this thesis we have presented a model-based distributed testing methodology, archi-tecture and provably correct test development for time critical distributed systems. Thepresented approach aims at online model-based testing of real-time distributed systemspossibly with non-deterministic behavior.

It has been shown that proposed approach satisfies better the timing constraints facedin solving controllability and observability issues which are often limit the use of the cen-tralized testing architecture. The thesis have sought for solutions also to the issues suchas timeliness, latency, observability, controllability, reproducibility and non-determinism”in the context of testing real-time distributed systems.
As for broader context of distributed testing, the early works on MBT have been re-viewed and it is concluded that they focused mostly on testing distributed non real-timesystems. However, very few of them adapted model-based testing as standard testingtechniques. Most model-based testing techniques lack empirical evaluation for industrialenvironment and provide only partial tool support.
To address these issues and meet the demand from academic and industrial perspec-tive, we proposed a complete pipeline starting frommodelling n-ports distributed systemsspecification, development of distributed tester (using novel algorithms), deploying syn-thesized testers to local ports and executing tests. The proposed approach is outliningfollowing novel results:
• Test Model Development: We introduced a semantic foundation for modelling n-
ports distributed systems with Uppaal timed automata as a relevant formalism torepresent time-critical behavior. We show how the SUT and remote tester modelsare built in a step-wise manner. We showed how timing requirements and non-deterministic behavior are encoded into themodels. This supports provably correcttest model construction to perform test activities by avoiding controllability andobservability issues.

• Model Transformation: We demonstrated how distributed communicating testermodels can be generated automatically from centralized remote tester model (thatis synthesized using existing methods) using novel algorithms and setup across geo-graphical locations. We showed that the proposed architecture not only preservesthe correctness of the testers but alsomitigates the testing time, i.e., the distributedtesters meets (one) ∆ controllability requirement against 2∆ of the centralized re-mote tester.
• Test Generation & Execution: We presented the proposed test architecture and dis-cussed its components such as test adapter between SUT and model adapter, co-ordination adapters to synchronize between local testers. We showed local testerscapability to perform using coordination messages and trigger local test sequenceat their ports. We presented test scenario where a centralized testing cannot beapplied. The experiments also show that the distributed test architecture is morescalable and efficient in terms of test reaction time than centralized remote testarchitecture for testing large number of geographical locations (ports) in a system.We demonstrated the proposed test architecture using model-based testing plat-form DTRON as a suitable test execution platform for facilitating distributed testersdeployment and management wherein the timing of coordination messages is im-plemented based on DTRON involved Spread tool.
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• Applicability of Approach: Finally, feasibility of approach is demonstrated on indus-trial case study "Flexibility Contracts for Ancillary Services in Energy Grids". Weshowed how our model-based testing approach can be applied in industry for func-tional regression testing aswell as for non-functional testing. To the best of author’sknowledge, there is no such test automation method and non-commercial model-based testing tool yet to perform regression testing of time critical distributed sys-tems.
5.1 Future Work
The research presented in thesis has shown a coherent approach for online model-basedtesting of real-time distributed systems. There are several potential directions of improve-ment for the approach and development of tool support for academic as well as for indus-trial need. We acknowledge that the findings of given approach have been derived fromrelatively few complex industrial case studieswhich are closed for public access and exper-imentation. To be able to generalize the experiment results, our approach would need tobe applied on more examples with wide variety of features and scalability requirements.Due to constraints imposed by academic resources, developing a real-time system andtesting it thoroughly, lies beyond the capacity and scope of this thesis.Further validation and improvement of the results based on complex industrial casestudies also requires the interests of industrial partners to collaborate actively. In the con-text of testing real-time systems, there are fewhigh-level industries that develop real-timesystems without restrictions on public access to their documentation and its implementa-tion. We understand it is not easy to achieve this access and collaboration with industriesdue to privacy and security concern. Another concern is that industry user does not haveenough time to learn details of formal modeling and the use of multiple supporting toolsin the testing process. To bridge this gap we plan integrating the experimental tools usedin this work to provide fully automated testing support that requires from user only know-ing SUT and test purpose description in relevant domain-specific language. By improvingthe usability we expect attracting more industry applications to get empirical data on dif-ferent scale use contexts, and usability features.
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Abstract
Model-Based Testing of Real-Time Distributed Systems
Real-time computer-based systems are woven into the fabric of our lives. They are em-bedded in distributed cyber-physical systems such as critical infrastructures, manufactur-ing systems, traffic control and many other which involve numerous interacting hetero-geneous components from micro to macro scale. Due to the criticality and complexityof such systems their development process presumes proper support by software qualityassurance methods and tools.

In this thesis, we present a model-based testing method, test architecture and prov-ably correct test development work-flow for time critical distributed systems. The ap-proach aims at online model-based testing of distributed systems with the focus on testautomation and provable test quality. Another focus of this research is tests timing andperformance aspects that when ignored cause dropping the usability of testing tools es-pecially for complex distributed systems.
To address these issues and better meet the demand for advanced testing approaches,we propose a testing process pipeline starting from modelling distributed systems as n-port Uppaal Timed Automata, and finishing with test deployment algorithms to distributethe monolithic test models between local test execution agents. The deployment algo-rithms assure correct synchronization and coordination of local tests over the system un-der test. As a main result, it is shown that due to proposed test deployment algorithmsthe distributed test architecture not only preserves the correctness of the test modelsgenerated for centralized remote testing but it also mitigates the testing time. While thebest known result of centralized remote testing approaches provides 2∆-controllability oftests our distributed testing architecturemeets (one)∆-controllability requirementwhere

∆ denotes the communication delay upper bound between testers and/or system undertest.
The feasibility of our approach is demonstrated on industrial case study "Flexibility

Contracts for Ancillary Services in Energy Grids". We show how our model-based testingapproach can be applied in industry for functional regression testing as well as for non-functional testing. To the best of author’s knowledge, there is no such test automationmethod and non-commercial model-based testing tool yet to perform regression testingof time critical distributed systems.
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Kokkuvõte
Reaalaja hajussüsteemide mudelipõhine testimine
Reaalaja arvutisüsteemid on lahutamatu osameie tehnoloogilisest keskkonnast. Neile ba-seeruvad küberfüüsikalised süsteemid nagu näiteks kriitilised infrastruktuurid, tootmis-süsteemid, liikluse reguleerimisesüsteemid ja paljud teised, kus suur hulk heterogeenseidkomponente mikrost- makrotasemeni on omavahel pidevas interaktsioonis. Oma keeru-kuse ja rakenduskriitilisuse tõttu eeldab niisuguste süsteemide arendusprotsess oluliselmääral tarkvara kvaliteedi tagamise meetodite ja neid toetavate tööriistade kasutamist.

Käesoleva väitekirja raames on loodudmudelipõhine testimismeetod, testiarhitektuurja tõestatavalt korrektsete testide arenduse töövoog, mis on orienteeritud ajakriitilistehajussüsteemide testimisele. Loodud lähenemine keskendub hajussüsteemide online tes-timisele ning selle automatiseerimisele eesmärgiga tagada testide ja testitulemuste tões-tuspõhine kvaliteet. Uuringu teine põhifookus puudutab testide ajastuskorrektsuse ja jõud-luse aspekte, mille ignoreerimine võib viia testimisvahendite kasutatavuse olulise vähene-miseni, seda eriti kompleksete hajussüsteemide korral.
Pakkumaks uudset lähenemist eelmainitud probleemide lahendamiseks, esitatakse väi-tekirjas testimisprotsessi töövoog, mis katab samme alates hajussüsteemide modelleeri-misest n-pordiga Uppaali ajaga automatide mudeliga, lõpetades genereeritud monoliitsetestimudeli jaotamisega lokaalseid teste täitvate süsteemi osade vahel. Monoliitse testi-mudeli jaotamisalgoritmid lisavad lokaalsetele testikomponentidele sünkroniseerimis- jakoordineerimismehhanismi,mis tagabmitte ainult hajustestide korrektsuse säilimise nen-de tuletamisel tsentraliseeritud kaugtestimise mudelitest, vaid parandab ka testide reakt-siooniaega. Kui teadaolevalt parimad tsentraliseeritud kaugtestimise meetodid tagavadtestide reaktsiooniaja 2∆, nn 2∆- juhitavuse, siis väitekirjas loodud hajustesti arhitektuurrahuldab (ühe) ∆- juhitavuse nõuet, kus ∆ tähistab testrite omavahelisest või testri ja süs-teemi vahelisest kommunikatsioonist tingitud hilistumise ülemist raja.
Väitekirjas loodud lahenduste otstarbekust demonstreeritakse tööstuslikul rakendus-näitel "Flexibility Contracts for Ancillary Services in Energy Grids", kus energiajaotuse tee-nuste integratsiooni taseme testimiseks genereeritakse testimudelid ja verifitseeritaksenende korrektsus. Mudeleid on rakendatud teenuste nii funktsionaalsete- kui ka mitte-funktsionaalsete omaduste testimisel. Väitekirja autorile teadaolevalt ei ole varem antudlähenemist rakendatud ajakriitiliste teenuste integratsioonitestimisel. Samuti puuduvadmittekommertsiaalsed mudelipõhise testimise vahendid keerukate ajakriitiliste hajussüs-teemide regressioontestimiseks.
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Abstract. Low-latency systems where reaction time is primary success factor and
design consideration, are serious challenge to existing integration and system level
testing techniques. Modern cyber physical systems have grown to the scale of
global geographic distribution and latency requirements are measured in nanosec-
onds. While existing tools support prescribed input profiles they seldom provide
enough reactivity to run the tests with simultaneous and interdependent input pro-
files at remote front ends. Additional complexities emerge due to severe timing
constraints the tests have to meet when test navigation decision time ranges near the
message propagation time. Sufficient timing conditions for remote online testing
have been proposed in remote Δ-testing method recently. We extend the Δ-testing
by deploying testers on fully distributed test architecture. This approach reduces the
test reaction time by almost a factor of two. We validate the method on a distributed
oil pumping SCADA system case study.

Keywords. model-based testing, distributed systems, low-latency systems

1. Introduction

Modern large scale cyber-physical systems have grown to the size of global geo-
graphic distribution and their latency requirements are measured in microseconds or even
nanoseconds. Such applications where latency is one of the primary design consider-
ations are called low-latency systems and where it is of critical importance – to time
critical systems. A typical example of distributed time critical system is smart energy
grid (SEG) where delayed control signals can cause overloads and blackouts of whole
regions. Thus, the proper timing is the main measure of success in SEG and often the
hardest design concern.

Since large SEG-s systems are mostly distributed systems (by distributed systems
we mean the systems where computations are performed on multiple networked com-
puters that communicate and coordinate their actions by passing messages), their latency
dynamics is influenced by many technical and non-technical factors. Just to name a few,
energy consumption profile look up time (few milliseconds) may depend on the load
profile, messaging middleware and the networking stacks of operating systems. Simi-
larly, due to cache miss, the caching time can grow from microseconds to about hundred

1Corresponding Author: Jüri Vain; Department of Computer Science, Tallinn University of Technology,
Akadeemia tee 15A, 19086 Tallinn, Estonia; E-mail: juri.vain@ttu.ee

Databases and Information Systems IX
G. Arnicans et al. (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-714-6-297

297



milliseconds [1]. Reaching sufficient feature coverage by integration testing of such sys-
tems in the presence of numerous latency factors and their interdependences, is out of the
reach of manual testing. Obvious implication is that scalable integration and system level
testing presumes complex tools and techniques to assure the quality of the test results
[2]. To achieve the confidence and trustability, the test suites need to be either correct by
construction or verified against the test goals after they are generated. The need for au-
tomated test generation and their correctness assurance have given raise to model based
testing (MBT) and the development of several commercial and academic MBT tools. In
this paper, we interpret MBT in the standard way, i.e. as conformance testing that com-
pares the expected behaviors described by the system requirements model with the ob-
served behaviors of an actual implementation (implementation under test). For detailed
overview of MBT and related tools we refer to [3] and [4].

2. Related Work

Testing distributed systems has been one of the MBT challenges since the beginning of
the 90s. An attempt to standardize the test interfaces for distributed testing was made
in ISO OSI Conformance Testing Methodology [5]. A general distributed test architec-
ture, containing distributed interfaces, has been presented in Open Distributed Processing
(ODP) Basic Reference Model (BRM), which is a generalized version of ISO distributed
test architecture. First MBT approaches represented the test configurations as systems
that can be modeled by finite state machines (FSM) with several distributed interfaces,
called ports. An example of abstract distributed test architecture is proposed in [6]. This
architecture suggests the Implementation Under Test (IUT) contains several ports that
can be located physically far from each other. The testers are located in these nodes
that have direct access to ports. There are also two strongly limiting assumptions: (i) the
testers cannot communicate and synchronize with one another unless they communicate
through the IUT, and (ii) no global clock is available. Under these assumptions a test
generation method was developed in [6] for generating synchronizable test sequences
of multi-port finite state machines. However, it was shown in [7] that no method that is
based on the concept of synchronizable test sequences can ensure full fault coverage for
all the testers. The reason is that for certain testers, given a FSM transition, there may
not exist any synchronizable test sequence that can force the machine to traverse this
transition. This is generally known as controllability and observability problem of dis-
tributed testers. These problems occur if a tester cannot determine either when to apply a
particular input to IUT, or whether a particular output from IUT is generated in response
to a specific input [8]. For instance, the controllability problem occurs when the tester at
a port pi is expected to send an input to IUT after IUT has responded to an input from the
tester at some other port p j, without sending an output to pi. The tester at pi is unable to
decide whether IUT has received that input and so cannot know when to send its input.
Similarly, the observability problem occurs when the tester at some port pi is expected
to receive an output from IUT in response to a given input at some port other than pi and
is unable to determine when to start and stop waiting. Such observability problems can
introduce fault masking.

In [8], it is proposed to construct test sequences that cause no controllability and
observability problems during their application. Unfortunately, offline generation of
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test sequences is not always applicable. For instance, when the model of IUT is non-
deterministic it needs instead of fixed test sequences online testers capable of handling
non-deterministic behavior of IUT. But even this is not always possible. An alternative is
to construct testers that includes external coordination messages. However, that creates
communication overhead and possibly the delay introduced by the sending of each mes-
sage. Finding an acceptable amount of coordination messages depends on timing con-
straints and finally amounts to finding a tradeoff between the controllability, observabil-
ity and the cost of sending external coordination messages.

The need for retaining the timing and latency properties of testers became crucial na-
tively when time critical cyber physical and low-latency systems were tested. Pioneering
theoretical results have been published on test timing correctness in [9] where a remote
abstract tester was proposed for testing distributed systems in a centralized manner. It
was proven that if IUT ports are remotely observable and controllable then 2Δ-condition
is sufficient for satisfying timing correctness of the test. Here, Δ denotes an upper bound
of message propagation delay between tester and IUT ports. However, this condition
makes remote testing problematic when 2Δ is close to timing constraints of IUT, e.g. the
length of time interval when the test input has to reach port has definite effect on IUT.
If the actual time interval between receiving an IUT output and sending subsequent test
stimulus is longer than 2Δ the input may not reach the input port in time and the test goal
cannot be reached.

In this paper we focus on distributed online testing of low latency and time-critical
systems with distributed testers that can exchange synchronization messages that meet Δ-
delay condition. In contrast to the centralized testing approach, our approach reduces the
tester reaction time from 2Δ to Δ. The validation of proposed approach is demonstrated
on a distributed oil pumping SCADA system case study.

3. Preliminaries

3.1. Model-Based Testing

In model-based testing, the formal requirements model of implementation under test
describes how the system under test is required to behave. The model, built in a suitable
machine interpretable formalism, can be used to automatically generate the test cases,
either offline or online, and can also be used as the oracle that checks if the IUT behavior
conforms to this model. Offline test generation means that tests are generated before test
execution and executed when needed. In the case of online test generation the model is
executed in lock step with the IUT. The communication between the model and the IUT
involves controllable inputs of the IUT and observable outputs of the IUT.

There are multiple different formalisms used for building conformance testing mod-
els. Our choice is Uppaal timed automata (TA) [10] because the formalism is designed to
express the timed behavior of state transition systems and there exists a family of tools
that support model construction, verification and online model-based testing [11].

3.2. Uppaal Timed Automata

Uppaal Timed Automata [10] (UTA) used for the specification of the requirements are
defined as a closed network of extended timed automata that are called processes. The
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processes are combined into a single system by the parallel composition known from the
process algebra CCS. An example of a system of two automata comprised of 3 locations
and 2 transitions each is given in Figure 1.

Figure 1. A parallel composition of Uppaal timed automata

The nodes of the automata are called locations and the directed edges transitions.
The state of an automaton consists of its current location and assignments to all variables,
including clocks. The initial locations of the automata are graphically denoted by an
additional circle inside the location.

Synchronous communication between the processes is by hand-shake synchroniza-
tion links that are called channels. A channel relates a pair of edges labeled with symbols
for input actions denoted by e.g. chA? and chB? in Figure 1, and output actions denoted
by chA! and chB!, where chA and chB are the names of the channels.

In Figure 1, there is an example of a model that represents a synchronous remote
procedure call. The calling process Process i and the callee process Process j both in-
clude three locations and two synchronized transitions. Process i, initially at location
Start i, initiates the call by executing the send action chA! that is synchronized with the
receive action chA? in Process j, that is initially at location Start j. The location Opera-
tion denotes the situation where Process j computes the output y. Once done, the control
is returned to Process i by the action chB!

The duration of the execution of the result is specified by the interval [lb,ub] where
the upper bound ub is given by the invariant cl<=ub, and the lower bound lb by the
guard condition cl>=lb of the transition Operation → Stop j. The assignment cl=0 on
the transition Start j → Operation ensures that the clock cl is reset when the control
reaches the location Operation. The global variables x and y model the input and output
arguments of the remote procedure call, and the computation itself is modelled by the
function f(x) defined in the declarations section of the Uppaal model.

The inputs and outputs of the test system are modeled using channels labeled in a
special way described later. Asynchronous communication between processes is mod-
eled using global variables accessible to all processes.

Formally the Uppaal timed automata are defined as follows. Let Σ denote a finite
alphabet of actions a,b, . . . and C a finite set of real-valued variables p,q,r, denoting
clocks. A guard is a conjunctive formula of atomic constraints of the form p ∼ n for
p∈C,∼∈ {≥,≤,=,>,<} and n∈N+. We use G(C) to denote the set of clock guards. A
timed automaton A is a tuple 〈N, l0,E, I〉 where N is a finite set of locations (graphically
denoted by nodes), l0 ∈ N is the initial location, E ∈ N ×G(C)×Σ× 2C ×N is the set
of edges (an edge is denoted by an arc) and I : N → G(C) assigns invariants to locations
(here we restrict to constraints in the form: p ≤ n or p < n,n ∈ N+. Without the loss
of generality we assume that guard conditions are in conjunctive form with conjuncts
including besides clock constraints also constraints on integer variables. Similarly to

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems300



clock conditions, the propositions on integer variables k are of the form k ∼ n for n ∈ N,
and ∼∈ {≤,≥,=,>,<}. For the formal definition of Uppaal TA full semantics we refer
the reader to [12] and [10].

4. Remote Testing

The test purpose most often used in MBT is conformance testing. In conformance testing
the IUT is considered as a black-box, i.e., only the inputs and outputs of the system are
externally controllable and observable respectively. The aim of black-box conformance
testing according to [13] is to check if the behavior observable on system interface con-
forms to a given requirements specification. During testing, a tester executes selected
test cases on an IUT and emits a test verdict (pass, fail, inconclusive). The verdict shows
correctness in the sense of input-output conformance relation (IOCO) between IUT and
the specification. The behavior of a IOCO-correct implementation should respect after
some observations following restrictions:

(i) the outputs produced by IUT should be the same as allowed in the specification;
(ii) if a quiescent state (a situation where the system can not evolve without an

input from the environment [14]) is reached in IUT, this should also be the case in the
specification;

(iii) any time an input is possible in the specification, this should also be the case in
the implementation.

The set of tests that forms a test suite is structured into test cases, each addressing
some specific test purpose. In MBT, the test cases are generated from formal models that
specify the expected behavior of the IUT and from the coverage criteria that constrain
the behavior defined in IUT model with only those addressed by the test purpose. In our
approach Uppaal Timed Automata (UTA) [10] are used as a formalism for modeling IUT
behavior. This choice is motivated by the need to test the IUT with timing constraints so
that the impact of propagation delays between the IUT and the tester can be taken into
account when the test cases are generated and executed against remote real-time systems.

Another important aspect that needs to be addressed in remote testing is functional
non-determinism of the IUT behavior with respect to test inputs. For nondeterministic
systems only online testing (generating test stimuli on-the-fly) is applicable in contrast
to that of deterministic systems where test sequences can be generated offline. Second
source of non-determinism in remote testing of real-time systems is communication la-
tency between the tester and the IUT that may lead to interleaving of inputs and out-
puts. This affects the generation of inputs for the IUT and the observation of outputs that
may trigger a wrong test verdict. This problem has been described in [15], where the
Δ-testability criterion (Δ describes the communication latency) has been proposed. The
Δ-testability criterion ensures that wrong input/output interleaving never occurs.

