
Tallinn 2022

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Hannes Toots 179906IVSB

Security Analysis of the Web-based

Configuration Process at the Customer

Relationship Management

Team of a Bank

Bachelor's thesis

Supervisor: Kaido Kikkas

 Doctor of Philosophy

(PhD)

 Mikko Maltsaar

 Bachelor’s Degree

(BSc.)

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Hannes Toots 179906IVSB

Panga kliendisuhete haldustiimi

veebipõhise häälestusprotsessi turvaanalüüs

Bakalaureusetöö

Juhendaja: Kaido Kikkas

 Tehnikateaduste

doktor (PhD)

 Mikko Maltsaar

 Bakalaureusekraad

(BSc.)

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Hannes Toots

15.05.2022

4

Abstract

The Customer Relationship Management team of the given bank has started developing

access rights to other teams within the institution to their web-based configuration

processes. During the expansion of the system’s logic, the author has begun wondering

whether the processes are completely secure and contain no security vulnerabilities. This

thesis aims to assess the security of the web-based configuration processes.

The thesis first introduces the background of the topic – the CRM system. The topic

begins by giving an overview of processes between CRM and Internet Bank. An example

is given of how the customer view is generated within IB. It continues by giving a detailed

explanation of CRM’s web application design and its configuration processes by creating

a test topic and linking multiple parameters to it. The background ends with an

explanation of why this topic was chosen by the author.

Further, the thesis describes two different security frameworks which would enable easier

assessment of the web application processes. The author decided on the best methodology

by conducting a score voting based on three factors. Further, three different testing

methods are discussed, which could be following during the security assessment of the

web application. The author uses multiple factors to decide on which method to use. The

topic ends by explaining how the framework requirements were validated on the web

application, following the chosen testing method.

The last chapter starts with the results of the security analysis. The full list of satisfied

and non-satisfied results cannot be shown in this thesis, as it is not good practice to publish

detected vulnerabilities before they are mitigated or solved. Following the results, the

author investigated one framework requirement and mitigated an identified vulnerability.

Chapter ends with the author’s opinion of how to use the findings to future improve the

security of the various configuration processes.

This thesis is written in English and is 49 pages long, including 5 chapters, 22 figures and

3 tables.

5

Annotatsioon

Panga kliendisuhete haldustiimi veebipõhise häälestusprotsessi

turvaanalüüs

Käesoleva panga kliendisuhete haldustiim on alustanud arendusi, mis võimaldavad anda

ligipääsu veebipõhistele häälestusprotsessidele asutusesiseselt ka teistele tiimidele. Uue

loogika rakendamise jooksul on tekkinud autoril arvamus, et mainitud protsessid pole

täielikult turvalised ning kasutajatel on võimalik programmi turvakontrollidest mööda

hiilida. Selle tööga soovib autor hinnata veebiprogrammi häälestusprotsessi turvalisust.

Esmalt tutvustatakse teema tausta – CRM süsteemi. Peatükis kirjeldatakse protsesside

käiku tiimi süsteemides ning näidatakse konfigureerimise tulemust ka tarbija

vaatepunktist. Edasi antakse detailsem ülevaade veebiprogrammist ning selle kon-

figureerimise võimalustest, valmistades ette ühe testteema ning lisades sellele juurde

seonduvaid parameetreid. Sealt edasi selgitatakse, miks valiti antud teema lõputööks.

Järgmiseks kirjeldatakse kahte erinevat turvaraamistiku, mis hõlbustaksid käesoleva

veebiprogrammi turvaanalüüsi. Parima raamistiku valimiseks hindas autor neid

subjektiivselt kümnepallisüsteemis, kolmel erineval viisil. Peatükis kirjeldatakse ka

kolme erinevat testimise metoodikat, mille vahel, võttes arvesse mitmeid tegureid, valis

autor välja ühe. Peatükk lõpeb selgitusega, kuidas valitud standardit häälestusprotsesside

testimiseks kasutati.

Viimases peatükis kirjeldatakse turvaanalüüsi tulemust. Terviklikku loendit analüüsi

tulemustest lõputöös näidata ei saa, sest veebiprogrammis on vaja sisse viia parandused,

et see turvanõuetele vastaks. Ühtlasi ei ole hea tava avaldada paikamata turvaauke. Pärast

analüüsi uuris autor ühte nõuet detailsemalt. Selle tulemusena leiti rakenduses nõrkus,

mida lõputöö jooksul parandati. Lõpetuseks kommenteerib autor, kuidas leitud tulemuste

abil on võimalik rakenduse turvalisust täiendada.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 49 leheküljel, 5 peatükki, 22

joonist, 3 tabelit.

6

List of abbreviations and terms

ASVS Application Security Verification Standard

CRM Customer Relationship Management

CRUD Create, read, update, and delete

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IB Internet Bank

NIST National Institute of Standards and Technology

OWASP Open Web Application Security Project

REST Representational state transfer

RSS Really Simple Syndication

SPA Single-page application

SSDF Secure Software Development Framework

UI User interface

URL Uniform Resource Locator

7

Table of contents

1 Introduction ... 11

2 Background .. 12

2.1 CRM system ... 12

2.2 Web application .. 15

2.2.1 Application design ... 15

2.2.2 Configuration options .. 20

2.2.3 Example configuration .. 21

2.3 Security assessment cause .. 24

3 Methodology .. 25

3.1 Security framework .. 25

3.1.1 NIST SSDF .. 26

3.1.2 OWASP ASVS .. 27

3.1.3 Framework choice ... 28

3.1.4 ASVS blueprint creation .. 29

3.2 Testing technique .. 30

3.2.1 White box testing ... 31

3.2.2 Black box testing ... 33

3.2.3 Grey box testing .. 34

3.2.4 Testing method choice ... 35

3.3 Requirement validation ... 37

4 Analysis and results ... 38

4.1 Security assessment result .. 39

4.2 Proof-of-concept solution ... 40

4.2.1 Vulnerability introduction ... 40

4.2.2 Scope analysis ... 42

4.2.3 Vulnerability mitigation .. 43

4.3 Further steps for security improvement .. 46

5 Conclusion ... 47

References .. 48

8

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 49

9

List of figures

Figure 1 Flowchart of communication between IB and CRM. 13

Figure 2 Two IB views of requested topics. ... 13

Figure 3 Web application's main menu screen form. ... 16

Figure 4 Action omadus configuration. .. 17

Figure 5 Rendered result of the omadus action. ... 19

Figure 6 Topic view in configuration process. ... 20

Figure 7 Parameter view in configuration process. .. 21

Figure 8 List of values for parameter tahtae_kuud. .. 21

Figure 9 Test application view. .. 22

Figure 10 Topic configuration view. .. 22

Figure 11 Internet Bank's view of test topic. .. 23

Figure 12 Internet Bank's view with more parameters. .. 23

Figure 13 One OWASP ASVS point used within the assessment. 27

Figure 14 Classification of white box testing [11]. .. 31

Figure 15 Parameter configuration screen. ... 40

Figure 16 Parameter form element in HTML. .. 41

Figure 17 Overwritten parameter testom1. ... 41

Figure 18 Configuration of texts with current selected identifier in database................ 43

