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Introduction

It is well established that electrical energy is one of the cornerstones of modern civilization.
Currently, there is a multitude of electricity production methods in use, ranging from fossil
fuel energy production to nuclear and green energy. Many methods have immediate negative
consequences, such as waste products being released into the surroundings, and long-term
negative consequences, the most alarming of which is climate change. To negate or at least
minimize these problems, a large effort is being made to transition to electricity production
methods known as green energy.

Like all methods, green energy has its drawbacks. Output energy inconsistency is one of
them: production rate changes greatly seasonally and daily, and often these changes can be
unpredictable. Accounting for these variations is not a trivial task: large-scale energy storage
is problematic due to high costs and land use. Moreover, if energy production or storage is
distributed over a large area, there is a need to create a distribution network, which is limited
by energy loss in power lines.

Most green energy production methods are based on natural or artificial heat exchange
processes. Geothermal energy is acquired from the Earth’s hot core, solar energy is received
from heat radiated from the sun, and winds and currents are a result of convective heat
exchange in the atmosphere and hydrosphere. However, direct production of energy from a
temperature gradient is more complex. [1]

Often mechanical methods are used, where heat energy is transformed into mechanical energy,
either artificially or naturally. These methods require large temperature gradients to produce
meaningful amounts of electricity. A large portion of energy is used to compensate for
mechanical losses.

Since a lot of waste heat is dissipated into the environment but the temperature gradients in
these cases are usually small, a generator that works from a small thermal gradient near
room temperature would allow the consumption of this potential energy [2]. Although
the thermoelectric effect is theoretically an efficient solution at low temperature gradients,
the real efficiency is limited by parasitic heat transfer in the conductive wires. For high
efficiency, the wires would need to be good electrical conductors and good thermal insulators
simultaneously, which are fundamentally contradictory requirements.

Another potentially applicable method is based on temperature oscillation around the Curie
temperature of a ferromagnetic material. Since at this temperature point, the magnetic
permeability of a ferromagnetic material changes drastically, it is possible to achieve a large
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magnetic flux change, which results in electric field generation. Another benefit of working
with a magnetic field is that the cold and hot parts of the generator can be properly isolated,
unlike in the case of a thermoelectric generator.

Most ferromagnetic materials have their Curie temperature outside of reasonable bounds for
generation. There is a notable exception: the rare-earth metal gadolinium (64Gd). Curie
temperature of this metal is TCurie = 295K = 22 ◦C, which is close to room temperature [3].

Gadolinium magnetic properties have been extensively researched and documented in the past
hundred years [4, 5, 6]. Technological development has allowed the research of properties in
more extreme cases, for example, at a microscopic scale [7, 8], or in strong magnetic fields [9].
These unique properties are being used for purposes of magnetic refrigeration and electrical
power generation [10, 11].

The concept of using a gadolinium-based thermomagnetic generator has been demonstrated
as a viable approach; however, its practical application is only now becoming feasible [12,
13]. The development in precise processing of materials has allowed higher efficiency [14].
As a result, high performance thermomagnetic near-room-temperature generator concepts
and designs with novel refinements, such as latent heat transfer, are being developed and
introduced [15, 16, 17]. Increased computing power has allowed the feasible simulation of
magnetic field distribution and thermodynamic processes, which is an important preparatory
step before beginning construction of a physical model [18].

The main goal of this thesis is to develop a numerical model of a thermomagnetic generator
based on the phase transition of gadolinium. This model will be used as a tool for finding the
optimal set of parameters for such a generator. The process of achieving this goal is divided
into several steps. The first step is to build the theoretical framework for the numerical simu-
lations. This includes deriving the required formulae, describing the generator in equations,
making reasonable approximations to simplify this set of equations, and developing suitable
numerical integration methods. The second step is to describe the properties of gadolinium
numerically, using results from existing research papers. The final step is to test the numerical
method with realistic input parameters.
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1. Theoretical Framework

In this chapter, theoretical basis for the simulation is described. This includes equations and
solution methods, which are later realized in simulation code.

1.1 Numerical Methods

In order to calculate the output of a generator based on magnetic and thermodynamic properties
of gadolinium, the following properties must be quantified at different temperatures and
magnetic field values: heat capacity of gadolinium C(B⃗, T, νGd), magnetization of gadolinium
M⃗(B⃗, T ), and temperature differential due to magnetocaloric effect dT (B⃗, T, dB⃗).1 In this
thesis, the 1998 article "Magnetic phase transitions and the magnetothermal properties of
gadolinium" by Dan’kov, Tishin, Pecharsky and Gschneidner was used as a source of the
properties of gadolinium [6].

From electromagnetism [19] it is known, that E ≡
∮
L
E⃗ ·d⃗l = −dΦB

dt
, where E is electromotive

force and ΦB is magnetic field flux through closed contour L. Magnetic field flux ΦB through
gadolinium changes due to temperature change of gadolinium and consequent change of its
magnetic properties. Invoking heat-temperature equation dQ = C(B, T, νGd)dT and heat
flux equation W ≡ dQ

dt
= κA∆T

l
≡ K(T0 − T ), the following equation can be derived:

C(B, T, νGd)dT = K(T0 − T )dt. (1.1)

This is the main differential equation that has to be solved.2 Since heat capacity C and mag-
netic field B themselves are functions of temperature, the equation becomes more complex.
Additionally, these dependencies are not described by simple functions, but are taken from
measurements and interpolated. Therefore, it is reasonable to use numerical methods to solve
this equation for the purposes of this thesis. The Euler method will be used for the solution,
unless it is proven to be insufficiently accurate.

Since the application of numerical methods is practically impossible by hand, a computer
code will be utilized. The Python programming language has been selected for this purpose
[20]. Additionally, libraries NumPy [21], pandas [22] [23], SciPy [24] and Matplotlib [25]
are used for specific purposes as described in chapters 2 and 3.

1Further it can be seen, that using magnetic field in vector form is not required, therefore scalar form will be
used from this point.

2Here, the derivation of the above equations is done very briefly, to introduce complications early on. For more
in-depth look at the theoretical basis see further subsections.
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1.2 Gadolinium Properties

Firstly, the magnetic properties of gadolinium must be defined. Magnetic field strength is
defined as H⃗ = B⃗

µ0
− M⃗ , where magnetization is M⃗(B⃗, T ). For gadolinium, measured

magnetization data Mdata is used [6]. Here, magnetization unit [Mdata] =
emu
g

= erg
G·g =

10−7J
10−4·10−3Tkg

= J
T·kg = m2·A

kg
, which is the SI unit for mass magnetization. Volume magnetiza-

tion is required:
M =

m

V
Mdata = ρMdata, (1.2)

where ρ is gadolinium density. Therefore, magnetization unit [M ] = A
m

. In the paper
[6], magnetization measurements are provided for two crystal lattice directions. Since the
generator is a macroscopic object, crystal lattice directions can be assumed to be randomly
distributed. Therefore, it is reasonable to take an average value.

Secondly, the heat capacitance of gadolinium has to be defined. Again, molar heat capacitance
cν(B, T ) is taken from measured data [6]. Here, molar heat capacitance unit [cν ] = J

mol·K . It
would be more convenient to use volume heat capacitance in further calculations, thus:

cm =
ν

m
cν =

1

µ
cν ,

cV =
m

V
cm = ρcm =

ρ

µ
cν ,

(1.3)

where µ is molar mass and ρ is density. Then, volume heat capacitance unit [cV ] = J
m3·K .

Thirdly, temperature change due to magnetocaloric effect can be used to test the calculations
and interpolated data. Measured magnetocaloric effect ∆T can be used for this purpose [6].
The validation of data, interpolated for the purpose of this thesis, is done in chapter 2.

Finally, gadolinium density and molar mass are required for the above equations. They can be
acquired from an online database: ρ = 7900 kg/m3 and µ = 157.25 g/mol [26].

1.3 Thermodynamic Processes

First and foremost, generator configuration has to be defined. In this thesis, configurations
are based on the ones introduced in 2019 article "Energy harvesting near room temperature
using a thermomagnetic generator with a pretzel-like magnetic flux topology" by Anja Waske,
Daniel Dzekan, Kai Sellschopp, Dietmar Berger, Alexander Stork, Kornelius Nielsch and
Sebastian Fähler [15].

First configuration for the simulation consists of two rectangular ferromagnetic plates, between
far ends of which a permanent magnet and gadolinium bar are placed (see figure 1). Second
configuration consists of two rectangular ferromagnetic plates, between the center areas of
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Figure 1. Single gadolinium bar configuration

which a permanent magnet is placed, and between the far ends two gadolinium bars are
placed; the phase shift between temperatures is 180◦ (see figure 2). Third configuration
consists of two triangular-like ferromagnetic plates, between the center areas of which a
permanent magnet is placed, and between the far ends three gadolinium bars are placed; the
phase shift between temperatures is 120◦. In every case the generator coils are placed around
the gadolinium bars.3

It can be assumed that gadolinium temperature perturbations within the bar are negligible (so
that the temperature of gadolinium bars is considered homogeneous). Additionally, heat flux
W ≡ dQ

dt
only occurs between designated heaters/coolers to/from gadolinium bars and no

heat escapes to ferromagnetic plates or air. The heat flux is distributed equally in gadolinium,
so that temperature stays homogeneous.

Change of temperature is achieved by directing liquid currents through heat exchangers.
This liquid has some known temperature Tliquid, the heat exchanger has known heat transfer
parameter K ≡ κA

l
, where κ is thermal conductivity of the pipe material, A is pipe contact

area with gadolinium, and l is pipe wall thickness. Then, heat flux from heat exchanger to
gadolinium with temperature T :

dQ

dt
= K(Tliquid − T ). (1.4)

3In third configuration, two generators can work in tandem to produce three-phase electric power with non-stop
flow of both liquids, which is why this configuration was introduced in addition to described in research [15].
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Figure 2. Double gadolinium bar configuration

It is known from thermodynamics [27], that heat dQ transferred from heat exchanger to
gadolinium bar in time dt changes gadolinium bar temperature by dT according to the
following law:

dQ = cV VGddT, (1.5)

where VGd is gadolinium bar volume, and cV is volume heat capacitance of gadolinium from
equation 1.3. Substitution of dQ from equation 1.4 can be made:

cV VGddT = K(Tliquid − T )dt. (1.6)

Operating under assumption that cV is constant, we can solve this differential equation:4

dT

Tliquid − T
=

Kdt

cV VGd

,∫
dT

Tliquid − T
=

∫
Kdt

cV VGd

,

ln (Tliquid − T ) = − K

cV VGd

t+ ln (Tliquid − T0)

Tliquid − T = (Tliquid − T0)e
− K

cV VGd
t
,

T = Tliquid − (Tliquid − T0)e
− K

cV VGd
t
.

