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Copyright Tanel Alumäe, 2006
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Chapter 1

Introduction

The focus of this thesis is on developing efficient models and methods for large
vocabulary speech recognition for Estonian. In the introduction, the speech
recognition problem is first briefly described. The reasons for investigating
language-specific issues are then given together with an overview of most
important language-specific aspects of speech recognition. Next, some related
work concerning Estonian speech recognition and large vocabulary speech
recognition of other similar languages is introduced. The final sections outline
the scope and the approaches that are developed throughout the thesis.

1.1 The speech recognition problem

Speech recognition is the process of converting an acoustic signal representing
a spoken utterance or a longer speech passage, captured by a microphone or a
telephone, to a list of words that is hopefully close to the original word sequence.

Speech recognition systems can be characterized by many parameters, such as
speaking mode, speaking style, speaker independence, vocabulary size, language
model, usage environment and input channel. An isolated-word speech recog-
nition system requires that the speaker pause briefly between words, whereas a
continuous speech recognition system does not. Speaker independent systems
can be used without speaker enrollment while speaker-dependent systems require
a transcribed speech sample of a user’s speech to adapt the system to his or her
voice and speaking style. System’s vocabulary defines the words that the system
knows about. Vocabulary size is considered small if the number of words is below
100, and large if the number of words is more than 20 000. System’s language
model defines the different combinations in which the words can be combined
in a sentence and may also estimate the likelihood of different word sequences.
The simplest language model can be specified as a finite-state network, where
the permissible words following each word are given explicitly. More general
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language models approximating natural language are specified in terms of a sta-
tistical context-sensitive models.

This thesis focuses on speaker-independent, large vocabulary continuous
speech recognition (LVCSR). There are many application areas for LVCSR
technology. The most obvious of them is desktop dictation, where user speaks
into the microphone and the computer automatically converts it to textual
representation. Desktop dictation has some advantages over typing the text using
a keyboard: using spoken language, it is easy to achieve a data input rate of
150-250 words per minute [Schukat-Talamazzini, 1995, p. 1]; in order to achieve
this, no long-lasting training is required; additionally, spoken language interface
leaves user’s hands and eyes free for other activities, and grants more freedom of
movement.

In addition to desktop dictation, there is a growing need for more ”industrial”
usages of LVCSR. There exist huge amounts of archived untranscribed speech
data, e.g. radio and television broadcast archives, recorded meetings, lectures,
speeches and debates. Currently, the only way to find certain excerpts from
such archives or analyse the content of them is to rely on some available meta-
data of the recordings or just listen to them. The advance of LVCSR would
make it possible to automatically transcribe the speech in the archives and make
them readable and accessible for automatic retrieval. Also, there are many areas
where spoken language must be always transcribed. In such cases, currently
human transcribers create verbatim transcripts for speeches, conversations, legal
proceedings, meetings, and other events when written accounts of spoken words
are necessary for correspondence, records, or legal proof. With the improvement
of speech recognition technology, some of such laborious manual work could
be replaced with an automatic transcription system, or human transcribers could
be assisted by a system which automatically prepares a draft version of the
transcription.

A growingly important field where LVCSR technology plays an significant
role is automatic speech-to-speech translation. This scenario requires both speech
recognition and speech synthesis technology of all participating languages. In
addition, sophisticated multilingual spoken language understanding is needed.
Speech-to-speech translation is especially relevant in Europe where a wide variety
of languages is spoken and there is a strong need for interlingual communication,
for example in the context of European Union institutions.

The general problem of automatic recognition of speech by any speaker in
any environment is still far from being solved. But in the last decades, there
have been great advances in the area of LVCSR. For languages with a large
number of speakers, such as English, French and German, many successful
speech recognition systems have been developed and commercial systems are
widely available. For smaller languages like Estonian, there is little interest
from commercial vendors to develop such technology. However, according to a
futuristic view, it is highly important for the survival of small languages to develop
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human language technologies for the language, including tools for both written
and spoken language processing.

The most widely used and successful approach to modern speech recognition
is based on statistical and data-driven methods. In this case, no explicit knowledge
about the language is programmed into the system. Instead, speech is modelled
using well-defined statistical algorithms that can automatically extract knowledge
from large amounts of training data. During system development, tens or hundreds
of hours of transcribed speech from various speakers are used to train acoustic
models. Given such data, statistical techniques can automatically align all speech
with the given transcripts and derive the qualitative and temporal aspects of
different basic speech sounds in various contexts. On the other hand, large text
corpora, possibly containing millions of words, are used to automatically learn the
words that are used in the language, and the contexts in which they typically occur.
The two trained knowledge sources, or models, together with a pronunciation
lexicon that maps all words in the language to sequence of basic speech sounds,
can be used during recognition to convert speech into string of words. Such
statistical approach is also adapted in this study.

1.2 Language specific aspects of speech recognition

The general architecture of a large vocabulary speech recognition system is
language independent. For the large majority of languages, an efficient system can
be built using the same kind of components, including a feature extraction front
end, hidden Markov model (HMM) based acoustic models (see section 2.3.1), a
pronunciation lexicon, a statistical language model and a decoder. However, some
details of the design of some of those components can have language specific
aspects. The following are the most important design issues that have to be
considered when developing a large vocabulary recognition system:

• Amount and quality of training resources: the importance of large cor-
pora for training acoustic and language models cannot be overemphasized.
Language-specific training data are needed for building robust models for
use in a recognition system. This includes both transcribed speech corpus
for training acoustic models as well as text resources for estimating statis-
tical language models. To build a good quality recognition system with a
medium-sized (10 000-20 000 words) vocabulary, at least 10 hours of tran-
scribed speech material is needed [Lamel et al., 1996].

• Selection of features to be extracted from speech: usually, standard Mel
frequency cepstral coefficients (MFCC, see section 2.2.2) or perceptual
linear prediction (PLP) based features are used, but for some languages
(e.g. tone languages, such as Mandarin), other methods are sometimes used
in addition to or instead of the standard feature extraction techniques.
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• Choice of basic units for acoustic modelling: most modern recognizers use
units that directly correspond to phonemic inventory of the target language.
However, this is not a straightforward decision: first, it might not be
clear, which phonemes actually exist in the language. For example, in
many languages, dipthongs such as in day or my in English are considered
different phonemes, while in Estonian they are described as a sequence of
two qualitatively different vowel phonemes [Eek and Meister, 1999]. The
same applies for geminates (long consonants), and to the handling of short
and long phonemes. In addition, there are other aspects that may have to be
considered (such as tone and stress) when selecting the appropriate units for
acoustic modelling for a language. In addition, for some languages, units
that are longer (e.g. syllable) or shorter than a phoneme might be more
appropriate.

• Vocabulary selection and language modelling: the vocabulary of a recog-
nizer defines the words that can be recognized and the language model de-
fines their prior probabilities in various contexts. A typical method for se-
lecting vocabulary is to choose the top 20 000-60 000 most frequent words
in the training text corpus. While this works well for languages like En-
glish, it is not suitable for highly inflective and compounding languages,
since each inflected word form is considered as a different word. As a con-
sequence, the number of different words is very large, and a high out-of-
vocabulary rate is expected when only 60 000 most frequent words can be
recognized. Increasing the vocabulary size may solve the out-of-vocabulary
problem but it cannot reduce the severeness of another issue caused by the
large number of different words – data sparsity. Due to the high number of
different words, many of them are only rarely seen in the training corpus
which makes it difficult to robustly estimate their prior probabilities in var-
ious contexts. Instead, for highly inflective languages, usually some type
of sub-word units are used as basic units in a language model which are
recombined into words after decoding. The actual method for statistical
language modelling also depends on other features of the language, avail-
able linguistic and other processing tools, and the size of the available text
corpus.

• Pronunciation modelling: when appropriate sub-word acoustic models
are used, a correct pronunciation for each word must be defined so that
concatenation of basic acoustic units can accurately represent the word
to be recognized. The mapping is based on language-specific knowledge.
In some languages, simple grapheme-to-phoneme conversion can be used
for determining the pronunciation for each word. Other languages need
large standard or hand-crafted pronunciation lexicons, often combined with
knowledge-based or data-driven conversion rules. For some words, such as
tomato in English, we might need to provide alternative pronunciations. In
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addition, various continuous speech phenomena, such as reduced sounds
and assimilation have to be considered, in order to make pronunciation
lexicon more robust.

In an analysis by Bell Laboratories, the time for developing a large vocabulary
speech recognition system for a new language is estimated to be around 9-15 work
months [Gokcen and Gokcen, 1997] and cost several hundred thousand dollars.
This does not include collecting of the speech and text material needed for training
which could easily be more expensive that the development itself.

1.3 Related work

In spite of active research in the area of phonetics and computational linguistics,
the research in the area of speech recognition for the Estonian language has been
not very active. However, the first research results about acoustic analysis of Esto-
nian vowel and consonant system and prosody date back to 1960s [Lehiste, 1966].

In the end of 1980s, experiments with recognizing words differing in
distinctive quantity (e.g. kade-kate-katte) were made, using spectral match and
dynamic programming techniques and including probabilities of state durations
and state duration ratios as an additional factor in determinining the best path
[Kuhn and Ojamaa, 1989]. The authors conclude that distinguishing words
differing only in distinctive quantity is a major problem with varying speech rates
and it could not be completely overcome, even when using likelihoods of state
duration ratios.

In the 1980s, some experiments on vowel recognition using electronic filter-
banks were carried out by E. Künnap [Künnap, 1992].

During the last decade, the research on spoken language technology in Estonia
has been carried out mainly at the Laboratory of Phonetics and Speech Technol-
ogy, Institute of Cybernetics at Tallinn University of Technology. In 1995-96,
neural nets were used for diphone recognition experiments [Meister, 2001]. The
preliminary tests reached a classification rate of about 70% for all diphones. In
2000, a prototype for isolated word recognition (Estonian numbers and names of
Estonian letters) was developed in co-operation with Institute of Engineering Cy-
bernetics of Minsk [Meister et al., 2001]. The system used continuous dynamic
time warping techniques for word recognition. The recognition system was used
for developing a spoken dialogue system for parking system over mobile phone.
A speaker-independent recognition rate of 72 for numbers as 58 for letters was
achieved. Dialogue success rate was 92%, when two repetitions to fix misrecog-
nized words were accepted.

As part of the author’s masters thesis, a limited vocabulary connected speech
recognition system based on hidden Markov models as context-dependent phone
units was developed [Alumäe, 2002, Alumäe, 2003, Alumäe and Võhandu, 2003,
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Alumäe and Võhandu, 2004]. The aim of the work was to develop a vocabulary-
independant basis for Estonian speech recognition. A prototype system for
number recognition reached high accuracy. However, no attempts in statistical
language modelling and large vocabulary recognition were made.

The work on large vocabulary recognition began with the start of author’s
doctoral studies. First, a general framework of morpheme-based language model
was developed and its performance was compared with a word-based language
model [Alumäe and Võhandu, 2004]. The performance of the morpheme-based
model was improved using a statistically derived class model [Alumäe, 2004a,
Alumäe, 2004b]. Some phonological and morphological modelling issues were
investigated in [Alumäe, 2005a]. The two-pass approach using morphological
analysis and factored language models in the second pass was introduced in
[Alumäe, 2005b] and refined in [Alumäe, 2006].

The recognition problem of other similar highly inflecting and compounding
languages (e.g. Finnish, Hungarian, Turkish) has been extensively studied.
Many methods have been proposed to deal with the problem of vocabulary
growth in large vocabulary speech recognition. Most of the approaches split
the words in the vocabulary of a language model into smaller units, in order to
increase lexicon coverage. In [Hirsimäki et al., 2006], a language-independent
algorithm for discovering word fragments in an unsupervised manner from text
is proposed. The algorithm uses the Minimum Description Length principle to
find an inventory of word fragments that is compact but models the training
text effectively. The same approach has been successfully applied also for
Turkish and Estonian [Kurimo et al., 2006]. The Estonian LVCSR experiment
based on the SpeechDat speech database achieved a word error rate of 47.6%.
Other approaches [Szarvas and Furui, 2003, Kwon and Park, 2003] use language-
specific morphological analyser to split words into morphemes. More extensive
overview of related work in the area of language modelling for highly inflected
languages is given in section 5.1.

1.4 Scope of the thesis

This thesis presents methods for building a large vocabulary continuous speech
recognition system for the Estonian language. The approach adapts modern
general-purpose statistical framework using hidden Markov models for acoustic
models, Mel-frequency ceptrum coefficients for acoustic features and statistical
N -grams for language models.

The thesis concentrates on the language specific design issues of the three
pre-built knowledge sources that are applied during recognition: the acoustic
model, the language model and the pronunciation lexicon. The research on
acoustic models tries to find a suitable inventory of basic units that could be used
for constructing Estonian word models. The work on language model attempts
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to overcome Estonian specific problems in building an efficient statistical N -
gram model for large vocabulary recognition. Some issues concerning complex
language syntax and training data sparsity are addressed. An algorithm for
generating pronunciation lexicon that maps words to sequences of acoustic units
is developed. The performance of all developed methods is investigated using a
large variety of experiments.

The work relies on the most prominent modern approach to speech recognition
problem and thus does not attempt to provide entirely new approaches in the
area of feature extraction, acoustic modelling, hidden Markov models and search
algorithms.

1.5 Outline of the thesis

Chapter 2 provides a theoretical background of speech recognition in a statistical
framework. An introduction to the basic methods in feature extraction, acoustic
modelling and language modelling is given. Hidden Markov models are briefly
introduced. Chapter 3 introduces properties of the Estonian language. Estonian
phonology is described and the phenomena of three distinctive quantity degrees is
reviewed. The chapter also presents a brief overview of language orthography,
morphology and syntax. In chapter 4, design of Estonian acoustic models
for large vocabulary recognition is presented. This chapter also proposes a
simple grapheme to phoneme algorithm for generating pronunciation lexicon for
Estonian words. Chapter 5 investigates language modelling issues for Estonian
large vocabulary recognition. It proposes the use of pseudo-morphemes as
basic units for language modelling and describes a method for selecting pseudo-
morpheme vocabulary. A statistical method for dealing with compound word
reconstruction is proposed. Additionally, the chapter derives two independent
methods that attempt to make language modelling more robust. Chapter 6
provides an extensive evaluation of the methods proposed in the previous two
chapters. The thesis concludes by discussing the effectiveness of the proposed
and evaluated methods. Suggestions for future research are also given.
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their guidance throughout my time as a PhD student in Tallinn University of
Technology. Their insight, expert advice and enthusiasm were invaluable.

I am grateful to the Laboratory of Phonetics and Speech Technology at the
Institute of Cybernetics at Tallinn University of Technology for providing the
facilitites and a positive atmosphere for research. I would like to thank my
colleague Lya Meister for being kind and always helpful.

7



I thank the research group of computer linguistics at University of Tartu
for providing the text corpora, and people at OÜ Filosoft for providing the
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Chapter 2

Basic concepts of speech
recognition

This chapter describes basic concepts of speech recognition in a statistical frame-
work. Most of modern speech recognition systems can be divided into five basic
blocks: the feature extractor, acoustic models, language model, lexicon and the
decoder. Figure 2.1 outlines the basic stages of speech recognition.

First, speech signal is digitized and processed by the feature extractor compo-
nent that transforms the signal into a sequence of feature vectors which are meant
to capture the information relevant to the distinction between different speech
sounds. In the next step, the feature vectors are decoded, that is, the most likely
word sequence hypothesis given the features vector sequence is found. The de-
coder uses three pre-trained knowledge sources in this process: (1) the acous-
tic models that model the qualitative and temporal variances of different speech
sounds (typically phonemes); (2) the language model that determines what con-
stitutes a possible word, what words are likely to co-occur, and in what sequence;
(3) the pronunciation lexicon that maps the words in the language model to a se-
quence of acoustic units defined by the acoustic model. The decoder uses two
sources of information in finding the most likely sentence: the measure of the
quality of match between the input features and the valid word sequences, and the
probability of hearing a sentence in the language without referring to any acoustic
information.

These components of the speech recognizer are reviewed in more detail in
the following sections. First, the statistical approach to the speech recognition
problem is introduced. Next, components of feature extraction front end are
reviewed. The main concepts of hidden Markov models (HMMs) are then
presented. Acoustic modelling techniques using HMMs are described. Finally,
efficient statistical language modelling techniques and evaluation metrics for
language models are presented.
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Figure 2.1: Overview of recognition system.

2.1 Probabilistic decoding problem

The speech recognition problem can be described as a decoding problem in
communication theory [Shannon, 1948]. The spoken string of words w =
w1, ..., wm of unknown identity is viewed as passing through an acoustic channel
that encodes the words into observable feature vectors X = x1, ..., xT . The
decoder tries to convert the feature vectors X from a coded form back into the
original form, i.e. find the most likely word sequence w? given X . If the
prior probabilities of all possible words sequences P (w) is known, and we also
know the conditional distribution of acoustics given words P (X|w), the decoding
process can be expanded using the Bayes rule:

w? = arg max
w

P (w|X) = arg max
w

P (w) · P (X|w)
P (X)

= arg max
w

P (w) ·P (X|w)

The prior probability of different word sequences P (w) can be estimated given
a large enough text corpus, and the conditional probability P (X|w) can be
estimated given a large corpus of annotated speech, i.e. enough samples of
encodings X from word w.

2.2 Feature extraction

The role of feature extraction in the speech recognition framework is to reduce
data rate, extract features that are important for subsequent acoustic matching and
remove data that is not useful for speech recognition (such as noise, features that
a specific to speaker and environment).
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2.2.1 Signal acquisition

Before any processing can take place, the speech signal must be acquired and
digitized. The digitization is typically done using at least 16 kHz sampling rate
and 16-bit A/D conversion which is sufficient for the speech bandwidth (around 8
kHz). However, the open telephone channel is limited to frequency band of 300
Hz - 3.4 kHz. Due to this, 8 kHz sampling rate is typically used when the signal
is acquired over the telephone line.

In practice, if the signal is not band-limited, it should be possible to get
around 10% relative word error rate reduction when using a sampling rate of
11 kHz instead of 8kHz, and going from 11 kHz to 16 kHz offers further 10%
improvement. Further increasing the sampling rate does not have any additional
impact to the error rate [Huang et al., 2001, p. 422].

2.2.2 Short-term analysis

Using the raw sampled acoustic waveform of the speech signal for decoding is
not practical: if the signal is sampled at 16 kHz using 16-bit accuracy, the amount
of data to be processed in each second is 32 kB. Furthermore, the raw signal
contains many aspects that are characteristic to the speaker, environment, all of
which are not important for speech recognition and are regarded as noise. To
reduce the data and extract the important characteristics from the signal, short-
time spectrum analysis is used. The most common parameterization is the Mel-
frequency cepstral coefficients (MFCC). Using MFCC, speech is transformed to
a sequence of typically 39-dimensional feature vectors. The rate of the vectors is
commonly 100 per second. At 3900 values per second, this is a large reduction of
the original data rate of 32 KB per second.

Feature extraction usually begins by pre-emphasizing the audio to remove
glottal and lip radiation effects. The pre-emphasis is implemented by processing
the signal using a first order Finite Impulse Filter (FIR) given by

y[n] = x[n]− 0.97x[n− 1]

where x[n] represents the input signal and y[n] the filtered signal. Such filter
slightly boost the high frequencies and attenuates the low frequencies.

Next, the pre-emphasized signal is divided into short frames with period of
typically 10 ms. In each frame period, signal from a sliding window of 20 or 25
ms is taken for further independent analysis. This process is illustrated in Figure
2.2.

For each analysis frame, a window function such as Hamming is applied first
to reduce boundary effects. The window function modifies the input signal f(n)
to

f (m)(n) = f(n) · w(m− n)

11



Figure 2.2: Dividing signal into overlapping windows (a frame rate of 10 ms and
a window size of 25 ms is used here).

where w(n) is a window function, for instance a Hamming window which is
given by

w(n) = 0.54− 0.46 cos
(

2πn

N − 1

)
Constant N is the window size.

Next, a magnitude spectrum of the windowed waveform is computed for each
frame using the Discrete Fourier Transform (DFT) which for input signal f(n) is
defined as

F [n] =
1
N

N−1∑
k=0

f(n)e
−jk2π

N , n = 0..N − 1

The linear frequency axis is then warped onto the Mel scale in order to take into
account the relationship between frequency and ”perceived” pitch. The mapping
between the linear frequency scale and Mel scale is given by

B(f) = 2595 log10

(
1 +

f

700

)
The Mel scale is plotted in Figure 2.3.

Next, a bank of partially overlapping triangular filters is taken which compute
the average spectrum around each center frequency. The center frequencies are
chosen so that they are uniformly spaced on the Mel frequency scale. If f1 and
fh is the lowest and highest frequency of the filterbank in Hz, Fs is the sampling
frequency, M the number of filters (typically 20) and N the size of the DFT, the
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Figure 2.3: Frequency warping according to the Mel scale.

boundary points f [m] can be found by

f [m] =
(

N

Fs

)
B−1

(
B(f1) + m

B(hh) + B(f1)
M + 1

)
where B(f) is the transformation to Mel scale and B−1 its inverse

B−1(f) = 700(exp(f/2595)− 1)

Let Hm[k] represent the weight of the jth filter to the kth DFT coefficient
and let |Fmel[k]| represent the DFT magnitude spectrum warped onto the Mel
scale. Then, the filter outputs generate a discrete set of M log-energy terms
e[j], j = 1..M which are found by

e[j] = ln

(
N−1∑
k=0

|Fmel[k]| ·Hm[k]

)
, j = 1, 2, ...,M

Finally, the first 12 Mel-frequency cepstrum coefficients (not including the 0th
one) ct[i], i = 1..12 are computed by applying the discrete cosine transform on
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the M filter outputs:

c[i] =

√
2
M

M∑
j=1

(
e[j] cos

(
πi

M
(j − 0.5))

))

An additional optional step subtracts the cepstral mean c from each coefficient c[i],
in order to compensate for convolutional distortons, such as different microphone
transform functions depending on the speaker distance to the microphone and the
room acoustics. Given T coefficients, the cepstral mean is calculated by

c =
1
T

T−1∑
t=0

c[t]

and the normalized coefficients ĉt by

ĉt = c[t]− c

The 12 MFCC coefficients are augmented with a normalized log-energy
component which is calculated by taking the log of the sum of squared data
samples:

ẽt = ln

(
Ns∑
n=1

s2
t (n)

)
To capture temporal changes in the spectra, dynamic features are used

[Furui, 1986]. Dynamic features measure the change of coefficients over time.
Temporal information is particularly useful when using HMMs in acoustic
modelling since HMMs assume that each frame is independent of the past.
Dynamic features typically consist of first and second order derivatives of the
corresponding 13 main features, where the first order derivatives ∆ck for frame k
are calculated as

∆ck = ck+2 − ck−2

and second order features ∆∆ck as

∆∆ck = ∆ck+1 −∆ck−1

The dynamic features are appended to the main features, making the final
feature vector 39-dimensional.

2.3 Acoustic modelling

Speech is a complex phenomena with a wide qualitative and temporal variability.
The variability is caused by coarticulation and contextual effects, physical and
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social characteristics of the speaker, speaking style and the properties of the
environment and the input channel. Thus, for speech recognition, we need
techniques that can adequately model such variability.

Currently, almost all speech recognition systems model sound units by a
sequence of connected Hidden Markov Model (HMM) states. These include
the CMU Sphinx 2, 3 and 4 [Lamere et al., 2003], Cambridge HTK system
[Kim et al., 2005], IBM [Ramabhadran et al., 2006], LIMSI [Lamel et al., 2006],
and SONIC [Pellom, 2001] among many others.

In this section, the generative model of HMM is presented. The maximum
likelihood (ML) parameter estimation algorithm, the Viterbi decoding algorithm
and the Baum-Welch algorithm is briefly described.

2.3.1 Hidden Markov models

In HMM-based speech recognition, it is assumed that the observed sequence of
p-dimensional feature vectors is generated by a Markov model as shown in Figure
2.4. A hidden Markov model is a double-embedded stochastic process with the
an underlying stochastic process (the state sequence) not directly viewable (thus,
the notion of hidden Markov models).

Figure 2.4: Structure of a hidden Markov model.

A hidden Markov model is basically a Markov chain where the output feature
vector is a random variable o generated according to the output probabilistic
function associated with each state. Formally, it is defined by:

• V – the output observation alphabet. The observation symbols correspond
to the physical output of the system being modelled an may be either
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discrete or continuous. In speech recognition, the observation alphabet
corresponds to the space of possible feature vectors.

• O = {o1, o2, ..., oM}, om ∈ V – an output observation sequence.

• S = {S1, S2, ..., SN} – the set of N HMM states.

• q = q1q2...qT , qt ∈ S – the discrete state sequence of the HMM that
generates the observation sequence.

• A = {aij} – a transition probability matrix, where {aij} is a probability of
taking a transition from state i to state j, i.e.

aij = P (st = j|st−1 = i)

• B = {bi(o)} – an output probability matrix, where bi(o) is the probability
density function of emitting output observation o when state Si is entered:

bi(v) = P (o|qt = Si), i = 1...N, v ∈ V

The probability bi(o) is assumed to be independent of t.

• π = {πi} – an initial state distribution where

πi = P (q1 = Si), i = 1..N

In speech recognition, it is convenient to extend the basic HMM structure to
include initial and final non-emitting states S0 and SN+1, as shown in the figure.
Thus, we can get rid of the initial state probability vector π and incorporate initial
state probabilities into state transition vector A.

The state conditional observation vector densities may assume many different
forms. The typical choice is a multivariate Gaussian distribution. Its density
function is given by

bj(ot) = N ;µ,W ) =
1√

(2π)D/2|W |1/2
e−

1
2
(o−µ)T W−1

i (o−µ)

where µ and W are the mean vector and the covariance matrix respectively of
the distribution and D is the dimensionality of the observation vectors. To reduce
the number of free parameters it is usually assumed that the components of the
feature vector are uncorrelated, i.e. the off-diagonal elements in the covariance
matrix are set to zero. Unfortunately, the ”true” parameter vector distributions
have often complex shapes and in such case, a single Gaussian density may prove
inadequate. This is especially true for a speaker independent system trained on
both male and female data. In order to obtain more accurate approximations, it is
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common to use mixtures of Gaussian densities

bj(o) =
M∑

m=1

cj,mN (o;µj,m;Wj,m) =
M∑

m=1

cj,mbj,m(o)

where M is a number of mixture components and cj,m is the mixture weight for
the mth mixture component in state j. A sample of a one-dimensional probability
density function with three Gaussian mixtures is shown in Figure 2.5.
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Figure 2.5: One-dimensional probability density function with three Gaussian
mixtures.

Given the definition of HMMs, three basic problems must be addressed before
they can be applied to real-life applications:

• The evaluation problem – given a model λ and a sequence of observations
O, what is the probability P (O|λ), i.e. the probability that this model
generated the observations?

• The decoding problem – given a model λ and a sequence of observations O,
what is the most likely state sequence Q in the model, given that the model
generated the sequence?

• The learning problem – given a model λ and a set of observation sequences
O, how can we adjust the parameters of the model so that the joint proba-
bility (likelihood)

∏
O P (o|λ) is maximized?
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The evaluation problem

The evaluation problem can be solved with the so-called forward algorithm.

If the actual state sequence q = q1q2...qT is known, the probability P (o|λ, q)
can be found by multiplying the transition and output probabilities that are
encountered along the path:

P (o|λ, q) = πq1bq1(o1)
T∏

t=2

aqt−1,qtbqt(ot)

In reality, the state sequence that generated the observation sequence O is known,
and the probability that it was generated by any state sequence can be found by
simply enumerating all possible state sequences S of length T and then summing
all the corresponding conditional probabilities:

P (o|λ) =
∑

q

P (o|λ, q) =
p∑
q

iq1bq1(o1)
T∏

t=2

aqt−1,qtbqt(ot)

To efficiently solve this equation, the forward algorithm applies dynamic pro-
gramming techniques to drastically reduce the amount of computation by avoid-
ing the enumeration of paths that cannot possibly be optimal. It uses helper values
αt(j) = P (o1...ot, qt = Sj |λ) that are defined recursively as:

αt(j) =

{
πjbi(ot) if t = 1∑N

i=1 αt−1(i)aijbj(ot) if t > 1

This way, the probability under interest P (O|λ) can be calculated as

P (O|λ) =
N∑

j=1

αT (j)

The decoding problem

In speech recognition, it is desirable to find the state sequence q? of the model λ
that most probably produced the observation sequence O. This problem can be
solved using a variant of the forward algorithm, known as Viterbi algorithm.

The aim is to find:

q? = arg max
q∈ST

P (q|O, λ) = arg max
q∈ST

P (O, q|λ)
P (O|λ

= arg max
q∈ST

P (O, q|λ)
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Here, instead of the probability αt(j), we find the maximum of the probabili-
ties θt(j):

θt(j) = max
q∈ST

P (o1...ot, qt = Sj |λ)

and the recursive definition becomes:

θt(j) =

{
πjbi(ot) if t = 1
maxN

i=1 θt−1(i)aijbj(ot) if t > 1

The state sequence that maximizes the probability of the observation sequence
corresponds to the states that are encountered along the path when calculating

N
max
i=1

θT (j) = P ?(O|λ) := P (O, q?|λ)

The optimization problem

The goal of the optimization problem is to estimate model parameters λ =
(A,B, π) so as to maximize the probability that an observation sequences O
where produced by this model:

λ? = arg max
λ

P (O|λ)

This is by far the most difficult of the three HMM problems because there
is no known analytical method that maximizes the model parameters in this way.
Instead, the problem can be solved using the iterative Baum-Welch algorithm, also
known as the forward-backward algorithm.