Figure 19 New class for validating instantiated string with user session value. 44

Figure 20 Error created to be shown to user. .. 44

Figure 21 New procedure added to parameter saving module. 45

Figure 22 Validation error when attempting to inject identifier value. 45

10

List of tables

Table 1 Security framework evaluation.. 28

Table 2 OWASP ASVS requirements tested within the web application. 29

Table 3 Vulnerability scope result. ... 42

11

1 Introduction

As of today, CRM team in the given financial institution is facing difficulties providing

development and configuration services to all teams within the financial institution due

to increasing workload and requirements set by other teams within the organization. As

such, CRM team is aspiring towards outsourcing its configuration processes to other

teams to lower development complexity and reduce dependencies between different team

requirements.

The current web application can be classified as an in-house system that has been

developed and maintained by the CRM team for over twenty years and has seen

continuous developments during its life cycle. Due to ever changing requirements within

the organization, the team has spent most of their efforts developing additional features

in accordance with business requirements. Since the long evolution of the application, the

author suggests analysing whether some security risks have been introduced during the

many developments done by different personnel.

The purpose of this thesis is to assess one part of the given web application’s security –

its configuration processes. The analysis of given processes will be conducted using

various grey box testing methods while following the version 4.0.3 security standard of

Open Web Application Security Project’s Application Security Verification Standard

(OWASP ASVS). The analysis focuses on finding security vulnerabilities within the

application’s configuration processes in accordance with the selected testing framework.

The author also aids in risk mitigation by investigating one topic within the standard in

more detail, with the aim to discover a possible vulnerability. The discovered threat will

then be mitigated with a development provided by the author.

The objective of the analysis is to document found vulnerabilities and increase CRM

team’s knowledge of potential security hazards that currently exist in their web

application configuration processes.

Keywords: Web application security, Testing, Single-page application

12

2 Background

The organization, under which the CRM team resides, is an international bank and has

employed over 4000 employees across the Baltic countries. This thesis covers one web

application built by the customer Relationship Management team within the given

financial institution.

This section of the thesis introduces the CRM system’s objective within the bank and

workflow within other systems of the organization. The thesis aims to assess the security

of the procedures within CRM’s web application; thus, the paper introduces the CRM

software and shows results of changing the system’s configuration through another

application within the organization, Internet Bank. This program is used by customers to

manage their funds and banking services online. The background will conclude with the

full reasoning of what decided the security assessment to be started.

2.1 CRM system

The main objective of CRM’s system is to handle every interaction between the customer

and the bank. It is one of the most important systems of the bank, and is integrated with

many others, including the core system. It has existed within the organization for over

twenty years and has been developed by a dedicated team. It is vital that the system

functions properly as it is the centre of customer information and its structure. As such,

the processes are a necessary backbone for the functionalities of other teams.

For example, CRM’s system has control over how different loans are shown in other user

interfaces within the organization, with one of them being IB. The former has control

over the configuration of such forms within its system’s database. The latter requests this

information from the former and uses the returned data to construct views on the customer

point of view within the organization. Figure 1 explains the communication between IB

and CRM’s system when a customer starts any application through IB.

13

Figure 1 Flowchart of communication between IB and CRM.

Figure 2 showcases two different forms that are created when the given user applies for

a loan within IB. In both cases, IB uses CRM services to gather the specific application’s

configuration data and uses it to create a form for the user. On the left, the IB request to

the CRM system contains topic code appl_homel, which is the internal identifier for the

home loan application. On the right, the topic code is 0, which causes CRM’s system to

return an error.

Figure 2 Two IB views of requested topics.

14

To better understand how the CRM system controls the data on the home loan form, a

short introduction needs to be given to three CRM terms – contact, topic, and parameter:

• Contact – A contact can be described as a data set required for the organizational

systems for its internal processes. It is used to describe interactions between the

bank and the customer and contains metadata of the whole application that is

necessary for following actions. [1] When an application is submitted to the

organization or one is created by a teller, a contact is automatically created

containing basic information – its creation time, the customer linked to it, where

it was created (bank teller, Internet Bank, etc) and more. Different topics and

parameters can be linked to contacts to provide more detailed information. A

contact must have at least one topic.

• Topic – A contact is distributed between different topics. During a contact, it is

possible to handle different subjects, such as loans, agreements, or applications.

A topic defines the exact topic of discussion during the contact and is configurable

within CRM system. [1] Much like a contact, a topic itself mostly contains

metadata specific for the topic and contains more detailed information with the

parameters linked to it. Topics can be added to contacts by the employees of the

institution. For example, when personnel add a positive result to a loan

application, the newly added result is an extra topic under the contact.

• Parameter - Contacts and topics contain elements that characterize the specific

object. These elements are called parameters. The configuration describes and

aids to link parameters to specific topics or contacts. [1] After the initial creation

of a parameter, they are linked to the required topic or contact, where they can be

catered to the specific needs of the given object (made mandatory, have a

maximum length, etc). The left view visible in Figure 2 contains parameters linked

to the home loan application, configured within the CRM’s system.

For example, when any user submits the home loan application visible in Figure 2 through

Internet Bank, among other steps, the CRM system does the following:

1. Contact is created automatically, which contains the whole dataset of the loan

application. It defines the communication with the organization.

15

2. Required topics are created within the contact, containing the metadata of the loan

application. Created topics are linked to the specific contact within the dataset.

3. Form variables that the user has given to the bank are stored within the various

parameters of the whole contact – under the topic or the contact, depending on the

specific parameter.

CRM’s system sets the data structure of various customer data forms. It is possible to

change different properties of various datasets, including topics and parameters. This

allows for greater customization and easier catering to specific requirements. All data

fields presented to the user are prepared through CRM’s internal procedures and used by

other systems to their specific needs, for example in IB it is used to show the user the

given application form.

The system’s database also contains the data that is stored from the above interaction;

however, the data storage falls out of the scope of this thesis. The following topic will

discuss the assessed web application made by the CRM team in more detail. It will also

show an example of how changing the configuration can affect other areas within the

institution.

