
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Hans Hendrik Starkopf 201427IVSM

BEHAVIOUR-DRIVEN SPECIFICATION MANAGEMENT

AND EXECUTION SYSTEM

Master’s Thesis

Supervisor: Gert Kanter
PhD

Co-supervisor: Dietmar Pfahl
PhD

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Hans Hendrik Starkopf 201427IVSM

KASUTAJA KÄITUMISEL PÕHINEVA SPETSIFIKATSIOONI

HALDUS- JA KÄIVITUSSÜSTEEM

Magistritöö

Juhendaja: Gert Kanter
PhD

Kaasjuhendaja: Dietmar Pfahl
PhD

Tallinn 2023

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Hans Hendrik Starkopf

18.05.2023

1

Abstract
Behaviour-driven Specification Management and Execution System

In agile methodologies, software requirements are initially captured informally, therefore
automated acceptance testing relies on subjective interpretation of requirements by the
developer. Behaviour-Driven Development (BDD) is focused on defining fine-grained
specifications of the behaviour of the targeting system, in a way that can be automated.
However, the current state of BDD tools relies on the usage of Domain Specific Languages
(DSL), such as Gherkin. DSLs are connected to several usability and maintenance issues
as the specification grows. Developers, who usually work with code base, where the
source of truth for the DSL-based specification lives, would become responsible for
interpreting and translating initial requirements into actionable scenarios and test code,
introducing subjectivity and potentially altering the system’s intent while organising test
suites. As a result, maintenance issues and inconsistencies between requirements and their
implementation may arise, leading to potential issues in the final software product.

In this thesis, a Design Science Research (DSR) methodology was utilised to propose and
evaluate a process for creating and executing behaviour-driven software specifications,
that doesn’t rely on DSL. For that purpose, a new tool was developed to enable UI-
based specification management that incorporates predefined granular executable user
interactions for creating specifications.

The process was evaluated using a task management application as an example to specify
and execute its requirements, using the new tool developed. Additionally, a single user
testing session was conducted. The tool enabled to capture and modify software speci-
fications, as well as execute without requiring any test code to be written. As a result,
the new tool enabled central management of specifications, offered new capabilities to
reduce specification maintenance issues, while minimising the subjectivity aspect of test-
ing requirements. Despite the several advantages of the proposed approach, it introduced
multiple new limitations.

The thesis is written in English and contains text on 65 pages, 10 chapters, 24 figures, 3
tables.

2

Annotatsioon
Kasutaja käitumisel põhineva spetsifikatsiooni haldus- ja

käivitussüsteem

Agiilsetes tarkvaraarendusmeetodites kirjeldatakse tarkvara nõudeid mitteformaalsel vi-
isil, seega automatiseeritud acceptance testing ehk vastuvõtutestimine põhineb arendaja
subjektiivsel nõuete tõlgendusel testkoodiks. Behaviour-Driven Development (BDD) ehk
käitumisel põhinev arendusmetoodika keskendub süsteemi kasutaja käitumist kirjeldava
spetsifikatsiooni defineerimisele viisil, mida saab automatiseerida. Valdav osa BDD tööri-
istu aga sõltuvad domeenispetsiifiliste keelte (DSL), näiteks Gherkini, kasutamisest. DSL-e
seostatakse aga mitmete kasutatavuse ja hooldusega seotud probleemidega. Kuna DSL
failid asuvad valdavalt tarkvara koodibaasi lähedal, siis DSL-i põhise spetsifikatsiooni
haldajateks saavad tihtipeale arendajad, kes vastutavad esialgsete nõuete tõlgendamise eest
automatiseeritavateks stsenaariumideks ja testikoodideks. See hõlmab endas esialgsete
nõuete subjektiivset tõlgendamist ning võib potentsiaalselt kaasa tuua süsteemi eesmärkide
muutmist testide haldamisel. Tulemusena võivad tekkida hooldusprobleemid ning ebakõlad
nõuete ja nende rakendamise vahel.

Selles töös kasutati Design Science Research (DSR) metoodikat, et pakkuda välja protsess
käitumispõhiste tarkvara spetsifikatsioonide loomiseks ja täitmiseks, mis ei tugine DSL-
il. Selle protsessi toetamiseks töötati välja uus tööriist, mis võimaldab spetsifikatsioone
hallata läbi kasutajaliidese. Tööriist sisaldab eeldefineeritud kasutaja interaktsioone, mille
abil spetsifikatsioonidesse automatiseeritavaid kasutusjuhte luua.

Protsessi hinnati kasutades näidisrakendust testitava süsteemina, millele loodi spetsifikat-
sioon kasutades väljatöötatud tööriista. Lisaks viidi läbi ühe osalejaga kasutajatestimine.
Uus tööriist võimaldas spetsifikatsiooni luua, muuta ning käivitada ilma testkoodi kir-
jutamata, pakkus uusi haldusvõimalusi võrreldes tekstipõhiste DSL-idega, vähendades
potentsiaalseid haldusprobleeme ning nõuete subjektiivset tõlgendamist. Vaatamata paku-
tud lähenemisviisi mitmetele eelistele, kehtestas see mitmeid uusi piiranguid.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 65 leheküljel, 10 peatükki, 24
joonist, 3 tabelit.

3

List of Abbreviations and Terms

API Application Programming Interface
ARE Agile Requirements Engineering
AT Acceptance Testing
BDD Behaviour-Driven Development
CLI Command Line Interface
DSL Domain Specific Language
ERD Entity Relationship Diagram
HTTP Hyper Text Transfer Protocol
IDE Integrated Development Environment
RE Requirements Engineering
SUD System Under Development
SUT System Under Test
TDD Test-Driven Development
UI User Interface

4

Table of Contents

1 Introduction . 9
1.1 Research motivation . 10
1.2 Research goal . 11

2 Background . 12
2.1 Requirements Engineering . 12

2.1.1 Agile Requirements Engineering 13
2.2 Software Testing . 14

2.2.1 Acceptance Testing . 14
2.3 Test-Driven Development . 15
2.4 Behaviour-Driven Development . 15

2.4.1 Tools . 17
2.4.2 Challenges . 19
2.4.3 Challenges related to DSLs . 20

3 Problem Statement . 22
3.1 Addressing challenges . 22

4 Methodology . 25
4.1 Design Science . 25

5 Objectives . 27

6 Design & Development . 29
6.1 Design overview . 29

6.1.1 Main components . 29
6.1.2 Main technologies . 30
6.1.3 Client-server architecture . 30
6.1.4 Data model . 31

6.2 Clients . 32
6.2.1 Manager client . 32
6.2.2 Runner client . 33

6.3 Behaviour ontology implementation . 34

7 Demonstration . 37
7.1 Creating specification . 37

5

7.1.1 User authentication . 37
7.1.2 Project creation . 37
7.1.3 Feature creation . 38

7.2 Executing specification . 42

8 Evaluation . 48
8.1 Adoption of the tool in a task management application 48
8.2 User testing session . 49

8.2.1 Feature creation . 49
8.2.2 Demonstration of specification execution 51
8.2.3 Feedback and conclusion . 51

8.3 Comparison to the DSL-based approach 52
8.4 Conclusion . 53

9 Discussion . 54
9.1 Advantages . 55
9.2 Limitations . 55

10 Conclusion . 57

References . 58

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 61

Appendix 2 – Code samples . 62

6

List of Figures

1 Proposed specification creation process 23

2 Client-server architecture . 30
3 ERD . 31
4 Test execution sequence . 34

5 Login view . 37
6 Projects view . 38
7 New project created . 38
8 New project opened . 38
9 New feature created . 39
10 Feature details specified . 39
11 Scenario created . 40
12 Adding step . 41
13 Steps created . 41
14 Parameters tab view . 42
15 Parameters created . 42
16 Specifying a step parameter . 43
17 Scenario parameters added . 44
18 Combined behaviours creation . 44
19 Combined behaviour added to scenario 45
20 Execution output - failure . 45
21 HTML reporter on failure 1 . 46
22 HTML reporter on failure 2 . 47
23 Execution output - success . 47

24 Hummus feature created during user testing session 51

7

List of Tables

1 Behaviour representation table . 35
2 Parameter attributes . 35

3 Parameters table for SUT . 43

8

1. Introduction

Software development methodologies have evolved significantly over the past few decades,
with an increasing focus on improving collaboration among stakeholders, efficiency, and
effectiveness in delivering high-quality software products.

Requirements Engineering (RE) facilitate communication, design, testing, and management
in software projects, while supporting activities such as elicitation, validation, verification,
and documentation [1, 2].

Agile RE (ARE) methods, which integrate requirements, design, implementation, and
testing processes, rely on test cases that serve as requirements themselves in adapting to
evolving needs [3, 2]. However, due to the emphasis on individual skills and knowledge in
ARE, the process tends to be more informal [4].

Acceptance Testing (AT), is a software testing approach used to evaluate if software meets
end-user needs and requirements, serving as the final validation before customer acceptance
[5]. While ATs are used to demonstrate that a system fulfills the requirements, developing
these tests from requirements specifications can be a subjective process [6].

Behavior-Driven Development (BDD), emerged from the difficulties encountered in Test-
Driven Development (TDD) [7], provides an integrated approach to RE and testing activi-
ties, demonstrating its suitability for agile contexts through its its widespread adoption in
the industry [8]. By using natural language and domain-specific terms to express software
requirements, BDD enables stakeholders to define the expected behavior of a software
system from the end-user’s perspective, enabling direct translation into executable tests,
while producing a "living" documentation and facilitating AT [8].