First, in a manner similar to the forward probability, we define backward
probability as:

βt(i) =

{
1 if t = T∑N

i=1 aijbj(ot+1)βt+1(i) if t < T

where βt(i) is the probability of generating partial observation OT
t+1 (from t + 1

to the end) given that the HMM in state i at time t.
With help of the terms α and β, it is possible to calculate the probability

γt(ij) of taking the transition from state i to state j at time t, given the model and
observation sequence:

γt(j) = P (qt = Sj |O, λ) =
αt(j)βt(j)∑N
i=1 αt(i)βt(i)

To reestmate aij , we have to find the ratio between expected number of
transitions from state i to state j and the expected total number of transitions
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from state i. It turns out that the reestimation âij can be calculated from γt(ij) as:

âij =
∑T

t=1 γt(i, j)∑T
t=1

∑N
k=1 γt(i, k)

To recompute the observation probabilities, we need to find the ratio between
expected number of times the observation data emitted the symbol vk when being
in state j, and the expected total number of times in state j. This reestimation can
be also be calculated with help of γt(ij):

b̂j(k) =

∑
t∈ot=vk

∑
i γt(i, j)∑T

t=1

∑
i γt(i, k)

The entire training procedure of HMMs first chooses some estimate for model
parameters a and b, and then uses the given equations to reestimate the parameters.
The Baum-Welch algorithm guarantees a monotonic likelihood improvement on
each iteration, and eventually the likelihood converges to a local minimum.

2.3.2 Selection of basic units

The HMMs can be used to provide the estimates of P (O|W ) in speech recog-
nizers. For isolated word recognition with sufficient training data it may be pos-
sible to build a HMM for each word. However, for continuous large vocabulary
recognition it is unlikely that there is sufficient data for training each word in the
lexicon. Instead, some sub-word units have to be used. The selected sub-word
units should be accurate, trainable and generalizable: the units should be able to
represent the acoustic realizations in different contexts; there should be enough
training data to robustly estimate the parameters of the unit; and any new word
should be derivable from the predefined inventory of trained units. The majority
of modern speech recognition systems use sub-word units called phones. Phones
usually correspond to one or more phonemes in the underlying language and usu-
ally also include silence, short pause and some noise models. The chosen phone
set depends on the availability of sufficient training data and other practical is-
sues. The HMMs corresponding to the phones may then be concatenated to form
composite word models and sentence models, as shown in Figure 2.6.

2.3.3 Clustered context-dependent acoustic units

When one HMM is trained for each basic phone, it is referred to as a monophone
or context independent system. However, there is a large amount of variation
between realizations of the same phone depending on its neighborhood. This
effect is called co-articulation and it happens due to the inertia restricting any
abrupt movement of the articulatory organs. A widely used approach to improve
accuracy and trainability is using context dependent units. Phones that take into

20



Figure 2.6: Construction of a composite sentence HMM from word HMMs and
phone HMMs, for a sentence ”koer närib konti”, ”dog eats a bone”.

account the immediate left and right neighboring phones are called triphones. If
two phones have the same identify but different left and/or right contexts, they are
considered different triphones.

The number of states and model parameters of an acoustic model consisting
of triphones is significantly larger than those of a monophone system. It is
therefore unlikely that there is enough training data to reliably estimate all
different triphones in the training data. Furthermore, it is very common that many
triphones that are needed for composing word models of the final system do not
occur in the training data at all. The most common solution to this problem is to
share some of the model parameters by sharing the state conditional observation
densities among different models. The rationale behind this approach is that many
phones that are produced in articulatory similar way have a similar effect on the
neighboring phones. For example, /m/ and /n/ are both nasals and have a similar
effect on the neighboring vowels, thus it might be a good idea to share the first
states of triphones that correspond to same vowel but represent the left /m/ and
/n/ context. This leads to a much more manageable number of models that can
be trained, and in addition, triphones that are not seen in the training data but are
needed for recognition can be synthesized from existing states. Figure 2.7 shows
a hypothetical clustering of some triphones.

The states that are to be shared are often determined in a data-driven manner
using phonetic decision trees [Young et al., 1994]. The phonetic decision trees
classifies triphone states of triphones that are represented in the training data
by asking binary linguistic questions about the context of the triphone. The
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Figure 2.7: Hypothetical clustering of nine triphone state observation densities
into five shared densities.

questions can be simple categorical questions (e.g. ”Is the left context a nasal?”
or conjunctions, disjunctions and/or negations of the simple questions. The set
of the simple categorical questions is designed by an expert. The decision tree
is composed automatically by splitting the data using the question that provides
the largest likelihood increase for the acoustic models against training data. The
splitting will terminate in the final leaves or if the number of training data samples
per state falls below a set threshold.

The set of linguistic categories that are used for forming the questions can be
also generated automatically so that maximally separated partitioning are ensured
[Singh et al., 1999]. This method has an important advantage of extensibility to
languages for which the phonetic structure is not well understood by the system
designer.

2.4 Language Modelling

While the acoustic model is used to compute the likelihood of a certain word
sequence given the measured acoustic evidence, the language model helps to
estimate a priori probability of the word sequence, i.e.:

P̂ (W ), W = w1w2...wn

where the caret denotes the estimate of the probability. This probability
helps the speech recognizer in deciding upon one of possibly several acoustically
similar, competing ways of segmenting the sequence of observation vectors into
words according to their prior likelihood. It also helps to dramatically constrain
the search space of possible word sequences.
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2.4.1 N -gram language models

It is clear that it’s impractical to generate and store probabilities for all possible
word sequences in the language. The most widely used statistical language model,
the so-called n-gram model, uses the fact that the probability of a word sequence
can be decomposed into a product of conditional probabilities, using the chain
rule

P (w1, ...wn) =
n∏

i=1

P (wi|w1, w2, ..., wi−1)

where P (wi|w1, w2, ..., wi−1) is the probability that wi will follow, given that
the word sequence w1, w2, ..., wi−1 (also referred to as word history) appeared
previously. The sequential manner of this decomposition makes it particularly
appropriate to the way how search for the most probable word sequence is carried
out in a speech recognizer. However, for a vocabulary size of v there are vi−1

different possible histories and to specify P (wi|w1, w2, ..., wi−1) completely,
vi probabilities would have to be estimated. In reality, such probabilities are
impossible to estimate for even moderate values of i since they would need huge
amounts of storage, and more importantly, such probabilities cannot be simply
estimated from training data since most histories w1, w2, ..., wi−1 occur never
or only very rarely. As a solution, one can make a (possibly false) assumption
that P (wi|w1, w2, ..., wi−1) depends only on some equivalence classes. The most
obvious word history equivalence classification is a simple truncation of the word
history to the last N words, which leads to the n-gram language model. The
equivalence class definition of the n-gram language model is that all word histories
which end in the same N − 1 words are identical from the language modelling
point of view, i.e.:

P (w1, ...wn) =
n∏

i=1

P (wi|w1, w2, ..., wi−1) ≈
n∏

i=1

P (wi|wi−2, wi−1)

Truncating the word history in such manner reduces the number of parameters so
that they can be more robustly estimated while still preserving the usefulness for
estimating the likelihood of the current word.

The most obvious drawback of n-gram language models is that they don’t
model long-distance relationships. E.g. given the Estonian sentence Koer sööb
murul lamades konti ”Dog eats a bone while lying on the mown” and a trigram
language model, the probability of the word konti is conditioned only on the two
previous words murul lamades ”while lying on the mown” while in reality the
strong relationship between the words koer sööb ”dog eats” and konti is very clear.

Another weakness of n-gram models is that they do not disambiguate sen-
tences which are grammatically incorrect. For example, given a reference utter-
ance
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kongi põrand oli nii tihedasti asustatud et konngi
ei mahtunud enam kongi

and the recognized word sequence

kongi põrandale nii tihedasti asustatud et kongi
mahtunud enam kongi

it can be seen that each triplet of the recognized sentence is entirely plausible but
the resulting word sequence does not make much sense 1.

Despite the drawbacks, bigram and especially trigram language models are
still the most effective and widely used language models in contemporary speech
recognition systems. Their effectiveness lies in the way model parameters can
be estimated from training corpora and the simplicity with which they can be
incorporated into a speech recognition search process. The local relationships
that n-gram models capture seem to be most important for most languages.

N -gram estimation

The trigram probability P (wi|wi−2, wi−1) can be estimated by simply counting
the occurrences of the triplet wi−2wi−1wi and normalize it:

P (wi|wi−2, wi−1) =
C(wi−2wi−1wi)∑
wi

C(wi−2wi−1wi)
=

C(wi−2wi−1wi)
C(wi−2wi−1)

The text available for building a model is called training corpus. For N -gram
models, the size of the corpus is typically tens or hundreds of millions of words.
The estimate for P (wi|wi−2, wi−1) given above is called the maximum likelihood
(ML) estimate of P (wi|wi−2, wi−1) since this assignment of probabilities yields
a trigram model that assigns the highest probability to the training corpus among
all possible trigram models.

The maximum likelihood estimate assigns a zero probability to all N -grams
that never occur in the training corpus. However, it is very common that many
perfectly valid trigrams never occur in the training data. For example, given an
Estonian training corpus of over 60 million words, over 30% of all trigrams in
the handout texts never occur in the training corpus, even when using morphemes
as basic units for language modelling. If a certain trigram is assigned a zero
probability by a language model, the whole sentence that contains that trigram
is never considered as a candidate for possible transcription regardless of how
unambiguous the acoustic signal is. Assigning all trigrams a non-zero probability
helps prevent errors like this in speech recognition. Modification of maximum
likelihood probabilities to allow estimation of probabilities for unseen events is

1In reality, the subword units are used as basic units in Estonian speech recognizer and the
actual recognized sequence is: kongi põranda le nii tihedasti asusta tud et
kongi mahtu nud enam kongi
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generally referred to as smoothing. In the following section, review of Good-
Turing estimates, Katz’s backoff smoothing and Kneser-Ney smoothing is given.

Good-Turing estimates

The Good-Turing estimate [Good, 1953] is a smoothing technique to deal with
infrequent N -grams. It is a central method for many smoothing techniques.

The Good-Turing estimate states that for any N -gram that occurs r times, we
should modify the count by a discount coefficient dr where

dr = (r + 1)
nr + 1
rnr

and where nr is the number of N -grams that occur exactly r times in the training
corpus. The probability of an N -gram α occurring r times can be then estimated
by normalizing the pseudo-count drr:

PGT (α) =
drr

N

where

N =
∞∑

r=0

nrdrr =
∞∑

r=0

(r + 1)nr+1 =
∞∑

r=1

rnr

i.e., N is equal to the original number of counts in the distribution.
Katz [Katz, 1987] suggests that events that occur more than k times (where

k is typically in the range of 5 to 8) can be reliably estimated by their relative
frequencies, so they are not discounted. Hence the discount coefficient is defined
as

dr =


(r+1)nr+1

rnr
−(k+1)

nk+1
n1

1−(k+1)
nk+1

n1

if 1 ≤ r ≤ k

1 if r < k

The relative values of the count-of-counts must satisfy the relationships

n1 ≥ 2n2 ≥ 3n3...

otherwise the resulting discounted counts will not be consistent with each other.
For most naturally occurring data, these constraints are satisfied.

Katz backing-off scheme

Katz back-off smoothing technique [Katz, 1987] extends the Good-Turing dis-
counting scheme by adding the combination of higher-order models with lower
order models. In general, backing off refers to using a probability estimate pro-
portional to one from a more general distribution when the estimate from the
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specific distribution is missing or unreliable. In the case of an N -gram language
model, the back-off technique applies a more general (N − 1)-gram distribution
if the N -gram is deemed unreliable. For example, a trigram model provides a
greater refinement in predictive power over bigram and unigram models. If a tri-
gram probability for a certain N -gram is unreliable or cannot be estimated, the
bigram model is used instead. In turn, when the bigram is unreliable, the unigram
model is applied. Usually, an N -gram estimate is deemed unreliable if it is miss-
ing in the language model, which is a result from the N -gram being missing in
the training corpus or it occurring less than a certain number (cutoff) of times.

The Katz back-off technique is illustrated using a trigram model as an exam-
ple. Given an estimate for the probability of observed events P̂ , the total proba-
bility of unseen events P̂u occurring in the context wi−2wi−1 is given by

P̂u(wi−2, wi−1) = 1−
∑

w:N(wi−2,wi−1,wi)>0

P̂ (w|wi−2, wi−1).

The backing-off scheme is used to distribute the probability of unseen trigrams
among all unobserved trigrams according to the more general bigram distribution
P̂ (wi|wi−1):

P̂ (w|wi−2, wi−1) =
P̂u(wi−2, wi−1)∑

w:N(wi−2,wi−1,wi)=0 P̂ (w|wi−1)
P̂ (w|wi−1)

The denominator ensures that the probabilities sum to one.

By combining the backing-off technique with discounting scheme that uses
discount coefficient dr for all counts of r, the trigram estimate is given as

P̂ (wi|wi−2, wi−1)

=

{
dC(wi−2,wi−1,wi)

C(wi−2,wi−1,wi)
C(wi−2,wi−1

if C(wi−2, wi−1, wi) ≥ 1

α(wi−2, wi−1)P̂ (wi|wi−1) if C(wi−2, wi−1, wi) = 0

where α(wi−2, wi−1) is a back-off weight which is defined as

α(wi−2, wi−1) =
1−

∑
w:C(wi−2,wi−1,w)>0 P̂ (w|wi−2, wi−1)

1−
∑

w:C(wi−2,wi−1,w)>0 P̂ (w|wi−1)

and ensures that the probabilities P̂ (w|wi−2, wi−1) sum to one. In the last expres-
sion, the numerator corresponds to the left-over probability mass obtained from
discounting the counts of observed events and the denominator is a normalizing
factor that expresses the total back-off probability. Smoothing is applied recur-
sively with the unigram probabilities being smoothed first since these are required
for bigram smoothing, etc.
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The Katz backing-off method is computationally efficient since all the back-
off weights can be estimated during language model training. Also, the scheme
can be relatively easily incorporated into the decoding process.

Absolute discounting

Absolute discounting [Ney et al., 1994] is an improvement over simple interpo-
lation of higher-order and lower-order models. It involves subtracting a fixed
discount D ≤ 1 from each non-zero count:

Pabs(wi|wi−n+1...wi−1)

=
max(C(wi−n+1...w1)−D, 0)∑

wi
C(wi−n+1...w1)

+ (1− λwi−n+1...wi−1)Pabs(wi|wi−n+2...wi−1)

To make this distribution sum to one, the following condition must be satis-
fied:

1− λwi−n+1...wi−1 =
D∑

wi
C(wi−n+1...w1)

C1+(wi−n+1...•)

where
C1+(wi−n+1...•) = |{wi : C(wi|wi−n+1...wi) > 0}|

The notation C1+ is meant to evoke the number of unique words that follow
the history wi−n+1...w1−1. The discount D is suggested to be taken as

D =
n1

n1 + 2n2

where n1 and n2 denote the total number of N -grams with exactly one and two
counts, respectively.

Kneser-Ney smoothing

Kneser and Ney [Kneser and Ney, 1995] propose an improvement to absolute dis-
counting technique that combines lower-order distribution with a higher-order dis-
tribution in a novel manner. In previous algorithms, the lower-order distribution
that is used in the backing-off scheme is usually a smoothed version of the lower-
order maximum likelihood distribution. However, the lower-order distribution is
significant only when few or no counts are present in the higher-order distribution.
The idea of Kneser-Ney smoothing is to optimize the lower-order distribution to
perform well in these situations, i.e., when the Katz backing-off scheme actually
refers to it.

The need for such approach becomes clearer when we consider a bigram
model on a data where there exists a word that is very common, e.g. Francisco,

27



but which only or mostly occurs after a single word, e.g. San. Since the
frequency of Francisco is high, the unigram probability P (Francisco) will be
high, and an algorithm such as Good-Turing discounting will assign a relatively
high probability to the word Francisco occurring after previously unseen bigram
histories. However, perhaps the unigram probability of this word should not be
high since there is reliable evidence that it mostly occurs after the word San in
which case the bigram distribution already models its probability well.

According to this line of reasoning, the unigram distribution should be pro-
portional not to the number of occurrences of a word, but to the number of words
that it follows. When traversing the training data and building a bigram model to
predict the current words based on the already traversed data, the unigram proba-
bility of the word is the decisive factor only if the current bigram hasn’t occurred
already in the training data. If we assign a count to the current word whenever we
actually have to refer to the unigram probability, the number of counts assigned to
each word will be simply the number of different contexts that it follows.

Kneser-Ney smoothing uses the same general formula as absolute discount-
ing:

PKN (wi|wi−n+1, ..., wi−1)

=
max(C(wi−n+1...w1)−D, 0)∑

wi
C(wi−n+1...w1)

+
D∑

wi
C(wi−n+1...w1)

C1+(wi|wi−n+1...•)PKN (wi|wi−n+2...wi−1)

However, the lower-order probabilities are computed differently:

PKN (wi|wi−n+2, ..., wi−1) =
C1+(•wi−n+2...wi)

C1+(•wi−n+2...wi−1•)

where
C1+(•wi−n+2...wi) = |{wi−n+1 : C(wi−n+1...wi) > 0}|

and

C1+(•wi−n+2...wi−1•) = |{(wi−n+1, wi) : C(wi−n+1...wi) > 0}|

i.e., C1+(•wi−n+2...wi) is the number of different words that precede
wi−n+2...wi and C1+(•wi−n+2...wi−1•) is the number of different word pairs
that surround the context wi−n+2...wi−1.

It can be shown that the formula for lower-order estimates can be derived if
we select the lower-order distribution such that the marginals for the higher-order
smoothed distribution match the marginals of the training data, i.e. for a bigram
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model the following constraint should be satisfied:∑
wi−1

PKN (wi−1wi) =
C(wi)∑
wi

C(wi)

A modification of Kneser-Ney smoothing [Chen and Goodman, 1998] is
widely used and it usually exhibits excellent performance. Instead of using single
discount D for all nonzero counts as in the original method, we can have three
different parameters, D1, D2, and D3+ that are applied to N -grams with one,
two and three or more counts, respectively:

PKN (wi|wi−n+1, ..., wi−1)

=
max(C(wi−n+1...w1)−D(C(wi−n+1...w1)), 0)∑

wi
C(wi−n+1...w1)

+ γ(wi−n+1...w1)PKN (wi|wi−n+2...wi−1)

where

D(c) =


0 if c = 0
D1 if c = 1
D2 if c = 2
D3+ if c ≥ 3

The optimal values for D1, D2, and D3+ have been estimated to be

D1 = 1 + 2Y n2
n1

D2 = 2− 3Y n3
n2

D3+ = 3− 4Y n4
n3

where
Y =

n1

n1 + 2n2

2.4.2 Language model evaluation

The best way to evaluate performance of a language model is to incorporate it into
a speech recognition system, perform a recognition experiment and look at the
word error rate. The true quality of the language model can only be measured in
this way, since its utility is implicitly linked to the behavior of the acoustic model.
However, although the performance of the language model inside the recognition
system is ultimately crucial, it is impractical to evaluate language models in this
way due to the high computational cost of recognition experiments. Therefore,
there is a need for evaluating language models in isolation from the acoustic
model, as quickly and objectively as possible, and in a way that corresponds to the
performance of the language model when it would be used in a speech recognizer.
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An information theoretic measure that satisfies those conditions will be introduced
next.

Entropy and perplexity

The task of the language model in the speech recognition system is to compute a
priori probabilities of different word sequences. The probability that is assigned to
a test text that did not form part of data that was used to train the model, gives some
indication of how well the model can predict sentences of the given language. The
higher the probability of the test text, the better the model is in predicting this text.

A natural language can be regarded to have been produced by an information
source that emits symbols z(i) at discrete time intervals i ∈ 0, 1, ...,∞ from a
certain finite set according to some statistical law. The symbols that are produced
might be, for example, words, word sequences, or some sub-word units. Let the
emission of a symbol be referred to as event. Assuming that the source emits a
sequence z(1), ..., z(n) with a probability P (z(1), ..., z(n)), the per-event self-
information of the sequence is [Shannon, 1953]

Is(z(1), ..., z(n)) = − 1
n

log(P (z(1), ..., z(n)))

The self-information is an information theoretic measure of the amount of in-
formation gained by observing the sequence z(1), ..., z(n) and thereby removing
the uncertainty about it. Rare sequences, i.e. those with low probability, carry a
larger amount of information than more frequent sequences. The per-event en-
tropy, or the average per-event self-information of the source is then:

h = − lim
n→∞

1
n

∑
z(1),...,z(n)

P (z(1), ..., z(n)) log P (z(1), ..., z(n)))

where the summation is over all possible event sequences of length n that
source is capable of producing. Entropy is the average measure of the amount
of information contained in the set of sequences the source may produce. If the
source is ergodic2 then the entropy is equivalent to

h = − lim
n→∞

1
n

log P (z(1), ..., z(n)))

The per-event entropy of the source is a measure of the uncertainty that the
source experiences in determining an event. However, since the true mechanism of
the natural language source is unknown, only the approximation of the probabili-
ties P (z(1), ..., z(n)) can be calculated. Furthermore, the length of the sequences

2A source is said to be ergodic if its statistical characteristics can be determined over a
sufficiently long sequence temporally, instead of from the ensemble of sequences.
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z(1), ..., z(n) at our disposal is always finite in practical situations, so that we
must approximate the above equation by:

ĥ = − 1
n

log P̂ (z(1), ..., z(n))

Thus, the entropy of the source is approximated by the average per-event
log probability of the observation. In the language modelling framework, this
observation is the training corpus. It can be shown that the approximated entropy
is always greater than or equal to the actual entropy since the probability estimates
of the event sequences can never be better than the actual probabilities. This is
very appealing because it implies that only a perfect model can assign the highest
probability to an actually observed sequence and any imperfections in the model
will lead to lower probability. Therefore, the probability that the model assigns to
an actually observed sequence can be taken as a measure of the model quality. To
make this measure independent of the length of the sequence, a per-event average
may be used, which is called perplexity:

PP = 2ĥ = (P̂ (z(1), ..., z(n)))−
1
n

The perplexity may be interpreted as the average branching factor at every
time instant according to the source model. In language modelling terms, this
corresponds the average number of equally probable words that follow any given
word. For example, if the language model has a vocabulary of size K and
every word is equally probable in any context, the probability estimate of a word
sequence of length N is

P̂ =
∏
N

1
K

=
1

KN

and the perplexity is

PP =
1

KN

− 1
N

= K

Of course, the perplexity cannot take into account the acoustic difficulty in
distinguishing a word. It is possible that a language model that can differen-
tiate well between acoustically similar words may result in a better word er-
ror rate than a model with a lower perplexity, when incorporated into a speech
recognition system. Different improved quality measures have been proposed
[Jelinek et al., 1992, Chelba, 2006] that take into account this aspect but those
measures have the disadvantage of becoming specific to the nature of the acoustic
model being used.

It should be also noted that it is only sensible to compare language models
based on the same test text, and using the same language model vocabulary. For
example, it is easy to construct a language model for Estonian that has a perplexity
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as low as 33, if we set the vocabulary to include all letters in the Estonian alphabet
and a space delimiter, and assign all units a uniform probability. Such language
model can model any Estonian text but of course doesn’t work well in a speech
recognition system, since many letters are acoustically highly confusable.
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Chapter 3

Properties of the Estonian
language

The Estonian language belongs to the Balto-Finnic subgroup of Finno-Ugric
languages. It has about 1.1 million native speakers. Among other larger Finno-
Ugric languages, Estonian is closely related to Finnish, and more distantly to the
Hungarian language of the Ugric branch. Over the course of Estonian history,
German has had a strong influence on Estonian, both in vocabulary and syntax.

In this chapter, an overview of Estonian phonology, orthography, morphology
and syntax is given.

3.1 Phonology

This section describes the distinctive sounds within the Estonian language. The
vowel and consonant inventory is listed. An approach to handling long phonemes
and diphthongs is described.

The last subsection gives a modern treatment of the three-way quantity oppo-
sition in Estonian words.

3.1.1 Vowels

Estonian has nine vowels, each of which corresponds to a single grapheme.
They can be grouped with respect to the tongue position, tongue height and the
roundedness of the lips in their articulation process. All vowels are shown in table
3.1, together with their symbols according to IPA and SAMPA representation.
There is no single appropriate character for the Estonian /õ/ in the IPA inventory,
although [7] seems to be the most common [Eek and Meister, 1999].

All short and long (double) vowels occur in the primary-stressed first syllable.
Beyond the primary-stressed syllable the distribution of vowels is more restricted:
in non-initial syllables only short /a/, /e/, /i/, /u/, /o/ occur, whereas /o/ is used in
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Table 3.1: Estonian vowel inventory [Eek and Meister, 1999].

IPA SAMPA Estonian
phono-
logical
transcrip-
tion

Example
word

Tongue position, tongue
height, lips

A A /a/ sada back, low, unrounded
e e /e/ keda front, medium-high, un-

rounded
i i /i/ kilu front, high, unrounded
o o /o/ pori back, medium-high,

rounded
u u /u/ kuri back, high, rounded

7, W, @ 7 /õ/ kõma back, high, unrounded
æ { /ä/ käru front, low, unrounded
ø 2 /ö/ löma front, medium-high,

rounded
y y /ü/ mürin front, high, rounded

late loanwords, names and in foreign words. Long vowels do not occur in non-
initial syllables of native Estonian words. However, long vowels do occur in the
primary or secondary-stressed non-initial syllables of foreign words.

There is little difference in the quality of short and long vowels, therefore it
is not justified to define them as different phonemes [Eek and Meister, 1999]. A
long duration is designated by sequences of two identical segmental phonemes.

There are 36 segmental diphthongs and polysyllabic vowel clusters are also
found. All nine vowels are used as the first component of a diphthong and only
/a/, /e/, /i/, /u/ and /o/ as the second component, as seen in table 3.2.

In the primary-stressed first syllable of native words and older loanwords, only
25 diphthongs occur. From those, 17 appear in the long vs. ”overlong” opposition;
8 dipthongs occur only in the overlong foot.

In non-initial syllables of native words, only the dipthongs ai, ei and ui occur.
Usually, diphthongs are formed so that the main quality of the vowels is

retained [Kraut, 2000]. In case of diphthongs ea, oa and öa, there is a tendency to
pronounce the first component slightly higher than the corresponding vowel.

Some native words contain vowel clusters consisting of three phonemes (e.g.
kaua, viie, laiem). In such cases, a syllable border is placed before the last vowel
in the cluster and the second syllable is linked by pronouncing /w/ (after a long
uu or u-final diphthong) or /j/ (after long ii or i-final diphthong) between the two
syllables: kaua [kAuwA], viie [viije], laiem [lAijem]. However, in such cases, [w]
and [j] do not have phonemic status since their occurrence is always predictable
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Table 3.2: Estonian diphthongs [Eek and Meister, 1999]. Diphthongs marked
with * appear only in the overlong foot; diphthongs marked by ** occur only
in foreign words.

i e u o a
i ie** iu io** ia**
e ei eu** eo* ea
ä äi äe äu äo
ü üi** üe** üo** üa**
ö öi öe* öa*
u ui ue** uo** ua**
o oi oe ou oa*
õ õi õe õu õo õa*
a ai ae au ao**

and is considered to be a coarticulation effect.

3.1.2 Consonants

The consonant phonemes together with their articulatory characteristics are listed
in table 3.3. One of the main features of the Estonian consonant system is that
there is no voiced-unvoiced opposition (/b/ – /p/, /z/ – /s/). This is replaced by
pronouncing the same voiceless phoneme in different lengths (/p/ – /pp/, /s/ – /ss/).
The short plosives b

˚
, d
˚

, g
˚

are considered half-voiced, or according to more recent
conventions [Eek and Meister, 1999, Kraut, 2000], they are just short versions of
the corresponding unvoiced plosives. Voicing of the beginning of short plosives
between the first and second syllable covers a segment which is about 3/10 of
the plosive’s whole duration. In the non-initial syllables of longer words the
partial voicing of a short plosive is even more extensive; in spontaneous speech
short plosives are often fully voiced in voiced context. The spreading of foreign
language knowledge has increased the number of speakers who pronounce the
short plosive completely voiced.

There are some secondary (non-phonemic) segmental units that are considered
positional variants of the main phonemes (table 3.4). The phoneme /n/ is realized
as a palato-velar nasal [N] before palato-velar plosives (except when there is a
morpheme boundary between /n/ and /k/). Sonorants preceded by /h/ are devoiced
at the end of one-syllable words. Sometimes the sonorant remains voiced but then
they are syllabic consonants [Eek and Meister, 1999].

In word-initial position, the short/long opposition of plosives has been neu-
tralized: the word-initial plosive is relatively long in absolute word beginning, or
short if occurring in intra-sentence context. The word-initial g, b, d occur only
in foreign words and are pronounced just like k, p, t: baar /paa:r/ ’bar’, nom. sg.
– paar /paa:r/ ’pair’, nom.sg.; gaas /kaa:s’/ ’gas’, nom.sg. – kaas /kaa:s/ ’cover’,
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Table 3.3: Estonian consonant inventory [Eek and Meister, 1999].

