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Annotatsioon

Laivkoodimine (inglise keeles live coding) on esitusviis, kus esineja loob heliteost program-
miliselt reaalajas. Sonic Pi, Tidal Cycles ja SuperCollider on platvormide hulgas, mida
kasutatakse algoritmilise muusika esitamiseks. Kuigi mainitud platvormid on võimekad
esinemise tööriistad, ei paku ükski neist autori parimate teadmiste kohaselt liidestamist
algoritmilise muusika komponeerimise tarkvaraga.

Selle lõputöö projekti põhieesmärk on uurida algoritmilist muusika improvisatsiooni,
liidestades Sonic Pi platvorm tarkvarasüsteemiga, mis suudab genereerida reaalajas vari-
atsioone olemasolevatest üksiku hääle meloodiatest. Selle uurimistöö oodatav tulemus
on muuta esinemise protsess koostöövõimelisemaks, laiendades arvuti rolli pelgalt instru-
mendilt improvisatsioonilise assistendini.

Selle lõputöö projekti tulemus on rakendus, mis toetab liidestamist Sonic Pi platvormiga,
kasutades Open Sound Control protokolli. Variatsioone saab genereerida MIDI-allikatest
ning otse reaalajas Sonic Pi saadetud sõnumitest. Algoritmilised muusika komponeerimise
teostused põhinevad Markovi ahelatel ja Google AI Magenta närvivõrgul.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 36 leheküljedel, 6 peatükki, 12
joonist, 4 tabelit.
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Abstract

Live coding is a type of performance where the performer creates music programmatically
in real-time. Sonic Pi, Tidal Cycles and SuperCollider are among the platforms used for
algorithmic music performance. While the mentioned platforms are powerful performance
tools, none of them offers out of the box integration with algorithmic music composition
software, to the best of author’s knowledge.

The main goal of this thesis project is to explore algorithmic music improvisation by
integrating Sonic Pi with a software system that can generate variations on existing single
voice melodies in real-time. The expected outcome of this exploration is to make the
performance process more collaborative, by expanding the computer’s role from a mere
instrument to an improvisational assistant.

The result of this project is an application that supports integration with Sonic Pi, utilizing
the Open Sound Control protocol. Melody variations can be generated from MIDI sources
and from messages sent by Sonic Pi directly in real-time. Algorithmic music composition
implementations are based on Markov chains and Google AI’s Magenta neural network.

The thesis is in English and contains 36 pages of text, 6 chapters, 12 figures, 4 tables.
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1. Introduction

Algorithmic music composition was pioneered by Iannis Xenakis in the 1963 work “For-
malized Music: Thought and Mathematics in Composition” [1]. In his work Xenakis
describes the process of stochastic music composition using Markov chains. The stochastic
approach was later extended by musical grammars and combinatorics in David Cope’s
system Emmy [2].

As an alternative to Markov chains, recurrent neural networks (RNNs) were first used
for music generation in the late 80’s and were updated with “long short term memory”
(LSTMs) cells in Douglas Eck’s 2002 work “Finding Temporal Structure in Music: Blues
Improvisation with LSTM Recurrent Networks” [3].

Live coding is a type of performance where the performer creates music by programming
loops and synthesizers in real-time as the composition plays. Experiments with live
coded performances began in the early 2000’s. Alex McLean and Adrian Ward formed
the band Slub in 2000, and are considered to be among the pioneers of live coded music
performances, using their own software that later led to the development of Tidal Cycles [4].
Additionally, Alex McLean together with Nick Collins were responsible for starting the
"algorave" movement, by organizing a series of events where people danced to live coded
music [5]. In 2012 Sam Aaron released the live coding platform Sonic Pi that was also
designed for educational purposes [6].

The main goal of this project is to combine algorithmic music composition and live coding
in a collaborative way, by establishing communication between live coding platforms and
music generation software in real-time. Similar to multiple band members improvising
together, the generator and the live coding platform should be able to exchange messages
between each other and develop a common musical theme. Additionally, the software
should be accessible to anyone who wants to experiment with machine learning in a live
coding context, without having to implement the algorithms from scratch.

The application should be able to generate variations from MIDI (Musical Instrument
Digital Interface) sources and sequences coming directly from Sonic Pi. Multiple modes of
interaction should be supported by the application, including pushing and polling sequences
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to and from Sonic Pi, utilizing the OSC (Open Sound Control) protocol. The technology
stack should have a rich ecosystem with libraries that support the MIDI standard and
the OSC protocol. Additionally, the technology stack should provide static typing for
internal musical sequence representation and efficient development process (by spotting
compilation errors at time of development). Modularity and abstraction should be taken
into account to in order to make the solution flexible and extensible for future developments.
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2. Background

In this chapter prior work on algorithmic music composition and live coding platforms is
listed, highlighting the relevant functionalities and disadvantages. Additionally, similar
projects are presented in the last section.

2.1 Live Coding

In this section an overview of the relevant live coding platforms will be given.

2.1.1 SuperCollider

SuperCollider [7] is an open-source software, dynamic programming language and en-
vironment used for real-time audio synthesis and algorithmic composition, written in
C++ [8].