4.1. Centralized Remote Testing

Let us first consider a centralized tester design case. In the case of centralized tester, all
test inputs are generated by a single monolithic tester. This means that the centralized
tester will generate an input for the IUT, waits for the result and continues with the next
set of inputs and outputs until the test scenario has been finished. Thus, the tester has to
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wait for the duration it takes the signal to be transmitted from the tester to the IUT’s ports
and the responses back from ports to the tester. In the case of IUT being distributed in a
way that signal propagation time is non-negligible, this can lead into a situation where
the tester is unable to generate the necessary input for the IUT in time due to message
propagation latency. These timing issues can render testing an IUT impossible if the IUT
is a distributed real-time system.

Figure 2. Remote tester communication architecture

To be more concrete, let us consider the remote testing architecture depicted in Fig-
ure 2 and the corresponding model depicted in Figure 3 and 4. In this case the IUT has 3
ports (p1, p2, p3) in geographically different places to interact within the system, inputs
i1, i2 and i3 at ports p1, p2 and p3 respectively and outputs o1 at port p1, o2 at port p2, o3
at port p3.

Figure 3. IUT model

We model a multi-ports timed automata by splitting the edges with multiple com-
munication actions to a sequence of edges each labeled with exactly one action and con-
nected via committed locations, so that all ports of such group are updated at the same
time. In Figure 4 the labels on the edges represent the transitions and the transition tuple
(L0, L1, i1! /(o1?, o2?)) is represented by sequence of edges each labeled with exactly one
action and connected via committed locations. For example the sequence of edges from
location L0 to L1 with labels i1!, o1? and o2? represents the multiple communication
actions where the input i1! at port p1 in location L0 being able to trigger a transition that
leads to the output o1? and o2? at ports p1, p2 respectively and the location becoming L1.

Using such splitting of edges with committed locations, we model a three port au-
tomata shown in Figure 4 where the tester sends an input i1 to the port p1 at Geographic
Place 1 and receives a response or outputs o1 and o2 from IUT at Geographic Place

1 and Geographic Place 2 respectively. After receiving the result, the tester is in lo-
cation L1, it gets both i3 on port p3 and i2 on port p2. Then, either it follows the intended
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Figure 4. Remote Tester model

path sending i3 before i2, or it sends i2 before i3. If tester decides to send i3 before i2 it
receives an output o1 at port p1 and returns to location L1. The transition is a self loop
if its start and end locations are the same. If tester decides to send i2, the IUT responds
with an output o3 at port p3. Now, the tester is in location L2, it gets both i1 on port p1
and i2 on port p2. Based on guard condition and previously triggered inputs and received
outputs the next input is sent to IUT and tester continues with the next set of inputs and
outputs until the test scenario has been finished.

The described IUT is a real-time distributed system, which means that it has strict
timing constraints for messaging between ports. More specifically, after sending the first
input i1 to port p1 at Geographic Place 1 and after receiving the response o1 and o2
at Geographic Place 1 and Geographic Place 2 respectively, the tester needs to
decide and send the next input i2 to port p2 at Geographic Place 2 or input i3 to port
p3 at Geographic Place 3 in Δ time. But, due to the fact that the tester is not at the
same geographical place as the distributed IUT, it is unable to send the next input in time
as the time it takes to receive the response and send the next input amounts to 2Δ, which
is double the time allotted for the next input signal to arrive.

Consequently, the centralized remote testing approach is not suitable for testing a
real-time distributed system if the system has strict timing constraints with non negligi-
ble signal propagation times between system ports. To overcome this problem, the cen-
tralized tester is decomposed and distributed as described in the next section.

5. Distributed Testing

The shortcoming of the centralized remote testing approach is mitigated with extend-
ing the Δ-testing idea by decomposing the monolithic remote tester into multiple local
testers. These local testers are directly attached to the ports of the IUT. Thus, instead of
bidirectional communication between a remote tester and the IUT, only unidirectional
synchronization between the local testers is required. The local testers are generated in
two steps: at first, a centralized remote tester is generated by applying the reactive plan-
ning online-tester synthesis method of [16], and second, a set of synchronizing local
testers is derived by decomposing the monolithic tester into a set of location specific
tester instances. Each tester instance needs to know now only the occurrence of i/o events
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Figure 5. Distributed Local testers communication architecture

at other ports which determine its behavior. Possible reactions of the local tester to these
events are already specified in its model and do not need further feedback to the event
sender. The decomposing preserves the correctness of testers so that if the monolithic re-
mote tester meets 2Δ requirement then the distributed testers meet (one) Δ-controllability
requirement.

We apply the algorithm described in 5.1 to transform the centralized testing architec-
ture depicted in Figure 2 into a set of communicating distributed local testers, the archi-
tecture of which is shown in Figure 5. After applying the algorithm, the message prop-
agation time between the local tester and the IUT port has been eliminated because the
tester is attached directly to the port. This means that the overall testing response time is
also reduced, because previously the messages had to be transmitted over a channel with
latency bidirectionally. The resulting architecture mitigates the timing issue by replacing
the bidirectional communication with a unidirectional broadcast of the IUT output sig-
nals between the distributed local testers. The generated local tester models are shown in
Figure 6, Figure 7, Figure 8 and Figure 9.

Figure 6. Local tester at Geographic Place 1 Figure 7. Local tester at Geographic Place 2
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Figure 8. Local tester at Geographic Place 3

Figure 9. Output Event Synchronizer

5.1. Tester Distribution Algorithm

Let MMT denote a monolithic remote tester model generated by applying the reactive
planning online-tester synthesis method [16]. Loc(IUT ) denotes a set of geographically
different port locations of IUT . The number of locations can be from 1 to n, where n ∈N
i.e. Loc(IUT ) = {ln|n ∈ N}. Let Pln denotes a set of ports accessible in the location ln.

1. For each l, l ∈ Loc(IUT ) we copy MMT to Ml to be transformed to a location
specific local tester instance.

2. For each Ml we go through all the edges in Ml . If the edge has a synchronizing
channel and the channel does not belong to the the set of ports Pln , we do the
following:

• if the channel’s action is send, we replace it with the co-action receive.
• if the channel’s action is receive, we do nothing.

3. For each Ml we add one more automaton that duplicates the input signals from
Ml to IUT , attached to the set of ports Pln and broadcasts the duplicates to other
local testers to synchronize the test runs at their local ports. Similarly the IUT
local output event observations are broadcast to other testers for synchronization
purposes like automaton in Figure 9.

6. Correctness of Tester Distribution Algorithm

To verify the correctness of distributed tester generation algorithm we check the bi-
simulation equivalence relation between the model of monolithic centralized tester and
that of distributed tester. For that the models are composed by parallel compositions so
that one has a role of words generator on i/o alphabet and other the role of words acceptor
machine. If the i/o language acceptance is established in one direction then the roles of
models are reversed. Since the i/o alphabets of remote tester and distributed tester differ
due to synchronizing messages of distributed tester the behaviors are compared based on
the i/o alphabet observable on IUT ports only. Second adjustment of models to be made
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for bi-simulation analysis is the reduction of message propagation delays to uniform ba-
sis either on Δ or 2Δ in both models. Assume (due to closed world assumption used in
MBT):

• the centralized remote tester model: Mremote = TAIUT ‖ TAr−T ST

• the distributed tester model: Mdistrib = TAIUT ‖ �i TAd−T ST
i i = [1, n], n - number

of ports locations.
• to unify the timed words TW (Mremote) and TW (Mdistrib) the communication de-

lay between IUT and Tester is assumed.

Definition (correctness of tester distribution mapping): The mapping Mremote Algorithm
−−−−−→
Mdistrib is correct if TAr−T ST and �i TAd−T ST

i are observation bisimilar, i.e. if TAr−T ST and
�i TAd−T ST

i are respectively generating and accepting automata on common i/o alphabet
Σi∪Σo then all timed words TW (TAr−T ST ) are recognizable by �i TAd−T ST

i and all timed
words TW(�i TAd−T ST

i ) are recognizable by TAr−T ST .
Here, alphabet Σi ∪ Σo includes i/o symbols used at IUT-TESTER interfaces of

Mremote and Mdistrib.
Correctness verification of the distribution mapping:
Step 1: (Constructing generating-accepting automata synchronous composition):

• label each output action of TAr−T ST with output symbol a! and its co-action in �i
TAd−T ST

i with input symbol a?;
• define parallel composition TAr−T ST ‖ �i TAd−T ST

i with synchronous i/o actions.

Step 2: (Bisimilarity proof by model checking): TAr−T ST and �i TAd−T ST
i are observation

bisimilar if following holds: Mremote � not deadlock ∧ Mdistrib � not deadlock ⇒
TAr−T ST ‖ � j TAd−T ST

j � not deadlock j = [1, n], n - number of local testers , i.e. the
composition of bisimilar testers must be non-blocking if the testers composed with IUT
model separately are non-blocking.

7. Case Study

7.1. Use Case

The benefit of using the proposed method is demonstrated in the use case of an EMS
(Energy Management System) which is integrated into the SCADA (Supervisory Con-
trol And Data Acquisition) system of an industrial consumer. An EMS is essentially a
load balancing system. The target of the balancing system is the load on power supplies
called feeders to an industrial consumer. These industrial power consumers have multiple
feeders to power the devices required for their operations (e.g., pumps and pipeline heat-
ing systems). The motivation for balancing the power consumption between the feeders
stems from the fact that the power companies can enforce fines on the industrial con-
sumers if the power consumption exceeds certain thresholds due to safety considerations
and possible damage to the equipment. Therefore, the consumer is motivated to share
the power consuming devices among the feeders minimize or eliminate such energy con-
sumption spikes completely.

Let us consider a use case in which an oil terminal has two feeders and multiple
power consuming devices (consumers). The number of consumers can range from some
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to many. In our use case we have 32 consumers, but in other cases it can be more. These
consumers are both pumps and pipeline heating systems. The pumps have a high surge
power consumption when starting up which must be taken into consideration when de-
signing an EMS. The EMS monitors the current consumption by polling the consumers
via a communication system (e.g., PROFIBUS, CAN bus or Industrial Ethernet). The
PROFIBUS communication system is standardized in EN 50170 international standard.

Because the oil terminal stores oil it is considered an explosion hazard area
and therefore, a special communication system that is certified for explosive areas -
PROFIBUS PA (Process Automation) is used. PROFIBUS PA meets the ‘Intrinsically
Safe’ (IS) and bus-powered requirements defined by IEC 61158-2. The maximum trans-
fer rate of PROFIBUS PA is 31.25 kbit/s which can limit the system response speed if
there are many devices connected to the PROFIBUS bus and each device has significant
input and output data load.

The EMS is able to switch devices from being supplied from either feeder. Ideally,
the power consumption is shared equally among both feeders at all times. This means
that the EMS monitors the devices and switches devices over to other feeders if the power
consumption is unbalanced among the feeders. In normal operation, the feeder loads are
kept sufficiently low to accommodate new devices starting up in a way that the surge
consumption will not exceed the threshold power of the feeders.

The EMS polls every power consumer periodically and updates the total consump-
tion. Based on this total consumption, the EMS will command the power distribution de-
vices to switch around from first feeder to the second in case the load on the first feeder
is higher than on the second and vice versa.

In our use case we simulate the power consumption of the devices as the input to the
IUT. The tester monitors the output (the EMS feeder load values). The test purpose is to
verify that neither of the power loads exceed the specified threshold. Exceeding this limit
might cause equipment damage and the power company can impose fines upon violating
this limit.

Figure 10. Case Study Test Architecture

The test architecture is depicted in Figure 10. In the right side of the figure, we can
see the EMS and consumers as the implementation under test. The test model and test
runner is on the left side. The test is executed via DTRON, which transmits the inputs and
outputs via Spread. In the IUT and tester models we are going to introduce, the signals
prefixed with i or o are synchronizing signals sent through Spread message serialization
service . The signals without the aforementioned prefixes are internal signals which are
not published to the Spread network. The input to the IUT is provided by the remote tester
model is depicted in Figure 13 which simulates the device power consumption levels and
creates challenging scenarios for the EMS. The EMS queries the consumers which are

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems 307



modeled in Figure 12 and balances the load between the feeders based on the total power
consumption monitoring data . The EMS model is shown in Figure 11 which displays
the querying loop. The querying is performed in a loop due to the semi-duplex nature
of communication in PROFIBUS networks. The EMS also takes the maximum power
limit into account as the total power consumption must not exceed this level. This can be
seen in the remote tester model shown in Figure 13. Remote tester nondeterministically
selects a consumer and sends the level of energy consumption for that particular device to
the input port of the IUT. Then the remote tester waits s time units before requesting the
current feeder energy levels. On the model, it is indicated as i get line balance!. After
receiving the current values the tester will check whether they are within allowed range.
If the values exceed the limit the test verdict is fail. Otherwise the tester will continue
with the next iteration.

Figure 11. Energy Management System model Figure 12. Consumer model

Figure 13. Remote Tester model

The communication delay between receiving the signal from EMS with the current
feeder energy levels and sending input to the IUT is 2Δ. According to the specification the
system must stabilize the load between feeders in stabilization time limit s after receiving
the input. If Δ is very close to system stabilization time limit s indicated in the remote
tester model in Figure 13 the remote tester fails to send the signal in time to the IUT.

For this reason, we introduce the distributed tester Figure 14 where each local com-
ponent of the tester is closely coupled to the IUT input ports. As shown in chapter 5 this
approach reduces the delay by up to Δ. This guarantees that after receiving the output
from EMS we can send new input to IUT within less than s time units.

7.2. Test Execution Environment DTRON

Uppaal TRON [11] is a testing tool, based on Uppaal engine, suited for black-box con-
formance testing of timed systems [11]. DTRON [13] extends this enabling distributed
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Figure 14. Parametrized local tester template for distributed testing

execution. It incorporates Network Time Protocol (NTP) based real-time clock correc-
tions to give a global timestamp (t1) to events at IUT adapter(s). These events are then
globally serialized and published for other subscribers with a Spread toolkit [18]. Sub-
scribers can be other IUT adapters, as well as DTRON instances. NTP based global time
aware subscribers also timestamp the event received message (t2) to compute and possi-
bly compensate for the overhead time it takes for messaging overhead Δ = t2 − t1.

Δ is essential in real-timed executions to compensate for messaging delays that may
lead to false-negative non-conformance results for the test-runs. Messaging overhead
caused by elongated event timings may also result in messages published in on order,
but revived by subscribers in another. Δ can then also be used to re-order the messages
in a given buffered time-window tΔ. Due to the online monitoring capability DTRON
supports the functionality of evaluating upper and lower bounds of message propagation
delays by allowing the inspection of message timings. While having such a realistic net-
work latency monitoring capability in DTRON our test correctness verification workflow
takes into account theses delays. For verification of the deployed test configuration we
make corresponding time parameter adjustments in the IUT model.

8. Conclusion

We extend the Δ-testing method proposed originally for single remote tester by intro-
ducing multiple local testers on fully distributed test architecture where testers are at-
tached directly to the ports of IUT. Thus, instead of bidirectional communication be-
tween a remote tester and IUT only unidirectional synchronization between the local
testers is needed in given solution. A constructive algorithm is proposed to generate lo-
cal testers in two steps: at first, a monolithic remote tester is generated by applying the
reactive planning online-tester synthesis method of [16], and second, a set of synchro-
nizing local testers is derived by partitioning the monolithic tester into a set of location
specific tester instances. The partitioning preserves the correctness of testers so that if
the monolithic remote tester meets 2Δ requirement then the distributed testers meet (one)
Δ-controllability requirement. Second contribution of the paper is that distributed testers
are generated as Uppal Timed Automata. According to our best knowledge the real time
distributed testers have not been constructed automatically in this formalism yet. As for
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method implementation, the local testers are executed and communicating via distributed
test execution environment DTRON [13]. We demonstrate that the distributed deploy-
ment architecture supported by DTRON and its message serialization service allows re-
ducing the total test reaction time by almost a factor of two. The validation of proposed
approach is demonstrated on an Energy Management System case study.
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Abstract. In Industry 4.0 large-scale discrete event systems (DES) are

becoming increasingly dependent on internet of things (IoT) based real-

time distributed supervisory control systems. In order to meet the IoT

growing demand, new technologies and skills are being developed which

require an automated systematic testing to achieve success in adoption.

Testing such systems requires an integration of computation, commu-

nication and control in the test architecture. This may pose number

of issues that may not be suitably addressed by traditional centralized

test architectures. In this paper, a distributed test framework for testing

distributed real-time systems is presented, where online monitors (exe-

cutable code as annotations) are integrated to systems to record rele-

vant events. The proposed test architecture is more scalable than cen-

tralized architectures in the sense of timing constraints and geograph-

ical distribution. By assuming the existence of a coverage correct cen-

tralized remote tester, we give a partitioning algorithm of it to pro-

duce distributed local testers which enables to meet more flexible per-

formance constraints while preserving the remote tester’s functionality.

The proposed approach not only preserves the correctness of the cen-

tralized tester but also allows to meet stronger timing constraints for

solving test controllability and observability issues. The effectiveness of

the proposed architecture is demonstrated by an illustrative example.

Keywords. model-based testing, discrete-event systems, internet of

things

1. Introduction

The concept of smart industries came in with the possibility to monitor and con-
trol the highly automated production units performance with SCADA (Supervi-
sory Control & Data Acquisition Systems) and DCS (Distributed Control Sys-
tems) as widely used smart industry standards. Recently, the Industry 4.0 stan-
dard has extended beyond SCADA and DCS to next generation smart factory
employing IoT. Emerging industrial IoT applications–smart cities, automotive
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and manufacturing etc. require real-time stream analytics and complex event pro-
cessing to offer optimal–machine utilization, production/maintenance schedules
and cost reduction [1]. Today manufacturing setups operate with real-time field
data and have grown to the scale of global geographical distribution with nu-
merous services and applications forming an ubiquitous computing network and
latency requirements, measured in milliseconds. Further, there are challenges of
heterogeneity and environment, where millions of sensors, actuators, and differ-
ent devices in conjunction with intelligent software forms a complex system and
introduce a new dimension to DES real-time testing with significant challenges.

The continuous growth of systems complexity and high demand of security
and reliability in the DES has made their testing a big challenge. Moreover, ma-
jority of testing and verification techniques have been developed for the non-real-
time systems and they cannot be applied on real-time systems due to timing con-
strains and concurrency issues. Testing DES may pose a number of challenging
issues that can not be suitably addressed by traditional centralized remote testing
[2]. Major challenges emerge due to severe timing constraints, the tests have to
satisfy when the required reaction time of the tester ranges near the message prop-
agation time. These problems restrict the usability of centralized remote testing
which has limited capability of controlling of distributed events, and respecting
the timing constraints.

For testing DES, designers and developers have frequently used formal ver-
ifications techniques during design and development phase of systems [3,4]. In
practice, rigorous mathematical proof at the code level is only suitable for small
systems due to the state space growth that is exponential in the number of paral-
lel components. Regardless the usage of several state space reduction techniques
such as partial order reduction [5] and symbolic model checking [6,7] the problem
of scalability still prevents testing and verification of large-scale DES. To address
this challenge the idea of online monitoring was proposed in [8,9]. In a distributed
system the information communicated to different geographical locations (ports)
and their time stamps are not globally known. The lack of holistic view makes the
coordination of distributed test agents nontrivial. For online monitoring of the
distributed systems several authors [9,10,11] suggested to modify system under
test (SUT) to record relevant events (timing and the order of input/output events
at different ports) and log the time stamps for global monitoring. The monitored
data is collected and integrated to obtain a coherent view of the system. DES aug-
mented with online monitors is a prerequisite of distributed model-based testing
(MBT) technique presented in this paper. Online monitoring can be performed in-
line, in which case the monitors are injected into executable code as annotations
[9]. These monitors can be called by applying input to SUT from the location
where annotations were placed. However, generating and deploying the monitors
for a complex distributed application is a significant engineering effort. Modify-
ing existing distributed systems by instrumenting the annotations may introduce
delays and network overhead (probe effect) but there has been lot of research on
the implementation of monitors with the aim of obtaining a coherent view of the
system and achieving this in a non-invasive manner [9,10,11].

The need for automated online test generation and their correctness assurance
have given rise to the use of MBT and the development of several commercial
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and academic MBT tools. For instance, smart connected factories with IoT based
control systems is a new technology in manufacturing industries which undergoes
frequent change in requirement specifications and tools, expecting reduction in
testing efforts and costs. In this context, MBT offers an automated tool support
(regression testing) and platform independence thus aiming to lower the testing
effort of IoT [12]. We interpret MBT in the standard way, i.e. as conformance
testing that compares the expected behaviors described by the system model with
the observed behaviors of an actual implementation.

In this paper, we propose the online monitors based method for testing DES,
where distributed local testers coordinate test activities via SUT which does not
require any external network protocol as proposed in [13]. The main assump-
tion is that monitors are injected in non-invasive manner (without interfering the
SUT by introducing timing delay, computation/communication overhead, non-
determinism, etc). The author of [14] has proposed the testing with monitoring
systems using status messages and showed such messages can be used to over-
come observability and controllability problems for non real-time systems. We
give a partitioning algorithm to produce distributed local testers for real-time
systems generated by partitioning the given remote tester model. We assume that
there already exists a remote tester generated by applying the reactive planning
online-tester synthesis method of [15], and its generation is out of scope of this
paper. The proposed approach not only preserves the correctness of the test runs
defined in the remote tester but also satisfies the timing constraints for solving
controllability and observability issues which might be violated in the centralized
testing solution. Further, we sketch first experimental results about our imple-
mentations, and describe how it can be used to test smart manufacturing plant
with IoT systems.