(1.7)

Here, T0 is initial gadolinium temperature. Hence, it can be seen that gadolinium temperature
T approaches liquid temperature Tliquid exponentially with time. Therefore t → +∞ ⇒ T →
Tl.
4Here, ln (Tliquid − T0) is an integration constant.
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In order to achieve electricity generation, gadolinium temperature has to change. The obvious
way to achieve this is to change the "target" temperature Tliquid from cold Tliquid,C to hot
Tliquid,H and back to cold Tliquid,C with some frequency fliquid. These parameters have to be
optimized.

For simplification reasons, it will be assumed, that liquid effective heat capacity is infinite
(it has constant temperature in the heat exchanger), and that switch between hot and cold
liquids is instantaneous. First condition can be achieved by providing sufficiently fast flow
rate through the heat exchanger.

Additionally, one must not forget, that gadolinium heat capacitance cV is dependent on mag-
netic induction B and temperature T , so equation 1.7 can only be used as a first approximation
of the process.

1.4 Magnetic Field Distribution

To generate electricity, magnetic field flux has to change:

E ≡
∮
L

E⃗ · d⃗l = dΦB

dt
. (1.8)

Therefore, magnetic field has to be computed.

Following are the assumptions about the magnetic field distribution:

■ Magnetic field flows only between and within the ferromagnetic plates, and does not
exit the generator;

■ Magnetic field lines are perpendicular to the surfaces of the plates between the plates;
■ Magnetic field is homogeneous in every medium, be it magnet, air or gadolinium;5

■ Magnetic field flows "up" in permanent magnet and "down" in air and gadolinium;
■ Permanent magnet is the dominant source of magnetic field in the generator.

These assumptions are justified, when distance between plates h is much smaller than the
other dimensions of the plates. The justification is similar to that for distribution of electric
field between two charged conductive plates (as in plate capacitor); in this case magnetic field
replaces electric field [19].

Magnetic field distribution is shown in figure 3.

To calculate concrete values of magnetic induction B, Ampère’s circuital theorem6 can be

5Relative magnetic permeability of ferromagnetic plates µr >> 1, so that every point of the plate has similar
magnetic potential.

6Operating under assumption, that no free electric currents flow through the contour.
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Figure 3. Magnetic field distribution in the generator in case of a single gadolinium bar
configuration

used: ∮
L

H⃗ · d⃗l = 0, (1.9)

where H⃗ is magnetic field strength.

For the first configuration (see figure 1), two rectangular contours are used (see figure 4):
contour through gadolinium and air, and contour through magnet and air. In horizontal
components of the contours dot product H⃗ · d⃗l = 0; in vertical components of the contours,
dot product H⃗ · d⃗l = Hdl.

From electromagnetism [19] it is known that:

H⃗ =
B⃗

µ0

− M⃗. (1.10)

According to assumptions stated above, in every medium H⃗ ∥ B⃗ ∥ M⃗ , therefore:

H =
B

µ0

−M. (1.11)
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Figure 4. Ampère’s circuital theorem in case of a single gadolinium bar configuration

Thus, for every medium:

HGd =
BGd

µ0

−MGd,

Hmagnet =
Bmagnet

µ0

−Mmagnet,

Hair =
Bair

µ0

.

(1.12)

Since the contours are rectangular, vertical sides have the same length, and this length can be
reduced immediately, both sides can be multiplied by µ0. When adding to the two equations
from Ampère’s circuital theorem continuity condition: magnetic flux "down" is equal to
magnetic flux "up", or ∮

A

B⃗ · dA⃗ = 0, (1.13)

where A is a plane that cuts through the middle section of the generator perpendicularly to
the magnetic field and is closed through the infinity point, the following system of linear
equations is acquired:

−Bmagnet + µ0Mmagnet −Bair = 0,

Bair −BGd + µ0MGd = 0,

BGdAGd +BairAair −BmagnetAmagnet = 0.

(1.14)
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Here, areas AGd, Aair and Amagnet are known, gadolinium magnetization MGd is taken from
equation 1.2, permanent magnet magnetization is assumed to be constant:

Mmagnet =
Br

µ0

, (1.15)

where Br is permanent magnet remanence. Thus, this is a system of three equations with three
unknowns. Gadolinium magnetic induction in case of a single gadolinium bar configuration
can be expressed:

BGd =
BrAmagnet + µ0MGd(Aair + Amagnet)

AGd + Aair + Amagnet

. (1.16)

For the second configuration (see figure 2), a third contour is added through the second
gadolinium bar and air, entirely analogous to how it was done before. This yields the
following system for the double gadolinium bar configuration:

−Bmagnet + µ0Mmagnet −Bair = 0,

Bair −BGd1 + µ0MGd1 = 0,

Bair −BGd2 + µ0MGd2 = 0,

BGd1AGd1 +BGd2AGd2 +BairAair −BmagnetAmagnet = 0.

(1.17)

Then, magnetic fields:BGd1 =
BrAmagnet+µ0MGd1

(AGd2
+Aair+Amagnet)−µ0(MGd2

AGd2
)

AGd1
+AGd2

+Aair+Amagnet
,

BGd2 = BGd1 − µ0MGd1 + µ0MGd2 .
(1.18)

Similarly, magnetic field can be calculated in triple gadolinium bar case:

−Bmagnet + µ0Mmagnet −Bair = 0,

Bair −BGd1 + µ0MGd1 = 0,

Bair −BGd2 + µ0MGd2 = 0,

Bair −BGd3 + µ0MGd3 = 0,

BGd1AGd1 +BGd2AGd2 +BGd3AGd3 +BairAair −BmagnetAmagnet = 0.

(1.19)

Then:
BGd1 =

BrAmagnet+µ0MGd1
(AGd2

+AGd3
+Aair+Amagnet)−µ0(MGd2

AGd2
+MGd3

AGd3
)

AGd1
+AGd2

+AGd3
+Aair+Amagnet

,

BGd2 = BGd1 − µ0MGd1 + µ0MGd2 ,

BGd3 = BGd1 − µ0MGd1 + µ0MGd3 .

(1.20)
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Additionally, magnetic field is affected by generated current, however the effect is much
smaller. The generator coil produces by far the strongest magnetic field among electric
components of a generator, so it should be accounted for first. From electromagnetism [19],
it is known that self-inductance L of a solenoid can be calculated according to following
equation with number of loops N , length l and cross section area A:

L =
µrµ0N

2A

l
. (1.21)

In linear magnetization case H = B
µrµ0

. Gadolinium magnetization might not be linear, so
equation 1.11 should be used. Since the effect of inductances is small compared to that of
permanent magnet, the connection between magnetic induction B and magnetic field strength
H can be assumed to be locally linear for approximation purposes:7

µrµ0 =
BGd

HGd

=
BGd

BGd

µ0
−MGd

=
µ0

1− µ0
MGd

BGd

,

L =
µ0N

2A(
1− µ0

MGd

BGd

)
l
.

(1.22)

This self-inductance can be used in further calculations.

From definition, L =
ΦBcoil

I
, where ΦBcoil

is magnetic flux caused by coil self-inductance, so
magnetic field inside coil with current:

Bself =
µ0N

2I(
1− µ0

MGd

BGd

)
l
. (1.23)

For double and triple coil generator configuration, mutual inductance magnetic field Bmut has
to be calculated for every coil pair. One possible approach is to calculate mutual inductance
ML. It is known from electromagnetism [19], that ML =

ΦBcoil

I
, where ΦBcoil

is magnetic
field flux caused by one coil in the other coil. Due to assumptions,

ML =
BmutA

I
⇒ Bmut =

MLI

A
. (1.24)

The second approach is more feasible in the context of this thesis. Due to superposition
principle, the magnetic field caused by different sources can be looked at separately. In case of
magnetic field from electric current in one coil in place of another coil, we can apply Ampère’s
circuital theorem with free currents for a contour, that passes through two gadolinium bars

7It should be noted, that this approximation is questionable, and must be revised if a more precise modelling is
to be made, and in case of larger electric currents.
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parallel to the magnetic field, and is otherwise perpendicular to the magnetic field:∮
Hdl =

∑
i

Ii = NI, (1.25)

where N is number of source coil loops, and I is current in the source coil.

Using equation 1.22 and again assuming locally linear behaviour of magnetization:

Breceiver

µr,recieverµ0

+
Bsource

µr,sourceµ0

= nI,

Breceiver = µr,recieverµ0nI −
µr,recieverµ0Bsource

µr,sourceµ0

,

(1.26)

where n ≡ N
l

is coil loop density, µr,reciever is receiver relative permeability, µr,source is source
relative permeability, and Bsource is calculated self-inductance field in the source coil (see
equation 1.23).

When mutual inductance fields from all coils are calculated, they can be combined with field
caused by the permanent magnet, according to superposition principle, getting

BE = Bmagnet +
∑
i

Bi,reciever, (1.27)

the change of which can be used to calculate electromotive force in the output coil, self-
inductance is accounted for later in the calculations. Total magnetic field

Btotal = Bmagnet +Bself +
∑
i

Bi,reciever (1.28)

can be used to calculate gadolinium properties.

1.5 Electricity Generation

Electromotive force can be found from equation 1.8, here ΦB ≡ B⃗ · A⃗ is magnetic field B⃗

flux through area A⃗. According to assumptions B⃗ ∥ A⃗, therefore:

ΦB = BA. (1.29)

If a coil is placed around gadolinium bars8, B = BGd, A = AGdN , where N is number of
coil loops.

8This seems to be a reasonable location: gadolinium magnetization changes cause electricity generation; the
coil can be used as a part of heat exchanger; gadolinium bar height, cross section area and magnetic field are
already used in the calculations.
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Figure 5. Simplified circuit connected to a single generator coil9

The time derivative of magnetic flux dΦB

dt
can be approximated as ∆ΦB

∆t
, where ∆ΦB is small

(but not infinitesimal) change in magnetic field flux ΦB during small (but not infinitesimal)
time period ∆t.

Generator coil has self-inductance, as shown in equation 1.22. This inductance introduces
phase shift in case of an alternating current (which is expected as a result of oscillating
temperature) into the circuit, which reduces output power. A connected in series capacitor can
be introduced to compensate for this shift. The circuit has ohmic resistance R = Rcoil+Rload,
inductance L, capacitance C and electromotive force E (see figure 5). Using Kirchhoff’s
second law [19] a differential equation can be constructed:10

Lq̈ +Rq̇ +
1

C
q + E = 0. (1.30)

Because L(B, T ), the equation becomes overly complex, therefore it is appropriate to use
numerical methods to find the solution.
9Here, a symbol for alternating current is used to represent electromotive force; the current is, in fact, not
guaranteed to be sinusoidal.

