
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Gleb Komissarov IAIB

Apache Kafka config manager with HTTP API

Bachelor thesis

Supervisor: Lt Cdr Kieren Niĉolas Lovell

RNorN Head of TalTech CERT

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogiate kool

Gleb Komissarov IAIB

Apache Kafka konfiguratsioonihaldur HTTP
API-ga

Lõputöö

Juhendaja: Lt Cdr Kieren Niĉolas Lovell

RNorN Head of TalTech CERT

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis and this thesis has not been pre-

sented for examination or submitted for defence anywhere else. All used materials, refer-

ences to the literature of others have been cited.

Author: Gleb Komissarov ..

(signature)

Date: 23.05.2022

3

Abstract

Open-source software sometimes lacks features, that are needed for operation and main-

tenance on a large scale. In such cases, companies that require those features have to

use paid SaaS/PaaS solutions or create their own. This thesis is dedicated to a project

that solves this problem for estonian company Pipedrive by creating software to manage

Apache Kafka clusters components on a large scale. The development consists of 3 parts:

research, proof of concept prototype development and actual software development. All

3 parts are described in this thesis.

This thesis is written in English and is 31 pages long, including 6 chapters, 16 figures and

0 tables.

4

List of abbreviations and terms

ACL Access Control List

API Application Programming Interface

JVM Java Virtual Machine

5

Table of Contents

1 Related work 9

1.1 Kafka platforms . 9

1.2 Official Apache documentation . 9

1.3 Kafka academic research papers . 9

2 Introduction 10

2.1 What is Apache Kafka? . 10

2.2 What problem does this thesis solve? . 10

3 Apache Kafka overview 12

3.1 What is event streaming? . 12

3.2 What can I use event streaming for? . 12

3.3 Apache Kafka® is an event streaming platform. What does that mean? . . 13

3.4 How does Kafka work in a nutshell? . 13

3.5 Main Concepts and Terminology . 14

3.6 Kafka APIs . 15

4 How to solve the problem 17

4.1 Why 3rd party solutions cannot be used 17

4.1.1 Pricing . 17

4.1.2 Migration . 18

4.1.3 Critical infrastructure depending on 3rd party 18

4.2 Possible ways to solve the problem . 18

5 How it has to be done 20

5.1 Requirements . 20

5.1.1 HTTP API endpoints for Topics 20

5.1.2 HTTP API endpoints for Users 22

5.1.3 HTTP API endpoints for ACLs 25

5.2 Python POC . 27

5.3 Scala vs Python . 27

5.4 How it is going to be used . 28

6

6 Conclusion 29

Appendix 1 – Non-exclusive licence for reproduction and publication of a grad-

uation thesis 30

References 31

7

List of figures

1 Architecture overview . 11

2 This example topic has four partitions P1–P4. Two different producer

clients are publishing, independently from each other, new events to the

topic by writing events over the network to the topic’s partitions. Events

with the same key (denoted by their color in the figure) are written to the

same partition. Note that both producers can write to the same partition if

appropriate. 15

3 Confluent Cloud pricing . 18

4 List all topics with their configs in the specified cluster 20

5 Create topics from a map of topics and their configs in the specified cluster 21

6 Delete a topic and all the ACLs related to this topic 21

7 Update topics partition count . 21

8 List all users and their auth configs(used to verify the password) 22

9 Create users from a map of users and their passwords in the specified cluster 23

10 Delete a user and all the ACLs related to this user 24

11 Update users password . 24

12 List all ACLs grouped by user . 25

13 Give {user-name} write access to {topic-name} 26

14 Give {user-name} read access to {topic-name} 26

15 Give {user-name} All access to cluster resource 26

16 Give {user-name} Describe access to cluster resource 27

8

1 Related work

1.1 Kafka platforms

In the beginning of my research on how to solve the problem, I looked at platforms, that

provide enterprise grade Kafka distributions with commercial features and support for

Kafka components that open-source version does not have. There are some platforms on

the market, such as Confluent 1 , which is the most developed right now. Using it would

solve the problem of not having a proper interface to manage Kafka internal components,

since one of the feature it provides, is HTTP API for Kafka Admin. However, it is really

expensive and time consuming process to migrate the whole Kafka infrastructure of a

big company to a completely new platform. Another thing to mention is that unlike open-

source version, such platforms cost money, come with a set of extra tools and features, that

are not needed and make us rely on a closed 3rd party code, which is better to be avoided.