2. Model Based Distributed Testing

We consider a DES, where a system has to respect timing constraints posed
on input/output events. These challenges restrict the capability of centralized
remote testing which cannot guarantee the controllability of distributed events,
and respect their timing constraints because of message propagation time between
the tester and SUT. Another aspect to be considered in DES is that reaching
sufficient test coverage by integration testing of such systems in the presence of
numerous latency factors and their interdependency, is out of the reach of off-
line testing. Since, off-line testing of such systems is not possible due to the non-
deterministic nature of SUT off-line testing approaches need to be replaced by
on-line distributed testing.

The need for automated online test generation and tests correctness assurance
have given rise to the use of MBT. We interpret MBT in the standard way, i.e. as
input/output conformance (IOCO) testing that compares the expected behaviors
described by the system model with the observed behaviors of an actual imple-
mentation. Due to inherent non-determinism of distributed systems the natural
choice is online MBT where the test model is executed in lock step with the SUT.
The communication between the model and the SUT involves controllable inputs
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of the SUT and observable outputs of the SUT which are required for detecting
IOCO violations. For detailed overview of MBT and related tools we refer to [16].

2.1. Modelling Implementations of Real-Time Systems

To define our testing architecture formally we need to introduce a semantic foun-
dation for modelling the real-time systems. We describe the notions of timed in-
put output automata (TIOA) introduced [18,17] as a formalism to model the be-
havior of real-time systems over time. We consider as time domain T the set R≥0

of non-negative reals called clocks (delays) and Σ as a finite set of actions. For
the formal syntax and semantics of TIOA we refer the reader to [18].

Example 1: Consider the TIOA specification Spec shown in Figure 1 (a),
in[1]!, in[2]!, in[3]! denotes the input to the system and out[1]?, out[2]?, out[3]?
denotes the output produced in response to input to the system. The timed Spec
can be expressed in similar language as follow: exactly at 5 time units after the
system received the input in[1]! and produces either output out[3]? exactly at
2 time units or, failing to do that , output out[1]? exactly at 3 time units. The
clock cl is set to 0 just after passing the transition. A timed trace ρ is a sequence
of timed-stamp actions followed with a delay, ρSeq(R) = (5 · in[1]!)· (8 · out[1]?)·
(15 · in[2]!)· (18 · out[2]?) · 0. We have Spec After (5 · in[1]!) · 0 ={(l1, 0)}, Spec
After (5 · in[1]!) ·(8 ·out[1]?).0 = {(l5, 0)} Out(Spec After (5 · in[1]!) ·(7 ·out[1]?).0)
= T, Out( Spec After (5 · in[1]!) · (8 · out[1]?).15) = {in[2]!} ∪ T.

Uppaal Timed Automata (UTA): In our approach UTA [19,18] are used as a
formalism to illustrate TIOA to model SUT behavior. This choice is motivated by
the need to test the SUT with timing constraints so that the impact of propagation
delays between the SUT and the tester can be taken explicitly into account when
the test cases are generated and executed. UPPAAL is based on the definition
of timed automata, which is introduced by [17]. For the full formal syntax and
semantics of UTA we refer to [19,18].

Modelling distributed n-Ports : We model a multi-ports TIOA in UTA by
splitting the transition with multiple communication actions to a sequence of
transitions each labeled with exactly one I/O-action and connected via committed
locations, so that all ports of such group are updated instantaneously in the
order they are specified in the tuple. In Figure 2 the labels on the transition
represent the i/o actions and the transition tuple (l0, l

′, in[1]! /(out[1]?, out[3]?))
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Figure 1. Models of TIOA specification and implementations
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Figure 2. Modelling pattern of multiport timed automata

is represented by sequence of transitions each labeled with exactly one action and
connected via committed locations, l0 represents the idle, and l′ represents the
Done location. Let Pln denotes a set of ports accessible in the physical location
ln where n ∈ N; I is a n-tuple (I1, I2,...,In), where Ii is the finite set of inputs at
port i, Ii ∩ Ij = φ for i �= j and i,j = 1,...n ∈ N. Similarly, O is a n-tuple (O1,
O2,...On), where Oi is finite set of outputs at port i, Oi ∩ Oj = φ for i �= j and
i,j = 1,...n ∈ N. Each port may receive outputs of other port, i.e O = (O1 ∪ {ε})
× (O2 ∪ {ε})×...× (On ∪ {ε}), here {ε} denotes the empty output in response
to input to SUT .

2.2. Timed Input/Output Conformance Relation

In order to define the conformance relation, we recall the timed input/output
conformance relation (tioco) introduced in [20,21]. They propose extension of
ioco relation with timing constraints including clock valuations with the set of
observable actions. The communication between the specification and the SUT
involves controllable inputs of the SUT and observable outputs of the SUT. In
this work, we introduce the ioco at first as defined by [22]. The behaviour of
ioco-correct implementation should respect after some observations following re-
strictions: (i) the outputs produced by SUT should be the same as allowed in
the requirements model;(ii) if a quiescent state (a situation where the system
cannot evolve without an input from the environment) is reached in SUT, this
should also be the case in the model; (iii) any time an input is possible in the
model, this should also be the case in the SUT. In addition to ioco, tioco in-
troduces the time delays observable on test interface. This is explained by means
of following example (for detailed definition of (tioco) we refer to [20,21]. Exam-
ple 2: Consider the timed I/O automata specification Spec and implementations
Impl1, Impl2 shown in Figure 1. Based on tioco relation, we can verify that
if Impl1 conforms to Spec, for example: Out(Spec After (5 · in[1]!)) = T and
Out(Impl1 After (5 · in[1]!)) = T; Out(Spec After (5 · in[1]!) · 8)= {out[1]?} ∪ T
and Out(Impl1 After (5 ·in[1]!) ·8)= {out[1]?}∪T; Out(Spec After (5 ·in[1]!) ·7)=
{out[3]?} ∪ T and Out(Impl1 After (5 · in[1]!) · 7)= {out[3]?} ∪ T, proves that
Impl1 tioco Spec. Similarly, we can prove that Impl2 ���tioco Spec i.e. Out(Spec
After (5 · in[1]!) · (7 · out[3]?)) = T and Out(Impl2 After (5 · in[1]!) · (7 · out[3]?))=
{in[2]!} ∪ T; Out( Spec After (5 · in[1]!) · (8 · out[1]?).18) = {out[2]?} ∪ T and
Out(Impl2 After (5 · in[1]!) · (8 · out[1]?).18)= –.

3. Challenges of Centralized Remote Testing

In [2], authors addressed the conformance testing of remote SUTs and proposed
the testing architecture which is composed of one FIFO for each direction of com-
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Table 1. A time trace observed by SUT and Remote Tester

ρSUT : (5 · in[1]!) · (7 · out[3]?) · (11 · out[2]?) · (12 · in[1]!) · (15 · out[2]?)
ρSpec: (2 · in[1]!) · (9 · in[1]!) · (10 · out[3]?) · (14 · out[2]?) · (18 · out[2]?)

munication between SUT and remote tester with communication latency bounded
by Δ. Using Δ-testability criteria, it was shown that if the SUT ports are remotely
observable and controllable then 2Δ-condition is sufficient for satisfying timing
correctness of the test. Here, Δ denotes an upper bound of message propagation
delay between tester and SUT ports. Though this approach works reasonably well
for systems with sufficient timing margins, it cannot be extended to systems with
the timing constraint less than 2 Δ. This means that the actions may not reach
the port in time and as a result, the testing becomes infeasible in such systems.

Impact of latency in remote testing : In remote testing the reactions are not
always received in the order their stimuli are sent. In order to control the simul-
taneous test inputs, tester should not wait to receive outputs before sending the
next input to SUT . Example 3 : Consider the timed I/O automata specification
Spec in Figure 1 (a). Assume that the propagation latency exactly 3 time units
between SUT and Spec, which means if Spec has to apply input to SUT , it
should send that input 3 time units earlier, so that SUT receive the input on
time as specified in specification. To maintain the propagation delay, the SUT
and tester shall observe the timed trace shown in Table 1. The Spec sends second
input in[1]! at 9 time units before receiving outputs out[3]?, and out[2]? in re-
sponse to previous input in[1]! at 2 time units to SUT . It seems, outputs out[3]?,
and out[2]? are generated in response to second input in[1]!, though SUT pro-
duces outputs as specified in Spec and sends out[3]?, and out[2]? to Spec before
receiving the second input in[1]!. However, the emission of an second input in[1]!
depends on the reception of an outputs out[3]?, and out[2]?, because of latency
and to maintain it, tester should not wait to receive outputs before sending the
input to SUT . This means in remote testing the propagation latency between
SUT and Spec may lead to unintended interleaving of input/output actions. This
affects the generation of inputs for the SUT and the observation of outputs that
may trigger a wrong test verdict.

Consider the remote testing architecture depicted in Figure 3(a) and its corre-
sponding UTA model in Figure 4. The SUT shown in figure has 3 ports (p1, p2, p3)
in geographically different places with inputs/outputs in[1]/out[1], in[2]/out[2]
and in[3]/out[3] at ports p1, p2 and p3 respectively. The UTA models defines the
expected global behavior of any potential SUT. Each expected global behavior
is expressed as the sequence of labels of UTA model edges. This global trace is
transformed to the global test sequence. Another important aspect that needs
to be addressed in remote testing is functional non-determinism of the SUT be-
haviour with respect to test inputs. For non-deterministic systems only online
testing (generating test stimuli on-the fly) is applicable in contrast to that of de-
terministic systems where test sequences can be generated offline. The source of
timing nondeterminism in remote testing of real-time systems is communication
latency between the tester and the SUT that may lead to interleaving of inputs
and outputs discussed in Example 3. Consequently, the centralized remote testing
approach is not suitable for testing a real-time distributed system if the system
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Figure 3. Centralized vs Distributed test architecture

Figure 4. SUT and Remote tester models

has strict timing constraints that require reactions faster than 2 Δ. The short-
comings of the centralized remote testing approach are mitigated with overcoming
the 2 Δ constraint by partitioning the remote tester into multiple local testers as
shown in Figure 3(b).

4. Distributed Testing

4.1. Distributed Test Architecture

An alternative to the remote testing is distributed testing the architecture of
which is shown in Figure 3(b). Here the remote tester model deployed on a cen-
tralized testing architecture is decomposed into a set of communicating (via SUT)
local testers, one for each localized interface of the system. Those localized testers
communicate with the system by means of adapters whose purpose is both to
transfer data between the local interfaces and the localized testers. The approach
is supposed to reduce the latency in communication between SUT and local testers
(SUT receiving input and local testers receiving outputs) caused by two-way mes-
sages between the remote tester and SUT. Since the local testers are attached at
the same sites as the test ports of SUT the communication delay between a local
tester adapter and the SUT port is negligible instead of bidirectional communi-
cation needed in case of remote tester.
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To implement the model level synchronization of local testers, e.g. to force two
test inputs to be inserted at different ports of remote locations at the same time
(in the sense of model time), our distributed test execution environment DTRON
[23] implements these synchronization channels between local tester models us-
ing Spread services [24]. Deterministically controllable test run presumes output
observability, which means that the tester attached to some port is waiting for
the expected output from this port and after receiving it, propagates it to other
testers whose behaviour depends on it. In conventional remote tester case the test
stimulus travels from the tester to some SUT port in one Δ and the response from
the SUT back to the tester takes another Δ (bidirectional communication), while
in the distributed tester’s communication with local ports one Δ can be saved.

4.2. Centralized Tester Partitioning Algorithm

We apply Algorithm 1 to transform the centralized remote tester depicted in
Figure 3(a) into a set of communicating distributed local testers, the architecture
of which is shown in Figure 3(b). In this paper we considered a simple case of
remote tester model to provide a better theoretical understanding of algorithm.
This algorithm covered few cases where tester expects at least one possible output
in response to applied input. Line 2-11 adds an adapter model to each local tester
instance. The purpose of adding an additional adapter instances to each local
tester instance is that it synchronize the local communication between SUT local
ports and a local tester. Its model is derived from remote tester model by adding
original channels of SUT and by renaming channels of local testers. For clarity,
notations Tl and Al represents local tester and local adapter respectively. The
channel tick denotes the one clock tick (where timing constraints are encoded in
clock Tick Gen model), each tick represents the real clock variable which track
the time elapsed. It provides the time frame for apply input and wait for receiving
output from SUT in the same tick.

We assumed that monitors are injected at each port of SUT which can be
called by applying special input to SUT from the port where annotations were
placed. The Channel Request[ln] represents the special input to SUT that leads
to an output status[port] being sent to all SUT-ports and used to coordinate
the other local testers via SUT, here argument port represents the location from
where the Request[ln] is being applied. An output status[port] generated in re-
sponse to input Request[ln] provides the coherent view of the system to simplify
distributed testing and helps local testers to synchronize with each other. The
channel status[port][ln] represents the local communication between adapter
and tester. The input in [ln] and output out [ln] are the channels between local
adapter and local tester. The chan in [ln]? represents the reception R of input

i.e. Tl
in [ln]?−−−−→ Al and chan out [ln]! represents the emission E of output i.e. Al

out [ln]!−−−−−→ Tl. Similarly, the channels in[ln]? out[ln]! are the channels between
SUT and adapter. Now, the construction of local testers, for each locations ln, we
take clone of MRT to be transformed into a location specific local tester instance
M ln (Line 12). The loop in Line 13 says for each clone testers model M ln , we
go through all the edges i/o pair. For clarity, we divided the distribution into
two cases, in Line 16, Case 1 says if the edge has a synchronizing channel i.e
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Algorithm 1 Automated Construction of Adapter and Local Testers

1: input : MRT ; output : �nMDT n ∈ N ;
2: for all ln ∈ Loc(SUT ) do � n ∈ N
3: Add chan tick? � R: Clock Gen → Al

4: Add chan Request[ln]! � E: Al → SUT
5: Add chan in [ln]? � R: Tl → Al

6: Add chan in[ln]! � E: Al → SUT
7: Add chan status[port]? � R: SUT → Al

8: Add chan status [port][ln]! � E: Al → Tl

9: Add chan out[ln]? � R: SUT → Al

10: Add chan out [ln]! � E: Al → Tl

11: end for
12: copy MRT to M ln � take clone at each location
13: for all M ln , n ∈ N do
14: for all chan[l]: in[ln]/out[ln] pairs ∈ M ln do
15: Case 1 : Consider arbitrary port, n = i ∈ ln
16: if edge.in[i] ∧ edge.out[i] ∧ i ∈ Pli then
17: Add chan status [port][i]? � R: Al → Tl

18: Rename chan in[i]!, out[i]? to in [i]!, out [i]?
19: end if
20: Case 2 : Consider arbitrary port, n = j ∈ ln
21: if edge.in[j] ∧ edge.out[j] ∧ j /∈ Pli then
22: Replace chan in[j]!, out[j]? to status [j][i]? � R: Alj → Tli

23: end if
24: if edge.in[j] ∧ edge.out[j]/out[i] where j /∈ Pli ∧ out[i] ∈ Pli

then
25: Replace chan in[j]!, out[j]? to status [j][i]? → edge.out[i]
26: end if
27: end for
28: end for
MRT : Remote Tester Model; �nMDT : Communicating Distributed Testers; ln ∈ Loc(SUT ):
represents the number of ports of SUT; Clock Gen: timing constraints encoded in model; R, E:
represents Reception and Emission of channel; Al: Adapter Model; Tl: Local Tester Model;

in[ln]/out[ln] and the channel belongs to same port location ln ∈ Pln then we

add the reception (co-action) of chan status[port][ln] and Rename the chan

in[ln]!, out[ln]? to in [ln]!, out [ln]? as shown in Figure 5. Basically, idea

is to minimize the automata M ln by removing all synchronizing channels that

do not belong to this location. In Line 20, Case 2 says if input in[lj] ∧ and

output out[lj] does not belong to same port location lj /∈ Pli then replace those

channels with channel status[lj][li]. Similarly, in Line 24, if there is an output

out[li] generated by SUT in response to input in[lj], channel status[lj][li] is

followed by out[li]. Figure 5 represents the generated parameterized local tester

with corresponding parameterized adapter model where L denotes the geograph-

ical location.

D. Pal and J. Vain / Model Based Test Framework for Communications-Critical IoT Systems 87



Figure 5. Parameterized adapter and local tester models

In remote testing, tester generates an input for the SUT, waits for the result
and continues with the next set of inputs and outputs until the test scenario has
been finished. Thus, the tester has to wait for the duration it takes the signal to be
transmitted from the tester to the SUT’s ports and the responses back from ports
to the tester. Therefore, SUT conforms MRT if following constraints are satisfied:
1. Order constraint In Figure 4, remote tester can generate inputs in[2]! (Node 2)
or in[3]! (Node 3) only after receiving out[1]? (Node 1) in response to applied input
in[1]!; 2. Timing constraint In the case of SUT being distributed in a way that
signal propagation time is non-negligible, this can lead into a situation where the
tester is unable to generate the necessary input for the SUT in time due to message
propagation latency. For example, if the inputs in[2]! (Node 2) or in[3]! (Node 3)
has clock constraints and input in[1]! (Node 1) executed before them and waiting
to receive output from SUT, then the delay separating two consecutive inputs
must satisfy the condition clock constraints at tester and propagation latency Δ
≤ max waiting time by SUT.

Let us consider now, SUT conforms �n MDT if order constraints on observ-
able actions and timing constraints are satisfied. To prove both the constraints on
actions applied by local testers, we have following test sequence: (i) We consider
a clock constraint encoded in the tick model, where each action triggered has
to finish execution in one tick, where a tick is synchronized with all local tester
models. Timings constraints encoded in the model are fictitious and must be re-
spected by real SUT; (ii) We assume that tester apply input Request[li] (before
actual input) to SUT that leads to an output status[i] sent to all SUT-ports in
one tick and reset the clocks; (iii) Immediately after executing the Request[li],
the tester sends in[li]! to SUT. This may lead to an output at all port with in
one tick cycle. Any output actions observed outside the time frame is consider
as non-conformance with SUT. We show that problem of controllability and ob-
servability in DES can be overcome by testing systems with timing constraints,
provided monitors (input Request[li] and Outputs status[li]) are implemented
correctly.
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Observability Problem: The input Request[li] applied to SUT results in
output status[li] to all ports. Output status[li] has sufficient information and
allows the other local testers to guarantee the order and timing constraints of
incoming input/output actions from port li. Each local tester recognizes the port
where input was applied for which the specific output response was received at
their ports, that overcomes the observability problems among local testers.

Controllability Problem: Similarly, if testerj at location j has to apply input
after input in[li]! triggered by testeri at location i. The testerj has to wait for
following actions: For testerj to apply input upon execution of input from testeri,
it wait for reception of output status[li] in response to Request[li] and output
out[j]? (if any) generated by SUT in response to input in[i]! from location i. As
we assumed that communication delay between testers and SUT is negligible,
it eliminates the possibility of introducing delay and overlapping messages with
others. Also clock constraints encoded in tick model force to respect timing con-
straints. Hence, waiting for the reception of status[li] and output out[j]? allows
the testerj to overcome problem of controllability.

5. Case Study: MBT for Smart Manufacturing Plant with IoT Systems

We study the control and coordination problem of large-scale distributed DES in
the presence of subsystems where the communication delay between subcompo-
nent (actuators, sensors, control) can influence the behavior of IoT systems. In
use case, we have SUT that has four ports geographically distributed at differ-
ent locations as shown in Figure 6. These ports represent sensors/actuators and
IoT system interface that are geographically located in different places. In such a
situation, the propagation of the input and output signals are not negligible and
affects the distributed system process. Each port consists of inputs and outputs,
but not necessarily both. The inputs of the port represent data input to the sub-
component and output is the output from the subcomponent. In plant side, these
represent the events detected by sensors e.g. job start and stop times and idle
time of machine, and in IoT side these represents the data analytics (machine
utilization, energy prices, renewal resources, production constraints) generated by
IoT which are used by plant supervisors. Each geographical location denotes a
heterogeneous environment (adapters, connectors, wireless sensor/actuators ap-
pliances) with a variety of machines. Each appliance consists of a computational
component and sensor that sense the real-time events (job starts, stop times) per-
formed on the machine and transmitted to the IoT systems via central controller.
Besides events from plant, real-time forecast information from other stakeholders
such as production constraints (no. of workpiece requirements per day), dynamic
electricity pricing (include real-time and critical-peak pricing) constraints and
weather forecasting etc, are also received by the IoT systems which aggregate all
these information and perform analytics on them.

To prove the advantages of distributed test architecture over conventional
centralized tester and show applicability of distributed testers, we consider a worst
case scenario to test (load/performance) the IoT systems (capable of handling
massive data from different components in the system leads to conflicts/denial-of-
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Figure 6. IoT Based DES Architecture for Centralized Controller

Figure 7. Centralized Tester Communication Model

service attack). Now, testing such scenario is out of scope of conventional remote
tester when SUT has strict timing constraints. As we know that the remote tester
generate a data input for the SUT (request to sensor/actuator), waits for the
result (real-time events), tester has to wait for the duration it takes the signal to
be transmitted from the tester to the SUT’s ports and the responses back from
ports to the tester. It seems impossible to perform performance testing of IoT
systems to handle bombarding of events without conflicts at the same time.