Released in 1996 by James McCartney, SuperCollider has evolved into a framework for
algorithmic music and live coding, among other things.

2.1.2 Sonic Pi

Sonic Pi [9] is a live coding environment based on Ruby [10], developed by Sam Aaron.
The main goal of Sonic Pi is to facilitate the teaching of programming within schools. The
platform also enables musicians to deliver virtuosic live coded music performances [6].

Sonic Pi offers the possibility to make music by writing and modifying code live, similarly
to playing an instrument. The interface is intuitive and consists of a code editor, some
controls, a log viewer and help system (see Figure 1).
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Figure 1. Sonic Pi GUI

The main building blocks in Sonic Pi are live loops. In essence, live loops are separate
threads that concurrently execute code specific to an instrument in a musical piece. Sonic
Pi offers the possibility of syncing loops and sharing states across loops in a thread-safe
and deterministic manner. SuperCollider is used by Sonic Pi as a synthesis engine [11].

Sonic Pi does not offer out of the box machine learning functionality.

2.1.3 Tidal Cycles

Figure 2. Live coding with Tidal Cycles

Tidal Cycles [12] is a live coding environment and a DSL (Domain-specific language)
written in Haskell [13, 14]. Tidal Cycles does not synthesize sound by itself, but requires
SuperCollider.

While there exist AI integrations with Tidal Cycles like Cibo [15] (An Autonomous Tidal
Cycles performer that takes Tidal Cycles code as input and produces Tidal Cycles code as
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output), Tidal Cycles itself does not have built-in AI functionality.

2.1.4 Orca

Figure 3. Orca programming

Orca [16] is an esoteric programming language and live coding environment. Similarly to
Tidal Cycles, Orca it not producing sound, but provides an interface for live coding.

Some interesting examples of using Orca include Sonic Pi control [17], utilizing the OSC
protocol, but no AI functionality is included.

2.2 Algorithmic Music Composition

In this section an overview of the relevant algorithmic music composition software will be
given.

2.2.1 Magenta

Magenta [18] is a research project by Google AI, exploring the role of ML (Machine
Learning) in creative processes. In particular, the library @magenta/music offers a
number of trained machine learning models for musical sequences. The models are based
on LSTM networks and are best at continuing musical sequences, provided as inputs.

2.2.2 Max

Max [19] is a visual programming language for music and multimedia [20]. Max is
modular and extensible and, essentially, is a set of shared libraries.

Max includes built-in support for generating music with Markov chains, but involves a
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Figure 4. Max GUI

steep learning curve to get started and building an integration with a live coding platform.

2.3 Related Projects

Cibo [15] is an autonomous Tidal Cycles performer that is implemented as sequence-to-
sequence neural net algorithm to generate Tidal Cycles code. The algorithm takes Tidal
Cycles code as input and generates Tidal Cycles code as output. In comparison with the
current project, this software is Tidal Cycles specific and not generic enough.

Live Coding with Machine Learning [21] is a project that integrates Magenta’s Drum RNN
with Sonic Pi in order to generate extensions of drum patterns. First and foremost, the
project is based only on drum patterns - note sequences are not supported. Additionally,
this project does not support MIDI sources and flexibility in terms of different modes of
sending data to the live coding platform. Furthermore, it is neither modular nor extensible.
The author would like to acknowledge this project as a kind of prototype for exchanging
musical patterns between machine learning software and Sonic Pi.
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3. Methodology

On a high level, the application should be able to generate variations on melodies from
MIDI sources and from sequences coming directly from Sonic Pi.

The following algorithm would be applied to all MIDI inputs:

1. MIDI files would be parsed into an internal representation of note sequences, which
in turn would be passed to the generator. The generator would then produce variations
on these sequences based on nth-order Markov chains, Magenta MusicRNN, or
other possible implementations.

2. The generated output would be transformed back to MIDI and stored in an internal
structure.

3. The application would in turn transmit the selected data to Sonic Pi, utilizing the
OSC protocol.

In case of data coming directly from Sonic Pi, the following algorithm would be applied:

1. Incoming sequences would be parsed into internal representation of note sequences,
which in turn would be passed to the generator, that would produce variations on
these sequences based on nth-order Markov chains, Magenta MusicRNN, or other
possible implementations.

2. The application would in turn transmit the generated data to Sonic Pi, utilizing the
OSC protocol.

In this chapter the main tooling is presented, highlighting MIDI, Markov chains, Magenta
MusicRNN and OSC.
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3.1 MIDI

MIDI (Musical Instrument Digital Interface) [22] is standard providing a way for in-
terchanging time-stamped data between electronic musical instruments, computers and
different musical software.

3.1.1 MIDI Files

MIDI files contain streams of MIDI events, with time information for each event. Song,
sequence, track structures, tempo and time signature information are among the supported
information that can be encoded in MIDI events. MIDI events consist of time information
and MIDI messages that are represented as 8-bit binary data streams.

MIDI files are made up of chunks. Each chunk consists of 4-character type and 32-bit
length, indicating the number of bytes in a chunk. Header chunks and tracks chunks are
the two types of chunks present in a MIDI file. A MIDI file always starts with a header
chunk, followed by one or more track chunks, as follows:

MThd [length of header data]

[header data]

MTrk [length of track data]

[track data]

MTrk [length of track data]

[track data]

...