10Here, ẋ ≡ dx
dt and ẍ ≡ d2x

dt2 , so q̇ = I .
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In case of multiple coils, mutual inductance is accounted for in calculation of electromotive
force E , so no changes are needed in case of more complicated configurations.

For every coil in the generator this equation has to be solved. This can be done numerically.

Then, total voltage in the circuit U ≡ E and current I are found. Effective voltage over period
t can be calculated as follows:

Ueff =
1

t

√∫ t

0

U2dt, (1.31)

and effective power over period t can be found as:

P =
1

t

∫ t

0

UIdt. (1.32)

Power output over any small enough period of time dt (so that voltage and current can be
assumed to be locally constant) is then:

P = UI. (1.33)

Here, negative power would represent power used by the generator to cause gadolinium
temperature change in normally thermodynamically impossible direction with magnetocaloric
effect.

These calculations, again, should be done for every coil separately.
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2. Data Preparation

This chapter describes data acquisition and processing required to simulate the generator.
Extracted data is presented in appendix 2.

2.1 Acquisition

The data has been provided in form of graphs [6]. To make this data usable, it has to be
digitized. For this purpose, an online tool was used [28].

The original research includes:

■ Gadolinium magnetization against magnetic induction at multiple temperatures;
■ Gadolinium magnetization against temperature at multiple magnetic induction values;
■ Gadolinium magnetic susceptibility against temperature;
■ Gadolinium heat capacitance against temperature at multiple magnetic induction values;
■ Gadolinium temperature change due to magnetocaloric effect in known pulsed magnetic

field against temperature.

These data types were chosen:

■ Gadolinium magnetization against magnetic induction along 0001 crystal lattice axis
of gadolinium at temperatures 237.0K, 247.2K, 267.6K, 277.8K, 288.1K, 298.4K,
318.9K and 324.0K;

■ Gadolinium magnetization against magnetic induction along 1010 crystal lattice axis
of gadolinium at temperatures 236.9K, 247.1K, 267.6K, 277.4K, 288.0K, 298.4K,
318.8K and 324.0K;

■ Gadolinium heat capacitance against temperature at magnetic induction values 0.0T,
2.0T, 5.0T, 7.5T and 10.0T;

■ Gadolinium calculated magnetocaloric effect against temperature in pulsed magnetic
field (for validation purposes) B : 0.0T → 2.0T.

2.2 Interpolation

Since acquired data is only defined for a few points, interpolation is required. Data on
gadolinium heat capacitance and magnetization is three-dimensional, while magnetocaloric
effect data is two-dimensional; thus, appropriate interpolation methods are to be used.

In both cases, Python module SciPy was used for interpolation [24]. For three-dimensional
data types smooth bivariate cubic spline was used; for two two-dimensional data single
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variable cubic spline was used. No extrapolation is required.

The processed data can be used as functions:

■ Gadolinium heat capacitance cν is a function of magnetic induction B and temperature
T (so, cν(B, T )); this function returns heat capacitance in J

mol·K , which is converted to
J

m3·K (see equation 1.3); the function is defined for B ≤ 10T and T ≤ 350K;
■ Both directions of gadolinium magnetization M0001 and M1010 are functions of magnetic

induction B and temperature T (so, M0001(B, T ) and M1010(B, T )); these functions
return magnetization in m2·A

kg
, which is converted to A

m
(see equation 1.2); additionally,

an average of two magnetizations is taken; the functions are defined for B ≤ 5.6T and
237K ≤ T ≤ 324K;

■ Temperature change due to magnetocaloric effect ∆T is a function of temperature T

(so, ∆T (T )); this function returns magnetocaloric effect in K; the function is defined
for 100K ≤ T ≤ 330K.

2.3 Validation

All plotting is done with Matplotlib [25].

Figure 6 contains interpolated three-dimensional data slices at selected values of temperature
T or magnetic induction B: gadolinium magnetization (top-left is 0001-axis magnetization,
bottom-left is 1010-axis magnetization), and gadolinium heat capacitance (top-right).

The resulting curves are similar to those in the original research. Spike in the heat capacitance
graph at T ≈ 290K, B = 0T and the smoothing of the curve at stronger magnetic fields
are expected from data presented in the research. The behavior of the magnetization graphs
agrees with that presented in the research. The numerical data (after unit conversion) is also
similar. [6]

For additional validation, magnetocaloric effect can be calculated from heat capacitance and
compared to the calculations of the original research [6]. For this, new temperature after
magnetic field change T1 has to be found. Equation 1.5 can be rewritten for molar heat
capacitance at known magnetic induction B0:

dQ = cν,B0νdT. (2.1)

From integrating both parts:

Q =

∫ T0

0

cν,B0νdT, (2.2)

which is total heat stored in ν moles of gadolinium at temperature T0 and magnetic field
B0. If magnetic field changes to a new value B1 (new temperature is T1), the heat stored in
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Figure 6. Interpolated data visualization and validation

gadolinium should not change due to law of conservation of energy, so1

∫ T1

0

cν,B1(T )dT =

∫ T0

0

cν,B0(T )dT. (2.3)

Assuming that the indefinite analogues of the above integrals yield corresponding antideriva-
tives ρB1 and ρB0 which represent molar heat energy density, equation 2.3 can be rewritten
as

ρB1(T1)− ρB1(0) = ρB0(T0)− ρB0(0). (2.4)

If ρB1(0) = ρB0(0) = 0, which can be assumed since heat energy density of gadolinium is the
same at temperature T = 0 at every magnetic induction B value, equation 2.4 transforms:2

ρB1(T1)− ρB0(T0) = 0. (2.5)

In this equation, ρB0(T ) and ρB1(T ) can be calculated using numerical integration from known
temperature T . Since dρB1

(T1)

dT1
= cν,B1(T ), and ρB0(T0) is a constant so dρB0

(T0)

dT1
= 0, the

equation 2.5 can be solved for T1 using Newton’s iteration method,3 where Ti−1 is temperature

1Since ν is a constant, it can be disregarded.
2The physical meaning of this equation is that heat energy density must not change due to magnetocaloric effect.
3Newton’s iteration method is applicable for equations in form f(x) = 0, and every next iteration approaches
the solution of the equation: xi = xi−1 − f(xi−1)

f ′(xi−1)
.
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in the previous iteration, and Ti is temperature in the current iteration:

Ti = Ti−1 −
ρB1(Ti−1)− ρB0(T0)

cν,B1(Ti−1)
. (2.6)

The calculations are stopped when precision condition is fulfilled, in this case the condition
is: η ≡ |Ti − Ti−1| < 1 × 10−6K. Thus, T1 has been calculated. Magnetocaloric effect
is ∆T = T1 − T0. The resulting values are plotted with the calculations from the original
research [6] in figure 6 (bottom-right).

The graphs are similar and follow the same pattern: within 0.5K deviation. The discrepancies
seem to come from interpolation artifacts at the earlier mentioned spike in heat capacitance
graph at B = 0T and T ≈ 290K. Since the integration starts from T = 0K, the error
accumulates. At stronger magnetic field, it is reasonable to expect, that error will decrease
due to heat capacitance curve getting smoother.
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3. Generator Simulation

This chapter presents methods used in the simulation. Most processes are calculated in
separate functions, which are later put together and applied during the simulation. Simulation
code is presented in appendix 2.

3.1 Magnetic Field Distribution

To calculate magnetic field, magnetization of gadolinium MGd is required. It can be directly
found from earlier interpolated data (see chapter 2). An average of both magnetizations is
taken to account for random orientation of gadolinium crystal lattice in the bars.

Additionally, a function symmetry condition is to be added. Magnetization interpolant
MGd,int(B, T ) is only defined for positive magnetic induction B, so in order to account for
negative magnetic induction (which is simply pointed the opposite direction), a new function
can be defined:1

MGd =


MGd,int(B, T ), B > 0,

−MGd,int(−B, T ), B < 0,

0, B = 0.

(3.1)

Magnetic field in a single gadolinium bar BGd depends on temperature of every gadolinium
bar, current in every generator coil, and every gadolinium bar magnetization. Thus, all
magnetic fields should be calculated within a single function. Equations 1.16, 1.18 and 1.20
can be used for magnet-originating magnetic field calculations; equation 1.23 can be used
to calculate self-inductance magnetic field; equation 1.26 can be used to calculate mutual
inductance magnetic field.

The calculated fields can be added together due to superposition principle. If sign rule is
defined and followed, no additional work is to be done. In gadolinium bar, "downward"
magnetic induction as shown in figure 3 is defined as positive.

Two types of magnetic fields are defined: total magnetic induction Btotal = Bmagnet +Bself +∑
i Bi,mutual is used for gadolinium heat capacitance; and electromotive magnetic induction

BE = Bmagnet +
∑

i Bi,mutual is used for electromotive force calculation. Additionally, only
permanent magnet magnetic field Bmagnet is used to calculate the magnetization, this is
possible due to an assumption that permanent magnet magnetic field is dominant. Effects of
self-inductance magnetic field on the electrical circuit are calculated using self-inductance L.

1Since gadolinium is a soft ferromagnetic material, MGd(B = 0) = 0.
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3.2 Thermodynamic Processes

For temperature change in gadolinium caused by magnetocaloric effect, similar methods to
those in chapter 2 are used. Heat stored in a gadolinium Q at temperature T can be calculated
as integral of heat capacitance C over temperature:

Q =

∫ T

0

CdT = V

∫ T

0

cV dT. (3.2)

Since gadolinium volume heat capacitance interpolant is acquired and volume is assumed to
be constant, numerical integration methods can be used.

To calculate gadolinium temperature from stored heat, an integral equation has to be solved.
Since amount of heat does not change with changing magnetic induction B due to law of
conservation of energy:

V

∫ T1

0

cV,B1(T )dT = V

∫ T0

0

cV,B0(T )dT, (3.3)

where T1 is new temperature, B1 is new magnetic induction, T0 is initial temperature, and B0

is initial magnetic induction. Let

fB(T ) = cV,B(T ) (3.4)

and
FB(T ) ≡ ρB(T ) =

∫
cV,B(T )dT, (3.5)

where B is some constant magnetic induction. Analogous to the method shown in the end of
chapter 2, equation 3.3 can be solved using Newton’s iteration method for T1:

Ti = TB0 −
FB1(Ti−1)− FB0(T0)

fB0(Ti−1)
, (3.6)

where Ti−1 is temperature in the previous iteration, and Ti is temperature in the current
iteration; i → ∞ ⇒ T1 = Ti.

