
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Koit Saarevet 204716IVGM

METHODS OF ACCESS TO SERIES OF ARCHIVED

DATABASE SNAPSHOTS

Master’s Thesis

Supervisor: Innar Liiv
PhD

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Koit Saarevet 204716IVGM

MEETODID JUURDEPÄÄSUKS ARHIVEERITUD

ANDMEBAASITÕMMISTE SEERIATELE

Magistritöö

Juhendaja: Innar Liiv
PhD

Tallinn 2024

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Koit Saarevet

18.05.2024

1

Abstract

Archives around the world do a lot of database preservation, often in the form of regular
snapshots. Some have done it for half a century. But nobody in the archival community
has a tool for accessing data across multiple snapshots simultaneously, neither is there
awareness of such a tool existing at all.

This thesis delivers that tool.

The research started from examining the state of the art in relevant fields to find either
complete solutions (assuming they exist, just the community is unaware) or building blocks
to create the solutions. The search did not detect any complete solutions, but identified
temporal databases as a technology with the greatest potential. The work then went on
to analyse an existing abstract algorithm for merging database snapshots, and to enhance
it to suit the goals of the thesis. This was followed by the development of a prototype
that can merge several snapshots of a database into one temporal database in MariaDB
Relational Database Management System (RDBMS). Finally, the listing of the basic types
of temporal queries was compiled, together with examples on their use.

Keywords: database preservation, database snapshots, archival access, temporal databases,
MariaDB, DBPTK, SIARD, long-term digital preservation, digital archives, relational
databases.

The thesis is written in English and is 90 pages long (of which 64 pages are the main
document), including 6 chapters, 3 figures, 18 tables and 3 algorithms.

2

Annotatsioon
Meetodid juurdepääsuks arhiveeritud andmebaasitõmmiste seeriatele

Arhiivid üle maailma tegelevad palju andmebaaside säilitamisega, sageli regulaarsete
tõmmiste kujul. Mõned on seda teinud juba pool sajandit. Kuid kellelgi arhiivikogukonnas
pole tööriista mitme tõmmise andmete samaaegseks kasutamiseks, ja pole teada, et taoline
tööriist üldse eksisteeriks.

Antud magistritöö raames loodi see tööriist.

Uurimine algas asjakohaste valdkondade taseme (state of the art) uurimisest, et leida kas
terviklikud lahendused (juhul, kui need on olemas, aga lihtsalt kogukond pole teadlik) või
siis ehituskivid uute lahenduste loomiseks. Otsinguga terviklikke lahendusi ei leitud, kuid
suurima potentsiaaliga tehnoloogiana tuvastati ajalised andmebaasid (temporal databases).
Seejärel analüüsiti olemasolevat abstraktset algoritmi andmebaasi hetktõmmiste ühen-
damiseks ajalisse andmebaasi ja täiustati seda, et see vastaks magistritöö eesmärkidele.
Sellele järgnevalt loodi prototüüp, mis suudab liita sama andmebaasi mitu hetketõmmist
üheks ajaliseks andmebaasiks MariaDB andmebaasimootoril. Lõpuks koostati loetelu
tüüpilistest ajamõõtmega päringutest koos näidetega nende kasutamise kohta.

Märksõnad: andmebaasi säilitamine, andmebaasi hetktõmmised, juurdepääs arhiivile,
ajalised andmebaasid, MariaDB, DBPTK, SIARD, pikaajaline digitaalne säilitamine,
digitaalarhiivid, relatsioonilised andmebaasid.

Lõputöö on kirjutatud inglise keeles ja on 90 lehekülge pikk (millest 64 lehekülge on
põhidokument), sealhulgas 6 peatükki, 3 joonist, 18 tabelit ja 3 algoritmi.

3

Acknowledgment

Thank you to Ingrid Pappel for luring me into the eGov program. Thank you to Aivi
Remmelg and Anastasiia Dudko for taking care of me so that I survived the consequences.

Thank you to Kuldar Aas for suggesting the topic.

Thank you to Innar Liiv for patience and creativity in producing arguments why I should
continue with the thesis work, and for providing precision-targeted hints to get me unstuck
whenever it was necessary.

Thank you to Priit Raspel for teaching me the foundations of relational databases in an
enlightening, entertaining and engaging way in 2004, and for also sharing his wisdom
during the research for this thesis.

Thank you to Kristjan Kolde for recommending the Kimball’s book and illuminating me
the field of data warehouses.

Thank you to Antoon Bronselaer for publishing the article on temporal merges and thereby
saving me from reinventing the wheel.

Thank you to Jaak Tepandi for sharing the detailed and practical guidelines for graduating
students.

Thank you to my colleagues at the National Archives for tolerating my months-long
aloofness in all topics but the thesis. Especially big thank you to Lauri Leht, who, I am
sure, had to fend off many a complaint in this regard.

4

List of Abbreviations and Terms

API Application Programming Interface
DBPTK Database Preservation Toolkit
DSR Design Science Research
DW Data Warehouse
ERD Entity Relationship Diagram
FK Foreign key
JSON JavaScript Object Notation, a plain text based, human- and

machine-readable data presentation format
NAE The National Archives of Estonia
PK Primary key
RDBMS Relational Database Management System
Relation “Relation” is the abstraction of “table” in a database. It

is a collection of tuples (rows), that consist of an ordered
list of elements or domains (fields or columns), which have
the same semantics for all tuples (rows). The schema of a
relation defines the semantics for each positional element of
the tuples (rows).

