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Abstract

Non-Volatile Memory technologies are rapidly rising as the most promising candidate for
universal memory technologies. NVMs are characterized with low-power leakage, high-
density storage, and fast access time. NVMs offer solutions for the high standby mode
power consumption that contemporary memory technologies suffer from. Furthermore,
such NVMs can be programmed and designed to create NVM-based arrays capable of
completing complex logical operations as Computation in Memory.

In this thesis, the Level-1 instructions cache is augmented with a Non-Volatile
Scratch Pad that stores instructions that cause highest number of I-cache misses. When
implementing the NV-SP using Magnetic RAM, it improved the performance for all
the simulated applications at different sizes. Performance improvement reached up to
22% for applications with the highest miss rate. The MRAM NV-SP has been shown to
improve the total access energy and total power leakage of the I-cache. However, when
such NV-SP is implemented using PCRAM, it showed that it can cause performance
degradation for application with low miss latency at large NV-SP sizes. It is also showed
that PCRAM had reduced the total access energy of the I-cache for all the applications
at all sizes, but increased the power leakage of the I-cache at larger NV-SP sizes.
Furthermore, this thesis also presents an implementation of a memristor-based AES
S-Box. Such implementation uses memristor-based AND, OR, and XOR logic gates that
perform Computation in Memory.

This thesis is written in English and is 78 pages long, including 5 chapters, 22 figures,
and 7 tables.
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Annotatsioon

Mittelenduva mälu tehnoloogiad on kiiresti muutumas populaarseimateks universaalse
mälutehnoloogia kandidaatideks. Mittelenduvat mälu iseloomustab madal võimsusleke,
kõrge salvestustihedus ja kiire pöördusaeg. Ta pakub lahenduse kõrgele võimsustar-
bele ooterežiimis, mille all kannatavad moodsad mälutehnoloogiad. Samuti saab mit-
temuutlikke mälusid programmeerida ja projekteerida moodustamaks massiive, mis on
võimelised mälusiseselt läbi viima keerukaid operatsioone.

Käesolevas lõputöös on 1. taseme käsu-vahemälu mugandatud mittelenduvaks märk-
mikuks (ingl. k. scratch pad), mis salvestab käske, mis puuduvad sagedimini vahemälust.
Kui mittelenduv märkmik oli realiseeritud magneetilisel muutmälul (MRAM), siis jõud-
lus kasvas kõigi simuleeritud eri suurusega rakenduste puhul. Jõudluse kasv saavutas
22% rakenduse jaoks, millel oli kõrgeim arv käske, mis vahemälust puudusid. On näi-
datud, et MRAM mittelenduv märkmik parandab kogu pöörduseks kuluvat energiat ja
kogu võimsusleket käsu-vahemälus. Samas osutus, et kui sarnane mittelenduv märkmik
on realiseeritud kasutades PCRAM tehnoloogiat, siis väiksema vahemälu poole pöördu-
mise ajakuluga rakenduste jõudlus langes suurte märkmiku mahtude puhul. Veelenam,
käesolev töö esitab ka memristoridel põhineva AES-algoritmi S-box’i realisatsiooni. Re-
alisatsioon kasutab memristoridel põhinevaid JA, V ÕI, ja V ÄLISTAV −V ÕI loogikaele-
mente, mis võimaldavad mälusisest arvutust.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 78 leheküljel, 5 peatükki,
22 joonist, 7 tabelit.
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List of abbreviations and terms

AES Advanced Encryption Standard

ARCFOUR Rivest Cipher 4

CiM Computation in Memory

CISC Complex Instruction Set Computer

CPU Central Processing Unit

D-Cache Data Cache

DES DATA Encryption Standard

DRAM Dynamic Random Access Memory

I-Cache Instruction Cache

ICs Integrated Circuits

ICT Information and communication technologies

ISA Instruction Set Architecture

L1 Caches First Level Caches

MRAM Magnetic Random Access Memory

MTJ Magnetic Tunnel Junction

NV-SP Non-Volatile Scratch Pad

NVM Non-Volatile Memory

OS Operating System

PCM Phase-Changing Memory

PCRAM Phase-Change Random Access Memory

RAM Random Access Memory

ROT13 Rotate by 13 places Cipher

Sbox Substitution Box
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SoC System-on-Chip

SRAM Static Random Access Memory

TAS Thermally Assisted Switching Magnetic Random Access Memory

TMR Tunnelling MagnetoResistance
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1 Introduction

The discovery of semi-conductive materials had a monumental impact on our society.
They are found in devices we use every day in the form of diodes, transistors, and
everything that is computerized. The semiconductor revolutionized the world and
we have found a use for it in everything around us. Information and communication
technologies (ICT) are indispensable for many industries and form the backbone of
modern society. At the core of ICT is the semiconductor that occupies the main position
in areas of storage, working memories, and computer logic .

One of the most important uses of the semiconductor is the design of Integrated
Circuits (ICs). ICs are used in the design and fabrication of every component of a
computer system. Most notably, ICs live at the heart of the Central Processing Unit
(CPU) and it’s supporting systems. ICs made components smaller, cheaper, more reliable,
and easier to repair. ICs made computerization possible.

Modern ICs, however, face major issues such as high power leakage [1] and per-
formance degradation under high utilization [2]. Increased device variability and process
complexity only inflate these issues further. In an attempt to combat these issues,
designers put forth two goals in mind: systems should achieve fast process switching at
low power when used in dynamic mode and low leakage power when systems are idle or
in static mode.

Current computer systems employ different types of semiconductor-based memory
to store information. Inside the processor, registers are made from Flip-Flops that have
smaller capacity but are accessed at very high speeds. Outside the processor are the
Static Random Access Memory (SRAM) caches. The caches have higher capacity that
the registers but they are slower. The Dynamic Random Access Memory (DRAM) main
memory, or Random Access Memory (RAM), is larger than the caches, but it is far
slower. These volatile devices differ in speeds of access, but they all lose information
that is stored in them when powered off.

Furthermore, there are two key issues in the current semiconductor-based memory:
firstly, the rapid increase in density causes larger amounts of power consumption.
The major factor here is that the standby power to retain the information compared
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to the operating power to perform information processing is high. This is due to the
characteristic of transistors when miniaturized. This issue not only causes large amounts
of power consumption, but it is also becoming an obstruction for further miniaturization
of transistors [3]. Secondly, the speed gap between different levels of the memory
hierarchy, shown in Figure 1 (a), cause bottlenecks at each level. For example, DRAM
will always have several clock cycles of latency due to its operating principle while both
the CPU and SRAM caches can operate at a frequency of 3 GHz [4].

To combat the first issue, designers were forced to implement circuit design tech-
niques, such as power and clock gating [5], to reduce standby mode power consumption.
However, a more concrete solution to this issue of power leakage can be the introduction
of Non-Volatile devices into the system. Non-Volatile devices can hold the information
stored in them even when the system is powered off or when power failures occur. More
specifically, integrating Non-Volatile Memory (NVM) into the memory hierarchy allows
information and logic state retention in case of a complete power down of the system and
significantly reduces power usage and power leakage of the memory system and, in some
cases, improves the overall performance of the system.

Since the memory systems’ speed is not increasing as fast as the increase in pro-
cessor speeds, processor execution rates are limited by the latency of accessing
instructions and data in the memory. The on-chip caches offer a solution: a memory
device inside the processor that has higher capacity than the registers and faster than the
caches outside the CPU. Higher capacity meant a slower cache, but this issue of speed
was addressed by introducing specialized caches known as the First Level (L1) Caches.
The L1 Caches supported instruction and data fetch bandwidths of modern processors
[6] which, in turn, helped minimize the overall latency by using an Instruction Cache
(I-Cache) to store instructions before being executed by the processor and a Data Cache
(D-Cache) to store data needed during the execution flow. For embedded System-on-Chip
(SoC), a scratch pad memory was introduced to store smaller amounts of information that
are constantly needed. Scratch Pad memories, unlike caches, hold information (either
instructions or data) permanently and are manually configured. Scratch Pads do not have
eviction policies, thus the information stored in them is never changed automatically and
can be configured depending on the execution nature of the workload.

14
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Figure 1. Memory hierarchy: (a) Memory types and their properties, (b) Typical memory hierarchy with
two-level cache system inside the processor connected to a third-level cache outside the processor.

1.1 Motivation and problem formulation

In the past years, a universal memory which has low-power leakage, high-density
storage, and fast access time has been becoming possible largely thanks to the increasing
popularity of Non-Volatile Memory (NVM) technologies. Magnetic Random Access
Memory (MRAM) and Phase-Change Random Access Memory (PCRAM) are exam-
ples of NVM technologies that offer the aforementioned characteristics. They could
potentially be used to create high-density, low-power, relatively fast, and non-volatile
memories across the different layers of the memory hierarchy. NVM technologies could
potentially offer a candidate that covers the wide spectrum of memory devices from
highly optimized microprocessors caches with low latency and power leakage to highly
optimized permanent storage with high density and little to no data loss over time.

In this thesis, an L1 Non-Volatile Scratch Pad (NV-SP) is evaluated for perfor-
mance, energy, and power leakage. Performance is evaluated on a Single-Core x86
processor where the regular L1 cache is augmented with a configurable Scratch Pad made
of Phase Change Memories (PCM) or Magnetic RAM (MRAM). Energy is evaluated
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using the combination of energy estimations obtained from specialized simulator and
performance measures. Applications are profiled where the top k instructions which
suffer the largest number of cache misses are moved into the Scratch Pad. Using this L1
Scratch Pad reduces the energy consumption and leakage and increases the performance
of the system.

1.2 Contributions of the thesis

The focus of this thesis will be directed towards the L1 caches of the cache system: more
specifically, on-chip Instruction cache. I-Caches have a higher frequency of Read ac-
cesses compared to their Write accesses frequency. This is largely due to the fact that
instructions are reused during the execution of an application, which means that there
are fewer instructions being written to the I-cache from the higher memory hierarchy. In
this thesis, a framework implementation is developed for evaluating the potential use of
Non-Volatile memory technologies in improving the performance, energy, and security of
low-level memory hierarchy. More specifically, an NV-SP is inserted into the L1 of the
memory hierarchy to store instructions that cause a high number of misses. To achieve
the required framework, the following tasks must be completed.

� TASK 1: Set up the necessary environment and tools for the experiment as follows:

– Design a working x86 processor system that includes an L1 I/D-caches, L2
cache, and the main memory.

– Configure the tools needed to complete the necessary evaluations.

– Create applications’ binaries with no compilation optimization to obtain the
exact instructions executed during the simulation.

� TASK 2: Create a method to determine the performance of the I-cache and extract
the needed data as follows:

– Obtain information regarding the number of instructions and how many I-
cache misses each instruction causes, the number of I-cache hits, the number
of overall accesses to the I-cache, and the overall execution time.

– Determining the combined latency of all the I-cache misses and the impact
these misses had on the overall execution of the application.

� TASK 3: Create a method to determine the performance of the NV-SP as follows:
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– Obtain information on the time and energy performance of the different non-
volatile memory technologies under evaluation using a specialized simulator.

– Determining the performance, access energy, and power leakage impact of
using the NV-SP to store instructions that cause a high number of misses by
comparing those numbers to the performance of the I-Cache.

� TASK 4: Conduct an analysis of the results obtained from the experiments.

� TASK 5: Use the analysis to refine the current configuration of the cache and scratch
pad to find the optimal cache and scratch pad configuration for maximum perfor-
mance, energy, and security gains and repeat the above tasks.

This framework is designed to test the effectiveness, advantages, and disadvantages of
incorporating an NV-SP memory on the x86 processor system under evaluation. This
framework will also give insights on other potential Non-Volatile technology applications
of in-memory computing. These insights will inspire future work in the subject.

1.3 Thesis organization

This section shows the content and organization of this thesis. In Chapter 2, descriptions
of previous works related to the topic and methods of this thesis are presented. In Chapter
3, the technologies and tools used in this thesis are discussed. A closer look is taken at the
Non-volatile memory technologies evaluated as well as the simulators used to evaluate
the performance and energy of these technologies. In Chapter 4, NVM-based logic and
Computation in Memory are discussed and implementation of NVM-based AES S-box
is presented. In Chapter 5, the methodology and implementation of the framework of
this thesis’ experiment is discussed. In Chapter 6, results from this thesis’ experiment are
presented and analyzed. In Chapter 7, conclusions are drawn based on the results and data
obtained in the course of this thesis work.
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2 Related work

In recent years, the research community has been paying more attention to NVMs and
their potential to offer a universal memory device that can be used across the different
layers of the memory hierarchy. From the very first theorization of the memristors [7]
in 1971 to the first working prototype [8] 37 years later, NVMs has been seen as the
potential solution for many issues arising in nanoscale electronics.