Additionally, outside heat ∆Q is introduced to the system.2 Using heat flux W = K∆T ,
where K is heat transfer parameter and ∆T is temperature difference, and time step of the
simulation ∆t, introduced heat ∆Q = W∆t. This heat is distributed equally (by volume) in
the gadolinium bar so that temperature stay homogeneous.

Using introduced heat equations and magnetocaloric effect in conjunction with magnetic
induction function, gadolinium temperature change can be calculated at a new point of time

2Introduction of negative heat is possible in this case as well.
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t1 = t0 +∆t. To achieve this, total heat stored in gadolinium at t = t1 is calculated:

Q1 = Q0 +W∆t, (3.7)

where Q0 is heat stored in gadolinium at t = t0, W is heat flux from the heat exchanger,
and ∆t = t1 − t0. From new heat Q1 new temperature T1 can be calculated using Newton’s
iteration method 3.6 with η ≡ |Ti − Ti−1| < 1× 10−6K as a precision condition.

3.3 Electricity Generation

Electromotive force can be calculated from equation 1.8, where ΦB = B⃗ · A⃗ is magnetic
flux through area A. In this case, A = AGd, and B⃗ ∥ A⃗. Additionally, area AGd should be
multiplied by number of coil loops Ncoil to account for magnetic flux passing through multiple
cross sections. Then, negative numerical time derivative of magnetic flux can be expressed as:

E ≡ −dΦB

dt
≈ −(B1 −B0)NcoilAGd

∆t
, (3.8)

where B0 and B1 are respectively magnetic inductions at start and end of time period ∆t.

Next, whole circuit state has to be calculated. For this, equation 1.30 can be used, so a sign
rule has to be defined. In a case where L, R, C and E are all constant (stationary case), we
can take a look at initial state (circuit has just been closed) and final state (a long time has
passed since the circuit has been closed).

Firstly, resistance R is always directed against electromotive force E , so their signs have
to be opposite. Next, just after the circuit has been closed, capacitor charge q = 0, and
self-inductance L works against electromotive force E , so their signs have to be opposite.
Finally, after the capacitor has accumulated sufficient charge q no current flows through the
circuit, so E is compensated entirely by capacitance C, therefore their signs must be opposite.

Then, the following equation is arrived at:

−Lq̈ −Rq̇ − 1

C
q + E = 0. (3.9)

Assuming some initial current I0 and initial capacitor charge q0, current time derivative dI
dt

≡ q̈

can be found:
dI

dt
≈

E −RI0 − q0
C

L
. (3.10)

Using current time derivative, it is possible to find new current I after some small time ∆t:

I ≈ I0 +
dI

dt
∆t. (3.11)
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And using an average of these two currents, new capacitor charge q after time ∆t can be
found:

q ≈ q0 +
I0 + I

2
∆t. (3.12)

Thus, there is a method to find new circuit state from initial one after some small period of
time.3

Although this method is good enough for a single gadolinium bar generator, in other cases the
convergence is uncertain and slow. Therefore, SciPy library integration module will be used
for the solution of this equation instead of the above method [24].

Second order differential equation has to be transformed into a system of first order differential
equations since only first order equations are solved by the ordinary differential equation
integration function [24]: 

dq
dt

= I,

dI
dt

=
E−RI− q

C

L
.

(3.13)

By setting some starting conditions I(t0) = I0, q(t0) = q0, electric current and charge at the
next time frame t0 +∆t can be calculated.

Power output at any moment of time from the generator can be calculated from equation
1.33.4 This is the total power output on every resistive part of the generator. To account for
non-zero resistance of the coil, ratio of resistances has to be added:

Pout =
Rload

Rload +Rcoil

UI. (3.14)

Additionally, averaged voltage and power can be calculated. Output voltage5 can be calculated
as root mean square of electromotive force adjusted by resistance ratio:

Utrms =
Rload

Rload +Rcoil

√√√√ 1

n

n∑
i=1

U2
i . (3.15)

Output power can be calculated as a simple mean of earlier calculated power outputs during
some small periods of time (see equation 3.14):

Pmean =
1

n

n∑
i=1

Pi. (3.16)

3This time period ∆t has to be small enough, so that L, R, C and E can be assumed to be constant during this
time period; otherwise, this solution may not converge.

4In fact, electromotive force is used here instead of voltage.
5Note that this would be output voltage only if the circuit is open, and even then there are some minor differences;
this value can be used for comparison and demonstration, otherwise output power is a better parameter.
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3.4 Simulation

The differential equations that describe the generator can be solved using the Euler method
(see chapter 1).

The simulation calculates generator state during a defined simulation time t with time step
∆t. New generator state is calculated based on state in the previous time frame. Thus, by
setting some initial conditions (the most straightforward solution is setting temperature to an
average of hot and cold liquid temperature, every other parameter is set to zero), generator
state can be calculated during the whole time of the simulation. During one time frame, most
parameters are assumed to be constant or linear, so a small enough ∆t is required for this
solution to converge.

Equations derived above are used as functions in the simulation.

Firstly, magnetic field distribution in the generator is calculated; this includes both total and
electromotive magnetic fields in every gadolinium bar, as well as magnetic fields caused by
permanent magnet.

Secondly, every gadolinium bar temperature is calculated; this is the most computationally
intensive part of of the simulation due to multiple numerical methods being used.

Thirdly, electromotive force on every generator coil is calculated from magnetic field change
between previous and current time frames.

Finally, differential equation for circuit state is solved and new electric current, capacitor
charge and power output are calculated. The circuit state calculations only begin after one
second has passed in the simulation to ensure that the generator has reached equilibrium
before magnetic field from electric current is introduced.

The circuit state differential equation 3.9 is the biggest factor in convergence uncertainty, so
its solution results have to be used to determine appropriate time step ∆t.

The best use case for the model is to compare different conditions. For this purpose, a series
option is introduced: it allows to run multiple simulation in series with varying parameters.
Thus, a set of test parameters is used, and output data is automatically collected from every
simulation to be compared later. These output data values are calculated based on the last
oscillation of the generator during the time t to ensure that the generator had enough time to
reach equilibrium state.

Simulation is expected to be a computationally intensive process, so visual progress represen-
tation is recommended. During series simulation, completed and total number of simulations
is shown. Additionally, progress of every separate simulation is shown in percents.
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3.5 Visualization of Results

For the purpose of visualization of the results, three options are available; Matplotlib library
is used [25].

Single oscillation graphs show every gadolinium bar parameters during one final simulated
oscillation. The plotted parameters are:

■ Gadolinium bar temperature in kelvins with a line representing gadolinium Curie
temperature;

■ Total magnetic induction in a gadolinium bar in teslas;
■ Electromotive force produced by the coil in volts;
■ Electric current flowing through the circuit in amperes;
■ Capacitor charge in coulombs;
■ Generator load power output in watts.

In case of multiple gadolinium bars, the graphs are plotted in the same axes, and different
bars are plotted with different colours.

Similarly, long-term graphs can be plotted with the stated above gadolinium parameters.
These graphs show long-term tendencies of the parameters; all data after one second in the
simulation is plotted. This is most helpful in observing capacitor charge convergence to some
stable oscillation pattern. Again, different gadolinium bars are plotted with different colours.

The third option is series graphs plotting. Here, maximum and minimum temperatures are
plotted and generator temperature range is visualized, Curie temperature line is provided for
reference. Next, effective voltage on the generator load is plotted. And finally, effective power
output on the generator load is plotted. This time, data from only one gadolinium bar is used,
as they are expected to be identical in terms of mean values. Only last oscillation is used in
the calculations. X-axis of series graphs has to be manually set, as there is no easy way to
define the axis for every possible combination of changing generator parameters.
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4. Results

In this chapter, the results of the modelling are presented and analyzed.

4.1 Triple Gadolinium Bar Simulation Results

As mentioned before, the calculations are computationally intensive and might take a long
time to complete. The time is proportional to number of gadolinium bars NGd and simulation
time t, and inversely proportional to time step ∆t. Other parameters do not seem to have any
noticeable effect on the time it takes to complete the simulation.

Number of gadolinium bars NGd describes generator configuration. While it is important to
account for multiple bars in some cases, in most cases it is reasonable to simulate single bar
generator to reduce simulation time.

Simulation time t is required to be longer than one second to allow the generator to reach
stable equilibrium state from arbitrary starting conditions. Then, at least one full oscillation
has to be completed for the purposes of data collection; however, additional oscillations
allow for better accuracy. Additionally, longer simulation time can be used to observe slower
processes, such as capacitor charge convergence to stable oscillation pattern from chaotic
behaviour that may be present in the beginning of the simulation.

Time step ∆t is directly tied to simulation convergence. It is obvious, that ∆t has to be
much smaller than the time it takes to complete one oscillation (so ∆t << 1

f
). Additionally,

equation 3.9 solution may not converge at too high ∆t values.

In case of derived simple solution of equation 3.9, it has been found experimentally, that
time step ∆t = 1× 10−3 s ensures convergence in case of a single gadolinium bar, for more
gadolinium bars ∆t = 1× 10−4 s is required. Time step ∆t ≤ 1× 10−5 s can be used, but
seems to give only marginal improvement over the previous cases, while requiring much more
time to complete the simulation.

In case if SciPy integration module is used for the solution of equation 3.9, convergence can
be achieved at ∆t = 1× 10−2 s in every case, however ∆t = 1× 10−3 s or ∆t = 1× 10−4 s

are preferred due to higher accuracy. Again, ∆t ≤ 1 × 10−5 s will only yield marginal
improvements.

Next, results for some arbitrary starting conditions are provided for demonstration purposes.
For all graphs in the remaining part of this section, distance between generator plates h = 1 cm,
ferromagnetic plate air contact surface area Aair = 16 cm2, heat transfer parameter between

27



Figure 7. Final oscillation time graphs of (left to right, top to bottom) temperature, magnetic
induction, electromotive force, electric current, capacitor charge, output power
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Figure 8. Long time scale graphs of (left to right, top to bottom) temperature, magnetic
induction, electromotive force, electric current, capacitor charge, output power
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heat exchanger liquid and gadolinium K = 160W/K, one gadolinium bar cross section area
AGd = 4 cm2, permanent magnet remanence Br = 1.4T, permanent magnet cross section
area Amag = 4 cm2, number of coil loops Ncoil = 100, coil resistance and load resistance
Rcoil = Rload = 2000Ω, load capacitance Cload = 1× 10−5 F.