Relationship A reference between tables, i.e., a foregin key field in a table
referencing the primary key field of another table

SQL Structured Query Language
SQL:2011 ISO/IEC 9075-2, the official standard for SQL, revision from

2011
XML Extensible Markup Language

5

Table of Contents

1 Introduction . 11
1.1 Background . 11
1.2 Problem statement . 13
1.3 Objectives . 14
1.4 Research questions . 15
1.5 Guiding principles . 15
1.6 Significance of the study . 16
1.7 Document structure . 17

2 Method . 19
2.1 Design Science Research . 19
2.2 Work plan . 22
2.3 Data . 23
2.4 Use of generative AI . 25

3 Literature Review . 27
3.1 Data warehouse . 28
3.2 XML . 29
3.3 Semantic web . 31
3.4 Temporal database . 32

4 Results . 35
4.1 Solution part 1: Merge snapshots – Theory 35

4.1.1 Terminology . 35
4.1.2 Foundations . 38
4.1.3 Algorithm . 41

4.2 Solution part 1: Merge snapshots – Implementation 45
4.2.1 Create blank databases . 46
4.2.2 Upload SIARD snapshots . 46
4.2.3 Clone aggregate database from snapshot 1 47
4.2.4 Add system versioning to aggregate database 47
4.2.5 Sync databases . 47

4.3 Solution part 2: Query data . 49
4.3.1 Single table, at a moment . 50
4.3.2 Single table, over a period . 51

6

4.3.3 Single table, whole history . 53
4.3.4 Single table, current data . 53
4.3.5 Two tables, temporally joined . 54
4.3.6 System variable “system_versioning_asof” 55

4.4 Tools and technologies . 56
4.5 File supplement . 57

5 Discussion . 60
5.1 Evaluation . 60
5.2 Contributions . 61
5.3 Future work . 62

5.3.1 Incremental archiving . 62
5.3.2 Schema versioning . 63
5.3.3 Temporal queries . 63
5.3.4 System-versioned snapshots . 64
5.3.5 More universal algorithm . 64
5.3.6 Prototype improvements . 64
5.3.7 Visualisation . 65
5.3.8 Comparison of methods . 65

6 Summary . 66

References . 68

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 75

Appendix 2 – Source Code Listing . 76
A2.1 Main_workflow.sh . 76
A2.2 Create_procedure_sync_single_table.sql 78
A2.3 Create_procedure_sync_single_table_no_pk.sql 80
A2.4 Create_procedure_sync_databases.sql 81
A2.5 Import_snapshots_into_temporal_db.sql 85

Appendix 3 – Installation Instructions . 87
A3.1 MariaDB . 87
A3.2 DBPTK . 88
A3.3 DBeaver . 88

Appendix 4 – Formatting Conventions . 89

7

List of Algorithms

1 Addition of D(i) to D(1) ⊕ · · · ⊕D(i−1) 39
2 Addition of D(i) to D(1) ⊕ · · · ⊕D(i−1) (improved) 40
3 Addition of D(i) to D(1) ⊕ · · · ⊕D(i−1) (enhanced) 42

8

List of Figures

1 RDBMS-SIARD-RDBMS transformations in DBPTK. 12
2 A series of preserved SIARD snapshots. 13

3 Vehicle registry ERD. 23

9

List of Tables

1 Table usage_log, full history . 14

2 Design-science research guidelines . 20
3 DSR guidelines implementation plan . 21
4 DSR paper’s citation count . 22

5 Variations in naming of the time periods 33

6 Overview of symbols and key concepts 35
9 Two snapshots of table Product(ID, Item, Quantity) 48
10 Two snapshots of table Product(ID, Item, Quantity) merged 48
11 Table vehicle at a moment . 50
12 Table vehicle over a period . 51
13 Table vehicle over a period, filtered by row_start 52
14 Table vehicle whole history . 53
15 Table vehicle current data . 54
16 Tables vehicle and owner joined over a moment 54
17 Tables vehicle and owner joined over a period 55
18 Contents of the file supplement . 58

10

1. Introduction

This chapter begins with setting the background: what is snapshot-based database preser-
vation and how it is done. It then highlights a problem with the current state of affairs
and formulates a research objective to tackle the problem. Further sections define specific
research questions and some guiding principles to help stay on the right path. The chapter
then explains the significance of the problem and of the planned solution. The final section
describes the document structure.

1.1 Background

A large proportion electronic information systems use relational databases for storing their
data. Some of this data needs to be preserved for the long term and the dominant method
for doing that is database snapshots1. Historically, the combination of CSV files (for the
data) and SQL files (for the structure) was the go-to choice of the archival format. The
new millennium brought two XML-based formats, the first of which, DBML (Data Base
Markup Language), developed by a group of Portuguese researchers, was announced in
2002 [1]. The other, SIARD (Software Independent Archiving of Relational Databases)
was initiated at the Swiss Federal Archives in 2000 and got published in 2004 [2]. SIARD
started to gain ground, becoming the official format for archiving relational databases in
the Open PLANETS EU cooperation project in 2008 [3] and in the E-ARK project in
2014. SIARD has become the de facto standard format for database preservation in many
countries (in addition to being a de jure e-Government standard in Switzerland [4]).

A strength of the XML-based formats is their independence of the RDBMS2. For example,
SIARD relies on standards like SQL:2008, Unicode, XML, URI (RFC 3986) and ZIP,
making it much more sustainable and portable than the native “dump” formats of the
RDBMS [5, p. 1]. Another strength is self-containedness: both DBML and SIARD store
the database structure definitions (originally formed using CREATE TABLE statements)
with the necessary detail to rebuild the database from scratch (see [1] and [5, pp. 22-
37]). On the foundation of these two characteristics, an interesting feature emerges: the
possibility to use the archival formats as a medium for migrating data between different

1A perfectly valid question at this point is why just the database, not the whole information system, e.g., as an
image of a virtual machine. The reason is: modern information systems consist of so many interconnected
components that keeping the whole apparatus functioning reliably and securely over the long term is
prohibitively costly.

2Relational Database Management System

11

RDBMS. Figure 1 illustrates some of the input and output options (called modules) in
DBPTK (Database Preservation Toolkit). The source of the image is unknown, but a very
similar one attributed to KEEP SOLUTIONS (the developer of DBPTK) is in [6].

Figure 1. RDBMS-SIARD-RDBMS transformations in DBPTK.

Well-established tools exist for the creation of the SIARD snapshots. For example, The
Swiss Federal Archives, when they originally created the SIARD format, also created a
software package for creating and viewing the SIARD files. The program was initially
called SIARD, but to reduce the confusion a bit, was then renamed to SIARD Suite. There
are also commercial tools, like CHRONOS3. The SIARD creators produce one logical4

SIARD file per snapshot. Assuming a one-year archiving interval5, a series of snapshots
will be produced as illustrated in Figure 2.