Overall reading documentations made for different platforms still helped to understand

how things could be done, and provided some useful information about Kafka internals.

1.2 Official Apache documentation

After it became clear, that no Kafka platform will be able to solve the problem, without

creating more serious problems, I went to the Kafka Admin API documentation 2 to find

ways to programmatically alter Kafka configurations.

There I found what methods Kafka Admin Java API supports, how to use those and

what versions of Kafka it will support. As in many other open-source projects, this doc-

umentation lacked usage examples, so I often had to find missing information in feature

proposals 3 , development tickets 4 and just by reading the source code 5 .

1.3 Kafka academic research papers

During the research I have also read academic papers about Kafka. However they did not

provide any useful data for completing the thesis project.

1https://www.confluent.io/subscription
2https://kafka.apache.org/documentation.html#adminapi
3https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Improvement+Proposals
4https://issues.apache.org/jira/projects/KAFKA/issues
5https://github.com/apache/kafka

9

https://www.confluent.io/subscription
https://kafka.apache.org/documentation.html#adminapi
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Improvement+Proposals
https://issues.apache.org/jira/projects/KAFKA/issues
https://github.com/apache/kafka

2 Introduction

2.1 What is Apache Kafka?

Apache Kafka (Kafka) is an open source, distributed streaming platform that enables

(among other things) the development of real-time, event-driven applications. So, what

does that mean?

Today, billions of data sources continuously generate streams of data records, includ-

ing streams of events. An event is a digital record of an action that happened and the time

that it happened. Typically, an event is an action that drives another action as part of a pro-

cess. A customer placing an order, choosing a seat on a flight, or submitting a registration

form are all examples of events. An event doesn’t have to involve a person—for example,

a connected thermostat’s report of the temperature at a given time is also an event.

These streams offer opportunities for applications that respond to data or events in

real-time. A streaming platform enables developers to build applications that continu-

ously consume and process these streams at extremely high speeds, with a high level of

fidelity and accuracy based on the correct order of their occurrence.

LinkedIn developed Kafka in 2011 as a high-throughput message broker for its own

use, then open-sourced and donated Kafka to the Apache Software Foundation. Today,

Kafka has evolved into the most widely-used streaming platform, capable of ingesting

and processing trillions of records per day without any perceptible performance lag as

volumes scale. Fortune 500 organizations such as Target, Microsoft, AirBnB, and Netflix

rely on Kafka to deliver real-time, data-driven experiences to their customers. [1] [2] [3]

2.2 What problem does this thesis solve?

Here I would like to explain the problem, this bachelor thesis project solves and why

this project is a valid solution to this problem. Despite being a state of the art streaming

platform with a lot of capabilities and features, Apache Kafka releases still lack some

useful features. One of them is Admin API, that is used to configure and manage Kafka

key resources – topics, users and ACLs for those. Right now Apache provides Java API

and shell scripts that utilize the Java API to manage those resources. In the company I

work at, we cannot use the Java API directly to manage Apache Kafka and the scripts

are too slow and will not work well with the infrastructure setup, we have planned for

the future. The problem is the absence of a utility to manage Kafka internal components

10

using HTTP API in the infrastructure. The idea of the project is to create software that will

translate HTTP requests to Java API methods and send API requests to different Kafka

clusters. This later can be utilized by any configuration manager to manage configurations

of all accessible Kafka clusters of any form and shape.