2.2 Web application

This part of the thesis covers CRM team’s web application (hereinafter as “application”)

in detail. The web application itself is built as a single page application, meaning that only

one module is used to drive the whole logic of the product. The thesis will go into further

details how different Hypertext Transfer Protocol requests are handled by the application,

and how Hypertext Markup Language forms are presented to the user. Further, this

section gives an overview of the possible configuration possibilities within the

application. It will end with an example configuration process being done in the

development environment and showcase the results visible through IB.

2.2.1 Application design

The application is built using the OpenEdge Advanced Business Language programming

language. The language has its own environment called WebSpeed, which allows

16

building various applications that use mark-up languages as the user interface. It is also

the environment where the assessed web application is deployed on.

The web application is designed as a Single-page application, using a single module that

updates parts of the interface without sending or receiving a full-page request. All

necessary content visible to the user is rendered using HTML templates. [2]

The views visible to the user and rendered by the web application are designed as screen

forms and are configurable within the system. Figure 3 shows the screen form that is used

to render the main page of the web application, a blank page containing the menu bar.

Figure 3 Web application's main menu screen form.

Screen forms consists of different types of data. The Menu variable is out of use as it is

an old data field that has been deemed obsolete. [3] The other variables have the following

objectives:

• Screen form code – contains the identifier for this screen form.

• Screen form group code – Used by various processes to group user session

parameters that are saved to the server-side database. It allows easier filtering of

different variables based on the form group code that was in use while the

parameter was stored. In this case it is not used and is empty.

• Screen form name – This name is rendered in the user view if it is selectable by

the user. In the case of this form, it is a temporary name as the form itself is not

selectable.

• Modul name – Name of the module that is rendered to the user when this screen

form is activated. The module should be of type HTML and contain the view that

is displayed to the user when the form is activated.

17

It can be noted that the view has an Entered by field, which contains the name behind the

username who did the last change to this topic. However, in development environments,

this name is scrambled and therefore does not contain real life information. Also, in this

case, it was created by an admin account dating back to the starting years of the CRM

system.

As described previously, the application consists of one main module that handles the

requests sent by the user. There are many different configured screen forms that can be

displayed to the user based on the submitted request. Requests are parameterized within

the application as different actions, which are also configurable within the CRM system.

When a user clicks on a button that sends a request to the application, an action is activated

that commands the main module to run a set of code, specified within the action itself. [1]

Figure 4 shows an image of an action that is activated when the user requests a table view

of parameters from the application.

Figure 4 Action omadus configuration.

Actions can also be linked to each other, creating a hierarchical structure. Specific

variables are understandable from the figure; however, some fall out of the scope of this

thesis. The following gives an overview of more important variables to understand the

logic behind actions:

18

• Main action – As described previously, actions can be linked to each other to form

a structural order. Main action is used by the application as a pointer of the action

that was run before this action became possible to be run, should the currently

running action run into an error. In the case of a fault, the main module of the web

application will start processing the action configured under the main action, the

one that was ran previously. [3]

• Additional action – Specifies an action that is always run after the current action

has finished. [3] Usually, actions that contain additional actions do not have any

forms as they are used for back-end procedures, such as updating data within a

database. After the action has completed, the additional action is used to redirect

the user to a different view.

• Display screen form – This links the previously shown screen form that is

rendered to the user to the given action. When the user activates this action, the

HTML file behind this form is what is finally rendered to the user, should it run

successfully.

• Display menu – If the action needs to render the menu of the web application in

addition to the final screen form, it is configured here. [3] In this case, the user is

rendered the web application menu alongside the following parameter table from

the action screen form.

• Belong to menu – Tells the web application where within the menu this action

should be visible. Here it is the same as the displayed menu which is created above

the rendered list.

• Modul – Used to specify which module is activated by the main controller of the

web application when this activation is run. Here the module is crm_omadus-find,

which contains logic for collecting parameters from the database. Modules are run

before HTML forms are rendered to the user.

• Parameters – Parameters contain a list of different variables that are stored within

the current user session before the module is run. [3] It is probable that the

following modules use the saved values.

19

Actions give an overview of the underlying pieces of modules that are activated by the

SPA to perform tasks within the application. When the user activates the action, they are

given the following view inside the application. Figure 5 shows the resulting view when

the above action is activated. It can be noted that the main menu, which in this case

consists of clickable underlined links, is fully rendered using the Display menu form.

Figure 5 Rendered result of the omadus action.

Actions play a vital role in the design of the application. They are used on HTTP requests

to instruct the main module of the program to run a piece of code and specify the

parameters required, if needed. The resulting view on the UI is rendered through the

screen forms linked to the requested action.

The configuring processes within the application are designed to be used by developers

to create, read, update, and delete stored data within the CRM system. It gives access to

the database through the web interface and can be used to interact with it. The next topic

will showcase an example configuration of a topic using the application.

20

2.2.2 Configuration options

CRM’s web application allows to edit many different variables within the system. The

full list of configurable parameters is visible in the third row of the main menu in Figure

5, starting with Parameters and ending with Actions. Figure 6 shows an example of a

topic that was created for the purpose of testing configuration processes during this thesis.

Figure 6 Topic view in configuration process.

As seen in the image, topics have many metadata variables that are used in various forms.

The thesis will not go into the full meaning of each parameter, as it falls out of the scope

of the overall configuration processes.

Under the topic, a list of related parameters that have been connected to this topic is shown

to the user. After parameters are linked, they can also be modified within the topic,

catering to the specific needs of the current topic. In Figure 6, the value laenusumma has

been made mandatory and given a minimum value of 7000 within this topic. This means

that if another system within the bank sends the corresponding topic data to CRM’s

system, an automatic check determines whether the value corresponds to the given rules.

While the previously mentioned parameter is an input parameter that is filled by the user

or other processes within the application, Figure 7 shows the configuration of one other

linked parameter which contains multiple selectable values, tahtae_kuud.

21

Figure 7 Parameter view in configuration process.

When the user presses on the Values button, they are moved to a new screen, showcasing

the values configured under the given parameter. When the front-end user is given a topic

that is related with this parameter, a select box is created for the user, with the values

taken from the parameter itself, visible in Figure 8.

Figure 8 List of values for parameter tahtae_kuud.

2.2.3 Example configuration

To show what occurs when CRM system’s configuration is updated, a blank topic was

created within CRM, visible in Figure 9. Different parameters were added to this topic,

and the resulting view was shown through IB.

22

Figure 9 Test application view.

When adding parameters to a topic, the user must press the Add button at the bottom of

the UI. This will open a new window where the user can add any existing parameter to

the topic. The parameter must exist within the CRM system before it can be added to the

topic. Figure 10 shows the view the user is shown when linking an existing parameter to

the topic. As visible, the parameter select box is very large. This is because the system

collects all possible parameters with their full values to this list. Some parameters have

very long names.