3.1.2 Header Chunks

The header chunk contains information about the file type, number of tracks and measure-
ment of delta-times.

The header chunk can be represented and broken down as follows:

4D 54 68 64 00 00 00 06 ff ff nn nn dd dd

[chunk type] [length] [format] [ntrks] [division]

■ [chunk type] - represents the four ASCII characters MThd
■ [length] - 32-bit representation of the number 6
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■ [format] - represents the file format, there are three such formats:
0. single track
1. multiple tracks, synchronous (start at the same time)
2. multiple tracks, asynchronous (do no start at the same time)

■ [ntrks] - represents the number of tracks in the midi file
■ [division] - represents the meaning of delta-times. Delta-times are defined as

"ticks" per quarter note. For example, if the division is 96, the eighth note between
two events would be 48.

3.1.3 Track Chunks

Track chunks store the actual song data. In essence, track chunks are streams of MIDI
events that consist of delta-times and MIDI messages.

The track chunk can be represented and broken down as follows:

4D 54 72 6B xx xx xx xx ...

[chunk type] [length] [MIDI event]+

■ [chunk type] - represents the four ASCII characters MTrk
■ [length] - represents the length of the track in bytes
■ [MIDI event]+ - represents one or more MIDI events

3.1.4 Messages

A MIDI message in most cases is a set of 3 bytes that is interpreted in 4 pieces of
information (see Table 1).

Table 1. MIDI Message data

Name Length and Range Description
Status byte 0-15 Type of MIDI message

Channel byte 0-16 MIDI Channel Number

Data byte 1 0-255 First MIDI message data byte

Data byte 2 0-255 Second MIDI message data byte

The message tells the MIDI gear to perform certain types of actions like play a note, change
the volume, add effects, and other types of actions. MIDI messages come in two types:
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channel messages and meta messages. Channel messages present information related to
the control of the musical instrument like the current note playing or synthesizer program
change. There are 16 possible MIDI channels (0–15). Meta messages present information
like instrument name, copyright and lyrics. Here are some common MIDI channel message
types:

Table 2. MIDI Message types

Status Expected Data Comments
8x channel, note, velocity Note Off

9x channel, note, velocity Note On (velocity 0 = note off)

Ax channel, note, value Polyphonic pressure

Bx channel, controller, value Controller change

Cx channel, program Program change (instrument)

Dx channel, value Channel pressure

Ex channel, value Pitch bend

In the context of this project only Note On and Note Off messages need to be extracted.
Both Note On and Note Off messages require note and velocity values that can be repre-
sented in the 0–127 range (see Figure 5).

Figure 5. MIDI notes representation
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3.1.5 Example MIDI File

Figure 6. Twinkle, Twinkle Little Star Score

As an example, the MIDI representation of the first measure of "Twinkle, Twinkle Little
Star" (see Figure 6) is shown below.

Assuming the MIDI file would have only one track, the representation in hexadecimal
would be as follows.

Header chunk:

4D 54 68 64 MThd
00 00 00 06 chunk length
00 00 file format 0 (single track)
00 01 one track in the file
03 C0 960 delta ticks per quarter note

Track chunk:

4D 54 72 6B MTrk
00 00 00 27 length of the track
00 91 3A 4C delta-time 0, Note On
87 40 81 3A 00 delta-time 960, Note Off
00 91 3A 55 delta-time 0, Note On
87 40 81 3A 00 delta-time 960, Note Off
00 91 41 61 delta-time 0, Note On
87 40 81 41 00 delta-time 960, Note Off
00 91 41 53 delta-time 0, Note On
87 40 81 41 00 delta-time 960, Note Off
FF 2F 00 end of track
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3.2 Markov Chains

In probability theory, an event is a set of outcomes of a trial, where each outcome is
assigned a probability [23].

If an outcome of an event does not depend on some other event, these two events are
considered to be independent. For example, the event of getting heads the first time a coin
is flipped and the event of getting heads the second time are independent. In contrast to
independent events, dependent events take into account other events that might influence
the outcome of the current event. The event of getting two heads in a row after the second
time a coin is flipped is dependent on the result of the first flip.

A Markov chain is a stochastic process that satisfies the Markov assumption, in which
the current state depends on only a finite fixed number of previous states [24]. The order
of a Markov chain specifies the number of previous states that the current state depends
on. For example the probability distribution for a first-order Markov chain considers only
the previous state P (Xt|Xt−1), while the second-order Markov chain takes into account
previous two states P (Xt|Xt−1, Xt−2).

Figure 7. First-order Markov chain based on the "Twinkle, Twinkle Little Star" note
sequence
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3.2.1 Music Generation with Markov chains

Markov chains can be used to describe sequences of possible events. The Markov chains
can then be used to generate new sequences of events by sampling from the probability
distributions of consecutive events.