Steep learning curve has been identified as a significant barrier to BDD adoption [8].
Alongside several maintenance issues reported [8], the essential aspect of collaboration in
BDD can be challenging and easily overlooked, leading to potential issues in the process [8].
Most BDD tools utilize Domain-Specific Languages (DSLs), such as Gherkin [9], which
facilitate a common understanding of the specification. Due to the file-based nature of DSL,
this leads to a process where informally captured requirements are handed to developers,
who are accustomed to working with Integrated Development Environments (IDEs) and
managing text-based files. Developers often need to translate informal requirments into

9

suitable DSL format, which might lead to subjective testing of the required system behavior
and as a result, developers also often bear the responsibility of maintaining specifications.
Additionally, DSLs are found to have low usability [10].

This thesis addresses the challenges in BDD by proposing and evaluating an open-source
tool designed to simplify the process of capturing BDD artifacts using a web-based
User Interface (UI), offering an alternative to the DSL-based approach for BDD. By
providing an ontology of browser-based UI interactions, the tool seeks to facilitate the
direct elicitation of testable requirements from less-technical stakeholders, removing
the need for additional test code. The proposed approach eliminates the need to learn
new DSL syntax and incorporates a test execution module that preserves the executable
nature of the specifications, eliminating the need for developer test-suite maintenance.
Consequently, the tool aims to improve overall software development effectiveness, lower
the barriers to adopting the behavior-driven approach, promote enhanced collaboration
among stakeholders and enable the execution of specification to ensure the software’s
conformation to requirements.

To develop and evaluate the proposed tool, the Design Science Research (DSR) methodol-
ogy is employed, providing a structured approach to inventing and evaluating the effec-
tiveness of the software system [11]. This thesis follows the six DSR activities as outlined
by Peffers et al., which include problem identification, objective definition, design and
development, demonstration, evaluation, and communication [11]. The viability of the
proposed tool is evaluated through its implementation in a company case-study context,
by measuring the conversion rate of existing requirements for the company’s software,
referred to as the System Under Test (SUT) and the succesfulness of test execution within
the new system.

The remainder of this thesis is organized as follows: Chapter 2 provides an provide
an overview of the key concepts and methodologies that form the foundation for this
research. Chapter 3 presents the problem statement, outlining the challenges in the current
state of BDD approach. Chapter 4 introduces the research methodology, describing the
Design Science Research (DSR) process used to develop and evaluate the proposed tool.
Subsequent chapters detail each step of the DSR process, culminating in the evaluation
and communication of the research findings.

1.1 Research motivation

The motivation for this research arose from the need to address challenges of growth in
complexity of software, experience during several software projects. A need for a more

10

structured approach to software specification and requirements management activities
arose, as well as the need to improve and automate testing processes.

Existing approaches did not effectively connect requirements to testing activities, and
there was constant hesitance in implementing automated testing due to concerns over
management overhead of maintaining a large test suite in a rapidly changing environment.
A more structured approach to linking specification to testing activities was needed.

Motivation comes from the need to bring testing practices closer to the requirements
specification.

1.2 Research goal

The goal of this research is to develop a method for conducting BDD that eliminates the
need for using DSLs and instead adopts a UI-based management system for handling BDD
specification artifacts. This method focuses on leveraging granular user interactions as the
basis for creating BDD scenarios, allowing stakeholders to author testable requirements
directly. By utilising granular user interactions, offered by the system, the method aims
to streamline the authoring of testable requirements and minimize the need for developer
involvement in maintaining test suites. Additionally, the approach aims to offer additional
management capabilities by enabling structured way of creating and updating BDD ar-
tifacts, accessible via a user-friendly interface. To facilitate the implementation of this
method, an open-source tool is developed for managing and executing specifications.

11

2. Background

In the background chapter of this thesis, an overview of the key concepts and method-
ologies that form the foundation for this research, are provided. The chapter begins with
an examination of Requirements Engineering (RE) and its evolution towards Agile Re-
quirements Engineering, highlighting the shift in focus towards collaborative and iterative
processes. Following this, an overview of software testing is given in the context of agile
software development, outlining the concept of Acceptance Testing as a way to ensuring
that a software system meets the needs and expectations of its users. Next, Test-Driven
Development (TDD) is explored and its influence on software quality and maintainability
discussed. Finally, Behaviour-Driven Development (BDD), a natural extension of TDD, is
discussed, highlighting challenges in the BDD landscape.

2.1 Requirements Engineering

This section provides an overview of the characteristics associated with traditional Re-
quirements Engineering (RE) processes, setting the stage for a comparison and overview
of Agile RE and its implications for software development.

Requirements engineering (RE) plays a crucial role in software development, as it lays the
foundation for all software products. RE involves identifying, modeling, communicating,
and documenting the requirements of a system and its context of use [12]. It encompasses
the process of gathering, analyzing, documenting, and managing requirements through-
out the software engineering lifecycle, with the aim of interpreting and understanding
stakeholders’ goals, needs, and beliefs [13].

Requirements serve multiple purposes, such as facilitating communication among stake-
holders, driving design and testing, and acting as a reference for project managers and
system evolution [1]. They also support various requirements activities, including eliciting
and validating stakeholders’ requirements, software verification, tracing and managing
requirements, and documenting customer agreements for contractual purposes [2].

Requirements Engineering serves as the foundation for software development by identi-
fying, modeling, communicating, and documenting system requirements. However, the
nature of traditional RE processes can be limiting in today’s fast-paced development en-
vironments, necessitating adaptations and improvements to better suit evolving project

12

needs.

2.1.1 Agile Requirements Engineering

This section will discuss the core principles, methodologies, and implications of Agile RE,
with a focus on the use of test cases as requirements and the role of automated acceptance
tests in the software development process.

Agile Requirements Engineering (Agile RE) has emerged as a response to the challenges
and limitations of traditional RE processes in fast-paced software development envi-
ronments. By emphasizing flexibility, responsiveness to change, and the integration of
requirements, design, implementation, and testing processes, Agile RE aims to address
these issues and improve overall development practices [3].

In Agile RE, the main activities, such as elicitation, documentation, validation, negotiation,
and management, are not distinctly separated, but rather intertwined [14]. A user-centric
perspective is adopted, with requirements often presented in the form of user stories. Test
cases play a central role in Agile RE, serving as requirements and providing both benefits
and challenges in various aspects of the development process [2]. While acceptance tests
are traditionally used to demonstrate that a system fulfills requirements, developing these
tests from requirements specifications can be subjective and not always comprehensive
[6]. Moreover, outdated requirements documentation can exacerbate the problem, leading
to potential inaccuracies in acceptance tests [15]. Agile development addresses these
challenges by employing automated acceptance tests, which drive implementation and
document requirements in an executable format [16]. However, it is important to note that
Agile RE heavily relies on the skills and knowledge of individuals, resulting in a more
informal process [4].

In conclusion, Agile RE aims to offer a more flexible and responsive approach to han-
dling software requirements in rapidly changing environments. The use of test cases as
requirements and the adoption of automated acceptance tests are key aspects of Agile RE,
promoting better integration between requirements and testing processes. However, the
informal nature of Agile RE highlights the importance of individual skills and knowledge
in the overall success of the approach.

13

2.2 Software Testing

Software testing is a fundamental aspect of agile software development, as it not only en-
sures the quality of the software but also enhances visibility, communication, and feedback
among developers [17]. This section will discuss the core objectives, methodologies, and
benefits of software testing in the context of agile development.

Software testing in agile context aims to facilitate continuous improvement and maintain a
high level of software quality throughout the development process. It serves as a valuable
measure for assessing the development process itself by monitoring the number of tests that
pass or fail and conducting regression tests [18]. These tests enable developers to identify
and address potential defects as soon as code changes are made, fostering a proactive
approach to ensuring software quality.

2.2.1 Acceptance Testing

As a critical part of software testing, acceptance testing focuses on evaluating whether the
software meets the end-user’s needs, requirements, and business processes [5]. It serves as
the final validation of the software’s functionality and usability before it is accepted by the
customer or end-user.

Automated acceptance testing is a method of streamlining the acceptance testing process
by enabling customers or their representatives to express requirements as input to the
software, along with expected results [17]. Unlike unit testing, which focuses on low-level
components such as methods, acceptance tests are integrated at a higher level between
the business logic and user interface or directly with the user interface. Automation
of acceptance tests can reduce the time and cost associated with manual testing while
improving the overall efficiency of the process.

Acceptance tests not only help ensure that the software meets its intended requirements
but also serve as valuable documentation of the system’s intended behavior [17]. By
writing acceptance tests, developers can reflect on the design and system behavior before
programming, resulting in a more robust and well-designed software product. Furthermore,
the practice of expressing requirements in the form of acceptance tests has been shown to
be well-received by developers [17].

In conclusion, software testing, and particularly acceptance testing, plays a vital role in
ensuring the quality and functionality of software products in agile development.

14

2.3 Test-Driven Development

Test-Driven Development (TDD) is a fundamental aspect of eXtreme Programming (XP)
proposed by Kent Beck [19]. TDD, also known as test-first programming, mandates
developers to create automated unit tests as assertions to define code requirements before
writing the code itself. This approach allows developers to evolve systems through cycles
of testing, development, and refactoring [7].

However, several factors limit the industrial adoption of TDD. One such factor is the
increased development time due to the iterative nature of the process and the time spent
on writing tests [7]. Additionally, developers may have insufficient TDD experience
or knowledge, hindering its effective application. The lack of practical experience or
theoretical insight can result in suboptimal test cases and inadequate code coverage.

TDD also emphasizes a minimal up-front design, which can lead to insufficient design and
a need for frequent refactoring to maintain architectural quality. Moreover, developers may
possess inadequate testing skills, negatively affecting the efficiency and effectiveness of
the automated test cases. Insufficient adherence to the TDD protocol, such as not following
the established guidelines or not creating and executing test cases before writing code, can
further impede the successful implementation of TDD. Additionally, domain-specific and
tool-related limitations, such as difficulties in automated testing of graphical user interfaces
(GUIs), can also pose challenges for TDD adoption. Finally, the presence of legacy code
in an organisation can create obstacles, as it often represents years of development efforts
and investments, serving as a backbone for both existing and future products [7].