IPA SAMPA Estonian
phono-
logical
transcrip-
tion

Example
word

Type of articulation,
voiced/voiceless, place
of articulation

b
˚

, p p /p/ taba plosive, voiceless, bilabial
d
˚

, t t’ /t/ padu plosive, voiceless, denti-
alveolar

d
˚

j, tj t, t’ /t’/ padi palatalized plosive, voice-
less, denti-alveolar

g
˚

, k k /k/ kagu plosive, voiceless, palato-
velar

f f /f/ foori fricative, voiceless, labioden-
tal

v v /v/ kava fricative, voiced, labiodental
s s /s/ mäsu fricative, voiceless, alveolar
sj s’ /s’/ kasi palatalized fricative, voice-

less, alveolar
S S /š/ šefi, looži fricative, voiceless, postalve-

olar (usually labialized)
h h /h/ sahin fricative, voiceless, glottal-

oral; short degree - voiced le-
nis; long degree - voiceless
geminate

m m /m/ samu nasal, voiced, bilabial
n n /n/ kanu nasal, voiced, alveolar
nj n’ /n’/ pani palatalized nasal, voiced,

alveolar
l l /l/ kalas lateral, voiced, alveolar-

postalveolar
lj l’ /l’/ pali palatalized lateral, voiced,

alveolar-postalveolar
r r /r/ nari thrill, voiced, alveolar
j j /j/ maja approximant, palatal
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Table 3.4: Secondary (non-phonemic) segmental units [Eek and Meister, 1999].

IPA SAMPA Example Description
N N pank [pANk] /n/ is realized as N before /k/ if

the velar plosive is not preceded
by morpheme boundary

m
˚

m 0 vihm [vih:m
˚

]
at the end of one-syllable words
sonorants preceded by /h/ (and
other obstruents) are
idiosyncratically devoiced

n
˚

n 0 pahn
l
˚

l 0 kahl
r
˚

r 0 kõhr
v
˚

v 0 kahv
m
"

=m vihm [vih:m
"
] if at the end of one-syllable

words sonorants preceded by /h/
(or other obstruents) remain
voiced, then these sonorants are
syllabic consonants

n
"

=n pahn
l
"

=l kahl
r
"

=r kõhr
v
"

=v kahv
w w kaua [kAuwA] between long /u/ or /u/-final

diphthong and the following
short /a/ and /e/ some speakers
pronounce [w]

nom.sg.; duur /tuu:r/ ’major key’, nom.sg. – tuur /tuu:r/ ’sturgeon; ice pick’,
nom.sg., etc. However, there is a tendency of pronouncing word-initial g, b, d as
voiced.

The phonemes /f/ and /š/ occur in foreign words; they are not fully adapted
to the phonological system of Estonian. The orthographically exposed z and ž in
foreign words are usually pronounced as /s/ and /š/, respectively.

There are no affricate phonemes in Estonian because in the clusters ts and tš
behave as geminates and other consonant clusters: the syllable boundary between
consonants is clearly determinable, e.g. putši /put’ši/ ’minor revolt’, gen.sg. –
/put’:ši/ ’minor revolt’, part.sg.

Primary place of articulation of palatalized consonants /t’/, /s’/, /n’/, /l’/ is not
much different from their non-palatalized equivalents; only the back boundary of
the front contact area on palatograms is shifted somewhat backwards. The main
difference lies in secondary articulation, i.e. in the side contact areas due to /i/-like
final transition of the preceding vowel [Eek and Meister, 1999].

3.1.3 Quantity degrees

One special feature of Estonian phonology that has caused a great amount of
interest among linguists and phoneticians is the three-way quantity opposition.
Traditional treatment is based on three distinctive degrees of segmental duration.
All vowels and consonants can occur in short, long and overlong duration degrees
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[Ariste, 1939, Ariste, 1953].
According to the modern treatment quantity degrees are foot-level phenomena

and can’t be explained on segmental or syllabic levels. Quantity degrees are
described as duration ratios between the first and second syllable (see table
3.5), which have been found to be very stable even in spontaneous speech
[Engstrand and Krull, 1994].

Table 3.5: Duration ratio of the first and second syllable, depending on the
quantity degree of the foot.

Source Q1 Q2 Q3
[Lehiste, 1960] 0.7 1.5 2.0
[Liiv, 1961] 0.7 1.6 2.6
[Eek, 1974] 0.7 2.0 3.9
[Krull, 1991] 0.5-0.7 1.2-2.1 2.2-2.9

Furthermore, quantity degree is a complicated foot pattern the identification
of which depends on the total effect of several simultaneous features: duration
ratio, position of the fundamental frequency (F0) peak, and distribution of acoustic
energy in bisyllabic sequencies [Eek and Meister, 1999]. A foot is in the first
quantity (Q1) (e.g. kalu /koli/ ’fish’, part. pl.) when the stressed syllable of the
foot ends in a short vowel, and the short vowel of an unstressed second syllable
is phonetically halflong or long. The fundamental frequency is rising, F0 peak
is at the end of a voiced rhyme of the stressed syllable; in an unstressed syllable
F0 is falling. A foot is in the second quantity (Q2) (e.g. (selle) kaalu /kaalu/
’weight’, gen. sg.) when its stressed syllable is long (i.e. when it ends in a long
vowel, diphthong or at least one consonant) and the vowel of an unstressed second
syllable is phonetically short without qualitative reduction. The fundamental
frequency peak is in the second half of a voiced rhyme of the stressed syllable
(rising or level tone); in an unstressed syllable F0 is falling. A foot is in the third
quantity (Q3) (e.g. (seda) kaalu /kaa:lu/ ’weight’, part. sg.) when its stressed
syllable is long and the vowel of an unstressed syllable is extra short, weakened
and qualitatively reduced [Eek and Meister, 1997]. The F0 peak is in the first
half of a voiced rhyme of the stressed syllable following by falling tone which
continues in an unstressed syllable.

3.2 Orthography

Estonian uses the Latin alphabet and consists of 32 letters: a, b, c, d, e, f, g, h, i, j,
k, l, m, n, o, p, q, r, s, š, z, ž, t, u, v, w, õ, ä, ö, ü, x, y. The letters f, š, z, ž and f are
used only in foreign and loan words and foreign names. The letters c, q, w, x and
y are used only in foreign names.

Estonian orthography is largely phonetic with each phoneme of the language
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represented by exactly one grapheme. However, there are many important ex-
ceptions. Some phonological oppositions as well as phonologically not relevant
phonetic facts are not revealed in the written form. Also, some phoneme clusters
differ in their orthography from their phonetic form.

Long vowels and consonants are usually reflected in their orthography
– they are written as double letters. The most notable exceptions are
[Eek and Meister, 1999]:

• Intervocalic plosives /k/, /p/, /t/ are written with g, b, d in the Q1 foot, with
k, p, t in the Q2 foot and kk, pp, tt in the Q3 foot, e.g. tugi, ’support’, nom.
sg., tuki, ’brand’, gen. sg., tukki, ’brand’, part. sg.;

• At the beginning of the word, a single k, p, t is used, except for some foreign
loan words where g, b, d is used at the beginning of the word as in the
original language.

• Intraword plosives that neighbour any voiceless consonants are written us-
ing a single k, p or t regardless of the foot, e.g. kopsik (Q2 foot), aktus (Q3
foot). There are some exceptions (e.g. compound words, morpheme bound-
aries, foreign words) where g, b, d can occur in the neighborhood of a voice-
less consonant (e.g. sead/ma – sead/sin, kodakond/ne – kodakond/sete).

• After long vowels or diphthongs, regardless of the quantity degree of a foot,
long (geminate) obstruents (except s, e.g. poiss, Q3 ’boy’, nom. sg.) are
written by one letter, e.g. saate, Q2 ’get’, 2.pl.pres., saate, Q3 ’dispatch’,
gen. sg., laat, Q3 ’fair’, nom.sg.; to this group belongs also a geminate h in
the Q2 foot;

• After a sequence of a short or long vowel (or diphthong) and a sonorant,
regardless of the quantity degree of a foot, geminate obstruents (except s,
e.g. varss, Q3, ’foal’, nom. sg.) are written by one character, e.g. narta,
Q2, ’dogsledge’, nom.sg., karta, Q3 ’fear’, da-infinitive, kart, Q3, ’a type
of car’, nom. sg.;

• Plosive geminates when followed by a sequence of a voiced consonant and
a vowel, are also written by one character, e.g. rütmi, Q2 ’rhythm’, gen. sg.,
rütmi, Q3 ’rhythm’, part. sg.;

Long syllable-final üü is pronounced as üi (both in a Q2 and Q3 foot) if the
following unstressed syllable begins with a short vowel (e.g. püüa, Q2 [pyiA]
’catch’, 2. sg. imperat.).

Long intervocalic /i/ in the Q3 foot is written as jj (e.g. majja, Q3, ’house’,
adt. sg.).

Palatalization is not revealed in the orthography (e.g. palk, Q3 [pAlk:k]
’timber’, nom.sg. – palk, Q3 [pAljk:k] ’salary’, nom. sg.).
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The phoneme /n/ is realized as palato-velar nasal [N] before palato-velar
plosives (except in the case of morpheme boundary before g, k). This fact is
not revealed in the orthography (e.g. istungi [istuNki] ’meeting’, gen. sg. and
istungi [istunki] ’I am even sitting’).

Foreign loan words are usually written according to the simplified pronunci-
ation rules of the original language. Foreign names are written as in the original
language, except for some common placenames that have been adapted to Esto-
nian.

3.3 Morphology and syntax

Typologically, Estonian is in a transition from an agglutinative to a inflected
language. Agglutinative languages are characterized by the fact that morphemes
carrying grammatical information are appended to word stems, and every such
morpheme has only one meaning. In reality, Estonian is rapidly moving away
from agglutination and closer to inflection where each morpheme has several
grammatical meanings [Sutrop, 2004].

The principal way of forming words in Estonian is by adding derivative affixes
to the stem. Estonian has about one hundred derivative affixes, almost all of them
are suffixes.

Estonian is a so-called compounding language, i.e. compound words can be
formed from shorter particles to express complex concepts as single words. For
example, the words rahva ’folk’ and muusika ’music’ can be combined to form a
word rahvamuusika ’folk music’ and this in turn can be combined with the word
ansambel to form rahvamuusikaansambel ’folk music group’.

In Estonian language, neither nouns nor pronouns have grammatical gender.
There are no words that consist of only one letter.
Estonian nouns have 14 cases. In comparison: Finnish has 15, Russian has

six, German four and English only two cases. The meaning conveyed by case
endings in Estonian is expressed by prepositions in English and other languages.
By contrast, Estonian has almost no prepositions.

The 14 cases are listed in table 3.6 [Sutrop, 2004]. The case endings are the
same in singular and plural, the plural is distinguished by suffixes (ilusa-lt maja-lt,
abl. sg. – ilusa–te-lt maja–de-lt, abl. pl.).

Nouns and adjectives are declined in the same way. If used together with
a noun, declination of the adjective ’agrees’ with the primary word, except for
the last four cases. However, adjective always ’agrees’ with the primary word in
number ((ilusa maja-ni, term. sg. – ilusa-te maja–de-ni, term. pl.).

The form of the semantic cases (4th - 14th) can be always derived from the
genitive case by adding a suffix. The formation of the genitive and partitive case
however depend on the word and is governed by a set of so-called word types.
Given a noun and its type, the declensions of the word can be derived from the
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’master’ word of that type by analogy.

Table 3.6: Estonian cases [Sutrop, 2004].

Case Example Meaning
Grammatical cases
1. Nominative ilus tüdruk (a) beautiful girl
2. Genitive ilusa tüdruku of a beautiful girl; a beautiful

girl (as a total object)
3. Partitive ilusa-t tüdruku-t a beautiful girl (as a partial ob-

ject)
Semantic cases
Interior local cases
4. Illative ilusa-sse maja-sse into a beautiful house
5. Inessive ilusa-s maja-s in a beautiful house
6. Elative ilusa-st maja-st from a beautiful house
Exterior local cases
7. Allative ilusa-le maja-le onto a beautiful house
8. Adessive ilusa-l maja-l on a beautiful house
9. Ablative ilusa-lt maja-lt from on a beautiful house
Other cases
10. Translative ilusa-ks tüdruku-ks [to turn] (in)to a beautiful girl
11. Terminative ilusa tüdruku-ni up to a beautiful girl
12. Essive ilusa tüdruku-na as a beautiful girl
13. Abessive ilusa tüdruku-ta without a beautiful girl
14. Comitative ilusa tüdruku-ga with a beautiful girl

Estonian verbs are conjugated in the active and passive voice, and indicative,
imperative, conditional and indirect mood, and in the affirmative and negative
form. The present, past simple, present perfect and past perfect of the verbs are
distinguished. The verb inflections are listed in table 3.7.

Similarly to other Finno-Ugric languages, Estonian uses relatively many
postpositions, as opposed to prepositions in languages like English. However,
there is a tendency to substitute postpositions for prepositions, and in many
situations a word can act both as a preposition and as a postposition (e.g. mööda
teed vs teed mööda, ’along the road’ vs ’the road along’).

Estonian is known as a free word order language [Remmel, 1963]. Usually
many words in a sentence can be easily reordered without the sentence becoming
ungrammatical. The reason for this is that the grammatical relations between
words are reflected in case endings and inflections. In the literary language, the
most common word order is SVO (subject-verb-object). However, the XVS word
order (where X stands for any lexical category, capable of forming a phrase)
is almost as common in Estonian as SVO [Tael, 1988]. This shows that the
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Table 3.7: Estonian verb inflections.

Plurality Person Example Meaning
Singular I (ma) armasta-n ’I love’

II (sa) armasta-d ’you love (sg.)’
III (ta) armasta-b ’he/she/it loves’

Plural I (me) armasta-me ’we love’
II (te) armasta-te ’you love (pl.)’
III (nad) armasta-va-d ’they love’

word order in Estonian is determined by the needs of organizing known and new
information rather than by the purely syntactic criteria. The XVS word order is
more used in standard language, in spoken language and dialects it occurs only
about 12-19% [Lindström, 2000]. A more concise handling of Estonian word
order can be found in [Ehala, 2006].
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Chapter 4

Acoustic and pronunciation
modelling

This chapter presents an approach to modelling Estonian speech sounds in an
LVSCR framework that uses hidden Markov models for modelling acoustic units.
First, the inventory of acoustic units is proposed. A phonetic classification
for building context-sensitive units is given. Next, an alternative approach to
selection of acoustic units that takes into account the effect of quantity degrees
is proposed. Finally, a simple algorithm that can derive word pronunciations from
morphologically tagged word forms is presented.

4.1 Selection of acoustic units

In order to be able to compose a pronunciation dictionary for each vocabulary
word or morpheme, one first needs to decide about the inventory of acoustic
units. There are many factors that should be considered when making this
decision. First, the selected units should be accurate, trainable and generalizable
as explained in chapter 2.3.2. Second, since there are no large-scale pronunciation
dictionaries for Estonian words, it should be possible to automatically generate a
pronunciation for each entry in the system vocabulary.

The most straightforward approach is to use the Estonian phonemes as defined
in chapter 3.1 as basic units for acoustic modelling.

There is little difference in the quality of the short and long Estonian
phonemes, therefore it is not justified to define separate acoustic units for
long phonemes. Instead, long phonemes can be modelled by a sequence of
two corresponding short units. The short and long phonemes differ mainly in
the duration, and as hidden Markov models are known to model durational
characteristics of phonemes poorly, it seems that it is more reasonable to model
the long duration by just forcing the model to go through more states. In practice,
this is achieved by modelling long durations by a sequence of two models.
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However, when using this approach, we lose the ability to have the second part
of the long phoneme context dependant on the previous phoneme and the first
part dependant on the next phoneme: e.g. in the word kooli [k o o lj i], the first
phoneme is regarded as a context-sensitive triphone k-o+o] and the second [o] as
a triphone [o-o+lj]; if we would use separate units for long phonemes, the word
kooli would be modelled as [k oo lj i], the long phoneme would be regarded as a
triphone [k-oo+l]. This shortcoming should not have a strong negative effect on
the modelling accuracy, since the quality of the first part of a long phoneme is
not much influenced by the following phoneme, and vice versa. The benefits of
having more training samples for estimating the model on a short phoneme due
to treating long phonemes as a sequence of two short units should compensate
for this problem.

There are 36 segmental diphthongs in Estonian. Diphthongs act similarly
to long vowels, therefore it should be practical to apply a similar approach to
modelling diphthongs as it was done for long vowels, i.e. diphthongs can be
modelled by sequences of corresponding short phone units. Also, the large
number of different diphthongs makes it unfeasible to build separate model for
each of them, as opposed to English where each diphthong, e.g. [eI] as in day, is
usually modelled by an independent model.

The only exception in handling the short vs. long opposition is the modelling
of plosives. The articulation of a plosive requires a closing phase, an obstruction
phase and a release phase. The primary difference between short and long plosives
is the presence and length of the silent region in the obstruction phase. Thus, it
is incorrect to treat a long plosive as a concatenation of two short plosives, and it
is justified to create separate units for short and long plosives. In the following,
when writing word pronunciation, we refer to a short plosive using a lowercase
letter (e.g. laba [lapa]) and to a long plosive using an uppercase letter (e.g. lapi
[laPi]).

It seems to be a good idea to merge pairs of palatalized and unpalatalized
phonemes (i.e. [tj] and [t], [lj] and [l], [sj] and [s], [nj] and [n]) into single
acoustic units. This brings a number of benefits. First, there is no difference in the
graphemic representation of the words, if the words differ in only a palatalization
of a phoneme (e.g. palk [paljk:k] and palk [palk:k]). Second, the palatalized
and unpalatalized consonants have only a little difference in their sound and
quality, thus such merging increases the training data available for estimating
the parameters of the merged unit, making it more robust; the parameters that
are sufficiently different for the palatalized and unpalatalized versions should
be modelled automatically separately if Gaussian mixtures are used in HMM
modelling. Third, it is not easy to determine the correct palatalization in all
cases from the word orthography: the Estonian morphological analyser does have
the function of marking places of palatalization but the accuracy of this process
is not very high. Thus, the training samples of palatalized and unpalatalized
phonemes might become too polluted with data that has been incorrectly tagged
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as palatalized or unpalatalized.
Handling palatalized phonemes as separate units does have some benefits. If

using pronunciation-specific words in the vocabulary (e.g. if palk [paljk:k] and
palk [palk:k] are separate entries in the vocabulary), the N -gram estimates for
such words should become more accurate, given that we are able to assign a
correct pronunciation for each word in the language modelling training corpus.
For example, the probability of a bigram kõrge palk[palk:k] should become much
higher than the probability of kõrge palk[paljk:k]. However, such approach would
also increase the vocabulary size, as two entries would be needed to represent each
word that has two meanings and two corresponding pronunciations, differing only
in a palatalization. This has a negative effect on the OOV-rate and thus possibly
also on the recognition result, if the vocabulary size is limited only to N most
likely words or morphemes.

Using the proposed acoustic inventory, we can assign each of the units into
multiple categories in order to automatically classify the HMM senones into
context-dependant clusters using a binary tree, as discussed in section 2.3.3. Table
4.1 lists phonemic categories of the proposed units that can be used for generating
the decision tree.

4.2 Handling quantity degrees

As discussed in section 3.1.3, Estonian has three distinctive quantity degrees.
However, as the quantity degree is a property of a foot rather than a phoneme
or a syllable, they can not be modelled using segmental hidden Markov models.

Fortunately, it turns out that for general speech recognition purposes, it is
usually not needed to identify the correct quantity degree in order to correctly
recognize an orthographical word, as in most cases, there is no difference in the
orthography of a word that has the second vs. the third quantity degree. For
example, the words kooli [kooli] and kooli [koo:li] are both written in the same
manner. Thus, we may safely ignore the quantity degree difference in most cases.
The only difference occurs if the stressed syllable ends in a geminate plosive and
is followed by a vowel, e.g. koti [kotti] vs. kotti [kott:i]. If the words are modelled
by the same sequence of acoustic units (i.e. /kotti/), it is not possible to make a
distinction between them, using only the score of the acoustic model. However,
it may be hoped that the language modelling score for the two words in the given
context is different and can be used to make a correct distinction.

The three-way contrast of quantity degrees can only be perceived if infor-
mation from the next syllable is available. It is even reasonable to say that the
overlong quantity degree is not realized by making the stressed syllable longer,
but rather by a relative shortening of the vowel of the unstressed second syllable.
There is also a certain degree of quality degradation in the realization of the vowel
of unstressed second syllable in a overlong foot. Thus, it could be useful to model
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Table 4.1: Phonetic categories for Estonian acoustic units.

Question Units
Consonant p k t P K T l r m n f v s sh h
Stop p k t K P T
Short stop p k t
Long stop K P T
Stop k k K
Stop p p P
Stop t t T
Dental consonant t T
Labiodental consonant f v
Alveolar consonant t T s n l r
Bilabial consonant p P m
Glottal-oral consonant h
Lateral consonant l
Fricative f v s sh h
Nasal m n
Thrill r
Spirant v f s sh v r l j h
Sibil s sh
Liquid l r
Consonant, front p P m v f
Consonant, central t T n s l r
Consonant, back j sh K k h
Consonant, voiced l r m n v j
Consonant, voiceless p P t T s sh f
Vowel a e i o u ou ae oe ue
Front vowel e i ae oe ue
Back vowel a o u ou
High vowel i u ue
Medium-high vowel e o oe
Non-low vowel ou
Low vowel a ae
Rounded vowel u ue o oe
Unrounded vowel i e ae ou a
Semivowel v j
Voiced a e i o u ou ae oe ue l r m n v j
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such extra short degraded vowels using separate acoustic units [a−], [e−], [i−],
[o−] and [u−]. For the vowels [õ], [ä], [ö] and [õ], such distinction is not needed
as they only occur in unstressed syllable of some rare foreign words (e.g. embrüo
[em:brüo]). However, it is important to note that such modelling approach cannot
be very accurate since the most relevant feature in identifying quantity degrees is
the duration ratio of the syllables, not the quality degredation and shortness of the
vowel of the unstressed syllable. Furtermore, it can be predicted that such short
and quality-degraded vowels also occur in other places, e.g. at the end of long
words. Because of this, our baseline approach is to ignore quantity degrees. To
properly model acoustics of the quantity degrees, proper duration ratios should be
taken into account in a general framework.

4.3 Pronunciation dictionary composition

If the distinction between the second and third quantity degrees is completely
ignored, and palatalized and unpalatalized variants of consonants are merged
into one unit, the pronunciation dictionary can be drawn almost directly from
the morphologically tagged word orthography. Morphological tagging is needed
because borders between compound word particles have an important effect on the
way plosives are pronounced (e.g. in words elu+tuba [elutuba] vs elutu [eluTu],
the middle t is pronounced as [d

˚
] as in tuba if there is a border between compound

word particles in front of it, or as [t] if the t is in the middle of a simple word).
The following letter-to-phoneme transformations are needed for the pronunci-

ation dictionary composition. The order of transformations is important, as multi-
ple transformations could be applied to a certain context (e.g. aqua is transformed
to [akva] and later to [aKva]).

• c → ts, if c is followed by o or e (e.g. cicero [tsitsero]), otherwise c → k
(e.g. curriculum [kurriKulum]

• w → v (e.g. wiiralt [viiralT]

• y → i (e.g. kelly [kelli]

• qu → kv (e.g. aqua [aKva]

• zz → ts (e.g. pizza [pitsa])

• (kk,k) → K, (pp,p) → P, (t,tt) → T , if preceded by a voiced phoneme
and followed by a word end, compound word particle border, or a voiced
phoneme (e.g. kapp [kaP], kapi [kaPi], kappi [kaPi], karpi [karPi],
karp+kala [karPkala], but kapsa [kapsa], kast [kast] )

• g → k, b → p, d → t (e.g. kabi [kapi], banaan [panaan])
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• üü → üi, if followed by a vowel (e.g. müüa [müia])

• z → s (e.g. zoo+park [sooparK])

• ž → š (e.g. garaaž [karaaš])
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Chapter 5

Language modelling for large
vocabulary recognition

This chapter presents a range of techniques that try to solve the most serious
problem in the development of Estonian LVCSR – efficient and robust statistical
language modelling. The approach relies on Estonian automatic morphological
analysis and the treatment of morphemes as basic language units.

In the next sections, the motivations for modelling language using sub-
word units is first examined, followed by an overview of several techniques
that have been used for modelling other inflective languages. A linguistically
motivated method for Estonian that uses units derived through morphological
analysis is the presented. Next, statistical approaches for selecting language
model vocabulary and estimating sub-word N -gram probabilities from union of
training corpora are presented. A method for reconstructing compound words
from the pseudo-morpheme based decoder output, using only statistically derived
linguistic knowledge, is then developed. Finally, the last section introduces two
independent techniques that improve the robustness of sub-word based N -gram
models, given a sparse training corpus.

5.1 Pseudo-morpheme based language modelling

Estonian is a highly-inflecting language and has thus a large number of inflected
forms for each word-phrase. For speech recognition systems, an inflected form
is considered as a different word. This is due to the fact that inflected words’
pronunciation is different from the base form, and have different syntactic roles
and usage patterns. In addition, new compound words can be constructed on the
fly by using concatenation, and new verbs and adjectives can be derived from
nouns by adding suffixes. This results in a practically unlimited number of total
distinct possible words in the language which creates a number of challenges in
constructing a language model for large vocabulary speech recognition system.
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The first problem lies in data sparsity. In order to recognize a word, a conventional
word-based language model must have this word in its vocabulary. However, it
is not feasible to enter all possible inflections, compound and derived words into
the vocabulary, as this would create an extremely large word list and it would
still be impossible to predict all compound and derived word formations. Also,
it would be computationally and spacially very expensive to compute and store
N -gram probabilities for all observed word combinations. The second, and more
important problem lies in the fact that most words in their all but most frequently
used inflections are only rarely seen in training data. This makes it very difficult
to robustly estimate their N -gram probabilities.

A common solution to the language modelling problem described above is to
split some words into smaller, ”subword” units. The smaller units can be more
adequately modelled and after recognition, they can be used to reconstruct the
original words. The subword units decrease the vocabulary size as the number of
distinct units is much less than the number of distinct words. The probabilities of
the smaller units can be also much more robustly estimated from training corpora,
as they occur more frequently than all the inflected words that can occur in the
language.

In the following subsections, an overview of the existing approaches to the
subword-based language modelling is given first. Then, a method that relies
on Estonian morphological analyser for splitting the words into shorter units is
described.

5.1.1 Related work

There are a few different methods to find the appropriate splitting for each word.
The most common approach uses full morphological analysis and disambiguation
to decompose words into morphemes. The morphological analyser has usually
a list of known stems, endings and other morphemes and uses a set of rules
to find the correct decomposition for a word. As many words have multiple
possible decompositions, a disambiguator is usually applied that selects the
most probable classification based on the surrounding context. Disambiguator is
commonly implemented using hidden Markov models or some other statistical
classifier. After decomposition, the most frequent morphemes are used as
the vocabulary of the recognition system. This approach has been used for
Japanese [Ohtsuki et al., 1999], Korean [Kwon and Park, 2003], Hungarian
[Szarvas and Furui, 2003] and other languages.

An alternative way to split words into smaller units is to use a data-driven
algorithm instead of a morphological analyser. The data-driven algorithms are
usually language independent and can be applied to all inflected languages.

In [Maucec et al., 2003], a data-driven method is proposed that is applied to
Slovenian language. The method assumes that a word consists of a stem and an
optional ending. The algorithm first collects all common word endings from the
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training corpora and then decomposes the words using a longest match principle.
In order to avoid over-stemming, the decomposition uses a restriction that the
stem must be of predefined minimum length. An empty ending is added if a word
cannot be decomposed. In the language model, the computation of the probability
of a stem is based on the knowledge of two preceding stems, and the probability
of an ending is computed from the knowledge of two preceding endings.

In [Siivola et al., 2003, Creutz and Lagus, 2005] a data-driven algorithm
called Morfessor is presented that is able to find morpheme-like units called
statistical morphs from a large text corpus. The optimal units are found according
to a cost function that is based on the minimum description length (MDL)
principle. The minimized cost function is the coding length of the lexicon and the
words in the corpus represented by the units in the lexicon. The algorithm tends
to give units that are both frequent and as long as possible to suit well for both
training language models and speech recognition. This method guarantees full
coverage of the language by splitting rare words into very short units, if needed.
Recently, this method was also applied for Estonian, using the SpeechDat speech
corpus for training and testing [Hirsimäki et al., 2006]. Using a morph-based
language model in a LVCSR task resulted in a WER of 47.6%, compared to
56.3% when using a conventional word-based language model.

There are some different approaches for dealing with the problem of vocabu-
lary growth in LVCSR. In [Geutner et al., 1998], a two-pass recognition approach
is presented, where the first pass uses a word-based vocabulary to derive a lattice
of potential words. The list of all words in the lattice is augmented by the most
likely words (in terms of number of observations in a huge text corpus) which
are acoustically similar to the words observed in the lattice. A second recogni-
tion run is then carried out using the adapted vocabulary. An absolute improve-
ment of 5.8% is reported on a Serbo-Croatian recognition task. Another alter-
native approach advocates the use of huge vocabularies for inflected languages.
In [McTait and Adda-Decker, 2003], the use of a lexicon of 300 000 instead of
60 000 words lowered the word error rate from 20.4% to 18.5% for a German
LVCSR task. Similarly, [Nouza et al., 2005] use a 312 000 word lexicon for Czech
broadcast news transcription and achieve a word error rate of 18.4%.