Figure 1. Architecture overview

11

3 Apache Kafka overview

3.1 What is event streaming?

Event streaming is the digital equivalent of the human body’s central nervous system. It is

the technological foundation for the ’always-on’ world where businesses are increasingly

software-defined and automated, and where the user of software is more software.

Technically speaking, event streaming is the practice of capturing data in real-time

from event sources like databases, sensors, mobile devices, cloud services, and software

applications in the form of streams of events; storing these event streams durably for later

retrieval; manipulating, processing, and reacting to the event streams in real-time as well

as retrospectively; and routing the event streams to different destination technologies as

needed. Event streaming thus ensures a continuous flow and interpretation of data so that

the right information is at the right place, at the right time.

3.2 What can I use event streaming for?

Event streaming is applied to a wide variety of use cases 1 across a plethora of industries

and organizations. Its many examples include:

■ To process payments and financial transactions in real-time, such as in stock ex-

changes, banks, and insurances.

■ To track and monitor cars, trucks, fleets, and shipments in real-time, such as in

logistics and the automotive industry.

■ To continuously capture and analyze sensor data from IoT devices or other equip-

ment, such as in factories and wind parks.

■ To collect and immediately react to customer interactions and orders, such as in

retail, the hotel and travel industry, and mobile applications.

■ To monitor patients in hospital care and predict changes in condition to ensure

timely treatment in emergencies.

■ To connect, store, and make available data produced by different divisions of a

company.

■ To serve as the foundation for data platforms, event-driven architectures, and mi-

croservices.

1https://kafka.apache.org/powered-by

12

https://kafka.apache.org/powered-by

3.3 Apache Kafka® is an event streaming platform. What does that mean?

Kafka combines three key capabilities so you can implement your use cases for event

streaming end-to-end with a single battle-tested solution:

1. To publish (write) and subscribe to (read) streams of events, including continuous

import/export of your data from other systems.

2. To store streams of events durably and reliably for as long as you want.

3. To process streams of events as they occur or retrospectively.

And all this functionality is provided in a distributed, highly scalable, elastic, fault-

tolerant, and secure manner. Kafka can be deployed on bare-metal hardware, virtual ma-

chines, and containers, and on-premises as well as in the cloud. You can choose between

self-managing your Kafka environments and using fully managed services offered by a

variety of vendors.

3.4 How does Kafka work in a nutshell?

Kafka is a distributed system consisting of servers and clients that communicate via a

high-performance TCP network protocol[4]. It can be deployed on bare-metal hardware,

virtual machines, and containers in on-premise as well as cloud environments.

Servers: Kafka is run as a cluster of one or more servers that can span multiple data-

centers or cloud regions. Some of these servers form the storage layer, called the brokers.

Other servers run Kafka Connect 1 to continuously import and export data as event

streams to integrate Kafka with your existing systems such as relational databases as well

as other Kafka clusters. To let you implement mission-critical use cases, a Kafka cluster

is highly scalable and fault-tolerant: if any of its servers fails, the other servers will take

over their work to ensure continuous operations without any data loss.

Clients: They allow you to write distributed applications and microservices that read,

write, and process streams of events in parallel, at scale, and in a fault-tolerant manner

even in the case of network problems or machine failures. Kafka ships with some such

clients included, which are augmented by dozens of clients provided by the Kafka com-

munity: clients are available for Java and Scala including the higher-level Kafka Streams

2 library, for Go, Python, C/C++, and many other programming languages as well as

1https://kafka.apache.org/documentation/#connect
2https://kafka.apache.org/documentation/streams/

13

https://kafka.apache.org/documentation/#connect
https://kafka.apache.org/documentation/streams/

REST APIs.

3.5 Main Concepts and Terminology

An event records the fact that ”something happened” in the world or in your business.

It is also called record or message in the documentation. When you read or write data

to Kafka, you do this in the form of events. Conceptually, an event has a key, value,

timestamp, and optional metadata headers. Here’s an example event:

■ Event key: ”Alice”

■ Event value: ”Made a payment of $200 to Bob”

■ Event timestamp: ”Jun. 25, 2020 at 2:06 p.m.”