How are the snapshots accessed? One way is to use the migration feature from Figure 1
and load the data from the SIARD file into a live database engine, then use SQL for
queries. The other, more common way is to use dedicated viewer tools, such as the SIARD
Suite6, DBPTK7, dbDIPview8, SIARDexcerpt9 or others. These provide various options to
examine the data without uploading the full snapshot into an RDBMS first.
3https://www.csp-sw.com/quality-management-software-solutions/data-archiving-with-chronos/
4In practice, external files from the original system and larger objects from the tables (so-called LOBs) are
often stored outside the SIARD file.

5As of spring 2024, the target intervals for the archival creators in Estonia are set at 2-5 years.
6https://www.bar.admin.ch/bar/en/home/archiving/tools/siard-suite.html
7https://database-preservation.com
8https://github.com/dbdipview/dbdipview/
9https://github.com/KOST-CECO/SIARDexcerpt

12

https://www.csp-sw.com/quality-management-software-solutions/data-archiving-with-chronos/
https://www.bar.admin.ch/bar/en/home/archiving/tools/siard-suite.html
https://database-preservation.com
https://github.com/dbdipview/dbdipview/
https://github.com/KOST-CECO/SIARDexcerpt

Figure 2. A series of preserved SIARD snapshots.

However, as already stated in the abstract, all these tools share a weakness: they handle one
snapshot at a time. Even tools like the DBPTK (whose single instance can ingest and make
available many snapshots) keep each snapshot separate with no cross-snapshot queries.

1.2 Problem statement

Imagine a public vehicle registry that stores data about vehicles, their owners and the
insurance policies. Let’s say it is an old-fashioned database where modifications to the
data overwrite the previous values, which means that it only includes current data, no
history. It is a somewhat artificial assumption for the vehicle ownership data, as modern
vehicle registries probably keep some length of history, but the experience of the National
Archives of Estonia (NAE) shows that there are still plenty of databases in production
use where overwriting systematically occurs for some data fields. Now let us assume the
database gets archived every five years in the form of a full snapshot to SIARD.

Business value and archival value can diverge. For instance, the transportation adminis-
tration that operates the registry is tasked with maintaining traffic safety and lawfulness –
every car must have a mandatory insurance policy, owner’s data must be up to date etc.
None of the agency’s tasks require ownership data from five years ago, or the data about
cars that have been scrapped. On the other hand, these exact data might be very attractive
for a historian who wants to analyse the trends of cars per capita or the age of the fleet
across decades.

Business value dictates the content of the database. Due to circumstantial overwriting of
individual data elements and due to systematic deletion of out-of-date records, what is
present in snapshot one is not fully there in snapshot five. Thus, no snapshot is complete,
not even the most recent one. An illustration of this is presented in Table 1, which is a
listing from the hypothetical vehicle registry. It is from the table usage_log that stores

13

the count of users who interacted with the system that day. The data points are from a
16-year period, but due to the policy of regularly deleting the records that are older than ten
years, the full list is not present in any one snapshot. row_start and row_end indicate
the range of snapshots that contain this row of data. Note that the end date is exclusive,
meaning that from this date, the row is not available any more. With archiving happening
on January 1 of 2000, 2005, 2010, 2015 and 2020, the user would need to access the four
snapshots from 2005-2020. 2005 cannot be left out, because 2010 already does not include
the lines from the 2000 snapshot, and so on.

Table 1. Table usage_log, full history

date users row_start row_end
1999-12-30 70 2000-01-01 2010-01-01

1999-12-31 50 2000-01-01 2010-01-01

2003-03-03 90 2005-01-01 2015-01-01

2004-04-04 75 2005-01-01 2015-01-01

2005-05-05 100 2010-01-01 2020-01-01

2007-07-07 105 2010-01-01 2020-01-01

2013-03-13 120 2015-01-01 2038-01-19

2014-04-14 130 2015-01-01 2038-01-19

2015-05-15 140 2020-01-01 2038-01-19

2017-07-17 160 2020-01-01 2038-01-19

This digging from four different snapshots is now all manual, no automation exists. The
user is forced to load all the relevant SIARD files one after the other, work with each
of them separately and then aggregate the results manually. That cumbersome process
is further exacerbated if the data model has changed (i.e., the snapshots have different
structures).

1.3 Objectives

The vision was of a bright future, where there is an application for quickly loading multiple
snapshots, querying them with intuitive tools and visualising the results so they become
instantly comprehensible. Plus, this all would tolerate schema evolutions, i.e., the structure
of all snapshots not being identical.

The research objective was to materialise as much of the vision as possible, with a strong
emphasis on usefulness in real life. Despite having worked for the National Archives for
the whole 3rd millennium, this specific niche of digital preservation had stayed completely
unexplored for the author. Consequently, there could be no detailed outline of the expected
result. The most concise wording possible:

14

The objective of the research is to develop a method for accessing a series of archived
database snapshots.

The success criteria:

1. It is possible to prepare several snapshots for simultaneous access.
2. It is possible to make cross-snapshot temporal queries.
3. The solution works with real SIARD files (i.e., not just a theoretical model).

1.4 Research questions

The main research question (MRQ) and two supportive research questions (SRQ) were
worded.

MRQ: Is it possible to access a series of archived database snapshots simultaneously?

SRQ1: Are there existing tools for multi-snapshot access?

SRQ2: Are there theoretical methods for multi-snapshot access?

As a note added during final editing: the somewhat counter intuitive ordering of SRQ1 and
SRQ2 stemmed from the vagueness of the objective, while there being an acknowledged
emphasis on practice. Had the examination of the state of the art revealed a functioning
software package, the focus of the research would have stayed there and the effort would
have gone into determining its fit for purpose, developing an implementation plan etc.
Only after failing to find an existing tool was the attention to be directed to theory.

1.5 Guiding principles

In the course of the research there were many situations that required small decisions
between equally good alternatives. Pondering over these led to the distillation of the three
principles that greatly sped up the choices at crossroads.

1. Do not reinvent the wheel – established tools, technologies, methods are preferred.
2. Prefer open source – the archival community loves it and has learned to collectively

maintain the best tools.
3. Avoid hacks – non-standard use of tools may provide attractive shortcuts, but it

introduces the risk of things breaking down.