5.1.2 Decomposition of words using morphological analysis

The approach presented in this thesis relies on Estonian morphological analyser
[Kaalep, 1998b] and disambiguator [Kaalep, 1998a]. Using morphological anal-
ysis as the basis for language modelling has some advantages over language-
independent data-driven methods. Namely, the analyser tags the boundaries be-
tween compound word particles and inflectional endings. This information is use-
ful in later phases of language modelling and in pronunciation dictionary com-
position. It also provides part-of-speech tag for each word in the sentence. The
part-of-speech tags are later used for improving vocabulary selection (see section
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5.2).
The Estonian morphological analyser is made up of three logical parts: a

sentence splitter, a morphological analyser and morphological disambiguator. The
sentence splitter marks sentence boundaries in written text. The morphological
analyser decomposes compound words and marks the boundaries between stems
and suffixes. The tool is implemented so that the words in the running text are
compared with the combinations of lexemes in the dictionary. No two-level rules
are applied to the comparison. The textual words are analysed from the right to
the left, i.e. the endings and suffixes are cut off, and the base(s) are checked with
the help of the lexicon, which contains the stems of 38,000 words (67,000 items
in total as many words have different stems depending on the inflection). The
splitting process is controlled by a complex ruleset that defines which lexemes
can be concatenated. A rule-based guesser is applied for words that cannot be
analysed using the dictionary. Such words constitute up to 3% of all words in an
average text. The morphological disambiguator tries to select the correct analysis
for words that have multiple analyses (around 40% of all words), using words’
local context. The disambiguator uses a statistical approach and is based on
hidden Markov models. According to [Kaalep and Vaino, 2001], about 3% of all
analysed words get a wrong analysis because of disambiguation.

Before splitting the analysed words into morphemes, they are processed by
a tool that attaches pronunciations to them. The pronunciation generation is
done before splitting because in some cases, the pronunciation of a morpheme
depends on the preceding morpheme. The pronunciation generation tool retains
morpheme boundaries in words, so that later, morphemes can be matched with
their corresponding pronunciations. As a result, there are orthographically similar
morphemes in the training data that have different pronunciation, depending on
their context. During splitting, all endings and suffixes used for word derivation
and inflection are specially tagged (using an underscore). This makes it possible
to attach the endings back to the previous stem after decoding. As one-phoneme
words are acoustically very confusable and have been shown to yield many
recognition errors [Kwon and Park, 2003], the one-letter suffixes are not split
from the previous morphemes. Compound word boundaries are not retained when
training the morpheme language model. For reconstructing compound words from
the decoder output, a separate probabilistic hidden event language model is used
(see section 5.4). Some examples of the splitting process are given in table 5.1.
Compound word boundaries are marked with ’+’ and endings are separated from
the preceding morpheme by ’ ’. Note how the ending te has two pronunciations,
depending on the context, and that the word nei d is not split due to the one-letter
suffix rule.

The smoothed N -gram language model assigns at least a small likelihood to
any input sequence. Thus, the language model accepts also invalid sequences of
pronunciation-specific morphemes. For example, the language model accepts a
sequence küsimus[k ü s i m u s] te[tt e] which shouldn’t be allowed, as the long
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Table 5.1: The splitting of words into pronunciation-specific pseudo-morphemes.

Original
word

Morphological
analysis

Pronunciation Splitting

küsimuste küsimus te k ü s i m u s t e küsimus[k ü s i m u s] te[t e]
saadete saade te s a a t e tt e saade[s a a t e] te[tt e]
neid nei d n e i t nei d[n e i t]
ajuvaba aju+vaba a j u + v a p a aju[a j u] vaba[v a p a]

plosive tt in the beginning of suffix te cannot occur after s. Another problem
with the morpheme-based language model is that it accepts morpheme sequences
that can be pronounced but are grammatically invalid, such as küsimus[k ü s i
m u s] id[i t] which produces an invalid word küsimusid. There are a few
ways to tackle this problem. In [Szarvas and Furui, 2003], the morphosyntactic
grammar that defines the permitted morpheme combinations is built directly
into the language model by means of weighted finite state transducer (WFST).
The resulting stochastic morphosyntactic language model is an intersection of
the stochastic N -gram language model and a morphosyntactic grammar and
eliminates the invalid combinations from the language model while retaining the
likelihoods of the valid transitions. However, the drawback of this method is
the increase in the complexity and size of the language model: around 2.5-fold
increase in the number of arcs of the trigram language model is reported. Another
way to reduce the errors resulting from combining invalid morpheme sequences
is to generate N-best lists for each sentence and select the hypothesis that contains
the smallest number of morphosyntactic errors. The drawback of this method is
that it is not guaranteed that a good candidate would be included in the list for
reasonable values of N.

The baseline approach presented here does not deal with the problem of in-
valid morpheme sequences. By analyzing the recognition errors in the experi-
ments it was observed that illegal morpheme combinations consitute only a very
small part of the errors. Apparently a stochastic N -gram trained on a reason-
able amount of data almost eliminates such problems. Additionally, given the
2.5-fold increase in the complexity of the stochastic morphosyntactic language
model, it might be more reasonable to use a higher order N -gram or a wider
search beam instead, if processing power is sufficient and a higher recognition
accuracy is needed.

The method presented later in this thesis in section 5.5.2 tries to tackle some
of the problems resulting from using morphemes as basic units in a standard
stochastic N -gram language model.
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5.2 Vocabulary selection

The vocabulary of a continuous speech recognition system is one of the key
factors in determining its performance. A speech recognition system can only
recognize words (or morphemes in our case) that are in it’s vocabulary, thus
ideally, the vocabulary should be large and comprehensive so that it can cover
any sentence in input speech. If a word in the input speech is out-of-vocabulary
(OOV), an acoustically and contextually similar word is recognized. Often, the
OOV word is replaced with many shorter words, or the OOV-word and some of its
surrounding word is replaced with one similar long word. The replacement error
also confuses the language modelling context, resulting in potentially more errors
in recognizing the surrounding words. Many investigations report an average
of 1.2 [Rosenfeld, 1995] to 1.6 [Woodland et al., 1995] recognition errors which
would not occur, had the OOV-word been in the vocabulary.

While a large vocabulary may be good for lexical coverage, it turns out that
it is profitable to settle for smaller and more tractable vocabularies. First, the
language models built on large vocabularies are very large. Large language
models require a lot of processing and memory resources during recognition.
Large vocabularies contain a lot of rarely seen words, and it is not possible to
robustly estimate their language model probabilities in various contexts. And
finally, large vocabularies contain many acoustically confusable words, which
usually results in many word substitution errors.

Thus, it is very important to find a good balance between two sources for word
recognitions errors – the OOV words and the large language model. Usually,
a number of text corpora from various sources and time periods are available.
Given a collection of training corpora, the most straightforward approach for
picking the vocabulary for large vocabulary recognition is to order all words in
the corpus by frequency and pick the predefined number of words from the top of
the list. This problem can be regarded as estimating unigram probabilities of the
test distribution, and ordering the words by theses estimates. However, this simple
approach has same caveats: if the training data is not balanced, the vocabulary
could become very biased towards the type of data that is the most prevalent. For
example, given a 200-million word corpus of legal texts and a 20-million corpus
of prose texts, it is clear that a simple mixture of the corpora is strongly biased
towards legal terms. A simple solution is to normalize word counts in different
corpora using the corpora size. Given that a word wi occurs in corpus j ni,j times,
and the number of words in a corpus j is Nj , the normalized total count Φi of a
word wi can be written as

Φi =
∑

j

ni,j

Nj

Given some knowledge about the recognition task, one might also manually
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assign weights λj to different types of corpora j, depending on the relevance of the
corpus to the target domain, and renormalize the normalized word counts using
the weights. The renormalized counts are then given by

Φi =
∑

j

λjni,j

Nj

The manual estimation of the weights λj is clearly not the most optimal
solution. If a sample text of a target domain is available, the weights can be
estimated automatically, as proposed in [Venkataraman and Wang, 2003]. The
idea is based on the assumption that the vocabulary of the sample text is related to
the vocabularies of each training corpus, and the full vocabulary of target domain
can be inferred from the individual training corpus vocabularies, considering the
observable portion of the domain text to be a sample. The weights λj can be
then estimated using the maximum likelihood principle: we simply interpret the
normalized counts ni,j

Nj
as probability estimates of a word wi given corpus j and

the weights λj as mixture coefficients for linear interpolation. The weights λj

must be chosen so that the probability of the sample text vocabulary is maximized.
Formally, let P (wj |j) = ni,j

Nj
. The goal is to find

λ̂1, . . . , λ̂m = argmax
|V |∏
i=1

(
∑

j

λjP (wj |j))C(wi)

where count C(wi) is the count of wi in the sample text and V is the set of
words in the vocabulary. The weights λj can be estimated using the EM algorithm.

The largest part of language model training corpora consists often of newspa-
per texts. Newspaper texts have some characteristics that are not desirable from
language modelling point of view: they contain many proper names (both native
and foreign), many acronyms, abbreviations and numerals, such as year and date
ordinals. The abundance of proper names creates two kinds of problems: first,
many of the names are of foreign origin, and the automatic Estonian pronunci-
ation rules do not handle them correctly. As a result, they would be put to the
vocabulary using the wrong pronunciation, making their correct recognition very
improbable. Second, the sheer amount of often occurring names may make the
vocabulary overpopulated with proper names, and leave too little room for other
words. This is of course arguable, and depends a lot on the task: for broadcast
news domain, where proper names are as common as in newspaper texts, the big
amount of proper names in the vocabulary might be favorable. There may even
be a strategy to give a bigger weight to names that occur often in recent texts. The
pronunciation problem might be handled using a large hand-crafted name pro-
nunciation vocabulary or some data-driven language-independent grapheme-to-
phoneme conversion algorithm (such as in [Bellegarda, 2005]). For abbreviations
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and acronyms, there are two reasonable approaches: two have them expanded be-
fore language modelling training and vocabulary selection, or to handle them as
separate words but add their correct expanded pronunciation to the the dictionary.
The latter does not work for Estonian, as the abbreviation itself can be expanded in
many ways, depending on its inflection in the current context. A similar approach
can be taken for numerals written as figures (such as year numbers). For both ab-
breviations and numbers, the normalization into a readable full-length form with
the correct inflection is not a trivial task. Many data-driven algorithms (such as in
[Kanis et al., 2005]) that can deal with this problem have been proposed.

In this work, a rather simplified approach is taken to tackle the problem of
text normalization. The speech recognition test data used in the experiments is
known to be quite different from newspaper texts and contain few proper names,
numerals and no abbreviations. Thus, all morphemes containing numerals and all
morphemes that are parts of words tagged as abbreviations are filtered out before
selecting the vocabulary for the language model. Proper names are handled as
follows: at first, all words tagged as proper names are removed from the candidate
vocabulary; next, a fixed number (1% of the language model vocabulary size)
of most frequent morphemes that are parts of proper names are readded to the
vocabulary candidate list. Of course, this does not mean that 1% of the final
vocabulary consists of unique proper names: many of the proper names have
multiple different stems (such as tallinn, tallinna) that occur frequently enough
to be added to the vocabulary. Section 6.2.2 contains a detailed analysis of
experimental results using this method.

5.3 Training a morpheme trigram language model

After fixing the language model vocabulary, a statistical language model can
be estimated using the training corpora. The simplest approach would be to
concatenate all the training corpora and compute the N -gram probabilities from
the combination of all counts. However, this can have some drawbacks if the
training data is unbalanced, just like when selecting language model vocabulary.
Therefore, it is usually more profitable to train a separate N -gram model for
each domain/corpus and finally combine the models linearly. Given k models
Pi(w|h)i=1...k, the combined model is defined as:

Pcombined(w|h) =
k∑

i=1

λiPi(w|h)

where 0 < λi <= 1 and
∑

i λi = 1.
The weights λi can be assigned manually, or estimated automatically using

a sample of in-domain text using the Estimation-Maximization (EM) algorithm
(see [Jelinek, 1989] for details). In the latter case, the resulting model will have
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the minimum perplexity possible for the sample text using the mixture of the
domain-specific models. If the sample text is large and representative enough, the
weights will be nearly optimal for the test data as well.

Using linear interpolation with automatic weight optimization has many
advantages over estimating one model from the combination of the corpora.
Most importantly, it removes the worries that some certain domain may be
over-representative in the training data. Using automatic weight tuning, the
domain with a lot of training data will become more accurately modelled, in
contrast to being over-represented, as it would be the case with using the copora
combination. It is however important to have a reasonable amount of data for
each domain and not to have the domains too granually defined – this would
create a situation where a domain is not estimated robustly enough and might
have a negative effect on the overall performance, if the sample in-domain text is
not large and representative enough.

5.4 Reconstructing compound words using a hidden-
event language model

The output of the morpheme-based decoder is a sequence of morphemes for each
utterance. The set of different suffix morphemes is rather small and thus the
suffixes can be tagged in the vocabulary so that they can be concatenated to the
previous stem after decoding. However, this approach can not be applied for
reconstructing compound words: the set of stems and morphemes that take part in
forming compound words is very large and sparse, thus treating part-of-compound
morphemes as separate units for language modelling would make the vocabulary
very large and it would be impossible to estimate the N -gram probabilities of the
compound-forming morphemes with enough robustness.

To overcome the problem of compound word reconstruction we can model
compound word connectors as hidden events in the language model. Such
language model is typically used for sentence segmentation of conversational
speech based on recognized words [Stolcke et al., 1998], but can be generalized
for detecting other hidden events between recognized units. The event language
model describes the joint distribution of words and events, PLM (W,E). The
words and events are treated as a single token stream. For training such a hidden
event LM, the hidden events in the training texts must be represented by an
additional token, for example:

mitme _te taeva <CC> enne _te najal võid
ala _tes teisi <CC> päeva _st...

The event ”<CC>” is an additional token in the vocabulary that is inserted in
the word sequence for LM training.
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During event detection, such model can be used as a hidden Markov model
in which the word/event pairs correspond to states and the words to observa-
tions. The transition probabilities are given by the hidden event N -gram model.
Given a word/morpheme sequence, a forward-backward dynamic programming
algorithm [Rabiner and Juang, 1986] can be used to find the posterior probabil-
ity PLM (Ei|W ) of event Ei at position i. For our compound connector detection
task, we choose the event sequence Ê that maximizes the given posterior probabil-
ity at each individual morpheme boundary. This approach minimizes the expected
per-boundary classification error rate.

It is important that the word vocabulary of the hidden event model is fixed, i.e.
the observations should not contain any tokens that are not present in the hidden
event model. Fortunately, this is easy to achieve as the output of the decoder
contains only the words/morphemes that are in the language model vocabulary.
The same vocabulary can be used as the basis of the hidden event model.

After applying this approach, the most probable compound word connectors
between recognized morphemes are annotated. The resulting morpheme and
compound word connector list can be used to fully reconstruct the morphemes
into words, as shown in table 5.2.

Table 5.2: Word reconstruction from (perfect) decoder output and hidden com-
pound word boundary detection.

Phase Result
Decoder output mitme te taeva enne te najal võid ala tes teisi

päeva st pika aja lis te võimalus tega kohane da
Compound word
boundary detection

mitme te taeva <CC> enne te najal võid ala
tes teisi <CC> päeva st pika <CC> aja lis te

võimalus tega kohane da
Reconstruction mitmete taevaennete najal võid alates teisipäevast

pikajaliste võimalustega koheneda

The approach described above is very simple but has a few weaknesses. First,
it only looks at the local context while the decision on weather the words should
be treated as separate units or written together is often based on a much wider
context and may sometimes require a full understanding of the discourse. E.g.
in the sentence Kooli(-)õpetajad on targad ’School teachers are smart / Teachers
of the school are smart’ the word kooliõpetajad ’school teachers’ is written as
a compound word if one talks about school teachers in general, and separately
(kooli õpetajad) if one talks about teachers of a certain school.

Another weakness of the method is that it doesn’t take into account the
prosodic features that are often of high importance in deciding weather words
form a compound word or not. For example, usually (but not always) there
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seems to be a noticeable word-level stress on the second word of the word pair,
if the words are to be written separately. Also, there is sometimes a slightly
longer pause between words if they are to be written separately. Therefore, one
might try to apply a similar approach that has been used for sentence boundary
detection ([Shriberg et al., 1997, Mast et al., 1996]) where CART-style decision
trees predict event classes from local prosodic properties at the word boundary
of interest. The prosodic features of interest include duration (of pauses, final
vowel and final rhymes), pitch (F0 patterns, preceding the boundary, across the
boundary) and energy. The prosody-based model might be combined with the
language-based model to achieve a better accuracy.

Compound word detection errors are probably not very annoying from users’
perspective in tasks like dictations, but have a high impact when measuring word
error rate of the recognizer – each compounding error introduces a substitution
error and an insertion or deletion error, depending on whether a compound word
was mistakenly replaced with two separate words or two separate words were
mistakenly compounded, respectively.

5.5 Improving the language model

Modelling Estonian morpheme sequences with conventional N -gram models has
some obvious weaknesses. First, the relatively free word order in Estonian means
that the variety of word combinations is higher than in languages like English.
Given the relatively small corpus size, this makes it difficult to estimate the
probabilities of most morpheme N -grams with high robustness. Second, the
use of morphemes as basic units in the language model reduces the span of the
language model. For example, the sentence ”poisid mängivad jalgpalli”, ”boys
play football” would be broken into morphemes ”poisid mängi vad jalg palli”
and the probability of the last particle ”palli” would be conditioned on only the
last two preceding particles ” vad jalg”, whereas in English, the preceding words
”boys play” would be used when calculating the conditional probability of the
word ”football”.

In this section, two methods that are motivated from the described problems
are introduced. The first method uses corpus statistics to assign all morphemes
of the vocabulary to clusters and thereby make morpheme probability estimates
more robust. The second method uses a two-pass approach to apply a word-
level N -gram model combined with morphological analysis in the second pass,
in order to make the language model span longer and try to eliminate short-term
morphosyntactical inconsistencies in recognizer output.

5.5.1 Using statistically derived morpheme classes

Experiments have shown that in order to achieve a good coverage of Estonian
sentences, a very large vocabulary is needed even when morphemes are used as
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basic units for language modelling. At the same time, the size of the corpora
that can be used for training an N -gram language model is more limited than for
languages where more written resources are available and more systematic work
has been done in collecting the corpora. Additionally, the word order in Estonian
is relatively free which causes a high variation in the way words are permuted in
the sentence. All those reasons mean that the number of possible grammatically
valid N -grams in the language is very high. As a result, a large part of the higher
order N -grams that occur in any unseen heldout text are never observed in the
training texts, and many of those that are observed, occur only once or a few times,
which makes it very difficult to estimate their probability with enough robustness
and reliability.

One method that is designed to handle this data sparsity problem is to define
word classes that exhibit similar semantic and/or grammatical behavior. For
example, it would not be surprising if the probability distribution of words in
the vicinity of the word seitse ’seven’ is very similar to that of the word kaheksa,
’eight’. Of course, the distributions would not be identical: there won’t be many
sentences like Nädalas on kaheksa päeva, ’A week has eight days’ or word
pairs like kaheksa samuraid, ’Eight samurais’. Still, if we combine the histories
preceding to seitse, kaheksa and other digits, it may be possible to make more
robust predictions for histories that we haven’t observed by assuming that the
contexts that the digits occur in are similar.

N -gram language modelling using word classes

The principle of class-based language models is to use some component that uses
word equivalence classes to capture dependencies in training text. If we assume
that a word can be uniquely mapped to only one class, we have a deterministic
class mapping function of the form

C : w −→ C(w)

The class N -gram model can be then computed as follows:

P (wi|C(wi−N+1) . . . C(wi−1))
= P (wi|C(wi)) · P (C(wi)|C(wi−N+1), . . . , C(wi−1))

where P (wi|C(wi)) denotes the probability of a word wi given class Ci in the
current position (also known as the unigram class membership component), and
P (C(wi)|C(wi−N+1), . . . , C(wi−1)) denotes the probability of class Ci given
the class history (also known as class N -gram component).

If we have the mapping function defined, it is easy to compute the class
membership probability from training text using the empirical frequency of the
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word N(wi) and the class N(C(wi)):

P (wi|C(wi)) =
N(wi)

N(C(wi))

The class N -gram component can be computed from training texts using the
same smoothing and backoff methods as for conventional word N -grams.

Finding clusters

There are several ways to assign words into classes based on syntactic and
semantic information that exists for the language and the task. If we have domain
knowledge about the task, it is often profitable to cluster together words that
have a similar semantic functional role. For example, if we have to develop a
conversational information system for city bus travel, we can group the names of
bus stops such as Vabaduse väljak, Nõmme, into one broad class, and city districts
like Mustamäe, Lasnamäe and Pelgulinn into another class. Such grouping is
particularly advantageous in fighting with the data sparsity problem: the resources
for training a language model for such task are always very limited, and otherwise
it would be impossible to find a robust probability estimate for a sentence like
Millal väljub viimane buss kesklinna poole Tihase peatusest?, ’When does the last
bus for city center leave from the Tihase stop?’. Given the clustering as explained
above, we need to estimate the probability of the sentence Millal väljub viimane
buss [linnaosa, sg. gen] poole [peatuse nimi, sg. gen.] peatusest?, ’When does
the last bus for [district] leave from the [bus stop name] stop?’. This approach
makes it also easier to add new names (e.g. new bus stop names) by just adding
the name into the corresponding class and using some smoothing method to assign
a non-zero probability to the corresponding class membership function. Thus, the
new name inherits all the possible word trigram relationships of the class.

For general large vocabulary speech recognition applications, it is impractical
to derive word clusters in the same manner as for narrow domain-specific tasks.
Instead, data-driven algorithms are used to find word classes which are deemed to
be similar in some way. All such algorithms are in fact search procedures to find a
class label for each word with a predefined objective function. The majority of the
methods try to maximize the log-likelihood of a bigram class model LLbi on the
training data by making iterative controlled changes to an initial class function.
The log-likelihood of a bigram class is calculated as

LLbi(C) =
NW∑
i=1

log
N(wi)

N(C(wi))
· N(C(wi−1), C(wi))

N(C(wi−1))

where NW is the number of words in the training data. Maximizing the
likelihood of the bigram class model is equivalent to minimizing the perplexity
of the model against the training corpus.
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One such clustering method is the word exchange algorithm
[Kneser and Ney, 1993]. As the name suggest, the algorithm exchanges words
between the NC classes until the optimization criterion converges. Each word is
moved to a class so as to maximize the increase in the bigram log-likelihood.
The algorithm can get stuck in a local maximum and is therefore not guaranteed
to find the optimal class function for the training text. In practice, a few extra
iterations can compensate for this.

5.5.2 Rescoring using morphological analysis and a factored
language model

The usage of sub-word units in a conventional N -gram language model reduces
the span of the language model, when compared to a language model that uses
words as basic units. The objective of the proposed method is to combine the
advantages of particle-based and word based language models using a two-pass
approach. The particle-based language model is used in the first pass, granting
a good vocabulary coverage. In the second pass, a dynamically constructed
word-based language model is used that assigns a more accurate language model
score to each sentence hypothesis from the first pass. In addition, the language
model applied in the second pass makes use of morphological part-of-speech
tags of the words to make the probability estimates more robust and reduce local
morphosyntactic errors in recognizer output.

Factored language models

Factored language models (FLM) [Kirchhoff et al., 2002] are used to explicitly
represent interdependencies among the morphological components of words both
across time and within a word. In an FLM, words are viewed as vectors of k
factors, such that wi ≡ {f1

i , f2
i , ..., fK

i }. In general, factors can be any features
relevant to the word, e.g. part-of-speech tags, word roots, stems, or data-driven
word classes or semantic features. A word sequence if length N can thus be
converted to K parallel sequences of factors, denoted as f1:K

1 , f1:K
2 , .., f1:K

N . An
FLM is a statistical trigram model over factors and can be factored as follows:

P (f1:K
1 , f1:K

2 , ..., f1:K
N ) =

N∏
i=1

P (f1:K
i |f1:K

i−1 , f1:K
i−2 )

=
N∏

i=1

P (f1:K
i |f1

i−1, f
2
i−1, ..., f

K
i−1, f

1
i−2, ..., f

K
i−2)

The factored word representation can be useful during language model backoff,
in order to estimate word N -gram probabilities more robustly. In a standard Katz
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backoff scheme [Katz, 1987], trigram probability is estimated as

PBO(wi|wi−2, wi−1) =


dC(wi−2,wi−1,wi)

PML(wi|wi−2, wi−1) if C(wi−2, wi−1, wi) ≥ τ3
α(wi−2, wi−1)PBO(wi|wi−1) otherwise

where PML denotes a maximum likelihood estimate, C(wi−2, wi−1, wi) denotes
the count of the triple wi−2, wi−1, wi, τ3 is a count threshold, dC(wi−2,wi−1,wi)

is a discounting factor (generally between 0 and 1) and α(wi−2, wi−1) is a
normalization factor that ensures that the distribution sums to 1. The idea behind
Katz backoff scheme is to avoid zero probabilities for unseen trigrams, by backing
off to the next lower-order probability distribution. In an FLM, where temporally
synchronous as well as temporally successive elements are present, a more flexible
order of backing off can be defined. With FLM, the notion of backoff graph
is introduced. Figure 5.1 depicts a graph of all possible backoff paths for a
word, given a history of two previous words, when a word consists of two factors
f1, f2. Back-off graph defines the order in which the conditioning factors are
dropped. The order can be chosen based linguistic knowledge (e.g. always
drop more distant and more general factors first), or chosen at run time based
on some statistical criteria. Furthermore, multiple backoff paths can be chosen in
parallel and their probability estimates can be combined using some non-negative
function, such as mean, product, or maximum.

Figure 5.1: All possible backoff paths for a word with two factors, given a history
of two previous factor vectors.

The generalized parallel backoff method is implemented by a new backoff
function

PGBO =

{
dcPML(f |f1, ..., fL), if c > τL

α(f1, ..., fL)g(f, f1, ..., fL), otherwise
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where c is the count of f, f1, ..., fL, PML(f |f1, ..., fL) is the maximum likelihood
distribution, τL is the count threshold, and α(f1, ..., fL) is the normalization
factor. The function g(f, f1, ..., fL) determines the backoff strategy. Several
different g functions can be used, including the mean, weighted mean, product,
and maximum of the smoothed probability distributions over all subsets of the
conditioning factors.

Factored language models have been successfully used for various
language modelling and speech processing tasks [Bilmes and Kirchhoff, 2003,
Parandekar and Kirchhoff, 2003, Kirchhoff et al., 2006].

System architecture

The architecture of the proposed recognition system is shown on figure 5.2. A
decoder using a language model of subword units is used in the first pass. It
outputs an N-best list of sentence hypotheses for each sentence, together with their
acoustic and language model scores. Each hypothesis is originally a sequence of
subword units.

Figure 5.2: Architecture of the two-pass recognizer.

After recognition, all N-best candidates are reconstructed to word sequences.
In our approach, this is done by concatenating suffix particles back to the pre-
ceding stems and reconstructing compound words using a separate hidden event
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language model.
In the next phase, the N-best sentence hypothesis are processed by a morpho-

logical analyser and disambiguator, that attaches part-of-speech (POS) tags and
stem information to each word form.

The morphologically tagged sentence hypotheses are used to create a vocab-
ulary for the dynamic sentence language model. The sentence language model is
estimated from morphologically tagged training corpora. To speed up the compu-
tation of the model, the N -gram counts of all word forms may be precomputed.
The resulting language model will only contain the probabilities that are needed
for estimating the scores for the sentence hypotheses for the current sentence, thus
the vocabulary is fixed and small, and the OOV rate is effectively zero. However,
many of the word form sequences in the N-best list are usually never or only very
rarely seen in the training corpora. Therefore, we propose the using of a factored
language model (FLM) as the dynamic sentence model. In our case, the factors
are the word itself, its POS tag, and its stem. In a factored model, a word proba-
bility can be estimated based on the preceding POS-tags and/or stems, whenever
there is insufficient data to fully estimate the probability based on the preceding
words.

After generating the dynamic sentence language model, all N-best sentence
hypotheses from the first pass are rescored using the new model. The resulting
sentence scores are combined with the scores from the first pass and the N-best
hypotheses are reordered using the combination of scores. The weights for the
scores can be optimized on a development set so as to minimize the word error
rate.

This process must be executed for each utterance. In practice, the dynamic
language model can be generated for a large batch of sentences, as long as the
size of the dynamic vocabulary stays in the allowed bounds of the software and
the size of the language model is reasonable.

The disadvantage of this method is that in the second pass, a new sentence-
specific or sentence batch specific language model has to be built which makes
it inappropriate for real-time applications like dictation. Another disadvantage is
that a language-specific morphological analyser is needed for assigning a POS tag
to each word, making it not directly portable to other languages.
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Chapter 6

Evaluation

This chapter reports the results of experiments carried out in order to evaluate
the usefulness of the proposed approaches. In the first section, speech, text and
software resources for the experiments are described. The second section gives
a detailed overview of a broad range of language modelling experiments. The
third section reports results of some speech recognition experiments. In the final
section, the experiments are summarized.

6.1 Resources for Estonian speech recognition
experiments

Large speech and text resources are needed for training robust acoustic and
language models for large vocabulary recognition. This section introduces the
resources that were used in the evaluations.

6.1.1 Speech databases and their characteristics

This section describes the two speech databases used for speech recognition
experiments. Database characteristics is given together with the explanation how
the databases were partitioned into training and testing sets.