Three gadolinium bars were used (so NGd = 3), this configuration was selected because it
is the most complex and allows for the observation of the greatest number of effects. The
simulation lasted t = 20 s, time step ∆t = 1 × 10−3 s, liquid swap frequency in each heat
exchanger f = 1Hz, cold and hot liquid temperatures are respectively TC = 288K and
TH = 298K. The resulting final oscillation graphs can be seen in figure 7. Here, each colour
represents different gadolinium bar. In total, three bars, so three colours: red, green and blue.

Temperature graphs (top-left in figure 7) seem to be close to piecewise exponential as
temperature approaches temperature of the liquid currently interacting with the corresponding
gadolinium bar. The perturbations from exponential behaviour (most clearly seen when
temperature approaches maximum) are explained by magnetocaloric effect: note that these
perturbations correspond to dramatic changes in magnetic field distribution (see below). It
can also be seen, that these perturbations result in temperatures reaching slightly beyond
expected maximum (about 0.1K higher, quite noticeable) and minimum (0.01K lower, much
smaller) temperatures, which is impossible without outside power input due to second law of
thermodynamics, therefore negative power output occurring during this time is expected.

Magnetic induction graph (top-right in figure 7) can be separated into six sections. First,
just after 19 s mark blue bar magnetic induction starts increasing, at the same time red and
green bars are experiencing decrease in magnetic induction due to redistribution of magnetic
field between all bars; the reason is rapid decrease of blue bar temperature which increases
its magnetic permeability. Second, just after 19.2 s mark, blue bar magnetic induction has
completed rapid increase stage, and red bar magnetic induction starts dropping while green
and blue bar magnetic inductions start to increase; this is explained by rapid increase of
red gadolinium bar temperature which reduces its magnetic permeability. The same pattern
repeats itself for every "bar colour combination", the pattern occurs due to set phase shift of
120◦ between gadolinium bar temperatures.1

Electromotive force graph2 (centre-left in figure 7) reveals tall peaks whenever a transition
between hot and cold liquids occurs in any heat exchanger. Negative electromotive force peaks
are noticeably taller, while positive electromotive force peaks are wider; this is explained
by asymmetrical temperature behaviour in relation to Curie temperature (see top-left graph

1In fact, phase shift affects only which liquid is currently in the heat exchangers, which has a direct connection
to gadolinium bar temperature functions.

2The electromotive force data itself is useful because it closely resembles voltage data we would get from the
generator if the circuit is open.
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in figure 7, Curie temperature is represented by black dashed line). During the decrease
temperature goes through Curie temperature region rapidly resulting in higher but thinner
peaks. During the increase temperature goes through Curie temperature region slower,
resulting in shorter but wider peaks. The most optimal temperature range is discussed later
in this section. Smaller peaks correspond to change in magnetic flux due to redistribution of
magnetic field between all gadolinium bars when temperature of one of them changes.

Electric current graph (centre-right in figure 7) strongly correlates with electromotive force
graph. The discrepancies can be explained by non-zero inductance and capacitance in the
circuit. Additionally, we can observe that electric current graphs seem to resemble analytical
solution of equation 3.9 — dampened oscillation, where inductance and capacitance cause
the oscillation, and resistance causes dampening.

Capacitor charge graph (bottom-left in figure 7) shows oscillations around neutral charge,
which is an expected result. The capacitor charge is entirely defined by electric current and is
not used in further calculations.

Output power graph (bottom-right in figure 7) reveals tall thin and short wide peaks, as
expected from electromotive force graph (see above). Additionally, it can be seen that power
reaches values below zero after the peaks. This was expected because of temperature reaching
normally unreachable values: this is power drained from the circuit that causes magnetocaloric
effect in the gadolinium bars by affecting the magnetic field with electric current. Here, it can
also be seen that effective voltage Ueff = 29.6mV, and effective power output Peff = 155 nW

on every load resistance Rload.

Long time scale graphs are presented in figure 8. It can be seen, that convergence to some
periodic behaviour takes place, all recorded parameters seem to be already in an unchanging
oscillation pattern from the beginning of the plotting at t = 1 s. It is reasonable to suggest,
that this pattern would continue indefinitely beyond the 20 s mark (at which the simulation
was stopped), therefore the system is in equilibrium oscillational state.3

4.2 Series Simulation Results

First series graph example is based on a generator with one gadolinium bar (so NGd = 1),
with each simulation time t = 2 s, time step ∆t = 2 × 10−3 s, and liquid swap frequency
f = 10Hz. The liquid temperatures are changing parameters between each individual
simulation: cold liquid temperature increases 280K ≤ TC ≤ 292K and hot liquid temperature
decreases 306K ≥ TH ≥ 294K. A total of 24 simulations is completed, so the temperature
step in both cases is Tstep = 0.5K. Hot and cold liquid temperature difference is plotted on

3Note that the long time scale graphs are meant to only show discrepancies in data over longer period of time
and are not meant to be used as a source of data points: that’s what final oscillation (short) graphs are for.
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Figure 9. Series graphs of (left to right, top to bottom) output voltage, output power, tempera-
ture range against heat exchanger liquid temperature difference

Figure 10. Series graphs of (left to right, top to bottom) output voltage, output power,
temperature range against average heat exchanger liquid temperature
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the x-axis.

The results can be seen in figure 9. Here, the first graph (top-left) shows output voltage on
the load resistance. The voltage seems to be following a linear relation to the temperature
difference between hot and cold liquids ∆T . This relation is close to linear when temperature
oscillates near Curie temperature, and the difference ∆T is small enough, otherwise a more
complex relation is observed. The second graph (top-right) shows power output on the load
resistance. Since P ∝ UI ∝ U2, the graph follows a parabola. Again, this relation only
occurs at low ∆T near Curie temperature. Finally, the third graph (bottom) shows maximum
and minimum temperature of gadolinium, as well as highlights temperature range, Curie
temperature is shown as a black dashed line for reference. It can be observed that gadolinium
temperature does not ever reach either liquid temperatures, but the relation between maximum
and minimum temperatures and liquid temperature difference ∆T stays linear.

Second series graph example is again covering changing temperature ranges, this time
however temperature difference ∆T is constant, and the temperature range is shifted, so that
average of hot and cold liquid temperatures changes and can be plotted on the x-axis. The
parameters are: number of gadolinium bars NGd = 1, simulation time t = 2 s, time step
∆t = 2 × 10−3 s, and liquid swap frequency f = 10Hz; cold liquid temperature increases
275K ≤ TC ≤ 315K and hot liquid temperature increases 277K ≤ TH ≤ 317K, the liquid
temperature difference in every case is ∆T = 2K. A total of 40 simulations are completed.

The results can be seen in figure 10. Firstly, it can be seen that both voltage and power peak at
average liquid temperature Tavg ≈ 305K. The heat capacitance graph in figure 6 shows that
this region indeed corresponds to one of the strongest magnetocaloric effects.4 Additionally, a
barely noticeable difference in gadolinium temperature range can be observed in temperature
graph (bottom) in figure 10. This difference can be found from numerical data: gadolinium
temperature range in the beginning is ∆TGd = 0.85K, which later drops to ∆TGd = 0.81K

in the centre section of the graph, and then raises up to ∆TGd = 1.10K in the end; this
effect can be explained by changing heat capacitance of gadolinium, it is highest in the centre
section of the graph at Tavg ≈ 290K, so gadolinium thermal inertia is higher; the opposite is
true for beginning and end of the graph at Tavg ≲ 280K and Tavg ≳ 300K.

4.3 Optimization of Parameters

To save space and time, the following list of parameters will be used in the following two
sections unless told otherwise:5

4The area between yellow and orange lines up to the temperature point of interest in the figure 6 is important for
magnetocaloric effect.

5Parameters were chosen mostly arbitrarily for demonstration purposes (for a "real life" application practical
experiments are required), however their values fall within realistic ranges.
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Figure 11. Series graphs of (left to right) output voltage, output power against resistance ratio

■ Distance between generator plates h = 1 cm;
■ Area of one gadolinium bar cross section area AGd = 4 cm2;
■ One ferromagnetic plate air contact surface area Aair = 16 cm2;
■ Permanent magnet cross section area Amag = 4 cm2;
■ Heat transfer parameter between heat exchanger liquid and gadolinium K = 160W/K;
■ Permanent magnet remanence Br = 1.4T;
■ Number of coil loops Ncoil = 100;
■ Coil resistance and load resistance Rcoil = Rload = 2000Ω;
■ Load capacitance Cload = 1× 10−5 F;
■ Liquid swap frequency in each bar f = 2Hz;
■ Cold and hot liquid temperatures are respectively TC = 290K and TH = 300K;
■ Number of gadolinium bars NGd = 1;
■ Number of simulations in series Nsim = 20;
■ Simulation time t = 2 s;
■ Time step ∆t = 1× 10−3 s.

Before anything else, it is reasonable to take a look at simpler parameters.

1. Resistance ratio Rload

Rcoil
. It is known that in case of a conventional generator this ratio

should be equal to one to optimize power output: smaller ratio would reduce the output
voltage on the generator load, higher ratio would reduce the electric current in the
circuit, their product should be maximized as seen from equation 1.33. It is reasonable
to expect that the same will be the case for gadolinium generator. For the testing of this
hypothesis, coil resistance Rcoil = 2000Ω = const; while load resistance will change
from Rload = 1000Ω to Rload = 9000Ω.
The results can be seen in figure 11. From the graphs it is visible that one-to-one
ratio is in fact not optimal under specified conditions, the ratio that optimizes power
output under these conditions is Rload

Rcoil
≈ 2.4. Otherwise, the graphs follow the expected

34



Figure 12. Series graphs of (left to right) output voltage, output power against load capacitance

pattern. The difference probably arises from other electric components of the circuit
introducing additional impedance, abnormal behaviour of electromotive force in the
generator might exacerbate the effect as well.

2. Load capacitance Cload. The optimal value in this case is heavily dependent on coil
inductance and can be approximated using alternating current formulae. However,
this method is questionable due to abnormal behaviour of electromotive force: it can
hardly be assumed to be sinusoidal which an assumption of alternating current formulae.
If the current was sinusoidal, we could expect some optimal capacitance value that
would maximize power output. The capacitance in the series simulation changes from
Cload = 10 µF to Cload = 200 µF.
The results can be seen in figure 12. Voltage changes are marginal, however output
power increase is noticeable. It seems that the power output levels out at higher
capacitances; this means that a capacitor is not needed in the circuit.6 This can be
explained by changing self-inductance of the coil: initially capacitor is introduced
to compensate coil self-inductance, however the capacitance range that results in
improvements is small at a constant self-inductance; since the self-inductance changes
with change in gadolinium properties, no one capacitance value could be beneficial
during whole time of generator work.