Using distributed test architecture augmented with online monitors, we can
deploy the communicating local testers generated from algorithm at each port of
SUT (representing location of sensors/actuators). Most IOT systems use more
than one sensors to perform a tasks, component attached to the sensor may de-
pend on other sub-component of the system. Moreover to finish a tasks, an ap-
plication usually requires to access data from multiple sensors. A separate stan-
dalone netowrk for managing critical communication among sensor can cause ex-
tra delays in test architecture, thus, it is impractical to implement such stan-
dalone management system for each sensor. For effective and optimized test ar-
chitecture, we assumed that monitors are injected at each sensor locaion of SUT
to handle real-time critical communication among them. Using monitors, each
local tester can coordinate each other and can generate the worst case scenario
where system can be test against bombarding of real-time events from SUT ports.
We start modelling the test scenario, at first, with specifying remote locations
and i/o ports of those shown in Figure 6. After applying the algorithm 1, the
centralized remote testing architecture depicted in Figure 7 is transformed into
distributed testing architecture depicted in Figure 8. In distributed testing archi-
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Figure 8. Parameterized Distributed Local Tester and Adapter Models

tecture all distributed location (i/o ports with sensors/actuators) of plant and
IoT system all together form the SUT. As can be seen from the Figure 6, the
parallel bidirectional communication channels i/o between the centralized remote
tester and distributed SUT locations (sensor/actuators locations and IoT) have
been eliminated as the centralized tester is split into distributed local instances
and attached directly to the SUT locations. The corresponding local testers at the
these locations with their adapter model are depicted in Figure 8. As discussed in
section 5, this results in reduced message propagation timing needs and enables
testing a real-time distributed system under the timing constraints close to the
message propagation time range.

6. Related Work

In this section, we review work related to our proposed approach in the context of
MBT of distributed DES with integrated IoT platform. Substantial work has been
done in the control communities, where the centralized and modular methods have
been proposed for the synthesis of a supervisory control [25,26,27,28,29]. Also,
the challenges of fault diagnosis in DES have been addressed with both model-
based (where expected/observed behavior is compared against formal model) [30,
31,32,33,34] and non-model based methods (where observed/expected behavior
matched with known faults) [35,36,37]. It is known that modular(distributed)
synthesis for DES can render better design flexibility than centralized synthesis.
To avoid state space explosion issues in centralized approach, distributed methods
(n supervisor controls) have been used. To the best of author’s knowledge, the
literature lacks testing methods for real-time distributed supervisory control. As
the vision of industry 4.0 is to extend beyond SCADA and DCS to next generation
smart factory employing IoT, the systems need to be carefully verified to address
challenges of time constraints, scalability and concurrency to achieve success in
their adoption. Moreover, frequent change in requirement specifications and re-
tooling expects rigorous testing of the system.
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MBT has been extensively studied in the literature [38,39]. However, the
majority of existing methods in IoT domain are specifically designed for testing
cloud-based application. It was investigated in [40] that testing for IoT and its
application today remains still a challenge. As the IoT technologies are growing
in DES, issues of concurrency, scalability, and real-time constraints imposed by
the design of real-time systems need to be addressed. As for the state of the art
in the following, we review the existing work in testing distributed systems and
extend it in the field of MBT related to DES and IoT systems.

As for broader context of distributed testing the early works focused on test-
ing distributed non real-time systems [41,15,42]. The theory of testing distributed
real-time systems has gained interest only in recent years when global time keep-
ing techniques emerged. For instance the authors of [43] assumed that each lo-
cal tester has a local clock which adds timestamps to its observations. It is as-
sumed that the proposed approach provides additional information regarding the
causality between actions performed at different ports. But the approach relies
on strong assumption that it is known how much local clocks can differ between
synchronization events which appears to be unrealistic. Though approach works
reasonably well for distributed testing it cannot be used if specifications con-
tains strict timing requirements, especially if there are requirements regarding
the relative timing of actions at different ports. Pioneering results on testing tim-
ing correctness with remote testers was proposed in [2] where a remote abstract
tester was proposed for testing distributed systems in a centralized manner. It
was shown that if the SUT ports are remotely observable and controllable then
2Δ-condition is sufficient for satisfying timing correctness of the test. Here, Δ
denotes an upper bound of message propagation delay between tester and SUT
ports. Though this approach works well for systems with sufficient timing mar-
gins, it cannot be extended to systems with the timing constraint more strict than
2 Δ. This means that the test inputs may not reach the input port in time and
as a result, the testing becomes infeasible in such systems. The shortcomings of
the centralized remote testing approach are mitigated by partitioning the remote
tester into multiple local testers that are deployed in the same locations with the
SUT component they are testing [13] where the controllability and observability
problems are resolved by allowing the local testers to exchange messages through
external reliable communication independent of the SUT.

7. Conclusion

In this paper, a distributed test framework for testing of a DES augmented with
monitors is presented, where online monitors are used to record relevant events
(timing and order of input/output events at test interface ports). Online moni-
tored data is used to obtain a coherent view of the system and to simplify dis-
tributed testing, where local testers synchronize with each other via communicat-
ing with these monitor. The proposed test architecture is test reaction time wise
more scalable than centralized remote test architecture for testing large number
of geographical locations (ports) in a system. We give a partitioning algorithm to
produce automated distributed local testers from given remote tester model. The
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proposed approach not only preserves the functional correctness of the central-
ized remote testers but also satisfy stronger timing constraints needed for solving
distributed test controllability and observability issues.
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1. INTRODUCTION

The concept of reconfigurable manufacturing automation
systems (MAS) has been used to address the challenges of
dynamic and unpredictable events W. Shen (1999). Recon-
figuration process enables a system to transform from one
configuration to another, improving the efficiency of the
system in response to the unpredictable events. The re-
configuration of the complete manufacturing process lead-
time is known as ramp-up period, i.e., the time to design
and develop or reconfigure the manufacturing process, and
to ramp-up to high-quality production, full volume to
meet market demand. The Ramp-up period has become
the bottleneck of any manufacturing process because it
requires systematic testing (i.e Diagnosability) before the
system goes live. Industry 4.0, manufacturing systems
operate with real-time field data and have grown to the
scale of global geographical distribution with numerous
services and applications forming an ubiquitous computing
network. Further, the heterogeneity of the environment,
where possibly millions of sensors, actuators, and different
smart devices in conjunction with intelligent software form
a complex system and introduce a new dimension to real-
time testing pose significant challenges.

Along with the flexibility to configuration changes of MAS
grows the challenge to ensure that reconfiguration did not
introduce any new faults, often referred to as Regression
Testing. The need for automated and rigorous online test-
� This research was supported by the Estonian Ministry of Educa-
tion and Research institutional research grant no. IUT33-13.

ing have given rise to the use of Model-Based Testing
(MBT) and the development of several commercial and
academic MBT tools. For instance, smart connected facto-
ries with Internet of things (IoT) based control systems are
a new technology in manufacturing industries which un-
dergoes frequent change in requirement specifications and
tools. This expects reduction in testing efforts and costs.
In this context, MBT offers an automated tool support
for regression testing and platform independence, thus
aiming to lower the testing effort of IoT Richter (2014).
We interpret MBT in the standard way, i.e. as conformance
testing that compares the expected behaviors described by
the system model with the observed behaviors of an actual
implementation.

We review related work from two perspectives, first we
discuss related work on methodology that supports test
model construction by refinements and their verification.
Second we review related work on distributed regress-
ing testing for real-time manufacturing systems. F.Long
(2016) present an approach for modelling the production
systems in industry 4.0 and their availability using high-
level Petri nets ECSPN but did not address the verification
of them. K. Sarna (2012) present a refinement-based as-
pect oriented modelling approach for construction of SUT
models and their verification using Uppaal time-automata
and model checker. This paper explains the construction
of different aspect models and provides: off-line genera-
tion by model checking, and tron based for on-line. Zech
et al. (2017) present a method for model-based regression
testing, based on the model versioning engine MoVE and
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additional Object Constraint Language (OCL) statements
to implement different test case selection, reduction, and
prioritization strategies. This paper explains the process
of generation and selection of regression test cases from
the UML basic behavioral models which is not applicable
for distributed real-time systems. Similarly, S. Ulewicz an
approach is presented where monolithic tester is supported
in choosing, prioritizing and performing relevant test cases
during system regression testing for non real-time systems.
According to our best knowledge the regressing testing for
real-time distributed systems have not been presented sys-
tematically where models of system and their refinements
are constructed automatically in Uppaal timed automata
formalism yet.

In model-based software engineering the development pro-
cesses are based on system models. These models describe
a system from different viewpoints and on different levels
of detail. Due to the multitude of viewpoint models their
composition is inevitable in the system integration phase
where the models need to be checked for consistency and
integrity of crucial design aspects. In this paper, a testing
framework for real-time distributed manufacturing sys-
tems is presented, applicable from the model refinements
with new specifications to performing model-based dis-
tributed regressing testing. We present a systematic model
refinement approach where several refinements (reconfig-
urations) can be modelled separately from an abstract
model and composed with it to integrate these refinements.
We use the same refined system model for distributed
regression testing by partitioning it into a set of distributed
communicating testers, partitioning algorithm explained
in D. Pal (2018).

2. PRELIMINARIES

2.1 Model Based Distributed Testing

Model based regression testing is a form of selective
retesting of the existing system or component to ensure
its behaviour is same and still meet the requirements
after modifications. The complexity growth of software
has made the code-based regression testing ineffective,
expensive and a time-consuming task. The MBT is used to
derive test cases from software models under test to enable
early detection of any requirements violation.

Modelling Implementations of Real-Time Systems To
define our testing architecture formally we need to intro-
duce a semantic foundation for modelling the real-time
systems. We describe the notions of timed input output au-
tomata (TIOA) introduced by R. Alur (1994); J. Bengts-
son (2004) as a formalism to model the behavior of real-
time systems over time. We consider time domain T as set
R≥0 of non-negative reals called clocks (delays) and Σ as a
finite set of actions. For the formal syntax and semantics of
TIOA we refer the reader to J. Bengtsson (2004). Example
1: Consider the TIOA specification Spec shown in Fig 1
(a), in[1]?, in[2]?, in[3]? denotes the input to the system
and out[1]!, out[2]!, out[3]! denotes the output produced in
response to input to the system. The timed Spec can be
expressed in similar language as follow: exactly at 5 time
units after the system received the input in[1]? it produces
either output out[3]! exactly at 2 time units or, failing to

do that, output out[1]! exactly at 3 time units. The clock cl
is set to 0 when passing the transition. A timed trace ρ is a
sequence of timed-stamped input/output actions followed
by a delay, e. g. ρSeq(R) = (5·in[1]!)· (8·out[1]?)· (15·in[2]!)·
(18 ·out[2]?) ·0. We have Spec After (5 ·in[1]!) ·0 ={(l1, 0)},
Spec After (5 · in[1]!) · (8 · out[1]?).0 = {(l5, 0)}, Out(Spec
After (5 · in[1]!) · (7 · out[1]?).0) = T, Out( Spec After
(5 · in[1]!) · (8 · out[1]?).15) = {in[2]!} ∪ T.

Uppaal Timed Automata (UTA): In our approach UTA
G. Behrmann (2004); J. Bengtsson (2004) are used as
a formalism to illustrate TIOA to model SUT behavior.
This choice is motivated by the need to test the SUT
with timing constraints so that the impact of propagation
delays between the SUT and the tester can be taken
explicitly into account when the test cases are generated
and executed. UPPAAL is based on the definition of timed
automata, which is introduced by R. Alur (1994). For
the full formal syntax and semantics of UTA we refer to
G. Behrmann (2004); J. Bengtsson (2004).

Modelling distributed n-Ports : We model a multi-ports
TIOA in UTA by splitting the transition with multiple
communication actions to a sequence of transitions each
labeled with exactly one I/O-action and connected via
committed locations, so that all ports of such group are
updated instantaneously in the order they are specified
in the tuple. In Fig. 2 the labels on the transition repre-
sent the i/o actions and the transition tuple (l0, l

′, in[1]!
/(out[1]!, out[3]!)) represents the sequence of transitions
each labeled with exactly one action and connected via
committed locations, l0 represents the idle, and l′ repre-
sents the Done location. Let Pln denotes a set of ports
accessible in the physical location ln where n ∈ N; I is a
n-tuple (I1, I2,...,In), where Ii is the finite set of inputs at
port i, Ii ∩ Ij = φ for i �= j and i,j = 1,...n ∈ N. Similarly,
O is a n-tuple (O1, O2,..., On), where Oi is finite set of
outputs at port i, Oi∩Oj = φ for i �= j and i,j = 1,...n ∈ N.
Each port may receive outputs of other port, i.e O = (O1

∪ {ε}) × (O2 ∪ {ε})×...× (On ∪ {ε}), here {ε} denotes
the empty output in response to input to SUT .

2.2 Timed Input/Output Conformance Relation

In order to define the conformance relation, we recall the
timed input/output conformance relation (tioco) intro-
duced in M. Krichen (2004); M. Mikucionis (2004). They
propose extension of ioco relation with timing constraints
including clock valuations with the set of observable ac-
tions. The communication between the specification and
the SUT involves controllable inputs of the SUT and
observable outputs of the SUT. In this work, we introduce
the ioco at first as defined by Tretmans (1996). The
behaviour of ioco-correct implementation should respect
after some observations following restrictions: (i) the out-
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additional Object Constraint Language (OCL) statements
to implement different test case selection, reduction, and
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of generation and selection of regression test cases from
the UML basic behavioral models which is not applicable
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According to our best knowledge the regressing testing for
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systems. We describe the notions of timed input output au-
tomata (TIOA) introduced by R. Alur (1994); J. Bengts-
son (2004) as a formalism to model the behavior of real-
time systems over time. We consider time domain T as set
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accessible in the physical location ln where n ∈ N; I is a
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O is a n-tuple (O1, O2,..., On), where Oi is finite set of
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Each port may receive outputs of other port, i.e O = (O1

∪ {ε}) × (O2 ∪ {ε})×...× (On ∪ {ε}), here {ε} denotes
the empty output in response to input to SUT .

2.2 Timed Input/Output Conformance Relation

In order to define the conformance relation, we recall the
timed input/output conformance relation (tioco) intro-
duced in M. Krichen (2004); M. Mikucionis (2004). They
propose extension of ioco relation with timing constraints
including clock valuations with the set of observable ac-
tions. The communication between the specification and
the SUT involves controllable inputs of the SUT and
observable outputs of the SUT. In this work, we introduce
the ioco at first as defined by Tretmans (1996). The
behaviour of ioco-correct implementation should respect
after some observations following restrictions: (i) the out-
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Fig. 2. Modelling pattern of multiport timed automata

puts produced by SUT should be the same as allowed in
the requirements model;(ii) if a quiescent state (a situation
where the system cannot evolve without an input from
the environment) is reached in SUT, this should also be
the case in the model; (iii) any time an input is possible
in the model, this should also be the case in the SUT.
In addition to ioco, tioco introduces the time delays
observable on test interface. This is explained by means
of following example (for detailed definition of (tioco) we
refer to M. Krichen (2004); M. Mikucionis (2004). Example
2: Consider the timed I/O automata specification Spec
and implementations Impl1, Impl2 shown in Fig. 1. Based
on tioco relation, we can verify that if Impl1 conforms
to Spec, for example: Out(Spec After (5 · in[1]?)) = T
and Out(Impl1 After (5 · in[1]!)) = T; Out(Spec After
(5 · in[1]?) · 8)= {out[1]!} ∪ T and Out(Impl1 After (5 ·
in[1]!) · 8)= {out[1]?} ∪ T; Out(Spec After (5 · in[1]?) ·
7)= {out[3]!} ∪ T and Out(Impl1 After (5 · in[1]!) · 7)=
{out[3]?} ∪ T, proves that Impl1 tioco Spec. Similarly,
we can prove that Impl2 ���tioco Spec i.e. Out(Spec Af-
ter (5 · in[1]?) · (7 · out[3]!)) = T and Out(Impl2 After
(5 · in[1]!) · (7 · out[3]?))= {in[2]!} ∪ T; Out( Spec After
(5 · in[1]?) · (8 · out[1]!).18) = {out[2]!}∪T and Out(Impl2
After (5 · in[1]!) · (8 · out[1]?).18)= –.

3. MODEL REFINEMENT AND VERIFICATION

In this section we present the model refinement approach
based on abstraction model. We consider that system re-
configuration starts from a base model (Mb) which already
exists and is modelled based on initial requirements. As
shown in Figure 3, for systematic specification and ver-
ification of its reconfigurations an abstract model (Ma)
is constructed from a base model and verified to prove
that abstraction preserves important properties (safety
and liveness) φ of the base model i.e. Mb |= φ implies
Ma |= φ. Then an abstract model can be refined as per
the new requirements. Such refinements, are conservative
if they guarantee that properties φ, which were verified
for an abstract model, still hold for the refinement. It
is important to mention here that abstract models are
constructed in a way that they can be re-used in a different
context, even for different systems in a process.

Fig. 3. Refinement Approach

From the modelling point of view the abstraction based
refinement requires just a place holder element in the
abstract model which defines where the substitution is ap-
plied. The reconfiguration is implemented then as K. Sarna

(2012). We call these refinement operators location refine-
ment (denoted by �l) and edge refinement (denoted by
�e) shown in Figure 5.

Let the refinement Mr that specifies the reconfigured
fragment of a system be composed by synchronous parallel
composition ‖sync, so that, Ma � Ma ‖sync Mr where �
∈ {�l, �e }. Synchronous composition of Ma and Mr

should preserve the semantics of Ma also after superposi-
tion. Technically, this composition means that entry and
exit points of the refined Mr have to be synchronized (via
auxiliary channel) with an edge in case of edge refinement
or before and after edges in case of location refinement
of Ma. Example 3: Distributed manufacturing automa-

Fig. 4. Abstract Model of Robots in RAMS

tion system presented in Figure 4, specifies the abstract
model of functional behavior of three robots distributed
at different location. The automata specify a simplified
manufacturing process where Robot 1 is making work-piece
by shaping liquid or pliable raw material using a rigid
frame called a mold. Then final work-piece is sent to Robot
2 for folding and similarly after folding the work-piece is
passed to Robot 3 for painting. We consider above example
as real-time distributed system where each Robots reside
in specific department and synchronize motion and tasks
with others through signals or directly with smart sensors.
The abstract model shown in figure has 3 ports (p1, p2,
p3) in geographically different places with inputs/outputs
in[1]/out[1], in[2]/out[2] and in[3]/out[3] at ports p1, p2
and p3 respectively. The UTA models defines the expected
global behavior of any potential SUT. Each expected
global behavior is expressed as the sequence of labels of
UTA model edges.

As per technical specification Spec, Robot 1 receives the
request from controller with input in[1]? and produce the
out[1]! at port 1 and out[2]! at port 2. We assume that each
Robot generates two kind of outputs, first to its local port
which can be depicted as the final work-piece or as output
and second output to following Robot for synchronization.
After the molding process Robot 1 synchronize with Robot
2 by sending out[2]! at port 2. Similarly, Robot 2 after
folding process synchronize with Robot 3 by sending out[3]!
to Robot 3 at port 3. We call this baseline abstract model
as version 1.0 before adding more functionality to it and
upgrading to version 1.1. For illustrating any modifica-
tions/reconfigurations in MAS, we provide examples of
two refinements to abstract Robot 1 behavior, depicted in
Figure 6. It shows location and edge refinement to abstract
model. In addition to abstract model depicted in Figure 4,
there is a new requirement to the process, milling has to
be done to work-piece (by Robot 1 department) to specific
dimension after molding it. To implement new changes
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Fig. 5. Location and Edge Refinement Modelling Pattern

Fig. 6. Refinement Models After Reconfigurations

to existing configured manufacturing automation system,
we reconfigured the Robot 1 process and integrated a
new Robot 5 for milling process and Robot 7 for Crane
as shown in Figure 6. Also location S1 in blue color is
modified and assumed to be refined by location refinement
to extend the functionality. Similarly, outgoing edge in
refined model is considered edge refinement to integrate
the Crane Robot into the process. Similarly, requirement
for Drill process can be configured into existing manufac-
turing system.