The BABEL phonetic database

The Estonian subset of the BABEL multi-language database
[Eek and Meister, 1999] was collected in 1995-1998 at the Institute of
Cybernetics at Tallinn University of Technology under EU COPERNICUS
project ”BABEL - A Multilanguage Database”. The project was aimed at
development of speech databases for six Central and Eastern European languages
– Bulgarian, Estonian, Hungarian, Polish and Romanian. The database is based
on the corpus design of EUROM 1 [Chan et al., 1995] with some modifications.
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It was designed to fulfil different needs of phonetic research on Estonian sound
system and prosody. The recordings were made in an anechoic chamber,
directly digitized using 16-bits and a sampling rate of 20 000 kHz. The textual
content of the database consists of numbers in the range of 0-9999, isolated
CVC constructs, CVC-words in left and right context (i.e. word triplets),
5-sentence mini-passages and filler sentences. There are 55 different 5-sentence
mini-passages, guaranteeing that all main phonologically relevant oppositions
are revealed in the text corpus. The texts that were read are presented in Estonian
orthography and in SAMPA phonemic transcription.

The main part of the database consists of three subcorpora. The ”many-talker
set” has 60 speakers (30 male and 30 female). Each speaker read a set of isolated
sentences, one or two mini-passages and 100 numbers. All speakers also read
a set of CVC constructs. The ”few-talker set” consists of 8 speakers (4 male
and 4 female). In this set, each speaker read ten mini-passages, a set of isolated
sentences, 100 numbers. Two speakers also read three sets of CVC constructs.
The ”very-few-talker set” has two speakers (a male and a female). Both of them
read four sets of isolated sentences, 40 mini-passages and three sets of CVC
constructs.

The main part of the database is distributed on three CD-ROMs and holds
roughly 12 hours of audio data. 130 of the mini-passages (about 15% of all
signals) have been manually segmented and labelled at phonemic level using
SAMPA phonemic transcription.

In addition to the main part, there are so called ”set 2” and ”set 3” of the
database that were recorded in 2001, with the original purpose of collecting data
for speaker verification and identification research. Those sets feature 19 male and
15 female speakers who were each also present in the main part of the database. In
both sets, each speaker reads one or two mini-passages, a set of isolated sentences
and a set of numbers. For each speaker, the recordings for the two additional
sets were done on the same day, with 15 minute intervals between the recording
sessions. The additional sets are distributed on two CD-ROMs and contain around
7 hours of audio data.

Each of the mini-passages consists of five sentences with coherent semantic
structure. The content of the sentences is mainly descriptive/conversational or
simulates a situation of inquiry.

The filler sentences are designed by phoneticians to be especially rich in
phonologically interesting variations. The sentences are also designed to reflect
the syntactic and semantic complexity and variability of the language.

In recognition experiments, the many-talker set and the two additional sets
are used for training acoustic models. The 138 isolated sentence utterances by six
speakers in the few-talker set are used for evaluation. Two speakers in the many-
talker set were not used since their utterances were designed to be used in word
stress research and thus not really suitable for speech recognition experiments.
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The SpeechDat-like speech database

The Estonian SpeechDat-like database was collected in 2002-2004 by the In-
stitute of Cybernetics at Tallinn University of Technology [Meister et al., 2002,
Meister et al., 2003, Meister et al., 2004]. The principles of corpus design, file
formats, recording and labelling methods implemented by the SpeechDat 1 con-
sortium were adopted and followed. The goal of the project was to collect speech
from a large number of speakers for speech and speaker recognition purposes.

The database consists of speech recordings from voluntary speakers, recorded
over the telephone line. The process of speaker recruitment and corpus collection
was as follows: the project was advertised in different media channels where
voluntary speakers were asked to register for a call at the homepage of the project.
Each registrant then received a prompt sheet which contained instructions about
the call, the list of the prompts, as well as the speech items to be read. During a
call, each speaker was asked to speak the following 60 items:

• first name of the caller;
• spelled first name of the caller;
• birthday of the caller;
• birthplace of the caller;
• current week day;
• a spontaneous time phrase (answer to a question ”What time is it?”);
• four spontaneous answers to different ”Yes/No” question
• a prompted 6-digit PIN-code;
• a prompted isolated digit string – 10 digits in random order;
• a prompted five digit number starting from 50000, which corresponded to

the running number of the caller’s prompt sheet;
• a prompted six digit number;
• a randomly generated phone number;
• a randomly generated credit card number with a valid checksum digit;
• a prompted time phrase;
• a prompted date phrase;
• a prompted relative and general time expression (e.g. eelmisel reedel, ”last

Friday”);
• a prompted local city name;
• a prompted foreign city name;
• a prompted spelled word, words were drawn from a list of city names,

person names and phonetically rich words;
• a prompted money amount;
• a prompted person name (surname and family name);
• eight prompted sentences;
• two prompted command-and-control application commands;
• two prompted phonetically rich words;

1http://www.speechdat.org
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All calls were processed by manual auditive quality control. Only completed
calls with adequate content were passed to the labelling stage. The labelling
process was manual using semi-automatic processing software. Orthographic
transcription was used.

The number of different speakers in the database is 1335. Around 100
speakers were asked to call at least 10 times using the same prompt sheet in order
to collect data for speaker verification research. Thus, the number of calls is
higher than the number of speakers, reaching 2969. The number of male and
female speakers is almost equal. The age distribution of the speakers is roughly
as follows:

• 13-22 years – 27% of speakers
• 23-32 years – 38% of speakers
• 33-42 years – 15% of speakers
• 43-52 years – 11% of speakers
• 53-62 years – 7% of speakers
• 63-72 years – 2% of speakers
Regional distribution shows that most of the speakers came from two largest

cities in Estonia – Tallinn and Tartu. The rest of the speakers are quite equally
distributed over other dialectal areas of Estonia.

About 41% of the calls came from fixed line network while the remaining
59% were made over cellular networks. A signal format of 8-bit A-law with a
sampling rate of 8kHz was used for recordings.

For recognition experiments, the database was divided into training, develop-
ment and test set. The development and test sets were chosen by randomly assign-
ing 40 different speakers to each of the sets. To avoid using the same speaker’s
data for both training and evaluation, those 80 speakers were chosen out of those
contributors who only made one call session. Only the prompted sentence utter-
ances were used in evaluations, thus both the development and test set contained
320 utterances.

6.1.2 Text corpora and their characteristics

All text corpora used in this work has been compiled by the Working Group of
Computational Linguistics at the University of Tartu. We use a the following
subset of the Mixed Corpus of Estonian [Kaalep and Muischnek, 2005]:

• daily newspaper ”Postimees”, 33 million words,
• weekly newspaper ”Eesti Ekspress”, 7.5 million words
• Estonian original prose from 1995 onwards, 4.2 million words
• academic journal ”Akadeemia”, 7 million words
• transcripts of Estonian Parliament (Riigikogu), 13 million words
• weekly magazine ”Kroonika”, 600 000 words
The corpus contains further subcorpora (legislative documents, PhD disserta-

tions) that are not used in this work because they were not regarded as suitable for
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general large vocabulary language modelling.
Most of the texts has been downloaded from the web and processed and

cleaned, i.e. only actual text content was stored and and navigational links and
banners, etc. were removed. The general mark-up follows TEI Guidelines. The
non-ASCII characters are represented as SGML entities. The texts are divided
into paragraphs as in the original files. The text inside paragraphs has been
processed so that the punctuation marks are separated from word forms by a space
(except those punctuation marks that are an integral part of the token). Sentence
boundaries have been automatically tagged with ”<s>” and ”</s>”.

6.1.3 Software

For language model training and performance evaluation, SRILM toolkit
[Stolcke, 2002] was used.

The HTK toolkit [Young et al., 2003] was used for automatic morpheme
clustering for training class-based language models.

The SONIC Large Vocabulary Speech Recognition System 2.0-beta5
[Pellom, 2001] was used for training acoustic models and decoding test
utterances. SONIC uses continuous density hidden Markov model (CDHMM)
technology. The acoustic models are decision-tree state-clustered HMMs with
associated gamma probability density functions to model state durations. Both
manually created decision trees as well as automatically created trees are
supported. The recogniser uses a two-pass search strategy. The first pass consists
of a time-synchronous, beam-pruned Viterbi token-passing search through
a lexical prefix tree. Cross-word acoustic models and trigram or four-gram
language models are applied in the first pass of search. During the second pass,
the resulting word-lattice is converted into a word-graph. Longer span language
models can be used to rescore the word graph using an A* algorithm or to com-
pute word-posterior probabilities to provide word level confidence scores. Sonic
incorporates speaker adaptation and normalisation methods such as Maximum
Likelihood Linear Regression (MLLR) [Legetter and Woodland, 1995], Parallel
Model Combination (PMC), Jacobian Adaptation, and Vocal Tract Length
Normalisation (VTLN) [Uebel and Woodland, 1999].

The Estonian morphological analyser [Kaalep, 1998b] and disambiguator
[Kaalep, 1998a] by OÜ Filosoft was used for processing text corpora before
language model training.

In previous work and experiments, the Julius decoder [Lee et al., 2001] and
the CMU Sphinx 3 and 4 speech recognition engines2 have been used.

For analysing and comparing speech recognition results, the NIST Speech
Recognition Scoring Toolkit (SCTK)3 version 2.1.4 was used.

2http://cmusphinx.org
3http://www.nist.gov/speech/tools/index.htm
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In addition, many self-developed scripts mostly in the Perl programming
language were used.

6.2 Language modelling experiments

This section reports results of a broad range of language modelling experiments.
Such experiments aim to evaluate speech recognition language models using only
linguistic analysis. The most common metric for language models is perplexity
which measures the entropy of a statistical model against some reference data
(see section 2.4.2). Another important measure is coverage of the language model
vocabulary, usually measured in terms out-of-vocabulary words in some handout
text.

First, vocabulary coverage is measured when using different kinds of basic
units. The out-of-vocabulary rates of word, compound-split word, morpheme and
minimum-length-constrained morpheme vocabularies is measured, with varying
vocabulary sizes. With each experiment, various corpus statistics are investigated.
Next, we analyse some heuristic techniques for improving the minimum-length-
constrained morpheme vocabulary, as proposed in section 5.2. In the following
section, several pseudo-morpheme language models are built, using varying span
and different smoothing methods and parameters. Language model perplexities
together with some other statistics are analysed. Then, we investigate the use-
fulness of interpolating language models built from different corpora. The next
section describes the results obtained by clustering morphemes into classes based
on corpus statistics. Finally, accuracy of the proposed compound word recon-
struction technique is measured on both transcribed and recognised text, and its
implications on the final word error rate are analysed.

6.2.1 Selection of basic units

In the following we evaluate the efficiency of language modelling using different
methods for selecting basic units for language modelling. Main emphasis is put
on analysing the vocabulary coverage with varying vocabulary sizes.

Words

The full training corpus contains 76 110 005 tokens, including sentence starting
and ending tokens. The number of sentences is 5 569 936. The number of unique
tokens is 2 126 765. After filtering out all words containing numerals and all
words tagged as abbreviations or proper names, and after re-adding the top 500
most frequent words tagged as proper names, the number of different words is
1 652 961. Among those, 1 121 791 (68%) are compound words. Among all
different compound words, 160 440 consist of more than two compound parts
(14% of all different compound words). The most relevant (according to their
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Table 6.1: Top 60 most common compound words in the training corpora together
with their weights.

maa+ilma 479 esi+algu 144 ees+märk 101
vene+maa 393 vaba+riigi 138 oma+korda 100
võib+olla 380 iga+tahes 134 aja+lugu 99
pea+aegu 348 olu+kord 133 iga+üks 97
üli+kooli 321 kõige+pealt 131 vastu+pidi 96
nõu+kogu de 257 maa+ilm 127 edas+pidi 94
see+tõttu 252 pea+minister 127 posti+mehe 94
maa+ilma s 242 üle+jäänud 126 abi+kaasa 93
riigi+kogu 232 vahe+peal 124 linna+valitsuse 93
tähele+panu 211 mõni+kord 123 otse+kui 93
selle+pärast 210 see+kord 115 aeg+ajalt 92
esi+mees 206 posti+mees 115 lau+päeva l 91
eel+kõige 184 linna+pea 114 olu+korda 90
tõe+poolest 177 saksa+maa 113 kas+või 89
see+järel 173 nii+siis 109 vana+ema 89
just+kui 168 voli+kogu 109 linna+valitsus 89
nõu+kogu 160 üks+kõik 107 oma+ette 88
posti+mehe le 155 oma+vahel 107 nii+moodi 87
tõe+näolise lt 153 vene+maa l 107 aja+loo 86
see+pärast 144 nii+sama 101 nii+võrd 85

maximum likelihood score with regard to a test handout text) compound words
in the training corpora are listed in table 6.1. The compound parts are separated
using ”+” and the optional morpheme ending is separated using the ” ” character.

Words with compounds split

The large amount of compound words in the language creates an idea that we
might split all compound words in the training corpus, and use the most common
units as the vocabulary. Most compound word particles occur in the corpus also as
independent words, so we might expect a nice overlap with words and compound
word particles which should result in a shrinkage of the vocabulary size. Indeed,
the number of different unique tokens after applying the vocabulary normalisation
procedure is 645 059 – almost three times less than in the case of using pure
words as basic vocabulary units. However, the OOV-rate of any reasonably sized
vocabulary is still too high to be used as the basis of language modelling for
large vocabulary speech recognition. Table 6.2 compares vocabulary coverages
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for word and ”compounds-split” based systems.

Table 6.2: Out-of-vocabulary rate of word-based vocabularies vs. split-
compounds based word vocabulary.

Vocabulary size Words Words (compounds
split)

10000 35.6 27.3
20000 28.6 20.0
30000 24.3 15.7
40000 21.7 13.0
50000 19.4 11.0
60000 17.6 9.5
100000 13.7 6.0
200000 9.1 3.0
400000 6.4 1.9

Morphemes

The morpheme vocabularies were constructed by preprocessing the training cor-
pora using a script that separated all compound words and all suffixes from the
preceding stems. All suffixes were tagged (using an underscore character) so that
they would be treated separately from stems with the same orthography. After
splitting, the number of tokens in the training corpora increased to 122 793 479.
After applying the token set normalisation procedure as for other unit sets, the
number of unique tokens is 154 605. The number of unique suffixes was 656.
About one quarter of the suffixes seem to be mistakenly classified as suffixes
but it shouldn’t have a significant effect on the overall quality since such invalid
suffixes occur very seldomly and won’t have the chance to make it to the final
recognition vocabulary: e.g., the number of suffixes in the maximum likelihood
40K vocabulary is 375. Table 6.3 lists the most relevant suffixes in the training
data.

Morphemes with length constraint

As explained in chapter 5.1, one-phoneme morphemes are acoustically very
confusable and thus can have a negative impact on recognition accuracy. The
effect is amplified by the fact that most of such short morphemes occur very
frequently and thus get a high unigram probability, which in turn increases the
probability of the recogniser to insert them mistakenly in an incorrect place. Thus,
we have opted to impose a constraint on the word splitting process that forces a
morpheme to be at least two characters long, otherwise the splitting is not done.
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Table 6.3: Top 45 most common morpheme suffixes in the training corpora
together with their weights.

s 26917 id 5825 gi 1817
d 25978 a 4901 sin 1742
b 16895 vad 4861 ti 1667
t 15992 mise 4201 takse 1643
l 14789 tud 4022 va 1575
da 11843 lt 3817 na 1411
ks 11198 e 3356 ja 1408
st 10538 sid 3269 test 1362
i 10215 n 2568 tele 1349
nud 9999 mis 2472 tes 1306
le 8448 des 2337 dagi 1263
te 8211 is 2208 tel 1252
ga 7029 ta 2088 me 1244
ma 6195 mine 1920 lle 1127
de 5946 sse 1898 dest 967

Of course, this increases the vocabulary size since all words that consist of a stem
and a one-letter suffix must be treated as separate entries.

After processing the corpora, the number of tokens was 110923730. After
normalising the vocabulary, the number of unique tokens was 223696. The
number of unique tokens that were not split due to the length constrains was
82538. The number of unique suffixes grew from 656 to 918 – this is due to
the fact that some of the suffix combinations were also treated as a single suffix
due to length constraints (such as ” mis t” in tegemist).

Analysis

The out-of-vocabulary rates for different basic units for language modelling with
varying vocabulary sizes are shown on figure 6.1.

It is clear from the experiments that neither words nor compound-split words
are suitable for language modelling using a conventionally sized vocabulary. The
OOV-rate of the word-based vocabularies is much over what can be tolerated even
when using a very large 800K size vocabulary. It can be seen that after splitting
the compound words, the OOV-rate is roughly halved. Still, even when using a
large 100K vocabulary, the OOV-rate is about 6% – too much to be used in large
vocabulary speech recognition.

However, the OOV-rates of both morphemes and length-constrained
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morphemes are much lower and can be compared with the OOV-rates of English
word-based vocabularies of similar sizes. The OOV-rate of the morpheme-based
vocabulary reaches the 2% threshold already when using a 40K vocabulary.
While the OOV-rate of the morpheme-constrained vocabulary is 2-3 times higher
than when using pure morphemes, it reaches a quite acceptable 2.40% when
using a 60K vocabulary.
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Figure 6.1: Out-of-vocabulary rates of different units for language modelling.

6.2.2 Vocabulary selection methods

In this section we evaluate methods that improve the language modelling vocab-
ulary, as described in section 5.2. Out-of-vocabulary is measured against two test
vocabularies: the sentence transcripts of the BABEL speech database test set (69
sentences), and the sentence transcripts of SpeechDat database that occur only
in the test set (535 sentences). For weight tuning, the sentence transcripts of the
SpeechDat database that do not occur in the test set were used (682 sentences).

A straightforward approach is to choose N most frequent words in the training
data as the vocabulary. This method results in OOV rate of 3.59% for the BABEL
test set and 3.06% for the SpeechDat test set.

Investigation of the resulting vocabulary shows that there are many words that
contain non-native characters, such as numbers, punctuations and foreign letters.
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Such words are not desirable from the speech recognition point of view since for
most of such words we cannot generate the correct pronunciation. Thus, the first
improvement step is to eliminate all such words from the vocabulary candidate
list. This is done by generating a pronunciation for all words, and filtering out all
such words whose pronunciation contains phonemes that are not in our phoneme
set. This method decreases the overall OOV rate to 3.34% for the BABEL test set
and 2.97% for the SpeechDat test set.

Further improvement is to filter out all words that the morphological analyser
has tagged as abbreviations since the pronunciation generation script would
attach a wrong pronunciation to them. This reduces the OOV rate to 3.25% for
BABEL and to 2.91% for SpeechDat. A better approach would be to expand
the abbreviations to the corresponding words before vocabulary selection but
unfortunately the expanding is not trivial for languages like Estonian and it is
not handled in this work.

Investigation shows that in the resulting vocabulary, there are a lot of proper
names, especially among those units that occur less frequently in the corpus but
still make it to the top 60 000 most frequent units. This is quite natural, as a
most of the text corpus consists of newspaper texts, and newspapers tend to write
a lot about certain persons, places and other subjects that have proper names.
It is natural that in some, possibly rather limited period of time, one topic is
discussed very frequently, and the talk about the topic contains many references
to reoccurring names. However, we know that the speech recognition task that we
have to deal with (recognising sentences from a speech corpus) does not contain a
lot of proper names. Thus we tried the following ad-hoc approach to decrease the
weight of proper names in the language model vocabulary: first, we filter out all
words that are tagged as proper names by the morphological analyser; next, we
re-add the most frequent 500 units that are tagged as proper names. Of course, this
approach is quite specific to our task, and for other kind of tasks (e.g. broadcast
news transcription), a very different method for handling proper names would
probably be profitable. However, for our task, the described approach decreases
the OOV-rate to 2.40% for the BABEL test set and to 2.07% for the SpeechDat
test.

The final improvement is to apply the maximum likelihood based vocabulary
selection technique as proposed in [Venkataraman and Wang, 2003]. For this, we
need a sample text of the target domain to be used as heldout text, in addition
to the test corpus used for OOV-measurements. We used the SpeechDat speech
database sentence transcripts that were not used in the test set as such heldout
text. This method decreases the OOV-rate to 2.05% for the BABEL test set but
surprisingly increases the OOV-rate to 2.20% for the SpeechDat test set.

Table 6.4 summaries the OOV results after each optimisation phase.
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Table 6.4: OOV for the 60 000 unit vocabulary after vocabulary selection im-
provement phases.

Vocabulary BABEL
OOV

SpeechDat
OOV

Most frequent units from training corpora 3.59 3.06
Filter out un-pronouncable units 3.34 2.97
Filter out abbreviations 3.25 2.91
Allow only 500 most frequent proper names 2.40 2.07
Use heldout text for ML weight tuning 2.05 2.20

6.2.3 Morpheme-based N -gram language modelling

All language modelling experiments were performed with a minimum-length-
constrained morpheme vocabulary that proved to provide the best speech recog-
nition performance. The vocabulary size was 60 000 units and the units were se-
lected from the union of the different text corpus vocabularies so as to maximise
the likelihood of the development text (SpeechDat corpus training sentences that
were not used for testing). Language modelling perplexity was measured against
two test texts: BABEL speech database sentences and SpeechDat sentences that
only occurred in the test set. The OOV-rate of the test texts is 2.05% and 2.20%,
respectively.

The first language modelling experiments were made using the union of the
text corpora as the basis for cut-off calculations and probability estimations.
We built bigram, trigram and a few 4-gram language models, varying cut-off
parameters from zero (i.e. singleton N -grams are included in the language model)
to two (N -grams that occur two times or less are discarded). Table 6.5 shows the
number of N -grams in the resulting language models and their corresponding hit
rates (i.e their coverage) against the test texts. The N -gram hit rates show the
percentage of N -gram requests that were found in the model and the percentage
of N -gram requests that ended up in lower-order backed-off estimates. It was not
possible to build a 4-gram language model that included singleton N -grams due
to computer memory and processing time limitations.

The first observation from the results is that the hit rates differ dramatically
between the two test sets – the N -grams probabilities needed by the BABEL test
set can be much less frequently calculated from high order estimates than those
of the SpeechDat test set. As much as 29.1% of the calculations on the BABEL
set end up in unigram nodes when not including the singleton N -grams in the
language model. The big difference is surprising, considering that the OOV-rate
of the BABEL test set is actually lower than that of the SpeechDat test set. This
phenomena could be explained by the fact that the sentences in the BABEL speech
database are specially designed by phoneticians to be phonetically balanced. As
a result they contain many rare words and many words in relatively uncommon
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but perfectly grammatically legal order. The texts in the SpeechDat database are
more similar to actual sentences in Estonian newspapers, magazines and books.

It turns out that the high order hit rates are also rather low for the relatively bet-
ter performing SpeechDat test set. In comparison, the hit rates for an English 65K
vocabulary 4-gram language model without singleton N -grams has been reported
[Whittaker, 2000] to be 9.5/30.2/29.6/30.7, in comparison to 19.2/44.2/24.9/11.7
for the SpeechDat test set. The fact that 19.2% of all heldout N -gram probabili-
ties are backed-off to the unigram estimates (when not using singleton N -grams)
may be the cause of many recognition errors since the recognition errors are much
more likely to occur within N -grams which have not been observed in the training
data [Chase et al., 1994]. Such large difference between English and Estonian can
be attributed to many factors, including the size of training data, heterogeneity of
the test sets with regard to the training data and the relatively free order of the
Estonian language.

Table 6.5: Language model size (number of bigrams/trigrams/4-grams) and
hit rates of unigram/bigram/trigram/4-gram estimates using different language
models with varying cutoffs.

Cutoffs Number of N -
grams

BABEL test set hit
rates (%)

SpeechDat test set
hit rates (%)

Trigram
0/0 10M/37M 24.6/43.9/31.5 14.9/41.0/44.0
1/1 3.6M/7.0M 29.1/45.1/25.8 19.2/44.0/36.7
2/1 2.5M/7.0M 32.0/42.2/25.8 21.4/41.9/36.7
2/2 2.2M/3.6M 32.7/44.6/22.7 22.0/44.8/33.2
4-gram
1/1/1 3.5M/6.5M/5.0M 29.1/45.4/18.5/6.9 19.2/44.2/24.9/11.7
2/2/2 2.1M/3.1M/2.1M 32.7/44.8/17.0/5.4 22.0/45.4/23.0/9.7

We also experimented with different discounting methods: Good-Turing
discounting and Chen/Goodman’s modified Kneser-Ney discounting
[Chen and Goodman, 1998] as implemented in SRILM were applied for
different language models. Katz back-off method [Katz, 1987] was used with
Good-Turing discounting. The language model perplexity results are given in
table 6.6.

The results show that the modified Kneser-Ney discounting algorithm gives
clearly lower perplexity results than Good-Turing discounting. The difference
was higher for the BABEL test set (19-26% relative) than for the SpeechDat test
set (9-13%). The relative difference between the discounting methods was bigger
when using trigrams than when using bigrams. As a result, only the modified
Kneser-Ney discounting scheme will be used in all further experiments.

Another observation is that static interpolation of N -gram estimates with the
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Table 6.6: Perplexities of different language models estimated over union of the
training corpora.

Language model BABEL test
set

SpeechDat
test set

Bigram, GT discounting, cutoff 0 1509 628
Bigram, GT discounting, cutoff 1 1566 667
Bigram, GT discounting, cutoff 2 1583 696
Bigram, mod-KN discounting, cutoff 0 1260 583
Bigram, mod-KN discounting, cutoff 1 1273 605
Trigram, GT discounting, cutoff 0/0 1317 490
Trigram, GT discounting, cutoff 1/1 1358 524
Trigram, GT discounting, cutoff 2/2 1377 555
Trigram, mod-KN discounting, cutoff 0/0 1008 438
Trigram, mod-KN discounting, cutoff 1/1 1003 453
Trigram, mod-KN discounting, cutoff 2/1 1011 470
Trigram, mod-KN discounting, cutoff 2/2 1017 479
Trigram, mod-KN discounting, cutoff 1/1, in-
terpolated with lower order estimates

1050 463

Trigram, mod-KN discounting, cutoff 2/2, in-
terpolated with lower order estimates

1068 492

4-gram, mod-KN discounting, cutoff 1/1/1 988 436
4-gram, mod-KN discounting, cutoff 2/2/2 1001 465

lower order estimates does not improve the perplexity results for either of the test
sets. In fact, using interpolated estimates results in 2-5% higher perplexity than
when using uninterpolated models.

The experiments show that retaining singleton N -grams in the language
model is only sometimes useful in reducing the perplexity. For the bigram
language model with modified Kneser-Ney discounting, retaining all N -grams
lowered the perplexity for both the BABEL test set (1%) and the SpeechDat test
set (4%). However, for the trigram language model, the presence of singleton
N -grams improved only the perplexity of the SpeechDat test set (by 3%). The
perplexity of the BABEL test set was by about a half percent higher when
singletons were retained. These results correlate with earlier research for other
languages [Whittaker, 2000] that suggests that singleton N -grams are generally
useful in lowering the perplexity only if training corpora and test data are
homogeneous. As was said in the analysis of the N -gram hit rates, the SpeechDat
test data has more resemblance to actual sentences from newspaper and magazine
articles and is thus more homogeneous to training data, while BABEL sentences
contain many words in uncommon order and other peculiarities.

The 4-gram language models outperform trigram models with similar cutoff
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parameters by around 1% for the BABEL test set and by 3-4% for the SpeechDat
test set. In comparison, [Whittaker, 2000] reports a 8% improvement of 4-
gram model perplexity over a trigram model for English and a 3% improvement
for Russian, and speculates that the less significant perplexity improvement for
Russian can partly be explained by the free word-ordering in Russian that makes
the language model context increase less useful, since sequences of longer length
are more likely to appear in the future as hitherto unobserved patterns. The
same speculation can be made for Estonian. This is confirmed by the fact that
the perplexity improvement for the BABEL test set (where many unusual word
combinations occur) is lower than that of the SpeechDat set.

6.2.4 Interpolating domain-specific language models

In the previous section, language models were built using N -gram statistics from
the union of the corpora. Instead of that, it is often profitable to build domain-
specific language models from each domain-specific corpus and finally use linear
interpolation to build a final model. This chapter shows some results of using this
method.

Six different corpora as listed in chapter 6.1.2 were used. The interpolation
coefficients for composing the final model were optimised on the SpeechDat
database sentences that did not occur in the sentences used for testing. The
optimisation process finds the weights that minimise the perplexity of the heldout
text. The computation is iterative and stops when the interpolation weights change
by less than a small threshold. The optimised weights depend on the language
model cutoff parameters and the discounting methods. Optimised weights for
two different language models are given in table 6.7. It can be seen that when
singleton N -grams were included in the model (cutoffs 0/0), the weight of the
smaller corpora turned out to be higher.

Table 6.7: Weights of different corpus-specific language models in the interpo-
lated model.

Corpus
Optimised weights

Cutoffs 0/0 Cutoff 1/1
Postimees 58.7% 62.9%
Ekspress 15.9% 13.7%
Fiction 11.7% 13.1%
Akadeemia 9.1% 7.8%
Riigikogu 2.5% 1.4%
Kroonika 2.0% 1.1%

A set of different interpolated language models with various cutoff parameters
was built. The perplexities obtained against the two test sets are listed in table 6.8.
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Perplexities for equivalent language models built over union of the corpora can be
found from table 6.6.

It turns out that for the BABEL test set, the use of this method always results
in decreased perplexity. The improvement is especially significant (5%) for the
language model that includes singleton N -grams which did not perform very well
when estimated over the union of the corpora. The perplexities of the SpeechDat
test set are actually higher when singletons are discarded. However, if singletons
N -grams are retained, there is a 1% improvement in the perplexity also for this
test set.