3. Self-inductance of the coil Lcoil. As mentioned earlier, self-inductance itself is not
constant during the simulation. However, it is heavily tied to number of coil loops, so
this will be the tested parameter. The number of coil loops in the series simulation
changes from Ncoil = 10 to Ncoil = 200. The resistance does not change, so we assume
that wires of different cross section areas are used. Then, it is reasonable to expect
increase in power output when number of coil loops is increased.
The results can be seen in figure 13. The relation between voltage and number of coil
loops is linear, as the theory predicts (see equation 3.8). Therefore, number of coil
loops has to be maximized, as expected.

6Since the capacitor is connected in series, a conductive wire is equivalent to a capacitor with infinite capacitance.
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Figure 13. Series graphs of (left to right) output voltage, output power against number of coil
loops

4. Generator frequency f . Higher frequencies increase average power output by increas-
ing frequency of power peaks. However, higher frequencies also decrease temperature
difference between minimum and maximum temperatures of gadolinium bars, which in
turn reduces power output. So, there are two combating effects. A range of frequencies
between f = 2Hz and f = 21Hz is used in the simulation.7

Results can be seen in figure 14. As foretold, temperature range decreases, while power
output increases due to more frequent peaks. The effects seem to reach equilibrium
state when frequency reaches f = 15Hz, and output power and voltage reach plateau.
Some noisy behaviour is clearly visible, it is probably the effect of multiple (imperfect)
numerical methods being used resulting in error accumulation.

5. Number of gadolinium bars NGd. As a reminder, up to three bars are allowed, each of
which heats and cools with constant phase shift relative to others. To compare them and
find out whether this phase shift is beneficial, same volume of permanent magnet has to
be used per gadolinium bar; this can be achieved by multiplying magnet cross section
area by number of gadolinium bars. Other parameters have to be constant. Since there
are only three data points, graph plotting is unnecessary.
The results are as follows: single gadolinium bar generator produces power P1 =

208 nW; double gadolinium bar generator produces power P2 = 232 nW per bar; triple
gadolinium bar generator produces power P3 = 238 nW per bar. Thus, it can seen that
using multiple bars with phase shift in the same system increases power output. This
can be connected to beneficial phase shift, which increases magnetic flux change when
it is needed, and creates additional power output peaks. Another possible explanation is
connected to generator geometry and magnetic field distribution; it is discussed later in
this section.

6. Heat conductivity parameter K. It affects the cooling and heating speed of gadolin-

7This range may seem strange: it was chosen due to better convergence of the simulation in this range, otherwise
tendencies seem to be unchanged; in fact, the same is true for every range one might consider weird in this
section.
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Figure 14. Series graphs of (left to right, top to bottom) output voltage, output power,
temperature range against generator frequency

ium. Therefore, with increase of K it is reasonable to expect an increase in output power
due to more rapid temperature change. The parameter changes from K = 20W/K to
K = 400W/K.
The results can be seen in figure 15. As expected, power output increases with increasing
heat conductivity parameter K. When temperature amplitude approaches maximum
possible value, this relation seem to be linear. Before that, however, increase in voltage
is faster.

Permanent magnet remanence Br. Next, we will take a look at a permanent magnet used in
the generator, and generator geometry. The highest currently available value of a permanent
magnet remanence Br ≈ 1.5, everything lower than that is possible. It is reasonable to expect
larger magnetic field to cause higher power output. However, an opposite effect is possible: at
too high magnetic fields magnetization difference decreases as seen in figure 6. Remanence is
tested in range between Br = 1.0 and Br = 2.0.8

The results can be seen in figure 16. One of the earlier described effects is observed: increasing
remanence decreases power output. This effect can be explained by looking at heat capacitance

8Again, this range may seem strange; additionally, the simulation seems to behave weirdly at lower remanences
due to usage of numerical methods; this is considered to be one of the major unsolved problems of this model
and is discussed later.
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Figure 15. Series graphs of (left to right, top to bottom) output voltage, output power,
temperature range against heat conductivity parameter

Figure 16. Series graphs of (left to right) output voltage, output power against permanent
magnet remanence
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Figure 17. Series graphs of (left to right) output voltage, output power against permanent
magnet cross section area

graph in figure 6. The magnetocaloric effect (so the difference between heat capacitance
integrals at different magnetic fields over temperature) is the source of energy for the generator.
When magnetic field increases, the heat capacitance lines become more densely packed, so
the available amount of energy decreases when increasing magnetic induction. In this case,
it seems, this effect dominates the other effect (see below), so decrease in power output is
observed.

It is also obvious that permanent magnet remanence Br = 0 does not allow any energy
production because there is no magnetic field change: it is zero in every generator part. When
remanence increases, some variations in magnetic field appear which are proportional to
remanence Br. At weaker magnetic fields this effect should dominate.9

Therefore, there must be some optimal permanent magnet remanence, size and other generator
parts’ geometry, that results in optimal power output. Finding this optimal spot is complicated
due to it being affected not only by remanence, but also by generator geometry, and simulation
divergent behaviour at weaker magnetic fields.

4.4 Optimization of Geometry

Now, generator geometry parameters are to be investigated.

1. Permanent magnet cross section area Amagnet.If the previous conclusions are correct,
we may expect a decreasing power output when increasing magnet cross-section area
under the conditions presented at the beginning of this section. Permanent magnet cross
section area changes from Amagnet = 3 cm2 to Amagnet = 22 cm2.
The results can be seen in figure 17. As predicted, power output decreases with increas-
ing permanent magnet cross section area (and, therefore, increasing magnetic induction
in gadolinium). The reasoning is the same as in the case of changing remanence Br

9This effect has not been observed due to divergent behaviour of the simulation; this is discussed in chapter 5.
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Figure 18. Series graphs of (left to right, top to bottom) output voltage, output power,
temperature range against gadolinium bar cross section area

above.
2. Gadolinium bar cross section area AGd. This area is, again, connected to magnetic

field distribution. It is reasonable to expect from previous conclusions that the output
power will increase up to some optimal cross section area, after which the decrease will
be observed: the increase of cross section area increases gadolinium bar heat capacity
and slows down temperature change which reduces power output; at the same time the
increase of cross section area of a gadolinium bar also decreases magnetic induction,
which has been observed to increase power output. Either of these effects could
dominate. The selected range is from AGd = 1 cm2 to AGd = 20 cm2. Additionally,
number of coil loops is set to ensure convergence: Ncoil = 10.
The results can be seen in figure 18. Power output peaks at AGd ≈ 6 cm2, after which
increase of thermal inertia of the bar starts to dominate. Before that the increase is
explained by the same process as described for remanence above.

3. Ferromagnetic plate air contact surface area Aair. From the assumptions of the
simulation and earlier conclusions, it is expected that larger air contact surface area
would allow for higher output power. The range is from Aair = 4 cm2 to Aair = 80 cm2.
Additionally, number of coil loops is set to ensure convergence: Ncoil = 10.
The results can be seen in figure 19. The results seem reasonable in the context of
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Figure 19. Series graphs of (left to right) output voltage, output power against ferromagnetic
plate air contact surface area

assumptions made in chapter 1. In reality, however, ferromagnetic plates do not have
infinite magnetic permeability, therefore the output will start to decrease at some point.
The initial increase arises from creation of alternative "path" for magnetic field outside
of gadolinium, which decreases magnetic induction in gadolinium, which has been
observed to increase power output.

4. Generator height h. Due to the assumptions, the height should only affect heat capacity
of gadolinium bars, thus increasing it should decrease power output. The range is from
h = 2mm to h = 40mm.
The results can be seen in figure 20. As expected, increased thermal inertia of gadolin-
ium reduces the amplitude of temperature oscillations, which reduces power output.
No other effects are present in the context of assumptions made in chapter 1. However,
in reality it can be expected that increased height will additionally increase effective
air contact surface area due to magnetic field leaking out. If we assume, that height is
much smaller than the other dimensions of the ferromagnetic plates, this effect can be
assumed to be negligible.

4.5 Analysis of Optimal Conditions

The results presented in the previous section can now be evaluated. Note that these evaluations
are untested experimentally and, therefore, are largely speculative.

■ Distance between generator plates h is one of the less interesting parameters due to
the assumptions of the model.
It has been assumed in chapter 1 that magnetic field lines between the ferromagnetic
plates are always perpendicular to the plates. In reality, magnetic field distribution is
much more complex.
The generator height h does not affect number of coil loops, or magnetic field dis-
tribution in other ways than change of thermal inertia: permanent magnet size and

41



Figure 20. Series graphs of (left to right, top to bottom) output voltage, output power,
temperature range against generator height (distance between two ferromagnetic plates)

gadolinium bar size are both proportional to the height, so magnetic field distribution
does not change in this way due to height change.
The only way height affects results is by affecting gadolinium bar volume VGd = AGdh,
which increases gadolinium bar heat capacity proportionally to height. However, heat
transfer parameter K is not increased automatically, so more time is required to achieve
same temperature change.
In reality, more effects are present. Additionally, depending on generator structure, heat
transfer parameter K may increase with height h.
The model is only reliable in case of height h << r, where r is average linear size of
the generator in directions perpendicular to height.

■ Gadolinium bar cross section area AGd has been observed to have an optimal value
for power output.
The effects of gadolinium bar cross section area increase are as follows: gadolinium bar
volume and consequent heat capacity increase; redistribution of magnetic field; increase
of coil cross section area and consequent increase of self-inductance.
The effects of magnetic field redistribution are evaluated later in this section with
remanence Br.
The effects of increasing coil cross section area seem to dominate at lower values
of AGd. At higher values, decrease in temperature amplitude caused by higher heat
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Figure 21. Series graph of average gadolinium magnetic induction against permanent magnet
remanence

Figure 22. Series graphs of (left to right) output voltage, output power against average
gadolinium magnetic induction

capacity with unchanging heat transfer parameter K dominates.
The model seems to predict the behaviour of the generator at different reasonable
gadolinium bar cross section areas AGd well.

■ Ferromagnetic plate air contact surface area Aair is only meaningful in the context
of magnetic field distribution, which is discussed separately with remanence Br.

■ Permanent magnet cross section area Amagnet is, again, only important in the context
of magnetic field distribution and is discussed later with remanence Br.