Figure 10 Topic configuration view.

23

For the initial test, only one parameter with the code laenusumma was added to the topic.

This topic can also be opened in IB, and the resulting view should showcase the topic

with only one form input, titled Loan amount. Figure 11 is used to show that IB currently

shows the user only one parameter within the topic, as expected.

Figure 11 Internet Bank's view of test topic.

Using the similar processes as previously described, other parameters can be added to the

topic as well. Figure 12 shows the view from Internet Bank after adding more than one

parameter to the test topic, with the configuration as visible in Figure 6.

Figure 12 Internet Bank's view with more parameters.

CRM configuration is a powerful tool that can set up the base of how customer related

products are shown in various systems within the organizations. Other systems within the

institution request the setup data from CRM and use it in their own procedures. The web

application enables the configuration options and allow its users to set up the objects as

required.

24

2.3 Security assessment cause

As of today, CRM team is progressing towards enabling their configuration process for

other teams within the bank, specifically the teams that rely on CRM data for further

development of their own products. This means giving web application access to users

from other teams that wish to make changes within the set-up parameters. Access to CRM

system’s configuration has previously been given only to select people and the number

of users with configuration rights will increase substantially while moving towards

outsourcing the processes to members of the other teams within the organization.

Giving other team developers access to configuration options will lower the reliance of

CRM team’s resources for configuring their product data and allow them to edit their own

objects themselves, without CRM team’s intervention. While CRM team is still required

to validate the changes and allow them to move towards the production environment, less

reliance is on them for enhancement within other team’s products.

While the CRM team is constantly thinking about the security of their system and are

currently preparing for giving other teams access with tasks such as limiting certain team

users to only their respective configurations, the author of this thesis began to question

whether the web application meets the security standards which would guarantee that

users from other systems will be limited to their configuration processes and not have the

rights to do something unintended.

Misconfiguration of CRM’s objects can have many different results. It is possible that the

forms that are generated and given to the bank customers are incorrect and contain data

that does not match the legal compliance of the given product. Incorrect text configuration

can also impact the applications that are printed out for contracts between the bank and

its customers. This can impose possible legal risk for the organization. It is vital that the

system is configured properly and with full compliance of other team’s requirements.

Following the above, the author of this thesis decided to assess the security of CRM

team’s internal web application configuration processes to determine if they satisfy the

requirements of up-to-date security verification standards.

25

3 Methodology

In this part of the thesis, the methodology of the security assessment is shown. First, to

begin the security assessment, an existing framework of security requirements was chosen

and used as a foundation to create a list of requirements that were evaluated within the

web application.

Further, three “box” testing techniques – white, black, and grey box testing – were

introduced that would later decide which method would be used for the security

evaluation. The testing methods each contain different ideologies that will test the web

application from different points of view.

Further, an assessment between the testing techniques were done to pick one that would

be followed during the security evaluation. The choice was done on the backing of certain

requirements which will be discussed more in the topic.

The methodology chapter will end with an explanation of how the security evaluations

were done following the newly created blueprint and based on the chosen testing

technique.

3.1 Security framework

Application security frameworks exist to help organizations determine the cybersecurity

aspects for enhancing their application’s security. They offer a tried, tested, and

comprehensive approach to cyber security developed by experts in the field. By adopting

such an approach, you can take some of the guesswork out of developing or improving

your own system, enhancing your defences in line with recognised industry best practice

and accounting for aspects of cyber security that you might not otherwise have

considered. [4]

The author of this thesis decided to follow a robust framework to aid in the testing of the

web application. The skeleton can be used to create a logical flow to the vulnerability

assessment and aid in the steps that should be done. To do this, two security frameworks

were looked at in detail to decide on which framework should the author follow.

26

3.1.1 NIST SSDF

The National Institute of Standards and Technology Secure Software Development

Framework is a core set of high-level secure software development practices that can be

integrated into a software development life cycle implementation. Following the practices

can help software producers reduce the number of vulnerabilities in released software,

reduce the potential impact of the exploitation of undetected or unaddressed

vulnerabilities, and address the root causes of vulnerabilities to prevent future

recurrences. The framework provides a common vocabulary for secure software

development which can be used in other management activities, including testing. [5]

The SSDF can help an organization to align and prioritize its secure software development

activities with its business/mission requirements, risk tolerances, and resources. It

describes a set of fundamental, sound practices for secure software development.

Organizations should integrate the framework throughout their existing software

development practice. [5]

The focus of the SSDF is on the outcomes of the practices rather than on the tools,

techniques, and mechanisms to do so. This means that it can be used to by organizations

in any sector or community, regardless of size or cybersecurity sophistication. It can also

be used for any type of software development, regardless of technology, platform,

programming language, or operating environment. [5]

NIST SSDF could be used within this security assessment through incorporation of the

framework practices to the vulnerability testing. The practices contain a short introduction

explaining why they are beneficial and have linked tasks to perform the practice

successfully. The framework also gives notional implementation examples that can be

used to implement a task within the software that is being developed. The SSDF also adds

pointers to other established secure development practice documents and can be used by

developers to aid in the task implementation to their product. One downside of the given

framework within this thesis is that the detailed information of each practice will heavily

impact required vulnerability assessment time due to the number of resources to review.

27

3.1.2 OWASP ASVS

OWASP ASVS is a community-driven effort to establish a framework of security

requirements and controls that focus on defining the functional and non-functional

security controls required when designing, developing, and testing modern web

applications and web services. The web application is designed to be used as a blueprint

to create a Secure Coding Checklist specific to any given application, platform, or

organization. It allows its users to tailor the standard based on their specific needs to focus

on the security requirements that are most important to who is using it. [6] The primary

goal of the OWASP ASVS project is to normalize the range of coverage and level of rigor

available in the marketplace for performing web application security verification. [7]

Figure 13 shows one topic within the latest version of the framework during this thesis

(v4.0.3), which requirements were also used during the security assessment.

Figure 13 One OWASP ASVS point used within the assessment.

OWASP ASVS can be incorporated to the thesis easily, allowing the security assessment

to start quickly. The requirements give an overview of the necessities an application must

have, and they can be hastily validated during the testing period of the security

assessment. Compared to the NIST SSDF, OWASP ASVS is also less detailed, which

can impact the depth of the security assessment. The tester needs to think more about the

design of the application and confirm that the requirements are fully tested within the

application, as the relevant information is not provided as largely as in the NIST SSDF.

28

3.1.3 Framework choice

In this thesis, the security framework is used to create a skeleton of steps that are followed

during the web application’s assessment. To choose an existing base, the author used the

following metrics to decide on one:

1. Relevancy

2. Simplicity

3. Familiarity

The framework needs to be easy to use and relevant to the task – assessing the security of

CRM’s web application configuration processes. Understanding all the possible

frameworks is accomplishable, however familiarity with the chosen standard will help

lower the overall time required for the security assessment.

