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Tallinn 2020



TALLINNA TEHNIKAÜLIKOOL
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Recognition of gymnastics elements with deep learning

networks

Abstract

The present thesis’s primary goal is to construct a dataset consisting of gym-

nastics activities - the backflip and the back handspring, use pose estimation, im-

plement pre-processing strategies, and develop machine learning models capable of

distinguishing between the two gymnastics activities.

Backflips and back handsprings are two of the foundational gymnastics moves

performed from a standing position and including the rotation of the human body,

making it challenging for machine learning algorithms designed to recognize more

straightforward human actions to recognize these more complex moves.

The majority of solutions available for estimating poses in gymnastics use movement-

restricting and invasive motion capture tools. Other forms of estimating poses from

a distance include multi-camera setups, which are not usable in daily gymnasium

environments. This thesis aims to explore and propose a more accessible alternative

to non-invasive gymnastics skill recognition solutions. The solution presented in this

thesis uses a consumer-grade video recorder with a single-camera pose estimation

to extract time-series skeleton data. After successfully extracting skeleton data and

applying data processing strategies, machine learning classifiers are developed us-

ing recurrent neural networks to train the machine to make successful distinctions

between backflips and back handsprings.

Current research’s primary outcome is classifier models, capable of differentiating

backflip and back handspring activities, providing prediction performance up to 95%.

Discussion and classifier analysis section of this thesis gives more in-depth insights

into the artificial neuron activations by visualization.

The present thesis is written in English and is 65 pages long, including 7 chapters,

1 table and 25 figures.
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Chapter 1

Introduction

1.1 Motivation

Gymnastics, a sports discipline with an extensive history, requires athletes to have

a comprehensive set of physical traits to execute exercises. These traits include bal-

ance, strength, flexibility, agility, and endurance [1]. By developing these physical

attributes, the athletes can perform motions involving aerial twisting and rotations.

This master’s thesis focuses on what is known as tumbling, a sub-discipline of gym-

nastics. Some of the foundation movements in tumbling, ofter categorized as flips

and handsprings, include backflips (aka. a back tuck) and back handsprings. These

movements form the backbone of tumbling as they are needed to progress onto more

advanced moves, while also used as individual components of a tumbling routine.

As backflips and back handsprings are the foundational movements for more

advanced exercises, athletes train them regularly. Athlete’s perfect their technique

until these movements become almost intuitive for a gymnastics athlete. Seasoned

athletes experience these exercises’ intriguing physical properties, such as the im-

pulse, inertia, rotation, and optimal takeoff angle, without consciously thinking

about them. For example, kinematic analysis of the backflip in a tumbling series

was conducted on beginner and advanced set of athletes to differentiate their tech-

niques [2]. The differences in technique between beginner and advanced athletes

contribute to both competition score and injury risk, so optimal technique can be

considered a priority for every athlete.

At the time of writing, the most common methods for analyzing gymnastics

7



1.1. MOTIVATION CHAPTER 1. INTRODUCTION

movements require sophisticated motion capture tools, physically attached sensor

data, and gymnastics coaches’ attention to give valuable feedback to the athletes

or analyze their technique [3] [4]. This master’s thesis focuses on the automatic

recognition of backflips and back handsprings using a combination of pose estima-

tion tools with recurrent neural networks. The author proposes the single-camera

solution presented in this thesis as a non-invasive, accessible, and state-of-the-art

solution to recognize backflips and back handsprings. While not part of this thesis,

the author also hopes to contribute the solution developed in this thesis to future

research in automated analysis of technique, feedback for athletes, and automatic

documentation of gymnastics workouts’ history.
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1.2. HUMAN ACTIVITY RECOGNITION
BACKGROUND CHAPTER 1. INTRODUCTION

1.2 Human Activity Recognition

Background

Human activity recognition taxonomy can be challenging as the diversity of avail-

able methods is extensive. We depict the broad categorization of human activity

recognition methods in figure 1.1, proposed in the article [5]. We also categorize the

technique used to automate gymnastics activity recognition in this paper as a uni-

modal shape-based method. While identifying gymnastics movements from multiple

modalities (i.e., the addition of behavioral or emotional features) could provide use-

ful data for the analysis, it would require more invasive tools, such as microphones

and physical sensors. The author aims to develop a recognition method less invasive

and free of physical attachments. For example, in competition environments, ath-

letes are not allowed to wear any extra accessories [6], and the only viable method

for recording the activity is the video modality.

Narrowing down on unimodal methods and considering the non-invasiveness of

shape-based methods, brings the author to a technique called pose estimation, a

popular research topic in the last ten years. More recently, computationally effec-

tive 2D pose estimation methods in real-time using Part Affinity Fields have been

proposed [7]. This method is also used by the OpenPose software [8], which is the

choice of pose estimation software in this research.

Human Activity Recognition Methods

Unimodal Multimodal

Space-Time Stochastic Rule-based Shape-based Affective Behavioral Social-networking

Figure 1.1: Hierarchical categorization of human activity recognition methods
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1.3. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

1.3 Problem statement

The following list depicts the sub-problems of the problem statement:

• Acquiring and exploring relevant data — This thesis examines the data needed

for capturing complex biomechanical movements without being invasive to-

wards the athletes. From the author’s own experience in practicing gymnas-

tics, many already developed restricting motion capture solutions do not apply

to the everyday sports environment.

Recording human actions can be broadly classified into two categories: (a)

optical methods — for example the marker-based systems used in enter-

tainment, but also newer marker-less and deep learning based systems [9] and

(b) non-optical methods — both single, such as accelerometers or gyroscopes

and also complex unit sensing devices, such as inertial/magnetic measurements

units [10]. Here the author narrows the solutions down to optical methods,

excluding non-optical methods regarding the context of gymnastics. For gym-

nastics, the freedom of movement is crucial, since many of the foundational

movements (i.e., round-offs - the movement athletes use to transform horizon-

tal velocity to vertical velocity) require multiple meters of free space and no

restricting devices on the body.

These restrictions rule out wired, movement-restricting, and additional weight

requiring non-optical sensors. Furthermore, we also rule out special equip-

ment requiring optical marker-based systems. For example, in the article [2],

research was conducted for comparing the technique of beginner and advanced

athletes. While a fascinating study, the markers were attached only to one side

of the athlete’s body, ignoring the discrepancies of body sides and complicating

the experiment’s repeatability for everyday use. The author initiates another

requirement in the current paper, assuming that the gymnastics athletes are

not interested in wearing special equipment for the daily training sessions.

The author uses a consumer-grade action camera to capture individual ath-

letes’ backflips and back handsprings in regular gymnastics facilities, explained

in more detail in section 3.1.

