
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Jevgeni Gavrilov 175458IDDR

Logging and Monitoring System for BBFinance

Group OÜ

diploma thesis

Supervisor: Henn Sarv

 Master’s degree

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Jevgeni Gavrilov 175458IDDR

Logimise ja monitoorimise süsteem BBFinance

Group OÜ-le

diplomitöö

Juhendaja: Henn Sarv

 Magistrikraad

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Jevgeni Gavrilov

04.12.2020

4

Abstract

Purpose of this thesis is to make research and offer monitoring and logging solution, what

will be capable to collect, process, view received information and alert when problems

occur.

Second purpose is to research and analyse most popular existing solutions on market,

what can be capable to solve all problems.

Third purpose is to implement and integrate monitoring and statistics view functionality

into existing Pay Out from Banks process, on these data IT-team should be able to quickly

detect and solve critical problems.

As result this work provides new Monitoring and Logging system structure, what is

capable to amend all existing solutions.

As second result pointed out, that there is no such out of the box solution on market what

can meet all required needs.

Practical part was implemented with user interface in Angular, what collects and

processes statistics and problems based on typical templates (Pending too long).

This thesis is written in English and is 49 pages long, including 9 chapters, 28 figures and

11 tables.

5

Annotatsioon

“Logimise ja monitoorimise süsteem BBFinance Group OÜ-le”

Käesoleva diplomitöö eesmärgiks on uurida ja pakkuda lahendust, mis võimaldaks

ettevõtte BB Finance OÜ-l kõikidest selle portaalidest ja teenustest koguda

informatsiooni, töödelda seda ja kuvada arusaadaval viisil IT-meeskonnale. Selle

süsteemi peamine eesmärk peab olema probleemide tekkimisel saada piisavalt

informatsiooni selleks, et seda kiiresti lahendada. Samas see süsteem peab olema

võimeline varakult hoiatama kui midagi läheb valesti või mõni 3-nda osapoole teenus ei

toimi.

Töö teiseks eesmärgiks on uurida teiste olemasolevate lahenduste sobivust lahendada

üleval mainitud probleeme.

Töö kolmandaks eesmargiks on implementeerida ja integreerida olemasolevasse süsteemi

pankadest väljamaksete loogika monitoorimise ja statistiliste andmete kuvamise. Nende

andmete põhjal IT-meeskond/fima töötajad peavad olema võimelised varakult

väljamaksetega probleeme lahendada.

Töö tulemusena on pakutud monitoorimise ja logimise süsteemi struktuur, mis võimaldab

asendada kõik olemasolevad lahendused, kõikide nende puudustega.

Teiste lahenduste uurimise tulemusena tõin välja et BBFinance Group OÜ süsteemide

puhul puudub selline lahendus, mis kataks kõiki nõudeid.

Praktiline osa, mis korjab, töötleb ja kuvab statistilisi andmeid ning probleemide

olemasolusid sai implementeeritud ja integreeritud olemasolevasse süsteemi.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 49 leheküljel, 9 peatükki, 28

joonist, 11 tabelit.

6

List of abbreviations and terms

API Application programming interface

IT Information technology

OS Operating system

SaaS Software as a service

UTC Coordinated Universal Time

7

Table of Contents
1 Goal ... 10

2 Existing monitoring and logging solutions .. 11

3 Problem .. 12

4 Analysis of existing solutions .. 14

4.1 Analysis of Datadog ... 14

4.2 Analysis of New Relic .. 14

4.3 Analysis of Nagios.. 15

4.4 Summary ... 15

5 Proposed solution .. 17

6 High level design ... 21

6.1 Statistics .. 21

6.2 Diagnostics ... 23

6.3 Implementation ... 24

6.3.1 Module representation ... 25

6.3.2 Collected Module Metric Data .. 26

6.3.3 Fault classification ... 26

6.3.4 Hierarchical project structure .. 28

6.4 Settings configuration ... 37

6.4.1 Monitoring Packet ... 41

6.5 Implementation in detail ... 42

6.6 Testing improvements .. 43

6.7 Monitoring Project structure ... 44

6.7.1 SQL Table structure .. 45

6.8 Used Tools .. 45

7 Practical part .. 47

7.1 Technologies stack ... 48

7.2 Data to be analyzed ... 48

7.3 View and output.. 50

8 Summary .. 51

9 References ... 52

10 Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 53

8

List of figures

Figure 1. Existing monitoring and logging solution. .. 11

Figure 2. Monitoring home page example. .. 17

Figure 3. Example of monitoring Raha24 Outgoing Payments Module. 18

Figure 4. Example of Outgoing payment monitoring view. ... 19

Figure 5. High level design. ... 21

Figure 6. Outgoing payments module example. ... 24

Figure 7. Module structure. .. 25

Figure 8. Fault structure. .. 27

Figure 9. Projects structure. .. 29

Figure 10. Project unique identifiers. ... 30

Figure 11. Project module containers. .. 30

Figure 12. Project modules. .. 31

Figure 13. Project module unique identifier. .. 32

Figure 14. Project module associations. ... 33

Figure 15. Processes. .. 34

Figure 16. Environments. ... 35

Figure 17. Environment topography. .. 36

Figure 18. Settings configuration. .. 37

Figure 19. Settings per environments ... 39

Figure 20. Settings per environments UI example. .. 40

Figure 21. Communication structure. ... 41

Figure 22. Packet structure. .. 42

Figure 23. Monitoring project structure. .. 44

Figure 24. Practical part system to monitor structure. .. 47

Figure 25. Practical part technologies stack. .. 48

Figure 26. Practical part data to be analysed. ... 48

Figure 27. Practical part statistics data. .. 49

Figure 28. Practical part view. .. 50

9

List of tables

Table 1. Datadog, New relic and Nagios comparison. ... 15

Table 2. Existing hardware monitoring. ... 22

Table 3. Existing software OS level monitoring. ... 22

Table 4. Existing software 3rd party monitoring. ... 22

Table 5. Existing software our application monitoring. ... 23

Table 6. Required diagnostics. ... 24

Table 7. Severity table. ... 28

Table 8. Settings configuration comparison. .. 39

Table 9. Monitoring project structure. .. 45

Table 10. Monitoring project environment structure.. 45

Table 11. Used tools. .. 46

10

1 Goal

Primary goal of this work to create architecture of logging and monitoring system for

BBFinance Group.