The choice between the frameworks was done subjectively by the author. The following

metrics were considered – familiarity, simplicity, and relevancy. All topics were assigned

a value based on a 10-point scale. The author decided to choose the framework using the

sum of all the metrics. Table 1 shows the author’s evaluation of the two different

frameworks.

Table 1 Security framework evaluation.

Framework Relevancy Simplicity Familiarity

NIST SSDF 7 4 7

OWASP ASVS 10 8 8

The total scores were as follows - NIST SSDF scored 18 points, whereas OWASP ASVS

scored 26 points. Therefore, the author chose to use OWASP ASVS as a framework to

test the CRM web application. It can be noted that the chosen standard is also frequently

used during other security assessments within the organization.

29

3.1.4 ASVS blueprint creation

OWASP ASVS is a very thorough framework, containing fourteen different security

topics that a web application should follow to be classified with the standard’s level 3

protection. However, many of these points are not relevant when assessing the security

of the given web application’s security processes. For example, the V1 of the standard,

“Architecture, Design and Threat Modeling”, contains points for the web application’s

architecture, which falls out of the scope of the thesis.

After the security framework was chosen, it was evaluated that many of the topics in the

skeleton are not needed in this thesis. As also written in the OWASP ASVS itself, the

framework should be used to create a Secure Coding Checklist that caters towards the

special necessities of the application being tested. Therefore, a blueprint needed to be

created following the OWASP ASVS that should contain the checklist necessary to verify

the configuration process’ security. This was accomplished by reviewing ASVS itself and

deducing the necessary points from it into a new blueprint. Table 2 shows the list of the

framework requirements that were subjectively chosen by the other to be used to assess

the security of the web application configuration processes.

Table 2 OWASP ASVS requirements tested within the web application.

30

All the requirements incorporated in this security assessment are, in some form, linked to

the configuration processes of the web application. V5 of the standard requires the

software under verification to ensure that the input and output data is secured and

validated. V7’s primary objective is to confirm that error handling and logging procedures

provide high quality results which are protected as per local data privacy laws. While

V8’s key element is data protection, and private data is not available through the

application’s configuration interfaces, some requirements within the topic are still

relevant to the software’s processes. [6] It was decided that other requirements have either

too large of a scope or handle information not relevant to the configuration process (i.e.,

application architecture or private data handling).

3.2 Testing technique

In security testing, we consider the entire set of unacceptable inputs – infinity – and focus

on the subset of those inputs that are likely to create a significant failure with respect to

our software’s security requirements – still infinity. We need to establish what those

security requirements are and decide what kind of tests will provide evidence that those

requirements are met. With logic and diligence, we can provide useful evidence to the

product’s owner. [8]

Software testing has been widely used in the industry as a quality assurance technique for

the various artifacts in a software project, including the specification, the design, and the

source code. As software becomes more important and complex, defects in software can

have a significant impact to users and vendors. The importance of planning cannot be

underestimated. It is carried out to demonstrate the presence of errors that exist during

the program’s execution and can provide a higher chance of discovering unidentified

design flaws. [9]

There are many testing techniques available to assess the security of a web application.

The author decided to test the vulnerability checklist using one of three existing testing

systems – Black, white, and grey box testing. During this topic, the three methods are

discussed, and author will choose one of them to be the main testing method for the

security analysis of the web application.

31

3.2.1 White box testing

Most software starts with the initially developed code. White box testing is a testing

strategy based on internal paths, code structures, and implementation of the software

being tested. [10] White box testing generally requires detailed programming skills, as

the tester using this method needs to understand and access the applications’ source code.

Figure 14 explains the different types of white box testing techniques.

Figure 14 Classification of white box testing [11].

As shown, white box testing is classified into two different types of testing, static and

structural testing.

Static testing is a testing method which requires only the source code of the application

without its binaries or executables. It involves select people reviewing the code and

determining whether it works according to the original requirements, is fully functional

and handles exceptions correctly. This type of testing can be done by humans or with the

help of tools, however it is important that the tools are specialized for the given

application. [11] The latter can also introduce new developments and more time

investment – a large resource that some teams might not have.

32

Structural testing is like Static testing in the sense that it continues the trend of using

developed code and design of the application to test the application. However, Structural

testing also incorporates use of the runtime environment. This means that alongside the

developed code the system is also tested with its executables or binaries. Structural testing

usually means that the product is run against predesigned test cases to exercise as much

of the code as possible, meaning that the amount of code executed during the testing

period is maximised. [11]

The major advantage of strategies used during white box testing is that the objective

criteria can be defined to quantify the coverage of a given test suite. Because the testing

technique starts from the source code of the application, testing all parts within the

product is in reach. It is no longer possible to overlook obscure parts of the source code

as they are an integral part of the internals of the software component that is being tested.

[12]

However, white box testing also has disadvantages. For one, test suites can only be

developed late in the life cycle of a software component, because the implementation of

such parts within the product must have been worked out before any test suites can be

developed for them. If test cases are created before the components are fully developed,

changes within the software will require the test cases to be rebuilt as well. Furthermore,

white box testing strategies require testers to have an in-depth knowledge of the given

implementation techniques. As such, deeper understanding of the program and its

language is required. In such context, the testers are often also the developers of the

validated product. [12]

33

3.2.2 Black box testing

Unlike White box testing, Black box testing involves looking at the specifications of the

application and does not require examination of the underlying code of the program. It is

also done from the customer’s viewpoint, not the back-end developer. The test engineers

engaged within black box testing only know the set of required inputs and expected

outputs and are unaware of how those variables are moving within the software. [11]

Black box tests are more convenient to administrate than white box testing as they use

the finished application and do not require knowledge of its design. Independent testers

outside the development team can administer black box tests to ensure functionality,

compatibility, and security compliance. [11]

Unlike White box testing – Black box testing always uses the final product, and therefore

does not have sub-categories based on if the application is running or not. Once the code

is ready and delivered for testing, this method of tests can be executed. Since the testing

method uses external functionalities, the test cases need to be thought of in such a way

that as much of the internal functionality is tested as possible. This allows the testing to

uncover as many defects as possible in a shorter amount of time.

For example, in a web application with a login system, a black box test task would attempt

to login successfully into its system. Other testing steps in this process might include

attempts of getting user feedback in failed login attempts, such as not filling the password

in the given form or a similar required value. The test case should always have a result,

which in this case would be a notification supplied to the front-end user requiring them

to input the required values.