Producers are those client applications that publish (write) events to Kafka, and con-

sumers are those that subscribe to (read and process) these events. In Kafka, producers

and consumers are fully decoupled and agnostic of each other, which is a key design el-

ement to achieve the high scalability that Kafka is known for. For example, producers

never need to wait for consumers. Kafka provides various guarantees such as the ability

to process events exactly-once.

Events are organized and durably stored in topics. Very simplified, a topic is similar to

a folder in a filesystem, and the events are the files in that folder. An example topic name

could be ”payments”. Topics in Kafka are always multi-producer and multi-subscriber: a

topic can have zero, one, or many producers that write events to it, as well as zero, one, or

many consumers that subscribe to these events. Events in a topic can be read as often as

needed—unlike traditional messaging systems, events are not deleted after consumption.

Instead, you define for how long Kafka should retain your events through a per-topic

configuration setting, after which old events will be discarded. Kafka’s performance is

effectively constant with respect to data size, so storing data for a long time is perfectly

fine.[5]

Topics are partitioned, meaning a topic is spread over a number of ”buckets” located

on different Kafka brokers. This distributed placement of your data is very important for

scalability because it allows client applications to both read and write the data from/to

many brokers at the same time. When a new event is published to a topic, it is actually

appended to one of the topic’s partitions. Events with the same event key (e.g., a customer

or vehicle ID) are written to the same partition, and Kafka guarantees that any consumer

14

of a given topic-partition will always read that partition’s events in exactly the same order

as they were written.

Figure 2. This example topic has four partitions P1–P4. Two different producer clients are publishing,
independently from each other, new events to the topic by writing events over the network to the topic’s
partitions. Events with the same key (denoted by their color in the figure) are written to the same partition.
Note that both producers can write to the same partition if appropriate.

To make your data fault-tolerant and highly-available, every topic can be replicated,

even across geo-regions or datacenters, so that there are always multiple brokers that have

a copy of the data just in case things go wrong, you want to do maintenance on the brokers,

and so on. A common production setting is a replication factor of 3, i.e., there will always

be three copies of your data. This replication is performed at the level of topic-partitions.

3.6 Kafka APIs

In addition to command line tooling for management and administration tasks, Kafka has

five core APIs for Java and Scala:

■ The Admin API 1 to manage and inspect topics, brokers, and other Kafka objects.

■ The Producer API to publish (write) a stream of events to one or more Kafka topics.

■ The Consumer API to subscribe to (read) one or more topics and to process the

stream of events produced to them.

■ The Kafka Streams API to implement stream processing applications and microser-

vices. It provides higher-level functions to process event streams, including trans-

formations, stateful operations like aggregations and joins, windowing, processing

based on event-time, and more. Input is read from one or more topics in order to

1https://kafka.apache.org/documentation.html#adminapi

15

https://kafka.apache.org/documentation.html#adminapi

generate output to one or more topics, effectively transforming the input streams to

output streams.

■ The Kafka Connect API to build and run reusable data import/export connectors

that consume (read) or produce (write) streams of events from and to external sys-

tems and applications so they can integrate with Kafka. For example, a connector

to a relational database like PostgreSQL might capture every change to a set of

tables. However, in practice, you typically don’t need to implement your own con-

nectors because the Kafka community already provides hundreds of ready-to-use

connectors.[6]

16

4 How to solve the problem

4.1 Why 3rd party solutions cannot be used

The most obvious way to solve the problem seems to be the use of 3rd party service or

platform for hosting and managing Apache Kafka. Examples of those platforms would

be [Confluent Cloud, conduktor.io, axual.com].

Those platforms provide a similar set of features: hosting Kafka, managing topics,

users and ACLs, security features, compliance with data protection laws. They also share

the same problems, if you are planning to migrate a big enterprise infrastructure onto

those platforms.