3.1 Refinement Verification

The interaction of Robot 1 and Robot 5 is safety-critical,
because both robots belong to same work bench and
are coordinating with Crane Robot. They may come into
collision state because of the control error that can create
erratic behavior to Crane Robot or unauthorized access
to workbench; improper installation of Robot 5 etc. We
use the model checking to prove that, first, the refined
model fulfills the liveness and safety properties which
ensure the correct behavior and, later, verifying functional
behavior of robots. We formalize the properties using
timed computation tree logic (TCTL) and verify them
using Uppaal model checker. In TCTL, the properties are
formalized as follows:

• Property 1. Interference Free New Updates :
No variable of abstract model is updated in re-
fined model i.e. there is only one function update-
Mold Queue() in refined model that has variable but
its scope is local and does not affect any functionality
in the abstract model. Hence, property 1 is satisfied
and this allows an interference freedom with the ab-
stract model;

• Property 2. Preservation of Non-Blocking :
No deadlock in the model, the moment parallel syn-
chronous execution triggers abstract model via chan-

nel in[1]!, the refined model always returns to Start
location within specified time i.e. 35 time units. This
property can be verified by two ways:
1. A[] no deadlock;
2. A[] MoldingDone ==True and MillingDone ==
True and (SUT Model 2.Start imply SUT Model 1.
p1.Done)

• Property 3. Non-Divergence:
invariant(Li) ≡ x ≤ n for all clocks x ∈ ClockMa

,
n < ∞ ⇒ ∃ d ≤ n: [Mr, l0 � l0 �d lf ]. The
property holds in UTA models, since SUT Model 2
(refined model) always returns control to abstract
model SUT Model 1 atmost 35 time units while the
join point carrier location S1 has invariant cl ≤ 35
which yields that for non-divergence the condition
SUT Model 2.cl ≤ SUT Model 1.cl must be satisfied.

Thus, alternative configurations (original and its recon-
figuration) are reflected in the models as different re-
finements of the common abstract system model. If the
refinement correctness conditions Property 1 to Property
3 are satisfied it guarantees that the properties verified for
an abstract model are preserved and all reconfiguration
verification reduces to verifying local properties Property
1 to Property 3 only. In our example, the refined automata
have to preserve above properties and if the refined model
conforms to abstract model, then the given refinements
in Figure 6 are correct. Verifying refinement conditions
for correctness guarantees a correct refinement. Such a
refinement approach makes formal verification of real-time
distributed systems more scalable and their reconfigura-
tion provably correct.

4. DISTRIBUTED AUTOMATED REGRESSION
TESTING

In D. Pal (2018), we proposed a distributed test frame-
work for testing real-time distributed systems augmented
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new Robot 5 for milling process and Robot 7 for Crane
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modified and assumed to be refined by location refinement
to extend the functionality. Similarly, outgoing edge in
refined model is considered edge refinement to integrate
the Crane Robot into the process. Similarly, requirement
for Drill process can be configured into existing manufac-
turing system.

3.1 Refinement Verification

The interaction of Robot 1 and Robot 5 is safety-critical,
because both robots belong to same work bench and
are coordinating with Crane Robot. They may come into
collision state because of the control error that can create
erratic behavior to Crane Robot or unauthorized access
to workbench; improper installation of Robot 5 etc. We
use the model checking to prove that, first, the refined
model fulfills the liveness and safety properties which
ensure the correct behavior and, later, verifying functional
behavior of robots. We formalize the properties using
timed computation tree logic (TCTL) and verify them
using Uppaal model checker. In TCTL, the properties are
formalized as follows:

• Property 1. Interference Free New Updates :
No variable of abstract model is updated in re-
fined model i.e. there is only one function update-
Mold Queue() in refined model that has variable but
its scope is local and does not affect any functionality
in the abstract model. Hence, property 1 is satisfied
and this allows an interference freedom with the ab-
stract model;

• Property 2. Preservation of Non-Blocking :
No deadlock in the model, the moment parallel syn-
chronous execution triggers abstract model via chan-

nel in[1]!, the refined model always returns to Start
location within specified time i.e. 35 time units. This
property can be verified by two ways:
1. A[] no deadlock;
2. A[] MoldingDone ==True and MillingDone ==
True and (SUT Model 2.Start imply SUT Model 1.
p1.Done)

• Property 3. Non-Divergence:
invariant(Li) ≡ x ≤ n for all clocks x ∈ ClockMa

,
n < ∞ ⇒ ∃ d ≤ n: [Mr, l0 � l0 �d lf ]. The
property holds in UTA models, since SUT Model 2
(refined model) always returns control to abstract
model SUT Model 1 atmost 35 time units while the
join point carrier location S1 has invariant cl ≤ 35
which yields that for non-divergence the condition
SUT Model 2.cl ≤ SUT Model 1.cl must be satisfied.

Thus, alternative configurations (original and its recon-
figuration) are reflected in the models as different re-
finements of the common abstract system model. If the
refinement correctness conditions Property 1 to Property
3 are satisfied it guarantees that the properties verified for
an abstract model are preserved and all reconfiguration
verification reduces to verifying local properties Property
1 to Property 3 only. In our example, the refined automata
have to preserve above properties and if the refined model
conforms to abstract model, then the given refinements
in Figure 6 are correct. Verifying refinement conditions
for correctness guarantees a correct refinement. Such a
refinement approach makes formal verification of real-time
distributed systems more scalable and their reconfigura-
tion provably correct.

4. DISTRIBUTED AUTOMATED REGRESSION
TESTING

In D. Pal (2018), we proposed a distributed test frame-
work for testing real-time distributed systems augmented
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with monitors, where online monitors are used to record
relevant events (timing and order of input/output events
at test interface ports). Online monitored data is used
to obtain a coherent view of the system and to simplify
distributed testing, where local testers synchronize with
each other via communicating with these monitor. We
showed that the proposed test architecture is test reaction
time wise more scalable than centralized remote test archi-
tecture for testing large number of geographical locations
(ports) in a system, architecture depicted in Figure 7.

Given a centralized remote tester model we apply a parti-
tioning algorithm to map it to a set of distributed testers.
We prove that the proposed approach not only preserves
the functional correctness of the centralized remote testers
but also satisfies stronger timing constraints needed for
solving distributed test controllability and observability
issues. In the next subsections, we show the distributed
regression testing steps for distributed system.

Fig. 7. Distributed Test Architecture

4.1 Baseline Tester Model Version 1.0

For generating distributed local testers for performing
actual regression testing, it is require to have existing
baseline tester model of stable version of SUT. According
to MBT taxonomy, such baseline tester models are often
constructed by MBT approaches. In our case, the full
monolithic centralized tester model (baseline test suite)
for stable version 1.0 (abstract model) shown in Figure 4
is generated by model checking queries.

Fig. 8. Centralized Tester of SUT Model Version 1.0

4.2 Generating Distributed Local Testers Version 1.0

An alternative to the centralized tester is distributed test-
ing the architecture of which is shown in Figure 7. Here the
centralized tester model deployed on a centralized testing
architecture is decomposed into a set of communicating
(via SUT) distributed local testers using partitioning al-
gorithm proposed in D. Pal (2018), one for each local-
ized interface of the system. The generated distributed
local testers shown in Figure 9, for more reading about

distributed local testers communication and optimization
over centralized tester refer to our work D. Pal (2018).

Fig. 9. Distributed Tester Models Version 1.0

4.3 Reconfigurations Identification and Test Selection

Identification of modifications in the stable version of
system is the first requirement of performing Regressions.
This aims to obtain any modifications in the abstract
model by comparing the baseline test models and re-
fined models along with actions, clock constraints and
invariants. After identifying new changes and their impact
on existing component, the next step is to retesting the
systems with selective test cases for example test cases
targeted to modified parts of the system. In case of new
functionality being added, selective tests can verify that
the new features work as per the requirement and design
specifications while regression testing can show that the
new code has not broken any existing functionality.

4.4 Maintenance of Broken Regression Tests

Regression packages often contain tests that cover the
core functionality that will stay the same throughout
the evolution of the system. A lot of the old test cases
may become inapplicable as basic functionalities may
have been replaced and removed by new functionality.
Therefore, the regression packages require maintenance
regularly to reflect changes to the application. For each
new reconfiguration to the system, new test cases needs
to be develop that becomes the part of regression to be
executed after the reconfiguration is deployed.

New requirements and modifications applied to model and
upgraded to version 1.1 are shown in Figure 6. Abstract
SUT model version 1.0 is extended by adding new func-
tionality to Robot 1 and Robot 2. As said earlier, baseline
test suites may become inapplicable as basic functionality
of Robot 1 and Robot 2 replaced with new requirements.
Therefore, it is require to upgrade the baseline tester
model with new tests for further testing purpose. As per
requirements from the market, milling has to be done to
work-piece (by Robot 1 department) to specific dimension
after molding it. To implement new changes to existing
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configured manufacturing automation system, we recon-
figured the Robot 1 process and integrated a new Robot
5 for milling process and Robot 7 for Crane as shown in
Figure 6. Similarly, requirement for Drill process can be
configured into existing manufacturing system.

For the simplicity, we show the refinement for milling
process only. After identifying new changes in refined
model version 1.1, we classified the test cases for modified
parts of the system, i.e test case for Location 1 only where
we enhanced the functionality of Robot 1 by integrating
Robot 5 and 7. Since new added functionality does not have
any side-affect on other part of the model, we modified only
part of centralized tester model, i.e test case for Robot 1
and other parts of model, i.e. test case for Robot 2 and 3 do
not require any update. A new centralized tester model for
location 1 generated from refined model is shown in Figure
10 and their corresponding distributed local tester models
shown in Figure 11. Note: In our approach distribution
algorithm applied only on refinement model, instead of
developing and partitioning a full centralized model from
the scratch. We optimized the regression tests generation
for model version 1.1 by identifying changes and selectively
refined the part of abstract model.

Fig. 10. Centralized Tester Updated for Robot 1

Fig. 11. Distributed Tester Models Version 1.1

4.5 Regression Test Execution And Analysis

This step requires the execution of new regression test
package against new configuration deployed and its anal-
yses to detect any regression bug/defects. There are two
major possibilities if some bug/defects are discovered in
the test results. First automated regression test models
may have logical error. Alternatively, there is a real bug
found in the system which needs to be corrected and
deployed or rolled back to previous version depending on
the priority and time required to fix it.

5. CONCLUSION

With the growing unpredictable events MAS are made
flexible and reconfigurable. As systems in manufacturing
automation are becoming more complex, it has become a

high-priority to QA team to ensure that reconfiguration
will not introduce any faults, often referred to as Regres-
sion Testing. The need for automated online testing and
system correctness assurance have given rise to the use
of MBT and the development of several commercial and
academic MBT tools. In this paper, a testing framework
for real-time distributed manufacturing systems is pre-
sented to verify reconfiguration correctness and to gen-
erate test for its implementation testing. We presented
MAS reconfiguration steps abstractly as its refinements.
We used the reconfiguration model derived by refinements
and verified also for test generation. We demonstrated
distributed regression testing by partitioning it into a set
of distributed communicating testers making model based
testing for MAS scalable. In future work, we have plan
to do empirical research, i.e., controlled experiments and
industrial case studies to investigate the impact of the
presented approach on time to market improvement of
time critical MAS.
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Abstract—Industry 4.0 aims at highly flexible and digitized model
of industrial production that is smarter and more reliable than the
current possibilities. This requires vertical integration of different
operations in a manufacturing to promote reconfigurable smart
factory. This investigation proposes a method to schedule maintenance
operations using formal methods considering power balance and
production constraints in process industries. First, we provide an
optimization model for scheduling maintenance and operation along
production schedules. Second, we use timed model checking to schedule
maintenance considering various physical and operating constraints.
Third, we illustrate the method in a smart aluminium factory. The
main contribution of this investigation is the integration of optimization
models and formal methods in one framework, which leads to verified
production/maintenance schedules and contributes to the objectives of
Industry 4.0.

I. INTRODUCTION

The enterprise wide optimization (EWO) is an emerging concept
that is focused on using optimization across different layers of
manufacturing process to obtain holistic production, procurement
and resource management schedules. The use of EWO to steel,
motor manufacturing and other process industries have been
studied widely [1]. In the literature, the maintenance operations
are solved using off-line optimization models which do not
reflect emerging maintenance requirements of a process industry.
Similarly, the power-balance constraints are not considered, this is
important as more renewables are getting integrated in industries.
A common feature in these investigations is that the optimization
routines lead to either mixed integer linear program (MILP)
or a non-linear optimization problems. While MILP problems
are NP-hard, a solution can be obtained using relaxations or
branch-and-bound techniques. On the other hand, non-linear
optimization problems involving binary decisions variables are
hard to solve. In such problems obtaining an initial guess that
is feasible is also a NP-hard problem. Moreover, global optimal
solution is seldom feasible. Consequently, relaxed versions of the
problem are widely employed that is rather difficult to model
the real-scenarios. Therefore, the use of heuristic optimization
techniques such as genetic algorithm, particle swarm optimization,
or other techniques are usually employed. Contrastingly these are
off-line optimization tools and applying them to solve a scheduling
problem on-the-fly is rather difficult due to absence of convergence
properties. Therefore new techniques for solving optimization
problems involving binary and real-variables are required. More
importantly, such solutions needs to be verified not to violate
physical and operating constraints, even with feasible solutions for
them to be applied in EWO.

In past, models checkers have been applied in solving combi-
natorial optimization problems in which one best combination of
values is selected as solution from a set of given values e.g. [2] - [6].
The problem of scheduling processes have been considered using
a range of available model checkers, e.g. UPPAAL Cora [7]. Authors
in [8] made use of the model checker SPIN to solve scheduling
problems, using language PROMELA. In [9] author proposed the
model of timed automata, as a model for posing and solving
time-dependent planning and scheduling problems. Most recently,
[12] used price time automata model and uppal cora to solve
scheduling problems in steel industry. Here too the maintenance
operations were not considered in their analysis. However, the well-
known state-space explosion problem may arise when the model
become too complex and existing sequential model checkers such as
(UPPAAL, SPIN) fail to provide parallelization and more computation
power, which may restrict their use on industrial scale. To fill
this gap, we propose an approach to find optimal schedule using
distributed DIVINE model checker and algorithm in [13].

This investigation presents a method to optimize the production
schedules in an aluminium industry along with maintenance and
power balance constraints. First, we model the production process
pertinent for solving a nonlinear optimization problem involving
binary and real–variables. The formulation includes maintenance
schedules and power balance constraints. Second, we provide an
alternative solution using formal methods to check the feasibility
of the solution obtained using optimization models. The feasibility
check verifies the validity of optimization solution under given
maintenance and power balance constraints. We also demonstrate
how the manufacturing and maintenance schedules can be extracted
from the fastest execution traces of the formal model which
constitutes a time optimal schedule using DIVINE explained in [13].
Finally, we illustrate the combined use of optimization models and
formal methods in an aluminium industry.

The paper is organized as follows- Section II introduces the
different manufacturing steps in a prototypical process industry,
aluminium in our case. The optimization model and its complexity
are analysed in Section III. The formal method to solve the
scheduling problem using time automata models and reachability
analysis on them is presented in Section IV. Analysis and model
execution traces as plant schedule is discussed in Section V. Finally,
we draw conclusions.

II. PROBLEM STATEMENT

A. Plant Description

The conventional production process of aluminium rolled strips
is schematically categorized into three main steps and maintenance978-1-5090-6505-9/17/$31.00 c©2017 IEEE
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Fig. 1: Conventional Process for Aluminum Strip

as shown in Fig. 1 and described in the following steps.
(i) In step 1–the aluminium is obtained from the input raw materials
in heating furnace by the use of electricity. The alluminium obtained
in molten form transforms into ingots or slabs. The ingots are
transferred to refining furnace where they are pre-heated to the
melting point, which removes the impurities and carbon contents
from ingots. Thereafter, solid ingots are transported by a crane to
a reverse milling machine.
(ii) In step 2–the ingot is fed to a series of rolling stands consisting
of work rollers and backup rollers. The work-rollers and backup
rollers exert force on hot ingot to reduce its size to an aluminium
strip of desired dimensions. The ingot is passed over rollers a
number of times, where each stage changes its shape and dimension
and it continues till desired product is achieved.
(iii) In step 3–the aluminium strip received is cooled by water spray
and sent to the finishing mill where it is made as per the customer
requirements. It undergoes surface finish to give desired mechanical
properties and coating providing a thin strip of alluminium. The thin
strip is thousands of feet in length and fed to the coiler to form the
final product in the form of aluminium coil.

TABLE I: Energy Consumption Description

Process Comments

A (Making Ingots & Pre-heat) Energy intensive and its output feeds
the process B, C.

B (Milling)

Requires input from process A
and is followed by process C.
The process consumes less energy
than A and C, but its energy
consumption is more than process D.

C (Rolling & Finishing)
Process C requires input from B. The
energy consumption is less than A,
but greater than B and D.

D (Maintenance)

Maintenance operation needs to be
planned between these tasks for the
component with possible failure
information

Scheduling aluminium coil production is a complex multistage
process involving interdependent systems where both information
and decision-making are logically and spatially distributed with
distinct objectives and constraints, for example job scheduling
and production constraints, power consumption constraints, set up
and production costs. In this paper, the scheduling problem deals
with the production and planning in a typical milling and rolling
machines, wherein rolls of aluminium are processed. In the rolling
mill as shown in figure 1, the preparation of ingots and pre-
heating is carried out in process A, followed by the milling process
shown in B, and the final step of rolling and finishing in process
C. Lastly, the maintenance operations are based on predictive
and emergency maintenance schedules that should intervene the
production processes as little as possible.

III. OPTIMIZATION MODEL FOR ALUMINIUM
MANUFACTURING PROCESS

NOMENCLATURE

Constants

T Length of the planning horizon
T = {1, ...T} Set of Planning periods
Nmin

i , Nmax
i Minimum and Maximum Production Levels in process i

Nmax
i,t Maximum number of units that can be produced

in time-period,t
Pmin
i , Pmax

i Minimum and Maximum Power Consumption in Unit i
I Set of tasks in the production
rupi , rdown

i Ramp up and down rates of power
consumption of production task i

Decision Variables

yi,t binary variable, is 1 if the operation i takes place during t
Ni,t Production level of the operation i during the time period t
Pi,t Power Consumed by the task i during the time period t

A. Production Constraints

Let Di,t and Ri,t denote the demand and reserve of the number
of products from the particular production task i during the time
interval t. Considering Ni,t to be the number of units produced,
the production and demand constraints are given by

Ni,t ≥ yi,t(Di,t +Ri,t) ∀i ∈ I,∀t ∈ T (1)

Further, the following physical constraint is enforced to model the
production capability of the machines

∑

i∈I
Nmax

i ≥ yi,t(Di,t +Ri,t) ∀t ∈ T (2)

∑

i∈I
Nmin

i ≤ yi,t(Di,t +Ri,t) ∀t ∈ T

B. Power Balance Constraints

Let P g
t , P r

t and P d
i,t denote the power generated or bought,

renewable generation in the production unit, and demand of the i
the task at time t, respectively. Then we have the following power
balance constraints

P g
t + P r

t −
∑

i∈I
P d
i,tyi,t = 0 ∀t ∈ T (3)

Let yi,t denote the variable modelling the operation of the produc-
tion task i at time t, then the following constraints are forthcoming

Pmax
i,t ≤ yi,tPmax

i ∀t ∈ T (4)

Including the ramp-up constraints, we have

Pmax
i,t ≤ Pi,t−1 + yi,t−1r

up
i +Pmax

i (1− yi,t−1) (5)

∀t ∈ T ,∀i ∈ I
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C. Minimum up and down times of the process

When a production task is switched on(off), it must either remain
on(off) for at least T on

i (T off
i ) consecutive periods considering

production economics. Constraints (6) model the on/off constraints.

yi,t − yi,t−1 ≤ yi(θup) ∀i ∈ I,∀t ∈ T (6)

yi,t−1 − yi,t ≤ 1− yi(θdown) ∀i ∈ I,∀t ∈ T

D. Objective Function

The main objective is to maximize the profits while reducing the
operating cost. We assume that the production cost is linear in the
number of units produced and the power tariff is organized into
two parts: fixed cost C1 and variable C2(t). The objective is to
minimize the operating cost given by

min
yi,t,Pd

i,t,Ri,t

∑

i∈I

∑

t∈T
CP ×Ni,t + C1 + C2(t)× P d

i,tyi,t (7)

E. Optimization Model

The problem of reducing operating cost for a time-horizon T is
solved by obtaining the forecasts on demand Di,t, this includes also
the forecasts for maintenance operations. The formulation above
eliminates the need for additional binary variables. The receding
horizon optimal control problem can be stated as:

min
yi,t,Pd

i,t,Ri,t

∑

i∈I

∑

t∈T
CP ×Ni,t + C1 + C2(t)× P d

i,t yi,t (8)

s. t.

Nmax
i,t ≥ yi,t(Di,t +Ri,t) ∀t ∈ T

∑

i∈I
Nmin

i,t ≤ yi,t(Di,t +Ri,t) ∀t ∈ T

P g
t + P r

t −
∑

i∈I
P d
i,tyi,t = 0 ∀t ∈ T

yi,tP
min
i ≤ P d

i,tmax ≤ yi,tPmax
i

∀t ∈ T ,∀i ∈ I
Pmax
i,t ≤ Pi,t−1 + yi,t−1r

up
i + Pmax

i (1− yi,t−1)
∀t ∈ T , ∀i ∈ I

yi,t − yi,t−1 ≤ yi(θup) ∀i ∈ I,∀t ∈ T
yi,t−1 − yi,t ≤ 1− yi(θdown) ∀i ∈ I,∀t ∈ T

The decision problem above has product of binary and real deci-
sion variables, thereby making it non-linear and non-convex [10].
Usually relaxations such as mixed logical dynamical constraints or
big-M method are applied to solve the problem [11]. However, if
maintenance requirements are added, then the problem becomes
non-convex and nonlinear one. Greedy algorithms are usually
used in this context to simplify the analysis. Albeit, finding a
feasible solution with time-varying maintenance requirements for
the problem by itself is NP-hard due to the bi-linearity among
binary and real-valued variables. Further, guaranteeing feasibility
is a challenging task. Therefore, new techniques for solving the
optimization model that provides optimal yet feasible solution needs
to be devised. Different from existing approaches, this investigation
will use parametric model checking for solving the maintenance
scheduling problem. While use of formal methods for solving
scheduling optimization problem by itself is not new [12], the

inclusion of time-varying maintenance schedules and applying
non-convex optimization models have not been discussed in the
literature to our best knowledge.

