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II

The book discusses the implementation of monotonic
systems in two contexts.

1. Political Mechanism Design: Monotonic systems were
introduced to reflect the adjustment of negotiating
power in bargaining situations, particularly in negotia-
tions between left and right political parties. The objec-
tive is to elucidate the framework of political mecha-
nism design. When a political goal of tax minimization
is declared, monotonicity in this context implies that as
a party's political power grows and taxes decrease, its
portion of negotiated tax resources also grows. Con-
versely, if a party's political power diminishes while
taxes increase, its share of negotiated tax resources also
diminishes. Monotonicity is a desirable trait in political
mechanism design, ensuring fairness and stability in
the bargaining process.

2. Data Analysis: Monotonic systems have also been ap-
plied in data analysis. In this context, stable sets are
used to provide a unifying perspective for virtual ex-
periments. By assigning certain certificates to the ele-
ments in a stable set, virtual experiments can be per-
formed to test the stability of the set under different
conditions. This provides a basis for stability or equi-
librium in the data, as opposed to volatility or fuzzi-
ness. Monotonicity in data analysis ensures that if a
variable's value increases, then the outcome of the ex-
periment also increases, and vice versa.

Overall, the idea of stable or "stable lists" of elements in sets or topologies
is central to the application of monotonic systems in both political mecha-
nism design and data analysis. These stable sets provide a basis for stabil-
ity and equilibrium, and monotonicity ensures that changes in bargaining
power or variable values result in predictable and fair outcomes.



I

The Monotone Phenomena

This collection of scholarly works elucidates the concept of a monotonic
or monotonic system, depicting a structured approach in which subsets
of system elements are deployed to arrange and prioritise indicators or
credentials that represent characteristics or qualifications of subset ele-
ments. Qualifications of indicators have a monotonous quality that har-
monizes with the ever-changing nature of reality in a large number of
examples. Specifically manifested as real numbers, these indicators
show a tendency to either increase or decrease according to the hierar-
chical order induced by the inclusion of subsets from a wider pool of
indicators. Consequently, the Monotone Systems framework serves to
formalize and extend the intrinsic understanding of how elements within
subsets are sequenced, organized, and arranged. The theory, which
originated in 1971, underwent continuous refinement, culminating in its
publication in the Russian journal MAIK in 1976. Subsequently, the
dissemination of this pioneering theory application to the retail chain
network was facilitated by Plenum Publishing Corporation, which intro-
duced it to an English-speaking audience in 1977.

Concise Glossary of Mathematical Nomenclature

W — A common or general set of indicators, elements, objects, etc
Fj, X., H., H', H,, H, ... — Subsets of the General Set W

For i,j =1,2,..,n instead we sometimes use short notation i,j =1,n

a, B, Y., U, T,... — Greek letters as elements of W, Hi, r,..
Credential TC(OL,H j) assigned to an element o0 € H ; of the subset H i

Type @ and type © operations on elements O, [3,...

o, B , — Sequences or sets <OL]. > , <BJ> , of ordered elements QL, , oo
H=YJ, c, o, c,D,. Hc W, WoTI,... —Pairwise relations
H1 ) Hz, H1 F\H2, \% \ QL ,... — Pairwise operations

IT'H, IT H — Collections or arrays of general set W subsets

{H_H‘ Hc W} — This means that {H_H ‘,where Hc W}, etc.

X — Denotes the complement W \ X ofaset X to the set W
V' — Generality quantifier and 3 is existential quantifier
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PREFACE

MONOTONE PHENOMENA OF ISSUES
BEHIND BARGAINING GAMES AND DATA ANALYSIS

By JOsEPH E. MULLAT

Introduction

In the social sciences, humane language is often used to describe phenomena
related to numerical data. This approach can lead to predictive problems when
the descriptions don't accurately reflect reality. On the other hand, in the natural
sciences, numerical data are used to describe and predict phenomena, whether
they are natural or artificially created. Even in the natural sciences, relying
solely on the rigorous language of mathematical assumptions or postulates may
not fully capture the complexity of the phenomena being studied. Essentially,
most phenomena in the social sciences differ from the natural sciences in the
way natural language and numerical data are used. This significant contrast
highlights the problems inherent in both approaches and suggests that a detailed
understanding of phenomena is crucial for accurate predictions or descriptions
of reality.

The problem of forecasting may not primarily lie in the mathematics itself,
but in how well defined and appropriate the mathematical methods used are.
This is analogous to choosing between window shopping and going to a store
when buying something interesting. Thus, to truly understand what mathemat-
ics predicts, we must first explain the subject using descriptive language rather
than relying solely on numerical analysis. This approach ensures thorough
understanding and helps prevent misdirection due to misuse of mathematics.
However, this process can take a long time, often taking years or even decades
to study and adequately refine mathematical models. Additionally, it is impor-
tant to note that innovative research into human phenomena often begins with-
out direct support from mathematics.

Navigating the uncertainty of research direction becomes particularly chal-
lenging when the subject is diffuse, the path ahead unclear, and identifying a
suitable framework daunting. In such situations, uncovering hidden connections
among seemingly disparate subjects can offer a way forward. This process
involves seeking normatively challenging topics that align with the inherent
coherence of natural language. Additionally, descriptions of the phenomena
under study should be articulated in simple terms to facilitate synthesis. While
definitive answers to these questions may remain elusive, prioritizing intellec-
tually stimulating subjects that resonate with linguistic coherence can make the
research journey more compelling for the investigator. Seren Kierkegard's
insight from his 1840 master's thesis emphasized the importance of describing
any subject in a manner comprehensible to a child. It's worth noting that during
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his era, master's thesis presentations and defenses in open sessions lasted
around 7-8 hours. This rigorous examination required candidates to be thor-
oughly prepared to address the panel's inquiries on various phenomena.
Inspired by their dedication, we'll endeavor to similarly delve into a broad spec-
trum of topics, striving for clarity and accessibility in our discourse.

Starting with a visual or pedagogical exhibit may initially appear trivial, yet
it serves as a powerful tool to convey the essence of a concept. Through alle-
gory, we can unveil the hidden meanings of reality, making it easier to propose
novel ideas. We introduce this simple example as a precursor to delving into
theoretical discussions. The reader will encounter this passage again, presented
in a more precise mathematical form, in a subsequent article within the text.
This approach aims to facilitate understanding and pave the way for deeper
exploration.

Wine Menu

The ubiquity of order permeates our daily lives, manifesting in various forms.
From forming orderly queues at checkout counters to relying on chronological
or lexicographical order in our iPhone contact lists, we navigate through life
with a sense of structured arrangement. Similarly, we rely on tables of contents
to navigate books and catalogs effortlessly. In academic literature, cited works
are typically organized chronologically or in lexicographic order, serving the
purpose of clarity and accessibility. These instances underscore the importance
of order in facilitating efficiency and comprehension. The exploration of order
extends beyond these examples and continues to intrigue us.

When a restaurant's sommelier informs guests that certain relatively inex-
pensive wines, or even the cheapest options, are temporarily unavailable, it can
influence their choices in interesting ways. The absence of affordable wines on
the list may prompt guests to explore other inexpensive options already
approved by the sommelier. Conversely, if no initially approved inexpensive
wines are available, the sommelier might recommend pricier alternatives
among the available options, even though there are other good and cheaper
wines to choose from. This dynamic highlights how the availability of wines,
particularly within certain price ranges, can shape guests' preferences and ulti-
mately their dining experience.

Certainly, the world of wine is both fascinating and diverse, and price often
plays a significant role in consumers' decision-making process. While taste is
subjective and not always correlated with price, we'll focus on price as our pri-
mary parameter for the sake of simplicity and consistency in our analysis. This
approach will allow us to explore how pricing influences perceptions and
choices within the realm of wine consumption.

In the wine list ordering process, wines are arranged in descending order of
price, with each wine assigned a "price credential" based on its position in the
list. The price of the most expensive wine is multiplied by 1, the next by 2, and
so forth. These numbers represent the price credentials or moments. When
selecting a wine, the guest considers the local maximum of credentials and the
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corresponding wine price. The guest accepts the price of the wine at the local
credential's maximum as an acceptable level of price significance for choosing
wines of equal or higher price. This sequence of price credentials is termed the
defining sequence. The defining sequence follows a single-peaked pattern, with
the peak representing the kernel of a monotonic system, as described by Mullat
(1971-1995). Each credential (momentum) is calculated as the price multiplied
by the number of different wines in the specific sub-list to which a wine
belongs. This definition of credentials effectively organizes nested subsets of
wines within the wine list.

Graphs

We will continue our exploration by depicting various phenomena through
graphs. A graph is a visual representation of relations between points connected
by lines. They are akin to picture books aimed at young children, who are
required to join numbered points to reveal the final image. In natural language,
we also encounter nodes even if we are not aware of it. When their order is
unimportant, they are connected by lines/edges on the graph; otherwise arcs are
used as illustrated below. The other form of graph representation is given by
quadrangle matrices, i.e., matrices with an equal number of rows and columns
comprising items with either 0 or 1 value, thus denoting Boolean tables. In such
case, rows represent arcs pointing from vertices/nodes, i.e., out from nodes into
other vertices, while columns pertain to arcs pointing into the nodes. A graph
given in a Boolean table form is also a binary relation. In the discussions that
follow, graphs will be explained in terms of rows and columns.

Summing up all 1-s in each row and all 1-s in each column allows forming
so-called “credentials” of rows and columns in graphs. In other words, creden-
tials represent the frequencies of 1-s in rows and columns, as they are equiva-
lent to the total number of incoming and outgoing arcs from any particular node
within the graph. Credentials can also be assigned to cells in binary tables by
summing up or multiplying credentials of rows and columns in a pair wise fash-
ion. Alternatively, using various types of arithmetic composites can further
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extend these credentials. These composites, as combined credentials, may char-
acterize graphs, allowing analysis to progress in a desirable direction. This
approach is particularly useful for emphasizing the dynamic nature of graph
architecture — its monotone phenomena. Indeed, simply eliminating an item
assigned a value of 1 from a Boolean table representing the graph would always
result in decreasing our credentials values. In other words, it is irrelevant
whether we employ composite or simple credentials. Similarly, replacing 0
with 1 would result in increasing credentials, creating reverse dynamics. While
this may seem rather complex, in essence, credentials of graph elements are
nothing but frequencies of items filled with 1-s. This is the foundation of the
theory of Monotone Systems orderings.'

Indicators

Indicators are the preferred tools for statisticians, physicists, natural scientists
and economists. Think of different metrics, average incomes, taxes, and many
other areas where numbers and values are helpful. Nevertheless, despite the
apparent diversity, all of these examples obey the same lexicographic or
chronological ordering rules. Indeed, upon closer examination, it becomes
apparent that any part, subset or sub-list of the lexicographic ordering, regard-
less of whether they are in ascending or descending order, again, regardless of
the original, so-called general or grand ordering, are subject to the same order-
ing lexicographic or chronological rule.

Let us examine an example of grand ordering of items and select two items
from the list, denoting them as Item A and Item B. We can always establish that
either A<B or B=< A, otherwise A = B. It is very easy to form these rela-
tions when the Grand Ordering is available. However, attempting to organize
the Grand Ordering with the knowledge of relations between only a various
items is problematic. Indeed, suppose that given a line of items A,B,C,...we
can only say which one of these three relations <,>,~ holds for any pair. Is it
possible to arrange the items in this list using some numeric indicator in
harmony with these rules? This was the question that von Neumann and
Morgenstern 2 attempted to answer. In their pioneering work, they provided
some very strong formal axioms for rules allegedly applicable to pairs of items,
denoted as the axioms of pairwise relations between items. The authors further
posited that these rules must be obeyed to guarantee the desired ordering prop-

It is was originally published by Mullat (1971) in the article of Tallinn Technical
University Proceedings, Ouepku o O6padorke Uudopmdunu u OyHKIHOHATEHOMY
Oduanusy, Seria A, No. 313, pp. 37-44 (in Russian), and (1972) in the article exten-
sion “Uhest Neelavate Markovi Ahelate Klassist,” On Absorbing Class of Markov
Chains in EESTI NSV Teaduste Akadeemia Toimetised, Fiilisika Matemaatika, vol.
21, No. 3, in Russian.

2 John von Neumann and Oscar Morgenstern, (1953) Theory of Games and
Economic Behavior, Princeton University Press.
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erty of some numerical indicators, or what they referred to as utilities. Von
Neumann and Morgenstern rigorously proved that the existence of such order-
ings confirmed axioms’ validity, and thus established that these can be applied
to order the items in accordance with the increase or decrease in their corre-
sponding utilities. Their work was complemented by the famous theorem put
forth by John Forbes Nash Jr. He provided its proof in the form of axiomatic
approach to the bargaining situations, confirming that the solution of the bar-
gaining problem based on utility orderings, as a prerequisite, is unique given
that the axioms reflect the phenomena of the bargaining adequately.’

All orderings discussed thus far followed some usual numerical rules. How-
ever, Arrow *, relative to those proposed by Von Neumann and Morgenstern,
suggested much simpler rules, in relation to voting schemes. Unfortunately,
when ordering axioms presupposing democracy were applied separately,
although seemingly reasonable approach, this resulted in a paradox, as it was
not possible to satisfy the same axioms applied simultaneously. This led to the
conclusion, expressed in barmaid language, that democracy does not exist. Still,
it is worthwhile exploring these axioms using more complex examples in which
obvious coherence is employed to explain various phenomena more precisely.

Surveys

Polls are a common form of gathering the views and opinions of large groups
of people and are used in many contexts. Government agencies, commissions,
product market analysts, etc., conduct surveys to identify the true incentives of
people. Typically, research results are presented in tabular form because it is a
convenient way to visualize data and store it in databases. In fact, overview or
observation tables are extensions of charts that range from a quadrilateral to a
rectangle. The only difference is that instead of binary (1 and 0) inputs, the
elements of such tables usually consist of codes or labels ( A,B,C,...) called
attributes, measured on a nominal scale. The nominal scale is nothing but a
coded form of words or sentences reflecting some properties of products, i.e., a
predetermined attitude of respondents towards the media, etc., usually accom-
panied by some personal data.

When analyzing such data, pie charts are commonly utilized to provide a
clear visualization of the frequency of various responses at a glance. In cases
where datasets are complex and encompass numerous inputs, multiple diagrams
are generated to enable analysts to explore the subject from various perspec-
tives based on their objectives. This mode of presentation essentially offers a
visual depiction of the frequency density distribution associated with different

3 Nash J.F. (1950) The Bargaining Problem, Econometrica, Vol. 18, No. 2, 155-162.

Arrow, K. (1948) The Possibility of a Universal Social Welfare Function, The Rand
Corporation, Objective Analysis, Effective Solution, 20pp.,
https://www.rand.org/content/dam/rand/pubs/papers/2013/P41.pdf .
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responses. As previously mentioned, employing a nominal frequency scale
allows for arranging respondents' answers in accordance with specific classifi-
cations using personal data such as gender, age, and education. However, it's
important to acknowledge that categorizing responses on a nominal scale could
inadvertently lead to the ranking of respondents themselves based on their
response rates. This phenomenon is evident in the ranking of entities like uni-
versities, car manufacturers, and rating scales.

Some researchers believe that this implementation of the nominal scale
leads to the so-called conforming scale, which actually provides the truth **.
However, we can discover something new by implementing the nominal scale
in the form of a defining ordering/sequence. ’

To proceed with the discussion, it is prudent to first explain the defining
ordering through an example. Let us assume existence of a Grand Ordering of
items A ,B,,A,,A,,C,,D,,C,,E,. Our goal is to reorganize the sequence
according to their frequencies, i.e., frequencies 3,1,2,1,1 of A,B,C,D,E . The
indices 1,2,3,4,5,6,7.8 El,_8 assigned to the items A,B,C,D,E in the
sequence above denote their respective occurrences. The lowest frequencies are
associated with B,,D, and E,. Let us eliminate these items from the
sequence. After eliminating B,,D ,E,, we eliminate C,,C,, as these now
have the lowest frequencies, and then A ,A,,A,. This results in
B,.D..E,,C,,C.,A,A A
highlighting the frequencies of items in different order. Namely, in contrast to

its original form, the new sequence lists items in increasing/decreasing order of
frequencies 1,1,1,2,1,3,2,1 - We can immediately observe upward and downward

., referred to as the Grand defining sequence,

changes in frequencies, e.g., from 2 to 1, but also sliding frequencies, such as
3,2,1. In the collection of our papers, these hikes are designated by Greek

letters I',T’, ... and are thus referred to as I -hikes, reflecting the dynamic
nature of such lists. In fact, when subsets of respondents or their survey
answers/attributes are explored, it is always possible to arrange them into such

dynamic lists, reflecting decreasing/increasing order of their corresponding
frequencies. As a consequence, in line with representing Monotone Systems

Karin Juurikas, Ants Torim and Leo Vdhandu. (2000) “Mitmemddtmeliste andmete visual-
iseerimine isoleeritud majandusruumis, kasutades monotoonsete siisteemide konformis-
miskaalat: Uurimus Hiiumaa néitel,” (Article: Multivariate Data Visualization in Social Space
using Monotone Systems conforming Scale: Case study on Hiiumaa Data).

Tonu Tamme, Leo Vohandu, and Ermo Téks. (2014) A Method to Compare the Complexity of
Legal Acts, NaiL, 2™ International WorkShop on “Network Analysis in Low,” December 5,
Amsterdam.

Joseph E. Mullat. (1976) Extremal Subsystems of Monotonic Systems, I,

Translated from Avtomatica i Telemekhanika, No. 5, pp. 130 — 139.
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through graphs, the frequencies scale is equivalent to the Indicator of matching
responses to the survey questions. It is important to emphasize, however, a fun-
damental property of the defining sequence. Namely, irrespective of which sub-
set, sub-list, or subsequence we take from the Grand Ordering, we have inde-
pendently arranged the subsequence by applying our defining rule, whereby its
defining properties are in harmony with the Grand defining sequence arrange-
ment, from which the subsequence was initially extracted.

Indeed, let us extract a subsequence A,,C,,A,,C, form the list given
earlier. Arranging the items independently, in accordance with the defining
sequence rule, we obtain the frequencies 2,1,2,1. It is irrelevant whether we
eliminated A ,A, before C,,C, or vice versa — C,,C, first, followed by
A ,A,. Whichever path we take, we arrive at 2,1,2,1 as the order of the
frequencies. This is equivalent to generating the sequence C,,C,,A,A, in
accordance with the Grand defining sequence B,,D,,E,,C.,C,A A A,

arrangement.

Many natural phenomena follow well-defined rules and sequences, such as
Fibonacci F,, series, in which any subsequent element F,, is the sum F,.,+F, of
two previous items (1,2,3,5,8,13,...), with F,.|\F,=1.618 as its limit. This value
is also known as the golden ratio, indicating that the relationship between two
quantities is the same as the ratio of their sum to the greater of the two. The
Golden Ratio is widespread in nature, from the proportions of the human body
to the arrangement of leaves, spiral shells, pinecones, etc. Therefore, we can
say that our defining sequence obeys the Fibonacci principle, which states that

the characteristics of a part reflect the characteristics of the whole.

Using the information presented above, we can apply the Grand defining
sequence to a lexicographical or chronological order of words. It is important to
recall that, when some items have been eliminated, similar to the exercise
above in which frequencies were presented on a nominal scale, the value of
frequencies/credentials decreases. The process starts with searching for items
that have the lowest credential values on the credentials scale, followed by
those that are next in increasing/decreasing order, while recalculating the
remaining credentials as we proceed with item replacement. This is a best-
explained using survey table.

Usually, survey tables are used to present respondents’ answers reflecting
their attitudes or views on a specific topic. For the sake of simplicity, when

answering survey questions, respondents are usually required to select one of
the options provided, and can thus be represented by A,B,C,..., denoting their
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choice. Now, instead of presenting these items in a straight line, we can pro-
ceed with elimination, taking two directions. Respondents, like nodes with out-
going arcs, are presented in the rows of survey tables, while columns, like ingo-

ing arcs in graphs, denote their responses to the survey questions, coded as
A,B,C,.... Some credentials composed from the corresponding frequencies of

items can characterize the rows related to individual respondents A,B,C,....

Alternatively, credentials of columns can be characterized by the same or dis-
tinct compositions of frequencies using more sophisticated composites of cre-
dentials compiling, for example, arithmetic/numerical expressions as products.?
In applying the compositions of credentials to rows and columns summing up
matching answers, it is essential to ensure that the composition functions
remain non-decreasing.

Now, aiming to build the defining sequence of the respondents, we can pro-
ceed in the same way with credentials of respondents, credentials of their an-
swers, or even combining these two types of credentials (the row and column
credentials). First, we must identify a cell with the lowest composition, indicat-
ing the most unreliable answer type, suggesting that the respondents are unwill-
ing (for whatever reason) to answer the particular question truthfully. Such
unreliable respondents should be eliminated, along with their unreliable
answers, before recalculating the credentials of the remaining respondents and
their answers. Once this is accomplished, we search for the cell that now has
the lowest credentials composite and, in line with the above, remove the
respondent (and his/her responses) from any further consideration. As before,
we make adjustments in the credentials among all other frequencies of item
(A,B,C,...) occurrences. We proceed in the same manner until no items in the
survey table remain, as all respondents and answers will be removed. Note that,
due to the nature of credentials, the dynamic is always decreasing. It is rather
intuitive to conclude that, as the removal procedure progresses, the remaining
respondents and their answers will assume increasing positions on the creden-
tials scale — with the lowest credentials presented first — just because we
move upwards while building the defining sequence. However, once we reach
the peak, the credentials start to decline, indicating that the scale is single
peaked. Indeed, it can be demonstrated that the respondents’ credentials values
will first show the tendency to grow, and once they reach a certain point, their
values will start to decline. This pattern corresponds to a typical single-
peakedness of the defining sequence. Therefore, the defining sequence does not
only provide an ordinary order of the respondents, but also allows identifying
the conditions under which the credentials reach the peak — the highest point
on the scale.

An example of such type arithmetic may be found in L.K. Véhandu. (1980) Some
Methods to Order Objects and Variables in Data Systems, Proceedings of Tallinn
Technical University, No. 482, pp. 43 — 50..
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Owing to this property, the defining sequence of credentials is a double-
folded order — as the values of its elements first increase until the peak is
reached, after which they start decreasing. In this respect, the defining sequence
formation is akin to the Greedy type algorithms, aimed to improving some cri-
teria.” Such algorithms are simple to use and are thus suitable for programming.
However, it must be ascertained a priori that the result is an optimal solution,
referred to as the Kernels. It is thus fortunate that the optimality of a defining
sequence can be rigorously proved. This gives us confidence that we are not
only proceeding in the right direction but have also chosen a suitable vehicle
for our journey. This will be demonstrated through some significant examples
below.

Cellular Networks

In particular, in the narrow sense of the term, “ A cellular network or mobile
network is a communication network where the link to and from end nodes is
wireless. The network is distributed over land areas called "cells', each served
by at least one fixed-location transceiver (typically three cell sites or base
transceiver stations). These base stations provide the cell with the network cov-
erage, which can be used for transmission of voice, data, and other types of
content...” this paragraph is quoted from open sources.

In a broad context, cellular networks play a pivotal role in fostering media
diversity and revolutionizing our reading behaviors. Yet, the intricate mecha-
nisms facilitating communication with friends through platforms like Facebook,
Linkedin,... exploring diverse online content, and swiftly accessing informa-
tion on our areas of interest often remain obscure to many users. Cellular net-
works embody a complexity that eludes comprehension for most individuals,
making it challenging to grasp their operational intricacies. However, the forth-
coming explanation, in conjunction with the accompanying visual aid, aims to
illuminate the remarkable technological marvel that is the cellular network.

Advances in Greedy Algorithms, Edited by Witold Bednorz. Published by
In-Tech (2008). In-Tech is Croatian branch of I-Tech Education and Publishing KG,
Vienna, Austria, ISBN 978-953-7619-27-5.



XIV Preface

In the past, when personal computers were relatively rare, users could only
interact with the system through the Disk Operating System (DOS). Some of
these DOS commands can still be accessed using the C:\ command prompt. For
instance, typing the command "PING www.microsoft.com" usually yields a
response time of around 25 milliseconds, confirming the site's activity. If the
response takes longer than 25 milliseconds or no response is received at all, it
indicates a potential issue with the Internet connection. Such commands serve
to verify whether a data packet sent from our PC has successfully reached the
designated server. The PING command can establish connections between any
two Internet locations, testing the reachability of websites. Similarly, the
"TRACERT www.microsoft.com" command provides information about any
packet delivery failures encountered en route to the final destination. The path
of these packets can be traced as they traverse through cells or locations to their
ultimate destination. The first cell in this path is typically occupied by the
Gateway cell on the local subnet — the initial router in the chain responsible
for packet delivery. Each subsequent router acts as a cell, akin to a post office,
responsible for routing and stamping packets with delivery or transit receipts.
Consequently, if direct communication cannot be established, pinpointing the
location of the error becomes feasible. As cellular network designs accommo-
date such malfunctions by offering alternative paths, issues in one path or cell
can adversely affect total network throughput for other locations. Conversely,
enhancing a direct connection in one part of the cellular network can also im-
prove overall throughput.

The outlined process facilitates the assignment of indicators representing
the average number of attempts made by packets traversing the network,
including cells without direct connections, to reach the destination cell from the
source cell. Given the extensive number of cells within the network and the
resulting multitude of possible pairwise connections, as per our previous
nomenclature, this number corresponds to the total items in the table of rows
and columns— a standard form of network representation. Within this table,
certain items will remain empty, indicating the absence of direct connections
between these cells.

Undoubtedly, the primary characteristic of cellular networks is their
dynamic nature. The average number of packet deliveries, representing the
attempts to reach the destination, is contingent upon the current network struc-
ture, which has the potential to influence these averages. At a higher level of
abstraction, the Markov Chain satisfies certain postulates of packet deliveries
and can be utilized to describe the delivery processes necessary for packets to
reach their destinations. Indicators or metrics derived from the analysis of these
Markov Chains can provide insights into this process. Indeed, the following
excerpt from Wikipedia may offer valuable insights:"
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A Markov chain (discrete-time Markov chain or DTMC), named after An-
drey Markov, is a random process that undergoes transitions from one state
to another on a state space. It must possess a property that is usually charac-
terized as "memorylessness': the probability distribution of the next state de-
pends only on the current state and not on the sequence of events that pre-
ceded it. This specific kind of "memory lessness' is called the Markov prop-
erty. Markov chains have many applications as statistical models of real-
world processes."

While the assumption that the pertinent information of the preceding states
is implicitly included in the current state is an important property of Markov
Chains is highly beneficial, its dynamic nature is of primary importance for the
present discussion.

This principle can be applied to the cellular networks as the most common
form of communication network. We will try to elucidate what the dynamics
might represent in this context. In a real Web communication network, the cel-
lular networks can be depicted as a collection of routers or switches that are
“alive.” For the network to function, it is necessary to conduct periodic repairs,
reconstruction or extensions, whereby some cells might be removed or
replaced. Malfunctions are also a common occurrence due to the vastness and
complexity of the network. So, what affect all these changes have on the net-
work performance? Intuitively, malfunctions compromise the communication
network abilities, while repairs enhance the quality of services. New communi-
cation units bring about better throughput, while removing the cells requires
that the traffic be restructured. Similarly, traffic protocols are in place, allowing
the packets along open routes to be rerouted in order to reach their destinations
automatically.

This is where the notion of “The Monotone System” is evident in its full
power. In case of positive actions (repairs/extensions), network performance in
enhanced, as the components and processes become more reliable. Conversely,
negative actions (malfunctions) exert negative effects, whereby network per-
formance worsens. However, in many cases, this level of abstraction is overly
simplistic. In nature, we do not expect localized improvements to result in
benefits to all elements and processes. Indeed, in any system, some elements
will remain unaffected, or even experience worsening. As mathematics is an
exact discipline, it is sometimes necessary to introduce some simplifications
when describing such complex systems. Thus, for the sake of the discussions
that follow, we will further postulate that the system performance as a whole is
improving (worsening) when an improvement or worsening occurs locally.

1% Mullat J.E. (1979) An article was published on Markov Chain analysis in the spirit of
this lines in Tallinn Technical University Proceedings, Data Processing, Compiler
Writing, Programming, Ananus {aunsix, [Toctpoenue Tpancistopos, Borpocst
IIporpammuposanwus, No. 464, pp. 71-84.
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This assumption prompts a very reasonable question. What does this view
contribute to our understanding, explained above, of the communication net-
works functioning? It can, for example, allow us to proceed with optimal de-

sign of communication networks, as it renders the design process more precise.

Still, we will first revisit our Grand Ordering of items A,,B,,A;,A,,...
..Cs,D,C,,E, when constructing the main, i.e., the Grand defining
sequence B,,D.,E.,C,,C ,A,A A, and its defining subsequence
C,,C,,A,A,. Let us examine the removed items B,,D,,A ,E, more
closely, in the context of constructing the sequence C5,C7,A1 A g —asa
result of which, the items B,,D,,A,,E, and their credentials are removed. We

can take an opposite approach and try to include these items back into the se-
quence C,,C,,A ,A,. We can first consider B, and then try with D_, then

with A, and finally E. In so doing, we can recreate the individual credentials
for all items (B,,D,A,,E,) even if they are not included in the existing se-
quence C.,C.,,A ,A,. In fact, using this strategy would result in the follow-
ing values: 1 for B,, 1 for D, 3 for A, and 1 for E,. If the objective was
to increase credentials’ values, we can conclude from the above that only the
addition of item A, to the sequence C,,C ,A,,A, will have a posteriori a
positive effect, as in all other cases the credentials decline below 2. In other
words, inclusion of items B,, D, and E, will worsen the situation, because
the frequencies/credentials decrease from 2 to 1, whereas addition of A, does
not change the value of credentials, which remain equal to 2. Formally, includ-
ing items into subsequence can be viewed as a destabilization, or mapping of
subsequences of items. It can be shown that, in spite of the destabilization fac-
tor, the defining sequence, however, at same point cannot be extended without
worsening its quality. In that case, we can say that it has reached a stable or
steady state condition.

This has beneficial implications for building a desirable network via some

mappings explorations. The nomenclature of these mappings is very similar to
the fixed-point approach.'" It is also evident that, attempting to map a sequence

"' Mullat J.E. (October 1979) Fixed point searching was first introduced in “Stable
Coalitions in Monotonic Games,” Translated from Avtom i Telemekh., No. 10, pp.
84-94, in the form of sequences, in accordance with parameter values upon which
the mapping was constructed. Later (July 1981), the mapping technique was ex-
plained in greater detail in “Counter Monotonic Systems in the Analysis of the Struc-
ture of multivariate Distributions,” Translated from Avtom. i Telemekh., No. 7, pp.
167-175.
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C.C,A,A, to C,C,A,A, A

expanded by the addition of item A has reached its most optimal condition. In

we have concluded that the sequence

4

other words, nothing can be added without worsening its state. Actually, in the
discussions that follow, this fixed-point approach will be used to explain some
mappings, rather than relying on a defining sequence. Thus, the communication
networks analysis below will employ this fixed-point line of reasoning.

When designing a relatively simple communication network, one of the
objectives might be to guarantee some throughput, such as stipulating that all
packets must reach their destination in a 25 ms interval. As previously noted,
the cells of the communication networks consist of routers or switches, respon-
sible for redistributing and conducting packet movements from their source
points, via temporary locations, to their final destinations. Switches are superior
to routers as they learn about packets’ temporary destinations, i.e., the path that
must be taken when transmitting the packets, thereby significantly improving
the throughput. A potential geographical layout of these extremely sophisti-
cated and expensive devices is usually planned in the initial phase of the net-
work design.

When determining whether to deploy a router or a switch at a particular
geographic site, numerous factors must be carefully evaluated '>. While the
addition of either device can enhance throughput, it also introduces increased
network maintenance, potentially uncertain operational expenses, and height-
ened installation costs. Ultimately, an insufficient number of these sophisticated
devices may result in inadequate throughput, while an excessive number leads
to escalated costs. This dilemma is addressed through a compromise necessitat-
ing multilevel optimization in the design of communication networks.

It seems intuitive that the aforementioned fixed-point search can help to
solve, at least in some cases, the problem. It is also advantageous to conduct
Markov Chain analysis by building the net with a desirable property to main-
tain the throughput above a certain level. Thus, given a Markov Chain of poten-
tial network structure in tabular form, we can proceed by adding further cells or

2 In this direction, an extensive study, also based on the theory of “Monotone Systems”
with cellular networks, was carried out by O. A. llopusr (2006), reHepaTbHEIHA
mupexTop 3A0 «HUPUT», a. 1. H., mpodeccop, kadeapa paquoTeXHUIECKIX
cucreMm, MockoBckuii Texaomornaeckuit Yausepcuret CBszn u Madopmanny; by P.
C. Tokaps (2014), rexauueckuii crieranuct OAO «MTCy, "Elektrosvjaz," No.1,
pp. 45-48, , in Russian; P.C. ABepbsSHOB, TUPEKTOP IO TIPOU3BOJICTBCHHOM
nesitensHOCTH OO0 «HCTTy; I'.O. Bokk (2017), mupekrop no Hayke OO0
«HCTT», a.1.1., and A.O. llopuH, texunueckuii qupexrop OO0 «HCTT»,, “Opti-
mizing the size of the ring antenna and the rule formation of territorial clustersfor
cellular network MCWILL” , "Elektrosvjaz," No.1, pp. 22-27,, Method of “ Adaptive
Distribution of Bandwidth Resource” , Russian Federation, Federal Service for Intel-
lectual Property, RU 2 640 030 C1, Application 2017112131, in Russian,
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communication lines, and analyze the outcome. While it is likely that this proc-
ess will improve the performance initially, at some point, further additions will
be too costly for the benefits they provide. The problem thus reduces to finding
the most optimal arrangement of lines and cells in the communication network,
which guarantee the best throughput, such as 25 ms stipulated above. In doing
so, we have the opportunity to convert the throughput credentials into some sort
of effective credentials of packets’ pass characteristics, representing average

number of pair wise hits between cells within the communication network
obeying the monotonic property in line with that applied to items A,B,C,...

Highly effective procedures already exist, the aim of which is to find the
best stable solutions — the fixed points of Monotone Systems mappings. In
these procedures, the defining sequence is constructed by means other than
those previously described. However, irrespective of the methodology applied,
the outcome is still the defining sequence characterized by single peakedness.
Most importantly, the point at which the maximum/minimum is reached will
still represent our optimal solution. This is one of the examples of solving NP
hard problems with polynomial P-NP complexity.

Economy

Our next item for discussion is the implementation of Monotone Systems, spe-
cifically within the framework of retail networks. In economics, this methodol-
ogy is commonly utilized in bilateral agreements between various agents
involved in the delivery or production of goods. This process entails the crea-
tion of an economic network, which can be conceptualized through graphical
representations showcasing potential agreements. Each node within this
network symbolizes an agent, while the connections between them represent
contractual arrangements such as bilateral delivery agreements or requests. It's
important to highlight that when engaging in the exchange of goods and
commodities, factors such as expenses, prices, and maintaining profitability are
of utmost concern.

Let's delve into an illustration: Imagine a scenario where a prospective cli-
ent seeks to secure a parking slot at the airport for a certain fee during their
vacation period. It's crucial to note that this request implies their intention to
commute to and from the airport by car, necessitating the inclusion of expenses
like fuel and toll charges in the overall rental cost. This cost analysis becomes
pivotal when juxtaposed with the alternative modes of transportation, such as
taxi services or public transit. The decision-making process hinges on fluctua-
tions in prices, underscoring the dynamic nature of the economic ecosystem.
Moreover, within this network, each participant retains autonomy in choosing
with whom to enter into contractual agreements. From a game theory perspec-
tive, these decisions manifest themselves as strategic choices described in lists
detailing available agents, the services they offer, and their associated costs.
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Undoubtedly, the structure of any economic network remains in a state of
flux—new contracts materialize while older ones may fade into obscurity. This
perpetual evolution mirrors the dynamics observed within communication
networks, reinforcing the application of a Monotone System framework. In
bilateral agreements, the non-fulfillment of certain actions within the retail
chain can reverberate negatively throughout its entirety. Conversely, the estab-
lishment of fresh agreements typically yields positive outcomes. Yet, in practi-
cal scenarios, the addition of a new contract might inadvertently yield adverse
repercussions, a risk some enterprises willingly undertake in anticipation of
future gains. Hence, for the sake of simplicity, we posit that, in general, the
introduction of new bilateral relations within the network tends to exert a fa-
vorable influence.

When examining economic networks, a critical aspect to explore is their
capacity to withstand the so-called market volatility, which arises when prices
of commodities, raw materials, or currency exchange rates fluctuate. This vola-
tility introduces additional challenges in reconfiguring the architecture of the
network to adapt to changing market conditions. An essential consideration in
understanding network dynamics is the concept of transaction cost. This
parameter allows for the classification of transactions based on the costs in-
curred in executing them. By categorizing transactions according to their asso-
ciated costs, we gain insights into the efficiency and effectiveness of the net-
work's operations. Moreover, transaction cost analysis enables us to establish a
sequence of bilateral credentials, facilitating the evaluation of profit indicators
concerning the design and structure of the network. Thus, by delving into
transaction costs and their implications, we can better comprehend how eco-
nomic networks navigate market volatility and optimize their performance.

Fixed-Point Technique

In the realm of economic network design, the fixed-point technique can be
likened to a quest for equilibrium, where bilateral agreements within the net-
work stabilize, enabling the system to withstand economic fluctuations or vola-
tility. Once this equilibrium is attained, introducing new contracts becomes
challenging without overhauling the entire network structure. The concept of
single peakedness within the defining sequence aids in identifying network
segments or separations that are resilient to volatility, facilitating efficient
decision-making regarding commodities delivery and raw material procure-
ment. These advantages prove invaluable in endeavors such as expanding cus-
tomer base, restructuring existing networks to enhance service offerings, and
exploring new avenues for improvement.

Thus far, we have considered Monotonic Systems consisting of atomic
items. In other words, it was always possible to count how many items belong
to the system, i.e., the number of items was finite. That was the case with lexi-
cographical or chronological ordering of some items, whereby the credentials
of items were chosen as frequencies. In such cases, the available items were
presented sequentially and were clearly distinguished from others. The com-
munication networks that were considered in the preceding discussions were
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also atomic, as the aim was to maximize the packet throughput from source to
destination (i.e., minimize the delivery time). The same was the case in eco-
nomic networks, where the network structure was only viable if it was profit-
able, as measured by transaction costs. In all these examples, our aim was to
build a defining sequence in order to find the peak — the kernel of the order-
ing, because such a sequence was single peaked. It was also emphasized that
the aim was to find a fixed point at which the structure design is optimal,
whether we chose to design a communication or economic network.

Extending the defining sequence notion to analytical functions defined on
various types of topologies is impossible because the resulting defining
sequence will be infinite. Instead, we will apply the standard perspective when
examining analytical single-peaked functions, aiming to find the peak of these
functions. There is nothing new in this approach. The novelty, however, stems
from the single-peaked phenomena, akin to the bargaining games. In such
cases, one side has single-peaked preferences, and thus exhibits non-
conforming behavior, while the second player, aims to maximize his/her bene-
fits. In such scenario, the first player’s preferences increase until they reach the
peak, after which they start to decrease. In contrast, while the first player is
moving along his/her single-peaked preferences, the second player’s prefer-
ences always increase. The reader may benefit from exploring this further in
the context of a sugar-pie game scheme, which is a suitable example of such
analytical preferences.” In the present discussion, it is important to appreciate
the extension of the single-peaked preferences representing the family of sin-
gle-peaked functions, as this is the main advantage of this fixed-point ap-
proach. However, its application requires finding roots of some equations in
order to identify stable states, inclusive of those credentials located at the peak
of the credentials scale. A good example of such approach can be found in
welfare economics, where the credentials of our scheme actually represent the
level of transfer payments for those in need.

Mechanisms Design

Rather than analyzing and predicting agents' economic or political behavior
based on established norms, our approach involves creating a conducive envi-
ronment where agents, acting as rational players, can make reasoned decisions
autonomously. This strategy relies on agents' rational behavior or actions to
lead to reasonable outcomes. An illustrative example is the "Sugar-Pie game,"
which demonstrates a reversal of the typical trading model. Here, the focus
shifts from determining participants' characteristics to achieving a fair distribu-
tion of resources among all players. For instance, in a scenario involving two
players, an equitable division of a pie into two halves is considered a desirable
objective. This approach emphasizes fairness and equitable outcomes rather
than solely relying on individual characteristics or predetermined standards.

3 Joseph E. Mullat. (2014) "The Sugar-Pie Game: The Case of Non-Conforming
Expectations", Walter de Gruyter, Mathematical Economic Letters 2, 27-31.



Monotone Phenomena of Issues Behind XXI
Bargaining Games and Data Analysis

On the other hand, we may wish to predict the characteristics of participants
a posteriori, i.e., after making this particular fair division, proclaimed as the
best solution. This solution should also be understood as a design of partners’
trading skills in such a way that the determination of the effective solution will
be found to pursue this objective. However, it must be noted that this is the
objective of the designer, rather than the goal of rational participants. Here, it
must also be emphasized that we are not engaged in a symmetrical trading
model, but rather the trading model characterized by so-called non-conforming
interests of the participants. In fact, a standard economic situation involving
company owners and company employees is not always 100% antagonistic
with respect to wage negotiations. Frequently, the interests of the workers and
the owners are not in conflict, even if this seems counterintuitive based on the
well-known principle of scissors.

The resolution to the sweet pie division dilemma becomes more complex
when additional costs are factored in. If both parties opt to enlist the services
of lawyers, they will incur fees, which can be determined based on their bar-
gaining power. For instance, in the Sugar-Pie game, these fees are illustrated as
€230 and €770. Should any negotiator seek a larger share of the pie, they must
be prepared to invest more in legal representation, necessitating a proportional
adjustment of costs to reflect the desired outcome. Essentially, this entails
establishing certain parameters on the credentials scale. Notably, the proposed
sweet cake scheme can serve as a model for devising equitable political solu-
tions during negotiations concerning the allocation of tax revenue collected by
the state.

Certainly, the dynamic of citizens contributing a portion of their income as
taxes underscores the vital role taxation plays in funding essential social ser-
vices, including support for those in need. As the demand for assistance grows,
necessitating increased transfer payments, taxes naturally rise, thereby reduc-
ing citizens' after-tax incomes. However, when unemployment rates decline
and more individuals enter the workforce, tax revenues experience an upsurge,
ultimately resulting in enhanced after-tax benefits for all members of society.

This scenario exemplifies a fundamental concept in the realm of economic
mechanisms, illustrating how adjustments in taxation policies can yield pro-
found effects on overall economic stability and welfare. Moreover, this para-
digm can serve as a blueprint for designing political systems with desirable
attributes. One such attribute is the identification of fixed points within the
system, indicative of an optimal state where taxation reaches its minimum
threshold. Once this equilibrium is attained, the political system can stabilize
in the face of economic volatility, provided that necessary adjustments to taxa-
tion rules and norms are implemented accordingly. Thus, by leveraging in-
sights from economic mechanisms, policymakers can strive to create political
frameworks that foster stability and prosperity for the populace.



The image entitled "Bargaining Games" in the top half shows two people shaking
hands over a contract, suggesting negotiation or agreement. The bottom half shows
a Euro coin with its front and back sides, further emphasizing the financial or eco-
nomic aspect of the negotiations. In the upper left corner, there is a mathematical
symbol indicating a possible connection to game theory and mathematical analysis.



The Sugar-Pie Game:
A Case of Non-Conforming Expectations*

~

Abstract. The bargaining game involves two players negotiating for a fair share of the
sugar-pie. The first player, not very keen on sweets, emphasizes quality over quantity,
indicating a non-conforming expectation compared to the typical desire for more sweets.
On the other hand, the second player has an open attitude towards all sweet options,
regardless of their specific preferences, which also contrasts with conventional expecta-
tions. Despite their differing expectations, both players aim for an equal division of the
pie, each wanting to receive half of the available sweets. The paper seeks to analyze the
negotiating power of the first player in achieving this equal division, considering their
emphasis on quality and the shared goal of equal distribution. In this context, "non-
conforming expectations” refer to the players' divergent views or attitudes regarding the
sugar-pie and their preferences for sweets.

Keywords: game theory; bargaining power; non-conforming expectations

1. INTRODUCTION

When bargaining, the players are usually trying to split an economic surplus in
a rational and efficient manner. In the context of this paper, the main problem
the players are trying to solve during negotiations is the slicing of the pie. Slic-
ing depends upon characteristics and expectations of the bargainers. For exam-
ple, while moving along the line at the z-axis (the size), the u-axis in Fig. 1
displays single-peaked expectations of player No. 1. In comparison, concave
expectations of player No. 2 are shown in Fig. 2. The elevated single-peaked
% -slice curve in Fig. 1 corresponds to the lower, but adversely increasing,

concave 4 curve of expectations in Fig. 2, and for the other sugar-pie allot-

ment%,%.

Mullat J.E. (2014) The Sugar-Pie Game: The Case of Non-Conforming Expecta-
tions, Walter de Gruyter.” Mathematical Economic Letters2 , 27-31.
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Figure 1. Player No. 1 expectations Figure 2. Player No. 2 expectations

Given that the players’ expectations are non-conforming,' as shown in
Fig 1., and Fig. 2, splitting a pie no longer represents any traditional bargaining
procedure. Instead of dividing the slices, the procedures can be resettled. Thus,
we can proceed at distinct levels of one parameter — parametrical interval of
the size, which turns to be the scope of negotiations. In fact, Cardona and Pon-
satti (2007, p. 628) noticed that "the bargaining problemis not radically differ-
ent from negotiations to split a private surplus," when all the parties in the
bargaining process have the same, conforming expectations. This is even true
when the expectations of the second player are principally non-conforming, i.e.,
concave, rather than single-peaked. Indeed, in the case of non-conforming ex-
pectations, the scope of negotiations — also known as "well defined bargaining
problem" or "bargaining set” related to individual rationality (Roth, 1977) —
allows for dropping the axiom of "Pareto efficiency." Thus, combined with the
breakdown point, the well-defined problem, instead of slices, can be solved
inside parametrical interval of the pie size.

With these remarks in mind, any procedure of negotiating on slices accom-
panied by sizes can be perceived as two sides of the same bargain portfolio.
Therefore, it is irrelevant whether the players are bargaining on slices of the
pie, or trying to agree on their size. This highlights the main advantage of the
parametric procedure — it brings about a number of different patterns of inter-
pretations of outcomes in the game. For example, it can link an outcome of an
economy to a suitable size of production, scarcity of resources, etc. — all of
which are indicators of most desirable solutions. Indeed, our initiative could
serve to unify the theoretical structure of economic analysis of productivity
problem. Leibenstein (1979, p. 493) emphasized that "...the situation need not
be a zero sum game. Tactics, that determine the division can affect the size of
the pie." Clarifying these guidelines, Altman (2006, p. 149) wrote:

"There are two components to the productivity problem: one relates to the determi-
nation of the size of the pie, while the second relates to the division of the pie.
Looked upon independently, all agents can jointly gain by increasing the pie size,
but optimal pie sizeis determined by the division of piesize."

1 We say also interpersonally incompatible, i.e., impossible to match through a mono-
tone transformation (Narens & Luce, 1983).
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2. THE GAME

The game demonstrates how a sugar-pie is fairly sliced between two players.
The first player, denoted as HE, is a soft negotiator, not very keen on sweets,
and would not accept a pie if the size of the pie is too small or too large. In HIS
view, too small or too large sugar-pies are not of reasonable quality. The sec-
ond player, hereafter referred to as SHE, is a tough negotiator and prefers ob-
taining sweets, whatever they are.’

The axiomatic bargaining theory finds the asymmetric Nash solution by
maximizing the product of players' expectations above the disagreement point

d=(d.d,): argmax . f(x.y,0)=(u(x)-d,)"-(g(y)-d,)™,
the asymmetric variant (Kalai, 1977).

Although the answer may be known to the game theory purists, the ques-
tions often asked by many include: What are X, y, o, u(x) and g(y)?
What does the point <d1,d2> mean? How is the argmax formula used?

The simple answer can be given as:
¢ X isHISslicing of the pie, and QU isHISbargaining power, 0 <x <1, 0< . <1;
e U(x) isHISexpectation, for example u(x) = x, of HIS x dlicing of the pie;

e Y isHERSlicing of the pie, and 1 — ol isHER bargaining power, 0 <y <1;

o g(y) isHER expectation, for example g(y) = \/; , of HER y dlicing of the pie.

Based on the widely accepted nomenclature, we call s = <u(x), g(y)> the

utility pair. The disagreement point d = <dl,dz> denotes what HE and SHE
collect if they disagree on how to slice the pie. The sugar-pie disagreement
point is d = <d1,d2> = <0, 0> , whereby the players collect nothing. Further, we
believe that expectations from the pie are more valuable for HER, indicating
HER desire g(%) = \/z =0.707 for sweets, which is greater than HIS desire
u(%)=0.5. Considering the argmax formula f(X,y,a), one may ask a
new question: What is the standard that will help to redesign bargaining power
o facilitating HIS negotiations to obtain a desired half of the pie? SHE may
only accept or reject the proposal. A technical person can shed light on the
solution. We can start by replacing u(x) with x, y=1-x, g(y) with
\/: , and taking the derivative of the result f(x,]—x,a) with respect to
the variable X by evaluating f (x,] —x,) . Finally, with X = 4, the equation
£ (%,%,0) =0 can be solved for o ; indeed, o =1/3 provides a solution to
the equation f! (%, %,a)=0.

2 Note that, for the purpose of the game, we do not ignore the size of the pie but put this
issue temporarily aside.
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In general, one might feel comfort in the following judgment:
"Even in the face of the fact that SHE is twice as tough a negotiator,’ to count on the
half of the pie is a realistic attitude toward HIS position of negotiations. Surely, rather
sooner than later, since HE revealed that SHE prefers sweets whatever they are, HE
would have HER agree to a concession." This attitude might well be the standard of
redesigning the power of HIS negotiation abilities if half of the pie is desirable
as a specific outcome of negotiations.

Returning to the pie size issue, it will be assumed that, in the background of
HIS judgment, the quality of the pie first increases, when the size is small. On
the other hand, as the size increases, the quality eventually reaches the peak
point, after which it starts to decline with the increasing size. Thus, the quality
is single-peaked with respect to the size. For HER, the pie is always desirable.
To handle the situation, we assume that HE possesses all the relevant skills of
the pie slicing. Nonetheless, based on the aforementioned assumptions, for
HIM, the slicing may, in some cases, not be worth the effort at all. If the slicing
does not meet its goal, as just emphasized, HE can promote HIS own under-
standing of how to slice the pie properly. HE can enforce decisions, or effec-
tively retaliate for breaches — recruiting for example "enthusiastic supporters,"
(Kalai, 1977, p.131). SHE, on the other hand, lacks slicing abilities, knowledge,
skills or competence. Thus, if interests of both players in the final agreement
are sometimes different or sometimes not, SHE cannot fully control HIS ac-
tions and intentions. In these circumstances, SHE might show a willingness to
agree with HIS pie division, or at least not resist HIS privileges to make ar-
rangements upon the size of the pie. Hence, from HER own critical point of
view, by acting in common interest, SHE may admit HER lack of knowledge
and skill. This clarifies HIS and HER asymmetric power dynamics.

Whether HE is committed or not is irrelevant for his decision to accept HER
recommendation regarding the size z . HE is committed, however, only to slice
x aligned in eventual agreement. The above can be restated, then, with the
condition that HE seeks an efficient size z of the pie determined by the slice

X . Let, e.g., the utility pair <u, g> of HIS and HER expectations be given by:
U(Z,X) =Z- [(1+ X/2)_Z] 5 g(ZaY) = Z'\/§> ze [0’1]7 X, Y& [Oal]

The root z =% resolves <u;(z, X)

X:0> =0 for z, and the root z =} re-
solves <u;(z, x)| X:]> accordingly. We can thus define efficient slices, relative
to the size z, as a curve x(z), which solves u’(z,x)=0 for x . Evaluating
x from u/(z,x)=0 and subsequently replacing x(z) into u(z,x) and
g(z,x), yields u(z)=2z" and g(z)zz-m. Now, given the scope
Ze [% ,%] (= [O,l] of the negotiations, the bargaining problem <S ,d>
passes then into parametric space 8, = <u(Z),g(Z)> . In HIS view, the pie must

fit the size requirements, since outside the interval [%,%]C [0,1] the size z is

3 Let us say that SHE pays HER solicitor twice as much as HE does.
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inefficient — too small and thus not useful at all, or too large and of inferior
quality. Therefore, the disagreement occurs at d = <u(%),g(%)>, d= <% ,O>.

The Nash symmetric solution to the game is found at z=0.69, x =0.74. On
the other hand, HIS asymmetric power 0.21 is adequate for negotiating with
HER about receiving half of the pie. The size z=0.62, for example, in HIS
view, fits the necessary capacities of a stovetop for provision of high quality
sugar-pie.

Once again, to find the Nash symmetric solution, a technically minded
person must resolve the equation f'(z,a)=0 for =z, where

f(z,a) = (u(z) —%)“ -g(z)™ when ao="%; z=0.69 provides a solution to
the equation. Thus, solving the equation u’(0.69,x)=0 for X yields

x =0.74 . To find the power of asymmetric solution, we first solve the equa-
tion u/(z,%)=0 for z, z=0.62, x = % . Then, we solve {(0.62,00)=0

for 0L and find that HIS power matches o =0.21, which is adequate for nego-
tiating with HER when an equal slicing of the pie is desirable, i.e., both HE and
SHE receive ' of the pie.

3. BARGAINING PROCEDURE

The strategic bargaining game operates as a game of alternating offers. Given
some light conditions, it is well known that, when players partaking in this type
of game are willing to make concessions during the negotiations, they are likely
to embrace the axiomatic solution. That is the reason why we continue our
discussion in terms of a procedure similar to the strategic approach.

To recall, there are two players in our game — HE, with emphasis on qual-
ity, and SHE, with no specific preferences. A precondition for the agreement
was that the expectations of negotiators solely depend on HIS framework of
how to set the size parameter, rather than the slice. As a consequence of this
dependence, efficient sizes provide a fundamental correspondence to crucial
slices. Accepting the precondition, SHE will only propose efficient sizes, as HE
will reject all other choices.

Nonetheless, it is realistic that SHE would — by negligence, mistake or
some other reason — recommend an inefficient size, which HE would mistak-
enly accept. On the contrary, it is also realistic that HE has an intention to dis-
regard an efficient recommendation. This will be irrational handling as, in any
agreement, no matter what is going on, both players are committed by propos-
als to slices. Therefore, making a new proposal, HER recommendation on sizes
makes a rational argument that HE must accept or reject in a standard way.
Such an account, instead of an agreement upon slices, as we believe, explains

that the outcome of the bargaining game might be a desirable size z° € [ZI,ZZ].

Hereby, only the interval, named also the scope [Z],ZZ] of negotiations, bids

proposals, which now, by default, are binding efficient sizes with slices X.
Consequently, the bargaining game performs exclusively in the interval

[ZI,ZZ]. Hence, [ZI,ZZ] is the scope of HIS efficient sizes of most trusted
sugar-pie platforms for negotiations, where players would choose sizes, accept-
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ing or rejecting proposals. The negotiators’ expectations, depending on [ZI ,Zz],
arrange a bargaining frontier & as a way to assemble the bargain portfolio.

Therefore, the negotiators may focus on making the size proposals. If rejected,
the roles of actors change and a new proposal is submitted. The game continues
in a traditional way, i.e., by alternating offers.

Observation. In the alternating-offers sugar-pie game, the functions
(u(z)—d,)" and (g(z)—d,) ™ imply HISand HER expectations, respectively,
over the pie size ze [anz]- With the risk 1>>q >0 of negotiations to col-
lapse prematurely into disagreement point d:[dl,dz], the solution z° of
well-defined bargaining problem (8,,d) is enclosed into the interval

[z.2"]|c[z,,2,], z° €[Z,2"]. Themargins Z',z" are solving the equations

(1-)-(u@)—d ) =(uz)-d), 0-9)-(g(z)~d,) " =(gz)~d,) "
for variables z',z’ (cf. Rubinstein 1998, p. 75).

In our example, when x = )4 (the half of the pie is a desirable (ex-ante) so-
lution), HIS negotiation power 0.21 leads to the asymmetric solution
z=0.62. Let the risk factor of the premature collapse of negotiators be
q=0.05. Then, the interval [0.61,0.64]<[0,1] sets up pie sizes providing
the desirable solution, whereby the pie will be divided equally.

4. CONCLUSION

In view of the above, a pretext for the analysis of the domain and the extent of
bargain portfolio for two fictitious negotiators, denoted as HE and SHE, were
established. The portfolio was supposed to account for the players having non-
conforming expectations. Instead of slicing the sugar-pie, such an account al-
lowed for the inclusion of a guide on how the eventual consensus ought to be
analyzed and interpreted within the scope of negotiations upon the size of the
pie. Players’ bargaining power indicators specified by the bargaining problem
solution were used in compliance with their respective desired visions and
ambitions.
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Wellness Club/Coalition Formation by
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Abstract. This study explores the nexus between the Nash Bargaining Problem
and club/coalition formation, elucidating the derivation of utility functions using
Boolean tables. It appeals to specialists in social sciences and economics by in-
tegrating bargaining and rational choice mechanisms. The paper delineates the
interrelation between these concepts within the framework of general choice
theory, emphasizing the formalization of choice acts through internal and exter-
nal descriptions via binary relations. In the context of the "Well-Being" com-
pany, the CEO's initiative to reduce disability compensations by promoting
wellness events among employees underscores the practical application of the
Nash Bargaining Problem. Through a survey aimed at discerning employees'
preferences, the CEO seeks to optimize the selection of wellness activities based
on their varying levels of interest. This scenario epitomizes the integration of ra-
tional choice mechanisms and bargaining concepts in addressing organizational
challenges, aligning with the theoretical framework discussed in the paper. By
leveraging scalar optimization principles, the CEO aims to derive a solution that
maximizes employee engagement while minimizing company losses, thus ex-
emplifying the real-world implications of the theoretical foundations presented.

Key words: coalition; game; bargaining; algorithm; monotonic system
Concise Glossary of Mathematical Notations

Matrix W =|| oaij”m signifies the Boolean Table, where o, =1 or a,, =0

denotes one of its Boolean elements holding the value of 1 and 0, respectively.
For players’ joint expectations, we use the notation (X,y), where

xe2¥ N= {1,...,i,...,n}, X — subset of rows N, and ye2",
M= {1,...,j,...,m}, y — subset of columns M. Sub-table H or block denotes
the players’ joint crossing of rows X and columns y, whereas notation |H|
indicates the number Z a,, € H entries that are equal to 1 in the sub-table
H. In addition to the conventional pairwise operations — LUG, LNG,
H=0,LcG,>,LcG, >, HcW,and W T — we sometimes use
the notations H+1 and H + j, and similarly for H\i, H\j we use H—1,
H-j for iex, jey and H+1i, H+j, for Hui, HU j. The notation
<0L1 ,OLZ,...> represents an ordered set of elements while {ocl,ocz,...} represents

an unordered set.
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1. INTRODUCTION

Science distinguishes itself through its pursuit of empirical knowledge, utilizing
systematic observation, experimentation, and reasoning based on evidence
(Popper, 2002; Ponterotto, 2005; Abhary et al. 2009). Scientific goals focus on
understanding natural phenomena using rigorous methods to minimize bias and
subjectivity. Science motives prioritize curiosity and discovery, aiming for
objective truths. The conditions involve peer review, reproducibility, and the
constant refinement of theories, setting it apart from other human endeavors. Its
implementation involves understanding and consolidating the theory, as well as
a careful selection of the methodology, approaches, and techniques employed
in the investigations, and the reproducibility of the obtained results.

Usually, a theoretical or practical contribution to the theory, or practice of
applying a theory, consists of expanding existing categories, concepts, models,
simplifications, etc. with the aim of obtaining new theoretical facts or solving
unsolved problems. However, there is another approach to extracting new
knowledge from old and well-established categories, which necessitates the
capacity to recognize new relationships or links hidden between the existing
fundamental categories. This innovation that consists of taking aspects that
already exist and putting them together in a new way is the main motive behind
this article, as a part of which a comparison with, or rather an interpretation of,
the well-known Nash Bargaining Scheme based on the theoretical provisions of
the coalition game as applied to Boolean Tables. The application of this provi-
sion lies in the fact that Boolean Tables facilitate the calculation of the utility
functions of the coalition game, thereby allowing the individual division of the
total payoff or revenue to be determined for each player separately. For this
purpose, we have developed an example involving a “wellness club” offered to
company employees to illustrate what such an innovation can do in terms of the
use of Boolean Tables for addressing the Bargaining Problem and solving coa-
lition games.

Therefore, the specific type of game situation depicted via Boolean Tables,
as it seems to us, does not limit, but rather enriches the theory and provides
additional tools, which in practice affect the socioeconomic stability of most
societies and open up opportunities for data analysis, both in social networks
and for the interpretation of rational behavior of participants in the network
models of modern economy.

In conclusion, we were also able to illustrate various utility functions of
coalition games (so-called supermodular/concave functions) that are actually
responsible for the coalition motivation of players when receiving payouts
(supermodular functions) or when the collective behavior of the players loses
its appeal (super-concave functions).

Since the publication of “The Bargaining Problem” by John F. Nash Jr. in
1950, the framework proposed within has been developed in different direc-
tions. For example, in their Bargaining and Markets monograph, Martin
Osborn and Ariel Rubinstein (1990) extended the “axiomatic” concept initially
developed by Nash to incorporate a “strategic” bargaining process pertinent to
everyday life. The authors posited that the “time shortage” is the major factor
encouraging agreement between bargainers. Various bargaining problem varie-
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ties emerged in the decades following Nash’s pioneering work, prompting
game theoreticians to seek their solutions, most of which did not necessarily
comply with all Nash axioms. Beyond any doubt, the “Nonsymmetrical Solu-
tion” proposed by Kalai (1977); Harsanyi’s (1967) “Bargaining under Incom-
plete Information”; “Experimental Bargaining”, which was later proposed by
Roth (1985); and the “Bargaining and Coalition” paper published by Hart
(1985) are among some notable contributions to this field, confirming the fun-
damental importance of bargaining theory.

Bargaining and rational choice mechanisms are interrelated concepts and
are treated as such in this work. In the context of general choice theory, the
choice act can be formalized through internal and external descriptions, which
requires the use of binary relations and the theoretical approach, respectively.
Thus, both description modes apply to the same object, albeit from different
perspectives. The Nash Bargaining Problem and its solution express exactly the
same phenomenon. Given a list of axioms—such as “Pareto Efficiency” or
“Independence of Irrelevant Alternatives”—in terms of binary relations the
rational actors must follow, the solution is reached through scalar optimization
applied to the set of alternatives. Indeed, the scalar optimization is at the core of
the Nash’s axiomatic approach and is the reason for its success in facilitating
the bargaining solution derivation. In this respect, the motive of this work is
also to present a “derivation” of a bargaining solution based on large Boolean
Tables and some theoretical foundations offered by the method. Unfortunately,
in following Nash’s scenario, numerous difficulties emerged.

Boolean table representation transforms the "cacophonous" real-life
scenario into a relatively simple scalar index, rendering it more understandable
(Malik and Zhang, 2009). However, given the ambiguity of scalar optimization,
this representation makes the picture more complicated. Indeed, we consider in
this work a purely atomic object that does not intuitively satisfy the “invariance
under the change of scale of utilities” postulate typically assumed in the proofs.
From the researcher’s point of view, the issue stems from the incertitude per-
taining to the most optimal choice based on the scalar criteria. The Nash axio-
matic approach suggests that employing the product of utilities is the most
appropriate, thus removing any uncertainty from further discussion. Neverthe-
less, in the context of the method presented here, it is posited that a reasonable
solution might emerge, while game-analysts would be advised to include the
method in a wider range of applicable game analysis tools.

We provide a basic example of our bargaining game in the following sec-
tion. In the appendix, we also illustrate another negotiation scheme between a
coalition and its manager based on Boolean Tables where we adopt some of the
usual utility functions. It is worth noting that some elements of the main exam-
ple, such as signals or distortions, are not the main topic of our discussion and
merely serve to illustrate the complexity of the negotiation process.

In Section 3, we attempt to explain our intentions in a more rigorous man-
ner. Accordingly, we formulate our “Bargaining Problem Based on Boolean
Tables” as pure strategies, thus providing the foundation for the discussions
presented in Section 4, where we exploit our pure Pareto Frontier in terms of
so-called Monotonic Systems chain-nested alternatives — the Frontier Theorem.
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In order to implement the Nash theorem for nonsymmetrical solution (Kalai,
1977), in Section 5, we introduce what we deem to be an acceptable, albeit
complex, algorithm in general form. Even though lottery is not permitted in the
treatment of Boolean Tables subsets representing pure strategies, as this
approach does not necessary produce the typical convex collection of feasible
alternatives, we claim that the algorithm will yield an acceptable solution.
Finally, in Section 6, we present an elementary attempt to formulate a regular
approach to coalition formation under the guidance of a coalition formation
supervisor, which we denoted as the manager's structure. This attempt is
depicted in Figure 2, which also provides the notation nomenclature of chain-
nested alternatives adopted in our Monotonic Systems theory discussed in
Section 4. In Section 7, we summarize and discuss the entire analysis, while
also providing an independent heuristic interpretation, before concluding the
study in Section 8.

2. WELLNESS GAME DEPICTED AS A BOOLEAN TABLE

The Chief Executive Officer (CEO) of the “Well-Being” company wishes to
encourage the employees to partake in wellness-promoting events or activities,
as this is expected to reduce company losses arising from disability compensa-
tions. To identify the employees’ preferred activity types, the CEO has initiated
a survey. According to the survey results, the five proposed wellness events
would attract varying degrees of interest, as shown in Table 1.

Wellness No Swvimming Fitness Moderate Fattening Total
events Smoking Pool Exercises Alcohol Diet

Em. No. 1 X X 2
Em. No. 2 X X X X 4
Em. No. 3 X X X 3
Em. No. 4 X X X X 4
Em. NO. 5| Heavy smoker Clumsy swimmer X X 2
Em. No. 6 X X X X X 5
Em. No. 7 X X 2
Total 3 6 5 5 3 22

Table 1 Employee preferences pertaining to the company-sponsored well-
ness-promoting events

While the staff responses should serve as an indication that they are ready to
participate in their chosen events, knowing the precariousness of human nature,
the CEO is not sure that they will keep their promises. Accordingly, the CEO
decides to reward all employees who actually participate in recreational events,
which will be organized in the "Wellness Club". The CEO has found a sponsor
who is willing to issue 12 Bank Notes to cover the cost of the project. Upon
closer examination of the rewards policy, the CEO realized that many obstacles
had to be overcome in order to put the project into practice.
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First, organizing events in which only a few employees would partake is
neither practical nor cost-effective. Accordingly, it is necessary to stipulate a
minimum number of employees that must subscribe to each wellness event. On
the other hand, it is desirable to promote all events, encouraging the employees
to attend them in greater numbers. For this initiative to be effective, instructions
(as a set of rules full of twists and turns) regarding the rewards regulations
should be fair and concise. Usually, in such situations, someone (in this case a
manager) must be in charge of the club formation and reward allocation. As the
CEO is responsible for financing the wellness events, he/she should retain con-
trol of all processes. Thus, the CEO proposes to write down the First Club
Regulation: The CEO rewards one Bank Note to an employee participating in
at least k different events (where k is determined by the CEO).

Determining the most optimal value of the parameter K is not a straight-
forward task, as it is not strictly driven by employees’ preferences for participa-
tion in specific events. In fact, this task is in the manager’s jurisdiction, while
also being dependent on the employees’ decisions, as they act as the club mem-
bers. The goal is to prohibit some club members from dropping out from the
wellness events preferred by other members and joining other events, thus
requiring too many different events to be organized. This issue can be avoided
by the inclusion of the Second Club Regulation: If a member of the club being
organized expresses an intention to participate in fewer than k eventsin favor
of receiving a reward, none of the members of the future club is rewarded. By
instituting this regulation, the goal is to eliminate events that would not have a
sufficient number of participants. This objective is reflected in the Third Club
Regulation: manager’s reward basket will be equal to the lowest number of
actual participants per event. Accordingly, the manager might decide to ex-
clude an event with the lowest number of participants and distributing them to
other clubs to increase the reward value. However, the third reward regulation
does not address the situation in which a club member declines to attend an
event, allowing an individual outside the club to participate instead. In such a
case, the club “events list” may become shorter than that presented in Table 1,
and would determine the reward size.

In this case, it cannot be ruled out that the manager when communicating
with CEO will misrepresent the preferences of club members. Indeed, let the
CEO makes a decision k =1, which for some reason became available to the
manager. Knowing this, the manager’s actions can be predicted in according to
club rules. Using employees’ responses, the manager can identify the most
“popular” wellness event, as well as those who intend to take part in it. From
the above provision it follows that the manager will always receive the maxi-
mum reward by convincing all employees of the newly organized club to
participate only in this specific, that is, the most popular event. Otherwise, the
manager will definitely receive less than this maximum. Rational Club mem-
bers will also definitely agree to this offer, since regardless of their participa-
tion in any other event, their reward will still be guaranteed. The same logic
obviously applies for k >1 as well.
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The essence of establishing fair rules is related to the determination of the
manager's leadership. If no rewards are offered to the manager, the formation of
a grand coalition is guaranteed, as all employees will become members of the
club. This is the case because participating in any event guarantees that all
employees will receive a reward. However, due to the lack of interest in events
with a small number of participants, the formation of a club with a large num-
ber of participants under the leadership of a manager is not always feasible.

As previously noted, the manager might receive a minor reward if a “curi-
ous” employee decides to take part in an “unpopular event”. Indeed, the third
club regulation stipulates that the number of participants in the most “unpopular
event” governs the manager’s reward size. Being aware of the potential ma-
nipulation of the regulations, and being a rational actor, the company CEO will
thus strive to keep the decision k confidential. It is also reasonable to believe
that all parties involved — the club members, the manager and the CEO — will
have their own preferences regarding the value of k . Therefore, an explanation
based on the salon game principles is applicable to this scenario. Using this
analogy, let us assume that the CEO has chosen a card k and has hidden it
from the remaining players. Let us also assume that the manager and the club
members have reached an agreement on their own card choice in line with the
three aforementioned club regulations. The game terminates and rewards are
paid out only if their chosen card is higher than that selected by the CEO. Oth-
erwise, no rewards will be paid out, despite taking into consideration the club
formation.

Not all factors affecting the outcome have been considered above. Indeed,
the positive effect, f,, which the CEO hopes to achieve, depends on the deci-

sion k. For some reason, we have to expect a single N-peakedness of the ef-
fect function. As a result, this function separates the region of k values into
what we call prohibitive and normal range. In the prohibitive range, which
includes the low k values, the effect has not yet reached its maximum value.
On the other hand, when the k value is high (i.e., in the normal range), the f,

limit is exceeded. Therefore, in the prohibitive range, the CEO’s and the man-
ager’s interests compete with each other, making it reasonable to assume that
the CEO would keep his/her decision a secret. In the normal range, they might
cooperate, as neither benefits from very high k values, given that both can lose
their payoffs. Consequently, using the previous card game analogy, in the nor-
mal range, it is not in the CEO’s best interests to hide the k card.

Given the arguments presented above, the game scenario can be illustrated
more precisely. Using the data presented in Table 1, and assuming that a reward
will be granted at k =1,2, the CEO may count upon all seven employees to
become the club members. If all employees participate in all events, each
would receive a Bank Note, and the manager’s basket size would be equal to 3.
It would be beneficial for the manager to entice to the club members to decline
participation in “No Smoking” and “ Fattening Diet” events, as this would
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increase his/her own reward to 5. As all club members will still preserve their
rewards, they have no reason not to support the manager’s suggestion, as
shown in Table 2.

Table 2 Table 3
Wellness | Swimming Fitness Moderate Swimming
events Pool Exercises Alcohol Total Pool Total
Em. No. 1 X X 2 X 1
Em. No. 2 X X 2 X 1
Em. No. 3 X X X 3 X 1
Em. No. 4 X X 2 X 1
Em. No. 5 X X 2 0
Em. No. 6 X X X 3 X 1
Em. No. 7 X X 2 X 1
Total 6 5 5 16 6 6

In this scenario, the sponsor would have to issue 12 Bank Notes, which can
be treated as expenses associated with organizing the club. The sponsor may
also conclude that k =1 is undesirable based on the previous observation that
the manager can deliberately misrepresent the members’ preferences for per-
sonal gain.” Indeed, the manager can offer one Bank Note to an employee when
the CEO makes a decision k =1. Knowing that k =1, the manager may sug-
gest to the club members to subscribe to the “ Snimming Pool” event only.
However, in the opinion of the potential swimming club members, the manager
must compensate the heavy smoker and clumsy swimmer No. 5 for the losses
sustained by forfeiting his/her initial choices. Employee No. 5 may otherwise
report the manager to lobbyists of the company's board, as this particular em-
ployee, while continuing to smoke, would be able to demand compensation
from the manager for not disclosing his/her "fraudulent activities". In this case,
following the regulations in force (see Table 3), manager’s reward will be equal
to 4 (1 deducted for the signal and 1 for clumsy swimmer). This would still
exceed the value indicated in Table 1. Thus, in order to decrease project ex-
penses or avoid misrepresentations, the company board may follow the swim-
ming club advice and propose k > 3.

It could be argued that k >3 results in decreased participation in wellness
events because Employees No. 1, 5 and 7 will be excluded from the club and
will immediately cease to partake in any of their initially chosen events. Based
on Table 4, it can also be noted that, in that case, the
remaining employees (i.e., 2,3,4 and 6) will still participate in heath events

and will still be rewarded.

2 The more complex case of misrepresentation follows, as promised.
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Table 4

Wellness No Swimming Fitness Moderate Fattening Total
events Smoking Pool Exercises Alcohol Diet

Em. No. 2 X X X X 4
Em. No. 3 X X X 3
Em. No. 4 X X X X 4
Em. No. 6 X X X X X 5
Total 3 4 2 4 3 16

Now, the manager’s reward basket is equal to 2, since only Employees No.
3 and 6 would take part in “ Fitness Exercises’. Consequently, the sponsor
expenses decrease from 10 to 6. In this case, the CEO may decide to allow
the manager to retain his/her reward of 3 by eliminating “ Fitness Exercises’
from the event list, as organizing it for two participants only is not justified, as
shown in Table 5. Note that, due to this decision, Employee No. 3 must be
excluded from the club list, in line with the second club regulation (cf. the sug-
gestion above to eliminate the “ No Smoking” and “ Fattening Diet” events).

Table 5

Wellness No Swimming Moderate  Fattening Total
events Smoking Pool Alcohol Diet

Em. No. 2 X X X X 4
Em. No. 4 X X X X 4
Em. No. 6 X X X X 4
Total 3 3 3 3 12

This decision does not seem reasonable, given that the aim of the initiative
was to motivate the employees to partake in fitness programs and improve their
wellness. Thus, let us assume that k =5 was the board proposal. This result
would only concern Employee No. 6 who is willing to participate in all the
wellness events offered, as shown in Table 6.

Table 6

Wellness No Swvimming Fitness Moderate Fattening Total
events Smoking Pool Exercises Alcohol Diet

Em. No. 6 X X X X X 5
Total 1 1 1 1 1 5

The manager may decide not to organize the club, as this would result in a
reward equal to only one Bank Note. Similarly, the CEO is not incentivized to
promote all five events if only one employee would take part in each one. As a
result, at the board meeting, the CEO would vote against the proposal k=5
In sum, the CEO’s dilemma pertains to the alternative k choices based on the
information given in Table 7.
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Table 7
Club Club Compen— Signal Bank Bank
Members Manager sation Notes Used Notes Left

T.1, k=2 7 3 0 0 10 2
T.2, k=2 7 5 0 0 12 0
T.3, k=1 6 4 1 1 12 0
T.4, k=4 3 1 0 0 4 8
T.5, k=4 3 3 0 0 6 6
T.6, k=5 1 1 0 0 10

To clarify the situation presented in tabular form, it would be helpful to

visualize the CEO’s dilemma using the bargaining game analogy, where 12
Bank Notes are shared between the manager and the club members.

Bargaining game between the wellness
club manager and club members Figuﬂ.‘ 1

Revenue function = the number of club
members trying to keep to at least k

= 6
— promises and only this particular list of
z promises counts in the CEO reward'’s
= 54 decision in the follow up inspection. No S (9] ® 5
: any member (inclusive the manager)
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E 1 keeps less than k promises. <
=
s 3 ) o 5) o o
o
£ 2 o o] @] e] o]
=
2
=1 ] © Q 5] Q

0

0 1 2 3 4 5 6 7 8

Club Size = the Club Revenue

The decision on the most optimal k value taken at the board meeting will
be revealed later using rigorous nomenclature, as only a closing topic is neces-
sary to interrupt our pleasant story for a moment.’

Let us assume that three actors are engaged in the bargaining game: N em-

ployees, a manager in charge of club formation, and the CEO. Certain employ-
ees from this setN ={1,...,i,...n} — the potential members of the club x,

x € 2V, have expressed their willingness to participate in events y, y € 2™,

W= H au‘”? . Let a Boolean Table W = “ Ocin;n reflect the survey results per-

3 Those unwilling to continue with the discussions on bargaining presented in the sub-

sequent sections should nonetheless pay attention to this closing remark.
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taining to the employees’ preferences, whereby a, =1 if employee i has

promised to participate in event j, and a,, =0 otherwise. In addition, the set

2" of all subsets of columns M denotes the allegedly subsidized events,
whereby y € 2" have been examined: M = {1,...,j,...m} .

We can calculate the manager payoff E (H) using a sub-table H formed
by crossing the entries of the rows X and columns y in the original table W
by further selection of a column with the least number F (H) from the list y .
The number of 1-entries in each column belonging to y determines the payoff
F(H). The family of utility functions v"(x,y)=v"(H),
ke {1,...,1{,...,1{max }, on N is typically used for analyzing the coalition games.
In this particular case, for every pair Lc G, L,G €2" x2", we suppose that
L*(L) < V"(G) . Further assuming that the CEO payoff function f (H) has a

single N-peakedness, in line with the decisions <1,...,k,...,kmax>, f.(H) re-

flects some kind of positive effect on the company deeds. In this case, sponsor
expenses will be equal to L*(H) +f, (H) .

Finally, it is appropriate to share some ideas regarding a reasonable solution
to our game. The situation presented above is similar to the Nash Bargaining
Problem first introduced in 1950, where two parties — the club members and the
manager — are striving to reach a fair agreement. It is possible to find the
Bargaining Solution S, € {H}=2N x2" for each particular decision k, as
explained in the sections that follow. The choice of the number k is not
straightforward, as previously discussed. For example, k =4 ,5 may be useful
based on some ex ante reasoning, whereas maximum payoffs are guaranteed for
the club members when k =1. As that decision is irrational, because only one
event will be organized and, even though it will attract the maximum number of
participants, it would fail to yield a positive effect f(S,) on their wellness,
which was the primary objective of instituting this initiative. The choice of
higher k was previously shown to be counterproductive as too many events

will be offered, but would be attended by only a few employees, yet the spon-

sor would benefit from issuing fewer rewards. For example, for k =k, an

max 2

employee with the largest number of preferred k__ events might become the

only member of the club. This is akin to the median voter scheme discussed by

Barbera et al. (1993). A further consultation in this “white field” is thus neces-

sary.
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3. BARGAINING GAME APPLIED TO BOOLEAN TABLES

Suppose that employees who intend to participate in wellness events have been
interviewed in order to reveal their preferences. The resulting data can be ar-

ranged ina nxm table W = “OLij , where o, =1 indicates that an employee

1 has promised to participate in event j, otherwise o, =0. In this respect, the

primary table W is a collection of Boolean columns, each of which comprises
Boolean elements related to one specific event. In the context of the bargaining
game, we can discuss an interaction between the wellness club and the man-

ager. The club choice X is a subset of rows <1,...,i,...,n> denoting the newly

recruited club members, whereby a subset y of columns <1,..., j,...m> is the

manager’s choice — the list of available events. The result of the interaction
between the club and the manager can thus represent a sub-table H or a block,
denoting the players’ joint expectation. In this scenario, there are only two
players, with Player No. 1 denoting the club and Player No. 2 the manager, and
both parties are driven by the desire to receive the rewards. Let us assume that
all employees have approved our three reward regulations.” While both players
are interested in wellness events, their objectives are different. Player No. 1
might aim to motivate each club member to agree to partake in a greater num-
ber of company-sponsored events. Player No. 2, the manager, might desire to
subscribe maximum number of participants for each event arranged by the
company. Let a pair of utilities (U,F) denote the players’ No. 1 and No. 2
payoffs, whereby both players will bargain considering all possible expected
outcomes (X,y) in the form of sub-tables H of table W .

Our intention in developing a theoretical foundation for our story was to fol-
low the Nash’s (1950) axiomatic approach. Unfortunately, as previously ob-
served, some fundamental difficulties arise when adopting a similar strategy.
Below, we summarize each of these difficulties, and propose a suitable equiva-
lent. When proceeding in this direction, we first formulate the Nash’s axioms in
their original nomenclature before reexamining their essence in our own no-
menclature. This approach would allow us to provide the necessary proofs in
the sections that follow.

As noted by Nash (1950), “we may define a two-person expectations as a
combination of two one-person expectation. ... A probability combination of
two two-person expectations is defined by making the corresponding combina-
tions for their components” (p. 157). Readers are also advised to refer to Sen
Axiom 8*1 on page 127, or sets of axioms, as well as to consult the work of
Luce and Raiffa (1958), Owen (1968) and von Neumann and Morgenstern
(1947), with the latter being particularly relevant for utility index interpretation.

Rigorously speaking, the compactness and convexity of a feasible set & of

* We recall the main regulation that none of the club members, inclusive of the man-
ager, receive their rewards if a certain club member participates in fewer than k
events.
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utility pairs ensure that any continuous and strictly convex function on &
reaches its maximum, while convexity guarantees the maximum point unique-
ness.

Let us recall the other Nash axioms. The solution must comply with the
INV (invariance under the change of scale of utilities), IIA (independence of
the irrelevant alternatives), and PAR (Pareto efficiency) postulates. Note that,
following PAR, the players would object to an outcome S when an outcome

s' that would make both of them better off exists. We expect that the players
would act from a strong individual rationality (SIR) principle. An arbitrary set
8 of the utility pairs s = (SI , SZ) can thus be the outcome of the game. A dis-
agreement arises at the point d = (d] ,dz) where both players obtain the lowest
utility they can expect to realize — the status quo point. A bargaining problem
is a pair <S,d>5 and there exists s €8 such that s, >d. for i=1,2 and

de 8. A bargaining solution is a function f(&,d) that assigns to every
bargaining problem <S ,d> a unique element of § . The bargaining solution f
satisfies SIR if f(8,d) >0 for every bargaining problem <S ,d> :

The advantage of our approach, which guarantees the same properties, lies
in the following. We define a feasible set & of expectations, or in more con-
venient nomenclature, a feasible set & of alternatives as a collection of table
W blocks: & < 2". Akin to the disagreement or point of contention in the
Nash scheme, we define an empty block ¢ as a status quo option in any set of
alternatives &, which we call “the refusal of choice”. Next, given any two
alternatives H and H' in &, an alternative HUH' belongs to & . In other
words, in our case, the set 8 of feasible alternatives always forms an upper
semi-lattice. If an alternative H e &, it follows that all its subsets meet the
condition 2" < & . Although these arguments do necessitate further discus-
sion, at this juncture, we will state that this is our equivalent to the convex
property and will play the same role in proofs as it does in the Nash scheme.

The Nash theorem asserts that there is a unique bargaining solution
f(8,d) for every bargaining problem <S ,d>, which maximizes the product

of the players’ gains in the set & of utility pairs (sl,sz)e S over the dis-

agreement outcome d = (dl,dz). This is a so-called symmetric bargaining
solution, which satisfies INV, 1A, PAR, and SYM, which the players symmet-
rically identify if and only if

f(S,d) =arg ma’X(d‘,dz)S(s,,sz)(Sl - dl) (sz - dz) @)

5 We use the bold notifications & to comply with the original nomenclature. Notifica-
tion S is also preserved for the stable point, which is introduced later in the paper.
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It is difficult to make an ad hoc assertion regarding properties that can guar-
antee the uniqueness of similar solution based on Boolean Tables. Neverthe-

less, in the next section, we claim that our bargaining problem on & < 2" has
the same symmetrical or nonsymmetrical shape:

f(8,0)=1(8) =argmax,_, v(H)’F(H)"’ ()

for some 0 <0 <1 provided that Nash axioms hold.

HeS

4. THEORETICAL ASPECTS OF THE BOOLEAN GAME
Henceforth, the table W = “ocij“m will denote the Boolean Table discussed in

the preceding section, representing employees’ pledges to attend wellness
events. At this juncture, it is beneficial to examine the H rows x , symbolizing
the arrival of new members to the club, each of whom is committed to partici-
pating in at least k events. The offered events form the event list in column Yy,

k=273,..., where k represents the reward decision. For each event in the
event list y, at least F(H) of club members intend to fulfill their promises.
For example, let us consider the number of rows in H pertaining to the gain
),
while the gain of Player No. 2 (the manager’s reward) is represented by F(H) .

L(H) of Player No. 1 (e.g., the club member’s X common gain L(H) = |X

Let us look at the bargaining problem in conjunction with the players’
preferences. The expectations of the incoming club members 1 € X towards the
event list Y can easily be "raised" by T, =Z:0Lij if >k, and =0 if

Jey
ZOL,. <k, 1€ex, jey. Similarly, the manager’s expectation to the event list
- Y
JEy

Y can be “accumulated” by means of table H as ¢, = Zocij ,Jey.

iex

We now consider the Bargaining Game scenario depicted in the Boolean
Table in more rigorous mathematical form. Below, we use the notation
H < W . The block or sub-table H contained in W will be understood in an

ordinary set-theoretical nomenclature, where the Boolean Table W is a set of
its Boolean 1-elements, whereby all 0-elements will be eliminated from the
consideration. Thus, H as a binary relation is also a subset of W . Henceforth,
when referring to an element, we assume that it is a Boolean 1-element.

For an element oo =0, € W in the row 1 and column j, we use the simi-

larity index 7, = c,, counting only on the Boolean elements belonging to H,
1) J

iex and jey. As the value of 7, =c, depends on each subset Hc W,

we may write 7., =7 = n(o, H) , where the set H represents the 7 -function

parameter. It is evident that our similarity indices 7, may only increase with

the “expansion” and decrease with the “shrinking” of the parameter H . This
yields the following fundamental definitions:
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Definition 1. Basic monotone property. Monotonic System will be under-
stood as a family { (o, H):He 2‘”} of m -functions, such that theset H isa
parameter with the following monotone property: for two particular values
L,Ge2", Lc G of the parameter H, the inequality m(o,L) < 7t(a,G)
holds for all elements oo € W . In ordinary nomenclature, the w -function with
the definition area W x2" is monotone on W with regard to the second
parameter on 2" .