When using interpolation, including singleton N -grams in the language model
is clearly profitable for reducing perplexity. It can be speculated that the interpo-
lation provides an additional smoothing step that decreases the noise factor from
including singleton events. Another reason might be the fact that not including
singleton events in the case of interpolating domain-specific models also removes
such events that occur twice or more in the union of the corpora but only once in
each domain-specific corpora and has thus a harmful effect on the overall model
accuracy.

The 4-gram model provided only marginally lower perplexity than the trigram
model with the similar cutoffs for the SpeechDat test set, and didn’t reduce
perplexity for the BABEL set. This can explained by the fact that when including
only those 4-grams that occur at least twice in one of the corpus, the number of
4-grams is not very high in general (3.6 million vs. 6.5 million when using union
of the corpora). This reduces the already low 4-gram coverage even more and
does not help much in making the language model more accurate.

Table 6.8: Perplexities of language models composed by interpolating domain-
specific language models.

Language model BABEL test
set

SpeechDat
test set

Trigram, mod-KN discounting, cutoff 0/0 955 434
Trigram, mod-KN discounting, cutoff 1/1 983 474
Trigram, mod-KN discounting, cutoff 1/1, in-
terpolated with lower order estimates

999 470

4-gram, mod-KN discounting, cutoff 1/1/1 983 465

6.2.5 Class-based language modelling

In this chapter investigation on language modelling experiments is made using
morpheme classes. Several class-based models are built using varying number of
classes. The perplexity of the class-based models is measured as standalone as
well as when interpolated with the morpheme-based model.
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Experimental procedure

The clustering experiments were conducted using the word exchange algorithm
implementation in the HTK toolkit. The vocabulary was the same 60 000 mor-
phemes as was used in previous language modelling experiments. A list of un-
igram and bigram counts for all vocabulary morphemes was collected over the
union of the training corpora. The initial classification placed the most frequent
NC−1 vocabulary morphemes into their own class and the remaining vocabulary
morphemes into the one remaining class. Sentence start and end symbols and all
out-of-vocabulary morphemes were assigned to their own unique class and were
not moved during the clustering procedure nor could other morphemes be placed
into those classes.

Five clustering experiments were performed, with the number of classes NC

varying from 400 to 1200 with an increment of 200 to see the effect of the different
number of classes on the class model. For each experiment, two clustering
iterations were executed to decrease the danger of getting stuck in an unoptimal
local minimum. After two iterations, all vocabulary morphemes had been moved
up to two times between classes. The final classification function was then used to
construct the class-based language model. The smoothed class trigram language
model was constructed over the union of the corpora using modified Kneser-
Ney smoothing as implemented in SRILM. Singleton class bigrams and trigrams
were excluded from the model. The class membership component was estimated
from training corpora using the empirical morpheme and the corresponding class
unigram counts. No smoothing was applied.

Results

Perplexities of the five different class-based language models were computed
against the BABEL and SpeechDat test sets, using the standalone class model
and the interpolated class and morpheme trigram model. The morpheme trigram
is our best-so-far model which is an optimised interpolation of corpus-specific
models that use modified Kneser-Ney smoothing and include singleton N -grams.
The perplexity of the morpheme-based model is 955 for the BABEL test set and
434 for the SpeechDat test set. The interpolation weights for the class-based
and morpheme-based models were chosen so as to optimise the perplexity of the
training set (the SpeechDat sentence transcripts that are not used in the test set).
The EM algorithm was used for optimisation. The results are shown in table 6.9.

The interpolated class-based and morpheme-based model performed best
when the number of classes was at least 800. It may be speculated that when using
less classes, the class model is too general. The best results were obtained when
the number of classes was 800 for the BABEL test set and 1200 for the SpeechDat
test set, although there is not much difference when between performances with
800-1200 classes. The improvement over the pure morpheme-based model was
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Table 6.9: Perplexities of standalone class trigram models and interpolated class
and morpheme models.

Number of
classes

Weights
λmorph, λclass

BABEL SpeechDat
PPclass PPinterp PPclass PPinterp

– 1.00, 0.00 – 955 – 434
400 0.85, 0.15 1639 928 875 423
600 0.82, 0.18 1525 928 777 420
800 0.80, 0.20 1377 906 715 417

1000 0.77, 0.23 1326 914 680 415
1200 0.77, 0.23 1266 907 641 414

around 5% for both test sets. This is a less significant improvement than our
previous results that reported a 7-8% improvement in perplexity [Alumäe, 2004a].
This can be explained by the fact that the earlier results used less language model
training data (about 15 million words in comparison to 75 million words that we
have now) and the class-based model is known to improve results most when
training data is very limited.

It is interesting to look at contents of the statistically found morpheme clusters.
Table 6.10 ten randomly chosen classes with all or up to ten of their most frequent
members. Some classes (e.g. 659, 1198, 700) have members that are consistently
semantically and functionally similar. In some classes (e.g. 1024, 1005), the top
members have obvious semantic similarities with each other but the class also
contains ’run-away’ members that seem not to have anything to do with the more
frequent members. Finally, the class 621 contains words that subjectively have
no common attribute. Closer inspection reveals that the top word in the class,
ikka, ’still’, is about 1000 times more frequent than the second morpheme ikki
(no meaning, possibly corrupted form of ikka, ’still’), and the rest of the three
members occur 10 000 times less frequently and are probably assigned to this
cluster by chance.

Table 6.11 compares language model unigram, bigram and trigram hit rates
of the morpheme model (that includes singleton N -grams) and the class-based
model. It is clear that the class model is indeed successful in drastically decreasing
the number of calculations that end up in the unigram node, that was diagnosed as
one of the reasons for the high perplexity in chapter 6.2.3.

6.2.6 Reconstructing compound words

This chapter describes the details of the implementation and experimental results
using statistical compound word reconstruction.
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Table 6.10: Ten randomly chosen morpheme clusters with all or up to ten most
probable members from the 1200 class model.

Class 1024 Class 1005 Class 1003 Class 510 Class 621
küll üle kõrval pika ikka
kah vajaka sees lühi ikki

meelega mehele teel pikema sulad
agnostik haute juurest lühikese piuksus
igavles kõrvalt natukese visar
servus otsas ktisise

polüneeslane kesed päristise
käigus
küljes
suus
tipus

Class 1198 Class 700 Class 659 Class 72 Class 792
maksab lille miljonit aja juba
toetab ranna miljardit tabloid
tegeleb kulla triljonit nägelikkuse
ostab liiva luiske

vastutab muna tributsiooni
teenib kalju kobru
suhtub sini
kaalub linnu

vastutav soola
kulutab roosi

Experimental procedure

For compound word reconstruction, a ”hidden event” language model was built.
This language model is very similar to the trigram morpheme model used in
perplexity experiments, with one additional vocabulary element that symbolises
the hidden event of a compound border connector between two morphemes. The
language model was estimated over the union of the corpora where the compound
word connector tag was not filtered out.

The hidden event language model was applied to automatically insert the
compound word connectors to a token stream that consists of morphemes. The
result was compared with the reference data where compound word connectors
between morphemes were retained. Insertion precision and recall were computed
from the comparison. Precision is defined as a measure of the proportion of tags
that the automatic procedure inserted correctly:
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Table 6.11: Unigram/bigram/trigram hit rates of the morpheme-based model and
the class-based model.

Model BABEL SpeechDat
Morpheme model 24.6/43.9/31.5 14.9/41.0/44.0
1200-class model 2.9/43.7/53.4 2.4/34.1/63.6

P =
tp

tp + fp

where tp is the number of correctly inserted tags (true positives) and fp the
number of incorrectly inserted tags (false positives). Recall is defined as the
proportion of actual compound word connector tags that the system found:

R =
tp

tp + fn

where fn is the number of tags that the system failed to insert (false negatives).
Precision and recall can be combined into a single measure of overall perfor-

mance by using the F measure which is defined as follows:

F =
1

α 1
P + (1− α) 1

R

where α is a factor which determines the relative importance of precision and
recall. If we choose α = 0.5, the F measure simplifies to

F =
2PR

P + R

Another measure that is worth investigating is the word error rate that would
result from the automatic compound reconstruction, given a perfect morpheme
output by the decoder. The perfect output is of course impossible to achieve in
reality since the OOV-rate of our vocabulary against the test texts is more than
zero. The would-be word error rate is computed by applying the morpheme end-
ing concatenation procedure, and the compound word recomposition procedure
as described in chapter 5.4 and comparing the result with reference transcripts.

Results on reconstructing reference transcripts

As the first test, the method was tested on the reference transcripts from the
BABEL and SpeechDat speech databases were used. The input consists of
morphemes where compound word connectors are deleted.

The compound word connector tag insertion accuracy was measured when
using bigram and trigram language models. Both language models were estimated
over the union of the text corpora, using modified Kneser-Ney discounting.
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Singleton N -grams were retained in the models. Tagging results are given in
table 6.12.

Table 6.12: Compound word connector tagging accuracies and the resulting
would-be word error rate resulting from incorrect tagging, given perfect mor-
pheme output by the decoder.

Model Test set Inserted
tags

Precision Recall F measure WER

Bigram
BABEL 73 0.56 0.69 0.62 9.2
SpeechDat 569 0.88 0.75 0.81 8.1

Trigram
BABEL 62 0.81 0.85 0.83 3.9
SpeechDat 632 0.95 0.89 0.92 3.6

There is a very significant improvement when using a trigram model over
the bigram model which is quite expected since the trigram model can capture
the whole triple word1 -compound- word2 which makes up the actual compound
word. The tagging accuracy of the SpeechDat test set is much higher than that
of the BABEL test set. However, the differences in the potential word error
rate are not so big. This can be explained by the differences in compound word
frequencies between the test sets: the BABEL test set contains 1307 morphemes
boundaries and a compound connector should be inserted between 59 of them
(about 4.5% of all cases); the SpeechDat test set has 7744 morpheme boundaries
and 669 expected compound connectors (about 8.6%).

Table 6.13 lists some sentences from the SpeechDat test set that contain
mistakenly compounded or uncompounded words. The errors are written in upper
case and the correct words are written in the right column. Quick investigation
reveals at least three common patterns where compound recomposition errors
occur:

• a compound word is not recognised when both of the compound word par-
ticles are very infrequent: the result is that there is not enough occurrences
of the pair, nor occurrences where the head word is a head in a compound,
neither where the tail word is a tail in a compound; as a result, the statistical
model has no reason to insert a compound connector between them (e.g.
piirde-tross, traks-tunkedes, ainu-autorsusest, broiler-küülik)

• two words are sometimes mistakenly recognised as a compound word
when the first word is often a head word in compound words, and/or the
second word is often a tail word in compound words, although their pair
may actually never occur as a compound, and it also doesn’t occur as an
uncompounded pair often enough (e.g. suur laud / suur-laud, kuue meetri /
kuue-meetri)
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• in some cases, words are mistakenly recomposed into a compound word
when the fact that the words should be written separately comes from the
surrounding context (e.g. laulu looja / laulu-looja, kunsti tekke põhjuseks
/ tekke-põhjuseks, eri värvi osadest / värvi-osadest). Those errors are
probably the hardest to handle since the correct behaviour would often
require understanding of the discourse.

Table 6.13: Some sample compound word connector tagging errors from the
SpeechDat test set

Recognised Actual

üles pannakse uued liiklusmärgid PIIRDE
TROSS tõmmatakse pingule

.. PIIRDETROSS ..

ühevärviline kostüüm pikendab teie figuuri
samas kui eri VÄRVIOSADEST lühendab

.. VÄRVI OSADEST ..

üheks kunsti TEKKEPÕHJUSEKS peetakse
inimese tarvet ilu ja loomisrõõmu järele

.. TEKKE PÕHJUSEKS ..

väikeses ja pimedas kambris oli näha vaid
voodi ja SUURLAUD

.. SUUR LAUD ..

väga soodsalt mõjuvad organismile tsitrused
küüslauk ja TAIME SEEMNETES leiduvad
ained

.. TAIMESEEMNETES ..

viis miljonit aastat tagasi VÄLJA SURNUD
hiire fossiil oli üllatavalt hästi säilinud

.. VÄLJASURNUD ..

vaikne ja ennast ise kütusega varustav liikur
on KUUEMEETRI pikkune silindriline puur

.. KUUE MEETRI ..

vaguniuksel istub taburetil õlistes TRAKS
TUNKEDES naine

.. TRAKSTUNKEDES ..

vaesed MAA INIMESED said aru et see oli
pogromm nende vastu

.. MAAINIMESED ..

LAULULOOJA oli huvitatud AINU AU-
TORSUSEST

LAULU LOOJA .. AINU-
AUTORSUSEST

kuigi broileriks nimetatakse noort kana saab
maitsva prae ka BROILER KÜÜLIKUST

.. BROILERKÜÜLIKUST

Results on reconstructing recognised words

The actual data that the compound word recomposition system has to work with
is the recognised token stream from the decoder, not the perfectly tokenised
reference transcripts. Therefore it is interesting to test the performance of the
described method on actual recogniser output.
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It is not obvious what to use as a reference measure for this test. The problem
relates to the fact that the recomposition system cannot be expected to correctly
recompose a compound word, if one of the word particles is not recognised
correctly. For example, given a sentence

turbalademed ja kohalik maakki pälvisid uurijate
tähelepanu

and the recognised token stream

turba lademed ja kohalik maak _ki pälvi _sid uurijate
tähele PANNA

we cannot expect the tokens tähele and panna to be recomposed, since those two
words are always written separately. As a solution, we regard a recomposition to
be correct only if all of the compound word particles are recognised correctly,
and the recomposition system composes them into a compound word. For
this, an ”oracle” hidden event language model was trained on the reference
transcripts of each of the test sets. When applied to the output of the recogniser,
it effectively does what we need: inserts compound connector tags between
correctly recognised compound particles.

Table 6.14 lists the compound recomposition accuracies when using the
recognised token stream for the two test sets. The word error rate before
compound recomposition (i.e. the compound particles were regarded as separate
words) was 26.4 for the BABEL set and 36.0 for the SpeechDat set. After the
automatic recomposition, the word error rate is 31.4 and 40.9, respectively. The
word error rate after recomposing the compound words is almost always higher,
since those two tests deal with two different token streams. If a pair of two
correctly recognised compound word particles are recomposed correctly into one
word, the correctly recognised word is counted as one, instead of two. Therefore,
the weight of the correctly recognised words decreases. Of course, sometimes two
incorrectly recognised words are recomposed into one word which decreases the
word error rate.

Table 6.14: Compound word connector tagging accuracies and the resulting word
error rate compared to the ”oracle” word error rate, given the actual recognised
hypothesis from the decoder.

Test set Precision Recall F measure WER Oracle WER
BABEL 0.60 0.85 0.70 31.4 28.0
SpeechDat 0.75 0.95 0.83 40.9 40.7

It is somewhat surprising that the final word error rate of the SpeechDat test
set is only marginally higher than the corresponding oracle word error rate.
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6.3 Recognition experiments

Speech recognition experiments using different language models and acoustic
modelling techniques are presented in this section. Word error rate is used as
the quality measure of the system.

First, an overview of the acoustic model training procedure is given. As
the first recognition experiment, the performance of recognition with word,
compound-split word, morpheme and minimum-length-constrained morpheme
vocabularies is measured. Next, some different acoustic modelling techniques
are investigated: we compare systems with grapheme-based and phoneme-based
acoustic units; also, an experiment with an acoustic model that takes into account
the effect of the overlong duration in Estonian language is conducted and the
results are compared with a baseline system. Finally, we present results of an
experiment that uses the two-pass method proposed in section 5.5.2.

6.3.1 Training and testing procedure

The SONIC toolkit [Pellom, 2001] was used in recognition experiments. SONIC
uses decision tree state-clustered continuous density HMMs. The acoustic models
have a fixed three state topology. Each state is modelled with a variable number
of multivariate mixture Gaussian distributions. The training system uses the
Viterbi algorithm for model estimation. Therefore, the training process consists of
iteratively performing state-based alignment of the training audio, followed by an
expectation-maximisation (EM) step in which HMMs are estimated. The frame-
to-state alignments are considered fixed during each iteration of the EM algorithm.
The initial alignment is performed using English acoustic models and a mapping
from Estonian phonemes to English phonemes, as given in appendix A. In the next
iterations, the training data is realigned using the acoustic models constructed in
the previous iteration. We have found that five iterations of alignment and model
estimation achieves adequate acoustic models. During the iteration of the EM
algorithm, single-mixture triphones are estimated for each triphone occurrence in
the training data. The estimated triphones are then placed at the root node of the
decision tree of the corresponding phone and splitting questions are evaluated.
The question that gives the largest increase in likelihood for the training data is
applied for splitting the node. The splitting continues until the likelihood falls
below a threshold or the number of frames assigned to a node becomes too small.
Finally, the data assigned to each leaf node is used to estimate Gaussian mixture
models. In our experiments, we configured the system to require at least 50 frames
per mixture, use 2 to 24 mixtures per HMM state, and split the nodes if at least
300 frames per node remain.

During recognition, SONIC uses an algorithms based on the token passing
model [Young et al., 1989]. Various methods to improve search efficiency are
used [Pellom, 2001]. In our experiments, we configured the beam pruning so
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that the recognition was executed in roughly 3 times slower than real time for
the SpeechDat test set and almost exactly in real time for the BABEL test set.
The experiments were executed on a machine with two dual-core Intel Xeon 3.2
MHz processors, however, during recognition, only single core was used by the
decoder.

6.3.2 Comparison of different units for language modelling

We tested the impact of different basic language modelling unit selection methods
to speech recognition word error rate. For this, the words in the training corpus
were split in different ways and the 60 000 words with the highest maximum
likelihood score were selected as the vocabulary. The corresponding language
model was compiled by training six different corpus-specific trigram models
(with singleton N -grams retained, using modified Kneser-Ney discounting) and
interpolating the models using weights optimised on a heldout text (this method
gives the best perplexity results as shown in chapter 6.2.4). The word-error rates
were measured before reconstructing the compound words, i.e. compound word
particles were regarded as different words in both the hypotheses and reference
transcripts. In the experiment where full words where used, the recognised words
were post-processed so that compound words were split. When using morpheme
vocabularies, the endings were concatenated to the stems before scoring. The
results are listed in table 6.15.

Table 6.15: Out-of-vocabulary rates and word error rates (without compound re-
composition) when using different units for language modelling, with a vocabu-
lary size of 60 000.

Units OOV BABEL WER SpeechDat WER
Words (unsplit) 17.6 36.2 44.5
Split compounds 9.5 30.8 38.6
Morphemes 0.8 28.5 37.2
Length-constrained morphemes 2.4 26.4 36.0

It could be predicted that using shorter units as basic units gives better results
than using whole words since the OOV-rate of the 60 000 full word vocabulary is
almost 18%, compared to about 10% of the vocabulary where compound words
are split. However, it is perhaps surprising that the vocabulary where only the
compound words are split is only marginally worse than the vocabulary where
words are split into morphemes, although the difference in OOV-rate is huge. The
relative difference is about 8% for the BABEL and about 10% for the SpeechDat
test set. Finally, the results confirm the claim presented in chapter 5.2 that
omitting suffixes that consist of only one letter is advantageous: the language
model of length-constrained morphemes results in a better WER than the model
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of unconstrained morphemes for both tests sets, with relative differences of 9 and
3%.

6.3.3 Comparison of acoustic modelling techniques

In this section, we compare different acoustic modelling techniques. First, per-
formance of grapheme-based acoustic models is compared with that of phoneme-
based models. Then, simple phoneme-based models are compared with models
where the vowel of the unstressed second syllable of an overlong foot is modelled
using separate units. The performance is evaluated using WER before compound
reconstruction, as in previous section.

Comparison of grapheme and phoneme based acoustic modelling

As discussed in section 3.2, Estonian orthography is almost phonetic with some
notable exceptions. The exceptions occur mostly in the way plosives are written
and pronounced. In section 4, a set of Estonian acoustic basic units for speech
recognition was proposed. Also, an algorithm that can generate a pronunciation
from word orthography and its morphological analysis was designed. To test the
effectiveness and usefulness of this approach, we need to compare its effect on
speech recognition word error rate with the baseline approach, where a word’s
pronunciation is directly produced from the orthography using a one-to-one
mapping between word’s graphemes and the phonemes in its pronunciation.

For this test, two different recognition systems were trained. The first one uses
a set of acoustic models that directly corresponds to the Estonian alphabet, minus
the letters ž and z. For all words, a simple grapheme to phoneme transformation
was used, with a few exceptions: namely, the graphemes ž, z, w, y, c and x are
transformed to phonemes /š/, /s/, /v/, /i/, /k/ and to a pair /k/ /s/, respectively.
The words that included graphmes not available in the Estonian alphabet (plus the
graphemes w, y, c and x) were not included as candidates for the language model
vocabulary. If any of the acoustic model training utterances included such words,
the corresponding utterances were removed from the training data.

For the second system, the grapheme-to-phoneme transformation script in-
cluded the transformations as proposed in section 4, in addition to the few trans-
formations that were also done for the first system. No discrimination for the
palatalised and unpalatalised phonemes were made, i.e. they were regarded as
one phoneme.

For both systems, a similar training procedure for both acoustic model and
language model training was followed. The language model is length-constrained
morpheme trigram language model that is an interpolation of domain specific
trigrams as described in section 6.2.4. Singleton N -grams were not retained,
modified Kneser-Ney smoothing was applied. Vocabulary was selected by taking
the top 60 000 morphemes from the union of the domain-specific vocabularies
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in order to maximise the likelihood of the SpeechDat sample sentences. The
vocabulary of the two systems is not exactly the same because the second system
uses pronunciation dependant morphemes and as a result, a morpheme that has
one entry in the first system’s vocabulary may have two entries in the second
system’s vocabulary. One such morpheme is the ending te which is represented
in the second system as two entries: te [/t/ /e/] and te [/tt/ /e/]. The amount
of such double entries is very small but it may still have a certain impact on
language modelling, since for the probability estimation of trigrams that include
such morphemes, only the corresponding occurrences can be used.

The recognition word error results are listed in table 6.16. Clearly, there is
not a large difference between the two systems. Moreover, for the BABEL test set
the first system resulted in a better WER (3.5% relative difference) whereas for
the SpeechDat test set, the second system gave slightly better results (1% relative
difference).

Table 6.16: Word error rate for systems with orthography-based pronunciation
dictionary vs. phonetic transcription based pronunciation dictionary.

Dictionary BABEL SpeechDat
Orthographic 27.3 37.2
Phonetic 28.2 36.8

Quantity degree specific acoustic models

As discussed in chapter 4.2, it might be useful to model vowels of the unstressed
syllable of an overlong quantity degree foot as separate acoustic units.

To test this idea, all occurrences of vowels [a], [e], [i], [o] and [u] in the
training transcripts were replaced with the corresponding extra short vowel, if they
occurred in a second syllable of the overlong foot. This was rather straightforward
to implement for the BABEL database, as the phonological transcripts already
contained overlong syllable markers that were discarded in previous experiments.
The correct shortened vowel was automatically found by searching for the first
vowel after the overlong duration marker. If a compound word boundary or a
word end was found before the vowel, the search was halted. For the SpeechDat
database, a different approach was needed: all transcripts were reprocessed by the
Estonian morphological analyser, that marked the places of overlong duration;
then a similar shifting transformation as for BABEL transcripts was applied.
Table 6.17 shows some words containing overlong foot together with their new
pronunciations.

To test the new acoustic models using a large vocabulary recognition system,
the pronunciations of all morphemes in the language model were to be checked.
The goal was to detect all possible occurrences of overlong feet and use the
extra-short vowel in the unstressed syllable, as in the training transcriptions.
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Table 6.17: Pronunciation dictionary composition for some words containing an
overlong duration.

Word Morphological anal-
ysis with overlong
duration markers

Pronunciation

enne, before en:ne e n n e−

(ilusat) jaama, station, sg. gen. jaa:ma j a am a−

raudvarbade, iron pillar, pl. gen rau:d+var:ba de r a u t v a r p a− t e

This turns out to be a non-trivial task, as sometimes the morpheme boundary
is located between the stressed and an unstressed syllable, as in word ’ükski’,
’:üks-ki’ , ’none’. To solve this, all text corpora were processed as follows: each
sentence was processed by the morphological analyser-disambiguator that marked
occurrences of overlong feet; this information was used to produce the correct
pronunciation for each morpheme of every word; for each resulting morpheme,
it was checked whether the morpheme is in the language model vocabulary – if
so, the given morpheme pronunciation was added to the pronunciation set of this
morpheme. Finally, all discovered pronunciations were written to the dictionary.
The resulting pronunciation dictionary of 60000 morphemes has 65348 different
pronunciations in total. This means that 5348 morphemes (8.9% of all morphemes
in the vocabulary) have two pronunciations. No morpheme had more than two
pronunciations.

The results of recognition experiments are presented in table 6.18. As
can be seen, the recognition quality of the BABEL-based system improved
while that of the SpeechDat-based system degraded. The matched-pairs signed-
ranks Wilcoxon test of statistical significance, as implemented in the NIST
SCTK toolkit, shows for both systems that the difference in word error rate is
insignificant.

Table 6.18: Word error rate when using baseline acoustic models vs. acoustic
models with extra-short models for second syllable vowels in an overlong foot.

Acoustic models BABEL SpeechDat
Baseline 29.5 36.4
With extra-short models 27.4 37.6

Discussion

Both experiments with acoustic modelling and dictionary composition gave con-
troversial results: the difference was not big and the system word error rate im-
proved for one test set while degraded for the other test set.
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It seems that the use of context sensitive hidden Markov models can fairly well
model the variations in Estonian orthography and pronunciations and it is hard to
significantly improve the system that uses simple grapheme-to-phoneme mapping
for dictionary composition. It is not suprising that the grapheme-based models
achieved a comparable performance with the phoneme-based models since similar
results have been reported for other languages with a close grapheme to phoneme
relation [Killer, 2003, Lihan et al., 2006].

Further significant improvements are probably possible and this should be
one of the topics of future studies; in this work, further experiments with acoustic
modelling were postponed as the process is especially time-consuming.

6.3.4 Language model improvements

Rescoring using morphological analysis

This section presents the results of rescoring N-best sentence hypothesis using
morphological information and factored language model. The theoretical back-
ground of this approach was given in section 5.5.2. This work extends the ex-
periments that were conducted earlier and reported in [Alumäe, 2006]. The per-
formance is evaluated using WER of full words, as opposed to previous sections
where compound particles were regarded as separate words.

The method was tested only on the SpeechDat data. This method needs a
reliable and statistically relevant development set for tuning various parameters,
thus the BABEL database with only six speakers in the test set was not suitable
for this.

The baseline system uses our best performing length-constrained morpheme
trigram language model that is an interpolation of domain specific trigrams as
described in section 6.2.4. Singleton N -grams were retained, modified Kneser-
Ney smoothing was applied. Vocabulary was selected by taking the top 60 000
morphemes from the union of the domain-specific vocabularies in order to max-
imise the likelihood of the SpeechDat sample sentences. Orthographic dictionary
composition method was used.

Figure 6.2 presents the oracle WER values possible at various depths in a
1000-best list produced by the baseline system for the SpeechDat development
and test set. The oracle uses reference transcripts to propose the best hypothesis
at the given depth from the N-best list. Experimental analysis shows that the
oracle can improve WER from 40.4 to 25.8 (36.1% relative improvement) for the
development set and from 37.7 to 24.1 (also 36.1% relative improvement) for the
test set. Most of the more accurate hypotheses are within the 100 N-best depth
for each utterance: the relative oracle WER improvement at the depth of 100 is
30.9% and 31.8% for the two test sets, which is over 85% of the improvement
from within 1000 hypotheses. The results suggest that we can gain substantial
improvements by applying a strong post-processing and reranking mechanism to
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the N-best lists, even at small N-best depth.
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Figure 6.2: Oracle WER for the SpeechDat test set at various N-best depths.

The rescoring and reranking process consists of the following steps:

• All utterances in the test/development set are decoded using the baseline
system. This results in a maximum of 1000 sentence hypotheses for each
utterance (sometimes the pruning settings of the decoder limit the N-best list
to a shorter length). For each hypothesis, an acoustic model and a language
model score is recorded.

• All sentence hypotheses are processed using a hidden event language model
that tags places of most probable places where compound words should
be formed; the result is processed by a script that concatenates stems
and suffixes and reconstructs compound words using the result from the
statistical estimator. The baseline system stops at this point and outputs the
hypothesis with the highest score.

• Now, all reconstructed hypotheses are processed by the Estonian morpho-
logical analyser and disambiguator that tags all words with their most prob-
able part-of-speech (POS) tag.

• The resulting POS-tagged N-best lists are used to collect an N-best vocabu-
lary of the current test set, that is, all words and POS-tags that occur in any
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of the hypothesis;

• The resulting vocabulary is used to construct a factored language model,
using an already morphologically tagged text corpus as training data. The
factored language model is limited to the vocabulary that is actually needed
for rescoring the current N-best lists and can thus be estimated and stored
using a reasonable amount of memory and CPU time.

• After estimating the test-set specific factored language model, all N-best
sentences for all utterances in the test set are rescored, that is, an additional
language model score is added to each hypothesis.

• Next, the baseline acoustic model and language model scores and the ad-
ditional factored language model score are combined using weights opti-
mised on a development set. For finding the final output, a generalisa-
tion of the ROVER algorithm as implemented in SRILM is used that uses
word error minimisation via dynamic programming and a voting process
[Fiscus, 1997].