• Pose estimation as a viable option for gymnastics movements — The author

10



1.3. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

experiments and develops strategies for acquiring, processing, and augmenting

data obtained by newer pose estimation software (OpenPose). We construct a

generalized and reusable dataset for experimenting and developing classifiers

capable of differentiating gymnastics movements. Further explanation on the

pose estimation process is available in section 3.2.3.

• Human action recognizing classifier development — Advances in deep learn-

ing accessibility inspire the author to explore human action recognition in the

context of gymnastics. We use a previously constructed dataset in conjunction

with deep learning network design to develop classifiers capable of differenti-

ating between gymnastics movements. The author also adds a cloud-based

training environment description to give details of a fully prototyped end-to-

end solution, section 5.

• Visualizing classifier decisions — The need for an interactive, easily usable,

and understandable software for coaches and athletes to analyze their training

sessions is expressed in the article [11], emphasizing the ease of usability and

allowance of individual input. While giving athletes the feedback for improving

their technique is not in the scope of this thesis, the author still makes an

effort to visualize and interpret the decisions of the recognitions made by deep

learning classifiers in section 5.2.

11



Chapter 2

Implementation

2.1 Implementation overview

This thesis aims to propose an end-to-end type solution to automate the recognition

of gymnastics exercises using computers. High overview of the steps required to

achieve this is specified in the following list:

1. Data acquisition

(a) Human activity recording

(b) Estimating and extracting keypoints

2. Data exploration

(a) Pose estimation limitations

3. Data pre-processing

(a) Applying pre-processing strategies

4. Classifier Training

(a) Methodology overview

(b) Classifier training and validation

(c) Analysis of trained classifiers

5. Prediction explanations for obtained classifiers

(a) Visualizing neuron activations

(b) Discussion

12



2.2. INFRASTRUCTURE AND TOOLS FOR
ANALYSIS CHAPTER 2. IMPLEMENTATION

2.2 Infrastructure and tools for

analysis

2.2.1 Used hardware and software

There are two main modules in this thesis that require the usage of hardware op-

timized for the computation of multiple parallel processes. Graphics processing

unit (GPU) is used for both pose estimation (section 3.2.1) and training classifiers

(section 5.1.4).

A single Amazon EC2 instance with the following specifications is launched as

the environment for experimentation:

• Operating system — Ubuntu Server 18.04 LTS (Hardware-assisted virtualiza-

tion - HVM).

• Instance type — g4dn.xlarge (- 4 vCPUs, 2.5 GHz, Intel Xeon P-8259L).

• Storage — 64GB of general purpose SSD volume type. No specific require-

ments for storage. The amount was chosen primarily to accommodate the

augmented dataset used for training.

• GPU information — NVIDIA T4 Tensor Core GPU [12] with 16GB of GDDR6

memory is installed on the g4dn.xlarge Amazon instance. Additionally, NVIDIA

450 Linux driver series with CUDA 10.1 was installed for accessing the GPU

unit by Tensorflow.

2.2.2 Data-processing environment

All experiments were conducted in the Jupyter Notebook environment (running as a

server on the backend instance). The author created separate notebook files for each

classifier training, activation analysis, and data exploration. We used Python pro-

gramming language for developing most of the data processing, classifier training,

and validation scripts. Keras, the Python deep learning API, was used with Tensor-

flow backend for accessing machine learning algorithms. More notable libraries used

for experimentation include commonly used pandas, numpy, sklearn and matplotlib.

13



2.2. INFRASTRUCTURE AND TOOLS FOR
ANALYSIS CHAPTER 2. IMPLEMENTATION

Additional miscellaneous software

• FTP server and client — FTP server helps with the uploading and download-

ing of larger datasets. The vsftpd package was used in this thesis.

14



Chapter 3

Data acquisition

To combine gymnastics activity recognition and computer vision, this thesis’s data

acquisition phase begins by collecting the recordings of athletes performing gym-

nastic activities. The activities chosen are the backflip (section 3.1.3) and the back

handspring (section 3.1.4). The motivation behind the chosen activities is that these

activities are some of the foundation exercises that athletes use as building blocks

for more difficult combinations. These activities are particularly interesting for the

author of this thesis since the author uses them daily to polish the technique and

progress onto more advanced exercises. The recordings are collected by a consumer-

grade action camera (section 3.1.5). After recording the activities, human skeleton

data will be extracted from the videos using computer vision’s technique called pose

estimation, an important step to transform the data from video format to a data

format more suitable for training machine learning models to recognize the activities.

The data to be explored and used to train machine learning models in this thesis

plays central part in our implementation. Although, machine learning promises to

loosen the strictness of the data used in a system by trying to generalize and adapt

the models themselves to the data, the quality of the initial data used to develop

prototypes still directly influences the interpretation and value of the outcome. In-

terpretation of not only the outcome, but the entire solution is needed to have clear

understanding of why certain outcomes exist, which in turn helps to spark discus-

sion and spread knowledge gained during an experiment. The value of this research,

reusable by peers for new scientific experiments, is also directly influenced by the

quality of the initial data.

15



CHAPTER 3. DATA ACQUISITION

The data acquisition chapter is split into two parts. The first part (3.1) explains

what kind and how much of data the author is collecting and the process behind it.

The second part (3.2) explains a more technical approach on how the initial data for

the human activity recognition algorithm is acquired from recorded human motions

and the tools used to do so.

16



3.1. RECORDING GYMNASTICS
ACTIVITIES CHAPTER 3. DATA ACQUISITION

3.1 Recording gymnastics

activities

3.1.1 Choosing Activities To Record

When it comes to choosing challenging biomechanical activities performed by hu-

mans, gymnastics is one on the top of the list. Floor gymnastics exercises, in par-

ticular, don’t require any additional equipment by humans. Still, at the same time,

physical strength, flexibility, and kinesthetic awareness are a must to perform any

of the skills presented by elite athletes. The athlete’s physical requirements are

evaluated by versatile fitness level evaluation tools developed for gymnastics [13].

Gymnastics is also unique in its indisputable need for utilizing every part of the

human body. All major muscle groups of an athlete need to be in superior condi-

tion to perform specific rotations, jumps, and holds. As age is a limiting factor in

peak physical condition, many athletes start their careers at a very young age [14].

However, there is no age limit for practicing gymnastics at a recreational level.

Working with gymnastic movements and trying to automate the recognition of

this kind of human activity requires a reference or in machine learning terms training

data to train our machine. The two activities chosen to prove the hypothesis of this

paper are known as backflips and back handsprings. While fast and explosive, these

activities are similar in their execution and achievable by all levels of gymnastics

trainees. As backflips and back handsprings are the building blocks of more com-

plex gymnastic combinations, perfecting the technique of these activities provides

athletes with the confidence and skill necessary to move on to more difficult feats.