■ Heat transfer parameter K has shown predictable behaviour.
Increasing heat transfer parameter K increases heat flux between gadolinium bar and
heat exchanger liquid. Faster changing temperature allows to set generator to higher
frequencies and to increase temperature amplitude.
Heat transfer parameter K change effects are well predicted by the model.

■ Permanent magnet remanence Br is one of the questionably simulated parameters.
Permanent magnet cross section area Amagnet and remanence Br affect magnetic field
distribution in a similar way: increase in either increases magnetic induction in gadolin-
ium bars. Inversely, increase in ferromagnetic plate air contact surface area Aair or
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gadolinium bar cross section area AGd decreases magnetic induction in gadolinium
bars.
The first effect, that has clearly been observed: higher fields decrease generator output.
The potential explanation is as follows: at higher magnetic fields variations in heat
capacitance become smaller (see figure 6). This decrease in variations is more significant
than increase in magnetic field amplitude. Since the difference between heat capacitance
integrals over temperature of a gadolinium bar at different magnetic fields is the source
of energy for the generator, the power output decreases.
While this behaviour has a potential explanation, it seems to be too strong and overall
unrealistic.
The second effect: higher magnetic field cause higher magnetic field amplitude, which
is directly tied to electricity production (see equation 1.8).
The second effect has not been observed in the simulation, the possible causes of this
problem are presented in the summary of this thesis.
Therefore, the simulation is not fit to model effects due to changing: remanence Br,
permanent magnet cross section area Amagnet, ferromagnetic plate air contact surface
area Aair or gadolinium bar cross section area AGd in the context of magnetic field
distribution.
So, another simplified approach can be used to determine optimal magnetic induction
in gadolinium. From figure 6 (right side) it can be seen that the largest magnetization
difference is at point BGd ≈ 0.6T. Therefore, it is a reasonable conclusion that for
maximal output power magnetic induction in gadolinium has to oscillate around the
point BGd ≈ 0.6T.
Additional graph of average magnetic induction in gadolinium bar BGd against perma-
nent magnet remanence Br is shown in figure 21.10

Since connection between remanence and gadolinium magnetic induction seems inac-
curate, it is usefull to plot output power and output voltage against average gadolinium
magnetic induction as well. The results based on the same simulation as above can be
seen in figure 22.
As stated above, output should decrease when average gadolinium magnetic induction
BGd ≳ 0.6T. The opposite effect at weaker magnetic fields cannot be observed using
this model due to divergence of the simulation, and unexpected behaviour of magnetic
induction at weaker magnetic fields described above.

■ Number of coil loops Ncoil is connected to the divergent behaviour of the simulation.
At Ncoil > 100 simulation does not converge due to too strong electric currents ap-
pearing in the circuit, which change magnetic field and cause fast and unpredictable
temperature oscillations due to magnetocaloric effect.

10Here, parameters are the same as described in the beginning of the previous section, and permanent magnet
remanence changes from Br = 1T to Br = 2T, Ncoil = 10.
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Figure 23. Series graphs of (left to right) output voltage, output power against resistance ratio

Otherwise, the behaviour is expected. Therefore, model is fit for the prediction when
Ncoil ≤ 100.

■ Coil resistance Rcoil and load resistance Rload are mostly important in the context of
their ratio Rload

Rcoil
.

The behaviour is expected: at a certain resistance ratio power output reaches its max-
imum. This point might be shifted due to other components in the circuit. This has
been confirmed (see figure 23): by setting load capacitance Cload to some arbitrary very
high value (which is equivalent to no capacitor in the circuit) and number of coil loops
Ncoil = 10 the optimal resistance ratio Rload

Rcoil
≈ 1, which is the expected result.11

Therefore, the model is well fit to simulate power output at different resistances.
■ Load capacitance Cload is used to compensate for generator coil self-inductance.

However, the generator coil self-inductance changes during the process of electricity
generation due to changing magnetic properties of gadolinium, which suggests that
capacitance is not required; this suggestion is supported by the model.
This, as well as expected higher impedance at low Cload, leads to believe that model is
fit to simulate power output with different capacitances Cload. However, it is unlikely to
be necessary in tested in this thesis generator configuration, since no capacitor circuit is
expected to yield the highest power.

■ Liquid swap frequency f is closely tied to heat transfer parameter K. Similarly, it
affects temperature amplitude. Higher frequency means less time for gadolinium to
change temperature which reduces power output.
This effect is observed. At higher frequencies some noise tends to appear in the
data, however the trend does not change; these perturbations are probably caused by
imperfections of numerical methods. Therefore, frequency f is fit to be modelled.

■ Hot liquid temperature TH and cold liquid temperature TC set temperature values to
be approached by gadolinium temperature.

11The same simulation parameters were used as in case of resistance ratio calculations in the previous section,
except if other values are specified here.
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Figure 24. Series graphs of (left to right) output voltage, output power against temperature
difference

These two parameters are connected to heat transfer parameter K and liquid swap
frequency f . They all show stable and expected behaviour.
It has been found, that temperature range TH − TC size is proportional to output voltage
when TH−TC << TH. Otherwise, connection resembling logarithmic function between
voltage and temperature difference is observed (see figure 24).
The optimal centre point of the temperature oscillation has been found to be TH+TC

2
≈

305K. This seems to be a reasonable result.
Therefore, temperatures TH and TC seem to be modelled correctly.

■ Number of gadolinium bars NGd is the main parameter that describes generator config-
uration.
Its simulation is trivial, no new equations are introduced with this parameter. Therefore,
the simulation is entirely dependent on previously discussed parameters at every allowed
value of NGd.
It has been observed, that multiple gadolinium bars in different temperature oscillation
phases increase output power per gadolinium bar. This effect is connected to more
optimal field redistribution and favourable additional electromotive force peaks in every
gadolinium bar in the system during change of magnetic flux in just one of them.

4.6 Results in Optimal Conditions

After finding and evaluating trustworthiness of the optimal parameters it is possible to run the
simulation under more optimal conditions.

The conditions are:

■ Distance between generator plates h = 5mm;
■ Area of one gadolinium bar cross section area AGd = 6 cm2;
■ One ferromagnetic plate air contact surface area Aair = 40 cm2;
■ Permanent magnet cross section area Amag = 4 cm2;

46



Figure 25. Graphs of (left to right, top to bottom) gadolinium bar temperature, magnetic
induction in gadolinium bar, electromotive force in the generator coil, output power

■ Heat transfer parameter between heat exchanger liquid and gadolinium K = 160W/K;
■ Permanent magnet remanence Br = 1.4T;
■ Number of coil loops Ncoil = 100;
■ Coil resistance and load resistance Rcoil = Rload = 2000 ohm;
■ Load capacitance Cload = ∞, or no capacitor;
■ Liquid swap frequency in each bar f = 2Hz;
■ Cold and hot liquid temperatures are respectively TC = 300K and TH = 310K;
■ Number of gadolinium bars NGd = 1;
■ Simulation time t = 2 s;
■ Time step ∆t = 1× 10−3 s.

The results are presented in figure 25. Under conditions present in the beginning of previous
section (before optimization) the output voltage was Uold = 31.1mV and output power was
Pold = 208 nW. Under optimized conditions presented above simulation yields Uopt =

71.5mV and Popt = 2556 nW. That is a 130% increase in output voltage and an 1129%

increase in output power.

It should be noted that we are dealing with a multidimensional extremum searching problem,
the solution presented above is just a first order approximation of the correct answer.
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5. Conclusions

In this chapter, results, possible improvements and applications are discussed, as well as
authors evaluation of the work is presented.

5.1 Equations

The equations derived for the purposes of this thesis have been observed to yield real-
istic and expected results in most cases. The approach of separation of the calculations
into multiple components (thermodynamic, magnetic and electric) has been chosen due to
multiple benefits: easier to understand mathematics in each separate part, possibility of direct
modification of each part of the simulation without affecting the others, and ability to examine
each part of the simulation separately if need be. However, this approach has introduced
additional computational complexity and convergence uncertainty into the model.

The numerical algorithm used for solving the set of differential equations by this simulation
has been found to be unstable in certain cases. To calculate generator state at point t = t0+∆t,
state at point t = t0 is used. In some cases this may result in unpredictable oscillations due to
rapid changes of one parameter causing even faster changes of the other parameter: feedback
loop is observed. Usually, small enough values of time step of the simulation ∆t ensure better
convergence, however this makes the process much more computationally intensive. In future,
more stable algorithms need to be implemented.

The theoretical part of this thesis can be used as a basis for a more accurate model, where
a system of differential equations describing the generator as a whole is constructed. Then,
the solution of this system of equations can take into account more data points by using
higher order differential equation solution methods. This approach would guarantee better
convergence and is likely to solve other issues with predictive power of the model developed
in this thesis.

5.2 Gadolinium Properties

Data collection and interpolation is another important milestone, however, improvements
are possible. As a reminder, bicubic smooth splines were used to interpolate gadolinium heat
capacitance and magnetization data. This method was adequate for the purposes of this thesis,
however, it has to be revised to achieve better accuracy.

In the research paper [6], gadolinium heat capacitance interpolant consists of two functions
which intersect at Curie temperature point. At this point of intersection, the interpolant does
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not have to be smooth, however, for the purposes of this thesis, smooth interpolant was used
which may introduce deviations from magnetocaloric effect calculations it the research paper
[6]. Additionally, the heat capacitance data might not be dense enough in the regions of weak
magnetic field B < 1.0T, which results in lower interpolation accuracy in this region.

Numerical processing of the data can be improved. Currently, numerical integration of heat
capacitance data results in error accumulation, as seen in figure 6 (bottom-right). Better
results can be achieved if integration is done from both sides (from two points T << TCurie

and T >> TCurie, where magnetocaloric effect ∆T would be negligible, so heat capacitance
is the same for initial and final magnetic inductions B0 and B1).

5.3 Magnetic Field Distribution

One of the biggest issues with the simulation is unexpected behavior at weaker magnetic
fields. This behaviour can be partially explained by the effect described in chapter 4: more
potential energy is available at weaker magnetic fields with the same magnetic induction
variation. However, this effect is unrealistically strong, and, therefore, the model is believed
to be unreliable at weaker magnetic fields.

From some additional testing it has been found that the problem is connected to gadolinium
magnetization (see figure 6 right side): it is clearly seen that gadolinium magnetization
MGd = 0 when gadolinium magnetic induction BGd = 0 at all temperatures. Indeed,
when magnetization is manually set to zero in magnetization function when BGd = 0, the
unexpected behaviour of the model is not observed. However, when value from magnetization
interpolant is used, some non-zero value is returned by the interpolant at BGd = 0 due to
rounding errors. It seems that there is an interpolation failure of some sort at point BGd = 0

and other areas with high density of data points1 might be the reason for the unexpected
behaviour at weaker magnetic fields.