As mentioned, the scores combination weights are optimised on the develop-
ment set. The optimisation process uses all available scores for each utterance,
and the corresponding reference transcripts to find score combination weights so
as to minimise the word error of a classifier that performs word-level posterior
probability maximisation. A simplex-based ”Amoeba” search [Press et al., 1988]
on the (non-smoothed) word error function as implemented in SRILM is used.
The search is restarted multiple times to avoid local minima.

The structure of the factored language model was tuned by hand in an ad-
hoc manner so as to minimise the WER of the development set. The topology that
achieves the best performance is outlined on figure 6.3. At first, the probability for
each word in a sentence is attempted to be calculated based on the history of two
previous words and their respective POS tags (Pr(wt|wt−1, wt−2, pt−1, pt−2)).
As the POS tag is a deterministic function of the word in most cases (except for
ambiguous words), this probability can be viewed as a standard trigram estimation
(Pr(wt|wt−1, wt−2)). If the string wt−2 wt−1 wt did not occur in the training
data, the model backs off by dropping the word wt−2 and tries to estimate the
probability of a word, given the previous word and previous two POS tags. If
such trigrams are still not found in the corpus, the model branches into 2 back-
off paths by dropping the parent wt−1 or pt−2, respectively, and using the mean
score from the 2 branches as the final probability. Each branch tries to estimate its
probability on the remaining factors, and backs off to use only one previous POS
tag for calculating the probability. Finally, the model backs off to the unigram
probability of the word.

The different conditional probabilities in each FLM node are examplified
in table 6.19: given the trigram koer tassib konti, ”dog carries a bone”, the
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Figure 6.3: Backoff paths of the best-performing factored language model.

probability of the final word konti is first computed by looking for occurrences
of koer tassib konti. If such trigram does not exist in the training corpus, we back
off to the node below, and look for occurrences ( S sg in) tassib konti, i.e. by
looking for trigrams where the word pair tassib konti is preceded by a noun in a
singular nominative case. If such trigram still hasn’t occurred in the corpus, we
back off to two parallel back-off nodes, and calculate the mean from the result.

Table 6.19: Probability estimation in different nodes of the factored language
model.

FLM node Example of the probability estimation
Pr(wt|wt−1, wt−2, pt−1, pt−2) Pr(wt = konti|wt−1 = tassib, wt−2 =

koer, pt−1 = V b, pt−2 = S sgn)
Pr(wt|wt−1, pt−1, pt−2) Pr(wt = konti|wt−1 = tassib, pt−1 =

V b, pt−2 = S sgn)
Pr(wt|pt−1, pt−2) Pr(wt = konti|pt−1 = V b, pt−2 =

S sgn)
Pr(wt|wt−1, pt−1) Pr(wt = konti|wt−1 = tassib, pt−1 =

V b)
Pr(wt|pt−1) Pr(wt = konti|pt−1 = V b)
Pr(wt) Pr(wt = konti)

The tests on rescoring the development set showed that it is not profitable to
include all 1000 hypotheses for each utterance for reranking. Experiments showed
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that the best WER reduction was achieved when around 100 best candidates were
considered. At depths less and greater than that, the WER reduction began to
degrade. Figure 6.4 presents a smoothed WER curves comparing the actually
achieved results after rescoring with the oracle WER.
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Figure 6.4: Actual WER of the development set after rescoring with the FLM
compared to the oracle WER.

The WER results of the development and test set before and after rescoring
are listed in table 6.20. To evaluate the effectiveness of the FLM approach, the
rescoring experiments were also conducted using a conventional word trigram
model, that is, a morpheme-based trigram model was used in the first pass, and
the N-best lists were rescored using a word trigram model. This approach results
in a small improvement for both sets (relative improvement of 4.5% for the
development and 3.7% for the test set). Rescoring using the FLM improves the
results further: relative improvement over the baseline results is 6.4% and 6.2%,
respectively. As expected, the relative improvement is larger for the development
set since the FLM topology and the score combination weights are optimised so
as to minimise its word error rate and are not necessarily optimal for the test set.

In the results reported in earlier work [Alumäe, 2006], the relative improve-
ment was larger (7.3% for the test set). However, the actually achieved absolute
WER results were worse than reported here. This can be explained by the fact that
the baseline language model used here is tuned better and the rescoring FLM can
contribute less useful information for finding the best hypothesis.
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Table 6.20: Word error rates for the basline system and after rescoring the 100 N-
best hypotheses using a word-based trigram and a factored language model using
POS-tags.

System Dev set Test set
Baseline 37.7 40.4
After rescoring with a word trigram 36.0 38.9
After rescoring with FLM 35.3 37.9

Table 6.21 lists hit counts for different back-off nodes in the rescoring factored
LM described on Figure 6.3. The hit counts were computed by rescoring the 1-
best sentences in the development set and looking were the probability calculation
for each word ends up. Note that the lower nodes get an artificially higher hit
count because the backoff path branches into two paths and always two nodes
are hit if the second node is backed off from. The table also shows the amount
of probability calculations that reached the corresponding nodes and could be
actually computed without backing off to a lower level. Those percentages can be
interpreted as being a usefulness metric of the nodes – the higher the percentage,
the more calculations could be carried out in the corresponding node without using
less accurate estimates of the lower level nodes.

Table 6.21: Hits counts for different backoff nodes in the rescoring FLM illus-
trated on Figure 6.3. The last two nodes can be reached from two branches, thus
their hits are given separately.

Node Hits Percentage of ”catches”
Pr(wt|wt−1, wt−2, pt−1, pt−2) 754 24.1
Pr(wt|wt−1, pt−1, pt−2) 470 19.8
Pr(wt|pt−1, pt−2) 824 43.3
Pr(wt|wt−1, pt−1) 354 18.6
Pr(wt|pt−1) 560 + 1030 83.7
Pr(wt) 521 + 521 100

There are less than 200 different part-of-speech tags in Estonian. While
this number in much larger than the number of POS tags in English, it’s still
quite small. This created an idea that it might be advantageous to introduce an
intermediate level of granularity between words and part-of-speech tags which
would avoid a very steep drop in accuracy when backing off from words to
POS tags. We selected 60 000 most frequent words from the union of the
text corpora, and assigned them to 1000 clusters, using the word exchange
algorithm as implemented in HTK. Bigram log-likelihood of the corpus was used
as the optimization criteria. We then experimented with different FLM back-off
topologies where words’ classes would be used before backing off to the POS
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tags. However, no improvement in WER was achieved.
Appendix B lists some sample recognised sentences together with the refer-

ence transcripts from the test set, after the rescoring technique has been applied.

6.4 Summary

In he following, a summary of the experimental work carried out throughout this
chapter is given. We started with the simplest imaginable system, using grapheme-
based acoustic models and a word-based trigram language model. The vocabulary
was selected by taking the most frequent 60 000 units from the training corpus.
The experimental steps together with the outcome are listed in table 6.22.

Table 6.22: Summary of system improvement steps.

Method Result
Split compound words into particles Improved OOV-rate (section 6.2.1)

and WER (section 6.3.2)
Split compound word particles into
morphemes

Improved OOV (section 6.2.1) and
WER (section 6.3.2)

Don’t separate one-grapheme mor-
phemes from the preceding stem
(minimum-length-constrained mor-
phemes)

Worse OOV (section 6.2.1), im-
proved WER (section 6.3.2)

Use heuristic methods in vocabulary
selection in order to decrease the
weight of proper nouns and elimi-
nate abbreviations and words contain-
ing foreign characters

Improved OOV (section 6.2.2)

Select the vocabulary by weighting the
different corpora using maximum like-
lihood count estimation, instead of tak-
ing the most frequent words from the
union of the corpora

Improved OOV (section 6.2.2)

Create language model by interpo-
lating corpus-specific models, include
singleton N -grams

Improved perplexity (PPL) (section
6.2.4)

Interpolate N -grams with lower order
estimates

No improvement in PPL (section
6.2.4)

Use 4-gram language model, discard
singleton N -grams

No improvement in PPL (section
6.2.4)
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Cluster morphemes using text corpus
statistics, interpolate class-based lan-
guge model with morpheme-based lan-
guage model

Improved PPL (section 6.2.5)

Use hidden event language model for
compound word reconstruction

Able to reconstruct most compound
words (section 6.2.6)

Use phoneme-based acoustic models No consistent improvement in WER
(section 6.3.3)

Use phoneme-based acoustic models,
create separate models for short vowels
in unstressed syllables of ovelong foot

No consistent improvement in WER
(section 6.3.3)

Use dynamically built word-based tri-
gram for rescoring 1st pass hypotheses

Improved WER (section 6.3.4)

Use POS-tags in the rescoring process
for backing-off

Improved WER (section 6.3.4)

Use statistically derived word classes
in the rescoring process for backing-off

No improvement in WER (section
6.3.4)
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Chapter 7

Conclusion

This thesis presents an investigation into large vocabulary continuous speech
recognition modelling (LVCSR) issues for Estonian. In particular, it describes
approaches to acoustic and language modelling in the context of a contemporary
statistical framework. The application of models in a standard hidden Markov
model (HMM) based speech recognition system should make porting an already
available recognition system to Estonian easier and cheaper. Basic concepts of
modern speech recognition were reviewed in chapter 2. Overview of Estonian
phonology, orthography, morphology and syntax was given in chapter 3. An
introduction to the three-way duration system in Estonian phonology was also
presented.

7.1 Review of the study

In chapter 4, an approach to Estonian acoustic modelling for LVCSR using HMMs
was presented. First, the inventory of acoustic units was proposed. The units
correspond roughly to Estonian short phonemes, as described in chapter 3. Long
phonemes that occur in long and overlong feet are modelled by sequences of two
corresponding phone units. This was justified by the common judgement that
there is little difference in the quality of short and long Estonian phonemes. The
abundance of diphthongs in Estonian makes it unfeasible to model each diphthong
by a separate unit, as opposed to languages like English. Therefore, the modelling
of diphthongs using sequences of two basic phone units should be beneficial.
This also complies with the handling of long vowels whose usage is similar to
diphthongs in Estonian. The only exception in the handling of short and long
phonemes lies in the modelling of plosives since the realization of long plosives
is clearly different from concatenation of two short plosives. Therefore, we
proposed to model short and long plosives (including realizations in an overlong
foot) using separate units. Pairs of palatalised and unpalatalised phonemes are
merged into one acoustic unit since there is no difference in orthography of such
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oppositions and the determining of the palatalisation from the written form of a
word is unreliable. The chapter also proposed an alternative set of acoustic units
where the short quality-degraded vowels of the unstressed second syllable in an
overlong foot are modelled using separate units. Finally, a simple grapheme-to-
phone transformation algorithm was developed. The algorithm relies on tagged
compound particle borders since compound borders have an important effect on
the way plosives are pronounced.

In chapter 5, a technique for large vocabulary language modelling for Estonian
was developed. The approach relies on automatic morphological analysis and the
treatment of morphemes as basic language units. The morphological analyser
is used in processing training corpus to split compound words into particles and
separate morpheme endings from stems. A maximum likelihood vocabulary of
the resulting particles is used as the language model lexicon. To reduce acoustic
confusability, we proposed to split morphemes only if the resulting length of the
particles is at least two graphemes. Some heuristic techniques for improving
the vocabulary selection were presented. After decoding with the morpheme-
based N -gram model, the suffixes in the decoder output hypotheses are reattached
to the preceding stems. A separate hidden event language model is applied
for reconstructing compound words, using only lexical correlates of compound
word particle boundaries. Finally, two independent methods for improving the
language model were introduced. The first method uses corpus statistics to
assign morphemes into clusters and thereby make morpheme N -gram probability
estimates more robust. The second method uses a two-pass strategy to apply
a word-based N -gram model in the second pass. The word-based model uses
morphological part-of-speech tags in a backing off scheme to improve robustness
and reduce local morphosyntactic errors in recogniser output.

Various language modelling and speech recognition experiments were
presented in chapter 6. First, the coverage of different basic units for language
modelling units was measured. The experiments confirmed that both words
and compound-split words are not suitable units for language modelling when
using a conventionally sized vocabulary of 60 000 units – they produced
out-of-vocabulary (OOV) rates of about 18% and 9%, respectively. However,
pure morphemes and minimum-length-constrained morphemes achieved an
acceptable OOV rate of 0.8 and 2.4%, respectively. The next experiments focused
on building N -gram models using minimum-length-constrained morphemes
as basic units. The best perplexity results were achieved when a trigram was
composed by interpolating corpus-specific models. In this case, including
singleton N -grams in the model was clearly beneficial. Perplexities of the
best-performing models against two heldout texts were 955 and 434, respectively.
The perplexity could be further improved to 906 and 414, respectively, by
interpolating the morpheme-based model with a class-based model. The last set
of language modelling experiments was carried out to investigate the proposed
compound word recognition method. First, the compound word connector
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tagging accuracy was measured on transcribed speech. The F-measure describing
the precision and recall of the process was 0.83 and 0.92 for two test sets. When
using recognised text, the corresponding figures were lower as expected – 0.70
and 0.83. Some interesting error patterns where compound recomposition errors
occur were identified. The second part of the chapter describes various speech
recognition experiments. First, word error rates (WER) were measured when
using different units for language modelling. The experiments confirmed earlier
claims that it is profitable not to introduce suffixes that consist of only one
grapheme – the model using minimum-length-constrained morphemes achieved
the best WER. Next, some experiments with different acoustic models were
conducted: a system using phoneme-based acoustic models was compared with
one using grapheme-based models; also, a system using separate models for
short quality-degraded vowels of the unstressed second syllable in an overlong
foot was investigated. Those experiments gave controversial results and the
difference between the systems was not significant. We concluded that it would
be difficult to improve simple grapheme-based acoustic models since Estonian
is a language with a close grapheme to phoneme relation. The last set of
recognition experiments investigated the proposed two-pass recognition strategy
that applies a dynamically-built word-based factored language model using
morphological information for rescoring N-best sentence hypotheses from the
first pass. A relative WER improvement of 6.2% was achieved. The final WER
of the development and test set was 35.3% and 37.9%, respectively.

7.2 Future work

There are several aspects of the work presented in this thesis that will require
further investigation.

In the domain of acoustic modelling, the biggest challenge lies in proper
modelling of the tree-way quantity opposition in the accented positions within
the rhythmic foot of Estonian words. Listening tests have shown that the three
quantity degrees cannot be identified on segmental or syllabic levels. Rather,
the most important feature in identifying the quantity degree is the duration ratio
of the first stressed and the second unstressed syllable. Of course, such feature
cannot be adequately modelled using phoneme-level hidden Markov models. The
easiest way to identify the correct quantity degree during the recognition process
would probably be to use conventional acoustic models in the first pass, align
recognised hypotheses with the audio and calculate the duration ratios directly
from there. More interesting and potentially more beneficial would be integrating
the relative duration analysis directly into the first pass.

In the domain of language modelling, many interesting research directions
could be investigated. First, the preprocessing and normalisation methods of train-
ing text corpora can be much improved. Currently, words containing numbers as
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well as abbreviations are completely ignored. Instead, numbers and abbreviations
should be expanded into words. This is however not trivial since the expansions
should take into account the inflection of the numbers and abbreviations in the
given context.

The splitting of words into morphemes using a morphological analyser should
be compared with some data-driven methods, e.g. using the minimum description
length principle as has been done for Finnish and Turkish [Siivola et al., 2003,
Creutz and Lagus, 2005]. First experiments with Estonian recognition have al-
ready been reported [Hirsimäki et al., 2006] but they didn’t compare the data-
driven method with the morphological analysis based system.

The proposed compound word reconstruction technique could be improved.
The analysis of reconstruction errors revealed two kinds of problems caused
by data sparseness issues. Some of such issues could probably be eliminated
by using a class-based language model. An added area for further study is to
combine acoustic and prosodic cues, such as pause length, phone duration
and pitch around the boundary between possible compound particles, with
the linguistic model, as has been done for automatic sentence segmentation
[Stolcke et al., 1998, Shriberg et al., 2000].

In section 6.2.3 we discussed that the high perplexity of the morpheme-
based language model can be at least partly blamed on the low coverage of the
trigram model and the relatively high amount of trigrams in heldout texts that
end up in being estimated in unigram nodes. This is caused by the limited
amount of language model training data for Estonian and the relatively free
word order of the language. This suggests that in order to make progress in
recognition results, we need to find ways to improve the coverage, span and
robustness of the language model. In the language modelling community, there
have been recently great interest in efforts that study various ways of using
information from a longer context span than that usually captured by normal
N -gram language models, as well as ways of using syntactical information that
is not available to the word-based N -gram models [Chelba and Jelinek, 2000,
Charniak, 2001]. Another recent work that has shown promising results uses
distributional representation of words and neural networks for language modelling
[Bengio et al., 2000, Schwenk and Gauvain, 2005]. This method has the ability
to accommodate longer contexts and has been shown to significantly improve on
regular N -gram models in perplexity. Such techniques could be also applied for
morpheme-based language modelling.

The two-pass recognition method proposed in this thesis uses a word and part-
of-speech based factored language model (FLM) to rescore the hypotheses from
the first pass. Instead of an FLM, or in addition to it, other kinds of sentence
probability estimators could be used in the second pass. One approach worth
investigating is the use of latent semantic analysis (LSA) based language model
[Bellegarda, 2004]. The use of word particles as modelling units makes it very
difficult to integrate LSA-based language model into the first pass decoder. Also,

105



huge number of different words in the language make the standard LSA approach
probably quite ineffective. However, in the second pass, we could use word stems
as LSA modelling units. The number of different stems is much less than the
number of different inflected word forms, and given the long-distance nature of
the LSA technique, they are more suitable modelling units than the actual words.

Finally, it would be highly interesting to apply the proposed methods to a more
practical speech recognition applications. During the described experiments, only
the read sentences from two speech corpora were used for decoding. The set
of sentences was designed by phoneticians so as to achieve a high coverage of
all phonemes in different contexts, and therefore contain a lot of rare words in
rare contexts. As a result, the sentences, especially those in the BABEL corpus,
have an extremely high perplexity (over 900). This suggests that much lower
language model perplexities could be achieved for real world sentences. On
the other hand, the sentences in the speech corpora do not contain many proper
nouns, numbers and dates, as opposed to typical sentences in texts like broadcast
news. Therefore, it can be predicted that new kinds of challenges (e.g. adding
new proper nouns to vocabulary, handling of foreign names) would turn up when
porting the recognition system to practical tasks.

7.3 Summary

This chapter has summarised the conclusions from this study and identified ar-
eas for future research. The thesis proposed methods for Estonian large vo-
cabulary continuous speech recognition and evaluated them with various lan-
guage modelling and speech recognition experiments. An inventory of phoneme-
based acoustic models was proposed. Experiments showed that simple grapheme-
based context-sensitive acoustic models achieve a comparable performance with
the phoneme-based models. The treatment of minimum-length-constrained mor-
phemes as basic units for language modelling was suggested, its benefits were
confirmed with evaluations. A proposed statistical model for compound word re-
construction was shown to achieve high accuracy. A two-pass approach using a
dynamically-built word-based language model for rescoring first pass hypotheses
demonstrated promising results. Future work should aim at improving the cover-
age, span and robustness of the language model using methods beyond N -gram
model. Also, porting the recognition system to more practical tasks could reveal
new challenges.
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Abstract

The goal of large vocabulary automatic speech recognition is to recognize natural
language as spoken by humans, and convert it to textual representation. There are
many application areas for such technology, such as desktop dictation, automatic
transcription of radio broadcasts and audio archives and automatic close-capturing
of television broadcasts. The use of statistical and data-driven methods has
resulted in great progress in this technology. For many languages with large
number of speakers, many successful recognition systems have been developed.
Due to limited resources and technological complexity, Estonian large vocabulary
speech recognition hasn’t been available. However, it is highly important for
the survival of small languages to develop human language technologies for the
language, including tools for both text and speech processing.

This dissertation concerns the development of methods and models for use
in large vocabulary automatic speech recognition system for Estonian. The pre-
sented approach adapts the modern general-purpose statistical framework using
hidden Markov models for modelling variation of basic speech sounds and statis-
tical N -gram models for approximating natural language. The thesis concentrates
on the language specific design issues of the three knowledge sources that are
applied during recognition: the acoustic model, the language model and the pro-
nunciation lexicon.

The proposed set of acoustic units corresponds roughly to Estonian short
phonemes. Long phonemes as well as diphthongs, geminates and consonant
clusters are represented by sequences of two or more corresponding short units.
Short and long plosives are modelled using separate units. Pairs of palatalised and
unpalatalised phonemes are merged into one unit. No distinction between long
and overlong duration is made. A grapheme-to-phone transformation algorithm is
presented.

Estonian is a highly inflective and compounding language with practically
unlimited number of different word forms. The large number of unique words
makes the conventional statistical language modelling approach not suitable for
Estonian: given a set of 60 000 most frequent word forms, it is difficult to achieve
satisfying word coverage, and it is hard to robustly estimate word probabilities
in different contexts from sparse training data. The technique presented here
relies on automatic morphological analysis and the treatment of morphemes as
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basic language units during the recognition process. After decoding, recognized
morpheme suffixes are concatenated back to the preceding stems. A separate
statistical model using only lexical information is applied for compound word
reconstruction. In addition, two independent methods for improving the language
model are proposed. The first method clusters morphemes into classes based
on text corpus statistics, in order to make N -gram estimates more robust. The
second method uses a two-pass strategy to apply a dynamically built word-based
language model in the second pass. Statistical morphological correlates are used
for reducing local morphosyntactatic errors.

The proposed techniques are evaluated on a range of language modelling
and speech recognition experiments. The proposed phoneme-based acoustic
models are found to perform similarly with the simpler grapheme-based models.
Language modelling experiments indicate that using subword units is beneficial
for Estonian large vocabulary tasks. This result is confirmed with recognition
experiments. The proposed two-pass method further improve the results.

Keywords: Estonian, speech recognition, LVCSR, agglutinative languages,
highly inflective languages, morphemes, compound words, class-based models,
factored language models
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Kokkuvõte

Suure sõnavaraga automaatse kõnetuvastuse eesmärgiks on loomuliku inimkõne
tuvastamine ja selle teisendamine tekstiks. Sellisel tehnoloogial on palju raken-
dusalasid, näiteks dikteeritud teksti viimine tekstikujule, arhiveeritud raadio- ja
muude kõnearhiivide automaatne transkribeerimine, automaatne subtiitrite gene-
reerimine telesaadetele. Tänu statistilistele ja andmepõhistele meetoditele on sel-
les valdkonnas tehtud suuri edusamme. Mitme suurema keele jaoks on olemas
edukalt töötavaid suure sõnavaraga tuvastussüsteeme. Ressursside vähesusest ja
tehnilisest keerukusest tingituna pole eesti keele puhul selliste rakendusteni se-
ni veel jõutud. Kõne- ja tekstitöötlusvahendite arendamine on väikese keele el-
lujäämist silmas pidades aga väga oluline.

Käesoleva väitekirja peamiseks uurimisobjektiks on suure eestikeelse sõna-
varaga kõnetuvastus. Töös käsitletakse eesti keelele sobivaid mudeleid ja meeto-
deid, kasutades kaasaegset üldkasutatavat statistilist lähenemist, mis modelleerib
kõneühikute varieeruvust Markovi peitmudelitega ja loomulikku keelt statitilise
N -gram mudeliga. Töö keskendub kolme keele-spetsiifilise tuvastuses kasutatava
mudeli – akustilise mudeli, keelemudeli ja hääldussõnastiku – tehnilise lahenduse
väljatöötamisele.

Töös välja pakutud akustiliste ühikute hulk vastab umbkaudu eesti
lühikestele häälikutele. Pikki vokaale, diftonge, geminaate ja konsonandiklastreid
modelleeritakse mitme lühikesele foneemile vastava ühikuga. Lühikesi ja
pikki sulghäälikuid modelleeritakse eraldi ühikutega. Palataliseeritud ja
mittepalataliseeritud häälikud vastavad samale ühikule. Teises ja kolmandas
vältes esinevat pikka häälikut modelleritakse sarnaselt. Sõnade teisendamiseks
ortograafiliselt kujult akustilistele ühikutele vastavale kujule saab kasutada välja
pakutud teisenduslgoritmi.

Eesti keele morfoloogia on suurel määral flektiivne-aglutinatiivne, samuti
kasutakse palju liitsõnu. Seetõttu on erinevate keeles esinevate sõnavormide
arv praktiliselt lõpmatu. Tänu suurele unikaalsete sõnavormide hulgale
ei tööta standardne statistiline keelemudel eesti keele puhul kuigi hästi:
kasutades ainult 60 000 keeles kõige sagedamini esinevat sõnavormi, ei
ole võimalik saavutada head keelemudeli katvust. Lisaks sellele, erinevate
sõnakombinatsioonide usaldatava esinemistõenäosuse leidmine ei ole sõnade
rohkuse tõttu võimalik. Selles töös arendatud meetod tugineb automaatsele
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morfoloogilisele analüüsile ning käsitleb tuvastuse käigus morfeeme keele
põhiühikutena. Pärast tuvastust liidetakse lõpud eelnevatele tüvedele. Liitsõnade
rekonstrueerimiseks rakendatakse eraldi statistilist mudelit, mis tugineb ainult
leksikaalsele informatsioonile. Töös pakutakse välja kaks eraldiseisvat meetodit
keelemudeli kvaliteedi parandamiseks. Neist esimene klassifitseerib kõik
morfeemid klastritesse, kasutades tekstikorpuse statistikat. Klasterdamine
suurendab keelemudeli usaldsuväärsust. Teine meetod koosneb kahest faasist:
esimeses kasutatakse kirjeldatud morfeemidel põhinevat keelemudelit; teises
faasis konstrueeritakse dünaamiliselt sõnadel põhinev keelemudel ja antakse selle
abil esimesest faasist saadud lausekandidaatidele uued hinnangud. Lokaalsete
morfosüntaktiliste vigade vähendamiseks kasutatakse sõnade ja sõnaliikide
statistikat.

Kirjeldatud mudeleid ja meetodeid testitakse erinevate keelemodeleerimise
ja kõnetuvastuse eksperimentidega. Osutub, et hääliku-sarnaseid akustilisi
ühikuid kasutades saavutatakse tähe-sarnaste ühikute kasutamisega sarnane
tuvastustäpsus. Keelemodelleerimiseksperimendid näitavad, et morfeemide
kasutamine on eesti keele suure sõnavaraga tuvastussüsteemis kasulik. Seda
kinnitavad ka kõnetuvastuseksperimendid. Kasutades väljapakutud kahefaasilist
meetodit, on tuvastustäpsust võimalik veelgi parandada.

Võtmesõnad: Eesti keel, kõnetuvastus, flektiivne keel, aglutinatiivne keel, mor-
feemid, liitsõnad, klassi-põhised mudelid, faktoritel põhinev keelemudel
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Akadeemia Toimetised, Ühiskonnateaduste Seeria, (3):357–367.

[Bellegarda, 2004] Bellegarda, J. R. (2004). Latent semantic language modeling
for speech recognition. In Johnson, M., Khudanpur, S., Ostendorf, M., and
Rosenfeld, R., editors, Mathematical Foundations of Speech and Language
Processing, pages 73–104. Springer Verlag, New York, USA.

[Bellegarda, 2005] Bellegarda, J. R. (2005). Unsupervised, language-
independent grapheme-to-phoneme conversion by latent analogy. Speech Com-
munication, 46:140–152.

[Bengio et al., 2000] Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural
probabilistic language model. In Advances in Neural Information Processing
Systems, pages 932–938.

[Bilmes and Kirchhoff, 2003] Bilmes, J. and Kirchhoff, K. (2003). Factored
language models and generalized parallel backoff. In Proceedings of
HLT/NACCL, pages 4–6.

[Chan et al., 1995] Chan, D., Fourcin, A., Lamel, L., and al. (1995). EUROM -
a spoken langage resource for the EU. In Proceedings of Eurospeech, pages
867–870, Madrid, Spain.

[Charniak, 2001] Charniak, E. (2001). Immediate-head parsing for language
models. In Meeting of the Association for Computational Linguistics, pages
116–123.

[Chase et al., 1994] Chase, L., Rosenfeld, R., and Ward, W. (1994). Error-
responsive modifications to speech recognizers: negative n-grams. In Pro-
ceedings of ICSLP, pages 827–830, Yokohama, Japan.

[Chelba, 2006] Chelba, C. (2006). Acoustic sensitive lan-
guage model perplexity for automatic speech recognition.
http://snowbird.djvuzone.org/abstracts/001.pdf.

[Chelba and Jelinek, 2000] Chelba, C. and Jelinek, F. (2000). Structured lan-
guage modeling. Computer Speech and Language, 14(4):283–332.

112



[Chen and Goodman, 1998] Chen, S. F. and Goodman, J. (1998). An empirical
study of smoothing techniques for language modeling. Technical Report TR-
10-98, Center for Research in Computing Technology, Harvard University.

[Creutz and Lagus, 2005] Creutz, M. and Lagus, K. (2005). Unsupervised
morpheme segmentation and morphology induction from text corpora us-
ing Morfessor. Technical Report A81, Helsinki University of Technology.
URL:http://www.cis.hut.fi/projects/morpho/.

[Eek, 1974] Eek, A. (1974). Observations on the duration of some word struc-
tures: I. In Estonian Papers in Phonetics, pages 18–32.

[Eek and Meister, 1997] Eek, A. and Meister, E. (1997). Simple perception
experiments in Estonian word prosody: foot structure vs. segmental quantity.
In Estonian Prosody: Papers from a Symposium, pages 71–99, Tallinn, Estonia.