15

As with all rules, they were occasionally broken, but only upon an informed decision.

1.6 Significance of the study

Initial confidence in the significance came from the fact that the thesis topic was proposed
by Kuldar Aas, a colleague at The National Archives of Estonia 2002-2022 and since
then the Data Governance Program Manager at the Ministry of Economic Affairs and
Communications. Kuldar is (without exaggeration) one of the top experts in database
preservation globally. He started working on database preservation in 2002, defended his
master’s thesis on it in 2004 [7], and led the efforts in the area at NAE until 2022. He
was a founding father of the E-ARK project, which since 2014 has been developing the
SIARD format and supporting the DBPTK software. Kuldar’s assessment was, that at the
time, there was no solution to the multi-snapshot access problem. This impression was
confirmed by the author’s own communications with the major actors in the international
database archiving community, thus it would have required an extreme silo effect for the
whole community to be clueless of a suitable solution existing, just in another field.

The problem is relevant to all organisations that archive databases: national archives,
libraries, university archives, large corporations etc. The institutions in the regular com-
munications circle of NAE include the National Archives of Denmark, Finland, Slovenia
and the USA, The Swiss Federal Archives, The Hungarian Historical Archives of the State
Security Services, State Archives of Schleswig-Holstein, Norwegian Digital Resource
Center for Municipal Archives, and several others.

Some of them are at an early stage, others are experienced. For instance, the Schleswig-
Holstein archives are conducting their first pilot project in archiving a database into the
SIARD format. On the other hand, the Danish National Archives has over 40 years of
experience, has preserved more than 4400 databases and ingests over 200 new ones per
year [8].

The database preservation specialists of these agencies were asked during this research if
they already have a solution to the multi-snapshot access problem and if they would be
interested in getting one. All of them confirmed their being unaware of any solution and
also expressed their interest in having one.

In sum, there is a significant likelihood of some people saying thank you for the results of
this research.

16

1.7 Document structure

The remaining parts of the document are structured as follows.

Chapter 2 deals with the methodology. First, it introduces the Design Science Research
framework, followed by the more specific work plan. Then it discusses the use of data.
The final section is a summary on the use of generative AI.

Chapter 3 is literature review. It is divided into four thematic areas: Data warehouse, XML,
Semantic web and Temporal database, each containing a selection of the most relevant or
otherwise remarkable documental findings.

Chapter 4 is about the main results, of which there are three: 4.1 the merging algorithm
in the abstract form, 4.2 the merging algorithm implemented and 4.3 the methods for
querying. However, the third is realised using the standard features of MariaDB, so by the
sheer amount of work that went into each, the first two are in a totally different league.
The chapter is concluded by 4.4 (the tools and technologies used) and 4.5 (instructions on
downloading the supplemental files).

Chapter 5 discusses the results. First, the evaluation: was the objective achieved? Second,
contributions: which outcomes are useful and for whom. Third, future work: eight areas
that are worth exploring further.

Chapter 6 summarises the thesis. It starts from recalling the objective and acknowledging
its achievement. Then it provides a concise description of the multi-snapshot access
method. The chapter wraps up by going over the three research questions and checking
their answers.

The core part of the document is followed by the reference list and the publication license.

Appendix 2 contains the source code listings for all the original components of the proto-
type: a Bash script, three SQL stored procedures and one file with SQL CALL statements.
There are actually two more code files that were left out for brevity. One is an alternative
version of Main_workflow.sh that works with source data in the form of SQL INSERT

statements (instead of the normal SIARD). The other is siard_create.sh, which extracts
data from a live RDBMS and stores it as SIARD files. Both code files are included in the
File supplement (see section 4.5).

Appendix 3 has brief installation instructions for the third party software (MariaDB,

17

DBPTK, DBeaver).

Appendix 4 lists some deliberate formatting decisions. Each of them constituted a choice
between two or more options, and time was spent on studying reputable sources to make
an informed decision. With that much effort already invested, it seemed reasonable to
document the decisions.

18

2. Method

This chapter outlines the foundational research method and then a more concrete plan.
There is also a chapter on data, i.e., the databases that were used in the development of
the prototype. The chapter ends with ruminations on the usefulness of Large Language
Models.

The word “method” is overloaded in this document: it means both the method of access to
database snapshots and the method of developing it. The current chapter is about the latter,
i.e., the research method for developing the snapshot-access method.

This thesis is submitted for the candidacy for the degree of Master of Science in Engineer-
ing, therefore an engineering problem was chosen. The degree is pursued in the curriculum
“E-Governance Technologies and Services,” which is an amalgamation of technology and
management subjects – this calls for the research method to also have a good balance.

2.1 Design Science Research

A great one with these characteristics is the Design Science Research (DSR) framework
popularised by professors Hevner, March, Park and Ram in 2004 [9]. In another article by
Hevner and March, they describe it as follows: “Design science seeks to create innovations,
or artifacts, that embody the ideas, practices, technical capabilities, and products required
to efficiently accomplish the analysis, design, implementation, and use of information
systems” [10, p. 111].

They identify four types of artifacts: constructs, models, methods, and instantiations. Of
these, methods and instantiations are relevant to the current thesis, quoted from [10, p.
111]:

• Methods define solution processes. They can range from formal, mathe-
matical algorithms that explicitly define the search process to informal,
textual descriptions of “best practice” approaches.

• Instantiations show how to implement constructs, models, or methods
in a working system. They demonstrate feasibility, enabling concrete
assessment of an artifact’s suitability to its intended purpose. Researchers
can use instantiations to learn about the real world, how the artifact affects

19

it, and how users appropriate it.

These are precisely the two artifacts the thesis tries to produce. Further, what fully stole
the heart of this author was a glance at the guidelines [9, p. 83], reprinted here in Table 2 –
these are delightfully reasonable and down-to-earth.

Table 2. Design-science research guidelines

Guideline Description
1: Design as an Artifact Design-science research must produce a viable arti-

fact in the form of a construct, a model, a method,
or an instantiation.

2: Problem Relevance The objective of design-science research is to de-
velop technology-based solutions to important and
relevant business problems.