4.1.1 Pricing

In the company, I am doing this project for, we have around 6 live regions. In every region

there is at least 7 Kafka clusters, built for different services to share data with each other.

My company has a bit more than 100,000 clients(other companies) that use those services

to read/write/analyze their sales/marketing data. This results in tens of terabytes of tem-

porary data stored, hundreds of gigabytes worth of data read/write operations every day

and networking load that is not supported by any of those platforms. It is unnecessarily

hard to estimate the possible price, that the providers would ask for this infrastructure.

Required resources go way beyond standard and enterprise plan limits on those platforms

and it would require a bigger research done for those companies, before they can tell if

they are able to do it and name the price. It is also highly unlikely, that their price can

be cheaper than our current setup, which is just servers on cloud platforms like AWS and

Rackspace.

17

Figure 3. Confluent Cloud pricing

4.1.2 Migration

Another big problem with switching to Kafka platform is the technical process of migrat-

ing data there and making services consume and produce data to the new infrastructure.

While it is possible to make this process seamless to the customers, it is still a big risk

and will require months worth of preparations and work done. This process will not make

any useful impact on the infrastructure, except for the possibility to use HTTP API for

managing Kafka internal components.

4.1.3 Critical infrastructure depending on 3rd party

Most of the microservices in my company rely on Kafka to deliver real time data to the

customers and other services. Making it rely on a 3rd party platform is a business risk and

another possible breakpoint for the application.

4.2 Possible ways to solve the problem

As mentioned earlier, Apache Kafka can be configured via Java API or shell scripts, both

of which come with the software. While scripts can be executed by any configuration

manager, their execution is slow, compared to running Java API directly (5-10 vs 0.01-0.5

seconds for a single request). Shell scripts are also limited, compared to Java API in terms

18

of bulk editing. On the other hand, there is no configuration manager that can use Java

API directly. Sending HTTP requests is a common task for a configuration manager, so

the only solution to the problem is to write a software that will translate HTTP requests

to Java API requests.

19

5 How it has to be done

5.1 Requirements

Finished product must meet the following requirements:

5.1.1 HTTP API endpoints for Topics

GET /topics/{cluster-id}

response = {

"{topic-name}": {

"cleanup.policy": "{cleanup-policy}",

"partitions": {partitions-count},

"replication-factor": "{replication-factor}"

},

"{2nd-topic-name}": {

...

...

},

...

...

}

Figure 4. List all topics with their configs in the specified cluster

20

POST /topics/{cluster-id}/

data = {

"{topic-name}": {

"cleanup.policy": "{cleanup-policy}",

"partitions": {partitions-count},

"replication-factor": "{replication-factor}"

},

"{2nd-topic-name}": {

...

...

},

...

...

}

response =

200 OK if creation was successful

Figure 5. Create topics from a map of topics and their configs in the specified cluster

DELETE /topics/{cluster-id}/{topic-name}

response =

200 OK if deletion was successful

Figure 6. Delete a topic and all the ACLs related to this topic

PUT /topics/{cluster-id}/{topic-name}

data = {"partitions": {partitions-count}}

response =

200 OK if update was successful

400 Bad Request if updated partitions count was less than current

Figure 7. Update topics partition count

21

5.1.2 HTTP API endpoints for Users

GET /users/{cluster-id}

response = {

"{user-name}": {

"SCRAM-SHA-512": {

"salt": "{salt}",

"stored_key": "{stored_key}",

"server_key": "{server_key}",

"iterations": "{iterations}"

},

"SCRAM-SHA-256": {

"salt": "{salt}",

"stored_key": "{stored_key}",

"server_key": "{server_key}",

"iterations": "{iterations}"

}

},

"{2nd-user-name}": {

...

...

},

...

...

}

Figure 8. List all users and their auth configs(used to verify the password)

22

POST /users/{cluster-id}/

data = {

"{user-name}": {

"password": "{password}"

},

"{2nd-user-name}": {

...