[Eek and Meister, 1999] Eek, A. and Meister, E. (1999). Estonian speech in the
BABEL multi-language database: Phonetic-phonological problems revealed in
the text corpus. In Proceedings of LP’98. Vol II., pages 529–546.

[Ehala, 2006] Ehala, M. (2006). The Word Order of Estonian: Implications to
Universal Language. Journal of Universal Language, (7):49–89.

[Engstrand and Krull, 1994] Engstrand, O. and Krull, D. (1994). Durational
correlates of quantity in Swedish, Finnish and Estonian: Cross language
evidence for a theory of adaptive dispersion. Phonetica, 51:80–91.

[Fiscus, 1997] Fiscus, J. (1997). A post-processing system to yield reduced word
error rates: Recogniser output voting error reduction (ROVER). In Proceedings
of the IEEE Workshop on Automatic Speech Recognition and Understanding,
pages 347–352, Santa Barbara, CA, USA.

[Furui, 1986] Furui, S. (1986). Speaker independent isolated word recognition
using dynamic features of speech spectrum. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 34(1):52–59.

[Geutner et al., 1998] Geutner, P., Finke, M., and Scheytt, P. (1998). Adaptive
vocabularies for transcribing multilingual broadcast news. In Proceedings of
ICASSP 1998, Seattle, Washington.

[Gokcen and Gokcen, 1997] Gokcen, S. and Gokcen, J. (1997). A multilingual
phoneme and model set: toward a universal base forautomatic speech recogni-
tion. In IEEE Workshop on Automatic Speech Recognition and Understanding,
pages 599–605, Santa Barbara, CA, USA.

[Good, 1953] Good, I. J. (1953). The population frequencies of species and the
estimation of population parameters. Biometrika, 40(3,4):237–264.

113
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(1):30–38.

[Kaalep, 1998b] Kaalep, H.-J. (1998b). Tekstikorpuse abil loodud eesti keele
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(2003). Unlimited vocabulary speech recognition based on morphs discovered
in an unsupervised manner. In Proceedings of Eurospeech, Geneva, Switzer-
land.

[Singh et al., 1999] Singh, R., Raj, B., and Stern, R. M. (1999). Automatic
Clustering And Generation Of Contextual Questions For Tied States In Hidden
Markov Models. In Proceedings of ICASSP, volume 1, pages 117–120.

118



[Stolcke, 2002] Stolcke, A. (2002). SRILM – an extensible language modeling
toolkit. In Proceedings of ICSLP 2002, volume 2, pages 901–904, Denver,
USA.

[Stolcke et al., 1998] Stolcke, A., Shriberg, E., Bates, R., Ostendorf, M.,
Hakkani, D., Plauche, M., Tur, G., and Lu, Y. (1998). Automatic detection
of sentence boundaries and disfluencies based on recognized words. In Pro-
ceedings of ICSLP, volume 5, pages 2247–2250, Sydney, Australia.

[Sutrop, 2004] Sutrop, U. (2004). Estonian language.
http://www.einst.ee/failid/eestikeel.web 1.pdf.

[Szarvas and Furui, 2003] Szarvas, M. and Furui, S. (2003). Evaluation of the
stochastic morphosyntactic language model on a one million word Hungarian
dictation task. In Proceedings of Eurospeech, Geneva, Switzerland.
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Appendix A

Phoneset mapping

The following mapping was used in the initial alignment of training sentences
when training acoustic models using the SONIC toolkit.

IPA symbol In Estonian
phoneset

Sample In English
phoneset

Sample

A a kabe AH but
æ ae käbi AE mad
e e tema EH bed
f f aferist F friend
h h hobune HH had
i i pime IH bitter
j j kaja IH bitter
g
˚

k pagar GD mug
k K pika, pikka KD talk
l, lj l lina L listen
m m mina M manager
n, nj n nina N nancy
o o oma AO for
ø oe lömitama AX alone
7 ou kõmin OW cone
b
˚

p laba BD tab
p P tapa, tappa P pop
r r tara R red
s, sj s kask S sonic
S sh kašelott, garaaž SH show
d
˚

, d
˚

j t kade DD had
t, tj T kate, katte T tot
u u juhe UW moon
y ue lühis UW moon
v v kava V very
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Appendix B

Sample recognition results

This appendix lists sample recognition results. The results are taken from the test
set after applying the two-pass recognition technique as described in section 6.3.4.
Every fifth sentence from the 320 sentence set is listed.

The recognized sentences (starting with HYP:) are aligned with reference
sentences (starting with REF:). The identifier of the sentence uses the format
<sex><speaker id>_<session id>_<sentence id>, where m
stands for male speakers and n for female speakers. Incorrectly recognized words
are written in uppercase. Asterisks are used to denote insertion and deletion
errors.

id: (m50004_3_0037)
REF: RAMBUJEE on prantsusmaal aretatud villa ja ****
LIHALAMMAS
HYP: HAMBULISE on prantsusmaal aretatud villa ja LIHA LAMAS

id: (m50015_648_0015)
REF: mu naaber kutsus talgutele kõik oma sõbrad ja
sugulased **
HYP: mu naaber kutsus talgutele kõik oma sõbrad ja
sugulased DA

id: (m50015_648_0045)
REF: poiss SÖÖTIS ebatäpselt ja RÜNNAKUD luhtusid
HYP: poiss SÕITIS ebatäpselt ja RÜNNAKUT luhtusid

id: (m50089_841_0032)
REF: TURUL ja KLUBIL on sarnased funktsioonid
HYP: TUUL ja KLUBI on sarnased funktsioonid

id: (m50103_20_0011)
REF: ***** ELEEGIA on LÜHIKE POEETILISELT
rahvusromantiline PUHANG NAGU RESÜMEE pärast PIKA reisi
LÕPPU
HYP: ELIIT JA on RIIKE POLIITILISELT
rahvusromantiline PUHATA KURI SURVE pärast PIKKA reisi
LÕPP

id: (m50103_20_0043)
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REF: PLÖRÖÖSID on ********* *** ***** PEALETÕM
PEALEÕMMELDAVAD LEINAPAELAD RIIDEIL JA LEINAÄÄRIS
KIRJAÜMBRIKUL
HYP: KÕRRESID on PEALETUNG ÜHE PEALE ÕMMELDAVAD PIINAB

ALATI TEISE LINNA TA RISKIBJAID

id: (m50134_692_0020)
REF: tanklaev mille pardal oli toornafta sõitis madalikule

**** KAGURANNIKU lähedal
HYP: tanklaev mille pardal oli toornafta sõitis madalikule
KOGU RANNIKU lähedal

id: (m50134_692_0049)
REF: poiss sai sünnipäevaks suure ilusa troska kolm HOBUST
EES JA vene kutsar PUKI PEAL
HYP: poiss sai sünnipäevaks suure ilusa troska kolm ******
LOOBUS TEISE vene kutsar PUKKI VEAB

id: (m50172_381_0037)
REF: kaljude kohal LENDLEVAID kotkaid vaadates MÕISTAD kui
võimsad linnud NEED ON
HYP: kaljude kohal LENDAVAID kotkaid vaadates MÕISTAB kui
võimsad linnud **** TOLM

id: (m50279_503_0015)
REF: SEENE KAUSJASSE kübarasse oli kogunenud vihmavett
HYP: ***** SEENEKAUSSESSE kübarasse oli kogunenud vihmavett

id: (m50279_503_0045)
REF: VEEGA ristimine oli patukahetsuse ja PATTUDE
ANDEKSANDMISE OTSIMISE sümbol
HYP: SEEGA ristimine oli patukahetsuse ja ******* PATUD

ANDEKSANDMISOTSIMISE sümbol

id: (m50353_620_0032)
REF: RIIA ja vilniuse BÖRSIDEGA VÕRRELDES on tallinna
börsi KAPITALINÕUDED SUURUSJÄRU SUURUSJÄRGU VÕRRA
KÕRGEMAD
HYP: **** ja vilniuse BÖRSI TEGEVAJADES on tallinna
börsi ************** ********** KAPITALINÕUDEDVASSE JÄRGU
VAJADUST

id: (m50425_485_0011)
REF: ***** LUPJASIME happelist mulda ET taimede
kasvutingimusi parandada
HYP: MITTE SINNA happelist mulda ** taimede
kasvutingimusi parandada

id: (m50425_485_0043)
REF: ***** SEGIDILJA on andaluusiast pärinev hispaania
rahvalaul tants
HYP: SEEGI SIIA on andaluusiast pärinev hispaania
rahvalaul tants

id: (m50595_279_0020)
REF: ETTEVÕTJA jaoks on tähtis adekvaatne informatsioon
turul toimuvast
HYP: ETTEVÕTTE jaoks on tähtis adekvaatne informatsioon
turul toimuvast

id: (m50595_279_0049)
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REF: MAJAKESES EI OLE MADRATSIT TEKKI PATJA LINADEST
EI maksa rääkidagi
HYP: ********* MAJA MIS JALA MADRATSID TEKID PADJAD
PIINADES maksa rääkidagi

id: (m50717_467_0037)
REF: MILJARDÄRIL seisis maja taga ******* PARKIMISPLATSIL
KOMPLEKTNE kogu fordi ****** AUTOTEHASE autosid
HYP: MILJARDÄRI seisis maja taga PARKLAS PLATSIL
KOMPLEKTE kogu fordi AUTODE PEALT autosid

id: (m50718_421_0015)
REF: meie vaatepunktist oli tema artikkel puhas plagiaat
HYP: meie vaatepunktist oli tema artikkel puhas plagiaat

id: (m50718_421_0045)
REF: kaubavahetus suurenes mitmekordselt
HYP: kaubavahetus suurenes mitmekordselt

id: (m50734_672_0032)
REF: SELLEST KATSEST EI TULNUD midagi välja
HYP: ******* SELLE KATSE KIDUR midagi välja

id: (m50863_1306_0011)
REF: ENDISE meierei SÜGAVAD KELDRID OLID lagunenud ja
räämas
HYP: INGLISE meierei SÜGAVA KELDRI TULI lagunenud ja
räämas

id: (m50863_1306_0043)
REF: kuusk loob JÕULUDE AJAL erilise meeleolu
HYP: kuusk loob ******* JÕULUAJAL erilise meeleolu

id: (m50915_690_0020)
REF: milleks pealetükkiv FAMILIAARSUS MIS SAATEJUHI
KÄEGA VAJUB nagu KOOREM MÄNGIJA ÕLULE
HYP: milleks pealetükkiv OMA JAATUS SAATE
KÕIGE KOJU nagu ****** MÕND JÕULU

id: (m51043_1218_0011)
REF: see pole aga enam ei PRIMITIVISM EGA
populism vaid lausdemagoogia
HYP: see pole aga enam ei TEE PRIMITIVISMIGA
populism vaid lausdemagoogia

id: (m51043_1218_0043)
REF: kuriteoohvrite toetusfondi algkapital tuleks projekti
kohaselt VALITSUSE reservfondist
HYP: kuriteoohvrite toetusfondi algkapital tuleks projekti
kohaselt VALITSEV reservfondist

id: (m51239_834_0020)
REF: MÕNE kantselei *** TÖÖÕHKKONDA ISELOOMUSTAB vaikiv
vaenulikkus
HYP: MÕNED kantselei TÖÖ KONTORIS ALUSTAB vaikiv
vaenulikkus

id: (m51239_834_0049)
REF: vana maja KORSTNAT EI SAANUDKI ÄRA PARANDADA
korsten tuli uuesti laduda
HYP: vana maja ******** ** KORSTNASSE SAANUD KÄRATA
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korsten tuli uuesti laduda

id: (m51365_1348_0037)
REF: eile kutsuti häirekeskusest viis korda tulekahjustusi
likvideerima
HYP: eile kutsuti häirekeskusest viis korda tulekahjustusi
likvideerima

id: (m51445_1049_0015)
REF: mul polnud isu portsjon oli liiga suur
HYP: mul polnud isu portsjon oli liiga suur

id: (m51445_1049_0045)
REF: SANATOORIUM suudab välja müüa pooled kohtadest
HYP: SANATOORIUMI suudab välja müüa pooled kohtadest

id: (m51490_857_0032)
REF: ARST seletas patsiendile ET ENTERIIT ON
peensoolepõletik
HYP: AS seletas patsiendile ** TEEN TRIITON
peensoolepõletik

id: (m51629_4263_0011)
REF: täringumänguks oli lauale PANDUD VÜRFEL PLIIATS
JA paberileht
HYP: täringumänguks oli lauale ****** ****** PANNUDLISELT
PLIIATSI paberileht

id: (m51629_4263_0043)
REF: GRAFFITI ON noorte spontaanne eneseväljendus
teisalt aga oma territooriumi TÄHISTAMINE
HYP: ******** GRAFITI noorte spontaanne eneseväljendus
teisalt aga oma territooriumi TEIST

id: (m51651_1184_0020)
REF: on ütlemata tore vaadata kuidas pisipõnnid kõrgest
TRAMPLIINIST alla tuiskavad
HYP: on ütlemata tore vaadata kuidas pisipõnnid kõrgest
RUTIINIST alla tuiskavad

id: (m51651_1184_0049)
REF: puhtaks pestud pisipoiss puges pidzhaamasse
HYP: puhtaks pestud pisipoiss puges pidzhaamasse

id: (m51771_1382_0037)
REF: kuid meenutades kuidas ta oli SUURTÜKIPAUGUST
EHMATANUD SAI ADMIRAL ÄKKI kurjaks
HYP: kuid meenutades kuidas ta oli PAUS TEHA
SAJANI AGA LÄKI kurjaks

id: (m51777_4431_0015)
REF: laulu looja oli huvitatud ainuautorsusest
HYP: laulu looja oli huvitatud ainuautorsusest

id: (m51777_4431_0045)
REF: kummalegi POJALE tuleb anda õiglane ja võrdne
lähtepositsioon
HYP: kummalegi POOLELE tuleb anda õiglane ja võrdne
lähtepositsioon

id: (m51812_1938_0032)
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REF: kõige rohkem MILJARDÄRE on ameerikas
HYP: kõige rohkem MILJARDÄR on ameerikas

id: (m51961_1946_0011)
REF: rannaküla POISSE ÕPETATI juba NOOREST EAST poisse kui
meremärki AUSTAVALT suhtuma
HYP: rannaküla POISS LÕPETAS juba NOORES EAS poisse kui
meremärki AUSTATUD suhtuma

id: (m51961_1946_0043)
REF: PUTUKA KERE OLI ÜLALT pruunikas või rohekaskollane
ALT VALKJAS või hõbedane
HYP: ****** PUTUKATE JA LILLA pruunikas või rohekaskollane

*** ALFALIKES või hõbedane

id: (m52030_2183_0020)
REF: mandoliini mängitakse erilise LIPITSAGA
HYP: mandoliini mängitakse erilise LIIKIDEGA

id: (m52030_2183_0049)
REF: PIPETT ON hea vahend ROHU tilgutamiseks NINNA
HYP: ****** PEETER hea vahend OHU tilgutamiseks MINNA

id: (m52485_3105_0037)
REF: sellest saab alguse LÜHIKE kirglik ja valuline
armastuslugu
HYP: sellest saab alguse RÜÜTLI kirglik ja valuline
armastuslugu

id: (m52489_4060_0015)
REF: kui NÄED ET POISIL loksub adrenaliin silmis tuleb
teda mõistusele kutsuda
HYP: kui **** NÕEL POISI loksub adrenaliin silmis tuleb
teda mõistusele kutsuda

id: (m52489_4060_0045)
REF: ägedalt SPURTIMA
HYP: ägedalt SPORTIMA

id: (n50098_449_0032)
REF: möödunud kevadel seadsin endale eesmärgiks selles
ametis SÜGISENI vastu pidada
HYP: möödunud kevadel seadsin endale eesmärgiks selles
ametis SINISENI vastu pidada

id: (n50477_584_0011)
REF: ***** PELARGOON SOBIB tugevamale inimesele MONSTERA
JÕULISEMALE MATERIALISTILE ROHTLIILIA NÄRVILISELE

INIMESELE
HYP: PEAME KROON SOBI tugevamale inimesele MA
TÄNA JÕULISE MALEMATERJALISTILE
ROHTLIILIANÄRVILISTELE INIMES

id: (n50477_584_0043)
REF: ***** TARMO JUURDLES ALATASA MAAILMA asjade üle
HYP: TARMU JUURDLEJA ANDA SAMA ILMA asjade üle

id: (n50494_270_0020)
REF: on ütlemata tore vaadata kuidas pisipõnnid KÕRGEST
trampliinist alla tuiskavad
HYP: on ütlemata tore vaadata kuidas pisipõnnid KÕRGES
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trampliinist alla tuiskavad

id: (n50494_270_0049)
REF: PUHTAKS PESTUD pisipoiss puges pidzhaamasse
HYP: KOHTAB TEHTUD pisipoiss puges pidzhaamasse

id: (n50625_531_0037)
REF: AVA AKORD ei olnud õnnestunud valik
HYP: *** KANAKORD ei olnud õnnestunud valik

id: (n50873_875_0015)
REF: eesti ajal sai ta asunikutalu KEISRI AJAL oli ta aga
olnud kõigest **** MÕISA teomees
HYP: eesti ajal sai ta asunikutalu SIIS SEAL oli ta aga
olnud kõigest MÕNI ISA teomees

id: (n50873_875_0045)
REF: ta väljus ja virutas ukse tagantkätt nii hoogsalt
kinni et ***** PORTJÄÄR paisus nagu ***** PURI TUULES
HYP: ta väljus ja virutas ukse tagantkätt nii hoogsalt
kinni et SPORT JÄÄDA paisus nagu PUURI II TUULEST

id: (n51159_1720_0032)
REF: IDIOOM on *********************** LIIK
FRASEOLOOGILIS FRASEOLOGISME keeles **** JUURDUNUD omapärane
kõnekäänd
HYP: IDIOOMI on KICKFRASEOLOOGIALISPÄEV ARHEOLOOG KISS

ME keeles JUUR TULUTU omapärane kõnekäänd

id: (n51196_1922_0011)
REF: paleoliitikumi AJAL valmistas ÜRGINIMENE TÖÖRIISTU
RAIUMISE teel kuna LIHVIMINE OLI VEEL tundmatu
HYP: paleoliitikumi HÄÄL valmistas MÜRGINE TÖÖLISTE
RAJAMISE teel kuna ********* *** LIHVIMINELINE tundmatu

id: (n51196_1922_0043)
REF: tuntud sprinter SAI END OLÜMPIAVÕITJANA tunda vaid
ühe ÖÖPÄEVA sest jäi vahele positiivse DOPINGUPROOVIGA
HYP: tuntud sprinter ENDA NENDE VÕITJAD tunda vaid
ühe PÄEVA sest jäi vahele positiivse DOPINGUPROOVINA

id: (n51203_860_0020)
REF: ENNE munadepühi varus ema alati ****** PASHAKS MÕELDUD
KOHUPIIMA
HYP: ENE munadepühi varus ema alati KAASAS MAJA PEALT
KOHUPIIMALT

id: (n51203_860_0049)
REF: NAGU TRANSSI langenuna soigus ÕNNETUKE pead
vangutades ***** NURGAS
HYP: MÄNGU TANTSI langenuna soigus ÕNNETUTE pead
vangutades NURGA ALT

id: (n51299_4357_0037)
REF: allkiri identifitseerib maksja isiku ja panga
HYP: allkiri identifitseerib maksja isiku ja panga

id: (n51321_939_0015)
REF: lõppes esimene poolfinaal
HYP: lõppes esimene poolfinaal
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id: (n51321_939_0045)
REF: mõni lihtsam natüürmort sobib väga hästi KÖÖKI
HYP: mõni lihtsam natüürmort sobib väga hästi KEEGI

id: (n52159_4336_0032)
REF: kas SUL on ka pedagoogikaõppejõudude seas MÕNI lemmik
HYP: kas *** on ka pedagoogikaõppejõudude seas MÕNE lemmik
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Appendix C

Curriculum Vitae

1. Personal Data
Name: Tanel Alumäe
Date and place of birth: 29.05.1976, Tallinn
Citizenship Estonian
Marital status: single
Children -

2. Contact Data
Address: A. Kapi 3-4, 10136, Tallinn, Estonia
Phone: +372 56 916761
E-mail: tanel.alumae@phon.ioc.ee

3. Education

Educational Insti-
tution

Graduation time Speciality / grade

Tallinn Technical
University

2002 Information Technology / Mas-
ter of Science in Engineering

Tallinn Technical
University

1999 Information Technology / Grad-
uate Engineer

4. Language Skills (basic, intermediate or high level)

Language Level
Estonian Mother Tongue
English High Level
German High Level
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5. Special Courses

Course and time Educational institution or
organisation

Summer School on Variation In Speech Production
and Speech Perception, Palmse, Estonia, August
2005

NorFA

16th European Summer School in Logic, Language
and Information, Nancy, France, August 2004

European Association for
Logic, Language and In-
formation

Winter School on Speech Production Modelling,
Helsinki, January 2004

Graduate School of Lan-
guage Technology in Fin-
land

International Masters Program in Computational
Engineering, one year

University of Erlangen-
Nuremberg, Germany

6. Professional employment

Period Institution Position
09/2003 - Institute of Cybernetics at Tallinn

University of Technology
Researcher

10/2000 - 11/2006 AS Aqris Software Senior Software
Developer

8. Scientific Work

Kurimo, M., Puurula, A., Arisoy, E., Siivola, V., Hirsimaki, T., Pylkkonen,
J., Alumäe, T. and Saraclar, M. Unlimited vocabulary speech recognition for
agglutinative languages. In Human Language Technology, Conference of the
North American Chapter of the Association for Computational Linguistics, HLT-
NAACL 2006. New York, USA, June 5-7, 2006, pp. 487–494.

Alumäe, T. Sentence-adapted Factored Language Model for Transcribing Esto-
nian Speech. In Proceedings of ICASSP 2006. Toulouse, France, vol. 1, pp.
429–432.

Alumäe, T. Using Adaptive Stochastic Morphosyntactic Language Model for
Two-pass Large Vocabulary Estonian Speech Recognition. Proceedings of the
10th Internation Conference SPEECH and COMPUTER, 17 - 19 October 2005,
Patras, Greece, pp. 515–518.

Alumäe, T. Phonological and morphological modeling in large vocabulary con-
tinuous Estonian speech recognition system. The Second Baltic Conference on
Human Language Technologies : Proceedings, April 4-5, 2005, Tallinn, Estonia
/ Eds. M. Langements, P. Penjam. Tallinn : Institute of Cybernetics (Tallinn
University of Technology); Institute of the Estonian Language, 2005, pp. 89–94.
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Alumäe, T. Estonian Speech Recognition Experiments using the SpeechDat-Like
Database. Fonetiikan Päivät 2004 / Eds. T. Seppänen, K. Suomi, J. Toivanen.
Oulu, 2005, pp. 65–68.

Meister, E,. Alumäe. T. Recent Advances in Estonian Spoken Language Technol-
ogy. Baltic IT&T Review, vol. 33, pp. 66–69.

Alumäe, T. Large Vocabulary Continuous Speech Recognition for Estonian Using
Morpheme Classes. Proceedings of Interspeech 2004 - ICSLP, pp. 389–392

Alumäe, T., Võhandu, L. Limited-vocabulary Estonian continuous speech recog-
nition system using hidden Markov models. Informatica, vol. 15, No. 3, 2004,
pp. 303–314

Alumäe, T. Large Vocabulary Continuous Speech Recognition for Estonian Using
Morphemes and Classes. Proceeding of the 7th International Conference, TSD
2004, lk. 245–252

Alumäe, T. Large Vocabulary Continuous Speech Recognition for Estonian Using
Morphemes and Classes. Proceeding of the First Baltic Conference: Human
Language Technologies - The Baltic Perspective, 2004, pp. 166–169

Additionally, three publications in Estonian (see CV in Estonian for more infor-
mation)

9. Theses Accomplished and Defended

Graduate Engineer Thesis (1999): Design and implementation of an OLAP
system.

M. Sc. Thesis (2002): Limited vocabulary Estonian speech recognition.

10. Research Interests

Speech processing, language modelling, statistical methods, machine learning

11. Other Research Projects

-

Signature: Date:
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1. Isikuandmed
Ees- ja perekonnanimi: Tanel Alumäe
Sünniaeg ja -koht: 29.05.1976, Tallinn
Kodakondsus Eesti
Perekonnaseis: vallaline
Lapsed -

2. Kontaktandmed
Aadress: A. Kapi 3-4, 10136, Tallinn, Estonia
Telefon: +372 56 916761
E-posti aadress: tanel.alumae@phon.ioc.ee

3. Hariduskäik

Õppeasutus (nime-
tus lõpetamise ajal)

Lõpetamise aeg Haridus (eriala / kraad)

Tallinna Tehni-
kaülikool

2002 Infotehnoloogia / Tehnikatea-
duste magister

Tallinna Tehni-
kaülikool

1999 Arvuti- ja süsteemitehnika / In-
sener

4. Keelteoskus (alg-, kesk-, või kõrgtase)

Keel Tase
Eesti Emakeel
Inglise Kõrgtase
Saksa Kõrgtase

5. Täiendõpe

Kursus ja õppimise aeg Õppeasutuse või muu or-
ganisatsiooni nimetus

Suvekool ”Variation In Speech Production and
Speech Perception”, Palmse, Eesti, August 2005

NorFA

16th European Summer School in Logic, Language
and Information, Nancy, France, August 2004

European Association for
Logic, Language and In-
formation

Winter School on Speech Production Modelling,
Helsinki, January 2004

Graduate School of Lan-
guage Technology in Fin-
land

Rahvusvaheline magistriprogramm ”Computational
Engineering”, 1 aasta

Erlangen-Nürnbergi
ülikool, Saksamaa
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6. Teenistuskäik

Töötamise aeg Ülikooli, teadusasutuse või muu or-
ganisatsiooni nimetus

Ametikoht

09/2003 - Tallinna Tehnikaülikooli
Küberneetika Instituut

Teadur

10/2000 - 11/2006 AS Aqris Software Tarkvaraarendaja

8. Teadustegevus

Kurimo, M., Puurula, A., Arisoy, E., Siivola, V., Hirsimaki, T., Pylkkonen,
J., Alumäe, T. and Saraclar, M. Unlimited vocabulary speech recognition for
agglutinative languages. In Human Language Technology, Conference of the
North American Chapter of the Association for Computational Linguistics, HLT-
NAACL 2006. New York, USA, June 5-7, 2006, lk. 487–494.

Alumäe, T. Sentence-adapted Factored Language Model for Transcribing Esto-
nian Speech. In Proceedings of ICASSP 2006. Toulouse, France, vol. 1, lk.
429–432.

Alumäe, T. Using Adaptive Stochastic Morphosyntactic Language Model for
Two-pass Large Vocabulary Estonian Speech Recognition. Proceedings of the
10th Internation Conference SPEECH and COMPUTER, 17 - 19 October 2005,
Patras, Greece, lk. 515–518.

Alumäe, T. Phonological and morphological modeling in large vocabulary con-
tinuous Estonian speech recognition system. The Second Baltic Conference on
Human Language Technologies : Proceedings, April 4-5, 2005, Tallinn, Estonia
/ Eds. M. Langements, P. Penjam. Tallinn : Institute of Cybernetics (Tallinn
University of Technology); Institute of the Estonian Language, 2005, lk. 89–94.

Alumäe, T. Estonian Speech Recognition Experiments using the SpeechDat-Like
Database. Fonetiikan Päivät 2004 / Eds. T. Seppänen, K. Suomi, J. Toivanen.
Oulu, 2005, lk. 65–68.

Meister, E,. Alumäe, T. Recent Advances in Estonian Spoken Language Technol-
ogy. Baltic IT&T Review, nr. 33, 2004, lk. 66–69.

Alumäe, T. Large Vocabulary Continuous Speech Recognition for Estonian Using
Morpheme Classes. Proceedings of Interspeech 2004 - ICSLP, lk. 389–392

Alumäe, T., Kirt, T. Inimene on arvutile võõrkeel. Horisont 4/2004, lk. 42–44.

Alumäe, T., Võhandu, L. Limited-Vocabulary Estonian Continuous Speech
Recognition System Using Hidden Markov Models. INFORMATICA, vol. 15,
No. 3, 2004, lk. 303–314.

Alumäe, T. Large Vocabulary Continuous Speech Recognition for Estonian Using
Morphemes and Classes. Proceeding of the 7th International Conference, TSD
2004, lk. 245–252
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Alumäe, T. Eksperimendid eesti keele kõnetuvastussüsteemi loomisel. Tallinna
Pedagoogikaülikooli eesti filoloogia osakonna toimetised 3. Toimiv keel II – Töid
rakenduslingvistika alalt, 2004, lk. 23–36.

Alumäe, T. Eestikeelse kõne tuvastus: prototüübi loomine. Eesti Keele Instituudi
toimetised 12. Toimiv keel I, 2003, lk. 34–49.

Alumäe, T., Võhandu, L. Piiratud ulatusega eestikeelne kõnetuvastus. Eesti Keele
Instituudi toimetised nr 12. Toimiv keel I, 2003, lk. 50–52.

Alumäe, T. Varjatud Markovi mudelid. Arvutitehnika ja andmetöötlus, 4/2002, lk.
27–36.

9. Kaitstud lõputööd

Diplomitöö (1999): OLAP-süsteemi disain ja implementatsioon

Magistritöö (2002): Piiratud sõnavaraga eestikeelne kõnetuvastus

10. Teadustöö põhisuunad

Kõnetöötlus, keelemudelid, statistilised meetodid, masinõpe

11. Teised uurimisprojektid

–

Allkiri: Kuupäev:
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