3: Design Evaluation The utility, quality, and efficacy of a design artifact
must be rigorously demonstrated via well-executed
evaluation methods.

4: Research Contributions Effective design-science research must provide
clear and verifiable contributions in the areas of
the design artifact, design foundations, and/or de-
sign methodologies.

5: Research Rigor Design-science research relies upon the application
of rigorous methods in both the construction and
evaluation of the design artifact.

6: Design as a Search Process The search for an effective artifact requires utiliz-
ing available means to reach desired ends while
satisfying laws in the problem environment.

7: Communication of Research Design-science research must be presented ef-
fectively both to technology-oriented as well as
management-oriented audiences.

Each of the guidelines is elaborated later in the article [9], some in great detail (e.g., 6:
Evaluation is supplemented with a whole toolbox of evaluation methods). The guidelines
are intentionally universal and therefore not applicable to a single case in their entirety. A
selection is needed and Table 3 depicts the thesis author’s plan for implementing the DSR
guidelines.

20

Table 3. DSR guidelines implementation plan

Guideline Implementation plan
P1: Design as an Artifact This research aims to produce a viable method of

accessing database snapshots and an instantiation
of it that can work with real archival records.

P2: Problem Relevance The objective is to build a solution to the snapshot
access problem and to the best knowledge avail-
able, it is important and relevant to every archives
around the world that collects regular snapshots of
databases.

P3: Design Evaluation The utility, quality, and efficacy will be rigorously
demonstrated. Of the evaluation methods in Table
2 of [9, p. 86], experimental (mainly in the form
of simulations), and testing (both black and white
box) are planned. For the abstract algorithm, some
static analysis is likely necessary.

P4: Research Contributions The purpose of the research is to provide real contri-
butions, the outcomes are described in section 5.2.

P5: Research Rigor This research tries to strike a reasonable balance by
first expressing the algorithm using mathematical
formalism, then describe the implementation of it in
more natural language. Such approach aligns well
with a section of the guideline description: “Design-
science research often relies on mathematical for-
malism to describe the specified and constructed
artifact. /. . . / Again, an overemphasis on rigor can
lessen relevance” [9, p. 88].

P6: Design as a Search Process The approach for this thesis is to be flexible and
iterative: look for tools and methods in literature,
when something is found then try to use it, test it, if
it does not work, go to a new round.

Continues. . .

21

Table 3 – Continues. . .

Guideline Implementation plan
P7: Communication of Research The thesis document will be structured and worded

clearly to maximise understandability for both tech
and managerial audiences. Dissemination of the
results will start right after the defence. An inter-
national database preservation interest group is one
venue. Attempts will be made to publish the results
in a journal and at conferences.

All of the above was in the plans already before discovering DSR, but it was reassuring to
see that several smart people had given it a thought and considered it a reasonable way to
solve problems. By the way, a lot of people seem to be of the same mind. While compiling
the reference list, the author of this thesis accidentally noticed the changed citation count
for [9] between the BibTeX file saved previously, and the Scopus website. After that, the
figures were occasionally checked a few more times, and an interesting trend emerged:

Table 4. DSR paper’s citation count

Date Citations Change
2024-04-18 9483

2024-04-30 9495 +12

2024-05-14 9529 +34

2024-05-16 9595 +66

2.2 Work plan

Supported by the DSR framework, the following approach to the task was laid out:

• Search the web and academic literature databases to uncover an existing complete
solution.

• Should that fail, review scientific literature to identify methods and tools that can be
used as the basis for a solution.

• Analyse the candidates.
• Pick the most promising one.
• Try to develop a solution based on it, incl. both the abstract algorithm and a working

prototype.

22

2.3 Data

The core data in this research are the database snapshots that were used to build and test
the prototype. The snapshots fall into three categories:

• Custom-made for this thesis (Vehicle registry).
• Public sample databases (World [11], Sakila [12]).
• Items from NAE collections.

The reason for using artificial datasets is efficiency: it allows for testing of exactly the
features that are needed in the current phase of development, without any unnecessary
ballast. This is especially important in the early stages, were only very limited functionality
is implemented and overly complicated data would simply crash the code. Therefore the
majority of development was done on the vehicle registry. As the Entity-Relationship
Diagram on Figure 3 demonstrates, vehreg is simple, yet contains realistic data structures,
plus all the necessary variations of primary key that are needed for testing the merge
algorithm.

Figure 3. Vehicle registry ERD.

Later rounds of testing were done with World (slightly more data) and Sakila (more realistic

23

structural complexity and even more data). The vehicle registry dataset is provided as part
of the file supplement to the thesis (see section 4.5).

Another issue with the existing sample databases (such as World, Sakila and Employees) is
that they are current databases, meaning that they contain only one set of values, while this
research requires multiple sets of values from different points in time. A workaround from
this is to create multiple copies of the database and alter them in a suitable manner, such as
in the example in Listing 1. Here we have created three identical snapshots of the World
sample database, named world_s1, world_s2 and world_s3, intended to represent
the state of affairs at the end of the year of 2000, 2005 and 2010. The data in World is from
late 2000, so world_s1 was already correct, the other two were updated for their years.

-- Estonian presidents' time in office:
-- Arnold Rüütel 08.10.2001 - 09.10.2006
-- Toomas Hendrik Ilves 09.10.2006 - 10.10.2016
-- Snapshot 2 valid at 31.12.2005
UPDATE world_s2.country SET HeadOfState = 'Arnold Rüütel'
WHERE Code = 'EST';
-- Snapshot 3 valid at 31.12.2010
UPDATE world_s3.country SET HeadOfState = 'Toomas Hendrik Ilves'
WHERE Code = 'EST';

Listing 1. Differentiating snapshots

Note that the updates were made to only a select few values, enough to have the differences
to test the merging algorithm. Attempts were made to find newer vintages of World data, but
none were found in accessible sources. There were many interesting time series datasets1

that could have been transformed into yearly snapshots, but they were all single-relation,
i.e., year-value pairs or sometimes year followed by several values, but no one-to-many
relationships that are needed to simulate a real relational database.