As an example, we can analyze the complete sequence of notes in the "Twinkle, Twinkle
Little Star" melody (see Figure 6). The first-order Markov chain based on the melody can
be constructed as seen in Figure 7. The Markov chain can also be represented using the
following transition matrix:

+−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−−+
| c u r r e n t | Bb | F | G | Eb | D | C |
+−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−−+
| Bb | 0 . 4 | 0 . 6 | 0 | 0 | 0 | 0 |
| F | 0 | 0 . 4 | 0 . 2 | 0 . 4 | 0 | 0 |
| G | 0 | 0 . 5 | 0 . 5 | 0 | 0 | 0 |
| Eb | 0 | 0 | 0 | 0 . 5 | 0 . 5 | 0 |
| D | 0 | 0 | 0 | 0 | 0 . 5 | 0 . 5 |
| C | 0 . 5 | 0 . 1 7 | 0 | 0 | 0 | 0 . 3 3 |
+−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−−+

Each row in the transition matrix above represents the probability distribution of one note’s
transition to the next one, adding up to 100%. For example, the note B♭ transitions to the
note B♭ 25% of the time and transitions to F 75% of the time.

Similarly, the second-order Markov chain based on the "Twinkle, Twinkle Little Star"
sequence can be represented as the following transition matrix:

+−−−−−−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+
| c u r r e n t | F | G | Eb | D | C | Bb |
+−−−−−−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+
| BbBb | 1 | 0 | 0 | 0 | 0 | 0 |
| BbF | 1 | 0 | 0 | 0 | 0 | 0 |
| FF | 0 | 0 . 5 | 0 . 5 | 0 | 0 | 0 |
| FG | 0 | 1 | 0 | 0 | 0 | 0 |
| GG | 1 | 0 | 0 | 0 | 0 | 0 |
| GF | 0 | 0 | 1 | 0 | 0 | 0 |
| FEb | 0 | 0 | 1 | 0 | 0 | 0 |
| EbEb | 0 | 0 | 0 | 1 | 0 | 0 |
| EbD | 0 | 0 | 0 | 1 | 0 | 0 |
| DD | 0 | 0 | 0 | 0 | 1 | 0 |
| DC | 0 . 2 5 | 0 | 0 | 0 | 0 . 5 | 0 . 2 5 |
| CC | 0 | 0 | 0 | 0 | 0 | 1 |
| CBb | 0 . 5 | 0 | 0 | 0 | 0 | 0 . 5 |
| CF | 1 | 0 | 0 | 0 | 0 | 0 |
+−−−−−−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+

Given a Markov chain, a new musical sequence can be constructed by choosing a random
seed note at the start, and then sampling the next note from the probability distribution of
notes at each stage. This process should be repeated until the specified piece duration is
exceeded [25].
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3.3 Magenta MusicRNN

Magenta MusicRNN is an LSTM-based language model for musical notes. It it used for
continuing note sequences that are given as input [26].

The Music RNN can be configured by the number of steps and the "temperature" - the
higher the temperature, the more random and less like the input the output sequence will
be.

Similar to MIDI, Magenta MusicRNN uses an abstract representation of musical sequences
as a series of notes with pitches, durations and velocities [27]. The model expects quantized

sequences as inputs - meaning that the durations are defined as steps (much like delta-times
in MIDI). The durations of steps can be configured per quarter note.

The Magneta MusicRNN exposes a number of checkpoints (different snapshots of the
model [28]):

Table 3. Magenta MusicRNN Checkpoints

ID Description
basic_rnn 36-class MelodyRNN model

melody_rnn 128-class MelodyRNN model

drum_kit_rnn 9-class DrumsRNN model

chord_pitches_improv 36-class melody model conditioned on chords

Compared to Markov chains that generate variations on a particular sequence (by preserving
similar melodic patterns to the source sequence), the Music RNN produces extensions of
the sequence.
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3.4 OSC

OSC (Open Sound Control) is a messaged-based protocol used by computers and synthe-
sizers to exchange musical and control information [29].

OSC data is constructed using following data types:

■ int32 - signed 32-bit big endian integer
■ float32 - 32-bit big endian IEEE 754 floating point number
■ OSC-timetag - 64-bit big endian timestamp
■ OSC-string - a sequence of ASCII characters
■ OSC-blob - an 32-bit integer size count followed by arbitrary binary data

The OSC data is usually sent in packets, utilizing the UDP protocol. Packets contain OSC
messages or OSC bundles. An OSC message contains an address that can be pattern-
matched, OSC type tag and arguments corresponding to the specified type. An OSC bundle
consist of OSC-string #bundle followed by an OSC-timetag and zero or more OSC
bundle elements, that consist of size and contents. The contents of an OSC element can be
an OSC message or an OSC bundle.

Due to it’s simplicity and flexibility OSC is supported by many applications, including
Sonic Pi, Tidal Cycles and Max.

As an example, the OSC message containing the first four note pitches of "Twinkle, Twinkle
Little Star" (see Figure 6) can be represented as follows:

Table 4. OSC Message Example

Property Value Comments
Address /hello/world address path

Argument types ",iiii" four int32 arguments

Arguments 58, 58, 65, 65 four note pitches
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4. Implementation

In this chapter the implementation details are presented, by highlighting the main parts:
architecture, MIDI parsing, internal note sequence representation, music generator imple-
mentations and synchronization with Sonic Pi.