Khvalkovskiy et al. [9] showed that STT-MRAM, an implementation of MRAM,
can be used in memory arrays and proposed different designs by reordering the cell
components, but no actual implementation of such arrays into a full memory device was
proposed. Similarly, Hamann et al. [27] showed that phase-changing material can be
used to create a low-energy PCRAM cell with high performance. However, Hamann et
al. only showed proof of principle, with no actual propositions for implementation in
memory devices.

Zhu and Park [10] showed that Magnetic Tunnel Junction (MTJ) properties can be
utilized to realize a fully working MRAM cell that stores information at low energy cost
and offered simple implementations for different MTJ application in memory devices.
As for PCRAM, Burr et al. [29] proposed PCRAM arrays that can be used to create
a memory device. However, both [10] and [29] did not evaluate the memory devices
proposed as part of a larger system.

Senni et al. [11] tested potential applications for the different MRAM implemen-
tations in the memory system. Namely, STT-MRAM and TAS-MRAM were evaluated
for performance and energy consumption for L2 cache as well as evaluating the STT-
RAM for the L1 caches in different scenarios – Where I-cache and D-cache are both
STT-RAM, only D-cache is STT-RAM, and only I-cache is STT-RAM. While [11]
evaluated both the I-cache and D-cache based on STT-RAM in different scenarios, it did
not evaluate the STT-MRAM in a context where other NVM technologies are evaluated
for comparison purposes. Furthermore, the evaluation in [11] was an implementation
of a traditional von-Neumann processor system that did not fully take advantage of the
potential low Read and energy cost of the STT-MRAM. Using NVMs to replace SRAM
in von-Neumann system surely gave insight into the overall performance of MRAM
when used in the memory system. However, it did not show how MRAM can assist,
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rather than replace, contemporary memory technologies to improve the performance and
energy of the memory system.

The evaluation framework used in this thesis was largely inspired by the evalua-
tion framework used by Senni et al. [11]. However, the introduction of the NV-SP to the
memory system focuses on exploiting any performance gains offered by STT-MRAM.
Thus, a more focused framework was developed to include the evaluation of the NV-SP.
Furthermore, this framework, unlike the framework in [11], was also designed to evaluate
PCRAM alongside MRAM. Using a stand-alone NVM-based device can shed some light
on the effectiveness of using NVMs to create processor systems that fall outside the
traditional von-Neumann architecture.

While NVMs are being evaluated for their capabilities as memory devices, Kolodny
et al. [16] showed that memristor-based logical operations are possible. Kolodny et
al. presented functional AND and OR gates with prepositions for NAND and NOR

gates. However, the NAND and NOR were designed with CMOS inverters, which in
turns shows that such gates cannot be fully designed only using memristors. This was
overcome by Kvatinsky et al. [17] as it implemented working NAND and NOR that
are fully made from memristors. Both [16] and [17], however, did not implement such
memristor-based logic operation in circuits that can perform complex logical operations.

Using previously proposed AND and OR gates, Wang et al. [15] designed an XOR

gate and showed how it can be used to implement a fully functional memristor-based
Full Adder circuit. Following on the footsteps of Wang et al, this thesis proposes a
memristor-based AES S-Box implementation using the aforementioned XOR gate.
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3 Background and Preliminaries

In this chapter, the technologies and tools utilized in this thesis are discussed. The first
section discusses the different NVM technologies evaluated. The second and third sec-
tions will have short introductions to gem5, the simulator used in the framework im-
plementation, and NVSIM, the tool used to acquire estimations on performance, access
energy, and power leakage of the different NVM technologies.

3.1 Non-Volatile Technologies

Today’s computer systems suffer from an increase in power consumption due to the in-
creasingly problematic current leakage in modern technology nodes. Much of this power
consumption happens in the memory system, especially in the volatile memory areas of
System-on-chip (SoC) components [11]. Since the high-density integration of CMOS-
based memory is increasingly taking more space on-chip, it significantly increases the
power consumption per area due to power leakage. This forces the use of controllers that
switch off parts of the chip while other parts are switched on, potentially affecting the
overall performance of the system [5], [22]. The issue of power leakage enforces limi-
tations of clock frequency due to heat dissipation, thus hindering performance improve-
ments [5], [23]. Non-volatile memories, such as MRAM and PCRAM, offer a solution
to this problem. Using NVM, power consumption can be decreased significantly since
NVM offers scalable, high-density memory using less space as well as its non-volatile
nature allows the use of the NVM with very low power leakage.

Furthermore, NVM offers an array of solutions to other complicated issues. Most impor-
tant of these solutions is finding an alternative solution to the volatile nature of the volatile
memories i.e. registers and various levels of cache space both on-chip and off-chip mem-
ory systems in the memory hierarchy of computer architectures. It offers a solution for
long wake-up times and system status restore. Since CMOS-based memory is volatile,
all information stored in it is lost when power is turned off. By introducing NVM, the
current state of execution (processor state and memory state) can be stored during power
shut down, allowing a faster reboot of the system during power failure (this can be done
in several ways depending on the architecture) and faster wake up time in restoring exe-
cution status. This can be done by storing the current state of execution in non-volatile
registers (NVReg)[11] and non-volatile partitions (NVMs) of the various cache systems.
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While there is a lot to explore in terms of the non-volatile nature of NVM technolo-
gies, in this thesis, the focus will be directed to the low leakage and performance aspects
of NVMs. More specifically the gains and losses of using two NVM technologies, Spin
Torque Transfer Random Access Memory (STT-MRAM) and Phase-Change Random Ac-
cess Memory (PCRAM) to introduce a Scratch Pad memory into the first memory level
of the memory hierarchy.

In this section, characteristics of MRAM and PCRAM are further explained and explored.

3.1.1 Magnetic Random Access Memory (MRAM)

Magnetic Random Access Memory (MRAM) is a candidate to replace current memory.
MRAM is a non-volatile memory that offers high scalability, high density, low latency,
and low leakage and can provide a solution to the power efficiency issue since it can be
completely shut down without loss of data stored in the MRAM [11]. These attractive
features put MRAM on the path of becoming a universal memory.

MRAM is largely based on Magnetic Tunnel Junction (MTJ). In MTJ, two conducting
electrodes are separated by a tunnel barrier causing electrical conduction due to electrons
tunneling through the barrier. The tunnel barrier, made of a dielectric layer, ranges from
a couple of hundred pico-meters to a few nanometres in thickness. This tunneling phe-
nomenon is caused by the wave nature of electrons while the conductance is caused by
the electron wave function within the barrier [9].

To realize this behavior, MRAM cells are made of two ferromagnetic layers separated by
a barrier. The top electrode layer called the Free Layer (FL), also called the storage layer,
has a changing magnetic orientation that changes based on the voltage pulse delivered by
electric contact. The bottom electrode layer called the Reference Layer (RF), also called
the Fixed Layer, has a fixed magnetic orientation used as a reference for reading from
and writing to the MTJ cell, and the barrier is made of an insulator. The MTJ layers
are illustrated in Figure 2 (a). Figure 2 (b) and (c) show illustration and schematic of an
MRAM respectively.

In the MRAM cell, the information is stored as the resistance of the MTJ caused by a phe-
nomenon called the Tunnelling MagnetoResistance (TMR). The resistance is dependent
on the orientation of the ferromagnetic layers, thickness, and the type of material of the
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(a) (b) (c)

Figure 2. MTJ layers in an MRAM cell: (a) Schematic showing the two electrode layers in a Magnetic
Tunnel Junction separated by an insulator, (b) An MRAM cell [24], (c) A schematic view of an MRAM cell
[24].

Free Layer, the Reference Layer, and the barrier layer. However, the major factor is the
magnetic orientation, and since the Free Layer is the only layer with changing magnetic
orientation, there are two states that the cell can have as shown in Figure 3 (a) and Figure
3 (b):

� The first state happens when the magnetic orientation of the Free Layer is parallel
to the magnetic orientation of the Reference Layer. This means that the Resistance
of the MTJ cell is low donating a Logic Zero "0" as shown in Figure 3 (a).

� The second state happens when the magnetic orientation of the Free Layer is anti-
parallel to the magnetic orientation of the Reference Layer. This means that the
Resistance of the MTJ cell is High donating a Logic One "1" as shown in Figure 3
(b).

The process of reorienting the Free Layer is implemented in three ways:

� Spin Transfer Torque (STT-MRAM): This method uses the spin-transfer torque ef-
fect to reorient the Free Layer. When a highly polarized current is flowing through
the MTJ cell, a torque is created. This happens when the electrons spin on the
magnetization of the Free Layer causing it to slowly reorient[10]. STT-MRAM is
unique from the other MRAM technologies due to its many potential applications
[25].

� Toggle: this method of reorientation uses a sequence of voltage pulses designed
to rotate a specially made Free Layer called the Synthetic AntiFerromagnet (SAF)
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(a) (b)

Figure 3. Demonstrations of MTJ: (a) The magnetic orientation of the Free Layer is parallel to the magnetic
orientation of the Reference Layer. In this case, cell resistance is low, (b) The magnetic orientation of the
Free Layer is anti-parallel to the magnetic orientation of the Reference Layer. In this case, cell resistance is
High.

that is programmed by applying a series of voltage pulses causing the Free Layer to
toggle from one state to another [13].

� Thermally Assisted Switching (TAS-MRAM): TAS is similar to Toggle, however,
TAS utilizes an extra layer that prevents the Free Layer from switching when it is
under a threshold temperature. When a current is applied to a Select Transistor,
it heats up the MTJ cell to a higher temperature than the threshold temperature
causing the magnetic orientation of the Free Layer to change [14].

For this thesis, the STT-MRAM implementation is used. Among these reorientation im-
plementations, STT-MRAM showed the most promise. It is faster than Toggle and TAS
and is more academically researched and much more developed and understood com-
pared to the other two implementations [11]. STT-MRAM will be used in the evaluation
of the NV-SP. The result of this evaluation will be compared to the results of PCRAM and
traditional I-cache.

3.1.2 Phase-Changing Random Access Memory (PCRAM)

Phase-Changing Memory (PCM) is among the rapidly advancing NVM technologies out
there [26]. It is composed of a nano-metric volume of phase-changing materials that
exhibit a significant change in resistance when it changes from one state to another. This
material is then put between two electrodes to make PCM cell [27]. When different
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voltage pulses are applied to the material, the material changes from an amorphous state
to a crystalline state. Figure 4 (a) shows the amorphous and crystalline states of a phase-
changing material.

(a) (b)

Figure 4. States of a PCM cell: (a) The amorphous and crystalline states of a phase-changing material [28],
(b) Voltage/temperature-Time relationship during RESET, SET, and READ showing the Tmelt and Tcryst
[29].

By applying a suitable electrical pulse, the material heats up to a certain temperature
(Tmelt) causing the phase-changing material to be altered. Such pulses that cause a volume
of amorphous material to quench are called RESET pulses. This RESET operation leads
to an increase in the resistance of the material. On the other hand, longer pulses that cause
the material to heat into a slightly lower temperature (Tcryst) increasing the crystallization
of the material are called SET pulses. These SET operations lead to a decrease in the
resistance of the material. These two operations (RESET and SET) constitute the WRIT E

operation on the PCM cell – similar to electrically charging the material. To constitute a
READ operation on the PCM cell a low electrical field is applied to the phase-changing
material allowing the electrical charge to flow freely through the material into the bottom
electrode – similar to electrically discharging the material [30]. Figure 4 (b) demonstrates
the voltage/temperature-time relationship of a PCM cell.

Depending on the amplitude of the electrical pulse, the resistance of the material changes.
Measurement of this resistance varies depending on the electrical pulse, this means that
we can translate the resistance to store different sets of data inside the material. Dif-
ferent material can be configured to suitable pulses achieving a continuum of resistivity
creating a high-capacity low-power analog device for storing information [28]. Figure 5
shows a possible continuum of resistivity with a PCRAM cell. Figure 6 (a) and (b) show
illustration and schematic of an PCRAM respectively.

GeTe-Sb2Te3 (GST) and GeTe2-Sb2Te5 (GST-225) [29] are among the most commonly
used phase-changing material with PCMs. Perfect RAM or Phase-changing RAM
(PCRAM) is the most notable application of these types of memories. PCRAM offers
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Figure 5. The continuum of resistivity that can be achieved when using suitable pulses with a phase-
changing material [28].

(a) (b)

Figure 6. Demonstrations of PCRAM: (a) A PCRAM cell, (b) A schematic view of a PCRAM cell [24].

two notable advantages. The first is a multi-level storage property due to the ability to
configure it with a continuum of electrical pulses. The second is the dynamic behavior of
the PCRAM units that applies a complex system of feedback interconnection of electrical,
thermal, and structural dynamics as shown in Figure 7.

In this thesis, PCRAM is used to evaluate NV-SP memory. The result of this evaluation
will be compared to the results of STT-MRAM and traditional I-cache.
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Figure 7. The dynamic behaviour of a PCRAM unit complex system of feedback [28].