Definition 2. Using a given arbitrary threshold u for a non-empty subset
HcW let V(H) be the subset V(H)={oe W:n(a,H)>u}. The
non-empty H -set indicated by S is called a stable point with reference to the
threshold u if S=V(S) and there exists an element £<S, where
n(€,S) = u. For a comparable concept, see Mullat (1979, 1981). Sable point
S=V(S) has someimportant properties, which will be discussed later.

Definition 3. By Monotonic System kernel we understand a stable point
S =S__ with the maximum possible threshold value u” =u

max "

Libkin et al. (1990), Genkin et al. (1993), Kempner et al. (1997), and
Mirkin et al. (2002) have investigated similar properties of Monotonic Systems
and their kernels. With regard to the current investigation, it is noteworthy that,
given a Monotonic System in general form, without any reference to any kind
of “interpretation mechanism”, one can always consider a bargaining game

between a coalition H — Player No. 1, with utility function D(H) , and Player
No. 2 with the payoff function F(H) = minaeH n(a, H) . In line with the

Nash theorem, a symmetrical solution has to be found in form (1). We will
prove below that our solution has to be found in the symmetrical or nonsym-
metrical form (2).

Definition 4. Let d be the number of Boolean 1-entries in table W . An
ordered sequence Ez(&o,al,...,aml) of distinct elementsin the table W is

called a defining sequence if there exists a sequence of sets
W=I oI >...oI, suchthat:

A. Lettheset H, ={(xk,ocw,...,ocd_l}.Thevalue (o, ,H,) of anarbi-
trary element o, el , but o ¢l is drictly les than F(I,),
j=0,1..,p—1.

B. Theredoesnot existinthe set I’ a proper subset L that satisfies the
strict inequality F(I" ) <F(L).
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Definition 5. A defining sequence is complete, if for any two sets I', and
I, it is impossble to find I" such that T, >I'>T, while

j+l i+l

F(T)<F(IM) <F(T,), j=0,L...p-1.

I

It has been established that, in an arbitrary Monotonic System, one can al-
ways find a complete defining sequence (see Mullat, 1971, 1976). Each set I’ i
is the largest stable set with reference to the threshold F(FJ) . This allows us to
formulate our Frontier Theorem.

Frontier Theorem. Given a Bargaining Game on Boolean Tables with an
arbitrary set & of feasible alternatives H e 8, the expectations points
(V(ri),F(Fj)),j=0,1,...,p, of a complete defining sequence O arrange a
Pareto frontier in R .

Proof. Let W*® e 8 be the largest set in & containing all other sets
HeS: Hc W°. Let a complete defining sequence o © exist for W*. Let
the set H° be the set containing all such sets V(H), where
V(H)={ae W:n(a,H)>F(H)}. Note that HcV(H?) and

F(H®) > F(H) . Now, for accuracy, we must distinguish three situations:

(@) In the sequence o one can find an index j such that

FT)<FMH)<FI,) j=0,L..,p-1;
(b) The case of F(H") <F(W)=F(T,);

() F(H)>F(T,)). This case is impossible because, on the set Fp , the

function F(H) reaches its global maximum.

In case of (b), the expectation (U(FO),F(FO)), I', = W, is more beneficial

than (U(H),F(H)), which concludes the proof. In case of (a), let
F(I',) <F(H®), otherwise the equality F(I'";) = F(H®) is the statement of the
theorem (when reading the sentence after the next, the index j+1 should be
replaced by j). In this case, the set H° must coincide with T,
j=0,1,...,p—1, otherwise the defining sequence Ol is incomplete. Indeed,
looking at the first element o, € H® in the sequence QL , it can be ascertained

that, if I, = H® does not hold, the set H, = H® because it is the largest stable

6 We are not going to use any new notifications to distinguish between Boolean Tables

W and W?.
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set up to the threshold F(H®). Hence, the set H, represents an additional
I" -set in the sequence o with the property A of a complete defining sequence.
The inequalities F(I',,)=F(H*)>F(H), o(,,)=v(H*)>v(H), due to
I, =H" 2 H and the basic monotonic property, are true. Thus, the point
(U(l"j+l ),F(T,, )) is more advantageous than (U(H),F(H)). .

5. ALGORITHM FOR SOLVING THE BARGAINING PROBLEM

To summarize the scenario presented above, the discussion that follows will be
governed by the Nash bargaining scheme. Some reservations (see, for example,
Luce and Raiffa, 1958, 6.6) hold as usual because our bargaining game on
Boolean Tables is purely atomic, i.e., it does not permit lotteries (which are an
important element of any bargaining scenario). Given this restriction, the
uniqueness of the Nash solution cannot be immediately guaranteed. It is impor-

tant to note that the Nash solution of <S R d> depends only on the disagreement

point d and the Pareto frontier of & . The compactness and convexity of &
are important only insofar as they ensure that the Pareto frontier of & is well
defined and concave. Rather than starting with the set &, we could have im-
posed our axioms on a problem defined by a non-increasing concave function
(and disagreement point d, as argued by Osborn and Rubinstein, 1990, p. 24).
In our case, (U(FJ.),F(FJ)), j=0,L,...,p, represents an atomic Pareto frontier.
Therefore, it is possible to provide the proof of non-symmetrical solution (see
Kalai, 1977, p. 132), as well as perform the derivation with the product of util-
ity gains in its asymmetrical form (2).” The problem of maximizing the product
is primarily of technical nature. In the discussions that follow, we will intro-

duce an algorithm for that purpose. We will first comment on the individual
algorithm step in relation to the definitions.

As shown below, the algorithm’s last iteration through the step T detects the

largest kernel K =S"* (Mullat, 1995). The original version (Mullat, 1971) of
the algorithm aimed to detect the largest kernel and is akin to a greedy inverse
serialization procedure (Edmonds, 1971). The original version of the algorithm
produces a complete defining sequence, which is imperative for finding the
bargaining solution aligned with the Frontier Theorem. In the context of the
current version, however, it fails to produce a complete defining sequence.

Rather, it only detects some thresholds u,, and some stable set Fj = Sj. The
sequence U,,U,... is monotonically increasing (i.e., U, < U, <...) while the

sequence I, I7,... is monotonically shrinking (i.e., [, DT ©...), whereby

7 There are many techniques that guarantee the uniqueness of the product of utility
gains. We are not going to discuss this matter here, because this case is an exemption
rather than a rule.

% Tt is possible that some smaller kernels exist as well.
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the set I, = W is stable towards the threshold u, = F(W) = (m)gwl 7, . Hence,
L]
the original algorithm is always characterized by higher complexity. For find-

ing the bargaining solution, we can still implement a less complex algorithm,
which would require modification of the indices ©, =c, .

Let us consider the problem of identifying the players’ joint choice H

representing a block argmax,_; O(H)F(H)"" of the rows X and columns y

HeS

in the original table W satisfying the property Zogj >k, iex.Letanindex
Jey

T, =T, v’ -cj]’e ’ The following algorithm solves the problem.

Algorithm.
I.  Set the initial values.
1i. Assign the table parameter H to be identical with W, H <= W . Set the mini-
mum and maximum bounds a, b for the threshold U imposed on the T, € H

values.
A.  Establish that the next step (Step B) produces a non-empty sub-table H . Remem-
ber the current status of table H by creating a temporary table H°: H° <= H..

la. Test U as Y2+ (a + b) using Step B. If it succeeds, replace @ by U, other-

wise replace b by u and H by H®: H <= H® — “regret action”.
2a. Go to 1a.

B.  Check if minimum T, € H over 1,] can be equal to or greater than U .
1b. Delete all rows in H where r = ¢ . This step fails if all rows in H must be

deleted, in which case proceed to 2b. The table H is shrinking.
2b. Delete all elements in columns where T, <u. This step fails if all columns in

H must be deleted, in which case proceed to 3b. The table His shrinking.
3b. Perform Step T if no deletions were made in 1b and 2b; otherwise go to 1b.

T.  Test whether the global maximum is found. Table H has halted its shrinking.
1t. Among numbers T, € H, find the minimum min <« 7, and then perform

Step B with new value U = min . If it succeeds, set a = min and return to Step
A; otherwise, terminate the algorithm.

6. BARGAINING GAME — MODIFICATION OF COOPERATIVE ASPECTS
As mentioned earlier, we consider the game of two persons given as the choice
of Player No. 1 as a subset of rows X in the table W = ||0cij ” and player No. 2

as the choice y of columns. Thus, a joint choice (X,y) is made in the form of

a sub-table H or block. Below, we consider this choice as expectation (X,y)

? This index obeys the basic monotone property as well.
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in the set-theoretic sense as a subset H of elements of the table W at the
intersection of rows X and columns y. The coalition associated with the

choice of H in this case is the set of rows. The utility function v =v(H) of

such a coalition is ambiguous and depends on the Player No. 2’s choice y .

A cooperative game is a pair (N,U), where N symbolizes a set of partici-

pants and v is the game utility function. Function U is called a supermodular
if V(L)+v(G)<v(LUG)+v(LNG) whereas it is submodular if the ine-

quality sign < is replaced by >, L,G € 2" . Various properties of supermodu-
lar set functions are specified (see Cherenin et al. 1948 and Shapley, 1971,
among others). In the appendix, we illustrate a game, which is neither super-
modular nor submodular, but rather a mixture of the two, where single and
pairwise participants do not receive extra rewards. On the other hand, it is ob-
vious that all properties of supermodular functions v are also applicable for

the submodular — U utility function and vice versa.

Let the utility function v of our game when forming a coalition and the
manager’s choice is represented by some set-theoretic function U(H) Par-
ticularly, it is useful take L(H) = |H| , or some polynomial function p of its
argument like p(|H|) . The joint marginal contribution to the coalition X of the

participant 1 € X and, in particular, the marginal expectation of the manager
je Yy (the marginal utilities of the participants) can be represented as

(o, H) = al;(iH) o 612(?) for %?) =v(H+1)-v(H) if iegx.
When  participant iex leaves the coalition X, then
% =v(H) — v(H —1). Marginal notation is valid for any H € 2" , which
is denoted below as Hui=H+1, and H\i=H —1i. For manager expecta-
tion y,j€y, similar notation H £ j is used, i.e., 61)(?1) . We will not distin-

guish between the situations when the participant i € X joins a coalition or
leaves the coalition X , or the manager counts on the expectation j€y or does

not count on j when j&y. We hope that such actions of the participants in

our game clearly emphasize the importance of forming a coalition, as well as
that of the manager’s choice when a participant is already a member of a coali-
tion or when someone only intends to join the coalition. Exactly the same con-

sideration applies to manager expectations.



26 Chapter 1T

Suppose that the interest of a participant 1 to join the coalition X equals
the participant’s marginal contribution. A coalition game is convex (concave) if
for any pair L and G of coalitions LcGcx the inequality

ov(L) < ou(G) (60(L) S ou(G)

oi  0i oi oi

similar statement can be made regarding the manager’s choice jey."

j holds for each participant x € W. A

Theorem. For the bargaining/coalition game to be convex (concave) it is
necessary and sufficient for its utility function to be a supermodular (submodu-
lar) set function. Extrapolated from Nemhauser et al. (1978).

Now, in view of the theorem, marginal utilities of participants in the super-
modular game motivate them to form coalitions in certain cases. In a modular
game, where the utility function is both supermodular and submodular, mar-
ginal utilities are indifferent to collective rationality because entering a coali-
tion would not allow anybody to win or lose their respective payments. In con-
trast, it can be shown that collective rationality is sometimes counterproductive
in submodular games. Therefore, in supermodular games, formation of too
many coalitions might be unavoidable, resulting in, for example, the grand
coalition. In such cases, in Shapley’s (1971) words, this leads to a “snowball-
ing” or “band-wagon” effect. On the other hand, submodular games are less
cooperative. In order to counteract these “bad motives” of participants in both
supermodular and submodular games, we introduce below a second actor — the
manager. Hence, we consider a bargaining game between the coalition and the
manager.

Convex game induces an accompanying bargaining game with the utility

pair (U(H),F(H)), where F(H)=min_ (B

5 whereas concave game

1
ov(H ..
(3(' ) . Here, the coalition assumes
1

the role of Player No. 1 with the utility function L(H) . The coalition manager,
the Player No. 2, expects the reward F(H) .

induces utility pair, where F(H) = max.

iex

Proposition. The solution f(8,JJ) of a Nash’'s Bargaining Problem
<S ,@), which accompanies a convex (concave) coalition game with utility
function v, lies on its Pareto frontier I, T >...> " maximizing (mini-

ou()"”’
d

mizing) the product v(T")" - for some j=0,,...,p,and 0<O<]1.

This statement is a clear corollary from the Frontier Theorem. B

10 Shapley (1971) recognized this condition as equivalent, whereby similar marginal
utilities in their investigation of some optimization problems (Nemhauser et al., 1978)
have been proposed. Muchnik and Shvartser (1987) also pointed to the link between
submodular set functions and the Monotonic Systems, as outlined by Mullat (1971).
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In accordance with the basic monotonic property (see above), given some

ou(H)
i

ent that there exists some utility function L(H) for which the function w(i, H)

ov(H)
oi

monotonic function 7w(i,H) = on Nx2" itis not immediately appar-

constitutes a monotonic marginal utility . The following theorem,

guided by the work of Muchnik and Shvartser (1987), addresses this issue.

The existence conjecture. For the function 7(i,H) to represent a mono-

tonic marginal utility M of some supermodular (submodular) function
1
v(H), it is necessary and sufficient that
0 Ov(H) . . . 0 OvH
———=71(1,H)-n(iLH-k)=n(k, H) -k, H-1) =———
ok a1 TG = o) =eloH - =705

holds for i,k € x © N. The interpretation of this condition is left for the
reader.

7. DISCUSSION

We start this discussion with a heuristic interpretation of the arguments pre-
sented in the preceding sections. Following the apparatus of monotonic systems
adopted in data mining (Mullat, 1971), it is reasonable to find the Pareto fron-
tier in terms of the game theory as well. The potential manager’s bargaining

strategy is presented next. First, in the grand coaliton N =17, the manager

identifies  the  participants = with  the least marginal  utility

u, = F(N) = min, , 220
1

stay in line and wait for their rewards. All participants that have joined the line
will be temporarily disregarded in any coalition formation. Following the game
convexity, one of the remaining participants (i.e., those still engaged in the
coalition formation process) must find themselves worse off owing to the par-
ticipants in line being excluded from the process. Manager would thus suggest
to these participants to also join the line and wait for their rewards. As the man-

ager continues the line construction in the same vein, a scenario will emerge in

The manager will advise these individuals to

which all-remaining participants I’ (outside the line) are better off than U,

i.e., better off than those waiting in line for their rewards. Now, the manager
repeats the entire procedure upon participants I',I’,,... until all participants

from N have agreed to wait in line to obtain their rewards. Manager keeps a
record of the events 0,1,... and is aware when the marginal utility thresholds

increase from u, to u,, etc. It is obvious that the increments are always posi-

tive: u, <u, <..<u_.
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What is the outcome of this process? Participants staying in line arrange a
nested sequence of coalitions <F0,E,...,Fp> , whereby the most powerful mar-
ginal participants, those present when the last event p occurs, form a coalition
Fp . The next powerful coalition will be F}H , etc., coming back once again to
the starting event 0, when the participants arrange the grand coalition N =T .

Our Frontier theorem guarantees that such a manager bargaining strategy, in
convex games, classifies a Pareto frontier
<(U(F0),u0), (U(Fl),ul),...,(U(Fp),up)> for a bargaining game between the

manager and coalitions under formation.'" Thus, the game ends when a
bargaining agreement is reached between the manager and the coalition.
However, some participants might still stay in line, waiting in vain for their
rewards, because the manager might not agree to allow them to partake in
coalition formation. Indeed, due to the existence of those marginal participants,
the manager may lose a large portion of his/her reward F(I' ), for some

k'se(l,....p). . . . .
any thg }ast issue is relevant to our bargaining solution I' =f(8,J) to
the supermodular bargaining game. The coalition I" is a stable point with ref-
ou(I)
el’ . ‘
1
tees a gain u = F(I") to Player No. 2. Therefore, this player can prevent anyone

erence to the threshold value u = F(I') = min,

This coalition guaran-

igI outside the coalition I'€ 8 from becoming a new participant of the
ou(IN)
o1

coalition because the outsider’s marginal contribution reduces his/her

guaranteed gain. The same incentive governing the behavior of Player No. 2
will prevent some members i€ I" from leaving the coalition. The unconven-

tional interpretation given below might help elucidate this situation.

Let us observe a family of functions on N x 2" monotonic towards the sec-

OvH

o1

ond set variable H, H e 2". Let it be a function 7(i;H) = We already

cited Shapley (1971), who introduced the convex games, with the marginal

11 This positioning of players/elements in line arranges a so-called defining sequence in
data mining process.

12 We refer to similar behaviour of players in “Left- and Right-Wing Political Power
Design: The Dilemma of Welfare Policy with Low-Income Relief” as political par-
ties’ bargaining game with agents registered under the social security administration.
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OvH :
utility U— =v(H)—-v(H —1), which is the one of many exact utilizations of

the monotonicity n(i,L) <m(i,G) for i€ L € G. Authors of some extant
studies, including this researcher, refer to these marginal V(H) —v(H —1) set

functions as the marginal of supermodular functions L(H). By inverting the

inequalities, we obtain submodular set functions.

Convex coalition game, referring to Shapley (1971) once again, can have a
“snowballing” or “band-wagon” effect of cooperative rationality; i.e., in a
supermodular game, the cooperative rationality suppresses the individual

rationality. In contrast, in submodular games with the inverse property
n(i,L) > (i,G) (an extrapolation this time), the individual rationality sup-

presses the collective rationality. Indeed, according to the rules of the game, the
manager’s reward will depend on the least marginal utility

. Ou(H .
u=FH)=min_ 8#) of some of weakest members of the coalition H
under formation. Indeed, according to the rules of the game, the manager's
reward will depend on the lowest marginal utility of some of the weakest mem-
bers of the resulting coalition. If the utility function is submodular, the positive
effect of the health club members' cooperation disappears. Now, we can focus
on a two-person game to be played out between the manager and the coalition

without consideration of cooperation.

8. CONCLUSION

To sum up our efforts, they were made possible by a category called "Mono-
tonic System", which is a kind of quintessence of the monotonous phenomenon
of reality, linking two separate categories—"The problem of bargaining" and
"Coalition game"—by one guiding thread. Nash bargaining solution being
understood as a point on the Pareto frontier in Monotonic System might be an
acceptable convention in the framework of “fast” calculation. The correspond-
ing algorithm for finding the solution is characterized by a relatively few opera-
tions and can be implemented by applying known computer programming “re-
cursive techniques” to tables. From a purely theoretical perspective, we believe
that our technique is a valuable addition to the repertoire presently at the dis-
posal of the game theoreticians. Our bargaining solution is presently not fully
grounded in validated scientific facts established in game theory. Consultations
with specialists in the field are thus necessary to develop our work further. In
our view, our portrayal of coalition formation games is sufficiently clear and
does not require specific economic interpretations. Nevertheless, all our argu-
ments need to be confirmed through additional fundamental studies.
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APPENDIX. An Illustration of Bargaining in Club Formation Based on
Neither Supermodular nor Submodular Utility Functions.

Recall the wellness club formation game from Section 2. Given the utility
function v(X), although whether the club members actually arrive at individ-
ual payoffs or not is irrelevant, the club formation is still of interest. Let the
game participants N = {1,2,3,4,5,6,7} try to organize a club. Let the utility
(revenue) function comply with the pledges made by the individual employees
to participate in the offered wellness events in accordance with their survey

responses shown in Table 1. We demand that all five wellness events be mate-
rialized and thus define:

u(x) = x|+ S Y0, . where x < N ={1,2,3,45.6.7).

iex  j=I

In other words, a promise fulfilled by the club member contributes a Bank
Note to the participant. In addition to all the promises fulfilled, a side payment
per capita is available. According to this rule, U({l}) =3, U({Z}) =5,... None-

theless, we have changed the side payments rule, so that the game transforms
into neither supermodular nor submodular game. Note that

iu({ if) =22 <v(N) =v({1,2,3,4,5,6,7)) =29,

which renders it a non-essential game. If the CEO makes a decision k=2,
each member of the wellness club I, according to the rules of the game, re-
ceives one basic Bank Note, while a side payment of 7 Bank Notes will allow

this player to double the reward if the grand coalition I, is formed. However,
the club manager will not be interested in organizing club I,, since the CEO's

reward for organizing clubs I',,I', and I', with fewer participants—like on the

Pareto frontier (shown in Figure 1-3)—according to the rules of the game, will
yield higher rewards.

Indeed, whether they choose to cooperate or not, the employees will be dis-
couraged from forming a club which would provide them with the same gains.
To change the situation into that similar to “the real life cacophonous” sce-
nario, let the side payment per capita be removed for single and pairwise par-

ticipants while keeping the rewards intact for all other coalitions for which the
size exceeds 2. Thus v({I)=2, v({2) =4, v({1,2})=6, v({3.6)=5,
U({2,3,5}) =12, etc. The gain, which was defined as

. O0x .
F(x) = min T = (U(X) —u(x - 1), makes the employees’ “cooperative behav-
1EX 1

ior close to grand coalition” less profitable for the manager, as explained above.
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Therefore, the manager would benefit from encouraging the employees to

enter the club of a “reasonable size”. In Table 8, we examine this phenomenon
using different manager gain F(x) values.

Table 8.
Wellness Club List Ma1."ginal Utilities per v .
capita
1(2|3|4|5|6|7|1|2|3|4|5]|6|7|vH)|FH)
* 2 2 2
* 4 4 4
* * 2 4 6 2
: 3 3 3
) i 2 3 5 2
i ) 3 2 5 2
* * * 5 6 5 10 5
* * * 7 6 5 12 5
* * * * 3 5 4 3 15 3
* * 4 2 6 2
* * * 5 7 5 11 5
oo 4 5 3 6 3| 21 3
* * * * * * 3 4 5 3 6 3 24 3
* * * * * * . 5 4 5 3 6 3 26 3
* * * * * * * 3 5 4 5 3 6 3 29 3

At last, we illustrate the bargaining game in the graph below and make
some comments.

Pareto Frontier of Wellness Bargaining Game

Figure 2
g | ={1,2,3,4,5,6,7}
E 2 Revenue Function equalsto  ®29
& 1< | total number of events or
¢ activities paticipated by I'={2.3.4.6}
g club members + side 1246
| z 1 payment per capita for club 20 {246}
=4 with not less than 2 ®16 »
S | members, |x|> 1. 8 T5=12, 6}
o 11
‘ E 10 g 8 8
| £
3 s ¢
z e © °

o 1 2 .} 4 5 &

Wellness ('ll.ib Manager's Re\-\'m'd
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N.B. Observe that utility pairs (29,3), (20,4), (16,5) and (11,6) consti-
tute the Pareto frontier of bargaining solutions for the bargaining problem in-
volving the manager as Player No. 1 and coalitions as Player No. 2. Accord-

ingly, given the grand coalition N =T, = { 1,2,3,4,5,6,7} , three proper coali-
tions—1I = { 2,3,4,6}, r,= { 2,4,6} and I = {2,6} —exist. Solutions
v(l)=20, F(I',))=4 and u(I',)=16, F(I',) =5, maximize the product of
participants’ gains over the disagreement point (0,0) at 20-4=16-5=80.

More specifically, as noted at the beginning of the paper, the solution might not
be unique and some external considerations may need to be taken into account.
For example, the sponsor expenses for (20,4) are equal to 24, while those
pertaining to (l 6,5) are equal to 21, which might be decisive. That is the case
when the bargaining power 0 =4 of the coalitions I';, I, and the manager
are in balance. Otherwise, choosing the coalition bargaining power 0 <2, the
manager will be better off materializing the solution (5,1 6). Conversely, coa-

lition I", will be better offif 0 > %.

2

Pareto Frontier of Wellness Bargaining Game
Figure 3
22
E | Revenue Funciion equals ©20 I={1.2.34.5.6.7}
-] to total number of events
= .| oractivities paticipated -
5 by elub members + side I'={2,34.6}
=
9 | payment per capita for 820 = {246}
2 club with not less than 3 i
= 15| members, [x]> 2 3 °16
: ]
- 15
£ ] g 8
= 5 2
z ) S °
n il -
Wellness Club Manager’s Reward

NB. Comparison with Figure 2 reveals that coalition I, = {2,6} is no

3
longer located on the Pareto frontier.

Pareto Frontier of Wellness Bargaining Game

Figure 4
£}
'é o | Revenue Function equals Lo={1.2.3,4,567}
g 10 total number of events  ®29
&, oractivities paticipated =
2 ™ | by club members + side I'1={2:3.4,6}
£ ,, | payment per capita for
Z ™ club with not less than 4 20
= members, [X] > 3. g
£l o
S W] 8
£ E g 8
= 54 =]
z 3 o b
"

1 1 1 3 ] 5 & 7 5

Wellness Club Manager's Reward

N.B.  Comparison with Figure 3 indicates that coalition I', = {2,4,6} no
longer lies on the Pareto frontier.
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Partial Matching in the Marketing Game:
Reassessing Incompatibility Indicators

Abstract. The game under scrutiny serves as a sophisticated model mirroring the intri-
cacies of real-world scenarios within marketing agencies, where the allocation of clients
among employees undergoes a continuous series of assessments and prioritizations. This
allocation process, termed "matching" in economic discourse, unfolds through a sequen-
tial chain of reflections, with each decision influencing subsequent steps. However, the
dynamic nature of this environment can result in mismatches between clients and em-
ployees, leading to marketing instability. To mitigate this instability and address the
inherent fuzziness in marketing, we propose employing indicators of inadequacy or
incompatibility to identify when an employee may not be the best fit for a client. By
regularly reassessing these metrics throughout the marketing process, our aim is not
merely to minimize failures but to optimize outcomes and minimize compensation
requirements.

Keywords: marketing game; core; rational choice; cooperation; matching

JEL classification: C71; C78

1. INTRODUCTION

Roommate problem [1] proposed by Gale and Shapley in 1962 was also con-
sidered by Bergé (1958, [2]) and has since become the canon for various forms
of economic stability. The canonical solution assumes a complete agreement or
grand matching for all the members of economic community consisting of an
even number of agents. One of the difficulties that we have encountered is
expressed in the triplicity of the interests of the clients and marketing agency.
Yes, it is true that both clients and employees of an agency have individual
interests that may sometimes conflict. It is also true that in any organization,
the interests of the staff as a whole can also arise. Even more confusing, how-
ever, is the paired interest of clients in what we have called the "marketing
game." The dynamic maneuvering approach proposed by Lefebvre and Smo-
lyan in 1968, [3], can indeed be a useful tool in situations dealing with many
players, which have competing interests in a dynamic and multi-stage
marketing environment. The quasi-core concept presented, referring to a partial
matching that is optimal for all parties involved, can provide a valuable basis
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for achieving mutually beneficial results. In a complete match situation, both
parties may be satisfied with the outcome, but more often than not, there will
be areas of inconsistency. In such cases, partial matching can be useful in de-
termining solutions that are optimal for everyone, although not necessarily
ideal. Indeed, the judgment was made that "the best old client is till the best."

We refer to partial stability in which the “rewards and compensations” paid
to clients and agency cannot be increased further, despite attempts to improve
the situation. The partial stability in this scenario indicates that marketing res-
ervations has reached an optimal state, and further changes or attempts to
improve the situation will result in negative effects for the clients and the
agency. The quasi-core concept refers to a solution that is considered to be
stable, but not necessarily optimal in the game theory context. The situation we
are referring to is known as a "forbidden set". In the recent articles by Richter
and Rubinstein [4] suggest that there may be a set of matches "Z" that cannot
be realized. This can result in ending the game prematurely, similar to what can
happen in a university environment during the early years of higher education.

Indeed, soon after the start of their studies, many university and college stu-
dents are trying to change the nature of their studies or prefer other tasks.
Students, in their own opinion, may choose incompatible educational programs,
while the composition of the students themselves in a particular program may
also not be optimal. Students and programs may not be compatible with each
other. So-called discrepancies in mutual rankings have been one of the reasons
(Leo Vdhandu, LV, 2010, [5]) for the unacceptably high percentage of Esto-
nian students who drop out in their first years of study, wasting their time and
entitlement to state support. However, a better matching between students and
educational programs can mitigate this problem.

The problem being discussed is a variation of the stable matching (Bergé;
Roth & Sotomayor, 1990, [6]), where the goal is to match pairs of agents (in
this case, students and programs) in a way that satisfies certain preferences
while avoiding blocking pairs. To solve the problem, it was proposed to intro-
duce a "coincident total" as the sum of "matching rankings" selected in two
directions—the horizontal rankings of students involved with programs and the
vertical rankings of programs matching to students. According to LV, the best
solution among all possible horizontal and vertical sums of rankings is where
the sum reaches its minimum.

Finding the "coinciding minimum" is a difficult task. Instead, LV suggested
a Greedy type workaround. According to LV, the best solution to the problem
of matching students and programs would be a fairly close (cf. Cormen et al,
2001, [7]) accumulation of the sum when moving along the direction of mutual
matching in a non-decreasing order of rankings. Apparently, the approach of
LV to the solution of the problem was drawn up in the spirit of classical
utilitarianism, when the sum of utilities should be maximized or minimized
(Bentham, Principles of morality and legislation, 1789, [8]; Sidgwick, Meth-
ods, Ethics, London, 1907, [9]). The reader studying matching problems may
also find information on these issues, where a number of ways to construct an
optimal matching strategy have been discussed (Veskioja, 2005, [10]).
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The setting of the marketing game will be presented with an attempt to ex-
plain by an example a rather complex intersection of interests, where readers
must be prepared to engage in a reality masquerade in order to understand the
basic concept of the coalition game (Gillies, 1959, p. [11]; also noted as the
core by John von Neumann and Morgenstern, 1953, [12]). In particular, we
hope to shed light on the dynamic or multi-stage nature of client and agency
staff ranking re-evaluation during the game. It should be emphasized that al-
though the game primitives are a separate mathematical entity in a completely
different context, we "borrowed" the idea of LV-s ranking to evaluate the re-
wards of matching. For this reason, we have changed the nomenclature of
payments for mutually incompatible agreements, i.e., "imputation”, or "imputed
compensations" in order to introduce a payment scale that has a monotone
character. The scale is organized as incompatibility indicators in the form of a
"Monotone System."

N.B. The Monotone system (MS, see also "Monotonic Link Functions", Seiffarth et
al, 2021, [15]) is used to reassess the risk indicators of entering into agreements that are
not compatible by considering the mutual rankings of clients and employees. The indi-
cators have a monotonic property, which allows for dynamic adjustments to be made in
response to changes in rankings ensuring that they remain in synchrony. The system
implements the concept of partial matching by ordering the indicators through a process
caused by the inclusion of subsets taken from a general set of indicators. The Monotone
system formalizes and generalizes the concept of ordering, sequencing, or arrangement
of elements in subsets, providing a structured and systematic approach to assessing
incompatibility risk in various contexts. The theory was initiated by Mullat (1971, [16])
and since then was further developed and published in Russian periodical of MAIK in
1976. Plenum Publishing Corporation originally distributed it in English. Without the
use of the MS, the analysis of marketing game scenarios would be limited and poten-
tially inaccurate, as the system provides a clear framework for understanding the
relationships between parties on marketing platform and their impact on each other.
Perhaps Monotone Systems provide a framework for analyzing the properties of specific
multi-stage dynamic games.

Roadmap. The rest of the paper will be structured as follows. In Section 2, the
primitives and notations used in the paper are explained. Section 3 endows with a de-
tailed explanation of the marketing game and its analysis, including basic definitions
and the non-traditional theory of quasi-core stability. The main body of the paper ends
with Section 4, which contains the conclusions and suggestions for future work. The
Appendix provides additional information and computational algorithms for the reader
to better understand the concepts discussed in the paper. This includes the explanation
of a claim that "the best old client is still the best" in Al; compatibility indicators reas-
sessment algorithms in A2; the basic concept of canonical stability in A3; and
computational algorithms visualization in A4, AS, and A6. An Excel spreadsheet is also
provided to help with the technical details.

2. THE GAME PRIMITIVES AND NOTATIONS

We use a two-sided marketing platform, where clients and agency staff both
play an active role in the matching process. The game is played in discrete time
slices or reflections k , with an increasing k as the game progresses through
the periods. Clients and employees of the agency enter into contracts or deals
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o, during the period k after which the products and services of the agency

prescribed in contracts are considered reserved. It is assumed that the partici-
pants may enter into agreements or matches that are not well suited for them, or
that may not be compatible with other agreements or matches they have made.
This can create dynamic changes in the willingness of participants to enter into
agreements or matches describing a multi-stage reflexive process in which the
list of matches expands and the list of potential opportunities is gradually nar-
rowed down over time. The game can end at any point at the request of clients
or the marketing agency, and it can end with a partial matching or a complete
match.

Having said that, we are talking about matchmaking or partnering event or
activity where participants are matched based on compatibility. If no partici-
pants have been able to find a suitable partner, then it may be difficult to
continue offering rewards or compensations. In such a scenario, the marketing
agency staff and clients may need to re-evaluate their approach and criteria for
matching participants, or consider whether to continue the event at all. It is
important to carefully consider the potential risks and drawbacks of offering
compensations in situations where the results of the matchmaking process are
uncertain or unreliable. Ultimately, the decision on whether or not to continue
the marketing effort should be based on a careful assessment of the risks and
benefits involved.

2.1. Visualization example

Five clients and five employees decided to attend the marketing game. Clients
will be asked to prioritize employees; while agency staff will be asked to
prioritize eligible clients accordingly from the agency's point of view. This
information to match clients with eligible employees and vice versa employees
with clients will be used to reassess indicators of incompatibility. Clients and
agency staff providing this information have been promised to collect boxes of
"goodies" and are henceforth referred to as participants, while others are
marked as blanks by default and cannot participate in the game.

Game participants who find a suitable partner will be rewarded, while fail-
ing that receive compensations or cheering payoffs for bad luck. In order to
cover the expenses, the marketing fee is set at -5S0€ per participant. Thus, the

amount of +500€ will be at the disposal of the cashier. The tables W = "Wi_j”
and M = "mi_j” , Table-1&2, are used to represent the dynamic ranking of cli-

ents and marketing agency, respectively; also known as strict ranking or linear
order. There are {1,...,i,...5} clients and {1,...,j,...5} staff employees. The

Wi cells indicate clients i=1,5 who revealed their rankings positioned in

the rows of table W towards employees as horizontal permutations of num-

bers <1,2,3,4,5> . Similarly, agency staff revealed its idea on clients ordering in

m, ; cells j=1L15, as vertical permutations in the columns of table M, relative
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to the employees. The numbers <l,_5= 1,2,3,4,5> can be repeated in the col-

umns of table W and in the rows of table M . More than one client may prefer
the same employer at priority level w_ ;. Multiple employees, accordingly, may
be well suited to the same client at the level m, ; by the staff reflexive idea.
When rankings have been revealed, they can form two 5x35 tables, resulting

in 2x5x5 combinations. The table R = HrJH , Table-3, shows the matching of

clients and employees, who have mutual risks 1,, = w,  +m, ; of incompatible

agreements.

E;, E, E; E; E: E, E, Ey E, E: E;, E, E; E, E:
L | 1 3 3 4 L, 3 4 | 2 lIl 1 L, | 4 9 3 E 6
Ly | § 4 1 2 3 L, 1 300402 | 4 L, | 6 7 i 4 7
W L, 3 5 42 1 |+MIL 5 2 3 4|3 =R L8 7 7 6 4
L, | 2 3 3 1 4 L, 4 3 1 3 1 L, 6 10 4 4 3
L: | 4 3 1 2 3 L: 2 1 b 5 3 L | 6 4 6 1 10

k=1 Clients” Reflexive Priorities Staff Reflexive Priorities Initial Incom patibility

2.2. Rawlsian postulate and compensations' arithmetic

The Rawlsian postulate argues that "institutions' should be organized in such a
way as to benefit the least advantaged members of community: "The welfare of
the worst-off individual is to be maximized before all others, and the only way ineguali-
ties can be justified is if they improve the welfare of this worst-off individual or
group..." Public Choice II1, D.C. Mueller, p.600, [14]. Based on this postulate, play-
ers may have the following ideas of how the game can continue.

Indeed, let the compensations sums, even if this is impractical postulate, are
set proportionally to )41, x10€; in such a case, the participants profit can reach
50€ for free! Instead, we try to design the game by encouraging clients and
agency employees to follow Rawls' "high of the least" second principle of jus-
tice [13]. Some of participants signed deals, while others tend to dynamically
reassess the risks 1, of incompatible agreements. These lucky dealers

c= [iﬁ,jﬁ], or 6= [LG,EG], were promised rewards. Unsuccessful partici-
pants, those who have not yet signed a deal given that only matchings with
high level of mutual risks T; i remained, can claim compensations. On initial

reflection, let the expected rewards of all participants are proportional to
min 1, . In Table 3, the lowest mutual risk is 1, , = 3. All participants in the
game are paid 10€ for goodies if the game ends immediately; in the opposite
situation, when the game continues until the complete matching—the situation
is the same—the participants still lose, in contrast to the partial matching. The
losses of all participants in both cases will be —40€. We assume that partici-

pants in the pair G=(wl,m4) receive w,,m, =+30€ each, since by Rawls'
principal rule, the argmin r,, =3, viz., 3x10€ = +30€. The other 8 partici-

pants, now according to the compensation rule, will receive half, /21, , x10€ =
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+15€. Everyone benefits from the matching o = [1,4]. Indeed, partners [1,4]
will be able to reduce their losses w,, m, to —10€, since their gain according
to the rules of the game will be +30€=r, , x10€. Considering the +10€ cost of

goodies, other 8 participants will also reduce their losses, but only to —25€,

since —50€ was paid as an entry fee will be reduced by +15€ from the compen-
sation sums.

What happens if the participants ¢ = [1,4] decide to sign the agreement in

the initial time period k =1? The entire table R must be dynamically reas-
sessed into sub-block X to reflect that participants [1,4] have been matched.

Indeed, the clients {2,3,4,5} and the agency staff employees {1,2,3,5} can no
longer rely on their latent partners [1,4]. The ranking’s scale <1,2,3,4,5> is
narrowed dynamically to <1,2,3,4> , which leads to a decrease in risks ;.

To reflect this, Table 1-3 have been reassessed to Table 4-6. The yellow
cells determine the sub-block X =R +o; C(X) = {arg mina € X} determine

the green cells choice operator, where the partners ¢ = [16,40 ]:

E: | E: Es | Ei| Es E|E E | E|E E | E: B E| E
L. L. L
L 4 3 1 2 L 1|3 3 3 |5 6 4 5
W - 24 3 []+m | ¢ 2 2 —X L6 6 5 =
Lo 1|4 3 L. 3 4 1 Lo 4 4
Ls | 3 1 4 Ls | 2 4 4 L 5 5 s
k=2 Clients” Reflexive Priorities Staff Reflexive Priorities Reassessed Incompatibility

The compensation sum has not changed, and is still +15€. The balance
—50€+10€+2x15€ = —10€ of the pair [1,4] improves; L, , E, each receive,
w ,m =+30€, o= (w1 ,m4) as rewards for matching based on the rule that it
is equal to twice of the minimum compensation. For those not yet matched, the
individual balance remains negative, viz., —25€.

Inclusive goodies, the cashier balance 500€-2x(10€+30€)—-8x(10€+15€)
falls to 500€ _(wa + ij) =220€, 1,] =1,_5 . We refer to the list

Da:=<6> as <G>=R+X, or X=R=+Da ; cf. Table4-6 W, M&X .

The list of matching pairs Da is also the “complement list” Dz of possible
unmatched pairs in the sub-block X to R . Further removal of pairs ...

from X will be denoted by X +{at}.

Based on the information provided, the matching that would best represent
the common interests of all clients and agency staff is one that maximizes the
least compensation sum, while maintaining the acceptable risk of incompatibil-
ity. What should be the matching that will represent the common interests of all
clients and staff employees?
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3. CONCEPT OF A QUASI-CORE—THE KERNELS

In coalition game theory, imputations refer to allocations of rewards that satisfy
certain conditions, such as individual rationality, meaning that each player gets
at least as much as they could have obtained on their own. However, marketing
cannot be seen as game in traditional sense with a well-defined set of rules and
a characteristic function. The concept of marketing presented so far as a game
was just a framework for thinking in various directions at the marketing plat-
form.

In view of "monotone system" (Mullat, 1971-1995) exactly as in Shapley’s
convex games, the basic requirement of our model validity emerges from an

inequality of monotonicity TE(OL,X+{G})STE(OL,X). This means that, by
eliminating an element/match ¢ from X, the utilities (risks) on the rest will

decline or remain the same. In particular, a class of monotone systems is called
p-monotone (Kuznetsov et al, 1982, 1985, [17-18]), where the ordering
<TC(OL,X)> on each subset X of utilities follows the initial ordering <TC(OL,R)>
on the table R . The decline of the utilities on p-monotone system does not
change the ordering of utilities on any subset X . Greedy type (serialization)
technique on p-monotone system might be effective. Behind a p-monotone
system lays the fact that an application of Greedy framework can accommodate
the structure of all subsets X — R . For various reasons, many will probably
argue that p-monotone systems are rather simplistic and cannot be compared
with the serialization method. However, many economists, including Narens
and Luce (1983, [19]), certainly, will point out that subsets X of p-monotone
systems perform on interpersonally compatible scales.

An inequality F(X, UX,)> min<F(X1),F(X2)> holds for real valued set

function F(X)=min__ n(a,X), referred to as quasi-convexity (Malishevski,

1998, [20]). We observed monotone systems here, which we consider impor-
tant to distinguish. The system is non-quasi-convex when there are two sub-
blocks X,, X, contradicting the last inequality. We consider such systems as

non-quasi-convex.

The order of incompatibility risks in marketing games may not be preserved
within an arbitrary sub-block X . In these systems, the initial risks order

<R =ri'j> may not necessarily be true for some order on <X>=||n(0t,X)||.
Unlike <R = ri,j> , as agency staff employees search for an client for a market-
ing, and vice versa, the order of risks on <X> = ||Tc((x,X)|| can be opposite to

the order on <R = riyj> for some pairwise pairs o and B of participants, i.e. as
(o, R) > n(B,R), but m(a, X) < (B, X) and the like. In that case, the or-

dering of two partners’ mutual risks can turn "upside down" while the risks
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scale is dynamically narrowed down compared to the original ordering <R>

This means that the scale of mutual risks is not necessarily interpersonally
compatible. The interpersonal incompatibility of the risk scale in the marketing
environment is significantly different, leading to difficulties in finding a solu-
tion using the Greedy framework and the incremental chain algorithm. This
difference became apparent when the monotone system was found to be non-
quasi-convex, making it impossible to find a solution using our traditional
method (Mullat, 1971). Understanding the essence of the problem is essential
before delving into the formal intricacies of the issue.

Definition 1 We call a sub-block JK € arg max ., F(X) by a kernel sub-
block; {5{} is the set of all kernels.

Recalling the main properties of a chain of increments (a sequence of ele-
ments of a monotone system) it is possible to arrange the partners € &, i.e.,
the matchings o€ &P of agents by a Greedy type incremental sequence

a=<a],...,ak> , time slices k=1, “7’|. The sequence o follows the lowest

risk ordering in each period k corresponding to sequence of sub-blocks <Hk >,

H =R, H, «<H +{ock}, o, =argmin__ 7(a,H,). One of the proper-
ties of the incremental sequence (cf. defining, Mullat, 1971a) is that F(H,) is
single-peaked. This means that within a peaked sub-block I' for some time
slice k = p there does not exist a proper sub-block X' on which the function
F(X') would reach a greater value than on I , ie., the inequality
F(X')>F(I')) does not take place. Therefore, under the contrary assumption

that such a set X' exists, X' must have a non-empty intersection with the
sequence ol with some o, in previous time slice; o, will presumably be at

the leftmost position t<p in o (or one of those o entries O, in X' that
will appear as o is constructed). However, complementing the pairs in X'

with all those pairs that do not belong to X', so that starting from some t both
X' and [ lie entirely in the sequence o , we do not arrive to contradiction as

expected while constructing o . Otherwise the sequence o could potentially
be used for finding the largest kernel ' . The reason is, that incremental con-
structing the sequence o is not an exclusion of matchings o, € H,_, given that

the participant o, = [i, _]] is about to match but rather an exclusion of all adja-

/ /
cent partners ol in [i,*] -s row and [*, J] -s column. We denote this exclusion
or dynamically reassessing of rows and columns by H,_, <~ H, + {ock} and by
Dk+l <~ Dk + {ak}'
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In conclusion, we note once again that, despite the preservation of the prop-
erties of a monotone system, the Greedy algorithm constituting Mullat’s
defining sequence o , the sequence cannot guarantee the extraction of the
supposedly largest kernel J{', especially in the form given by Kempner et al
(2008, [21]). Thus, we need to employ special tools for finding the solution. To
move further in this direction, we are ready to formulate some propositions for
finding kernels K by branch and bound algorithm types.

The next argument will require a modified variant of imputation (Owen,
1982, [22]). We define an imputation as the outcome connected to the market-

ing game. More specifically, the outcome is given as a |fl’| -vector (a list) of

payoffs to all unmatched participants who make up the sub-block X, and
matched participants as partners in pairs o = [Lu/client,Eq/employee] ¢ X repre-
senting the list Da . In case the game ends prematurely, at the request of the
agency or the clients themselves, for all in Da who have found a partner a
reward F(X) will be paid; F(X)=minr,; among cells ()L:[i,j]EX , cf.
Table 3 and Table 6. For everyone who has not yet found a partner, under the
current rules, they will receive %2F(X) . The concept of outcome (payoffs) in

this form is not generally accepted as a form of imputation of a multi-persons
game, since the amount that all participants can now claim is not fixed, but will
be dynamically re-evaluated. Thus, it is likely that participants will fail to reach
an understanding, and will claim payoffs obtaining less than entrance fees

(n + m)- 50 € of the cashier. However, the cashier balance, in contrast, when
participants will claim more than entrance fees, is also conceivable.

Any sub-block X induces a |fl’| -vector a =<occ> as an outcome & may

be organized in a sequence of payoffs <wc,mc> . Further, we follow the rule

that capital letters represent sub-blocks X,Y,...,H,N,... while lowercase
letters «,y,...,R,n... represent outcomes induced by these sub-blocks.

terminology of many persons” games, 1 stands

w ,m =1+F(X) if ceDa, Thevector & designates animputation in the
w =
w,,m =1+2F(X) if 6¢Dax. forgoodies:

> @, = F(X):[Dal+ (7] -[Da]+|2].

This definition of the partial matchings Da < & is used later, adapting the

concept of the quasi-core for the purpose of the marketing game. We say that
an arbitrary sub-block X induces an outcome « . Computed and prescribed by
sub-block X, the components of a consist of two distinct values 1+ F(X)

and 1+'%F(X) . Participants ¢ € X could not sign a deal, while participants

o € Da were able to match. We will also use the notation X = Da emphasiz-
ing a mixture for marketing matchings Da .



44 Chapter III

Before moving on, let’s try to justify our mixed notation X. Although the
cells o ¢ X, whereas o is located in the compliment X of X to R, the
Da uniquely defines both those Da among participants & who signed
deals, and those X =R +Da who did not; the cells in X does not specifi-
cally indicate matched participants. In contrast, using the notation Dx , we
indicate participants in Da who are matched, whereas 6 € Da also indicates
an individual decision how to match. More specifically, this annotation repre-
sents all agency staff employees and all clients in Da like standing in line
facing each other at the marketing platform. However, any agreement or match-
ing among participants belonging to Da , or whatever matches are formed in
D« , does not change the payoffs «_ valid for the outcome « . In other
words, each particular matching Da induces the same outcome « . Decisions
in Da with respect to how to match provide an example of individual rational-
ity, while the matching Da formation, as a whole, is an example of collective
rationality. Therefore, in accordance with payoffs &, the notation Da sub-
sumes two different types of rationality—the individual and the collective
rationality. In that case, the outcome a accompanying Da represents the
result of a partial matching of participants & . Propositions below somehow
bind the individual rationality with the collective rationality.

The feasibility issue of induced sub-blocks X — R is considered not only
in the context of the blocks themselves, but also in the context of the totality

2" of matchings D € 2” in relation to special sets of matchings ¥ < 2”. The
matching chain <0Lk> adding participants period-wise in the period k , starting
with the empty set &, can, in principal, access any matching D € &, by re-

moving the participants starting with the grand ordering J —so called
upwards or downwards accessibility.

Definition 2 Given matching D — &, where & is the Grand Coalition;
we call the collection of pairs C(X) = {argmin%X n(a,X)} naming C(X) as
best latent participants, which can be matched with a minimum risk of mutual
incompatibility in the matching D .

Consider the formation of the chain D, , <~ D, + {ock} of matchings D,

generated during in the periods k =1,_n. Let X, =R, X, =R +D,, where

Ko
D, are participants trying to match; by Definition 2, these C(X, ) are partici-
pants with the lowest risk of mutual incompatibility among participants D,
that do not yet matched in previous periods k <k+1, D = . In the time
slices D, , =D, + {Ock} the matching is arranged after the rows and columns,

indicated by the matching or partners o, , which have been removed from W,

M and R . Mutual incompatibility risks R :Hrw” have been recalculated

accordingly.
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Definition 3 Given the sequence <oc1,...,ock> of matched participants,

where X =R, X, =X, +{ak}, we say that matching Dx =X=R+X of
matched (as well as X of not yet matched) participants is feasible, when the
chain  (X,..,X,, =X) complies with the rational succession

CX
<0c1 ,...,ak> , a feasible payoff, or a feasible outcome.

)2 C(X,)NX,, . We call the outcome « , induced by sequence

k+l

Proposition 1 The succession rationality necessarily emerges from the con-
dition that, under formation of the matching D, partners in o, does not

decrease the payoffs of participants (oc1 ,...ock_]> formed in previous periods.

The accessibility or feasibility of matching Da formation offers a reinforc-
ing interpretation. Indeed, the feasibility of matching Da means that the
matching can be formed by bringing into it a positive increment of rankings to
all participants & , or by improving the position of existing participants having
already formed the matching when new participants enter the matching in sub-
sequent periods. We argue that in the subsequent periods, matching can be
extended via hereditary-rational choice. In the addendum, we outline the hered-
ity rationality in the form suitable for visualization.

The proposition states that, in matches, the individual decisions are also ra-
tional in a collective sense only when all participants in Da individually find
a suitable partner. We can use different techniques to meet the individual and
collective rationality by matching all participants only in Da , which is akin to
the stable marriage procedure (ibid [1], Gale & Shapley). In contrast, the algo-
rithm below provides an optimal outcome/payoff accompanied by partial
matching only—i.e., only matching some of participants in & as participants
of Da ; once again, this is in line with the Greedy type matching framework.
At last, we are ready to focus on our main concept.

Proposition 2 The set {JV } of kernels in the marketing game arranges fea-
sible matchings {Dr}. Any outcome r induced by a kernel N e{N} is
feasible.

Definition 4 Given a pair of outcomes « and ¢ , induced by sub-blocks
X and Y, anoutcome Y dominatesthe outcome « by §, « <, ¢:

(i) 3IS<=Xn Y|‘v’c €S > a <y, (ii) the outcome ¢ is feasible.

Condition (i) states that participants/partners G € § receiving payoffs a_
can break the initial matching and instead of merging into Da + ¢ and estab-
lish new matches will try to unite into Dg + o . This means that, some partners
in X, i.e., not yet matched participants in S, can find suitable partners amid
participants in §, so that their compensations may be higher than their rewards



46 Chapter III

in « . Thus, by receiving ¢_ instead of «_ the participants belongings to §
are guaranteed to improve their positions. This interpretation of the condition
(i) is obvious. Thus, the relation « <, ¢ indicates that participants in § can

cause a split (bifurcation) of Da , or are likely to undermine the outcome « .

Definition 5 The proper kernel N e {3{} minimal by inclusion, or what is
the same. a proper Dn , maximal by super-matchings induced by N, is
called a core kernel or matching.

Proposition 3 The set {n} of outcomes, induced by core kernels in {./V }
arranges a quasi-core of the marketing game. Outcomes in {n} are non-
dominant upon each other i.e, n<,n', or n>, n' are false for any
S c N N N'. Thus, the quasi-core is internally stable.

The proposition above indicates that the concept of internal stability is
based on "pair comparisons" (binary relation) of outcomes. The traditional
solution of marketing games recognizes a more challenging stability, known as
NM solution, which, in addition to the internal stability, demands external sta-
bility. External stability ensures that any outcome X of the game outside NM-
solution cannot be realized because there is an outcome n € {./V }, which is not
worse for all, but it is necessarily better for some participants in Da . There-
fore, most likely, only the outcomes n that belong to NM-solution might be
realized. The disadvantage of the marketing scenario is that it is impossible to
specify how this can happen. In contrast, we can define how the dynamic or
multi-stage reassessment of one matching to another takes place, namely, only
along feasible sequence of matchings of partners. However, it may happen that
for some matchings Da outside the quasi-core {./V } , “ feasible sequence” may
come to deadlock unable to reach any better outcome that # , whereby starting
at Da the quasi-core is feasibly unreachable. This is a significant difference
with respect to the traditional NM-solution.

4. CONCLUSIONS

By using mismatch or incompatibility indicators as metrics, we can identify
cases where a partial matching may be more beneficial than a complete match-
ing. For example, if a staff member has a high level of expertise in a certain
area, but may not be a perfect matching for a particular client, it may be better
to assign them to that client anyway, rather than risking a less experienced staff
member who is a better matching. By reassessing

these metrics throughout the marketing process, we suppose that participants
can see, i.e., to reflect all the consequences of their partial matchings as well as
actions of their partners to achieve better results overall. This approach may
result in a higher total reward than a complete or grand matching, which may
not always be feasible or desirable in practice.
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The marketing game dynamically develops in time. The scenario is de-
scribed by multi-stage decision process from current reflection k to the next
reflection k+1 in the form of a dynamic reassessment of indicators about the
willingness to take the risk of entering into incompatible agreements. The ob-
jection being raised is that the model presented is not a strict strategic
interaction, but rather a "game" in the colloquial sense. On the contrary, it is
noted that at each reflection, agents have multiple options and time to consider
their moves, including the option to leave the game and receive a payoff or to
continue in the hope of obtaining a better outcome. This allows for a more
flexible and nuanced approach to cooperative game theory, which is more in
line with mathematical standards. The model uses scalar optimization based on
the Rawlsian principle of "maximum welfare of the worst-off". In summary,
the design of the marketing game should prioritize the promotion of services to
clients and benefits to staff, while also providing an engaging and challenging
experience for players.

The uniqueness of the marketing game lies in dynamic reassessment of cli-
ents and agency staff employees on each other’s risks to make deals. As a
result, along with the individual and pair rankings, the collective ranking is also
subject to reassessment. Indeed, the agreements or matchings indicate the col-
lective action that each agent (clients or staff employees) must take to prepare a

suitable deal at each reflection K of the game. This situation is manifested by
the construction of an appropriate sequence of risks that increase at the starting
periods 1<..k..<< and then dynamically decrease in game closing periods
1<<..k<.. The sequence of risks of incomparability of matchings finally,
albeit in the most unfavorable case, converges to a "single point" at the end of
the game. The reassessment of risks has a monotonic character, which made it
possible to build a game based on the so-called Monotone system (MS).

One disadvantage of the MS is the challenge in aligning the results of the
analysis with a realistic interpretation. The quasi-core extraction process may
require additional adjustments for proper interpretation. However, the idea of
using mismatch or incompatibility indicators as metrics can help to identify
latent issues before they arise, and allow marketing agency staff employees to
proactively manages the situation. By measuring compatibility between a mar-
keting agency employee and a client, the agency can make more informed
decisions about who to assign to each client, ultimately leading to improved
customer satisfaction and reduced marketing volatility and fuzziness. It is im-

portant to note that r,; metrics could be used in conjunction with other factors,

such as the time frame as explained in Osborne and Rubinstein (2020, [23]).

The question being raised is why a partial matching (in this case, a pairwise
matchings of agents) is preferable to a complete matching. In constructing
"Greedy-type" the multi-stage time sequences becomes a single-peaked. As a
result, a partial matching in the form of quasi-core imputations is more prefer-
able or efficient than a complete matching.
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The concept of the core in cooperative game theory refers to the sets of fea-
sible payoffs that can be achieved by the players through cooperation. Finding
the exact payoffs, associated with the core, is difficult problem meaning that it
may not be solvable using current computing power. The problem becomes
unclear also because, among other things, it is not known whether the core is
empty. The existence of non-empty payoff sets, similar to the core, called
quasi-cores, is guaranteed in marketing game. A quasi-core is defined as a
stable sets determined by the marginal values of supermodular utility functions,
in accordance with Rawls' second principle of justice. These sets can be identi-
fied using a version of the P-NP problem that uses the branch and bound
heuristic, which is an optimization algorithm that combines a systematic search
in the solution space with checking upper and lower bounds of the remaining
subtasks. The heuristic can be visualized using spreadsheets such as Microsoft
Excel where an optimization problem can be modeled and solved with a com-
bination of formulas and algorithms. The branch and bound heuristic can give
approximate solutions in a relatively efficient way, allowing a rough estimate
of the quasi-core.

The quasi-core concept in marketing game refers to a fundamental idea or
principal that guides marketing activities. It can be applied to marketing to
evaluate the stability of marketing comparisons and determine whether a given
marketing strategy is feasible. The stability of the marketing depends on how
well it is able to account for externalities, such as the actions of competitors,
changes in consumer preferences, and the impact of technology. By analyzing
the stability of matchings in the context of the quasi-core, marketing profes-
sionals can gain insights into the likelihood that their strategy will be successful
and be able to make informed decisions about how to adjust their approach as
necessary. In this sense, the quasi-core concept can be seen as a tool for pro-
moting the long-term viability of marketing initiatives.

APPENDIX

Al. Addendum
To understand what is proposed below, the situation is such that the game can
be viewed as a dynamic or multi-stage reassessment of rankings by reflections
..k ,k+1,., as a chain shrinking sub-blocks from .,X, to X, ,.. When par-
ticipants as pairs or partners o signed an agreement and reserved their services
and products, the sub-blocks X, o X,

k+12°

, are reassessed or narrowed down. If

among best matches C(X,,,) in X, there are matches from X, , then, in this

k+1

new situation X, , these best pairs C(X,) from X, should be present in their

k+1 2

former role as the best choice, especially true for matchings in the quasi-core.

One circumstance must be kept in mind here. On the one hand, we are deal-
ing with matchings, but on the other hand, the considered matchings are also a

certain set of cells or sub-blocks X embedded into n xm tables in our mar-
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keting game, and therefore it is quite appropriate to consider matchings from
the point of view of Boolean set theory, where the usual operations of inclu-

sion, intersection of table cells as pairs of participants, etc. are allowed.

As the sub-block-formation chain X, shrinks <Xk > Xk”) the proposition

below can be verified by leastrisk F(X,)=min_, m(c,X,) generating

X
choices C(X,) as a list <0Lk =argmin_ n(G,Xk)> of potential participants
o, € X, at risks levels F(X,) . The list C(X,) represents matchings
a=<ocl,0c2,...,(xk> that participants o decide to match. Partners ¢ € X, ,

now in the role some o, , = ¢ will try to realize their latent relations. While

k+1
the chain X, has been formed, due to the fact that all participants in & no

longer are available (reserved) for new matching, in the new reflection k +1,

all eventual partners/cells in X, ,, must reconsider to whom they prefer to

k+1 2

match, as their favored G. Based on the remarks above, the following can be
stated.

Proposition 5. In the marketing game, the participants of the game move
from the best choice C(X,) on previous period of the game to the next best
choice C(X, ) on succeeding period. If it turns out that in succeeding period
X,, the old bests C(X,) are dtill present, i.e, C(X,)NnX,, #d , then

C(X,,)2CX,)NX,,. These C(X,) "old best clients" will continue to be
the best for marketing by the same staff employees of the agency, provided that
the reward payments F(X, ) will notincrease: F(X,)=F(X,,)).

k+1

The proposition somehow revises a rational mechanism of so-called hered-
ity succession choice C(X); Postulate 4, Chernoff (1954, [24]), condition o

of Sen (1970, [25]), or fuzzy form [26], cf. Arrow Axiom (1959, [27]; cf. also
Malishevski [20]. The proof may be explained in the basic terms. It is possible
to reach an arbitrary sub-block X not yet matched participants by sequence

(0,0 00,), X, =R, X, =X, +{o,} X=X

reflection R of the game, where nobody has been matched yet. The sequence

starting from the initial

k+1 2

will improve payoffs «, on previous periods <0L1,...,0Lk> in accordance with

non-decreasing values F(X, ).

The statement of the proposition can be verified by observation of all prior-
ity tables and all matchings X that emerged from all N X M tables, when
both n and m are small integers. For higher n and m values, it is NP-hard
problem. Second, consider an arbitrary sub-block X of the nxm -game.

While the anti-sub-block X = Dz includes all participants signed a deal; all
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participants in X are still unmatched. We can thus always find partners
o, € X such that F(R)<F(R =+ {ocl}) . Consider (n —1)>< (m —1) -game,
which can be arranged from nxm -game by declaring the partners signed a
deal OL, as blank agents, i, ,4, €% .

o

By the induction scheme, there exists a sequence of matchings
<0L1,0Lz...,0ck> with required quality of improving the payoffs X, starting
from X, =R +{ocl}. Restoring the blank attendees O, to the role of clients
and agency staff employees in the n x m -game, we can, in particular, ensure
the required quality of the sequence <oc1,ocz,...,(xk>. The statement of the

proposition is obviously the corollary of the claim above. However, ensured by
its logic, the claim is a more general statement than the statement of the propo-
sition. The first part of the statement is self-explanatory. The matching N

stops being a proper subset among kernels {5{} as soon as the payoff function
F(WN) do not allow improving the outcome r . The second part of the proposi-

tion is the same statement, worded differently. Nonetheless, we consider it
necessary to provide complete proofs of all statements, since proofs are pre-
sented here only in a concise form.

A2. Finding the quasi-core

In general, algorithms like Greedy improve the solution dynamically through
reassessment. However, in the case of the marketing game, this approach is
complicated by the fact that local improvements may not necessarily lead to the
best outcome or payoff for all agents. The best outcomes for all agents make up
the quasi-core of the marketing game, and there may be numerous best com-
pensations. Finding the core in the conventional sense is NP-hard because the
number of operations increases exponentially with the number of participants.
In the marketing scenario and other marketing games, there is a large family of
subsets that make up the traditional basis of imputations. While it may be pos-
sible to find all payoff vectors induced by kernels, it is impractical to do so.
Therefore, we suggest finding some admissible matchings belonging to the
quasi-core and the payoffs induced by these matchings are sufficient.

This can be achieved by applying a strong payoff improvement procedure
and several rolling procedures that do not worsen the position of the agents
when forming the matching. In some situations, known as succession rational-
ity, Definition 3, the strong improvement procedure cannot find anything. On
the contrary, using rolling procedures, we can move forward in one of the
promising directions to find payoffs that do not worsen the result. Experiments
performed using our polynomial algorithm show that by using a combination of
improvement procedures and rolling procedures both with a rational succes-
sion, it is possible to use a backtracking search strategy and find possible
payoffs belonging to the quasi-core.
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We use five procedures in total—one improvement procedure and four
variants of rolling procedures. Combining these procedures, the algorithm
below is given in a more general form. While we do not aim to explain in detail
how to implement these five procedures, in relation to rational succession, it
will be useful to explain beforehand some specifics of the procedures because a
visual interaction is best way to implement the algorithm.

In the algorithm, we can distinguish two different situations that will deter-
mine in which direction to proceed. The first direction promises an
improvement in case the attendees o € X decides to match or sign a deal. We

call the situation when C(X+{(x})ﬂC(X)=@ as a latent improvement
situation. Otherwise, when C(X+{a})ﬂC(X) =, it is a latent rolling
direction. Let CH(X) be the set of rows C(X), the horizontal routes in R
Table 3 & 6, which contain the set C(X). By analogy CV(X) represents the
vertical routes, the set of columns, C(X) < CH(X)xCV(X). To apply our
strategy upon X , we distinguish four cases of four non-overlapping blocks in
the mutual risk R =] | Table 3 & 6: CH(X)x CV(X) ; CH(X)xCV(X) ;

CH(X)x CV(X) ; CH(X)x CV(X).

Proposition 4 An improvement in payoffs for all participantsin the market-
ing game may occur only when partners o€ X comply with the latent
improvement situation in relation to the sub-block X , the case of
C(X+{a})mC(X)¢® . The attendees o€ X are otherwise in a latent
rolling situation.

The following algorithm represents a heuristic approach to finding payoffs
n induced by kernels {JV } of the marketing game. Recall that R is the nota-

tion for the table of mutual risks. Build the mutual risks Table 3 & 6,
R = W + M —a simple operation in Excel spreadsheet.

Input Set k «—1, X <= R in the role of not yet matched participants, i.e., as
agents available for latent matching. In contrast to the set X, allocate indi-
cating by Da <— (J the initial status of matched participants.

Do: S, Find a match o, € CH(X)xCV(X), Da <~ Da + {ock } , such that
F(X)<F(X=+{a,}), X< X+{o,}, X, =X, k=k+1,else
Track Back.

Rolling: D, Find a match o, € CH(X)xCV(X), Dax «<— D + {Otk} , such that
FX)=F(X+{a, ), X X +{o, }. X, =X, k=k +1,
else Track Back.

JumpF  F, Find a match o, € CH(X)xCV(X), Da < Da + {OLk } , such that
F(X)=F(X=+{o,}), X X={a,}. X, =X, k=k+1, else
Track Back.
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JumpG G, Find a match a, € CH(X)xCV(X), Da <— Da + {Ock } , such that
FX)=F(X+{a, ), X« X+{o, }, X, =X, k=k+]1,else
Track Back.

JumpH H, Find a match a, € CH(X)xCV(X),Da < Da + {otk } , such that
FX)=F(X+{o}), X X=+{o,}, X, =X, k=k+1,else
Track Back.

Loop Until no participants can be found in accordance with macros S, D, F, G and H.

Output  The set Da forms Da = <OLI ,...,Otk> . The row-column removal of Da
from R, N/ =R +Da, represent the technical framework of the game
while the payoff # induced by N belongs to the quasi-core.

In closing, it is worth noting that a technically minded reader would likely
observe that matchings X, are of two types. The first case is X < X + {ock}
operation when the mismatch compensation for bad luck increases, i.e.,
F(X,)<F(X, + {ak}) . The second case occurs when rolling along the com-

pensation F(X,)=F(X, + {ak}) . In general, independently of the first or the

second type, there are, as said, five different directions in which a move ahead
can proceed. In fact, this poses a question—in which sequence of participants

O, should be selected in order to facilitate the generation of the sequence

Da = <0L1,...,0Lk> of matchings? We solved the problem for marketing games

underpinning our solution by backtracking. It is often clear in which direction
to move ahead by selecting improvements, i.e., either a strict improvement by
s) or rolling procedures though d), f), g) or h). However, a full explanation of
backtracking is out of the scope of our current investigation. Thus, for more
details, one may refer to similar techniques, which effectively solve the
problem (Dumbadze, 1989, [28]).

A3. Conventional stability

In order to demonstrate the shortcomings, at least in one particular case, of
using traditional game theory concepts such as the core, below we use a mix-
ture of common game theory terms and try to show that the standard core does
indeed give a rather poor solution as the core consists of a single imputation in
the form of complete or grand matching. This suggests that alternative ap-
proaches may be required to solve the marketing game effectively.

The marketing game arrangement is expanded to a more general case. There
are n+m participants n of which are clients <1,...,i,...,n>, and m are

agency staff employees <1,..., ],,m> Some of the participants expressed their
willingness to participate in the game and have revealed their rankings. Those
who refused are referred to as blanks, while others who agreed to play the

game will be arranged by default into the Grand Matching &, fl’| <n+m.
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Indices 1, annotate the participants of the game. Participants in P are re-

garded as players, whereas partners o = [i, J] or ia,ja] ... are designated to
as Q,...,o . This differentiation helps making notations short.

Marketing game focuses on the participants D < & that are matched. Hav-
ing formed their rankings, participants in D have the power and ability to
assert their rankings. Participants in D can convince all those in D who are
not already in D to opt out of the game without a partner and thus be compen-
sated. Given the tables W, M and R, the situation, in contrast to D, which
lists matched pairs, i.e., those who made deals, can be represented as a sub-

block X =R +D consisting of rows and columns from D .

It is realistic to assume that enforcing the interests of the participants in D
is not always possible. Regardless of their participation in D those in the
D' = D, whose interests are affected (suppressed), will still be able to receive
as much as they receive in D . Sometimes it is convenient for D' to exclude
this opportunity, since it is better that the D' matching cannot be implemented
simultaneously with D and be its direct competitor.

N.B. It should be emphasized here that the D matching are those participants who have
signed deals, and the X sub-block are those who prefer to continue. Matching D and

sub-block X characterize the game multi-stage situation achieved in period k, when
the participants imitating each other actions must decide on the further course of the

game, whether to move to reflection k + 1 or not. Each agent identified by the rows
and columns in X receives 50% of the rewards of the agents in D in the event of the
game is over. A realistic situation may occur when all participants in & are matched,
D =&, or, in contrast, no one decides to match, D = & hereby after revealing their
rankings, all might decide not to proceed with the game at all.

Among all matchings D, rational matchings are usually singled out. A par-
ticipant, entering into the matching D, derives from the interaction in the
matching a reward that satisfies 0L € D . We assume that the rewards and
compensations are strictly dependent on pairwise matchings in D, which in
turn were caused by sub-block X . Using the matchings D &, we can al-
ways construct a payoff « to all participants &, i.e., we can quantify the
positions of all participants. The inverse is also true. Given a payoff « , it is
easy to establish which participant belongs to the matching D and identify
those belonging to block X =R + D . We label this fact also as Da . Recall
that participants of the matching Da receive a reward to match, which is equal
to the double amount of the “mismatch” compensation. Thus moving to better
positions, the list of participants Da may provide an opportunity for some
participants ¢ € & to start, or initiate, new matches. We will soon see that,
while the best positions induced by special sub-blocks K , called the kernel
block, have been reached, this movement will be impossible to realize. Our
terminology is unconventional in this connection.
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The concept of stability in matching games refers to the inability of agents
to move to better positions by making pairwise comparisons. In the work
"Cores of Convex games" by Shapley (1971, [39]) convex games were studied,
which are games that have a non-empty core. The core is a convex set of end-
points (imputations), representing the available payoffs to all agents in a
multidimensional octahedron. The core stability in these games ensures that no
agent has an incentive to move from their current position to a better one, lead-
ing to a stable solution. Below, despite the agents’ asymmetry with respect to
Dax =R +X, we focus on their payoffs driving their collective behavior as

participants & to form the matching Dax , Dxa C & ; X =D« is and anti-
sub-block to X ; X designates deleted rows and columns.
In contrast to individual payoffs improving or worsening the positions of

participants, when playing the marketing game, the total payment to the match-
ing Da as a whole is referred to the utility function £(X)>0. In classical

cooperative game theory, the payment £(X) to matching Da is known with
certainty, whereby the variance A(X)—A(X + {G}) provides a marginal utility
71(6,X) . Inequality n(OL,X+{G}) <m(a, X) of the scale of risks of incom-
patible agreements expresses a monotonic decrease (increase) in marginal
utilities (o, X) for o0 = [iq,ju]e X . This monotonicity is equivalent to super-
modularity A(X,))+A(X,) <AX, UX,)+Aa(X NX,), Nemhauser et al,
1978, [30]. Any utility function £(X), payments for which are built on a scale

of risks of incompatible agreements, due to monotonicity, is supermodular.
Supermodular functions have been used to solve many combinatorial problems
(Petrov & Cherenin 1948, [31]; Emonds 1970, [32]; Bai & Bilmes, 2018, [33]).
In general, a supermodular guarantee cannot be given.

Recall that we eliminated all rows and columns X in tables W ZHWLJH’

M= ”rni_j” in line with X =Dz . Table Hwiﬁj(X)+miJ(X)H or HTC(OL,X)H,

where o = [t“,ja]e X imitates the dynamic outcome of dynamically reassess-
ing rankings W ., m,, when some participants ¢ € X have been matched and
signed a deal. Rankings W, and m,; are consequently decreasing. Given in
the form of utility function, e.g., the value A(X) = me n(o, X) sets up the
marketing game. An imputation for the game A(X) is defined by a |f]’| -vector
fulfilling two conditions: (i) g (us, +m,)=FA(P), (ii) individual rational-
ity w,,m > ﬁ({oc}) , for all oo € & . Condition (ii) stems from repetitive use of

monotonic inequality (o, X + {0‘}) <m(a, X).
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A significant shortcoming of the canonical cooperative theory is related to
its inability to define stable matchings (the core is empty) or consisting of only

one—the grand matching. At first glance, this shortcoming seems inevitable.
Indeed, the lower is the risk m(o,X) of incompatible matching a € X, the

more reliable the matching o = [iu,ja]e X will be. Let we set up as an exer-
cise a popularity index u, of client i among agency staff employees Da as
ui(X):Z“jEXmLj ; accordingly, the index u, of an employee j popularity
among clients will be given by uj(X) = Zisxwi‘j . Let we intend to redistribute
the payment A($) of the complete matching & in proportion to the compo-
nents of the vector u(&) = <ui(37),uj(3°)>. Hereby we can prove, owing to
monotonic inequality, that the payoffs in imputation u(#) cannot be improved

for any o € & inside any partial matching Da < & induced by the sub-block

X.. Therefore, the game solution, among popularity indices, will be the only
imputation u(9) —popularity indices core of the cooperative game consists of

only one point u(#) . In other words, for matching all participants, any match-

ing using any algorithm (in particular, ibid. Roth & Sotomayor) will be the best
matching in terms of cooperative game using the only imputation u(J).

Ad. Visualization

Recall that, the input to the algorithm presented in the main body of the paper
contains three tables (cf. Table 1-6): Wz“wuu —rankings table w, where

the client specify with the respect to the characteristics the agency staff em-

ployees should possess, in the form of permutations of numbers 1,1 in rows;

M= ”m .”—Visa versa, rankings m. where staff employees specify the char-
L) J

acteristics in the form of clients permutations of numbers 1,m in columns; and

R =||Wi,j +mi7j||. These tables, and tabular information in general, are well

suited for use in Excel spreadsheets that feature calculation, graphing tools,
pivot tables, and a macro programming language called VBA—Visual Basic
for Applications.

A spreadsheet http://datalaundering.com/download/marketings_game.xls (ac-
cessed December 23, 2021) was designed to visually represent our idea of
finding the quasi-core o = <0L1,...,0L12> of the marketing game, including the

stable matchings that belong to the quasi-core. It was compiled by macro-
activated rendering capabilities of Excel.


http://datalaundering.com/download/marketings_game.xls
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AS. Spreadsheet layout specification

Three tables are available: the Pink table W —<lient’s rankings, the Blue M —
agencies’ rankings. The Yellow R —table consists of mutual risks
L, =W,  +m,_ of matchings incompatibility. The rows and columns, which
represent those who ceased the game, will be highlighted with a gray shadow.
According to this representation, the yellow sub-block X in R will represent
all potential or new opportunities of the matching ¢ = [ic, ]U] € X. The global
F(X)=min —>r_

. occupy the cell in the lower right corner of the table R .

The line on the right to X shows the minimum risk in the row iU € X, and

the horizontal line below X shows the minimum risk in the column j_ € X.

The green cells in the yellow sub-block X visualize the choice operator
C(X)z{argmin—>r } The cells [V24:A025] and [V26:A026] contain

ceX
the sequence a=..,X, 50X of the game generated in periods

ke190°"

...k, k+1,... together with the risks of matching associated by the sequence.

The agents’ balance of payoffs occupies the cells [V31:A032]. Some cells
reflecting the state of finances of cashier are located below, in the cells
[AP34:AP44]. Cells in row-1 and column-A contain the participants’ labels.
We use these labels in all macros.

A6. Extracting the quasi-core of the game

We came closer to the goal of our visualization, where we visually demon-
strate the main features of the theoretical model of the game by example.
Generating the matching sequence, which is performed in a period-wise fash-
ion, constitutes the framework of the theory. In each period, to the right side of
the sequence generated in the preceding periods, we add partners found by one
of the macros CaseS, CaseD, CaseG and CaseH, i.e., partners that has decided
to match. This process is repeated until the marketing risks of incompatibility
matching reach the level 6. When using these macros one can easily verify that,
risks initially increase, and then decline towards the end in case we proceed
further with these macros. This marketing N-peakedness is a consequence of
the mutual risks of matching monotonicity (o, H +{0}) <n(o,H). Indeed,

recall that matching’ levels are recalculated after each matching. With the pro-
viso of recommendations in our heuristic algorithm, see above, due to the
recalculation, the priority scales will "shrink" or "pack together", as only not
yet matched participants remain. The sequence O can be generated by macros:
CaseS, CaseD..., CaseH. The output will occupy the cells [V24:028]. The
initial reflection of the table can be restored with macros: Ctrl+o, Ctrl+b and
Ctrl+l. As an example of these macros, we prepared the result in cells
[B51:L52]. Just copy the contents of these cells into [V24:F25] and then use
the Ctrl+n macro, which renders the core of the 11 matches of the game.
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Table 7 Attendees’ belonging to the kernel

19 10 1 6 4 11 17 9 5 2 15

Matches W, /M
alches WA 5 9 10 17 15 6 13 11 7 14 2

Greedy risks’ sequence 3 3 4 5 6 6 6 6 6 6 6
Table 8 Payoffs’ imputation induced by the Kernel
AgentModerators Id Nr., 1,..,10 1 2 3 4 5 o 7 8 o 10
! -payoffs J0€ 40€ 40€ TO€ T0€ T0€ 40€ 40€ 40€ T0€
M -payoffs 70€ 40€ TO€ TO€ T0€ T0€ 40€ 40€ T0€ T0€
AgentModerators Id Nr., 11,20 7 12 13 14 15 16 I7 I8 19 20
Ut -payoffs J0€ 40€ TO€ 40€ T0€ 40€ 40€ 70€ T0€ T0€
M -payoffs 40€ TO€ T0€ T0€ T0€ 40€ 40€ 40€ 40€ 40€

Let us look at Table 7, where only 11 matches are accomplished, i.e., all
columns to right starting at from the match [19,5] till [15,2] visualize the out-
come n of our marketing game. Table 7 marks those participants who decided
to match, while all the rest but on this particular list are not yet taken their
decisions or have been, perhaps, unlucky to find a partner.

Table 8 will note the payoffs, that is, the imputation induced by the kernel
matching—the amount of payments in the form of rewards or compensations
for bad luck to all 40 participants—20 clients and 20 agencies. Payoffs of 40€
and 70€ correspond to what the kernel makes up in cash. The result is a total
amount of 2000€ received by the cashier in the form of participation fees minus
2260€ as payoffs, i.e., —260€ not in favor of the cashier.

We can continue creating the sequence of matchings with macros using
mAtch [ctrl + a], pointing to the cell in the top box: pink on the left (or yellow
on the right), until all participants have been matched. Please note this, starting
with pair No.12; we can no longer use the macros of our heuristic algorithm.
There are no participants with increasing payoff compensations 1-11, which
represent the maximum point—a payoffs # of the game.

In the Table 9-10 below, the Matching Sequence consists of k = 1,% time

slices or periods; we labeled attendees [i, ]] using notation O, . Together with

levels of mutual risks in row 3, the pink and blue rows correspond to the se-

quence O = <0Lk> of matchings. Compensations and rewards for marketing

are not payable at all, and only the costs of goodies (each worth 10€) occupy
similarly pink and blue rows. For match #3, the participants risk jumps from 4
to 5, and for match number 4 also increase from 5 to 6. Note that due to the
risks single N-peakedness, the lowest risk levels first for match #3 increase
starting from 4, and after the level 6, starting from match #12, it begins to de-
crease to 0.
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Table 9 Total Match

Match No. 1 2 3 4 5 6 7 8 9 10

Matches W, /M, 19 10 1 6 4 11 17 9 5 &
5 9 10 17 15 6 13 11 7 14

Greedy Risks 3 3 4 5 6 6 6 6 6 6

Ut -payoffs 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€

M -payoffs 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€

Table 10

Match No. 11 12 13 14 15 16 17 18 19 20

Matches Wi /M. 15 18 20 7 13 16 8 14 3 12
) T2 1 4 12 20 18 19 3 16 8

Greedy Risks 6 5 5 4 3 3 3 3 2 0
W -payoffs 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€
M -payoffs 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€

The list of macros; CH —cells in horizontal, CV —cells in vertical direction.

e CaseS. Ctrl+s, Trying to move by improvement along the block
CH(X)xCV(X) ofcells 6= [i,j] by "<" operator in order to find
a new matching at the strictly higher level.

e CaseD. Ctrl+d, Trying to move while rolling along the block
CH(X)xCV(X) ofcells 6= [i,j] by "<=" operator in order to
find a new matching at the same or higher level.

e CaseF.  Ctrl+f, Trying to move while rolling along the block

CH(X)x CV(X) of cells [i,j] by "<=" operator in order to find a

new matching at the same or higher level.
e CaseG. Ctrl+g, Trying to move while rolling along the block

CH(X)xCV(X) ofcells 6= [i,j] by "<=" operator in order to
find a new matching at the same or higher level.
e CaseH. Ctrl+h, Trying to move while rolling along the block

CH(X)xCV(X) ofcells 6= [i,j] by "<=" operator in order to
find a new matching at the same or higher level.

Functional test. The spreadsheet users are invited first to perform a functional
test, in order to become familiar with the effects of ctrl-keys attached to differ-
ent macros. Calculations in Excel can be performed in two modes, automatic
and manual. However, it is advisable to choose properties and set the calculus
in the manual mode, as this significantly speeds up the performance of our
macros. The macros one can take if something goes wrong are listed below.

¢ Originate. [Ctrl+o]. Perform the macro by Ctrl+o, and then use Ctrl+b.
This macro restores the original status of the game saved by the
BacKup, i.c., saved by ctrl-k.

e RandM. [Ctrl+m]. The macro Ctrl+m rearranges columns of Staff Em-
ployees’ priority M table by random (permutations). N.B. the
effect upon staff employees’ rankings M.

e RandW. [Ctrl+w]. The macro by Ctrl+w rearranges rows of clients priority
table W by random permutations. N.B. the effect upon client’s
priority table W.
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e Proceed. [Ctrl+e]. While procEeding with macros RandM and RandW, the
macro is using random permutations for agency staff employees
and client until it generates the priority tables M and W with
minimum mutual risk equal to 4.

e Blank.  [Ctrl+u]. This macro is removing from the list of participants those
participants that do not wish to play the game. We call them blank
agents. Activate the row-1, or column-A by pointing at employee
myy, or client wyy and then perform Ctrl+u excluding the chosen
participants from playing the game.

o MAttendee. [Ctrl+a]. Try to mAtch [ctrl+a] partners by pointing at the
cell in the upper block: pink color to the left (or yellow to the
right) in the row w; (corresponding to an client) and the column m;
(corresponding to a moderator).

o TrackR. [Ctrl+r]. Visualizes Tracking forwaRd. Memorizes the status of
clientsW and Saff Employees-M rankings to be restored by
TrackB macro. The effect is invisible, however, it can be used
whenever it is appropriate to save the active status of all tables and
arrays necessary to restore the status by TrackB macro. When the
search for quasi-core matchings is performed manually, the effect
becomes visible.

o TrackB. [Ctrl+b] Visualizes Tracking Back. Restores the status of client-W
and Staff Employees-M rankings memorized by TrackR macro.

e Happiness.  [Ctrl+p]. The macro calculates an index of haPpiness of the
initial tables status.

e Matching. [Ctrl+n]. The macro rebuilds the matching matching follow-
ing the matching matching list previously transferred into area
"AV24:A025".

e Chernoff. [Ctrl+q]. Useful when indicating by red font in Excel the
status of the Choice Operator C(X)={argmin}. Using this macro
will help to confirm the validity of the Succession Operator. To
clear the status, use Ctrl+1.
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VISUALIZATION OF THE MARKETING GAME WITH
20 CLIENTS AND 20 STAFF EMPLOYEES

Legend

Client — Clients" Awards,
Staff — Emplovees' Awards
Cash — Cashier's Balance

Clentnr. 19

Employeenr. 5

. Pa-

Client | Staff Cash riod
19
S15€ | 515€ 970€| 1 =
i
19
530€ 530€ 940 2 2
19
660€ | 660€ 680€ 3 -
J
19
S00€ | B00€ 400€| 4 =
i
19
O50€ 950€ 100€| 5 5
19
080€ 980€ 40€ | & =
3
. 19
1.010€1.010€ 20€ 5
19
L.040€£1.040€ 80€ & -
J
19
LO70€1.070€ 1406 9 )
J
19
L100€1.100€ 200€ 18 -
19
L130€1.130€ 260€ 11 )
i
19

L160€ 1160€ 320€ 12
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18
10
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10
18
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18
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6
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6
17
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17

Any agreement signed outside the quasi-
core will reduce payoffs (including compen-
sation) to all participants, however this will
improve the cashier's balance. In this case,
the members of the quasi-core will recom-
mend stopping the game.

Period 12 deals OlL1,0l2... Ol12
of participants, which represent
stable matching situation, like
quasi-core agents in a market-
ing game on the 6th level of
incompatibility of the risk indica-
tor scale. In period 1, the risk
score was at level 3.

4
14

4 11

14 12

4 11 135
14 12 ]

4 1 15 3

4 1 15 5 10
14 | 12 ] 4 7
4 1 15 5 10 8

The total amount F(X)- UDw| + qu3’| - |Da:|)]+ |5’| of rewards + compensa-

tions, inclusive goodies, is equal to

(612'12+4(220-2'12)]+220} 10€={6[24+'16]+40} 10€ =2.320€.
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The Left- and Right-Wing Political Power
Design: The Dilemma of Welfare Policy with
Low-Income Relief

Abstract. The findings yielded by this experiment represent a significant contribution to
the theoretical landscape of welfare policy, shedding light on fundamental inquiries
surrounding the rules and norms governing wealth redistribution. Specifically, the
examination meticulously dissects the expenses associated with redistributing both basic
necessities and critical public goods, recognizing the distinct considerations each cate-
gory demands. Notably, the analysis unveils a pivotal revelation: within the framework
of a poverty line designed to treat all citizens equitably, politicians with contrasting
ideologies assume the responsibility of determining the financing mechanisms for redis-
tributing essential and vital resources. This process underscores the imperative for
political consensus, contingent upon the approval of decisions by the electorate. How-
ever, in instances where such approval is absent, policymakers find themselves com-
pelled to engage in ongoing negotiations, underscoring the complexities inherent in
reaching viable solutions. Building upon this foundational premise, the study posits that
political decisions that elevate the poverty line as a parameter may inadvertently engen-
der inverse incentives for benefit claimants, potentially leading to financial imbalances.
This, in turn, raises concerns regarding the fiscal sustainability of distributing both basic
and non-basic goods to their intended recipients. To mitigate these challenges and
ensure fiscal equilibrium, the proposition is made to utilize half of the median income
(w), colloquially known as the Fuchs point, as the benchmark for defining the poverty
line. By adopting this approach, the aim is to foster a more just and equitable framework
for wealth redistribution, thereby fostering resolution to the ideological schisms that
often divide left- and right-wing politicians. Furthermore, through the application of
sophisticated modeling techniques, such as those employed in the development of the
Negative Friedman Income Tax (NIT) since 1962, the study demonstrates the efficacy of
implementing a wealth redistribution exclusion rule based on an income threshold of
half the median income (% p) in reducing the Gini coefficient, thereby advancing the
discourse on socioeconomic equality and justice.