From the need for perfecting the technique of these basic activities comes the moti-

vation to analyze them and automate the feedback loop for the athletes. From the

athlete’s perspective, it is faster and cheaper to get the feedback from, for example,

a portable device with recording capabilities, rather than a gymnastics coach. From

the coach’s perspective, it is also more convenient to automate the learning process

of easier activities so the coach can concentrate on guiding athletes towards more

interesting and challenging exercises. Figures 3.1 and 3.2 will provide the reader a

visual idea of how backflips and back handsprings are performed respectively.

17



3.1. RECORDING GYMNASTICS
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Figure 3.1: Example of a backflip

Figure 3.2: Example of a back handspring

18



3.1. RECORDING GYMNASTICS
ACTIVITIES CHAPTER 3. DATA ACQUISITION

3.1.2 Extracting gymnastics activities

The start and end of each activity under investigation needs to be defined. The

author needs to trim the recorded gymnastics activities to include only each activ-

ity’s full duration, removing the recording parts where the athlete is not performing

the activities under investigation. This paper proposes ”start” and ”end” mark-

ers for both activities to be easily recognized and validated by a human observer.

The markers should cover the full duration of a movement, all while sustaining the

integrity and focusing on each activity’s period of interest.

More detailed explanations of each activity and references to the visual markers

are in sections 3.1.3 and 3.1.4.

3.1.3 Backflip

A backflip is a sequence of body movements in which a person leaps into the air

and rotates backwards over the body’s horizontal axis. For the backflip, we mark

the start of a backflip as the frame when athlete’s both arms pass the horizontal

line at shoulder level moving downwards and generating momentum. We mark the

end of a backflip as the frame when both heels of the feet touch the ground again.

We choose the heels of feet so we can include the amortization part of the landing

phase of the backflip in the recording. The red bars in figure 3.3 demonstrate the

visual markers for trimming the sample recording to include only the activity under

investigation. These markers were chosen by the author to the best of his knowledge

of the domain as the clearest points for a human observer to recognize a backflip.

Choosing different markers is a potential discussion topic for future improvements.

3.1.4 Back Handspring

A back handspring is similar to a backflip in that the athlete also rotates his body

around the horizontal axis. However, during a back handspring, the athlete also

moves backwards, while during a backflip the athlete should ideally not move in

any direction. The other clear distinction between a back handspring and backflip

is that during a back handspring, the athlete’s arms extend and push off the floor

to create the spring part of the activity and keep the athlete moving backwards.

19



3.1. RECORDING GYMNASTICS
ACTIVITIES CHAPTER 3. DATA ACQUISITION

Figure 3.3: Start and end markers for covering the full duration of a backflip

Thirdly, the takeoff angle differs for both back handspring and backflip. The takeoff

angle decides in which direction the athlete moves during the rotation. For the

backflip investigated in this paper, the goal of the athletes was to keep the takeoff

angle as perpendicular as possible to the floor to keep the athlete from moving

either backwards or forwards during the rotation. However, for the back handspring,

the takeoff angle should be around 45◦ backwards to the floor, to help the athlete

move backwards and land on the hands. The green bars in figure 3.4 demonstrate

the visual markers for covering the full duration of a back handspring. The color

of markers are in both cases irrelevant and are chosen primarily for better visual

distinction.

3.1.5 The Recording Process and Results

Static images of the backflips and back handsprings are not sufficient as we have

defined both of these activities as sequences of body movements (in sections 3.1.3

and 3.1.4), therefore the author records backflips and back handsprings in the video

format. The device used to capture this paper’s activities is a GoPro Hero7 Black,

with the following basic settings:

• RES (resolution) — 1080p

• FPS (frame rate) — 60

• FOV (field of view) — Linear

20



3.1. RECORDING GYMNASTICS
ACTIVITIES CHAPTER 3. DATA ACQUISITION

Figure 3.4: Start and end markers for covering the full duration of a back handspring

• Low Light — Auto

• Stabilization — Auto

• Protune — Off

Each activity is recorded as one still view from eye level fully showing the subjects

body from head to toe. The three-quarter view (two-thirds view) is chosen to capture

each activity. Choosing this angle avoids the limbs of the subject stacking behind

each other in the recording. Similar works in this domain use either sophisticated

three-dimensional motion capture systems using six cameras with depth sensors [15]

or older works using bigger cameras and recording perpendicular to the plane of the

movement [2]. While very thorough analyzes, taking into account the center of body

mass or exact takeoff and landing angles, they are harder to reuse in a wider variety of

difficult biomechanical movements. Mentioned works often require athletes to wear

special gear (markers) and also require longer setup times for the recording cameras

[16]. The author of this work tries to emphasize on the potential for improving

non-invasive field-based methods to quantify and monitor technical biomechanical

movements. In order to improve these methods, the hypothesis of this work is to

use a single consumer camera setup accompanied with a pose estimation solution to

achieve satisfactory results for recognizing technical gymnastic activities.

The results of the recording process amounts to a total of 96 backflips and 84

back handsprings captured.
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3.2. ESTIMATING AND EXTRACTING GYMNASTICS
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3.2 Estimating and extracting gymnastics

activities

The second section of this chapter focuses on the process of extracting human skele-

ton data from raw video files captured in the first section of this chapter. The

skeleton data will be later preprocessed and used to train machine learning algo-

rithms to recognize gymnastic activities.

3.2.1 Pose estimation

The author’s aim is to approach the problem of extracting skeleton data from raw

videos using the most state-of-the-art methods. In recent years, some scientific

papers have been released using machine learning based methods for estimating the

human pose in images [17]. For example, in 2015 an article was published, where

convolutional neural networks were used to estimate human poses in videos [18].

These new methods exceed previous solutions in terms of prediction accuracy.

In recent years, even more complete solutions have been proposed, enabling to

estimate human poses in real time thanks to their computational efficiency. For

example, a method called Part Affinity Fields, essentially a set of vectors encoding

the direction of a body part, has been proposed. Every limb is described using

an affinity field between body parts [7]. Such method is used by, for example,

an open source solution called OpenPose [8]. OpenPose allows to estimate the

skeletons of multiple humans from a video recorded with a monocamera. This

enables the athlete’s skeleton to be identified in an environment with bystanders in

the background (a common sight in gymnastic centers).