3.2 gem5

The gem5 simulator is a product of collaboration between academic and industrial insti-
tutions [31]. gem5 is widely used by the research community to simulate processor archi-
tecture. It offers a highly configurable simulation framework with diverse CPU models
and multiple Instruction Set Architectures (ISAs). Furthermore, gem5 features a detailed
and flexible memory system that supports many interconnect models and cache coher-
ence protocols. ISAs such as x86 and ARM are two of the many ISAs supported by the
simulator.

There are two execution modes of gem5:

� System-call Emulation (SE): In this mode, gem5 emulates the most common system
calls [31]. Whenever an application is executed, the application issues a system call,
gem5 traps these calls and emulates them.

� Full-System (FS): In this mode, gem5 simulates a bare-metal environment suitable
for running an OS. As the name suggests, a full system is emulated including I/O
devices, exceptions, interrupts, etc.

While Full-System mode has higher accuracy and can handle a wider variate of work-
loads compared to System-call Emulation mode, in this thesis, System-call Emulation
will be utilized due to the simplicity of the processor architecture studied in this thesis.
gem5 is used because it allows defining the overall processor system architecture. This
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includes the memory hierarchy specifications such as the different levels of the cache sys-
tem, cache sizes, latencies of the caches and the main memory etc. Memory traces can
show the propagation of data within the memory. They also show each memory’s read
and write accesses and the cache misses and hits and their respective rates. By modifying
these memory traces, determining which instruction was executed at what time becomes
possible. Trace files can show the overall execution time needed for an application to be
executed as well as statistics regarding the execution flow.

3.3 NVSim

NVSim is a circuit-level model for NVM performance, energy, and area estimations,
which supports various NVM technologies, including STT-RAM, PCRAM, ReRAM, and
legacy NAND Flash. NVSim also supports volatile memory technologies such as SRAM
and DRAM [24]. Depending on a given configuration, NVSim estimates the access time,
access energy and area of the NVM technology chip. These estimates are then used to
explore the optimal NVM chip organization. This helps in finding the optimal NVM chip
design space for achieving the best performance, area, or energy.

NVSim is used in this thesis to find the optimal performance and energy estimations of
STT-MRAM and PCRAM memory cells as well as the performance and energy estima-
tions of a 4 kB SRAM cache. These estimations are later used to evaluate the performance
of a Scratch Pad memory made with each of the NVM technologies.
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4 Methodology

In this chapter, the methodology used in this thesis and the framework implementation
described in section 1.2 are discussed in detail. Section 1 discusses the architecture used
in the simulation. Section 2 shows the different workloads simulated in the architecture.
Sections 3 and 4 describe the configuration files of gem5 and NVSim. Section 5 will
present the framework implementation and the bash scripts used to obtain the simulation
results before the analysis of the data.

4.1 Architecture

The x86 architecture is an instruction set architecture (ISA) based on the Complex In-
struction Set Computer (CISC) architecture. In CISC processors, instructions can exe-
cute several low-level operations, such as a load, arithmetic, and store operations in a
single instruction [38]. x86 defines how a processor handles and executes instructions
passed to the processor by the Operating System (OS). Developed by Intel Corporation,
x86 architecture was used in multiple processor chipsets, most notable are Intel’s 8008,
80188, Pentium, and Xeon chipsets as well as AMD’s K7, K8, and K10 chipsets [39].
The popularity of the x86 architecture and its wide use makes it an obvious choice for
processor-related simulations for research and development purposes.

In this thesis, an x86 ISA is simulated with an I-cache, a D-cache, an L2 cache, and
the Main memory. Table 1 shows the system components’ configuration used in this
thesis. The objective selecting of this architecture is to focus on the direct interaction
between the processor and the L1 I-cache. This interaction can be exploited or used to
develop high-efficiency systems to reduce the bottleneck issue that may arise from the
ever-increasing speed gap between CPUs and caches. Thus, only a Single-Core is used
since the applications will not be executed on multiple cores.

Using a Single-Core will give insight into the direct impact of adding a scratch pad to
the L1 memory hierarchy. To that end, the L1 caches were separated as opposed to
a unified L1 cache. The sizes of the L1 I/D-caches, at 4-kilobytes each, was used to
accommodate the small size of the applications simulated. Since only a Single-Core is
used, applications used in the simulations (discussed in the following section) had to be
small in size for the purpose of convenience. Since the size of L2 cache was irrelevant to
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Table 1. System components’ Configuration.

System Component Configuration

Processor Single-Core, 1 GHz, 32-bit CISC x86

L1 I/D-cache Private, 4kB, 2-way associative, 64B cache line

L2 cache Shared, 64kB, 4-way associative, 64B cache line

Main memory DRAM, DDR3, 100-cycle latency

the overall outcome of the thesis, the size of 64-kilobytes is set as to allow the entirety of
the applications and their inputs/necessary files for execution to be fully loaded to the L2
avoiding any overall performance degradation. The default Main Memory and memory
controller in gem5 (the simulator) is used. Figure 8 shows an illustration of the x86
architecture used in this thesis.

Figure 8. Illustration of the x86 architecture used in this thesis.

As for the NV-SP, three sizes of 1, 2, and 4-kiloBytes are used to evaluate the impact of
different sizes of NV-SP on the performance of the architecture. Since this architecture
executes 32-bit instructions, each instruction will be 4 Bytes of size. Each of the NV-SP
sizes of 1 kB, 2 kB, and 4 kB will store 250, 500, and 1000 instructions respectively.
These sizes were used to accommodate the small size of the applications simulated as
well as to give insight on the impact of different sizes of the NV-SP can have on the final
results. Figure 9 shows the incorporation of NV-SP to the x86 architecture used in this
thesis.
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Figure 9. Illustration of the x86 architecture with incorporation of NV-SP.

4.2 Architecture Workloads

In this section, the applications – referred to as workloads – used in this thesis’ experiment
are introduced and discussed.

4.2.1 Applications

The applications chosen for this thesis are based on their simple implementation and small
size. This allowed for easier editing of the code to accommodate the constraints set forth
by the architecture’s 32-bit compatibility and the SE mode of gem5 used in the simulation.
For this thesis, two types of applications were simulated during the experiment.

Cryptographic Algorithms

The first type of applications used in this thesis is a collection of cryptographic algorithms
based on an open source implementation of cryptography algorithms [40]. The original
implementations in [40] were simple and easily editable to accommodate the system con-
straints. Furthermore, all the implementations had test benches designed by the author.
Those test benches are the ones used to execute the algorithms during the simulations.
The cryptographic algorithms are the following:

� Advanced Encryption Standard (AES)
The Advanced Encryption Standard (AES), originally known as Rijndael cipher,
is a symmetric-key algorithm. It is the standard specification for electronic data
encryption adopted by the National Institute of Standards and Technology (NIST)
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in 2001 [34]. AES features a block size of 128 bits and key lengths of 128, 192,
and 256 bits.

� Data Encryption Standard (DES)
Was the predecessor of AES as the standard specification for electronic data encryp-
tion. Was developed in the early 1970s [41], it became the standard 1976. DES has
been shown to be vulnerable to cryptographic attacks, however, in 1999, another
version of the cipher, Triple DES (or FIPS-46-3), was reaffirmed as a safe cipher.
DES was withdrawn by the NIST in 2005. In this thesis, we used the Triple DES
implementation of the cipher. DES has a block size of 64 bits and 64-bit key length.

� Rivest Cipher 4 (ARCFOUR)
Was designed by cryptographer Ron Rivest in 1987 while working at RSA Security
[42]. The algorithm became public in 1994 when it was leaked on online mailing
lists. RSA Security never officially released the algorithm, but in 2014, ARCFOUR
creator Ron Rivest has confirmed the code of the algorithm [42]. ARCFOUR was
tested against cryptographic attacks many times, but there is no evidence showing
ARCFOUR has been broken. ARCFOUR is a streaming cipher with a key length
of 40 to 2048 bits.

� Twofish cipher
Twofish is a symmetric key block cipher that was among the five finalists in the
Advanced Encryption Standard contest held by NIST between 1997 and 2001 [43].
However, Rijndael cipher eventually won the contest. With a block size of 128 bits
and key sizes up to 256 bits, Twofish cipher is never demonstrated to be broken or
vulnerable to cryptographic attacks. Twofish is related to the earlier block cipher
Blowfish.

� Blowfish cipher
Blowfish is a symmetric-key block cipher, designed in 1993 by Bruce Schneier as
an alternative to the then increasingly vulnerable DES [44]. With a 64-bit block size
and a variable key length from 32 bits up to 448 bits, was shown to be vulnerable
to a type of cryptographic attacks called birthday attacks. Since then, the creator of
Blowfish has recommended using its more secure successor, Twofish.

� Rotate by 13 places Cipher (ROT13)
ROT13 is a very simple substitution cipher that replaces a letter with the 13th letter
after it in the alphabet. ROT13 is similar to the Roman Ceasar Cipher. It provides no
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cryptographic security whatsoever. The inclusion of ROT13 in this thesis is solely
to understand the performance of the SP-NV with simple ciphers.

Table 2 shows the comparison in key length, key lengths used in the simulation, block
sizes, and vulnerability of the cryptographic algorithms used in this thesis. These crypto-
graphic algorithms were not compiled and did not include a build script. A compilation
command was to be devised and used in order to create executable binaries from these
algorithms. The command is described in section 4.2.2 is used to create such binaries.
The use of cryptographic algorithms is aimed at the understanding of the performance of
Non-Volatile Memory technologies when used for cryptographic purposes. The results
obtained will be a reflection of how well does the NVMs perform when applied in fields
that require encryption and decryption of data that utilizes commonly used cryptographic
algorithms. The results will also shed light on the potential use of NVMs in designing
non-volatile devices aimed to implement these algorithms on the hardware level. The
design of such devices is one future work that will be further explored.

Table 2. Cryptographic Algorithms’ key lengths, block sizes, and vulnerability comparison.

Cryptographic
Algorithms

Key Length (used in
simulation)

Block Size Vulnerability

AES 128, 192, and 256 bits (256) 128 bits Very Secure

DES 64 bits (53) 64 bits Insecure

ARCFOUR 40 to 2048 bits (256) None Secure

Twofish 256 bits (256) 128 bits Secure

Blowfish 32 to 448 bits (256) 64 bits Insecure

ROT13 None None Very insecure

Non-Cryptographic Algorithms

The second type of applications used in this thesis is a collection of non-cryptographic
algorithms. These algorithms were chosen based on their computational nature. The
JPEG workload will show the performance of the NV-SP when tasked with a stream-like
behavior of instructions. The encoding and decoding of an image require the same set
of instructions to run many times with different data. The bzip2 algorithm is a classic
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compression algorithm that will show the performance of the NV-SP when tasked with
data compression workloads. The specrand workload will show the performance of the
NV-SP when tasked with random number generators that require using random sets of
instructions to generate random numbers.

� JPEG image compression and decompression
JPEG is a standardized compression method for continuous-tone still images, both
full-color and gray-scale images. JPEG is designed to compress real-world-like im-
ages using Discrete Cosine Transform (DCT) compressions algorithm [45]. JPEG
is lossy, meaning that the output image is not exactly identical to the input image.
In this thesis, we use the MediaBench Consortium implementation [46]. The Me-
diaBench implementation of JPEG is a package of two demo programs:

– djpeg
Djpeg is for decoding jpg files to a variety of graphic file formats [47].

– cjpeg
Cjpeg encodes a file to a jpg file from different graphic formats [47].

� bzip2
bzip2 is an open-source single-file compression program first published in 1996
[48]. bzip2 is based on the burrows-Wheeler block-sorting text compression al-
gorithm, and Huffman coding [49]. bzip2 is often used in benchmark suites such
as SPEC CPU2006 Benchmark suite [50]. The version of bzip2 used in the experi-
ment is bzip2-1.0.6 [51]. Both compression, (bzip2-c) and decompression (bzip2-d)
modes are used.

� specrand
specrand is a seeded generator of a sequence of pseudorandom numbers and part of
the SPEC CPU2006 Benchmark [52]. It is based on the "Random Number Genera-
tors: Good Ones Are Hard To Find" [53] algorithm.

4.2.2 Compilation

Since the x86 architecture is a 32-bit architecture simulated in the SE mode of gem5,
the compilation process of the applications used as workloads must accommodate these
constraints. First, the applications are slightly altered before they are compiled. These
changes assure that the workloads are not too big for the simulations and remove any
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code that could cause system calls that are unsupported by the SE mode. Since this is
not possible for already-compiled workloads or for workloads that are too large to edited
manually, smaller applications are targeted, edited, and compiled. Second, the workloads
must be compiled as 32-bit statically linked binaries. To achieve this, all the applications
source code is written in C Language. The GNU GCC 5.5.0 [54] compiler is used to
compile the applications into binaries. The following command is issued to compile the
applications:

gcc app.c app-test.c app.h -m32 -static -O0 -o app

� The compiler and the inputs:

– The gcc command invokes the GNU GCC compiler. The GCC compiler is
one of, if not the most, important piece of open source software in the world
[55]. Developed by the Free Software Foundation, GCC offers support for a
wide array of programming languages. It offers online command options, sup-
ports mixing multiple languages to build applications, and features a debug-
ger, an automatic configuration utility, and many other useful utility programs
[55].