System should be capable to collect and store all information received from existing

services, store received errors, be capable to make diagnostics to third party services,

show alerts in case of some action should be done, show state of all services and logging

information.

Practical part will cover a part of logging and monitoring system. This will analyze the

business process when loan(money) should be transferred to company customer using

third party bank services, find typical patterns when something is going wrong and

display it to users.

11

2 Existing monitoring and logging solutions

Our current monitoring and logging solution is implemented using different tools from

different vendors. These are all created using different technologies have different ways

of loading and reading data and don’t communicate with each other at all.

Here are how current solutions looks like when combined together:

Figure 1. Existing monitoring and logging solution.

12

3 Problem

There are few problems that current solution has:

▪ No cohesive relationship between different tools. Errors found within Sentry have

no clear corresponding log messages within GrayLog or it’s very hard to find.

Same things goes for hardware – issues reported in Nagios have no clear

relationship with related errors in Sentry.

▪ No clear Alert functionality or it’s very limited. Different tools use different

approaches. Right now, only Nagios has alert functionality, when e-mail is sent

out in case of errors. Sentry sends e-mails as well, but it goes to e-mail and it’s

not clear if it was handled or resolved. GrayLog doesn’t send e-mails out, but there

should be an ability to track metrics and see if something happens (that may not

be an error)

▪ Limited filtering and search functionality. Each tool is using different approach to

find and filter data. This means you need to know exactly what you want to search

for (in case of GrayLog as the search query has to be correctly written for this to

work properly).

▪ Our Application specific code is not monitored or a custom solution is

implemented separately. For example, our business-critical Outgoing Payments

has a diagnostics solution that was implemented with a web page that nobody is

tracking. Any errors that happen there go to Sentry, but delayed payments when

it happens are left unresolved until someone find an issue.

▪ Some errors are not tracked anywhere. For example, Windows Event Logs or SQL

Server logs are not tracked at all. Any errors that happen there are not monitored.

▪ We don’t gather statistics over time, so any changes to the code can potentially

impact existing functionality that we are not aware of, for example a bug can cause

e-mail sending to fail. Because we don’t have a baseline of e-mails that are sent

hourly, we won’t be able to notice any changes.

▪ Different tools show different time zones. For example, GrayLog and Sentry are

showing their time in UTC, this requires developer to deal with date time

conversion to the correct local time zone in order to find correct error message.

▪ Nagios is hosted by partner company so we depend on them, if we decide to start

hosting ourselves, we possibly need to find an alternative.

13

▪ Most of the time troubleshooting issues requires going through local log files or

making requests in database to figure out current state of the issue.

▪ Right now, on one server we have 3 different environments running on the same

machine and writing to the same error log, the configuration setting is different,

but that’s about it. It’s difficult to understand through the logs which environment

has triggered specific error.

▪ Due to mentioned above situations troubleshooting issues is difficult and time

consuming. Developers and IT team don’t usually know if something is broken

until someone notifies us about the situation, by that time a financial damage can

be already done.

14

4 Analysis of existing solutions

There are a lot of monitoring and logging tools available nowadays with rich functionality

for analyzing, troubleshooting and logging.

Some most popular of them are:

▪ Datadog

▪ New relic

▪ Nagios

4.1 Analysis of Datadog

Datadog is paid SaaS based platform with a huge amount of functionality for monitoring,

security and logging.

Key features:

▪ Seamlessly unites metrics, traces, and logs

▪ Aggregate metrics and events from 400+ technologies

▪ Search, analyze, and explore enriched log data

▪ Trace requests across distributed systems and alert on app performance

▪ Seamlessly pivot between correlated data for rapid troubleshooting [1]

4.2 Analysis of New Relic

Same as Datadog, New Relic is SaaS-based monitoring and logging platform.

Key features:

▪ 300+ agents and integrations, including OpenTelemetry, so you can ingest and

store all of your operational data, including logs, in one place

▪ Query with lightning-fast response times

▪ New Relic One + Grafana Dashboards

▪ Real-time alerts

▪ Build custom apps on first class product APIs and components with built-in

hosting [2]

15

4.3 Analysis of Nagios

Key features:

▪ Network Traffic Monitoring

▪ Network Analyzer

▪ Windows Server Monitoring

▪ Linux Server Monitoring

▪ Web Application Monitoring

▪ Application Log Monitoring

▪ Integration availability with many popular services [3]

4.4 Summary

 DataDog New relic Nagios

Windows Server monitoring + + +

Linux Server monitoring + + +

Application monitoring + + +

Business logic monitoring based on

patterns defined by business

- -* -

Custom dashboards + + +

Custom views - -* -

Integration with Sentry, GrayLog,

Nagios

+ + +

Alerts + + +

Diagnostics + + +

Is free - - -

Table 1. Datadog, New relic and Nagios comparison.