The author of this work hopes to build a practically usable prototype based on

previous work in the pose estimation field. The author uses the free software Open-

Pose to estimate poses during gymnastic movements. Alternatives to OpenPose

performing pose estimation include PoseNet [19] and wrnchAI [20].
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3.2.2 OpenPose’s infrastructure and requirements

The mandatory requirement for using OpenPose’s pose estimation in a reasonable

time is a dedicated GPU unit and access to its general-purpose computing API

[21]. The two main API’s supported are CUDA for Nvidia GPU and OpenCL for an

AMD GPU. Other tools for using OpenPose include CMake to compile the OpenPose

software and Python programming environment to access OpenPose’s API.

A CPU-only setup of OpenPose is also supported but highly advised by the

author to be used only for testing purposes. For initial software inspection purposes,

the author compiled OpenPose on a 2015 MacBook Pro with a 2,7 GHz Dual-Core

Intel Core i5 CPU. The time required for pose estimation in a sample recording

averaged to around 30 seconds for a single frame. Since using this setup for pose

estimation for 180 samples (recorded at 60 FPS) would result in an unreasonable

time spent on this process, the author decided to use an Amazon GPU instance

instead.

After compiling OpenPose on the Amazon instance, an average pose estimation

time of 0.08 seconds was achieved for a single frame in sample recordings.

3.2.3 The Pose Estimation Process and Results

The author developed a separate Python module for extracting body key points

[22]. The module uses the Python wrapper of OpenCV (open-source computer

vision library) to access each frame of each sample video. It then uses the Python

wrapper of OpenPose on each frame to estimate poses. Finally, the module dumps

extracted data to separate comma-separated files.

For each sample recording a separate directory is also created. Each direc-

tory contains csv files with the filename pattern activityPerformed-sampleIndex-

subjectName.mov-frameIndex-personIndex. A total of 19119 files were generated

from 180 sample recordings. The figure 3.5 shows an example output dumped into

a csv file by the author’s written Python OpenPose extraction module. The X and

Y columns mark the corresponding coordinates and the Confidence score column

represents the confidence factor by OpenPose when estimating body parts. Finally,

the I column represents the body part index estimated by OpenPose. These indexes
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match the body part model BODY 25 shown in figure 3.6.

The extraction module automatically ran for every sample and generated a total

of 19119 csv files. To give it some context, 19119 csv files amount to 5 minutes and

19 seconds of backflips and back handsprings recorded. Using the Amazon GPU

instance, the total duration for processing all samples took less than 30 minutes. An

estimate could be made for running the same process on a 2015 MacBook Pro with

CPU-only setup. The process would take around 6 days and 15 hours if estimated on

the basis that the average processing time of each frame is 30 seconds. In conclusion,

running the process on an Amazon GPU instance is vaguely more than 300 times

faster. This concludes this chapter on data acquisition. The next chapter explores

how this data is explored and preprocessed for machine learning training.
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I X Y Confidence score

1 1.092518798828125000e+03 4.508595275878906250e+02 8.697314858436584473e-01

2 1.095280273437500000e+03 5.039057617187500000e+02 9.449880123138427734e-01

3 1.063033203125000000e+03 5.036833190917968750e+02 8.230457901954650879e-01

4 1.015858398437500000e+03 4.213815002441406250e+02 8.257341980934143066e-01

5 9.983654174804687500e+02 3.419716186523437500e+02 8.841910362243652344e-01

6 1.124838012695312500e+03 5.068528442382812500e+02 8.021396994590759277e-01

7 1.121924560546875000e+03 4.126282043457031250e+02 8.438682556152343750e-01

8 1.092484497070312500e+03 3.214095458984375000e+02 8.586141467094421387e-01

9 1.074806030273437500e+03 6.920960693359375000e+02 8.156118392944335938e-01

10 1.051205078125000000e+03 6.891304931640625000e+02 7.759792208671569824e-01

11 9.834980468750000000e+02 7.981050415039062500e+02 8.500082492828369141e-01

12 1.045180419921875000e+03 9.069448242187500000e+02 9.030723571777343750e-01

13 1.098396118164062500e+03 6.950711059570312500e+02 7.734714150428771973e-01

14 1.024742309570312500e+03 8.127473754882812500e+02 9.561880826950073242e-01

15 1.092337402343750000e+03 9.305974731445312500e+02 9.035368561744689941e-01

16 1.092454467773437500e+03 4.478778686523437500e+02 2.429898679256439209e-01

17 1.107154418945312500e+03 4.420529479980468750e+02 7.689275145530700684e-01

18 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00

19 1.118930419921875000e+03 4.627049255371093750e+02 5.308289527893066406e-01

20 1.048442871093750000e+03 9.688068847656250000e+02 8.219341039657592773e-01

21 1.068972167968750000e+03 9.716963500976562500e+02 8.162919282913208008e-01

22 1.101324096679687500e+03 9.423051757812500000e+02 7.726828455924987793e-01

23 1.001352600097656250e+03 9.394185791015625000e+02 7.975240349769592285e-01

24 1.004130065917968750e+03 9.305712280273437500e+02 7.877947092056274414e-01

25 1.048436645507812500e+03 9.129010009765625000e+02 7.727123498916625977e-01

Figure 3.5: Sample body parts estimated by OpenPose for one frame
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Figure 3.6: Pose Output Format — ”BODY 25”
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Chapter 4

Data pre-processing

An essential step between acquiring the data and passing it to machine learning

algorithms is to ensure that the dataset used for training represents our learning

objectives. Our learning objective is to train the system to recognize two of the

well-known gymnastics movements - the backflip and the back handspring. A well-

balanced and interpretable dataset is necessary for avoiding overfitting or biasing

the machine learning model to a specific dataset.

In section 4.1, we start by sampling the data and visualizing it to understand

better the pose estimation results obtained in the previous chapter. Then, based on

the observations, pre-processing strategies for overcoming the shortcomings of the

dataset are proposed by the author in section 4.2. Lastly, the final dataset, ready

to be used for machine learning, is described in the 4.2.6 section of this chapter.

27



4.1. DATA EXPLORATION CHAPTER 4. DATA PRE-PROCESSING

4.1 Data exploration

During the data acquisition phase, individual csv files (figure 3.5) were generated for

each frame of each sample recording. Since the data is generated for each frame, one

suitable visualization method is the time-series line plot. Each frame’s data contains

25 estimated keypoints, both X and Y coordinates for each keypoint and also the

Confidence Score issued by OpenPose. Given the amount of dimensions for such

dataset, a sample entity with the following parameters is chosen for demonstration

purposes:

• Sample activity — Back handspring

• Sample no. — 17

• Keypoint index — 21 (left heel), figure 3.6

• Axis — Y

There is no particular reason for choosing the left heel of the subject, other than

given the rotation of the subject’s body during the sample activity, we can expect the

data range of the left heel’s position to differ vastly on the Y axis. This is because

the subject’s body will be upside down at some point during the movement.