Keywords: bargaining; welfare policy; public goods; taxation; voting
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1. INTRODUCTION

Political competition related to wealth redistribution often fosters debate
regarding what the state "should" or "should not" deliver. Wider and more
substantial welfare benefits and relief payments could be problematic, as they
might encourage certain behaviors, such as low savings or productivity when
economic security is guaranteed. Similarly, they may lead to high wage
demands, as an incentive to remain in employment, given that unemployment
benefits are substantial and are compensated by high tax rates T . In addition,
high taxes are an incentive for entering a black labor market that avoids paying
taxes, or moonlighting, i.e., holding multiple jobs. Finally, high benefits typi-
cally undermine social and geographical mobility. Evidence also shows that,
under these conditions, a few would opt for working just because financially
they would not be tempting, while many will be wondering why studying is
worth the efforts and sacrifices. In sum, excessive benefits might result in
human capital not developing quickly and well enough, e.g., "...implicit sup-
port to those waiting on benefits looking for the ‘right type of job’ or a job that
pays well enough," as noted by Oakley and Saunders (2011).

As the welfare policy of the state presupposes the existence of both a func-
tioning market economy and a democratic political system, its hallmark is that
the distribution of public goods and services is governmental responsibility and
obligation. The term public in this context refers solely to wealth redistribution.
In particular, an obligation to ensure that those on low incomes are awarded
appropriate levels of social benefits and relief payments results in a more egali-
tarian allocation of wealth than can be provided by the free market. In this sce-
nario, politicians face a dilemma of whether such allocation is just and fair to
all citizens. The solution depends on many factors, including the characteristics
and views of the main benefactors of wealth redistribution. In the absence of a
universal definition, in this work, we use the term "wealth" in the scholarly
sense, delivered through tax channels and distributed by the state. Under this
premise, the average taxable income per capita represents the wealth W .

The primary goal of this experiment is to demonstrate fallacy of arguments
advocating in favor of higher benefits and relief payments. Beyond the negative
perception of higher benefits, it is also reasonable to believe that distribution of
citizens’ incomes & is, perhaps, the only target for control and an exclusive
source of information for assessing the amount of benefits available. Our goal
is to highlight a hidden side of public interests to welfare issues (Flora, ed.,
1987), its geographical, historical justification and broad experimental support
in analyzing credible income distributions (Huber et al, 2008). Since we
approach welfare redistribution from a more theoretical perspective, we need to
have a different emphasis compared to these issues. However, apart from this
key aspect, the solution of the welfare policy dilemma, based on numerical
simulations, yields the benefits to the needy that are sufficiently close to be
considered a realistic match (see Table 1), as noted by Bowman in 1973, to
"what amounts to a moving poverty line at > of median income.” In support of
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this approach, it is worth noting that Rawls (1971, 2005) pronounced the Fuchs
(1965) point as an alternative to the measurement of poverty with no reference
to social position. The motive of the experiment presented here is thus to pro-
vide — while acknowledging that a few examples clearly cannot make a trend
— a theoretical confirmation for the claim recognizing the poverty line, defined
as 4 of the median income |, as a realistic political consensus.

Table 1. Numerical experiment behind the welfare policy dilemma
of income redistribution; sa—social Agencies, PA—Public Agencies

; ; free Poli )
3“7:“’".' by r:,”mf'f a}{f"‘ ‘;.”_'” of equal,  SAproposal  Propasal Incowe - p.t proposal E‘;l;g;:

ISEFGNLION AeRsIy { I‘g 'J symnemic  aceepted mmanigEng of ( I;l an  dccepred ment, the
}‘:rﬂ;’;a; a;’lou'(gr;; §- 4'\';3; ﬁ::;tli.a:fuv v P4 wenlti (0 income tr 54 breakdown

=619 h=-011 m= 207 3
- 1
subsidy_fisiction s(& = 0.83& . 1 Aia=5 L qeen P A, a=5% &
[“cl‘;me ﬂ°1‘?r’ &= 65.94 3403 38.40 4532 4281 6.64
welfare policy
povery Tte: percense ofagents 3y 910, o517, QRO 1739 157T, 0.44%
Negotiating power oy i | 0.50 ai4 017 0.24 0.22 Not
of social agencies defined
Guaranteed - z -
47 87 2549 2863 3355 317 7.07

social iminingim u(é‘) i
fg;g;‘“‘exi‘;;g:;’]“' g(&) 16.15 30.15 28.72 26.18 2715 ~19.75
A t for subsi-
et U B(E) 1ms3 298 w17 6.57 562 0.02

Account for public
spending, the size of z(é‘) 33.68 33.14 32.89 3275 32.77 -19.73
the welfare-pie

Average taxable

income--the Wig) 113.52 116,38 115.73 114.84 1314 121.59
wealth amount
Wealth-tax

N el 2 20s - 0, g —_ 0.
marginal tak rate (&) 29.67%  2847% 28.42%  28.52%  25.46% 16.220

In our scheme, citizens earning low incomes (below a certain level, in this

case the poverty line &) receive relief payments, whereas those with higher

incomes (above the aforementioned level) do not. In this regard, it should be
noted that, in 1962, Milton Friedman (2002) proposed a similar scheme of
wealth redistribution, combined with flat tax, called the negative income tax —
the NIT. According to the rules and norms of the NIT, low-income earners
receive a relief payment proportional to the difference between their earnings
and the predetermined NIT poverty line. Most importantly, the total — the sum
of the key income and the NIT relief payment — is not subject to taxation. We
argue that levying taxes in compliance with the tax rules and norms in force for
all, inclusive of low-income citizens, would have the same result. Although the
total income of low-income citizens is now taxable, they would, even so, still
be eligible for the relief in line with NIT, similar to the widely adopted low-
income — LI relief. The known drawback of such an approach, and the relief,
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in particular, stems from the issue of social abuse by those earning low income.
In order to mitigate these undesirable effects, in this work, we introduce the
so-called hazard of working incentives, referred to as the h-effect.

T T T T T o000 T T— T 0 ooor] T T T 0 0 000
0h.oo7
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= 0004
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.““Ui 1 p o gppal 1 1 o pgapl 1 el 00 00
1] (R (N1 1Oy

Figure 1. At the sample P(G 5 0+h- 1/2}1) of the income density distribution, L

g
solves the equation .[0 P(G, 0+h- a)dG =0.5 for E_,, p=382.30. Appendix

Al contains the analytical form for the sample expression in Figure 1.

We thus present a theoretical model of visionary politicians, whereby we
consider a masquerade of life or a scenario of realistic utopia. In this scenario,
two actors/politicians, akin to two political coalitions, are playing a bargaining
game, each attempting to implement his/her own wealth redistribution policy.
Left-wing politicians tend to oppose the disproportion in private consumption,
unjust wealth redistribution, profit motive, and private property as the main
sources of socioeconomic evil. Right-wing politicians, owing to a different
ideology, tend to focus on regulating business and financial risks, thus encour-
aging the government’s use of its powers in combating corruption, criminal
violence and commercial fraud. While left-wing politicians prefer immediate
and equitable sharing of the available stock of goods and services, both sides
are aware of the citizens’ sacrifices — in terms of direct contribution of a part
of their income to the funding of welfare benefits and public goods. We posit
that applying the rules and norms of wealth redistribution pertaining to the
reliance on the elevated relief would increase the quantity of the relief pay-
ments to be delivered. Consequently, citizens will have to meet a greater tax
burden. This outcome is not ideal, given that lower tax burden and greater pri-
vate consumption always lie at the heart of citizens’ economic and political
aspirations. These private objectives prompt majority of voters, who hold
power in electing political parties, to oppose increasing the tax burden. As a
result, they are instrumental in the competition between the left- and right-wing
politicians and their views on tax policies.
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Political consensus is rarely possible in reality. Consequently, we aim to
design an experiment capable of predicting an appropriate political division
between interest groups for desirable implementation of the welfare policy.
This approach does not require analysis of the voting system or a scheme by
which voters-citizens express their arguments. In adopting this approach, we
analyze political power indicators as replications ((1,1 — OL), O<a<1, in

line with Kalai’s bargaining game (1977) in which division of $1 is attempted.
In this scenario, among other assumptions, it is posited that a power O is
appropriate to adopt the ability to negotiate, or be in the position to request
financial support to a greater extent than the opposite side. Similar interpreta-
tion of players’ power dynamic may be found in the recent work of Mullat
(2014). In short, we adopted the view of Roberts who noted in 1977, “The point
is not whether choices in the public domain are made through a voting mecha-
nism but whether choice procedures mirror some voting mechanism.”

These brief remarks should be sufficient to elucidate some goals of the
state, allowing us to conclude that welfare policy in a representative democracy
always faces ideological controversies of politicians and citizens. A further aim
of this experiment is to shed light on how a political consensus is reached and
whether it reflects a criterion of tax policy that results in the least burden to the
citizens. To address this issue, as already stated, we focus our analysis on two
visionary politicians. For the purpose of the experiment, we assume that these
politicians are granted a political mandate to initiate proposals ensuring that the
relief payments are allocated to citizens who are in need. We thus assume that,
in balancing the books accounting for finance of relief payments and for vital
public goods and services, expenses are constrained. This premise ensures that
the citizens control the negotiations, forcing the politicians to act within the
imposed budget constraints in order to pledge safe funding for their proposals.
While trying to reduce the after-tax income inequality, the politicians in their
respective roles of left- and right-wing actors are committed to ensuring that the
wealth is redistributed fairly.

At this point, it is essential to state the assumptions/limitations underpinning
the analysis of a hypothetical behavior of those occupying three distinct roles in
the negotiations — those of left- and right-wing politicians and voters-citizens.
Throughout this work, we emphasize the incomparability between the aims of
the left-wing politicians struggling to ensure adequate access to basic goods and
the right-wing politicians advocating for availability of non-primary but vital
goods and services. In the analysis, we implicitly assume that politicians do not
have adequate knowledge of citizens’ needs in a more primitive environment.
Hence, they can only work with the monetary payoff specification. Given this
limitation, politicians are unaware that the provision of equivalently valued
public services is not a perfect substitute. For example, we assume that politi-
cians do not have any information on how household income is assembled and
used to buy private health insurance or services of nursing housing, etc. Thus,
we do not merit the debate on what is right or wrong in the economic or politi-
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cal environment involving left- and right-wing politicians and voters-citizens.
In short, our work does not extend to the democratic context of voters’ proto-
types/characteristics. While acknowledging the significance of prototypes, in
this work, we view voters’ behavior as a binary process, allowing support for
either left- or right wing politicians. This, however, introduces a risk q > 0 of

premature political breakdown of negotiations. In addition, we refer to the tax
revenue in accord with voters” preferences as the "wealth-pie" T+ W , which is

divided into two parts (X, y), whereby X denotes various social benefits or

relief payments, and Y pertains to public goods, so that X +y = 1. We posit
that any further enrichment of voters’ characteristics would disrupt the delicate

balance between the motives of our experiment and the theoretical framework,
which is already technically sophisticated.

Roadmap. Because of the narrative complexity, it is possible that the reader
would find proceeding with the content of the paper in chronological order
difficult. Thus, to mitigate this potential issue, Section 3 presents the most
relevant problems, in particular, the pre-equity condition of political breakdown
of the negotiations. In our view, it is prudent to master the material presented in
Section 3.1 before moving to Section 4. Similarly, Section 3.2 aims to assist
with understanding of the content of Section 5, while Section 3.4 supports Sec-
tion 6. On the other hand, those not wishing to delve deeply into the technical
aspects of this work could simply move onto Section 7. Nonetheless, Sec-
tion 3.3 provides a scheme pertaining to the pre-equity of breakdown of the
negotiations and, in our view, does not require further clarification.

2. PRELIMINARIES

Before delving deeper into our work, we specify the category of the game pay-
offs functions U(&,Xx), g(&,y) and taxes T(G,X) required for the model

validity. As noted above, Section 3 provides background information that as-
sists in understanding material given in Section 4-6. In Section 4, we disclose
fiscally safe welfare policy in amalgamation with imposed budget constraints
for financing relief payments. Referred to as volatility constraint, the amalga-
mation dynamically restricts the h-effect — an inverse working incentives
phenomenon of low-income citizens. In Section 5, citizens’ ambivalence and
multifaceted welfare policy perceptions are discussed from the perspective of
the alternating-offers game. The policy on poverty associates the left- and right-
wing politicians with payoffs functions U(E,X) and g(&,y). Under these
conditions, it is possible to obtain an analytical solution to the game with
incomes G density distribution P(G, &) . Indeed, as will be shown, the calcu-

lus of indicators ((1,1 — OL) complies with the political power design given in

Section 6. The results are discussed in Section 7, followed by concluding re-
marks, presented in Section 8.
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In the current experiment, an income G equal to the poverty line (i,
ci € [&1 R f; 2] parameterizes all arguments and functions. In this vein, we adopt
quantitative measurement, whereby we utilize a scale quantum as an average
income with the income G density P(G, &) distribution, 0 < & < 00. The
average establishes the ratio scale. Hence, we suggest that
u(g,x)= (1 -1(E, X)~ (é — (I)) + ¢ (the after-tax residue of income
o= E_,) signifies the 1*" actor’s social position at the specified scale, i.e., the
left-wing political aims. We apply the residue formula based on Malcomson’s
(1986) model, with a personal allowance parameter ¢, 0 < ¢ < &, determined
by the tax bracket [(1), OO). The 2™ actor’s aim — the right-wing political ob-
jective g(E_,, y) — is ensuring sufficient amount of the non-basic goods per
capita. Here, we refer to the citizen G = E, as marginal citizen. While, for the

minority of voters, the relief is more attractive than lower taxes, the 3 actor is
the implicit partaker embodying the majority of voters whose preference is

minimizing tax obligation ’E(G R X). This is a typical public finance dilemma
of efficient division (X, y) of the tax-revenue into shares X +y =1. In this
work, the dilemma is represented by the alternating-offers bargaining game
I'(q) with premature risk , 0 < q <<1, of political breakdown. When
q— 0, the solution converges into Nash axiomatic approach (1950). The

relationship between the one that suggests the alternating-offers bargaining and
axiomatic solution is well known from the work of Osborn and Rubinstein
(1990). As this game is thoroughly described by Osborn and Rubinstein, for
brevity, no further elaboration is offered here.

When negotiating on finance issues, under the guise of a "wealth-pie work-
shop," politicians will allegedly try to divide the wealth-pie in a rational and
efficient manner. As a result, the tax T(G, X) will increase as will the wealth-

pie, when increasing the poverty line Z‘: . Logically, a decrease in taxes would

yield the reverse effect. While taxes vary, the division will depend upon the
characteristics and expectations of the bargainers involved. Indeed, the left- and
right-wing political aims u(E_,, X) pertaining to basic goods, as well as the

objective g(&,y) related to the non-basic goods, are controversial. We illus-
trate this tax controversy by elevated single-peaked frontier of u(EJ, X), the
% -share/slice in Figure 2, which corresponds to the lower, but progressively
increasing, concave frontier of g(&, V), the ¥ -share/slice in Figure 3, as well
as for another division of the pie, into shares/slices (X =%,y= %) We
believe, that, while (X = %, y= %) highlights the left-wing political aspira-
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tions, the share/slice ( % , %) elucidates those of the right-wing political objec-

tive. This premise appears to be crucial for understanding our primary goal in
resolving the welfare policy dilemma.

2% Slice

after tax residue
of povery line

1/3 Slice

Figure 2. Left-wing politicians’ emphases.

T T

g non-hasic goods
per capita

tax burden )

L. 115 Slice a
35 Slice-

Figure 3. Right-wing politicians’ emphases.

In support of the aforementioned assumption, the political payoffs in gen-
eral, as shown in Figure 2 and Figure 3, emerge within a two-man economy
endowed by citizens’ income abilities marginalized at the level of poverty line.
According to Black (1948), single peakedness plays the key role in collective
decision making when the decision is reached by voting. The payoffs for the
two actors, shaped in this way, are non-conforming/incomparable, and are thus
impossible to match through a monotone transformation, as established by
Narens and Luce (1983). The single peakedness is nonetheless in line with

Malcomson’s tax residue U(E,X), when the terms of contract commit the

actors to shares (X, y). This, however, requires that the expenses covered by

flat taxes will balance the books, while accounting for relief payments, as
shown in Figure 2. Clearly, increasing the poverty line requires an excessive



Political Power Design 71

increase in taxes, which in turn provides a greater amount of non-basic goods
g(i, y) , as shown in Figure 3. An opposite scenario of increasing the avail-

able amount of non-basic goods g(&,y) equally requires an excessive tax
increase, which may lead to the possibility of increasing poverty line.

Following the traditional procedure for division of the wealth-pie in the
alternating-offers game, when the pie is desirable at all the times, the politicians
(bargainers) — changing roles — commit to shares (X, y) , X+y= 1.
According to the shares (X, y) , the valid rules and norms of wealth redistribu-
tion, which guarantee a desirable level of relief payments, require establishing a
poverty line Ej, parameter. However, an efficient division of the wealth-pie —
as a result of single-peaked M-curves depicted in Figure 2 — no longer repre-

sents any traditional bargaining procedure. This is the case as, instead of divi-
sion, the procedure can be resettled. Indeed, we can proceed at distinct levels of
one parameter — within the poverty line interval [?;1 R ‘t:z] — reflecting the
scope of negotiations. In fact, Cardona and Ponsatti (2007), also noted that "the
bargaining problem is not radically different from negotiations to split a pri-
vate surplus," when all the parties in the bargaining process have the same,
conforming expectations. This argument applies even when the expectations of
the first player are principally non-conforming, i.e., single-peaked, rather than
excessively concave in regard to the second player. In our experiment, the
scope of negotiations on the "contract curve" of non-conforming expectations
allows for omitting the "Pareto efficiency" and replacing the axiom by "well
defined bargaining problem,”" as posited by Roth (1977). The well-defined
problem (X, V) of the wealth-pie division can now be solved (resettled) inside

the poverty line interval [E.n , E_,z ]

Settings. In accordance with Friedman’s NIT system, in this work, we as-
sume that, for the unfair subsistence of the less fortunate citizen G < &, the
relief amount T - (EJ - G), 0 <r <1, serves as a monetary compensation

designated for purchasing an eligible "poverty basket" of food, clothing, shel-
ter, fuel, etc. According to Rawls, "primary goods are things which it is sup-
posed a rational man wants whatever he wants." In defining the parameter &

in this manner, it becomes contingent on financing the relief. This can be
achieved by assuming that elevating the poverty line g requires an increased

marginal tax rate T (G , X). In increasing the wealth-pie through tax channels,
we assume an acceleration ’Cg (0,X)>0 of the tax rate T(C,X);
‘C;(G ,X) >0 inclusive all of those citizens who indicate the marginal

income & denotedby G =& .
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As noted previously, the marginal citizen G = & must bear the cost of the
left-wing political aims using tax residue u(&, X), as well as the right-wing
political objective g(&,X), referred to as "public or non-basic goods." With
the proviso that politicians commit to the shares (X,y), we conclude that
u(&,x) is a single N-peaked curve, due to the tax rate T(E,X) increase
upon & . While objective g(&,X) of right-wing politicians decreases with an
increase in X , the reverse is true with elevating & due to T(,X) accelera-
tion. Here, payoffs <u, g> are considered analytic functions u(&,X),
g(é, X) . Given the interval [(’;1 < 3; < az ], referred to as the scope of nego-
tiations, U(&, X) reflects single N-peakedness — ug <0 upon € increase,
u'é(E_M,x) >0, u’é(E_,z,x) < 0. Following an increase in X, the payoffs
u(&,X) become convex, u;: >0, u; >0, whereas an increase in &

would produce concave payoffs g(&, X), with gé >0, gg > 0. It can be
shown that, with increasing X, payoffs g always decrease; in other words, in

. . " . 4 .
both circumstances, either g > 0 is convex, or g, < 0 is concave.

3. RELEVANT TRENDS AND ISSUES

In the extant literature (Espring-Andersen, 1990; Iversen, 2005; Swank, 2002)
the welfare, economic, and political issues are usually addressed in reference to
specific questions. In our view, a much deeper analysis is achieved when
addressing them more generally, adopting well-established knowledge discov-
ery methodologies. In particular, our wealth-pie workshop concept, jointly
adopting four issues — (a) public finance, (b) alternating-offers game, (c) nego-
tiations’ collapse analysis, and (d) political power design — leads to a more
informative point of departure.

To explain the root cause of the results in order to bring the welfare, eco-
nomic, and political content to the surface in a rigorous analytical form, and to
find bilaterally acceptable solutions to the game, we will visit all of the class-
rooms in our workshop. Our goal is to lay the foundation for a more construc-
tive welfare policy comprehending the meaning of following four narratives:

During the delivery to its final destinations, provided that the books accounting
Fiscal policy for the relief payments finance have been balanced a priori, the wealth-pie must
remain balanced throughout and in spite of volatility in the economy;
The left- and right-wing political bargaining on how to share the wealth-pie
complies with the rules and norms of the alternating-offers bargaining game;
Political breakdown, or threat point, directly affects the bargaining solution. Pre-
equity guarantees equal conditions for players before the bargaining game com-

Negotiations

Pre-equity of

breakdown

mences;

Bringing a motion to a vote is necessary to address the majority opposition to
Political high taxes and excessive public spending. Whether it is viewed as positive or

power design  negative, or whether it ought to be acknowledged or not, rejected or accepted, this
motion must be politically designed in advance.
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In our wealth-pie workshop, these four narratives can be understood as
obligations/constraints to be met by welfare policy rules and norms, akin to
"Rational man” deliberation of Rubinstein (1998). This interpretation allows us
to provide a scenario under which the narratives are embedded into the welfare
policy of the state. In addition, evaluating the welfare policy from this perspec-
tive reveals that the analysis can be subject to and performed by computer
simulations, as shown in Appendix A2. Our initiative could also serve to unify
the theoretical structure of economic analysis of public spending. It can be used
to evaluate the political power design of left- and right-wing politicians, or to
launch systematic inquiry into impacts of governmental decisions and actions
on wealth redistribution.

As the state has the duty to help the less fortunate, our experiment
approaches wealth redistribution in a two-fold manner. First, it addresses the
provision of basic necessities or goods, such as shelter and heating, clean and
fresh water, nutrition, etc., before focusing on non-basic goods, including na-
tional defense, public safety and order, roads and highway systems, and so on.
Welfare policy issues, according to Boix (1998), ... There is wide agreement in
the literature that governments controlled by conservative or social democrats
parties have distinct partisan economic objectives that they would prefer to
pursue in the absence of any external constrains.” Meeting this challenge,

based on income G density distribution P(G,&), we identify an effective
approach to the division (Xo , yo ) into shares X° + yo =1 pertaining to basic

X and non-basic goods yo. Fundamentally, the efficient division (X° R y°>

of the wealth-pie aims at just and fair delivery of all aforementioned goods,
traditionally perceived as public goods. In our experiment, we refer to public
goods as non-basic but vital goods, whereas basic goods are deemed fundamen-
tal. Incidentally, during the delivery of basic and non-basic goods to their end
destinations, we treat both as public goods.

We assume that the left-wing politicians have the necessary political influ-
ence — when an offer is made, irrespective of its legitimacy — to control the
redistribution of basic goods independently. Given the single-peaked aspira-
tions of the left-wing, in contrast to the objective of their right-wing counter-
parts, the influence the left-wing politicians enjoy, is supposed to be adequate
enough to reach the peak of these expectations. In particular, we believe that,
beyond some peak position, inefficient usage of basic goods would lead to an
excessive decline in the quality of welfare services, as well as cause deteriora-
tion in access to public goods for all citizens. In making these suppositions, we
agree with Rawls’s statement, about the precepts of perfect justice: "The sum of
transfers and benefits [...] from essential public goods should be arranged so
as to enhance the emphases of the least favored consistent with the required
saving and the maintenance of equal liberties."

An efficient usage of public resources implies that a consensus between
left- and right-wing politicians might be reached. Despite some views to the
contrary (Rothstein, 1987), we posit that the bargaining aimed at finding a just
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and fair division of basic vs. non-basic goods is an acceptable path to the bar-
gaining dynamics. Based on this premise, we can identify relevant connections
in extant works on economic and political behavior that analyze the sociologi-
cal and political aims of ensuring adequate welfare by using public finance.
This is likely being the best starting point for visiting our wealth-pie workshop.

3.1. Fiscally safe welfare policies, fo be continued in Section 4

Public finance focuses on the revenue side of tax policy. In particular, it per-
tains to the budget formation, as noted by Formby and Medema (1995), aiming
to provide a guaranteed level of welfare to citizens endowed by poor productiv-
ity. While the welfare policy is a separate issue, it should be considered on the
grounds of legal and moral rights of citizens. Empirical evidence confirming
that such policy is government’s legal obligation can be found in pertinent
literature. For example, as noted by Saunders (1997), “...poverty line. The line
was initially set (in 1966) equal to the level of the minimum wage plus family
benefits for one-earner couple with two children.” Similarly, a hypothesis con-
sistent with moral obligations can be found in the literature of economic poli-
tics (Eichenberger, 1996; Feld, 2002).

In 1959, Musgrave examined two basic approaches to taxation — the
"benefit approach" and "ability-to-pay," which put taxation into efficiency and
equity context, respectively. In this work, we utilized the benefit approach in
order to augment the existing standard of welfare policy, whereby we allocate a
guaranteed amount of income for minimum taxes. We posit that a flat tax sys-
tem — based on injecting optimal equity according to the ability-to-pay princi-
ple of "proportional sacrifice" — ensures that taxes remain fairly levied.

Taxation is a principal funding source of social costs and benefits. Thus,
the first postulate in our welfare policy workshop (see above) discloses an
obvious paradigm in social policy. According to the ability-to-pay principle
commonly adopted in public finance, in order to stabilize the distortion of tax
polices, the known terms of warranty must rely on exogenous taxes enforced on
the productivity of citizens. The concept, proposed in 1996 by Berliant and
Page Jr., is a variant of the classic public finance and similar approaches, appli-
cable when an agent characterized by a specific level of productivity does not
shift his/her labor supply after all adjustments to the tax formula have been
implemented. In other words, under this paradigm, optimal taxation enforces
optimal labor supply.

Yet another "treatment of policies," closely related to societal instability,
entails equity of pre- and post-tax positions of citizens. Such a view demarcates
between citizens and has attracted the attention of economists and tax policy
makers. In the view of Kesselman and Garfinkel (1978), credit tax-scheme
analysis opposes the income-tested program in the rich-and-the-poor, also
known as two-man economy. Poverty measurements have also been addressed
in the works of Sen (1976), Atkinson, (1987), Ebert (2009), and Hunter (2002)
et al. According to Tarp (2002) et al: "The poverty line acts as a threshold with
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households falling below the poverty line considered poor and those above
poverty line considered nonpoor." Garcia-Pefialosa (2008) investigated wealth
redistribution as a form of social insurance in relation to economic growth. On
the other hand, Stewart et al (2009) attempted to reduce horizontal inequalities,
proposing “a reallocation in the production, operation and consumption of
publicly funded services.”

In the attempt to assess and control the circulation of wealth through tax
channels, we argue that, unless fiscal stabilization is not a required condition
when justifying public spending, it will be difficult to explain how the citizens
eligible for relief gain access to the benefits and relief payments. Thus, while
we continue to rely on fiscal stabilization, in order to highlight a particular type
of the dynamics stability, we refer to welfare policy as idempotent. For clarity,
a choice operation (or decision) applied multiple times is deemed idempotent if,
beyond the initial application, it yields the same result (Malishevski, 1998).
Thus, based on this dynamic definition, idempotent scheme allows the politi-
cians to honor the pledges made during the election campaign as, once the
political decision is taken, it eliminates the need for further stabilization. While
visiting the workshop, the circulation of wealth is supposed to be dynamically
stable, i.e., it is idempotent.

3.2. Bargaining the Welfare State rules and norms,
to be continued in Section 5

Bargaining is the key element of economics and is at the core of politics. On
the other hand, as pointed out by North (2005), “The interface between
economics and politics is still in a primitive state in our theories but its
development is essential if we are to implement policies consistent with
intentions.” More recently, Feldstein (2008) noted, “Unfortunately, there is no
reason to be pleased about the analysis in policy discussions of the efficiency
effects...of the welfare consequences of proposed tax changes.” Similarly, in a
review on “Handbook of New Institutional Economics,” Richter (2006)
stressed, “...that the sociological analysis...and large institutional structures in
economic life is still at an early stage...game theory, and computer simulation
could help to further develop the new institutional approach...game theory
might be a defendable heuristic device of NIE.” Indeed, the left- and right-wing
politicians, like actors in the game, strive to implement their vision of the state
welfare institutions. This is succinctly explained by Ostrom (2005), who noted,
“These flimsy structures, however, are used by individuals to allocate resource
flows to participants according to rules that have been devised in tough
constitutional and collective-choice bargaining situations over time.”

In order to achieve the aforementioned vision of collective choice, it is ap-
propriate to consider a scenario in which the actors/voters play the “bargaining
drama” of economic and political issues. Bargaining has been a theme of a
wide range of publications, including the work of Alvin E. Roth (1985).
Despite the simplification, the binary behavior of voters remains at the root of
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the democratic transformation of public institutions. In this regard, binary posi-
tion fits particularly well into the bargaining game with exogenous risk (,

0< q<< 1, of breakdown (Osborn and Rubinstein). Actually, bargaining can

be risky for all interested actors because they may lose voters to the competi-
tion if their terms are not met. Thus, it is essential to first clarify political power
dynamics of both the left-wing and the right-wing politicians. Henceforth, they
are respectively referred to as LWP, the 1% actor, benefiting from a power O,
0 <o <1, and RWP, the 2" actor, benefiting from a power 1 — oL .

Numerous factors — such as economic growth, decline or stagnation,
demographic shift or pit, political change or change in scarcity of resources,
skills and education of the labor force, etc., — might create fiscal imbalance in
a desirable welfare policy due to the transfers of benefits and relief payments.
As a result, the size of the wealth-pie might be too small (i.e., not worth the
effort required for its redistribution), or too large (introducing mutual traps) to
achieve a stabilized public spending mechanism. In either case, the actors may
decide not to share the pie at all. To address this controversy, as previously
underlined, we assume that politicians participate in relevant public institutions.
If the institutions cannot or do not want to follow RWP’s policy of wealth
redistribution, RWP — in order to promote their own understanding — can be
sufficiently legitimate to deliver the wealth "properly." In doing so, RWP can
enforce vital decisions by several means, including resource mobilization,
retaliation for breaches and criminal fraud, recruiting political volunteers and
managing public service commissions, soliciting private contributions, etc. In
other words, as Kalai pointed out, RWP would rely on an "enthusiastic sup-
porter." On the other hand, as LWP face decay in political legitimacy for per-
fect justice, they cannot fully control RWP’s actions and intentions when their
political interests in the final agreement are incomparable. In these circum-
stances, RWP are aware that their abilities and access to information might
necessitate agreeing with, or at least not resisting, LWP’s privileges to make
arrangements upon the size of the pie. Hence, from the RWP’s critical point of
view, whether acting politically in common interest or not, it might be prudent
to acknowledge LWP’s welfare activities. This elucidates the asymmetric
dynamics of political power division between the LWP and RWP.

Returning to the main points of asymmetric bargaining, we will illustrate an

efficient solution (X° Y ) by division of $1 aimed at maximizing the product

of actors’ payoffs above the disagreement point d= <d1 N d2 > :

(XO >yo): argmax ... f(x, y, Q) =

=(u(x)-d,)" -(g(y)-d,)"™
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Although game theory purists might find the solution clear, the questions
asked by many often include: What are X, y, O, u(x), and g(y) ? What

does the point <d1 ,d2> mean, and how is the arg max formula used? The

simple answer, as initially provided by Kalai as an asymmetric variant of Nash
problem, is as follows:

. X is the 1% actor’s share of $1, with O as the 1* actor’s asym-
metric power indicator, 0 <X <1, 0<a £1;

e U(X) denotes the 1™ actor’s payoffs of the 1% actor’s $1
share X ;

. y is the 2™ actor’s share of $1, where 1 — Ot is the 2™ actor’s

asymmetric power indicator, 0 <y <1;

e g(y) denotes the 2" actor’s payoffs of the 2" actor’s $1
share y .

Based on the widely accepted nomenclature, we refer to
S =<u(x),g(y)> as to the utility or payoffs pair. Thus, the disagree-

ment/threat point d = <d1 ,d2> represents the payoffs the two actors obtain if
they cannot agree on how to share the wealth-pie. In the same vein,
d= <d1,d2> = <0, 0> represents the disagreement or breakdown point,
whereby the players collect nothing.

In the subsequent sections, we will provide an analytical solution exploiting
payoffs in the form <u(§),g(§)> and taxes in the form ’E(EJ) within the
scope of negotiations [‘21 R &2] comprising the endpoints of the interval
[é ,fz ] According to the analytical solution, implicitly hiding the variables
X,y , it follows that any negotiation of shares (X, y) can be perceived as two
sides of the same bargain’s portfolio, as the shares (X, y) are accompanied by
poverty lines ?; S [&1 R &2 ] While hiding the variables X,y , X +y = 1, we
may respond to the question of whether solution &’ € [E.w , E.>2 ] is efficient in a
traditional sense. Indeed, akin to the above, political bargaining can now be

expressed by poverty line &’ maximizing the product of political payoffs

above the threat point d = (d, = u(&,),d, = g(&,)):

£ =argmax,f, . ] f(€0)=(u(®)-d,)* -(g€)-d,)"".
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On the other hand, unlike the traditional threat point d = (d1,d2 ), the
public/vital goods amount d2 in the game — the d2 component of the point

d — might be negative. This will apply in our experiment of a breakdown of
negotiations, whereby funds need to be borrowed or acquired through other
means in order to balance the books and account for the welfare expenses — a
situation of "genuine negative taxes." It is important to note that, while this may
seem counterintuitive to some readers, in the theory of public finance, the use
of genuine negative taxes is not prohibited.

Finally, we conclude that, all these remarks notwithstanding, it is irrelevant
whether the players are bargaining on shares (X, y) or trying to agree on the

poverty line level. This assertion highlights the main advantage of hiding the
variables X,V . In particular, it brings about a number of different patterns of

outcome interpretations in the game, such as linking an outcome to the lowest
tax rate, which is the most desirable sacrifice of voters’ majority. In considera-
tion of alternative approaches — which describe outcomes of collective bar-
gaining in the form of voting, or partaking in any voting scheme in the form of

bargaining — the scope of negotiations [Z‘M , 532 ] brings the voting and bargain-

ing schemes into the same context, as both can be enriched by adopting this
approach. Our insight is forward-looking in the sense that it aims to identify an
alternative-offers game solution, whereby both actors accept at once the pro-
posals (moves) made by the other side. Our initiative could also serve to unify
the theoretical structure of economic analysis of productivity problem. Indeed,
when referring to Leibenstein’s work (1979), Altman (2006) noticed:

Leibenstein (1979, p.493) argued that there are two components
to the productivity problem: one relates to the determination of the
size of the pie, while the second relates to the division of the pie.
Looked upon independently, all agents can jointly gain by increasing
the pie size..."the situation need not be a zero-sum game. Tactics
that determine pie division can affect the size of the pie. It is this lat-
ter possibility that is especially significant.

3.3. Pre-equity of political breakdown

Beyond the asymmetric dynamics, the game inherits a premature disagreement
or breakdown point, similar to that discussed by Osborn and Rubinstein:

We can interpret a breakdown as the result of the intervention of
a third party, which exploits the mutual gains. A breakdown can be
interpreted also as the event that a threat made by one of the parties
to halt the negotiations is actually realized. This possibility is espe-
cially relevant when a bargainer is a team (e.g., government), the
leaders of which may find them unavoidably trapped by their own
threats.
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In our game, the asymmetric solution incorporates the left- and right-wing
political power indicators (Ot,l - OL) into a breakdown policy. In order to be

addressed properly, the indicators cannot be given exogenously. To overcome
this obstacle, we introduce a policy of endogenously extracted breakdown

d= <d1 5 d2> into the game, based on a condition referred to as the pre-equity
of political breakdown.

Traditionally, in the alternating-offers game, the breakdown corresponds to
two standard pairs of payoffs {<1,0>,<0,1>}, or in the words of Osborn and

Rubinstein, "fo the worst outcome.” In the left- and right- political bargaining,
due to the implicit pressure from the voters, as both politicians aim to find — at
least from their perspective — a just and fair solution, there will always be a
temptation for binary voters to defect to the other side. This puts the negotia-
tions at risk 0 < q<< 1 of a premature collapse. Even under the worst cir-

cumstances, in the event of collapse, the quality and the size of the wealth-pie
should be equal for both politicians. This premise holds in these unfavorable
circumstances, as the entire pie will be decided upon by one of the politicians.
Thus, when the premature collapse occurs, it is important to arrange the terms
of contract in such a way that neither politician can exploit or misuse these
adverse circumstances to his/her own advantage. To meet this condition, when
normalizing the standard breakdown under the description valid for the alter-

nating-offers game F(q), we are working toward an endogenous form for

equity in accordance with political non-conforming expectations.

As stated, the standard case of breakdown in the alternating-offers game
corresponds to two pairs {<1,0>, <0,1>} of payoffs. In this form, the breakdown

is generally found using ex-ante linear transformation, namely the exogenous
normalization of utilities. When the collapse is imminent, the political break-
down exposes equity condition pertaining to the actual event of breakdown.
Unlike the standard case, once the most unfavorable result occurs, the resulting
collapse must include additional parameters — the tax T and the wealth W .
In order to equalize — endogenously normalize — the breakdown, the politi-
cians involved in negotiations can make a priori arrangements, or sign binding
agreements upon these two parameters, i.e., T and W . Without availability or
warranty of such a pre-equity, an endogenous normalization is unrealistic. In
the view of the voters’ electoral maneuvering (discussed in the next subsec-
tion), even if the pre-equity normalization is not always achievable, it is more
constructive to determine the breakdown according to some rational context.

Before proceeding further with a detailed assessment of the aforementioned
definition, we recall the concept of wealth amount W , redistributed by the

state as the average taxable income per capita, scholarly defined as "prosperity
or a commodity." Next, according to the conditions characterizing the collapsed
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environment, at the start of the negotiations, the draft of a contract includes
both taxes T and — in line with our nomenclature — the wealth amount W .

The product T(E)- W(E) identifies the size Z of the wealth-pie within an
interval [é: s 2] within the scope of negotiations, thus establishing the bound-
ary for the two politicians. The lower limit Eﬂ denotes the initial proposal,

which is the most attractive for RWP, while being the most unattractive for
LWP. In the same but inverse order U, :u(ﬁz) can be paired with

g, = g(&,) . Having set these limits, we can proceed with examining how the

breakdown {<u1 , g1>,<u2 25 >} might be conditionally, albeit endogenously,

encoded into the game.

Indeed, we now contribute to implementing our wealth definition of how
the breakdown can be established endogenously. To do so, we consider a situa-
tion driving the welfare policy in the context of cost-benefit equity. When the
collapse of negotiations is imminent, the differences in the amounts of wealth

and taxes for funding low-cost welfare policy a1 against an expensive policy

EJZ, E_M < éz — i.e., funding payoffs <u1,g1> for En against <u2,g2> for
,, u, <u,, g, >g, — can amplify misunderstandings and contribute to
traps. At the endpoints of the scope [51, fz], the wealth-pie sizes Z((’;) and
Z(ci,z) at poverty lines EA and EJ , can require the delivery of wealth amounts
W(E_,1) and W(gz), albeit at different prices, represented as taxes ’C(Fm)
and T (Z‘Jz) , Buchanan (1967). Hence, prior to the start of the game, and in line
with the cost-benefit equity, in the most adverse circumstances, the payoffs
S, = <u1,g1> and S, = <u2,g2> should preserve equal prices T for the

delivery of equal amounts W of wealth. Such a market-driven interpretation
of commodities delivery to the end destinations relies heavily on the size of the
wealth-pie, which is equal to T+ W . It should be noted that this interpretation
is only relevant to the case of flat (proportional) taxes.

To explicate the interpretation of reasoning in previous lines, it is worth ex-
amining the "well defined bargaining problem," depicted as the contract curve
in Figure 4. Based on the discussion presented thus far, our goal is to set an

interval [&,1’&2] solving two non-linear equations, T(&,)=1(&,) and
W(EM) = W(éz) , by attempting to find a cross-point (‘C* . W*) where the
curve crosses its own contour, as YX-axis coordinates, on the plane with

(’C s W) , which is equivalent to the roots &T and &; . Although the calculus of
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the point (’E ' , W*) does not extend beyond high school mathematics, it does

not confirm the possibility of normalization in general. This, however, does not
invalidate our discussion, as we do not claim that the equity condition can be
achieved in all circumstances. It should still be pointed out that, in a number of
examples where the validity of the condition was detected, we found a break-
down endogenously encoded into the game, indicating normalization in the
form of

{77 (w5} = e @) uE).e@))

The Swing of the Contract Curve within [&,1 , &, ]
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Figure 4. The graph depicts two different motions for
a vote. For the higher tax T =29.1%, marked by the
horizontal line, and the lowest tax T = 26.52% , marked
by the vertical dash. Indicated by —>, at cross-points of
the contract curve with the horizontal line, we observe
controversial expectations of voters. The shares of lower
basic but higher public goods are shown on the left, while
this payoff reverses towards the right side of the graph, as
the shares of basic goods increase while those of public
goods decrease. Thus, the higher tax T = 29.1% cannot
lead to a political consent, in line with Observation 5.

In line with the above, as the aim is to bring the politicians, if possible, into
just and equal positions prior to negotiations, equalizing taxes T and wealth

amounts W in the collapsed environments &,1 and (:2 might be a rational
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starting point. Under this premise, endogenously encoded into the game, we
label the equity condition, as a pre-equity of political breakdown.:

[’C(&”) = ’C(&z ), W(é) = W(az)] If valid, this condition equalizes fis-

cally realistic and just demands for public spending prior to negotiations — in
particular, the size of the wealth-pie Z(Eﬂ) = Z(éz) .

3.4. Voting and political power design, to be continued in Section 6

Only the voting results can reveal the true incentives of people that will give
the democracy its final judgment. The voting process is the only avenue for the
voters to assume the roles of current or upcoming politicians to whom the op-
portunity will be granted in line with population’s aspirations to redesign the
rules and norms of wealth redistribution. Voters’ inequalities, life plans, back-
ground, social class and experience, native endowments, political capital, etc.,
determine the bulletin collected at the voting table. Consequently, incongruence
in voters’ views or interpretations of reality affects the individual choices and
thus the voting results, thereby influencing political pre-election campaign.
Voting results are not fully predictable due to the deviations in voters’ views
and opinions on how the wealth redistribution ought to be achieved. The prob-
lem stems from the fact that welfare policy proposals that benefit minority of
citizens sometimes require higher taxes. On the other hand, majority of voters
would be primarily guided by selfish attitudes toward lower taxes, which would
implicitly affect the political bargaining positions. Such an attitude likely de-
serves a critical examination. Given these arguments, our question is — Why
should the left- and right-wing politicians care about lower taxes?

It is timely to recall political outmaneuvering with an implicit risk (,
0 <q<<1, upon negotiations suffering a premature collapse. Indeed, Fig-
ure 5 depicts the contract curve of efficient public policies/proposals & upon
poverty lines in the bargaining game 1'(q). Politically rational and economi-
cally effective proposals E_,, forming the curve, have been projected onto the
two-dimensional space of the tax rate T(§) and taxable income — the wealth
amount W (&) . Although the payoffs <u(E_,), g(§)> are embedded in each
point, they are not visible on the graph. These invisible/hidden payoffs in the
upper part of the graph symbolize wealth-pie division (X, y) into lower basic
X (&), yet higher of public goods shares (&), as left-wing politicians aim for
u(§), whereas those in the right-wing political party aspire towards g(&)

accordingly. Similarly, the payoffs in the lower part symbolize a reverse situa-
tion — the higher basic, vs. lower public goods, as shown in Figure 4. Thus,

once all views are represented, the political payoffs <u(§), g(§)> for pledged
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tax hikes T(E) are more favorable for some coalitions of voters compared to

others. As voters’ preferences for the balance between basic and public goods
vary, the approach to determining efficient poverty line resulting from eventual
agreement between politicians is two-fold. Indeed, unless the tax hikes are
excessively high, the upper coalitions’ representatives will always try to out-
maneuver the lower coalitions’ representatives. The politicians are aware of
this dynamic when taxes are high. As they feel trapped in negotiations, binary
voters become more likely to defect to the other side, putting the negotiations at
risk q > 0 ofa premature collapse. In contrast, when taxes are sufficiently

low, the range of eventual voters’ electoral maneuvering will substantially
reduce or even vanish. The lowest tax is likely the one that yields desirable
outcomes for the majority of citizens.

In line of reasoning that concerns the majority of citizens, it is appropriate
to address of the design of the political power indicators (OL, 1- OL). Consid-
ering the bargaining outmaneuvering of left- and right-wing politicians accord-
ing to the alternate-offers game I'(q), we state that the politicians on the op-

posite sides of the bargaining table might disagree with respect to the terms of
outcomes. Consequently, they would delay the decision while consolidating a
draft of a consensus document. This document might not necessarily yield the
best outcome for the citizens, who represent the majority, and are of view that
the policy that minimizes taxes is always the most desirable choice. Despite
knowing that the majority will never endorse higher taxes, the minimum tax
rate might not necessarily be a desirable outcome from the political perspective.
Thus, politicians may choose to disregard the majority interests because politi-
cal power of LWP or RWP, as rational actors/politicians, might be strong
enough to negotiate selfish decisions that are beneficial only for them. In order
to entice politicians not to act selfishly, as this would likely result in ultimate
collapse in the negotiation process, their political power indicators (OL, 1- OL)

ought to represent a natural power consensus motivating them to choose a
desirable outcome for themselves and for the majority of citizens — a platform
that should ideally be designed in advance. This completed our preliminary
investigation of the problem.

4. ANALYSIS OF FISCALLY SAFE WELFARE POLICIES,
continued from Section 3.1

Delivery of basic goods, which counteracts negative contingency, if it occurs, is
the main political responsibility of the left-wing actors. Herewith, the left-wing
political intervention is of the greatest political importance. It is universal in the
sense that it pertains to all citizens, irrespective of individual situation before or
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after the contingency. Under this premise, basic goods that are available to
citizens are of sufficiently high quality and poverty is not allowed, as stressed
by Greve (2008). This course provides a relatively high level of welfare spend-
ing and taxes, creating misbalance in the books accounting for public finances,
thereby introducing volatility conditions into the wealth-pie delivery. Hence,
secured largely independently of market forces, the high level of basic goods
might have a conflict-driven effect on the welfare policy, which should not be
borne solely by citizens as, as already noted, the state has a duty to help the
disadvantaged.

Assuming that the conflict-driven welfare policy guides our political actors
in trying to reach an agreement, the left-wing politicians should aim to secure
an efficient size of the wealth-pie. Thus, LWP prescribe the size of the pie and
propose the division method, which the right-wing politicians accept or reject.
If rejected, the RWP would suggest their preferred division, while only having
the authority to recommend a size that the LWP might not be obligated to ac-
cept. We also assumed that, upon delivery to its end destinations, the wealth-pie
remains fiscally safe, i.e., it does not change its size. Under the rules of the
alternating-offers procedure (see later), the game will continue until a consen-
sus is reached. This process presupposes that left-wing politicians are commit-
ted to the share of the pie, while not being committed to the size.

Let us now envisage a contrasting scenario, whereby the public spending
increases. Hence, both actors know that, upon delivery, the size of the wealth-
pie might change. This, in turn, leads to a misbalance between the relief pay-
ments, which can put the pie size in doubt or make it even more difficult to
ascertain. As a result, the difficulty related to political pledges might force both
sides to retreat. In such volatile conditions, the wealth-pie is no longer fiscally
safe and might affect the expectations of both politicians. Consequently, a fis-
cally safe plan in spite volatile conditions for the delivery and division of the
wealth-pie is needed. Otherwise, unless welfare policy fails to enforce fiscal
safety, the rules and norms of the relief payments are not living up to their
claims. In other words, having a criterion for determining whether a welfare
policy is fiscally safe is necessary.

It is helpful to focus first on welfare policy without any warranty of fiscal
safety. It could, for example, be determined by the poverty line §, identifying
the recipients of wealth redistribution. When ﬁ is low, the variable O,
0<o< €, allocates the income of the needy or the benefit claimants. In this

scenario, the benefit claimant G < é claims and receives a relief payment
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proportional to §—0 , i.e., T+ (ED -0 ), as previously discussed. In this sce-

nario, all other citizens — both the wealthy and those with marginal income,
denoted as G > § and G = &, respectively — receive no relief payment.

Next, we study a specific scheme highlighting the readiness of the society to
fund welfare and public spending. For this analysis, we assume that the average
cost B of the relief payments and the average taxable income W both depend
on the poverty line parameter &, B =B(§), W = W(&) — this is realis-
tic, as shown in Appendix Al. As previously scholarly defined, W(&) can

refer to the wealth amount. Based on our perception of income G density
P(o,&) distribution samples, the product T- W(&) estimates the average

tax revenue. Let the average cost of public goods be g(&), whereas the size

Z(&€) of the wealth-pie equals T- W(E), z(§) =1 W(E). We assume

that welfare and public spending reached the intended recipients, whereby the
total spending equals T+ W(&) = B(&) + g(&) . This suggests that the basic

and non-basic goods have been delivered to their final destinations. In other

words, the wealth collected through tax channels is spent.

Now, let us assume that politicians in the game preferred to commit to the
shares  fixing (X, y), and might agree to hold the balance
B(&) =X-T: W(EJ) of the books accounting for financing the relief pay-

ments B. That is, the left-wing politicians must be ready to finance the relief,
i.e., to deliver B(E) by dividing the wealth-pie T+ W() . In this scenario,

the politicians pledge to retain the balance B(§) = X - T- W() of the relief
payments between credits B(E) and debts X - T+ W(&) as a portion X of
the wealth-pie T+ W(E) . The balance also specifies the welfare policy & —
an implementation of the poverty line a, welfare reform, pact, program, etc.

While the aforementioned balance is initially valid, it might not be in the future,
putting the adjustment in & on the agenda either once or repeatedly. Thus, the

policy 3; might represent a problem of fiscal imbalance. Almost all citizens,

even if for different reasons, will prefer the opposite in the long run — a fis-
cally safe policy E.> For this reason, we now shift the focus on examining a

constraint that corresponds to fiscal safety of welfare policy & , identifying —

what we called above as idempotent — the safe delivery of the wealth-pie to its

end destinations.
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4.1. Idempotent rules and norms of wealth redistribution

The delivery of basic and public (non-basic) goods does not necessarily
safeguard the funding of the expenses. As the expenses neither match nor pre-
vent taxation hikes, the size of the wealth-pie could vary too rapidly. This
leads, as previously discussed, to numerous adjustments of welfare policy rules
and norms. To mitigate this issue, we have to examine at the sequence
. EJ', Ej',. of multiple adjustments of the poverty line é This highlights the
fact that, on delivery, no adjustments of the wealth-pie are desirable. Conse-
quently, it is better to keep the size of the pie unchanged, i.e., fiscally safe. In
other words, when replacing the old policy &' with i", the two must coincide.
Similar schemes, known as idempotent, stem from bounded rationality mecha-
nisms (Rubinstein, 1998; Malishevski, 1998). This premise suggests that, even
if welfare policy rules and norms are subject to multiple adjustments, these
adjustments should not change the machinery of relief payments. In particular,
when implemented twice, the rules must produce the same outcome. To guaran-
tee the fiscal safety of the poverty line, such an understanding requires that the

poverty lines must coincide amid a sequence of pairs (&' R f;") at some match-
ing policy (ct,'= &").

The need to balance the books accounting for the delivery of relief pay-
ments B(E) =x-1-W(E), in spite the wealth-pie volatility, can also be

seen as immunity for financing the welfare policy. In particular, the immunity
restricts, or at least realistically limits the h-effect of wealth redistribution.

Given the immune, i.e., fiscally idempotent, composition [B(%),W((:)], the
idempotent scheme is equivalent to implementing the policy 2: only once. For
this reason, we assume that the rules and norms of the relief payments have

been socially planned and redesigned accordingly.

In this idempotent mode that outlines the fiscal safety of public spending,
the rules and norms must reflect idempotent policy & that brings the spending
policy into focus. We conclude that the expenses X - T+ W(a) designated for
welfare spending must be in balance not only for funding relief payments
B(&) , when the particular policy & takes effect, but the policy & must also
enforce the fiscal safety in the full spectrum of current and future events.

Clearly, the balance B(§) =X -1 W(&) is a static relationship leading

: __B© .
to functional dependency T = —————— that links the arguments c‘.’; and X.
x-W(E)

Hereby, the tax rate T becomes a function of & and X, expressed as

T =1(&,X). According to rules and norms in force of relief payments, the
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post-tax residue T0(E,T) = (1 - ‘E)- (a - (I))+ d of the marginal citizens’
G =& comprises fiscal limitations of wealth redistribution, while ¢ deter-
mines the personal allowance parameter, as shown above. The dependency
T= ’C(E_,,X) transforms Tt(é::,, ’C) into a fiscally realistic social position
T(E, T(E,X)) . Irrespective of the current expenditure on basic goods, the real
cost of living does not necessarily match 70(&, T(E,X)). Hence, ensuring

realistic and fiscally idempotent rules and norms, and/or, in particular, attempt-
ing to avoid the h-effect of this mismatch or adopt rules to keep the effect toler-
able at the least, an equation for a fiscally idempotent policy EJ should be

solved.

Observation 1. Constraint on lefi-wing political aims 0 = T(§, T(§, X))
is necessary for upholding idempotent fiscal rules and norms of imposed budget
constraint B(E_,) =X-T- W(E_,)

According to this observation, whatever tax increase is implemented, the
poverty line residue U of the marginal citizens’ © = E_, is unfeasibly high and
cannot be attained when the condition has been violated.

Corollary. When U =T(E,T(E,X)) solves for &, the subsequent
adjustments &', E_,",... are unnecessary. An option to change their welfare
positions is irrational for citizens with incomes G < E_, or > (’; thus, the
root Zj, restricts (realistically limits) the h-effect. All pertinent proofs are given
in Appendix A3.

The fiscally idempotent policies &_, induce the basis for solutions in our
game as fiscally idempotent compositions [B(&),W(&)] . A reasonable ques-
tion thus emerges: Which taxable income W (E) characterizes fiscally idem-

potent welfare policies a for the delivery of relief payments B(Z}) ? The
answer is provided in the form of the following three constraints: '

Delivery constraint by which the
wealth-pie is spent — the basic
and public goods have been de-

livered. This form of constraint T-W(E) =
makes sense only for propor- €))
tional or flat taxes. Flat taxes = B(&) +g

will later substantially simplify
the method of function minimi-
zation with constraints.

1 . .
Below, we continue to refer to the average taxable income as “wealth.”
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Budget constraint imposed on
relief payments finance in ac-
cordance with the share X of

the wealth-pie — the tax- B(§) =
revenue. The left-wing politi- )
cians pledge to credit/debit the =x-17-W(E)

account B(&) that must be

equal to the average of relief
shifted by the policy & .

Stability constraint that deter-
mines fiscally idempotent prop-
erty of (2). In contrast to

(G, ’C) e R? , we distinguish u= (1 - T)‘ 3

poverty line residues . (g — (I)) + d) )

u = 7(&,T) as one-

dimensional curves

n(E,1) e R < R°.

. . __B©) .
Taking the expression ‘C(&, X) = ————— out of the constraint (2) and
-W(©)
- BE o

replacing into u = 7(&, T(, X)), the constraint given in (3) can

x-W(S)

be resolved with a fiscally idempotent policy for ci , thus yielding:
LEx,u)=(E-¢)BE-x-(E-u)W(E=0. @

Referred to as the volatility constraint, the constraint (4) determines the fis-
cal safety module. It holds down the h-effect amalgamating the constraints (2)

and (3) by balancing the books accounting for relief payments.

Summary. The outcome (I),{:j, = Z,X,(X,‘C,<u,g> constitutes the citi-

zens’ bargaining shield for wealth redistribution that relates to a bundle of ar-
guments or constants: (I),& are controls, and Z,X ,0l, T are status variables, >

while <u, g> are the competing political proposals:

? Status and control variables are the prerogatives of control theory.
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(I) — the personal allowance establishing the tax bracket [(I),OO) ;
it is an ex-ante control (tuning) variable, 0< (1) =const < EJ;

Ej, — the income frame, the poverty line; a policy determining who is liv-
ing in poverty, as well as the choice or the control parameter;

Z — thesize Z=T- W(§) of the wealth-pie; the amount of wealth-
pie that is equal to public spending per capita when taxes are pro-
portional;

X  — the share of the wealth-pie of size Z ; a portion X of Z to be

deposited in favor of the left-wing politicians for funding the relief
payments, 0 < x <1;

0. — the political power of the left-wing politicians, O<a<1;

T  — the marginal tax rate, the rate T(&, X) of the wealth amount
W(E) determined by (1);

U — the after-tax residue of the income frame equal to the poverty line
€ , the wants function U(&, X) of the left-wing politicians, as
determined by (2) and (3);

g — the objective function g(&, X) of the right-wing politicians,

determined by (1) and (2); the account for the refund of public
goods expenses per capita.

5. ANALYSIS OF THE WELFARE STATE BARGAINING RULES AND NORMS,
continued from Section 3.2

Suppose that politicians, in pursuit of their commitments to a fair division
of the wealth-pie, agreed to play the alternating-offers bargaining game F(q)
(Osborn and Rubinstein). In doing so, rational politicians are motivated to align
the procedure to participate in any eventual agreement. The risk q > 0 ofa

premature collapse during negotiations, especially early in the game, might be
the driving force behind their commitment to reach the consensus. Once a con-
sensus on division is reached, they must agree on who will determine the size
of the pie. Politicians negotiate on such matters when there are equal and sym-
metric preconditions in place that guarantee their equal rights. Thus, both will
play an equal role in the decision regarding the pie size. Considering the right-
wing vital political objective of wealth redistribution, it will be realistic to
reduce the scope of RWP’s duties concerning welfare matters, while allowing
them to retain their advisory rights. Our subsequent discussions are based on
this premise.
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5.1. Left- and right-wing politicians’ bargaining procedure

Previously, we emphasized that, in a representative democracy, the division of
the wealth-pie will always be subject to controversy. Recall that we consider
two politicians — one acting in the role of LWP, who is aiming to provide
basic goods to all citizens, and the other, representing RWP, advocating for
availability of non-basic goods. A precondition for the bilateral agreement is

that the expectations of these two politicians depend solely on efficient policies
of the LWP within the framework aimed at setting the poverty line E_, How-

ever, politicians are more concerned with shares (X, y) than they are with the
size of the wealth-pie. As a consequence of this independence, efficient poverty
line EJ provides shares related to efficient divisions (XO R y° ) Accepting this
precondition, the RWP will only propose an efficient line E_, , as failure to do

so would result in all other shares being rejected with certainty by LWP. None-

theless, it is realistic that the RWP would — by negligence, mistake or some
other reason — recommend an inefficient poverty line E_,', which the LWP

would mistakenly accept. It is also possible that, in a reverse scenario, the LWP
would choose to disregard an efficient recommendation &’ . This would be an

irrational choice as, in any agreement, regardless of the underlying motives,
both politicians are committed by proposals to shares (X, y).

Indeed, within the scope of negotiations [@ ,&, ] , the recommendation &’
concurs with RWP’s efficient share proposal y°. Consequently, accepting
1—y°, while shifting LWP’s & mistakenly to &'# &, at which both politi-
cians must be committed to (Xo,yc), the shift &' becomes inefficient and

thus superfluous. Hence, making a proposal, the RWP’s recommendation on
poverty lines makes a rational argument that the LWP must accept or reject in a
standard way. Such an account, in our view, explains that the outcome of the
bargaining game might be a desirable poverty line EJ € [E_,1 ,az]. Hereby, the

interval is referred to as the scope [@ 9&2] of negotiations or bids proposals
that are now, by default, linking efficient lines é with shares (XO , yo ) The
bargaining occurs exclusively in the interval [(.CM,E,Z] as a scope for efficient
lines EJ of most trusted policy platforms for negotiations, where both players

would either accept or reject the proposals. Political competition, depending on
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[(‘."31 R &2 ], arranges a contract curve Sb (shown in Figure 4 and Figure 5) as a

way to assemble the bargain portfolio. Given that the portfolio "has changed its
color from shares to lines," the politicians can now conceive themselves as
making poverty line proposals. If a proposal is rejected, the roles of politicians
change and a new proposal is submitted. The game continues in the traditional

way by alternating offers.

The Contract Curve Projection within [2';1 , &, ]

89.3 f T T T T
L -
L £, =144.54
F | Left-Wing Wants: Lower
= 72.7 -
T K public (non-basic) goods
W U(E,.Z ) =89.26 but higher basic goods
I 56.1
N [
G g(éz )=-2.49
S
P Right-Wing Objectives: u(@l) =6.44
A L ;
Y ower basic goods but
0 . 53,9 higher non-basic goods g(il) =47.17 i
F
F £, =8.00
S
6‘4 i 1 ] £ |
-2.5 7.4 17.8 27.3 37.2 47.2

Figure 5. The aspirations of left-wing politicians expressed when
opposing the right-wing political objectives are depicted on the vertical
and horizontal axes, respectively. The graph shows the contract curve

sloping from az toward §1 , projected on the surface of basic goods vs.
vital goods — the projection of efficient poverty lines E', € [};1 R iz] re-

solving the contract constraint (5).

5.2. Alternating-offers bargaining game analysis

We now proceed to a more accurate analysis of the game rules. Although the
rules can be perceived as fiscally idempotent, the game itself contains a new

challenge. The elevated poverty line é does not necessarily increase the mar-
ginal citizens’ G =& after-tax residue U(&, X). The low-income citizens —
the benefit recipients — can claim relief payments, whereby an increased num-
ber of claims might have a reverse effect on U(,X), which would conse-

quently decline. Indeed, in contrast to increasing poverty line Z‘J and despite the
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required unavoidable increase in taxes — as the hazard (h-effect) is still present
— in this scenario, the residue U(&,X) will decrease. With the proviso that
the left-wing politicians commit to the share X, the right-wing politicians are
left with y = 1— X . Thus, the fiscally idempotent poverty line tax residues

u(&,X) correspond to a narrower set than 0 <X <1, 0 <y <1 — the set

of shares <x,y> of what we refer to as a contract curve Sb of payoffs
<(u(§, X), g(&, y)> with poverty line & as a parameter. >

Assuming that the maximum of a single M-peaked residue function
u(&,X) can be reached, the peak position §~ = arg max, u(g,x”) indi-
cates an efficient welfare policy. Although the bargain portfolio of left-wing
politicians contains an efficient policy Z‘_, as a function of X', the portfolio
also includes the share X = X~ . The maximum value given by U =1U", in the
inverse situation, which corresponds to U°, consolidates an efficient policy

S [&1 , &) ] A unique share X~ , which solves U(£",X) =1" and corre-
sponds to g(&",y ) =g", represents the non-conforming expectations of
politicians. We can thus refer to the shares (Xo R y°) as an efficient division
linked to the policy &’ . This scenario is depicted in Figure 4 on wealth amount
W and taxes T — efficient peaks &, which correspond to efficient shares
(X° N yo ), and in Figure 5 in various projections on payoffs <u° , g°> geome-

try. This geometry highlights the maximum values U’ can take — namely,

efficient policies of left-wing politicians at peaks & that refer to the well-
known result obtained by Canto et al (1981), also known as the Laffer curve:

The marginal tax-revenue raised decreases with increase in tax rates, finally
reaching some point where the marginal tax-revenue raised is zero. Beyond this
point, any tax rate increases will reduce revenue collection.

Our result pertaining to the single-peaked aspirations of the left-wing politi-
cians is similar. First, "poverty line residue U being proposed in the normal

range of poverty line parameter ct:, " Next,

...by passing through the top point of U as a function, the proposals W will be

assessed and reviewed in the range of prohibited values of E, .

We already highlighted the worsening quality of welfare services for all citizens
when the LI level is “climbing” high.
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We previously introduced an idempotent composition [B(ci),W(ci)] —
the average B(EJ) of the relief payments, and the average W(i) of the tax-

able income, denoted as the wealth. The expectations of the two politicians,

reflecting their preferred rules and norms pertaining to relief payments, can
now be set using the composition [B(&),W(&)] At the end of the subsec-

tion, the composition will lead to an appropriately settled bargaining problem
that will associate the threat originating from the implicit partaker — in the
form of the electoral maneuvering of voters — with an implicit risk of the
negotiations collapsing prematurely. This requires augmenting the standard
rules of the game we have already presented with two further rigorous supposi-
tions. Let us first specify the payoffs.

Political payoffs of the 1¥/2™ actor and the third partaker’s implicit risk fac-
tor are defined as follows:

Politician No. 1, Politician No. 1, U — the left-wing political aspirations, the
marginal citizens’ O = E_, after-tax residue, basic
necessities of the needy, cost of living;

Politician No. 2, £ — heright-wing political objective, expenses that benefit
all citizens — expenses upon vital goods alone, without
relief payments;

Third Partaker, (, T — voters’ electoral maneuvering facing higher taxes T

expressing an implicit risk 0< q<< 1 of the nego-
tiations collapsing prematurely.

As promised, we now assume that the rules and norms of the wealth redis-
tribution that are efficient with respect to the wealth-pie division include
the volatility constraint (4), which certifies the idempotent composition

[B(&),W(&)] for the policy i In the game, the composition
[B(a),W(ﬁ)] could not be implemented without the volatility constraint

L(i,x,u) =0 (Observation 1). This assumption is contingent on the con-
clusions of the previously undertaken analysis.

When varying c.tD under their own rules and norms, let us assume that LWP
propose a fiscally idempotent policy f; = Zj, , which — for each share X = X’
they commit to — links X~ to & , irrespective of who originates the proposals
X' or y° . This ensures the efficient proposal of poverty line residue

u(&’,x")= max, u(&,x"). Clearly, inefficient recommendation &',
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proposed by the RWP if Z‘_,'i Z:, for share yo, will be rejected by the LWP.
As a result, an efficient policy £ =&’ must occur on contract curve amid
efficient shares X~ at <u° =u(&’,x"), g’ = g(§°,x°)> as an ongoing
precondition for the agreement — as previously discussed. Indeed, LWP have
no reason to reject efficient recommendation &, as doing so, when §'# ",

they cannot ultimately maintain the efficient commitment to X~ . Below, we
assume the efficiency by default when it is convenient.

Observation 2. Idempotent policies & at the contract curve

= <u(f;, x), g(&, X)> which certifies the composition [B(&),W(f;)]

must satisfy the constraint
0
D(,x,u)=—L(&,x,u)=
(& x,u) o (& x,u)

(6))

=—§(a $)-B(&)—x-(E—u)- W()]=

Particularly, when we collated sub-expressions and introduced some simplifica-
tions upon

QE,1,2)=0 — Delivery(1) enforcing constraints
L(% x,u) =0 —> Volatility(4) on rules and norms of

the wealth redistribu-
D(}; X, u) =(Q — Contract curve(5) tion.

These constraints, with the proviso of flat taxes together with the previ-
ously detailed preliminary settings T > 0, ‘L‘ >0, u <0, u >0,

u'é <0, uZ >0, u; >0, g'g >0, gé >0, gX iO,leadtoananalytl—

)

cal solution: U(§) = & ————, where

V(&)

B _W(©)

v(E)=1+(E-¢): (B@ W@j r(§)=@,

4 = rates W(E_,) < 0, W(é) >0 of the changes in the wealth amounts W(i)

are essential for the analysis, whereas the function B(a) is valid only when

B(€)>0,ad 0<dp<u<é.
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g(i) = m — B(E_,) ; the size of wealth-pie

v(©)
W(S)
z(§)=B =—.
(8) =B(S) + (&) V(o)

Now it is evident that payoffs <u,g> at the contract curve Sb

depend exclusively on policies &, <u(§),g(§)> € Sb. We conclude that
politicians are only concerned with making proposals that pertain to efficient
policies &, since effective shares (X,y) have been linked to & . Contract
curve Sb =u(g) in Figure 4 illustrates the payoffs. The functions g(&)

and U(E) in the form presented above are, in fact, not a subject to any con-

straints. They are mathematically derived in Appendix A4.

Before proceeding with further line of analysis, let us recall the threat phe-
nomenon created by voters that increases the implicit risk of the negotiations
collapsing prematurely. As noted previously, if politicians reject their counter-
part’s proposal — knowing that it is risky to continue the bargain — they will
likely consolidate a draft. This introduces the risk that the voters will reject the
draft when politicians, without fulfilling the voters’ terms, try to continue bar-
gaining over costly and controversial proposals, thereby putting the negotia-
tions at a risk of collapse, as previously discussed.

Suppose that politicians bargain over all fiscally idempotent policies
e [ En . &2] within the scope of negotiations [ 51, QZZ] We follow the alter-

nating-offers game F(q) with an exogenous risk 0< q<< 1ofa premature

collapse, as described previously (Osborn and Rubinstein). We posit that, each
time the proposal E_, is rejected by one of the politicians, the momentary phase

of the game results in a draft, which can be opposed by the voters, as just
recalled. In these circumstances, the politicians might be uncertain on how to
proceed, if the voters’ terms are not met. As a result, they might choose to leave

the bargaining table prematurely. Extracted from the endpoints 5_,1 < E_,z of

contract curve Sb , the outcome

{<ul,gl>,<u2,g2>}:
= {(u(e,).gE)) (u(E, ), 26,)))

naturalizes this risk  in the worst-case scenario.
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What is known as the well-defined bargaining problem, first introduced by
Roth, or the individual rationality associated with the Nash bargaining scheme

<S R d> , seems to be instructive for further analysis. Indeed, inequalities
g, > g, and U, < U, hold for the pair d = <d1 =u,,d, = g2>. Synthe-
sizing the unfavorable political outcome {<u1 g, >, <u 9225 >} into a policy O

on poverty introduced below will naturalize the Nash disagreement point d
into the problem <Sb,d>, Sb R’ Thus, compared to the traditional

approach of compact convex set 8§ c fﬂz, inequalities S > d are also true
for any pair S € Sb. The pair <Sb ,d > for the contract curve Sb becomes a

well-defined bargaining problem. Given that it is not immediately apparent
whether the policy O is a fiscally idempotent outcome of the game, the follow-
ing observation removes any doubt.

Observation 3. To test whether the point d= <d1,d2> = <u1,g2> be-

comes a fiscally idempotent outcome of the left- and right-wing political bar-

gaining, it is necessary and sufficient that there exists a policy O on poverty,
which solves the equation:

(6-9)-(B@)+d,)-(5-d,)- W) =0;
The condition O & [ &1 , &2] must hold true. ©6)

It should be noted that, in the worst-case scenario O, the wealth redistrib-
uted equals W(S) — the average of expenses for funding the relief payments
equal B(S) — whereby the proposal O depends on the endpoints of the bar-
gaining interval [ 9‘31 , ggz ] This dependence, provided that the Equation (6) can

be solved for O, serves as the basis for validation of the pre-equity condition of
breakdown, as discussed in Section 7.

Observation 4. In the alternating-offers game 1(q) with the risk
0< q << 1 of negotiations collapsing prematurely into the disagreement

point <d1,d2> , the functions (u(?';) - d1 )a and (g(é) - d2 )Hl imply

bargaining payoffs of left- and right-wing politicians, respectively. Thus, (with-
out proof) for variables 7u1 ,7»2 s 7»1 <A< Kz, solving the equations

(1-q)-(w®,)-d,)" =(u,)—d,)" ana

(-9 (g,)-d,)™ =(g(r)-d,)™.
the solution )\ of the well-defined bargaining problem <Sb R d> is close to the

pair (7\,1 , 7\,2) .
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As explained by Osborn and Rubinstein, the outcome in our experiment of
bargaining game F(q) encapsulates the power indicators (OL, 1- OL) of the
left- and right-wing politicians. In the next section, we consider the design of
political power indicators (OL, 1- OL) using the solution A that minimizes the
tax burden with respect to an appropriately settled bargaining problem

(8,.d).

6. ANALYSIS OF VOTING AND POLITICAL POWER DESIGN,
continued from Section 3.4

Here, we will elaborate on power indicators (OL,I - OL) specifically, referring
to the original bargaining scenario of $1 division, based on the previously dis-
cussed axiomatic approach — O signifies LWP’s political power, and 1— ot
the political power of RWP, 0 < ot < 1. Considering

(Xo’yo): arg max 0<x+y<l f(X, Y, OL) =

=(u(x)-d,)"-(g(y)-d,)"™

the following questions emerge: What type of $1 division will assist a modera-
tor designing the power indicator O of the 1% actor? What will ensure that,

during the negotiations, the 1** actor will obtain a desired or any other share X"
of $1? To answer these questions, let us assume that the 2" actor might only
accept or reject the 1% actor’s proposals. We can thus start redesigning the

power indicators (OL,1 — OL) by replacing y = 1—X, and taking the deriva-
tive of the resulting f(X,l - X, OL) with respect to the variable X by evaluat-
ing f}: (X,1 - X, OL) . For a moment suppose, finally, that X~ share of $1 is a
desirable solution. Given X =X, the equation f| (x°,1—x",0)=0 can
be solved for 0L =" . In general, one might find comfort in the following
egalitarian judgment:

To count on X' share of $1 is a realistic attitude toward the I* actor’s posi-
tion of negotiations. Indeed, even if the 2" actor might have a stronger negoti-

ating power than the I actor, O° < 1—-a° , the I actor, sooner rather than
later, might predict the 2™ actor’s preferences and thus force a concession.

When, for example, the voters’ representatives attempt to redesign political
power indicators to (OL, 1-— OL), we assume that politicians will try to share the
wealth-pie in the manner in which $1 was divided above. In doing so, we sup-
pose that both politicians are ready to proceed with tax concessions. Reflecting
just illustrated axiomatic bargaining toward allegedly desirable $1 share X,

we proceed with our discussion.
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In accordance with our analytical solution without constraints, the contract
curve Sb =u(g) corresponds to a curve <u(§), g(§)> . Moving along the

curve while taking into account the scope of negotiations [(:1 , &2 ], the expecta-

tions T(E) of voters” majority lead to detection of Ton €T &):

min g, 40 1=

With the proviso that T() is concave and sufficiently smooth, the detec-

tion point of T . is the root A of the equation T(&) = 0. Consequently, akin

n
to the egalitarian judgment given above, the root A might help in redesigning
of the rules and norms of the wealth redistribution. This can be done by adjust-
ing the OL in a way that the political power O of the left-wing politicians will
be sufficient to persuade the right-wing politicians to agree upon the poverty
line residue U(A).

Indeed, in the left- and right- political bargaining, the old standard (dis-
cussed above) of how to share the $1 can now be a new Standard pertaining to
how to plan the wealth redistribution rules and norms. Under this premise, we

can set f(§,0) = (u(&) - d1 )a : (g(&,) - d2 )1_Ot , where QU facilitates the

political power of the LWP. Instead of X = X, planning the rules, we suppose
that & = A is an allegedly desirable solution. Hence, we first take the deriva-

tive of T(&€, ), with respect to &, evaluating fé (€, a), which allows us to

solve the equation fé (&‘ a:wa) =0 for o. As a result, the root 0" will

correspond to the redesigned political power of the left-wing politicians. This is
the result as it appears.

Summary. To control the left- and right-wing political agreement on shares
(X, y) of the wealth-pie, akin to the new Standard above, the majority of citi-

zens can accept or reject a premature agreement archived at the a particular
point during the negotiations, thereby voting for or against the division. As

previously noted, the majority will favor the policy A that minimizes the tax
burden. This restriction allows us to rebalance the welfare institutions or

finance resources by appropriate design of power indicators (OL,'] - OL) of the
left- and right-wing politicians, ensuring that the most favorable shares
(Xo,yo) of the wealth-pie would incorporate the Nash axiomatic — the

minimum tax — solution A into the bargain portfolio as the most optimal
outcome. This is our case study of tax policy in which only a minority would
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object to a proposal that corresponds to the tax rate minimum at the contract
curve. In doing so, the implicit pressure of citizens will be lower. To be imple-
mented in favor of majority, the minimum appears to be a desirable consensus.

Observation S. Given that politicians can reach a preliminary agreement
on tax rate T = T(§), condition A = arg min el ] (&) is necessary to

put forward a poverty proposal . before voters by appropriately designing the

power indicators (OL,1 - OL) in advance. At the contract curve Sb , the pro-

posal A outlines a unique outcome:
(|)9 E_> = Za Xa CX., T(}\‘)’ <U(}\,), g(?&)> € Sb .

7. DISCUSSION

The true essence of the economic reality behind the left- and right-wing politi-
cal bargaining could be revealed by determining whether it is true that funding
relief payments of the needy and maintaining the budget in balance will be
difficult to sustain when the tax burden for all citizens is decreasing. On the
surface, it seems that, at some point, fairness and equity might no longer be the
main requirement because of the "risks becoming a Downton Abbey economy"
(2014). Economists, including Kittel and Obinger (2003), have analyzed the
poverty gap issue. In the face of these controversies, it is not possible to esti-
mate the extent of potential fallout that might result from such outcomes of tax
burden cut.

The citizens are those who decide what needs to be done and what should
ultimately bring order to socially plan, or how to redesign the wealth redistribu-
tion rules and norms. Taking advantage of this opportunity, it is instructive to
perform an exercise related to the most appropriate choice of welfare policy, as
shown in the “minimizing wealth-tax” column of Table 1. > We illustrated that,
despite minimizing the tax burden for all citizens, the minimum is, in fact,
fiscally safe, while also ensuring just and fair redistribution of wealth for all
citizens.

Due to the assumptions made during the analysis, the following discussion
perhaps offers some guidance on doing the exercise. Before commenting on
those, it is worth noting that the experiment presented here should be under-
stood as purely normative — namely, "what ought to be" in economic or politi-
cal matters, as opposed to "what is." Despite the fact that, in the preceding
analysis, no actual situation was presented, our theoretical results rest on the
assumptions delineated below.

First, our work is based on the premise that politicians would only make
promises that can be fulfilled — fiscally safe proposals. Fiscal safety, when
taken separately, even when attempted in accordance with the rules and norms
in force, could lead to unjust and unfair solutions. Taken at will, fiscal safety

> Table 1 was created by numerical simulation carried out upon imaginary distribution

of citizens’ incomes.
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might be a profoundly mistaken idea of justice. In Table 1, we presented the
percentage of citizens below the poverty line, thus establishing the poverty rate.
® Driven at will, the official poverty rate, in accordance with the “disagreement”
column of Table 1, could cause the poverty rate to decline below 0.41%, which
wrongly appears to be the most just and the fairest.

Second, we postulated that the wealth redistribution compensates for the
inequalities in the income of citizens that were below the poverty line. Usually,
similar parameters are in the national government competence. While taking
into account increases in the cost of living, the official number of individuals
living in poverty should be adjusted annually according to government guide-
lines. Although our key assumption was that the right-wing politicians inherited
no more than an advisory authority, the rules and norms that govern the poverty
line determination have been solely under the mandate of the left-wing politi-
cians. This decision was made because, in the analysis, we deliberately empha-
sized the distinctions between stereotypical motivations of left- and right-wing
politicians. In our view, welfare protection that is most likely to be just as fair
should be addressed as an independent institute, or better yet, as an assembly of
independent institutes or legal charity foundations. We believe that, in our ex-
periment of organizational independence, welfare protection could be expected
to yield efficient welfare policies. Thus, in determining an efficient policy on
poverty, we concluded that left-wing politicians should be in a privileged posi-
tion that allows them to prescribe the poverty line independently. Only when
these guidelines of independence are applied, the value judgment based upon
the data presented in Table 1 makes sense. Still, it should be noted that the
characterization of whether setting up such a privilege was a positive or nega-
tive restriction requires further investigation.

Next, we focused on the political power indicators (OL,1 — OL), which high-

light the amount of resources, skills and competence of left- and right-wing
politicians. The fundamental factor in our analysis was the welfare protection
of the society as a whole to justify and maintain welfare duties under the prin-
ciple of how the state ought to act when attempting to fulfill its welfare mis-
sion. When the decision made by the politicians is not in line with the objec-
tives of special interest groups, as previously pointed out, welfare protection
could be a recurrent theme in political debates and election campaigns, and a
source of significant political competition. A controversy with respect to politi-
cal interests might lead to violent upsets, providing the opportunity to develop
policy in favor of these groups. According to the foregoing account, which
requires considerable administrative efforts and fiscally unrealistic expenses —
and previous observations pertaining to the independence of the welfare ser-
vices — we believe that having sophisticated left-wing institutions is unneces-

6 Poverty rate determines the percent of anyone who lives with income below

the official poverty line. The poverty line separates the rich (those with an
income above the poverty line), from the less fortunate (having income be-
low the line).
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sary. Recognizing the vital role of the right-wing politicians, due to their central
position in deciding who will be purchasing and delivering public goods, in the
interpretation of the parameter O, we believed that it was beneficial to impose
a lower OU to the left-wing politicians, with a corresponding higher share

1-a assigned to the right-wing politicians, i.e., O < 1-a,0<a<1.

Thus, it was reasonable to assume that left-wing politicians, with almost no
extra effort, would demonstrate an ample degree of readiness to make efficient
decisions. Herewith, in planning and regulating the size of the wealth-pie to suit
a fiscally realistic welfare policy to settle and assist the state welfare mission,
we attempted to redesign the balance of political powers between the left- and
right-wing politicians by adjusting the power indicators Ol and 1—o, im-
posed on the on the left- and right-wing politicians, respectively. With the goal
in our view, to benefit all citizens in society, this enabled us to adjust the state
rules and norms of the wealth redistribution, aligning them closer to the legal
responsibilities and moral obligations of the citizens. We referred to the process
of adjusting the power indicators (OL,'] - OL) as a political power design. Such

a politically designed outcome, as we supposed, justified the time and effort
invested, even if the vision was a utopia.

The design of political power indicators (OL,1 - OL) is a difficult and ex-

tremely time-consuming process. Indeed, prolonged political efforts might not
be in the interest of anyone — citizens might not pursue such endeavor, even if
the balance of political power can be ultimately reached. In particular, we sup-
posed that electoral maneuvering of voters might put prolonged political efforts
at risk of a premature collapse. It was deemed acceptable to assume presence of
an implicit risk of voters defecting to the other side, which could interrupt ne-
gotiations ahead of the schedule. Thus, we brought the problem of likelihood of
negotiations collapsing into focus. In our experiment, the failure of negotiations
was deemed extremely undesirable for both politicians, as we hoped that this
would be an incentive to move toward a solution faster. Alternatively, the
actors would be more motivated to agree on terms of a contract, where both
sides approach each other by making considerable concessions. In the view of
receipt of relief payments, a policy of higher tax rates might be the most favor-
able and just solution for minority. From the majority perspective, however, the
minimum tax rate is always preferable. For the citizens who finance the relief
payments, as we assumed in the analysis, the minimum tax rate provides a more
just and fair redistribution of wealth. In our experiment, the minimum rate also
provided an outcome A in which the designed political power indicators
(OL,1 - OL) visualize the society’s common denominator. Assuming, as we
previously did, in accordance with the rules of the game, that outcome A,

minimizing taxes, could be politically designed — it provides insight into what
policy should entail.
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Table 1, presenting all four assumptions, suggests several proposals for citi-
zens to vote on. Note that, when voting for policy of equal left- and right-wing
political power, the policy 1 =79.23 is less just and less fair than the outcome
A =45.50, where the minimum 26.52% of marginal tax rate is reached. Thus,
only the policy/outcome A on the poverty line (Figure 4) can be the desirable
political consent. Indeed, in the variety of rules in the game the left- and right-
wing politicians play, when engaged in an interaction aimed at implementing
equal/egalitarian policy T, the equal political power OL =0.5 of the LWP was
stronger than 0.27. Consumers’ goal, however, can still be achieved by apply-
ing the weaker policy A =45.50 for the tax rate 26.52% < 28.21%, although
the outcome of the weakened political power indicator QL =0.21 is yet to be
confirmed. Through a reduction of citizens’ obligations — even with LWP’s
weakened political position — the LWP will be able to come to a desirable
agreement with the RWP, maintaining the most just and fair poverty line of

wealth for all citizens.

In closing the discussion, we would like to point to a decision O that corre-
sponds to the political breakdown of negotiations. Utopian society, planned
according to the event of a breakdown, as shown in Table 1, seemingly ignores
welfare protection because practically all citizens are considered rich by de-
fault, i.e., poverty does not exist. Given this utopian society, financing expenses
almost entirely with respect to vital public/non-basic goods, the breakdown
policy O, under the equity condition, requires —2.49 public debt per capita.
This, in turn, will require borrowing or money printing, promoting public
spending, e.g., through natural assets for refunding the debt. We admit that,
based on the lowest tax burden of 26.52%, a self-financing tax system has a

better chance of being implemented.

8. CONCLUDING REMARKS

Given the ideological controversies of the left- and right-wing politicians, and
the need to resolve the welfare policy dilemma, both actors should be willing to
make concessions. In most cases, the root of the controversy is that, the left-
wing politicians struggle — in response to public aspirations — in pursuing
their own political causes for the increase of basic goods, whereas the right-
wing politicians advocate for meeting the needs for non-basic goods. In our
experiment, left-wing politicians gave credit to the tax system to guarantee a

reasonably high living standard for benefit claimants. Whatever public spend-
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ing voters preferred, both politicians were aware of voters’ electoral maneuver-
ing, which could put the negotiations at risk of a premature collapse. In our
work, this threat was the only driving force in reaching the consensus. We ar-
gued that political arguments demanding higher taxes were weak, since overly
costly welfare proposals lead to an excessive number of relief payments claim-
ants, which, in spite of the tax increase, could diminish the quality of the wel-
fare services. In turn, the excessive number of claims could generate further
requests for the additional financial support through tax channels. In order to
satisfy those who bear additional costs, and who could only approve the
requests on the terms of fiscally safe welfare policies, we reduced the scope of

negotiations to the fiscally realistic domain of voters’ expectations.