The collection of archived database snapshots at the National Archives of Estonia was
also examined for test data. Unfortunately, these real life databases tend to be large, often
several terabytes, and therefore difficult to test on an ordinary laptop computer. Running
multiple snapshots of these would have required the use of external storage and possibly
would have still been too slow due to insufficient operating memory.

One target was too tempting to resist – the Land Mass Registry, of which there are four
snapshots (the highest count in NAE collections), from the years 2019, 2020, 2021 and
2023. Unfortunately, they are archived not as SIARD files, but as CSV and this greatly

1For instance, https://ourworldindata.org/ has country data on fertility rate, obesity, diet compositions and
type of government, and https://data.worldbank.org/ has per capita electric power consumption, all of which
include annual (or almost annual) values for several decades.

24

https://ourworldindata.org/
https://data.worldbank.org/

complicates the task. For one, CSV does not come with proper structure definitions
(compared to SIARD, which includes all the core aspects from the CREATE TABLE

statements), which is especially troublesome when there are schema changes across
snapshots. For the other obstacle, the mariadb-import utility is rather capricious
to the idiosyncrasies of CSV files, e.g., the character encoding or the enclosing or not
enclosing of values in quotes. These issues made the attempt take more time than was
feasible for this thesis. Another try will be given after the thesis is submitted.

2.4 Use of generative AI

Attempts at using artificial intelligence (AI) in the form of Large Language Models (LLM)
in this research were made, with moderate success. The earliest were the requests to
ChatGPT 4 to produce code for merging the snapshots. The first result was awe-inspiring:
a complete program with inline comments and detailed explanations on how it works.
The attempt to execute it failed brutally, as did many subsequent ones to debug it using
both artificial and biological intelligence. Several days of relentless tinkering with this
hallucination were nevertheless useful, as they led to a broad vision on the architecture of
the solution. Footprints of ChatGPT are still visible in the syntax of the SQL cursor that
iterates over all tables in a database using the data in INFORMATION_SCHEMA.TABLES,
and in some of the JOIN statements used in table-by-table merging. Splitting of the code
between Bash scripts and SQL procedures was also inspired by ChatGPT’s habit of
proposing code snippets intermittently in these languages.

Another try was to get suggestions for the structure of the document from ChatGPT. The
result was reasonable, but somewhat repetitive and incoherent. During writing, this draft
structure was changed significantly and recurrently, and in the end looks much more like
the one recommended by Prof. Jaak Tepandi in his guidelines for graduating students [13,
Sec. 9.1] than the original output of the LLM. This seriously questions the value of LLMs
supposedly tailor-made responses – yes, they are generated to the specific details in the
prompt, but they lack the wisdom of a seasoned professor, who can outline a structure that
is well suited for a whole category of thesis topics.

ChatGPT was also consulted while formulating Algorithm 3 (e.g., for the "update" state-
ment in the comments to step 9). After a lengthy back-and-forth, the basic building blocks
were in the LLM’s output, but they had to be reshaped and reassembled to get the needed
result.

Where ChatGPT really shone was concrete small tasks like rewriting name lists from “First-
name1 Lastname1, Firstname2 Lastname2” to the BibTeX format “Lastname1, Firstname1

25

and Lastname2, Firstname2” or creating the ISO 4 abbreviations of journal names, or “I
have the CREATE TABLE statement and some tab-separated data. Please convert the data
into INSERT statements.”

In sum, the role of ChatGPT in this thesis can be described as that of a moderately
knowledgable friend, who was always there to listen. The discussions helped clarify
thoughts and get unstuck on some occasions, but did not provide complete solutions or
brilliant insights.

26

3. Literature Review

This chapter summarises the search for tools, methods and algorithms that would answer
the research questions SRQ1 and SRQ2 (see section 1.4). The areas covered were data
warehouses, XML, semantic web and temporal databases.

The starting point was: any technology from any field is OK, so search was conducted
using a variety of terms. Looking at it now, during the final editing, everything seems
obvious: temporal databases were the correct path all along. This of course is hindsight
bias at its purest. At the outset of the research, the author had not even heard the term
temporal database, let alone comprehended its meaning.

The search effort started from terms describing the problem or the expected solution: access
to archived databases, archived snapshot access, etc. Very little useful was found, thus the
search was broadened, while keeping the term “archival” (or “preservation”): relational
database preservation, database preservation, digital preservation database, digital archiving
database. This produced a lot of interesting reading on our field in general, but still did not
yield much for the concrete task at hand. Hints at archiving had to disappear completely as
there are next to no publications of such solutions for archiving purposes. Searches for
schema versioning, database snapshot, data versioning, etc. were when things got better,
and discovering the word “temporal” was the final turning point.

Among the first terms to provide interesting results was data versioning, on which there is
a long history of research. Data versioning denotes the situation where a data entity has
recorded values reflecting different points in time, or alternatives that are valid in parallel,
depending on the value of some property. In simpler cases, these needs can be solved
by supplementing the table with a version column that holds either a timestamp or an
identifier. More complex cases need more complex solutions, e.g., temporal databases.

Theoretical discussions were well under way in the early 1980s, e.g., in 1983, James
F. Allen presented his interval algebra [14]. More concrete work followed, e.g., in a
paper from 1991, Edward Sciore discusses the use of annotations to support versioning
in object-oriented databases [15]. In 1994, the TSQL2 Language Design Committee led
by Richard Snodgrass published the TSQL2 Language Specification [16]. After years of
struggle, the ideas from TSQL2 finally made it to the SQL standard in 2011 [17].

27

Data versioning mostly looks at versions of data inside a single database instance, not
at versions of the same data in different database snapshots. However, some methods
and tools have potential use for snapshots, too. For instance, OrpheusDB is a system “to
‘bolt-on’ versioning capabilities to a traditional relational database system that is unaware
of the existence of versions,” [18], so there might be a way to attach it to databases prior
to archiving, to enable versioning, and at a later date aggregate the versioning-enabled
snapshots into a single instance for easy access.

A similar approach is TSAPI (Temporal SQL API): a method for adding system-versioning
functionalities to existing relational databases without changing the existing tables [19].
The result is achieved by creating special history tables and a set of triggers1 to maintain
them. The researchers have created a prototype implementation on MySQL, together with
web-based user interfaces, while the “API” in “TSAPI” signals the possibility of accessing
the functionalities via web services [19].