The figure 4.1 represents the subject’s left heel’s trajectory along the Y axis

during the back handspring. For the first second of the activity, the pose estimation

seems not to have problems recognizing the left heel during the momentum gen-

eration phase. For the takeoff, rotation, and landing phase, the pose estimation’s

confidence score falls under the threshold and results in filling the low confidence

frames with the zero values, making the data not usable by machine learning al-

gorithms. Such strong deviations can be labeled as anomalies. They will most

likely strongly affect the gradient computed during the backpropagation, ultimately

making the algorithms learn something else besides the activities investigated.
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Figure 4.1: Subject’s left heel trajectory during the back handspring - raw data
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4.2 Data pre-processing

strategies

Four mitigation steps are chosen to overcome the shortcomings of initial pose es-

timation results. It is worth mentioning that for clear interpretation purposes,

the strategies described in the next sections are demonstrated on a single sam-

ple. Python scripts were developed by the author to automatically apply all pre-

processing strategies on every sample’s every body part for all frames.

4.2.1 Dealing with low confidence keypoints

During the pose estimation process described in Chapter 3, a confidence score in the

range of 0-1 is issued for each keypoint by OpenPose. The confidence score represents

OpenPose’s certainty when determining keypoints of the subject. A confidence score

of 0 by OpenPose means the system fails to estimate a particular body part in

a frame. For a keypoint with confidence score approaching 1, translates to high

confidence in detecting the specific keypoint.

A simple algorithm was implemented by the author to fill the missing keypoints

- moving through frames and filling missing keypoints with the averages of existing

keypoint with a positive confidence score, figure 4.2. The improved sample’s subject

left heel trajectory can be seen in figure 4.3.

4.2.2 Moving average smoothing

During the pose estimation process described in section 3.2.3, the OpenCV library is

used to access each frame of the recordings. The frame’s data is then fed into Open-

Pose’s estimation function, and estimated keypoints are obtained for each frame.

The process is stateless by design, so nor previous or next estimations are taken

into account when estimating the current frame, resulting in fine-grained variations

between frames. Moving Average Smoothing is a technique applied to time series

data to remove noise and better expose the signal of the underlying process.

We define the moving average in the equation 4.1. More specifically, we categorize

the moving average equation defined as the centered moving average. We use the
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Figure 4.2: Moving average filling algorithm

centered version of the moving average since all values in the set are known before

the smoothing phase. In the formula, we use n of 3 and define it as the width of

the moving window. The x defined in the formula is the set of values for each body

part coordinate for every frame of the activity. Figure 4.4 displays the transformed

left heel’s trajectory after applying the smoothing technique.

x(t) =
1

n

⌊n
2

⌋
∑

i=−
⌊n

2

⌋xt+i (4.1)

4.2.3 Unrecognizable body parts

One limitation worth mentioning when using the pose estimation technique is the

contrast between the background and the athlete in the recordings. In low light and

low contrast environments, the body parts of an athlete are not easily recognizable
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Figure 4.3: Subject’s left heel trajectory during the back handspring - filled

(as demonstrated in figure 4.5), which leads to the low confidence score for some body

parts and makes it impossible to construct a full skeleton. Possible solutions (not

explored in this thesis), to improve the recognition of body parts in low contrast

environments, include controlling the contrast of the recordings with some post-

production software or rerecording the activities with athletes wearing clothes with

a higher contrast against the background. For this thesis, however, the samples

with unrecognizable body parts were left out of the dataset during the preprocessing

phase.

4.2.4 Centering to unified coordinate origin

Inspired by pre-processing data methods in [23], the authors Yong Du, Wei Wang,

and Liang Wang remarkably point out that human actions are independent of its

absolute spatial position. Since the starting coordinates of gymnastics movements

were not defined before recording the activities, normalizing the samples to a uni-

fied coordinate origin significantly decreases fluctuations between the same features.

This paper’s samples are normalized to the coordinate system origin using the mid-

dle hip keypoint indexed as 8 in the BODY 25 model. Figure 4.6 demonstrates how
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Figure 4.4: Subject’s left heel trajectory during the back handspring - smoothed

the skeleton moves relative to the coordinate system origin after normalization.

4.2.5 Data augmentation

One is required to supply well-balanced and a greater amount of data to train classi-

fiers and validate for generalization. Data augmentation techniques exploit domain

knowledge to increase the number of training examples and improve generalization

without reducing the effective capacity [24]. The result of 113 samples obtained

through previous data processing strategies is enough for building network archi-

tectures. However, the amount is not enough to validate the model for overfitting.

There are many augmentation strategies applicable to skeleton manipulation [25].

The strategy chosen in this case applies random displacement degrees between

the local joints of the skeleton. Intuitively, pairs of directly connected keypoints

are found, after which a pseudo-random degree between 0 and 15 is generated for

each pair. We then apply rotation for the pairs of joints for every frame in the

sample. Finally, this augmentation is repeated ten times, amplifying the previous

113 samples to a total of 1130 new augmented samples. Figure 4.7 demonstrates

one original backflip sample with two augmented variations.
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Figure 4.5: The movement of some body parts during this backflip sample are

unrecognizable

4.2.6 Results

The final dataset yielded after applying all pre-processing strategies consists of 510

backflip and 620 back handspring samples, totaling to 1130 samples. The samples

are persisted as csv files for each frame of each sample.
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Figure 4.6: Backflip sample centered to coordinate system origin
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Figure 4.7: Original backflip sample (left) with two augmented samples
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Chapter 5

Classifier Development

As demonstrated in recent research by Farzan Majeed Noori, Benedikte Wallace,

Md. Zia Uddin and Jim Torresen in [26], a combined architecture of using Open-

Pose for pose estimation and Recurrent Neural Networks (RNN) for human activity

recognition could prove as the new state-of-the-art solution for robust and non-

intrusive human activity recognition. In the cited research, OpenPose was used to

extract keypoints from a subset of the Berkeley Multimodal Human Action Database

(BMHAD) [27]. What makes it remarkable is the classification accuracy obtained

using a Recurrent Neural Network with Long Short-term Memory (LSTM) cells over

more conventional machine learning classifiers, such as Support Vector Machines,

Decision Trees and Random Forests. Since the dataset contained human activities

recorded from different angles, the solution is also view-invariant, increasing the

robustness of this solution. Another paper, a technical report by Chinmay Sawant

[28], also supports the combination of OpenPose with LSTMs for time-series clas-

sification, reporting similar accuracy results in a real-time application on the same

BMHAD dataset, making use of the efficiency of this solution.