4.1 Architecture

Figure 8. Architecture

The main building blocks of the application are defined as follows:

■ MIDI Parser - handles parsing of MIDI files into internal MIDI representation
■ MIDI Builder - handles building the result of the music generation process into a

MIDI file
■ Generator - handles the music generation process based on source sequences
■ OSC Client - handles sending OSC messages to the specified endpoint
■ OSC Server - handles incoming OSC messages
■ NodeJS [30] CLI Application - handles the main logic of the application and connects

all the components above
■ P5.js [31] Visualizer - handles visualization of note sequences in the browser
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The application has 3 modes that can be defined as follows:

■ DIALOGUE

■ MIDI

■ SEQUENTIAL

In the DIALOGUE mode the messages are exchanged between the application’s OSC
Server and Sonic Pi’s OSC listener in a request/response loop. Sonic Pi makes a request
containing the source sequence and gets an immediate response from the application with
the generated variation based on the source sequence. The sequences are sent as complete
units, utilizing the application’s internal musical notes representation, containing pitches
and durations.

In the MIDI and the SEQUENTIALmodes the application pushes the messages to Sonic Pi,
while Sonic Pi’s OSC listener is waiting for incoming messages. The generated sequences
are based on MIDI source and the main difference between MIDI and SEQUENTIAL

modes is that in the former sequences are being sent as complete units (same as in
DIALOGUE mode), while in the latter sequences are sent as separate notes, containing
only pitch information and the application thread is being suspended for the duration of
the specific note.

Figure 9. Sequential Mode Flow Chart
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In case of the MIDI and the SEQUENTIALmodes, the flow (see Figure 9) can be described
as follows:

1. At start of the application the user is asked to provide some options, including music
generator implementation, MIDI source path, output path and number of outputs

2. Sequences are generated based on the options provided in the previous step
3. The user is presented with an option to send sequences via OSC

■ Sequences are sent to Sonic Pi and step 3 is repeated, in case of confirmation
■ Otherwise, the application exits

Figure 10. Dialogue Mode Flow Chart

In DIALOGUE mode the flow (see Figure 10) can can be described as follows:

1. At the start of the application the user is asked to provide music generator implemen-
tation options

2. The OSC Server is started and begins listening for incoming messages
3. Sequences are generated based on the incoming data and sent back to Sonic Pi
4. The process is repeated until the application is terminated

18



4.2 MIDI Parsing

The current MIDI parser implementation is a modification of the midi-parser-js
library [32], that enables to parse the MIDI file into the internal MIDI representation.

As an example, the raw data of the twinkle_twinkle.midi that is the MIDI repre-
sentation of the first bar of "Twinkle, Twinkle Little Star" (see Figure 6):

4D 54 68 64 00 00 00 06

00 00 00 01 03 C0 4D 54

72 6B 00 00 00 27 00 91

3A 4C 87 40 81 3A 00 00

91 3A 55 87 40 81 3A 00

91 41 61 87 40 81 41 00

00 91 41 53 87 40 81 41

00 FF 2F 00

would be parsed into the following internal JSON representation of MIDI:

{

format: 0, // Single Track File Format

ntrks: 1,

division: { ticksPerBeat: 960 },

tracks: [

[

[ 0, { channel: 1, note: 58, velocity: 76 } ],

[ 960, { channel: 1, note: 58, velocity: 0 } ],

[ 0, { channel: 1, note: 58, velocity: 85 } ],

[ 960, { channel: 1, note: 58, velocity: 0 } ],

[ 0, { channel: 1, note: 65, velocity: 97 } ],

[ 960, { channel: 1, note: 65, velocity: 0 } ],

[ 0, { channel: 1, note: 65, velocity: 83 } ],

[ 960, { channel: 1, note: 65, velocity: 0 } ],

[ 1, {} ] // End of Track

]

]

}

19



4.3 Internal Musical Sequence Representation

The application defines an abstract representation of note sequences that will be used by
the algorithmic music composition implementations.

Similar to MIDI format, notes are represented as pitch in the 0–127 range and duration in
terms of steps. The resolution of steps is defined as steps per quarter note. Additionally, a
tempo representation is defined, indicating the number of beats (quarter notes) per minute.

For example, the first bar of "Twinkle, Twinkle Little Star" (see Figure 6) would be
represented as follows:

{

quantization: { stepsPerQuater: 960 },

tempo: { bpm: 120 },

notes: [

[ 58, 960 ],

[ 58, 960 ],

[ 65, 960 ],

[ 65, 960 ]

]

}
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4.4 Generators

This section presents the Generator interface for algorithmic music composition and
implementations based on two strategies: Markov chains and Magenta MusicRNN.

In order to achieve modularity in the application, the following Typescript [33] interface for
algorithmic music composition is defined that takes the internal representation of musical
sequence as input and returns the same representation as output:

export interface Generator {

/**

* Generator interface for algorithmic music composition.