In view of the above, a pretext for the analysis of the domain and the extent
of bargain portfolio of two visionary politicians, denoted as LWP and RWP,
were established. The portfolio was supposed to account for politicians having
non-conforming expectations. Instead of the wealth-pie division, such an
account allowed for including a guide on how the eventual consensus ought to
be analyzed and interpreted within the scope of negotiations [i1,§2] at the

contract curve. In this context, the left- and right-wing political power indica-
tors, specified by the bargaining problem solution, were supposed to be politi-
cally designed in advance and subsequently tailored in accordance with the

citizens’ visions and ambitions.

It was initially deemed that, due to the uncertainty in the selection of the
breakdown policy, we could only treat the left- and right-wing political power
indicators as given exogenously. While this is true at least in the valuable ex-
amples we provided, we found a condition where we can encode the indicators
endogenously, to which we referred as the pre-equity of political breakdown.
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APPENDICES
Al. Example and results

We proceed with a specific allocation of the welfare policy, encapsulating sam-
ples of income density distribution, parameterized by poverty line E-, , similar to

an exponential function:

P(c,0+h-£)=

B 1 o mil'ex __© ,
“(O+h-8) T(m)\0+h-¢ Pl 0+n.¢

where 0=61.9, m=2.07, and h =—0.18 are additional ex-ante pa-
rameters. More specifically, O controls the wealth of citizens — a horizontal
shift of samples; M controls inequality — a vertical shift; h is a hazard pa-
rameter; and F(m) is an extension of (m — 1)! to real numbers. The sample
& = Y5 (median income = p) can be presented as Lorenz Curve, where citizens
below an income 95.1, i.e., 49.92% of the population, have 24.13% of a total
cumulative income, while the remaining 50.08%, with incomes at or above
95.1, have 75.87%, Figure 6. Gini Coefficient equals 0.37 and is impervious to
the horizontal shifts only. Relief payments, delivered to the population in line
with Friedman personal exception rule in force equal to '2u applied upon the
income distribution sample & = %sp diminished the Gini coefficient to 0.33.
Indeed, on Figure 7 citizens below an income 95.1, i.e., 49.83% of the popula-
tion has slightly increased to 25.83% of a total cumulative income, while the
remaining 50.17%, with incomes at or above 95.1, have slightly decreased to
74.17%.

The density function P(5,0+h - &), depending on &, reflects the initial
wealth redistribution through tax channels. Political decision &'> & shifts the
density distribution P(5,0+h &) of incomes horizontally toward the allo-
cation P(5,0+h-&'") that favors less wealthy. When shifted, the distribu-
tion P(o,0) masks the h-factor, h = 0, of the benefit claimants. The rate of
change Hz(§) =h-a(0+h-&) <0 of the policy & quantifies a fiscally
tolerable hazard (h < 0 ).
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Lorenz curve without contingency
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A2. Simulation foundation and illustration

105

In order to perform simulations, the expressions for average B(E_,) of expenses

on the relief payments and average taxable income — the wealth amount
W(E) — can incorporate income density distribution P(5,0+h-§) ina

more realistic but general form:
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g
B(E)=r- I E— G -P(6,0+h-E)do; - ({ij, G) is the LI-relief payment;
0

d o
W) =[(o+r-(&-0)-9)-P(c,0+h-&)do+[(c—¢)-P(5,0+h-&) ;
3

0

O<r<l

In the left- and right-wing political bargaining, the choice of é , in general,
is also determined by the ability to maintain the average income a(6 +h - &),
in order to uphold a(0 +h -&) > W(&) within the “striking” distance from
W(a) , which can be ensured through proper choice of the personal allowance
constant ¢ > 0, where ¢ identifies a flat tax bracket [(I),OO). The average
a(e +h- &) of income G over the density sample P(G ,0+h- &) equals

[[o-P(c,0+h-&)do.

The taxation of the total income G+ - (ctD o) ) of the needy complies

with the rules and norms in force, while the h-factor reveals the inverse work-
ing incentives, namely the feedback of the welfare recipients.

At this point, it is useful to verify that a disagreement policy O under the
primacy of equity principle of breakdown might be an outcome of the game.
There is no reason to assume that the equation

(6-9)-(B()+d,)-(5-d,)- W(5)=0,

in accordance with Observation 3, should have a solution in general. However,
for the income density P(c,0+h-&) (see above), a solution can be found.

Given payoffs <u, g> at the endpoints <u] =6.44,g,=47.1 8> ,

<u2 =89.26,¢g, = —2.49> of the scope of negotiations — within the interval
[&1 =8.00,¢&, = 144.54] — it can be shown that the pair

d= <d1 =u,,d, = g2> = <6.44, —2.49>, u, <u,, g >g, consolidates an
equity for breakdown policy 0 =6.39 ¢ [&l, ﬁ,z] ; wealth W™ =120.46 and tax
T =-2.06%.

It should not be surprising that the amounts of public goods and tax rates
may be negative. Ensuring this game outcome, the interpretation suggests that
the simulated breakdown demonstrates a specific payoff deficit on public goods
when it is impossible to cover all the costs through taxes. In such a scenario, as
we have pointed out earlier, when discussing negotiations breakdown, it is
necessary to resort to an external loan, money printing, or use of natural
resources, if the latter are available.



Political Power Design 107

The magnitude and dimension of poverty proposals to be debated or imple-

mented, as outcomes of the left- and right-wing political bargaining, are given
in Table 1.

Recall already known proposals for incomes 1M, 7\.1, A, A 95 O, whereby
O is outside of the scope of negotiations, O & [ EM , E)Z] and the poverty pro-

posal )4 L, with their definitions given as follows:

n the policy on poverty with equals left- and right-wing political power; the

left- and right-wing political organizations are in symmetrical positions or
in equal roles;

7\.1 the outcome of the alternating-offers game — representing what the right-
wing politicians accept;

7\4 the policy on poverty minimizing wealth-tax;

1/le % of the median income, indicating that half of the population earns income
above LL, while the income of the remaining halfis below |l ;

7\.2 the outcome of the alternating-offers game — representing what the left-
wing politicians accept;

o the least desirable outcome, resulting in the policy breakdown or disagree-

ment, which naturalizes the risk of negotiations’ premature collapse, caused,
for instance, by mutual traps.

A3. Verification

Proof of observation 1. Let us now assume an inverse scenario, whereby
u>u'=m(E,1(E,X)). Here, the left-wing politicians — LWP — aim z0
improve the poverty line residue U', i.e., an after-tax residue of a marginal
citizen G = EJ with income equal to the poverty line E_, By initiating a new
rule for policy &'> &, the LWP attempt to implement U > U'. Because of the
inequalities U 2> R(G, T((’;,X)) >1', for some highly pragmatic benefit
claimants G, it becomes apparent that they can be better off by claiming relief

payments. Consequently, actions of these claimants will increase the expendi-

ture B(E") > B(&) on the relief payments and shift the balance of books

B(&) = x - 1(€,X) - W(E) toward deficit B(E') > x - 1(&,%)- W(E).

L __BE©)
The balance was valid in the past, when T(§, X) = ———="—. Thus, the only
x-W(E)

option that would ensure that the balance in maintained, as the LWP must stay
BE) _

x-W(©)

committed to X, is to adjust T(§,X) to T(§,E',X)=
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>1(E,X), as X was fixed by the agreement. Otherwise, keeping the old
policy & intact, the LWP could — through a decrease in X — violate the
commitment X . As LWP cannot directly change X, they resort to reducing the
deficit via a tax increase. If U > (&', T(&, g', X)), the LWP must continue
with the tax adjustment policy by ’E(f;', &" , X) > ’E(i, E_,', X) , now adjusting
upon the welfare policy é' and proposing E_,"> é', whereby the new deficit
becomes B(E")>x-1(E,&',x)- W(E'). These improvements
u > u'">u' initiate a sequence of poverty policies (..., &"> §'> &,...) and
after-tax residues (...,u > Uu"> Uu',...) of marginal citizens. Thus, the condi-
tions U =" and §=CE" can never be met, as this would contradict the
assumption that the equation U = T0(&, T(, X)) cannot be solved for & . For

this reason, the sequence ...,&'"> &',... is infinite. W

The chain of reasoning regarding U'> U is similar to that outlined above and
is presented as a set of instructions. It should first be noted that, at low values
u’ >u" > u, even when taxes are low, there would always be a surplus to
finance the LI benefits and relief payments. The surplus masks a contradiction,
since it is clear that, at low values of the after-tax residue parameter U , bene-

fits financing can always be balanced.

Replace to implement by  to make a decline in

an improved

- better off - worse off
Improve Decline

B improvement B deterioration
to claim for that relief payments

B relief payments B have been revoked

- deficit - surplus

- >,> - <<

Transpose: an increase with  a decrease

In what follows, we investigate the payoffs <u,g> € Sb of the left- and

right-wing  politicians. The  consensus  occurs at  outcomes
(I),& = Z,X,OL,‘C,<u, g> under the constraint that the variation in policy &

does not improve the position of the left-wing politicians; rather, the policy
emerges as the point on the contract curve Sb =u(g) as fiscally idempotent

outcome.
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For fiscally idempotent outcomes, the arguments of after-tax residue U,
share X, policy &,, and tax rate T depend on each other. The share X = X°,
if settled as eventual agreement, redirects the residue U = (&, T(§,X°") to
become a function U = u(E_,, Xo) . Thus, the peak policy U with regard to the

best welfare policy can be expressed as:

&% =arg max, u(g,x") (A1)

Lemma. Let us assume that left-wing politicians do not shift from the share
X =X and that the volatility constraint (4) solves for two different policies
g < az. Let the tax sacrifice t(E,X°) =1(&,X°) - (§— ) be a differen-
tiable function of é progressively increasing with (2 within the closed interval
[E” , EJZ ] — namely, the following derivatives hold:
2

o . . P &
6_§t(§’x )i_§1 >0, a‘EJ‘[(EJ,X )i_éz <0 and o t(&,x°)>0.

In such situation, the poverty line residue W(E,X°) =& —1(§,X°) is a
single N-peaked function of ci

Corollary. There exists a unique interior policy E-,O maximizing U at

0 . B
8_E_,u(&’x )éz‘20 =0.

Provided that the conditions of the lemma are fulfilled, the discussion that
follows concerns the necessary and sufficient conditions for the fiscally idem-

potent policy gg to occur at the contract curve.

Observation 2. Let us assume that the volatility constraint (4) is
differentiable from its arguments. The after-tax residue U =u(E_,,x°)
is differentiable and single peaked with respect to the policy & within

some closed interval [‘iviz]- For a fiscally idempotent outcome
¢,E-,OZ>ZO,XO,OL,’CO,<UO,gO> to occur on the contract curve

Sb = u(g) , it is necessary and sufficient that the policy EJO solves the set of

equations:
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a o o o o o
(i) —L(,x°,u")  =0,where u’ =u(g’,x°)
% gg°
provided that
a o o
(i) EL@ ,X°,u) B #0.
Necessity. Let the fiscally idempotent outcome

(I),(E_,0 = ZO,XO,OL,’EO,<u°,g°> on the contract curve Sb :u(g)
maximize (Al) at U’ = u(?;", ‘E(&O, XO)) . Varying & in the vicinity of };o
of the outcome (1),&_,0 = ZO,XO,OL,‘CO,<u0,g°> and substituting

u= u(i, ’C(f;, Xo)) into the volatility constraint (4), we obtain an identity
L(&,x°, (&, ©(&,x°))) = 0. Within the proximity of (§°,u°), the fol-

lowing equation holds for arguments E_,, u:

a 0 0 a o 0 i XO =
a—aL(a,X ,u )+5L(E_, , X%, u) o€ (&, (&, x%)) 0, (A2)

from which we deduce the necessity statement for £ =" and u = u”’.

Sufficiency. Suppose the condition (ii) holds. Let (i) solve for &,0 at the fis-
cally idempotent outcome (1), &O =z°,x°,a,1° ,<u° ,g°> . Combining (i)
and (A2), we conclude that

0 o B
6_§ n((t:n T(é: X )) - =0.

The sufficiency clause (A1) holds, since U = u(§,X°) is a convex func-
tion of & .M

Proof of Observation 3. The clause is correct, provided that there exists a

fiscally idempotent policy O for the implementation of the pair <d1 R d2> .

In order to identify such a policy, we first replace the variable g with d2

in the expression for the constraint (1). Next, we extract the expression for

B(6) +d, o .
T=———-"2 from (1) and substitute it into (1—7T)... of the constraint
W)

(3), where U should be replaced by d, in advance. By simplifying, we arrive
1

at the statement of the observation.l
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Sketch of the proof (Observation 5). Looking at the tax rate T > T

min °

for any outcome ..., T, <u, g> € Sb , one may indeed prefer a counter outcome
as a motion ..., T, <u’, g'>, which outlines ..., ’C,<u'> u, g'< g> or
...,r,<u‘< u,g'> g>. As the contract curve Sb =u(g) is a curve of effi-

cient preferences <u, g> guaranteeing the poverty line residue u(g), some-

one could put a motion U'>Uu°® or g'>g° against an out-
come...,T> T . ,<u°,g°>. We argue that, in order to fulfill the expecta-

tions and requests of citizens’ majority, it is necessary to pursue political con-

sent via the proposal ...,T . = ‘E(?\.),<u° =u()r),g’ = g(7\.)> .

Delivery constraint: the size of the
welfare pie, i.e., the average amount

_ of tax returns is equal to the sum of
T W(EJ) - B(&) tE the average monetary value per capita

of primary goods and the average of
non-primary goods g .

Budget constraint imposed on the
relief payments finance in accordance
B(&)=x-1-W(§) with the share X of the wealth-pie —

the tax-revenue.
Stability constraint that determines
u=>1-1-E-9)+¢ fiscally idempotent policy & .

After-tax residue constraint: an
alternative form of stability constraint,
_ where U is after-tax position of a
u=&-1-(c-9¢)

marginal citizen with income G =&,

which concedes with the left-wing
political aspirations.

Ad4. Mathematical derivation

B(©)
x-W(E)

straint, we obtain the volatility constraint (4) as stated:

L(&,x,u)= (£~ 9)-BE) -x-(E-u)- W(&) =0

that amalgamates budget constraint and after-tax residue. Contract curve (5) is
thus given by:

Replacing T = from the budget constraint into the stability con-
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D(&,x,u)=LL(§,x,u) =
—[E-4)-BE) —x-(&—u)-W(©)]: =0

Ll (&, x,u)=
=B(®)+(E-¢)-BE) -x-W(E)-x-(E-u)- W) =0

The last expression may be rewritten as:

D(&, x,u) =

=B(©)+(E-9)-BE)-x-(WE)+ E-w) W(©)=0
(€=9)-B(©)
(E—u)-W(©)
substitute variable X into the rewritten expression for D(&, X, 1) . The sub-

stitution results in the following expressions:
B(&)+(§~9)-B(&) -
(€-9)-B(©) : , o
oW WO E-wWE)-0
(B +E-9)-BE)- E-)- W(E) -
~(E-9)-BE)-(WE+E-0)-WE))_
(E—u)- W()
Provided that (EJ — u) >0 and W(é) > (0, we can conclude that the fol-

lowing is true:

Extracting X = from the volatility constraint (4), we can

(B&)+(&—9)-B(®))- (5-u)- W(&) -
~(&-0)-BE)- (W) +(E-u)- W(g))=0
This allows writing the sub-expression (& —U) in the form:
( (BE)+(E-9)-B©)) W(©) —J u-
—(&—)-B()- W(®)
—~(&—)-B(&)- W(&) =0.

As a consequence of presenting the sub-expression (a — u) in the form

E—u = (5-9)-BE)- W) o
(B(&)+(E-0)-B(§)) W(E)—(E—)-B(E)- W(E)

We observe that

given above:
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e (E=9):BE) W) o
(B&)+(E—-9)-BE) W(E)-(E—9)-B(E)- W(©)
We can now substitute the tax rate T from the delivery constraint into the
BO+g .
W) (E—9).

After replacing the result into the observed U -expression, we obtain:

after-tax residue constraint. The result will be U = & —

CBE+E .

R

e (5-9)-BE®)-W(©) |
(B(®)+(E—-9)-B(&)) W(E)—(E—9)-B(E)- W(E)

BO+g . . _

we G0

(£-9)-B(E)- W(©)
(B(&) +(E-9)-B(E))- W(E) - (5 - ) B()- W(E)
(B(&)+g)-(E-9) =
_ (£—9)-B(E)- W(E)- W(&) :
(BE)+(E—0)-BE)) W(E) - (E-9)-B(E)- W(&)
B(&)+g=

_ B(8): W(©)-W(E) ;
(BE)+(&—-)-B(®))- W(E) - (&~ ) BE)- W(&)
o= B(&): W(©)-W(®) o
(BE)+(E-9)-BE)) W(E) - (E-9)-BE)-W(E)
-B(9)

We can now impose the denominator in the last expression for g on sub-

expression for (§ — @), which can be written as:

(B&) +(&-)-B(&))- W(E) - (E—¢)-B()- W(E) =
= B(E)-W(E)+(E-¢)-(BE)- W(E) -B(E)- W(E©))

Continuing with the expression for g(&), we can replace the denominator
transformed above:
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B(E)- W(E)-W(E) -
B(E)- W(E)+E-9)-(BE)- WE)-BE) - WE)
~B()

g:

B(): W(E) W(E) -
B(&)- W —0)-
_B@){ &) WE+E-0)- j
(BE) W(E)-BE) W)

B(E)- W(E) +(E—0)-
(B()- W(E)-B(E) W)

Now, both the nominator and the dominator can be divided

by B(§) - W(E), yielding:

(B(ﬁ) W) +(E-0) j

W(E)-B()- '(B@)-VBV((;)'—V;B((;)-W(&))

&= (B(é)-W(i)H&—@)- ]
(B&) W(E)-B(E)- W)

Let us define V() =1+ (§—¢)- (EEE; xgz;

to evaluate the expression for the right-wing political objective on public but

vital goods as:
_W(E©-B@)-v(© _WE) 4
g(©) V) Vo) (©).

In accordance with the delivery constraint, the size of the wealth-pie
T(E) - W(E) equals B(§) + g(&) . Consequently, the tax rate is given by:

j as this allows us

W(E) j
(6= BO+E®) O ( V(&) B _
W(E) W(&) V(&)

Replacing the T = in the after tax residue U= —T-(§ — @), we

V(&)
can finally evaluate the expression for the left-wing political wants on basic

goods as: u§)=¢- (E:/(;Ef)w
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Financing Dilemma Supporting a Project !

F3
Joseph E. Mullat

Abstract. The concept of an intelligent decision-making core for coalition for-
mation becomes increasingly pertinent, especially in contexts where, e.g., di-
verse “stake-shareholders” must collaborate to achieve common goals. Take,
for example, a multinational corporation aiming to launch a new product line.
The company relies on contributions from various departments, each with its
own goals and priorities. The decision core, in this case, must navigate through
competing interests, ensuring that all stakeholders are motivated to contribute
to the project's success. However, in practice, securing the necessary funding
often falls short of initial expectations. Despite commitments from stake-
holders, financial constraints or unforeseen circumstances can lead to incom-
plete funding, requiring the decision core to adapt and recalibrate strategies to
meet the project's objectives. Thus, the concept of forming coalitions extends
beyond theoretical frameworks, finding practical application in complex organ-
izational dynamics where the alignment of interests is crucial for success.
Keywords: coalition; game; contribution; donation; monotonic; project

' This article can be considered as an independent but at the same time as complemen-

tary addendum to bounded rationality in decision-making, “Case Study of Fuel Con-
sumption by Vehicles Utilizing the Postulates of Bounded Rationality", Chater VIII.
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1. INTRODUCTION

In multiplayer games, as discussed by Owen (1971, 1982), coalitions emerge
when a subset of participants collaborates. Among these coalitions, rational
ones hold particular significance, as they promise individual benefits to all
involved parties. These benefits are secured regardless of the actions taken by
players outside the coalition. This note focuses on examining one of the
simplest forms of player-formed coalitions, all of which are noteworthy within
the context of bounded rationality. Bounded rationality acknowledges the
limitations of human decision-making, which are often influenced by irrational
factors.

The class of games under consideration here adheres to an additional mono-
tonic condition, previously explored by Mullat (1979). It's important to clarify
that no prior familiarity with this topic is assumed. Nonetheless, the formal
theory of monotone systems employed in this note mirrors that outlined by
Mullat (1971-1977), differing primarily in interpretation. Specifically, the
abstract indices of interconnection among system elements are viewed as dona-
tion intentions. This approach allows us to demonstrate, in a specific case, the
feasibility of identifying rational coalitions in line with Nash's principle of
independence of rejected alternatives (Nash, 1950). To facilitate understanding,
let's consider the following simplified scenario.

2. PEDAGOGICAL SCENARIO

Here we are dealing with participants who intend to fund a project being under
development through donations. In principle, each participant j= 1,_n is willing
to contribute a certain amount p, supporting the project. In summary, each par-
ticipant's donation amount p, might be in accord with distribution defined by

an exponential density function:

1
F(x.p) = B-eXp(—%) for XZO,'
0 for x<O.

In support of the project, there is an expectation to gather a specific fund to
finance its execution. However, as negotiations unfold regarding the feasibility
and merits of the proposed project among like-minded stakeholders, their pref-
erences may undergo a transformation. This dynamic arrange the stage for the
emergence of a coalition game following the monotonic game scheme, with its
solution encapsulated in the concept of a kernel (Mullat, 1979). The intricacies
of aligning the financing interests of the participants manifest in the form of the
kernel solution, which comprises a group of participants willing to support the
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project, albeit perhaps not to the extent initially envisioned, but still within rea-
sonable bounds. This notion of reasonableness delineates the most optimal ave-
nue for financing the project in its finalized iteration. It's worth emphasizing
that within this framework, a reasonable scenario is construed as a guaranteed
payment commitment, wherein each project participant pledges a contribution
towards the anticipated total amount.

We define the credential of participant je H as n(j,H) = |H| -p,- Thus, it

indicates that the total expected payments of all in H will not be less than
F(H) =min_, n(j,H). The kernel H" in this scenario will be understood as

participants H" =arg max,_, F(X). The kernel H" is remarkable in that it
guarantees a contribution F(H') to the project. Can more participants with

lower individual p, payments intentions fund the project to a greater extent?

Such situation is possible, however, such payments cannot be guaranteed — this
is the point. In what follows, we will focus only on payments guaranteed by
project participants belonging to the kernel H'.

The global maximum for project funding by the kernel participants serves
as the cornerstone of independence, aligning with the hypothesis of rejected al-
ternatives. This implies that irrespective of the preferences of participants not
included in the kernel, if any express interest in joining the kernel, their inclu-
sion should not significantly impact the funding outcome. However, it's prudent
not to place undue trust in these external participants, as their reliability may be
questionable. There's a possibility that they could seek to alter their preferences
unfavorably towards the project, undermining the stability and integrity of the
funding arrangement.

Therefore, our assumption is that the refusal of non-kernel participants to
engage in the project will have no bearing on the views and actions of kernel
members. This premise aligns with the principle of bounded rationality, spe-
cifically the principle of independence from rejected alternatives, as articulated
by Nash (1950). Essentially, within our context of project financing, this prin-
ciple ensures that participants remain steadfast in their decisions despite exter-
nal developments. Kernel participants will uphold their financing commitments
regardless of changes in project conditions or the refusal of certain participants
to engage. To provide a more formal framework for this consideration, we can
characterize it as the stability property of decisions made by kernel participants,
akin to the well-established idempotent principle. Once a decision is reviewed
under unchanged commitments and priorities, it remains unaltered and does not
necessitate further adjustments, maintaining its original form and validity.



120 Chapter V

Example. Let we introduce in accord with exponential distribution the prefer-
ences p,, of participants’ W= {J = L_n} We can designate as X, all partici-
pants who prefer to participate in the project together with their like-minded
people, while X prefer to reject the project or have other reasons for participat-
ing in the project.

Let we now try to determine the preferences 7 for the participants j in X,

j€ X, supposing that their contributions in the project together with others in
X be equal to (j,X) = |X| -p,. Obviously, if some participant could not at all
find a suitable partner for the project, the intention to contribute will be equal to
7( J,{ J}) =|{J}| “P;s |{]}| =1. Conversely, if all participants contribute to the
project and all participants are in an adequate company W , the estimated con-
tribution will be greater and equal to 7(j, W) = QW| = n)- p, . If now for any
reason a participant j€ X decides to spend the rest of the project development
alone, the intention to contribute to all others remaining participants in X, in-
cluding those to which some like-minded participants X — {]} still join, will
decrease: m(i,X — {J}) <n(i,X) for ie X— {_]} On the contrary, their inten-
tions to contribute will increase if one j& X of the previously single partici-
pants decides to join X and become a member of X+ {J} :
(i, X + {j}) = n(i,X) for ie X .

The Dilemma Facing Participants Contributing a Project
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Figure 1. The kernel participants contribute at least 52.8% of their initial intentions
to the project. The blue dot is the largest guaranteed contribution in which partici-
pants continue to agree to participate in the project.
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The graph depicted above illustrates the distribution of participants' dona-
tions as a percentage relative to their initial intentions, plotted along the X-axis.
Corresponding contributions, both in percentage terms and in relation to the to-
tal amount indicated on the Y-axis, reflect the adjustments made to their dona-
tion preferences. Through simulation, it becomes evident that kernel members
consistently demonstrate a readiness to finance approximately 50% of their ini-
tial intentions. This observation underscores the adaptability of kernel partici-
pants in aligning their contributions with the evolving dynamics of the project's
funding landscape.

To elaborate further, in its initial state, this percentage represents each par-
ticipant's contribution to the total funding amount required for the project. It
serves as a foundational reference point, akin to the starting position, delineat-
ing the preferences of participants' donations along the X-axis.

The procedure for finding the kernel is very easy to set up. First, all the ex-

pected donation preferences p,, j=1,n, are sorted in descending order, consti-

tuting the order <pj>, the X-axis, and then a sequence T is constructed as

= <nj> =<pj>- j, by which we have denoted these reoriented <7tj> prefer-

ences, the Y-axis. The latter sequence is called defining. We then select the lo-
cal maximum, i.e., the defining sequence. This is the kernel of Mullat’s mono-
tonic game, which is represented by a blue dot in Figure 1.

I. FINANSEERIMISE DILEMMA PROJEKTI TOETAMISEL 2

Kokkuvétte. Koalitsiooni moodustamise intelligentse otsustustuumiku
kontseptsioon muutub {iha asjakohasemaks, eriti kontekstis, kus néiiteks
erinevad “aktsiondrid-sidusriihmad” peavad iihiste eesmarkide saavutamiseks
koostood tegema. Votame nditeks rahvusvahelise ettevotte, mille eesmark on
tuua turule uus tootesari. Ettevote tugineb erinevate osakondade panustele,
millest igaiihel on oma eesmairgid ja prioriteedid. Sel juhul peab otsustamise
tuum litkuma 14bi konkureerivate huvide, tagades, et koik sidusriihmad on mo-
tiveeritud projekti edusse panustama. Praktikas jadb aga vajaliku rahastuse ta-
gamine sageli esialgsetele ootustele alla. Vaatamata sidusrithmade voetud ko-
hustustele voivad rahalised piirangud voi ettendgematud asjaolud viia mit-
tetdieliku rahastamiseni, mis nduab strateegiate kohandamist ja timberkali-
breerimist projekti eesmirkide saavutamiseks. Seega ulatub koalitsioonide
moodustamise kontseptsioon teoreetilistest raamidest kaugemale, leides praktil-
ist rakendust keerulises organisatsiooni diinaamikas, kus huvide kooskola on
edu saavutamiseks iilioluline.

% Seda artiklit vdib pidada iseseisvaks, kuid samal ajal tdiendavaks lisandiks artiklile

piiratud ratsionaalsuse kohta otsuste tegemisel ,,Case Study of Fuel Conumption by
Vehicles Utilites of Bounded Rationality Postulates of Bounded Rationality®, VIII
peatiikk.
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Mitme-isiku méngudes (Owen 1971, 1982) moodustatakse koalitsioon
osalejate alamriihmast. Kdigist koalitsioonidest pakuvad ratsionaalsed koalit-
sioonid eriti huvi, kuna need voimaldavad koigil osalejatel saada individuaal-
seid eeliseid. Veel voib tapsustada, et selle hiivitise saamine tagatakse soltu-
mata méngijate tegevusest, kes ei ole koalitsiooni liikmed. Sonumis kisitleme
méngijate poolt moodustatud koalitsioonide iihte kdige lihtsamat juhtumit,
mida voib pidada piiratud ratsionnaalsuse mdttes silmapaistvateks. Ratsionaal-
sus on piiratud sellega, et inimeste ratsionaalset otsustamist piirab inimeste ir-
ratsionaalne olemus.

Pakutud méngude klassile rakendatakse tdiendavat monotoonset seisundit,
mida on uuritud Mullati poolt (1979) monotoonses méngus ja varasemastes
toodes. Tuleb markida, et siin kisitletud teema eelteadmisi ei ndua. Kasutatud
monotoonsete siisteemide teooria on identne sellega, mida Mullat (1971-1977)
on varem kirjeldanud; ainus erinevus ilmneb tdlgendamises ja puudutab
slisteemielementide abstraktseid sidumisnditajaid, mida késitletakse annetuste
kavatsustena. Vilja tootatud 1dhenemisviis voimaldab meil {ihel konkreetsel
juhul esiletuua lihtsa metoodika ratsionaalsete koalitsioonide leidmiseks, mis
on kooskdlas (Nash, 1950) tagasiliikatud alternatiivide sGltumatuse pohimot-
tega. Lihtsuse huvides jargmine pedagoogiline stsenaarium voib aga olla in-
formatiivne.

II. PEDAGOGIKA

Siin on tegemist osalejatega, kes kavatsevad arendusjirgus olevat projekti
rahastada annetuste kaudu. P6himdtteliselt on iga osaleja j=1,n ndus projekti

toetamiseks teatud summa p, panustama. Kokkuvdtlikult voib iga osaleja

annetussumma  p, olla kooskdlas jaotusega, mis on madratletud

eksponentsiaalse tiheduse funktsiooniga:

1
F(p) = E-exp(—%) for x>0,
0 for x <O0.

Seetottu  loodetakse hankida projekti rahastamiseks teatud fond.
Labirddkimised mottekaaslastega kavandatava projekti sobivuse iile viivad aga
nende viimaste eelistused iimbersuunamiseks. Eeldatakse, et siin tekib vastavalt
monotoonsele mianguskeemile teatud koalitsiooniméng, mille lahendab tuuma
kontseptsioon (Mullat, 1979). Tuum on osalejate mdonevdrra tdhelepanuvéirne
alamhulk.
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Nagu juba 066ldud on osalejate finantseerimishuvide keerukus esitatud
lahenduse vormis, mida nimetatakse tuumaks, mis moodustab teatud osalejate
riihma, kes noustuvad projekti rahastama, kuid voib-olla mitte sellises mahus,
nagu need algselt olid mdeldud, kuid siiski mdistlikkuse piires. Tegelikult on
see moistlik piir mis on parim tulemus projekti 16ppfinantseerimisvoimaluste
rahastamisel. Siinkohal tuleb mérkida, et garanteeritud stsenaariumi all
moeldakse teatud garanteeritud makset, mille puhul iga projektis osaleja garan-
teerib oma panuse eeldatavasse kogusummasse.

Miératleme osaleja j€ H mandaadi kui Tt(j,H)=|H|-pj. Seega nditab

see, et kdoigi sissemaksete eeldatav kogusumma ei ole viiksem kui
F(H) = min _, n(j,H). Selle stsenaariumi tuuma all mdistetakse osalejaid H'.

Tuum on tihelepanuviirne selle poolest, et see tagab projekti panuse F(H").
Kas viiksemate individuaalsete maksete kavatsustega p, osalejad saavad

projekti suuremal kui F(H") miéral rahastada? Selline olukord on vdimalik,
aga selliseid makseid garanteerida ei saa — see on asja mdte. Jargnevalt

keskendume ainult nendele maksetele, mille tagavad tuuma H™ kuuluvad
projektis osalejad.

Tuuma poolt projektile eraldatav globaalse maksimumi kogurahastus
moodustab soltumatuse aluse vastavalt juba nn tagasiliikatud alternatiivide
hiipoteesile, st soltumata tuuma mittekuuluvate osalejate eelistustest, kui neid
leidub, mis peavad tuumas osalemist siiski asjakohaseks. Kuid me ei tohiks eriti
neid uskuda, kuna need ei ole vdga usaldusviérsed ja vdib-olla soovivad nad
oma eelistusi projektis osalemise kohta muuta.

Seetdttu eeldame, et kui tuuma mittekuuluvad osalejad keelduvad projektis
osalemast, siis ei mdjuta see neid kes kuuluvad tuuma, st tuumaliikmete vaateid
janende tegevusi. Siin on tegemist nagu juba 66ldud, nn piiratud ratsionaalsuse
pohimottega, see tdhendab sdltumatuse pShimottega tagasiliikatud alternatiivid-
est, vt Nash 1950. Sisuliselt tagab see pShimdte meie projekti rahastamise pu-
hul, et projektis osalejad oleksid ldbirddkimiste arengutega kursis. Tuuma
osalejad ei muuda oma rahastamisotsuseid olenemata sellest, mis toimub voi
mis muudavad projektis osalemise tingimusi, hoolimata asjaolust, et moned
projektis osalejad keeldusid osalemast. Kui anname sellele viimasele kaalut-
lusele mdnevorra formaalsema iseloomu, siis voime Oelda, et tuumast osavot-
jate tehtud otsuste stabiilsuse omadus pole midagi muud kui tuntud idempo-
tentsuse podhimdte. Pérast otsuse ldbivaatamist tingimustes, kus voetud kohus-
tused ja prioriteedid jidvad muutumatuks, ei vaja see uusi muudatusi ning see
otsus tehakse samal kujul, nagu see varem vastu voeti.

Niide. Tutvustame vastavalt eksponentsiaalsele jaotusele osalejate
W= {J = 1,n} eelistusi p,, j=1,n. Vdime X -na tihistada koiki osalejaid,
kes eelistavad projektis osaleda, et koos oma mottekaaslastega kokku leppida,

samal ajal kui X -s olevad osalejad eelistavad projekti tagasi liikata v&i on neil
muud pohjused projektis osalemiseks.
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Proovime niitid méérata kindlaks X -s osalejate je X eelistused, eeldades,

et nende panus projekti koos teistega X -s on vdrdne (], X) = |X| -p,. imselt
kui moni osaleja ei suuda iildse projekti jaoks sobivat partnerit leida, on kaast6o
tegemise kavatsus vordne Tc(j,{ j})=|{j}‘|=1-pj -ga. Ja vastupidi, kui koik
osalejad panustavad projekti ja koik osalejad on sobivas mdttekaaslaste seas
W, on nende viimaste eeldatav panus suurem ja  vOrdne
n(j, W) = QW| = n)- p, -iga. Kui niiiid mdni osaleja j€ X soovib vdi otsustab
mingil pdhjusel veeta iilejddnud projekti arenduse iiksi, vdheneb kavatsus
panustama koigile teistele X -is allesjddnud osalejatele, sealhulgas ka neile,
kellega mdned mdttekaaslased X -ga endiselt liituvad: i€ X — {]},

(i, X — {_]}) <m(i,X). Vastupidi, nende panustamiskavatsused suurenevad,
kui iiks varem osalenud tiksikliikmeline j& X osaleja otsustab liituda X -iga
jasaada X + {j}: i e X liikmeks: m(i, X + {j}) > n(i, X).

Ulaloleval joonisel, Figure 1, on niidatud osalejate annetused protsentides,
vorreldes nende esialgsete kavatsuste suhtes kogusumma panusena X-teljel
koos vastava sissemaksega protsentides, samuti sama summa kohta, mis on
ndidatud Y-teljel, kus nende annetuseelistused olid imber orienteeritud. Nagu
simulatsioon nditab, on tuuma liikkmed peaaegu alati valmis finantseerima
umbes. 50% nende algsest kavatsusest. Kui tdpsem olla, siis algseisundis on
projekti finantseerimise kogusummast tehtud panuse protsent, mis peegeldab
osalejate eelistuste lahtepunkti X-teljel — osalejate annetuste esitamine.

Tuuma H’ leidmise protseduuri on viga lihtne iiles ehitada. Esiteks jirjes-

tatakse kdik arvud p,, j=1,n, langevas jirjekorras, muutes jérjestust P j jér-
jestuseks <p j>, ja seejdrel konstrueeritakse jargmiste arvude jada, mida me

nagu eelpool juba neid arvu tdhistanud olime T -ks: 7T = <7tj> = <pj> -] mis on

Joonise 1 Y-teljel, nn osalejate panuste limberorienteerimine. Seda jada
nimetatakse miiravaks jadaks. Seejdrel valime selle viimase, jarjestatud, st
madratud jada pdhjal, lokaalset maksimumi. See ongi monotoonse mingu
Mullat’i tuum, mis on Joonisel 1 tdhistatud sinise punktina.
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Equilibrium in a Retail Chain
with Transaction Costs:
Rational Coalitions in Monotonic Games *

Abstract. In a real-world scenario, we consider a regional retail chain compris-
ing suppliers, agents, and distributors operating in the grocery industry. Due to
various factors such as fuel price hikes and regulatory changes, transaction
costs within the chain begin to rise. As a consequence, the coordination of or-
ders and deliveries among the chain's entities becomes crucial to maintain cost
efficiency. Amidst these challenges, the retail chain adapts by forming tighter
collaborations and optimizing its logistics network to minimize the impact of
increasing transaction costs. For instance, suppliers might consolidate deliver-
ies to reduce transportation expenses, while distributors streamline their inven-
tory management systems to avoid stock-outs and excess inventory costs. De-
spite the evolving landscape, the key players within the chain strive to uphold a
balance where the profitability of each transaction outweighs the associated
costs, fostering a resilient ecosystem. This dynamic mirrors the concept of a
monotonous game, wherein participants abide by established rules and strate-
gies to navigate the changing market conditions while ensuring their individual
and collective sustainability. Moreover, the formal scheme of coalition forma-
tion described in the context of this retail chain sheds light on how strategic
alliances can enhance resilience, with certain coalitions possessing inherent
advantages that bolster their ability to withstand market volatility.

Keywords: suppliers; distributors; monotonic game; retail chain; coalition.

A part of this article was translated from Avtomatica i Telemekhanika, 1980, 12, pp.
124 — 131. Original article submitted 1979. Automat. and Remote Control, Plenum
Publishing Corporation, 1981, pp. 1724-1729. Russian version.
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Businessmen in deciding on their ways of doing business and on what to produce
have to take into account transaction costs. If the cost of making an exchange are
greater than the gains which that exchange would bring, that exchange would not
take place and the greater production that would flow from specialization would not
be realized. In this way transaction costs affect not only contractual arrangements,
but also what goods and services are produced. Ronald H. Coase, “The Institu-
tional Structure of Production,” Ménard, C., and M. M. Shirley (eds.) (2005),
Handbook of New Institutional Economics, Spriner: Dordrecht, Berlin, Heidel-
berg, New York. XIII. 884pp., p.35, ISBN 1-4020-2687-0.

1. INTRODUCTION

Everybody, probably knows that prices on commodity markets sometimes
continue to rise unabated on the back of an anticipated shortage in the global
raw materials availability and sharp volatility in the commodity future markets
and terminal prices on fears of an immediate shortage of materials in the short
term. Along with the significant increase in commodity prices, on one hand, the
transaction costs increase on inputs like petroleum, electricity, etc. On the
other, while currency of exchange rates also moving adversely, the situation
becomes uncertain. As an example, one may point at recent market price
increase of coffee raw materials, which did not have immediate consequences
for some known positions, while the distributors ! of a retail chain, however,
demonstrate readiness to make loosing transactions. With this in mind, distribu-
tors are trying to hold prices constant. However, it is also understandable that it
would be impossible for the distributor to make frequent price changes again
and again. Given the current context, they will have no other option but to seek
price increase for distributed commodities with an immediate effect.

The volatility inherent in commodity market prices often triggers a chain
reaction, culminating in amplified transaction costs throughout the retail distri-
bution network. This escalation of costs perpetuates a cycle of uncertainty,
exacerbating the challenges faced by distributors. As transaction expenses
mount, stakeholders find themselves ensnared in a self-perpetuating loop of
price hikes, potentially stalling bilateral trade and necessitating a recalibration
of the market's supply and demand equilibrium.

In such an environment characterized by persistent price escalation, the
synchronization between orders and deliveries becomes increasingly elusive
within the established supply chain framework. Despite these adversities, par-
ticipants within the retail chain are driven by the rational pursuit of profit
maximization, prompting them to explore novel strategies for restructuring
operations. In essence, the interplay between market price uncertainties and
transaction costs underscores the dynamic nature of retail distribution channels,
prompting continual adaptation and innovation among industry participants.

It is worth noting that within the realm of market transactions, New Institu-
tional Economics offers valuable insights, particularly in two key directions.
Firstly, vertical integration, as expounded upon by Joskow (2005), delineates a
market structure characterized by the interlinking of semi-product components

A group of retail outlets owned by one firm and spread nationwide or worldwide.
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in a vertical chain. Secondly, the concept of horizontal outsourcing emerges,
where companies leverage external services and products to streamline their
operations and meet end-product requirements.

This paper addresses the above situation in question by setting up a retail
chain game of the participants in the chain grounding on supposition that orders
and deliveries be met with uncertainty of transaction costs. In so doing, the
paper attempts to develop a numerical description of the supply and demand
structure for the deliveries of commodities in the retail chain. The allegedly
rational behavior of a participant is not always such, because the participants on
purpose may attempt to enter but irrationally into certain losing transactions in
hope to offset the negative effect of the former. Given this irrational situation
the prices will increase additionally upon already profitable transactions.
Numerical analysis of irrational situations reveals, however, that in case the
participants will try to avoid all losing transactions, their behavior is once again
becoming rational and in such situations the participants of the retail chain will
end up in the Nash equilibrium (1953).

To our knowledge (or lack of that), the retail chain formation, or in mun-
dane terms the restructuring process of the retail chain is rather complicated
mathematical problem, which do not have satisfactory solutions. However, in
recent years it has become clear that a mathematical structure known as antima-
troid is well suited for such type a retail chain formation process (cf. Algaba, et
al, 2004). Antimatroid is a collection of potential interests groups — subsets of
participants, i.e., those who make decisions to buy and sale in bilateral trade
transactions. That is to say, within antimatroid one will always find a path of
transactions connecting members of the retail chain — if the latter forms of
course — with each other by mutual business interests inside groups/coalitions
belonging to antimatroid and making the exchange as participants of a charac-
teristic retail chain.

We step up beyond convention of the theory of coalition games that the
solution mandatory has to be a core, and take the retail chain formation process
in terms of so-called defining sequence of transactions (Mullat, 1979). The
sequence facilitates the retail chain formation as a transformation process of
nested sets of bilateral transactions, which ends at its last and highest costs’
threshold — the most tolerant retail chain towards costs — a kernel. Hereby,
the kernel operates as a retail chain of participants capable to cover the highest
transaction costs in case of uncertainty. In our case, the defining sequence of
transactions produces the elements of an antimatroid — some interest groups,
cf. Levit and Kempner, (2001); see also (1991) Korte et al. The defining
sequence on antimatroid, in particular, follows the Greedy heuristic procedure
of Shapley’s value, but in inverse order, cf. Rapoport (1985).

Bearing all this in mind, the suggested framework allows performing a
series of computer simulations. First, to determine the possible response of the
retail chain participants, to different supply and demand structures. Second, to
identify the participants, where the executive efforts might be applied to pre-
vent unpredictable actions that may misbalance the equilibrium in the retail
chain. With this object, we used a model to assemble an “elasticity” measure
for the choice of customers; this measure is represented by transaction costs’
interval, for which the retail chain remains in equilibrium.
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The rest of this paper is structured as follows. The next section sets up the
basic concepts intending to bring at the surface the calculus of utilities of par-
ticipants in the retail chain. It is a preliminary step necessary to move forward
to the Section 3, where the general model of participants of the chain is de-
scribed. In Section 4, which is main part of the paper, the retail chain game of
customers addresses the process of the chain formation in details. Here the
monotonic property of utilities plays its major role. In Sections 5-6, we con-
struct different varieties of coalitions of retail network players that are “out-
standing” in the sense of rationality, and indicate relations between such coali-
tions. Also, constructive processes described in Section 7 for discovering these
outstanding players, described in additional Section 8. A summary of the
results ends the study. Appendix contains the proofs of all theorems.

2. DESCRIPTION OF A RETAIL CHAIN: THE SIMPLE FORM

To consider the simplest case of commodities distribution in a retail chain
might be instructive. This elementary model is used at current stage solely as a
convenient means of simplifying the presentation.

The distribution of commodities in the retail chain is characterized by sales
figures that may be expressed as one of the following three alternative num-
bers: a) a demand m which is disclosed to the particular participant either

externally or by other participant in the chain; b) a capable supply & calculated

at the cost of all commodities produced by the participant for delivery outside
the chain or to the other participants; c) actual sales y calculated at the prices

actually paid by the customers for the delivered commodities.

An order is thus defined as a certain quantity of a particular commodity or-
dered by one of the participant’s from another participant in the retail chain; a
delivery is similarly defined as a certain quantity of a commodity delivered by
one of the participant’s to another participant in the chain. We assume that the
chain includes suppliers who are only capable of making deliveries — the pro-
duces; participants, who both issue orders and make deliveries — the agents; and
the distributors, who only order commodities from other participants. *

In what follows we consider the retail chain of orders and deliveries for the
case like “pipeline” distribution without “closed circuits.” Therefore, we can
always identify a unique direction of “retail chain” of orders from the distribu-
tors to the produces via agents and a “retail chain” of deliveries in the reverse
direction.

Let us consider in more detail this particular retail chain of orders and de-
liveries of commodities. The direction of the chain of orders (deliveries) is
defined by assigning serial numbers — the indexes 1,2 and 3 — to the producer,
to the agent, and to the distributor, respectively. The producer and the agent act
as suppliers, the agent and the distributor act as customers. The agent thus has
the dual role of a supplier and a customer, whereas the producer only acts as a
supplier and the distributor only acts as a customer.

The distributors also act as suppliers to external customers.
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The chain of orders to the produces from the customers is characterized by
two numbers M,, and m,,. The number n_, (W =1,2;j= 2,3) is the demand

n,; disclosed by the customer ] to the supplier w . We assume that sales are

equal to deliveries. Two numbers &12 and 5',23, which are interpreted as the
corresponding capable sales similarly characterize the chain of deliveries to the
distributor.

Suppose that the demand of the distributor to the external customers is fixed
by d bank notes. The capable sales of the producer are s bank notes. In other

words, d is the estimated amount of orders from the external customers and it
plays the same role as the number 1 for the customers in the retail chain. Simi-

larly, s is the intrastate amount of estimated deliveries by the producer, and it
has the same role as & for the customers.

Let us now consider the exact situation in a chain. To make deliveries at a

demand amount of d bank notes, the distributor have to place orders with the
agent in the amount of 1,, = v, -d bank notes, where v,, are the distributor’s

cost of commodities sold (the cost per 1 bank note of sales). The agent, having
received an order from the distributor, will in turn place an order with the sup-
plier in the amount v, - 1,,, where v, is the agent’s cost per one bank note of

sales. On the other hand, the estimated sales of the producer are &,, bank
notes, &, =s . Assuming that all the transactions between the suppliers and

the customers in the retail chain are materialized in amounts not less than those
indicated in the purchase orders, the actual sales of the producer to the agent are

given by v, =min{&,,m,,}.

Now, since the agent paid the producer y!, for the commodities ordered, the

agent’s revenue is &, =Y,,/v,,, where clearly &, >7!,. The difference

between the revenue &, and the costs y;2 is defined as
!
T, ="n- (1 — Vi )/VIZ :

From the same considerations, v,, = min{ Em,nm} ? give the actual sales of

the agent to the distributor. We similarly define the difference
T, =7 -(l—v23 )/ V,,. The numbers w,, m, represent the profit of the

122 23

customers in the retail chain.

In subsequent sections, y’wj isreplaced by v, = yfw / V., - The numbers 7y and Y

differ in the units of measurement of the commodities delivered to the user _] . While

y’ represents the sales at the cost, Y represents the same sales at actual selling

prices.
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In conclusion of this section, let us consider the numbers w,, 7, more

closely. We see from the above discussion that the material costs are the only
component of the costs of commodities sold for the customers in the retail
chain; no other producing or transaction costs are considered. And yet in Sec-

tion 4 the numbers 7 ,, 7, are used as the admissible bounds on transaction

23
costs, which are assumed to be unknown. It is in this sense we construct a

model of a monotonic game of customers (Mullat, 1979, p.6).

3. DESCRIPTION OF A RETAIL CHAIN: THE GENERAL FORM

Consider now a retail chain consisting of n participants indexed w,
j=12,.,n . The state of a supplier W is characterized by a (m+ 1)-
component vector * <dw, yw> = <dw, nwykﬂ,...,nw? , (n —k =m); the state of

sj,xj> = <sj,ylj,...,yvj>. The
components of the <dw,yw> and <Sj,Xj> vectors are interpreted as follows: d

a customer j by a (Vv+1)-component vector

is the total orders amount of the supplier W acting as a customer; s, is the
capable sales total amount of the customer ] acting as a supplier; Ny is the
cost of orders placed by the customer j with the supplier w ; Y,; are actual
sales (deliveries) to customer j from the supplier W . As indicated in the foot-
note, v, represents the deliveries valued at the selling prices of the customer J
acting as a supplier. The vectors <dw,yw>, <sj,xj> are the order and the deliv-

ery vectors, respectively.

With each participant in the retail chain we associate certain domains in the
nonnegative orthants R™" of the (m+1) —and R"™ of the (v +1) — dimen-
sional space. These domains R™" and R are the regions of feasible values

of vectors <dw ,yw> R <Sj, Xj> in the (m + v + 2) — dimensional space.

For some of the participants vectors with y . > 0 are inadmissible, and for
some participants vectors with M >0 are inadmissible. Participants having
the former property will be called produces and those having the latter property
will be called distributors; all other participants in the retail chain will be called
agents. In what follows the numbers S (w =1,2,...,k) characterize the k
produces; the number S represents the capable sales controlled by the partici-
pant W . The numbers dj (j=v+1,v+2,..,n) correspondingly characterize
the T distributors: the number d j represents the demand to the external cus-

tomers (N —Vv =r1).

* Kk is the number of produces, see below.
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Let us now impose certain constrains on the admissible vectors in this retail
chain. The following constrains are strictly “local,” i.e., they apply to the indi-
vidual participants in the retail chain.

The admissible retail chain states are constrained by balance conditions
equating the actual sales from all the suppliers to a particular customer to capa-
ble sales of that customer acting as a supplier:

s,=> v, (j=k+Lk+2,..,n). (1)

We also require balance conditions between the cost of orders placed by all
the customers with a particular supplier and the demand figure of that supplier
acing as a customer:

d, =27 m, (Ww=12,.,v). @

As we have noted above, the retail chain considered in this article does not
allow “closed-circuit motion” of orders or deliveries until a particular order
reaches a producer or the delivery reaches a distributor. The indexes labeling
the participants in such chains are ordered in a way ° that if W is a supplier
and j is a customer, then w<j (w=12,...,v; j=v+1,v+2,..n). We
call such chains as of a retail-type, and their description requires certain addi-
tional assumptions.

Consider the constants o, 20 and ;>0 satisfying the following con-

straints (W < j;j=k +1,...,n):
Do, <l(j>ww=12..v), Y B, <I (3)
] m

For the supplier W , the number o, is the fractional cost of orders made to
the customer j. For customer j, the number = -d, -v  is the fractional

cost of the deliveries from supplier W , which are necessary for meeting the

sales target.

Suppose that purchase of orders in the retail chain move from distributors
through agents to suppliers. This chain is conducted at the wholesale prices.
The deliveries, also conducted at the wholesale prices of the chain in the oppo-
site direction. We express the effective wholesale prices by a set of constants
v, (w=12,.,v;j=k+Lk+2,.,n), which represent the participant’s

cost per one bank note of sales for a customer acting as a supplier.

The term topological sorting originates from Knuth (1972) to describe the ordering of
indexes having this property.
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The set of constants o, B, and v . make it possible to uniquely deter-

mine the amount of orders and deliveries in a given transaction. Indeed, the
amount of orders to the supplier W from the customer j is given by

N, =B,,-d, v, . The relation (see Section 2) determines the amount of deliv-

eries Y., = min {cﬁwj,nwj} , where §  =s_-a  are the capable sales values at
cost prices. Considering the difference in revenue from sales of customer ]
acting as a supplier, we conclude that the deliveries from the supplier W to the

customer j are given by Y = 'y'wj \Y%

wj *

In conclusion, let us consider one computational aspect of order and deliv-
ery vectors in a retail-type distribution chain. ® It is easily seen that the compo-
nents d., s, m, and y_ (W =1,2,...,v; j=k+1,k+2,...,n) as obtained

J w wj wj

from (1) and (2) are given by (W < j;j=k +1,...,n)
d, = Z[Swj dv (j>wiw=12,..,v) @)
s, = Zmin{sw o sBy, - d, -ij}/ij 5)

The input data in (4) is the demand of the distributors to external customers,

d

amounts S,,S s, of the produces, which together with the numbers

199900090

i.e., the numbers d .,d, . The input data in (5) are the capable sales

v Tve29°0

d,,d,,...,d, from (4) are used in (5) to compute the actual sales of customers.

4. A MONOTONIC GAME OF CUSTOMERS IN THE RETAIL CHAIN

In the previous section we considered a retail-type distribution in the chain with
participants indexed by w =1,2,...,v; j=k+1,k+2,...,n: the index j iden-

tifiers a customer, the index W identifiers a supplier.

Let us interpret the activity of the retail chain as a monotonic game (Mullat,
1979), in which the customers need to decide from what supplier to order a
particular commodity.

Suppose that in addition to the cost of materials, the customers bear uncer-
tain transaction costs in their bilateral trade with suppliers. Because of the un-
certainty of transaction costs, it is quite possible that in some transactions the
costs will exceed the gross profit from sales. In this case, the potentially feasi-
ble transactions will not take place.

% Here we need only consider the principles of the computational procedure.
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Let the set R represents all the potential transactions corresponding to the
set of suppliers from which the customer j is to make his choice. The choice of
the customer j (j=k+1,k+2,...,n)is a subset A’ of the set R:A'cR;
the case A* = is not excluded: it requires the customer’s refusal to make a
choice. The collection <Ak“,Ak+2,..., A"> represents the customer’s joint
choice. It is readily seen that the sets R, are finite and nonintersecting; their

union corresponds to set W=R_ UR,_ U...UR, .

In what follows, we focus on the criterion by which the customer j chooses

his suppliers A’ while the lowest transaction costs, as a threshold u’, in-
creases. In contrast to the standard monotonic game (Mullat, 1979), which is
based on a coalition formation, we will consider the strategy of individual cus-
tomers whose objective is to maximize the profit from the actual sales reve-
nues. We will thus essentially deal with m players’ game, m=n—k.

Let us first introduce a measure of the utility of a transaction between cus-

tomer ] and supplier w € A’ (j=k + 1,k +2,...,n). The utility of a transac-
tion between customer j and supplier W is expressed by the corresponding

profit T =7, -(1 —ij).

The utility of a transaction with a supplier we A’ is a function
Ttwj (Xk+l7X

choice A’ of the customer j, the number of variables is m =n —k . To estab-

k20

,X,) of many variables: the value of the variable X, is the

lish this fact, it is sufficient to show how to compute the components of the
Xn> . Indeed,
according to our description, a retail-type distribution in the chain requires
defining the constants o ; 20 and B, 20 (w=L2,...,v;j=k +1,...,n) that

order and delivery vectors from the joint choice <X X

k12 X290

satisfy the constraints (3). A pair of constants o, and Bwj can be assigned in a
one-to-one correspondence to a supplier w € R, rewriting (3) in the form

a, <L(w=12,.,v), Y B, <L(j=k+1,..,n) (6)

weR; weR,
If the constrains (6) are satisfied, then the same constrains are of necessity
satisfied on the subsets A’ of the set R, . Thus, restricting (4) and (5) to the
sets X. c R, the numbers y_ can be uniquely calculated for every joint
J J W

choice <X X

k+12 k+29°°°>

Xn> . Finally, let us define the individual utility criterion

of the customer j in the form:

I, = Z(nwj _uwj) (7)

weA!
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where u . are the customer j transaction costs allocable to the supplier
weA’; we define IT, =0 if the customer j refused to make a choice —
A’ = . The function 7 (X, ,X

wj

.,X,) has the obvious property of

k+29°°
monotone utility, so that for every pair of joint choices of customers

<Lk”’Lk*Z’”_,L“> and <G“‘,GM,...,G"> such that ' ¢ G’ (j=k+1,..,n)

we have

(L1, ) <1, (G, G*,...,G"). )

wj

The property of monotone utility leads to certain conclusions concerning the
behavior of customers depending on the individual utility criterion. Under cer-
tain conditions, rational behavior of customer j (i.e., maximization of the profit

IT,) is equivalent to avoid profit-loosing transaction with all the suppliers

w € A’. This aspect is not made explicit in Mullat (1979), although it is quite
obvious. Thus, using the lemma, see the English version at p.1473, we can

easily show that if the utilities 7t (..., X,,...) are independent of the choice X,
the customer j maximizes his profit I1, by extending his choice to the set-
theoretically largest choice. In what follows we will show that this result also
applies under a weaker assumptions.

Below we first start with a few reservations about the proposed condition —
see (9). This condition has a simple economic meaning: the customer J enter-

ing into loosing transactions cannot achieve a net increase in his utility of the
losses. For example, if for fixed choices of all other customers in the retail
chain, the utilities 7 _(...,X,,...) for w e X, are independent of the choice

X., the condition (9) hold as strict inequalities. These conditions are also
reduces to strict inequalities when, for instance, the capable sales & in each
transaction between customer j and supplier w € A’ is not less than the de-
mand M. so that every customer can receive the entire quantity ordered from
his suppliers. In particular, by increasing the producers’ supply s,,S,,...,S, with

unlimited manufacturing capacity, we can always increase the capable sales to
such an extent that it exceeds the demand, so that the conditions (9) are satis-
fied.

We can now formulate the final conclusion: the following lemma suggests
that each customer will make his choice so as to maximize the profit I j» pro-

viding all the other customers keep their choices fixed. ’

The joint choice of users having this property is generally interpreted in the sense of
Nash equilibrium (1953); see also Owen (1968).
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Let the suppliers not entering the set A be assigned indexes q =1,2,....
Then the profit l_Ij of customer _] is represented by a many-variable function
IT.(t,,t,,,...) with variables t_ varying on [O,qu] . ¥ The value of the func-
tion IT,(t,t,,,...) is the customer’s profit for the case when the customer ]
has extended the choice by placing orders in the amounts of t -dj -V, with
the suppliers q=1,2,... outside the choice A,. Thus, the customers j who
expand their choice A |, identify the suppliers q =1,2,... by the set of variables
t,.. Ifall t =0, the choice A, is not expanded and the profit I1,(0,0,...)

coincides with (7).
The profit function Hj(tlj,tzj,...) thus has to satisfy the following con-
straint: for every t_ in [O,qu] q=12,...

I, (t,,,t,,,-) <T1,(0,0,...). ©)

Definition. 4 joint choice <Ai*',..., A3> of the retail chain customers is
said to be rational with the threshold u° if, given an amount of transaction
costs not less than u’ >0 , the utility measure T > U’ in every transaction of

customer j with the supplier w e A’, j=k+1,..,n.

Lemma. The set-theoretically largest choice S° = <A§”,...,A2> among all
the joint choices rational with threshold 0° >0 ensures that the retail-type
distribution chain is in equilibrium relative to the individual profit criterion
1, under the following conditions: a) the transaction costs u_; for W € S° do

not exceed min T, over w €S’ N R, b) inequality (9) holds.

Proof. Let S° be a set-theoretically largest choice among all the joint choices

rational with the threshold u°, i.e., S° is the largest choice /4 among all the

choices such that T (HMR,..,HNR ) >u". Suppose that some customer

k+12°*

p achieves a profit higher than I by making the choice A € R, which is
different from S° () R ; l_[;, = ZWEN (TCWP(---:Ap»---) —uwp)> [T, , subject to

u’<u _<min_, 7w . Clearly, the choice A" is not a subset of S°, since

AP

We recall that qu is the fractional cost of all the orders placed with
supplier .
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this would contradict the monotone property (8), so that A” \ S° # . By the

same monotone property, the customer making the choice A* | (S" N RP) will
achieve a profit not less than H;j . On the other hand, all transactions in A”\ S°
are losing transactions for this customer, since S° is the set-theoretically largest

set of non-losing bilateral trade agreements tolerant towards the transactions

costs’ threshold u’®>0. For the customer p making the choice
AU (S“ N Rp) the profit H; does not decrease only if the total increase in
utility due to the contribution T, of the transactions w € S° () Rp exceeds
the total negative utility due to the transactions in A" \ S°. Clearly, because of

the constraint (9), the customer p has no such an opportunity. This contradic-

tion establishes the truth of the lemma. W

In conclusion, we would like to consider yet another point. With uncertain
transaction costs, the refusal to enter into any transaction may lead to an unde-
sirable “snowballing” of refusals by customers to choose their suppliers. It

therefore seems that customers will attempt at least to conclude transactions

with 7 >u’; even when there is some risk that the transaction costs will
exceed the utility 7. Thus, without exaggeration, we may apparently state
that the size of the interval [u",min Tcwj] reflects the elasticity of the cus-

tomer’s choice: the number min  —u® is thus a measure of a “risk” that the

customer will get into non-equilibrium situation. Clearly, a customer with a
small interval will have greater difficulties to maintain the equilibrium than a

customer with a wide interval.

5. RATIONAL COALITIONS IN MONOTONIC GAMES

In many-persons games (Owen, 1971) by a coalition we shall understand a sub-
set of participants. Among all coalitions we usually single out rational coali-
tions — a participant in such coalition extracts from the interaction in the coali-
tion a benefit, which satisfies him. In addition, sometimes it is further stipulated
that extraction of this benefit is ensured independently of the actions of the

players not entering into the coalition.
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The class of games proposed in this paper is subjected to an additional
monotonic condition, which has been studied earlier in Mullat (1976, 1977)
(although knowledge of the latter is not presupposed). There is no difference
between the formal scheme of the present paper and that of Mullat in essence;
the difference involved in interpretation is in abstract indices of interconnection
of elements of the system, which are understood as utility indices. The ap-
proach developed enables us to establish, in one particular case, the possibility
of finding rational coalitions in the state of individual equilibrium according to
Nash.

6. FORMAL DEFINITIONS AND CONCEPTS

We consider a set of n players denoted by . Each player jel (j= I,_n) is
matched by a set R, from which the player j can select elements. It is as-
sumed that the sets R are finite and do not intersect. Their union forms a set
W =R UR,U...UR . The clements selected by the player j from R,
compose a set A’ < R . The set A’ is called the choice of the player J , while
the collection <A],A2,...,A"> is called the joint choice. The case A* = is
not excluded and is called the refusal of K -th player from the choice.

We introduce the utility functions of elements w € A'. We assume that

certain joint choice <A’ ,Az,...,A“> has been carried out. Let there be uniquely

determined, with the respect to the result of the choice, a collection of numbers
7, >0 that are assigned to the elements w € A’,j=1,2,...,n; on the remain-

ing elements of W the numbers are not determined. The numbers w are

called utility indices, or simply utilities, and by definition, are in general case
functions 7 (X, X,,...,X ) of n variables. The value of the variable X, is

the choice A’ of the player J . We shall single out utility functions possessing

a special monotonic property.

Definition 1. 4 set of utilities T is called monotonic, if for any pair of

Jjoint choices <E,L2,...,U> and <G1,GZ,...,G"> such that I < G,
= (L,U,.., L") <=n (G',G’,....G") (10)

is fulfilled for any W € Lo, J =1,2,...,n

°  We note that fulfilment of (1) is not required for the element W & LJ . Furthermore,

even the numbers T themselves may not be defined for W & L.
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We now turn to the problem of coalition formation. We shall call any non-
empty subset of the set of players a coalition. Let there be given a coalition V,
and let its participants have made their choices. We compose from the choices

A’ of the participants of the coalition V a set-theoretic union H, which is
called the choice of the coalition V: H=U _,A"."

To determine the degree of suitability of the selection of an element
w e R for the player J, a participant of the coalition, we introduce an index
of guaranteed utility. With this aim we turn our attention to the dependence of
the utility indices on the choice of the players not entering into coalition. It is
not difficult to note that as a consequence of the monotonic condition of the
functions m_ the worst case for the participants of the coalition will be when
all players outside the coalition V reject the choice: A* =@, k ¢ V, so that
all elements outside H will not be chosen by any of the players who are capa-
ble of making their choices. In other words, the guaranteed (the least value) of
utility 7 of an element w chosen by a player in the case of fixed choices
H AR, ofhis partners in the coalition equals 7t (H M R,.,A,.,HNR)).
The quantity g (H)=min ,t (HNAR,..,A’,.,HNAR) is called the

guarantee of the participant j in the coalition V for the choice H .

We assume that according to the rules of the game, for each chosen element
w e A’ aplayer je V must make a payment u®. ‘It is obvious that under
condition of the payment u® the selection of each element w € A’ is profit-
able or at least without loss to the player j€ V if and only if > u®°. In the

calculation for the worst case this thus reduces to the criterion g (H)=u°".
In reality we shall be interested, in relation to the player j€ V, in all three
possibilities: a) g,(H) >u®,b) g.(H)=u® and ¢) g (H) <u®. We shall say
that a participant of the coalition V is above u®, on the level of u®, and be-
low U°, if the conditions a), b), and c) are fulfilled respectively. The size of
the payment is further considered as a parameter u of the game being de-

scribed and is called the threshold. We shall say that a coalition V , having
made a choice H, functions on the level u[H]=min_ g (H).

10" A choice H without indication about the coalition V , which has affected it, is not
considered, and if somewhere the symbol V is omitted, then under a coalition we
understand a collection of players such and only such for which H MR | # .
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Definition 2. 4 coalition V is called rational with the respect to a thresh-
old u® =u[H] if for a certain choice H all participants of the coalition are

not below u° while someone in the coalition K\U'V is below u° if any par-
ticipant k ¢ V outside the coalition V makes a nonempty choice A* # D .

The set of numerical values being attained by the function u[H] on rational

coalitions will be called the spectrum. Each value of the function u[H] will be

called the spectral level (or simply the level). The entire construction described
above will be called a monotonic parametric game on W .

Subsequently we will be interested in rational coalitions functioning on the
highest possible spectral level. It is obvious that the spectrum of each mono-
tonic game on a finite set W is bounded, and therefore there exists a maxi-
mum spectral level u* =max,_ u[H].

Definition 3. 4 rational coalition V' such that for a certain choice H' the
level u": u[H]=u" is attained is called the kernel of the monotonic paramet-

ric game on W .

Theorem 1. [f V. and V, are kernels of the monotonic game on W , then
one can always find the minimum kernel (in set-theoretic sense) V. such that

V. 2V, UV, . The proof is presented in the appendix.

1

Theorem 1 asserts that the set of kernels in the sense indicated by the binary
operation of coalitions is closed. The closeness of a system of kernels allows as

looking at the largest (in the set-theoretic sense) kernel, i.e., a kernel K© such
that all other kernels are included in it. From the Theorem 1 it follows the exis-

tence of the largest kernel in any finite monotonic parametric game.

The rest of the paper is devoted to the description of constructive methods
of setting up coalitions that are rational with the respect to the threshold u°,
including those rational with the respect to the threshold u", i.e., the kernels
coalitions. In particular, a method of constructing the largest kernel is sug-

gested.

7. SEARCH OF RATIONAL COALITIONS

We consider a monotonic parametric game with N players. Below we bring
together a system of concepts, which allows us constructively to discover
rational coalitions with respect to an arbitrary threshold U° if they exist. In the

monotonic game only a limited portion of subsets of the set W have to be
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searched in order to discover the largest rational coalition. With this aim in the
following we study coalitions V whose participants do not refuse from a
choice: for je€ V the choice A’ # . Such a coalition, which has affected a
choice H, is denoted by V[H]. From here on, for the motive of simplicity of
notation of guaranteed utility 7 (HNR ,...,A’,..,HNR ), where H is a
subset of the set W , we use w(w;H).

Definition 4. A sequence O of elements <0L0,0L1,...,0L > (m is the num-

m-1
ber of elements in W ) from W is said to be in concord with respect to the
threshold 1° , if in a sequence of subsets of the set W

(N,)N,..N, N, ),

where No=W, N, =N \a,, N =, there exists a subset N such
that:
a) The utility m(o;N,) <u® forall 1<p;
b) For each w € N the condition u° < 1(w;N ) is fulfilled, or, this being
equivalent, for each j€ V(N ) the condition u® < g (N ) Wis fulfilled.

A sequence O, in concord with the respect to the threshold U° , uniquely
defines the set N » - This fact is written in the form N(a)=N b

Definition 5. 4 set S° < W is said to be in concord with the respect to a
threshold 1° , if there exists a sequence O of elements of W , in concord with
respect to the threshold U° and such that S°=N(a), while the coalition

V(S°) is said to be in concord with respect to the threshold U° .

The following two statements are derived directly from Definitions 4 and 5.

A. In the case where the set S° =W is in concord with the respect to the
threshold u®, all players je I are not below u®: g (W)=u°.

B. If the set S°, in concord with the respect to the threshold u®, is

empty, then there exists a chain of constructing sets

(N,)N,,..N, ,N,),

m-1?

such that for each player je€l, commencing with a certain N, in all those

coalitions V(N,), t < i, where the player j enters, this player is below u°.

""" By definition g,(N ) =min (w;N)).

weN NR;
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Theorem 2. Let S° be a set that is in concord with respect to the threshold
u®. Then any rational coalition V functioning on the level not less than u°
makes a choice H, which is a subset of the set S°: H < S°. The proof is

given in the appendix.

Corollary 1. The set S°, in concord with respect to the threshold U° | is
unique. Indeed, if we assume that there exists a set S, in concord with the
respect to the threshold u°® and different from S°, then from theorem 2,
S' < S°. But analogously at the same time the inverse inclusion S' © S° must

also be satisfied, which bring us to conclusion that S'=S°.

Corollary 2. As the spectral levels of functioning of coalitions in the mono-
tonic parametric game grow, one can always find a chain of rational coali-
tions, included in one another and being in concord with respect to each in-
creasing spectral level, as with respect to the growing threshold.

Indeed, from the formulation of the theorem it follows that a rational coali-
tion, in concord with the respect to a spectral level A < L, satisfies the relation

V(S") © V(S"), since in a set-theoretic sense S > S*.

Below we arrange a certain sequence o , which use up all elements of W .
After the construction we formulate a theorem about the sequence o thus
constructed being in concord with respect to the threshold u®. The arrange-
ment proves constructively the existence of a sequence of elements of W that

is necessary in the formulation of the theorem.

Construction. Initial Step.

Stage 1. We consider a set of elements W . Among this set we search out
elements v, such that m(y,; W) <u®,  and order them in any ar-

bitrary manner in the form of a sequence 7,. If there are no such

elements, then all elements of W are ordered arbitrarily in the form

of a sequence o , and the construction is completed. In this case W
is assumed to be the set N(at) .

Stage 2. Subsequently we examine the sequence Yy,. When considering the
t-th element 7,(t) of this sequence 7,, the sequence
m (A'..,A", X A", A") is supplemented by the element
v,(t), which is denoted by the expression o <« <a,yo(t)>, while
the set W is replaces by W \ o . After the last element of 7y, is

examined we go over to the recursive step of the construction.
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Recursive Step k.

Stage 1. Before constructions of the k -th step there is already composed a
certain sequence o of elements from W . Among the set u°® we
seek out elements y, such that m(y,; W \ o) <u® and order them
in any arbitrary manner in the form of a sequence f,(H) =. Analo-

gously to the initial step, if there happen to be no elements v, , the
construction is ended. In this case in the role of the set N(a) we
choose W\ o while o is completed in an arbitrary manner with

all remaining elements from W .

Stage 2. Here we carry out constructions, which are analogous to stage 2 of
the initial step. The entire sequence of elements Y, is examined ele-
ment by element. While examining the t -th element y, (t) the se-
quence o is complemented in accordance with the expression
o« <a,yk(t)>. After examining the last element v, (t) of the se-
quences Y, we return to stage 1 of the recursive step.

On a certain step p, either initial or recursive, at stage 1 there are no ele-
ments Y, which are required by the inequalities (2) or (3), and the construction
could not continue any more.

Theorem 3. 4 sequence O, constructed according to the rules of the proce-

dure is in concord with the respect to the threshold U° . The proof is presented
in the appendix.

In the current section, in view of the use, as an example, of the concepts just
introduced, we consider a particular case of a monotonic parametric game in
which the difference in the individual and cooperative behavior of the partici-
pants of the coalition is easily revealed. We assume that the utilities

T (AL, AT X, AT AT

do not depend on Xj in the case that choices specified by the remaining play-

ers are fixed. In this case the j-s participant of the coalition V , under the con-

dition that the remaining participants of it keep their choices, can limit his
choice X, to a single element w'e R, on which the maximum guarantee

max . g (H) is attained. However, such a selection narrowing his choice

down to a single-element, generally speaking, reduces the choice (in view of
monotonicity of utility indices 7 ) to the guarantee of the remaining partici-

pants of the coalition. Consequently, individual behavior of the participants of a
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coalition contradicts their cooperative behavior. In spite of this contradiction, in

the general case, in the given case, using the concept of a rational coalition
V(S°) in concord with respect to the threshold u®, and having slightly modi-

fied the criteria of “individual interests” of the players, we can convince some-
one that there always exists a situation in which the individual interests do not
contradict the coalition interests.

We define the winnings of the j-th participant of the coalition in the form of

the sum of utilities after subtraction of all payments u°, i.e., as the number
f.(H) = ij [n(w; H) - uo]

(the winnings f, for k ¢ V are not defined). Having represented H as a joint
choice <A1,A2 s Al V‘> , we can consider the behavior of each j-th participant

as player in a certain non-cooperative game selecting a strategy A'.

The situation of individual equilibrium in the sense of Nash (Owen, 1971) of
the participants of the coalition V in the game with winnings fj is defined as

their joint choice U, Al = H" such that for each je V
f(AL., AT ALAM LAY < (H)

for any A’ R . In other word, the situation of equilibrium exists if none of
the participants of the coalition has any sensible cause for altering his choice

A! under the condition that the rests keep to their choices.

Not every choice H of participants of the coalition V is an equilibrium

situation. To see this it is sufficient to consider a choice H such that in the
coalition V there are players having chosen elements w € A’ with utilities
n(w;H) < u®; for the selection of such an element the player pays more than

this element brings in winnings f (H) and, therefore, for the player, proceed-

ing merely on the basis of individual interests, it would be advantageous to
refrain from selection of such elements. Refraining from the selection of such
elements of the set H is equivalent to non-equilibrium of H in the sense of
Nash.

Lemma. Let the utilities ©(w;H) be independent of A'. Then a joint
choice S° of the participants of the rational coalition V(S°), in concord with

the respect to the threshold 1° , is a situation of individual equilibrium.
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Indeed, according to Theorem 2, S° is the largest choice in the set-theoretic
sense among all choices H of the rational coalition V(S°), where for any

w € H the relation m(w;H)>u® is fulfilled. Let the choice of the partici-
pants of the coalition with an exception of that of the j'th participant be fixed.
Since the utilities m(W;S°) do not depend on A’, the j™ participant of
V(S°) cannot secure an increase in the winnings f.(S°) either by broadening

or by narrowing his choice in comparison with R, M S°.

8. COALITIONS FUNCTIONING ON THE HIGHEST SPECTRAL LEVEL

We consider the problem of search of the largest kernel. First of all we present
some facts, which are required for the solution of this problem.

From the definition of the guarantee gj(H) of the participant J effecting

the choice H we see that the equality g,(H)=min__ n(w;H))

weA’

is fulfilled. Hence, according to the definition of the level u[H] of functioning
of the coalition V(H) it follows that u[H]=min__ n(w;H)

weH

If we carry out a search of the subset H' of the set W on which the value
of the maximum of the function u[H] is achieved, then thereby the search of a
coalition functioning on the highest level u" =u[H] of the spectrum of a
monotonic parametric game is affected. Without describing the search proce-
dure, we give the definition of a sequence of elements W allowing us to dis-
cover the largest (in the set-theoretic sense) choice H™ of the largest coalition —
akernel K.

m-1

Definition 6. 4 sequence Ol of elements <0L0,0Ll,...,(x > (m is the number

of elements in W ) from W is called the defining sequence of the monotonic
game, if in the sequence of sets

(N,,N,..N,_,N)

there exists a subsequence <F r ,Fp> such that:

P EA

a) for any element ao. €l \T,, of the sequence o the utility
n(a;N)<ul ] (k=0l,..p-1);

b) in the rational coalition V(I')) no sub-coalition exists on a level

above u[I ].

p

"2 The given sequence is constructed exactly in the same way as the one in
Definition 4.
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From the Definition 6 one can see that the defining sequence in many ways
is analogous to a sequence, which is in concord with the respect to the level
u®. Since any rational coalition V(') functions on the level u* =u[l ], it is
not difficult to note that the defining sequence O composes strictly increasing
spectral levels u[l' ] <u[l}]<...<u[l] of functioning of rational coalitions

V(I',) in the monotonic parametric game. As a result, we require yet another

formulation.

Definition 7. 4 rational coalition V C 1 is said to be determinable, if there
exists a defining sequence O of elements W such that among the choices of
this coalition there is a choice I' composed by . according to Definition 6.

Theorem 4. For each monotonic parametric game a determinable coalition
exists and is unique. Among the choices of the determinable coalition there is a

choice on which the highest spectral level U" is attained. The proof of the
theorem is presented in the appendix.

Corollary to Theorem 4. The concepts of a determinable coalition and the
largest kernel are equivalent.

Indeed, directly from the formulation of the Theorem 4 we see that a deter-
minable coalition always is the largest kernel. Hence, since a determinable
coalition always exists, while the largest kernel is unique, it follows that the
largest kernel coincides with the determinable coalition.

Thus, the problem of search of the largest kernel is solved if we construct a
defining sequence @ of elements W . The construction of @ can be effected

by the procedure of discovering kernels (KFP) from Mullat. In conclusion we
present yet another approach to the concept of “stability” of a coalition. "

Definition 8. 4 coalition V is said to be a critical, if for a certain choice

A A

H of it no coalition V having a nonempty intersection with the coalition V

A ~

functions on a level higher than W[H]. The level 0 = u[H] is called the criti-

cal level of the coalition \% , While the choice H is called its critical choice.

From the Definition 8, in particular, it follows at once the uniqueness of the
critical level of the coalition V . Indeed, on the contrary, if were two different
levels U' and 4", G’ <0", then 4" could not be a critical one according to the

definition: it is sufficient to consider the coalition V =V itself with the choice

H", which ensures 0" >0'.

' This approach is close to the concept of “M-stability” in cooperative n-person games,
G. Owen.
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It is obvious that kernels are critical coalitions. The inverse statement, gen-

erally speaking, is not true; a critical coalition is not necessarily a kernel.

We now consider the following hypothetical situation. Let V be a critical

coalition and let ﬁ be its critical choice. We assume that this coalition is ra-
tional with respect to the threshold u°®;i.e., u® <u[H] (see Definition 2). We

A

assume that an increase of the threshold u® up to the level u®>u[H] took
place and the critical coalition V with the critical choice H was transformed
into unstable coalition with respect to the higher threshold U° . Let the partici-
pants of the coalition % preserving the stability of the coalition attempt to

increase their guarantees. One of the possibilities for increasing the guarantee
of a participant j, € V is to refrain from the choice of an element o, € A* on

which the value g, (H) - the minimum level of utility guaranteed for him, see
(4), is attained. It is natural to assume that a participant with a level of guaran-
tee g, (ﬁ) = u[ﬁ] <u® will be among the participants attempting to increase
their guarantees, and refrains from the selection of the element Ol indicated
above. It may happen that the refusal of O, gives rise, for another participant
J, € V(I:I \'a,), to a decrease from his guarantee g, (ICI) > u[I:I] to the quan-
tity g, (ﬁ \o,) < u[ﬁ] . A participant j, € V(ﬁ \ a,), acting from the same
considerations as j,, refrains from the selection of an element o, on which
g, (ﬁ \a,) is attained. Such a refusal of o, can give rise to subsequent refus-
als, and emerges hereby a chain of “refusing” participants (j,,j,,..., of the
coalition V.

If a coalition V, rational with respect to the threshold u® in the sense of
Definition 2, with the choice H became unstable as the threshold u®
increases, then such a coalition, generally speaking, disintegrates; i.e., some of

its participants may become participants of a new coalition which already is
rational with the respect to the increased threshold U° . By definition of a criti-
cal coalition, transaction of its participants into new rational coalition, when the
threshold U° increases is not possible, and it disintegrates completely. The
theorem presented below and proved in the appendix reflects a possible charac-
ter of complete disintegration of a critical coalition in terms of the hypothetical

system described above.



Retail Chains 147

Theorem 5. Let there be given a critical coalition V having a nonempty
intersection with a certain coalition V : ¢ . Let H be the choice of the coali-

tion V and H the critical choice of the coalition V . Then in the coalition

VAV there exists a sequence of its participants 3= <j0,j] ,...,jH> such that:
a) in the sequence 3 there are represented all participants of the coalition
VAV (the players j, may be repeated, t is number of elements in HUH ;

b) for the sequence 3 we can construct a chain of contracting coalitions
(V(N,),V(N)),.... V(N,)),

where N, = AuUH , N, ©N,, so that for any j€V, commencing from a
certain N, in all those coalitions V(N,), t <1, into which the player j en-

ters, this player is not above u[I:I] .

9. FINAL REMARKS

The article is a comprehensive journey that begins with an exploration of the
complex dynamics that govern the distribution of goods within the intricate
framework of retail network. Here goods move through the network of transac-
tions aimed at maximizing participants’ respective profits, from producers as
sellers to distributors as both, buyers and sellers, and at last to consumers pur-
chasing solely for consumption.

Central to this dynamic journey is a pricing system carefully structured
around constants that serve as fundamental percentages. These constants are
then recalibrated to facilitate the calculation of selling prices, ensuring that they
are sufficiently superior to purchase prices to provide satisfactory results for
participants seeking to optimize their profitability. However, despite this seem-
ingly simple structure, the pricing system becomes increasingly complex with
the introduction of transaction costs. These costs, once integrated into buying
and selling decisions, introduce a new level of complexity, fundamentally
changing the behavioral landscape of participants. Suddenly, transactions that
were once considered potentially profitable now carry the risk of loss, forcing
participants to recalibrate their strategies and decision-making processes
accordingly.

Zooming out to a global perspective, the paper scrutinizes the nuanced in-
terplay between transaction costs and their thresholds, meticulously ranging
from low to high values. This analysis unveils a stark reality: as transaction
costs escalate, allegedly profitable transactions within bilateral trade agree-
ments plummet into the realm of unprofitability, rendering them futile for ra-
tional participants seeking mutually beneficial agreements.
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In response to this shifting paradigm, the structure of the retail chain under-
goes a remarkable metamorphosis. With each increment in the transaction costs'
threshold, the chain evolves into a complex tapestry of nested sets, each tier
adeptly equipped to counteract the mounting pressures of higher transaction
costs while steadfastly maintaining equilibrium.

Central to sustaining this delicate equilibrium is the imperative that all par-
ticipants within the retail chain steadfastly avoid engaging in unprofitable
transactions. To achieve this, the formation of the retail chain is imbued with a
sophisticated mechanism, incorporating elasticity intervals tailored to the nu-
ances of transaction costs. These intervals serve as a beacon of rationality,
guiding participants through the intricate maze of buying and selling decisions,
meticulously encoded into the scheme and individually calculated for each
participant within the chain.
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APPENDIX

Proof of Theorem 1. Let the level u" be attained for the coalitions V, and

"] and

1

V, , which effect the choices H, and H, respectively; i.e., u* =u[H
u" =u[H]]. For player jel we consider two choices: H =H MR, and
H, =H, "R, By the definition of guarantee g,(H;) for the participant

je V' of the coalition we have

min__ wt (H,H,...H)) =g (H) > u"; (Al)
for the participant J € V; we respectively have

min__ T, (H),H,..,H))=g (H))>u". (A2)

' We note that, in the worst case, for player k ¢ V' (k ¢ V), H' =&
k
(H, =9
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We determine the choice of a participant je V' UV, as ®' =H! UH!.

1 2
The monotonic property (1) allows us to conclude that the following inequali-

ties are valid:
min _ 7 (®',®%,..,®")2min _ n (H,H,..H); (A3)

min _ 7w (O',®°,...,®")>min  n (H,H.,.,H)). (A4)
Combining (A1) — (A4), we obtain
: 1 2 n
mmwemjnw(q) ,0°,...,0")>u" (A5)

forany je VI UV, .Ifby @ we denote the set H, U H;, then for the coali-

1

tion V, UV, affecting the choice @ the inequality (A5) is rewritten in the

1
form

g(@)>u", jeV UV, (A6)

1

Due to the monotonic property (1) some elements w ¢ @ (if one can find
such) may be added to @ while the inequality (A6) is still true '>. We will
denote the enlarged set by ®@°: ®° 5 @ and obviously for V° = V(®°) we

have V(®°) 2 V' UV, . By the definition of a spectral level U", for the par-

1
ticipant j' € V°, on which u[®°] is attained, we have
g,(®°) =u[@]<u”, (A7)
since U" is the maximum spectral level of functioning of coalitions in the
monotonic game. Applying (A7) and (A6) to the choice D for the participant
]= j’, we see that g, (®°)=1u", and the coalition V* D V: UVZ*

functions on the spectral level U" . The theorem is proved. B

Proof of Theorem 2. Let S° is a subset of the set W in concord with the
respect to the threshold u°; i.e., there exists a sequence O, in concord with
the respect to the threshold u®, such that S°= N(a). We assume that there

exists a coalition V affecting a choice H = S° and functioning on the level
u[H]>u°, H\S°#J. Let o, e H\'S® and let o, be an element,

which is leftmost in the sequence O . Let P be the index of the set N , inthe

sequence (N, N,...,N
quently:

Nm>. It is obvious that t <P and, conse-

m-12

(o, ;N,)<u® (A8)

P we suppose that such elements cannot be added to (O0
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in accordance with a) of the Definition 4. Since the game being considered is
monotonic, O, € H and HC Nt there must hold

(o ;H)<n(a;N,). (A9)
From inequalities (A8) and (A9) it follows
m(a,;N,) <u° <u[H] (A10)

(the latter < by assumption). According to the inequality (A10) and by the
definition of u[H] we have

n(a,;H) <min_ g (H). (A11)

Let the element o, be chosen by a certain q-th player; ie., o, € A®,
g € V. On the basis of (A11) we assume that

n(a,;H) < gq(H) (A12)

is valid. By definition g (H)=min__ n(w;H) and following (A12), we note

weA!

that m(o;H) <min _ m(w;H). The last inequality is contradictory, what
proves the theorem. B

Proof of Theorem 3. We assume that the construction of the sequence Ol
according to the rules of the procedure ended on a certain P-th step. This

means that o is made up of sequences y, (k= Tp) , and also of elements of
the set N, found according to the rules of the procedure and being certainties

for the sequences Y, . We consider any element o, of the sequence thus con-

structed, being located on the left of the o -th element: i <p. The given ele-

ment in the construction process falls into certain set Yy . By construction
(o ;W\ {y, Uy, U..UY ) <u’. (A13)

If to the sequence (Y,,Y,,...,¥,,) We add the elements y_, which in & are
on the left of the a, -th. Then, this set of elements together with the added part
Y, composes the complement ﬁi up to the set W (see Definition 4).