– The app.c input specifies the main source code for the application being
compiled. All the applications edited and compiled for this experiment are
written in the C language.

– The app-test.c input specifies any test bench source codes for testing the
app.c code. This option is only used when the applications themselves do
not accept any input parameters or input files after the compilation process
and can only be tested by executing the code on a test bench.

– The app.h input specifies any header files associated with the app.c code
or dependencies needed for the compilation of the app.c code.

� Compiler option flags:

– The -m32 option compiles the code into binaries that can run on any i386
system [54]. -m32 forces data types, such as int, long, and pointers, to
be set to 32 bits allowing these binaries to be executed on a 32 bit processor.

– The -static option forces the GCC compiler to statically link the binaries
on systems that support dynamic linking [54]. It prevents the app.c code
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from linking with the shared libraries. The system where this command is
executed supports dynamic linking, thus the importance of using this option.

– The -O0 option reduces the compilation time and make debugging produce
the expected results [54]. Although this is a default option in GCC, the use
of -m32 flag invokes some optimization during compilation. The -O0 option
makes sure that any optimization invoked by the -m32 command are ignored.
By using this command and preventing optimizations, if any, the exact instruc-
tions are compiled and executed by the binaries. This way, instructions can be
profiled and information about them can be extracted during the experiments.

– The -o app option specifies the output binary files form the compilation
process.

This compilation command is used primarily with the cryptographic algorithms since the
original code in [40] did not include any build scripts. The non-cryptographic algorithms
included build scripts with the original source code. These building scripts were subse-
quently edited to include the options mentioned above.

4.3 gem5 Configuration

In gem5, the configuration files were created manually without using the included config-
urations that came with the simulator. Since the SE mode was used in the simulations, a
new configuration file was written to describe the architecture. The caches’ configuration
files were also written manually. After the architecture and the caches were configured,
two new trace flags were created, in addition to trace flags built into the simulators, to
trace the behavior of the caches as well as to record the exact instructions being processed
by the CPU.

4.3.1 Configuration Files

Two files were created for the configuration of the architecture and the caches. The first
file caches.py contains the specifications of the L1 I/D caches and the L2 shared cache.
The second file Single_Core.py contains the CPU specifications as well as how the
L1 caches are connected to the CPU, connected to other caches, and what applications are
being simulated. Those two files are as follows:
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caches.py

This file contains the configuration of the L1 and L2 caches used by the architecture. Both
of the caches specifications are written manually and are imported to Single_Core.py
file to connect the caches to the CPU. Listing 1 shows the caches’ specifications. Both of
the caches, L1Cache and L2Cache, extend the BaseCache object [56]. The L1Cache
has an associativity of 2, and no specified size as that is specified when creating the
L1ICache as an instruction cache and L1DCache as a data cache. L2Cache has an
associativity of 4 and a fixed size of 64kB.

Single_Core.py

This file contains the specifications of the CPU, buses, how the different cache levels
are connected to the CPU and the buses, and the applications being executed by the
simulator. Listing 2 shows the Single_Core.py specification of the architecture.

For the CPU, TimingSimpleCPU() CPU model was used. This model was
used because it executes a single instruction in one clock cycle [57] one cycle is one
nanosecond. The CPU clock was defined using system.clk_domain.clock

parameter at 1GHz. The system.mem_mode parameter is set to ’timing’ which
will allow to accurate time measurement of the cache system during the simulation.
This cache timing mode will stop the CPU from requesting any new instructions
for execution until it receives a response for the latest miss occurring in the cache
system. The CPU will be idle until the cache system has mitigated the miss. This feature
will be very important for analysing the outputs of the debugging flags described in 4.3.2 .

The from caches import * is used to import the cache configurations. Two
L1ICache caches are named system.cpu.icache and system.cpu.dcache.
Those two caches connected to the CPU: one as an instruction cache using the
system.cpu.icache.connectCPU() function and one as a data cache using
the system.cpu.dcache.connectCPU() function. One L2Cache named
system.l2cache was created as the L2 cache.

Two buses were created, one to connect the L1 caches to the L2
shared caches using the L2XBar() function named system.l2bus.
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This bus is inside the CPU and is used to connect the L1 caches to
the L2 cache using the system.cpu.icache.connectBus() and
system.cpu.dcache.connectBus() functions to connect the I-cache and
D-cache to the L2 cache respectively. The second bus is created to be a system wide
bus using the SystemXBar() function. This is to enable the connecting of the
L2 cache to the main memory outside the CPU. the The L2 cache is connected to
the system.membus using the system.l2cache.connectMemSideBus()

function. In order for the memory to be created, a memory controller was added using the
standard gem5 implementation of a memory controller using the system.mem_ctrl
parameter. The Main Memory was created using the standard gem5 implementation using
the DDR3_1600_8x8() function. Figure 10 shows the illustration of the architecture
configured in the Single_Core.py file.

A process is then created using the Proccess() function. When the process is
created, the proccess.cmd parameter defines which application is to be simulated
with what input parameters. The process is then assigned to the CPU using the
system.cpu.workload parameter. The function m5.instantiate() signals the
start of the simulation.

Listing 1. caches.py.

#caches.py

from m5.objects import *

class L1Cache(Cache):

assoc = 2

tag_latency = 2

data_latency = 2

response_latency = 2

...

class L2Cache(Cache):

size = ’64kB’

assoc = 4

tag_latency = 20

data_latency = 20

response_latency = 20

...

class L1ICache(L1Cache):
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size = ’4kB’

class L1DCache(L1Cache):

size = ’4kB’

...

Listing 2. Single_Core.py.

#Single_Core.py

import m5

from caches import *

...

system.clk_domain.clock = ’1GHz’

...

system.mem_mode = ’timing’

system.cpu = TimingSimpleCPU()

...

system.cpu.icache = L1ICache(options)

system.cpu.dcache = L1DCache(options)

system.cpu.icache.connectCPU(system.cpu)

system.cpu.dcache.connectCPU(system.cpu)

...

system.l2cache = L2Cache(options)

system.l2bus = L2XBar()

system.cpu.icache.connectBus(system.l2bus)

system.cpu.dcache.connectBus(system.l2bus)

system.l2cache.connectCPUSideBus(system.l2bus)

system.membus = SystemXBar()

system.l2cache.connectMemSideBus(system.membus)

...

process = Process()

process.cmd = [’application’,’parameter1’,’parameter2’, ...]

system.cpu.workload = process

...

m5.instantiate()
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Figure 10. Illustration of the architecture design implemented in Single_Core.py configuration file.

4.3.2 Debugging Flags

In gem5, debugging flags are used to extract information about the simulation during
simulation run time. These trace flags record the behavior of the different parts of the
simulator. For the purposes of this thesis, additional debugging flags were created to
record the behavior of the L1 I-cache. These two debugging flags were named CacheTr
and ExecTr.

The first flag is CacheTr. CacheTr is a simple flag that prints out an identifier
at the time when a miss occurs to the trace file. This is used to distinctly identify when
a miss happens. The CacheTr is added to the bace.cc file of the gem5 source
code. bace.cc is the file where the base behavior of the cache is defined in the
simulator. Listing 3 shows where the CacheTr is called during simulation. In listing
3, handleTimingReqMiss function handles any misses that occur in the cache.
When a miss occurs, this function defines the behavior of the cache by requesting the
data/instruction from the higher levels of the caches in the memory system. When the
CPU requests the next instruction, if the instruction is not in the cache, the cache will
issue a Timing Request using the handleTimingReqMiss function. Here, adding
the CacheTr flag to the handleTimingReqMiss will result in distinctly identifying
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when a miss occurs and adding the "THIS IS A MISS" identifier to the debugging file.
This identifier includes the name of the cache where the miss occurred, as shown in
listing 4, which will come handy in extracting the instructions causing the misses in the
I-cache. This flag will be triggered for every cache in the cache system.

Listing 3. CacheTr flag Implementation.

BaseCache::handleTimingReqMiss(...)

{

...

missAt = (long)curTick(); //Time of miss

DPRINTF(CacheTr, "THIS IS A MISS : Miss request sent at %ld

\n", missAt); //flag the miss into the trace file

...

The second flag is ExecTr. ExecTr is a more complex flag made from a combination of
gem5 flags called CompoundFlag. The CompoungFlag is very useful when multiple
pieces of information from different parts of the simulation are traced at the same time.
These CompoungFlags are execution flags that do not require additional code being
added to the source code of the CPU model – it is only included in the build scripts.
The ExecTr is defined in the build script of gem5’s BaseCPU model – the base model
for the Timing CPU model used in the simulated architecture. The ExecTr flag will
print the time of when an instruction is received by the CPU, the CPU ID of the CPU
that received the instruction, and what instruction is being received. These two flags are
effective because whoever the CacheTr flag is triggered, this means that the CPU is
idle and the next time ExecTr is triggered is when the CPU receives the instruction
that caused the CacheTr to be triggered in the first place. This will help to extract and
organize the information in the debugging file after each simulation. A sample of the
output of CacheTr and ExecTr flag is shown in listing 4.

Listing 4. CacheTr and ExecTr sample traces.

... //CacheTr sample trace

1812000: system.cpu.icache: THIS IS A MISS : Miss request sent

at 1812000

... // ExecTr sample trace

1913000: system.cpu 0xb7fdb950 : mov ecx, 0x6ffffeff

...
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4.3.3 Simulation Commands

The gem5 simulator is ran through the command line interface of a Linux machine. To
run the simulation, the following command was issued:
build/X86/gem5.opt --debug-flags=CacheTr,ExecTr

--debug-file=tr/Trace_IcacheSize_DcacheSize_L2cacheSize.txt

configs/Single_Core.py --l1i_size IcacheSize --l1d_size

DcacheSize --l2_size L2cacheSize This command executes as follows:

� Launching the simulator

– The build/X86/gem5.opt command
This part starts the gem5 simulator. The gem5.opt is the executable that
initializes the simulator.

– The --debug-flags and --debug-file options
These are the simulator options. --debug-flags activates the debugging
flags for the trace file during the execution of the simulator. The debugging
flags set by this command are the flags previously discussed – CacheTr and
ExecTr. the --debug-file option specifies the file where the traces from
the simulation as recorded. In this case, the traces are saved as a text file that
is named according to the sizes of the I-cache, D-cache, and L2 cache in a
specified folder tr.

� Simulation configuration

– The configs/Single_Core.py parameter
This is the system configuration file. It specifies the system architecture, cache
design, and the application being simulated.

– The --l1i_size, --l1d_size, and --l2_size options
These are the system configuration options. They specify the sizes of the I-
cache, D-cache, and L2 cache respectively.

4.4 NVSim Configuration

The configuration of NVSim requires two types of files. The first type are the .cfg files
where the specifications of the Non-Volatile device are being described. In the .cfg
files, the capacity, type, and NVM cell model of the device are set. The second type is the
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.cell file where the specification of a single Non-Volatile cell is modeled. It describes
the design specifications of the NVM cell. For the purposes of this thesis, the generic
NVM prototypes provided by NVSim are used for both the .cfg and .cell files. The
only modification done on these files is changing the device capacity in the .cfg file
to acquire NVM performance and energy estimation of the different NVM technologies’
devices at different sizes.

4.5 Framework Implementation

Figure 11. Illustration of the framework adopted in this thesis to obtain results.

In this thesis, the framework described in section 1.2 is implemented to generate the final
results. Figure 11 illustrates the framework implementation flow used to obtain the final
results.

The first stage is to determine the cache configuration. After trying multiple con-
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figurations, the cache sizes were set at 4kB for the L1 caches and 64kB for the L2cache.
The gem5 configuration files were finalized as described in 4.3.1 with the architecture
illustrated in Figure 10. NVSim .cfg files are also finalized according to the cache
configuration. Applications were set to be simulated using the system configurations as
well. The debugging flags described in 4.3.2 were also added to the simulator. However,
the debugging file – referred to as the trace file – where the debugging flags write the
trace information is huge considering that there is information written into it about every
single access to every cache in the system as well as information about every instruction
being executed by the CPU.