IV. MODELLING OF MANUFACTURING SYSTEMS WITH
MAINTENANCE CONSTRAINTS

A. Modelling System and Verification with DIVINE

The UPPAAL model checking tool is a sequential verification tool.
It is treated as a benchmark among model checking tools. UPPAAL

timed automata (UTA) have proven to be a powerful formalism,
to model and verify the behavior of real-time systems [14]-[16].
Timed automata introduced by [17] are widely used in different
types of complex real-time systems, and used in scheduling control
and model checking [18]. It provides a formalism to annotate a
state transition system with timing constraints using finitely many
real-valued clocks. The set of clock-variables track the time elapsed
and can guard on transitions to restrict the behavior of automaton.
A variety of optimization problems have been proven decidable
for UTA including optimal scheduling, minimun-cost reachability
[19], [20]. The nodes of the automata are called locations and the
directed edges transitions. The state of an automaton consists of its
current location and assignments to all variables, including clocks.
The initial locations of the automata are graphically denoted by an
additional circle inside the location. Synchronous communication
between the processes is by hand-shake synchronization links
that are called channels. The interaction between processes
as synchronizing actions allows the automata to make explicit
the control flow of scheduling problems. The duration of the
execution of the result is specified by the interval [lb, ub] where
the upper bound ub is given by the location invariant cl<=ub,
and the lower bound lb by the guard condition cl>=lb of the
transition. The assignment cl:=0 on the transition ensures that the
clock cl is reset when the transition is executed. For more reading
about UPTA, its formal syntax and semantics, we refer to [19] [20].

UPPAAL has a user friendly GUI and simulator which supports
Computation Tree Logic (CTL), while DIVINE supports Linear
Temporal Logic (LTL) for specification of temporal properties.
DiVinE is a parallel verification tool based on DVE language.
It’s GUI provides an editor to code in DVE language and a
simulator with step by step execution of model and a counter
example. DIVINE’s GUI does not provide features as UPPAAL but
DIVINE accept UPPAAL xml format file as input to verify untimed
properties. Moreover, its feature of parallel verification distinct it
from all sequential verification tools. DIVINE is an explicit-state
linear temporal logic (LTL) automata-based verification tool for
reachability analysis of discrete distributed systems [21]. It employs
an aggregate power to verify large systems models with better
efficiency and memory usage. It is known that UPPAAL verifies
timed automata while DIVINE verifies untimed automata [22], [24].
In this paper, We extend the DiVinE capability of verifying the
timed properties using guided model checking algorithm explained
in [13]. The control guards for each transition are constructed by
offline statistical analysis based on the given model and the test
purposes. The generated control guards are labelled on transitions of
the model and feed to DIVINE where controls are evaluated in every
state when the selection between alternative outgoing transitions
should be made. The execution of the model with control guards
find the fastest and efficient path to goal state and provide a witness
trace with optimal cost.
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To run DIVINE and verify model properties, a LTL file is provided
alongside the model xml file. LTL formula are loaded from this file
and when a specific property is chosen, it is negated and a Büchi
automaton is created. The Büchi automaton is multiplied with the
timed automata on-the-fly to create a transition system on which
the reachability analysis or accepting cycle detection algorithms are
run [22], [23]. DIVINE runs the reachability analysis to find an error
state or a time deadlocks. It performs universal verification only,
i.e. it decides whether all runs meet given conditions. However,
negation of existential formula is a universal formula. Therefore,
the CTL specification in the form A[]p or A <> p can be directly
translate into equivalent LTL formula Gp or Fp respectively.
E <> p can be translated to G!p and E[]p to F !p, but due to
the mapping to universally quantified formuli the validation turns
to falsification, i.e. the formulas in CTL and corresponding formula
in LTL are not equivalent, in fact, they have exactly opposite
meaning; hence when DIVINE says a formula F !p does not hold in
some model, UPPAAL says that E[]p is satisfied and vice versa. In
the case of existential CTL formula that holds, DIVINE reports a
counterexample to corresponding LTL formula, which is actually a
witness for the original CTL formula [22].

B. From Diagnostic Traces to Plant Schedule

Fig. 2: Sample Timed Automata with Control Guards

We demonstrate how a network of timed automata can be used
for modelling the real time system (SUT) Since DIVINE does not
support modelling formalism for real-time systems, We preferred
UPPAAL Timed Automata (UTA)[7] which have become the standard
modelling language for real-time systems. Therefore we use UTA
as the modelling language and DIVINE model checker as the
reachability analysis tool.

Example 1. Consider a UTA in Fig. 2, here the decoration
p1(t), p2(t) and , p3(t) on transitions denotes the control guards,
constructed by offline statistical analysis based on the given model
and the test purposes [13]. The duration of the execution of the
result is specified by the interval [lb, ub] where the upper bound ub
is given by the location invariant cl<=ub, and the lower bound
lb by the guard condition cl>=lb or cl<=lb of the transition.
The given values are ub1 := 5; ub2 := 4; lb0 := 2; lb1 := 6;
lb2 := 3; lb3 := 3; lb4 := 2; lb5 := 2. A most common approach
to the test generation is to formulate an informal set of test purposes

transformed into some property of system such that model can
be used to generate test cases for each property. A test purpose
is specific property of system that tester wants to observe on the
system under test. The test purpose can be directly formulated as
a simple state reachability of property (t[3] == true) also known
as single purpose test case generation. An example of test purpose
(LTL property) of model in Figure 2 is expressed as:

]define Goal (t[3]==true)
]define Time (cl<=WatchDog)
]property G!(Goal && Time)

There are three possible paths (traces) to reach goal state:

• Path 1 with cost = 10: S0
t[0]−−→ S1

t[5]−−→ S3
t[3]−−→ S4

• Path 2 with cost = 10: S0
t[0]−−→ S1

t[4]−−→ S3
t[3]−−→ S4

• Path 3 with cost = 8: S0
t[0]−−→ S1

t[1]−−→ S2
t[2]−−→ S3

t[3]−−→ S4

After modeling and encoding control guards to each transitions
of timed automata, DIVINE model checker will be able to compute
the fastest trace to the goal states which constitutes a time optimal
schedule, Path 3 with cost = 8: S0

t[0]−−→ S1
t[1]−−→ S2

t[2]−−→ S3
t[3]−−→ S4.The advantages of encoding control guards and execution

of model with DIVINE are: find the (near) optimal results fast
without exploring the full state-space; DIVINE can verify much
larger system models and finish the verification in significantly less
time in comparison with the well-known sequential model checkers.

C. Plant Specifications Modelling

The modelling and analysis of piece-wise manufacturing (PWM)
systems with varying topologies and resource/performance con-
straints can be supported by applying the UTA template based
modelling approach. We propose constructing the model from two
types of items, (i) from processes that are instances of a generic
machine template 3 and from (ii) passive resources/intermediate
products which are needed to initiate the process or which are
products of a process. The machine template is parametrized w.r.t.
process flow topology, energy constraints (function powerCon-
sumM()), machine performance characteristics (OpDur) and the
amounts of workpieces consumed and produced by each machine
during its processing cycle. Similarly, maintenance constraints are
introduced by instantiating the parameters such as maximum period
between required maintenance sessions (MtPeriod), the duration
of maintenance (MtDur) and human resource needed for the
maintenance. Due to the need for flexible modelling of processes
all time related parameters are specified as intervals with their
explicit lower and upper bounds. Time intervals for processing
cycle, maintenance duration and period are represented using arrays
indexed by machines to make the model adjustable for various
process configurations. The parameter M denotes the number of
machines in the process. The instances of Machine template are
processes such as Making Ingot & Preheating, Transfering Ingots,
Milling, Rolling & Finishing. The workpieces transferred between
these processes are Ingots, hot aluminium stripes, cooled stripes
and sheets.

A machine can be in one of the following states: idle, performing
a processing cycle, being under the maintenance, or out of order
due to the exceeded maximum allowed maintenance deadline. A
processing cycle can be started when there is available minimum
amount of resources (specified in the array in) needed for process-
ing, whereas workpieces can be of different type and of different
numbers (the elements of array in are indexed by machine numbers
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Fig. 3: Parameterized Model of manufacturing systems with maintenance constraints

and types of work pieces). Similarly, the array out specifies the
workpieces produced as a result of processing cycle.

To model the processed items between processing cycles the
numbers of items are represented as their quantities in virtual
buffers (array buf) and the buffers are indexed by the types of
workpieces. Second condition for starting a machining cycle is
the constraint that maximum allowed period between maintenance
activities has not been exceeded. Third constraint does not allow
starting the processing by machine when the maintenance session
is going on.

As stated above, the result of a machining cycle is a set of
new items that are either final products or consumables for other
machines. The triggering conditions of the machine maintenance
session are the availability of a relevant maintenance person and
the time passed after previous maintenance is within interval
[MinPeriod, MaxPeriod]. The array Maintainer stores the
reference to the required profile of a maintenance person for a
Machine. The array Available stores the numbers of service
persons of different profile currently available. While starting the
maintenance of a machine the corresponding number of available
maintenance persons is decreased in the array Available, and
increased respectively after the maintenance session is completed.

V. ANALYSIS AND MAINTENANCE PLANNING BY MODEL
CHECKING

Given a manufacturing system model built by using the instances
of the Machine template one can analyze various performance and
safety properties using parametric model checking [25].

A. Property 1

For instance, the query for estimating the feasibility of full
production plan can be stated as LTL formula: where buf[P-1]

]define Goal1 (buf[P-1] >= ProdPlan)
]define Goal2 (forall(i : int[0,M-1])

Machine(i).t[3] == true
]define Time (cl<=MaxDur)
]property G!(Goal1 && Goal2 && Time)

denotes the amount of end-products manufactured and ProdPlan
denotes the amount of end-products expected by the plan. Also,
plan the maintenance schedule of each machine atleast once
during production schedule. The counterexample trace generated
by DIVINE model checking tool provides the time-wise optimal
schedule of completing the ProdPlan and the maintenance
schedule during the manufacturing process. When the analysis

addresses the limited store problems similar reachability queries
can be specified and model checked with respect to the upper
bound of store volume instead of constant ProdPlan.

Optimal Schedule Plan:

Machine(0).Idle
t[0]=1−−−−→ Machine(0).prodCycle

t[1]=1−−−−→ Machine(0).Idle
t[0]=1−−−−→ Machine(0).prodCycle

−→ Machine(3).Idle
t[0]=1−−−−→ Machine(3).prodCycle

−→ Machine(0).prodCycle
t[1]=1−−−−→ Machine(0).Idle

t[0]=1−−−−→ Machine(0).prodCycle −→ Machine(3).prodCycle
t[1]=1−−−−→ Machine(3).Idle

t[0]=1−−−−→ Machine(3).prodCycle

Machine(0).prodCycle
t[1]=1−−−−→ Machine(0).Idle

Machine(1).Idle
t[2]=1−−−−→ Machine(1).Maintain

−→ Machine(3).prodCycle
t[1]=1−−−−→ Machine(3).Idle

−→ Machine(2).Idle
t[2]=1−−−−→ Machine(2).Maintain

−→ Machine(1).Maintain
t[3]=1−−−−→ Machine(1).Idle

−→ Machine(3).Idle
t[2]=1−−−−→ Machine(3).Maintain

−→ Machine(0).Idle
t[2]=1−−−−→ Machine(0).Maintain

−→ Machine(2).Maintain
t[3]=1−−−−→ Machine(2).Idle

−→ Machine(3).Maintain
t[3]=1−−−−→ Machine(3).Idle

t[0]=1−−−−→ Machine(3).prodCycle −→ Machine(0).Maintain
t[3]=1−−−−→ Machine(0).Idle Machine(3).prodCycle
t[1]=1−−−−→ Machine(3).Idle

B. Property 2

The production constraints can be stated as LTL formulas,
where ProdDemand and UnitReserve denotes the demand and
reserve of the number of processed items produced according
to particular production plan during the time interval MaxDur.
Considering MaxprodUnits to be the number of pieces produced,
the production and demand constraints are given by query:

]define Goal (MaxprodUnits >= UnitReserve + ProdDemand)
]define Time (cl<=MaxDur)
]property G!(Goal && Time)

Here, the counterexample trace generated provides the optimal
schedule and allows production plan to supply the demand by taking
care of reserved pieces stored in the buffer.
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Optimal Schedule Plan:

Machine(0).Idle
t[0]=1−−−−→ Machine(0).prodCycle

−→ Machine(1).Idle
t[0]=1−−−−→ Machine(1).prodCycle

−→ Machine(0).prodCycle
t[0]=1−−−−→ Machine(0).Idle

−→ Machine(0).Idle
t[0]=1−−−−→ Machine(0).prodCycle

−→ Machine(1).prodCycle
t[0]=1−−−−→ Machine(1).Idle

−→ Machine(1).Idle
t[0]=1−−−−→ Machine(1).prodCycle

−→ Machine(3).Idle
t[0]=1−−−−→ Machine(3).prodCycle

−→ Machine(0).prodCycle
t[0]=1−−−−→ Machine(0).Idle

−→ Machine(1).prodCycle
t[0]=1−−−−→ Machine(1).Idle

−→ Machine(3).prodCycle
t[0]=1−−−−→ Machine(3).Idle

C. Property 3

Similarly, the power balance constraints can be specified as LTL
formula:

]define Goal1 (forall(i : int[0,M-1])
powerConsumed_Global[i]) <= Power_G + Power_R

]define Goal2 (MaxprodUnits >= UnitReserve + ProdDemand)
]define Goal3 (forall(i : int[0,M-1])

Machine(i).t[3] == true
]define Time (cl<=MaxDur)
]property G!(Goal1 && Goal2 && Goal3 &&Time)

where Power_G, Power_R and powerConsumed_Global
denotes the power generated or bought, renewable generation in the
production plan, and demand (total power consumption) at time Cl,
respectively. Here, the fastest trace generated provides the optimal
power consumption for particular production plan during the time
interval [0, MaxDur].

CONCLUSION

This investigation proposed a method to schedule maintenance
operations using formal methods considering power balance and
production constraints in process industries. We have shown that
the production process optimization can be stated as a nonlinear
optimization problem involving binary and real variables. The
formulation includes maintenance schedules along with power
balance constraints. Second, a technique using formal methods was
proposed to check the feasibility of the scheduling problem, using
guided model checking (construction of control guards by offline
statistical analysis based on the given model and the test purposes)
algorithm with DIVINE model checker. Combining the solution
obtained from formal methods as initial feasible solution to the
optimization models is the future course of the investigation.
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Abstract—The automatic generation of witness and counterex-
ample is considered as the key advantage of model checking. It
provides a useful source of diagnostic information and a basis for
automated test generation. However, some of the witness traces
may be unreasonably long and highly redundant that makes
achieving test purpose even for small systems inefficient. This
paper presents a technique for automated generation of optimal
test cases from the specification model. The proposed technique
performs reachability analysis using DIVINE (a distributed-
memory model checker) to generate optimal test cases. It is
implemented in the form of control guards to guide model on-the-
fly towards test goals which are constructed offline by statistical
analysis based on model and test purpose. To prove correctness
and performance of the technique, we demonstrate a case study
on web application which performs several types of tests and we
compare results against UPPAAL.

I. INTRODUCTION

Extensive research has been done in the field of formal
verification of real-time systems to solve realistic scheduling
problems. The common idea of these works is to reformulate
a scheduling problem to a reachability problem that can be
solved by verification tools. Model checking is the well-
known representative of formal verification techniques. The
principle of witness and counterexample is considered as
the key advantage of model checking. It provides a useful
source of diagnostic information and a basis for automated test
generation. A principle problem with current model checking
tools is that a very large (generally infinite) number of test
cases can be generated from even small models. It is easy to
imagine small systems having enormous state spaces which
makes model checking a very expensive method in both time
and memory usage. Every additional variable can potentially
grow the state space of the system - this is called state
explosion problem.

From an industrial perspective, model checking is a promis-
ing tool not only for formal verification but also for automated
generation of test cases. It is helpful to improve the quality
and effectiveness of testing, and to reduce its cost. The current
state of practice is not only restricted to test automation but
focuses on automatically generating quality tests from models.
Academic tools like HyTech [3], Kronos [2], UPPAAL [1],
Spin [13] etc. offer different types of verification facilities (on-

line verification, symbolic verification, abstraction techniques,
etc.) which supports only small applications which may restrict
their use on industrial scale.

In [4], authors introduce an open-source distributed-memory
model checking tool-DIVINE [11] that propose a way to cope
with large state spaces by using more computation power.
Although there are many widespread tools for model checking
but none of them can properly use parallelization for better
performance [7]. Several experimental parallel model checkers
were developed, but they are not as popular as the conventional
sequential tools. It is often caused by the way of implemen-
tation and software distribution. For instance the distributed
version of UPPAAL is not publicly available neither as open
source application nor as ready-to-install package. It is very
hard to extend because it is not modular, i.e. a single change on
one place of the source code can imply many modifications on
other places [7]. Many other tools exist only as experimental
software that are even not well documented. To fill this gap the
distributed model checking tool DIVINE employs an aggregate
power to verify large systems models with better efficiency
and memory usage. Its verification power with distributed
algorithms is beyond the capabilities of sequential tools [11].
In this paper we present a technique for automatically gener-
ating optimal test cases for real-time systems using DIVINE
model checker as reachability analysis tool. The main contri-
butions of the paper are:

• Demonstration of the use of diagnostic traces generated
by DIVINE as a basis for automated test generation.

• Construction of control guards in the model for gener-
ating optimal traces. This is due to fact that DIVINE
provides only standard reachability, it always returns the
first trace it finds, it does not optimize the traces in any
way.

• Experimental results prove that the proposed approach
allows scaling up the scope of testing for models with
large state space.

This paper is organized as follows. Section 2 formally de-
fines modelling formalism, model checking with DIVINE
and LTL properties, Section 3 explains the implementation
of constructing the control guards and encoding them on
transitions, Section 4 demonstrates the experimental results

978-1-5090- /16/$31.00 ©2016 IEEE 15th Biennial Baltic Electronics Conference (BEC2016)
Tallinn, Estonia, October 3-5, 2016
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and its comparison with UPPAAL.

II. PRELIMINARIES

A. Modelling System and Verification with DIVINE

DIVINE is an explicit-state linear temporal logic (LTL)
automata-based verification tool for reachability analysis of
discrete distributed systems [10]. It employs an aggregate
power to verify large systems models with better efficiency
and memory usage [11], [12]. To run DIVINE and verify model
properties, a LTL file is provided alongside the model xml file.
LTL formula are loaded from this file and when a specific
property is chosen, it is negated and a Büchi automaton is
created. The Büchi automaton is multiplied with the timed
automata on-the-fly to create a transition system on which the
reachability analysis or accepting cycle detection algorithms
are run [4], [5]. DIVINE runs the reachability analysis to
find an error state or a time deadlocks. It performs universal
verification only, i.e. it decides whether all runs meet given
conditions. However, negation of existential formula is a
universal formula. Therefore, the CTL specification in the form
A[]p or A <> p can be directly translated into equivalent LTL
formula Gp or Fp respectively. E <> p can be translated to
G!p and E[]p to F !p, but due to the mapping to universally
quantified formuli the validation turns to falsification, i.e. the
formulas in CTL and corresponding formula in LTL are not
equivalent, in fact, they have exactly opposite meaning; hence
when DIVINE says a formula F !p does not hold in some
model, UPPAAL says that E[]p is satisfied and vice versa. In
the case of existential CTL formula that holds, DIVINE reports
a counterexample to corresponding LTL formula, which is
actually a witness for the original CTL formula [11].

B. Modelling

We demonstrate how a network of timed automata can
be used for modelling the System Under Test (SUT). Since
DIVINE does not support modelling formalism for real-time
systems, we preferred UPPAAL Timed Automata (UTA)[1]
which have become the standard modelling language for real-
time systems. Therefore we use UTA as the modelling lan-
guage and DIVINE model checker as the reachability analysis
tool. We model the SUT behavior using UTA patterns called

Fig. 1. Example of extended model

actions. We extend the model with set of boolean variables
called traps as defined in [6] and cost associated on each
transitions. The traps are encoded on transitions of model as
boolean update functions with initial value set to false. The
traps are executed when the transition is triggered during the
execution and set to true. A set of traps can be used to see the
path taken by test run. The cost of taking an action transition
is the price associated with the transition and the cost of a
trace is simply the accumulated sum of costs of its action

transitions. The objective is to determine the minimum cost
of traces ending in a goal state. An example of extended
model with trap and cost variables is shown in Figure 1.
We modelled the real SUT Registration form shown in Fig 2,

Fig. 2. SUT Model of Registration Form and Goal Model

which comprises of three fields i.e. enter username, password
and confirm password. The correct details enable the register
button. To test functionality of such system we need to perform
some positive and negative tests. Our goal is not to perform
all possible test cases which can be expensive as tester wants
to check only specific functionality. To get best optimal and
fastest test possible that checks specific functionality is the
first priority.