On the basis of the monotonic property (1) we conclude that
(o WAy, Uy, v..Uy 2 (o WAN) =m(o;N). The last rela-
tion in the combination with (A13) shows that m(a,N,) <u®. From the con-
struction of the sequence @ it is also obvious that for any je V(N ) the

guarantee g (N )= u®. The theorem is proved. ®
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Proof of the Theorem 4. Theorem can be proved as follows. First, a se-
quence a , in concord with respect to the highest spectral level u*, in the

monotonic game exists, according to Theorem 3, and is, at the same time, a

defining sequence; as the subsequence <FO,F],...,FP> in this case we have to
choose the sequence <W,S”>, where S" is a set S* ¢ W which is in concord
with respect to the highest level u". The determinable coalition is V(S*). The
uniqueness of the coalition V(S") is proved in Corollary 1 to the Theorem 1.
Secondly, the choice S" of the coalition V(S"), playing the part of the set I
in the Definition 6, attains the maximum of the function u[H], a fact which
follows from Theorem 3 and b) of Definition 6; i.e., u[S"]=u". Thirdly, the
last statement of Theorem 4 is a particular case of the statement of Theorem 2,

if we put U° =1u" . The theorem is proved. ®

Proof of the Theorem 5. We consider a monotonic game of participants of
a coalition VUV on the set HUH , where H is the critical choice of the
critical coalition \Al, and H is some choice of the coalition V . Below we note
the set HUH by (2, while all concepts refer to a monotonic sub-game on €.

Let u® be the threshold of the parameter u of the game on Q, and let
u®>u[H]. We construct a sequence o of elements €2, which is in concord
with respect to the threshold u®. Two variants could be represented: 1) the set
S°, in concord with the respect to the threshold u® is empty; 2) S° is not
empty. We consider them one after the other. First, in the variant 1) from a
sequence of elements o of elements of € in concord with respect to the
threshold U°, we uniquely determine a sequence of participants of the coali-
tion VUV choosing elements o, from sequence o and composing a certain
chain ]= < JooJioeres jH> (r is the number of elements Q). Secondly, from the
sequence 0 we also uniquely determine the sequence of coalitions
(V(N,),V(N)),..,V(N_,)), where N, =Q, N_=N\o, with
Jj,€VIN)).

In the second variant none of the participants of the coalition V canbeina
coalition, which is in concord with the respect to the threshold u®>u[H].
This would contradict the definition of a critical coalition V . Therefore in the

chain _] thus constructed of participants of the coalition VuVv (by the same
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method as in the first variant) all participants of the coalition V are on the left
of the jp -th player; p is uniquely determined from the sequence o (see Defi-

nition 4). By property a) of the Definition 4 and from the definition of the guar-
antee of a player j, € V(N,) we have

g, (N) < m(a;:N,) <u°. (A14)

Proceeding from the structure of the spectrum of a monotonic parametric
game on {2 (see Corollary 2 to the Theorem 2) the value U° marginally close
to U[ H] is satisfied successfully in the two variants considered. The first vari-

ant of the Theorem 5 forms the statement b) derived earlier from Definition 4
and 5 (see section 2). The second variant of the statement of the theorem is
directly derived from the relation (A14). &
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! In the book review of Ménard and Shirley, (eds., 2005), noticed that

North and Williamson stress, besides transaction costs, the role of bounded ration-
ality, uncertainty, and imperfect rationality. Their objects of research differ: Nor-
thian NIE focuses on macro institutions that shape the functioning of markets, firms,
and other modes of organizations such as the state (section II) and the legal system
(section II1). Williamsonian NIE concentrates on the micro institutions that govern
firms (section IV), their contractual arrangements (section V), and issues of public
regulation (section VI). Both the Northian and Williamsonian approaches to the NIE
are used, i.e., in development and transformation economics: in efforts towards ex-
plaining the differences of exchange-supporting institutions (section VIII).

It is worth to emphasize, in view of the above, when the player j€ V must
make a payment u° for the element w € A’, the payment is well suited in the
role of transaction cost. Indeed, in economics, transaction costs refer to the
expenses incurred during an economic exchange. For instance, when buying or
selling stocks, individuals typically pay commissions to brokers, which are
transaction costs. Similarly, purchasing a banana involves not only the banana's
price but also the energy, effort, and time spent on deciding which banana to
buy, traveling to the store, waiting in line, and completing the payment. These
additional costs beyond the banana's price are transaction costs. Considering

transaction costs is crucial when assessing potential transactions.



The image entitled "Data Analysis" features a complex network graph
with numerous interconnected nodes. The varying sizes and densities
of the nodes suggest different levels of connectivity and importance
within the network, indicating the analysis of complex data relation-
ships, possibly in fields such as social networks, communication pat-
terns, or big data analytics. The visual representation highlights the
interconnected and intricate nature of the data being analyzed.
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On The Maximum Principle for
Some Set Functions '

Abstract. This article explores the challenge of identifying extrema for functions across
all subsets of a broad or generalized finite set. The approach outlined herein unveils
exceptional subsets, with a key aspect being the specification of certain indicators for
each subset and its elements. These indicators, akin to accounting data or weights, ad-
here to monotonicity conditions—a pervasive concept in real-world scenarios spanning
technology, human endeavors, and econometrics. For instance, optimizing the placement
of fundamental transition radio stations to enhance radio signal performance across
expansive geographical areas exemplifies the application of such indicators. Conversely,
adapting communication lines to effectively mitigate failures presents another perspec-
tive. Platforms like Facebook utilize metrics such as the number of individuals in the
Famous People list or engaging with Daily Messages, demonstrating how indicators
facilitate the identification of popular content or trends. Monotone indicators likely help
in gauging factors such as citation counts, reader engagement, or impact metrics, which
contribute to determining the popularity or significance of articles. Moreover, a wide
array of survey types and potential indicator domains underscores the versatility and
practicality of monotonicity-driven approaches. The exploration of additional areas
where indicators exhibit monotonic properties further enriches the scope of applications.
Keywords: classification; graphs; convex functions; algorithm

1. INTRODUCTION "B

In our study, we consider the problem of finding the global extremum of a
function defined on all subsets of a given finite set. The described construction
algorithm was used to solve some problems of object classification using the
technique of homogeneous Markov chains. In general terms, the proposed con-
struction allows one to solve some problems on graphs, for example, to single
out, in a sense, “connected” subsets of the vertices of the graph. We formulate
the theoretical foundations of our construction in terms of transparent rules for
choosing subsets in a given finite set and some sequences of the same elements
of a finite set. The result will be extracting the extreme subsets.

" This idea at the moment, perhaps invisible from the first glance, is incorporated into

“Left- and Right-Wing Political Power Design” as political parties bargaining game.
Reg. “data analysis”, see also, J. E. Mullat (1976-1977) Extremal Subsystems of
Monotonic Systems, I, II, III, Automation and Remote Control, 37, pp. 758-766;

37, pp. 1286-1294; 38. pp. 89-96.
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The types of problems of similar nature have a combinatorial character and
do belong mostly to the discrete programming problems. Cherenin (1962),
Cherenin and Hachaturov (1965) have successfully solved a preeminent class
of similar problems on the finite sets. In the framework of these papers a func-
tions have been considered satisfying condition, which can be formulated as

follows. If ®, and @, are two representatives for subsets of a given finite set

then
f(o)+1f(0,) <f(o,vn,)+f(o,No,).

This condition with some reservation reflects the convexity of the function f .

The main property or requirement for the class of functions considered in
the manuscript is the assumption of the existence of some numbers or weights
that reveal for each element of a finite set the degree of its occurrence in the

subset. The degree of occurrence must satisfy conditions (1) and (2), see below.

Concerning the current investigation it is worthwhile also to pay attention to
Mirkin’s (1970) work. In this work, a problem of optimal classification is re-
duced to finding special “painting” on a non-ordered graph. The optimal classi-
fication there is characterized by some maximum value of a function, corre-
sponding in its form to the definition (1), however hereby we interpret (1) in a
different sense. We do not consider in our function definition a decomposition
of a given set into two non-intersecting subsets what was the main concern of

Mirkin’s work.

2. THE MODEL

Let {H} is a set of subsets of some finite set W . Suppose that we introduce a
T, function for each set H < W of its elements as arguments. Below by the
collection {RH} we entitle a system of weights on the set H . The main sup-

position concerning the weight systems {{ Ty }} is as follows:

p.1 the credential T} (o) of the element oL € H is a real number.

p.2 Following dependencies inhere between different credential, i.e., creden-

tial systems for different subsets of the set M : for each
element o0 € H and each B € H \ {OL} yields that

T (B) < 70y ().
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In other words, following p.2, the requirement is that a removal of an arbi-
trary element O from a set H results in a new credential system {TC Ho
and the effect of the removed element O on the credentials within the remain-
ing part H \ {OL} is only towards the direction of a decrease. We explain these

two conditions by examples from the graph theory, although there are examples
from other jurisdictions, however less convenient for a short discussion. Let
consider non-oriented graphs, i.e., graphs with the property when a relation of a
vertex X to Y implies a reverse relation of vertex Y to X.

Example 1. >’
Let W is a vertex set of a graph G. We define a credential system
{TEH} on each subset of vertexes H as a collection of numbers

{ Ty (OL)}, where the number T, (o) is equal to the number of vertexes
in H related to the vertex 0. The truthfulness of the pp. 1 and 2 is easily

checked, if one only remembers to recall that together with the removal of a

vertex O all connected to it edges have to be removed concurrently.

Example 2.
Let W is a set of edges in a graph G or the set of pairs of vertexes related

by the graph G . We define a credential system { RH} on arbitrary subset
H of edges in the graph G as a collection of numbers { Ty (OL)}, where
aeH and 7y (o) is a number of triangles in the set of edges H , con-
taining the edge OL. The number T, (o) is equal to the number of those

vertexes on which the set H resides such, that if X is a pointed vertex and
the edge Ol = [b,e], then it ensues that [b,X] € H and [e, X] eH.

2 Kempner Y., Mirkin B. and I. Muchnik (1997) have given another example in Mono-
tone Linkage Clustering and Quasi-Convex Set Functions, Appl. Math. Letters, v. 10,
issue no. 4, pp. 19-24. Mirkin B. and I. Muchnik. (2002) Layered Clusters of Tight-
ness Set Functions, Applied Mathematics Letters, v. 15, issue no. 2, pp. 147-151.

Yet another examples, Kuznetsov E.N. and 1.B. Muchnik, Moscow (1982) Analysis
of the Distribution Functions in an Organization, Automation and Remote Control,
Plenum Publishing Corporation, pp. 1325-1332; Kuusik R. (1993) The Super-Fast
Algorithm of Hierarchical Clustering and The Theory of Monotonic Systems, Data
Processing, Problems of Programming, Transactions of Tallinn Technical University,
No. 734, pp. 37-61; Mullat J.E., (1995) A Fast Algorithm for Finding Matching Re-
sponses in a Survey Data Table, Mathematical Social Sciences 30, pp. 195-205;
Genkin A.V. and I. B. Muchnik (1993) Fixed Approach to Clustering, Journal of
Classification, Springer, 10, pp. 219-240,.



158 Chapter VII

In the examples, we have exploited the fact, that a graph is a topological ob-
ject from one side and a binary relation from the other side. Let now consider
the following set function

f(H) = min,_, 7, (), (1)

where H C W . We suggest below a principle, valid for the subset H, on

which the global maximum of a type (1) function is reached. We formulate this
principle in terms of some sequences of the set W elements and the sequences
of the subsets of the same set W .

Let o0 = { Oy, Aysenny OLk_1} is a sequence of elements of the set W and

kZ‘W‘. We define using the sequence O a sequence of sets
H(@)={H,H,,...,H _ }:as H =W and H,,, =H, \ {a, }.

Definition 1. We call a sequence of elements O from the set W a defin-

ing sequence, if in the sequence of sets H(Ql) there exists a sub sequence

f = {FO,Fl,...,Fp} such that:

1°. The credential 7T} (OL i) of an arbitrary element, belonging to Fj , but

not belonging to Fj is strictly less than f(l_‘j 1 );

+1°

22 [ » there do not exists such a strict subset L that f(T" p) <F(L).

Definition 2. We call a subset H of the set W a definable, if there exists
a defining sequence such that H = Fp .

Below, we simply refer to the notification {TEH} as a credential system
with respect to the set H .

Theorem. On the definable set H the function f(H) reaches its global

maximum. The definable set is unique. All sets, where the global maximum has
been reached, lie within the definable set.

Proof. Let H is a definable set. Assume, that there exists L such that
f(H) <f(L). Suppose that L\ H # J, * otherwise we have just to proof

the uniqueness of H, what we will accomplish below. Let H, is the smallest

from the sets Hi (i = 0,1,...,1( —1) , which include in it the set L\ H .

From this fact one can conclude, that there exists an element £ € L such, that

* Here I symbolizes an empty set.
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lteH, ,but /¢H

conclusion ensues t < P . Inequality t < p disposes to an existence of at least

Moreover, in combination with L \ H# O the last

t+1°

one a subset in the sequence of sets I such, that

Ty, (0) <£(T)) )

and jZ t+1. Since / %Hm and Fj gHm are true, it follows that
(¢ Fj . Thus, the inequality

f()<f(T),) (€)

is valid as a consequence of the property 2° for the defining sequence.

Now, let / € L and the credential T, (?) is at the minimum in credential

system with the respect to the set L . Inequalities (2) and (3) allow us to con-
clude, that T, ()< LT (?). Above we selected H, on the condition that

Lc Ht . Hereby, recalling the main property p.2 of the credential system (the
removal of elements), it is easily to establish that TCL(K) < Ty, (0), ie., in

the credential system with the respect to the set L, there exists a credential,
which is strictly less than the minimal. We came to a contradiction and by this,
we have proved that on H the global maximum has been reached. Further, all
such sets, different from H, where the global maximum is likewise reached,
might really be located within H . It remains to be proved the uniqueness of
the definable set. In connection of what we proved above, one might suppose
that a definable set H' is located within H , however, proceeding with the line
of reasoning towards H' similar to those we proposed above for L, we con-
clude,that Hc H'. =

Corollary. Let {R} is a system of sets, where the function of type (1)
reaches its global maximum. Hereby, if H1 € {R} and H2 € {R} are
valid, then H, UH, € {R}.

Proof. Following the p.2 (the main property) f(H1) < f(H1 ) Hz):
but in addition f(H, UH,) <f(H,), consequently H, UH, € {R} .

Below we introduce an actual algorithm for constructing the defining se-
quences of elements of a set W . For the availability of the algorithm is ex-

posed in the form of a block-scheme similar to some extent of a computer pro-

gram.
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3. ALGORITHM °

a.l.

a.2.

a.3.

ad.

a.s.

a.6.

Let the set R = W and sequences O and B % be empty sets in the
beginning, and let the index 1= 0.

Find an element |l at the least credential with the respect to the set

R, record the value A = Tr (1) and constitute & = o, 3,1l and
thereafter B =0.

Exclude the element | from the set R and take into account the in-
fluence of the removed element |l € R on remaining elements, i.e.,
recalculate all values Ty, (B) forall Be R\ {},l}

In case, among the remaining elements there exist such 7Y, that
T (V) <A @)
compose a sequence from those elements Yy = { Y 1,y2,...,ys} and

substitute B = B,7 .
Substitute the set R =R\ {M} and the element L = Bi .1~ Return to

the a.3 in case the element [3,, is the element for the sequence [3 in-

creasing in this moment the index 1 by one.

In case, when the sequence O has utilized the whole set W , the
construction is finished. Otherwise, return to a.2 initializing first

i=0.

Let us prove that the sequence O just constructed by the proposed algo-

rithm is defining. We consider the sequence ﬁ(a) and let one selects in the

role of the sequence I those sets, which start by the element L found at the

moment the algorithm is crossing the step a.2. The fact of crossing the a.2 of
the algorithm guarantees, that the condition (4) is not valid before the cross was

occurred, and the element Bi 41 18 not in the sequence B at this stage. The

above guarantees as well the condition 1° fulfillment for the defining se-
quences. Suppose, that the condition 2° in the definition 1 do not hold, i.e., in

the last set Fp in the sequence 1", there exists such a subset L, that

Further developments, see Muchnik, 1., and Shvartser, L. (1990) Maximization of

generalized characteristics of functions of monotone systems, Automation and Re-
mote Control, 51, pp. 1562-1572,

® Hereby B = { Bsza---»Bi""}
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f(I,) <f(L). Let us consider the sequence B, which is generated at the

last crossing through the a.2 of the above-described algorithm and let A sym-
bolize the highest value among all such A . One has to conclude, that

7\.p < f(Fp ), and, from the supposition of an existence of a set L, we come

to the inequality A » < f(L). By the construction, the sequence O and to-

gether with the sequence E (both of them), which is generated at last crossing
though the a.2 of the algorithm has utilized all elements in W . Consequently,
we can consider a set of elements K in the sequence E, which start from the
first confronted element £ € L, where L < K . On the basis justified above,
we have T0 (ﬁ ) = Kp and, recalling the main property of the credential sys-

tem p.2 (the removal of elements), we conclude moreover that 7T, (£) < 7\.p

We reached to a contradiction and by that we have proved the property 2° of
the definition 1 for the sequence O . On that account, the construction of defin-
ing sequences is possible by the pointed above algorithm.

We emphasize the necessity of concretizing the notion of credential system
with the respect to a subset of a given finite set for solving some of the pattern

recognition problems, what should be the subject for further investigation.

In conclusion, we will point out, that the construction of defining sequences
has been realized in practice on a computer for one problem in graph theory,
related to an extraction of “almost totally connected” sub-graphs in a given
graph. The number of edges in such graphs has been around 10*.

LITERATURE

1. Cherenin, V.P., a). (1962). Solution of some Combinatorial Problems of optimal
Scheduling by the Method of Successive Computations, ”Proc. of Conf. on Ex-
perience and Prospective Applications of Mathematical Methods in Planning, (in
Russian), Isd. SO AN SSR, Novosibirsk, pp. 111-113;

b). (1962). Solution of some Combinatorial Problems of optimal Scheduling by
the Method of Successive Computations,” (in Russian), Scien.-Method Proc. of
econ.-math. seminar, publ. 2, LEMM and VC AN SSR, M.

2. Cherenin V.P. and B.R. Khachaturov, a). (1965). The Solution by the Method of
Successive Computations of some Problems in Plant Locations,
(in Russian), Implementation of Math. Methods and EVM in Econ. Investiga-
tions, Nauka, Uzb. SSR, Tashkent; b). (1965). The Solution by the Method of
Successive Computations of some Problems in Plant Locations, (in Russian),
“Econ.-Math. methods”, publ.2, Isd. “Nauka”, M.

3. Mirkin, B.G. (1970). The Classification Problem for Qualitative Data,
(in Russian), Math. Questions of Econ. Models Formation, Novosibirsk.



162 Chapter VII

NB! In his work “Cores of Convex Games” Shapley investigated a class of 1 -person’s
games with special convex (supermodular) property, International Journal of Game
Theory, Vol. 1, 1971, pp. 11-26. When writing current paper, in that time in the past, the
author was not familiar with this work and could not predict the close connection be-
tween the basic monotonicity property pp.1-2, see above, and that of supermodular
characteristics functions in convex games induce the same property upon marginal
utilities. We are going to explain the connection. We will consequently do it in
Shapley’s own words to make the idea crystal clear.

The core of a NN -person game is the set of feasible outcomes that cannot be improved
upon by any coalition of players. A convex game is one that is based on a convex set
function; intuitively this means that the incentives for joining a coalition increase as the
coalition grows, so that one might expect a "snowballing" or "band-wagon" effect when
the game is played cooperatively... In Shapley’s paper a coalition game is a function V

mapping a Ring of subsets from some set called a grand coalition N 1o the real num-

bers, satisfying V(@) =0. he Sfunction V is supperadditive if

v(IS)+v(T)<v(SUT),ic,al S TeN ,with SNT =0 .
It is convex if V(S) + V(T) < V(S O T) + V(S M T)
for all S, TeN, p.12.

In the standard form in game theory, the elements of N are "players", the subsets of

N are "coalitions"; V(S) is called the "characteristic function", which gives each
coalition the best payoff that it can get without the help of other players.

Supper-additivity arises naturally in this interpretation, but convexity is another matter.

For example, in voting situation Sand T , but not SNT , might be winning coali-
tions, causing "convexity" to fail. To see what convexity does entail, consider the func-
tion M :

m(S,T) = v(SUT) = v(S) - W(T),

as defining the "incentive to merge" between disjoint coalitions S and T . Thenitisa

simple exercise to verify that convexity is equivalent to the assertion that l’Il(S, T) is

no decreasing in each variable — whence the "snowballing" or "band wagon" effect
mentioned in the introduction.

Another condition that is equivalent to convexity (provided N s finite) is to require
that

vSU{ip) - v(S) < W(Tu{i})—v(T)

for all individuals 1€ N and all S - T - JV\{I} This expresses a sort

of increasing marginal utility for coalition membership, and is analogous to
"increasing the returns to scale associated with convex production functions in econom-
ics.”, p.13
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We return now back from the "expedition" into Shapley’s work and make some com-
ments. The latter condition, which is equivalent to convexity, is an exact, we repeat it
once again, an exact utilization of our basic monotonicity property pp.1-2. Set functions
of this type are also known in the literature as "supermodular". As it turns out now the
author knew such functions. To the knowledge of the author Cherenin was first who
introduced functions of this type already in 1948. Nemhauser et al, also used

V(S) + V(T) > V(S O T) + V(S M T) but an inverse property introduced in
1978 for computational optimization problems in "An Analysis of Approximation for
Maximizing Submodular Set Functions", Mathematical Programming 14, 1978, 265-
294. Shapley also notes the latter inverse property in connection with rank function of a

matroid known as "submodular" or "lower semi-modular." Besides, in Nemhauser et al
paper, the reader may find the proof of the conditions:

v(iS)+v(T)<v(SUT)+v(SNT) and
V(S |\ { l}) - V(S) < V(T O { 1}) — V(T) equivalency.

However, the connection between the convex games and the monotonicity
property pp.1-2 is invisible. Only recently Genkin and Muchnik pointed out
(not in the connection with game theoretical models, but actually in connection
with the problems of object classification, see “Submodular Set Functions and
Monotone Systems in Aggregation Problems LII,” Translated from Automat.
Telemekhanika No.5, pp.135-148, © 1987 0005-1179/87/4805-0679, Plenum
Publishing Corporation), that the functions family

Ty (o) =v(H)-v(H \ { OL}) represent a derivatives of supper-modular

set functions in the form just exhibited in Shapley’s work.

SUMMARIZING

In convex games, following the theory developed in this work from 1971, one can al-
ways find a coalition, where it members will be awarded individually at least by some
maximum payoff of guaranteed marginal utility, see the Theorem. We call this coalition
the largest kernel (nuclei) or the definable set. A good example and its like, is the Ex-
ample 1. Here, in economic terms, the marginal utility highlights the number of direct

dealers with the player 1€S (number of direct contacts, buyers, sellers, direct suppli-
ers, etc.). On the contrary, the Example 2 is not its like and goes beyond the Shapley’s
Convex Game idea.
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TALLINNA POLUTEHNILISE INSTITUUDI TOIMETISED
PROCEEDINGS OF TALLINN TECHNICHAL UNIVERSITY
OYEPKU 10 OBPOBOTKE MUHOOPMALIMU 1
®YHKLIMOHAJILHOMY AHAJIA3Y
SERIA A No. 313 1971
pp. 37— 44 UDC 51:65.012.122

O IIpunuune Makcumyma 11 HEKOTOPBIX
OyHKIM MHOXECTB

Pe3toMe. B craree paccMarpuBaercs 3ajada HaXOKICHHS SKCTPEMAIBHBIX TOYEK
GyHKIMY, 3alaHHOW Ha BCEX IIOJMHOXECTBaX KOHEYHOTO MHOXecTBa. Merox
nocrpoenuss ¢yHkuuu (1) NPUBOAMT K BBIACIEHUIO SKCTPEMANIbHBIX MHOXKECTB.
OcCHOBHass OCOOEHHOCTh METO/a IOCTPOCHUSI OCHOBAHA HA NPEINOJI0KEHUH, YTO I

Kaxzoro osiaemeHta Ol cymectByer Habop uucen {TEH(OL) , TOe H -

IMOAMHOXECTBO KOHCYHOI'O MHOXXECTBA U o e H °
1. BBEJEHHUE

B Hamiem uccieioBaHuM MBI paccMaTpUBaeM 3aJaqy HaX0XKJCHHUS TI100aTbHOTO
9KCTpeMyMa (YHKIIMH, 3aJaHHOIM Ha BCEX OAMHOXKECTBAX JAHHOTO KOHEYHOTO
MHOecTBa. ONMUCaHHBIA AJITOPUTM TMOCTPOSHUS MPUMEHSJIICS IJs pEeLIeHHs
HEKOTOPBIX 3a/1a4 KiIaccu(puKauy 00bEKTOB C MOMOIIBIO METOIA OJHOPOIHBIX
nernied MapkoBa. B oOmeM Buae mnpeanaraeMmas KOHCTPYKIHS ITO3BOJISIET
pemaTh HEeKOTOpbIe 3afadd Ha rpadax, HanmpuMep, BBIACIATH B HEKOTOPOM
CMBICIIE «CBSI3HBIE» TOAMHOXECTBa BepiinH rpada. Teopermyeckas ocHOBa
KOHCTPYKIMK (OPMYJIUPYETCS B TEPMUHAX CHCIUAIBHBIX NpPaBUI OTOOpa
MOCJIEIOBATEIFHOCTE TMOAMHOMXECTB JAHHOTO KOHEYHOTO MHOXKECTBAa H
HEKOTOPBIX ITOCIIEAOBATEILHOCTEH €ro JJIEMEHTOB, PE3YyJIbTaTOM KOTOPBIX
SBIIETCS U3BJICUEHHUE IKCTPEMATIBHBIX TIOJJMHOKECTB.

3agauu MOAOOHOTO THMA MMEIOT MM HOCAT KOMOWHATODHBIA Xapaktep U
OTHOCSTCS CKOpee BCero K 3aJadyaM JUCKPETHOTO MpOrpaMMHpPOBAHUS.
OrmpezeneHHBI Ki1acc MOMOOHBIX 33734 HA KOHEYHBIX MHOXKECTBAX YCIICIIHO
pemaercs B paborax YUepenmnna (1962), Uepennna m Xagaryposa (1965). B
paMKax 3THX paboT pacCMaTPHBAINCH (YHKIHH, YIOBICTBOPSIOLINE YCIOBHIO,
KOTOpOE MOXkHO C()OpMyIMpoBaTh cieylomuM obpasoM. Eciu @, u ®,

SABJSIFOTCA  ABYMs TIPCACTABUTCIIAMU IMOAMHOXECTB HAaHHOI'0O KOHEYHOTO
MHOXECTBA, TO

f(o,)+f(0,) <f(o,Vvo,)+f(o,No,).

ITO yCIIOBHE B HEKOTOPOIi CTEIIEHH OTPaKkaeT BRITYKIOCTh GyHkmmu f .
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'maBHBIM CBOWCTBOM WM TpeOOBaHHEM TMPEIBIBISCMBIM K paccMa-
TPUBaEMOMY B DPYKOIMCH Kiacca (GYHKIUH SBISIETCS IPEANONIOKESHHE O
CYIIIECTBOBAaHMU HEKOTOPBIX umcen uiu BecoB (credentials, ed.), BeISBISIOIIIMX
JUIS KQKAOTO BJIEMEHTa KOHEYHOI'O MHOXKECTBA CTENEHb €ro BXOXKICHHUS B
noJMHOXkecTBO. CTelnmeHb BXOXACHHS JOJDKHA YJOBJIETBOPSTH YCIOBHUSIM
. 1-2 (cM. Hibke).

OTHOCHUTENIPHO HACTOSIIECTO HCCICAOBAHUS CTOUT TaKkkKe OOpaTuTh
BHUMaHue Ha pabory Mupkuna (1970). B nanHol paboTe 3a/1a4a ONnTUMAaIbHOMN
KITacCU(UKAIMK CBOOUTCS K IIOMCKY CIICHMATIBHOW  «PAacKpacKkm» Ha
HeynopsgoueHHOM rpade. OnTumanbHas KiIacCU(pUKAIUS TaM  Xapak-
TEpU3yeTCss HEKOTOPBIM MAaKCHUMAJIbHBIM 3HAYCHUEM (QYHKIHH, COOTBET-
CTBYIOIIUM TIO CBOEMYy BHay ompeaencHuto (1), OMHAKO IpU ITOM MBI
unrepnperupyem (1) B mHOM cMbicie. Mbl He paccMaTpuBacM B HallleM
ompenencHur  (QYHKOMHM pa30MeHHE 3aJaHHOTO MHOXKeCTBa Ha  JBa

HETIePeCeKArOINXC sl TOAMHOXKECTBA, YTO OBLIIO OCHOBHOW 3amadeii MupkuHa
(cf., Vohandu & Frey, 1966, ed.).

2. IIPUHIMII MAKCUMYMA

IIycTs {H} MHO>KECTBO IIOJMHOECTB HEKOTOPOTO KOHEYHOIO0 MHOKECTBA
W . Hpennonoxum, uro Mbl BBOZEM (YHKIMIO T Ui K&KIOro wu3
snementos H C W ma coBokymuoctu moamuosxecTn {H} B KauecTBe
aprymentoB. Huxe nox nabopom {7y j MBI IOJPa3syMEBAaeM CHCTEMY BECOB

Ha  MHOXCCTBEC IIOAMHOXCCTB {{ TCH }} . OcHOBHOE TIPEAIOJIOKECHUE

OTHOCHUTEJIBHO BECOBBIX CUCTEM CJICAYIOIIEE:

m.1 Becom Ty (OL) semenra OL € H sBusercs neiictBurensHoe YUCIIO;
mn.2 Mexay pa3IuyHbIMH CHCTEMaMH BECOB {{ Ty }} JUISL  pa3sHBIX
MOAMHOXKECTB {H} Habopa {TE H }, CYIIECTBYIOT CJIEAYIOLINE

3aBUCUMOCTH. IUIA KaXxJaoro »sjeMeHra Ol € H u KaXXx10ro
BeH\ {OL} CNIpaBeTHBO: Ty, , B)<my(a).

Jpyrumu cnoBaMu, COTJIaCHO MMyHKTY 2, TpeOOBaHUE COCTOUT B TOM, YTOOBI
yJIaleHne TPOU3BONBLHOTO dIeMenTa Ol u3 MHoxectBa H mpusommmo 651 k

HOBOM CHCTEME BECOB { nH\a }, a BIIMSIHUEC YIAJICHHOI'O 3JIEMEHTA Ol Ha Beca

B ocrapmeiicst wactn H \ {OL} ObUI0 OBl TOJIBKO B HAIIPaBJICHUU YMEHBIIICHHUS.
INosichuM 3T JBa yCJOBHS Ha NpHUMEpax M3 TeopuH rpados, XOTd ecTb U
OpUMepbl U3 JApyrux o0OjacTeidl IO3HaHUSA, OJHAKO MEHee YyIOOHbIe I
KpaTKoOTo 00CykIeHus. PaccMOTpuM HeopHEHTHpPOBaHHBIE Ipadbl, T.e. rpadsl
CO CBOICTBOM, KOIJa OTHOLIEHHWE BEepUMHBEI X K Y BiedeT oOpaTHOe

OTHOIIEHHE BEPINIMHEL Y K X .
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Hpumep 1.
Iycre W — mHOXecTBO BepmmH Tpada G. M OIIpENEIIEM CUCTEMY
BECOB {RH} Ha KaxJa0oM moaMHoxkecTBe H Bepmmu kak HaGop umcen

{ Ty (OL)}, rae gucio Ty (OL) paBHO KosmuecTBy BepuiuH, B H cBazanubix

¢ BepmmHONH OL. MCTHHHOCTH T, 1 W 2 JIETKO TPOBEPSICTCS, €CIU TOJBKO
BCIIOMHUTb, YTO BMECTE€ C YIaJeHHEeM BepmHHbBI Ol JIOJDKHBI OBITh
OJTHOBPEMEHHO yJIaJIeHBI BCE CBSI3aHHBIE C HEl pedpa.

IIpumep 2.

Iycte W 510 MmHuOxectBo pebep B rpade (G mmm muokecTBO mHap
BepmmH, cszannbix rpagom (5. Ompenenum Becoyro cucTemy {TCH} Ha
npousBoibHOM ToamHOokectBe H pebep B rpade (G xak maGop wumcen
{TEH(OL)}, me o€H wu RH(OL) — KOJIMYCCTBO TPEYTOJIHHUKOB B
muOoxkecTBe pebep H, comepxammx peGpo OL. Uncio Ty (OL) PaBHO YHCITY

TeX BEpIIMH, HAa KOTOPHIX Haxoiutcs MHOxkectBo H, Takoe, uto ecrm X
BEpIIMHA YKa3blBaroIas Ha pedpo u pebpo O = [b,e], TO OTCIOJa CleryeT

aro [b,x]€H u [e,x]e H.

B nmpumepax Mbl Hcmonp30Basii  TOT (akt, uYTo Tpad SBISETCS
TOIIOJIOTUYECKAM OOBEKTOM C OJHOH CTOPOHBI M OWHAPHBIM OTHOLICHHEM C
JIpyTo# CTOpPOHBI. Teneps pacCMOTPHM CIEAYIOMYIO (QYHKITHIO MHOKECTBA

f(H)=min__, m,(a), (D)

rnie H - W . Huwxe wbl npenjaraeM MPUHIUI, CIPaBEAJIUBBIN I

nogvuoxkectBa H, Ha KoTopoM JoCTHraeTcs TIOGANBHEIA MAKCHMyM
¢ynknum tana (1). ChopMynupyem 3TOT NPHHIMII B TEPMUHAX HEKOTOPBIX

MOCJIEIOBATEILHOCTEN AIIEMEHTOB MHOXKECTBA W W TIOCJIEIOBATEIbHOCTEH
IIOJAMHO>KCCTB TOI'O )K€ MHOKCCTBA W .

ITycts o= { Ay, Olyyenns OLH} — IOCJIE0BATCIIBHOCTh  DJIEMCHTOB
muOxectBa W u K = ‘W‘ I[Ipu mOMOIIM TIOCTe0BaTeNbHOCTH Ol 3ajaHa
HOC/IeJOBATEILHOCTE ~ MHOYKECTB ﬁ(a) = { H,,H, ,...,Hk_1}, rae
H, =W H;,, =H, \{ai}'

Onpenenenne 1. HazoBeM nocnenoBaTebHOCTh Ol 3IEMEHTOB U3 MHOKECTBA
W onpenensromei, ecinum B HOCIENOBATENHOCTH MHOMXECTB ﬁ(a)

CYIIECTBYET MOAIOCIEN0BATENBHOCT 1 = {Fo NN o } TaKas, 4To:
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1°. Bec Ty (Oti) MIPOU3BOJILHOTO 3JIEMEHTA, MPUHAIEKAIIETO Fj, HO HE

IMIpUHAJIC)KAICTO Fj+l 5

CTPOTO MEHBIIIE f(G 1 ) 5

2° B Fp HE CYIIECTBYEeT TAKOTO CTPOTOr0 TOAMHOXKecTBa L., 4TO

£(G,) <F(L).

Onpenenenne 2. Hazoem noamuoxectso H muoxectsa W onpenemumpiv,
€CJIN  CYWIECTBYET OIPEHCIAONas IOCIEA0BAaTEIbHOCT a Takas, 4TO
H=T,.

Hwke MBI BHOBH BOCHOJIB3yEMCSI HAOOPOM { TEH} B BHJIE CUCTEMBI BECOB

IO OTHOIIECHHIO K MHOXXECTBY H .

Teopema. Ha ompenenumom mHoxectBe H  ynkims f(H) JIOCTUTaeT

CBOETO TI00ambHOTO MakcumyMa. OmnpenennMoe MHOXXECTBO €IMHCTBEHHO.
Bce MHOXecCTBa, B KOTOPBIX JOCTHTHYT TJIOOANbHBIA MaKCHMYM, JISKaT B
ONpEIEIIIEMOM MHOXKECTBE.

Joxkazatenscrso. Ilycts H onpenennmoe muoxkectso. ITpemmonoxkum, uro
cymectyer takoe L C W, uro f(H) < f(L). [Ipennonoxum, 4TO

L\H * @, B TIIPOTUBHOM CJlIyd4a€ HaM OCTa€TCsA TOJBKO J0Ka3aTb

CINHCTBCHHOCTD H , UYTO MBI U CACTIaCM HHXKE. HyCTB Ht €CTh HAUMCHBIIICC
N3 MHOXCCTB Hi (1 = 0,1,..., k - 1) , BKIIOYArOIIUX B cebs MHOXECTBO

L\H. U3 sroro Qakra MOXHO 3aKIIOYUTH, YTO CYHIECTBYET TAaKOM

snement £ € L , 4TO /e Ht , HO Y4 & Hm. bonee Toro, B coderaHmu c

MOCHIETHUM L \ H+Y HaIlpalluBaeTCsl BbIBO t< P - HepaBencTBo t< p
pacroyiaraeT K CyIIECTBOBaHUIO XOTS OBl OJHOTO TaKOTO IOJMHOXECTBa B

oCJICA0BAaTCIbHOCTH MHOXCCTB F , dTO

Ty, () <f(I) )

U j2t+1. Tax kak / EHM u Fj gHm BEPHBI, TO CIELYET, 4TO

(¢ Fj. Takum 00pa3oM, HEPABEHCTBO
f(r,) < f(T,) 3)

CIIPABCUIMBO KakK CJICACTBHUEC II. 2° onpez[enﬂfomeﬁ IMOoCJICA0BATCIIbHOCTH.
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Teneps mycThb { el wuBeca TEL(f) MHUHHMAJIBHEI B CUCTEME BECOB IIO

oTHOmEHHI0O K MHOkecTBy L. HepaBencTa (2) u (3) HO3BONSIOT CHENATh

BBIBOJI, UTO Uy (f) < TCL(K). Beimie mMbI BeIOpanu Ht IIPH YCJIOBHUH, YTO
t

L c Ht' HpI/I 9TOM, BCIIOMHHass OCHOBHO€ CBOMCTBO I.2 CHCTEMBI BECOB

(ynanenue 371€MEHTOB), HETPYJHO YCTaHOBHTH, UTO [Ty (f ) < TEHl (f ) ,T.€. B

CUCTEME BECOB IO OTHOUICHMIO K MHOXXECTBY CYIIECTBYET BEC, CTPOro
MEHBIINI, YeM MUHMMAJIBHBIA. MBI NPHUIIIM K OPOTUBOPEUYMIO U TEM CaMBIM
JOKa3aly, 4YTO JOCTHTHYT mIoOanbHeIM MakcuMmyM. Jlamee, Bce Takue
muoxkectBa H, ommmumeie or L, rame rtaxke mocruraercs rmoGanmbHbIit
MaKCHMyM, JIHCTBHTEILHO MOTYT HaXomuThes BHyTpH H . OcTaercs mokasats
JIMIIb €IMHCTBEHHOCTH ONPE/IeTHMOro MHOkecTBa H . B cBsi3u ¢ moKa3aHHBIM
BBIIIE MOXXHO IPEANOJIOKHUTh, YTO HEKOE OIPEeNeIMMOE MHOXKECTBO H'
Haxonaurcs BHyTpu H, onHako, mpomomkas JIMHHIO paccCysKICHHId,

aHaJIOFI/I‘IHyIO HpeHHO)I(CHHOﬁ HaMH BbBIIIC JIA L , 3aKjIrodacMm, 4YTO
[
HcH . =
Crnencraue. [lyctb {R} — CHUCT€Ma MHOXECTB, B KOTOPOW (YHKIIMSI TUIA

(1) nocruraer cBoero riobaigpbHOr0 Makcumyma. Torma, eciu H1 S {R} u

H, e{R} ,ro H,UH, e {R}.

JlokazarenbctBo.  Cnemyss  myHKTY  2°  (OCHOBHOE  CBOMCTBO)
f(H)<f(H,UH,), a xpome toro ms f(H, UH,)<f(H,),

CIIE€I0BAaTCIBHO H1 ) H2 S {R} u

Hwmxe mu1 IMPUBOAUM KOHerTHLIﬁ AJITOPUTM IMOCTPOCHUA OIPECACIIAIOIIUX
HOCHEHOBaTeHLHOCTeﬁ OJICMCHTOB MHOXXCCTBa W . I[J'ISI JAOCTYITHOCTH
AJITOPUTM NPCACTABJICH B BUAC 6J'IOK—CX€MI)I, MOXO0XKEH B KAKOM-TO CTCIIEHU Ha

KOMIIBIOTEPHYIO IIPOrpamMmy.

3. AJITOPUTM

al. Iycts muoxectBo R = W 1 mocnenosarensuoctn O B BHayaJe
MyCTHI, a HUHJIEKC 1=0. 3nechb OL={OL1,OL2,...,OLi,...},

E = {Bsz 9""Bi""}'
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a2. Haiigute smemeHT l.l C HaAMMCHBIIMM BCCOM II0O OTHOIICHHUIO K

MHOKECTBY R , 3alIOMUHAEM 3HAUCHUE 7\‘ = 7IR (u) ¥ IoJIara€éM mocJji€ 3Toro
a=a,B,M,a3aTeM B =0.

a3. HckmouaeM 3JIeMEHT M Hn3 MHOXCECTBaA R U YYUTBIBACM BJIMSIHHC

YAQJICHHOTI'O 3JICMCHTA Ha OCTAaBIIUECS 3JIEMCHTDBI M S R , T.C. BBIYHUCJISICM BCC

BENCUUHBI Tlp, (B) mnsiecex Be R\ {M}

a4. B ciyuae, ecnu cpeu OCTaNbHBIX (OCTaBIIMXCS) 3JIEMEHTOB HaWayTCA
Takue Y , 9To

T (V) <A (4)

TO obpazyem M10CJIEI0BATEIBHOCTD YKa3aHHbBIX 3JIEMEHTOB

Y= {y1,y2,...,ys} U TIOJIOXKHUM B = B,?

a5. Tlonoxum wmHoxkecTBo R :R\{M} u onement WU =3 148

i+1
BO3BpallacMcs K IIYHKTY a3 B cjlydae, €CJIih 3JIEMEHT Bi+1 OIIPEACIICH IJIst
OCICA0OBATCIIBHOCTH 3JICMCHTOB B , YBCINYHUBAA B O9TOT MOMCHT MHIACKC 1 Ha
CANHUIY.

a6. B ciydae, Korja mocji€10BaTCiIbHOCTh a n34gecpriaajia BCE MHOXKECTBO

W , nocrpoenne 3akomueno. B mpoTHBHOM cilydae BEpHHTECH K MyHKTY .2,

roJjiaras cHayajga MHIeke 1 = 0 .

Jlokakem, 9TO TOJIBKO YTO IOCTPOEHHAs MO MPENI0KEHHOMY ajIrOPUTMY

nocCjICaA0BaTCIbHOCTD o SABIISACTCA onpenensuomeﬁ. PaCCMOTpI/IM
nocCjICaA0BaTCIbHOCTD H(OL) M BBIJICIIMM B Ka4CCTBEC ITOCJICA0OBATCIIBHOCTH F

T€ MHOXECTBa, KOTOpbIE HAaYMHAIOTCS C 3JIEMEHTa, HAaWJAEHHOTO B MOMEHT
nepexofa aiaroputma depe3d mar a2. PakT mnepeceyeHHus a2 alropuTMa
rapaHTHPYeT, YTO yciioBHe (4) HE BBIIOJNHAIOCH OO TOTO, KaK MPOM3O0ILIO

MEPeCeUYCHNEC, MU DJICMCHT B HC HaxoAuTCA B IIOCICAOBATCIIBHOCTH Ha

i+1
JAHHOM JTaIlle B . CKaSaHHOC BBIIIC TAapaHTUPYET TAKIKE BBIIIOJIHEHUE YCIOBUA

1° ana onpenensomux nocienoBaTensHocte. [Ipenmonoxxum, uro ycinosue 2°

B OIpPEACTICHNU 1 He BBIIIOJIHEHO, T.€. B IIOCJICAHEM MHOXCCTBEC Fp

IIOCJIICAOBATCIIBHOCTHU r CymeCTBYCT TaKO€ ITOAMHOXCECTBO L, qTo

f(Fp) < f(L) . PaccmorpuMm  mOCIEmOBaTENBHOCTD B ,  Koropas

TCHEPUPYeTCsT TIPH TIOCIEIHEM T[epexole 4Yepe3 a2 BBIIICONUCAHHOTO
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aNropuTMa, M MyCcTh A p CHMBOIMZHDYET HanOoJpIIee 3HAYCHNUE CPEIH BCEX

TaKHUX }\, . HpI/IXOZ[I/ITCﬂ 3aKJIIOYUTDh YTO U3 IMPEAIIOJIOKCHUA O CYIIECTBOBAHNN

MHOXKECCTBaA L, n 3aMecdasa 4To }\,p = f(rp) NIpUXOAUM K HEPABCHCTBY

7\’p <f(L) Tlo MOCTPOCHUIO MOCJIeA0BaTeIbHOCTE Ol U BMECTE C

MOCIIEI0BATEIBHOCTHIO E (obe oHM), KOTOpasi TEHEPUPYETCS MPHU MOCIETHEM
nepexoje uyepes a2 AaNrOPMTMA, HCHONB30BAIA BCE OIEMEHTHI W .
CrenoBaTenbHO, MBI MOJKEM paccMaTphBaTh MHOKECTBO d1eMeHToB K B
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Case Study of Fuel Consumption by Vehicles
Utilizing the Postulates of Bounded Rationality

Joseph E. Mullat i
Abstract

The article introduces a groundbreaking method called "Blind Data Analysis," which
simplifies the examination of numerous statistical indicators with unknown distributions.
It emphasizes the practical importance and necessity of logically categorizing data to
improve the accuracy of forecasts. This method seems to make considering different
indicators easier, following the principle of simplicity similar to Ockham’s Razor. By
leveraging the idea of reality through the phenomena of a 'monotonicity constraint,' it
suggests a more dynamic approach to analysis. Particularly, it explores the core ideas of
so-called bounded rationality in decision-making, providing strong support for the reli-
ability of the method. Using data from the Spritmonitor.de database, which tracks various
vehicle metrics including gas and electricity consumption and mileage, the study show-
cases the effectiveness of the method. This database enables users to track fuel savings
and expenses by providing real-world cost metrics for thousands of vehicles. To ensure
evaluation of the method’s reliability through the bounded rationality postulates, it was
rigorously tested against this database using the Excel macro program.

Keywords: data analysis; decision-making; vehicle; fuel consumption; monotonic system

Concise Glossary of Mathematical Notations

We consider fuel consumption indicators p, € A, ‘A‘ =n of N car models
or labels/issues, kK =1,n. Indicators <§> =p,2p,2...2p;2...2D,,
J=1,n, in contrast to the original list P, are necessarily descending. A

sequence T = <TE> =T, Ty,..., T,

n n
i joeees T0, arrange so-called "torques” or

"moments”, where TT i ﬁj X j and index j points at the "distance” from the

top of the descendiong list <§> . The choice consists of an act of selecting several

car models from X, Y or HC A (as described by Ma et al., 2015) or as mul-
tiple options C(X) = X, C(Y)< Y or C(H) c H according to certain rules

also outlined by Strzalecki (2011). A totality of lists of all 2n samples or issues
H < A is denoted by 2% = {H} In accord with the descending sequence
<§>, samples X, Y can be reordered into segments X = [X_l > X_I’],

Y =[y_1 > y_r]. Thus, segments X, Y correspond to choices
C(X) =[c(x) 1 > c(x) r] and C(Y)=[c(y) 1 > c(y)_r], etc. In this
case, we refer to the segmentation operators C(X) and C(Y) as a choice made

from reordered segments S(A).
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1. INTRODUCTION

Typically, contributions to theory delving into reality involve expanding existing
categories, concepts, models, or simplifications to uncover new theoretical
insights, resolve unresolved issues, propose novel frameworks, enhance predic-
tive accuracy, or address practical applications. However, an alternative
approach to deriving fresh knowledge from established categories entail identify-
ing novel relationships or connections concealed within fundamental categories.
This article's primary objective is to innovate by juxtaposing two existing ele-
ments in a novel manner—a comparison, or rather, an interpretation of data
analysis within the framework of decision-making processes. The intricate rela-
tionship between data analysis and decision-making is particularly pronounced in
the automotive market, where precise evaluations of factors like fuel consump-
tion present challenges. Despite its apparent nature, rigorous scientific validation
ensures that the correlations between data analysis and decision-making remain
grounded in reality, averting potential misinterpretations.

Car models are conventionally categorized based on their fuel consumption
or economy, aiding consumers in making informed decisions regarding effi-
ciency and environmental impact. These categories typically encompass labels
such as "compact," "midsize," or "luxury," each indicating distinct performance
levels and fuel efficiency standards. Our analysis entails examining a dataset
comprising 2927 car models from various manufacturers, with a focus on fuel
consumption measured in Miles Per Gallon or Liters per 100 km for conven-
tional vehicles, and additionally, in kWh/100 km for electric and hybrid vehicles

Data pertaining to established car models typically yield relatively accurate
forecasts. However, numerous factors, including lifestyle changes, technological
advancements, and fluctuating fuel prices, can significantly influence the auto-
motive market, posing challenges for even the most widely used models to ade-
quately account for them. Publications in esteemed journals such as those by the
Society of Automotive Engineers (SAE), the International Journal of Automotive
Technology, and authoritative sources like the International Council on Clean
Transportation (ICCT) often delve into topics concerning vehicle fuel efficiency,
labeling, and data analysis methodologies. Consequently, while a straightforward
data analysis approach may not be optimal, it may be preferable to overly intri-
cate probabilistic case studies of fuel characteristics.

Data analysis and categorization techniques are pivotal across diverse
domains, spanning from machine learning to information organization. In the
domain of machine learning, algorithms such as decision trees, support vector
machines, and neural networks are prevalent for classification endeavors. These
methodologies are designed to allocate pre-established labels or categories to
input data by discerning patterns and features inherent within them.

In data analysis and classification, two opposing approaches can be distin-
guished based on their direction: one begins with subjective knowledge to reach
objective conclusions, while the other follows the reverse path. In the former
approach, experts in various fields such as physicians, biologists, astronomers,
market practitioners, and data analysts utilize categorization techniques to objec-
tively interpret experimental data and observations. They may employ artificial
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intelligence (Mitchell, 1997; Seiffarth et al., 2021), statistical learning (Hastie et
al., 2009), pattern recognition (Bishop, 2016), machine learning (Domingos,
2010, which explores the quest for a universal learner), or other probabilistic
methods (Murphy, 2012; Koller and Friedman, 2009) in their data analysis. This
also encompasses data mining techniques (Nan and Kamber, 2011, covering
various data mining aspects), parameter estimation (Walter and Pronzato, 1997),
management and decision-making problems (Narula and Weistroffer, 1989),
continuous modeling, multiple time series (Voelkle et al., 2012), and computa-
tional methods (Mirkin et al., 1995). Interpretable Machine Learning: A Guide
For Making Black Box Models Explainable Paperback — (Christoph Molnar,
2022) is a book aimed at helping practitioners understand and interpret the deci-
sions made by complex machine learning. However, despite these approaches
requiring an understanding of the distribution of judgments regarding the object
under analysis, practical implementation doesn't always align with this ideal.

The purpose of subjective assessment methods (Frey, Vohandu, 1966)
appears to lie in their utilization for dividing multi-dimensional indicators into
two classes, a task that may initially seem contradictory. Specialized knowledge
might be deemed necessary, although, as previously mentioned, it's not always
the case since understanding the distribution of numerical parameters, or indica-
tors, could be superfluous. These points are accentuated when examining the
objective-subjective data analysis outlined in the article, particularly within the
framework of "Blind Data Analysis" (referred to as BDA), which concentrates
solely on discerning whether one number is "less than" or "greater than" another.
Achieving common sense in this approach invokes the well-known principle of
parsimony, also known as "Ockham's Razor," which posits that simpler theories
are preferable to more complex ones. Consequently, a procedure requiring fewer
assumptions about reality can be considered the most reliable in such contexts.

2. BOUNDED RATIONALITY POSTULATES

Rational choice theory stands as a robust framework designed to elucidate the
intricate processes underlying individual decision-making, factoring in their
unique preferences and the constraints they encounter (e.g., Arrow, 1948; Jami-
son, 1973). Within this framework, several postulates fall under the umbrella of
bounded rationality, a concept acknowledging the cognitive limitations individu-
als face when making decisions. These postulates encompass the assumption of
well-defined preferences, the consideration of expected utility in decision-
making, and the reliance on available information to arrive at rational choices.

When potential car buyers apply these foundational assumptions to the
dynamic realm of vehicle evaluations, it becomes apparent that an additional
postulate or constraint—monotonicity—must be introduced to accommodate the
fluidity of consumer preferences and assessments. Monotonicity posits that as
the list of potential car models for purchase or sale is progressively narrowed
down, consumers' subjective evaluations or utilities (referred to here as mo-
ments) exhibit a consistent and monotonic decrease. Simply put, as options
dwindle, individual preferences or the perceived value of the remaining models
diminish in a predictable and continuous manner.
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Moreover, within this framework, the concept of constraint pertains to the
spontaneous or impulsive judgments and evaluations potential buyers make dur-
ing the car selection process. The argument posits that as buyers systematically
eliminate certain car models from consideration, their impulsiveness diminishes,
signaling a transition toward more deliberate and thoughtful evaluations as the
selection process unfolds. This evolution in decision-making behavior under-
scores the dynamic interplay between rationality, bounded by constraints, and the
ever-shifting landscape of consumer preferences.

Indeed, this perspective holds relevance across a spectrum of decision-
making and data analysis scenarios, extending beyond just vehicle evaluations to
encompass the evaluation and comparison of various products before making a
purchase. It operates on the premise that as decision-makers systematically
eliminate alternatives, their preferences, classifications, and pairwise compari-
sons exhibit a consistent decline rather than fluctuating or displaying non-
monotonic behavior. This principle underscores the importance of understanding
how preferences evolve and assessments shift as choices are narrowed down,
guiding decision-makers towards more informed and rational choices. Whether
in consumer behavior analysis, market research, or strategic planning, recogniz-
ing the monotonic nature of decision dynamics can provide valuable insights for
optimizing decision processes and outcomes.

It's worth highlighting that while the concept of a monotonic constraint pro-
vides a valuable framework for understanding decision-making processes, it may
not universally apply to all scenarios. Individual preferences and subjective as-
sessments can vary significantly, leading to diverse valuation criteria and
impulses among different people. Consequently, their evaluations may not al-
ways exhibit a monotonic decrease as the range of options narrows down.

Therefore, while constraints offer insights into certain decision dynamics,
they should be applied judiciously and in conjunction with other factors that
influence individual choices. To address this variability, Arrow’s (1959) strict
consistency postulate is slightly adapted in this work to uphold the fundamental
postulates of rational choice. This modification to the standard rational choice
framework acknowledges the dynamic nature of the automotive market and the
behavior of car buyers.

Specifically, the process of choice involves selecting from various issues (as
described by Ma et al., 2015) or multiple options according to specific rules
outlined by Strzaletski (2011). By integrating these considerations, the decision-
making framework becomes more robust, capturing the nuances of individual
preferences and the complexities of real-world decision contexts.

Let us recall in a Boolean—that is, in a more formal—form the bounded
rationality canonical postulates (cited by Aizerman and Malishevski, 1981, pp.
650183, English version translated from Russian, p. 189). Here, they are pre-
sented in connection with rational choice in the automotive market that involves
factors such as fuel efficiency, cost, environmental impact, and personal needs.
Evaluating these elements helps customers make an informed decision that aligns
with their preferences and priorities, as outlined below.
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o [ndependence with respect to removing rejected alternatives (or, for brevity,
elimination of options), Postulate 5 (Chernoff, 1954, pp. 422—443) or Axiom
2 (Jamison and Lau, 1973, pp. 901-912):

From C(Y)c X Y itfollows that C(X)=C(Y);
o Compatibility, the same as Postulate 10 of Chernoff and property Y of Sen:

From X UY itfollows that C(X)nC(Y)c C(XUY)
o Non-strict Consistency, which is the same as Postulate 4 (Chernoff), or prop-
erty QU (Sen, 1971, pp. 307—317) or the axiom C2 of Arrow-Uzawa (Arrow,
1959, pp. 121-127):

From X Y it follows that X\ C(X) c Y \ C(Y) or equivalent to
XNC(Y)cCX)
o Strict Consistency or constant residual choice, which is the same as Postu-

late 6 (Chernoff, 1954) and one of the forms of the "weak axiom of revealed
preference"” of Samuelson, i.e., the axiom C4 (Arrow, 1959, pp. 121-127):

From XY and XN C(Y) = it follows that X " C(Y) = C(X).

The strict consistency postulate was validated through experiments involving
the correlation matrix, as detailed in the Appendix. Specifically, preferences for
pairwise comparisons of indicators within the narrowed list X of the broader set
Y remain consistent, maintaining the same "less/greater” relation X <y or
Yy <X asin Y. However, it's crucial to note that pairwise indicator preferences

may disproportionately shift based on the narrowed list X, potentially leading to
the selection of previously unselected indicators from Y in X, akin to our
Pedagogical Scenario. To address this limitation of the strict consistency postu-
late C4, a simple correction can be implemented while preserving the validity of
the rational choice postulate, i.e.:

From X Y and X N C(Y) # & it follows that X " C(Y) = C(X) N C(Y).

Even in this slightly modified form, the postulate maintains its functionality
akin to Arrow's canonical strict consistency postulate, despite the original foun-
ders of rational choice theory, such as Simon in 1978, not explicitly considering
this dynamics. These foundational postulates ensure consistent outcomes with
repeated decisions, enhancing predictability in the decision-making process.
Specifically, these postulates ensure that relations among objects remain stable,
mirroring the complete visual representation of the objects. This concept reso-
nates with the idea of self-similarity found in the Fibonacci principle, where the
characteristics of a part reflect those of the whole. Such self-similarity is a com-
mon observation in various natural patterns and structures, underscoring the
universality of these principles across different domains and contexts.
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3. PARSIMONIOUS APPROACHES

To validate the postulates of rational choice within the context of fuel consump-
tion classes across various car manufacturers, an examination of consumer deci-
sion-making when selecting a car based on fuel efficiency can offer valuable
insights into whether their choices align with the assumptions of rational choice
theory. Several statistical methods can be employed to test these postulates.
Econometric models, for instance, can estimate the parameters of a utility func-
tion describing how car owners make decisions, while machine learning algo-
rithms can identify patterns in the data and assess their consistency with rational
choice theory. It's important to note that the following discussion on the exhibi-
tion scenario serves as an introduction to the main topic, focusing on the results
and experiments conducted using the Excel spreadsheet of information and inter-
active computer services available at https://www.spritmonitor.de/en/ . The
spreadsheet underwent a validity test of the independence postulates of the re-
jected alternative and the postulates of non-strict and strict consistency with
established car models in the market.

The findings suggest that car buyers may prioritize factors such as engine
power or fuel efficiency, which can be rationalized when considering rejected
alternatives. The postulates of consistency, as per Ockham's Razor procedure,
appear to corroborate the experimental results. However, it's important to
acknowledge that rigorous proof of these assertions exceeds the scope of this
article and warrants further research. Moreover, the proof of independence from
the rejected alternatives stems from Proposition I outlined in Section 3.3, with its
origins tracing back to its publication in the Proceedings of Tallinn Polytechnic
Institute by Mullat in 1971.

3.1. Pedagogical Scenario

The postulates of consistency and compatibility are specific theoretical
foundations used in economics to analyze decision-making behavior. These
postulates suggest that individuals make decisions based on issues of consistent
preferences that do not change over time. With regards to the postulate of strict
consistency C4, it is useful to paraphrase Arrow's intuitive interpretation to
consider the following. In terms close to the data analysis scenario, this suggests
that if some car models are labeled in the context of fuel consumption from the
range of models available for sale, then narrowing the range of labels should not
change the status of previously labeled or unlabeled to selected or unselected to
designate models' cars. While this is part of the rationality criteria that Arrow
explored in his work on social choice theory and the impossibility of creating a
perfect voting system, it does assume some stability in the labeling system,
which is often useful when implementing data analytics tools.

Let's start the scenario with a "hypothetical" or "pedagogical exhibition"
based on the choice of a car at an exhibition when analyzing decision-making
classification phenomena. Suppose further that, after accepting an offer to
purchase a car, the salesman tells the customer that some of his preferred options
are not available, potentially causing irrational behavior on the part of the
customer or the salesperson. From a customer's point of view, it might be wiser
to try fuel-efficient cars that were initially overlooked. On the other hand, the
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seller may offer more stylish and luxurious cars, even though there are
economical and equally good options. If a customer preferred fuel-efficient
vehicles but learned they were out of stock, they would likely include more fuel-
efficient models to expand the list of alternatives that were initially overlooked.
However, if the buyer wanted to buy an economical car and his choice was
limited for some reason, buyers, contrary to their original intention, may
welcome the seller's alternative offering more stylish models.

3.2. Ockham’s Razor significance

Returning to the car’s pedagogical scenario, the cars would be listed linearly in
descending order based on fuel/electricity, where the highest fuel or electricity
consumption per 100 km is multiplied by 1, the next item in the list is multiplied
by 2, and so on. Here these figures are interpreted as "fuel consumption
credentials” or "moments”. The local maximum fuel consumption is selected
when the moment’s maximum is reached. Some details of the car selection
procedure just outlined are also relevant for analyzing automobile market data.

Let us assume that the client decides to accept the car fuel consumption at the
local moment maximum as an acceptable level of significance when choosing
cars with a higher or equal fuel consumption level, e.g., the list 10% 9% 8%, 72, 6%,
5%,... indicates that the peak of this sequence is located at 7* = 49. Define a list of

fuel consumption indicators p, € A, A| =n of n car models, k =1,_n. In

particular, suppose that in the sample denoted by the letter H , the prospective
car buyer selects some potential cars as viable candidates according to the

reasonable fuel consumption. We can further define a totality of lists {H} of all

o1 samples or issues H < A . Accordingly, n(p,,H) =p, |H| moments as

monotone system (in terms of Mullat, 1971), or as monotone linkage clustering
(Kempner et al., 1997,) will evaluate so already called "credentials” of fuel
consumption. The procedure for finding the significance level of fuel

consumption commences with sorting all the fuel consumption indicators P, ,
constituting (as in the price sticker list) the vehicle fuel/electricity indicators
permutation <§> =p,2p,2..2p;2...2p, in descending order. Next, a

sequence ﬁ=<1rj>=§l X1,p, X2,...,P; X j,..., P, X1, which components 7

we called moments, j=1,n, is constructed. Hereby, the list of fuel consumption
indicators <5> , in contrast to the original list p, , is necessarily descending. We

called such sequences T as defining (Mullat 1971).

3.3. Internal Personal Stability

Internal or intrinsic personal stability refers to an individual's ability to maintain
a sense of balance, composure, and well being within themselves, irrespective of
external circumstances or challenges. It involves emotional resilience, self-
awareness, and a capacity to navigate life's ups and downs with a steady and
grounded mindset.
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When we talk about internal personal/intrinsic stability in terms of being
"interpersonally incompatible" or "impossible to match through a monotone
transformation," it means that the relative economic preferences or
classifications of individuals cannot be reconciled using a simple, consistent
scaling or transformation.

In the context of Narens and Luce's work from 1983, monotone
transformation refers to a mathematical function that preserves the order of
preferences but might change the classification scale. If two individuals have
inherently incompatible preferences that cannot be aligned through such
transformation, it implies that there is no single, uniform way to compare or
match their classification preferences or evaluations. This concept underscores
the complexity of ensuring stability in interpersonal classification framework, as
certain inherent classes or categories in individual preferences may resist easy
standardization or comparison.

Our experiments show that when categorizing vehicles according to specific
utility functions or monotonic transformations based on fuel consumption using
BDA, the assumption of intrinsic personal stability is generally not satisfied.
Simply put, this highlights the complexity of the process, as individual
preferences and ratings, such as the rationale for predicting vehicles' prices based
on fuel consumption, in some cases cannot be consistently compared and
categorized, regardless of the specific scaling or units of measurement used.

3.4. The reasonable level
The moments <7tk> =7,7,,...T...7T, are single peaked, where the peak denotes

the kernel issues H' (Mullat, 1971-1995) of a monotone system. The list H"
constitutes the rational, i.e., the monotone linkage clustering implemented in our

findings. At the location k" from the top of the moments TT = <Ttk>, i.e., from

the top of the defining sequence of models, j= 1,_n, where the local maximum
u=max T is reached, the peak, denoted by U, will be called the level of

significance.

Proposition 1. Among the totality of all samples H < A, i.e., among all the
lists {H} of all 2" samples, the kernel H' guarantees reaching the global
maximum of the moment function F(H) of samples H; F(H)=u is equal

to u=min, , 7(p,,H): H' =argmax,_, F(H).

Proposition I confirms the postulate of independence from rejected alterna-
tives in two-person games, which was originally studied by John F. Nash in the
1950s, when he developed a solution to the bargaining problem. With regard to
the market for the purchasing and production of cars, Proposition I states that any
final decisions made or based on statistics should not be affected by the removal
of any parts of those statistics that are not reliable or represent a very small num-
ber of cases in which, for example, statistics have been collected into a database
and selected for review.
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A transformation using some monotonic function tr(x) of indicators

P 2D j=Ln—1, preserving the validity of tr(p,) > tr(p,,), can still shift
the original H -kernel to H' # tr(H’), what happens, for example, when

transforming by tr(x)=x". However, the H" kernel, which takes into account

fuel consumption under the personal/intrinsic guidance of Narens and Luce,
remains unbiased for the proportional mapping tr(x) =a - x , for example, in the

case of converting liters to gallons.

3.5. Threshold-based Time-Series indicators

Time-Series data typically refers to data that is collected or updated periodically
or at regular intervals over time. Series are commonly used in data mining and
other areas where the objective is to detect outliers or changes in system
behavior. This could include information such as sales figures, stock prices,
weather data, or any other type of data that is recorded over a specific time
period. The frequency of data collection can vary depending on the needs and
requirements of the specific use case or analysis.

A threshold value can be used in the fuel consumption series to determine the
reasonable significance of cases where consumption level exceeds a certain
positive threshold or falls below a certain negative threshold (an illustration of
this scenarios are presented in the Appendix). In the specific case considered, the
indicators called fuel moments create a dynamic system since the previous state
of the consumtion determines its subsequent state. It is worth noting that the
postulates of strict and non-strict consistency emphasize the rational behavior of
car buyers when new models expand the list of available alternatives. In the
event that prospective car buyers have chosen some of the best cars in the past,
these postulates state that they will still be inclined to consider old models, in
accordance with the "old love does not rust" adage.

Accordingly, if we look at our methodology for determining the significance
level u of car fuel consumption indicators p,, one may get the impression that

the procedure is applicable only to positive numbers. Generally speaking, the
same procedure is obviously valid for a negative series of numbers. In this sense,
the procedure can be used by analogy with what is called a "confidence interval”
in statistics. Indeed, if we apply the procedure to a positive series of numbers,
then as a result we will obtain a level of significance U in the form of a positive
number. Now, based on the found level U of significance, we can create a

sequence of deviations around this level, both £ A towards less and towards
excess. Now it will be possible to apply the procedure again, but this time in
relation to deviations from the original significance level u. As a result, the
"confidence interval” [— A +u,u+A 2] will be determined. By considering this

interval and observing whether the dynamic indicators cross the threshold u,
one can make significant decisions. Indeed, customers interested in economy
cars would likely make a purchase if the indicators consistently cross below
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— A, +u, while this will be unlikely if the dynamic indicators intersect above

the u+ A, level. Looking at this interval and observing whether the dynamic

indicators cross the threshold value U customers can make a decision on how to
cluster the relevant data. Since market actual monitoring for the automobiles data
includes 2927 vehicle models, a fragmented version of it is presented in Table 1
(screenshot from an Excel spreadsheet).

Negative significance level = 0,61 MNegative significance level > 521
Positive significance level > 3,19 Positive significance level > 3,87
Count |Fuel type | 1/100km Count Fuel type kWh/100km
Alfa Romeo 2053 Gasoline | 9,28 2,31 BMW 315 Electricity 16,55 1,16
Agton Martin 24 Gasoline | 13,22 6,25| Bugatti 1 Electricity 10,18 5,21
Bentley 12 Gasoline | 15,56 | 8,59 Citroen 72 Electricity 15,94 0,55
BMW 29508 Gasoline 8,86 1.89 Ford 25 Electricity 21,65 6,26|
Bugatti 2 Gasoline | 12,38 | 541] Ferrari 2 Electricity 41,45 26,06
Chevrolet 1677 Gasoline | 9,76 2,79 Fiat 131 Electricity 17,11 1,72
Cadillac 135 Gasoline | 13,66 5,59| Honda 13 Electricity 19,65 4,25|
Chrysler 811 Gasoline | 10,84 3,87| Hyundai 532 | Electricity 15,93 0,54
Daswoo 366|Gasoline [ 7,53 0,56 Jaguar 5 Electricity 20,90 5,51|
Citroen 5793 Gasoline 7,14 0,17 Kia 249 Electricity 17,34 1,95
Daihatsu 1200 Gasoline 5,86 [ 1,11 Mazda 40 Electricity 19,43 4,04|
Datsun 4 Gasoline | 10,89 | 3,92 Mercedes-Benz 90 Electricity 24,26 8,8?|
Ford 20799 Gasoline 7,99 1.02 Mitsubishi 31 Electricity 14,23 -1,16

Table 1. Screen dump from Excel spreadsheet:
>u=+6.97, <A;=61, 2A,=+3.19 >u=+15.39, >A,=+3,87, <A;=-5.21,

4. AUTOMOTIVE MARKET DATA

To demonstrate the effectiveness of the proposed approach, the standard
mechanisms and techniques of the MS Windows platform were utilized to view
the database related to thousands of car models in Excel spreadsheets. The list
includes cars that are not only economical and reasonably inexpensive but also
even expensive stylish or luxury and cars of all available models. This
information has been extracted and recompiled from the interactive computer
services provided on the Spritmonitor.de website and includes vehicle fuel data,
significant volumes and other relevant variables.

Some comments are needed to clarify the implementation of our Ockham’s
Razor "procedure" for analyzing the car fuel consumption dynamics.
Specifically, it should be noted that the reliability of data on the lease or
purchase cars with regard to fuel consumption, where all fuel consumption data
have been available to everyone, is given by the fact that the MPG (mileage or
mile per gallon) data are guaranteed by the Cost Calculator and Tracker at the
date-to-date basic activity at the Spritmonitor.de database. The spreadsheet

https://www.spritmonitor.de/en/search.html was compiled using domain (Accessed
July 10, 2023).

An overview of common internal combustion fuels or hybrid/pure electric
vehicles is available (http./www.datalaundering.com/download/MPG-MileAge-Data.xls, Au-
gust 22, 2023) in the database used in the experiment is presented here solely for
the purpose of illustrating the data collected so that the article is well suited to
the layperson of interest. Clearly, each fuel type has advantages and disadvan-
tages in terms of efficiency, emissions, availability and infrastructure. Analyzing


https://www.spritmonitor.de/en/search.html
http://www.datalaundering.com/download/MPG-MileAge-Data.xls
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fuel consumption across these categories can provide valuable insights into the
efficiency and environmental impact of different car models. As seen from the
tabulated columns containing fuel consumption, blue and yellow cells differ
from others in certain patterns and frames, identified using the macro—Ctrl+s. In
accordance with Proposition I given earlier, an analysis of the significance levels
of the negative/positive (yellow/blue) values of the car indicator dynamics has
been conducted. Using the macro in columns, (selected or "pasted”) areas X of
spreadsheet in their entirety may consist of negative/positive numbers that are
distributed without any special purchase. However, the standard EXCEL data
sorting options allow the content of selected areas to be sorted in ascending or
descending order depending on the specified columns or rows. Thus, relevant
cells can be redistributed into "contiguous areas” of negative or positive values in
the column or row patterns to satisfy the necessary conditions. Such contiguous
areas can be used in experiments featuring the Case Study results. The C(X)

operator was compiled into the Ctrl+s macro, using automotive market share
fuels X as the initial data table below in column format of alternative X .

5. OCKHAM'S RAZOR PROCEDURE GUIDE AND PROPERTIES

The novel procedure proposed here, as previously noted, was called BDA, as it
involves finding the simplest explanation or a most parsimonious models that fit
the data based on the premise that simpler explanations are more likely to be true
than complex explanations. It is important to note that the BDA procedure is not
necessarily equivalent to other known statistical hypothesis testing, such as the
null hypothesis (often denoted Ho), which is the statement that there is no
significant difference or effect. Researchers seek to test this hypothesis against
the alternative hypothesis (Hi), which, in contrast, suggests that there is a
significant difference or effect. The goal is to determine, based on statistical
analysis of the data, whether there is sufficient evidence to reject the null
hypothesis in favor of the alternative. However, it is important to remember that
our BDA procedure is just one tool in a broader set of statistical methods and
may not be suitable for every situation.

5.1. Arranging indicators in Excel

In Excel spreadsheet http://www.datalaundering.com/download/MPG-MileAge-Data.xls
you can find the BDA Ctrl+s macro. Those wishing to use it can copy the base
spreadsheet code into their own spreadsheet. In the properties of this macro, you
must also indicate that the macro can be executed using the Ctrl+s command.
However, when tabulating information, the first two rows of the table must be
blank, so users must insert at least two blank rows at the top of the table.

You can as well sort the p indicators in descending order by yourself, lo-

cated somewhere in the spreadsheet for which you want to calculate the mo-
ments. Go to the Data tab and use the Sort option to arrange the p indicators

P,»P,»--»P, in descending order, denoted as p, 2p, =...2p,, based on the
selected column. Then, for the column to the right of the sorted indicators, create


http://www.datalaundering.com/download/MPG-MileAge-Data.xls
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an additional column of numbers 7; =P, x j, where j ranges from 1 to n,
moving from the top px1 of the sorted list of moments/numbers p; x j to the
bottom pxn. You will notice that the P; x ] moments rearrange themselves
into a single-peaked sequence of moments corresponding to the numbers
m; =p; x ] . Finally, assign a special color to the newly created moments start-
ing from the top of the list to an indicator somewhere within the sequence of
moments corresponding to the local peak u =argmax ; reached while mov-

ing j from 1 to n.

5.2. Validation of consistency postulates

From the information presented in the main part of the article, it is clear that we
are discussing the statistical moment of an indicator, which was used to classify
fuel consumption in the context of choosing the optimal car. The moment was
calculated as the product of its 'distance' or 'position number' from the top in a
descending linearly ordered list of fuel consumption of vehicles. It serves to
measure the desirability of each fuel consumption based on its magnitude. This
measurement involves applying Ockham’s Razor procedure to select the optimal
option using fuel moment as a scalar criterion. From the perspective of
Ockham’s Razor, when choosing between competing options, simpler
explanations or models are preferred.

Proof of Proposition 1.

To prove or verify the truth of this proposition, we can revisit the article. "On a
Maximum Principle for Certain Functions of Set Functions", (Mullat, 1971).
This is not necessary, however, since the proof in our particular case is much
simpler thanks to the following lemma.

Lemma. In any subset HC A of indicators A, the order of moments

n(p,,H) =p, |H| corresponds to the grand order of moments
n(p,,A)=p, |A| |A| =n on theset A.

Simply put, the lemma states that if we take a pair of indicators p, <p, then no

matter in which subset X or Y we consider this pair of indicators <p1. P j> ,

the moment inequalities of n(p,,X) <m(p,,X) or m(p,Y)<7 (p,Y) will
remain in force.

Now we can begin to prove the Proposition 1. The proof will be carried out

by contradiction. So, by construction, the set of indicators P, j=Ln, is or-

dered in descending order from largest to smallest. In this case, it is obvious that
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the sequence of moments <ch> , constructed according to the rules of our proce-

dure by multiplying the indicators by 1, by 2, etc., starting with the largest indi-
cator by multiplying by 1, etc., the sequence <nj> is single-peaked. Let this peak

be reached at a certain index p,. This indicator indicates a certain maximum

achieved at the local level. Now suppose that, contrary to the achieved local
maximum, we can find a certain subset H' of indicators on which the set func-

tion minm,_, (H) > 7, ; this means that on some set H' the global maximum is
greater than the achieved local maximum 7T, . If we now supplement the list of
indicators H' appending H' to H, o H'—to the list of all indicators in A

starting from some indicator p, =argminn_.(H,), k= |Hk|—then, according

jeH'
to the lemma, it turns out that in our single-peaked sequence <nj> we encoun-

tered an indicator P, with a moment p, -k, k=m'>m, . This is not possible

due to our construction method of the single peaked sequence <7t j> . m

The "Strict Consistency Postulate", which has been validated in experiments,
has been modified to suit the decision-making process, based on the premise that,
along with these modified postulates, a reliable and reasonable way to statisti-
cally analyze data is provided. Somehow, however, the theorem of Aizerman and
Maliszewski (Theorem I, 1981) may be useful, which states that the scalar condi-
tion of utility functions is necessary and sufficient for the truth of the modified
strict consistency postulate. A thorough analysis or evaluation of this claim is
beyond the scope of this work. If necessary, the list A of indicators must be
presented in the form of linearly descending order of fuel consumption or other
economic values related to vehicles.

This means that the choice operator C(X) on the issues X of the list A of

alternatives/indicators acts on a certain list of segments S(A), which can be

either open or closed by resembling the set of all sub-lists 24, Thus, we can call
this dual terminology by choice or by segmentation/classification. The alterna-
tives A can be identified by special issues, now denoted already as segments
X= [x_l, x_r] of the indicators under consideration. Narrowing a segment

Y cS(A) to a segment X < S(A) is an action of narrowing the segment
Y= [y_l, y_r] to X = [X_l, x_r]. In view of this understanding that indicators
are linearly descending, the situation X T2y I with segments can preserve
the original ordering of choice operators C(X) nomenclature. To do this, in the

notation just introduced, a set function is defined (hereinafter referred to as the
function f(X) of the segment X): f(X)=x_r or f(Y) =y r. With this func-

tion f(X) notification, we are ready to prove Proposition II given below.
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Proposition 1. When shrinking the segment Y € S(A) to the segment
X eS(A) as an extent of the segments of indicators of the common grand
segment A, the condition f(C(Y))>f(C(X)) is necessary and sufficient
for the fulfillment of the non-strict consistency postulate.

Proof.
Necessity. Suppose X Y and condition f(C(Y) > f(C(X))) are satisfied,

or in equivalent form between segments X and Y the situation results in

[c(y) _r>c(x)_r]. Note the validity of c(y)_r= {y\e(y)} 1 and
c(x)_r={x\c(x)} 1. Thus, the f(C(Y)> f(C(X))) condition results in
{y\c(y)}_l > {X\C(x)}_l. Given that X © Y, we can rewrite the last ine-
quality in set-theoretic notation as X\ C(X) < Y \ C(Y), which indicates the

validity of the non-strict consistency. ®

Sufficiency. Let us assume that the postulate of consistency is not satisfied
for some segments X — Y in the form of segments S(A): i.e., contrary to the

postulate of consistency, the condition f(C(Y) > f(C(X))) is violated. Given
the violation, we consider only the opposite case f(C(X) > f(C(Y))), exclud-
ing the case f(C(Y)=1f(C(X))). The opposite case c¢(x) r>c(y) r and

{X \ C(X)}_l > {c(y)_r} are equivalent. From this we conclude that it is

possible to find an indicator p. = {X \ C(X)}_l such that p, e X\ C(X) in
contrast to p, ¢ Y \ C(Y) . The last statement contradicts the consistency postu-
late, namely the violation X\ C(X) ¢ Y \ C(Y) of Proposition II.

6. DISCUSSION, FINDINGS AND CONCLUSIONS

The rational choice postulates have led to intriguing results. The independence of
rejected alternatives can explain how certain car brands are favored for dynamic
options, while consistency plays a role in stable fuel consumption decisions.
Factors like options available, preferences, and situations influence customer
choices. Understanding buying behavior and context is crucial in the automotive
industry. Manufacturers should align strategies with customer needs, address
biases, and base offerings on objective data. Implementing a data analytics strat-
egy like BDA can benefit customers in the automotive market.

With all this in mind, it is crucial to delve deeper into the intricate process of
data analysis and categorization of data. It's imperative to recognize that this
process transcends mere organization; it is a nuanced journey from objective
depiction to subjective discernment. As emphasized repeatedly, the insights
gleaned from data case study manifest not only in factual descriptions but also in
subjective evaluations. These evaluations, often articulated as "interpretations, "
serve as invaluable aids for experts across various domains, aiding them in navi-
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gating the complexities unearthed during the data case study endeavor. To facili-
tate this comprehension and preempt potential pitfalls, it becomes imperative to
outline certain "situations" or "traps" those motorists may encounter. By
elucidating these scenarios, specialists can leverage our comprehensive analysis
methodology to preemptively address and mitigate the adverse ramifications of
such situations, thereby fostering informed decision-making and proactive risk
management.

6.1. Pitfalls interpretation

Potential car owners may prioritize dynamic options such as powerful engines
and sportier styling over consistent fuel economy for reasons such as perform-
ance preference, driving experience or a desire for a more engaging and respon-
sive ride. These people may prioritize the excitement and thrill of driving, valu-
ing the dynamic aspects of the car over fuel efficiency.

Car buyers can become fixated on the starting price presented by the seller
or on the sticker. They may find it difficult to negotiate or deviate from this an-
chor point, even if it is not the best offer. Some customers may prioritize the
social status associated with owning a particular make or model of car over its
practicality or affordability. They may be willing to spend more than they can
afford simply to maintain or improve their social image.

When buying a car, impulsive behavior is prevalent as many customers make
quick decisions without doing thorough research or thinking about the long-term
consequences. They may fall in love with a particular car at first sight and rush
into the purchase without evaluating the alternatives. Customers can be influ-
enced by the opinions and actions of others, leading to a herd mentality. They
may buy a car simply because their friends, family or colleagues have one, with-
out properly evaluating their own needs and preferences. Emotional attachment
to a particular make, model, or even color of car can also cloud their judgment.

Customers may overlook practical aspects such as fuel efficiency, mainte-
nance costs or resale value, instead prioritizing their emotional connection.
Some customers may be overconfident in their negotiation skills or car knowl-
edge, leading them to make irrational decisions. They may be reluctant to seek
expert advice and instead rely solely on their own judgment, which may result in
increased fees or sub optimal choices. Customers may have a strong bias in
favor of buying brand new cars, believing that new models are inherently supe-
rior, even though a used car with similar features could meet their needs at a
lower price. This bias can lead to cost overruns and financial stress.

Some clients may be overly concerned about the fear of missing out or losing
a perceived opportunity. This fear can lead them to make impulsive decisions or
agree to unfavorable terms, driven by the desire to get a deal done quickly, even
if it is not the best option available. However, it is important to note that while
such behavior may be irrational from a purely logical perspective, it often stems
from human psychology and the complex interplay of emotions, biases and social
factors.
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APPENDIX 1. In data mining, separation refers to the ability to distinguish
distinct patterns or classes within a dataset. Techniques like clustering, data
analysis, or anomaly detection aim to separate data into meaningful groups based
on similarities or differences. This separation helps uncover hidden patterns,
trends, or outliers, contributing to better data understanding and decision-
making. A well-known categorization in this direction is a Finite Closer System

C(X) of sub-lists X € 2" of alternatives. Equivalent to a more precise defini-

tion provided by Seiffarth et al. (2021), our nomenclature will include the choice
operator C(X), which is given by Ctrl-s or a C-macro representing the Fixed

Point X = C(X) of the macro. Thus, based on the concept of a fixed point, the

search problem of closed lists turns into a search for a system of sub-lists from a
list A of alternatives such that each sub-list from this system is a fixed point of
the operator Ctrl-s. From the database https//www.spritmonitor.de/en/ we have
extracted a list A of almost all known gasoline-powered cars, where A includes
well-established car models. The experiment shows that the separation consists
of three segments of gasoline consumption per 100 km: X=[26.59,...,9.80],
Y=[9.78,...6.16] and Z=[6.13,..., 4.75]. The procedure for finding this separa-
tion is simple. First, the Ctrl-s macro is applied to all vehicles under investiga-
tion, resulting in the extraction of the first fixed point X = C(X). In the remain-

ing list A \ X, the Ctrl-s macro is implemented again, resulting in the next fixed
point Y = C(Y). Then, you need to extract the third one in the same way (ac-
cessed August 22, http://www.datalaundering.com/download/MPG-MileAge-Data.xls, 2023).

APPENDIX 2. Based on the information provided in the database, it appears that
the segment [5.47—9.80] liters per 100 km have been determined as a "reliable"
range for gasoline consumption for all gasoline-fueled car models. Within this
range, models to the left are considered more fuel-efficient, while those outside
the range to the right are deemed to consume fuel more excessively. Particularly,
based on the experiment conducted using models A3 and A4, these two models
fall within a range of no more than 3.22 1/100 km to the right of the significance
value U = 6.58 1/100 km. On the other hand, the A5, A6, A7 and A8 models
exceed the significance level U by more than 3.22 /100 km, indicating a
noticeable increase in fuel consumption. We also observed that the segment
[5.47-9.80] and the significance level 6.58 enable data analysis of all considered
car models into four fuel consumption classes. The most economical Audi A2
model is in the yellow class, as opposed to the blue class, which is quite eco-
nomical, to which model A1 belongs, and which is below the significant fuel
consumption value u = 6.58.