4.5.1 Bash Scripts Trace Parser

In order to organize the information in the trace files and count how many misses each
instruction have caused, a bash script was written to execute at the end of each simulation.
The bash script, named trParser or trace parser, will read the trace file line by line and
checks for the "THIS IS A MISS" identifier written to the trace file by the CacheTr
flag. However, since the CacheTr is triggered for every cache, the trParser will
also identify which instruction causing the miss by reading the name of the cache where
the miss occurred as well. Due to the cache timing mode feature set in the system
configuration file, the CPU is idle until any cache miss is resolved including the instruction
misses. Whenever the CacheTr flag is triggered, the next ExecTr trigger will contain
the original instruction causing the miss triggering the CacheTr flag. CacheTr will
print out a "THIS IS A MISS" identifier for the I-cache and the ExecTr will print the
instruction causing the miss when the miss is resolved by the caches and the instruction
is received by the CPU. This will result in printing the instruction right after printing
the "THIS IS A MISS" identifier it triggered. Taking advantage of this, the trace parser
can identify which instruction caused a miss during the simulation. These instructions are
written into a temporary file named ALLMISSESINST. Figure 12 show the flow in which
the CacheTr and ExecTr flags are triggered. The ALLMISSESINST file will contain
all the instructions executed during the simulation and the "THIS IS A MISS" identifier
one line before the instructions that caused I-cache misses.

The next step of the trParser is to use the ALLMISSESINST file to count the number
of misses each instruction causes. To do so, the trParser reads the ALLMISSESINST
file line by line to extract the instructions causing misses. For every miss occurrence,
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Figure 12. The flow in which the CacheTr and ExecTr flags are triggered..

the trParser writes the instruction to LISTOFINST file. When this is done, the
trParser counts the occurrences of each instruction found in the LISTOFINST file
and sorts them from the highest number of occurrences to the lowest. At the end,
trParser will generate a filed named SORTEDINST that contains all the instructions
causing misses during the simulation the number of misses each instruction had caused.

4.5.2 NVSim Output Parser

For every time NVSim is used, an output file is generated with the estimations pertaining
to the .cfg file passed to the simulator as input. A bash script, NVSimParser was
written to run the NVSim simulator on multiple .cfg files in order. Each of the output
files generated for each of the .cfg files is parsed by NVSimParser line by line. The
NVSimParser will extract information regarding latency, dynamic energy, and leakage
power of each of the .cfg files and write them into a file named NVSimFINAL. In the
end, the NVSimFINAL file will have the latency, dynamic energy, and leakage power
estimations for MRAM, PCRAM, and SRAM. These numbers are later used to evaluate
the implementation of NV-SP.
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4.6 Analysis

In order to evaluate the impact of the NV-SP and the I-cache before and after the incorpo-
ration of NV-SP into the memory hierarchy, an analysis flow was developed to calculate
the effects of the NV-SP on the I-cache performance and energy. This flow uses the pre-
liminary results from gem5 and NVSim along with the results from the bash scripts.

Performance and Energy Evaluation before NV-SP

First, the latency of the I-cache is determined using the configuration of the caches.py in
listing 1. During a miss, the I-cache issues two responses and one tag request: one tag
request (Read request) from the CPU for an instruction, when the instruction is not in the
cache, a response is issued asking for the instruction from the L2 cache. The L2 cache
then responds to the I-cache followed by a response from the I-cache to The CPU. The
latency of an I-cache miss is:

IcL = L2Rl +(L1Rl ∗3) (1)

Where IcL is I-cache latency, L1Tl is L1 cache tag_latency– parameter for cache Read
latency, L2Rl is L2 cache response_latency, and L1Rl is L1 cache is response_latency–
parameter for responding to a request. Using equation 1, the latency of the cache is 26
ns, or 26 cycles.

Second, using the statistics from the gem5 debugger, the total number of cycles,
the total number of misses, and the total number of accesses to the I-cache. These
statistics are used to obtain more information.

Since the total number of I-cache misses is known and from equation 1 the I-cache
latency is obtained, to find the total number of cycles spent on all the misses:

T ImC = IcL∗Nm (2)

Where T ImC is the total instruction miss cycles, IcL is I-cache latency, and Nm is the total
number of I-cache misses. Using equation 2, the total latency caused by all the misses
can be calculated.
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Using the information obtained on the energy estimation for SRAM from NVSim,
the total access energy can be determined. All the accesses to the I-cache are Read
Accesses from the CPU– As shown by the statistics generated by the debugger. However,
in case of a miss, when the I-cache receives information from the L2 cache, I-cache write
energy also must be taken into account. Equation 3 shows the calculation for the total
I-cache access energy:

T IAccessEnergy = (SRAMReadEnergy ∗ IcA)+(SRAMWriteEnergy ∗Nm) (3)

Where T IAccessEnergy is the total I-cache access energy, SRAMReadEnergy is NVSim
Read energy estimation for SRAM, IcA is the total Read accesses to the I-cache,
SRAMWriteEnergy is NVSim Write energy estimation for SRAM, and Nm is the total num-
ber of I-cache misses.

The last equation is for determining the total power leakage of the I-cache. NVSim pre-
liminary results also show the power leakage of the SRAM device per second. Since the
total number of cycles is known from the gem5 debugger statistic, the total time can be
determined. Since each cycle is one nanosecond in simulation time, the total time of sim-
ulation can be calculated. Equation 4 shows the calculation of the total power leakage for
the I-cache:

T IPowerLeakage = SRAMPowerLeackage ∗Timeexecution (4)

Where T IPowerLeakage total power leakage for the I-cache, SRAMPowerLeackage is NVSim
Read power leakage per second estimation for SRAM, and Timeexecution is the total exe-
cution time in seconds.

Using Equations 1, 2, 3, and 4, both the performance and energy evaluation of the I-cache
can be done. By obtaining this information, comparing the performance and energy of
the I-cache before the incorporation of the NV-SP can be achieved.

Performance and Energy Evaluation after NV-SP

In order to evaluate the impact of the NV-SP on the performance of the I-cache, the
number of misses caused by each instruction must be added to the calculation. Since
the latency of the Read and Write operations differ depending on the technology used
in the NV-SP, and the NV-SP under evaluation for different sizes, new latency, and
energy-related equations must be used.
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First, different sizes of the NV-SP can store different numbers of instructions. In
this thesis, three sizes are used. Since the architecture is 32-bit x86, the number of
instructions that can be stored in the NV-SP are 250, 500, and 1000 instructions for sizes
1 kB, 2kB, and 4kB respectively. In accordance, the number of instructions causing the
highest number of misses are moved to the NV-SP to fill. Meaning that in case the NV-SP
is 1kB, for example, the 250 instructions causing the highest number of misses, found
in the SORTEDINST file, are moved to the NV-SP. This can greatly reduce the number
of misses happening in the I-cache as well as leave more space for instructions causing
fewer misses. This reduction of misses can greatly affect the latency of the total number
of misses in the cache.

Equation 5 shows the calculation of the total instruction miss cycles of I-cache
after incorporating the NV-SP:

SP_T ImC = IcL∗ (Nm −NV SPm) (5)

Where SP_T ImC is the total instruction miss cycles of I-cache after incorporating the
NV-SP, IcL is I-cache latency, Nm is the total number of I-cache misses, and NV SPm is
the total number of misses caused by the instructions stored in the NV-SP.

Similarly, the access energy to the I-cache will also have an effect on the perfor-
mance after incorporating the NV-SP, Equation 6 shows the calculation of the access
energy of the I-cache after the incorporation of the NV-SP:

SP_T IAccessEnergy = (SRAMReadEnergy ∗ IcH)+(SRAMWriteEnergy ∗ (Nm −NV SPm)) (6)

Where SP_T IAccessEnergy is the total access energy of I-cache after incorporating the
NV-SP,SRAMReadEnergy is NVSim Read energy estimation for SRAM, IcH is I-cache
number of hits, SRAMWriteEnergy is NVSim Write energy estimation for SRAM, Nm is the
total number of I-cache misses, and NV SPm is the total number of misses caused by the
instructions stored in the NV-SP.

The next step is to calculate the total number of cycles when the NV-SP was used.
This is equal to the total number of Read accesses to the NV-SP as well as the number
of instruction stored in the NV-SP since that is the number of Write operations to the
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NV-SP. The number of Read accesses to the NV-SP is the total number of misses caused
by the instructions with the highest number of misses, since the NV-SP is only accessed
to retrieve these instructions. The number of Write accesses is the same as the number of
instructions stored in the NV-SP since they are only written once and never evicted.

From NVSim, the access latency and energy of the NVM technologies is obtained.
For all the NVM technology, equation 7 describes the calculation of the total access
latency cycles of the NV-SP. Equation 8 describes the calculation of the total access
energy of the NV-SP for all the NVM technologies:

NV MAccessLatency = NV MReadLatency ∗NV SPm +NV MWriteLatency ∗NV SPi (7)

NV MAccessEnergy = NV MReadEnergy ∗NV SPm +NV MWriteEnergy ∗NV SPi (8)

Where NV MAccessLatency is the total NVM access latency, NV MAccessEnergy is the total
NVM access energy, NV MReadLatency is NVSim Read latency estimation for the NVM
technology, NV MReadEnergy is NVSim Read energy estimation for the NVM technol-
ogy, NV MWriteLatency is NVSim Write latency estimation for the NVM technology,
NV MWriteEnergy is NVSim Write energy estimation for the NVM technology, NV SPm is
the total number of misses caused by the instructions stored in the NV-SP, and NV SPi is
the total number of instructions stored in the NV-SP.

To calculate the total power leakage of the NVM, a similar equation to equation 4
is used. From NVSim, the power leakage per second of the NVM technologies is known.
However, the power leakage of the NV-SP is only calculated for the total number of
cycles it was accessed. Equation 9 shows the calculation of the power leakage of the
NVM technologies:

NV MPowerLeakage = NV MPowerLeackage ∗TimeNV Maccess (9)

Where NV MPowerLeakage is the total NVM power leakage, NV MPowerLeackage is NVSim
power leakage estimation for the NVM technology, and TimeNV Maccess is the total access
time to the NV-SP.
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Results’ Normalization

Since there are many different applications used to evaluate the performance and energy
of the different NVM technologies, there must be a scale where the results can be com-
parable. Therefore, in order to increase simplicity for the many results obtained from the
previous equations, all results are normalized to 1. The normalization base is the original
SRAM performance before incorporating the NV-SP. Applications are ran through sim-
ulations to obtain preliminary results for each application. Next, equations 1, 2, 3, 4, 5,
6, 7, 8, and 9 are applied to these results for each application. In order to normalize the
results, the I-cache initial results are equal to the execution time. Equation 10 shows the
normalization calculation for the NVM performance:

NV Mper f ormance =
SP_T ImC+NV MAccessLatency

Timeexecution
(10)

Where NV Mper f ormance is the total NVM performance measurement in relation to the
original simulation time, SP_T ImC +NV MAccessLatency will be equal to the new time of
execution, and Timeexecution is the total execution time in seconds. By dividing the new
execution time after incorporating the NV-SP by the original execution time of each ap-
plication, a scale is developed to evaluate the performance of the NV-SP for all the appli-
cations using all the different NVM technologies at different sizes. A similar process is
done to obtain the Measurements for the NVM energy evaluation. Since the T IAccessEnergy

is equivalent to the total energy of the I-cache before incorporating the NV-SP, it is used
as the base for the normalization oin the case of evaluating NVM energy. Equation 11
shows the normalization of the NVM energy:

NV MEnergy =
SP_T IAccessEnergy +NV MAccessEnergy

T IAccessEnergy
(11)
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5 Computation in Memory (CiM) with NVM

For more than 150 years, it was believed that resistors, capacitors, and the inductors are
the only three basic passive circuit elements. In 1971, Chua [7] set forth the logical and
scientific basis for the existence of a fourth basic circuit element, along with the resistor,
capacitor, and the inductor. Chua theorized that such circuit element is a two-terminal
circuit element with no internal power supply – the Memristor. It’s functional relation-
ship, memristance, is between the magnetic flux (Φ) and charge (q). It was 37 years later
that researchers at the Hewlett Packard Labs introduced the first working prototype of a
memristor in 2008 [8].

Memristors, along with their non-linear resistance, can "remember" [32] the recent
resistance of the device when the voltage is turned off. The characteristics of memris-
tance and the ability to store information give memristors a great advantage for nanoscale
electronics. It has been shown that memristors can be used for logical operations [17]
[16] as well. Non-volatile Memory, in the form of memristors, can offer a possible path
towards efficient and configurable memory arrays that can be programmed to complete
complex logical operations. In other words, memristor-based NVM devices have the
potential to complete tasks of Computation in Memory (CiM).

It has been demonstrated that logical operations such as AND and OR can be achieved
with as little as two memristors [16] as shown in figure 13. An IMPLY gate can also be
achieved using two memristors as demonstrated in [18].

(a) (b) (c)

Figure 13. Demonstration of a: (a) memristor [17], and memristor-based (b) AND and (c) OR logic gates
[16].

While AND and OR operations are simple, other logical operations such as NOR and
NAND can take three memristors [17] shown in figure 14.
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(a) (b)

Figure 14. Demonstration of memristor-based (a) NOR and (b) NAND logic gates [17].