These limitations of TDD contributed to the development of Behaviour-Driven Develop-
ment (BDD), which aims to address some of these issues by focusing on the behavior
of the system and improving communication between stakeholders. BDD employs a
domain-specific language that is easily understood by both technical and non-technical
members, thus enabling a better understanding of the system requirements.

2.4 Behaviour-Driven Development

BDD is an increasingly prevailing agile development approach and has gained attentions of
both research and practice. It was originally developed by Dan North as a response to the
conceptual difficulty of specifying tests before implementation [20, 7]. BDD is focused on
defining fine-grained specifications of the behaviour of the targeting system, in a way that
they can be automated [20]. The use of test cases as specifications placed this methodology

15

into the category of acceptance test-driven development methodologies (e.g., story-driven
development, specification driven development) [21] to bridge the gap between customer’s
business needs and technical aspects of software development.

BDD approach incorporates aspects of requirements analysis, requirements documentation
and communication, and automated acceptance testing [2]. Solis and Wang [22] highlights
five fundamental characteristics that capture the overall essence of BDD:

1. Ubiquitous language: A common language that comes from a domain model and
helps customers and developers speak the same language without ambiguity. It
should be used throughout the development lifecycle.

2. Iterative decomposition process: Starts with identifying the expected behaviors of
a system, which are then broken down into feature sets and finally realized by user
stories. This process should be iterative and involve barely enough up-front analysis.

3. Plain text description with user story and scenario templates: BDD uses pre-
defined templates for specifying features, user stories, and scenarios, which are
written using a simple ubiquitous language. Templates help in providing a clear
structure for user stories and scenarios.

4. Automated acceptance testing with mapping rules: BDD includes automated
acceptance testing, which verifies the interactions or behaviors of objects rather than
their states. Mapping rules are used to map scenarios to test code.

5. Readable behaviour oriented specification code: Code should be readable, with
the specification being a part of the code. The names of classes and methods should
be written in sentences and in the project’s ubiquitous language, describing the
behaviors of objects.

6. Behaviour driven at different phases: BDD happens at different phases of the
software development process. BDD starts with business outcomes, then features,
and finally moves to the implementation phase, where testing classes are derived
from scenarios and their names follow mapping rules.

BDD is in active use in the industry used by many software teams [8] to allow them to
capture the requirements for software systems in a form that is both readable by their
customers and detailed enough to allow the requirements to be executed to check whether
the production code implements the requirements successfully or not. According to [8] the
main benefits of BDD was reported to be the usage of domain specific terms, improving
communication among stakeholders, the executable nature of BDD specifications and
facilitating comprehension of code intention. The resulting feature descriptions, as sets
of concrete scenarios describing units of required behaviour, provides a form of living
documentation for the system under construction.

16

In modern development practices, BDD is frequently associated with Domain Specific
Languages (DSLs) tools like Gherkin. DSLs are “computer programming languages of
limited expressiveness focused on a particular domain” as defined by Fowler [23]. DSLs
are aimed to facilitate construction of software artifacts through specialized abstractions
and notations [24], and are increasingly being used in many software engineering activities,
including designing and checking architectural rules [25].

Gherkin is used to describe the desired software behavior through a collection of example
interactions with the system, expressed using natural language sentences arranged around
a "Given-When-Then" structure as demonstrated in 1. These interactions are then executed
using automation frameworks, such as Cucumber, SpecFlow for C#, and Behave for
Python, which all support Gherkin syntax. In addition, a browser automation library such
as Selenium WebDriver can also be used in combination with these frameworks to interact
with web applications through various browsers, as demonstrated in code sample listing 3
using Python with Behave and Selenium packages.

Feature: User authentication
As a registered user
I want to log in to the website
So that I can access my account

Scenario: Successful login
Given I am on the login page
When I enter my valid username and password
And I click the log in button
Then I should be redirected to my account dashboard
And I should see a welcome message

Listing 1. Gherkin example

2.4.1 Tools

In the realm of open-source and commercial tools for executing BDD-based specifications,
there are numerous options available for various programming languages. However,
there are not many alternatives to Gherkin for specifying behavior. One such alternative
mentioned in existing literature is the Robot language, which is incorporated in the Robot
Framework [26].

Most open-source BDD tools are based on Gherkin and do not come with a user-interface
offering additional capabilities, compared to text-based DSL. Nevertheless, some tools can
be used in conjunction with other platforms to enhance collaboration and comprehension

17

of specifications. Examples of such tools include:

1. Serenity BDD: Serenity BDD is an open-source library for writing and executing
BDD tests. While it does not include a UI for creating and managing scenarios, it
generates comprehensive, living documentation in the form of an interactive web-
based report. This report can be shared with team members, fostering collaboration
and keeping everyone on the same page. [27]

2. Pickles: Pickles is an open-source living documentation generator that works with
various BDD tools, such as SpecFlow, Cucumber, and Behat. Although not a BDD
tool itself, Pickles takes the output of your BDD scenarios and generates a web-based
documentation site that can be used for easy visualization, sharing, and collaboration.
[28]

3. BDDFire: BDDfire is a Ruby-Cucumber BDD framework aimed at automating mo-
bile and web applications. It generates a default toolkit around BDD and integrates
with various popular open-source libraries to provide a range of testing capabilities.
BDDfire includes pre-defined steps for browser, accessibility, and API testing, which
contribute to its utility in handling different aspects of mobile and web application
testing within a BDD context. [29]

While these open-source options may not provide a fully-featured UI for creating and
managing BDD scenarios, they can be used in conjunction with other web-based tools for
collaboration and mroe efficient BDD process.

In addition to the open-source tools, there are several commercial tools available:

1. Behave Pro: Behave Pro focuses on integration with Jira and is based on Gherkin
for writing BDD specifications. Jira integration enables collaborative environment
for working with BDD scenarios. [30]

2. CucumberStudio: Initially called HipTest, CucumberStudio was acquired by Smart-
Bear and integrated into their product offering. It provides a collaborative BDD
platform that helps teams define, execute, and maintain their BDD specifications
using Gherkin language. [31]

3. SpecFlow+ LivingDoc: SpecFlow+ LivingDoc is an extension for SpecFlow that
generates living documentation from your BDD scenarios. Although the tool itself
does not include a web-based interface, it is based on Gherkin language and creates
interactive, living documentation within the IDE. [32]

These commercial tools provide some additional capabilities and ways of engaging with
BDD specifications, most of them leveraging Gherkin or other DSLs to streamline the

18

behavior specification process. While CucumberStudio stands out as the most compre-
hensive among the aforementioned tools, providing a collaborative BDD platform that
assists teams in defining, executing, and maintaining their BDD specifications, its commer-
cial nature may present certain limitations. These may include cost constraints, limited
customisability, and potential vendor lock-in. In such cases, the need for an open-source
alternative becomes apparent, as it would offer greater flexibility, customisation options,
and adaptability to specific project requirements without the burden of licensing fees
or restrictions. Moreover, an open-source tool fosters a community-driven approach,
encouraging continuous improvement and innovation.

2.4.2 Challenges

The management of BDD specifications is reported to be challenging, particularly when
they grow beyond a handful of features and involve multiple development team members
writing and updating them over time. This can lead to redundancy, resulting in bloated
BDD specifications that are more costly to maintain and use [8]. The main drawbacks
include challenges in adapting to changes in software development methods, similar
maintenance challenges to those encountered in any automated test suite, and a scarcity of
tools supporting the maintenance and evolution of BDD specifications [8].

In their study of BDD tools in open-source projects, Zampetti et al. [33] found that
developers often use BDD frameworks for unit testing activities rather than strictly applying
BDD. They tend to write tests during or after coding, perceiving BDD as effort-prone and
requiring more than just framework adoption. Moreover, the majority of BDD-supporting
tools necessitate composing tests using low-level events and components, which only
become available once the system has been implemented. Consequently, BDD tests face
challenges in terms of reusability across various artifacts and different versions of the
system [34].

Furthermore, Silva, Hak, and Winckler [34] observed recurring patterns of low-level
behaviors and semantic inconsistencies in BDD specifications during the development
of e-Government applications. They explored the use of a formal ontology for defining
pre-established behaviors that could be employed to specify scenarios. While Lenka,
Kumar, and Mamgain [9] presented several BDD tools, they also highlighted that BDD’s
effectiveness is limited when developers or testers alone are responsible for testing and
maintaining specification.

In conclusion, the main challenges in managing BDD specifications are the redundancy
and maintenance costs [8], difficulties in strictly applying BDD [33], reusability challenges

19

across artifacts and system versions [34], and limited effectiveness when collaboration
aspects are ignored [9].

2.4.3 Challenges related to DSLs

Several studies have concluded that he difficulties of using DSLs have become more
apparent when exposed to software maintenance circumstance. One important factor that
contributes to increased maintenance effort is the low usability of such DSLs [10]. The
usability of a DSL artifact (e.g., a specification built using the DSL) is the quality that
makes it easy for users to understand, learn, and interact with it [24, 10].

From the observations of Micallef and Colombo [35] the use of Gherkin as DSL for test
automation initially led to improved communication among team members. However,
issues arose as the number of test scenarios increased. The loose grammar allowed for
organic language growth, which resulted in substantial duplication and inconsistency. For
example, "Given I log in to the system," "Given I log on to the system," and "Given I log
in correctly" all express the same notion and user actions. Similarly, some team members
condensed sequences of actions into one, while others used a longer atomic format, for
example:

Given I log in and purchase a product

Was also be expressed as:

Given I log in
And I search for a product
And I select the first item in the list
And I add the item to my shopping cart

The problem was further compounded when product specifications changed. In one case,
the perceived cost of maintaining the language and automated tests became so high that
the project was nearly abandoned as technical testers were reassigned to manual testing
jobs to meet deadlines.