APPENDIX 3. The purpose of this piece of writing is to illustrate what we have
called a procedure of "Blind Data Analysis" or BDA, based on a popular
data containing information about various car models. The data includes indica-
tors such as miles per gallon (mpg), horsepower and other attributes for 32
different car models. We invite the reader to check or at least review the fact that
our visual representation of the correlation matrix in the example known to many
analysts largely comes down to the same motives that constitute the essence
of this study. Many data analysts often use this example (Henderson and
Velleman, 1981).
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model
1 Mazda RX4
2 Mazda RX4 Wag
3 Datsun 110
4 Homet 4 Drive
5 Homet Sportabout
| & Valiant
7 Duster 360
& Merc 2400
9 Merc 230
10 Merc 280
11 Merc 2800
12 Merc 4505E
13 Merc 45051
14 Merc 4505LC
15 Cadillac Fleetwood
16 Lincoln Continental
17 Chrysler Imperial
18 Fiat 128
19 Honda Civic
20 Toyota Corolla
21 Toyota Corona
22 Dodge Challenger
23 ANC Javelin
24 Camaro 228
25 Pontiac Firebird
2 Flat X19
27 Parsche 9142
2§ Lotws Europa
24 Ford Pantera L
30 Ferrari Dino
31 Maserati Bora
32 Valvo MZE

20
2.0
nm
14
18,70
18,10
14,30
u4
M
19,20
17.80
16,40
17,30

1040
10,40
14,70
3240
040
50
21,50
13,50

19.20

19,70

15,00
240

mpgr

8,00
4m
4,00
4,00
4,00
5.0
8.0
800
8,00
400
4.0
4.0
8,00
6,00
8.0
40

§§§§“§§§§§“§§§§E§§ij

160,00 110,00
160,00 110,00
108,00 93,00
58,00 110,00
60,00 175,00
225,00 105,00
60,00 245,00
146,70 6200
140,80 95,00
167,50 123,00
167,50 123,00
275,80 180,00
275,80 180,00
275,80 180,00
472,00 205,00
450,00 215,00
40,00 230,00
0 600
50 5200
HAD 65,00
120,10 97,00
318,00 150,00
04,00 150,00
350,00 245,00
400,00 175,00
9,00 66,00
12030 9.0
5,10 113,00
351,00 264,00
145,00 175,00
31,00 195,00
121,00 103,00

disp hp

Chapter VIII

385 2% 1861 100

115 34 Tz o
276 346 nN2 10
31 35 1584 00
369 319 2000 100
1 315 BN 1w
15 34 10 1w
38 34 1% 10
300 407 1740 0,00
307 37 TR0 000
07 3T 1800 000
293 525 1% 0

383 53 174 oW
408 20 1947 10
491 162 185 10
422 18 1% 100
10 24T WM 10
476 35 1687 000
5 M 1T 0w
31 38 14 o
08 385 1705 000
408 1% 1850 100
441 24 61 0w
M 15 165 10
422 34T Wi o
362 27T 1550 0,00
35 35T 160 oM
AN 37 1860 100

Table 2. The MTcars data frame with 32 observations on 11 (numeric)
indicators

,,De“

4,00
400
400
3.00
00
00
3,00
400
400
400
4m
300
e
30
0
300
3,00
400
400
4,00
3,00
30
300
300
00
i
5,00
500
5,00
5,00
300
400

eyl

disp

hpe

drat

gsec

gear

carb

"Miles/{US) gallon" represents the fuel efficiency
of different car models, specifically the number of
miles they can travel on one gallon of fuel
Represents the count of cylinders in the engine
of each car model

"Displacement (cu.in.)" attribute refers to the
engine displacement of each car model, typically
measured in cubic inches (cu.in.}

Gross hoersepower is ameasure of the engine's
power output before accounting for various
losses, such as those from the transmission and
accessories.

"Rear axle ratio” attribute refers to the ratio of
the number of revolutions the drive shaft makes
to one revolution of the rear axle.

"Weight (1000 Ibs)" attribute represents the
weight of each car model in thousands of
pounds.

“1/4 mile time” is often used as a measure ofa
car's acceleration and performance, particularly
in drag racing.

Engine (0 = V-shaped, 1 = straight} is a binary
indicator that categorizes the type of engine in
each car model. A value of 0 typicaly represents
aV-shaped (V6 or V8) engine, while a value of 1
represents a straight (inline) engine
"Transmission ({ = automatic, 1 = manual)”
attribute in the "categorizes the type of transmis-
sion used in each car model.

“Number of forward gears” indicates the count
of forward gears available in the transmission of
each car model

"Number of carburetor’ represents the count of
carburetors in the engine of each car model
Carburetors are devices that mix air with a fine
spray of liquid fuel for internal combustion en-
gines.

For data analysis in practice, correlation matrices are usually calculated and visualized.
Correlation matrix analysis involves examining the relationships between multiple
variables by calculating and visualizing their correlations. Each cell in the correlation
matrix displays the correlation coefficient, which indicates the strength and direction of
the relationship between two variables. Positive values suggest a positive correlation,
negative values indicate a negative correlation, and values close to zero suggest a weak or
no correlation. This analysis helps in understanding patterns, dependencies, and potential
multi-co-linearity of variables recorded in the database.

Visualization of the MTcars correlation

3828451 8§ : §

mpg | 1 -0.85-0.85-0.78 0.68 -0.87 0,42 066 06 0.48 -0.55
off [0.85 1 0.8 083 0.7 078 -0.55 0.81 052 0.49 0.53
disp |-0.85 0.8 | 1 079 .71 0.89 043 071 0,59 0.56

hg |-0.78 0.83 0.79 1 15 0.66 0.71 -0.72 075
dral (0.68 | 0.7 0.71 1 01 407 07

wh |-0.87 0.78 0.89 066 0.1 1 .55 0,69 -0.58
asec 42 |-0.59 4301 1 0.74 .66

¥5 |0.65 0.81-0.71 0.72 0.44 0,55 0.74 1 .57
am | 0.6 -0.5240.58 0.71 -0.68 1 07
gear |0.48 -0.49-0.56 0.7 -0.58 [ 2 R |
carts 1055/ 0.53 035 .66 .57 1

Table 3

matrix in the form presented is available to
everyone in the public domain.
https://miro.medium.com/v2/resize:fit: 1400/format:

webp/1*UJvgUROXv07GQsQCzukMAw.png

€ Negative significance level

€ Positive significance level

o -
= o a g
T £ s

0,53

Table 4
Visualization of the MTecars correlation
matrix as it appears by applying the BDA
method using the Ctrl+s macro
http://www.datalaundering.com/
download/mtcars.xls
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Comparing Table 3 from Table 4, it is easy to notice the almost complete
similarity of the tables. The only difference is that the significance levels of the
coefficients in Correlation Table 3 is a visualization associated with practical or
common sense judgment based on experience and traditional reasoning, in
particular with the color scheme, while those in Table 4 are based on the
postulates of rational choice.

APPENDIX 4. The goal of a graph classification problem is to assign labels to
specific nodes or edges in the graph and to learn patterns and features that help
make accurate decisions. The challenge is to efficiently aggregate and process
information from a graph structure. When graphs are viewed as sets of edges,
labels are often used for entire sub-graphs or individual edges. In our example,
we have a graph representing correlations. Thus, a classification task may
involve labeling specific groups of our 11 parameters from 32 car models
forming certain relationships, representing sub-graphs with strong positive
correlation "within a sub-graph" or with strong negative correlation "between
sub-graphs", each edge of which is associated with a blue or red label. where the
correlation is greater than +.66 within or consistently less than -0.55 between
sub-graphs.

In the example below, Table5 represents the A * A multiplication,
according to standard algebraic rules, obtained from the (0,1)-adjacency matrix
A . The (0,1)-cells in A denote by 1 the correlation coefficients (Table 3 or
Table 4) between the 11 parameters with a positive correlation threshold above
+.66. Then Table 5, where diagonal cells contain 0-s, is converted to Table 6.
Table 6 corresponds to vectors R and B outer-product R xB of the "total"
column R to the right of Table 5 by the "total" row B at the bottom of Table 5.
In Table 6 we leave only graphically adjacent vertices A, denoting with a
0-value those cells of Table 6 that do not indicate at adjacent vertices in A .

g%é%?;%&%ﬁ%“ §§§g§;§g§§‘§
mpg|(0 0 O/ 0 0 0 1|0 1|1 03|71 |mpg| 0 L] 0 0 9 0 0 3 0 0 0
cyl |lO O 2 1 0 1 0 0 0/ 0 1|5]2 cyl 0 0 [25120 o0 |20( O 0 0 0 0
disp|0 2 0 1 0 1/0 0O 0 0 1|53 |disp 25| 0 |20 0 |20 O 0 0 0 0
hp |0 1 170 0 2 0|0 0 0 0|44 hp 0 20 | 20| O 0 0 0 0 0 0 T
drat| 0 | 0 0 0 O O 01 1 1 0|3| 5 |drat| 9 1] 0 0 0 0 0 0 9 9 0
wt |0 1 172 0 0 0|0 0 0 0|4]|6 wt 0 20 | 20| 0 0 0 0 0 0 0 0
gqsec/|1 /0 0O 0 0O O O O 0 0 O0]1 7 |gsec| O 1] 0 0 [4] 0 0 1 0 0 0
vs |0 0O 0O O/1 0O/0 O 0O 0 0|1]8 Vs 3 1] 0 0 [4] 0 1 0 0 0 0
am |1 0 0 0/1 0 O 0O 0 1 03|09 am 0 0 0 0 9 0 0 0 0 n 0
gear/ 1 0 0 0 1 0/ 0/0 1 0O O0O|3|70|gear| O [1] 0 0 9 0 0 0 n 0 0
carb/0 1 1 0 0 0/ 0/0 O O O|2|f7|carb| O 4] 0 ’T 4] 0 0 0 0 0 0
B 3 56 5 4 3 4 1 1 3 3 2|34 1 2 3 4 5 6 7 8 9 10 11

Table 5; The product A x A of Table 6; The R and B outer-vector
adjacency (0,1)-matrix A product R ® B
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We can now apply our BDA technique to Table 6, the result of which is
shown in Figure 1. There are many classification methods on graphs, for
example, Viswanathan, et al., 2010. We have also contributed to this field by
using the so-called method of "Monotonic Systems" algorithm (simplified in our
BDA) to visualize the results of data analysis (Mullat, 1977). The correlation
matrix visualization below is only an addition to BDA technique. As shown in
Figure 1, there are two different classes that can be distinguished by dividing our
11 parameters given in Table 2.

Indeed: 1) {cyl, disp, hp, drat,

° wt}; 2} {am, gear, carb} and
& 14 separately group of parameters

3) {mpg, vs, qsec}. We do not
intentionally use any classi-
fication method, but simply
use common sense, which we
hope is sufficient to visualize
the effectiveness of our "Blind
Data  Analysis”  procedure.
However, it can be proven
that the first two classes
visualize the separation of
correlation coefficients when
BDA is applied separately:
initially by a block (outer-

vector) 1,...,7®1,...,7 , and

\{ then by 5,1 1®5,..,11 of
° rows and columns. The pheno-

menon of separation has

. . . . already been discussed in
Figure 1; Visualization of BDA results using Appendix 1.

correlation of 11 parameters of Table 2.
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Data Structure Opening Method:
Methodological Guide

Abstract. This methodological study delves into an extensively documented yet power-
ful monotonicity-based information processing technique that is often overlooked
despite its widespread application and contemporary use. The focus is on the application
of the category of monotonicity to formal systems for data analysis, a method with a
simple algorithmic component in uncovering complex data structures and obtaining
information in various fields, including sociology, economics, biology and demography.
This methodology recognizes patterns in two basic data structures: frequency tables and
graphs. Frequency tables arise as a common outcome of surveys when data are organ-
ized into categorical responses. The effectiveness of the method depends on converting
these categories into frequency measures, which facilitates in-depth analysis based on
numerical indicators. This preparatory step lays the foundation for robust analysis that
allows researchers to gain detailed information about social trends, consumer behavior
and economic models. The application of the method extends to the field of graph the-
ory, where comprehensive patterns in complex networks are modeled. By emphasizing
the construction of generalized models, this approach illuminates the fundamental char-
acteristics of reality through visualization of so-called “encompassing pictures.” This
framework focuses on key metrics such as saturation levels and the presence or absence
of important components such as triangles and cycles in graphs. By carefully studying
these graph structures, researchers can unravel complex relationships, identify emergent
phenomena, and elucidate the underlying mechanisms governing system behavior.
Keywords: data matrix; layering algorithm; graph; tournament

1. INTRODUCTION
If one decides to collect data, the following questions must first be answered:

What information is needed?

Why is this information needed?

To what extent are the reasons for gathering information?
How can decisions be made based on the information gathered
and thus influence the investigation process?

If answers are available, then the set of collected "objects ”, those data, is
also defined. For example, information may concern people living in a city,
families in a given country, electronic equipment, factories made up of basic
production units (objects in the terminology of the guide) etc.

Population information can be composed of a series of indicators that de-
scribe the population as a whole, such as the scales against which income is
measured. In productive area, indicators determine the technical environment in
which, e.g. equipment was manufactured and operated. Naturally, estimates
based on the information collected differ from actual estimates. Thus, the re-
searcher may draw incorrect conclusions if the error of the estimate is too large.
This guide looks at one possible way to avoid the errors associated with the so-
called stratification concept.

The original version in Estonian (Mullat, 1977), Protocol No. 9, approved by the TPI
Council (Tallinn Polytechnic Institute) on March 15, 1977. TPI currently stands for
Tallinn University of Technology — TalTech.
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Let's give an example of the importance of this concept in information proc-
essing: in USA a presidential elections were held in 1932. Literary Digest sent
postcards to voters with questions to predict Roosevelt's election to the presi-
dency. Some 10 million postcards had been sent out. The results showed that
the forecast made on the basis of the information collected was accurate within
1%. However, the prediction made using exactly the same technique in 1936,
contained an error of almost 20%.

There is a general perception that the "postcard method" introduced a dis-
proportion among voters who return postcards. It turned out that people with
higher education and better conditions tended to return more postcards. People
with a higher standard of living tended to prefer Roosevelt's competitor during
the readiness period, and the forecast of results shifted away from the real
thing.

This example shows that when the population is stratified (for example,
only voters with higher education and better conditions are observed), a big
mistake cannot be avoided. That is, in order to avoid such an error, the re-
searcher must know in advance the subgroups of the population (classification),
but usually the identification of subgroups is a complex and voluminous effort,
which in turn is associated with the collection of information.

The guide looks at population stratification (classification) methods that
currently exist in three types:

a) Methods that take into account the researcher's subjective opinion of the
population. This means that classification with exact properties are
known or simply assumed;

b) Methods to be used in the absence of any data or hypotheses about exist-
ing strategies and their attributes;

¢) Methods, which are intended only to visualize a sample of the popula-
tion in order for the researcher to be able to make a decision on the
available strata.

Among methods a), b) and ¢), only the so-called monotonic layering (Mul-
lat, 1971-1995) or known since then as the “monotonic linkage method”
(Kempner et al, 1997) is considered. The last chapters are devoted to the theo-
retical study of these monotone systems and methods of monotone layering, in
particular, on graphs. We do not discuss issues related to the use of standard
statistical methods and algorithms. The additional tools and technologies
needed for the monotone layering of data, the accompanying terminology and
strict nomenclature are explained in the course of the narrative and defined
where necessary.

The article consists of an introduction and a section that discusses the main
concepts, a total of 8 sections. Section 3 discusses the different types of metric
distances between objects to measure the difference between objects in classifi-
cation problems. Section 4 describes the method itself at an informal level.
Section 5 provides a more accurate construction at a precise mathematical
level. In Sections 6-7, we consider the application of the method to the study of
graphs, in particular, to determine the groups of strong players in tournaments
as opposed to weak players. Concluding remarks are provided in Section 8.
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2. KEY DEFINITIONS

First, we introduce the reader to the terminology and basic concepts used. The
basic concept of data processing is a data matrix. The data X isa nxm
matrix (1 row and M columns), each row of which is called an object; one
column of the matrix is called an attribute. This means that the data matrix is:

X, X X

11> ,29°°9 “* ,m

X_ 2,1’X2,2""X2,m

n,l? Xn,2 20 Xn,m

and X, . is the value of the ] -th attribute of the 1-th object. It is natural that

the question immediately arises as to what the numerical values of the attribute
in the data matrix reflect? There must be brands that the attributes may differ
substantially. For example, the air temperature may be a characteristic when
electric lamps are lit; the shoe number of the person; gender (male or female),
etc. As the processing is formally based on mathematical apparatus, three types
of attributes are distinguished in order to be able to interpret the final results
and use them according to the purpose:

a) Attributes on a continuous scale (Interval scale), such as body creden-
tial, height, temperature (quantitative);

b) Attributes on a discrete ordinal scale, such as the grades a student re-
ceives in some subjects: unsatisfactory, satisfactory, good, and very
good. At this point, the values of the attribute are considered ordered (in
Points or ranked);

c) Attributes with discrete values that are not ranked (nominal scale or
even qualitative attributes), For example, eye color, gender (male or fe-
male).

2.1. Quantitative attributes

The quantitative expression of an attribute is usually referred to as the value of
the attribute can be compared. Questions about how many times the value of
one attribute is greater than another can be answered. At first glance, the ques-
tion does not seem to be very complicated, although a deeper examination in
turn raises the question: "What is natural to compare?" Let's look at some more
examples before answering this question.
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Let us choose the cars that are described by the price tag. Undoubtedly, the
attribute "price" is quantitative, the a car with the price of 10.000€, is twice
as expensive as the b car with the price of 5.000€. The characteristic "price" or
"value" expressed by the function f(a) can also be expressed by the function
k-f(a)) (k is a positive number). Every other type of conversion changes the
price ratio of cars. The allowed transformations of the attribute “price” are

multiplication by the constant k. This property of the price makes it possible
to determine how many times f(a) is greater than f(b) — the ratio

K- f(e%‘ f(b) does not depend on K of the choice, and if K is fixed, we can

thus say how much is f(a) greater than f(b). This class of transformations

allows for the universal presentation of concepts related to quantitative as well
as other types of attributes. However, the determination of a unit of measure-
ment requires only quantitative attributes.

2.2. Definition

The permissible transformation of the value of an attribute f(a) in the set of
attributes A is called the function @(x) if the function @(f(a)) (a € le)

shows the same attribute. If the values of the characteristic f are given to-
gether with the number of allowed conversions F, then we say that the meas-
urements of the characteristic were performed on the F -type scale.

In the example of passenger cars F {K- x| K> O} and on the scale F, it is

usually said that the measurements are made on a ratio scale. An interval scale
is a scale where the number of transformations allowed is
F = {K X + o| K> O}; the specific scale F_is determined by the quantities k

and o, which give the unit of measurement and the starting point of the scale.

In most cases, the measurement results are presented in the form of a ma-
trix, if after each allowed transformation the measurement results do not
change. However, it should be noted that the results of matrix measurements do
not allow them to be immediately used in arithmetic calculations. For example,
the relationship f(a)+f(b) > f(c) does not make sense in the scale with ori-
gin 0>0, since K- [f(a) + f(b)]+ 2.0 is greater than k-f(c)+o0 only for
some K and O values. Indeed, absolute zero is the natural and unambiguous
presence of the zero point 0 that cannot be changed: °0-Kelvin is absolute zero
on the scale, which characterizes the absence of the measured feature. How-
ever, °0-Celsius or °0-Fahrenheit are not. Two arbitrary physical phenomena
are taken here: melting of ice, or an equal mixture of water, ice and salt at
-21.1°C. Comparing the mean values of the interval scale is another matter.
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Expression
1 n 1 m
—-> f(a)>—) f(b, €))
" Z (a) - Z: (b))
remains unchanged after using the allowed conversion. Namely
n 1 m
-ZK-f(a|)+o >—ZK-f(bj)+O iff
i=l m 5

o

S|lR B =

(6] m
n m

)+ 2> KN (b )+
i=1 m =

and the latter is equivalent to inequality (1). It makes sense to compare the
absolute differences in the values of the attributes, namely

|f(a)—f(b) _ (- f(a)+0)— (- f(b)+0)
[f(c)—f(d)| |(x-f(c)+0)—(x-f(d)+0)"

Now we ask the question what determines the number of allowed transfor-
mations f(x) ? Usually the choice is related to other attributes with the possi-

bility of forecasting. Formally expressed laws of science allow all these fore-
casting transformations not to change the law. For example, Clipperon's law

P % =const connects the scales of temperature T, volume V and pres-

sure P of a given gas, allows transformation, leaving the law unchanged. Also
in economics, in functional models, the price is determined fixed to within a
multiplier.

Unknown patterns of relationships, characteristic of sociological or psycho-
logical research, allow transformations between objects in the form of empirical
relationships, for example, by stratification methods. In these studies, however,
interval or ratio scales are unacceptable.

2.3. Point or ordinal scales.

Pupil assessment aims to test the degree of skill acquisition and achievement of
primary education goals on a point scale: Fail (IN — Insuficiente); Pass (SU —
Suficiente), Good (BI — Bien), Very Good (NT — Notable), Excellent (SB —
Sobresaliente). Point scale gradations are limited by equal intervals of discrete
numerical values. Expert judgments are often recorded as a sequence of natural
numbers arranged symmetrically to the O point (0, + 1,...).

A distinction should be made between two types of point estimates. In the
first case, the assessments reflect some well-known standards. The more oppor-
tunities you have to describe and characterize standards, the more accurately
you can, for example, determine the deviation from the standard. Thus, the
teacher depending on his work experience and personal experience forms the
pedagogical level of high school students’ performance. On the other hand,
refining a benchmark helps predict attribute values; for example, a student who
is very good at geometry usually also scores higher in algebra.
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The second type of points occurs when there are no well-known standards
or even the existence of an objective criterion is questionable, which may be
reflected in subjective judgments, for example, the taste of culinary products.
This type is also called an ordinal or ordered scale. The set of allowed trans-
formations F consists of all monotonically increasing functions. The ordered
values of the attributes are compared only on the basis of the relation "higher-
lower”. It is meaningless to compare the differences between the values of the
attribute. For example:

it f(a)=10, f(d)=2, f(c)=1, f(a)—-f(b)=8, f(b)-f(c)=1,
f(a)—f(b)=8>f(b)—f(c)=1, Then, using the monotonic transformation
¢, where ¢(1)=1, ¢(2)=20, ¢@10)=30 gives a contradiction
10=o(f(a)) - @(f(b)) > o(f(b)) — o(f(c)) =19.

It is, nonetheless, realistic to fix the values of original attributes using non-
numerical terms. Eligible elements for each ordered set, such as alphabet, etc.

(c) The nominal scale. The scales of the above attributes — quantitative,
point and ordinal scales — have general attributes. All scales define the binary
relation B on the set of objects X . The relation is defined by the following
rule: (a,b) € B then and only then when f(a) > f(b) . Quantitative and point
measurements are informatively more voluminous than ordinary measurements.

In practice, we can often only be interested in the information contained in
the binary relation B . The researcher's conclusions about the functioning of the
socio-economic system are usually qualitative (for example, stratification or
ranking of objects in a sample).

It is natural to ask the question: is qualitative information not enough to
draw conclusions? Qualitative information is easier to measure and more reli-
able. We do not have the means to accurately measure f(a) and f(b), while

we can be sure that f(a) > f(b).

On the other hand, the complex examination of data requires the transfor-
mation of the measurement results of individual assessments and objective
indicators into a common type of data: quantitative or qualitative.

By limiting the number of transformations F allowed, complex data analy-
sis is usually performed by quantifying all measurements. By limiting the num-
ber of transformations allowed sophisticated data analysis is usually performed
by quantifying all measurements. Qualitative measurements can "suffer" in this
way. When examining qualitative data, it is also possible to do the opposite: to
transform quantitative measurements into qualitative ones. It is possible that
even then the data will "suffer". However, if the results using quantitative
methods are consistent with the results of qualitative data processing methods,
the investigator is more likely to be sure of the conclusions reached,
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Let the equivalence relation J be given for the cross product of objects
X x X . We assign to each object X € X the number of the i -th class of X,
which contains the object X . Let's say that the measurements are made on a

nominal scale, if the value of the attribute is the number of the 1-th equivalent
relation. Number of conversions allowed by F are unique functions. Thus the
pair (a,b) € J then and only then when attributes values f(a)=1f(b) . Meas-

urement on a nominal scale is the "weakest" measurement step, as it is only
determined whether the equation f(a)=f(b) truly applies.

3. METHODS FOR MEASURING DIFFERENCES BETWEEN OBJECTS

All of the methods that we will discuss in Sections 4-7 relate to some degree to
the concept of distance or metric. This means that the task of stratification can
be performed accurately only if the distance between objects is determined.
Choosing a distance means also comparing distances that measure the similar-
ity of two objects. The higher this number, the more the objects themselves
differ, and vice versa.

The distance p(X,y) between objects X and y is called a function that
satisfies three conditions:

(a)  foreach x object p(x,x)=0;

(b)  for each pair (X,y) of objects p(X,y)=p(y,X);
(c)  there is a relationship for each of the three objects (X,y,z) that

p(x,y)+p(y,2) 2 p(y,2).

The following is a list of metrics or distances used. The notations are as fol-

lows: We denote the i-th, i=1n, object of the data matrix X as

X, = <xiﬂl,xivz,...,xiwm> , where x,., j=1,m, is the j-th attribute of the object
1. The distance between two objects X, and X, herein as said is nominated as
p(Xy5X,) .

Here are some of the most commonly used metrics.

Cubic distance: p(X,,X,)= max

X, —X,,

Ll

where | . | indicates an absolute value.

Octahedral distance: p(Xk , X() = Z‘Xk'j — X, ‘

i=1

m

2
Euclidean distance, p(Xk , X () = Z (Xk.j — XM)

J=1
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These three metrics are mostly useful for an interval scale. The following

distance is useful when attributes are measured in points or on an ordinal scale:
m
P(X,X,) = Z‘Xk.j X, J‘ Zn}(agx Xio X, J)
j=1

There are distances that are valid when the attributes are binary. Binary is a
sign of "marital" status, e.g. if there can be only two answers — "married-yes"

or "married-no". These distances are valid even if the scale is nominal.

3.1. Hamming distance

The notation is borrowed from set theory because objects can be interpreted as
subsets of attributes. A value of 1 can be viewed as an indicator X; i of

whether the original attribute J belongs or does not belong to subset X, . The

object X, is thus a Boolean vector X; = <Xi e & m>, where X, . is the

"1"-one or "0"-zero type, J =1,m.

The absolute distance p(Xk,X K) is defined as follows:
p(Xk R X[) =m- ‘Xk M X[‘ , which equals the number of missing matches
in the objects X, , X,. In this case, ‘Xk MNX é‘ is the number of attributes
matches in the data matrix, which takes into account 1-s in both objects X, ,
X,, indicating the same attributes. The relative distance looks like
p(X,,X,) :1—‘xk mxlmxk ux[‘, where X, \UX, is a set of only
those attributes that are present in both X, , X, objects, but do not necessarily
indicate the same attributes.

The list of distances between objects can be continued, since the possibili-
ties for determining the distances are not limited. It should only be noted that
the choice of distances is a process that is difficult to formalize and is usually
performed by a researcher based on his/her own experience. Measuring the
differences or distances between attributes further complicates matters and
differs from the above list. Inter-trait, or correlation coefficient between fea-

tures/attributes is the most commonly used measure that shows the relative

linearity of the change in a second identifier when the first identifier changes.
The correlation coefficient C between attributes OL, B can be determined using

the following expression:
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n n n
in,a “Xip _(in,a 'in,ﬁ)/n
i=1 i=1

i=1

N n n 2 n n 2
ST DS BUR) SO Do B

nn

In the case of the attributes "no", "yes", it is useful to apply a binary (Pir-
son’s @) correlation I' between objects K, £ in the form of:

Ca,[ﬁ

|Xk ﬁx,|~|§k r\i,|—|xk mi,,Hik ﬁX[|
= , \/ , ,

where X is a complement of X ;

— )
X

K

X
K

e

XK|-|§/|-|iK|~|X,‘| > 0. Before selecting the

distance/correlation between objects, one must perform a Class F independ-

ence check of the permitted transformations.

4. DATA LAYERING ALGORITHM

The reader is probably aware that many models of automatic stratification or
objective classification are given and described in the literature. We also know
that quite a lot of algorithms of this type have been developed, but due to the
lack of access to such knowledge, we independently developed and studied
here only one, possibly new for many, method. This method is primarily in-
tended for sociological data, but it can also be used to process the general data

matrix X.

Let the information gathered be presented in a form that can depict a large
graph. For example, some cities are divided into many quarters. The researcher
collects information from the city's residents on movements from one quarter to
another. Thus, quarters occur on top of a graph (graph) on the vertices of a
graph. The arcs of Graph indicate where the local movements of the population
are directed in the city. The task is to find out the movements global trends. So
the task is basically in that not to stratify city quarters, but stratify possible

directions of movement.

Let's match the number to each arrow (arc) in the graph indicating how
many transit paths of length 2 the arrow around gives. Graphically, this means
that the number of triangles attached to the arc of the graph has been enumer-
ated, (Fig. 1).
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When this is done, the stratification of the arrows (arcs) is completed using
following algorithm. Mullat developed this algorithm in 1971-1977.

Everywhere, if necessary, we will call this algorithm using the abbreviation
KSF — "Kernel Searching Routine".

1.

a)

b)

Zero step

Find the arc with the least number of triangles on the graph and set it to the
value of the parameter u at the level u,. The arc is removed from the

graph. It may be that the removal operation at this point affects some other
arcs in the graph and the number of triangles viewed on them changes, so

that some other arcs with credentials become less than or equal to U, .

These arcs are also removed. This removal of arc or set of arcs shall be re-
peated until there are no more arcs whose credentials satisfy the condition:

less than or equal to U, ,

Recursive k-th step
From the graph that developed in the previous k—1 steps when used, a
new minimum credential arc, such as an arc with a minimum number of tri-

angles but higher than previous u,_, is found. The parameter u level u,,

k-1

u, , <u, of the credential of this arc remembers the level. The arc or arcs
found is or are removed from the graph.

It may be that the removal operation in current step k affects some more
arcs and that their credentials become less or equal to u, . We repeat this
"peeling” until there is no more arcs with credentials less or equal to u, .
All arcs are on some p-th step removed/reset from the graph. This termi-

nates the algorithm.
As a result of the algorithm, all arcs of the graph are distributed into groups

or layers, each of which is linked with the corresponding size (threshold) u,,

k= (@) Observing these groups from the last, p-th group, the researcher

can draw conclusions about the global or major movement directions on the
graph.
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Example Let this graph be in Fig. 2,

Figure 2.

This figure shows the transit number of routes defined above by Fig. 1
around with the arc in Fig. 2. According to the algorithm the performance of
the zero step is the shape of the graph as shown in the Fig. 3.

So, above in Fig. 2 it is determined
that the given graph has three dif-
ferent 0O-arcs. If it were a traffic
intensity graph, then there should
be two different u,,u, values, or

two different traffic layers: 0 and 1,
in fact, meaning that the main
traffic is possible only for the traf-
fic shown in Fig. 3.

Figure 3

Another way to use the layering algorithm is more complex. An analogous
algorithm can also be applied to the % processing (layering) of the data matrix.
Only a few new concepts should be defined.

Based on data matrix X, we can create two frequency tables: the rows table
and columns table, which will indicate the possible values of the attributes in a
nominal scale. The maximum possible number atr of different attributes in the
data matrix determines the nominal scale width or expansion.

By scanning the cells and at the same time summing the 1-s in the addi-
tional tables the two frequency tables ¢ and % are progressively filled out.
First, let's look at the corresponding cell of the  -th object and its £ -th attrib-
ute in X . The x_, of this cell determines in which additional column X, to

the right of X, and in which additional row X, at the bottom, in relation to

3

X, the I-sincellsof r, ~and I-sincells of ¢, are summed up correspond-

ol
ingly. Namely, in relation to X, here X _, is the column No to the right, but

also the row No at the bottom, in additional tables # and ¢. We assume that
table X (see example below) is filled with integer attributes or labels
1,2,1,3,... When filling out frequency tables, we initially look at the first object,
then the next, and so on.
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Table1|'1 2 '3 4 'S "6 "7 8’1 2 3
1 111211205 2 0|7
2 1 113113 3|50 3|8
3 322130221 4 2|72
4 1 112113 3|51 2|8
'S 1 110112 1]6 1 0|7
1 4 4 41 4 4 0 1
c= 2 011200 31
3 1 00110 22
555 45 45 4

In more compact form, the data cell (,/) attribute determines the column

No-x,, of frequency ¢, , location in the table ¢ = "Cu” , t=1,atr, while the

4

cell (k,f) also determines the frequency 1, location but in the row No-x, ,

of table « =|r_|; i.e. the cell (,/) of the data matrix X, points at frequen-
ciess I, and ¢, . Consider the following credentials:

atr atr

T,=r_ +c ,+ Zr‘“ + Zc” , where atr already has been determined
’ " = o

¥ k.x,

as the nominal scale expansion or width.

Zero step. For all credentials 7, the minimum must be found and remem-
bered using the auxiliary variable u,. In the data matrix X the entry, where
the minimum was found, — the K -th row and / -th column cell of the data

table X is reset to zero or marked as processed. Thus, it usually happens that the
corresponding cells to & -th row and £ -th column in additional frequencies

tables ¢ and % change.

Recursive step. Thus, the reset operation may affect some of the other cre-
dentials 7_, of the data matrix X cells, so that the credentials corresponding

K0

to those cells become less than or equal to the minor value u, . Repeat the cur-

rent step or steps for matrix X cells with this credential level u,_ until no en-

tries (cells) are found in the matrix X that satisfy the reset (zeroing) condition

at the k -th step.

It is analogous to the zero steps in the graph alignment algorithm. Examples of

5x 8 matrix see the Table 1 above. The credential matrix corresponding to the

data matrix is as follows:
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Table2/'1 2 ‘3 4 '5 6 7 '8

1 (21 21 21 15 21 20 17 11
22 22 22 16 22 21 18 17
15 17 17 13 15 11 19 16
22 22 22 15 22 21 17 16
22 22 22 11 22 21 16 18

T
n A WN

After the algorithm has been implemented against Table 2, it performs a
transformation of Table 2 to Table. 3 (the reset cells are marked with the
number 99):

Table 3|'1 '2°3°4°5°6 78

1 |1818189918189999
2 |1818189918189999
3 19999999999999999
‘4 |1818189918189999
'S |1818189918189999

If the result needs to be interpreted essentially, the algorithm offers the re-
searcher, after further investigation, the following interpretation: An area exists
inside the data table X or block filled with 3-s labels, which consists of rows
1,2,4,5 and columns1,2,3,5,6.

A similar algorithm can be used for the following two cases. Let's choose
the credentials m as a cell value of the data matrix X in the x-th row

and / -th column, which will be

atr

T, zilt-rml +Zt-c‘,(, .
t=1 t=1

These types m_, of indicators in mechanics are called moments. The credential

K0
consists of row moment and column moment sum. We can act exactly accord-
ing to the algorithm presented earlier.

Another example. The entropy of an object K can be calculated by for-
mula:

t=1

1 atr atr
H(K) =T Zrk,t ’ logatr(rk,l Zrk,t) >
Z =1

t=1

as well as similar formula H(/) for an attribute £ .
The quantities H(x) and H(?) are the contributions of the K -th object

and / -th attribute to the total entropies ZH(K) or ZH(€ ) of the data ma-

trix X, which according to Shannon can be expressed as the sum of the entro-
pies of individual objects or attributes respectively.
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The maximum entropy in the frequency table is reached when the distribu-
tion of distribution in the data matrix X becomes uniform. To clarify the last
statement, we draw a graph of the function:

atr
- loga\r(rm ;rx,t) : - logﬂu(r&l/:‘z:rmj

A

1 Probability—

The maximum entropy of the data matrix in the row direction is computed
when the probabilities on the x-axis allocate a uniform frequency distribution,

atr

resulting in H (k) = 1. Indeed, the value — logm(r‘“ Zrm) is at its maxi-
max ’ pa ’

atr

mum when r_, Zr R y .Incase r_ =0 then this zero value is not taken
K, K, atr k.t
t=1

into account. Based on the maximum entropy, we get the actual information
about the object ¥ equal to 1—H(x). Thus, the complete information con-

tained in the data matrix X is calculated by the formula: n —ZH(K). The

k=1

above layering algorithm can now be used.

For the credential of an individual object, we choose the entropy value
H(x) . Thus, the set of objects X,,X,,...,X_ is to be stratified. It is only neces-

sary to keep in mind that after removing an object from the data matrix,
changes occur in the frequency table (frequency bands). The changes consist in
the fact that when using the values of the / -th attribute X _, of the i« -th ob-

n

/

Ject, in the corresponding cells 1, and ¢, of the frequency tables # and

N

¢, 1 is subtracted from the frequencies: r, =r, —1 and c,

. =c, —1.

o ’/
We will consider the properties of the stratification algorithm using the
mentioned monotone systems in the next section, where the positive €@ and

negative effects of elements are used. In graphs, the negative © effect on the
arc was its removal. For data matrix, this is the reset of the £ -th attribute of the

K -th object or a series of © effects until the object will be completely removed
by the entropy level u, assessment.
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5. MONOTONE SYSTEMS

We will continue our story about monotone systems now at a more precise
level according to the publication (Mullat, 1976-1977) in Autom. and Tele-
mechanics. A monotonous system manifests itself in the relationship between
elements in the fact that if an element of the system is "positively influenced",
then this effect is also positively reflected on its interrelated elements. It's the
same with negative effects.

The monotonicity property as a central property allows us to formulate the
concept of the system kernel or core in a general form. By the core, we mean a
subset of the elements of "strongly attracting" or "strongly pushing" each other
the elements of the system.

Consider any system W consisting of a finite set of elements, i.e.,
|W| =n|. Quantities or credentials that indicate the level of "importance" of the

element o€ W for the functioning of the system as a whole characterize the
states of the elements of a system W .

It proves necessary to reflect the internal dependence of the elements of the
system at the level of importance of the elements. In view of the fact that the
elements of the system are interconnected, it is possible to take into account the
effect of element o on other elements related to the change in the properties of

element 3. We assume that the level of importance of the element o itself
also changes due to its effect. If elements o and B are in no way related in the

system, it is natural to assume that the change caused by element o to the
importance of element 3 is zero.

In the system W, we consider as an effect on the element o of two types of

effects: @ and © type effects (@- and ©-effects). In the first case, the properties
of element o are considered to improve as its importance to the system in-
creases; in the second case, the properties of element o deteriorate as its level
of importance in relation to the system decreases.

Now we can also provide a definition of a monotonic system. A monotonic
system is a system in which the positive effect of ©@ on any system element o
causes the positive effect of @ on all other elements of the system and the effect

of the © type causes the effect of © type respectively.

5.1. System monotonicity conditions

The observed important concept — the effect on the element o of the system
W and the accompanying effect on the other elements of the system — allows
the set W to determine an infinite number of functions, since we have at least
one actual function of the importance of the elements W of the system:
mT: W — R, where R is a set of real numbers.
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If element o is affected, then it can be said that the function 7 is reflected
in the function 7, for the effect of ® and in the function 7 for the effect of ©

respectively. As a result of the effects @ and © on the element implementation,
the credentials of the system elements are redistributed from the function 7 to

the functions 77, or the initial set of values {TE| nde W)} is transferred to
a new set {TI:| . (0e W)} and {Tl',| n (0€e W)} respectively. The functions 7,
n., m, are defined on the whole set W and thus are also defined 7t (o) and
7, (o). It is clear that if there is given a sequence o, O.,, 0., ...from the W

set of elements (all repetitions and combinations of elements are allowed), and

e.g. the a binary sequence @, ©, ®,... then can be easily determined the com-

+

bined effect in the form of a functional product of 7, -7, -7

a3

The presented construction allows writing the monotonicity property of the
systems as two main inequalities:

m,(B) = n(B) = m, (B)
for each element pair o, € W , including pairs (ot,0t) and (3,[3).

5.2. Identification of the system kernel

To determine the kernel of the system, consider the two subsets of W, namely
H and H,sothat HOUH=W and HNH=J.

If only elements O, a.,,..., € H are positively affected then it determines

for the set W a certain function TE;] . 7'[:;2 -..., which can be considered de-

termined only for the subset H . If we choose one of all possible sequences of a
set H, namely <OL1,OL2,..., OLH> where Q; does not repeat, then the func-

+
oy 90

.
., T
> |

tion TC:Ll - T is denoted unambiguously on the set H function and

call it a standard function. The function thus introduced is called the credential
function on the set H and the individual value of the function on the element
O is the credential. These credentials {n+H(0L)| oe H} we denote by TT'H

and call this set of credentials specified for a given set H, i.e., for the set of
credentials with respect to the set H .

Suppose that the set of credentials sets {H+H| Hc W} for all possible

subsystems 2" of system W — the number of all possible subsystems is

2V
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Instead of the plus effects of the standard function, we can look at the
analogous © effects function w, -7 -,..., T,

%l

. Similarly to the function
7' H(a), we also determine, the set of credentials {n’H(OL)| o€ H} and also
the collections of sets of credentials {H’H| Hc W} In addition, to obtain a

process of type © effects — an analogous process II'H is performed. All

elements of the set H are affected in sequence according to the ordered list

<oc],a2,...,ocm> )

On the subsets or arrays {H+H| Hc W} and {H’H| Hc W} of creden-
tials given on the sets H & W , the following two functions can be defined for

each subset H :

F(H)= miHn n'H(a), F(H)= miHn m H(a).

By the kernels of W we call the global minimum of the function F (H)

and the global maximum of the function F (H). The subsystem H ® that

reaches the global minimum of the F, function is called the system @-kernel,
and the subsystem H © that reaches the global maximum of the F function is

called the ©-kernel, respectively.

Definition. The defining set considered in monotone systems theory is the
last set in the layer algorithm with level u_ (see the section 3 above), where the

sequence O = <OLI,OL2,...,OL‘E‘> of system elements by which such a defining set

is found is called the defining sequence.

Theorem 1. The defining set H © is the set where the F function reaches
the global maximum. There is only one defining set H® set. All other subsets

if they exist where F reach the global maximum are within the defining set

H®.

Theorem 2. For the definite set of H ®, the function F, reaches a global
minimum. There is only one defining set H ®. All sets that reach the global

minimum are enclosed in the defining set H ©.
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The existence of defining sets H© and H ® is ensured by a special con-
structive routine. The defining sets are kernels of Monotone Systems, because
on these sets the functions F and F, reach the global maximum (minimum)

accordingly. Theorems 1 and 2 guarantee that all kernels are located in one
"large" kernel — the defining set.

6. MONOTONE SUBSYSTEMS ON GRAPHS

Let us have a "big" graph G and a "small" graph g . It is necessary to select a
part of the "big" graph G (a set of arcs or edges) so that this set is the most
"saturated” with "small" graphs g. For example, we can assume that one part

of the graph is more saturated than the other if the first contains more small
graphs g than the second.

With some complexity, saturation can also be approached as follows. Con-
sider the arcs, edges or vertices of G that belong to the part we are interested
in. We now count in integers: how many there are small graphs g, separately
those g graphs that are located "near" each vertex, arc or edge. By this integers
is meant the number of graphs g that contain a given vertex, arc or edge, and

are thus expressed as an integer. By doing this, we get exactly such an integer
or credential that characterizes the part of G we is interested in. Each such
integer reflects a certain "local" saturation of the graph G with the graphs g.

Based on the obtained integers, several variants open to determine the satu-
ration of the G part of the graph. The mean, variance, etc., of these numbers
can be calculated. We consider the simplest credential magnitude, namely the
entity of small graphs g, which are located in a separate part of a large graph
G, i.e., the smallest value of the local parts. Figuratively speaking, this number
of sub-graphs is in the most "empty" location of the graph G, which we should

further on remove by © type actions.

Below we give an exact representation of the problem of determining the
most saturated parts of the graph G with small graphs. We set the problem as
follows: From all possible parts (or a large number of parts) of a graph G we
find the one with the maximum value of the smallest number of local sets of
small graphs g .

It is natural that in this method many small graphs g can be placed in a part
in the usual way, because the number of small sub-graphs g on each vertex or
arc is not less than on the vertex or arc on which it is minimal. At the same
time, however, this minimum number in the extreme part is quite large, because

we specifically chose the part where the local number of graphs condition
reaching the global maximum of the minimum would be satisfied,
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Similarly, we can set the task of finding the part of the graph G that is least
saturated with small graphs €. The number of sub-graphs g at the vertex or

arc where this number is maximal characterizes then each part of the graph.
Instead of looking for the part of the graph where the minimum local number of

graphs is the maximum, we look for the part where the maximum local number
is the minimum. In this case, the number g of the sub-graphs of each vertex or

arc is not greater than the "maximum" vertex or arc, and the latter has a default
due to the global minimum condition.

The extreme parts of a graph are usually uniformly saturated or unsaturated

with small graphs. In a saturated extreme part, no single vertex or arc can usu-
ally have very few graphs g, because without the arc of this vertex the part of

the graph is probably more saturated at the top or arc with sub-graphs g in the

more complex sense mentioned above.

7. GENERAL MODEL OF KERNEL EXTRACTION ON GRAPHS

If a graph G is given, then with V(G) or by V we denote the set of vertices
of the graph. We denote the set of arcs of an oriented graph G by U(G) or
U and the set of edges of an unoriented graph by E(G) or E .

In graph theory, the concept of a sub-graph of a given graph G is used. A
graph G' is a sub-graph of the graph [V(G),U(G)] if V(G')c V(G) and
U(G") is the set of arcs of all and only those that bind the pair from V(G').

Similarly, we can define a sub-graph of an undirected graph if the term edge is
used instead of the arc.

Sometimes the term part G of a graph is also used. We call graph G a
part of the graph G[V,U] if V(G")< V(G') and U(G") c U(G"). In terms
of the oriented graph, some arcs of the graph G are simply missing. Similarly,
an undirected sub-graph is determined.

The design of concepts described in the previous two sections of this guide
must begin with the identification of the elements of the system W . Two

structural units can be separated from graphs — a vertex and an arc. Let us
consider first the case where the vertex of the graph G is chosen as an element

of the system. We now determine the effects of the ®- and ©-effects on the
vertices, i.e., on the elements of the system W. Determining the effects of @

and © requires the addition of a special significance function T to the vertices
of the graph G. The action has already been mentioned in the previous two
sections of the guide, that the credentials in the system must increase as a result

of the @ effect and decrease as a result of the © effects.
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We need to define saturation indicators, or whatever we call them, creden-
tials for the elements OL of each subset of H from W . To get this, we need to
set up an initial set of credentials for W , as well as a framework how to ex-

press @ and © effects.

An initial set of credentials {n(oc)| ae W} can be specified, for example,
as follows. Let g be a small graph given a large graph G . We count the num-
ber of different sub-graphs of graph G that are isomorphic to graph g and

whose vertices include vertex OL. We set the just obtained number to the initial
credential level m(a). To underline the introduced dependence of the level

n(a) on the small graph g, we use the expression — the credential of the

vertex O of the graph G with respect to g . Next, we consider two operations
for obtaining new graphs from G, namely the & and © operations.

Let a graph G be given and an empty graph A (a graph that has no arcs
but has |V(G)| vertices). We assume that V(A) is an exact copy of V(G).

And when we talk about the vertex o, we mean the vertex of a graph G,
which appears in two forms — like the vertex of a graph G and like the vertex
of a graph A .

A ©-type operation of a graph G with a vertex o is to carry out removing
all the arcs or edges leading to that vertex. On an empty graph A , however, the
@-type operation is a recovery operation for all edges leading to that vertex o .

It appears that if a ©-type operation is applied to a vertex, the credentials of all
other vertices (relative to the small graph g) either decrease or, in some cases,

remain the same. When performing a @-type operation, a natural question
arises: what should be considered the credential of the vertex after restoring the
vertex?

The solution to this question lies in the following construction. Let us count
the credentials of the vertices of the graph A (with respect to the small graph
g) and add the credentials of the vertices of the graph G . We consider the
obtained amounts as the total credentials of the vertices. In this case, the oppo-
site effect can be observed: as a result of the @-type operation, the total creden-
tials increase or, like the ©-type credentials, remain at the same level. Gener-
ally speaking, the initial credential set {TE(OL)| ae W} (the credential set be-

fore any @-type operation) of the vertices of graph G can be considered as a
general credential set to be built since any part of graph G is initially empty.
At this stage, minimizing the maximum credentials means some options for the
vertices of graph G to be isolated. In this approach, the monotonicity condition
is satisfied.
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When constructing sets of credentials in system W , it must be demon-
strated how the initial set of credentials {TE(OL)| ae W} found is redistributed

due to @ and © operations.

Let be given a certain sequence of vertices o = <OL],OL2,...>, which forms a

set of H c W . We express the effect of @ on the vertices of G according to

their occurrence in the sequence. As a result, a sub-graph of G is formed on
the graph V(A). At the vertex of each resulting sub-graph we can count the

number of isomorphic sub-graphs with a small graph g, so we get the creden-
tials of a set of H (the complement of H to W) elements. Consistent with the
above theory, we can state that the set H determines a new significance func-

tion in the form,

T T - 2

o

obtained from the initial credential collection {TE(OL) | oe W}

Thus, if a sequence of vertices o = <(11,OL2,...> is given that promotes the

set ﬁ, then the set H forms a set of credentials determined by (2) or (3). We

denote this set by IT'H, and we call the set of credentials by the set of vertices
induced on H . The sets of induced credentials form the set {H+H| Hc W}

Sometimes it is appropriate to use the expression of @-collection of sets with
respect to the small graph g.

The collection or array {H’H| Hc W} of sets of credentials is determined

analogously. The collection IT"H of the credentials is determined by the func-
tion
T T ... 3)

o, o,

given in part G of the graph, which remains after the application of the
©-activities to the sequence of vertices forming o = <0L1,0L2,...>. It only needs
to be emphasized that each subset H c W of the set of credentials is in fact

the set of the remaining part, but not the total, i.e., not the part given by the set
of graph A , which actually is an empty graph.

Next, let's take the arc as the system element. The system is defined as the
set of interconnected arcs U(G) of the graph G, determining the ® and ©

effects again requires setting the values of the initial function 7.
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Let be given a small graph of g. We count the number of different sub-
graphs of the graph G that are isomorphic to the graph g and whose arcs or

edges include this arc or edge. The resulting integer is taken as the significance

level of the arc o of the graph G . This is called the credential of the arc O
with respect to the graph g.

Similarly to those described at the vertices of G, the concepts of & and ©
activities are also determined by the arcs or edges of the graph G. Arcs or
edges are now removed or restored instead of vertices.

Let's look at the © operation first. It is obvious that as a result of removing
the arc (edge), the initial set of credentials with respect to the small graph g
may decrease or remain the same. A decrease in importance of credentials indi-
cates that the © operation is equivalent to defining © activity for system ele-

ments.

Let <0L1,OL2,...> be a sequence of different arcs on G, including arcs form-

ing H c U(G). We perform ©-actions sequentially on the arcs of the graph

G according to the given sequence. As a result, we get a certain part of the

graph G, the elements of which are arcs (edges) belonging to the set
H < U(G). For each arc a € H, count the number of isomorphic graphs with

the graph g, which is considered to be the credential or significance of the

element o with respect to the set H .

According to the notations used, the method for determining the given cre-
dentials creates a function on the elements of the set H of arcs. Similarly to
the case where the number of sets of credentials was assigned to the vertices of
a given graph, arcs (edges) are created that belong to the set of credentials
{n’H(OL) | oe H}, which we denote again I1"H. We proceed in a similar way

to find the set of credentials {H’H| Hc U(G)}. On an empty graph A, de-

fining the @-activity on the basis of the ®-operation requires a more detailed
analysis.

Let again the sequence of arcs o = <(X.1,062,...> in the given graph G (said
arcs form the set H ), we perform @-operations on the set H arcs sequentially.
As a result, the set of vertices V(A) forms a part of a graph G whose list of

arcs is equal to H. For the vertex model, we calculated the total credential of
each vertex o € V(G). In this case, too, we try to do the same and find the

total credential of the arcs forming H .



Methodological Guide 215

The arcs belonging to the set H are not present in the graph g and the
question is how to count the number of sub-graphs isomorphic to the graph g
and containing the arc o (which is not present in the graph A ). Proceed as
follows: we read that this arc a is fictitious only at the moment of counting the
sub-graphs. In this case, the set of arcs H forms certain integers that depend on
both the graph and the part of the graph formed on the empty graph g.

In the method described above, the function 7, -7, -... is determined from

the quantity H , which creates a set of @-credentials {TE H(oc)| ae H}

In this case, even in the case of a ©-operation, the set of credentials of the
@-activities can be determined with respect to a small graph. The use of the
term "@-activity" is perfectly legal here, as the total credentials of those ele-

ments that are not yet subject to @-activity may increase or remain the same.

7.1. Illustrative Examples on Directed Graphs
A graph G of partial ordering is defined as a binary relation G with the fol-
lowing properties:
a) Reflexivity, i.e., if o€ V(G), then aoGa.. The graph G has a loop
at the vertex QL.

b) Transitivity, if there exists an arc (O(.,B) and (B,y), then the graph G
has an arc (at,7), or from oG B and B G ¥ it follows that o G .

A complete order is defined as a graph of partial ordering in which any pair
of vertices o and [ is connected by an arc.

It is possible to formulate the following problem: in a given directed graph
it is required to find the (in certain sense) most “saturated” regions that are
“close” to a graph of partial ordering or to graphs of complete ordering. This
problem will be solved by a method of organization (on a graph) of a mono-
tonic system with subsequent determination of kernels.

Figure 4
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In accordance with the scheme of organization of a monotonic system on

graphs described in the previous section, it is necessary to assign a small graph
g . Suppose that this graph consists of three vertices X,y,z, and it is such that

uI) = { (x,y)(v.2),(x,2) } The graph has a total of three arcs (a transitive
triple).
Now let us consider the assignment of collection of credentials arrays at the
vertices of a graph shown in Fig. 4. The loops on this graph have been omitted.
According to the scheme of assignment of collections of credential arrays at
the vertices of a graph, it is required to determine an initial array of credentials
{R(OL) }, where o =1,2,3,...,7. According to the method of calculation of

the values Tt(Ql) with respect to the graph g (a transitive triple), we obtain
n()=3, n(2)=2, n(3)=2, (4 =7, n(5)=4, n(6)=3, n(7)=3.
As an example, let us determine a credential array on a subset of vertices
H= {1,2,3,4,5}. By successively performing © actions on the set H= { 6,7 },
we obtain on the set H a new credential array n(l)=3, n(2)=2, n(3)=2,
n(4) =4, n(4)=4, , n(5)=1.

The values of the function 7'l2g7'|:;r can be obtained in a similar way, but for

this purpose it is necessary to use the assignment of collections of total @ ar-
rays with respect to a transitive triple. According to Fig. 5, the values of this
function in their order at the vertices {1,2,3,4,5 } are as follows: TC(]) =3,,

n(2)=2, n(3)=2, n(4)=8, n(5)=4.In exactly the same way we
can determine on any subset H of vertices V = {1,2,3,4,5,6,7} a proper

credential array of @ or [] actions with respect to a transitive triple.

& @

Figure 5

Now let us consider a construction that is assigned not on vertices, but on the
arcs of the graph presented on Fig. 4. In this case the set of elements of the
system W will be U(G) = { a,b,c,...,n,m }‘ As the small graph g we shall

take the same graph as above, with a set U(g) = {(X, y), (y, Z), (X, Z) }
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By analogy with the foregoing, we realize the construction in the same suc-
cession. We determine an initial credential array {Tc(oc)| aecU } on the arcs

of the graph G in accordance with the general scheme.

We find that

n(a)=1,7n(b)=1n(c)=1,n(d)=1,7n(e) =2, n(f) =3,
m(g)=2,n(h)=2,t(k)=2,n(n) =2, n(m)=1,n(v)=3,n(p) =2

As an example, let us now perform (@ and © actions on the arcs f,k and
m, i.e., onthe set H= { f,k,m } On the set H we hence obtain

m(a)=1n(b)=0,n(c) =1, n(d)=1,n(e) =2,
m(g)=0,m(h)=0,7(n)=0,n(v) =2, n(p) =2.

In accordance with the adopted system of notations this array of numbers
will be denoted by IT H . For obtaining an IT"H array, we must calculate the

total credentials. The dashed lines in Fig. 6 represent the arcs of graph A that
experience the effect of 71 actions performed on the arcs f,k and m .

According to Fig. 6, the total credential array will be as follows:
m(a)=1Ln(b)=1,n(c) =1, n(d)=1,n(e) =2,
n(g) =3, n(h) =2, n(n) =3, n(v) = 2, n(p) = 2.

Figure 6

Thus on any subset H of arcs of the graph shown in Fig. 4 we can construct
the credential arrays IT'H and ITT"H.

Next we describe the procedures of construction of determining sequences

of @ or © actions, at first for vertices, and then for arcs of the graph shown in
Fig. 4. The construction is carried out for the purpose of illustrating the con-
cepts of @ or kernels of the monotonic system and also for ascertaining the
effect of the duality theorem formulated by Mullat (1976-1977).
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Let us consider an example in which © credential arrays are assigned at
vertices with respect to a transitive triple. According to the scheme prescribed

in Mullat's routine of construction of a determining @ and © sequence of

vertices of a graph on the basis of @ and © actions. For the graph shown in
Fig. 4, the Kernel-Searching Routine consists of two steps: the zero-th and the
step one. It yields two subsets I, ,IT < V(G), where

[ =V(G)={1,23,..7}, T ={4,567 },
and the thresholds u, =2, u, =3.

The determining sequence of vertices constructed with the aid of © actions
is as follows: o = <3,2,1,4,5,6,7>. Thus on the basis of: a) according to Theo-

rems 1,3 (Mullat, 1971) and b) according to Theorem 1 (Mullat, 1976) about
KSR, it can be argued that the set {4,5,6,7 } is the definable set of vertices of
the graph shown in Fig. 4, and, therefore, this set is also the largest kernel K ©.

Now let apply the KSR for constructing a @-determining sequence. We find
that o, = { 4,5,6,7,1,2,3 } The routine terminates at the third step, and it con-
sists of four steps, namely the zero-th, the first, the second and the third. Ac-
cording to the construction of @ sequences prescribed in the KSR, we produce
the sets T': Ty ={4,56,7,1,23}, ' ={567,1,23}, [ ={6,7,1,2.3 |,
Iy = { 2,3 } and a sequence of thresholds u, =7, u, =4, u,=3, u,=2.
As in the case of a @ sequence, we conclude on the basis of Theorems 2 and 3
of a) Mullat, and of Theorem 1 of b) Mullat, that {2,3 } is the largest K ®
kernel of the system of vertices of the graph in Fig.1.

A careful analysis of Fig.1 shows that the K ® kernel is in fact completely
ordered set, i.e., <4,5,6,7> . On the other hand the K © indicates from the point

of view of the “structure” of a graph that the region, in which the vertices are
least ordered, it is ordered itself as well. This is in agreement with the our for-

mulation of the problem of finding kernels as representatives of “saturated” or
“unsaturated” regions (parts of a graph) with small graphs g

Now let us use the KSR for constructing determining sequences of arcs of
the graph in Fig.1. The graph has a total of 13 arcs. After applying the KSR, we

obtain on the basis of © actions the following sequence:

o = <a,b,c,d,V,e,p,f,k,n,m,h,g> )
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The routine terminates at first step and it consists of two steps, namely the
zero-" step and the first step. At the zero-" step we have I, = U(G), and at

0

the first step we have I, = { f,k,n,m,h,g }, with the thresholds u, =1 and
u, =2 respectively. Summing up, we can assert on the basis of the results of
a), b) Mullat, that this is a definable set and at the same time the largest K ©

kernel in the system of arcs.

From the point of view of the graph structure, the application of the KSR to
arcs in the construction of a © determining sequence does not yield anything
new compared to the application of the KSR to vertices. We obtain the same
complete order <4,5,6,7> represented in the form of a string of arcs, and it also
corroborates our assertions concerning the saturation of a K © kernel by transi-
tive triples. On the other hand the use of KSR for constructing @ determining

sequence of arcs yields a K ® kernel
I ={k,m,n,g h,e,p,b,a,c,d},

whose meaning with regard to “non-saturation” with transitive triples cannot be

determined.

Below we shall illustrate the peculiar features of using the duality theorem
from b) Mullat (1976) for finding K ® and K © kernels of a monotonic system

specified by vertices or arcs of a directed graph.

At first let us consider the monotonic system of vertices of the graph in
Fig.1. The sequence of sets <Fj+> specified by the KSR on the basis of @ ac-
tions uniquely determines the sets V\I'={4}, V\Iy ={45},
VAL, = { 1,4,5,6,7 } Above we have found that F (I';) =u, =3 . From the
construction of a determining sequence o_ of vertices of a graph we know that
Fﬁ{4,5,6,7 }: 3. Hence by virtue of Corollary 1 of Theorem 1 of b) Mullat,
we can assert already after the second step of construction of a o sequence
that the set {1,4,5,6,7 } contains the largest K © kernel. Thus we have shown
that the sufficient conditions of the duality theorem of b) Mullat, are satisfied in
the example of the graph represented in Fig. 1.

Now let us consider the set V\I| = {1,2,3 } As was shown above, inside
this set there exists a set I, = { 23 } suchthat F (I')=2; F (I'') =3 onthe
other hand. By virtue of Corollary 4 of the duality theorem we can assert that
set {1,2,3 } contains the largest K ® kernel of the system of vertices of the
graph (Fig.1); this likewise confirms that existence of the conditions governing
the theorem.
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At last let us consider a collection of credential arrays on the arcs of the

graph. The determining O, sequence of arcs specifies a set

I = { k,m,n,g,h,e,p,b,a,c,d } It is easy to see that inside the set U\T}
there does not exist a set H as required by the conditions of Corollaries 1 and 2

of the duality theorem in Mullat (1976). This shows that in comparison to ar-
rays on vertices, credential arrays on arcs do not satisfy the duality theorem.

7.2. Monotonic systems on special classes of graphs

In contrast to the previous section, we do not carry out here a detailed construc-
tion of collections of credential arrays and determining sequences and kernels
on any illustrative example. Here we shall show how to select a small graph g

and @ and © actions so as to match the selection of these elements with the
desired “saturation” of the investigated graph. The desired saturation of a graph
can be understood as the saturation desirable for the investigator who usually
has a working hypothesis with respect to the graph structure. In view of this, we
shall consider the following classes of graphs: tournaments, a-cyclic (directed)
graphs, and (directed or undirected) trees.

Let us recall the definitions of these classes of graphs. A tournament is a di-
rected graph in which each pair of vertices (X,y) is connected by an arc, cf.

Harari (1969). A none-cyclic graph is a graph without cycles (in case of an
undirected graph), and a graph without circuits (in case of a directed graph).
None-cyclic undirected graphs are trees, and we shall consider the most general
class of trees, as well as the class of directed trees.

In tournaments it is appropriate to consider regions of vertices that are
“saturated” with cyclic triples. A cyclic triple is a graph g such that

V(g) = { X,Y,Z }, U(g) = { (x, y), (y,z), (x,z) } It can be assumed that a

tournament in which there exists such a region represents a structure of the
participants of the tournament. This structure is non-uniform; i.e., there exists a
central region (set) of participants who can win against the other players, but
they are in neutral position with respect to one another.

For solving the above problem, we propose the following exact formulation
in the language of monotonic systems. In Section 2 we have considered creden-
tial arrays on vertices and arcs of a graph. Now let us consider the above mod-
els on vertices or arcs in a certain order. In both models we take a cyclic triple
as the small graph g with respect to which the 7T function is calculated. Sup-
pose that the methods of assignment of collections of credential arrays on verti-
ces are the same as in Section 2. It is possible to modify this scheme by taking
as a ©-action on the vertex o the removal of all arcs of a tournament that
originates at o, whereas @-action is the restoration of all the arcs in the graph
A that originate at o . In Section 2 we performed the opposite operation, i.e.,
the removal of incoming arcs and the restoration of these same incoming arcs.
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The assignment of credential arrays on arcs of a tournament graph must be
carried out in accordance with a scheme similar to that described in Section 2.
Within the framework of the theory it is apparently impossible to decide
whether the scheme of determination of kernels on arcs of a tournament is pref-
erable to the scheme using vertices; therefore, it is necessary to carry out com-
puter experiments. There exists only one heuristic consideration. If in a tour-
nament there can exist several central regions saturated with cyclic triples, it
will be preferable to use the scheme of determination of kernels on the arcs of
tournament, since these regions can be found. The model based on vertices
makes it possible to find a kernel that consists also of regions, but it does not
permit finding an individual region. We do not possess a string of arcs repre-

senting these regions.

None-cyclic directed graphs are a convenient language for describing opera-
tion systems (Kendal, 1940). An operation system can be regarded as a system
of modules and interpreted as a library of programs. Each working program is a
path in a none-cyclic graph, or, in other words, the set of modules of a library
needed at a given instant. The modules are called one after another if not all of
them can be stored in the main memory. In case of a library of a large size,
there naturally arises the question of fixing the modules on information carriers.
Prior to solving this problem, it is appropriate to ascertain the “structure” of a

none-cyclic graph of a library of modules.

Figure 7 Figure 8

For ascertaining the structure of a graph and for just-mentioned task of fix-
ing the modules, we have to find the principal (nodal) vertices or arcs. The
nodes are the “bottlenecks” of graphs or, in other words, the modules that occur

in many working programs.
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Figure 9

We shall now formally describe this problem with the aid of a model of or-
ganization of a monotonic system on a graph. As a small graph we shall take
directed graph in Fig.7. The structure of this graph is in accordance with the
above definition of bottlenecks of the none-cyclic graph under consideration. It
is possible to construct a monotonic system also on the arcs of a none-cyclic
graph of a library of modules. With the respect to the graph on Fig.7, the

collection of credential arrays and @ and © actions, in accordance with the
general scheme of Section 2, must be defined. After this it is necessary to use
the routine of finding vertex kernels or arc kernels, which in conjunction must
indicate the bottlenecks in accordance with the above definition. As in case of
tournaments, which a monotonic system is preferable of arcs or vertices
requires experimental checking.

In comparison to the two previous examples, the last example does not have
the aim of associating the application or description of any actual problem with
tees. Our aim is to try and find in a tree a region, which in some sense is more
similar to “cluster” than any other part of the tree.

At first let us consider undirected trees. We shall use a model of organiza-
tion of a monotonic system on the branches of a tree. As a small graph g we

shall take the graph shown on Fig. 8. As in the case of assignment of collec-
tions of @ and © credential arrays on arcs, we assign the corresponding @ and
© arrays with respect to the graph shown in Fig.9. The © arrays appear as a

result of © actions (removal of edges), whereas the @ arrays result from @
actions (restoration of edges on empty graph A by calculating the total creden-

tials of the tree G and its copy on A . As an example we presented the @® and

© kernels in Fig.9 of this tree. Together with each edge we indicated the num-
ber of sub-graphs g that contain this edge and which are isomorphic to the

graph shown in the Fig.8.
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Now let us consider directed trees. If it is of interest to separate “clusters” in
a directed tree, we shall proceed as follows. Let us consider the following small

graphs: g, g, and g, (see Fig. 10).

| Figure 10

The credential function 1 on a directed tree can be calculated separately
with respect to each small graph g,, g, and g,; then the values of all these

three functions can be added up (a linear combination), thus yielding the overall
function with respect to the graphs g, g, and g,. In the same way we can

assign a monotonic system on arcs of a tree if © action signifies the removal of
an arc of a tree, ® action the restoration of an arc on a copy of given tree on
A . Thus we can pose on directed trees a similar problem of finding cluster
kernels. Let us note that we use in the last example with trees a more general
model of assignment of collections of credential functions with respect to a
series of small graphs. The model in Section 2 has been presented for one graph
g. A collection of credential arrays with respect to a series of graphs has also
the property of monotonicity, and apparently such a model is more interesting
in solving problems of determination of “saturated” parts of graphs.

Let us consider how the €, © and © activities of a small graph can be se-

lected to coordinate the selection of these elements with the desired "saturation"
of the graph under study. The desired saturation of a graph can be understood
as desirable from the researcher's point of view, because the researcher has a
certain working hypothesis about the structure of the graph.

For the small graph g for which the functions ® were calculated, we

choose a cyclic triangle. We use the method described in the previous subsec-
tions to create a set of credentials. The removal of all the arcs in the tournament

<X wins y> from the vertex X is the © action on the vertex x and the ®-action
on the graph A is the restoration of all pairs where X wins y. The set of

credentials on the graph tournament arcs must be created analogously to the
previous sections.
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The question of which is more preferable, whether the scheme is done on
the arcs of the tournament (a game between two participants) or on the vertices
of a graph, cannot be solved within the theory. It can only be said that if there
are several central regions in the tournament that are saturated with cyclic trip-
lets, the scheme of separating the kernel by arcs will be better, because these
regions can be separated. A model that uses vertices separates the kernel that
consists of these regions, but does not allow a single region to be found. We
don't have a list of arcs that represent these areas.

Non-cyclic oriented graphs are a suitable tool for describing operating sys-
tems. The operating system can be thought of as a system of modules and inter-
preted as a library of programs. Each work program is a set of modules acti-
vated from a library, or in other words, in a non-cyclic graph of the path form.
The modules call each other in sequence if they are not all in RAM or for some
other reasons.

If the library is large, the natural idea is to place the modules on data
carriers. Before solving this task, it is reasonable to explain the structure of the
non-cyclic graph of the library of modules. The latter can be understood as the
separation of the main sub-vertices or arrows. Vertices are very important
places in the graph, in this case they are modules that are available in many
work programs.

This task can be formally described in a graph by a monotonic system
organization model. The question of the preference of monotonic systems
formed by arrows or vertices again requires experimental control. Looking at
the trees, we try to separate them from an area that is in some way more like a
"bush" than the rest of the tree.

8. DISCUSSIONS AND SUMMARY

Usually, information is collected in to draw the necessary conclusions on issues
related to human collectives, economic activity, production processes, demog-
raphy, etc. If you are more interested in the verbal history itself, then the nu-
merical experiments in Tables 1-3 can still be interesting of themselves. Indeed,
with the help of these tables, the main feature of the analysis method is mani-
fested, namely, the independence from any prior knowledge or specific infor-
mation that is necessary for data analysis. This is especially true of the usual
practice of personal and expensive interviews in sociological research. In this
regard, the algorithm described in the manual for decomposing the data matrix
into layers can be called "blind eye of statistical evaluation or scoring", which
is what we need (Vohandu, 1979, 1989). This methodological guide looked at
this information processing method that often has been used.
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Although the main component of this methodological guide was prepared
and presented for publication many years ago, as it seems to us everything that
is given here is still relevant. It’s not a secret that with the development of in-
formation technologies, methods for analyzing data extracted from our envi-
ronment not only become more complicated, but also their volume has grown
to enormous sizes when you have to deal with databases whose size reaches
many gigabytes in the amount of collected information. One thing is that all the
information in such well-known applications as Facebook and the like are al-
ways reflected in some graphs of mutual relations between the participants,
whether it is Linkedin or Twitter, etc. Many do not even suspect that our tech-
nology for analyzing relationships reflected in these applications are fully
adapted to the analysis of such information. The problem here is that such in-
formation must be collected and presented either in tabular form or in the form
of graphs. Graphs, however, must again be presented in tabular form, which, as
we have already indicated, is the main form of data to be analyzed.

The algorithm for decomposing data into layers given in this tutorial turned
out to be effective in many specific problems as we can apply here in the form
of data viewing technology. Moreover, as already indicated throughout the
book, the entire analysis process begins with the construction of the so-called
defining sequence, whether it be elements of graphs or data tables, when it is
required to find a local maximum at which the global maximum is reached
when moving along the defining sequence from weak elements in the direction
of strong ones. It turns out that a more effective method of searching for the
core or kernel of a monotonic system is to move from top to bottom, from
strong to weak elements. Such a search for the kernel is much more economical
than the one that was proposed at that time in the original of this methodologi-
cal manual.

On the other hand, the model of a monotonic system turned out to be a more
complex than the author had assumed, who initiated the theoretical and practi-
cal use of monotonic systems. The fact is that on graphs when arcs of a graph
or edges are taken as elements of the system, it is required to formulate very

precisely what are @ and © actions. If the © action is to remove or @ is add
both arcs and edges of the graph together with arcs and edges adjacent to an arc
or edge, then monotone systems of a special type arise when the layering algo-
rithm does not always lead to an optimal layer in the global sense. This white
area has not yet been sufficiently studied, and here it is quite possible to dis-
cover some new features of monotonic systems of the indicated unusual type.
We have already indicated this feature earlier in the article on how to organize
a party in order to make the optimal combination of participants.
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Survey Data Cleaning: Monotone Linkage’

Abstract. Analysis of data obtained from surveys performs as a fundamental approach
for organizations to extract insights crucial for decision-making, whether it involves
discerning characteristics within specific population groups or broader categorical
trends. However, the process of data collection often encounters numerous challenges,
ranging from respondent biases to technical issues, leading to what is commonly known
as the 'contamination' effect. This phenomenon introduces inaccuracies and biases into
the dataset, thereby distorting the subsequent analysis and interpretation. Addressing
these challenges, this note explores the principle of data cleaning, which is paramount
in ensuring the reliability and validity of survey findings. The implementation procedure
outlined herein includes a comprehensive recommendation aimed at elucidating and
illustrating erroneous results that may arise during the analysis of survey data. By
meticulously scrutinizing the data for anomalies, inconsistencies, and outliers, organiza-
tions can mitigate the impact of the contamination effect and enhance the accuracy of
their decision-making processes. Moreover, the note introduces a methodology for
segregating data into positive and negative factors, thereby facilitating a nuanced under-
standing of survey results. This approach enables the visual representation of data
through graphs plotted on a two-dimensional axis, distinguishing between positive and
negative influences. By visually depicting these factors, organizations can gain deeper
insights into the underlying dynamics driving survey outcomes, thereby fostering more
informed and strategic decision-making practices."

Keywords: data cleaning; dirty data; customer satisfaction

1. INTRODUCTION

Every day, we are inundated with a relentless barrage of polls, studies, statis-
tics, opinions, and research findings. Entities ranging from businesses to media
pundits to academic institutions strive to shape our understanding of reality by
presenting information in various forms, often derived from data collected
through surveys. Yet, while we may passively consume this deluge of data, few
of us pause to question its utility. Many simply accept the conclusions put forth
by analysts as unquestionable facts. However, the reality is far more nuanced.
Consider a simple example: if a majority of respondents in a survey express a
preference for rye bread over white bread, does this necessarily reflect the die-

*
Presented at the 19th Nordic Conference on Mathematical Statistics, June 9-13,

2002, Stockholm, Sweden and at the “Symposium i Advent Statistik,” January
23-26, 2006, Kgbenhavn. Linkage term was used by Ylia Kempner (2008).
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tary habits of the entire global population? Certainly not; reality is multifaceted,
shaped by diverse choices, behaviors, and preferences. Thus, conclusions
drawn from a typical survey, no matter how rigorously conducted, are inher-
ently limited in their ability to capture the complexities of any given subject. To
arrive at more accurate depictions of reality, thorough statistical investigations
are imperative. When interpreting data gleaned from a sample of the popula-
tion, consulting with a knowledgeable researcher or expert is essential. Their
expertise enables a nuanced analysis that accounts for the intricacies of the
subject matter. Additionally, careful consideration must be given to the rele-
vance of the survey questions and the credibility of the respondents. Evaluating
these factors helps ensure the reliability of the instrument and the validity of the
conclusions drawn from it. Ultimately, a critical approach to data interpretation
is indispensable in navigating the sea of information that surrounds us.

2. RELIABILITY

Understanding reliability poses a challenge when approached as a generic con-
cept, often finding clarity within specific contexts. However, amidst this fervent
pursuit of reliability, one must not overlook the pivotal role played by the
method of analysis. It stands as the silent conductor orchestrating the symphony
of outcomes, weaving together the threads of subjective reality perception into
the fabric of conclusive understanding. Indeed, while the 'maximum principle'
may cast its discerning eye upon the data, it is the methodological framework
that ultimately guides the voyage to truth. Thus, in defiance of the empirical
purists, we assert the undeniable sway of subjective perception in shaping the
final estimation. For it is through this lens that we glean insights into the intri-
cate tapestry of human experience, transcending the confines of statistical rigor
to embrace the nuanced shades of reality.

Embracing the "maximum principle" not only aids researchers in their ana-
lytical pursuits but also streamlines investigations by sifting through unreliable
responses, thereby eliminating interference or outliers — responses that diverge
significantly from the norm or contradict the expected outcome. Yet, it's crucial
to underscore that the chosen method of analysis remains pivotal in determining
the success of the outcome. Despite the aforementioned argument, the final
estimation should still be rooted in subjective perceptions of reality. What sets
this approach apart from conventional statistical analysis is its ability to identify
both unreliable respondents and their answers, offering a more comprehensive
understanding of reality. By examining patterns aligned with responses from
the remaining group members, a clearer picture of reality emerges. To illustrate
this method, we'll use a simplified example of an ongoing survey lacking seri-
ous purpose or value, aiming to outline the foundational aspects of the ap-
proach.

Food, being not only a necessity but also a cultural cornerstone, holds a
prominent place in public discourse, leading analysts to eagerly dissect associ-
ated data. In our playful or imaginative scenario, the aim is to unravel the intri-
cate tapestry of people's culinary predilections. To embark on this flavorful
journey, survey participants are tantalized with five menus, each a culinary
symphony, and prompted to divulge their daily indulgences across the delecta-
ble array of food groups.
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The options they are given are as follows:

Dairy produce: cheese and milk

Cereals: bread, potatoes, rise and pasta

Vegetables: vegetables, fruit, etc.

Fish: shrimp, frozen/fresh fish

Meat products: various meats, sandwich spreads and sausages

SNk W=

The results pertaining to seven study participants are presented in Table 1,
which will suffice for the upcoming food preferences investigation.

Table 1.

Dairy Cereal  Vegetables Fish Meat Total

Respond. no. 1 X X 2
Respond. no. 2 X X X X 4
Respond. no. 3 X X 2
Respond. no. 4 X X X X 4
Respond. no. 5 X X 2
Respond. no. 6 X X X X X 5
Respond. no. 7 X X 2
Total 3 5 5 5 3 21

Looking at the total score provided at the table's bottom, it appears that
people are making healthy and nutritious food choices. The data suggests that
"cereals," "vegetables," and "fish" are the most commonly consumed food
groups, with five out of seven respondents reporting daily consumption of these
items. However, drawing a conclusion about the overall healthiness of people's
lifestyles based solely on this information would be premature.

Furthermore, assuming that 71% of the population eats cereals, fish, and
vegetables every day could be misleading. It's essential to scrutinize the indi-
vidual responses closely, particularly within this small sample group. For in-
stance, respondents 1, 3, 5, and 7 have only selected two food groups from the
provided list. Respondents 1 and 7 claim to consume only "cereals" and "vege-
table" products daily, while respondents 3 and 5 stick to "vegetables" and "fish"
exclusively.

Considering this list might not be exhaustive, it seems improbable that indi-
viduals would completely exclude other food groups from their diets. This
discrepancy underscores the importance of verifying the accuracy of respon-
dents' answers to ensure their inclusion in the analysis. Responses like those
mentioned above are unreliable reflections of reality and should be treated with
caution. Therefore, an experimental approach to discard unreliable respondents
and their answers may yield a more credible result, offering a more accurate
depiction of reality.

3. AGREEMENT LEVEL — TUNING PARAMETER

It's rare for individuals to rely solely on two food groups for their sustenance.
Similarly, it's improbable that someone would restrict themselves to consuming
only bread from the cereal category or exclusively shrimp from the fish cate-
gory. Therefore, in refining our experiment, the goal is to pinpoint all respon-
dents who have exclusively chosen these two categories. The aim, as previously
emphasized, is to achieve a more accurate representation of reality.
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Table 2 below showcases the outcomes of this data refinement process,
which hinges on the selected "agreement level" or "tuning parameter." In this
instance, the agreement level is set at 4, meaning none of the totals in the last
column fall below this threshold. This approach ensures that respondents who
have chosen only two menus with a significant degree of consistency are re-
tained for further analysis. By fine-tuning the experiment in this manner, we
strive to paint a clearer and more nuanced picture of dietary habits and prefer-
ences among the respondents.

Table 2.
Dairy Cereal Vegetables Fish Meat Total
Respond. no. 2 X X X X 4
Respond. no. 4 X X X X 4
Respond. no. 6 X X X X X 5
Total 3 3 1 3 3 13

This seems to be a very useful instrument for the experiment. However, the
tuning parameter will only be relevant when its value exceeds one. If, for ex-
ample, we try to set the agreement level (tuning) to 1 in Table 1, this would
render ALL respondents reliable, even though menus “Dairy” and “Meat” are
associated with the lowest frequency number, namely three. What can we con-
clude from the outcome of adopting tuning parameter = 1? The conclusion is
exactly the same as that yielded by the original analysis — “people’s lifestyle is
healthy.” In contrast, setting the tuning parameter to 2, 3 or a higher value al-
lows us to explore patterns in answers that would not be otherwise apparent.
Table 2 shows the distribution of respondents based on the tuning parame-
ter = 4.

Why should we use this particular value as a tuning parameter? Yes, indeed,
in the following analysis we intend to adopt the maximum principle as a
method for selecting reliable respondents. This will be done through “agree-
ment level”, see “fotals” of columns, pertaining to a single respondent. The
value of the tuning parameter is not fixed, and can be changed depending on the
purpose of analysis, and is typically set at the level that reveals the most ade-
quate picture of reality. Roughly speaking, we can compare the situation to
rotating a tuner on TV or Radio, when we attempt to receive a clear pic-
ture/sound by trying to select the right frequency. The tuner value here is 4, and
we assume that the selected respondents are now reliable.

4. MAXIMUM PRINCIPLE

Merely pinpointing the correct tuner position is insufficient, as our ensuing
discussion will elucidate. For instance, upon closer examination, we discover
that only one ostensibly reliable respondent opted for the "vegetable" menu.
This revelation suggests that a mere 33% of the sample is engaging in daily
vegetable consumption. While such a proportion might be expected within a
small respondent pool, it's imperative to emphasize that this scenario is but a
distilled version of a broader survey. In a more extensive study, such skewed
results would indeed raise eyebrows. Hence, our fine-tuning endeavors must
delve deeper, this time scrutinizing the menu content itself.
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Firstly, let's consider removing "vegetables" from the available options to
gauge its impact on our analysis. Subsequently, we embark on the next phase of
our analysis, known as the "maximum principle" (Mullat, 1971a), drawing
inspiration from an age-old merchant marketing analogy. Imagine a merchant
seeking to strike a balance between maximizing demand for their wares and
streamlining their inventory. Intuitively, they would cull the least-demanded
commodity from their offerings, presuming it's identified from the purchasing
habits of reliable clientele. In our context, the "vegetables" menu emerges as
the least sought-after. Remarkably, its removal results in equal frequencies
across the remaining menus.

However, caution must be exercised when pruning available options, ensur-
ing it doesn't inadvertently purge reliable respondents. In certain scenarios,
supplementing the sample with additional reliable respondents might be neces-
sary, aligning with our tuning parameter once more, and so forth.

Next, in essence, the formulation of the maximum principle encapsulates a
strategic approach: among all the reliable respondents, the initial step involves
culling options with the lowest agreement levels, namely those exhibiting the
lowest frequencies. Take, for instance, the "vegetables" menu in Table 2 of our
example. By excising such options, the choice pool diminishes, yet the remain-
ing responses with comparably lower frequencies gain heightened significance.
The overarching objective is to pare down available options in a manner that
ensures the remaining choices boast robust representation and yield more con-
gruent responses.

Put succinctly, in menus where alignment is initially lacking, the removal of
less matched options engenders a relative increase in alignment, a phenomenon
unattainable if those options were retained. The aim, therefore, extends beyond
merely segregating menus with higher matching responses; it also entails iden-
tifying a cohort of respondents for whom the menu with the lowest matching
level achieves a comparatively elevated standing. This elucidates the crux of
the maximum principle.

Essential to note is that the respondents integrated into the analysis must
not only exhibit reliability but also yield answers that align closely with one
another. Following this rationale, the decision to eliminate the "vegetables"
menu stems from its divergent response pattern, which deviates from the over-
arching trend dictated by the maximum principle. It's imperative to underscore
that this removal isn't contingent on qualitative assessments but rather guided
purely by discernible patterns gleaned from answer matching.

In accordance with this argument, the menu “vegetables” is removed, since
the responses associated with it are not aligned with the general answer pattern
based on the maximum principle. Note that here, the removal is not based on
any qualitative tests, but is rather guided purely by a pattern disclosed by
matching the answers!
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Table 3.

Dairy Grain Fish  Meat Total
Respond.no.2 X X X X 4
Respond. no. 4 X X X X 4
Respond.no. 6 X X X X 4
Total 3 3 3 3 12

5. CONCLUSION

The simplified survey scenario discussed above offers a profound revelation:
the final outcome starkly contrasts with the initial analysis results. Simplifying
matters, Table 1 initially suggests that people's food preferences align with
health-conscious choices and current dietary recommendations. Conversely,
Table 3 unveils a less rosy reality, indicating that food habits veer towards the
less healthy spectrum. The implementation of our analysis principle, aimed at
refining the pool of reliable respondents, has significantly altered the analytical
landscape, reshaping the trajectory of our findings.

Naturally, one might question the credibility of the proposed principle com-
pared to other analytical methods. While it's undeniable that subjective consid-
erations and personal judgment have influenced the adopted analytical frame-
work leading to the final outcomes, some may argue that this approach is
flawed. They contend that relying solely on analyst or researcher intuition for
tuning parameters, such as adjusting the "agreement level," lacks objectivity.

However, it's essential to recognize that personal considerations cannot be
disregarded entirely. In certain instances, this approach aligns closely with
common sense, where prevalent responses often mirror actual reality. This
becomes particularly evident in straightforward surveys, such as those posing
questions like "Will you vote for so and so in the upcoming election?"

The true value of this approach shines through in more complex surveys
involving hundreds or even thousands of respondents and myriad questions. In
such cases, the sheer diversity of responses forms intricate patterns that surpass
unaided human comprehension. Here lies the strength of our method—it serves
as a tool for pinpointing erroneous or misleading patterns through comprehen-
sive data comparisons.

However, this does not diminish the role of analysts; rather, it underscores
their responsibility in making informed judgments regarding data exclusion.
The ultimate goal remains the identification and removal of all unreliable
respondents with the aid of the tuning parameter. This "cleansing procedure"
seeks to retain only the most reliable answers, in alignment with our maximum
principle. Therefore, it's crucial to view the method presented here as a tool in
the hands of the analyst, one that must be wielded skillfully to capture the
clearest depiction of reality. The overarching aim is to mitigate the interference
effect caused by unreliable respondents, thereby enhancing the accuracy and
reliability of the analytical process.
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APPENDIX
1. Practical recommendations

The preliminary explanation above is a general introduction to our maximum
principle, the background of which is found in a much more complex method-
ology and theory." First, it is beneficial to demonstrate how the results can be
used and presented for the analyst, making the use of the notion of posi-
tive/negative profile.

When designing a questionnaire, it is widely accepted that the available
responses associated with the individual questions should be presented in the
“same direction,” i.e., from positive to negative values/opinions or vice versa.
Using a more rigorous terminology, such ordering would be denoted numeri-
cally and represented on a nominal/ordinal scale. This nomenclature is used
primarily because, when implementing our method in the form of computer
software, the analyst must separate the answers by grouping them together into
positive/negative scale ends — the (+ / —) pools. The next step will be to create

profile groups within each (+) or (—) pool range. A profile group of answers

is created following their subject-oriented field of interest. For example, one
might be interested in participants’ lifestyle, nutritional practices, exercising,
etc. Thus, these profiles, distinguished by their placement in (+ / —) pools, are

also either positive or negative.