...

},

...

...

}

Returns a list of created users and their auth configs

response = {

"{user-name}": {

"SCRAM-SHA-512": {

"salt": "{salt}",

"stored_key": "{stored_key}",

"server_key": "{server_key}",

"iterations": "{iterations}"

},

"SCRAM-SHA-256": {

"salt": "{salt}",

"stored_key": "{stored_key}",

"server_key": "{server_key}",

"iterations": "{iterations}"

}

},

"{2nd-user-name}": {

...

}, 200 OK if creation was successful

Figure 9. Create users from a map of users and their passwords in the specified cluster

23

DELETE /users/{cluster-id}/{user-name}

response =

200 OK if deletion was successful

Figure 10. Delete a user and all the ACLs related to this user

PUT /{cluster-id}/users/{user-name}

data = {"password": {password}}

response =

200 OK if update was successful

Figure 11. Update users password

24

5.1.3 HTTP API endpoints for ACLs

GET /acls/{cluster-id}

response = {

"{user-name}": {

"group": {

"{group-name}": "{permissions}",

"{2nd-group-name}": "{permissions}",

...

...

},

"topic": {

"{topic-name}": "{permissions}",

"{2nd-topic-name}": "{permissions}",

...

...

},

"cluster": {

"{cluster-id}": "{permissions}"

...

...

}

},

"{2nd-user-name}": {

...

...

},

...

...

}

Figure 12. List all ACLs grouped by user

25

POST /acls/{cluster-id}/producer/{topic-name}/;

data = {

"user": "{user-name}"

}

response =

200 OK if creation was successful

Figure 13. Give {user-name} write access to {topic-name}

POST /acls/{cluster-id}/consumer/{topic-name}/;

data = {

"user": "{user-name}"

}

response =

200 OK if creation was successful

Figure 14. Give {user-name} read access to {topic-name}

POST /acls/{cluster-id}/admin/;

data = {

"user": "{user-name}"

}

response =

200 OK if creation was successful

Figure 15. Give {user-name} All access to cluster resource

26

POST /acls/{cluster-id}/describer/;

data = {

"user": "{user-name}"

}

response =

200 OK if creation was successful

Figure 16. Give {user-name} Describe access to cluster resource

5.2 Python POC

Before starting to write the thesis, I have spent some time working on a proof of con-

cept for this software. I made a small web application using Python language, Flask

framework and Kafka admin scripts. For every endpoint described above it was running

a corresponding Kafka Admin script with required arguments. It was deployed to a Ku-

bernetes pod in a development region and given network access to all the Kafka clusters

in that region. After testing it out, it was clear that the scripts really lack performance. I

suspect that it happened due to the fact, that every time the script was ran, JVM had to

be started up in order for script to use the Java API. After that the output had to be pro-

cessed and optionally passed to another script. Some operations required multiple scripts

to be ran or rerunning one script multiple times with different arguments. It resulted in

endpoints such as ”GET /users/cluster-id” taking 20 and more seconds to complete the

request. While this time is okay for a proof of concept, it is not suitable for production.

Therefore it was decided to use the Java API directly to possibly get better performance.

5.3 Scala vs Python

After finishing tests for the Python proof of concept, I have started creating the Scala

application, that uses Kafka AdminClient library to interact with Java API. The following

benefits of using the it were immediately noticed:

Unlike the proof of concept Python app that parses standard output of the Kafka Ad-

min scripts, Kafka AdminClient library provides types and exceptions for safer and more

predictable interactions with Kafka Admin API. This allows to create a more robust and

fault tolerant software.

27

It is also much faster for various reasons. AdminClient library provides tools for bulk

operations on Kafka objects, which scripts do not support. Using AdminClient is also

much faster, because the API response does not need to be processed to human readable

text and then parsed by Python, it all happens inside one Java process on the object level.

Multithreading, supported by Scala is also helpful.