C. From Diagnostic Traces to Test Cases
A most common approach to the test generation is to

formulate an informal set of test purposes transformed into
some property of system such that model can be used to
generate test cases for each property. A test purpose is specific
property of system that tester wants to observe on the system
under test.

The test purpose can be directly formulated as a simple state
reachability of property (Goal.Found) also known as single
purpose test case generation. In Figure 2, a test purpose is
assigned with goal fun and the problem is to find an optimal
path that reaches the goal state. An example of test purpose
(LTL property) of model is expressed as:
�define objective (Goal.Found) �property G!(objective).
Here �define gives a symbolic name for an atomic proposition,
and �property specifies a single LTL formula.

• Test-Purpose1: Verify that the after entering the valid
email, password enter in confirm password field match
to correct password.
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• Test-Purpose2: Verify that user can register successfully.

Test purpose 1 and 2 can be formulated as reachability
property with LTL formula G!p (formula described in sub-
section A) i.e. G! (Goal.Found) which means eventually the
registration form automaton enters the state valid email and
password and thereafter it eventually enters the state correct
details entered.

Generally, on large scale systems testers are interested in
generating a test suites that guarantee that the SUT model is
tested thoroughly and covered in a certain way. To achieve
certain level of quality and thoroughness in test generation
process the model should be covered by test runs so that
possibly many test purposes (goal fun) that can label on
transitions/locations are visited. Such test cases or test suites
can be generated automatically from natural coverage criteria
such as edge or transition coverage of timed automata model
for more reading refer to [9]. We feed the SUT and GOAL
(test purpose) models to DIVINE to verify the property of SUT
using command line options. When computing the traces that
satisfy reachability given properties, DIVINE provides only
standard reachability i.e. it always returns the first trace it finds.
This might not be the shortest/fastest test case since it does
not optimize the traces in any way. Also, it does not terminate
upon finding the path to the reachability problem and continues
until there are no more states, alternatively model checker ends
in deadlock which is common issue with other model checking
tools (UPPAAL) as well. Consequently, DIVINE performs the
random exploration of the state space, which generates the
test cases that may be unreasonably long and may leave
the test purpose unachieved. We have run the query several
times for SUT model shown in Fig 2 using DIVINE command
line options and to reach the goal by traversing the different
transitions and generated traces are as follows:

• Traces generated 1: Goal = Found, cost = 24;
Initial s2

t[0]−−→ Junction1 s0
t[1]−−→ main s10

t[4]−−→ AllInvalid s4
t[13]−−−→ AllInvalid s4

t[5]−−→
ValidEmailinserted s5

t[25]−−−→ Historyentry s11
t[20]−−−→

ValidEmailinserted s5
t[8]−−→ ValidEmailandPassword s7

t[18]−−−→ ValidEmailandPassword s7
t[10]−−−→ CheckDetails s9

t[2]−−→ Correctdetailsentered s1
t[3]−−→ Final s3 done.

• Traces generated 2: Goal = Found, cost = 24;
Initial s2

t[0]−−→ Junction1 s0
t[1]−−→ main s10

t[4]−−→ AllInvalid s4
t[13]−−−→ AllInvalid s4

t[5]−−→
ValidEmailinserted s5

t[8]−−→ ValidEmailandPassword s7
t[18]−−−→ ValidEmailandPassword s7

t[27]−−−→ Historyentry s11
t[21]−−−→ ValidEmailandPassword s7

t[10]−−−→ CheckDetails s9
t[2]−−→ Correctdetailsentered s1

t[3]−−→ Final s3 done.

The traces generated show that model checker chooses the
longer path to reach the goal with cost = 24 instead of short-
est/fastest path: Initial s2

t[0]−−→ Junction1 s0
t[1]−−→ main s10

t[4]−−→ AllInvalid s4
t[5]−−→ ValidEmailinserted s5

t[8]−−→ ValidE-
mailandPassword s7

t[10]−−−→ CheckDetails s9; which costs =

12 is optimal to reach the goal. Another issue we found is
that DIVINE does not stop immediately after finding goal, it
continues until a deadlock.

To overcome the problem of long test cases which are
not optimal, we followed the reactive planning tester (RPT)
algorithm discussed in [6] and extend it to generate sub-
optimal (w.r.t. given planning horizon) test cases which find
the minimum cost of reaching a goal state and stop the search
as soon as it reaches to goal state.

III. ALGORITHM FOR GENERATING CONTROL GUARDS

A technique of finding optimal traces for test is implemented
in the form of control guards which are generated based on
RPT algorithm. A control guard of a transition of the model
is constructed to meet the following requirements:

• each transition to be enabled by its control guard must
guide the test run to locally optimal w.r.t achieving the
test purpose from the current state of the model and

• the model should terminate immediately after the test
purpose is achieved (Goal.Found).

The control guards for each transition are constructed by
offline static analysis based on the given model and the test
purposes. The generated control guards are conjoined with
original guard conditions on transitions of the model and feed
to DIVINE where controls are evaluated in every state when
the selection between alternative outgoing transitions should
be made. The execution of the model with control guards finds
the fastest and efficient path to goal state and leads to a witness
trace with optimal cost.

IV. EXPERIMENT & RESULTS

In the previous section we discussed the basic idea used
for constructing control guards to compute optimal test cases.
In this section we present experiments performed on SUT
model. We feed the models to both UPPAAL Cora [14] and
DIVINE and compare results obtained from these model check-
ers. It is well known that UPPAAL Cora provides optimized
results if we ignore state explosion problem on large scale.
However our aim is to show better performance and efficient
memory usage with DIVINE for large scale models used in
industries. We extend the SUT model shown in Figure 2
with control guards on each transition and feed to DIVINE.
The generated traces are: Initial s2

t[0]−−→ Junction1 s0
t[1]−−→

main s10
t[4]−−→ AllInvalid s4

t[5]−−→ ValidEmailinserted s5
t[8]−−→

ValidEmailandPassword s7
t[10]−−−→ CheckDetails s9; which is

optimal with minimum cost = 12 and DIVINE stops further
execution immediately reached to goal state. In comparison to
above results, UPPAAL Cora performs the similar actions and
generates the fastest traces with same minimum cost = 12. To
compute the performance of our implementation, we have run
the several tests on different models and properties. Variants of
registrationForm.xml, lightSwitch.xml (Light Switch On/Off
model) and telema.xml (Telema model) are implemented and
the properties being verified on them are G!(GOAL.FOUND).
Here, registration form model is same as shown in Fig 2. Light
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TABLE I
EXPERIMENT RESULTS WITH DIVINE AND UPPAAL

Model
DIVINE

Time Memory State
[s] [KB] count

UPPAAL
Time Memory

[s] [KB]
regForm1p 0.042 36576 14 0.025 32168
regForm2p 0.062 36748 18 0.004 32176
regForm3p 0.05 36740 12 0.003 33584
lightSwitch1p 108 36524 8021 73.97 2033620
lightSwitch2p 840 45024 64021 * *
telema1p 0.70 124612 10 * *
telema2p 72 131132 75 * *

p —LTL property expressed as G!(φ)
* —Out of memory.
See http://bugsy.grid.aau.dk/bugzilla3/show bug.cgi?id=63

Switch model is simple model with 3 states and 7 transitions
consisting of 4 loops. The idea is to switch On and Off light
1000 times or more to check its durability and generate tests
for the same. Telema model is huge model with 790 states
and 1432 transitions which model the behavior of real system
(http://telema.ee/en) where tests cases/suites are generated for
different test purposes. These models are also available in [8].

All tests were performed on machine with Intel(R) core(tm) i5-
4200m cpu@2.50ghz using DIVINE 3.3.2 release and UPPAAL
4.1.19. Table 1 shows the time and memory required to
perform verification using DIVINE and UPPAAL and number
of states visited by DIVINE.
The table 1 summarizes the results. The results for small

models turned out to be as expected —DIVINE consumes
more memory but requires comparable amount of time. This
happens due to DIVINE executable alone needs around 140MB
of memory to run and lack of memory optimizations because
DIVINE runs with default setting (OWCTY or reachability
algorithm) whereas UPPAAL runs on memory optimizations.
Also above models use meta variables, which are considered
as regular variables by DIVINE. It means that DIVINE might
have generated larger number of states than UPPAAL. On
larger models or models with loops/cycles, the DIVINE shows
quite varied results. When run on light switch model with test
purpose to switch On/Off light for 1K times DIVINE need less
memory than UPPAAL but is slower than UPPAAL. On the
other hand, results for lightSwitch2.xml (On/Off 8K times)
show that DIVINE performs well on larger variants where
UPPAAL shows out of memory. Similarly for Telema model
UPPAAL shows out of memory because of large state space
where DIVINE shows satisfactory results.

V. CONCLUSION

In this paper, we have presented a technique based on RPT
algorithm originally introduced in [6] for generating optimal
test cases using DIVINE model checker. We demonstrated
that counterexample generated by DIVINE can be a useful
source of diagnostic information and a basis for automated
test generation. However, DIVINE provides only standard
reachability that always returns the first trace it finds, and
does not optimize the traces in any way. We presented a

technique that performs reachability analysis using DIVINE
to generate optimal test cases from extended specification
model with encoded control guards on transitions. To show
the correctness and performance of the technique, we demon-
strated web application case study on which we performed
several types of tests and compared the results against UPPAAL
Cora. We outlined the limitations of model checking tools
which can generate test cases only for small sized systems
(due to state explosion problem) and presented the DIVINE as
powerful distributed parallel model checker whose verification
power with distributed algorithms is beyond the capabilities of
sequential tools. However we found several ways to improve
our technique and demonstrated its extendability for testing
large scale real-time systems.
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• Model-Based approach for design and verification of IIoT is proposed.
• Multiple-view modelling approach is used in model-based design and verification.
• Work-flow for model-based design is presented.
• Demonstrates the MBE approach in processing industry.
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a b s t r a c t

This investigation presents an Industrial Internet of Things (IIoT) architecture and a Model-Based En-
gineering (MBE) approach for design, verification, and auto-code generation of control applications in
process industries. The IIoT architecture describes the hardware components, communication modules,
and software. It emerges as a major enabler for providing open connectivity to process industry which
provides greater data-aggregation, visibility, availability, flexible control, and cloud-connectivity. The
MBE approach is based on multiple views of the systems with each domain model describing a particular
view. The multi-view modelling approach is used to perform design and verification of the IIoT enabled
control in process industries. We show that such an integration of MBE, cloud-computing, and IIoT
provides certain desirable features such as plug-and-play control and on-the fly verification which are
lacking in the process industry. The proposed MBE approach and IIoT architecture are illustrated on the
quadruple tank process, a benchmark problem in control. Our deployment results verify the benefits
envisaged by IIoT, cloud, and MBE integration.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Combining the Internet of Things (IoT) with cloud-intrinsic
capabilities can transform the way industrial automation systems
are designed, deployed and managed currently in process indus-
tries [1–3]. While the cloud offers capabilities such as virtualiza-
tion, scalability, lifecycle management, and multi-tenancy, the IoT
compliments it using its open connectivity and emergent comput-
ing environments (e.g., fog computing). In addition, the cloud offers
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E-mail addresses: muthukumar.n@sastra.ac.in (Muthukumar N.),
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(K. Ramkumar), Deepak.pal@ttu.ee (D. Pal), juri.vain@ttu.ee (J. Vain),
srini@ieee.org (S. Ramaswamy).

attractive deliverymodels such as software-as-a-service, platform-
as-a-service, and infrastructure-as-a-service with different de-
ployment models. Consequently, many desirable features such as
increased flexibility, adaptability, data-visualization, enterprise-
wide communication, intelligence, and agility can be realized on
low-power electronic devices. Besides, the cloud can host a variety
of auxiliary services that can enhance the automation capabilities
and promote smart manufacturing. Many recent investigations
have stressed the need for transforming the cloud–IoT integration
to deployment (see, [4–6] and references therein). However, indus-
trial automation lacks engineering approaches and tools to accom-
plish this integration. Moreover, their deployment possess strict
challenges due to hardware limitations of the IoT components
such as real-time performance, reliability, and safety. Arguably, the
IoT-based devices cannot fully substitute the legacy automation

https://doi.org/10.1016/j.future.2018.12.012
0167-739X/© 2019 Elsevier B.V. All rights reserved.
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systems, but they can be deployed in tandemwith them to perform
specific/specialized tasks. This requires frameworks that consider
both legacy and IoT devices in one framework.

Engineering industrial automation systems has been focus of
many investigations and methods based on component-based [7],
formal models [8], agent-based [9], service-oriented architecture
(SoA) [10], design patterns [11] and Model-Based Engineering
(MBE) [12] have been proposed. Vyatkin [13] provides a good re-
view on these approaches. Notwithstanding these developments,
the automation software complexity and the functionalities re-
alized using them have grown steadily. This, the industries dis-
cern, will increase the design, validation and verification costs
significantly. Moreover, design upgrades and post design vali-
dations are proving costlier. In this backdrop, the Model-Based
Engineering (MBE), an approach using models to design software
and perform component testing emerges as a promising solution.
As they automate the design process through auto-code generation
capabilities. Further, design validation can be performed early
during the life-cycle. The use of MBE approach for code-generation
in legacy industrial automation systems has been studied in [14].
Similarly, to handle the complexity of industrial automation sys-
tem with entangled behaviours from various domains, artefacts,
and interactions, multi-domain models have been studied in [15].
As for Industrial IoT, an UML (Unified Modelling Language) profile
for IoT in manufacturing industry was presented in [16]. The use
of semantic technologies adding meaning to machine-to-machine
communication using ontologies of interlinked terms, concepts,
relationships and entities was investigated in the context of IIoT
in [17]. These investigations either model legacy systems or IoT
systems without involving cloud features.

More recently, combining cloud-intrinsic features with IIoT for
providing enterprise-wide connectivity has been studied in [18,
19]. The IMC-AESOP project [20] extended the engineering meth-
ods based on Object Oriented and Aspect Oriented approach to in-
dustrial automation [21] using formal modelling extensions. Sim-
ilarly, the use of agent-based approaches for cloud integrated IoT
systems was studied in [22]. However, the use of MBE approach
for cloud-based IIoT starting from the model to the deployment is
currently not available to our best knowledge.

This investigation addresses this research gap by proposing a
multi-view model of industrial automation and an MBE approach
for design and verification of cloud-based IIoT implementations
in process industries. The main contributions of this investigation
are: (i)An IIoT architecture that promotes cloud-based engineering
of the process control applications, (ii) Multi-view models for
industrial automation systems in process industries that include
various participating domains, artefacts, and interactions, (iii) A
MBE approach for designing and verifying cloud-based IIoT, (iv) a
workflow for performing Model-Based Design (MBD) and verifica-
tion in emergent IIoT paradigm to realize sophisticated controllers,
e.g., model predictive controller [23], (v) Present the advantages
of the proposed architecture to perform plug-and-play control,
on-the-fly verification, and smart manufacturing, and (vi) Demon-
strate theMBE approach on a quadruple tank process applications.

The paper is organized into six sections. Section 2, presents the
IIoT architecture and the MBE approach is discussed in Section 3.
The cloud-enabled flexibilities are discussed in Section 4. Section 5
presents the deployment results of the IIoT. Conclusions and future
course of investigation are discussed in Section 6.

2. Proposed IIoT architecture

The architecture that enablesMBE for cloud-based IIoT is shown
in Fig. 1. It consists of three major blocks: plant-level automation,
the IIoT gateway, and the automation cloud. The plant-level au-
tomation consists of conventional Programmable Logic Controllers

(PLCs) and IoT based commercial-of-the-shelf (COTS) target plat-
form. The PLC interfaces to the sensors using conventional in-
dustrial protocols (e.g., Modbus). While the COTS platform uses
TCP based protocols such as Message Queue Telemetry Transport
(MQTT) or Advanced Message Queuing Protocol (AMQP), wireless
and other forms of dedicated communication (e.g., I2C) to interface
the field devices. A gateway is used to communicate with COTS
target platform and legacy protocolswith an incompatible physical
layer (e.g., Profibus PA). OPCUA is used for aggregating information
from the conventional PLCs and field devices due to its prevalence
in the automation industry. Further, its security and platform in-
dependence makes it a good choice for the IIoT.

The IIoT gateway has interfaces on one side to the plant-level
automation, and on the other to the cloud. The IIoT core is the
main component of the IIoT gateway that orchestrates different
protocols, devices, applications and software routines. It collects
data fromOPCUAusing a client and transfers to other devices using
MQTT or AMQP extensions. The MQTT extensions, (i.e., services)
are used to collect information from the MQTT broker (an entity
that supplies information to all devices subscribing to it). The
OPC UA client and MQTT extension perform both device and data
management within the IIoT gateway. The FTP, web interfaces and
web applications are used to communicate to plant-level devices
and cloud. The IIoT gateway provides extensions for the cloud
and hardware devices, data persistence (DP) for securing data
delivery in events of communication failures, and a secured FTP
for enhancing the application security. Here it should be clarified
that the MQTT and AMQP are shown as communication links only
for illustrative purposes of this investigation. The IIoT gateway can
be used for other protocols as well with suitable modification.

The cloud-intrinsic features — DP, virtualization, communica-
tion interfaces, multi-tenancy, auxiliary application support and
others are offered by the automation cloud. The cloud offers vir-
tualization through model repositories and emulators. The model
repositories consist of the processes and controller instances, topol-
ogy, behavioural models of the devices and all other aspects re-
quired for performing MBE. Employing the communication inter-
faces, the cloud talks to the IIoT gateway through the MQTT and
AMQP. To compliment the IIoT gateway, the cloud has FTP, HTTP
and external interfaces for enabling file transfer, web applications
and using third-party applications. The IIoT architecture simplifies
the communication between legacy devices and IoT devices in the
plant-floor and enables open connectivity between plant-floor and
cloud. Therefore, the architecture promotes the implementation of
the cloud-based IIoT.

3. Model driven engineering for Industrial Internet of Things

With the emergence of IIoT, the heterogeneity and networking
capability of the hardware, and the proportion of system function-
ality realized using software has increased stupendously leading
to an increase in the design space. Coupled with these develop-
ments, market influences requiring smart and flexible manufac-
turing are obligating a more flexible automation that provides up-
grades/modifications with minimum engineering effort. As stated
earlier, the MBE approach is more suitable in such scenarios as it
raises the abstraction levels and automates the labour-intensive
and error-prone tasks in the design, e.g., code-development [13].
This not only brings down thedesign cost, but enhances reusability,
efficient data exchange, and verifiability of the system. Above
all, the MBE promotes MBD and Model-Based Verification (MBV).
Using these methods the design, validation and verification can be
automated to a greater extent even from the cloud. However, the
model of the industrial automation system by itself is complex due
to the interaction of multiple domains and heterogeneous entities.
There is a lack of tools, formalisms and semantics capable of incor-
porating semantic relations among the disciplines. Developing a
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Fig. 1. Proposed IIoT architecture.

meta-model encapsulating all aspects of an industrial automation
system is rather difficult. More recently, the use of multiple views
for industrial automation systems have been investigated for in-
dustrial production units [24]. This investigation uses the multi-
viewmodelling approach for performing MBE for cloud-based IIoT
solutions.

3.1. Multi-View model for IIoT

Multiple viewsmodel is an emerging concept for building com-
plex systems wherein different stakeholder’s viewpoints are cap-
tured as domain models or views [25]. The multi-view model
of cloud based IIoT has different but entangled views—devices,
architecture, information, software, control, domains, behaviour
and others. These different viewpoints need to be considered si-
multaneously for engineering IIoT systems. Consequently, system
integration emerges as a key challenge due to potential contra-
dictions or overlapping information among the views. Therefore
model transformations and mapping are required for engineer-
ing systems with multiple views. This investigation uses a meta-
modelling approach for capturing the different views.

The multi-view model of the industrial automation system and
the different tools for obtaining these views are shown in Fig. 2.
To integrate these different views, this investigation uses the Au-
tomationML (AutomationMarkup Language)1 (AML) for providing
the topology view and uses it as ameta-model of the IIoT based au-
tomation systems [26]. The process industries with its various pro-
cess stations are modelled in the AML using suitable abstractions.
The AML provides XML/CAEX (Computer Aided Engineering Ex-
change) formats for the topology view and in addition provides the
communication view through the InterfaceLibraryClass, wherein
additional interfaces specific to IIoT are defined. The process views
are obtained from the P and ID diagram, the controller design
is modelled in Simulink using state-space/transition formalisms,
the OPC UA provides the information models, the software design
is modelled using UML and behavioural models based on state-
charts. In addition to these models, there can be domain views
that capture the formalisms and artefacts of the different domains
(electrical, mechanical) modelled using suitable software tools,
e.g., Dymola. The multi-view model forms the basis on which the
MBD and MBV are performed.

1 https://www.automationml.org/.

3.2. Workflow for model-based design and verification

The workflow for performing MBD and MBV from multi-view
models is illustrated in Fig. 3. The P and ID’s process view defined
in the IEC 62424 standard is used as the starting point. It has
three basic concepts: process control engineering requests (PCE-R),
process control engineering function (PCE-f), and process control
loop (optional). The PCE-R defines the requirements of the process
control equipment. The PCE-R collects all information about the
functional requirements. PCE-R and its unique ID are important
specifications for the requirements diagram.