In [15], an XOR gate was created using a memristor-based AND gate and a memristor-
based OR gate along with a fifth memristor to store the output of the XOR gate. While
traditionally an XOR gate is created using a NAND, an AND, and an OR gates, memristor-
based logic offered the same functionality of an XOR gate using only two logical gates.

(a) (b)

Figure 15. Demonstration of (a) memristor-based XOR and (b) truth table of memristor-based XOR [15].

Since memristor-based logical operations are possible, several applications for memristor-
based logic were proposed. Most notably, [19] and [15] implemented fully functional
memristor-based Full Adders, [20] created and evaluated a memristor-based crossbar to
implement dot product for Vector-Matrix Multiplication used in efficient neural networks,
while [21] demonstrated that such crossbars can also be used for precise signal and image
processing.
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5.1 NVM Security

Not only that NVMs can offer analog logic operations, but they can also be used to in-
crease security by decreasing the level of data management within the system. By doing
so, NVM-based CiM can offer secure implementations of common mathematical trans-
formation algorithms used in cryptography.

5.1.1 AES S-Box

As discussed in section 4.2.1, different cryptographic algorithms are used to evaluate
the performance, access energy, and power leakage of the proposed NV-SP. However,
in this section, the focus will be drawn towards the Advanced Encryption Standard that
is based on the implementation of the Rijndael S-box. The Rijndael S-box [33] is a
lookup table implementation created by Joan Daemen and Vincent Rijmen as part of the
National Institute for Standards and Technology’s (NIST) contest for the new Advanced
Encryption Standard (AES), which Rijndael had eventually won in 2001 [34].

The goal of the design of Rijndael S-box is to create a transformation algorithm
that is highly resistant to linear and differential cryptanalysis. This is achieved by
minimizing the correlations between the input bits and output bits of the linear trans-
formations [33]. The Rijndael S-box maps an input of 8-bits, i, to 8-bit output, s. The
following steps describe the transformation algorithm used to map the input to the output:

� Both of the input and output are polynomial interpretations over Rijndael’s finite
field, also known as Galois field GF(28).

� Map input into it’s multiplicative inverse, b, using the Nyberg transformation [35]:

GF(28) =
GF(2)[x]

x8 + x4 + x3 + x+1
(12)

� Transform the multiplicative inverse, b, using the affine transformation shown in
equation 13. This equation is an expression of the summation of multiple rotations
of multiplicative inverse as a vector. It is important to point out that the addition in
this equation is an XOR operation:

s = b⊕ (b≪ 1)⊕ (b≪ 2)⊕ (b≪ 3)⊕ (b≪ 4)⊕6316 (13)
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S



s0

s1

s2

s3

s4

s5

s6

s7



= M



1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1



b



b0

b1

b2

b3

b4

b5

b6

b7



⊕ c



1

1

0

0

0

1

1

0



(14)

Equation 14 describes the affine transformation used in for Rijndael S-Box, expressed in
equation 13, as a vector-matrix multiplication.

5.1.2 NVM-based AES S-Box

In this section, memristor-based logical operations are used to implement the affine
transformation described in equation 14. Since the addition used in the equation is
an XOR operation, crossbars described and implemented in [20] and [21] can not be
used since those crossbars are dot product multiplications where the addition is an OR

operation. For this implementation, the XOR gate described in [15] is used.

Similar to the implementation of [15], the implementation of the XOR gate in-
cluded two SPICE memristor models: a standard memristor model described in [36] and
a threshold memristor described in [37]. Since the vector matrix multiplication (M.b) has
an XOR operation as addition, the resulting vector V can be produced using only 5 XOR

operations. The reasoning behind this is that every row in matrix M has three 0 elements
in sequence. Knowing that

si =⊕7
i=0⊕7

j=0(Mi j.bi)⊕ ci (15)

and assuming for every multiplication Mi j.bi for si that all the dot product where the Mi j

element is equal to "1" are XORed and the result is a boolean value xi. When the dot
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product where the Mi j element is equal to "0", the result dot product will always equal
to "0". The result of the vector-matrix multiplication is a vector V :

Vi = xi ⊕0⊕0⊕0 (16)

where xi can have two potential values as follows:

Vi(xi) =


1, 1⊕0⊕0⊕0 = 1

0, 0⊕0⊕0⊕0 = 0
(17)

After simplification of Mi j.bi, equation 17 shows that the final result of the multiplication
will always equal to the value of xi. This means that the three 0 elements in every matrix
row have no effect on the XOR summation of the dot product of the vector-matrix multi-
plication. Furthermore, since the By reducing the needed XOR operations, a simple, yet
effective, implementation can be designed. Resulting vector V shown in equation 18:

V =



b0 ⊕b4 ⊕b5 ⊕b6 ⊕b7

b0 ⊕b1 ⊕b5 ⊕b6 ⊕b7

b0 ⊕b1 ⊕b2 ⊕b6 ⊕b7

b0 ⊕b1 ⊕b2 ⊕b3 ⊕b7

b0 ⊕b1 ⊕b2 ⊕b3 ⊕b4

b1 ⊕b2 ⊕b3 ⊕b4 ⊕b5

b2 ⊕b3 ⊕b4 ⊕b5 ⊕b6

b3 ⊕b4 ⊕b5 ⊕b6 ⊕b7



(18)

5.1.3 Memristor-based S-Box implementation

The memristor-based S-box implementation can take advantage of this by reducing the
number of XOR gates needed to implement the multiplication array. A five-input array is
used to XOR the elements in each row Vi. Each array consists of 4 XOR gates as shown
in figure 16 (a):
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(a) (b)

Figure 16. Demonstration of the memristor-based XOR array used to implement (a) the S-box affine trans-
formation and (b) the inverse S-box affine transformation.

This means that for every row i of the matrix, five XOR gates can be used to produce the
si where five XOR gates are placed in an array to XOR the Mi j value where it is equal
to "1" to produce the Vi value. The fifth XOR gate is placed to XOR the Vi and the ci to
produce the final si value.

To test this, let i be an 8-bit input. i = 101010102 or AA16, the leftmost bit being
the least significant. To find the Sbox equivalent of i, we calculate the multiplicative
inverse of i, which, in this case, is 000100102 or 1216. By applying the V on 1216:

V =



b0 ⊕b4 ⊕b5 ⊕b6 ⊕b7

b0 ⊕b1 ⊕b5 ⊕b6 ⊕b7

b0 ⊕b1 ⊕b2 ⊕b6 ⊕b7

b0 ⊕b1 ⊕b2 ⊕b3 ⊕b7

b0 ⊕b1 ⊕b2 ⊕b3 ⊕b4

b1 ⊕b2 ⊕b3 ⊕b4 ⊕b5

b2 ⊕b3 ⊕b4 ⊕b5 ⊕b6

b3 ⊕b4 ⊕b5 ⊕b6 ⊕b7



=



0⊕1⊕0⊕0⊕0

0⊕1⊕0⊕0⊕0

0⊕1⊕0⊕0⊕0

0⊕1⊕0⊕0⊕0

0⊕1⊕0⊕0⊕1

1⊕0⊕0⊕1⊕0

0⊕0⊕1⊕0⊕0

0⊕1⊕0⊕0⊕0



=



1

1

1

1

0

0

1

1



⊕ c



1

1

0

0

0

1

1

0



= S



0

0

1

1

0

1

0

1



(19)
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The resulting vector S, is an 8-bit output as 101011002 or AC16, which is the Sbox
equivalent of input i.

The decryption process can also be implemented by applying the same method to
the inverse S-box equation 20, and expressed as a vector-matrix multiplication in 21:

b = (s≪ 1)⊕ (s≪ 3)⊕ (s≪ 6)⊕516 (20)

b



b0

b1

b2

b3

b4

b5

b6

b7



= Inv_M



0 0 1 0 0 1 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0



S



s0

s1

s2

s3

s4

s5

s6

s7



⊕ Inv_c



1

0

1

0

0

0

0

0



(21)

By applying the same method used to generate the V vector from the Mi j.bi vector-matrix
multiplication of the affine transformation of the S-Box, the inverse vector Inv_V is also
generated from the Inv_Mi j.Si vector-matrix multiplication as follows:
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Inv_V =



b2 ⊕b5 ⊕b7

b0 ⊕b3 ⊕b6

b1 ⊕b4 ⊕b7

b0 ⊕b2 ⊕b5

b1 ⊕b3 ⊕b6

b2 ⊕b4 ⊕b7

b3 ⊕b5 ⊕b0

b1 ⊕b4 ⊕b6



(22)

The implementation of the array to generate the inverse vector Inv_V consists of 3 XOR

gates as shown in figure 16 (b).

By using the implementations above, memristor-based logic can be used to implement the
AES S-box affine transformations, both forward and inverse, shown in figures 14 and 21.
The data can be encrypted and decrypted in memory at very little cost of energy and time.
By doing so, memristor-based logic is demonstrated to offer in-memory computing capa-
bilities with very little data management, allowing higher accuracy and fault management.
Such implementation offers high security as data is directly stored as encryption with no
copy of the actual data existing anywhere else. The data can be decrypted in memory as
it is being retrieved from memory. The arrays can be implemented as stand-alone compo-
nents, but it is possible to program a collection of memristors (or NVM cells) in an NVM
memory device to complete these XOR operations while also using the same memristors
for storage.
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5.1.4 AES Sbox implementation comparison

In this section, the number of elements needed for the different implementations of the
AES S-Box are presented. Three implementations are used in the comparison when using
NVM technology to store/generate the S-Box and inverse S-Box:

� AES S-Box as a look up table. This implementation is the one used in the AES
application used in the simulation. The S-Box and the inverse S-Box are stored as
a Lookup Tables stored in memory. The S-Box S-Box and the inverse S-Box are
accessed by the algorithm during execution to find the S-Box and inverse S-Box
equivalents.

� AES S-Box as code. For the purposes of this thesis, a C Language implementation
of the S-Box was developed. In this implementation, the S-box is not stored as a
Lookup Table, but instead it is embedded in code. The S-Box and inverse S-Box
equivalents are generated during execution. Listing 5 presents the C Language code
implementations for generating the S-Box and the inverse S-Box. This code was
tested successfully with a 32-bit instruction.

� As shown in section 5.1.3, implementation of the S-Box and inverse S-Box using
NVM-based CiM is achieved. Such implementation is highly secure and it is pos-
sible at a very low cost of energy and time.

Listing 5. S-Box C language Implementation.

makesbox(in) {

x = multiplicative_inverse(in)

x = x ^ ((x << 1) | (x >> 7)) ^ ((x << 2) | (x >> 6)) ^ ((x <<

3) | (x >> 5)) ^ ((x << 4) | (x >> 4)) ^ 0x63;

return x;

}

invsbox(s) {

x = ((s << 1) | (s >> 7)) ^ ((s << 3) | (s >> 5)) ^ ((s << 6) |

(s >> 2)) ^ 0x05;

x = gmul_inverse(x);

return x;

}
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Each of those implementations offer advantages but also come with a cost. Lookup
Tables increase the performance of the AES algorithm, but it is insecure as it is vulnerable
to different types of attacks. Implementing the S-Box as C code reduces the performance
of the algorithm since each time S-Box equivalents are needed the code will generate
them, but it is more secure than using a Lookup Table. The NVM-based S-Box can be
complicated to implement and requires programming the NVM cells to complete the
logical operations.

Table 3 presents the total storage and number of NVM elements each implementa-
tions require. The Lookup Tables implementations will require storing the S-Box in
memory. Each of the S-Boxes’ lookup table is made of 16 rows and 16 columns, which
means that there are 256 elements in each table. Since the S-Box takes an input of 8
bits and gives output of 8 bits, each element in the lookup table will require one Byte
of storage. This means that each lookup table requires 256 Bytes making a total of 512
Bytes of storage for both the tables. Sine each element can store one bit, a total of 4096
elements needed to store the lookup tables in memory.

The C code implementation, assuming the the code is stored in memory and never
evicted, is accessed whenever the algorithm needs to generate either the S-Box or the
inverse S-Box equivalents. Non-optimized 32-bit assembly code was generated for
both of the functions used in the C Language code. The assembly code showed that 50
instructions are required to complete the function makesbox() and 39 instructions to
complete the function invsbox(). Each of those instructions is 32 bits, equalling to 4
Bytes per instruction. The makesbox() will require 1600 elements while invsbox()
will require 1248 elements, totalling to 2848 elements to store the code.

As for the NVM-implementation of the S-Box, the AES equivalent is generated
for a 32-bit data for the purpose of consistency with the other two implementations.
Section 5.1.3 established that for an 8 bit input only 5 bits and 3 bits of that input are
required to be XORed to generate the S-Box and inverse S-box equivalents respectively.
This means, for a 32-bit input, 4 arrays are needed. For the S-Box equivalent, each array
has 4 XOR gates, each gate required 5 memristors, totalling to 80 memristors for 32 bit
input to generate the S-Box equivalent. As for the inverse S-Box equivalent, each array
has 3 XOR gates, each gate required 5 memristors, totalling to 60 memristors for 32 bit
input to generate the inverse S-Box equivalent. This totals to 140 memristors, or NVM
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elements needed to generate the S-Box equevelant using NMV-based CiM.