* Have React based functionality to create custom views

All mentioned above solutions have all typical functionality for monitoring and logging,

but in case of custom solution I describe in this work there are many lacks that are reason

for refusal to use them:

▪ All these solutions do not provide functionality for creating custom views and

monitor custom business data based on custom patterns (New relic offer near this

16

functionality with react background, but it is not acceptable for BBFinance IT

team – it is .Net/Angular based)

▪ All above mentioned solutions do not have functionality to understand of

Infrastructure of current system used in BBFinance

▪ All these solutions require any admin/programming skill that probably IT team

does not have, my offered solution will use .Net

▪ There is no free solution with required capability set on market

17

5 Proposed solution

The proposed solution aim is to solve previously mentioned problems. Primary objectives

are:

▪ Comprehensive solution that brings different tools together into one easy and fast

to use package.

▪ Logs, Errors, Messages – have a relationship together, that can help developers to

view entire picture and speed up troubleshooting time

▪ Track more places that can potentially help to prevent or troubleshoot existing

issues

▪ If possible, provide enough information so troubleshooting issues by making

direct requests to SQL database will be avoided.

▪ Improve alert system to be able to pro-actively detect issues or react quicker once

they happen

Example of a monitoring home page:

Figure 2. Monitoring home page example.

▪ Primary page is going to show, current state of servers, services, processes and

applications, giving a quick overview over everything.

▪ Clicking on specific element is going to open that element with more details.

BBF

Live Apps Servers:

HELIUM

CPU Process

Outgoing payment: 2

ERRORS

Raha24

Emails:

OK

SMS:

OK

Tasks: OK

LEAD

CPU

LIVE ->

18

Example of monitoring Raha24 Outgoing Payments Module:

Figure 3. Example of monitoring Raha24 Outgoing Payments Module.

The main idea of this page is to give comprehensive and complete overview of the

outgoing payments system. Any issues that are happening can be examined, external

solutions tested.

This page:

▪ Shows current status of payments:

o Payments in queue and their status

▪ Shows history of payments:

o Those that have failed

o Those that have succeeded

▪ Shows statistics:

o Average time to perform the payment workflow, with a breakdown for

each stage

o Sum transferred

▪ Shows performance of the related servers (where payments are going to be used)

▪ Shows external APIs that are used with Outgoing Payments and ability to test their

status (Diagnostics)

BBF -> Payments -> Outgoing

Servers:

HELIUM

CPU Payments list

Pending Payments:

1235 – Cd – 26.05.2020 – Raha24 –

(BANK_UPLOAD)

1235 – Cd – 26.05.2020 – Avanss –

(CALLBACK)

Failed Payments:

1236 – Abc – 25.05.2020 – Raha24 –

(CALLBACK)

Successful Payments

1235 – Cd – 26.05.2020

OK

Last 24 hrs:

BANK_UPLOA

D = 21

CALLBACK =

1

Pending:

SEB

Gateway

Status: OK

Test

R24: 12 Pending: AV: 1 BBFS:

Alert

LIVE ->

19

▪ Allows to configure alerts for specific events and situations.

To troubleshoot specific issue, you can click on a specific Payment and get

comprehensive information about its status:

Figure 4. Example of Outgoing payment monitoring view.

The following page is going to show entire progress for the payment, starting with

originator (Raha24, Avanss) and all the way back. The information for the request is

retrieved and displayed.

Main features of the page:

▪ Shows current step where process is (yellow) and previous steps (green), where

process was. Upcoming steps will be shown in gray color.

▪ Each step has additional information with payment details

BB -> Payments -> Outgoing -> ID {1221-1221DDA-122211-DDASD} LIVE ->

Raha24

BBFS –

BANK_UPLOAD

BBFS –

BANK_REQUEST

SEB GATEWAY

BBFS -

CALLBACK

Raha24

Initial info:

Person: {“abc ded”}

Sum: 200 EUR

LoanId: {1234123}

BANK_REQUEST:

25.05.2020 18:10

Bank Request: {ASDADASDASDADS}

BANK_UPLOAD

25.05.2020 18:00

Bank File: {ASDADASDASDADS}

QUEUE STATUS: 1 of 5

⟲

20

▪ Some steps can contain clickable details (Person, LoanId) clicking on this link

will open another window where it can be searched within logs or error messages.

21

6 High level design

Consists of two parts: Statistics and Diagnostics

Figure 5. High level design.

6.1 Statistics

To monitor data, we need to gather statistics from Hardware and Software parts of the

Server. Gathered statistics should have enough information to troubleshoot the issue,

these should contain Id, ref code, exception message, input arguments, etc.

Things to gather:

Hardware

3rd Party software

(SQL, IIS)

Raha24

(our application)

Software (OS)

Hardware

Server

Statistics Diagnostics

External service

22

Metric Tool Description

Disk Space Tool_Nagios

CPU Usage Tool_Nagios

RAM Usage Tool_Nagios

Table 2. Existing hardware monitoring.

Software OS Level

Metric Tool Description

EventLogs - Event logs are generated

when unexpected error

happens. Right now, we

don’t have a tool or anything

that can gather this

information

Services Tool_Nagios List of running/not running

services

Applications – Memory /

CPU Usage

- Right now we don’t track any

of this information, however

it will be valuable for

troubleshooting purposes

Table 3. Existing software OS level monitoring.

Software 3rd Party

Metric Tool Description

SQL Server – logs, locks,

errors

- SQL Server performance is

essential, we had and still

have some issues with

deadlocks or timeouts.

IIS Server – logs, errors - IIS issues are not typical, but

having good logs can help in

troubleshooting IIS issues or

figuring out if our server is

under attack

Docker – logs, status - Deployment results, anything

else related to that

Table 4. Existing software 3rd party monitoring.