If the above hypothesis is true, the model should be trustworthy at gadolinium magnetic induc-
tions BGd ≳ 0.6T (may vary depending on temperature), since in these areas magnetization
data point density is much sparser.

Another possible explanation for unexpected behaviour at weaker magnetic fields is that
the approximations used in this thesis yield highly inaccurate results at weaker magnetic
fields. As can be recalled from chapter 1, equation 1.22 has division of magnetization M by
magnetic induction B in it. If B = 0, M = 0 as well. So, we obtain M

B
= 0

0
, which is an

undefined value. When M ≈ 0, rounding errors become more likely to cause large change in

1As seen in figure 6 right side, lines at higher temperatures align at lower values of magnetic induction, as well
as all lines converge at BGd = 0; therefore, data being taken from these high density areas may result in spikes
in the interpolant.

49



the final result. However, additional testing has revealed that unexpected behaviour persists
even when inductance magnetic fields (the only place where the above approximation is used
in the context of magnetic field distribution) are not accounted for, so there must be additional
factor(s) at play.

The third hypothesis is connected to systems of equations 1.14, 1.17 and 1.19. It is possible
that the approach used in this thesis does not work with lower remanences of the permanent
magnet; the separation of magnetic field into permanent magnet, self-inductance and mutual
inductance fields is the approach in question. Therefore, a review of magnetic field calculation
methods is required; the new approach should calculate magnetic field as a whole. If done
correctly, it could be a solution to the above approximation imperfections as well: free currents
could be accounted for in the Ampère’s circuital theorem, which would allow to calculate
total field in gadolinium by solving one system of equations.

In reality, the cause is probably a combination of first and third hypotheses, therefore a
revision of both interpolation methods and magnetic field distribution equations is required to
improve accuracy at weaker magnetic fields.

It is author’s educated guess that the problem is analogous to the divergence of the simple
iterations equation solution method. In this method, the equation F (x) = 0 is rearranged to
be in the form x = f(x), then the iterations xi = f(xi−1) should approach the solution so
that i → ∞ ⇒ F (xi) = 0.

This method is rarely used due to a strict convergence condition:
∣∣∣df(x)dx

∣∣∣ < 1. If this condition
is not fulfilled, the iterations either diverge, or converge to an incorrect solution. In figure
26, the same function is put into two different coordinate planes. On the left, convergence
condition is fulfilled near the zero of the function. On the right, the method converges to an
incorrect solution due to unfulfilled convergence condition.

In the case of the model developed in this thesis, magnetic field distribution equilibrium has
to be reached. A combination of magnetic field distribution equations and magnetization data
yields an iteration method, where with each iteration (so with each time step ∆t) the system
tries to approach equilibrium point, but at weaker magnetic fields it converges to an incorrect
equilibrium; an example of such behaviour is demonstrated in figure 26 on the right side.

This claim can be supported by some observations. If magnetization is manually set to zero
at BGd = 0, and remanence Br = 0, the system stays in the equilibrium with no magnetic
field. If the magnetization is set to any other value in the same conditions, the system is not in
equilibrium state initially and, therefore, approaches some false equilibrium at BGd ≈ 0.5T.
Additionally, the graphs presented as an example in figure 26 resemble magnetization graphs
presented in figure 6, where point dM(B)

dB
= 1 is somewhere near B = 0.5T, which is the
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Figure 26. A comparison of unexpected behaviour at weak magnetic fields to simple iterations
method: on the left the method yields the correct answer, on the right the method converges
to a false answer

false convergence point.

Thus, it seems probable that the effect described above is present in the simulation.

It is also possible that the simulation code contains a mistake that results in unexpected
behaviour at low gadolinium magnetic induction values. However, multiple reviews of the
magnetic field distribution function in the code has not revealed any mistakes.

5.4 Magnetocaloric Effect

Model excels in magnetocaloric effect calculations. Starting from interpolated data vali-
dation, the model has consistently yielded realistic changes of temperature due to magnetic
induction change.

In figure 6, magnetocaloric effect was used for interpolation validation purposes. The differ-
ence between the measured and the recalculated values was about 10%, due to interpolation
imperfections. With interpolation improvements, higher accuracy is possible.

In figure 7, magnetocaloric effect could be observed to be the reason for some temperature
changes as described in the corresponding chapter 4. The behaviour is in agreement with
calculated negative power output data presented in the same figure 7.

When the divergent behaviour of the simulation was encountered, many parameters such
as magnetic induction and electric current entered unpredictable oscillation pattern with
enormous amplitudes and frequencies. However, despite that, temperature stayed within
reasonable range, with deviations no more than ∆T ≈ 20K, which is an expected limit for
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magnetocaloric effect in the context of used interpolated data.

5.5 Evaluation of the Model

The developed model can be used as a basis for more complex models in the future. In
this thesis, generator coil was placed around the gadolinium bars. This is, however, not an
optimal position. Magnetic field in the gadolinium bar does not change direction, so variations
in magnetic induction are relatively small. It is possible to find a place in the generator,
where magnetic field does change direction and, thus, increase magnetic field amplitude
approximately tenfold [15, 16, 17].

The magnetic field distribution and magnetocaloric effect calculations made in this thesis can
be used in other configurations as well with some relatively small modifications.

The model is likely to be applicable for prediction of output power tendencies in changing
conditions, as defined in this thesis. To confirm the predictive power of the numerical model,
a physical model of the generator has to be built and measured data has to be compared to the
predictions.

Magnetocaloric effect calculations, as seen from figure 6, agree with experimentally mea-
sured data. Improvements in data interpolation methods would further improve predictive
capabilities of the model in terms of magnetocaloric effect.

Electric circuit calculations seem to follow patterns expected from the oscillating current:
electromotive force causes the electric current to perform damped oscillations which is
expected from the analytical solution of the equation 3.9.

Magnetic field distribution calculations need to be tested experimentally, and new calculation
methods have to be introduced. Until then, the predictive power of the model regarding
magnetic field distribution serves only as a first approximation.
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Abstract

A thermomagnetic generator — a heat engine that operates based on Faraday’s law by heating
and cooling a ferromagnetic material around the Curie point — has already been proven as a
promising concept [12, 15, 16, 17]. The working principle of the thermomagnetic generator is
not complicated, but finding its optimal parameters is not possible without a numerical model
and simulations. This is because the solutions to Maxwell’s equations depend on the shape
and mutual arrangement of the ferromagnetic materials, as well as the electromagnetic and
thermal properties of the magnetic materials around the Curie point, which are dependent on
temperature and magnetic field in a relatively complex manner.

In this thesis, a numerical model for a thermomagnetic generator based on the magnetic and
thermodynamic properties of gadolinium is developed, tested, and the modeling results are
analyzed.

The equations used for modeling are derived from the fundamental laws of electromagnetism
and thermodynamics [19, 27]. The thermal and electromagnetic characteristics of gadolinium
necessary for the simulation are taken from literature [6].

The mathematical model, implemented as a computer code, was tested under realistic initial
parameter conditions. Testing showed that the model predicts the magnetocaloric effect
well, and the results are consistent with existing studies on the properties of gadolinium [6].
Thus, the objective set in the thesis has been achieved: a numerical model has been created
that allows predicting the efficiency of a thermomagnetic generator depending on the device
parameters.

However, the model still needs to be refined for more accurate calculations: the spatial
distribution of the magnetic field is currently found only approximately in the algorithm; this
part of the model is planned to be improved in the future. Another part of the model that can
and should be improved is the interpolation methodology for the data points of gadolinium’s
thermomagnetic characteristics taken from the scientific literature.

Keywords: gadolinium, thermomagnetic generator, magnetocaloric effect, numerical mod-
elling.
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Annotatsioon

Termomagnetiline generaator — soojusmasin, mis töötab tänu Faraday seadusele soojendades
ja jahutades ferromagnetilist materjali Curie punkti ümbruskonnas — on juba ennast tõestatud
kontseptsioon [12, 15, 16, 17]. Termomagnetilise generaatori tööpõhimõte pole keeruline,
kuid selle optimaalsete parameetrite leidmine pole võimalik ilma numbrilise mudeli ja simu-
latsioonideta, sest Maxwelli võrrandite lahendid sõltuvad ferromagnetiliste materjalide kujust
ning vastastikusest paiknemisest ning magnetiliste materjalide elektromagnetilistest ja soojus-
likest omadused Curie punkti ümbruskonnas, mis sõltuvad temperatuurist ja magnetväljast
võrdlemisi keerukal moel.

Käesolevas lõputöös töötatakse välja gadoliiniumi magnetilistel ja termodünaamilistel omadus-
tel põhinev termomagnetilise generaatori numbriline mudel, testitakse seda mudelit ja
analüüsitakse modelleerimise tulemusi.

Modelleerimiseks kasutatavad võrrandid on tuletatud elektromagnetismi ja termodünaamika
põhiseadustest [19, 27]. Simulatsiooniks vajalikud gadoliiniumi soojuslikud ja elektromag-
netilised karakteristikud on võetud artiklist [6].

Arvutikoodina realiseeritud matemaatilist mudelit testiti realistlike lähteparameetrite tingi-
mustes. Testimine näitas, et mudel ennustab magnetkalorilist efekti hästi ja tulemused ühtivad
olemasolevate gadoliiniumi omaduste uuringute tulemustega [6]. Seega on lõputöös seatud
eesmärk saavutatud: on koostatud numbriline mudel, mis võimaldab ennustada termomag-
netilise generaatori efektiivsust sõltuvuses seadme parameetritest.

Täpsemateks arvutusteks on mudelit vaja siiski veel täiustada: magnetvälja ruumiline jaotus
on praeguses algoritmis leitud üksnes ligikaudselt; seda mudeli osa on plaanis edaspidi
täiendada. Teine mudeli osa, mida saab ja tuleb parendada, on teaduskirjandusest võetud
gadoliiniumi termomagnetiliste karakteristikute andmepunktide interpolatsiooni metoodika.

Märksõnad: gadoliinium, termomagnetiline generaator, magnetkaloriline efekt, numbriline
modelleerimine.
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Appendix 2 – Extracted Data and Simulation Code

Extracted data used in this thesis, as well as simulation code are available at:

https://github.com/MikeKerman/Modelling-of-Heat-Exchange-Generator-Based-on-

Magnetic-and-Thermodynamic-Properties-of-Gadolinium.
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