Key lessons learned the study of Micallef and Colombo [35] include the need for a
dedicated language owner to ensure consistency, a development process that accommodates
DSL development, tool support for language lookup as the language grows, and essential
management buy-in to prevent competition between DSL development and software

20

delivery.

21

3. Problem Statement

The BDD approach has significantly impacted the software development industry by facili-
tating a common understanding of specifying software requirements among stakeholders
[8]. BDD emphasizes the expression of software specifications in natural language and
domain-specific terms, focusing on the software’s intended behavior from the end-user’s
perspective. The executable nature of these requirements specifications help confirm
correctness and identify problematic software behavior.

The current state of BDD tools relies on DSL, such as Gherkin or Robot, for writing
specifications [9]. Difficulties of using DSLs become more evident during software
maintenance, with low usability being a significant factor, contributing to the persistance
of maintenance challenges related to BDD specifications [10, 8].

DSLs files typically reside within the codebase and most language-support tools are
designed for use in IDEs, which might cause struggles for non-technical stakeholders to
participate in the process, hindering collaboration and leading to limited effectiveness.
The need to learn DSL syntax also contributes to an increased learning curve, potentially
discouraging BDD adoption.

In many cases, especially in agile methodologies, software requirements are initially
captured in an informal notion [4]. For BDD, this often involves translating requirements
into a suitable DSL format, such as Gherkin, leaving the developer responsible to efficiently
manage specifications. This process introduces a degree of subjectivity in testing, which
may not guarantee that the requirement is fulfilled even when the corresponding test passes.
As a result, inconsistencies between requirements and their implementation may arise,
leading to potential issues in the final software product.

3.1 Addressing challenges

This thesis proposes and evaluates a method for conducting BDD by introducing a UI for
streamlined capture and management of BDD artifacts, such as features, scenarios, steps
and step parameters.

The process includes selecting scenario step behaviour from available low-level behaviours,
offered by the system. Figure 1 illustrates the proposed process of creating a BDD feature

22

through UI. With this approach, a scenario for the user story of "As a user, I want to log in
to the system" could be represented with the following steps:

I am on "login page"
I fill the "username field" with "my username"
I fill the "password field" with "my password"
I click the "login button"
I see "my name" in "navigation bar"

In this example, the terms wrapped in parentheses, such as "username field," can be referred
to as step parameters. By utilising these parameters, it becomes possible to reuse atomic
behaviors across different scenarios. In case the login status is required in further scenarios,
these steps could be combined into a single step, such as "I am logged in as a customer"
and later selected into scenarios when needed.

This approach aims to promote reusability and consistency by allowing stakeholders to
select available steps and parameters for scenarios, potentially eliminating issues related
to loose grammar. Furthermore, it seeks to enable the creation of concise scenarios by
allowing the combination of low-level steps into a single step when necessary.

Figure 1. Proposed specification creation process

The proposed approach includes pre-written test-code for low-level behaviors used in
scenarios. By providing the test-code, this approach aims to eliminate the need for
developers to write additional tests themselves and allow for direct elicitation of testable
requirements. Additionally, this approach eliminates the risk of subjective interpretation of
requirements, which enables developers to focus on executing the specification and writing
application code to make it pass, promoting the strict application of BDD principles, such
as having test cases before implementation.

Furthermore, the proposed approach aims to eliminate the need for stakeholders to learn
a DSL syntax, making the adoption of the behavior-driven approach more accessible

23

and convenient. This, in turn, seeks to foster better collaboration among stakeholders,
ultimately aiming to improve the effectiveness of software development processes.

In conclusion, the UI-based approach for conducting BDD proposed in this thesis seeks to
address the key challenges associated with BDD by providing a more accessible, reusable,
and collaborative environment for managing specifications. By streamlining the process
of capturing and maintaining testable requirements, this approach aims to promote the
adoption of BDD principles and reduce effort in specification and test-suite management,
potentially leading to more efficient development process, higher-quality software products
and improved collaboration among stakeholders.

24

4. Methodology

This chapter describes the method used to develop a software system, supporting the
proposed method of conducting BDD described in 3.1, further on referred to as System
Under Development (SUD).

The principles of Design Science Research (DSR) process are applied to deliver the SUD.
The usefulness of SUD is evaluated by its adoption in requirements management and
testing activities of the System Under Test (SUT), presented in chapter 7.

4.1 Design Science

Design science research (DSR) is a scientific methodology used to create knowledge in
the form of information systems that are useful, usable and desirable. In short, DSR is a
research that invents and evaluates technological artifacts [11].

This research is structured following the 6 activities of DSR process defined by Peffers
et al. [11]. The six activities are explained below:

1. Problem Identification. The first step of the DSR process involves the identification
of a problem that needs to be addressed. Consequently, after the problem is identified,
there remains the step of determining the performance objectives for a solution.
In this thesis, the problem is captured in chapter 3.

2. Objective Definition. The objective definition stage is the second step of the DSR
process. The purpose of this step is to define the goals that must be achieved to
solve the problem identified in the previous step. The objective definition should
be specific and measurable, so that the success of the research and the developed
artifact can be evaluated, to ensure whether the research objective is achieved, and
the proposed solution is effective.
In this research, the detailed objectives and requirements for the SUD are defined in
chapter 5.

3. Design & Development. The third step of the DSR process involves designing
and developing the proposed software artefact to solve the defined problem. This
activity includes determining the artifact’s desired functionality, its architecture and
the development of that artifact. This step requires careful consideration of the goals
that have been set in step two, as well as the existing literature that has been reviewed

25

previously.
In this research, the software design and development is captured in chapter 6.

4. Demonstration. The fourth step of the DSR process involves demonstrating the
proposed solution to solve one or more instances of the problem.
In this step, the capture of SUT specification is demonstrated using the SUD, and
the corresponding testing of these requirements is conducted and results portrayed
in chapter 7.

5. Evaluation. The fifth step observes and measures how well the designed artefact
supports a solution to the problem.
In this research, the viability of the solution is evaluated by examining its adoption
in chapter 7 and conducting a single user testing session. The evaluation results are
presented in chapter 8.

6. Communication. The sixth and last activity consists of communicating the previous
activities and their outputs. In this thesis, chapter 9 discusses and summarises the
research by discussing the strengths, weaknesses and limitations of the proposed
approach.

26

5. Objectives

The objective section of the DSR process outlines the primary goals and specific objectives
that the research aims to achieve. These objectives guide the development of the proposed
solution and provide a roadmap for evaluating its success.

The primary goal of the proposed tool is to streamline the process of capturing and
managing testable specifications through UI, to reduce the effort involved in test-suite
management and minimize the subjectivity associated with testing against requirements.

To achieve this goal, we have divided it into two primary objectives and their corresponding
requirements (REQ). The primary objectives are focused on the two main components of
the system, while the requirements describe the necessary features and functionality for
each objective.

Objective 1: Enable capturing and management of requirements specifications
through UI

The first primary objective is to develop a web application that provides an intuitive user
interface for stakeholders to capture, manage and store behavior-driven requirements
specifications.

REQ 1 Specification management

The system should enable user view, create and modify specification artifacts via a
user-friendly interface.

REQ 2 Access control

The system should have authentication mechanisms in place to restrict unautho-
rized access and ensure secure collaboration.

REQ 3 Predefined ontology of browser-based user interactions

The system should provide a predefined ontology of browser-based user interac-
tions enabling non-technical stakeholders to author testable requirements without
necessitating supplementary test code.

27

Objective 2: Enable execution of specifications

The second primary objective is to develop a specification execution module that automates
the execution of the scenarios in the specification, streamlining the test execution process
and minimizing the effort for test-suite maintenance.

REQ 4 Execution predefined behaviours

The system should be able to read and execute the scenarios based on predefined
behaviours.

Additionally, another requirement is added to emphasize the extensibility aspect of the
tool:

REQ 5 Extensibility of predefined behaviors

The system should allow users to extend the predefined ontology of behaviors to
address specific requirements, thereby enabling a higher level of customization
and adaptability in different project contexts.

28

6. Design & Development

In this chapter the design process for the System Under Development (SUD) is outlined,
focusing on the architectural and structural components that will enable the system to meet
the objectives and requirements stated in the previous chapters.

The SUD is designed to be used by the all members of a software development team,
facilitating collaboration and effective communication of requirements throughout the
development process. As an example potential users, we consider 3 types of team members,
each with distinct responsibilities and involvement in a software development process:

Product Owner (PO) or Product Manager (PM): Responsible for describing the require-
ments of software to be developed and creating specifications. They work closely with
stakeholders to gather and prioritise requirements, ensuring that the vision for the product
aligns with the needs of the business and the end-users.

Developer: Responsible for developing the system and ensuring that the development is in
conformance with the requirements. Developers translate specifications into functional
code and continuously refine the product through iterative development cycles.

Designer: Designers focus on creating user interfaces that facilitate interactions between
users and the system. They work closely with both the PO or PM and developers to ensure
that the design aligns with the requirements and is feasible for implementation. Designers
are mainly interested in viewing the specification in order to understand the use-cases for
designing the UI of the specified system.

6.1 Design overview

The proposed SUD will be given a name - Hummus. This section provides an overview of
the main components and architecture of the Hummus system.

6.1.1 Main components

Hummus consists of several main components:

■ Manager - A web-based client used for managing specifications.

29

■ Runner - A Command Line Interface (CLI) client for executing the specifications.
■ API - A server-side component facilitating the exchange of data between the clients

and the database.
■ Database A database for storing data entities related to the specification.