Software – our applications

23

Metric Tool Description

App - Web status Tool_Nagios Status check to see if web

application is offline

App - Certificate validity Tool_Nagios Checks validity of

certificates if they have

expired

App – Messages Tool_GrayLog Messages will go to GrayLog

most of the time

App – Errors Tool_GrayLog

Tool_Sentry

Local file system logs

Most errors go to Sentry, but

some are still written to the

local file or go to Event log.

This has caused issues in the

past, since we couldn’t track

this properly

App – Business Logic stats - This is something that can be

used to monitor and show

current activity of the

application:

Number of active users

State of the cache – MB

(elements)

Currently running tasks

Number of errors

Number of received

payments

Number of items in queue

Number of sent payments

Auto accept process

Lots more..

Table 5. Existing software our application monitoring.

6.2 Diagnostics

Diagnostics is used mostly for troubleshooting purposes, to validate if existing service is

working as expected or not. This can be integrated into build process to perform

automatically. The diagnostics can check our system or external systems.

24

Right now, the only diagnostic activity is performed by Tool_Nagios to test if our

websites are offline.

The following things might need to be added to diagnostics:

Metric Tool Description

App - Web status Tool_Nagios Status check to see if web

application is offline

App – Validate e-mail

sending

 Test to send an example e-

mail

App – Validate test payment Test to send a payment or at

least test that API is replying

something

App – Validate send SMS Test that SMS sending is

working

App – Validate Restful API Test that restful API is

working

Table 6. Required diagnostics.

Basically, anything that supposed to work that we can verify.

6.3 Implementation

Implementation can be modular. Whenever new development is made a diagnostics and

statistics module is created that can be used later.

Figure 6. Outgoing payments module example.

Outgoing Payments

Statistics - Module

Diagnostics -

Module
Implementation

Monitoring

25

Here, the original implementation is left unchanged, additional modules are added:

▪ Diagnostics module, will allow Monitoring to trigger diagnostics requests

▪ Statistics module, will gather statistics information and provide it to Monitoring

module

6.3.1 Module representation

Each module is further broken down into parts, with additional information transferred:

Figure 7. Module structure.

▪ Diagnostics is going to be called on demand to test the implementation. There are

very few places where this is implemented.

▪ Statistics is going to be used to collect and send:

o Exception messages or other errors. Right now, this is done with

Tool_Sentry

o Log messages. Right now, this is done with Tool_GrayLog

o Send state information (if applicable). This is made with a custom solution

in some places.

Outgoing Payments

Module

Statistics – Module

(Exceptions)

(Message logging)

(State info)

Diagnostics - Module

Implementation Monitoring

Current State

Server Software / OS

State

Server Hardware State

C
o
m

m
u

n
ic

a
ti

o
n

 L
a
y
er

Packet

26

▪ Additionally, “OS State” and “Server Hardware State” information is going to be

associated with statistics, this allows later to filter out statistics by hardware/OS

software

▪ Communication Layer is used to send and receive packets from/to other modules:

o When module is started, it’s going to notify the Monitoring that it’s ready

to receive messages

o When module is stopped, it’s going to notify the Monitoring that it’s no

longer receiving messages

o The communication is done through Monitoring Packets

6.3.2 Collected Module Metric Data

Each module collects data to one of the Collected Module Metric tables in Slave database.

Collected data can come from different modules.

6.3.3 Fault classification

Whenever a failure occurs inside a module, we need to classify it and log it.

This is very important, as depending on the classification appropriate action can be taken.

Correct classification notifies others about severity of situation and urgency of the issue,

thus reducing impact of the fault on the systems.

Here is an example of a Fault structure:

27

Figure 8. Fault structure.

Fault can contain the following details (it’s going to be automatically associated with

correct module Id when sent to Monitoring):

▪ Message – Error message

▪ Resolution – Indicates a possible resolution for this specific problem. For

example, if there is missing App.config setting somewhere, explain what needs to

be added and where. This is going to be very helpful when troubleshooting this

issue in the future.

▪ Severity – (1..5) – Indicates importance of this issue. Anything above 3 should be

taken into work and resolved, anything below may be ignored (for example

temporary deployment errors, etc.)

▪ Exception Data – Additional exception data (Optional). It’s recommended to

include additional information that can be used to troubleshoot an issue. For

example, if failure happened during a Loan application process, PersonID in the

system can be included as well as loan application details.

▪ Stack Trace – Stack trace where error has happened (Optional)

Outgoing Payments Module

Statistics – Module

(Exceptions)

(Message logging)

Implementation

Monitoring

Fault

Exception ->

28

Severity table:

Fault Severity Action Action

1 Ignore Issue that is known to be a temporary situation and

should be ignored

2 Ignore / Fix Issue that can happen in some situations but may not be

a problem that needs to be fixed

3 Fix Issue that impacts a system and should be fixed.

4 Fix High priority issue, impacts existing system and should

be taken into priority.

5 Fix Critical issue, should be solved ASAP

Table 7. Severity table.

Advantages:

▪ Having a fixed severity defined for every possible fault situation, can indicate

exactly how important specific issue is.

▪ This can also be used to automatically create a Work Ticket or Task when fault

happens, so that someone can start troubleshooting it right away.

▪ Having a clear and specific resolution text included with fault can cut time in the

future when this issue happens again, especially if this issue is unfamiliar for the

developers.

6.3.4 Hierarchical project structure

Applications and projects are created with hierarchical structure, the relationship is

defined to have a clear association between elements

29

6.3.4.1 Projects

Figure 9. Projects structure.