Table 3 shows that implementing the S-Box using NVM-based CiM will greatly

Table 3. The total storage and number of elements needed for each of the AES S-Box implementations.

S-Box Implementation Storage needed Number of storage elements needed

Lookup Tables 256 Bytes for each of the S-Box
and inverse S-Box

4096 elements

C code

50 32-bit instructions for S-Box

39 32-bit instructions for inverse

S-Box

2848 elements

NVM-Based
80 elements for S-Box

60 elements for inverse S-Box
140 NVM elements

reduce the number of elements needed to complete the encryption and decryption of
the data. The NVM-based implementation of the S-Box and inverse S-Box shows
that using CiM can bring huge advantages such as greatly reduce the energy cost and
number of storage elements needed to process and store data. By doing complex logical
operations in memory, data that can be generated when needed instead of being stored
in memory. This will further improve performance by reducing time and increase the
energy efficiency of the system.
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6 Experimental results

In this chapter, results from the experiment are shown and discussed. In section 1, pre-
liminary results from gem5 and NVSim are shown. Results from gem5 are shown and
compared for each of the workloads while results from NVSim estimations of perfor-
mance and energy for each of the technologies.

6.1 Preliminary Results

Preliminary results from gem5 and NVSim are crucial for this thesis. These results will
be used to draw conclusions on the performance of the I-cache before and after the im-
plementation of the NV-SP. These results are also utilized to formulate the final results.

6.1.1 gem5 Simulation Results

For the gem5 simulator, the preliminary results are obtained from the statistical output
of simulator. The simulator generates a statistics file after each simulation. This file
contains information on the total number of accesses to all the caches, the number
of instructions simulated, and information regarding the timing of the simulation and
overall statistics. For the purposes of this thesis, information regarding the number
of accesses, number of hits, and number of misses regarding the I-cache are extracted
from the statistics file. The duration of the simulation (simulator time, not real time)
are also used to compare the execution time before and after the implementation of NV-SP.

Table 4 shows the number of accesses, hits, misses, and miss rate of the I-cache
for each of the Cryptographic Algorithms assigned to the architecture during simulation.

Table 4. I-cache simulation results for the Cryptographic Algorithms.

AES DES ARCFOUR Twofish Blowfish ROT13

Accesses 1134165 1218380 237783 419250 1719628 193483

Hits 1115893 1215756 236108 413552 1717670 191804

Misses 18258 2764 1852 5594 1953 1676

Miss Rate 1.60% 0.22% 0.77% 1.33% 0.11% 0.86%
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From table 4, the number of misses compared to the number of the total number of ac-
cesses to the I-cache are fairly low, this is largely due to the small size of the workloads
assigned to the architecture. While the number of misses is low, the miss rates of the
workloads are fairly high. This is due to the small size of the I-cache. A number of com-
pulsory misses occur while the I-cache is being populated with the first instructions added
to the I-cache, a low number of conflict and capacity misses actually occur. Furthermore,
AES and Twofish workloads show a much larger gap of miss rate compared to the other
workloads, which can be attributed to the fact that both these algorithms are using an Sub-
stitution Box (Sbox) as part of the encryption and decryption process. Access to the Sbox
repeatedly at different stages of the algorithm causes instructions that access the Sbox to
be evicted from the I-cache, thus causing both conflict and capacity misses to occur.

Table 5 shows the number of accesses, hits, misses, and miss rate of the I-cache for each
of the Non-Cryptographic Algorithms assigned to the architecture during simulation.

Table 5. I-cache simulation results for the Non-Cryptographic Algorithms.

Djpeg Cjpeg bzip2-d bzip2-c specrand

Accesses 419250 1719628 97790934 97790934 44498463

Hits 413552 1717670 97533505 97153453 42999835

Misses 6460 6934 257412 637481 1489776

Miss Rate 1.54% 0.40% 0.26% 0.65% 3.34%

Table 5 shows that the Non-Cryptographic Algorithms have shown a similar pattern to
the Cryptographic Algorithms with low misses compared to the total number of accesses
to the I-cache. Bzip2 compression and decompression had the same number of accesses
to the I-cache, but bzip2 compression had more than double the misses caused by bzip2
decompression. However, this difference in I-cache misses for both the bzip2 modes does
not exclude them from the aforementioned pattern. Nonetheless, specrand is an exception
to the pattern. The miss rate of specrand is large for low miss rates expected from an
I-cache. Although specrand, had less than half of the accesses to the I-cache compared to
bzip2, specrand caused a little more than double the misses caused by bzip2.
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6.1.2 NVSim Estimation Results

For the NVSim, the preliminary results are obtained from the direct output of the mod-
eling program. The output of the modeling program contains estimations regarding the
area, performance, access energy, and power leakage of the memory cell defined in the
configuration file passed as input. Estimations for access latency in Table 6 and access
energy and power leakage per second in Table 7 were obtained for 1kB, 2kB, and 4kB
PCRAM and MRAM to be used in measuring the performance and energy of the NV-SP.
However, since SRAM is only used to estimate the performance and energy of the I-cache
before and after incorporating the NV-SP into the system, estimations for 4kB were only
obtained.

NVSim Access Latency Results

Table 6. NVSim Read and Write access latency estimations for SRAM, PCRAM, and MRAM.

1 kB 2 kB 4 kB

Read Write Read Write Read Write

SRAM 0.141 ns 0.112 ns 0.159 ns 0.149 ns 0.324 ns 0.227 ns

PCRAM 0.153 ns 150.091 ns 0.159 ns 150.096 ns 0.267 ns 150.122 ns

MRAM 1.582 ns 10.124 ns 1.584 ns 10.125 ns 1.766 ns 10.206 ns

Table 6 shows the NVSim latency estimations for each of the memory technologies used
in this thesis. PCRAM clearly has the advantage of Read latency over MRAM. Since
PCRAM Read operation, explained in section 3.1.2, is similar to elecrical discharge,
the information stored in PCRAM takes little time to be released from the memory
cell using a low voltage pulse. Since information is stored in the MRAM cell as the
MTJ’s resistance, an electrical circuit is connected to the bottom electrode of the MTJ to
interpret the stored information. This increases the read latency of the MRAM memory.
PCRAM also have an advantage over SRAM at 4kB, but this advantage is not noteworthy.

Nonetheless, PCRAM is overwhelmingly outperformed when it comes to Write la-
tency. MRAM requires less time to write into the MRAM memory than PCRAM due
to the nature of the Write operations for each of the technologies. MRAM takes a fairly
long time to Write into memory compared to SRAM due to the rotation time of the MTJ
Free Layer, PCRAM requires a longer time to SET the PCRAM cell. This longer charge

63



time is attributed to the long waiting time needed for the long SET pulses that cause the
phase-changing material to heat into crystallization temperature (Tcryst).

NVSim Access Energy and Power Leakage Results

Table 7. NVSim Read and Write access energy estimations for SRAM, PCRAM, and MRAM.

Size Estimation SRAM PCRAM MRAM

1 kB

Read Energy – 0.001 nJ 0.008 nJ

Write Energy – 3.241 nJ 0.032 nJ

Power Leakage/s – 8.303 mW 0.762 mW

2 kB

Read Energy – 0.001 nJ 0.008 nJ

Write Energy – 3.241 nJ 0.032 nJ

Power Leakage/s – 16.56 mW 2.892 mW

4 kB

Read Energy 0.004 nJ 0.004 nJ 0.027 nJ

Write Energy 0.003 nJ 10.533 nJ 0.106 nJ

Power Leakage/s 20.189 mW 31.771 mW 5.377 mW

Table 7 shows the NVSim energy estimations for each of the memory technologies used
in this thesis. In correspondence to the Read latency in Table 6, PCRAM requires much
less Read energy since the read energy required is very low compared to the Read energy
required for the electrical circuit connected to the bottom electrode of the MTJ used in
MRAM. However, the same long pulses needed for PCRAM in the SET operation are
also attributed to higher access energy needed for PCRAM to perform a Write operation.
PCRAM features a very low Read access Energy, which is overshadowed by the very high
Write Access energy. In comparison, MRAM features slightly higher Read access energy
compared to PCRAM and SRAM and low Write access energy compared to PCRAM.
In fact, MRAM maintains lower Write energy that is 100 times lower of PCRAM write
energy at all sizes. In the energy estimations, MRAM clearly more advantageous over
PCRAM. Although PCRAM has a slightly lower Read access energy, this difference is
overshadowed by the Write access energy advantage that MRAM holds over PCRAM.
MRAM’s low Read and Write access energies are somewhat high compared to SRAM
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Read and Write access energy. However, as demonstrated later, MRAM’s disadvantage
of higher access energy compared to SRAM’s is overshadowed by the much higher
power leakage that SRAM has.

As for power leakage, MRAM clearly is more advantageous as it maintains a very
low power leakage at all sizes compared to PCRAM. While a significant increase of
power leakage in PCRAM is very apparent as size increases, this can be attributed to the
long duration and high voltages of the SET and RESET pulses needed for the PCRAM to
reach the Tcryst and Tmelt temperatures. However, the factor that sets the power leakages
of PCRAM and MRAM apart from the power leakage of SRAM, is that SRAM needs
to be constantly operating or else the data stored in SRAM will be lost. This means that
the duration of time in which power leakage happens in the SRAM is the total execution
time. The non-volatile nature of the PCRAM and MRAM mitigates this issue. MRAM
and PCRAM do not need to constantly operate, they only need to operate when they are
being accessed to write or read data. The high power leakage of PCRAM maybe higher
than that of SRAM, but PCRAM is "on" far less time than SRAM, making the power
leakage of PCRAM less of an issue.

6.2 NV-SP Evaluation

This section focuses on analyzing the final results to evaluate the performance, energy
access, and power leakage of the NV-SP while being implemented using MRAM and
PCRAM.

6.2.1 NV-SP Performance evaluation

MRAM Performance

Figure 17 shows the execution time of all the applications when using MRAM technology
in implementing the NV-SP. It shows clearly that the MRAM NV-SP helped improve the
execution time up to 22.35% and 16.49% for specrand and AES applications respectively.
The worst case was for the Blowfish cipher with only 1% improvement. Nonetheless, after
introducing the MRAM NV-SP to the system, all the applications showed performance
improvement for all the MRAM NV-SP sizes.

Figure 17, along with tables 4 and 5, draw a correlation between the improved time of ex-
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Figure 17. Performance evaluation when incorporating the MRAM NV-SP.

ecution and the miss rate of the application before incorporating the NV-SP. Applications
with higher execution time improvement experienced higher miss rate before MRAM
NV-SP was introduced to the system. specrand and AES had the highest miss rates with
3.34% and 1.60% respectively, while blowfish only had a miss rate of 0.11% making it
the lowest of all the applications. Higher miss rate meant that there is more execution
time spent on miss latency and miss mitigation. When moving instructions with the
highest misses to the MRAM NV-SP, miss latency becomes less of an issue as shown by
the improvement in performance for all the applications. Furthermore, this is also evident
in the performance improvement of both of the bzip2 compression and decompression
modes. While both of the bzip2 modes had the same total number of accesses, bzip2
compression experienced a higher miss rate of 0.65% compared to decompression mode
with a miss rate of 0.26%. This difference of miss rate caused bzip2 compression to have
a higher performance improvement of 3.85% compared to bzip2 decompression’s 1.55%
performance improvement.

However, as table 6 shows, MRAM has the slowest Read accesses compared to
SRAM and PCRAM. It’s Write latency is relatively high as well. A higher number of
misses means a higher access latency for MRAM. However, when the instructions are
moved to the NV-SP, a lower number of I-cache misses are occurring. This means that
accesses that were causing I-cache misses before the incorporation of MRAM NV-SP
has become regular Read accesses after incorporating to the NV-SP, thus causing lower
latency leading to improved performance. Although MRAM has a relatively high Write
latency compared to SRAM, MRAM still shows a performance improvement since it
has low Write operations with a Write latency of 10.124ns which is far lower than the

66



I-cache miss latency of 26ns.

Figure 17 shows that the size of the MRAM NV-SP is irrelevant to the performance im-
provement of the system. This is largely due to the convenient Write latency of MRAM.
While MRAM Read latency is high compared to SRAM and PCRAM, it is still low
enough to have little to no impact on the overall performance of the system. Further-
more, since Write operations are equal to the number of instructions stored in the NV-SP,
the total Write access latency of the MRAM, similar to MRAM total Read latency, is still
too low to have a major impact on the overall performance. By adding the instructions
with the highest number of misses in the NV-SP all the miss latency caused by these
instructions is mitigated.