6.1.2 Main technologies

The primary programming language used for both the client and server components is
TypeScript, running on the Node.js runtime environment. TypeScript is a strongly-typed
superset of JavaScript, providing enhanced safety and maintainability.

For the web-based user interface of the Manager component, React framework is utilised.
React is a popular and widely-used library for building user interfaces.

The database technology chosen for storing BDD-related data entities is relational database
management system MySQL.

For executing the specification and running the tests, Playwright is used. Playwright is a an
open-source library for automating testing of web applications across multiple browsers.

6.1.3 Client-server architecture

The client-server architecture is used to enable a clear separation of responsibilities between
the clients and the data processing components. In this architecture, the client side is
responsible for presenting the data and handling user interactions, while the server side
manages the data storage and processing. This separation ensures that the BDD artifacts
are maintained centrally, allowing multiple clients to access and interact with the same set
of specifications.

Figure 2. Client-server architecture

In the context of Hummus development, two distinct clients are employed: the browser-

30

based Manager and the CLI-based Runner. Both clients interact with the API to exchange
data, utilising HTTP connections for communication.

6.1.4 Data model

To store a specification, a database is required to hold the specification entities. Thus, a
data model is introduced for managing the entities. Figure 3 illustrates the data model
using an Entity-Relationship Diagram (ERD).

Figure 3. ERD

The following descriptions provide an overview of each entity and their relations repre-
sented in the diagram:

1. User: Represents an individual user of the system. Each user has a unique username,
password, and access token. A user can be associated with multiple projects.

2. Project: Represents a project that contains features and behaviors. A project can be

31

associated with multiple users, features, and behaviors.
3. Feature: Represents a feature within a project. Each feature has an optional title

and description, and can be associated with multiple scenarios. A feature belongs to
a specific project.

4. Scenario: Represents a scenario within a feature. Each scenario has an optional
name and description and can be associated with multiple steps. A scenario belongs
to a specific feature.

5. Step: Represents a step within a scenario. Each step can be associated with multiple
params and a behaviour. A step belongs to a specific scenario.

6. Behaviour: Represents a behavior within a project. Each behavior has text value
and can be associated with multiple steps.

7. Param: Represents a parameter within a feature. Each parameter has a unique name
and value, and a type. A parameter can be associated with multiple steps and belongs
to a specific feature.

6.2 Clients

In this section, we will describe the two clients developed for the Hummus system -
Manager and Runner.

6.2.1 Manager client

The purpose of the Manager is to enable the process of capturing and managing specifi-
cations. In the example development team provided in chapter, all team members would
be interested in using the Manager client for viewing or creating the specification. The
resulting Manager client exposes the following views to its users:

Authentication view

In authentication view, the user of the Manager is able to log into the system or register an
account.

Projects listing view

After the authentication has been successful, the user is directed to the projects listing view
that lists the projects user has created. In this view, the user can select an existing project
or create a new one.

32

Project view

Upon selecting a specific project, users are directed to the project view, where they can
create or view specifications related to the project. This view lists the features within
the project, along with a button for creating new features. When a feature is created and
selected, users can access the following tabs: Feature tab, Parameters tab, Behaviours tab
and Options tab.

■ Feature tab - displays and enables the creation or modification of the feature title,
description, scenarios and scenario steps.

■ Parameters tab - displays and enables the creation or modification of parameters for
usage in scenario steps.

■ Behaviours tab - displays existing behaviors that can be used in scenarios, and allows
the creation of new behaviors combining multiple existing behaviors.

■ Setting tab - displays the deletion button of a feature, as well as potential configura-
tion options for features in the future.

6.2.2 Runner client

The purpose of Runner client is to execute a specification specified via the Manager. In the
example development team provided, a developer would be the primary user interested in
using the Runner client to execute the specification.

Runner aims to be installable via a Node.js package manager and can be invoked via the
command line. Runner retrieves the specification via HTTP request and generates tests
based on the response. It uses Playwright for the execution of the tests. When the run
command is invoked, the following sequence of steps occur:

1. Load and read the configuration file - in order to retrieve the specification, authenti-
cation credentials and project identifier must be provided in the configuration file.
An example of the configuration file is show in in listing 6.

2. Retrieve project specification - in case configuration file is specified correctly, the
project specification is fetched.

3. Generate test files - given the specification is retrieved, the tests will be generated.
4. Running the tests - after successful generation of tests, Playwright will be executed

to run the tests.

Figure 4 represents the specification retrieval and execution sequence. Listing 5 represents
the Runner invocation process.

33

Figure 4. Test execution sequence

6.3 Behaviour ontology implementation

Silva, Hak, and Winckler [34] present a behavior-based ontology designed for test au-
tomation to help validate functional requirements when building interactive systems. The
ontology acts as a common vocabulary to map user behaviors to interaction elements in
the UI, enabling automated testing. It also improves the way teams write requirements for
testing purposes, allowing for the reuse of described behaviors in natural language and
providing test automation with minimal effort.

Manager client enables creation of scenarios into a feature. Table 1 represents the user
behaviours implemented into the Hummus system, which, are made available in the
Manager for usage in scenario steps. The Parameters column represents the types of
parameters needed for a behaviour to be executable. The Test Function column represents
corresponding function invoked, when the step is executed. A parameter consists of a
name, value and type attribute. Table 2 describes the attributes of a parameter.

The test function takes behaviour parameters as function arguments. Additionally, the

34

Behavior Parameters Test Function
I click the "selector" selector clickElement
I fill the "selector" with "text" selector, text inputElementValue
I go to "location" location navigateToLocation
I am directed to "location" location verifyDirectedToLocation
The "selector" is visible selector verifyElementVisibility
The "selector" is not visible selector verifyElementVisibility
The text "text" in "selector" is visible selector, text verifyElementContainsText
The text "text" in "selector" is not visible selector, text verifyElementContainsText

Table 1. Behaviour representation table

Attribute Description
Name The name displayed in the scenario step.
Value The value used by the test function.
Type Determines the parameter’s compatibility with scenario

steps.

Table 2. Parameter attributes

current page object from Playwright is passed into the function, to make it possible to assert
and interact with elements on the current page. Listing 4 represents the functions invoked
for clicking and inputting behaviours. Within these functions, an element is retrieved by
the selector and corresponding interactions are invoked using the Playwright test library.

Using these behaviours, an example scenario for user authentication feature could be
constructed with the following steps:

1. I am on "login page"
2. I fill the "username field" with "my username"
3. I fill the "password field" with "my password"
4. I click the "login button"
5. I am directed to "dashboard page"

As a result, when this scenario is executed by Playwright, the following actions occur:

1. Playwright opens the browser with the value of "login page" parameter, for example
"/login"

2. Playwright selects the "username field" by its parameter value and fills it with the
"my username" value

3. Playwright selects the "password field" by its parameter value and fills it with the
"my password" value

4. Playwright selects the "password field" and clicks on it

35

5. Playwright waits for the page to become stable and expects the URL of the page to
be the "dashboard page" parameter value, for example "/dashboard"

In case all the interactions complete successfully, the scenario test will pass.

36

7. Demonstration

In this section, the process of capturing and executing a software specification is demon-
strated using the developed system. For the demonstration, a task management application
will be used as a SUT. The specification for SUT will captured, executed, and the results
will be portrayed, showcasing the overall functionality and utility of the proposed approach.

7.1 Creating specification

In this section, we will demonstrate the process of creating a specification using the
Hummus Manager client. In the example development team provided in chapter 6, a PO
or PM would be the main actor interested in creating the specification. However, this is
something all team members can be involved in.

7.1.1 User authentication

To start using Hummus, users must first authenticate themselves by logging into the system.
This ensures that the user has the necessary permissions to create or manage specifications
within the system. User authentication view is displayed on 5

Figure 5. Login view

7.1.2 Project creation

After successful authentication, users can create a new project or select an existing one.
Projects serve as containers for features and other related specification entities.

Project can be created by inserting a project name into the corresponding field and clicking
the "Create" button. Screenshot 6 displays the projects view before, and screenshot 7, after
a successful creation of a project "Task Management App".

37

Figure 6. Projects view

Figure 7. New project created

When a project exists in the system, clicking on the project directs the user to a specific
project view as displayed on screenshot 8

Figure 8. New project opened

7.1.3 Feature creation

Once a project has been created and selected, users can create new features into the
project. Features represent high-level requirements or functionalities of the system under
development. Each feature consists of one or more scenarios.

A feature can be created by clicking the "New Feature" button. Once created the feature
appears with corresponding fields for specifying additional feature details, such as feature
name and description, as displayed on screenshot 9. Once the details are specified, the new
details will be saved as displayed on screenshot 10.

Scenario creation

Scenarios are created within a feature to describe specific situations or use cases. They
contain a series of steps that define the expected behavior of the system under test.

38

Figure 9. New feature created

Figure 10. Feature details specified

Scenarios can be created by clicking the "Add Scenario" button. As a result, a field for
specifying the scenario name and a button for adding a scenario step become available.
Screenshot 11 displays the result after creating a scenario and specifying its name.

Scenario step creation

For each scenario, users define the necessary steps to describe the expected behavior.

Steps are selected from a list of available low-level behaviors provided by the system.
Additionally, steps that are a sequence of multiple behaviours can be created and selected,
as described in subsection 7.1.3.

Screenshot 12 displays the selection of behaviours available when adding a step. Screenshot
13 displays the resulting scenario, once multiple steps are added, after clicking the "Add
step" and selecting the behaviour. As a result, the steps are displayed under the scenario.
Additionally, the steps can be deleted or the order changed when hovering over a specific
step with a cursor.

39

Figure 11. Scenario created

Parameters creation

Parameters can be created and used within scenario steps to provide additional context.
This allows for greater flexibility and reusability of steps across different scenarios.