The structure is divided into:

▪ Projects – Project that will be monitored and can be added by developers

▪ Special – Special project used by monitoring itself. It is divided also into Master

and Slave

6.3.4.2 Project Unique identifier

Each project is uniquely defined by Id, Id of Module is created dynamically based on the

hierarchical structure. It’s possible to define Id manually for each module or use a random

number. Module Id must be of 2 symbols.

BB Finance

Current Projects

Raha24 BBFS Avanss BongaBonga

Retired Projects

Projects

External

Messente

SMS

Special

Monitoring

30

Figure 10. Project unique identifiers.

For example Raha24 project will have a unique key of ‘PrBBCP24’ if we want to filter

out all metrics collected for all Current Projects we can use a SQL filter statement

WHERE like ‘PrBBCP%’ which should be fairly efficient to do if there is an appropriate

index created.

6.3.4.3 Project Module Containers

Project module containers is used to define how project modules are hosted (i.e. where

are they running on OS Level) and how they communicate with each other on the project

level. These need to be defined first before any modules are defined.

Figure 11. Project module containers.

BB Finance

Current Projects

Raha24 BBFS Avanss BongaBonga

Retired Projects

Projects

External

Messente

SMS

Special

Monitoring

Sp

SpMo

Pr

PrXT

PrBB

PrXTMe

PrXTMeSM

PrBBRP

PrBBRPB

B

PrBBCP

PrBBCPF

S

PrBBCP24 PrBBCPA

V

(Windows) IIS Hosted

(Windows) Service

(Windows) SQL Server

Web

Business Logic SQL Database

Tasks

(Windows) Application

Back Office

Raha24

31

6.3.4.4 Project Modules

Modules are defined as hierarchical structure to distinguish unique functionality that we

want to monitor.

Figure 12. Project modules.

6.3.4.5 Project Module Unique identifier

Each Module need to define a unique identifier that will be used. This Id will be unique

and should not be shared with others. The Id starts with project name and is delimited,

the remaining parts are max 2 chars long.

For example:

Raha24

Email

Outgoing

Payments

Incoming

SMS

Tasks Business Logic Web

Public

RestfulApi

Lead

Callback

Outgoing

Payments BankLink

Module Containers

Modules

32

Figure 13. Project module unique identifier.

6.3.4.6 Project Module associations

Each module can be configured to show relationship with other modules. In this example,

R24 OutgoingPayments sends a request to BBFS that is going to send a callback to R24

RestfulAPI Callback

Raha24

Email

Outgoing

Payments

Incoming

SMS

Tasks Business Logic Web

Public

RestfulApi

Lead

Callback

Outgoing

Payments BankLink

Module Containers

Modules

PrBBCP24 - Project Uid R24. - Module Uid

R24.BL R24.Ta R24.We

R24.BLP

a

R24.BLPaIn R24.BLPaOu

Step

R24.BLPaOuSt

R24.TaEm R24.TaSm R24.WePu R24.WeLe

R24.WeRe

R24.WeReC

a

R24.WeReCaBL R24.WeReCaPa

R24.WeReCaPaOu

Step

R24.WeReCaPaOuSt

33

Figure 14. Project module associations.

6.3.4.7 Processes

Processes are used to combine or group multiple modules from different projects

together into one.

Outgoing Outgoing

Raha24

Business Logic

Payments

Web

RestfulApi

Callback

Outgoing

Payments

BBFS

Service

Payments

34

Figure 15. Processes.

6.3.4.8 Environments

Environments can be created to group Projects or other modules together but separate

them depending on requirements. Environment is the source that will receive monitoring

data.

Outgoing

Processes

Payments

Outgoing Outgoing BBFS Raha24

Outgoing Avanss

35

Figure 16. Environments.

Each environment should be independent of another: different databases, preferably

different servers, but technically there is no restriction and multiple environments can be

running from the same machine and share same SQL Server.

This is very similar how current test server has 3 test environments, but it’s defined very

loosely.

Because environments are separated for Monitoring and Diagnostics, all errors and

messages are going to be already filtered by the environment, so it is easier to understand

when troubleshooting.

Environments can be potentially controlled in the future, such as mass actions can be done

for all the projects within that environment:

▪ Restore database

▪ Start/Stop all services

▪ Deploy latest version

Environments

Live

Raha24

Analytics

Kiirlaenud

Test

Stage Automatic Primary

Project modules included under environment definition:

Raha24

Avanss

Raha24

Avanss

BBFS

Manual

Raha24

Avanss

Payments

Messente

36

6.3.4.9 Environment topography

Once Project Module associations is configured for each project and associations are

defined, the entire environment topography can be displayed along with information

gathered about current location where software is running and it’s state:

Figure 17. Environment topography.

SMS

Messente

Raha24

BusinessLogic: IIS – PID [123]

Outgoing Payments

BBFS – PID [321]

Tasks: Tasks.exe – PID [345]

SMS

Payments Incoming

☑

☑

☒

Errors !

Primary

BBFS

Windows - Lead

Linux - Iron

37

6.4 Settings configuration

To improve and simplify configuration of Environments or Projects, it will be possible to

set specific settings depending on the requirement:

Figure 18. Settings configuration.

The configuration settings are applied in this order:

▪ App.config = default value

▪ App.CobaltDeploy = Overrides previous value during deployment

▪ Monitoring – Environment – Override previous value with global environment

value

▪ Monitoring – Project – Override previous value with project specific value

▪ Monitoring – Server – Override previous value with server specific value

This way, if there are tools or endpoints that are used by many projects, these can be

defined once per environment and automatically re-used by all the projects within that

environment.