* @param {Sequence} input Input Sequence

* @return {Sequence} Output Sequence

*/

generate(input: Sequence): Promise<Sequence>;

}

4.4.1 Markov Chains Music Generator

The implementation has following parameters:

■ steps - the number of notes to be generated
■ order - the order of the Markov chain

The initial step is to build a transition graph that can be used for generating music at a later
stage. Internally, an adjacency list is used to represent the graph. Keys in the adjacency list
are notes and have the format pitch:steps.
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The first-order Markov chain for the note sequence in "Twinkle, Twinkle Little Star" (see
Figure 6) has the following transition graph:

Map ( 9 ) {
’ 58 :960 ’ => Map ( 2 ) { ’ 58 :960 ’ => 2 , ’ 65 :960 ’ => 2 } ,
’ 65 :960 ’ => Map ( 3 ) { ’ 65 :960 ’ => 4 , ’ 67 :960 ’ => 2 , ’ 63 :960 ’ => 2 } ,
’ 67 :960 ’ => Map ( 2 ) { ’ 67 :960 ’ => 2 , ’ 65 :1920 ’ => 2 } ,
’ 65 :1920 ’ => Map ( 1 ) { ’ 63 :960 ’ => 2 } ,
’ 63 :960 ’ => Map ( 2 ) { ’ 63 :960 ’ => 4 , ’ 62 :960 ’ => 4 } ,
’ 62 :960 ’ => Map ( 3 ) { ’ 62 :960 ’ => 4 , ’ 60 :480 ’ => 2 , ’ 60 :1920 ’ => 2 } ,
’ 60 :480 ’ => Map ( 2 ) { ’ 60 :480 ’ => 2 , ’ 58 :1920 ’ => 2 } ,
’ 58 :1920 ’ => Map ( 1 ) { ’ 65 :960 ’ => 1 } ,
’ 60 :1920 ’ => Map ( 2 ) { ’ 65 :960 ’ => 1 , ’ 58 :960 ’ => 1 }

}

Each row in the graph, represented as an adjacency list corresponds to the transitions
distribution of a particular note. For example, the note 58:960 transitions to the note
58:960 two times, and two times to the note 65:960.

The graph above can be represented as a transition matrix as follows (please note that the
probabilities in this example are not normalized - not summing up to 1):

+−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−+
| c u r r e n t | 58 :960 | 65 :960 | 67 :960 | 63 :960 | 65 :1920 | 62 :960 | 60 :480 | 60 :1920 | 58 :1920 |
+−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−+
| 58 :960 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 65 :960 | 0 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
| 67 :960 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 |
| 65 :1920 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 63 :960 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 |
| 62 :960 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 2 | 0 |
| 60 :480 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
| 58 :1920 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 60 :1920 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−+

The next and final step is to generate the sequence, based on the transitions graph, con-
structed in the previous step.

■ A random seed note is picked at the start
■ Then at each stage the next note is randomly chosen from the transitions distribution

corresponding to the current note, taking into account the weights of each transi-
tion (for example the note 65:960 from the second row would be chosen with a
probability of 50%)

■ Finally, the next note is returned, while making a recursive call to continue the
process

■ The process is repeated until steps is equal to 0
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4.4.2 Magenta MusicRNN Music Generator

The Magenta MusicRNN Generator implementation utilizes the chord_pitches_improv
checkpoint and has following parameters:

■ steps - the number of quantized steps to be generated
■ temperature - the amount of randomness in the result. Any value above 0 is accepted

and anything above 1.5 will result in random (less like the input) results
■ chordProgression - represents the chord progression the result should be based on

The current implementation is a wrapper around the MusicRNN model class, provided
by the @magenta/music library. Additional mapping is implemented between the
application’s internal musical sequence representation and Magenta’s note sequence repre-
sentation.

The model requires a quantized sequence as input. The first bar of the "Twinkle, Twinkle
Little Star" melody (see Figure 6) would be represented as follows:

{
t i m e S i g n a t u r e s : [ e { n u m e r a t o r : 4 , d e n o m i n a t o r : 4 , t ime : 0 } ] ,
k e y S i g n a t u r e s : [ ] ,
tempos : [ e { qpm : 120 , t ime : 0 } ] ,
n o t e s : [

e {
p i t c h : 58 ,
s t a r t T i m e : 0 ,
endTime : 0 . 5 ,
q u a n t i z e d S t a r t S t e p : 0 ,
q u a n t i z e d E n d S t e p : 4

} ,
e {

p i t c h : 58 ,
s t a r t T i m e : 0 . 5 ,
endTime : 1 ,
q u a n t i z e d S t a r t S t e p : 4 ,
q u a n t i z e d E n d S t e p : 8

} ,
e {

p i t c h : 65 ,
s t a r t T i m e : 1 ,
endTime : 1 . 5 ,
q u a n t i z e d S t a r t S t e p : 8 ,
q u a n t i z e d E n d S t e p : 12

} ,
e {

p i t c h : 65 ,
s t a r t T i m e : 1 . 5 ,
endTime : 2 ,
q u a n t i z e d S t a r t S t e p : 12 ,
q u a n t i z e d E n d S t e p : 16

}
] ,
t o t a l T i m e : 2 ,
q u a n t i z a t i o n I n f o : e { s t e p s P e r Q u a r t e r : 4 } ,
t o t a l Q u a n t i z e d S t e p s : 16

}
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The quantized sequence would in turn be passed to the continueSequence method,
exposed by the MusicRNN model class. For twinkle_twinkle.midi following
parameters could be used:

steps: 100

temperature: 1

chordProgression: ["Bb", "Eb", "Bb", "Eb", "Bb", "F7", "Bb"]

An extended sequence would be returned by the model as output.