After adding one or more steps to a feature, the steps may require parameters that have
not yet been created. In this case, the missing parameters are highlighted in red within
the steps, indicating that the necessary parameters have not been added, as can be seen on
screenshot 13.

In order to create a parameter, the user must select "Parameters" from the top of the feature
view. As a result, a view for managing parameters is opened, as shown in screenshot 14.
This view includes a list of created parameters and a form for creating a new parameter.
To create a parameter, its attributes, as described in table 2, must be specified. After
a successful creation of parameters, they are listed and sorted by their type attribute as
displayed on screenshot 15. Table 3 describes the parameters created for the SUT.

When a parameter is created, it can be used in a scenario step by clicking on the parameter
type in the step, as displayed on screenshot 16. In screenshot 17, a finalised scenario with
the added parameters is shown.

Combined behaviors creation

Users can also combine multiple low-level behaviors into a single step. This contributes to
making scenarios more concise, easier to understand and shorter.

40

Figure 12. Adding step

Figure 13. Steps created

Users can access the dedicated view for creating combined behaviors by selecting "Be-
haviours" from the top of the feature view. Similar to the parameters creation view, a
form for creating new behaviors is displayed, and the existing ones are listed. The process
of creating combined behaviors is similar to creating a scenario: insert a value for the
behaviour, add a step, select a behavior, and then select a parameter. On screenshot 18,
the process of creating a combined behaviour is seen, as well as the list of existing ones
already in the system. As a result, a more concise scenario can be created, as displayed in
screenshot 19.

41

Figure 14. Parameters tab view

Figure 15. Parameters created

7.2 Executing specification

In this section, we will discuss the process of executing the created specification using
Hummus.

To execute the specification, users need to provide a configuration file containing authen-
tication credentials and project identifier in. This allows Hummus to retrieve the project
specification and generate the appropriate test files.

Once the Runner package has been installed via package manager and configuration file
has been set up, the specification can be retrieved and executed by running the command

42

Name Value Type Description
new task button button:has-text("Create Todo") selector Button for creating a new task
new task input [data-test="create-todo-input"] selector Input field for entering a new task
create task button [data-test="create-todo-button"] selector Button to confirm task creation
todo list [data-test="todo-list"] selector List of tasks to be done
done list [data-test="done-list"] selector List of completed tasks
main page / location Main page of the application
text Feed my dog text Example text for a task
text Feed my cat text Another example text for a task

Table 3. Parameters table for SUT

Figure 16. Specifying a step parameter

hummus run. The execution process and results are then displayed, once completed, pro-
viding insight into the system’s behavior and compliance with the specified requirements.

Playwright allows for additional configuration, enabling users to customise the test execu-
tion process according to their needs. This includes options such as specifying browser
or devices where the tests will be automated or setting timeouts, and configuring network
conditions. Additionally Playwright has a built-in mechanism for configuring the reporter
that displays test results. By specifying a reporter configuration option, users can choose
how they want the test execution results to be presented.

The final specification for the SUT consists of 4 features - (1) Creating a task, (2) Complet-
ing a task, (3) Uncompleting a task, (4) Deleting a task.

Considering the feature "Deleting a task" has not yet been implemented, we expect the
corresponding feature to fail on test execution. When invoking the run command, the
test finishes with failure, pointing the failure to the feature "Deleting a task" as seen from

43

Figure 17. Scenario parameters added

Figure 18. Combined behaviours creation

screenshot 20. When setting the Playwright reporter configuration option to html,
a web page opens in the browser after test execution, offering additional context on the
results as seen on screenshot 21. When opening the corresponding failed test in the reporter
page, the specific failed step can be easily identified. Furthermore, a screenshot of the SUT
is included in the report, illustrating the state of the SUT at the point of failure, as shown
in screenshot 22.

Given that the developer has implemented the deletion feature and added the appropriate
identifier for the delete button, the execution of 6 scenarios within 4 features will suc-
ceed within 7.84 seconds. At this point, we can conclude that the SUT conforms to its
specification.

44

Figure 19. Combined behaviour added to scenario

Figure 20. Execution output - failure

45

Figure 21. HTML reporter on failure 1

46

Figure 22. HTML reporter on failure 2

Figure 23. Execution output - success

47

8. Evaluation

This section assesses the proposed approach, focusing on how effectively it addresses
the presented problems. The practical adoption of the proposed approach is discussed, a
comparison to the traditional DSL-based method is provided and the results obtained from
a user testing session are showcased.

The primary objective of this thesis was to design an approach for conducting BDD without
relying on commonly used DSLs, such as Gherkin, which are associated with several
maintenance and usability issues. To enable the process of conducting BDD without
DSL and achieve the primary goal, a specification management and execution tool called
Hummus was developed, which consisted of the Manager web-based client and the Runner
CLI client.

8.1 Adoption of the tool in a task management application

The tool was adopted in an example development process of a task management application
(SUT). A specification for the SUT, was built using the Manager UI. Seven of the eight
atomic behaviors offered by the Hummus tool were employed to construct a specification
of 6 scenarios and 4 features. In total of 11 parameters were described, to fulfill the
necessary context for a comprehensive scenario steps. In addition, two new behaviours
that were commonly used in other scenarios, were created using the functionality of
combining several behaviours into one, which enabled to make scenarios shorter and more
concise. The specification was then executed using the Runner CLI client. Playwright was
launched during the execution process, successfully automating the scenarios in a browser
environment.

During the adoption of Hummus for specifying and testing the task management SUT, no
major issues were encountered. However, a scenario to verify task list persistence upon
browser page reload could not be specified, due to the fact that there was no corresponding
behavior implemented that would enable reloading of the browser page, such as "I reload
the page." This use-case could have been possible if the extensibility requirement (REQ 5)
had been implemented during the development phase. Although the combined behaviors
functionality provides some degree of extensibility, the original intention of the requirement
was to enable the definition of custom behaviors with custom test code for more complex
use-cases such as drag-and-drop or swiping, especially when the library of behaviors,

48

offered by Hummus, is limited. However, the intended extensibility functionality was not
implemented due to time constraints.

In conclusion, the Hummus system enabled to create the specification of a task management
application with all the required features, except for one scenario, due to the early stage
of development of the Hummus system. Additionally, the acceptance testing of SUT was
conducted successfully with all the features specified successfully passing.

8.2 User testing session

To evaluate the usability of Hummus, a user testing session was conducted with a single
participant. The participant has experience in various roles within software development,
as well as in managerial positions. However, as she had no practical experience with BDD,
she was aware of the core principles of the method.

8.2.1 Feature creation

The session began with the explanation and drafting of an example username/password
authentication feature.

Feature creation with Gherkin

Firstly, the feature was drafted in Gherkin format. The discussion focused on potential
ways to structure scenarios for both successful and unsuccessful login attempts. It was
discussed whether to specify as "I insert my username and password" or "I insert my
username" and "I insert my password" separately. It was noted that there could be several
ways to construct the steps. Additionally, the need for the test code to be written for each
interaction, was identified.

A point of interest was how reusable interactions could be made in Gherkin, which
led to a broader discussion on the management of specifications as they grow in size
and how the structure of the scenarios affects the maintainability of the test suite. This
raised the question of collaboration and how maintaining such specifications relies on
technical knowledge. However, it was agreed that the responsibility of maintaining such
specifications should not solely lie with the developer but also involve managerial roles.

The resulting user authentication feature created in Gherkin can be seen in listing 2.

49

Feature: User authentication
User can log in so they can do logged in user things

Scenario: Successful login
When I have inserted my correct username and password
And I click log in button
Then I am directed to dashboard page

Scenario: Unsuccessful login, user has not registered
When I have inserted incorrect username and password
And I click log in button
Then I see error message - "Incorrect credentials"

Listing 2. Gherkin feature created during user testing session

Feature creation with Manager

Following the Gherkin discussion, the same authentication feature was created using the
Manager web-based client. The participant was able to intuitively log in, create a project,
and define a new feature along with its associated user story and scenarios. During the
addition of scenario steps, the functionality of step parameters was acknowledged and the
absence of parameters in current project was noted. The participant intuitively proceeded
to add all the scenario steps by selecting from the available granular behaviours, easily
identifying the necessary steps for the authentication scenario.

When specifying parameters for a step, it was quickly understood that they needed to be
created separately. Subsequently, we moved on to creating parameters. The participant
quickly grasped the purpose of the parameter fields that needed to be filled out. While the
nuances of defining selector values required some discussion, the fundamental concept was
easily comprehended. Ultimately, the participant successfully created all the parameters
required for our login scenario, which were then successfully added to the steps.

There was a brief misunderstanding concerning the usage of "I am on <location>" and
"I should be directed to <location>". It became clear after explaining that "I am on
<location>" is used when the scenario requires opening a specific page where certain
elements, like form fields, exist. Conversely, "I should be directed to <location>" is used to
assert that the browser has completed its operations and checks the current URL, ensuring
the user is directed to the expected location.

The concept of combining multiple steps into one for more concise scenarios was also
introduced and well-received, showing the usefulness of this functionality.

50

The final specification created during the user testing session can be seen from screenshot
24

Figure 24. Hummus feature created during user testing session

8.2.2 Demonstration of specification execution

The testing session continued with a demonstration of the Runner package using an existing
specification for the task management application described in chapter 7. After showing
the installation and configuration process of the Runner package, the task management
app’s specification was executed, and results examined using the Playwright’s reporting
feature. The usage and configuration process of Runner was easily understood.

8.2.3 Feedback and conclusion

The session concluded with positive feedback, where the participant showed appreciation
for the workflow enabled by Hummus for software development teams. Despite suggesting
some improvements in managing larger quantities of specification artifacts, such as the
ability to search parameters, she agreed that Hummus in its current state can be considered
viable and could offer significant value to its users. Particularly, the ability to create

51

testable specifications directly without worrying about Gherkin syntax and potential test
suite management overhead was noted as an important advantage.