The last interesting paper from the early phase of literature review deals with the efficient
creation of “temporal merges,” a term defined as “a joint representation of a set of snapshots
of the same database at different points in time,” [20, p. 473]. At first, it did not properly
register. It took an odyssey through data warehouses, XML and semantic web to realise
the value of temporal relational databases and the brilliance of this specific article. For it is
this very paper by Antoon Bronselaer and colleagues that contains Algorithm 1 for direct
temporal merges – the key to solving our research problem.

Such wandering and stumbling advancement is well in line with the description of DSR
guideline 6: Design as a Search Process, as explained in [9, pp. 88-90] – it is iterative and
heuristic.

3.1 Data warehouse

At the first glance, data warehouse (DW) seems a perfect tool for bringing together multiple
snapshots of archived data for a comfortable analysis. After all, data warehouse is defined
as “[A] collection of integrated, subject-oriented databases designed to support the DSS
function, where each unit of data is relevant to some moment in time” [21, p. 389].
DSS stands for Decision Support System, hinting at the business ancestry of DW. In the
definition, the words “collection of databases” and “each unit of data is relevant to some
1A trigger is a stored procedure that executes automatically upon a certain event, e.g., a BEFORE INSERT
trigger runs after the user calls an INSERT statement, but before the RDBMS writes the values into the
table, so it can be used to copy the existing values into a history table before overwriting them by the new
values provided by the user.

28

moment in time” are tempting like siren song.

The author of the thesis was lucky to have a chance to consult with an expert at an early
stage in the research. The expert – Kristjan Kolde, the Data Warehouse Manager at Health
and Welfare Information Systems Centre (TEHIK) – recommended the canonical textbook
“The Data Warehouse Toolkit” by Ralph Kimball and Margy Ross [22]. This engaging
text provided not only a thorough understanding on how data warehouses are designed and
operated, but also the realisation, that they will not provide the two-click solution that they
appear to.

The key is how the data gets from the original form in the databases into the final form
that is usable in the data warehouse. This is brilliantly explained in the other canonical
textbook “Building the Data Warehouse,” written by William H. Inmon, the other half of
the Inmon-Kimball holy binity of DW foundational theory. Page 19 of [21] reads:

“In every environment the unintegrated operational data is complex and diffi-
cult to deal with. This is simply a fact of life. And the task of getting one’s
hands dirty with the process of integration is never pleasant. In order to achieve
the real benefits of a data warehouse, though, it is necessary to undergo this
painful, complex, and time-consuming exercise.”

The powerful query and analysis capabilities of data warehouses are realised through
intelligent integration and remodelling of the source data. The two books are obviously
ancient, but the expert confirmed that what they encapsulate is still the state of the art.
In sum, data warehousing has great potential for certain kinds of use cases of archived
snapshots, but it is definitely not the low-hanging fruit that has to be picked first.

3.2 XML

SIARD, the widely used format for the preservation of relational databases is based on
XML. There is another similar preservation format called DBML (Data Base Markup
Language), introduced in the paper “Bidirectional Conversion between XML Documents
and Relational Data Bases” [1]. That bidirectionality of the conversion RDBMS ↔ XML
is shared by both formats, implying that XML is a viable direction to search for the means
of multi-snapshot access to relational data.

Several methods of handling temporal data in XML have been proposed.

29

In 2004, F. Currim, S. Currim, Dyreson and Snodgrass (the latter two very well-known
experts in the field of temporal databases) presented a comprehensive solution for creating a
temporal schema from a non-temporal schema, called τXSchema. They handle temporality
through annotations, which “. . . specify which portion(s) of an XML document can vary
over time, how the document can change, and where timestamps should be placed” [23].
The authors then further elaborated the method on the example of biological data from the
National Center for Biotechnology Information (NCBI) [24]. A concise explanation is
provided in [25]:

“τXSchema has a three-level architecture for specifying a schema for time-
varying data. The first level is for the conventional schema which is a standard
XML Schema document that describes the structure of a standard XML doc-
ument, without any temporal aspect. The second level is for the logical

annotations of the conventional schema, which identify which elements can
vary over time. The third level is for the physical annotations of the conven-
tional schema, which describe where timestamps should be placed and how
the time-varying aspects should be represented.”

The original team developed it further over the years, e.g., at a conference in 2006 [26]
(and then in 2008 twice as thoroughly in a journal [27]) they presented schema versioning
for τXSchema. This is for the situation where not only the data values change but also
their structure. Then the team of Brahmia, Bouaziz, Grandi and Oliboni took over and
further developed schema versioning, defining “. . . a sound and complete set of schema
change primitives . . . ” that are needed “for the management of schema versioning in the
τXSchema framework” [25]. As this work focused on changes in the levels two (logical
annotations) and three (physical annotations), the logical next step was level one – the
conventional schema, which they tackled in the 2012 paper [28].

The authors continued by proposing a language for updating the temporal XML data in the
τXSchema framework. This was done through an extension to the W3C XQuery Update
Facility Language (XUF), called τXUF [29]. In parallel, they ported τXSchema to the
world of JSON, with what they called τJSchema – Temporal JSON Schema, a framework
for managing temporality in JSON documents [30]. From there, they proceeded to invent
τJUpdate – a language for modifying temporal JSON data [31].

The above 20-year τ -journey illustrates the breadth, depth and consistency of research
around temporal XML. But it is by no means the only body of research. Just one example:
in 2008, Rizzolo and Vaisman [32] introduced one that allows storing several timestamped

30

versions of data in an XML tree and provided algorithms for validating the document
against temporal constraints. For querying they created the TXPath language, an extension
of XPath 2.0 [32].

By now it should be clear that temporal data management in XML is mature, with long-
pedigree methods competing with the newcomers and no lack of choice for the user.
However, there is a problem, quoting [28]:

“Whereas schema versioning is required by several applications using multi-
temporal XML repositories, both commercial XML tools (like Stylus Studio
or XML Spy) and commercial DBMSs (like Oracle 11g, Tamino, or DB2
v.9) have no support for that feature until now, as surveyed in [6]. Therefore,
XML Schema designers and developers use ad hoc methods to manage schema
versioning.”