Once the analyst has created the (+ / —) profiles, an automated process util-

izing our maximum principle, which further organizes the data into what we
call a series of profile components, conducts the subsequent analysis. Each
profile component is a table, as above, located within particular profile limits.
Clearly, a component is differentiated from the profile by the fact that, while
a profile is a list of subject-specific questions and the corresponding
options/answers composed by the analyst, the component is a table formed
using the maximum principle. Therefore, the list of answers constituting a
component (and the resulting set of table columns) is smaller, as only specific
answers/columns from the full profile are included. Thus, once again the com-
ponents will be separated into (+ / —) components K;,K7,..., just as the pro-
files were separated into (+/—) profiles. The K*,K*,... separation provides
not only conceptual advantages, but also allows for more transparent illustra-

tion of the survey findings.

Analysis findings increase in value if they are presented in the format that
can be easily comprehended. The simplest tool available for graphical presenta-
tion is a pie chart. Here, the pie can be divided into positive K|,K’,..., and

1 Some theoretical aspects may be found in Appendix A.2
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negative K ,K7,... components, represented in green and red color, respec-

tively. However, to depict these components accurately, it is necessary to calcu-
late some statistical parameters beforehand. For example, one can merge the
(+/-) components into single (+/—) table and calculate the (+/-)

probabilities.” Hereby, statistical parameters based on the (+ / —) probabilities

may be evaluated and illustrated by a pie chart divided into green and red area,
effectively representing the (+ / —) elements.” There are many techniques and

graphical tools at the analyst’s disposal, and a creative analyst may proceed in
this direction indefinitely. Still, it is plausible to wonder if the creation of the
(+ / —) components is worthwhile. In other words, what is the advantage of

using the “maximum principle” when interpreting the survey findings? The
answer, see above, is that the blurred nature of the data may hinder clear inter-
pretation of the reality underlying the data.

2. Some theoretical aspects

Suppose that respondents N = {1,...,1,...n} participate in the survey. Let X,
x € 2", denote those who expressed their preferences towards certain ques-
tions M = {1,..., j,...,m}. We lose no generality in treating the list M as at a
profile, whether negative or positive. Let a Boolean table W = Haid “;ﬂ reflect
the survey results related to respondents’ preferences, whereby a =1 if
respondent i prefers the answer j, a; = 0 otherwise. In addition, all lists 2"
of answers y € 2" within the profile M have been examined. Let an index
5,=0, iex,jey if Zjeyam. <k, otherwise 3} =1, eg., zjgyai‘,j >k,
where Kk is our tuning parameter. We can calculate an indicator F (H), using
sub-table H formed by crossing entries of the rows X and columns Yy in the
original table W . The number of 1-entries Sij -a,; =1 in each column within
the range y determines the indicator F (H) by further selection of a column
with the minimum number F (H) from the list y .

Identification of the component K seems to be a tautological issue, in the

sense that following our maximum principle we have to solve the indicator
maximization problem K =argmax  F (H). The task thus becomes an

Certainly, some estimates only.

Please, find below a typical pie chart pertinent to what we just discussed. The posi-
tive and negative profiles relate to 21 questions highlighting people’s behaviour, re-
sponses, opinions, etc., regarding their daily work and habits. Answers to these ques-
tions can be presented using an ordinal scale 1, 2, ..., 5, where 1, 2, 3 are at the nega-
tive, and 3, 4, 5 at the positive end of the scale.

3
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NP-hard problem, the solution of which includes operations that grow exponen-
tially in number. Fortunately, we claim that our K* components might be
found by polynomial O(m-n-log,n) algorithm, as shown in the cited litera-

ture. Finally, we can restructure the entire procedure by extracting a component
K first, before removing it from the original table W and repeating the ex-
traction procedure on the remaining content, thus obtaining components K,
Kf ,... etc. From now on, statistical parameters and other table characteristics,
which empower (+ / —) share, arise from components K, ,K,,... and
K;,K],... only, and are available to the analyst for illustration purposes, as

depicted in the example below.

3. Illustration

In the example, we use a sampling highlighting 383 people’s attitudes to-
wards 21 phenomenal questions. Each question requires a response on an
ordinal scale, with 1< 2,...,<5, where 1< 2 <3 are positive values at the left
end, and 3 <4 <5 are negative values at the right end.” Hence, our sampling,
depicted as a Boolean table, has 383x105 dimensions. As the tuning parame-
ter k =5 was chosen, we also extracted a set of three positive K ,K;,K; and

negative K| ,K,K; components. The actual values in the title and those
shares illustrate our positive (green) and negative (red) (+/—) components.
Some typical sampling questions are given below:

1. Is your behavior slow/quick? — eating, talking, gesticulating,...

1.1 Absolutely slow
1.2 Somewhat slow
1.3 Sometimes slow and sometimes quick
1.4 Somewhat quick
1.5 Absolutely quick
2. Are you a person who prefers deadlines/postpones duties?
2.1 Absolutely always prefer deadlines
2.2. Often prefer deadlines
2.3. Sometimes prefer deadlines or sometimes postpone
my duties
2.4, Often postpone my duties
2.5. Absolutely always postpone my duties

* Sampling owner (Scanlife Vitality ApS in Denmark) kindly provided us with
a permission to use the data for analysis purposes. We are certainly very
grateful for such help.
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Negative/Positive Scale of the Questionnaire
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The figure shows more clearly the methodology of the positive/negative
analysis of surveys data tables to identify hidden preferences of respondents.
Whatever the analyst is doing to build a negative ordering of the left half of the
questionnaire, our negative defining sequence is then compared with similar
sequence of the right half of the questionnaire. As a result, two credential scales
have been formed, which can then be visualized graphically in two-dimensional
coordinate system on the plane.

At first glance that being said, our story may seem perhaps frivolous, but we
say that it is much easier to suggest something new if the essence of the matter
is presented in the form of an allegory, which can be interpreted in such a way
as to reveal the hidden meaning of reality.
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A Fast Algorithm for Finding Matching
Responses in Survey Data Table

Abstract. This article examines the intricacies of a greedy serialization algo-
rithm designed to scrutinize survey data tables full of untrusted records. These
unreliable records inherent in human phenomena are revealed when survey
data tables are generated from various studies in reality, covering a variety of
questionnaires completed by data analysts in countless branches of human
activity. The algorithm presented in the paper exhibits almost linear complex-
ity, and its efficiency depends exactly on the number of elements present in the
table. Central to its effectiveness is the distinctive property of monotonicity,
a defining feature that encapsulates a wide array of data typically collected in
tabular formats, especially those that resemble Boolean tables. The algorithm
implementation procedure includes a pragmatic recommendation designed to
illuminate and decipher the subtleties of the analysis results, giving a tangible
advantage to the interpretation process.

Keywords: survey; boolean; data table; matrix.

1. INTRODUCTION

Situations in which customer responses being studied are measured by means
of survey data arise in the market investigations. They present problems for
producing long-term forecasts because the traditional methods based on count-
ing the matching responses in the survey with a large customer population are
hampered by unreliable human nature in the answering and recording process.
Analysis institutes are making considerable and expensive efforts to overcome
this uncertainty by using different questioning techniques, including private
interviews, special arrangements, logical tests, “random” data collection, ques-
tionnaire scheme preparatory spot tests, etc. However, percentages of responses
representing the statistical parameters rely on misleading human nature and not
on a normal distribution. It appears thereby impossible to exploit the most
simple null hypothesis technique because the distributions of similar answers
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are unknown. The solution developed in this paper to overcome the hesitation
effect of the respondent, and sometimes unwillingness, rests on the idea
of searching so-called “agreement lists” of different questions. In the agree-
ment list, a significant number of respondents do not hesitate in choosing the
identical answer options, thereby expressing their willingness to answer. These
respondents and the agreement lists are classified into some two-dimensional
lists — "highly reliable blocks".

For survey analysts with different levels of research experience, or for the
people mostly interested in receiving results by their methods, or merely for
those who are familiar with only one, "the best survey analysis technique", our
approach has some advantages. Indeed, in the survey, data are collected in such
a way that can be regarded as respondents answering a series of questions. A
specific answer is an option such as displeased, satisfied, well contented, etc.
Suppose that all respondents participating in the survey have been interviewed
using the same questionnaire scheme. The resulting survey data can then be

arranged in a table X = (qu) , where X, is a Boolean vector of options avail-

able, while the respondent 1 is answering the question q . In this respect, the

primary table X is a collection of Boolean columns where each column in the
collection is filled with Boolean elements from only one particular answer
option. Our algorithm will always try to detect some highly reliable blocks in
the Table X bringing together similar columns, where only some trustworthy
respondents are answering identically. Detecting these blocks, we can separate
the survey data. Then, we can reconstruct the data back from those blocks into

the primary survey data table X' = (qu) format, where some "non-matching/

doubtful" answers are removed. Such a "data-switch" is not intended to replace
the researchers’ own methods, but may be complementary used as a "prelimi-
nary data filter” — separator. The analysts’ conclusions will be more accurate
after the data-switch has been done because each filtered data item is a repre-
sentative for some "well known sub-tables".

Our algorithm in an ordinary form dates back to Mullat (1971). At first
glance, the ordinary form seems similar to the greedy heuristic (Edmonds
1971), but this is not the case. The starting point for the ordinary version of the
algorithm is the entire table from which the elements are removed. Instead, the
greedy heuristic starts with the empty set, and the elements are added until
some criterion for stopping is fulfilled. However, the algorithm developed in
the present paper is quite different. The key to our paper is that the properties
of the algorithm remain unchanged under the current construction. For match-
ing responses in the Boolean table, it has a lower complexity.

The monotone property of the proposed technique — “monotone systems
idea” — is a common basis for all theoretical results. It is exactly the same prop-
erty (iii) of submodular functions brought up by Nemhauser et al (1978, p.269).
Nevertheless, the similarity does not itself diminish the fact that we are study-
ing an independent object, while the property (iii) of submodular set functions
is necessary, but not sufficient.
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From the very start, the theoretical apparatus called the "monotone system"
has been devoted to the problem of finding some parts in a graph that are more
"saturated" than any other part with "small" graphs of the same type (see Mul-
lat, 1976). Later, a Markov chain replaced the graph presentation form where
the rows-columns may be split implementing the proposed technique into some
sequence of submatrices (see Mullat, 1979). There are numerous applications
exploiting the monotone systems ideas; see Ojaveer et al (1975). Many authors
have developed a thorough theoretical basis extending the original conception
of the algorithm; see Libkin et al (1990) and Genkin and Muchnik (1993).

The rest of the paper is organized as follows. In Section 2, a reliability crite-
rion will be defined for blocks in the Boolean table B . This criterion guaran-
tees that the shape of the top set of our theoretical construction is a sub-matrix
— a block; see the Proposition 1. However, the point of the whole monotone
system idea is not limited by our specific criterion as described in Section 2.
This idea addresses the question: How to synthesize an analysis model for data
matrix using quite simple rules? In order to obtain a new analysis model, the
researcher has only to find a family of 7T -functions suitable for the particular
data. The shape of top sets for each particular choice of the family of
Tt -functions might be different; see the note prior to our formal construction.
For practical reasons, especially in order to help the process of interpretation of
the analysis results, in Section 3 there are some recommendations on how to

use the algorithm on the somewhat extended Boolean tables B*. Section 4 is
devoted to an exposition of the algorithm and its formal mathematical proper-
ties, which are not yet utilized widely by other authors.

2. RELIABILITY CRITERION

In this Section we deal with the criterion of reliability for blocks in the Boolean
tables originating from the survey data. In our case we analyze the Boolean
table B=(b,) representing all respondents (L....,1,...,n), but including only

some columns (l,..., j,...m) from the primary survey data table X =(x__); see

above. The resulting data of each table B can be arranged in a n x m matrix.
Those Boolean tables are then subjected to our algorithm separately, for which
reason there is no difference between any sub-table in the primary survey data
and a Boolean table. A typical example is respondent satisfaction with services

offered, where bu. =1 if respondent 1 is satisfied with a particular service ]
level, and b, =0 if he is unsatisfied. Thus, we analyze any Boolean table of
the survey data independently.

Let us find a column j with the most significant frequency F of

1 -elements among all columns and throughout all rows in table B. Such rows
arrange a g =1 one-column sub-table pointing out only those respondents who
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prefer one specific most significant column j. We will treat, however, a more
general criterion. We suggest looking at some significant number of respon-
dents where at least F of them are granting at least € Boolean 1 - elements in
each single row within the range of a particular number of columns. Those
columns arrange what we call an agreement list, g =2,3,...; £ is an agreement

level.

The problem of how to find such a significant number of respondents,
where the F criterion reaches its global maximum, is solved in Section 4. An
optimum table S, which represents the outcome of the search among all “sub-
sets” H in the Boolean table B, is the solution; see Theorem I. The main
result of the Theorem I ensures that there are at least F positive responses in
each column in table S’ . No superior sub-table can be found where the number
of positive responses in each column is greater F . Beyond that, the agreement
level is at least equal to g =2,3,... in each row belonging to the best sub-table
S"; g is the number of positive responses within the agreement list repre-
sented by columns in sub-table S’. In case of an agreement level g =1, our
algorithm in Section 4 will find out only one column j with the most signifi-

cant positive frequency F among all columns in table B and throughout all

respondents, see above. Needless to say that it is worthless to apply our algo-
rithm in that particular case g =1, but the problem becomes fundamental as

soonas g=23,....
Let us look at the problem more closely. The typical attitude of the respon-

dents towards the entire list of options — columns in table B — can be easily
"accumulated" by the total number of respondent 1 positive hits selected:

n=2b,.

j=l,...m

Similarly, each column — option can be measured by means of the entire
Boolean table B as

It might appear that it should be sufficient to choose the whole table B to

solve our problem provided that r >g,1=1n. Nevertheless, let us look
throughout the whole table and find the worse case where the number
¢;,J=1,m reaches its minimum F . Strictly speaking, it does not mean that the
whole table B is the best solution just because some "poor" columns (options
with rare responses — hits) may be removed in order to raise the worst-case
criterion F on the remaining columns. On the other hand, it is obvious that
while removing "poor" columns, we are going to decrease some I, numbers,
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and now it is not clear whether in each row there are at least g =2,3.... posi-
tive responses. Trying to proceed further and removing those "poor" rows, we
must take into account that some of ¢, numbers decrease and, consequently,

the F criterion decreases as well. This leads to the problem of how to find the
optimum sub-table S*, where in the worst-case F criterion reaches its global
maximum? The solution is in Section 4.

Finally, we argue that the intuitively well-adapted model of 100% matching
1 -blocks is ruled out by any approach trying to qualify the real structure of the
survey data. It is well known that the survey data matrices arising from ques-
tionnaires are fairly empty. Those matrices contain plenty of small 100%
matching 1-blocks, whose individual selection makes no sense. We believe
that the local worst-case criterion F top set, found by the algorithm, is a rea-
sonable compromise. Instead of 100% matching 1-blocks, we detect somewhat
blocks less than 100% filled with 1-elements, but larger in size.

3. RECOMMENDATIONS

We consider the interpretation of the survey analysis results as an essential part
of the research. This Section is designed to give guidance on how to make the
interpretation process easier. In each survey data it is possible to conditionally
select two different types of questions: (1) The answer option is a fact, event,
happening, issue, etc.; (2) The answer is an opinion, namely displeased, satis-
fied, well contented etc.; see above. It does not appear from the answer to op-
tions of type 1, which of them is positive or negative, whereas type 2 allows us
to separate them. The goal behind this splitting of type 2 opinions is to extract
from the primary survey data table two Boolean sub-tables: table B", which
includes type 1 options mixed with the positive options from type 2 questions,
and table B™ where type 1 options are mixed together with the negative type 2
options — opinions. It should be noticed that doing it this way, we are replacing
the analysis of primary survey data by two Boolean tables where each option is
represented by one column. Tables B" and B~ are then subjected to the algo-
rithm separately.

To initiate our procedure, we construct a sub-table K implementing the

algorithm on table B™. Then, we replace sub-table K in B by zeros, con-

structing a restriction of table B*. Next, we implement the algorithm on this
restriction and find a sub-table K, after which the process of restrictions and
sub-tables sought by the algorithm may be continued. For practical purposes
we suggest stopping the extraction with three sub-tables: K, K, and K.
We can use the same procedure on the table B™, extracting sub-tables K|,

K, and K] .
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The number of options-columns in the survey Boolean tables B* is quite
significant. Even a simple questionnaire scheme might have hundreds of op-
tions — the total number of options in all questions. It is difficult, perhaps al-
most impossible, within a short time to observe those options among thousands

of respondents. Unlike Boolean tables B”, the sub-tables K|, have reason-

able dimensions. This leads to the following interpretation opportunity: the
positive options in K, . tables indicate some most successful phenomena in

+
1,2,3

the research while the negative options in K, |

point in the opposite direction.

Moreover, the positive and negative sub-tables K, enable the researcher in a

short time to “catch” the “sense” in relations between the survey options of
type 1 and positive/negative options of the type 2. For instance, to observe all

Pearson’s r correlations a calculator has to perform O(n-m*) operations de-
pending on the n X m table dimension, N1 -rows and M -columns. The reason-

able dimensions of the sub-tables K, ; can reduce the amount of calculations

drastically. Those sub-tables — blocks K*

12.; » which we recommend to select in
the next Section as index-function F(H) top sets found via the algorithm, are

not embedded and may not have intersections; see the Proposition 1. Concern-
ing the interpretation, it is hoped that this simple approach can be of some use
to researchers in elaborating their reports with regard to the analysis of results.

4. DEFINITIONS AND FORMAL MATHEMATICAL PROPERTIES

In this Section, our basic approach is formalized to deal with the analysis of the
Boolean nxm table B, n-rows and m -columns. Henceforth, the table B

will be the Boolean table B® — see above — representing certain
options-columns in the survey data table. Let us consider the problem of how

to find a sub-table consisting of a subset S__ of the rows and columns in the

X

original table B with the properties: (1) that 1, = Zbij 2 g and (2) the mini-

mum over j of c, = Zbij is as large as possible, precisely — the global maxi-

mum. The following algorithm solves the problem.

Algorithm.
Step I. Set up the initial values.
1i. Set minimum and maximum bounds a ,b on threshold
u for ¢, values.
Step A. To find that the next step B produces a non-empty
sub-table.
1a. Using step B, test U as (a+b)/2.
If it succeeds, replace a by u . Ifit fails replace b
by u.

2a. Go to 1a.
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Step B. To test whether the minimum over j can be at least u .
1b. Delete all rows whose sums r < g .
This step B fails if all must be deleted; return to step A.
2b. Delete all columns whose sums ¢, <u.
This step B fails if all must be deleted, return to step A.
3b. Perform step T if none deleted in 1b and 2b;
otherwise go to 1b.
Step T. Test that the global maximum is found.
1t. Among numbers C j find the minimum.

With this new value as u test performing step B.
If it succeeds, return to step A, otherwise final stop.

Step B performed through the step T tests correctly whether a sub-matrix of
B can have the rows sums at least g and the column sums at least u . Remov-

ing row 1, we need to perform no more than m operations to recalculate C,
values; removing column j, we need no more than n -operations. We can
proceed through 1b no more than n -times and through 2b, M -times. Thus,
the total number of operations in step B is O(n-m) . The step A tests the step
B no more than log,n times. Thus, the total complexity of the algorithm is

O(log,n xnm) operations.

Note. It is important to keep in mind that the algorithm itself is a particular
case of our theoretical construction. As one can see, we are deleting rows and
columns including their elements all together, thereby ensuring that the out-
come from the algorithm is a sub-matrix. But, in order to expose the properties
of the algorithm, we look at the Boolean elements separately. However, in our
particular case of 7t -functions it makes no difference. The difference will be
evident if we utilize some other family of 7T -functions, for instance
T=c, max(ri,cj) . We may detect top binary relations, which we call kernels,

different from submatrices. It may happen that some kernel includes two blocks
— one quite long in the vertical direction and the other — in the horizontal. All
elements in the empty area between these blocks in some cases cannot be added
to the kernel. In general, we cannot guarantee either the above low complexity
of the algorithm for all families of m -functions, but the complexity still
remains in reasonable limits.

We now consider the properties of the algorithm in a rigorous mathematical
form. Below we use the notation H < B . The notation H contained in B will

be understood in an ordinary set-theoretical vocabulary, where the Boolean
table B 1is a set of its Boolean 1-elements. All 0 -elements will be dismissed
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from the consideration. Thus, H, as a binary relation, is also a subset of a
binary relation B. However, we shall soon see that the top binary relations —
kernels from the theoretical point of view are also sub-matrices for our specific
choice of T -functions. Below, we refer to an element we assume that it is a

Boolean 1 -element.

For an element oo € B in the row i and column j we use the similarity

index n=c if r>g and T=0 if 1, <g, counting only on Boolean ele-
]j i 1

ments belonging to H . The value of m depends on each subset HC B and
we may thereby write m=mn(o,H): the set H is called the 7 -function
parameter. The 7 -function values are the real numbers — the similarity indices.
In Section 2 we have already introduced these indices on the entire table B.
Similarity indices, as one can see, may only concurrently increase with the
“expansion” and decrease with the “shrinking” of the parameter H . This leads

us to the fundamental definition.

Definition 1. Basic monotone property. By a monotone system will be un-
derstood a family {n(a,H) ‘Hc B} of 7 -functions, such that the set H isto
be considered as a parameter with the following monotone property: for any

two subsets L — G representing two particular values of the parameter H
theinequality m(a,L) < m(a,G) holdsfor all elements oo € B.

We note that this definition indicates exactly that the fulfilment of the ine-
quality is required for all elements o € B. However, in order to prove the
Theorems 1,2 and the Proposition 1, it is sufficient to demand the inequality
fulfillment only for elements o € L * even the numbers 7T themselves may not
be defined for o ¢ L. On the other hand, the fulfillment of the inequality is
necessary to prove the argument of the Theorem 3 and the Proposition 2. It is
obvious that similarity indices m=c, comply with the monotone system

requirements.

Definition 2. Let V(H) for a non-empty subset H — B by means of a
given arbitrary threshold u® be the subset V(H) = {o. € B: m(a, H) > u°} .
The non-empty H -set indicated by S° iscalled a stable point with reference to
the threshold u® if S°=V(S°) and there exists an element & e S°, where
7(E,S°) =u°. See Mullat (1981, p.991) for a similar concept.

Definition 3. By monotone system kernel will be understood a stable set S’
with the maximum possible threshold value u” = u

max
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We will prove later that the very last pass through the step T detects the
largest kernel I = S". Below we are using the set function notation
F(X)=min__ n(a,X).

Definition 4. An ordered sequence o.,,a,,...,0,, Of distinct elements in

d-1
the table B, which exhausts the whole table, d = Zi’jb. is called a defining

ij !

aeX

sequence if there existsa sequenceof sets I, T ©... 5T such that:

A. Lettheset H, ={o, .0, ,...,a,,}. The value m(a,,H,) of an arbi-
trary element o, el’, but o ¢l is drictly less than F(I,)),
j=01..,p-1.

B.Intheset I' there does not exist a proper subset L, which satisfies the
strict inequality F(I')) <F(L).

Definition 5. A subset D” of the set B is called definable if there exists a
defining sequence o, a,...,0,, suchthat I’ =D".

1

Theorem 1. For the subset S* of B to be the largest kernel of the mono-

tone system — to contain all other kernels — it is necessary and sufficient that
this set isdefinable: S =D". Thedefinableset D’ is unique.

We note that the Theorem 3 will establish the existence of the largest kernel

later.

Proof.

Necessity. If the set S™ is the largest kernel, let's look at the following
sequence B=T, > =S’ of only two sets. Suppose we have found elements
o,,0,.0, in B\S such that for each i=Lk the value
Tt((xi,B\{(xo,...,(xH}) is less than u’°=u__ and o,0,,..0, does not
exhaust B\S". Then, in (B\S)\ {ot,sy0t, } some o, exists such that
TE(OLM,(B \SH\ {etysmmst, }) <u’. Otherwise, the set (B \ S)\ {otmsor, } s

a larger kernel than with the same value u’. Thus, the induction is complete.

This gives the ordering with the property (a). If the property (b) failed, then
u” would not be a maximum, contradicting the definition of the kernel. This

proves the necessity.

Sufficiency. Note that every time the algorithm — see above — goes
through step T, some stable point, a set S° is put in the form of a set ', =S° ,

Jj=0,,..,p—1, where u=u, =min__ n(a,S°). Obviously, these stable
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“layering" points (stable sets) form an embedded chain of sets
B=[[o[[>..oI = D". Let the set L = B be the largest core. Suppose

that this L is a proper subset of D", then by property (b) F(D")>F(L) and

hence D is also a kernel. The set L as the largest kernel cannot be a proper
subset of D" and therefore must be equal to D" .

Suppose now that L is not the subset of D". Let H_ be the smallest set
Hk:{(xk 5Oy qseees Oy }, which includes L . The value TC(OLs R HS) by our

basic monotone property must be grater than, or at least equal to u , since Ol
is an element of H_ and it is also an element of the kernel L and L c H_. By
property (a) this value is strictly less than F(I",)) for some j=0,l,..,p—1.
But that contradicts the maximality of u”. This proves the sufficiency. More-

over, it proves that any largest kernel equals D" so that it is the unique largest
kernel. This concludes the proof. B

Proposition 1. The largest kernel is a sub-matrix of thetable B .

Proof. Let S™ be the largest kernel. If we add to S’ any element lying in a
row and a column where S* has existing elements, then the threshold value u’
cannot decrease. So by maximality of the set S™ this element must already be
inS.m

Now, we need to focus on the individual properties of the sets
[ oI, >..oT , which have a close relation to the case U < U, —a sub-

ject for a separate inquiry. Let us look at the step T of the algorithm originating

the series of mapping initiating from the whole table B in form of
V(B), V(V(B),... with some particular threshold u. We denote V(V(B))

by V*(B), etc.
Definition 6. The chain of sets B,V(B),V*(B),... with some particular

threshold u is called the central series of monotone system; see Mullat (1981)
for exactly the same notion.

Theorem 2. Each set I, oI >..>I in the defining sequence
V*(B) aswell

as the dable point for some particular thresholds values
F(W)=u, <u, <..<u, =F(S"). Each T, is the largest stable point — in-

cluding all others for threshold values u>u, =F(T')) .

o,,0,,...,0L, , 1S the central series convergence point lim

°y M¥d-1 k=2,3,...

It is not our intention to prove the statement of Theorem 2 since this proof

is similar to that of Theorem 1. Theorem 1 is a particular case for Theorem 2
statement regarding threshold value u=u .
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Next, let us look at the formal properties of all kernels and not only the
largest one found by the algorithm. It can easily be proved that with respect to
the threshold u = u, the subsystem of all kernels classifies a structure,

which is known as an upper semilattice in lattice theory.

Theorem 3. The set of all kernels — stable points—for u isa full semi-
lattice.

Proof. Let €2 be a set of kernels and let K, € Q2 and K, € Q2. Since the
inequalities m(a, K )= u, m(a,K,) > u are true for all K, and K, elements
on each K,,K, separately, they are also true for the union set K, UK, due to
the basic monotone property. Moreover, since u=1u__’ we can always find an
element § e K, UK, where n(§,K, UK,)=u. Otherwise, the set K, UK,

is some H -set for some u’ greater than u__ " Now, let us look at the sequence

of sets V*(K, UK,), k=2,3,..., which certainly converges to some non
empty set — stable point K. If there exists any other kernel K' 5 K, UK, , it

is obvious, that applying the basic monotone property we get that K' > K. B

With reference to the highest-ranking possible threshold value u =u

the statement of Theorem 3 guarantees the existence of the largest stable point
and the largest kernel S (compare this with equivalent statement of Theo-

rem 1).
Proposition 2. Monotone system Kernels are sub-tables of the table B .

Proof. The proof is similar to proposition 1. However, we intend to repeat
it. In the monotone system all elements outside a particular kernel lying in a
row and a column where the kernel has existing elements belong to the kernel.

Otherwise, the kernel is not a stable point because these elements may be added
to it without decreasing the threshold value u__ .

Note that Propositions 1,2 are valid for our specific choice of similarity
indices 7 =c,. The point of interest might be to verify what T -function prop-

erties guarantee that the shape of the kernels still is a sub-matrix. The defining

sequence of table B elements constructed by the algorithm represents only
some part U, <u, <u, <..<u_ of the threshold values existing for central

series in the monotone system. On the other hand, the original algorithm,

Mullat (1971), similar to the inverse Greedy Heuristic, produces the entire set
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of all possible threshold values U for all possible central series, what is some-
times unnecessary from a practical point of view. Therefore, the original algo-

rithm always has the higher complexity.
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OKCTPEMAIIbHbBIE NOACUCTEMbI MOHOTOHHBIX CUCTEM. |
. 3. MYNNAT
(TannuH)

PaccmarpuBaercs o0rmmas TEOPETUYECKAsA MOJACIb, NPEAHA3HAYCHHAsA JIs1 HAYaJIbHOTO 3Tala aHajau3a CUCTEM
B3aMOCBS3aHHBIX 3JEMEHTOB. B paMKax MOJCIA WU MCXOAsA M3 CHEUHUAIIbHO IIOCTYJIMPOBAHHOTO CBOMCTBa
MOHOTOHHOCTH CHCTEM TrapaHTUPYETCsA CYIICCTBOBaHUC 0COOBIX IOJCHCTEM — Anep. YcranaBnuBaeTcst pan
OKCTpEMabHbIX CBOWCTB H CTPYKTypa sAACp B MOHOTOHHBIX CHUCTEMaXx. I[eTaJmsnpyeTcsi SI3bIK OIIMCAHUS
MOHOTOHHBIX CHCTEM B3aMMOCBSA3aHHBIX 3JICMCHTOB Ha O6H_[CM TEOPETUKO-MHOKECTBEHHOM YPOBHE, U Ha €ro
OCHOBE BI:IpaGaTI:IBaeTC}I KOHCTPYKTHBHAs CUCTEMa MOHATUH B ClIy4ya€ CUCTEM C KOHCYHBIM YHCJIOM DJIEMEHTOB.
I/ISY‘IaSTC}I pan CBOWCTB 0COOBIX KOHEYHBIX IOCICI0BATEILHOCTE JIEMEHTOB CHCTEMBI, C MOMOIIBIO KOTOPBIX
OCYIIECTBUMO BBIJICIICHUEC SIJIEP B MOHOTOHHBIX CUCTEMAaX.

1. Beenenue

IIpy M3y4eHUH NOBEAEHUS CIOXKHOH CHCTEMbI YacTO MPUXOAUTCS CTAIKHUBATBHCS C
3ajayeil aHaM3a KOHKPETHBIX YHMCIIOBBIX JIAHHBIX O (DYHKIMO-HUPOBaHMU cucTeMbl. Ha
OCHOBE TIOJIOOHBIX JTaHHBIX MHOT/A TPeOYyeTCs BBICHUTB, CYIIECTBYIOT JIH B CHCTEME
0COOBIe AIIEMEHTHI WM MOICHCTEMBI DJIEMEHTOB, PEarnpyIOINX OJHOTHITHO Ha KaKhe-
00 «BO3JECHUCTBUS», a TAKKE «OTHOIICHHUS» MEXAY OAHOTHIIHBIMH IOJCHCTEMAaMH.
CaezieHUsI O CYIIECTBOBAaHUU YKa3aHHBIX OCOOCHHOCTEH HJIH O «CTPYKTYpe» H3ydaeMon
CHCTEMBI HEOOXOAMMBI, HallpuMep, A0 MPOBEACHUS] OOMIMPHBIX WIN JOPOTOCTOSIINX

CTaTUCTUYCCKHX HCCHeI[OBaHHiI.

B cBs3M ¢ MIMPOKUM NPUMEHEHUEM BBIYMCIUTEIBHONW TEXHUKH B HACTOSIIEE BpEeMs
Ha HAYaJIbHOM OJTale BBIBICHUS CTPYKTYpbl CHCTEMbl HaMe4aeTcsi MOJIXOJ, OCHO-
BaHHBIN Ha Pa3IMYHOTO POJa 3BpHCTUYEeCKUX Mozensx [1-4]. [Ipu moctpoenun mozaeneit
MHOTHE aBTOPBI UCXOIAT U3 COZAEPIKATENbHBIX IIOCTAHOBOK 3a]ay, a Takxke U3 (GpopMbl
MpecTaBlIeHHs UCXOAHOM uHbopManui [5, 6].

EcrectBennoii Qopmoii mpexactaBneHns HHGOpMAUMHM Ul Leldeld U3ydeHHs
CIIOXKHBIX cHcTeM sBisierca ¢opma rpada [7]. PacnpocTpaHeHHBIM HOcUTENEM
nH}popMaMu CIIyKHUT TaKKe MAaTpUIla, HAIpUMEp MaTpula NaHHBIX [8]. Marpuusl u
rpadpl JIErKO AOMYCKAlOT BBIJEICHHE ABYX MHHHMAJbHBIX CTPYKTYPHBIX €AMHHI]
CHCTEMbI: «3JIEMEHTOBY H «CBA3Eil» MEXIy dlIeMeHTaMu . B 1aHHOH paGoTe MOHATHS
«CBSI3b» M <OBIEMEHT» TPAKTYIOTCA JOCTATOYHO INMUPOKO. Tak, MHPrAa >KeIaTesIbHO
paccMaTpHuBaTh CBSA3U B BHJE 2JIEMEHTOB CUCTEMBI; B 3TOM CJIydae MOXHO OOHApYy>KUTh
Oonee «TOHKHE» 3aBUCHMOCTH B UCXOZHOI cucteme. IIpencraBieHne cucTeMsl B BUIE
€JIMHOTO 00BEKTA — NEMEHTHI U CBSI3M MEXJy 3JEMEHTaMH — II03BOJIsIET NpUaaTh Ooee
YEeTKHH CMBICH 3ajlaue BBIIBICHUS CTPYKTYpPbI cHcTeMbl. CTpyKTypa CHUCTEMBI — 3TO
TaKas OPraHU3alysl AIEMEHTOB CHCTEMBI B IIOJICUCTEMBI, KOTOpask CKJIa/IbIBACTCS B BUJIC
MHOJKECTBA OTHOLIEHWH Mexay mnoiacucreMamu. CTpyKTypoH CHCTEMbI, HalpHMep,
MOXET OBITh €CTECTBEHHO CIIOXKUBILIHHCS CIOCO0 OOBEIMHEHUS MOJCUCTEM B EAUHYIO
CHCTEMY, KOTOPBIIl OIpEe/eIieTCsI HA OCHOBE «CHJIBHBIX» U «CIa0BbIX» CBsI3eH MEKIy
aneMeHTaMu cucteMbl. [1ogo0HbIH MOAX0 K aHAJIN3Y CHCTEM OIMCaH, Harnpumep, B [9],
IJle pacCMaTPUBAETCS BONPOC arperMpOBaHUSI CUCTEM B3aUMOCBSA3aHHBIX JIEMEHTOB.
ArperupoBaHue OKa3bIBacTCsl yJOOHBIM MAaKpOS3BIKOM [UISL BCKPBITHS CTPYKTYPbI
CHCTEMBI.

*
B Jmreparype I'IOI[O6HB]C CHUCTEMBI Ha3bIBAKOTCA CUCTEMAaMHM B3aMMOCBA3aHHBIX 3JICMCHTOB.
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OKCTPEMAIbHbIE NOACUCTEMblI MOHOTOHHbLIX CUCTEM. I
. 3. MYITNAT

(TannuH)
IpemnaraeTcsi KOHCTPYKTHMBHAs MpPOLEAypa IIOCTPOSHUS OCOOBIX ONPEAENISIONNX
MOCJIEIOBATEIbHOCTEH 3JIEMEHTOB MOHOTOHHBIX CHCTEM, paccMOTpeHHbIX B [1].

M3ydaroTcsi B3auMHBIE CBOMCTBA JIBYX ONPEIEISIONIMX IOCIEAOBATEIBHOCTEN Ol- U

Ol+ , U TIOyYCHHBIN pe3yibTaT (GOpPMyIUPYETCsl B BHIEC TEOPEMBI IBOMCTBEHHOCTH. Ha
OCHOBE TEOpPEMbl [BOMCTBEHHOCTH OIMCaH CIOCOO CyXEHUs OO0JacTH IIOHCKA
OKCTPEMAaJbHBIX MOJCHCTEM — sAep MOHOTOHHOM CHCTEMBI M  IpUBEIEHA
COOTBETCTBYIOIIAS CXeMa MOHCKA.

1. BBenenue

B [1] pazpaboTan 0CHOBHOH amnmapar BBIIACICHHS B MOHOTOHHBIX CHCTEMaX
0COOBIX MOJCHCTEM — fAJep, OONafalolIMX SKCTPEMalbHBIMH CBOMCTBaMU.
OCHOBHBIM ~ IOHATHEM PAa3BUTOTO  ammapara SBIAETCA  ONpeleuMoe
MHOECTBO [2]. B mnpuHATON TEPMHHOIIOTHH OIPENEIINMOE MHOKECTBO
OKa3bIBa-CTCS HAMOOJBIINM SIIPOM MOHOTOHHOW CHCTEMBI B3aUMOCBSI3aHHBIX
anemeH-ToB. [loHATHE OnpenesnMoro MHOXecTBa B [1] BBOAMIIOCH C TOMOLIbIO
MPeA-NOJOKEHHUsT ~ CYIIECTBOBAaHMHM  OCOOBIX  IOJAINOCIIEA0BATENFHOCTEH
3IIEMEHTOB HM3y4aeMOH CHCTEMBI, HAa3BAHHBIX ONPENE-SIOUMMH (O, n OL;) —
MOCJIEI0BATEIILHOCTAMH.

B nanHOI1 paboTe BOmpoc CymIecTBOBAaHHS ONPEACIAIONINX MOCIEA0aTeNb-
HOCTEH permaercss KOHCTPYKTHBHO B BHJIE MPOLEAYP — aroputMoB. OCHOB-HBIE
CBOMCTBa ONPEIENSIOIEH NOCIEA0BATENbHOCTH, TOCTPOCHHOM M0 MPaBU-JIaM
MpOLEAYPhl W HCUYEPIBIBAIOLIEN BCE MHOXECTBO 3JEMEHTOB CUCTEMBI W,

TapaHTHUPYETCS TEOPEMOH.

PaCCManI/IBaeTCH TAaKX€ BOIIPOC O TOM, KakKas CYLIECTBYET CBA3b MEKIY
OIPCACIIAIOIMMHA TTOCIICAOBATCIIBHOCTAMU OL- U Ol+ . MoxHO IIPEANOJIOKNTD,

9TO €CJIM MOCTPOCHA ONPEACIIAIONIast MOCICAOBATCIBHOCTL OL- , TO CTOUT B3ATH

3Ty NOCIENOBATEILHOCTh B OOpPAaTHOM IOpPAIKE, KaK IOJyYUTCS Ol IOCIe-
JoBaTelIbHOCTh. B o0mem cinydae 3To He Tak. TeM He MeHee UMeEeT MECTO
Oonee cmaboe ytBepkneHne. Ha ocHoBe ompeneneHHbIX B [1] monsaTwmit

JTUCKPETHBIX IEHCTBUM THUIa @ U © U Ha AIIEMEHTHI cucTeMbl W JaHHOE YTBEp-
xaeHue QopMmynupyercs B BHUJAE TEOpEMbl JABOMCTBEHHOCTH. B  ciyuae
BBIMOJIHEHHS YCJIOBUM TEOPEMbI JIBOMCTBEHHOCTH H3JI0KEHHBIE aJIrOPUTMBbI
MOCTPOCHHUS OTPEACIISIFOIINX MTOCIIEI0BATEIbHOCTEN UCTIONB3YIOTCS JIJIsl 3HAYH-

TEJIBHOTO CY)KEHHUSI 00JIacTH Moucka © m © sanaep cucteMbl W IMOBBIIIAS TEM
caMbiM 3(dekTHBHOCH anropuT™Ma. AITOPUTM CYXEHHs OO0JacTH MOUCKa
U3JI0KEH B BUJE NMPOLETYPBl — KOHCTPYKTHUBHO.
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Extremal Subsystems of Monotonic Systems

Abstract. In the exploration of complex systems, a pivotal aspect involves analyzing
specific numerical data to comprehend the system's functioning. This effort often
extends to identifying specialized elements or subsystems within the system, discerned
by their consistent response to defined 'actions' and intricate 'relations' among homoge-
neous subsystems. Understanding these nuanced characteristics through rigorous mathe-
matical analysis, elucidating the underlying structure of the system, is crucial, particu-
larly as a foundation for conducting complex or resource-intensive statistical studies.
The research explores this basic methodology to identify single-peak sequences that
define components of what we call "monotonic systems," where peaks represent
"kernels" and "hikes" are depicted as “’stable sets.” Furthermore, we extensively delve
into an additional constructive methodology involving two defining sequences within
monotonic systems. Through meticulous exploration, we uncover the complex relation-
ship between these defining sequences, ultimately leading to the formulation of the
duality theorem. This theorem not only serves as a cornerstone in our understanding but
also provides a systematic approach for limiting the search area for kernels and stable
sets. In light of this, we present an algorithm designed specifically for the identification
of extremal subsystems, namely kernels and stable subsets, within a monotonic system,
encapsulated by a certain dual scheme.

Keywords: monotonic; system; matrix; graph; cluster

1. INTRODUCTION

For the study of a complex system, it is often necessary to encounter the prob-
lem of analyzing numerical case data about the system functioning. Sometimes
based on similar data it is required to show whether in the system there exist
special elements or subsystems, reacting in one way to some “actions” as well
as “relations” between one-type subsystems. Information on the existence of
the indicated peculiarities or on the “structure” of the system under study is
necessary, for example, before carrying out extensive or expensive statistical
investigation.

Concerning wide application of computational techniques, at the present
time, to initial detection of the structure of a system an approach based on vari-
ous kind of heuristic models is planned (Braverman et al, 1974; McCormik,
1972; Deutch, 1971; Zahn, 1971). For constructing models, many authors start
with intuitive formulations of the problem and also with the form of presenta-
tion of the initial data (VShandu, 1964; Tepentses, 1959).

A natural form of presentation the data for the purpose of studying complex
systems is that of a graph (Muchnik, 1974). A matrix, for example, a data ma-
trix (Hartigan, 1972) also serves as a widely spread carrier of information.
Matrices and graphs easily admit isolation of two minimal structural units of
the system: “elements” and “connections” between elements." In this paper the
notions “connections” and “elements” are interrelated in a sufficiently broad
fashion. Thus, sometimes it is desirable to consider connections in the form of
elements of a system; in this case, it is possible to find more ”subtle” relations
in the original system.

Analogous systems are called systems of interrelated elements in the literature.
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Representation of the system in the form of a unique object, comprising
elements and connections between them, enables a more precise understanding
of the system's structure. This structure entails the organization of system ele-
ments into subsystems, delineated by a network of relationships between them.
Such a structure may manifest as a natural amalgamation of subsystems into a
cohesive whole, delineated by the strength or weakness of interconnections
among its elements. This approach finds resonance in the work of Braverman et
al. (1971), where the assembly of systems from interconnected elements is
expounded upon, revealing assembly as a convenient macro language for

expressing system structure.

In system theory, conventional analysis often focuses on direct connections
between elements. However, certain scenarios necessitate the consideration of
indirect connections as well. These indirect connections are deemed dynamic
relations, wherein the degree of interdependence is dictated by the subsystem in
which each connection is assessed. Below, we delve into a particular subclass
of such dynamic systems what we called as “monotonic systems.”

The foundational property of monotonicity within these systems facilitates
the delineation of a system's kernel. This kernel, as initially or primarily indi-
cated, serves as a reflection of the overarching structure of the entire system.
Operating within the intrinsic framework of the system, a kernel constitutes a
subsystem highly responsive to either positive or negative actions, thus deline-
ating the existence of both positive and negative kernels.

The existence of kernels, which are specialized subsystems, is not left to
chance within the mathematical model expounded in this paper; rather, it is a
guarantee embedded within the very fabric of the model. The quest to "isolate"
these kernels represents a quintessential challenge in the articulation of a
"large" system in the parlance of a "small" system — the kernel. In a figurative
sense, a kernel of a system embodies a subsystem whose removal invokes pro-
found and irrevocable alterations in the system's properties; it's akin to the sys-
tem relinquishing its established structure, akin to shedding its skin.

In elucidating the subject matter, the discourse relies on the terminology and
symbolism of set theory, a domain accessible to all without necessitating spe-
cialized knowledge. However, it warrants attention to the introduction of spe-
cific notation, as the framework developed within this paper introduces novel
concepts and methodologies. This new apparatus serves as the cornerstone for
the exploration and analysis of complex systems, offering insights into their
underlying structure and behavior.
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2. EXAMPLES OF MONOTONIC SYSTEMS

In the present paper a monotonic system is defined, to be a system over
whose elements one can perform "positive and "negative” actions. In addition,
positive actions increase certain quantitative indicators of the functioning of a
system while the negative actions decrease those indicators. In the examples
considered above the positive action is the addition of an element to a subsys-
tem while the negative action is removing an element from the subsystem; in
the third example the converse holds.

In examples, the kernel should possess an intuitive significance. For
instance, in citation graphs, a negative kernel would represent publications
extensively citing each other, typically authored by individuals from the same
scientific school. Conversely, a positive kernel would comprise publications
with fewer reciprocal citations, indicating representation from diverse scientific
schools.

In transport road networks, the intuitive essence of a kernel should be evi-
dent in the following manner. If we consider the elements of a communication
network as the transportation routes, then a negative kernel would encompass a
set of routes that, on average, experience a significant number of traffic conges-
tions—a sort of consensus among these routes. Conversely, a positive kernel
would represent a collection of routes that, on average, encounter fewer traffic
congestions, indicating smoother traffic flow.

Alternatively, when the system elements are viewed as the transportation
points within the network, a negative kernel would denote a landscape charac-
terized by mutually unreliable points. These points would exhibit a lack of
dependability in facilitating transportation connections with one another. On
the other hand, a positive kernel would depict a landscape comprising more
dependable points, where transportation connections are more reliable and
consistent.

I. Examining the complex organization behind the apparently random friend lists
found on platforms like Facebook, Linkedin and other social networking media
reveals a carefully structured system. Upon closer inspection, it becomes clear that
these lists are not random, but rather follow a clearly defined pattern. Each user's
friend’s list serves as a vital indicator, not only checking connections, but also
offering information about mutual acquaintances and potential interests. This gives
users the opportunity to make direct connections with new people, seamlessly
integrating them into existing social circles.

This process is not simply about expanding one’s social circle, but represents a
purposeful desire to expand one’s social sphere. It is noteworthy that any exclu-
sion of a user from the friends list causes a decrease in the overall score, which
means a negative action in the network lexicon. Conversely, adding new connec-
tions leads to an increase in the indicator, which means positive interaction with
the platform.

These contrasting actions, both negative and positive, are the essence of the formal
scheme discussed in this article. By diving deeper into the dynamics of friend lists
and related metrics, we gain invaluable insight into the fundamental principles
governing social interactions in digital spheres.
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In practice, research into social network structures may be conducted incognito,
since the identities of the participants and their specific interactions are often
irrelevant. Instead of tagging users by name, a simple numbering system is enough
to allow chains of actions—both positive and negative—to be built within the net-
work. This approach contributes to a deeper understanding of the complex dynam-
ics of internal relations, allowing researchers to explore different mutual reflec-
tions and combinations of interactions when analyzing network structure.

II. This excerpt elaborates on enhancing the efficiency of cellular networks through

spatial signal processing and adaptive antennas. It underscores the intricate inter-
play among antenna arrays, processing algorithms, and resource allocation for
maximizing data throughput. By focusing on specific parametric classes of
antenna systems, optimization becomes more feasible, allowing for the estimation
of benefits from adaptive antennas. The example replicates Shorin et al.'s 2016
study for antennas distribution. The study also introduces a novel algorithm facili-
tating Monotonic Systems efficient grouping of antennas based on angular diver-
sity, ensuring optimal resource utilization.

The introduction of spatial signal processing technology and adaptive antennas
makes it possible to significantly (manifold) increase the throughput of the radio
channel due to the active use of the resource associated with the capabilities of
spatial signal selection.

In the context of cellular networks, optimizing adaptive spatial processing entails a
shift from traditional approaches to achieving maximum throughput for a radio
channel connecting numerous spatially dispersed subscribers with a serving base
station. This shift emphasizes the interdependence of the antenna array, spatial
processing algorithm, radio channel resource distribution algorithm, and data
exchange algorithms, forming a unified hardware and software module dedicated
to solving the transmission problem. While the optimal design of antenna arrays
and algorithms remains a question, practical simplifications can be made by con-
straining antenna systems to specific parametric classes, such as ring homogene-
ous structures with adjustable placement radii and radiation pattern widths.

The following approach facilitates optimization and allows estimation of the bene-
fits derived from using adaptive antennas, often through simulation. Furthermore,
the proposed algorithm in this article introduces a "mode with reverse extraction of
elements from groups," enabling the creation of minimal clusters with desired an-
gular diversity levels. Additionally, this mode facilitates the distribution of sub-
scribers in favorable locations across multiple groups, maximizing the utilization
of available radio channel resources.

In the particular scenario of the “Monotone System” being addressed, the algo-
rithm outlined in this article offers a precise solution. This algorithm introduces a
"mode with reverse extraction of elements from groups," which serves a dual pur-
pose. Firstly, it enables the creation of the fewest possible groups or clusters while
maintaining a specified level of angular diversity. Secondly, it facilitates the
simultaneous allocation of individual subscribers situated in more favorable loca-
tions across multiple groups. This approach ensures optimal utilization of the
available resources within the radio channel, maximizing efficiency and perform-
ance.

III. Let's consider a scenario where there exists a network of transportation exchanges

or nodes, denoted as landscape W, interconnected by two-sided roads. In the
absence of direct transportation between these nodes within this road system, tran-
sit transportation can be organized. Over a long period of observation, if such a
pattern of operation persists regardless of the presence of direct transport links, it
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is possible to assess the efficiency of transportation by measuring the average fre-
quency of traffic jams when establishing transportation between these nodes
within a standard unit of time. Essentially, to characterize the reliability of estab-
lishing transportation between each node in a system W, one can use the average
number of traffic congestions experienced by connecting to at least one destination
node in the system over a given period of time. It is obvious that these quantitative
indicators, namely the feasibility of transportation over a given period of time and
the characteristics of the guarantees provided, are applicable only within each sub-
system of the road network W.

The proposed model exhibits several inherent characteristics. Any interruption in
the flow of transportation along a two-sided route amplifies the average number of
traffic congestions among all other transportation points, while the introduction of
a new route conversely diminishes this average. This dynamics correlates with an
increase or decrease in the load on facilitating transit transportation within the
transport communications network.

Similarly, when activity is scaled back at any transportation point within a given
subsystem, the unreliability of all points within that subsystem escalates. Con-
versely, the addition of a new transportation point to the subsystem reduces this
unreliability. These observations mirror the behavior of monotonic systems dis-
cussed earlier, affirming that the model governing transportation roads adheres to
the principles of a monotonic system.

In the exploration of academic research, various scientific disciplines utilize
graphs of cited publications, as outlined by Hanumos and Mynbsuenko in 1969.
These graphs are directed and a-cyclic, reflecting the nature of scholarly citations
where authors can only cite papers that have already been published. It is reason-
able to conceptualize the set of publications, denoted as W, as a system where
information exchange occurs through citations.

Within this framework, considering a subset of publications from the entire set W
allows us to characterize each publication based on the number of bibliographical
references within that subset. When a publication is removed from the subset, this
quantitative measure of information exchange within the subset diminishes. Con-
versely, adding a publication to the subset enhances this evaluation for all publica-
tions within the subset. Hence, the citation system represented by these graphs
exhibits monotonic behavior. In a related context, Trybulets (1970) highlights an
intriguing example where a directed graph inadvertently illustrates the concept of
a monotonic system

. In the n -dimensional vector space let there be given N vectors. For each pair of

vectors X and y one can define in many ways a distance P(X,Yy) between these
vectors (i.e., to scale the space). Let us assume that the set of given vectors forms
an unknown system W. For every vector in an arbitrary subsystem of W we calcu-
late the sum of distances to all vectors situated inside the selected subsystem.
Thus, with the respect to each subsystem of W and each vector situated inside that
subsystem, a characteristic sum of distances is defined, which can be different for
different subsystems. It is not difficult to establish the following property of the set
of sums of distances. Because of removing a vector from the subsystem the sums
computed for the remaining vectors decrease while because of adding a vector to
the subsystem they increase. A similar property of sums for every subsystem of
system W is called in this paper the monotonicity property and a system W having
such a property is called a monotonic system.
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3. DESCRIPTION OF A MONOTONIC SYSTEM

One considers some system W consisting of a finite number of elements, * i.e.,

|W| = N, where each element o of the system W plays a well-defined role.
It is supposed that the states of elements oo of W are described by definite
numerical quantities characterizing the “significance” level of elements o for

the operation of the system as a whole and that from each element of the system
one can construct some discrete actions.

We reflect the intrinsic dependence of system elements on the significance
levels of individual elements. The intrinsic dependence of elements can be
regarded in a natural way as the change, introducible in the significance levels
of elements B, rendered by a discrete action produced upon element o .

We assume that the significance level of the same element varies as a result
of this action. If the elements in a system are not related with each other in any
way, then it is natural to suppose that the change introduced by element o on
significance 3 (or the influence of o on ) equals zero.

We isolate a class of systems, for which global variations in the significance
levels introduced by discrete actions on the system elements bears a monotonic
character.

Definition. By a monotonic system, we understand a system, for which an
action realized on an arbitrary element o involves either only decrease or only

increase in the significance levels of all other elements.

In accordance with this definition of a monotonic system two types of
actions are distinguished: type @ and type ©. An action of type @ involves

increase in the significance levels while © involves decrease.

The formal concept of a discrete action on an element o of the system W
and the change in significance levels of elements arising in connection with it
allows us to define on the set of remaining elements of W an uncountable set
of functions whenever we have at least one real significance function
: W — D (D being the set of real numbers).

Indeed, if an action is rendered on element o, the starting from the pro-
posed scheme one can say that function 7 is mapped into 7 or 7, according

as a the action ® or ©. Significance of system elements is redistributed as
action on element o changes from function 7 to 7 (n;) or, otherwise, the

initial collection of significance levels {n(8)| 66W} changes into a new

3 If W is a finite set, then |W| denotes the number of its elements.
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collection {n; (8)| oe W} 4 Clearly, if we are given some sequence
a,,q,,0,,.. of elements of W (arbitrary repetitions and combinations of
elements being permitted) and the binary sequence +,—,+,..., then by the usual

means one can define the functional product of functions " , . , 7’ in the

a, ;1 > Va,
+ -+
form m ®, 7, .
The construction presented allows us to write the property of monotonic
systems in the form of the following basic inequalities:

7, (0) 2 () 2 m,(0) M
for every pair of elements a,,0 € W , including the pairs o, o or 0,0 .
Let there be given a partition of set W into two subsets, i.e., HUH =W
and HNH=@ . If we subject the elements a,0,,0,,.. € H to positive

actions only, then by the same token on set W there is defined some function
T, 7, 7, ..., which can be regarded as defined only on the subset H of W .~

If from all possible sequences of elements of set H we select a sequence

<0Ll,oc2,...,0c‘ﬁ‘> , ® where o, are not repeated, then on the set H the function

T, T, ... is induced ambivalently.

We denote this function 7'H and call it a standard function. We shall also
refer to the function thus introduced as a credential function and to its value on
an element as an OL credential. In accordance with this terminology the set

{n*H(OL) | ae H}, which is denoted by I1"H is called a credential collection

given on the set H or a credential collection relative to set H . Let us assume
that we are given a set of credential collections {H+H| Hc W} on the set of

all possible subsystems P(W) of system W . The number of all possible sub-
systems is |P(W)| =2M,

Instead of considering a standard function for positive actions 7 7, ... one

can consider a similar function for negative actions m H . Thus, one defines
single credential collection ITH = {n”H(OL)| ae H} and the aggregate of

credential collections {H’H| Hc W} by an exact analogy.

Functions T, TE; and T, are defined on the whole set W  and, consequently,
7’ (0) and m_(O) are defined.

We are not interested in significance levels obtained as a result of operations on
elements of H onto the same set H .

Here symbols <,> are used to stress the ordered character of a sequence of H .
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Let us briefly summarize the above construction. Starting with some real
function 7 defined on a finite set W and using the notion of positive and
negative actions on elements of system W, one can construct two types of

aggregate collections IT'H and IT H defined on each of the H of subsets of
W . Each function from the aggregate (credential collection) is constructed by
means of the complement to H, equaling W\H, and a sequence

<OL1,OLZ,...,OL‘H‘> of distinct elements of the set H . For this actions of types @

and © are applied to all elements of set H in correspondence with the ordered

sequence <OLI,(12,...,OL‘H‘> in order to obtain I1'H and IT'H respectively.

Credential collections/arrays concept of I[1"H and IT H needs refinement.
The definition given above does not taken into account the character of
dependence of function TH on the sequence of actions realized on the ele-

ments of set H.’ Generally speaking, credential collection IT"H(IT H) is not

defined uniquely, since it can happen that for different orderings of set H we
obtain different function ©H .

In order that credential collection IT'H (IT"H) be uniquely defined by

subset H of the set W it is necessary to introduce the notion of commutability
of actions.

Definition. An action of type @ or © is called commutative for system W
if for every pair of elements o, € W we have

T, =T, LT =TT,

In this case it is easy to show that the values of function TH on the set H
do not depend on any order defined for the elements of the set H by sequence
<OL1 , 0L, ,> . The proof can be conducted by induction and is omitted.

Thus, for commutative actions the function 7°H (7w H) is uniquely deter-

mined by a subset of W .

In concluding this section, we make one important remark of an intuitive
character. As is obvious from the above-mentioned definition of aggregates of
credentials collection of type @ and ©, the initial credential collection serves as
the basic constructive element in their construction. The initial credential col-
lection is a significance function defined on the set of system elements before

7

“_rr o

or “+” is omitted from our notation, then it is under-
or “+”

In the sequel, if sign
stood to be either “~”
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the actions are derived from the elements. In other words, it is the initial state of
the system fixed by credential collection IT W . It is natural to consider only

those aggregates of credential collections that are constructed from an initial &
collection, which is the same as the initial © collection. The dependence indi-

cated between ® and © credential collections is used considerably for the proof
of the duality theorem in the second part of this paper.

4. EXTREMAL THEOREMS. STRUCTURE OF EXTREMAL SETS

Let us consider the question of selecting a subset from system W whose ele-
ments have significance levels that are stipulated only by the internal
“organization” of the subsystem and are numerically large or, conversely,
numerically small. Since this problem consists of selecting from the whole set
of subsystems P(W) a subsystem having desired properties, therefore it is

necessary to define more precisely how to prefer one subsystem over another,
see also Muchnik and Shvartser (1990).

Let there be given aggregates of credential collections {H+H| Hc W}
and {H_H| Hc W} On each subset there are defined the following two

functions:

F(H)= max n'H(a), F(H)= miHn 7 H(a).

Definition of Kernels. By kernels of set W we call the points of global
minimum of function F, and of global maximum of function F .

A subsystem, on which F,_ reaches a global minimum is called a © kernel

of the system W , while a subsystem on which F reaches a global maximum,

is called © kernel. Thus, in every monotonic system the problem of determin-

ing ® and © kernels is raised.

With the purpose of intuitive interpretation as well as with the purpose of
explaining the usefulness of the notion of kernels introduced above we turn
once again to the examples of citation graphs and telephone commutation net-
works.

The definition of the kernel can be formulated using the levels of signifi-

cance of the elements of the system, that is: the @ kernel is a subsystem of a
monotonic system, for which the maximum level among the levels of signifi-
cance is determined only by the internal organization of the system is the

minimum, and the © kernel is the subsystem for which the minimum level
among the same significance levels is the maximum.
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The definition of a kernel accords with the intuitive interpretation of a ker-
nel in citation graphs and telephone commutation networks. Thus, in citation
graphs a @ kernel is a subset (subsystem) of publications, in which the longest
list of bibliographical titles is at the same time very short; though not inside the
subset, but among all possible subsets of the selected set of publications
(among the very long lists). If in our subset of publications a very short list of
bibliographical titles is at the same time very long among the very short ones
relative to all the subsets, then it is a © kernel of the citation graph. It is clear

that a © kernel publications cite one another often enough, since for each pub-
lication the list of bibliographical titles is at any rate not less than a very short

one while a very short list is nevertheless long enough. In a ® kernel the same
reason explains why in this subset one must find representatives of various
scientific schools.

In telephone commutation networks, one can consider two types of system
elements — lines of connections and points of connections. In a system consist-

ing of lines, a © kernel turns out to be a subset of lines, for which the lines with
the least number of traffic congestions in that subset are at the same time the
lines with the greatest number of traffic congestions among all possible sets of
lines. This means that at least the number of traffic congestions stipulates only

by the internal organization of a sub-network of lines of a © kernel is not less
than the number of traffic congestions for lines with the smallest number of
traffic congestions and, besides, this number is large enough. Hence one can

expect that the number of traffic congestions for lines of a © kernel is suffi-
ciently large. Similarly one should expect a small number of traffic congestions

for lines of a @ kernel. Formulation for @ and © kernels for points of connec-
tion is exactly the same as for the lines and is omitted here.

Before stating the theorems, we need to introduce some new definitions and
notations. Let o = <(x0,0cl,...,ak71> be an ordered sequence of distinct elements

of set W, which exhausts the whole of this set, i.e., K = ‘W‘ . From sequence
O we construct an ordered sequence of subsets of W in the form

= <H0, H,.,H > with the help of the following recurrent rule H =W,

4 k-1

AE
H, =H\{a};i=0...k-2"°

Definition. Sequence o of elements of W is called a defining sequence

relative to the aggregate of credentials collections {H’H| Hc W} if there

exists in sequence A _, a subsequence of sets I, = <F0’ 1S DR Fp’> , such that:

i Sign \ denotes the subtraction operation for sets.
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a) credential w H. (o) of an arbitrary element o, in sequence o,
belonging to set I’ but not belonging to set I is strictly less than
values of F (")) ;"

b) inset I there does not exist a proper subset L, which satisfies the

strict inequality F (") <F (L).

A sequence o with properties a) and b) is denoted by o . One similarly

defines a sequence o, .

c) arbitrary element o, in sequence o , belonging to set ' but not be-

longing to set I", is strictly greater than values of F (I',)) ;

d) in set F; there does not exist a proper subset L, which satisfies the

strict inequality F () >F,(L).

Definition. Subset H' of set W is called definable if there exists a defin-

ing sequence o, suchthat H =T".

Definition. Subset H™ of set W is called definable if there exists a defin-
ing sequence o._ such that H =T .

Below we formulate, but do not prove, a theorem concerning properties of
points of global maximum of function F . The proof is adduced in Appendix 1.

A similar theorem holds for function F,. In Appendix 1 the parallel proof for
function F, is not reproduced. The corresponding passage from the proof for

F to that of F, can be effected by simple interchange of verbal relations

“greater than” and “less than”, inequality signs “>” and “<”, “>”, “<” as well as
by interchange of signs “+” and “~”. The passage from definable set H' to H’

and from definition of sequence O, and OL_, is affected by what has just been
said.

Theorem 1. On a definable set H™ function F reaches a global maximum.
There is a unique definable set H . All sets, on which a global maximum is

reached, lie inside the definable set H' .

' Here and everywhere, for simplification of expression, where it is required,
the sign “—” or “+” is not used twice in notations. We should have written

F(I) or E(T7)).

j+l
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Theorem 2. On a definable set H| function F, reaches a global minimum.
There is a unique definable set H' . All sets, on which a global minimum is

reached, lie inside the definable set H .

In the proof of Theorem 1 (Appendix 1) it is supposed that definable set H
exists. It is natural that this assumption, in turn, needs proof. The existence of

* o . . 11
H _ is secured by a special constructive procedure.

The proof of Theorem 2 is completely analogous to the proof of Theorem 1

and is not adduced in Appendix 1. We present a theorem, which reflects a more
refined structure of kernels of W as elements of the set P(W) of all possible

subsets (subsystems) of set W .
Theorem 3. The system of all sets in P(W), on which function F. (F+)

reaches maximum (minimum), is closed with the respect to the binary operation
of taking union of sets.

The proof of this theorem is given in Appendix 2 and only for the function

F . The assertion of the theorem for F+ is established similarly.

Thus, it is established that the set of all & kernels (© kernels) forms a
closed system of sets with respect to the binary operation of taking the unions.
The union of all kernels is itself a large kernel and, by the statements of Theo-

rems 1 and 2, is a definable set.

5. ROUTINE OF FINDING THE KERNELS

In preceding sections, we established the fundamental approach for selecting
singular subsystems within monotonic systems, specifically identifying kernels
with extremal properties. At the core of this method lies the notion of a 'defin-
able set,' as delineated by Mullat in 1971. In our framework, a definable set
represents the largest kernel within a monotonic system of interconnected ele-

ments. Back in 1971, we introduced the concept of a definable set through the
utilization of defining &_ and o, sequences within the system.

Subsequently, we tackled the issue of identifying defining sequences, offer-
ing constructive solutions in the form of algorithms. The key attributes of these
defining sequences, generated according to predefined routines, and encom-

passing the entirety of system elements W, are delineated by a theorem.

" This procedure will be presented in the second part of the article, since here only the

extremal properties of kernels and the structure of the set of kernels are established.
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We will delve into the intricate relationship between two defining
sequences, denoted as a_ and o,. While one might intuitively consider

obtaining o, by simply reversing the order of o _, this assumption doesn't
universally hold true. However, we can make a more nuanced assertion based

on the discrete operations @ and © on the elements of system W, as defined by
Mullat in 1976. This assertion manifests as a duality theorem, which we shall
expound upon shortly.

Under the auspices of this duality theorem, the algorithms elucidated for
constructing defining sequences serve to significantly narrow the scope of
search for both © and © kernels within system W. The algorithm delineating
this restriction of the search domain is presented in the form of a constructive

routine.

Now, let's dissect the routine for constructing an ordered sequence o com-
prising all elements of W, succinctly known as the Kernel Searching Routine
(KSR). This routine plays a pivotal role in our methodology, facilitating the
systematic identification and organization of system elements for further analy-

sis and manipulation.

This routine consists of rules of generation and scanning of an ordered

series of ordered sets <[3J> (sequences); here j varies from zero to a value p,
which is automatically determined by the rules of the routine, whereas the
elements of each sequence Ej are selected from the set W '%.

This series <BJ> constructed by this rule forms a numerical sequence of
thresholds <uj> and a sequence of sets <Fj> . On the other hand the sequence of
thresholds governs the transactions from BH to EJ in the chain <Ej> , and the

sequence <FJ> terminates with a set, which is definable.

In the description of a rule we use the operation of extending a sequence Ej
by adjoining to it another sequence 7Y . This operation is symbolically
expressed by E “— <B,7> This rule of construction of the sequence O of all

elements of the set W can be described stages: by step Z and R.

12 Let us recall that in a) the brackets <,> denoted an ordered set; in the case under

consideration they denote an ordered set of ordered sets Bj .
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7.

In the set W we have found an element p, for which
T W(y,)=ming 7w W(3)=F (W); we are constructing a defining
sequence o._. The construction of o, is entirely similar and therefore not
presented here. We shall only indicate where it is necessary to invert the
sign of inequalities, and where the search for an element with the minimal
credential must be replaced by search for an element with maximal creden-
tial, so as to be able to construct o, . Thus the construction of O, , the
element i, is obtained from ©"W(u,)=max, ,n"W(5)=F, (W) condi-
tion. We shall write u, =1 W(p,), a= <},t0> and the set I, = W . We
select a subset of elements Y from W such that T W\ a(y)<u,. The

construction of O, requires the selection of such 7y that

TW\o(y)>u,,u, =" W(u,) . After that we order the elements in a

certain manner (which can be arbitrary selected). The thus-obtained ordered
set is denoted by . Let us write 3, =7 .

. We construct a recursive routine for extending the sequences o and f3,.

Here we denote by 3,(i) the i-th element of the sequence BO . We specify

one after another the elements of the sequence Bo . At each instant of speci-

fication we extend the sequence o by the elements from [3, of the

sequence fixed at this instant. In accordance with the symbolic notation of
the operation of extension of a sequence o , we perform at each instant t
of specification the operation o <— (a, Bo(t)> . Suppose that all the
elements of EO up to B,(i—1) inclusive have been fixed. Then the
sequence o will have the form <u0,B0(1),B0(2),...,BO(i - 1)> , which corre-
sponds to the symbolic notation of the operation of extension of the se-
quences o <—<a,[30(1),[30(2),...,[30(i —1)> in the case that QU inside the
brackets consists of one element L, . Let us consider an element f3,(1—1)
of the sequence BO At the instant of specification of the element f3,(1—1)
we decide during the above-mentioned operation of extension of O also

about any further extension or about stopping the extension of the sequence
f3, - We must check the following three conditions:

a) In the set W\ o there exist elements such that 7 W\ a(y)<u, In

constructing O, , this condition is replaced by ©'W \ a(y) > u,;
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b) the element P3,(1) is defined for the sequence EO By assumption an

element 3 (1) to be defined for a sequence BO if the sequence BO has
an element with an ordinal number 1. Otherwise the element Bo (1) is

not defined. There can be four cases of fulfillment or no fulfillment of
these conditions. In two cases, when the first condition is satisfied, irre-
spective of whether or not the second condition holds, the sequence EO
will be extended. This means that the set of elements y in W\a

specified by the first condition is ordered in the form of sequence Y .
The sequence EO is extended in accordance with the formula

BO <« <an7> . In case when the first condition is not satisfied, whereas

the second condition is satisfied, we shall fix the element 3 (1) and at
the same time extend the sequence o, i.e., oL ¢— <a,B0(i)>, and pro-

ceed to new recursion stage. In case neither the first nor the second con-
dition holds, the sequence [3, will not be extended nor the last fixed ele-

ment in the sequence EO will be the element 3,(i—1). Suppose that we
have fixed all the elements of the sequence BJ By that time we have

constructed a sequence O . Let us consider the set W\ o and the cre-
dential system IT"W \ o . We shall find an element in ITT' W\ o on
which the minimum is reached in the credential system IT"W \ o . The
obtained element is denoted by p, . We obtain o, the element p
e WA a(8)=F (W\a) condi-
)=F(W\a@). Let us write
), and for the set I, =W\ ; then we supple-

from the 7'W\a(u,,)=max
tion:.  Thus, 7 W\a(u,,
uj+1 = TE_W \ a(l"’jﬂ

ment the sequence OL by the element p_, ie., o < (a, pj+l>. In the

same way as during the zero step, we select a subset of elements Y from
W\ such that T W \ at(y) < U, . Here we select for o, a set
of elements Y such that 7'W \'a(y) > u, . The selected set can be

ordered in any manner. The ordered set is denoted by Y . The set Bjﬂ is

assumed to be equal to v .

By analogy with previous b) the recursion step will be described as a re-

cursion routine. At this stage we also use the rule of extension of the se-
quences o and [, . Suppose that we have fixed all elements of 3, up
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to B,(i—1) inclusive. Then the sequence o will have the form
E=<a,uj+l,ﬁj(l),...,ﬁj(i—1)>, where o denotes the sequence o
obtained at the instant of fixing all the elements of Bj, or, to rephrase,
the sequence o prior to the (j+1)-th step. The last equation corre-
sponds to the symbolic operation of extension of the sequence
o= <a, MJ-H,BJ(I)waj(i_l» in the case that o inside the brackets
denotes the sequence <a, Hj+1>~ Let us consider an element B, (1—1)

of the sequence Ejﬂ . At the instant of fixing the element B, (1—1) we

decide about a further extension or about stopping the extension of the
sequence [3j+l . For this purpose we consider the credential system

IT"W\ @ and we check two conditions:

1) The set W\a contains elements Y such that
© W\ a(y)<u,, For constructing o, we must take elements

Y such that T™W \a(y)>u,

1?2

2) theelement B, (1) is defined for the sequence Ejﬂ .

By analogy with the step Z, we find that the sequence BH is extended in

two cases in which the first condition is satisfied irrespective of whether
or not the second condition holds. The set of elements Y in W\ a

specified by the first condition is ordered in the form of a sequence ?
The sequence Ejﬂ is extended in accordance with the formula
_J.” <—<EH,?>. In the case that the first condition does not hold,
whereas the second condition is satisfied, the element B, (i) will be

fixed and at the same time we extend the sequence o, ie.,

o<« <a, Bjﬂ(i)>, and after that we proceed again in accordance with

the rules of Stage 2 of the recursion routine of extension of the sequence
B,,, - In the case that neither the first, nor the second condition holds, the
sequence EH will not be extended, and the last fixed element of the

sequence Ejﬂ will be the element B, (i—1). At some step p the

sequence OL will exhaust the entire set of elements W .
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Theorem 4. A sequence o constructed on the basis of a collection of
credential system {H’H| HgW} is a defining sequence o_, whereas a
sequence o constructed on the basis of {H*H| HgW} is a defining

sequence O, .

The first part of the theorem (for o) is proved in Appendix 3. The second

part (for o, ) can be proved in the same way.

NBI1. Let us note that a sequence o constructed by KSR rules has somewhat

stronger properties than required in obtaining a defining sequence. More
precisely, there does not exist a proper subset L. for j=0,1,...,p—1 such that

I'o>L>T,, and F () <F (L). This is not required for obtaining a defin-
ing sequence o_ (', ). The corresponding proof is not given here.

NB2. Let us note another circumstance. With the aid of the kernel-searching
routine it is possible to effectively find (without scanning) the largest kernel,
i.e., a definable set. It is not possible to find an individual kernel strictly in-

cluded in a definable set (if the latter exists) by constructing a defining se-
quence.

6. DUALITY THEOREM
Let us establish a relationship between the defining sequences a_ and o, of a
system W .

Theorem 5. Let o and o, be defining sequences of the set W with
respect to the collection of credential system {H'H| Hc W},
{H*H| Hc W} respectively. Let <Fj’> be the subsequence of the sequence
A_ (j=0,,..,p) needed in the determination of o , and let <Fj*> be the

corresponding subsequence of the sequence A (j=0,L,...,q) .

Hence if foran m and a n we have

F@)=FT,), 2
then I_ c W\, [T c W\ .If

F(I)<ET) 2 3
then T c W\T', T c W\T_.

> Inthe following, the + and — sign will not be used twice in notation. This rule

applies also to Appendices 1 and 2
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This theorem is important from two points of view. Firstly, under the condi-
tions (2) and (3) there exists a relationship between an o_ sequence and o, .

This relationship consists in the fact that elements of o, which are at the
or the set W\T"" will include all

the elements of the set I"_ that are at the “end” of & _. The same applies also to

“beginning” and form either the set W\ T’

n+1

sets W\I'_ or W\ which are at the beginning of a_, since they include
in a similar way the set I'. In other words, the theorem states that the
sequence o, does not differ “very much” (under certain conditions) from the

sequence, which is the inverse to o_.

Let us note that the conditions (2) and (3) are sufficient conditions, and it
can happen that actual monotonic systems satisfying these conditions do not
exist. Nevertheless, in the third part of this article, we shall describe actual

examples of such systems.

7. KERNEL SEARCH ROUTINE BASED ON DUALITY THEOREM

We just noted that a defining sequence o, differs “slightly” from the inverse
sequence of o _. For elucidating the possibility of a search for kernels on the
basis of the duality theorem, let us rephrase the latter. This assertion can be
formulated as follows: at the beginning of the sequence o, we often encounter

elements of the sequence o _, which are at the end of the latter.

Such an interpretation of the duality theorem yields an efficient routine of
dual search for ® and © kernels of the system W . This is due to the fact if the

elements are often encountered, there exists a higher possibility of finding a &
kernel at the beginning of the sequence o, as compared to finding it at the end

of a_; the same applies also to a © kernel in the sequence o _.

The routine under construction is based on Corollaries I-IV of the duality

theorem presented in Appendix II, where we also prove this theorem.

The routine of dual search for kernels described below is an application of
two constructive routines, i.e., a KSR for constructing o, and a KSR for con-

structing o_. The routine is stepwise, with two constructing stages realized at
each step, i.e., a stage in which the KSR is used for constructing o, with @

operations, and a stage in which the same routine is used for constructing o _

with the aid of © operations on the elements of the system.
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Z. At first we store two numbers: u, =F (W) and u, =0. After that we

perform precisely Stage 1 and 2 of the zero step of the KSR used for con-
structing the defining sequence o, . This signifies that the set W contains

an element p, such that mw'W(u,)=max, 1t "W()=F (W). The
threshold u, is equal to ©'W(u,), etc. By using the constructions of the

zero step of KSR at the previous stage of the dual routine under construc-
tion, we obtained a set I,” = W . Then we examine the set W \I']" and the

credential system IT"W\TI". On the set o, with the credential system
FJ:I cC IT we perform a complete kernel-searching routine for the purpose
of constructing a defining sequence of © operations only for the set
WAT,, . As aresult, we obtain in the set W \I'" a subset F. on which the

function F reaches a global maximum among all the subsets of the set
WAL,

R. By applying the previous (j—1) steps to the j-th step, we obtained a se-
quence of sets I},I7",...,I"", and according to the construction of a defining
sequence we have I') DI ©... DI and I} = W . At first we store two
numbers: u; =F (I'") and u; =F (H’). By analogy, we perform the
same construction consisting of two stages of a KSR recursion step for con-
structing o, with the aid of @ operations. At a given instant of such dual
construction we obtained a set I'; cI. Then we consider the set
WA, and the credential system IT"W\I . In the same way as at the
zero step, we perform on the set W'\ ', a complete kernel-searching rou-
tine with the purpose of constructing a sequence o only on the set
WA . As a result we obtain in the set W\ a subset H"' on which
the function F reaches a global maximum among all subsets of the set
WAL, .

S. Before starting the construction of the j—th step of the routine under con-

struction, we check the condition of a Rule of Termination of Construction

Routine:
u <u,. @)

If (4) is satisfied as a strict inequality, the construction will terminate before the
j—th step. If (4) is an equality, the construction will terminate after the j—th

step.
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8. DEFINABLE SETS OF DUAL KERNEL-SEARCH ROUTINE

At the end of the construction process, the above routine yields a set H' or a
set H''. It can be asserted that one of the sets is definable set or the largest
kernel of the system W with respect to a collection of credential system

{MTH|Hc W}.
The assertion is based on the following. Firstly, by applying the KSR we
obtained the second stage of the j-th step of a dual routine the maximal set

H™ among all the subsets of the set W\T,, on which the function F

reaches a global maximum in the system of sets of all the subsets of the set
W\FI:l Secondly, by virtue of Corollary 1 of the Theorem 2 (the duality

theorem), it follows that, prior to the j-th step and provided that (4) is a strict
inequality, the largest kernel (a definable set) will be contained in the set
W\ I, or it follows from the Corollary 2 of the Theorem 2, if (4) is a equal-

ity, that the largest kernel is included in the set W'\ I, . Thus by comparing

these two remarks we can see that either Hj or Hj+1 is a definable set.
By virtue of Corollaries 3 and 4 of the duality theorem, it is possible to find

by similar dual routine also the largest kernel K - definable set. This asser-

. . . ' 1
tion can be proved in the same way as the assertion about H’ and H™"; there-
fore this proof is not given here.

APPENDIX 1
Proof of Theorem 1. We suppose that a definable set H' exists.

(Conducting the proof by contradiction) let us assume that there exists a set
L < W, which satisfies the inequality

F(H)<F(L). (AL.D)
Thus two sets H™ and L are considered. One of the following statements
holds:
1) Either L/H’ # &, which signifies the existence of elements in L, not
belonging to H';
2)or LcH.

We first consider 2). By a property of definable set H' there exists a defin-
ing sequence o_ of elements of set W with the property b) (cf. the definition
of OU_) such that the strict inequality F (H") <F (L) does not hold and, con-

sequently, only the equality holds in (A1.1). In this case, the first and the third
statements of the theorem are proved. It remains only to prove the uniqueness

of H', whish is done after considering 1).
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Thus, let L/H" # & and let us consider set H, — the smallest of those H ;
(i=0,1,...,k—1) from the defining sequence o that include the set L/H" .
Then the fact that H, is the smallest of the indicated sets implies the following:
there exists element A € L, suchthat Ae H ,but A¢ H .

Below, we denote by 1(€2) the smallest of the indices of elements of defin-

ing sequence OL_ that belong to the set Q= W .

Let I be the last in the sequence of sets <Fj’>, whose existence is guaran-
teed by the sequence a_. For indices t and i(I'’) we have the inequality
t<i(l)).

The last inequality means that in sequence of sets <1T> there exists at least

one set I'_, which satisfies

i(C)>t+1. (A1.2)

+1
Without decreasing generality, one can assume that I, is the largest among
such sets.

It has been established above that A€ H , but A ¢ H . Inequality (A1.2)

shows that I < H ,, since the opposite assumption I” D H , leads to the

t+1 2

conclusion that i(I'’ ) >t+1 and, consequently I is not the largest of the
sets, for which (A1.2) holds.

Thus, it is established that I"_, > H, . Indeed, if I, < H,, then for indices
i(I"_)) and t wehave 1(I"_)>t.

Hence 1(I)+1=t+1 and the inequality i1(I')>i1(I_)+1 implies
i(I)>t+1. The last inequality once again contradicts the choice of set I
as the largest set, which satisfies inequality (A1.2).

Thus, A¢I but AeI' , since AeH,, H I . On the basis of prop-
erty a) of the defining sequence o_, we can conclude that

TnHMR)<FET), (A1.3)

where 0<s<p.
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Let us consider an arbitrary set I'" (j=0,l,..,p—1) and an element

]
TE Fj’, which has the smallest index in the sequence o_. In other words, set
I . starts from the element T in sequence o, . In this case, set l"j’ is a certain
set H. in the sequence of imbedded sets <Hl> The definition of F (H) and

the property a) of defining sequence o_ implies that

F(C)<nT()<E(T,).

Hence, since 1_; =H and F (I))<F(I)<..<F(I') and as a corollary
we have for _] = O,l,...,p

F(I)<F()=F(H), (A1.4)

Let peLl and let credential m L(p) be minimal in the collection of cre-
dentials relative to set L. On the basis of inequalities (Al.1), (A1.3), and
(A1.4) we deduce that

n H,(A) <m L(n)=F (L). (A1.5)

Above, H, was chosen so that L < H . Recalling the fundamental

monotonicity property (1) for collection of credentials (the influence of ele-
ments on each other), it easy to establish that

nLA)<ntH®). (A1.6)
Inequalities (A.5) and (A.6) imply the inequality
T L) <mL(W),

i.e., there exists in the collection of credentials relative to set L a credential,
which is strictly less than the minimal credential.

A contradiction is obtained and it is proved that set L can only be a subset
of H' and that all sets, distinct from H', on which the global maximum is also

reached, lie inside H" .

It remains to prove that if a definable set H_ exists, then it is unique. In-
deed, in consequence of what has been proved above we can only suppose that

some definable set HL, distinct from Hi, is included in Hi

It is now enough to adduce arguments for definable set H  similar to those
adduced above for L, considering it as definable set H ; this implies that

H' < H . The theorem is proved. ®
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APPENDIX 2

Proof of Theorem 3. Let Q) be the system of set in P(W), on which func-

tion F reaches a global maximum, and let K, € Q and K, € Q.

Since on K, and K, the function F reaches a global maximum, therefore

we might establish the inequalities

F (K, UK,)<F(K,)), (A2.1)
F (K, UK,)<F(K,). (A2.2)

We consider element L€ K, UK, , on which the value of function F_ on

set K, UK, , isreached, i.e.,
'K, UK, (n) = min ©'K, UK, (a).

If nek,, then by rendering © actions on all those elements of set

K,UK,, that do not belong to K,, we deduce from the fundamental

monotonicity property of collections of credentials (1) the validity of the ine-

quality
TK,(W <K, UK, ().

Since the definition of F implies that F (K,) <7 K (1) and by the
choice of element p we have n K, UK, (n)=F (K, UK,), we therefore

deduce the inequality
F(K)<F (K, uk)).
Now from the inequality (A2.1) it follows that
F (K, =F (K, uk)).

If, however, it is supposed that peK,, then © actions are rendered on

elements of K, UK, , not belonging to K, ; in an analogous way implement-

ing (A2.2) we obtain the equality

F(K,)=F(K UK,).

The Theorem 3 has been proved. ®
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APPENDIX 3

Proof of Theorem 1. We shell prove that a sequence o constructed by the
KSR rules is a defining sequence for a collection of credential systems

{MTH|H<c W},

First of all let us recall the definition of a defining sequence of elements of
the system W . We shall use the notation A _ =<H0,H1,... H >, where

s Ll
H =W, H,  =H\a, (i=0,l,...,k—2). A sequence of elements of a set
W s said to be defining with respect to a coalition of credential system

{H’H|HQW} if the sequence A_ has a subsequence of sets
I, = <F0,F,,...,Fp>, such that

a) The credential © H,(ct;) of any element o, of the sequence o
that belongs to the set I, but does not belong to the set ', , is

12

strictly smaller than the credential of an element with minimal cre-

dential with respect to the set I, ie, n H;(a;) <F (I,)),
j = Ovlr-'ap -1 3;

b) the set I' does not have a proper subset L such that the strict ine-
quality F (I')) <F (L) is satisfied (the “~” symbol has been omit-
ted; see previous footnote).

We shall consider a sequence of sets A _ and take the subsequence I in

the form of the sets I, (j=0,L,...,p) constructed by the KSR rules. We have

to prove that sets I have the required properties of a defining sequence.

Assuming the contrary carries out the proof.

Let us assume that Mullat property (1971) of a defining sequence is not sat-
isfied. This means that for any set Fj there exists in the sequence of elements

B,=(B,(1).B,(2),....
an element [3,(r) such that

wH,,(B,(1) 2 F (T

]

D=u,, (A3.1)

* In the definition of 6+ sequence it is required that the following strict inequality be

satisfied: T H, (a;) > F, (T, J=0,1,.,q9-1
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Here v is the index number of the element |1, selected in Stage 1 of the
recursion step of the constructive routine of determination of o ; in the vocabu-

lary of notation used in Mullat (1976) we have v =i(I").

According to the method of construction, the sequence Ej consists of
sequences y formed at the second stage of the j-th step of the constructive
routine. Let M be a set in a sequence of sets A_ such that the first element

o of the set M in the constructed sequence Ol is used at the second

i(M)
stage of the j—th step for constructing the sequence Y to which the element
B,(r) belongs. This definition of M shows that H , < M.

From the construction of the second stage of the J -th step and the principal

property of monotonicity of © operations in the system we obtain the inequali-

ties
T H, B, <TME,) <7 T () =u, (A3.2)
By virtue of the above method of selection of the set Fj .1 from the se-
quence of sets <F|> and of the properties of a fixed sequence Ej, we obtain at
the j-th step
u=nl () )<nl (u, )=u,, (A3.3)
where j=0,1,....,p—1.