8.3 Comparison to the DSL-based approach

To provide a more concrete understanding of the improvements the Hummus approach
offers over the traditional DSL-based method, the process of defining, implementing and
maintaining a feature is examined.

Defining the feature

DSL-based approach: Typically, a specification is written as files in Gherkin language
within an IDE, with each file representing a feature, as presented in listing 1. Usually
developers write the final Gherkin file, as they work with IDEs and have access to language
supporting tools. The exact composition of a scenario, if not decided collaboratively by
the team, should carefully consider already existing step definitions, to promote reusability
and avoid maintenance overhead, as well as issues related to ambiguity and loose grammar.
Therefore access and knowledge over existing step definitions is needed. Step definitions
should be carefully constructed using an appropriate abstraction level to achieve clear
intentions and reusability.

Hummus approach: Features can be created using the Manager client, which is accessible
to all team members via web-based UI. Hummus approach encourages the shift of specifi-
cation management responsibility towards managers, as the area of defining requirements
is more appropriate to managerial roles and IDE usage is no longer needed to access
existing knowledge of specifications. Scenario steps can be defined by choosing from
a selection of granular user interactions, reducing issues related to loose grammar and
ambiguity. Additional context can be defined and selected in the form of parameters, if
required. As a result, an accurate behaviour of end-user interacting with the system is
defined.

Implementing the feature

DSL-based approach: With the feature defined, developers need to write test code for each
scenario step, similarly to listing 3. Potentially subjective test implementation of a step
may be introduced. In case the new scenario is defined using existing step definitions, no
additional test code should be needed. In case steps are reused and take parameters, these
parameters need to defined in the test suite. When ensuring the test code is implemented
as expected, only then the implementation can be tested against the specification.

52

Hummus approach: When the feature is defined in Manager client, developer can directly
start working on the implementation as no additional test code is needed. Developers can
execute specification using Runner and verify whether the feature implementation passes
the specification.

Maintaining the feature

DSL-based approach: Over time, the application and specification evolves. As developers
are responsible for modifying Gherkin files and updating the test code, inconsistencies and
errors might be introduced over time, if required changes are not communicated accurately.
This can be time-consuming.

Hummus approach: Any changes to the features or scenarios can be made directly in
the Manager UI. No changes to test code need to be considered. The resulting modified
specification can be executed to verify whether the developed system fulfills the modifica-
tions. If not, developer can deliver the required changes and not worry about the test suite
maintenance.

8.4 Conclusion

In conclusion, the objectives raised in chapter 5 were largely met, except for the extensi-
bility requirement (REQ 5). The Hummus system facilitated the development of a task
management SUT with most desired features, though one scenario was not achieved due
to the system’s early stage. The acceptance testing of the SUT was successfully conducted,
by executing the specification using the Runner CLI.

The user testing session demonstrated the usability and practicality of the Hummus system.
The participant was able to successfully navigate, use the system’s features and the
proposed benefits were well recognised.

Despite not being tested with large specifications, the Hummus system’s core concepts
aim to improve maintainability and clarity of specifications throughout the development
process. It can be concluded that despite the early stage, the current state of the Hummus
system can be beneficial and provide value to its user.

53

9. Discussion

The resulting Hummus Manager enables the creation of specifications directly from the
UI, eliminating the need for a DSL. Specifications can be created and accessed by logging
into the web-based Manager client. This client offers additional maintenance capabilities
for composing requirement specifications, such as encouraging reusability by providing a
selection of granular interactions when creating scenarios. This approach reduces mental
effort when determining the exact wording or sequence for scenario steps and prevents
errors due to loose grammar, such as "Given I log in to the system" versus "Given I log on
to the system." Additionally, the ability to combine multiple steps into one for repetitive
interactions makes scenarios shorter and more concise.

Furthermore, parameter management offers a way to store additional context about the
system being specified, such as specific elements, locations, or textual values that users
of the new system would see or interact with. Parameters are centrally stored within
projects, shared across features, and used in scenario steps to specify step behavior. This
approach encourages consideration of the specific properties of the designed system
before development. These kinds of properties, similar to Hummus parameters, are often
abstracted in traditional test suites by developers.

Executing the specification using the Runner package provides valuable feedback for devel-
opers during development, ensuring that the proposed changes to the system are beneficial.
Commonly, test automation might be overlooked due to concerns about managing test
suites, the benefits of feedback and security provided by automated acceptance testing are
essential in fast-paced agile software development. The Runner package allows developers
to test their work directly during development or in continuous integration process without
requiring additional test code or management of DSL. This feedback ensures valuable
knowledge on whether the developed system conforms to its requirements, excluding the
subjectivity aspect associated with acceptance testing.

In case the specification was constructed using traditional DSL based approach, by utilising
Gherkin, the task management SUT specification would have required the creators to
determine an appropriate abstraction level to achieve clear intentions and reusable steps,
as the granular behaviours would not be available to select. Potentially issues related to
ambiguity, loose grammar and different interpretations of the required behaviours could
arise from definitions like "I complete the task", "I complete the task" or "I mark a task as

54

done". As developers, who usually work with IDEs, where the DSL-based specification
lives, would be responsible for interpreting and translating steps into actionable test code,
introducing subjectivity and potentially altering the system’s intent while organising test
suites. Consequently, developers would remain responsible for managing the specification,
reducing valuable time spent on implementing functionality. However, when the Hummus
system is used, the process eliminates the need for test code and language maintenance of
DSL, allowing more time for developers to focus on the implementation of functionality.
The responsibility of specification management could easily be transferred to a stakeholder
more closer to the business needs. Someone who is likely to be less-technical than a
software developer, as the usage of IDEs is no longer needed to effectively manage a
specification artifacts.

9.1 Advantages

The proposed approach offers several significant advantages:

1. Elimination of DSL: Specifications can be created directly from the UI, circum-
venting the usability issues associated with DSLs and making the process more
accessible.

2. Reduced mental effort: Selection of granular interactions and parameters simplify
the construction of scenarios.

3. Error prevention: Loose grammar-related errors are minimised by utilising a
selection of available entities in scenario creation.

4. Concise scenarios: The ability to combine multiple steps into one for repetitive
interactions makes scenarios shorter and more concise.

5. Parameter management: Centrally stored parameters within projects encourage
consideration of specific properties before development.

6. Automated acceptance testing: The Runner package enables automated accep-
tance testing without requiring additional test code, providing valuable feedback on
adherence to the specification.

Despite the advantages of the proposed approach, there are several limitations that should
be considered:

9.2 Limitations

1. Limited to web-based software: As it currently stands, only the software utilising
web technologies and a browser environment can be specified and tested using

55

Hummus. To overcome this limitation, an additional Runner package should be
developed, utilising a testing library that has the ability to automate the desired
environment.

2. Limited to implemented behaviors: The implemented behaviors might not be
sufficient for more complex software products. Additional behaviors could be
needed for more complicated interactions, such as dragging and dropping, swiping
in mobile environments or additional assertments for test oracles. Utilising the
selector parameter is very dynamic but might not be enough for more complex
use-cases.

3. Limited access to testing lifecycle: The nature of acceptance testing, which targets
the system’s ends, might be more difficult due to the fact that test code is generated.
Access to the lifecycle of testing is limited, such as access to before, after,
beforeAll and afterAll functions. This limitation can be reduced when
utilising Playwright’s globalSetup configuration option, which allows for a
functionality to be passed that acts before every scenario, potentially needed for
tasks like resetting mutable shared states (e.g., a database) or intercepting network
traffic when communicating with third-party services beyond the developer’s control.

4. Limited features in the prototype: In the prototype developed in this thesis, the
Manager client does not enable connecting users to existing projects created by
other users. However, this is a feature that can easily be added in the future. In
addition, version control functionality might be necessary to implement in the
future, as currently any modifications are instantly reflected when executing the
specification. This might discourage making modification to the specification before
the implementation is due to be developed.

56

10. Conclusion

The proposed approach, enabled by the Hummus tool successfully meets the research
goal and objectives set by enabling the creation and execution of specifications while
eliminating the need for developers to manage DSL files and test suites. The new process
was made possible through the development of an open-source tool called Hummus.
Although Hummus introduces new limitations that may hinder its future adoption, the
approach streamlines specification management, making it more efficient and user-friendly.
Consequently, Hummus has the potential to be a valuable tool for various stakeholders
involved in specifying and developing software. By addressing some of the challenges
associated with traditional BDD processes, Hummus offers a promising alternative for more
effective and accessible software specification and testing, provided that its limitations are
addressed in future iterations.

57

References

[1] Alan Davis. Just enough requirements management: where software development

meets marketing. Addison-Wesley, 2013.

[2] Elizabeth Bjarnason et al. “A multi-case study of agile requirements engineering
and the use of test cases as requirements”. In: Information and Software Technology

77 (2016), pp. 61–79.

[3] Lucas Layman, Laurie Williams, and Lynn Cunningham. “Motivations and measure-
ments in an agile case study”. In: Proceedings of the 2004 workshop on Quantitative

techniques for software agile process. 2004, pp. 14–24.

[4] Karina Curcio et al. “Requirements engineering: A systematic mapping study in
agile software development”. In: Journal of Systems and Software 139 (2018),
pp. 32–50.

[5] Certified Model-Based Tester. “ISTQB® Foundation Level Certified Model-Based
Tester”. In: ().

[6] Pei Hsia, David Kung, and Chris Sell. “Software requirements and acceptance
testing”. In: Annals of software Engineering 3.1 (1997), pp. 291–317.