Environments

Live

Raha24

Test

Stage Primary

Raha24

Payments Payments

SMTPHost =

smtp.bbfinance.ee.DISABLE

D

SMTPHost =

smtp.bbfinance.ee

Settings can be configured for each environment

and Project separately:

38

Compared to previous system for Raha24:

Before After
<applicationSettings>

 <BusinessService.Properties.Settings>

 <setting name="DOMAIN" serializeAs="String">
 <value />

 </setting>

 </BusinessService.Properties.Settings>

<Nortal.Utilities.MessenteSms.MessenteConnectionSetti

ngs>
 <setting name="SuppressSmsSending"

serializeAs="String">

 <value>False</value>
 </setting>

 <setting name="UserName" serializeAs="String">

 <value>12345USERNAME</value>
 </setting>

 <setting name="Password" serializeAs="String">

 <value>12345PASSWORD</value>
 </setting>

</Nortal.Utilities.MessenteSms.MessenteConnectionSett
ings>

 </applicationSettings>
 <appSettings file="_localConfig\appSettings.config">

 <add key="InkassoKeskusUsername"

value="12345USERNAME" />
 <add key="InkassoKeskusPassword"

value="12345PASSWORD" />

 <add key="IMakseServiceFeePercent" value="0.01"/>
 <add key="IMakseMinServiceFeeEur" value="0.2"/>

 <add key="SentryDSN" value="" />

 <add key="ClientSettingsProvider.ServiceUri"
value="" />

 <!-- Supress SMS -->

 <add key="SuppressSMS" value="True" />
 <!-- Amount of months after loan end that user is still

regular customer -->

 <add
key="RegularCustomerWhenLoanEndedXMonthsAgo"

value="3" />

 <add key="RespLendingPensionCutoffDays"
value="45" />

 <add key="RespLendingMaxPaymentRatio"

value="88" />

 <add

key="RespLendingManualConfirmMonthlyLimit"

value="500" />
 <add key="RespLendingManualCheckCreditLimit"

value="500" />

 <add key="RespLendingNoEvkCreditLimit"
value="500" />

 <add key="RespLendingEvkTimeoutDays"

value="14" />
 <add key="RespLendingEvkMinimum" value="350"

/>

 <add key="AllowCreditLimitIncrease" value="false"
/>

 <!-- Files -->

 <add key="FilePath" value="C:\PortalFiles\Raha24\"
/>

 <!-- Instantor -->

 <add key="InstantorEnvironment" value="test" />
 <add key="InstantorSourceName"

value="12345USERNAME" />

 <add key="InstantorApiKey" value="12345APIKEY"
/>

<appSettings file="_localConfig\appSettings.config">

 <add key="MonitoringRouterEndpointUrl"

value="http://router.monitoring" />
<add key=”ProjectId” value=”Project1234556”/>

</appSettings>

• NOTE: All other settings are declared

on the monitoring side for specific

project:

• Or module level:

BBF -> Raha24 -> IK

Project settings

Save

TEST -> Stage

InkassoKeskusUsername = 12345USERNAME

InkassoKeskusPassword = 12345PASSWORD

IMakseServiceFeePercent = 0.01

BBF -> Raha24

Project settings

Save

TEST -> Stage

FilePath = C:\PortalFiles\Raha

24\ WebPageBaseUrl = http://localhost:56

534/ WebRestfulApiBaseUrl= http://cobalt:8100/

RationalLendingEnableEvkCheck = False

39

Table 8. Settings configuration comparison.

How this is beneficial:

▪ For example, having an e-mail whitelist defined for the entire environment. This

way adding new user to the white list doesn’t require any code changes and is

almost instant, may not even require a service restart

▪ Disable or override configurations on the fly, if there is a need to Turn Off specific

feature or change time, it can be done almost on the fly without re-deployment

▪ One single place for all the settings, simplifies maintenance as it’s a single source

of truth. All existing config values can be shown as well so that it’s always going

to show current valid value.

▪ In theory, since we know exactly where specific Project is running, the settings

can be generated automatically and wouldn’t require any configuration changes

to be done at all.

For example: setting for e-mail sending SMTP host, can be configured with different

values for different environments. It’s going to be picked automatically by all projects in

that environment.

Figure 19. Settings per environments

Example for the UI:

Environments

Live

Raha24

Test

Stage Primary

Raha24

Payments Payments

SMTPHost =

smtp.bbfinance.ee.DISABLED

SMTPHost =

smtp.bbfinance.ee

One setting value can be defined per environment and

re-used automatically by all projects inside it

Avanss Avanss

40

Test -> Stage Live -> Primary

Figure 20. Settings per environments UI example.

Unified Project communication structure

To simplify communication between different project, the following structure is

proposed. Monitoring router can be used as P2P mediator that either routes messages

between projects or establishes communication between them. This is similar to what we

have done already with Integrator / Data Integrator, but this solution is more unified and

project agnostic. Basically, it is endpointless.

The advantages:

▪ Single endpoint URL to configure against – only monitoring endpoint is needed,

no other endpoints are needed

▪ The communication API and packet format are simplified and standardized, so all

messages are going to have the same structure

▪ All messages and communicates within environment are contained within that

environment and can be logged or saved for troubleshooting.

▪ Gather statistics per module – how many requests were received, failed, etc

▪ Each module can expose a set of API that it supports. This allows module API to

be checked and verified without making any requests.

▪ Project modules can be checked if they are operational, as they are going to signal

when they’re online or offline. This means we can see which projects are

online/offline in real-time.