The difference between the cited work and current work is the custom dataset

constructed for gymnastics based movements. In contrast to the BMHAD dataset,

which includes 11 general activities, such as jumping jacks, waving, and clapping,

the dataset used in the current thesis uses more complex biomechanical activities, in-

cluding human body rotations and airtime, such as backflips and back-handsprings.

The author of this paper expects the RNNs used for general action recognition also

to be applicable to gymnastics movements. This research aims to validate this hy-
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pothesis and investigate neural network architectures most suitable for gymnastics

action recognition.
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5.1 Methodology

A combination of empirical knowledge with the mathematical theory of artificial

neural networks is used as the starting point to develop neural networks capable

of recognizing gymnastics movements. The development process starts by training

a simple recurrent neural network with gymnastics data and analyzing the results.

Simple RNN is chosen primarily for its known property of representing information

from context window [29]. RNNs have long-term memory in the form of weights,

enabling the network to remember a gymnastics element represented as a sequence.

An iterative process is used to train, validate, analyze, and compare each classifier’s

results. The steps followed in the current thesis are represented in figure 5.1.

Classifier data pre-processing Classifier design Classifier analysisClassifier training

Zero-padding 

Feature reduction

Implement initial
classifier design

Train and observe
classifier

Monitor for over- and
underfitting

Analyse classifier
accuracies

Visualize classifier
learning

Improve classifier
design Compare classifiers

Figure 5.1: Tasks completed regarding classifier development in the thesis

5.1.1 Classifier Prerequisites

Two prerequisites before feeding training data to the classifiers include:

• Zero-padding — Gymnastics activities performed vary in their length, and the

samples are zero-padded to keep the classifier dimensions static. Zero-padding

is done by finding the longest sample performed and increasing the timesteps

of other samples with zero values until they are equal in length to the longest

sample.

• Feature reduction — Recurrent neural networks are prone to overfitting [30].
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With the combination of the author’s domain knowledge about gymnastics, the

25 total keypoints obtained during pose estimation are reduced to 15, filtering

out less prominent keypoints necessary to recognize gymnastics movements.

The 15 keypoints used for classification include the trunk, head, and limbs of

the skeleton.

5.1.2 Classifier Algorithms

Classifier algorithms experimented with in the thesis are:

• Simple RNN — The first classifier (shown in figure 5.2) experimented with is

a network model with one simple recurrent layer. The recurrent layer consists

of 2 units, chosen according to the number of outputs the network produces

- the movements are either a backflip or a back handspring. A dropout layer

with a 0.5 rate to prevent overfitting is added next. An activation layer with

rectified linear units follows with a flattening layer to reduce dimensions, and

finally, an output layer with softmax activation is used for representing the

different activities. Categorical cross-entropy is used as the loss function during

stochastic gradient descent with an Adam optimizer with a learning rate of

0.001.

• Hierarchical RNN — The Simple RNN works well for the short duration ac-

tivities analyzed in this paper, but the downside of using one recurrent layer

is observability. By feeding all available dimensions into one recurrent layer,

we lose the visibility of what exactly the different units in a neural network

learn. A more advanced and deeper neural network (inspired by article [23])

consists of several recurrent layers, each representing some logical unit. The

model used for experimentation in this paper is shown in figure 5.3. Hier-

archical RNN uses multiple input units, each representing a human skeleton

subsection. In this example, the skeleton is divided into the left arm, right

arm, trunk, left leg, and right leg subsections. In subsequent layers, the re-

current units are fused, and finally, neural activations are applied on a fully

connected skeleton layer. One of the advantages of this method is that we can

now intercept some layer of interest and observe the neuron activations only

regarding a skeleton’s subsection.
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• LSTM — An RNN with LSTM cells was also implemented. The simple re-

current layer is substituted with a hidden LSTM layer with two hidden units,

accordingly representing the network’s outputs. Other layers remain identical

with the Simple RNN classifier.

Figure 5.2: The neural network design with a simple recurrent layer

5.1.3 Classifier Validation

Validating the learning process of our neural networks requires the usage of some

standard classifier validation techniques. First, we list these validation methods for

reference and then explain each one more thoroughly:

• Test split — 0.2 rates split the sample data between training and testing data

to test for unbiased results when the model training has stopped.

• Validation split — A validation split of 0.33 rate is also used while training
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Figure 5.3: The neural network design with hierarchical recurrent layers

the RNN to observe the model’s loss and accuracy, essential to help with

hyperparameter tuning. The validation set is kept separately from the test

set, so when we optimize our hyperparameters, we can validate our results

against the test set.

• Monitoring accuracy and loss — Figure 5.4 demonstrates how the LSTM

model accuracy and loss are monitored during epochs to detect overfitting

or underfitting. When the training and test set accuracies and losses do not

diverge too much, we can be more confident that our classifier is generalizing

and not just optimizing for the input data [31].

• Repeated training on unconnected models — We repeat each classifier training

on five unconnected models. As stated in [32], the optimization of a cost func-

tion in recurrent neural networks can potentially lead some minima that are

not the most optimal (global). By running our experiment on five unconnected

models, we avoid basing our observations and analysis under the influence of

one sub-optimal (local) minima.

• Recurrent neural network regularization — As we train a deep neural net-

work on a small training set, we experience what is known as the ”overfitting”

phenomenon, observed when training the classifiers, and achieving a test ac-

curacy of 100%. In our case, this happens due to repeated training on a small

dataset with little variance. We add dropout layers to randomly omit half of

the feature detectors on each training case [33].
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Figure 5.4: Monitoring for model accuracy and loss to detect overfitting/underfitting

5.1.4 Classifier Training Process

SimpleRNN training process

Due to the small sample data size, the RNN classifier is trained for 5 epochs with

stochastic gradient descent. The hyperparameters are empirically selected for the

classifier, with the goal to maximize the accuracy while preventing overfitting.

An early stopping hook (callback) is also implemented to monitor for validation

loss improvements. No improvements in validation loss commonly indicate that the

network has stopped learning and is starting to overfit to the training data [31].

After three epochs with no improvements, the hook stops the learning process of

the neural network. We adjust recurrent layer units, dropout, the training set size,

and epochs until all five models finish training without being interrupted by the

callback hook. All five models are depicted in figure 5.5.