Black box testing is a testing strategy based solely on requirements and specifications. It

requires no knowledge of internal paths, structures, or implementation of the software

being tested. [10] As such, without access to the logical flow of the program, it is harder

to confirm that tests cover all scenarios within the code. Furthermore, assigning clear test

cases is more difficult as it is not clear whether some tests will be redundant (run the same

logic twice) or not necessary at all.

34

3.2.3 Grey box testing

While white box and black box testing have separate bounds of use, grey box testing, also

known as translucent testing, allows the tester to focus on all the layers within the

application and uses a combination of the previous two testing methods. It means that the

tester needs to have knowledge of the internal data structures within the program (white

box testing), while also running actual tests on the interfaces that the program exposes

(black box testing). [13]

Grey box testing technique increases the testing coverage by allowing the tester to focus

on all the layers of the product through the combination of existing white and black box

testing methods. In grey box testing, the tester must have knowledge of internal data

structures and algorithms, for the purpose of designing test cases. In grey box testing, the

test cases are created based on the modules (white box testing), while actual tests are

performed on the exposed interfaces (black box testing). [14]

Grey box testing technique combines the benefits of both white and black box testing

methods. It allows the tester to design excellent test scenarios due to having knowledge

of both functional specification and the interface definition, instead of deep knowledge

of one side of the product. It also allows for unbiased testing, as the developer and the

tester can be different people, while still having access to the same resources.

Grey box testing also has disadvantages compared to other testing techniques. Even

though the tester has knowledge of the design of the product, the test coverage can still

be limited since the tester might not have full understanding of the source code. Therefore,

it is difficult to test the full flow of the product, akin to black box testing. [14] Test cases

are also more difficult to design, as they need to be comprehensive enough to cater to the

design of the product and the user interface. Creating test cases using two different sides

of the product is more difficult than concentrating on one.

Grey box testing contains parts of the previously two mentioned testing methods. Initially,

the tester investigates the application to understand how it has been implemented. Then,

with the knowledge acquired from the short examination, chooses more effective black

box tests to incorporate for thorough testing results. [10]

35

3.2.4 Testing method choice

Choosing a testing method for this thesis was substantially difficult. The author of the

thesis does have access to the internal design of the web application, however, is not very

knowledgeable in it. The author also has access to the test environment, where the

application is run. Therefore, the following factors were used to decide on a testing

technique

• Testing objective – The objective of the tests is to assess the security of a web

applications’ configuration processes. This is done by testing the product interface

for possible vulnerabilities following the created blueprint of OWASP ASVS

requirements. In this instance, black box technique is ideal as it bases on the

testing of the front-end view of the application.

• Current web application phase – As the web application and its configuration

processes are fully in use and functional, the ideal testing method to test the

different actions is to test the interface of the product. As stated in the previous

point, black box testing covers testing the app from this side.

• Testers’ knowledge and skills – Due to the author’s capability of accessing and

understanding the source code, it is possible to review the internal design of the

code and understand the flow of the program. Therefore, white box testing could

allow for a deeper investigation of the application and increase the amount of code

tested.

• Time – It is important to decide on a testing method based on the amount of time

the tester has. It can be assumed that creating test methods using white box

techniques takes more time than black box. This is because white box testing

requires deep knowledge of the internal systems of the program, whereas black

box testing requires the tester to think outside of the box while assessing the

product’s user interface. Grey box testing stands in the middle.

36

With the mentioned factors considered, the author decided to use grey box testing

technique in this security assessment. As stated previously, grey box testing involves

testing methodologies from both black and white box testing. The choice was done due

to the following points:

1. The testing objective is to secure the configuration processes of the web

application. Those processes exist on the application user interface. While this can

also be done with black box testing, grey box testing is preferred in the upcoming

points

2. The tester has access and knowledge of the web application’s design. This is a

marginable reason why grey box testing was chosen. With access to the program’s

codebase, it is possible to create better test cases and fully test the product’s back

end.

3. The author does not have enough time to fully indulge in the full design process

of the application. Therefore, it is less time consuming to understand the design

partially and assess the security of the product using its user interface. This factor

is also incorporated into grey box testing.

37

3.3 Requirement validation

The purpose of web application security testing is to find any security weaknesses or

vulnerabilities within an application and its environment, to document the vulnerabilities,

and to explain how to fix or remediate them. There are several types of testing

methodologies. These include web application security audits, vulnerability assessments,

and penetration tests. [15]

For this thesis, the author decided to analyse the security of the web application by

assessing the vulnerability of the program. A vulnerability assessment is a subset of an

audit and is focused on finding weaknesses or vulnerabilities within the application. It

involves real-time testing and exercises the application components such as all input

fields. [15] There are different vulnerability testing tools for enabling the assessment,

however, within this thesis, it was done manually.

After the blueprint was made following the chosen security framework and the testing

method was successfully selected, it was time to validate if the web application

configuration processes comply with the security assessments of the blueprint. To do this,

the following steps were taken:

1. Understanding the meaning behind the security requirement – In order to

understand how to test, it is important to know what to test. This step is to

understand the meaning behind the requirements in the framework. For example,

requirement V5.1.3 states “Verify that all input (HTML form fields, REST

requests, URL parameters, HTTP headers, cookies, batch files, RSS feeds, etc) is

validated using positive validation (allow lists).” The requirement needs to be

understood by the tester before it can be reviewed in the web application.

2. Understanding the back-end codebase – Next, it was time to briefly focus on the

codebase of the web application’s configuration processes with the aim to gather

overall understanding of the web application procedures. This was done to

simplify front-end testing as initial review can show faults which are then easily

tested in the product’s user interface.

38

3. Test the application behaviour following the requirement – Following the

investigation of the codebase, the next step was to activate the back-end code

using the user interface of the web application and test whether it works following

the requirement or not. Following point 1 example, the web application would

pass the requirement if input passed by the web is validated using positive

validation. Sources [8], [16], and [17] were used to help validate the security of

the web application based on the requirement list selected earlier.

4. Mark up the testing results – The application was tested until the first fail of a

requirement. This means that if the test failed on the first configuration process

out of 12, it would not be tested further, and the requirement would be noted as

not satisfied. This is to save time and resources as future analysis can be done to

focus on one requirement and determine which processes need to be fixed as a

result.

4 Analysis and results

The analysis of this thesis resulted in a security assessment regarding the web

applications’ configuration processes. It is important to understand the outcome of the

tests to take further actions regarding the configuration processes of the application.

This topic will first briefly introduce the results. The full list of satisfied and non-satisfied

requirements cannot be revealed within this thesis as they are not fully solved when this

thesis is publicized. However, initial plans were made to move towards satisfying all the

requirements.