PCRAM Performance

Figure 18 shows the execution time of all the applications when using PCRAM tech-
nology in the NV-SP implementation. Unlike figure 17, figure 18 suggests a correlation
between the performance improvement/degradation and the size of the NV-SP as well as
the correlation between performance degradation and the low number of misses and low
miss rate. Similar to MRAM NV-SP, applications with high miss rate generally show
higher performance improvement after incorporating the PCRAM NV-SP. Unlike with
MRAM NV-SP, however, some applications with lower miss rate perform worse after
incorporating the PCRAM NV-SP at 2 kB and 4 kB.

Applications with high miss rate such as specrand show performance improvement
of 23% for all PCRAM NV-SP sizes. Similarly, AES had a performance improvement
of 13% for 4kB PCRAM NV-SP and 15.9% and 17.12% for 1 kB and 2 kB respectively,
showing that the size of the PCRAM NV-SP has an effect on the performance as well.
Furthermore, applications with lower number of misses such as ARCFOUR experienced
performance degradation of 0.38%, 3.44%, and 10.19% with 1 kB, 2 kB and 4 kB
respectively. Similarly ROT13 showed performance degradation of 0.42%, 3.95%, and
12.18% with 1 kB, 2 kB and 4 kB respectively.

Non-Cryptographic applications showed performance improvement with none experienc-
ing any performance degradation. This is largely due to the fact that all these applications
have a high number of misses. While JPEG Decoder showed higher percentages of perfor-
mance improvement with lower PCRAM NV-SP sizes, the rest of the Non-Cryptographic
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Figure 18. Performance evaluation when incorporating the PCRAM NV-SP.

applications had similar performance improvement for all the NV-SP sizes.

Although PCRAM has a very high Write latency, the majority of accesses to the PCRAM
NV-SP are Read accesses which mitigates the high Write latency. Applications with
a higher number of misses show performance improvement because of PCRAM’s low
Read latency, which, in turn, has more impact on the performance than the latency caused
by the Write operations. In PCRAM, a higher number of misses leads to a low access
latency. When the number of misses is low compared to the overall number of accesses
– or has a low miss rate – the impact of the Write access latency increases leading to
performance degradation. This is observable in the performance of ARCFOUR and
ROT13.

While DES has a low miss rate, it achieved performance improvement of 0.55% at
1 kB. This improvement is insignificant compared to other applications with high miss
rates and a high number of misses, but it highlights the correlation of performance
improvement/degradation with the PCRAM NV-SP size. While DES had performance
improvement at 1 kB, it showed an increasing performance degradation of 0.34% and
2.27% at 2 kB and 4 kB respectively. This trend of performance degradation increase can
be observed for Towfish and Blowfish as well. These applications showed performance
improvement at 1 kB, then experienced performance degradation at larger sizes. A sim-
ilar trend of decreasing performance gains as the size of the PCRAM NV-SP increases
can also be seen for AES, JPEG decode, and JPEG encode. While these applications
maintained performance improvement at all sizes, the gains are clearly higher for 1 kB
compared to 4 kB when using PCRAM NV-SP. The reasoning behind this behavior is the
high latency of Write operations. If the size of the NV-SP increases, more instructions
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are written to the PCRAM NV-SP, thus increasing the impact high Write latency has on
the overall latency of the PCRAM NV-SP.

6.2.2 NV-SP Access Energy evaluation

MRAM Access Energy
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Figure 19. Access Energy evaluation when incorporating the MRAM NV-SP.

Figure 19 shows the total access energy of all the applications when using MRAM tech-
nology in the NV-SP implementation. While Figure 19 shows that using the MRAM
NV-SP implementation did not improve the total access energy, a slight improvement can
be noted for specrand and AES. This shows a correlation between the high miss rates of
specrand and AES and slightly lower access energy. In this case, MRAM NV-SP has a
much lower number of accesses compared to I-cache. Since 4 accesses per instruction,
as shown in equation 1, are needed for every miss, only 2 Read accesses needed for the
same instruction when it is stored in the MRAM NV-SP, meaning that an instruction in
the NV-SP should require as half as accesses energy as a miss in the I-cache. Nonethe-
less, this improvement on the number of accesses is overshadowed by the relatively high
access energy of the MRAM compared to SRAM as shown in table 7. Furthermore, the
access energy of the MRAM NV-SP has very little effect on the total access energy since
the majority of accesses are still happening in the I-cache. This is why the total access
energy did not change dramatically.
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Figure 20. Access Energy evaluation when incorporating the PCRAM NV-SP.

PCRAM Access Energy

Figure 20 shows the total access energy of all the applications when using PCRAM tech-
nology in the NV-SP implementation. Although PCRAM has a very low Read access
energy similar to SRAM as shown in table 7, it has not improved the total access en-
ergy after incorporating the PCRAM NV-SP into the system. This can be attributed to
the overshadowing of the very high Write access energy of PCRAM. A slight decrease in
total access energy can be observed from both AES and specrand since they require much
fewer accesses for the same instructions stored in the PCRAM NV-SP compared to when
those instructions are stored in the I-cache. This is largely due to the much higher number
of accesses into the I-cache. Figure 20 shows that the total access energy did not improve
very much when using PCRAM NV-SP.

6.2.3 NV-SP Power Leakage evaluation

MRAM Power Leakage

Introducing the MRAM NV-SP to the system has reduced the power leakage measure-
ments for all the applications. As shown in table 7, the leakage power of MRAM is much
lower than PCRAM and SRAM power leakage. Figure 21 shows the combined power
leakage measurements for I-cache and MRAM NV-SP. It shows that incorporating the
MRAM NV-SP has reduced the power leakage of the I-cache for all applications.

Since MRAM has low power leakage and because the MRAM is only operating when it
is accessed, the total power leakage of the MRAM is very small. The effect the MRAM
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Figure 21. The combined power leakage of I-cache and MRAM NV-SP.

power leakage on the total combined power leakage of the NV-SP and I-cache is also very
small. Nonetheless, the majority of power leakage reduction is happening in the I-cache.
Since the I-cache is constantly operating, any reduction in execution time – or perfor-
mance improvement – reduced the time in which the I-cache is operating. This means
lower power leakage from the I-cache. Since MRAM has improved the performance of
all the applications, as shown in figure 17, the time in which the I-cache is operating is
reduced, thus decreasing its power leakage for all the applications.

PCRAM Power Leakage

Introducing the PCRAM NV-SP to the system has reduced the power leakage measure-
ments for some applications while greatly increased it for other applications. As shown in
table 7, the leakage power of PCRAM is much higher than MRAM and is high compared
to SRAM. Figure 22 shows the combined power leakage measurements for I-cache and
PCRAM NV-SP. It shows that incorporating the PCRAM NV-SP has reduced power
leakage for applications with high miss rate such as AES and specrand, while drastically
increasing it for applications with miss rate such as RC-4 and ROT13.

This draws a relationship between the power leakage of the I-cache and perfor-
mance improvement when introducing the PCRAM NV-SP. This relationship is seen
clearly for all the Cryptographic applications. AES has maintained a performance
improvement for all sizes of the PCRAM NV-SP, which caused power leakage reduction
for all sizes. Furthermore, Twofish had performance improvement at sizes 1 kB and 2 kB
causing the power leakage at those sized to be reduced. However, Twofish experienced

71



performance degradation at 4 kB, which in turns increased the power leakage at that size.
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Figure 22. The combined power leakage of I-cache and PCRAM NV-SP.

Although PCRAM NV-SP improved performance for JPEG-Decode and JPEG-Encode,
both of the JPEG mode had a clear power leakage increase when using the PCRAM
NV-SP. The reason for this is the high power leakage of the PCRAM at larger sizes. In
table 7, the power leakage of PCRAM surpasses that of SRAM. Even though PCRAM
is only operated when it is accessed, it still causes a significant increase in the power
leakage for the JPEG modes.

In the case of JPEG-Decode, it experiences a relatively high miss rate. When in-
structions were stored in the NV-SP, accesses to it increased resulting in more "on"
time for the NV-SP. When using a PCRAM NV-SP, those high number of accesses
cause higher power leakage. In fact, in the case of JPEG-Decode, the PCRAM NV-SP
contributed 10% of the total combined power leakage of the I-cache and NV-SP. This
shows that a high number of accesses with low performance improvement when using
the NV-SP can greatly increase the power leakage of the NV-SP. The same reasoning
can be attributed to the power leakage increase for JPEG-Decode. However, in the of
JPEG-Decode, the major factor was the low performance improvement of 0.44 with 4
kB combined with the high power leakage of the PCRAM at that size is what caused the
increase of the power leakage to be above the SRAM baseline.
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7 Summary

The work of this thesis focused on evaluating the performance, energy, and power
leakage of a Non-Volatile Scratch Pad that is incorporated into the low-level memory
hierarchy. More specifically, the NV-SP is used to store instructions that cause the highest
number of misses to mitigate the miss latency of the L1 I-cache causes by those misses.
Such implementation gives insight into the possible advantages that emerging NVM
technologies can present. A framework was developed and implemented using different
tools and technologies to evaluate the impact of incorporating the NV-SP into the memory
hierarchy. Applications based on cryptographic algorithms and other non-cryptographic
algorithms.

In this thesis, it is shown that using NVM technologies such as PCRAM and MRAM in
the form of an NV-SP can greatly impact the performance of the I-cache. For instance,
using MRAM NV-SP reduced the latency of caused by the I-cache and improved perfor-
mance up to 22.35% and 16.49% for the applications specrand and AES respectively. In
fact, MRAM has improved the performance of the system for all the applications used in
the experiment. Although the improvement in performance for those applications was at
different degrees, it was established that due to MRAM’s low read latency and the high
miss latency of the I-cache. This points out that the penalty of using the relatively slower
MRAM, compared to SRAM, is far lower than the penalty of miss latency in the I-cache.
This performance gain was observed for all sized of the NV-SP.

In comparison, PCRAM was shown to degrade performance for applications with
low miss rate, especially at larger NV-SP sizes. Unlike MRAM, PCRAM features
very high write latency. This means that the penalty of writing instructions to larger
sizes of NV-SP is greater than the penalty of miss latency in the I-cache. Applications
such as ROT13 and ARCFOUR experienced up to 12.18% and 10.19% performance
degradation respectively. Furthermore, some applications with higher miss rates ex-
perience performance improvement at smaller sizes while experiencing performance
degradation at larger sizes. Nonetheless, applications with high miss latency showed
performance improvement relative to their miss rates – higher application miss rates for
I-cache meant better performance when using the NV-SP. Applications such as AES and
specrand, where both feature the highest miss rates among all the applications, had ex-
perienced up to 23% and 17.12% performance improvement when using PCRAM NV-SP.
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This thesis also showed that using MRAM NV-SP or PCRAM NV-SP helped re-
duce the total access energy of the I-cache, however, this reduction of access energy is
not very high. Since the NV-SP stores instructions and never evicts them, the majority
of accesses to the NV-SP are Read accesses. The number of Read accesses to the
NV-SP is the same as the total number of misses caused by the instructions stored in
the NV-SP. Since, generally, the number of misses caused by the instructions stored in
the NV-SP is much lower than the total number of accesses to the I-cache, even after
the incorporation of the NV-SP, the total access energy of the I-cache did not improve
very much. In other words, the I-cache still counts for most of the total access energy
after the incorporation of the NV-SP, since the NV-SP access energy has a smaller num-
ber of accesses compared to that of the I-cache. This is true for both MRAM and PCRAM.

Since NV-SP is non-volatile, this allows it to retain information while turned off,
thus it is only on when accessed. Because of this non-volatile nature, the power leakage
of the NV-SP is very little effect on the total power leakage of the I-cache. But, since the
I-cache is on for the whole duration of the execution, any improvement in performance
means an improvement on the I-cache power leakage. Furthermore, this thesis showed
that MRAN NV-SP has reduced the total power leakage of the I-cache. This is largely
due to the fact that MRAM NV-SP improved the performance of the I-cache for all the
applications. This is not true for all the applications when using the PCRAM NV-SP.
For some applications such as ROT13 and ARCFOUR, the PCRAM NV-SP degraded
performance, which in turn caused the I-cache to be on for longer time resulting in
a much higher power leakage compared to before incorporating the PCRAM NV-SP.
In fact, applications such as JPEG-Dec and JPEG-Enc, although saw improvement in
performance when using PCRAM NV-SP, it still showed higher power leakage due to the
high power leakage of PCRAM at larger sizes.

Furthermore, this thesis also presented an NVM-based implementation of the AES
S-Box as a demonstration of the potential application of NVM technologies in the field
of Computation in Memory. By using memristor-based AND and OR logic gates, an
XOR gate can be created to compute and store AES S-box equivalents of data in the
NVM devices. Such AES S-box implementations can be used to encrypt and decrypt
information while it is in the cache with very little data management and low energy cost.
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