BBF -> Raha24

Project settings

Save

TEST -> Stage

SMTPHost = smtp.bbfinance.ee.DISABLED

BBF -> Raha24

Project settings

Save

LIVE -> Primary

SMTPHost = smtp.bbfinance.ee

41

Disadvantages:

▪ Single point of failure, can be mitigated by adding a load balancer.

▪ Potential performance impact if Router is heavy and slows down packets.

Example (project level):

Before After

Figure 21. Communication structure.

6.4.1 Monitoring Packet

To communicate between projects a monitoring packet is used, the contents of the packet

are:

Raha24

Avanss

Payments

Each project has to have multiple endpoints

defined for each project it wishes to

communicate with

Raha24

Avanss Payments

Monitoring

Router
Packet

Source: Raha24 -> Outgoing Payments

Destination: BBFS -> Outgoing Payments

Payload: Send outgoing payment (JSON)

Environement: Test -> Stage

42

Figure 22. Packet structure.

Packet will be sent out to router, since Router knows Endpoint Urls of all the projects it

will be able to route this message to the right Project, which will then take and process

the message and trigger a callback.

Since Monitoring knows what modules are on-line, any packets that haven’t been

delivered will be known and reported.

6.5 Implementation in detail

When module is used to receive or sent communication it can be in different

communication states. Modules that are not used for communication do not have exposed

methods.

Module communication status:

▪ Unknown – Module is unknown state (typically it hasn’t been started)

▪ Starting - Module is started but is waiting for dependency to become enabled

(dependency need to be in either Started or Starting status)

▪ Started – Module has started and is ready to receive communication packets

▪ Failed – Failure occurred within a module and it is unable to communicate

▪ Stopped – Module has stopped and cannot receive communication packets at the

moment

Source Module Id

Packet

Destination Module

Id

Payload JSON

Raha24 Payments

Payments BBFS

• This packet is calling BBFS

Payments module to send

outgoing payment

• Request data is included in

Payload JSON

• When callback is made Source

and Destinations are reversed

and response is added to

Payload JSON

43

Every change in the module status will be sent out to Monitoring Agent, so it’s always

going to know accurate and up-to-date state of every module in the environment.

Occasionally Agent is going to send ping requests to verify current status of the module

and if it’s still Online.

As defined in Project Module associations dependent modules are going to be started and

stopped automatically if their dependency has been started or stopped.

For example, if Project BBFS is started, the following is going to happen:

1. (R24 -> Incoming Payments) [Stopped] – (BBFS -> Incoming Payments) [Stopped]

2. (R24 -> Incoming Payments) [Stopped] – (BBFS -> Incoming Payments) [Starting]

3. (R24 -> Incoming Payments) [Starting] – (BBFS -> Incoming Payments) [Starting]

4. (R24 -> Incoming Payments) [Started] – (BBFS -> Incoming Payments) [Started]

For example, if Project BBFS is stopped, the following is going to happen:

5. (R24 -> Incoming Payments) [Started] – (BBFS -> Incoming Payments) [Started]

6. (R24 -> Incoming Payments) [Started] – (BBFS -> Incoming Payments) [Stopped]

7. (R24 -> Incoming Payments) [Stopped] – (BBFS -> Incoming Payments) [Stopped]

Modules that have circular dependency can be started even if another module is offline,

but they will only send requests if dependent module is online (Starting status).

6.6 Testing improvements

For testing, separating environments are going to be a key. By separating environments

and creating them independently, it’s going to allow us to gather information from all the

defined projects in that environment and nothing else.

A typical testing scenario can look like that:

8. When starting testing, correct version will be deployed (version under test)

9. Database will be restored with clean mocked data

10. Monitoring will reset collected data state for that environment

11. Testing will be performed (automatic or manual)

12. Testing will be completed, data generated by the monitoring will be presented

44

13. Potentially, results can be saved and compared against previous testing runs (logs,

errors, performance)

6.7 Monitoring Project structure

The following describes structure of monitoring project itself.

Figure 23. Monitoring project structure.

Monitoring is part of its own custom Environment “Monitoring”, this is used to make it

unique and independent of other environments. The project itself consist of:

Stage Description

Web UI Web project that can be accessed through the browser and can be

used for monitoring other environments.

Monitoring Web

Service

Business logic, that is going to connect to other Monitoring database

instances to retrieve values or perform tasks (diagnostics)

Master DB Is going to be used to keep configuration settings or other

information that are required to manage other monitoring

BBFS Raha24

Web Service

BBFS Raha24

Packet Packet

Web UI

Environment: Test -> Stage Environment: Live ->

Primary

Environment: Live ->

Monitoring

Agent Agent

Master DB

Slave DB

(stage)

Slave DB

(live)

45

environments. Overall, it’s going to be very light and doesn’t need to

have a lot of data in the first place. Most data is stored on the

Environment Slave DB itself.

Slave DB* One or many databases created for each environment. Each

environment is going to have a separate database where their data is

stored. Database are created dynamically through the UI with a

script.

Table 9. Monitoring project structure.

Each Environment, contains the following:

Stage Description

Projects that will be

monitored (with

Modules)

Monitoring Router Will be used to exchange communication between different projects.

Monitoring Agent Is used to receive or gather information (hardware/software) and

write this information to the Monitoring DB. Everything that goes to

Slave DB goes through the Agent first.

Monitoring Packet Is a packet with information that is exchanged between different

modules.

Table 10. Monitoring project environment structure.

6.7.1 SQL Table structure

As mentioned above, there are database for Master and Slave environments.

Slave environments collected data from Modules, but also keep association with different

places, so that it can be easily analyzed in the future.

6.8 Used Tools

Tool Description

Nagios https://nagios.primendcloud.com/nagios/

Tool to monitor hardware infrastructure.