Following the results, one vulnerability is taken by the author to fix within the thesis. The

vulnerability will be introduced alongside the full analysis of the configuration processes

and will end with the solution that was completed.

39

4.1 Security assessment result

The result of the security assessment shows that 13 requirements had been satisfied by

the web application, out of 24. This totals a satisfaction percentage of roughly 54%. It

was found that the program uses outdated technologies, such as incorporating hidden

HTML forms as data input to the back-end procedures. The results indicate that the

configuration processes within the web application can contain some vulnerabilities, as

they do not fully satisfy the requirements.

The exact results are unable to be shown in this thesis due to the vulnerabilities not being

solved at the time of the publication. However, the CRM team were made aware of the

full list of requirements and their results. The weaknesses were noticed, and future

development plans were made to increase the security of the various configuration

processes.

After the vulnerability assessment results had been finalised, the author decided to

investigate one requirement reviewed during the testing in more detail, with the aim to

discover a vulnerability within the configuration process that could be mitigated by the

author. It was decided that OWASP ASVS point 8.1.3, “Verify the application minimizes

the number of parameters in a request, such as hidden fields, Ajax variables, cookies and

header values,” will be taken for further examination. The choice of the requirement was

done subjectively by the author, and this point was chosen due to the following reasons:

1. The application configuration processes use hidden fields during the CRUD

operations that are activated. This means that, without proper precautions, the user

might be able to inject custom data into the fields to activate unexpected events,

with the possibility of tampering stored data within the CRM system’s database.

2. Since first seeing the design of the application, and after further assessment of the

processes within, the author speculated that the hidden variables most likely have

a vulnerability associated to them that could be exploited in different ways,

bypassing the already done developments that limited user access rights.

The next topic covers the security vulnerability that was identified and the steps that were

taken for its mitigation in detail.

40

4.2 Proof-of-concept solution

The possibility of a vulnerability was first discovered when reviewing the web application

configuration processes during the OWASP ASVS requirement 8.1.3 validation. It was

found that many parameters are hidden within the various user interface HTML forms

that are used to communicate the data to the application. The framework point exercises

the thought that such variables should be minimised, however, they are existing on almost

every configuration process within the software.

Some developers and testers misunderstand the nature of hidden form fields. These are

fields invisible on a rendered page but provide additional data when the page is submitted.

Relying on the user’s ignorance that they will not spot the hidden values is dangerous. [8]

A deeper analysis regarding hidden variables was done and one vulnerability was found

by the author. For the vulnerability, a proof-of-concept solution was done as an example

of how to use the security assessment results to identify security vulnerabilities within the

system. This topic introduces the vulnerability and actions done to mitigate it.

4.2.1 Vulnerability introduction

A vulnerability was spotted by the author indicating that a simple HTML injection on

hidden values within a form can be used to manipulate which parameter is being

configured at a given time. The back-end procedures ignore whether the parameter that

was initially chosen by the user is the same one that is being sent back to the system.

Figure 15 is used to show part of the configuration window, which is shown to the user

when any parameter is chosen to be edited. Only the initial part of the table is shown, as

the page is only used to access the actions and HTML forms within the response.

Figure 15 Parameter configuration screen.

41

The current screen form sends the user multiple hidden HTML forms within the response

that are prefilled and later used by the back-end modules during parameter saving. Figure

16 shows the form within the previously described view.

Figure 16 Parameter form element in HTML.

From this form, the value used for exploiting the given vulnerability is s_omadus_kd.

This tag holds the value of the parameter code that the user is currently configuring. When

changing this value to a different existing code and attempting to save, the action

overwrites the data of the newly inserted code. After the procedures have completed, the

user is shown the view where the saved data can be seen, visible in Figure 17.

Figure 17 Overwritten parameter testom1.

As shown, the parameter data of testom overwrites the database record of testom1. This

is because the user injected the latter parameter code into the form while editing the

former parameter. This vulnerability can be maliciously used to bypass any parameter-

based access rights and allows the user to update any parameter in the CRM system, given

that they know the parameter code.

42

4.2.2 Scope analysis

To fix this vulnerability, an analysis was done to see how big of an area this vulnerability

covers within the system. As stated previously, CRM web application allows for multiple

different configuration options, exactly twelve of them, and it needs to be noted which of

these options can be manipulated in the way as described above.

This was done by creating a similar situation in all the configuration capabilities –

attempting to save a parameter to a different identifier value within the database than what

was provided to the user initially. Table 4 shows the results of the investigation with the

following format:

• x – vulnerability spotted

• o – no vulnerability spotted

Table 3 Vulnerability scope result.

Parameters x Topics x

Products x Documents x

Error messages x Types x

Result types x Texts x

Problem types x PL conditions x

Condition types x Actions o

The result of the scope analysis shows that out of 12 configuration options, it is possible

to tell the back-end systems where the form data needs to be stored in 11 of them, no

matter which parameter was initially given to the user. The action configuration option

does not keep track of the currently selected configuration with a hidden HTML variable,

and thus is safe from this vulnerability.

43

4.2.3 Vulnerability mitigation

As described previously, the CRM web application stores user session data in the

system’s database. Figure 18 shows the user viewing a test text within the application

with the database row that contains the user session stored within it when this action is

activated.

Figure 18 Configuration of texts with current selected identifier in database.

Through discussions with the CRM team, it was decided that the vulnerability can be

mitigated by validating whether the data stored on the user session within the database

matches the value the user is sending with the hidden values inside the HTML form. If

they differ, the user should be given an error. It was proposed that a new variable, named

chosen_parameter, would be created to keep track of the latest selected parameter within

the web application. A new parameter was created as other parameters could be in use or

overwritten during other actions, meaning the new solution could intertwine with

previous logic. A new session parameter allows the validation to always occur and be

correct, no matter the path the user took to the configuration window.

44

To validate the database session value with the identifier from the user form, a new class

was added to CRM’s codebase named CrmValidate, that can be instantiated with an input

value. A method was added to this class that can be used to retrieve values from the

current user session within the web application. The last retrieved value is stored within

the object and another method can be used to store a logical True or False value whether

the two parameters are equal. This class, shown in Figure 19, will be used to validate

whether the value that was given to the user is the one as the application is expecting.

Figure 19 New class for validating instantiated string with user session value.

Figure 20 shows the new error created within the CRM system for this validation. The

error is returned whenever the parameter identifier sent by the user does not match the

one previously stored within the database. Errors can support multilanguage messages

and can be shown to the user based on their language settings. However, the current error

is a system error, and it was agreed that it will be initially developed in English.

Figure 20 Error created to be shown to user.