4.5 Integration with Sonic Pi

The following section describes the process of integration between the application and
Sonic Pi. In a live coding context the following cases might be encountered when it comes
to synchronization with the platform:

1. no current live loops are playing and there is no necessity to sync the generated
sequence with the beat/metronome (for example, the generated sequence is only
used as a source for sound synthesis)

2. the generated sequence needs to be synced with the current beat/metronome in
context of an ongoing musical piece

In the first case, the application mode SEQUENTIAL can be used. Utilizing the OSC
Client, the notes are sent as OSC messages in real-time, while suspending the current
thread in between for the duration of the note. For example, in case of 120 bpm, the
suspension time can be calculated as follows:

(quantizedSteps/stepsPerQuater) ∗ 500milliseconds

In the second case, generated sequences can be sent as two OSC messages: pitches and
steps (the application modes MIDI and DIALOGUE implement sending the sequences as a
two messages). Additionally, the live loop, playing the generated sequence is synced with
the beat/metronome.

Sonic Pi’s Time State structure is utilized to share information between live loops in a
thread-safe and deterministic way [34]. Time State provides two methods for persisting and
retrieving information from the store: set and get. Time State is also used internally by
Sonic Pi for working with OSC data, allowing Sonic Pi to send and receive OSC messages
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without any configuration. Example of an OSC listener is presented below:

seq = sync "/osc*/gen/sequence"

The /gen/sequence path is a path Sonic Pi uses for the sync listener of incoming
OSC messages. The osc prefix is added by Sonic Pi for all incoming messages. Execution
of the following code is blocked by the listener.

Considering the blocking behaviour of the OSC listeners, the live loop for incoming
generated sequences can be defined as follows:

live_loop :receive_sequence do

use_real_time

seq = sync "/osc*/gen/sequence"

steps = sync "/osc*/gen/steps"

set :sequence, seq.zip(steps)

end

In the loop above, the program is listening for incoming pitches and steps and storing the
data, utilizing Time State store.

Next, a live loop is defined that is acting as a metronome:

live_loop :beat do

sample :drum_bass_soft

sleep 1

end
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As a final step in this synchronization example, a live loop is added that plays the generated
sequence and is in sync with the metronome:

live_loop :play_gen_sequence, sync: :beat do

use_synth :piano

notes = get[:sequence] || []

puts notes

if notes.empty?

sleep 1

else

notes.each do |note, step|

play note, release: 1, amp: 0.4, sustain: 0.5

sleep step

end

end

end

Additionally, the live loop above fetches and plays the next sequence only when the current
sequence is exhausted, being in phase with the metronome. Furthermore, the performer
can add more live loops to continue developing the musical theme.

Besides making sure the live loops are in phase with each other, the duration of the notes
must be a factor of one whole note that is also a power of 2 (since musical notation is
based around the powers of 2 - 1 (whole note), 1/2, 1/4, 1/8, 1/16 etc). To achieve this the
application does additional quantization of the steps, by rounding the steps to the nearest
value from the grid of acceptable values. The resulting values are then normalized to
comply with Sonic Pi’s duration of sleep (for example, sleep 1 - refers to sleep for one
beat).
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5. Running the Application

In this chapter an example on how to generate variations based on MIDI input will be
presented.

The first step would be to copy the code from Sonic Pi Demo Endpoint (see Appendix 2 6)
to an empty buffer in Sonic Pi. The code includes the following:

1. a live loop that is listening for OSC messages containing the generated sequences
2. a live loop that is acting as a metronome
3. a live loop that is playing the piano part
4. a live loop that is playing the generated sequences

After pressing Run in Sonic Pi, the piano part should start playing. The next step is to start
the application.

At the start of the application, the user is presented with multiple modes to choose from.
The mode MIDI will be chosen in this example:

____ ___

/\ _‘\ __ /\_ \

\ \ \L\ \/\_\ ___ ___ ___\//\ \ ___

\ \ ,__/\/\ \ /’___\ /’___\ / __‘\\ \ \ / __‘\

\ \ \/ \ \ \/\ \__//\ \__//\ \L\ \\_\ \_/\ \L\ \

\ \_\ \ \_\ \____\ \____\ \____//\____\ \____/

\/_/ \/_/\/____/\/____/\/___/ \/____/\/___/

? Choose application mode ...

> MIDI

DIALOGUE

SEQUENTIAL
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Next, some options need to be provided including the relative path of MIDI input, the
location of the output files, the number of outputs and name of output file. In this example
the file spiegel.midi is chosen (this file can be found in the midi/ folder in the root
directory of the project repository).

? Please provide the following information

* Source : midi/spiegel.midi

* Out : midi_out/

* No. of outputs : 5

* Name of output file : test_melody

Afterwards the user will be presented with the music generator choice and corresponding
options:

? Choose generator type ...