The AML model uses the PCE-R to create a meta-model of the
entire process that can be later used to map different models. The
ability to produce neutral XML/CAEX schemamakes AML a suitable
tool for information exchange between engineering applications.
The InstanceHierarchy represents the entire automation project
and it has the child nodes called the InternalElements that hold the
attributes of the different properties of the object and have objects
that hold the attributes need to describe them. Here, process con-
trol loop implies the unitary process description, e.g., level control
of the tank. Each object in the InternalElements is associated with
a RoleClassLibrary that provides the functional view of the object,
an useful aspect for semantic classification. In addition, there is the
SystemUnitClassLibrary defining the specific aspects of the process
control application, e.g., height of the specific tank.

The communication interfaces are modelled using the AML ba-
sic InterfaceLibrarywhich is extended using four additional classes
for the IIoT applications: IIoTEndPoint, CloudEndPoint, ProcessEnd-
Point, and LogicalConnectionEndPoint. The IIoTEndPoint contains
special plugs to model Ethernet-based connectivity of IIoT based
TCP/IP, MQTT, AMQP, RS 232, Modbus, and other communica-
tion available with the COTS target platform and device. The
CloudEndpointdefines the interfaces for cloud communication such
as the FTP and HTTP services, AMQP and MQTT for data-transfer.
The ProcessEndPoint defines the traditional connectivity with non
TCP/IP based protocols such as the Profibus using the gateway that
delivers TCP/IP messages to the IIoT. The LogicalConnectionEnd-
points model the communication between PLC and IIoT, master–
slave, Bus, etc. In addition, we define CommunicationRules that
enforce logically correct connectivity, e.g., MQTT to TCP/IP based
devices. These interfaces model the physical interconnection of
the components. The annotated AML CAEX schema thus generated
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Fig. 2. Multi-view model of IIoT.

Fig. 3. Workflow for MBE based design of IIoT.

represents the multi-view model of the automation systems. The
COTS target platform is mapped as resources to specific process
control instances using UML models. The multi-view models and
the annotated requirements are the input to the model-based
design and verification steps.

The CAEX schema is then annotated with additional user-
defined requirements either using UML models or textual repre-
sentations. The requirements are generated for both the design
and verification. The MBD and MBV approach used to design and
verify automation systems will be detailed in the next sections. Of
particular interest to this investigation is the design of MPC from
the requirements. As MPC is emerging as a workhorse for smart
manufacturing and one of the sophisticated control algorithms
executed in process industry.

3.3. Model based design for cloud-based IIoT

The PLCs are the processing units for performing control in
process industries and they are programmed using IEC 61131
standard. The role of MBD approach for auto-generating code for
IEC 61131 based process automation has been studied in liter-
ature [14]. The PLCs are bit inflexible due to real-time require-
ments and sophisticated controllers such as MPCs are usually im-
plemented on dedicated hardware platforms. Even in literature,
the MPC implementation on PLC is quite scarce. With the emer-
gence of IIoT, these sophisticated controllers can be realized in
IIoT hardware and executing conventional control in traditional
PLC systems. In this scenario, the MBD approach should be able
to automate the code generation of sophisticated control schemes
such as MPC. Therefore, for the rest of the section, we focus on the
auto-code generation for MPC, rather than executing simple logics
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or control actions such as Proportional Integral Derivative control.
This brings down the cost and development time significantly.

The workflow for performing MBD-based design for cloud in-
tegrated IIoT is shown in Fig. 4 and it follows the V-model. It
has four validation stages: Model-in-the-loop (MIL), software-in-
the-loop (SIL), processor-in-the-loop (PIL) and Hardware-in-the-
loop (HIL), before actual deployment. The real-time performance is
validated through these different steps, an important requirement
for process control applications. In the design flow requirements
in the form of objective function (e.g., track a reference signal with
minimum energy) and constraints (e.g., the maximum voltage of a
pump) are fed as the requirements to the control design. The MPC
parameters are computed based on the requirements using the
design equations, (refer Appendix A for MPC models). Then both
controller and process are simulated in a virtual environment to
verify the control design, the procedure is called MIL. The model
used is called platform independent model (PIM).

Following MIL, the target platform is identified, and the soft-
ware code for the specific target is generated using an auto-coder.
This model is called PDM, and the software emitted by the auto-
coder is used to run the SIL, wherein the platform dependent
software code and process models are simulated in virtual envi-
ronment. This validation procedure tests the software code. The
SIL code is ported to the target hardware, and tested on the virtual
process with sensor and actuator models in the PIL validation,
verifies the hardware capabilities, e.g., sampling time. Finally, the
controller code working on the target hardware is interfaced to
the sensors and it controls the virtual model of the process in the
HIL. The validations are iterative procedures and design changes
can be made based on the results. A controller design successfully
validated in the four tests is deployed in the process industry
with the control action performed by the target hardware. Two
important observations here are:

1. There are not many auto-coders available for MPCs as they
involve optimization solvers. These solvers face numerical
accuracy, computational complexity and other numerical
issues. This investigation used the jMPC,2 a MATLAB based
toolbox for auto-code generation for MPCs.

2. Combining the virtualization andmulti-tenancy capabilities
of cloud, when emulators of the specific hardware are in the
cloud, then MBD can be performed from the cloud and the
solution can be deployed in process industries.

3.4. Model based verification of IIoT

To perform model-based verification, the formal requirement
specifications generated by AML (XML/CAEX schema) are mapped
to abstract behavioural models (networks of timed automata). The
automata model of the system under verification describes how
the system is required to behave. The model, built in a suitable
machine interpretable formalism is fed to model checker which
verifies the model w.r.t properties of the specification. There are
multiple different formalisms used for building formal require-
ment models. Our choice is Uppaal timed automata (UTA) [27]
because the formalism is designed to express the timed behaviour
of state transition systems and it has been previously been applied
successfully to verify industrial automation systems in [28].

In the second step, the model templates for the component
models are defined. The component models are modelled using
UTA templates. The timed-action pattern shown in Fig. 5 is used
to model the requirement specification following [29]. These are
called the action patterns and timingwrapper have been presented

2 http://www.i2c2.aut.ac.nz/Resources/Software/jMPCToolbox.html.

Fig. 4. MBD workflow.

Fig. 5. A synchronous-parallel composition of time action pattern cf [29].

in [28] for industrial automation systems. The timing patterns are
interlaced with the component models of the process industry,
e.g., pump. The component models with their timing interfaces
for a quadruple tank process is illustrated in Fig. 6. A detailed
discussion on the models is presented in the results section.

In the third step, the model checker is used to verify the formal
model w.r.t to a requirement specifications (properties). Like the
model, the properties are expressed in a formal well-defined logics
such as subset of CTL (computation tree logic) as in [29]. The CTL
offers several temporal operators to express the requirements as
CTL formulae can be classified by properties they express as reach-
ability, safety and liveness, detailed analysis of these properties are
provided in [29].

4. Cloud-intrinsic features for enabling flexibility in IIoT

This section highlights the opportunities in enhancing the per-
formance of industrial automation by combining cloud capabilities
with IIoT. In particular, three cases are considered: (i) plug-and-
play control, (ii) smart manufacturing, and (iii) on-the fly verifica-
tion.

4.1. Plug-and-play control

Vast control designs in industries aremonolithic, i.e., entire con-
trol system needs to be changed, when a sub-system or hardware
modifications are performed. As flexibility is emerging as a key
requirement, control objectives of the plant change with time or
even within production processes. In such scenarios, it is desirable
to change control laws without diminishing existing controllers.
The IIoT provides away to flexibly change control algorithms using
cloud services. Theworkflow for performing plug-and-play control
is shown in Fig. 7. To guarantee security of the applications, the file
transfers for the plug-and-play control happens using secure FTP,
while for less important actions using FTP. In these scenarios, the
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Fig. 6. Parameterized models of quadruple WaterTank process.

Fig. 7. MBD based plug-and-play control for IIoT.

user informs the cloud through a web interface about the changes.
This is transmitted using HTTP interface of the IIoT gateway to the
cloud. The cloud’s HTTP interface receives this request. There are
three components in the request, process, controller and hardware
specification. The process model informs which of the process
loop requires an upgrade, the controller instance/requirements,
and the target hardware. The cloud then instantiate the virtual
environment to obtain the process model, requirements for the
specific controller, and controller design in PIM. It generates the
PSM based on the controller specified by the user and ports it into
the emulator and validates the design. Once the validation tests
are successful, the control code is transmitted via IIoT gateway’s
FTP interface to the COTS embedded controller of the controlled
process. Now, the control code is deployed on the hardware.

4.2. Smart manufacturing using cloud’s auxiliary services

Computing power of IoT devices restricts their applications
to perform computationally intensive task and is a major hin-
drance in the deployment of IIoT. Typically in smart manufactur-
ing, data-mining models are used for creating knowledge from
raw-data, both intrinsic and extrinsic to process industries. For
example, forecasts on energy prices can be obtained using the data
mining model and then integrated with optimization routines to
perform smart manufacturing. Such data-mining models requires

large memory for storing data and execution. They can also be
available as third party applications as APIs. Exploiting the cloud
features, the data-mining algorithms can be implemented in the
cloud and knowledge aggregated can be transferred to the process
controller using IIoT gateway using the MQTT and AMQP inter-
faces. Such aggregated knowledge can be embedded in the MPC
controller for making knowledge based and optimization driven
decisions.

4.3. On-the fly verification in the cloud

When hardware like sensor or actuators are updated, gener-
ally the control loop’s timing performance is changed and the
controller implementation needs to be modified as sampling and
quantization levels have changed. If the devices match, such a
scenario may not arise. But, the problem is faced with most legacy
automation systems. When a sensor or actuator different from the
one used is changed, the performance of the IIoT has to be verified.
In our IIoT framework, the model templates (behaviour models) of
the different components and their timing interfaces are available
in the cloud’s model repository. In case, a particular specification
is unavailable for a model template, it is obtained from the field
using a web application or FTP. These model templates are then
composed and the MBV workflow is implemented from bottom
to check whether the timing or safety requirements are met. This
allows dynamic configuration of components in IIoT.

5. Results

5.1. Case study: Quadruple tank process

To illustrate the MBE approach for cloud-based IIoT, this in-
vestigation uses the quadruple tank process (QTP), a benchmark
control problem in process control. The schematic of the QTP and
its prototype used for deployment of IIoT is shown in Fig. 8. The
QTP consists of four uniform sized cylindrical tanks with cross-
sectional area A and outlet cross-sectional area a. In addition, there
are two identical pumps namely Pump 1 and Pump 2. Four valves
namely, HV 1, HV 2, HV 3 and HV 4 are provided to regulate the
inlet liquid flow to the tanks. The objective of the low-level control
is to maintain the liquid level in Tank 1 (h1) and Tank 2 (h2) at pre-
defined value called the reference by varying the flow rate (f ) of
Pump1 and Pump2, by adjusting their supply voltageV1 andV2, re-
spectively. The equationsmodelling the dynamics of QTP are given
in Appendix B. To illustrate the use of the proposed approach, three
use-cases are presented here: (i) Model-Based Design, (ii) plug-
and-play control, and (iii)Model-Based Verification. The Raspberry
PI 3 was chosen as the target hardware for our experiments.
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Fig. 8. Schematic and the process station of the quadruple tank process.

Fig. 9. MIL, HIL and SIL validation for M1.

5.2. Use-case: 1 model based deign

The MBD approach was used to design four different MPCs
M1 − M4 described in Appendix A. The MBD workflow shown
in Fig. was used to generate the auto-code using jMPC toolbox
for the target embedded platform, Raspberry PI 3 in our case. The
requirements were generated from the multi-view model of the
QTP generated as shown in Fig. 2. The requirements are: offset-
free tracking, faster response time (rise time) and settling time
for the levels in the tank, i.e., h1 and h2. With MBD, the four MPC
models M1 − M4 were studied. Our results showed that M1 met
the design requirements and it was validated using MIL, HIL, and
real-time deployment. The controller was deployed on the target
hardware and it was used to control the process. The results ofMIL,
HIL and real-time deployment are shown in Fig. 9. While the MIL
and HIL validated the results, small pulsations in the output are
seen due to sensor noise from the environment that impacts the
process performance. The other MPCs M2- M4 did not meet the
requirements that were identified either during MIL, SIL or HIL.
This results shows the ability of MBD approach to generate auto-
code from requirements for even sophisticated controller such as
MPC and to detect design issues early during the design phase,
eliminating costly design upgrades later. It should be pointed here
that using the emulator stack, theMBD approach can be performed
in the cloud as well, thereby enabling cloud-based engineering of
the solution.

5.3. Use-case:2 plug-and-play control

The user sends information on the requirements, hardware
controller, and the process to the cloud. The cloud’s virtualization
and persistence services are used to generate the model templates
for the process and controller as a PIM and the auto-code is emitted
from the PSM for the target hardware. This is followed by SIL
and the virtualization ability of the cloud is used to instantiate

Fig. 10. Plug-and-play control in IIoT.

Table 1
Execution time of auto-generated code and CVXGEN code for the MPC models for
25 iterations.
MPC Auto code (s) CVXGEN code (s)

M1 24.8 198.77
M2 25 162.308
M3 24.9 113.24
M4 25 144.55

an emulator to perform the HIL. On successful validation of the
requirements, the control code file is transferred using secure FTP
interfaces of the cloud and IIoT gateway to the specific target
platform. The plug-and-play deployment of the QTP is shown in
Fig. 8 and the results obtained are shown in Fig. 10. One can verify
that the plug-and-play control is performed and the requirements
are met by the deployment. A slight pulsations are seen in the
levels due to sensor’s inertia and noise.

The computation time the plug-and-play control for the MPC
modelsM1−M4 is comparedwith the code generated by the auto-
coder CVXGEN3 for the target hardware within the process station
(without file transfers). The computation times for 25 iterations
of these codes are shown in Table 1. It can be seen that the auto-
generated code for the target platform is lesser than CVXGEN code
directly ported to the target hardware. This is due to run-time com-
pilation that happenswith the Python code as against compiled ex-
ecution of the auto-generated code. This results demonstrates the
plug-and-play capabilities introduced due to cloud’s capabilities.

5.4. Use-case:3 model based verification

The UTA model for the quadruple water-tank process (QTP) is
composed of automata of water tanks, sensors, pumps and con-
troller are shown in Fig. 6. Themodel-templates using actionmodel
patterns and composition operators, that are used to construct the
formal model of timing variations, and timing-wrapper is used in
case of periodic operations. The composed model of the QTP with
its component and timing interfaces is shown in Fig. 11.

5.4.1. Verification of requirement specifications
This investigation verifies QTP performance in twomodes:min-

imum and non-minimum phase. In minimum phase mode, the
level of Tank 1depends on the flow from Pump1 and that of Tank 2 is
influenced by Pump2 and this is a stable operation mode. While in
non-minimum phase, the level of Tank 1 depends on the flow from
Pump2 and that of Tank 2 depends on Pump1 leading to an unstable
mode. To facilitate verification, the requirements specifications
is mapped to the formal specifications of the QTP (for notations
please refer the Nomenclature section).

3 https://cvxgen.com/.
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Fig. 11. Simulation and Generated Traces for above properties.

The level of the tankw_Lev and the additional parameter TOver
are used to denote overflowing of the tank w_Lev >= TOver , in
such situations the pumps are slowed down. Including these new
parameters, the UTAmodel is redefined for verifying the following
properties:

• (a) Deadlock Property, we prove at first that there is not
blocking states in the system. It is proved by running the
model checking query
A[] not deadlock

• Verifying Minimum phase model of the QTP.
Property 1: The reachability properties need to be verified for
showing that the reaction time requirements are met. First
we show that the both pumps supply sufficient water flow to
tanks i.e.,
A <> Tank_13.w_Lev == TVol_Max && G_Clock <= Ub
The query proves that the water tanks filling time from level
0 to w_Lev should not be exceed time bound Ub.
Property 2: The property expresses that whenever the water
level in particular tank reaches to TOver level, sensormeasure
the level andpass the signal to the controller,which issues the
control signal cStop to the particular pump.
E <> Tank_24.w_Lev >= TOver imply (Tank_24.Overflow
&& p_run[2] == 0 && pCl <= Ub1)

• Verification of non-minimumphasemodel of operation Prop-
erty 1: Similarly as above, we prove that the controller issue
the control signal to Pump2 to maintain water level in Tank13
as the requirement of Non-Minimum Phase Mode of Opera-
tion.
E <> Tank_13.w_Lev >= TOver imply (Controller.SpeedUP
&& Pump(2).Off )
The query proves that the upon receiving signal from sen-
sor[1] at Tank13 (overflowing) the control issue a signal to
Pump2 to Stop or speedDown the water supply in Tank3.

The model checker generates the witness or counterexample
depending upon if property is satisfied by the model. The auto-
matic generation of witness and counterexample is considered
as the key advantage of model checking which provides a useful
source of diagnostic information and a basis for automated test
generation. The Fig. 11 represents the simulation layout and gen-
erated traces for particular property. By using themodel templates
in the cloud, the MBV can be done on-the fly as illustrated in the
example.

Comments: During the deployment of the MPCs in IoT devices,
there were few issues that surfaced. First, the speed of the control

algorithm depended on the target code language. For example, a
C-code performed better than a run-time compiler language such
as Python. Second, the latencies in the sensors and computations
were not significant with on-board communications, but were
significant in IP based communication. However, they were not
at a level to destabilize the operations for the process application
chosen. Third, the IoT controllers and sensors the effect of timing
imperfections and noise created pulsations in the output. Fourth,
therewere someMPC implementations that could not be validated
in the HIL, but they passed the other validation tests. Fifth, the real-
time performance of the target platform is greatly influenced by
the amount of TCP based communication used. Sixth, the cloud
based communications and field level TCP communications gen-
erate only the same amount of latencies, this is partially due to
the high computing power of the server. Finally, the cloud services
communicating through the TCP based protocols have the same
computation burden as any TCP device.

6. Conclusions

This investigation presented an IIoT architecture, a model-
based engineering approach (MBE), andworkflows for implement-
ing cloud-based IIoT. The IIoT architecture combined the open
connectivitywith cloud-intrinsic features. To performmodel based
engineering, a multi-view model of the industrial automation
capturing various aspects was proposed. A meta-model of the
automation system integrating these different views was gener-
ated using AutomationML. This meta-model provided the basis
for performing Model Based Engineering. Further, it generated the
requirements for the design and verification. The Model Based
Design (MBD) approach was used to design MPC, a sophisticated
controller that repeatedly solves an optimization routine, for the
target platform. The MBD approach generated the auto-code for
the MPC and also validated the design through MIL, SIL and HIL
during its workflow. The behaviour models from the requirements
were used to performmodel based verification. The Uppaal Timed
Automata (UTA) models with action patterns of timing behaviour
were composed to verify the timing performance to guarantee tim-
ing. Consequently, reducing the engineering efforts of cloud-based
IIoT significantly. Insights into performing MBD and MBV from
cloud was also provided. Next, the additional benefits provided
by cloud-based IIoT was discussed with features such as plug-
and-play control, smartmanufacturing, and on-the-fly verification.
The proposed IIoT architecture, MBE approach, andworkflowwere
demonstrated on a QTP, a benchmark problem in process control.
Our results showed the benefits of the combining cloud and IoT,
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and MBE as an approach for realizing it. Studying deployment
of cloud-based IIoT for providing enterprise wide connectivity
and performing plant wide optimization are future course of this
investigation.

Appendix

MPC optimization models

In the MBD workflow, the objective function and constraints
of the MPC denote the requirements of the control algorithm. The
investigation considers four different MPC models, they are:

M1 : minimize J
U

= (Y − Yr )TQ (Y − Yr ) + ∆UTR∆U

Subject to: C
M2 : minimize J

U
= (Y − Yr )TQ (Y − Yr ) +

(U − ud)TR(U − ud)
Subject to: C

M3 : minimize J
U

= (Y − Yr )TQ (Y − Yr ) + UTRU

Subject to: C
M4 : minimize J

U
= (Y − Yr )TQ (Y − Yr ) + ∆UTR∆U

Subject to: C (1)

where the constraints C is given by

x(k + 1) = Ax(k) + Bu(k) + d̂(k), ∀k = 1, ..Np

y(k) = Cx(k) ∀k = 1, ..Np

umin ≤ u(k) ≤ umax ∀k = 1, ..Np

∆umin ≤ ∆u(k) ≤ ∆umax ∀k = 1, ..Np

ymin ≤ y(k) ≤ ymax ∀k = 1, ..Np

These constraints model the physical and operating constraints of
the MPC. They capture the system dynamics, constraints on the
control input, change in control input and output, respectively.

Quadruple tank process dynamics

The dynamics of the quadruple process is given by

ḣ1(t) =
1
A
(a

√
2gh3 + γ1f1 − a

√
2gh1)

ḣ2(t) =
1
A
(a

√
2gh4 + γ2f2 − a

√
2gh2)

ḣ3(t) =
1
A
((1 − γ2)f2 − a

√
2gh3)

ḣ4(t) =
1
A
((1 − γ1)f2 − a

√
2gh4) (2)
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