45

Next, the class needed to be added to a configuration screen to be functionally tested. The

author chose to first add this solution to the module that is run when parameters are saved,

as this was the one where the vulnerability was first spotted. Figure 21 shows the new

procedure created for mitigating the vulnerability, validateSessionValue. This instantiates

the previously created class and compares two values, the one within the user response

and the one previously stored in the database. When this validation fails, the procedure

returns an error that is shown to the user, following the previously discussed action logic.

Figure 21 New procedure added to parameter saving module.

The author then validated the changes by attempting to override the parameter test_cb

form input with value test_h. Figure 22 shows the result of the testing. The user is now

given a validation error instead of saving the data to the database row identified by the

hidden value.

Figure 22 Validation error when attempting to inject identifier value.

All the saving processes within the configuration use different actions. That means that

after the text testing had been successful, the author needed to add the same developments

for all the other actions and their incorporated modules. The testing was done on all

configuration processes, the code was reviewed by CRM team developers and the

mitigation has been successfully added to the web applications development

environment. It can be noted that setup configurations can only be done in the

development environment, as other processes are used to move the changes to the test and

production environments.

46

4.3 Further steps for security improvement

Following the security assessment results, the author suggests CRM team to do a deeper

investigation of the application’s configuration processes and analyse the vulnerability

scope of the introduced requirements. As stated previously, misconfiguration can have

unforeseen consequences when it is not spotted by CRM team developers. It is necessary

to ensure a safe environment to introduce capabilities to members from other teams.

The security assessment can also be used as a base for a further investigation of the web

application. An example for a requirement analysis was given with the proof-of-concept

solution which can also be used for other requirements. The results indicate that many

other security necessities could be enforced to the configuration process that would

improve the overall security of the system. While it is thought that the set-up processes

do not impose a large threat on the system, the base requirements should still be in place.

The author also suggests that the CRM team should analyse the possibility of a rework of

their application or moving the various procedures to new software. The current web

application managed by the team has been through multiple revisions, with earlier

solutions being incorporated as early as the beginning of the 2000’s. It is important to

evaluate whether the required development time for increasing the security of the

application could be better spent creating a new solution that, in addition to the current

abilities, would allow the team to incorporate new functions alongside more sophisticated

security measures.

In case the current solution is kept, and a deeper security assessment of the whole product

is done, it is preferred the application is periodically assessed to ensure that the security

requirements are in place and working as intended. It is vital to review the whole solution,

not only the configuration processes, to validate the security of the product.

47

5 Conclusion

The author of this thesis has proved through this thesis that the configuration processes

within CRM web application can be manipulated and produce unforeseen consequences

as a result. While configuration processes do not impose a big threat on the whole system,

CRM team is suggested to further use the requirement results to improve the security

level of their web application to avoid any situations that could be caused by exploiting

the various processes.

This thesis explored how to validate the security of a web application by following a

created checklist using an existing verification standard framework and incorporating

different testing techniques. Various sources were used to test and confirm whether the

product was up to standards from the basis of source code review and interface testing. A

proof-of-concept solution was created to show how the results of the security assessment

can be used for a deeper investigation within the program to find vulnerabilities to be

resolved.

This thesis challenged the idea that CRM web application configuration processes cannot

be manipulated to produce unforeseen consequences following malicious or inaccurate

actions. In doing so, this thesis analyses possible vulnerabilities within the product

following the aforementioned methodology and reviews the result of the assessment.

The assessment allows the CRM team to further investigate whether their web application

is up to security standards. With the configuration processes being reviewed, it was found

that multiple security requirements following the OWASP ASVS were not satisfied. The

author presented the assessment to the CRM team and final decision must be made if

other mitigations will be implemented in the existing configuration processes or a new

solution should be created in accordance with the security requirements.

It is important that the security assessment was only done for the configuration processes

of the given web application, only one part of its functionalities. The author proposes that

CRM team can use the newly acquired information to further review the security of their

product, incorporating a larger part of the system. Indeed, while the system is internal and

requires special institution rights for access, periodical validation of security requirements

within the application should still be one of the main focuses of the CRM team.

48

References

[1] P. Truusa, Interviewee, CRM team lead - CRM terminology. [Interview]. 2 May

2022.

[2] F. Monteiro, Learning Single-page Web Application Development, Packt

Publishing, 2014.

[3] K. Nõmmik, Interviewee, CRM analyst - CRM web application design.

[Interview]. 9 May 2022.

[4] A. Calder, The Cyber Security Handbook - Prepare for, respond to and recover

from cyber attacks, IT Governance Publishing, 2020.

[5] M. Souppaya, K. Scarfone and D. Dodson, “Secure Software Development

Framework (SSDF) Version 1.1,” National Institute of Standards and Technology,

2022.

[6] OWASP, “Application Security Verification Standard 4.0.3,” 2021.

[7] M. S. Merkow and L. Raghavan, Secure and Resilient Software, Auerbach

Publications, 2011.

[8] P. Hope and B. Walther, Web Security Testing Cookbook, O'Reilly Media, Inc.,

2008.

[9] Y.-F. Li, P. K. Das and D. L. Dowe, “Two decades of Web application testing - A

survey of recent advances,” Information Systems, vol. 43, pp. 20-54, 2014.

[10] S. Koirala and S. Sheikh, Software Testing, Jones & Bartlett Learning, 2009.

[11] S. Desikan and G. Ramesh, Software Testing: Principles and Practices, Pearson,

2007.

[12] E. Steegmans, P. Bekaert, F. Devos, G. Delanote, N. Smeets, M. v. Dooren and J.

Boydens, “Black & White Testing: Bridging Black Box Testing and White Box

Testing,” in Department of Computer Science, K.U.Leuven, Leuven, 2004.

[13] S. Shah and B. M. Mehtre, “A Modern Approach to Cyber Security Analysis

Using Vulnerability Assessment and Penetration Testing,” International Journal

of Electronics Communication and Computer Engineering, vol. 4, no. 6, p. 48,

2013.

[14] M. E. Khan and F. Khan, “A Comparative Study of White Box, Black Box and

Grey Box Testing Techniques,” International Journal of Advanced Computer

Science and Applications, vol. 3, no. 6, pp. 12-15, 2012.

[15] R. Lepofsky, The Manager's Guide to Web Application Security: A Concise

Guide to the Weaker Side of the Web, Apress, 2014.

[16] J. A. Whittaker and M. Andrews, How to Break Web Software: Functional and

Security Testing of Web Applications and Web Services, Addison-Wesley

Professional, 2006.

[17] J. Andress, Foundations of Information Security, No Starch Press, 2019.

49

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Hannes Toots

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Security Analysis of the Web-Based Configuration Process at the Customer

Relationship Management Team of a Financial Institution”, supervised by Kaido

Kikkas and Mikko Maltsaar

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

15.05.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