Hosted by Primend

GrayLog Collects messages from our applications

Sentry https://sentry.io/organizations/bb-finance-

group-ou

https://nagios.primendcloud.com/nagios/
https://sentry.io/organizations/bb-finance-group-ou
https://sentry.io/organizations/bb-finance-group-ou

46

Collects error messages from our applications

Datadog Monitoring and logging platform

New Relic New Relic

Table 11. Used tools.

47

7 Practical part

Practical solution is monitoring one of the business processes called “Outgoing

payments”, this means when loan is created customer need to receive his loan as money

through bank, this is done automatically using different third-party bank’s APIs.

Our WEB Api service PaymentsApi consists of many queues, through them data received

from portals is moving step by step till payment is successfully paid out or failed. This is

quite complicated process, what is working asynchronously, and that’s why it’s needed

to be monitored for any delays and errors. Practical solution will monitor some most

important patterns and make statistics based on different sets of statuses from different

queues.

New view with monitoring and statistics data will be included into existing Backoffice

system written in Angular.

Figure 24. Practical part system to monitor structure.

Raha24

BongaBonga

Kiirlaenud

Ege

PaymentsApi

Payout

request

Send to

bank

queue

Callba

ck

queue

Status

queue

48

7.1 Technologies stack

Used part Technology

Service .NET Core 2.2

GraphQL

View (Front-End) Angular 6.1.7

Angular-redux 9.0.1

Ag-grid-angular 19.1.1

rxjs

Figure 25. Practical part technologies stack.

7.2 Data to be analyzed

To create analyze and make conclusions, all queues and data should be taken into account.

Analyzing and statistics result are created mainly on statuses and their combinations on

entities in related tables of database

Figure 26. Practical part data to be analysed.

PaymentsApi

Send to

bank

queue

Callback

queue
Status

queue

Data to be

monitored

Angular view

Monitoring

statistics

information

49

Next statistics is taken:

Statistics name Statistics description

Upload pending Number of outgoing payments what are taken into processing and

waiting to be paid out

(a => a.Queue.Status != QueueStatus.Failed &&

a.Queue.Status != QueueStatus.Done)

Upload sent Number of outgoing payments sent to bank API for pay out

(a => a.Queue.Status == QueueStatus.Done)

Upload fail Number of outgoing payments failed to be sent to bank API

(a => a.Queue.Status == QueueStatus.Failed)

Status request pending Number of outgoing payments, what status requesting is in

progress

(a => a.OutgoingPaymentStatuses.Any(s =>

s.Queue.Status != QueueStatus.Failed && s.Queue.Status

!= QueueStatus.Done)

Status request success Number of outgoing payments, what status requesting successfully

finished

(a => a.SourceCallbackStatus ==

SourceCallbackStatus.Success)

Status request fail Number of outgoing payments, what status requesting failed

(a => a.SourceCallbackStatus ==

SourceCallbackStatus.Fail

 && a.OutgoingPaymentStatuses.Any())

Callback pending Number of outgoing payments, what callback is in progress

(a => a.OutgoingPaymentCallbacks.Any(s =>

s.Queue.Status != QueueStatus.Failed && s.Queue.Status

!= QueueStatus.Done) && a.SourceCallbackStatus ==

SourceCallbackStatus.Pending)

Callback success Number of outgoing payments, what callback successfully finished

(a => a.SourceCallbackStatus ==

SourceCallbackStatus.Success)

Callback fail Number of outgoing payments, what callback failed

(a => a.OutgoingPaymentCallbacks.Any(s =>

s.Queue.Status != QueueStatus.Failed && s.Queue.Status

!= QueueStatus.Done) && a.SourceCallbackStatus ==

SourceCallbackStatus.Pending)

Figure 27. Practical part statistics data.

50

7.3 View and output

View is implemented using Angular and for grid drawing Ag-Grid Angular.

View is refreshed every 2 seconds with rsjx observables to receive updated information

from API.

View is divided into two parts:

14. Statistics part

15. Monitoring part

Figure 28. Practical part view.

Statistics

Monitoring

51

8 Summary

In this proposed solution or new monitoring and logging system concept I described

structure, made comparison with existing solutions and implemented practical part.

In comparison there were three most popular solutions taken, what could meet our needs

and as result found out, that there is no such. The biggest problem with all of them, that

they store data as they want, they show data as they want, and process it as they want, but

storing data architecture should be done on company’s side to provide opportunity to

process data and show to users as we want.

New system should be structured by projects, project modules, module containers and

modules, all this will support full information of the problem: where did it occur, what

software was this module running on, state of this software at this time, hardware

information, other connected module information and based on this data appropriate

action can be taken.

For implementing this concept to real system next point should be analyzed:

▪ Complexity of the system

▪ Time/programmers needed for implementation

▪ Possibility of implementation “step-by-step”

▪ Possible technical issues

Prototype creation most probably will answer these questions.

Presented practical part of this work is already used to monitor most critical parts of

business: money transfer operations. When transfers are in fault state or complies with

implemented in work pattern (pending too long in bank), then users can act accordingly

to resolve these problems and make customers happy.

Based on this work prototype system will be implemented and full implementation future

will be decided.

52

9 References

[1] https://www.datadoghq.com/product/ (2020)

[2] https://newrelic.com/platform/ (2020)

[3] https://www.nagios.com/products/ (2020)

https://www.datadoghq.com/product/
https://newrelic.com/platform/
https://www.nagios.com/products/

53

10 Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Jevgeni Gavrilov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis ”Logging and monitoring system for BBFinance Group OÜ”, supervised by

Henn Sarv

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

04.12.2020

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