[7] Adnan Causevic, Daniel Sundmark, and Sasikumar Punnekkat. “Factors Limit-
ing Industrial Adoption of Test Driven Development: A Systematic Review”. In:
2011 Fourth IEEE International Conference on Software Testing, Verification and

Validation. 2011, pp. 337–346. DOI: 10.1109/ICST.2011.19.

[8] Leonard Peter Binamungu, Suzanne M Embury, and Nikolaos Konstantinou. “Main-
taining behaviour driven development specifications: Challenges and opportunities”.
In: 2018 IEEE 25th International Conference on Software Analysis, Evolution and

Reengineering (SANER). IEEE. 2018, pp. 175–184.

[9] Rakesh Kumar Lenka, Srikant Kumar, and Sunakshi Mamgain. “Behavior driven
development: Tools and challenges”. In: 2018 International Conference on Advances

in Computing, Communication Control and Networking (ICACCCN). IEEE. 2018,
pp. 1032–1037.

[10] Ankica Barisic et al. “Quality in use of dsls: Current evaluation methods”. In: 3rd

Inforum-Simpósio de informática. 2011.

[11] Ken Peffers et al. “A design science research methodology for information systems
research”. In: Journal of management information systems 24.3 (2007), pp. 45–77.

58

https://doi.org/10.1109/ICST.2011.19

[12] Frauke Paetsch, Armin Eberlein, and Frank Maurer. “Requirements engineering
and agile software development”. In: WET ICE 2003. Proceedings. Twelfth IEEE

International Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises, 2003. IEEE. 2003, pp. 308–313.

[13] Aybüke Aurum and Claes Wohlin. Engineering and managing software require-

ments. Vol. 1. Springer, 2005.

[14] Eva-Maria Schön, Jörg Thomaschewski, and Marıa José Escalona. “Agile Require-
ments Engineering: A systematic literature review”. In: Computer standards &

interfaces 49 (2017), pp. 79–91.

[15] Timothy C Lethbridge, Janice Singer, and Andrew Forward. “How software engi-
neers use documentation: The state of the practice”. In: IEEE software 20.6 (2003),
pp. 35–39.

[16] Shelly Park and Frank Maurer. “A literature review on story test driven develop-
ment”. In: International Conference on Agile Software Development. Springer. 2010,
pp. 208–213.

[17] Børge Haugset and Geir Kjetil Hanssen. “Automated acceptance testing: A literature
review and an industrial case study”. In: Agile 2008 Conference. IEEE. 2008, pp. 27–
38.

[18] Ana CR Paiva, Daniel Maciel, and Alberto Rodrigues da Silva. “From requirements
to automated acceptance tests with the RSL language”. In: Evaluation of Novel

Approaches to Software Engineering: 14th International Conference, ENASE 2019,

Heraklion, Crete, Greece, May 4–5, 2019, Revised Selected Papers 14. Springer.
2020, pp. 39–57.

[19] Kent Beck. Extreme programming explained: embrace change. addison-wesley
professional, 2000.

[20] Dan North. Introducing BDD. Accessed March, 2022. 2006. URL: http://
dannorth.net/introducing-bdd.

[21] Ioan Lazăr, Simona Motogna, and Bazil Pârv. “Behaviour-driven development of
foundational UML components”. In: Electronic Notes in Theoretical Computer

Science 264.1 (2010), pp. 91–105.

[22] Carlos Solis and Xiaofeng Wang. “A study of the characteristics of behaviour driven
development”. In: 2011 37th EUROMICRO conference on software engineering

and advanced applications. IEEE. 2011, pp. 383–387.

[23] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

[24] Benoıt Langlois, Consuela-Elena Jitia, and Eric Jouenne. “DSL classification”. In:
OOPSLA 7th workshop on domain specific modeling. 2007.

59

http://dannorth.net/introducing-bdd
http://dannorth.net/introducing-bdd

[25] Alessandro Cavalcante Gurgel. “for Architectural Degradation Prevention”. PhD
thesis. Programa de Pós-Graduação em Informática of the Departamento de Infor-
mática . . ., 2012.

[26] Mohsin Irshad, Ricardo Britto, and Kai Petersen. “Adapting Behavior Driven De-
velopment (BDD) for large-scale software systems”. In: Journal of Systems and

Software 177 (2021), p. 110944.

[27] Serenity BDD website. Accessed: 2023-04-20. 2023. URL: https://serenity-
bdd.info/.

[28] Pickles website. Accessed: 2023-04-20. 2023. URL: https://www.picklesdoc.
com/.

[29] Shashikant Jagtap. BDDfire repository. Accessed: 2023-04-20. 2023. URL: https:
//github.com/Shashikant86/bddfire.

[30] Behave Pro website. Accessed: 2023-04-20. 2023. URL: https://behavepro.
app/.

[31] CucumberStudio website. Accessed: 2023-04-20. 2023. URL: https://cucumber.
io/tools/cucumberstudio/.

[32] SpecFlow LivingDoc website. Accessed: 2023-04-20. 2023. URL: https://docs.
specflow.org/projects/specflow-livingdoc/en/latest/.

[33] Fiorella Zampetti et al. “Demystifying the adoption of behavior-driven development
in open source projects”. In: Information and Software Technology 123 (2020),
p. 106311.

[34] Thiago Rocha Silva, Jean-Luc Hak, and Marco Winckler. “A behavior-based ontol-
ogy for supporting automated assessment of interactive systems”. In: 2017 IEEE

11th International Conference on Semantic Computing (ICSC). IEEE. 2017, pp. 250–
257.

[35] Mark Micallef and Christian Colombo. “Lessons learnt from using DSLs for auto-
mated software testing”. In: 2015 IEEE Eighth International Conference on Software

Testing, Verification and Validation Workshops (ICSTW). IEEE. 2015, pp. 1–6.

60

https://serenity-bdd.info/
https://serenity-bdd.info/
https://www.picklesdoc.com/
https://www.picklesdoc.com/
https://github.com/Shashikant86/bddfire
https://github.com/Shashikant86/bddfire
https://behavepro.app/
https://behavepro.app/
https://cucumber.io/tools/cucumberstudio/
https://cucumber.io/tools/cucumberstudio/
https://docs.specflow.org/projects/specflow-livingdoc/en/latest/
https://docs.specflow.org/projects/specflow-livingdoc/en/latest/

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Hans Hendrik Starkopf

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for
my thesis “Behaviour-driven Specification Management and Execution System”,
supervised by Gert Kanter and Dietmar Pfahl
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

18.05.2023

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

61

Appendix 2 – Code samples

from behave import given, when, then
from selenium import webdriver

LOGIN_PAGE_URL = "https://example.com/login"
TEST_USERNAME = "testuser"
TEST_PASSWORD = "testpassword"

@given("I am on the login page")
def step_given_on_login_page(context):

context.browser = webdriver.Firefox()
context.browser.get(LOGIN_PAGE_URL)

@when("I enter my valid username and password")
def step_when_enter_credentials(context):

username_field = context.browser.find_element_by_name("username")
password_field = context.browser.find_element_by_name("password")

username_field.send_keys(TEST_USERNAME)
password_field.send_keys(TEST_PASSWORD)

@when('I click the login button')
def step_when_click_login(context):

login_button = context.browser.find_element_by_name("login")
login_button.click()

@then('I should be redirected to my account dashboard')
def step_then_redirected_to_dashboard(context):

assert "dashboard" in context.browser.current_url

@then('I should see a welcome message')
def step_then_see_welcome_message(context):

message = context.browser.find_element_by_id("welcome_message")
assert message.is_displayed()

Listing 3. Behave test code for feature in listing 1

62

import { Page } from '@playwright/test';
import { getElement } from './get-element';

export async function clickElement(page: Page, selector: string) {
const element = await getElement(page, selector);

element.click();
}

export async function inputElementValue(
page: Page,
selector: string,
input: string

) {
const element = await getElement(page, selector);

element.focus();
element.fill(input);

}

Listing 4. runner/lib/interactions.ts

63

#!/usr/bin/env tsx

import path from 'path';
import { spawn } from 'child_process';

import { getProject } from './manager';
import { generate } from './generator';
import { resolveConfig } from './config';

function loadConfig() {
const configPath = path.join(process.cwd(), 'hummus.config.ts');
const config = require(configPath).default;

return resolveConfig(config);
}

async function run() {
/** 1. Load configuration */
const config = loadConfig();

/** 2. Retrieve project */
const project = await getProject(config);

/** 3. Generate test files */
await generate(project, config);

/** 4. Execute Playright */
spawn(

'npx',
['playwright', 'test', config.dir, '--headed'],
{ stdio: 'inherit', shell: true }

);
}

run();

Listing 5. runner/cli.ts

64

export default {
projectId: 'example-project-id',
managerURL: 'http://localhost:3000',
auth: {

username: process.env.MANAGER_USER,
password: process.env.MANAGER_PASSWORD,

},
};

Listing 6. hummus.config.ts

65

	Introduction
	Research motivation
	Research goal

	Background
	Requirements Engineering
	Agile Requirements Engineering

	Software Testing
	Acceptance Testing

	Test-Driven Development
	Behaviour-Driven Development
	Tools
	Challenges
	Challenges related to DSLs

	Problem Statement
	Addressing challenges

	Methodology
	Design Science

	Objectives
	Design & Development
	Design overview
	Main components
	Main technologies
	Client-server architecture
	Data model

	Clients
	Manager client
	Runner client

	Behaviour ontology implementation

	Demonstration
	Creating specification
	User authentication
	Project creation
	Feature creation

	Executing specification

	Evaluation
	Adoption of the tool in a task management application
	User testing session
	Feature creation
	Demonstration of specification execution
	Feedback and conclusion

	Comparison to the DSL-based approach
	Conclusion

	Discussion
	Advantages
	Limitations

	Conclusion
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – Code samples