LSTM training process

We can observe the test accuracies for the LSTM classifier in figure 5.6. The training

process was repeated for five epochs and five separate models. The accuracy and loss

monitoring for training and validation sets is depicted in figure 5.7. It is interesting

to note that without changing the hyperparameters, the LSTM classifier achieves

even higher accuracies than the SimpleRNN classifier. As the LSTM units extend

the recurrent self-connecting cells with input and output gates connected to other

memory cells [34], it is also more complicated to intercept and visualize the inner

activations of this classifier and not covered in the scope of this thesis.
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Figure 5.5: Comparison of training and validation accuracies/losses for SimpleRNN
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Classifier Model 1 Model 2 Model 3 Model 4 Model 5

SimpleRnn 83.824% 92.647% 69.118% 98.529% 100.0%

LSTM 80.882% 100.0% 95.588% 100.0% 97.059%

Hierarchical RNN 80.882% 100.0% 97.059% 92.647% 86.764%

Figure 5.6: Test accuracies obtained during each classifier run

Hierarchical RNN training process

We can observe the test accuracies for the Hierarchical RNN classifier in figure 5.6.

This classifier’s training process was the same as with the previous two, repeated for

five epochs and five separate models. The accuracy and loss monitoring for training

and validation sets is depicted in figure 5.8. Hierarchical RNN achieves higher mean

test accuracy than SimpleRNN. Since the hyperparameters were not changed for

this classifier, we can conclude that the design of Hierarchical RNN is more suitable

for the distinction between the backflip and back handspring. Comparing the figures

5.8 and 5.5, we also observe how in the case of Hierarchical RNN the training and

validation accuracies/losses tend to approach the same results more closely than in

the case of SimpleRNN.
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Figure 5.7: Comparison of training and validation accuracies/losses for the LSTM

classifier
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Figure 5.8: Comparison of training and validation accuracies/losses for the Hierar-

chical RNN classifier
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5.2 Classifier Visualization and

Analysis

Simple RNN

We choose the fourth experiment run (from table 5.6) to dive deeper into the clas-

sifier’s inner workings.

By configuring the model’s RNN layer to return hidden states, it is possible to

intercept this layer’s output values and investigate the neuron activations. It is

also possible to visualize these activations to understand better what the neurons

are learning. The neuron visualization code is based on the code found in Deep

Learning Cookbook by Douwe Osinga [31], but with a significant difference in the

data being used as the input for the recurrent network. In section 5.5 Visualizing

Recurrent Network Activations, Douwe Osinga uses a bitmap to visualize a text se-

quence being provided to the network and intercepting the activations of a specific

layer. However, the current work uses time-series data representing the skeleton

keypoints location for each frame of a gymnastics activity. This requires some mod-

ifications to the visualization code provided in the book. The modified code snippet

is added as an appendix (A.1) to this thesis, as to the best of the author’s knowl-

edge, there are not many examples of recurrent neural network’s neuron activation

visualization code for time-series skeleton data available.

The author of this work compares neuron activations of backflips (figure 5.9) and

back handsprings (figure 5.10). In both figures, we visualize the activations using

four horizontal lines. Each horizontal line also consists of three inner lines, where

the first represents timestep indices, and the other two represent activations of two

hidden layer neurons. The outer horizontal lines are split by 30 timesteps, which

correspond to 0.5 seconds of activity time since the activities are recorded at 60

frames per second.

The model correctly predicts the chosen samples. It is interesting to observe how

the first neuron’s activation starts to flicker when it encounters an activity’s ending.

We can also observe how back handsprings tend to last longer than backflips, easily

noticeable from neuron activations. The second observation is that the first neuron

48



5.2. CLASSIFIER VISUALIZATION AND
ANALYSIS CHAPTER 5. CLASSIFIER DEVELOPMENT

Figure 5.9: Simple RNN neuron activations for three backflip samples

seems to activate throughout almost the whole duration of a backflip.
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Figure 5.10: Simple RNN neuron activations for three back handspring samples

Figure 5.11: All backflip samples (left) and all back handspring samples (right)

output activations combined show how neurons ”learned” to activate differently for

these activities.
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Chapter 6

Discussion

6.1 Classifiers comparison

All classifiers presented in this thesis have outstanding results with distinguishing

the two gymnastics elements - backflip and back handspring. The results show im-

pressive potential distinguishing short duration complex body moments. It is worth

mentioning that the time-series input data also contains full rotation of the human

body, separating this work from other example works using recurrent neural net-

works to recognize simple human actions [28]. Backflips and back handsprings are

similar actions in terms of human body movement, differentiating mostly in the way

that during the backflip’s rotation athlete’s arms are not extended, and also notice-

able vertical movement occurs during the back handspring push-off phase (section

3.1.4). The table 6.1 depicts all classifiers with corresponding average test accuracy

for five unrelated model training runs. The table also contains total wall time for

all classifiers with a noticeable difference in the duration, clearly demonstrating how

more complex neural network architectures require more computational power.

With the dataset used for experimentation, the classifiers tend to be sensitive to

overfitting, requiring heuristic hyperparameter tuning. The author’s training process

involved training the classifiers to overfit at first runs and using hyperparameter

tuning with callbacks to finish training before reaching 100% accuracy. With a

training set of 339 samples, almost all recurrent classifiers finish at sub-hundred

percent accuracy, enabling the comparison of classifier accuracy ratios.

With equal sample sizes and training epochs, the LSTM finishes with the high-
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est average accuracy of 94.706%; however, due to the complex LSTM units being

the most challenging network to interpret. The hierarchical RNN provides more

interpretability with body part specific neuron activations and even exceeds the

SimpleRNN in terms of accuracy, but requires four times as much training time as

the SimpleRNN classifier. In summary, experimental results show positive poten-

tial using recurrent network architectures for differentiating gymnastics movements,

such as backflips and back handsprings.

Classifier SimpleRnn LSTM Hierarchical RNN

Average test accuracy 88.824% 94.706% 91.470%

Wall time 13min 4s 30min 34s 1h 1min 38s

Table 6.1: More complex classifier architecture strongly impacts wall time when

training recurrent neural networks to distinguish gymnastics elements
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6.2 Future work

Even though this thesis successfully demonstrates an end-to-end solution for gym-

nastics action classification, it is not an out-of-the-box readily usable solution. It

has a lot of potential for improvements. Following is a brief discussion about some

ideas for future work:

1. Real-time recognition with action classification — The potential of current

work includes packaging the code and deploying it as a backend service. For

this, some restructuring of the code is necessary. Also, two main services

should be developed for better contextual boundaries. The first service should

deal with the pose estimation and pre-processing of the data. For pose es-

timation, the advice would be to deploy OpenPose on a server with at least

one graphics processing unit, and the data-preprocessing strategies have been

thoroughly described in section 4.2. The Python-based technology stack used

for data pre-processing in this thesis was primarily used for demonstration and

validation purposes. The second proposed backend service would be respon-

sible for the classification task of gymnastics action recognition. After initial

model training, the model should be deployed as a backend service with pre-

diction API usable by a controller tier application. It should also be feasible to

implement the continuous learning of the model. A controller tier application

should be developed for a complete real-time solution, aggregating the two

main backend services described before. The controller tier application should

be deployed onto a device with video recording capabilities, i.e., a smartphone.