According to the rule of constructing of the sequence o , the function F

reaches its value on the elements p; and p . The elements [, and W,

e
belong to the sets I, and I',, respectively; therefore the inequalities (A.1) —
(A3.3) are contradictory.

Thus our assumption is not true and Mullat Property of the defining

sequence o, constructed by KSR rules has been proved.

Let as assume that Property b) does not hold, i.e., the last ' of the

sequence <F}> contains a proper subset L such that

F()<F(L). (A3.4)
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Let the element A € L, and suppose that it is the element with minimal

ordinal number in ‘o belonging to L ; moreover, let t denotes this number,
ie., t=1(L), a, =A. From the definition of t it follows that Lc H, .

Our analysis carried out above for the set H  we repeat below for the set

T

H, . By analogy with the definition of the set M we define a set M' with the

aid of the element A and the sequence o .

The set M' is equated with the set of the sequence of sets A _ that begins
with an element used in the formation of a set 7 at the p-th step of the con-

structive routine such that A €y .
By analogy with derivative of (A3.2) we obtain

THRM<tM@R)znT (n)=u, . (A3.5)

Since F(L)<nL(A), it follows from (A3.4) and (A3.5) that
nH(A)<mL®R).
We noted above that L < H,, by virtue of the monotonicity of © opera-

tions, it hence follows that
nLA)<ntH®).

The last two inequalities are contradictory, and hence Property b) of the

defining sequence is satisfied.

Thus we have proved that the sequence O constructed by the KSR rules is

a defining sequence with respect to a collection of credential systems
{H’H| Hc W}, and hence it can be denoted by O, whereas the sequence

<1"l> obtained by a constructive routine can be denoted by I, .

APPENDIX 4

Proof of Duality Theorem. Below we shall show that I < W\T' , if

n+l >

F I )=F([,) (we omit a twice notation of + and — symbols; a promised

above the + and — sign will not be used twice in notation. This rule has been

applied also to Appendices 1 and 2.
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Let us assume that there exists an element €l and that Ee

m+l 2
I'’ «W\TI, . Hence follows that we have defined a credential ml"’ (§).
According to the definition of the function F, the following inequality is true:

(8 <F(I).

ie.,

For a defining sequence o, and for any j=0,1,...,q—1 we have inequali-
ties

F(T',)<F(Y). (A4.1)

n+l

Let us consider an element g € I ; with the smallest index number in o, .

It follows from the definition of o, that

nl, (g) > F(T,).

The choice of element g is convenient because it permits the use of Mullat

Property of a defining sequence (see Appendix 1), i.e., in this case the set F:

is in the form of H, =" . Since F(I',") > nl, (g) , we have proved (A4.1).

Since el , it follows that we have defined a credential nl (&) . We
have the following chain of inequalities:
FI)<al () <m W()=nmW(E)<nl (&).

Let us recall that for any element & of the system W under consideration,
we have in a) the relation m W(8)=7"W(J). The first inequality follows

from the definition of the function F , and the second inequality from the

monotonicity of © operations. The equality follows from the definition of the
functions w and ", whereas the last inequality follows from the monotonic-

ity of © operations.

By virtue of (A4.1) and of the conditions of the theorem, we have also the
following chain of inequalities:

nl”

n+1

() <FI.)<FIT))=FT).

n+l

By supplementing this chain by the previous chain of inequalities, we hence
obtain nl" (&) <ml/(§). Since I'), < I, it follows from the monotonicity

n+1

of & operations that " (&) <7l (§). The logical step used for obtaining
WAL is

n+l

the last inequality is valid, and therefore the assumption that I’

T

untrue.
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In the same way we can prove the inclusion IT" c W\ T

m+l *

For this pur-
pose it suffices to change the signs of the inequalities and (whenever necessary)
toreplace theset I'" by I’ ,and I'_ by I'".

n+l n+l 2

If condition (3) of the theorem holds, it is not necessary to use (A4.1). In
this case the proof will be similar, being based on the following chain of ine-
qualities (The proof is based on assuming the contrary, so that
I  W\I'|, ie., there exists, as it were, an element eI and

gel): il () <F(I) <F(T,) <<l (8) <7 W(E) <l (©).

The first inequality follows from the definition of F(F:) , the second fol-

lows from Condition (3) of the theorem, and the third from the definition of
F(I') . The last two relations express the properties of monotonic systems.

Hence in this case we have under Condition (3) also nl’"(§) <nl' (). This
completes the proof of the theorem. ® Now follows several corollaries of Theo-

rem 2.

Corollary 1. If for n = @ the defining sequence is o, there exists a sub-
set HC W\T such that F (H) > F(I"") . Thus kernel K ® will belong to the
set W\I'". Indeed, since a definable set is also kernel, it follows that
FH)<FI), m=0,L...,p, and hence (in any case) if m=p, and n is
selected on the basis of the condition of the corollary, then F(I',) <F(I' ). By

virtue of the theorem, we therefore obtain the assertion of the corollary.
Corollary 2. If for n=0,1,...,q —1 of a defining sequence O, there exists
a subset HC W\T" such that F (H)=F(I'), then the kernel K ® will
belong to the set W\T', .
The proof follows directly from Corollary 1, by virtue of (A4.1).

Corollary 3. If for m=0,1,...,p of a defining sequence o _ there exists a
subset HZ W\ T such that F (H) <F(T,) then the kernel K © will belong
to the set W\ T"_ . The proof of Corollary 3 is entirely similar to that of Corol-
lary 1. It is only necessary to change the signs of the inequalities and replace
theset I" by I .

Corollary 4. If for m=0,1,...,p—1 of a defining sequence OL_ there exists a

subset H< W\T" such that F,(H)=F(T",), then the kernel K © will belong
to the set W\T .
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" The name “Monotonic System” at that moment in the past was the best match for

our scheme. However, this name “Monotone System” was already occupied in
“Reliability Theory” unknown to the author. Below we reproduce a fragment of a
“monotone system” concept different from ours in lines of Sheldon M. Ross “Intro-
duction to Probability Models”, Fourth Ed., Academic Press, Inc., pp. 406-407.

Example ::
(A four- :
Component i

Structure):

Consider a system consisting of four components, and suppose that the system func-
tions if and only if components 1 and 2 both function and at least one of components
3 and 4 function. Its structure function is given by

0(x) =x,-x, -max (x,,x,).

Pictorially, the system is shown in Figure. A useful identity, easily checked, is that
for binary variables, (a binary variable is one which assumes either the value 0 or 1)
X,1=1,...,n,
max (xl,...,xn): 1- H(I - xi). When n =2, this yields
i=1

max(xl,xz)z1—(1—)(])-(1—)(2)=xl+X2—X1 X, .

Hence, the structure function in the above example may be written as
(I)(X):X] "X, '(X3 +X, — X, 'X4)

It is natural to assume that replacing a failed component by a functioning one never
lead to a deterioration of the system. In other words, it is natural to assume that the
structure function ¢(X) is an increasing function of X, that is, if X, <Yy,
i=1,...,n,then ¢(X) < P(y). Such an assumption shall be made in this chapter and

the system will be called monotone.



281

KOHTPMOHOTOHHbBLIE CUCTEMbI B AHAITU3E CTPYKTYPbI

MHOIOMEPHbIX PACI'IPEJJ,EHEHI/IVI
W. 3. MYNNAT
(TannuH)

CraBuTCS 3a7a4a BBIIENICHHS CTYIIEHNH B MHOTOMEPHOM IPOCTPAHCTBE M3MEPEHNH Ha OCHOBE
BEKTOPHOTO KpuTepHs KauecTBa. [l MOMCKAa pEIICHWH WCIIOIb3yeTCsl CHEIMaibHas Iapame-
Tpusanys (QyHKUUHA, IPU KOTOPOH C YBEIMYCHHEM 3HAYEHMH MapaMeTpoB 3HAauYCHHE (YHKIHUH BO
BCeil 00JIaCTH ONPENENICHHS YMCHBIIACTCS.

1. Beenenue

AHanu3 CTPYKTYpBHl paclpeneieHus] MIOTHOCTH W3MEPEeHWH B N-MEPHOM
MIPOCTPAHCTBE — TPAAUIMOHHAS TEeMaTHKa HCCIEeNOBaHMH B TaKUX NPHKIa-
HBIX 00JIacTsIX, KaK IUIAaHMPOBaHWE dKcriepuMeHTa [1], aHanm3 u3oOpakeHni

[2], ananu3 npuHATHUS pelieHui [3], pacno3HaBanue o0pa3zos [4] u T. 1.

Ha conepikarenbHOM ypOBHE CTPYKTypa pachpejeieHusi oObIMHO Tpe-
CTaBJICTCS COBOKYIMHOCTBIO CTYIICHHH, KOTOPBIE WHOTJA Ha3bIBAIOTCS TAKKE
MojiamHu [5]. AHanu3 mogo0HO# CTPYKTYpPHI, €CIH HE SIBHO, TO KOCBEHHO, IIOYTH
BCETJa CBOITUTCSA K BapHAI[MOHHOW 3ajaye ONTUMH3ALUH — MaKCHMHU3AIUU
KaKoro-JIM0O CKaJISIPHOTO KPUTEPHsl KayecTBa, OICHUBAIOIIETO BBIJEIIIEMbIC
crymenus. Bmecro ckansipHOro B NaHHOW paboTe MCMOJIB3YeTCs BEKTOPHBIH
KpUTEPHii, 2 B OCHOBY TOHSTHS ONTUMAJIBHOCTH TOJOXEHO TaK Ha3bIBaEMOE
PaBHOBECHOE COCTOSIHUE B cMbIcie Hama [6].

[TpaBOMEpPHOCTh MOAXO/a C IMO3HMIUH COCTOSIHUSI PAaBHOBECHUS K aHAIU3Y
CTPYKTYpBI pacupesieneHus IIOTHOCTH U3MEPEHHUH B N-MEPHOM IPOCTPAHCTBE
OOBSCHSIETCSI TEM, YTO 37IECh MO CYIIECTBY MPOUCXOHUT 3aMeHa OJHOW MHOTO-
MEpHOH MHOTMMH «IIOYTH OJHOMEPHBIMH» 3allauaMH B TMPOEKLIHAX Ha OCH
KoopauHaT. Ha KakgoH ocH CrylieHHe BBIACISACTCS TaK, 4YTO OCH
«YBSI3BIBAIOTCSY MEXIY CO0O0Il CTPOro ompeneneHHbIM 00pa3oM: CTyLIeHHe Ha
JAHHOH OCH HEJB3sl «CIBHUHYTH B CTOPOHY» 0€3 Kakoro-Iu00 yXyAIICHUS
CTYLICHHUS Ha APYTHX OCSX B CMBICIIE pacCMaTPHUBAEMOT0 KPUTEpUs MpU ycio-
BUH, YTO ITH JIpyrue yxe HGUKCHUPOBAHEI.

[TpenmymecTBO NPEAsIOKEHHOTO TOJX0/la HE HCUEPIBIBACTCS YKa3aHHOW
«TEXHUYECKOH MOAPOOHOCTHIO» 3aMEHBI OJHOTO MHOI'OMEPHOTO IPOCTPaHCTBA
OJTHOMEPHBIMH MPOEKIUSIMH. J[€TI0 B TOM, YTO COCTOSTHHE PaBHOBECHSI, BbIJIE-
JsieMOe NPU ITOMOIIM HCIOJIB3YEMOT0 BEKTOPHOTO KPUTEpHs, IapaMeTpH-
3UpYeTCsl TaK Ha3bIBAEMBIMU ITOPOTaMHM, KOTOPBIE 33aJaf0T YPOBHHU IUIOTHOCTH
crymennii. [lo kpaitHeil Mepe B HEKOTOPBIX YAaCTHBIX CIy4asX COCTOSHHE pa-
BHOBECHS KaK PELICHHUE CHCTEMbI YPaBHEHHH MOXXHO aHAIWTHYECKH BBIPA3UTh
B (opMe (QyHKIHUI ITOPOrOB U TEM CaMBIM IMOJHOCTHIO 0003pETh BBIAEIAEMbIE
CTYIIEHHS B CIIEKTPE BO3MOXKHBIX YPOBHEH IUIOTHOCTH.
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Counter Monotonic Systems in the Analysis of
the Structure of Multivariate Distributions

Abstract. In the context provided, a multivariate space refers to a space where data
points are represented by multiple variables or dimensions. For instance, if you're meas-
uring several characteristics of an object or a process, each characteristic would repre-
sent a dimension in this multivariate space. Now, the problem being discussed is about
distinguishing condensations within this multivariate space. Condensations here likely
refer to clusters or groupings of data points that share similar characteristics or patterns.
The approach described involves using a qualitative vector criterion, which means using
some sort of criteria or rules based on vectors (which represent directions or magnitudes
in this multivariate space) to distinguish these condensations. This criterion could be
based on factors such as distances between points, angles between vectors, or other
mathematical relationships. The solution proposed involves parameterizing functions in
a special way. Parameterization means expressing functions in terms of parameters,
which are variables that can take on different values. These functions are designed such
that their values decrease across all regions of the defined multivariate space inversely
proportional to the values of the parameters. In simpler terms, this means that the func-
tions are structured in a way that they decrease in value as the parameters increase, and
this decrease happens consistently across all regions of the multivariate space. This
parameterization likely helps in identifying and distinguishing different condensations or
clusters within the multivariate data by providing a systematic way to evaluate their
characteristics.

Keywords: monotonic; distributions; equilibrium; cluster
1. INTRODUCTION

The analysis of the structure of the probability density function of measure-
ments in an n -dimensional space is a traditional topic of investigation in such
applied fields as experimental design (Finney, 1964), image analysis (Rosenfeld,
1969), the analysis of decision making (Fishburn, 1970), pattern recognition
(Aizerman et al, 1970), etc...

At a conceptual level, a distribution structure is usually represented by a set
of data clusters, sometimes called modes (Zagoruiko and Zaslavskaya, 1968).
The analysis of such a structure is indirectly, if not explicitly, usually reduced
to the problem of variational optimization. That is, maximizing some scalar
performance metrics that characterize the identified clusters. Instead of a scalar
performance index, in this article we use a vector index and base the concept of
optimality on the so-called Nash equilibrium state (Owen, 1968).

Approaching the analysis of the structure of a measurement density function
in N -dimensional space, our standpoint is the equilibrium state concept. It is
justified by the fact that, essentially, what happens, is the replacement here of a
single multidimensional problem by many “almost one-dimensional” problems
in projections onto the coordinate axes. On each axis a cluster is delineated in
such a way as to “bind” the axes together in a rigorously defined way. So, ex-
posed to such a “bind” the cluster on a given axis cannot be “nudged” without
in some measure deteriorating itself on the other axes in the sense of investi-
gated performance index, subject to the condition that these others are fixed.
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The superiority of the proposed approach is not restricted to the indicated
“technical detail” of replacing one multidimensional space by one-dimensional
projections. Indeed, an equilibrium state identified by means of the given vector
index is parameterized by so-called thresholds, which satisfy the density levels
of the clusters. In certain special cases, at any rate, an equilibrium state as the
solution of a system of equations can be expressed analytically in the form of
threshold functions, whereupon the identified clusters can be fully scanned in
the spectrum of possible density levels.

The proposed theory for the identification of clusters of the probability den-
sity of measurements in N -dimensional space is set forth in two parts. In the
first part (sec.2) the theory is not taken beyond the scope of customary multi-
variate functions and it concludes with a system equations, namely the system
whose solution in the form of threshold functions makes it possible to scan the
identified clusters. In the second part (Sec.3) the theory now rests on a more
abundant class of measurable functions specified by the class of sets repre-
sented on the coordinate axes by at most countable set of unions or intersec-
tions of segments. Overall the construction described in this part is so-called
counter-monotonic system; actually, the first part on multi-parameter counter-
monotonic systems is also discussed in these terms (special case).

The fundamental result of the second part does not differ, in any way, from
the form of the system of equations in the first part; the essential difference is in
the space of admissible solutions. Whereas in the system of equations of the
first part the solution is a numerical vector, in the second part it is a set of
measurable sets containing the sought-after measurable density clusters. As the
solution of the system of equations, the set of measurable sets serves as a fixed
point of special kind mapping of subsets of multidimensional space. This par-
ticular feature is utilized in an iterative solving procedure.

2. COUNTER-MONOTONIC SYSTEMS OVER
A FAMILY OF PARAMETERS

Here a monotonic system represents first a one-parameter and then a multi-
parameter family of functions defined on real axis. This type of representation
is a special case of a more general monotonic system described in the next
section.

We consider a one-parameter family of functions m(x;h) defined on the

real axis, where h is a parameter. For definiteness, we assume that an individ-
ual copy 7 of the indicated family is a function that can be taken as an integral

with respect to x and differentiable with respect to h . The family of functions
TC is said to be counter-monotonic if it obeys the following condition: for any

pair of quantities / and g such that / < g the inequality

n(x;¢) > m(x;g) holds for any X .
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The specification of a multi-parameter family of functions 7 is reducible to
the following scheme. We replace the one function © by a vector function

T= <Tcl,n2,...,nn>, each j-th component of which is a copy of the function
depending now on n parameters h,h,,...,h ,ie, n =n(x;h h,,.. h).
We wrote down the counter-monotonicity condition for any pair of vectors
0=(0,0,,..0,) and g=(gg,,....8,) such that £, <g_, k=(1,2,..,n) in
the form of N inequalities w (x;¢,/,,....,0 ) > (X;g,,g,,-g,). We also
note that this condition rigorously associates with family of vector functions a

component-wise partial ordering of vector parameters.

We give special attention to the case of a so-called de-coupled multi-
parameter family of functions 7. The family m arrange de-coupled functions
if the j-th component of the vector function T does not depend on the j-th
component of the vector of parameters h, i.e., on hj . Therefore, the function
n of a de-coupled multi-parameter family is written in the form
n(x,h,...,h, h ...h) (j=1,..,n).

-1

We now return to the original problem of analyzing a multi-modal empirical
distribution in multidimensional space. We first investigate the case of one axis
probability distribution of only one random variable (univariate distribution).

Let p(X) be the probability density function of points in the x-axis. For the
counter-monotonic family m® we can choose, for example, the functions
n(x;h) =p(x)". It is easy verified that the counter-monotonicity condition is
satisfied.

We consider the following variational problem. With respect to an exter-
nally specified threshold u® (0<u’<1) let it be necessary to maximize the
functional

[1(h)= ]h[n(x;h) -u’]-dx.

It is clear that for small h the quantity I1(h) will be small because of the
narrow interval of integration, while for the large h it will be small by the
counter-monotonicity condition. Consequently, the value of max, I1(h) will

necessarily be attained for certain finite nonzero h°.

It is easy to see that if p(x) is a unique function of the density of modes
with zero mathematical expectation, then maximizing the functional Il(h)
implies identifying the interval on the axis corresponding to the density p(x)
concentration. But if p(x) has a more complex form, then the maximum
I1(h) determines the interval in which the "essential part" in a certain sense of

the density function p(x) is concentrated.
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Directly from the form of the function I1(h) we derive necessary condition

for the local maximum (the zero equation of the derivative with respect to h :

0
S_hH(h) =0: or, in expanded form, the equation

n(—h;h)+n(h;h) + J.%TC(X; y) |y:h dx =2u’. (1

~h
The root of the given equation will necessarily contain one at which IT(h)

attains a global maximum. We have thus done with the problem: we found the
central cluster points of the density function on one axis in terms of a counter-
monotonic family of functions.

To find the central clusters of a multivariate distribution in 7 -dimensional

space we invoke the notion of a multi-parameter counter-monotonic family of
functions 7U. Let the family of functions 7T in vector form be written, say, in

. _ h _ n .
the form ch(x,hl,...,hn) —pj(x) , where h = Zkzlhk, and pj(X) is a pro-
jection of the multivariate distribution on the axis ] -th axis. In the stated sense

the goodness of the delineated central cluster is evaluated by the multivariate
(vector) performance index IT = <H1 yeees 11 > , where

IT,(h,.h,ueh,) = [, (6, 0eh,) —u ] d @)

and u, is the component of the corresponding externally specified multidimen-
sional threshold vector u: u = <u1,u2,...,un> . As in the one-dimensional case,
of course, it is meaningful to use the given functional only distributions p,(x)
with zero expectation.

Once the goodness of a delineated cluster has been evaluated by the vector
index, it must be decided, based on standard (Becker and McClintock, 1967)
vector optimization principles, what is an acceptable cluster. In this connection
it is desirable to indicate simultaneously a procedure for finding an extremal
point in the space of parameters. It turns out that for so-called Nash-optimal

Equilibrium State there is a simple technique for finding solutions at least in de-
coupled family of counter-monotonic functions 7T .

En equilibrium situation (Nash point) in the parameter space
h =<hl,...,hn> with indices I, is defined as a point h' = <hr,hz,...,h:> such

that for every J the inequality

I,(h,oh’ b b)) < T (R b))

12 e n
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holds for any value of hj . In other words, if there are no sensible bases in the
sense of index II. on the one ( j-th) axis, then the equilibrium situation is
shifted with respect to the parameter h,, subject to the condition that the quan-

tities h,, k # j, are fixed on all other axes.

Clearly, a necessary condition at a Nash point in the parameter space (as in
the one-dimensional case) is that the partial derivatives tend to zero, i.e., the n

0 . . : . .
equalities GTHj (h;,...,h ) =0 must hold. The sufficient condition comprises

2

the N inequalities

I (h},....h7) <0.

2
]

An essential issue here, however, is the fact that the necessary condition
(equalities) acquires a simpler form for de-coupled family of counter-
monotonic functions than in the general case. Thus, by the decoupling of the

family 7T the partial derivative GTJ is identically zero, and the system of

j
equations, see (1) by analogy, with respect to the sought-after point h™ s re-
ducible to the form

n,(-h;h,...,h _,h,

ohoh)+m(hsh,a,h Jh L) =20 3)

j+12°

Now the sufficient condition is satisfied automatically for any solution h’
of Egs. (3).

In conclusion we write out the system of equations for two special cases of
a de-coupled family of counter-monotonic functions 7T.

1. Let m(x;h,..,h ,h

ISR LR

Lh)=p,(x)"", where
c= h1 + 1’12 +...+ hn . The system of equations (3) is reducible to
the form p,(~h,)"™" +p (h)™" =2u,, j=1n.

2. Lettherole of m(x;h,....,h ,h, ,...,h ) be taken by the

p,(x)"..p, ()" p,, (X)""..p,(X)" function.

The system of equations (3) for finding a solution, i.e., an equilibrium situa-
tion (Nash point) h’, is written

p(~h,)/p,(=h)" +p(h,))/p,(h)" =2u, (j=Ln),

where p(x)=p,(x)"p,(x)"...p,(x)™ is the product of univariate density
functions.
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We conclude this section with an important observation affecting the vector
of thresholds u=<u,,u,,...,u, >. By straightforward reasoning we infer that

each component h: of the equilibrium situation h” is a function of thresholds
and h" can be represented by a vector function of thresholds in the form
h’=h (u,,u,,...,u,). If the solution of the system of equations (3) can be
expressed analytically, then prolific possibilities are afforded for scanning the
equilibrium situations in the parameter space and, accordingly, selecting an
“acceptable” cluster in the spectrum of existing densities of measurements in a
multidimensional space of thresholds. A similar approach can be used when

solutions of Egs. (3) are sought by numerical methods.

3. COUNTER-MONOTONIC SYSTEMS OVER A FAMILY OF SEGMENTS

A multi-parameter family of counter-monotonic functions used for the analysis
of multivariate distributions, unfortunately, has one substantial drawback. Gen-

erally speaking, there is no way to guarantee the identification of homogeneous
distribution clusters in projection onto the j-th axis, because the segment

[-h;,h ] can contain several distinct modes. On the other hand, it is some-
times desirable to identify modes by merely indicating a family of segments
containing each mode separately. The construction proposed below enlarges the
possibilities for the solution of such a problem by augmenting the counter-

monotonic systems of the proceeding section in natural way.

Thus, on real axis we consider subsets represented by at most countable set
of operations of union, intersection, and difference of segments. The class of all

such subsets is denoted by B, and each representative subset by He B
(which we call a B set) is distinguished from like sets by length [l (by meas-

ure zero). A set L is congruent with G (G =L) if the measure of the sym-
metric difference GAL is equal to zero (WGAL =0); a set L is contained in
G (L < G) with respect to measure W if pG\L =0. A measure on the real

axis, being an additive function of sets (the length), is determined by taking to
the limit the length of the sets in the set of unions, intersections, and differences
of segments forming the B set. Then set-theoretic operations over B sets will
be understood to mean up to measure zero. By convention, all B sets of meas-

ure zero are indistinguishable.
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We associate with every B set H a nonnegative function 7(x;H) , which

is Borel measurable (or simply measurable) and whose domain of definition is
on the real axis.' In other words, in contrast with the one-parameter family of
counter-monotonic functions of the preceding section, the parameter h is now
generalized, namely, it is extended to the B set H. As before, we say that a
family of measurable functions 7 is counter-monotonic if it obeys the follow-
ing condition: for any pair of sets L and G such that L = G the inequality

n(x;L) > n(x;G)
holds for any X .

The scheme of specification of a multi-parameter family of functions is
analogous to the previous situation. In place of a scalar function © we now
specify a vector function T = <n],nz,...,nn> , each j-th component of which is
a copy of a function depending at the outset on N parameters <H1 JH,,....,H, > ,
ie, m =mn(x;H,H,,.,H ) (B sets). Again, the counter-monotonicity
condition is reducible to the statement that for any pair of vectors (ordered sets
of B sets) of the form L =<L1,...,Ln> and G =<G],...,G“> such that

L, =G, (k=12,...,n), the following n inequalities are satisfied:*

n,(x;L,,....,L )21, (xG,....G,) .

These inequalities associate a partial ordering of sets of B sets with a fam-
ily of vector functions 7 in a rigorously defined way.

In the case of a de-coupled family of counter-monotonic functions, where
the j-th component of a copy of the vector function 7 does not depend on the

parameter Hj ,or B set on the j-th axis of definition of the function T, this

component 7t; of the vector function 7 is written 7, =7 (x;H,H,,...,H ).

Following again the order of discussion of Sec.2, we now consider the
original problem of analyzing the structure of a multi-modal empirical distribu-
tion in a multidimensional space. We first investigate the case of a one-

dimensional (univariate) distribution.

1 A function 1(x;H) is Borel measurable if for any numerical threshold u° the set
of all x of the real scale for which 7(X;H) >u° is measurable:
{x:m(x;H)>u’} is B set.

2 Here X isa point on the j-th axis. This is tacitly understood everywhere.
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Let p(x) be the density function of points on the x-axis. In the role of the
counter-monotonic family of functions 7, we adopt functions of the form
n(x;H) = p(x)™™", where F(H)= L p(x)dx is the probability of a random
variable occurring in a B set under the probability density function p(x). It is
clear that the counter-monotonicity condition is satisfied.

We consider the following variational problem. Given the externally speci-
fied threshold u’ (0 <u’ <1), maximize the functional

[I(H) = j [n(x;H)—u’Jdu.

The integral here is understood in the Lebegue sense with respect to meas-
ure W, where W, as mentioned before, is the length of the B set on the x

axis.
Clearly, the quantity TT(H) as a function of the length 1 (measure of set
H) increases first and then, as pH — oo, reverts to zero by the counter-

monotonicity condition on the family of functions 7. Therefore, the value of
max , [T1(H) will necessary is attained on a certain B set of finite measure p

(see the analogous assertion in Sec.2).
It is impossible in the same simple way to deduce directly from the form of
the functional TT(H) any maximum condition comparable with the like condi-

tion of the preceding section (Eq.1). To do so would require elaborating the
notation of a “virtual translation” from a B set H to a set H similar to it in
some sense, in such a way as to establish the necessary maximum condition.
These circumstances exclude the case of a univariate distribution from further
consideration. Nonetheless, as will be shown presently, for multivariate distri-
bution there are means for finding a B set that will maximize the function
IT(H) at least in the case of a de-coupled family of counter-monotonic func-

tions.

As in the preceding section, we evaluate the goodness of an identified cen-

tral cluster by the multivariate (vector) performance index

M=(,10,,.. ) IT(H,H,,..H,) = [[n(x;H,....H,)-u Jdy,

where u, is the coordinate of the corresponding multidimensional vector of

thresholds U, specified externally: u = <ul,u2,...,u“> .



290 Chapter XIII

At this point we call attention to the fact that, in contrast with the analogous
multivariate index of Sec.2, the given functional now has significance for an
arbitrary distribution, rather than only for the centered condition of “zero-
valued-ness” of the expectation. We again look for the required cluster in mul-

tidimensional space as an equilibrium situation according to the vector index
11 =<H1,H2,...,Hn>. We regard a cluster as a set of B sets

H = <H1, H,..., H> such that the following inequity holds for every j:

I,(H,,..H ,H H

L L UL

LH)STL(H,,...H,..,H)) (j=1n).

In a de-coupled family of counter-monotonic functions it is feasible, as in
the multi-parameter case, see Eq. (3), to find an equilibrium situation. Equilib-
rium situations are sought to be a special technique of mappings of B sets onto
real axes.

We define the following type of mappings of B sets onto real axes:
V.(H)={x:m,(x;H,)>u},
where U i is the threshold involved in the expression for the functional IT,
(_]=—1,n) Thus defined, n such mappings are uniquely expressible in the
vector form
V(H) = {x:n(x;H) >u}.
Here H=H, xH, x...xH_ denotes the direct product of sets H . We de-

fine a fixed point of the mapping V(H) as a set H  for which the equality
H =V(H") holds.

Theorem 1. For a de-coupled family of counter-monotonic functions T, a

fixed point of the mapping V(H) generates an equilibrium situation according
to the vector index 11 = <H1,H2,...,H > .

n

The proof of the theorem is simple. Thus, because 7, is independent of the
., H ) does not

depend on H . Also, the set H = H; x H; x...x H] in projection onto the J-

parameter H , the form of the function 7 (x;H,,...,H  ,H

B A R

th axis intersects the set HJ consisting exclusively of all points X for which
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n(x;H)>u,: H ={x:n (x;H))>u}. It is immediately apparent that for
any H, distinct from HJ the value of the functional

I1(H,.,H ,H,H ,.H) for inmovable sets H (k# j) cannot be

10 [EE
anything but smaller than the quantity IT (H{,...,.H ,H,H ..., H)).

It is important, therefore, to find the fixed points of the constructed mapping

of B sets.

4. METHODS OF FINDING EQUILIBRIUM STATE FOR DE-COUPLED FAMILIES
OF COUNTER-MONOTONIC FUNCTIONS

The ensuing discussion rests heavily on the counter-monotonicity property of a
function 7. To facilitate comprehension of the formulations and propositions
we use the language of diagrams reflecting the structure of the relations in-
volved in the constructed mappings of B sets, in particular the symbol —>
denoting the relation “set X, is nested inset X, (X, € X,): X, > X,.

All diagrams of the relations between B sets are based on the following
proposition: the relation X, — X, (as a consequence of the counter-

monotonicity condition on 7 ) implies that V(X,) «- V(X,).

Now let the mapping V be applied to the original space W of axes on
which the functions 7, (j= 1,_n) are defined. After the image V(W) has been
obtained, we again apply the mapping V with the B set V(W) as its inverse
image, i.e., we consider the image V?(W), and so on. In this way we construct

a chain of B sets W, V(W), V*(W),..., which we call the central series of
the counter-monotonic system.

The following diagram of nestling of B sets of the central series is inferred

directly from the above stated proposition:

\A T T
W« VW) >V (W)« V(W) VW)« V' (W) >...
) 7 71

It is evident from the diagram that there exist in the central series two mono-
tonic chains of B sets: one shrinking and one growing. The monotonically
shrinking chain of B sets comprises the sequence V?(W) <« V(W) « ...
with even powers of the mapping V . The monotonically growing chain is the
sequence V(W) — V(W) — V*(W) — ... with odd powers of V.
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It is well known (Shilov and Gurevich, 1967) that monotonically decreasing
(increasing) chains in the class of B sets always converge in the limit of sets of

the same class. For example, the limit of the sets V**(W) with even powers is
the intersection L =17, V**(W), and the limit of sets V(W) with odd
powers is the union G =7, V***'(W).

Theorem 2. For the central series of a counter-monotonic system the nest-
ing L G of the limiting B set L of even powers of the mapping V(X) in
the limiting B set G of odd powers of the same mapping is always true.

The theorem follows at once from the diagram of nestlings of the central se-
ries.

We now resume our at the moment interrupted discussion of the problem of
finding a fixed point of a mapping of B sets, such point generating an equilib-
rium situation according to the vector index Il (Theorem 1). In counter-
monotonic systems, as a rule, the strict nesting L = G of limiting B sets
holds in the statement of Theorem 2. The equality L =G would imply conver-
gence of the central series in the limit to a single set, namely a fixed pint. In
view of the exceptional status of the equality L = G, we give a “more refined”
procedure, which automatically in the number of cases of practical importance
yields the desired result, a solution of the equation X = V(X).

Procedure for Solving the Equation X =V(X). A chain of B sets
H,,H,,..., is generated recursively according to the following rule. Let the set
H, (where H, is any B set of finite measure) be already generated in the
chain. We use the mapping V(X) to transform the following B sets:

V{ViH)UV(H,)}, V{V(H,)NH,},
V{V(H,)UH,}, V{VZ(H,)NV(H)}.

We denote these sets by L,G,,L,,G, accordingly. By the counter-
monotonicity of the family of functions 7T it turns out that L is a subset of
G, and that L, is a subset of G| . Picking any A, based on the condition
L’ A, cG,, and then B, from the analogous condition L, = B, = G;,
we put the set H, _, following H, in the constructed series of B sets equal to
A, U B,: H =A _UB,. The sets A, and B, can be chosen, for example,

according to mapping rules in the class of B sets, namely,
A, = {x: 4L+ n(x;G)] > u), B, = {x:4[n(x; L) + n(x;G))] > u}.

The conditions imposed on A, and B, are satisfied in this case.
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Theorem 3. For the series of sets V(H,) to contain the limiting set
V(H") as k — o0, which would be a solution of the equation X = V(X), the

following two conditions are sufficient:

a) lim_ uG \L =0,

k-

b)  lim_ pGi\L, =0.

The plan of the proof is quickly grasped in the following nesting diagrams,
which are consequences of the counter-monotonicity property of the functions
T,i.e.,

L V:(H,)« L. > G, < V(H,),
I. VH)<«L -G «V(H,).

Diagrams I and II imply the validity of the two chains:

1) V*(H)\V(H,) c V*(H)\G, cL\G,,
2)  VH)\V'H,)c VH)\G, cL\G;.

The first chain implies that for the limiting set H’ of the series H.H,..,
the equality pV*(H,)\V(H)=0 holds, i.e., V(H) < V*(H"); the second
chain implies the opposite relation: V?(H) = V(H") . Consequently, V(H")
is the solution of the equation X =V(X): V(H)=V(V(H")). Of course,
the conditions of the theorem are sufficient for the existence of a solution of the
equation X = V(X), and their absence does not in any way negate some other

solving technique, provided that solutions exist in general. The possibility that
solution H" of the equation X =V(X) do not exist should certainly not be

dismissed.
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Application of Monotone Systems to the Study of
the Structure of Markov Chains

Abstract. Markov Chains are mathematical models used to describe a sequence of
possible events in which the probability of each event depends only on the state attained
in the previous event. In the context of time series analysis, Markov Chains can be
utilized to model the transitions between different states of a dynamic system over time.
This approach can help understand the probabilistic behavior of the system and make
predictions about future states based on the current state. By analyzing the chain struc-
ture, one can examine the transition probabilities between states and infer how the sys-
tem evolves over time, providing insights into the underlying dynamics of the time
series scenario. In the context of dynamic systems of time series scenarios, the method
described involves transforming the Markov chain into a monotonic system. This trans-
formation simplifies the analysis by allowing for the separation of kernels from the
transformed chain. By separating the kernels, one can focus on understanding the transi-
tion probabilities between different states, which is crucial for predicting the future
states of the system. Essentially, this approach helps in dissecting the complex dynamics
of the time series scenario and allows for a more focused examination of the probabilis-
tic behavior inherent in the Markov chain model.

Keywords: Markov chain; communication line; network; transition matrix; kernel

1. INTRODUCTION

In the work presented here, the theory of monotonic systems developed in an
earlier publication (Mullat, a) 1976) is applied to the Markov chains. In the
study of Markov chains the interest stems from the fact that it is convenient to
interpret a special class of absorbing chains as monotonic systems. On the other
hand, it also provides a meaningful way of illustrating the main properties of
monotonic systems, as shown here using an example based on communication
networks. In the original paper (translated from Russian), Mullat, ¢) 1979, the
term used was “telephone switch net,” which was not adopted here, as it is
outdated. Still, the concept underpinning the work remains highly relevant, as
forms of “switches” are still used in redirecting TCP/IP packages, in a manner
comparable to the telephone net. In order to disclose on conceptual level the
technology developed for extracting the extreme subsystems in Markov chains
discussed in the current paper, we employ the communication network as an
example of monotonic system, albeit in a slightly modified form relative to that
originally proposed in the context of telephone network. This will enable us to
elucidate the manner in which a Markov chain may be associated with the
monotonic system and what principal operations may be performed on it to-
wards utilization of monotonic systems theoretical apparatus described in the
Mullat original work.

In the earlier paper on which this Mullat work is based, an example of a
communication network has been considered, whereby a set W comprising of
communication lines/channels between some nodes — communicating units —
was introduced.' Here, we will assume that each line has certain built-in redun-
dancy mechanisms, such as the main and the reserved channels. In practice,

! Switchis a device, which can learn where to address the communication packages.
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network redundancy may be guaranteed by some additional channels/lines
activated only in urgent situations when the net usage exceeds some predefined
threshold. Thus, if a direct line is not available between nodes, analogously to
what was described in Mullat’s work 1976, the traffic might be organized
through pass-around channels. In addition to this mechanism, in the present
case, the possibility of employing pass-around communication is not excluded
even if a direct channel is available.

In the example presented in the original paper (Mullat, 1976), an average
number of “denials” before establishing the contact characterizing each pair of
nodes was utilized. The number of denials usually characterizes the communi-
cation lines in the communication network. Network protocol analyzers can
collect such types of statistical data. In the model described below, and for the
purpose of current investigation, it is more convenient to use a value inverse to
the number of denials, as this will characterize the communication line
throughput.

Let us assume that each communication line (comprising of both the main

and the reserved channels) is characterized by the throughput C; ; or, in other

words, by the maximum allowed bandwidth usage, expressed in kilobytes for

example. The value C.. thus denotes the throughput of main and reserved

ij
channels. We then explicate the communication center S by the maximum
permissible usage

The traffic redirected through the node S along the main communication
channel, as well as the reserved channel, between nodes s and j specifies

thereupon a share of maximum permitted usage C, . In an actual communica-

tion network, the usage share must be lower than the maximum allowed share

C,, I
P,="7 - Moreover, the usage share p_; of the communication channel can

s

be interpreted as a probability of establishing contact between the nodes S and
j. Assuming that the main and the reserved channels are treated as equitable,
the quantity must satisfy an inequality

2-Yp, <1 (1)

for all S without exception,

Let a communication network, characterized by the aforementioned pass-
around traffic feasibility, function during a long period of time by originating
its main channels. We can characterize the traffic along each main channel

(more precisely, the nodes i and j) by the average number of hits p,; that
occur in the process of establishing either direct or indirect (pass-around) con-
tact. It is apparent that p, is slightly greater than the corresponding p, ;.
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If a malfunction occurs somewhere along the channel, then a change in the
communication network will be reflected in a decrease in p, ;. In such a sce-
nario, activating a reserved channel can enable higher network usage. Obvi-
ously, in this case all ﬁ)j values will increase accordingly. A communication
network organized in this way is a monotonous system.

However, a problem arises with respect to identifying the type of change of
malfunctioning/activating of a main/reserved channel that would influence the

E,j values. In order to find an appropriate solution, it is necessary to explain
the problem in Markov chains nomenclature.

Consider a set W of communication channels described by a square matrix
”pl,j”:, when no channels exist, p,;,=0. According to the theory of Markov
chains (Chung 1960). Such matrices may be associated with a set of returning
states for some absorbing Markov chain. In the nomenclature pertaining to
chains of this type, the value ﬁi ; can be interpreted as an average number of

hits from node 1 into node j along the Markov chain. Similarly, a malfunction
in the main channel, resulting in the activation of the reserved channels, can be
described through recalculating the average hit values p, . The above can be

denoted as an action of type ©, whereas in the nomenclature of monotonic

systems, an action of type @ pertains to activating the reserved channel due to
the malfunctioning in the main channel.

From the above discussion, it is evident that adopting this special class of
absorbing Markov chains allows approaching the problem from the perspective
of how to differentiate the Extremal Subsystem of Monotonic System — the
kernels. Along with the KSR — Kernel Search Routine elaborated for this
purpose in (Mullat, 1976), this approach can actually accomplish the kernel
search task.

In Section II below, the problem of kernel extraction on Markov chains is
described in more detail. In Section III, we show that the results of performing

the ® and © actions upon Markov chain entries in a transition matrix lead to
Sherman-Morrison (Dinkelbach, 1969) expressions for recalculating the num-
bers of average hits (see Appendix).

2. THE PROBLEM OF KERNEL EXTRACTION ON MARKOV CHAINS

Consider a stationary Markov chain with a finite number of states and discrete
time. We denote the set of states by V . Stationary Markov chain can be char-

acterized by the property that the pass probability from the state 1 to the state j
at a certain point in time t+1 does not depend upon the state s (S = 1,2,...,r1)
the considered chain arrived in 1 in the preceding moment t. We denote by
p(, J,k) (p(i,j, )= pivj) the conditional probability of this pass from 1 to j

within K units of time.
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Below, we consider only a special class of Markov chains that, for arbitrary
states 1 and ] within some subset in V , is constrained by

limp(i, k) = 0.

According to the theory of Markov chains, this limit equals zero when the
state j is returning, implying that there must be some reversible states in such
Markov chains. Without diminishing the generality of this consideration, we
will further examine chains with only one reversible state, which must simulta-
neously be an absorbing state.

The absorbing chains utilized below satisfy the following properties:

1. There exist only one absorbing state 6 € V
2. All remaining states are returning, and the probability of a pass be-
tween the states in one step corresponds to an entry in the square matrix

el
3. The probability of a pass into an absorbing state 6 from some return-
ing state 1 in one step, in accordance with 1 and 2, is equal to

bio = 1- Zn:p‘_e :
0=1

The monotonic system mandates a definition of some positive and negative

(®, ©) actions upon system elements. For this purpose, we make use of the
average number of hits p,; from the state i into the state j along the chain

(Chung 1960). It is known that the value of ﬁj is specified by the series
p,, =2 p(i.j.k). )
k=1

The sufficient condition for series (2) to converge is established if the sum

of entries in each row of the matrix pr‘” is less than one. We consider that

elements elsewhere in the chains fulfill the conditions 1-3.

Let W be the set of all nonzero entries in the matrix Hpi‘jH . On the transi-
tion W set of the Markov chain described above, we define the following

actions.

Definition. The action type © on the element of the system W (nonzero

element of the matrix ”plyj” ) denotes a decrease in its value by some Ap of its

probability to pass in one step.
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By analogy, we define the action @. In this case, the probability of a pass in
one step, which corresponds to the entry value p, ;, is increased by Ap . In case

of some nonzero increment in the matrix ”pm‘” element (based on straightfor-

ward probability considerations), all average numbers of hits p,, must also
increase accordingly. On the other hand, a Ap decrement would result in a
decrease in the corresponding ﬁij values. In sum, introduced actions upon

system W elements fully meet the monotonic condition (Mullat, 1976), and
system W transforms into a monotonic system.

At this juncture, it is important to emphasize that the Ap changes in values

of probabilities in one step within W are not specified in the definition of ®
and © actions upon the entries in the matrix ﬁ,j . Relatively rich possibilities
exist for the change definition. For example, it can denote an increase (de-
crease) in each probability on a certain constant, or the same change, but this
time depending upon the probability value itself, etc. When providing the defi-
nitions of & and © actions on an absorbing Markov chain, it is desirable to
utilize authentic considerations. Below, using an example of communication
network, we describe one of such considerations.

Let W be the set of all possible transitions in one step among all returning
states of an absorbing chain. These transitions in the set W retain the corre-

spondence with nonzero elements of the matrix ”puu .Let T be a certain sub-

set of the set W, relating to the nonzero elements noted above. Denote by
p(T,i,j,k) the probability that the chain passes from the state 1 into the state

j within k time units, constrained by the condition that, during this period, all

passes in one step upon the set T have been changed by either @ or © actions.
This condition corresponds to the assertion that the passes along the set
WAT =T proceed in accordance with the “old” probabilities, while those
along T are in governed by the “new” Probabilities. We do not exclude the
case when no @ or © actions have been implicated — the set T = . In this
case, we simply omit the T symbol notation in the corresponding probabilities.
We suppose that actions do not violate the convergence of probability series,
see condition (1).

The average number of hits from 1 into J, subject to the constraint that

some passes in the set T have been changed by actions, is specified by a series

B(T.ij) =3 p(T.i,jm). 3)

m=1
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Let us now focus on the collections of credentials specified by a monotonic
system W . We define a collection IT'H on the subset H e W as a collection

of real numbers {ﬁ(ﬁ,i, ) (i,j)e H} in case that the positive @ actions occur

on H=W\H, while ITH = {p(H.i,3)

(i,j)e H} collection corresponds to

the case of the negative © actions taking place.

In the original paper (Mullat, 1976), we have proved that, in a monotonic

system, two kinds of subsystems always exist — the @ and © kernels. The
definitions introduced above, pertaining to the average number of hits

P(H,i,j), allow us to formulate the notion of @ and © kernels in the Markov

chain.
Definition. By the Extremal Subsystem of passes on absorbing Markov

chain — the @ and © kernels — we call a system H®C W, on which the
functional

maxp(H. i, j) 4)

reaches its global minimum on 2%, whereby © kernels will be a subsystem

H © <= W where the functional
minp(H,1i, j) (5)
reaches its global maximum as well.

We will now turn the focus toward the notions of @ and © kernels intro-
duced above, using an example on communication network described earlier.

The probabilities of hits p,; (without any passes, i.e., in a single step) between

nodes i and j (i, j= l,n) allow us to construct for the communication network

an absorbing chain satisfying the conditions 1-3 above. In fact, as we already
noted, only one condition is mandatory to satisfy the inequality (1), which is a
natural condition for any communication network. Conditions 2 and 3, on the
other hand, can be guaranteed by the Markov chain design. In this case, num-

bers p,, may be interpreted as probabilities of a pass in one step, whereby p, ;

denotes an average number of hits from i into j, whether directly, or via an
indirect pass-around along other lines in the chain.

The search for the @ and © kernels on an actual Markov chain, recon-
structed from a communication network, mandates a precise definition of @
and © actions. In the beginning of the discussion, we observed that © action

might represent a malfunctioning in the main channel, whereas @ action might
pertain to the activation of a reserved channel. On the Markov chain, the mal-
functioning is denoted as null, reducing the corresponding probability, while
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the activating of a reserved channel is reflected in the doubling of its initial
probability value. We stress once again that @ and © actions are subjective
evaluations of an actual situation. The condition (1) guarantees that, in any

circumstance that would necessitate such @ and © actions, the convergence of
series (2) and (3) will not be violated.

We suggest a suitable interpretation of @ and © kernels in Markov chain
below, starting from the Markov chain characteristics, introduced here in terms
of communication network.

In Extreme Subsystem H ©, none of the communication lines/channels are

subject to changes, whereas in all lines outside H ©, they’re reserved channels
have been activated. The extreme value of the functional (4) shows that the

average number of hits within channels belonging to H ©, including the indi-
rect pass-around hits (by definition, an indirect hit requires at least two steps to
reach the destination), is relatively low. This assertion implies that the lines

within the H © kernel are “immune” with respect to package delivery malfunc-
tions, i.e., most of the transported packages pass along direct lines. The set of

lines in H ® kernel is characterized by a reverse property. Thus, the main

channels in H© kernel are the most “appropriate” for organizing ‘“high-
quality” indirect communications, but are also a sensible choice for mitigating
the malfunctions that may result in a “snowballing” or “bandwagon” effects.

Conversely, along H ©, the indirect communication is typically hampered for
some reason.

3. MONOTONE SYSTEM CREDENTIAL FUNCTIONS ON MARKOV CHAINS

In Section II, we defined some © and © actions upon the transition matrix
entries in one step corresponding to returning states. In this section, we will
develop an apparatus that allows us to incorporate the changes induced by these

two types of actions into the average numbers of hits from one returning state 1
into the other state j. We describe here and deduce some tangible credential

functions intended for use alongside our formal monotonic system description,
following the conventions presented in the previous work (Mullat, 1976). Let
us first recollect the notion of credential function before providing an account
of the main section contents.

Suppose that, in the system W , which in the case of Markov chain is char-
acterized as a collection of entries in matrix ”pll” corresponding to passes
among returning states, a subset H has been extracted. As a result, the set H

consists of one-step transitions. Owing to the successive actions of type ©, by
accounting for all individual sequential steps in the process (see Section II)

taken upon the elements in H (a complementary of H to W), it is possible to
establish the average number of hits within the transition set H — the creden-
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tial system II"H . By analogy, on the set H, a succession of @ actions estab-
lishes the credential system II'H. The average number of hits in the
nomenclature given in Section Il may be represented as p(H,i,j) — i.e., the

limit values for series (2) on nonzero elements for the transition matrix P
corresponding to the entries/lines within the set H . Further, we will refer to the

numbers p(H,i,j) as the credential functions.
Let us now establish the general form of the credential functions on Markov
chains as a matrix series. This can explain the mechanism of actions the defined

in Section II, performed upon the elements of a monotonic system — the
Markov chain.

The credential function on Markov chain may be found using the series (2),
where the single element (i, J) in the series presents the probability of the chain

pass from 1 into j, constrained by the condition that actions have been per-

formed upon the set H.

The general matrix form of such transition probabilities described in Section
I1 is given below: 0

1o ...0
Pis
’ , where 6
p (6)
pn‘e
0 - absorbing state of the chain;
p,, — the probability of a pass from the 1°s returning state into the ab-

sorbing state 0;

P - the transition matrix of probabilities between the returning states
within one step, where the matrix dimensionis 1 X 1.

Using Chapman-Kolmogorov equations (Chung 1960), the element
p(T,i,j,m) in series (3) may be found as the m -s power of the matrix (6),

whereby it occupies an entry in the matrix P".

In summary, the collection of series (3) may be written as the following ma-
trix series

P.=1+P, +P +..., (7)

P, — the matrix, where type © and © actions have been performed upon all

nonzero elements within the set. We suppose that p(T,1,},0)=0. ., which is

ij?
what the unity matrix in Section I highlights. In the nomenclature of the
Markov chains (Kemeny et al, 1976) theory, matrices of type P, are referred to
as the fundamental matrices.
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Recall that, in the definition of a monotonic system, the credential function
on the set HC W takes advantage of a complementary set H to the set H

only. The set H is actually the set of performed actions. Given that the ele-
-1

ments of the set W are also presented as matrix entries E = ”I—Pﬁ , the

matrix is the credential functions collection on the Markov chain, identical to
the matrix limit of (7).

In the nomenclature of fundamental matrices, the actions upon the mono-
tonic system elements are transformations, taking place in succession, from the

. = . - o
matrix "I —P || to the matrix ||I -P.. || . Calculus of such a transformation is,

however, a very “hard operation.” In order to organize the search of ® and ©
kernels on the basis of constructive procedures (KSR) described previously
(Mullat, 1976), the utilization of matrix form is inappropriate. To extract the
extreme subsystems on Markov chains successfully and take full advantage of
the developed theory of monotonic systems, a more effective technology is
needed, which leads us to Sherman-Morrison relationships (Dinkelbach, 1969).

The solution that can account for the changes emerging as a result of the ©

and © actions upon the transition matrix elements within one step in the fun-
damental matrix of Markov chain may be archived in the following manner.

Suppose that, instead of the old probability p, denoting a pass in between the
returning states 1 and j, an updated (new) probability p, =p, +Ap is util-
ized, where the action (i Ap) results in either an increment or a decrement. In
case of (+ Ap), the @ action has occurred, whereas (— Ap) implies the ©
action. The change induced by one of these actions may be treated as two suc-
cessive effects. First, the probability p, is replaced by 0 and the replacement
is recalculated. Second, the transition probability is subsequently reestablished
with the new value p, and the change in the fundamental matrix is recalculated
immediately after the first recalculation.

The relationships accounting for the changes in the fundamental matrix E
as a result of the element o having a null value and affecting the matrix P,, as

well as the relationships accounting for the changes in E, also in the reverse

case of @ actions, may be found in Appendix I.

In sum, for the search of extreme subsystems following the theory of con-
structing the defining sequences on system W elements with the aid of KSR
routines introduced in the previous work (Mullat, 1976), it is necessary to ob-
tain some well-organized and distinct recurrent expressions, which can account

for the changes in the matrix P, whereby it is transformed to the matrix Eua .
The formulas for specified Ap, which allow us to transform from E in order

to find the matrix Ew are given in Appendix II on the basis of the expressions
I1.3and Il 1.4.



304 Chapter XIV

With the aid of these recurrent expressions, in Appendix II, it is possible to
obtain on each set Hc W the collection of credentials [I'H or IT'H by
performing the successive implementation of expressions II 2.5 to all elements
upon the set H. These expressions mirror the transformation of system element
credentials 7T into 7T, in view of the theoretical apparatus of monotonic sys-

tems (Mullat, 1976). Indeed, we construct the collection IT'H in the case of
Ap > 0, whereas the collection IT H is constructed if Ap<0.

4. ON HOMOGENEOUS MARKOV CHAINS

In this section, we consider homogeneous Markov chains with a finite number
n of states and a discrete time. A chain is called homogeneous if and only if
the transition probabilities p, . are independent of time t .

Our goal is to establish the relations between the elements of fundamental
matrix denoting an absorbing chain (Chung, 1960), p. 66), see the definition
below on the condition that certain transitions per time unit have been declared
as prohibited. These relations are used in adjusting the corresponding elements
without imposing this restriction. It should be noted that similar relations are
encountered in compositions pertaining to the first and the last occurrence of
some Markov chain states (see (Chung, 1960), p. 75). However, in spite of this
obvious resemblance, such relations have not yet been considered in the litera-
ture.

Given without proof, the relations given in the form of theorems I-IV allow
making a case for implementation of a general principle of maximum for some
functions, defined on finite sets (Mullat, 1971). The foundation for the con-
struction scheme (1971), in particular, is contingent upon requirements applied
to the functions in the form of inequalities given as a result of this research.

In developing an efficient algorithm at the computer center of the Tallinn
University of Technology, the theorems I-IV served as a foundation for finding
solutions for some notable pattern recognition classification problems. Applica-
tion of the algorithm improved the solution quality and speed with which prob-
lems were solved computationally, in comparison with those achieved by cur-
rently used algorithms.

Usually, homogenous chain can be represented as a directed graph whose
vertices correspond to the state of the chain, whereby the arcs denote possible
unit transitions from one state to another at any point in time. In addition, when

the transition probability p, . is zero, the arc u= (i, _]) is not depicted on the

graph. On the other hand, any graph I' can be represented in the form of a
homogeneous chain attributing the arcs of the chain by satisfying the relation of
the conditional probabilities. These chains are referred to as chains associated
with the graph I".
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Let U(G) be the set of arcs of the graph G, and V(G) the set of vertices.
Adding to the set of vertices V(G) a vertex 0, which is in turn connected to
any vertex in V(G) by an arc leading into 0, can hence reproduce a graph I'

Consider the following homogeneous Markov chain associated with the
graph G :
1) There exists a unique absorbing state 0 ¢ V(G) ;
2) The probability of transition from i to j, 1,j€ V(G), p,; =p,,
if the arc (i,)) € U(G), and p,; =0 otherwise;
3) The probability of transition from the state i€ V(G) to the ab-
sorbing state O is given by p,, =1— Z;pw’ )

It can easily be verified that all states of the chain, identified by the vertices
of the graph G, are irrevocable, whereby the designated Markov chain belongs
to a class of absorbing chains (see (Chung, 1960), p. 55).

Here, some of the tuning indicators v, refer to the parameters of the
Markov chain associated with the graph G . Further, we assume that for any
v, = zl p,; < 1. For all vertices of the graph G, it can be demonstrated that
for any graph G, one can find a tuning parameter V for which a given con-
straint 0 <v < % is satisfied. Indeed, let k represent the largest number of

nonzero elements in the rows of the fundamental matrix corresponding to the
vertices of the graph G .

Moreover, let H denote an arbitrary subset of arcs of the graph G, i.e.,
H c U(G). Here, p(H,i,j,k) designates the probability of transition from

the state 1 to the state ] in K units of time, on the condition that the transi-

tions along the arcs of the subset H are prohibited during this period. Owing
to this restriction, the subset H denotes a prohibited set of arcs, all of which

are thus prohibited as well.

Let p(H,1,},0)=98,; (where 5].’ ; represents the Kronecker’s symbol) and
p(H.ij) =2 p(H.ijn).

Due to the existence of a Markov chain associated with the graph I' of an
absorbing state 0, the entire set V(G) is irrevocable, see Chung, 1960, p. 45,

and the series (1) converges.
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We use the Greek letters o, [3,... to denote prohibited arcs of the graph G,
whereby o refers to the vertex (state) from which the arc emerges, and o™ is

the vertex toward which the arc is pointing.
Theorem I. We denote by H+ o a set-theoretic operation. HU o .

p(Halya? ) p(Haainj) )
l+p, -p(H,a ,a")

p(H+a,i,j) = p(H,i,j) - v-

This expression might be interpreted as a consequence of malfunctions in the
communication line O . The next expression can be interpreted as an increase

in traffic efficiency after repairs on the line.

Theorem I1. p(H.i.j) = p(H + i, j) + v- P %10 ) pH+ oo, )

1-p, -p(H.a",0")
Corollary.

From the form of the dependence in the formulations of Theorems I-II it
immediately follows that the following inequalities are valid for the case of

directed and undirected graphs, respectively

p(H+0a,i,)) <p(H,i,j), i,j=1,n).

These inequalities guarantee the fulfillment of the monotonicity condition for

the realization of a monotonic system on homogeneous Markov chains.

APPENDIX I
Consider the value p(T,1,]) produced by the series (3). Each component of

this series may be treated as the measure of all passes in m time steps (time
units) commencing in 1 and terminating in _] . This assemblage of transitions is
a union of two nonintersecting collections. The first set pertains to the passes
from 1 to j with a mandatory transition, at least once, along oo € W . On the
other hand, the second relates to the set of passes from i to j avoiding this
transition o . Each passage from the first set consists of two passes: a pass
avoiding o being in t steps long, and a pass in m—t—1 steps (time units),
passing along o . In other words, the passages in t steps avoid the pass along

o, whereas passages in m—t —1 steps make use of this pass o .
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We introduce the following notation: p(T",i, j,k) represents the average
number of hits from 1 into j with the transition matrix P, where the nonzero

element o is null, and p(T’,1i, j,k) denotes the probability of transition with-
out making use of o . Implementation of the introduced notification results in:

p(T,i,j,m)=p(T",i,j,m)+
+p,- 3 p(T"i,0,,t)-p(T,01,, jym—t—1)’
p(T’isjsm) :p(TO,iaj,m)+

. ) , 11.2
+p°‘ 'Zp(T’l’a’b’t)'p(Toaae:Jam_t_l)
t=0

1.1

where o, — the state from which a one-step pass begins, ending in o, ; p, —the

pass along o in one step, corresponding to the element o of the matrix P, .

The first component in I 1.1 and I 1.2 introduces the value of p(T,i,j,m),

denoting the measure of transitions avoiding the pass along o . In addition, the
components included in the summation represent the probability that the states

O, (for the relationship I 1.1) and o (for the relationship II 1.2) have been

reached by the first and the last pass along o in the moments t and t+1,
respectively.

Let us calculate the p(T,i,j) values using the relationship II 1.1. We con-

clude, after performing the summation of each of the equations I 1.1 from 1 to
M and thereafter changing the order of sums in the double summation, that

> (T, jom) = 3 p(T" i, jom) +p, - . p(T" sty ) D p(Toct,s s 1)

m=1 m=1
M-1
Dividing both parts of the latter equation yields Z p(T’,i,a,,t).
t=0

Thus, based on the theorem of Norlund averages (Chung 1960) considering
M-t

the sequence a, =p(T',i,a,,t) and b_ = Zp(T,oce,j,s —1), while increas-
s=1

ing M — o for the sequences a, and b, , it can be concluded that the follow-
ing relations are valid:

P(T.5, ) = p(T",5, ) +p, - p(T",1,,) - p(T, ., ). I3

Analogous relationship can be deduced by exploiting the composition I 1.2,
namely:

p(T.i,) =p(T".i,j) +p, - p(T.i,,) - P(T", ., ). [1.4
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APPENDIX II

We introduce the following notifications. Let p(T,,i,]j) represent the ma-

0

trix P element, and P(T,,i,j) denote the matrix P element. Let us also

rewrite IT 1.3 and II 1.4 with respect to these notifications, which results in:
ﬁ(Tn,i,j) :ﬁ(TO,j,j)_{- )
+p, D(T",1,0,)-p(T,, ., )

P(T,.1,)) =p(T",L, j) +
+p, - p(T,.1,0,)-p(T", 0t )

2.1

2.2

From the relationships II 2.1 and II 2.2, it follows that the new value for the

average hits from 1 into _] is equal to
p(T,.1,)) =p(T,.1,)) +
+p,-p(T",5,0,)-P(T,, a0, j) = 123
—-p, ‘ﬁ(Tg’i’ab) ‘ﬁ(TO,(X.C,j)
Substituting in I 2.1 the state 1 = O, , we obtain
P(T, 0. ) =p(T", e, )/(1=p, - B(T"ct,.01,))
and from II 2.2, with the same 1= o, we get

P(T", ) = D(T, ., j)/(1+p, - P(T,ax,0,)).

Replacing the latter expression into the preceding one, and taking into ac-
count that

p(T"0,0,) =D(T, 0, a,)/(1+p, - P(T, a,0,)),
we finally arrive at

P(T, 0., ) =p(T,, . j)/(-Ap-B(T, 0 ,a,)). 124

The expression II 2.1 is valid if we replace T, by T, and p, by p,, and if
in the expression II 2.2 we make a reverse replacement. Substituting ] =0, in

the expression II 2.2, first regrouping it by this reverse replacement, results in

BT, 0, i) =B(T,,a,j)/(1+p, -B(T, ., 0,)).
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Finally, we deduce the expression that can account for the changes in the
fundamental matrix E by simplifying the last two equalities and the expres-
sion II 2.4, after collecting sub-expressions and making rearrangements trans-
forming E into the matrix P, . Adopting the standard nomenclature given in

Section III, the ultimate form of the expression is given as follows:

ﬁ(T,i,OLb)-ﬁ(T,OLk,j)
1-Ap-p(T,a,a,)

p(Tua,i,))=p(T,i,j)+Ap- 112.5
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A Study of Infraspecific Groups
of the Baltic East Coast Autumn Herring by
new Method based on Cluster Analysis

Positions of the autumn herring subgroups differentiated by the
method described.

Figure 1

E. Ojaveer, Estonian Laboratory of Marine Ichthyology (1975)

“In the Baltic Sea the autumn spawning herring forms a smaller number of
groups than the spring herring does. This is probably connected with the differ-
ent location of their spawning grounds. Spawning grounds of the spring her-
ring are concentrated in favorable sites near the coast (in gulf, estuaries, etc.)
while between such spawning centers gaps occur usually. Contrary to it,
in most parts of the Baltic spawning places of the autumn herring form a
continuous chain situated in the open sea. Therefore, differences in
environment conditions between the autumn spawning grounds of neighboring
areas are small and in large districts the characters of the autumn herring do
not reveal essential differences. For instance, there is no significant difference
between the autumns herrings caught on various grounds off the Polish coasts.
The autumn herring of the Swedish Baltic coasts can be divided into four
groups (that of the Gulf of Bothnia, that of the Bothnia Sea, the herring of the
Swedish east coast and that of the Swedish south coast), between which a
gradual transition occurs.”
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Appendix 1, J. Mullat (1975), Tallinn Technical University

While cluster is a concept in common usage, there is currently no consensus on
its exact definition. There are many intuitive, often contradicting, ideas on the
meaning of cluster. Consequently, it is difficult to develop exact mathematical
formulation of the cluster separation task. Yet, several authors are of view that
clustering techniques are already well established, suggesting that the focus
should be on increasing the accuracy of data analysis. The available examples
of data clustering tend to be rather badly structured, whereas application of the
formal techniques on such data fails to yield results when the classification is
known a priori. These issues are indicative of the fundamental deficiencies

inherent in many numerical taxonomy techniques.

Following the standard nomenclature, a vector of measurements can de-
scribe every object <X1,X2,...,Xk>. Thus, for every pair of objects E, and E a

distance di i between those objects can be defined as

dijz\/(x”—xj1 +(xi2—sz)z+...+(xik—xjk)Z (1)

However, it should be noted that all measurements are usually standardized
beforehand.

Applying Eq. (1) on N objects yields a full matrix of distances

0d,d,..d

0 4, .. d

D 2k (2)

Authors of many empirical studies employ methods utilizing the full matrix
of distances as a means of identifying clusters on the set {El yees Byee B, } .

In this section, we describe a new and highly effective clustering method,
underpinned by some ideas offered by the graph theory. As the first step in our
novel approach, we emphasize that, for elucidating the structure of the system
of objects, knowledge of all elements of the matrix of distances given above is
rarely needed. We further posit that, for every object, it is sufficient to consider

no more than M of its nearest neighbors.
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To explicate this strategy, let us consider a system of 9 objects (Fig. 2) with

their interconnections — edges. The matrix of nearest neighbors for such a

graph is given by:
5(1) 6(1) 3(2) 0 0 0
4(1) 3(2) 7(3) 0 0 0
4(1) 5(1) 1(2) 2(2) 0 0
2(1) 3(1) 5(1) 7(3) 0 0
MND = 1(1) 3(1) 4(1) 6(1) 7(3) 0
1(1) 5(1) 7(3) 0 0 0
2(3) 4(3) 5(3) 6(3) 8(3) 9(3)
7(3) 9(3) 0 0 0 0
7(3) 8(3) 0 0 0 0
6 \'
7
Figure 2 s

It can be easily verified that each row 1 of that matrix contains a list of ob-

jects ] directly connected with a given object Ei, with the distances d]. i

given in parentheses. Based on this argument, henceforth, we will denote the
matrix of nearest neighbor distances by MND.

In most cases, having data pertaining to about 8-10 nearest neighbors is suf-
ficient. This is highly important for computation, where the goal is to minimize
the required memory space. By applying this method on, e.g., the case of 1,000
objects, only 10,000 memory locations would be needed, which is a significant
saving relative to the 500,000 required when the full matrix is processed.
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We will use the MND defined above as a starting point to create some use-

ful mathematical constructs.

Let W be the list of edges (pairs of objects) in the MND. For every edge
e= [a,b], asubset W' of the list W can be defined as follows.

Definition 1. Subset W, of W represents a proximity space of edge [a,b] if
a) for every pair of objects X and y, which are connected with at least one

edge in W', there exists a path joining X and y, and
b) every edge that is a member of that path belongs to the subset W,' .

According to the graph theory postulates, proximity space is a sub-graph
connected with the edge [a,b] .

Example. Let us consider the edge [4,5] shown in Fig. 1. According to the

aforementioned rules, its proximity space, denoted as W54 , 1s the sub-graph
W: = { [3,4]’ [355]’ [4’7l [5’7]’ [2’4]’ [1’5]’ [5’6]’ [4’5] } :

Definition 2. The system of proximity spaces is referred to, as the proximity
structure if for each edge w = [a,b] there exists a nonempty proximity space

W in the system.

b

Sometimes it is useful to exclude the edge [a,b] from the proximity space
W, . In line with the Venn diagram annotation, this exclusion is denoted as
W\ [a,b], whereby the resulting subset can be referred to as a reduced prox-
imity space.

In the preceding discussion, for every edge [a,b] , only the value of the dis-
tance d[a,b] between [a,b] was taken into account. In what follows, it is
useful to introduce a new notation. For example, it is beneficial to assign a real
number (credential 7T), which is different from the distance, to every edge on
the graph. For example, let us define the credential of every edge in the dia-

gram shown in Fig. 1 as
nlx,y]=d[x,y]+ rlx.y].

For example, n[4,7] =3+12, n[7,8] =3+1 on the edge [x,y], where d[x,y]
is the Euclidean distance (1) between X,y and r[x,y]; r[x,y] is the number

of triangles that can be built around [X, y] .
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Let us further assume that a proximity structure £ of a graph W is known
and that f(X) is a real function.

Definition 3. The function f(m) defined for all credentials of the edges in
W; is called the influence function of the proximity structure £ if the fol-
lowing holds fab(n[x,y]) < Tc[x,y] for each [x,y] e W, \ [a,b], where n[x,y]
is the credential of the edge [X, y].

In other words, for every edge [x,y], we can find a new credential in the

reduced proximity space W, \[a,b]

w'[x,y]=f (xlx.y) .

To demonstrate the benefit of introducing the influence function, let us
again consider the diagram depicted in Fig. 1. Graphically, the influence func-
tion represents the value of the number of triangles after the elimination of the

edge [a,b]e W from the list W,'. Using the set W, as an example, this

5
corresponds to

£ (34D =£(du + 1) =(+1)=(d,, +1,)=(1+0)=1;
£ (34D =£:(d, +1,)=(1+0)=(d,, +1,)=(1+0)=1:
£ (34D =£:((d, +1,)=B+1))=(d,, +1,)=(3+0)=3.

53) 6(22) 33 0 0 0
43) 33) 74 0 0 0
43) 53) 13) 23) 0 0
23) 33) 53) 75) 0 0
MNW= | 13) 33) 4(3) 6(3) 7(5) 0
12) 53) 74 0 0 0
2(4) 45 505 6(4) 34 94
74) 94 0 0 0 0
74) 84 0O 0 0 0

It is evident that knowledge of the influence function of an edge allows us
to easily find the set of new credentials for an entire subset He W . Let us

consider the set H=W \H and arrange its edges in some order <el,ez, >
Applying the steps shown above, we can find the proximity spaces of the edges

<el,ez, > and apply Eq. (3) recursively.

Using the information delineated thus far, we can now introduce our algo-
rithm, the aim of which is to identify the data structure.
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At this point, we can assume that steps pertaining to the selection of the
proximity structure and the influence function have been completed. Thus, we
can proceed through the algorithm as follows:

Al.  Find the edge with the minimum credential and store its value.

A2.  Eliminate the edge from the list of all edges and compute the credentials for
proximity spaces of the minimal edge using the recursive procedure (3).

A3.  Traverse through the list of edges and identify the first edge with the creden-
tial less or equal to the stored credential. Return to A2 to eliminate that edge.
If no such edge exists, proceed to A4.

A4.  Check whether there are any further edges in W .t yes, return to Al,
otherwise terminate the calculations.

Performance of the algorithm will be demonstrated by applying the afore-

mentioned steps to the graph shown in Fig. 1.

First, the credentials for all edges should be defined using the following ex-

pression:
nlx,y]=d[x,y]+ rlx.y].
To do so, we must compute the matrix of credentials using the matrix of
distances (2).
We will demonstrate all steps of the algorithm described above.
Al. Minimal edge is [1,6] and the associated credential is Tc[l,6]:2. To
store its value, let u=2.
A2.  We eliminate the edge [1,6] from the list W and therefore have to
change the credentials of Tc'[6,7] =4:
W [L6]: [1.3]=3; n[1,5]=2; w[5.6]=2.
A3.  Proceeding through the list, we encounter the edge [1,5] as the first edge

with the credential less or equal to U . Now, we return to step A2. After

9 steps with u =2, we have the following sequence of edges:
([1.6].[1,5).[1.3).[3,5). 3. 4].[2, 4].[2, 3} [4,5]. [5. 6] ) -

Now, we consider the case u =3, and after applying the preceding steps,
we obtain < [2, 7], [4, 7], [5, 7], [6, 7] > Finally, using u=4 yields

([7.8].[7.9].[8,9]).
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It can be easily verified that those ordered lists of edges provide accurate
representation of our graph’s structure.

For graphical output, we can utilize the ordered edges to construct a con-
nected tree (a tree is a graph without circles).

For the example given above, we can construct the tree using the ordered
lists of edges, while excluding all edges [a,b] if both their end points, a and

b, are already members of the list. This approach results in the sequence

([.6].[1.5].[1.3]. [3.4]. [2.4]. [2.7].[7.8L[7.9])

based on which the tree in Fig. 3 can be constructed.

©

Using this simplified diagram, relative position of any object in the tree
can be established by considering the number S(x,y) of steps needed to reach
the point y from the point X on the tree (e.g., S(1,2) =3, S(1,8) =5). Hence,
for every object X, we can identify another object from which the maximum
number of steps is required to reach x. For example, to identify the object at the

top of the tree, we will take the object for which that maximum is minimum.
Using real data, and applying these rules, we obtain the tree shown in Fig. 1.
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Postscript, Acknowledgement and Prospects

While it's understandable that the term "Monotonic Systems' was used in this
book without awareness of its common usage in another context, it's crucial to
acknowledge that employing established terms in divergent contexts can breed
confusion and should be minimized. Despite the terminology discrepancy, the
phenomena described as 'Monotonic Systems' shouldn't hinder our discussion
of the contributions outlined in this work. It's imperative not to discredit the
efforts presented here solely due to the utilization of a potentially conflicting
term. Evaluating the ideas and concepts based on their intrinsic merit and
potential impact on the field is paramount. Although precision in using estab-
lished terminology and preventing confusion is essential, the value of the ideas
and concepts presented should be assessed independently.

In mathematics, a system earns the label 'monotone' when it adheres to a
specific criterion known as the monotonicity property. The canonical property
states that when a system's inputs increase, the output either remains constant or
increases in the same direction or adequately. Conversely, when inputs
decrease, output also either remains constant or also decreases equally. This
fundamental characteristic is also referred to as non-decreasing or non-
increasing behavior. However, we expanded upon the canonical property by
incorporating the monotonic increase/decrease within internally dependent
elements of the system itself, thus opening the way for practical implementa-
tion. The non-canonical monotone system seems to be a foundational mathe-
matical concept widely employed across diverse disciplines.

In fields like computer science and communications, our customary mono-
tone systems are instrumental in analyzing algorithms and protocols exhibiting
monotonicity properties. For instance, in network routing protocols, the mono-
tone system considered ensures seamless message delivery without loss or
duplication. Similarly, in social sciences and economics, monotone systems
serve to model individual and group behaviors in decision-making processes
and economic transactions. For example, in market dynamics, such a monotone
system can simulate buyer-seller interactions, where goods' prices rise with
increasing demand. Furthermore, in game theory and data analysis, monotone
systems facilitate the study of player behavior and strategy evolution in diverse
games and social networks. For instance, in social network analysis, a mono-
tone system can replicate information or influence propagation. In essence,
monotone systems represent a potent analytical tool applicable across a spec-
trum of systems and processes in numerous fields, thereby proving invaluable
to specialists across various domains.
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In the discussions, we investigated Greedy type algorithms, which allowed
us to arrive at some ordering, as they facilitated arranging what we called the
defining sequence. Based on the prerequisites of this sequence, credentials
either ascend or descend in accordance with the partial order of sub-lists within
the main ordering, such as price credentials for wines, nodes on graphs, records
in overview tables, radio-transceivers in cellular networks, routes along com-
munication lines, agents in retail networks, transfer payments, tax relief, and
more. The range of indicators suitable for inclusion in our defining sequence
was truly boundless. When employing a defining sequence to organize ele-
ments, our objective was twofold. Initially, credentials ascend to a peak point,
after which they diminish to zero. Alternatively, the reverse scenario could be
addressed using a workaround scheme. We could seamlessly execute actions @
and © within sub-lists, encompassing all possible sub-lists — the Totality of
sets, where the General Ordering served as a representative of the Totality.
Actions @ enhanced phenomena, while © actions were perceived to have det-

rimental effects on the same phenomena.

Additionally, we introduced the concept of stable or steady sets, known as
fixed points, which remain unaffected by @ or © actions when applied to sub-
sets. Essentially, we established that fixed points couldn't be destabilized by
predefined mappings. However, our ultimate objective was to identify an opti-
mal solution using Greedy-type algorithms through a defining sequence of
ordering. We demonstrated that the defining sequence not only guaranteed
optimal ordering but also facilitated the discovery of optimal stable subsets —
the kernels. Moreover, we observed that, as a byproduct, any formation of a
defining sequence adhered to the Fibonacci rule in general.

Other researchers ' have also delved into the Monotone System approach,
emphasizing the significance of its origins. Various types of lighter Monotone
Systems have been established, streamlining the implementation of Greedy-
type algorithms due to their simplified structure. This convenience in architec-
ture was observed when the standard order of credentials within the Grand
Ordering of elements remained unchanged during the formation of defining
sequences. It was demonstrated that any subset of credentials within this Total-
ity of subsets maintained alignment with the initial Grand ordering. Notably,
the Totality of wine menu credentials or wine price impulses adheres to this
light property harmony.

a) Yulia Kempner, Vadim E. Levit and Ilya Muchnik. (2008) Quasi-Concave Functions
and Greedy Algorithms, Advances in Greedy Algorithms, Book edited by: Witold Bed-
norz, ISBN 978-953-7619-27-5, p. 586, November I-Tech, Vienna, Austria; b) Yulia
Kempner and Ilya Muchnik. (2008) Quasi-concave functions on meet-semilattices, Dis-
crete Applied Mathematics 156, pp. 492-499.
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Bargaining Games and Data Analysis

Light "Monotone Systems" offer the flexibility to present the Grand Order-
ing in either ascending or descending order through standard ordering proce-
dures—any such procedure suffices for this purpose. Consequently, forming the
defining sequence necessitates operations whose complexity scales logarithmi-
cally, contrasting with the rigidity of the general scheme. It's noteworthy to
consider postulates pertinent to bounded rationality theory, as posited by
Arrow, Rubinstein, Sen, Uzawa,... among others, applicable to both general
systems and light monotone systems. These include the postulate of independ-
ence from rejected alternatives and the postulate of succession/adherence,
exemplified in scenarios like the "Matching Game" and stock market share
visualization. In the parlance of a barmaid, the latter postulate echoes as: "The
old love does not rust." This underscores the enduring relevance of certain
principles even in dynamic contexts.

It's worth reiterating the significance of "Monotonic Systems," which enable
algorithms like Greedy to discover optimal solutions with significantly less
computational effort than that required for solving complex NP problems. This
optimality is guaranteed by a set function F(X)=min__ n(a,X) , where o
belongs to set X: a € X. As highlighted by other researchers, F(X) must
adhere to the quasi-convex property when optimized across subsets X in the
Grand Ordering W . Quasi-convexity on W dictates that for any pair [X,Y]
of subsets X and Y , the inequality F(X U Y)> min[F(X),F(Y)] must hold.
Allegedly, this inequality ensures that NP-hard problems can be substituted
with polynomial complexity procedures, enabling Greedy-type algorithms to
operate within reasonable timeframes.

However, our investigation, as exemplified by straightforward instances
such as the "Partial Matching Marketing Game," demonstrated that the quasi-
convex property isn't universally upheld across all Monotone Systems. This
realization suggests that Monotone Systems, contrary to initial assumptions,
possess more intricate or diverse characteristics. Unfortunately, techniques
relying on the defining sequence of ordering encounter difficulties when
applied to such systems, hindering the pursuit of optimal solutions, particularly
kernels. Nevertheless, alternative approaches exist for achieving optimal out-
comes. Branch and Bound algorithms, though more complex compared to the
Greedy-type algorithms commonly utilized with quasi-convex set functions,
prove effective in managing conflict scenarios. They are particularly valuable
in elucidating phenomena like bilateral agreements, where the dataset typically

remains manageable despite increased computational demands.



XXVI Postscript

Acknowledgement

In conclusion, the author finds it pertinent to share a personal perspective on
the history of Monotone Systems. The author had the privilege of being associ-
ated with a laboratory of the Institute for Management Problems in Moscow,
where the staff worked under the guidance of the late Prof. Aizerman. Since the
mid-1950s, the laboratory has been dedicated to researching methods for auto-
matic object classification. One fundamental hypothesis underlying these meth-
ods was that objects sharing similar characteristics in a multidimensional space,
such as data analysis, visual objects, or sequences of letters and words, tend to
cluster together. This hypothesis, known as the compactness of similar objects,
posits that similar phenomena are closer to each other while being distant from
dissimilar ones.

Building upon the compactness hypothesis, a multitude of classification
algorithms emerged, as evidenced by the works of Braverman et al. (1975) 2,
Mirkin et al. (1970) *, and countless others. These methodologies shared a
common foundation: the imperative to categorize objects in a manner that
maximizes intra-class proximity while ensuring inter-class distinctiveness
according to a specified metric. Amidst this pursuit, the groundbreaking
contributions of Professor P.V. Terentyev, a luminary in biometrics at St.
Petersburg State University, stand out prominently. Terentyev's seminal
development, the correlation Pleiades method, revolutionized the selection of
robust and "independent" features from a plethora of attributes. Notably, in his
1959 * publication, Terentyev applied the Pleiades method to delineate a
classification scheme for biological entities, a framework that not only met the
demands of its time but also continues to underpin a spectrum of contemporary
methods, notably those falling under the rubric of nearest neighbor linkage.
Terentyev's pioneering work thus remains a cornerstone in the ongoing
evolution of classification methodologies. An exemplar of simplicity lies in the
task of classifying objects into two distinct categories. In 1966 *, Véhandu and
Frey introduced a comparable method in the Biological Series of the Estonian
Academy of Sciences, aimed at acquainting biologists with the latest statistical
advancements.

Braverman E.M., Litvakov B.M., Muchnik I.B. and S.G. Novikov. (1975) Stratified
sampling in the organization of empirical data collection, Autom. Remote Control,
36:10, pp. 1629-1641.

Mirkin B.G. and L.B. Cherny. (1970) On a distance measure between partitions of a
finite set, Automation and remote Control, 31, 5, pp. 786-792.

Tepentses [1.B. (1959) Meton Koppensmonnsix [Inesn, Bectauk JII'Y Ne9.

Frey T. and L. V&handu. (1966) Uus Meetod Klassifikatsiooniiihikute Piistitamiseks,
Eesti NSV Teaduste Akadeemia Toimetised, XV Koide, Bioloogiline Seeris, Nr.4.
WsBectus Axagemun Hayk Ocronckoit CCP, Tom XV, Cepus buonorndeckas, Ne46.
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During his, JM’s tenure as a postgraduate student at Tallinn University of
Technology from 1969 to 1971, under the mentorship of L.K., Véhandu (L.V.),
author's academic journey was enriched by the exposure to similar methodolo-
gies, facilitated by L.V.'s guidance. Notably, JM’s fruitful interactions with the
late Prof. E.M. Braverman from the "Institute of Control Problems" in Moscow
underscored the collaborative spirit of the academic community during that
time. Recalling his discussions with Braverman regarding classification within
monotone systems, the author vividly remembers Braverman's acknowledg-
ment of the novelty of his views.

In contrast to the conventional "Nearest Neighbor Method," J.M. introduced
a formal mathematical framework rooted in combinatorial principles, offering a
fresh perspective on data analysis methodology. Inspired by L.V.'s "blind-
view" ideology of data evaluation and visualization, J.M. developed an innova-
tive approach to data analysis in his Ph.D. thesis, termed "Kernels in Monotonic
Systems Related to the Tasks of Automatic Classification." This groundbreaking
methodology not only diverged from traditional practices but also laid the
groundwork for what would later be acknowledged in scientific literature as
"Monotone Linkage Functions" in the scholarly literature.

Despite its initial designation as the "Monotone/Monotonic System," JM's
model has transcended its origins to become a focal point of scholarly inquiry,
as evidenced by its contemporary prominence in seminal works such as
"Maximum Margin Separations in Finite Closure Systems" by Florian Seiffarth
et al. (2021). Through its ingenuity and steadfast commitment to pushing the
boundaries of knowledge, JM's Monotone System has etched an indelible mark
on the landscape of data analysis, serving as a catalyst for researchers to ex-
plore new horizons in pursuit of scientific excellence.

Innovative approach to data analysis, grounded in the principles and theory
of Monotonic Systems, has profoundly influenced the methodology of data
analysis across diverse fields, ranging from computer science to data mining,
machine learning, and pattern recognition. Initially introduced in 1971, the
formal framework of this approach has facilitated its widespread adoption and
evolution, earning recognition as "Monotonic Linkage Functions" and solidify-
ing its status as a cornerstone concept within the field.

While the author's primary focus may not have been on game theory ini-
tially, the techniques and concepts stemming from this pioneering data analysis
approach could have indirectly shaped the trajectory of game theory and its
sub-fields, including the reflection theory of games. As data analysis continues
to permeate into interdisciplinary realms such as economics, psychology, and
political science, which frequently intersect with game theory, the author's
groundbreaking work likely exerts a significant yet indirect influence on
advancements in these domains.
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Hence, it is plausible to assert that the author's methodological approach has
yielded a broader impact than initially envisioned, potentially contributing to
the advancement and refinement of game theory and its related sub-fields.

Prospects

The initiation of rigorous research into the intricacies of Monotonic System
design promises to deepen theoretical understanding and accelerate the devel-
opment of high-performance algorithms, thereby opening up fruitful avenues
for future research. It is noteworthy that the study of steady states or stable sets,
as evidenced by the book's many fruitful diagrams, turns out to be an extremely
promising endeavor. It is worth emphasizing that algorithms designed to iden-
tify stable sets have proven to be extremely effective, since their computational
complexity remains within the limits of traditional sorting algorithms for
numerous statistical and other types of indicators.

However, in the landscape of monotonic systems, difficulties are found
when elements or indicators simultaneously participate in pairwise interactions,
and the pairs themselves interact as atomic units. Therefore, the basic kernel
identification scheme requires a comprehensive re-evaluation, particularly in
the context of schedules like multi-move strategic or reflexive games, espe-
cially in economics. This implementation highlights the increased complexity
of kernel search in such monotonic systems. However, using a branch and
bound algorithm seems viable.

It's evident that the inclination to explore a diverse array of objects, encom-
passing both discrete and continuous entities, through the prism of monotonic
systems, is consistently driven by the quest to unveil concealed phenomena via
numerical experimentation using diverse indicators. This approach, we believe,
consistently fosters enthusiasm and encourages active participation in advanc-
ing and disseminating scientific knowledge. Achieving such a goal entails inte-
grating the monotonic systems discussed in this publication into the algorithmic
framework of methodologies employed by researchers, thereby facilitating
comprehensive analyses of diverse data sets.
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The concept or category
of monotone (monotonic)
system, independent and
distinct from all that is
usually referred to in the
relevant literature as dy-
namic systems, is applied
to computer science and
communications, social
sciences, social and net-
work economics. It will
appeal to specialists in
specific arcas of game
theory and data analysis.
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