Using Kafka AdminClient directly from Scala will make future Kafka version up-

grades more convenient and safe, since the library is downloaded directly from Maven

and changing a version will take just one change in the build file.

The only negative side of using Scala is the web framework to be used. Unlike Flask

for Python which is pretty popular and well explained, with Scala I had to use Akka

framework which is certainly less popular, therefore less solutions for common problems

can be found on the Internet. Since the project uses only minimal functionality of the

framework, it is not a big problem.

5.4 How it is going to be used

By the time the thesis is defended the first version of Kafka Agent written with Scala will

probably be ready. After that it is going to be deployed the same way as Python proof

of concept and tested on Kafka clusters in our development and test regions with some

configuration manager. If it works well, it will be also used in live regions. If not, it will

be fixed until it works well.

28

6 Conclusion

To conclude, the author was able to successfully research the topic and produce a fully

working prototype that solves the problem of absence of a utility to manage Kafka inter-

nal components with HTTP API. Knowledge, that was acquired during the research has

been proven to be very useful for completing the production grade software to solve this

problem.

Main contributions of this thesis are:

■ Definition of requirements for the solution

■ Kafka internal components research on the code level; documentation

■ Definition of possible methods to meet the requirements for the solution

■ Development of prototype software to define and test final product architecture

■ Final product development

This results in a solved problem, a good amount of time saved for the infrastructure

department and a big amount of money saved for the company.

29

Appendix 1 – Non-exclusive licence for reproduction and pub-
lication of a graduation thesis

I Gleb Komissarov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis ”Apache Kafka config manager with HTTP API”, supervised by Lt Cdr

Kieren Niĉolas Lovell

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library

of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Tech-

nology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

30

References
[1] “Apache kafka.” https://www.ibm.com/cloud/learn/apache-kafka, Feb 2020. Accessed

on 2022-07-04.

[2] N. N. . R. J. Kreps J., Kafka: A distributed messaging system for log processing. In Proceed-
ings of the NetDB (Vol. 11, pp. 1-7)., ch. 1. 2011.

[3] G. N., Apache kafka (pp. 30-31). Birmingham, UK: Packt Publishing., ch. 2. 2013.

[4] “Apache kafka with real-time data streaming.” https://www.researchgate.net/
publication/348575301 Apache kafka with real-time data streaming. Accessed on
2022-20-04.

[5] “Streams and tables: Two sides of the same coin.” https://dl.acm.org/doi/pdf/10.
1145/3242153.3242155. Accessed on 2022-20-04.

[6] “Kafka 3.1 documentation.” https://kafka.apache.org/documentation/. Accessed on
2022-20-04.

31

https://www.ibm.com/cloud/learn/apache-kafka
https://www.researchgate.net/publication/348575301_Apache_kafka_with_real-time_data_streaming
https://www.researchgate.net/publication/348575301_Apache_kafka_with_real-time_data_streaming
https://dl.acm.org/doi/pdf/10.1145/3242153.3242155
https://dl.acm.org/doi/pdf/10.1145/3242153.3242155
https://kafka.apache.org/documentation/

	Related work
	Kafka platforms
	Official Apache documentation
	Kafka academic research papers

	Introduction
	What is Apache Kafka?
	What problem does this thesis solve?

	Apache Kafka overview
	What is event streaming?
	What can I use event streaming for?
	Apache Kafka® is an event streaming platform. What does that mean?
	How does Kafka work in a nutshell?
	Main Concepts and Terminology
	Kafka APIs

	How to solve the problem
	Why 3rd party solutions cannot be used
	Pricing
	Migration
	Critical infrastructure depending on 3rd party

	Possible ways to solve the problem

	How it has to be done
	Requirements
	HTTP API endpoints for Topics
	HTTP API endpoints for Users
	HTTP API endpoints for ACLs

	Python POC
	Scala vs Python
	How it is going to be used

	Conclusion
	Appendix Non-exclusive licence for reproduction and publication of a graduation thesis
	References