2. Multi-person action recognition — For increasing the robustness and field us-

ability of the solution developed in the current thesis, concurrent multi-person

recognition support should be implemented. Many gymnastics athletes tend

to train in groups, and capturing multiple persons in the same frame is un-

avoidable without interfering too much with the formation of training groups

in gymnastics facilities.

OpenPose already offers the indexing of each frame’s pose estimation. By

grouping and filtering, it is possible to implement a solution to filter out the

bystanders in the subject’s frame and target only athletes of interest for action
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recognition.

3. 3D poses with burst photography — At the time of writing this paper, re-

searchers Dan Oved, Amelia Pisapia, and Anna Gudnason from the New York

Times published an article with exciting advancements in the pose estimation

field, while also focusing on the sports of gymnastics. Using a similar pose

estimation tool Wrnch [20], an alternative to OpenPose, they have improved

real-time pose estimation in gymnastics by constructing a 3D pose by triangu-

lating using 2D poses and using burst photography instead of video, yielding

sharper and higher-resolution images than video [35]. Similar improvements

could be made to the solution developed in this thesis. Additionally, with

improved poses, researchers could extract gymnastics-related metrics, such as

jump height, body acceleration, and rotation speed. These metrics could prove

as useful features for non-invasive human action recognition. Further research

with mentioned metrics should be conducted when improving the recognition

of gymnastics elements.
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Conclusion

In short summarization, the contributions made by the author in this thesis include:

• A balanced dataset with backflip and back handspring samples, acquired using

a consumer-grade action camera and extracting poses with OpenPose.

• Development of data pre-processing strategies relevant for skeleton-based pose

estimation and applicable for standing backflips and back handsprings - activ-

ities including human body rotations.

• Recurrent neural network classifiers capable of making successful distinctions

between backflips and back handsprings.

• Time-series skeleton-based recurrent neural network output activation inter-

ception and visualization for interpreting the outcomes of classifiers.

• Combining two different research fields, pose estimation and human action

recognition, to achieve a full prototype capable of recognizing two gymnastics

activities.

This thesis’s primary purpose was to give an overview of a full end-to-end so-

lution of combining recent advancements in pose estimation with human action

recognition in the sports of gymnastics. To the best of the author’s knowledge,

there is not much literature demonstrating such solutions for gymnastics action

recognition. Most previous solutions capturing gymnastics actions use restricting

devices or garments. Restricting solutions have not found use in daily training ses-

sions with complex biomechanical movements, such as in the sports of gymnastics.

The main requirements set by the author were completed. These included using

55



CHAPTER 7. CONCLUSION

a consumer-grade action camera (GoPro Hero 7 ) to capture back handsprings and

backflips in regular gymnastics training sessions, with no additional equipment. The

author demonstrates how open sourced pose estimation tool OpenPose could be used

as a viable option for capturing the movements. Finally, classifiers with recurrent

network architecture were developed and integrated with skeleton-based time-series

data as an input. This thesis also includes a demonstration of neuron activations

usable with time-series data, uncommon in relevant literature processed by the au-

thor. As the author himself is a regular practitioner of this sport, the motivation

for experimenting with non-invasive and accessible technology exists.

Although an end-to-end solution is described in this paper, there is much room

for improvement to bring this solution into everyday use by athletes. It should

also be noted, that most of the computational work was done in a cloud computing

environment with professional tier graphical processing units. Before field testing

this solution, the data pre-processing strategies developed and used in this thesis

also require optimization. The data pre-processing strategies were needed to balance

the shortcomings of OpenPose. The constructed dataset should also be extended

with more relevant actions and angles of samples for better reusability.

Advancements in the accessible and non-invasive pose estimation and human

action recognition could bring the technology closer to be used for feedback in live

sports events, automated training session documentations, and relevant metrics ac-

quisition from a distance.
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[25] Juan C. Núñez, Raúl Cabido, Juan J. Pantrigo, Antonio S. Mon-
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Appendix A

A.1 Visualizing recurrent network activations with

time-series skeleton data

def get_activations(model , example_sample):

n_timesteps , n_features = example_sample.shape[0],

example_sample.shape [1]

x = np.zeros ((1, n_timesteps , n_features))

for t, timestep in enumerate(example_sample):

for f, feature in enumerate(timestep):

x[0, t, f] = example_sample[t][f]

output = model.get_layer(’simple_rnn_1 ’).output

f = K.function ([model.input], [output ])

return f([x]) [0][0]

activations = get_activations(example_model , example_sample)

def get_image(img , n_timesteps , img_idx , cell_size =48):

img_width = n_timesteps * 25

cell_size = int(img_width / n_timesteps)

pil_image = PILImage.fromarray(img.astype(np.uint8))
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A.1. VISUALIZING RECURRENT NETWORK ACTIVATIONS WITH
TIME-SERIES SKELETON DATA APPENDIX A.

resized_pil_image = pil_image.resize ((img_width , cell_size))

draw = ImageDraw.Draw(resized_pil_image)

for n_timestep in range(n_timesteps):

text = str(( img_idx * 30) + n_timestep)

xy = (n_timestep * cell_size , 0)

draw.text(xy , text)

f = BytesIO ()

resized_pil_image.save(f, ’png’)

return Image(data=f.getvalue ())

def visualize_neurons(act , cell_size =48):

n_neurons = act.shape [1]

n_timesteps = act.shape [0]

fill_value = 128

img = np.full(( n_neurons + 1, n_timesteps , 3), fill_value)

# add 1 to each value in matrix and then divide by 2

scores = (act[:, :].T + 1) / 2

img[1:, :, 0] = 255 * (1 - scores)

img[1:, :, 1] = 255 * scores

first_hs_img = img[:, :30, :]

second_hs_img = img[:, 30:60 , :]

third_hs_img = img[:, 60:90, :]

fourth_hs_img = img[:, 90:, :]

imgs = [first_hs_img ,

second_hs_img ,

third_hs_img ,

fourth_hs_img]

actual_imgs = []
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for i, img in enumerate(imgs):

n_img_timesteps = img.shape [1]

actual_imgs.append(get_image(img , n_img_timesteps , i))

return actual_imgs

example_sample_imgs = visualize_neurons(activations)

for img in example_sample_imgs:

display(img)
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