> Markov Chain

Magenta MusicRNN

* The order of the Markov chain : 2

* Number of steps to be generated : 100

If the MIDI file has more than one track, the user will be presented with the following
question:

? The provided MIDI track includes multiple tracks.

Enter source track number: > 0

By examining the spiegel.midi (see Figure 11) file, it can be seen that the MIDI file
consists of multiple tracks. Since variations on the viola melody will be generated in this
example, the track number zero ("viola") needs to be chosen (the numeration of tracks
starts from zero).
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Figure 11. MIDI file of Arvo Pärt’s "Spiegel im Spiegel"

The application will proceed with generating the sequences and the user will be presented
with a choice of sequences to send via OSC after the generation finishes.

Send sequence via OSC? (y/N) * true

? Choose sequence ...

> midi_out/test_melody_0.midi

midi_out/test_melody_1.midi

midi_out/test_melody_2.midi

midi_out/test_melody_3.midi

midi_out/test_melody_4.midi

The selected sequences will then be sent to Sonic Pi and the incoming OSC messages will
be seen in Sonic Pi’s Cue Viewer:

Figure 12. Sonic Pi’s Cue Viewer

The process of choosing and sending the generated sequence to Sonic Pi can be repeated
until the user types N in the Send another sequence via OSC? prompt.
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Additional steps the user can do in order to experiment with the piece:

■ adding more layers to the musical piece by programming additional live loops
■ manipulating the generated sequence by adding effects and playing around with the

ADSR (Attack, Decay, Sustain, Release) envelope
■ starting another instance of the application with in a different mode or different

music generator implementation
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6. Summary

The main goal of this project was to combine algorithmic music composition and live
coding in a collaborative way. In the process of achieving this goal prior research on
existing software and related work was made, methodologies and tooling were chosen
based on existing standards (like MIDI and OSC) and the application was developed
with SOLID [35] principles in mind in order to be extensible and flexible for future
developments.

The application was developed in NodeJS with Typescript as the backed language, P5.js
library was utilized for the visualizations. MIDI standard was used for input sources.
Integration between the application and Sonic Pi was built, utilizing the OSC protocol,
syncing concurrent live loops and quantizing of note sequences. The Markov chains
algorithmic music composition method was implemented to produce variations on source
sequences. Additionally, a wrapper around the Magenta MusicRNN was implemented as
the second algorithmic music composition method. The application is able to generate
variations from MIDI sources and sequences sent directly from Sonic Pi in real-time, while
being in sync with the live coding platform. Therefore, the main goal of this project is
achieved.

Future developments could include additional implementations for algorithmic music
composition (the Twelve-tone technique, for example), extension of the communication
between the live coding platform and the application and making the solution more generic
in order to be compatible with other live coding platforms (like Tidal Cycles).
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Appendix 2 - Sonic Pi Demo Endpoint

# Coded by V i k t o r Pav lov
# Piano p a r t from Arvo Pä r t ’ s " S p i e g e l im S p i e g e l "

use_bpm 80

s e t : sequence , [ ]

l i v e _ l o o p : r e c e i v e _ s e q u e n c e do
u s e _ r e a l _ t i m e
seq = sync " / osc * / gen / s e q u e n c e "
s = sync " / osc * / gen / s t e p s "
s e t : sequence , seq . z i p ( s )

end

l i v e _ l o o p : metronome do
s l e e p 1

end

w i t h _ f x : r e v e r b , room : 1 do
l i v e _ l o o p : p i a n o _ p a r t , sync : : metronome do

F = ( r i n g : C5 , : F5 , : A5 )
Gm7 = ( r i n g : As4 , : F5 , : G5 )
Bbmaj7 = ( r i n g : D5 , : A5 , : Bb5 )

u s e _ s y n t h : p i a n o
u s e _ s y n t h _ d e f a u l t s s u s t a i n : 0 . 8 , r e l e a s e : 0 . 2 , ha rd : 0 . 1

1 8 . t i m e s do
p l a y F . t i c k
s l e e p 1

end
6 . t i m e s do

p l a y Gm7. t i c k
s l e e p 1

end
2 4 . t i m e s do

p l a y F . t i c k
s l e e p 1

end
6 . t i m e s do

p l a y Bbmaj7 . t i c k
s l e e p 1

end
end

l i v e _ l o o p : p l ay_gen_sequence , sync : : metronome do
n o t e s = g e t [ : s e q u e n c e ] | | [ ]
p u t s n o t e s

i f n o t e s . empty ?
s l e e p 1

e l s e
n o t e s . each do | no te , s t e p |

u s e _ s y n t h : b l a d e
u s e _ s y n t h _ d e f a u l t s amp : 0 . 4 , a t t a c k : s t e p * 0 . 4 , decay : s t e p * 0 . 1 ,

s u s t a i n : s t e p * 0 . 3 , r e l e a s e : s t e p * 0 . 2 , v i b r a t o _ r a t e : 7
p l a y n o t e
u s e _ s y n t h : s q u a r e
p l a y note , amp : 0 . 0 3
s l e e p s t e p

end
end

end
end
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