The quote is from 2012. In 2024, googling for the temporal XML query languages
TTXPath, τXQuery and TXPath, and τXSchema, still almost exclusively return links to
scientific journals and university web sites. Support by software has not caught up, which
greatly reduces the hope of building a temporal access solution on XML.

3.3 Semantic web

There is a lot of interesting research done around the semantic web technologies. At its
core is RDF (Resource Description Framework) for representing data as triples, on top
of it RDFS (RDF Schema) and OWL (Web Ontology Language) for including ontology
elements in RDF. Databases of RDF data are called triplestores and are queried using the
SPARQL language.

These technologies are often used for publishing open data, which in turn is usually just
data derived from relational databases. Another use is semantic interoperability – making
sure the meaning of data entities is defined unambiguously and presented in a machine-
readable form. There are many tools2 for converting data from relational databases to
RDF, incl. some that derive the schema of the conversion automatically from the database
structural definitions.

Management of change over time in the semantic web is an active research area, e.g., see
2See https://www.w3.org/wiki/ConverterToRdf and https://www.w3.org/wiki/RdfAndSql for links to over
ten of them.

31

https://www.w3.org/wiki/ConverterToRdf
https://www.w3.org/wiki/RdfAndSql

“RDF for temporal data management – a survey” from 2021 [33]. Many temporal query
languages have been developed – T-SPARQL, stSPARQL, SPARQL-ST, SPARQ-LTL and
AnQL are mentioned in [34]. The latter paper is also interesting for its use of the term
“RDF archives.” It is not concisely defined in the paper, so it largely looks synonymous to
“RDF database” or “triplestore,” but the repeated mentioning of archive.org implies that
the authors probably have a longer term preservation in mind.

The authors of [35] propose using RDF as a format for long-term preservation of data
stored originally in relational databases. They formulate the use case: “The proposed
approach is suitable for archiving scientific data used in scientific publications where it is
desirable to preserve only parts of an RDB” [35, p. 1].

All of the above is intellectually stimulating, but the author of the thesis cannot get over the
feeling that relational databases and semantic web are parallel universes with completely
different physics. In principle, the same things can exist, but to understand the way they are
constructed and presented, one must acquire a large body of new knowledge. It is therefore
an unlikely candidate for a quick and easy method for accessing database snapshots.

3.4 Temporal database

The need for recording time varying information in databases has been recognised at least
since the 1970s [36, Sec. 1].

Temporal databases are a category of relational databases that include special time dimen-
sions. They are of interest for this research because there is a solid body of theory on
handling these time dimensions and there are some RDBMS that have built-in functionali-
ties for time manipulations.

“The consensus glossary of temporal database concepts – February 1998 version” [37]
defines the term temporal database through the inclusion of time: “A temporal database is
a database that supports some aspect of time, not counting user-defined time.” The glossary
goes on to define three flavours of time:

• Valid time – “The valid time of a fact is the time when the fact is true in the modeled
reality. /. . . / Valid times are usually supplied by the user.”

• Transaction time – “A database fact is stored in a database at some point in time,
and after it is stored, it is current until logically deleted. The transaction time of a
database fact is the time when the fact is current in the database and may be retrieved.
/. . . / Transaction times may be implemented using transaction commit times, and

32

are system-generated and -supplied.”
• User-defined time – “. . . is parallel to domains such as “money” and integer– unlike

transaction time and valid time, it has no special query language support. It may be
used for attributes such as ‘birth day’ and ‘hiring date.’” [37]

From the above, user-defined time is the clearest – it is any user-defined time attribute
that is not about the validity of the row in a database. The other two warrant some more
exploration.

Tom Johnston does a great job at explaining the whole paradigm of temporal databases in
his book “Bitemporal Data: Theory and Practice” [38]. In there, he introduces his own
naming for the two times implied in “bi”: “‘State time’ is my term for what computer
scientists, vendors, and the SQL standards – i.e. pretty much everybody else – calls ‘valid
time’. ‘Assertion time’, excluding its extension into future time, is my term for what nearly
everybody else calls ‘transaction time.’” [38, Preface, p. xxix]. His rationale is that in
tables that have the valid time attributes, each row refers to a different state of the data,
or put another way: each row represents a timeslice from the life history of the data, thus
state time [38, p. 8]. And the transaction time periods mark the time during which a row
of data is asserted to make a true statement, thus assertion time [38, p. 9].

This discussion cannot be concluded without further muddying the waters, as the SQL
standard (section “Introduction to periods,” [17, Sec. 4.14.1] for SQL:2011 and [39, Sec.
4.16.1] for SQL:2023) and some RDBMS vendors, like IBM [40, p. 205] and MariaDB
[41], have their own terms, all summed up in the following table:

Table 5. Variations in naming of the time periods

Consensus glos-
sary

Tom Johnston SQL, IBM,
MariaDB

Definition

Valid time State time Application
time3

Time when the fact is true in
the modeled reality

Transaction time Assertion time System time Time when the fact is current
in the database

System time and system versioning (i.e., the process of managing system time) are the
preferred terms in this document because they are used by MariaDB and thus appear in the
SQL code listings.

3In its SQL dialect, IBM uses BUSINESS_TIME for application time.

33

Finally, the temporal capabilities of RDBMS were explored.

Commercial RDBMS have dealt with time for a long time. For instance, Oracle has had its
flavour of system versioning, called Flashback, since at least Oracle9i, released in 2002
[42]. Teradata implemented TSQL2, a predecessor to SQL:2011 temporal standard, in
2010 [38, p. xv]. IBM implemented SQL:2011 in DB2 already before its release, based on
drafts circulating in the standardisation work groups, although it might have been easier for
them than it seems, as they claim to have been the source of the approach that got adopted:
“. . . the ANSI and ISO SQL committees have accepted an early IBM proposal for tables
with system time periods” [43].

And we should not forget that several of the key researchers have worked for database
vendors (e.g., Edgar F. Codd at IBM in 1970 [44]) or have been funded by them (e.g.,
Richard T. Snodgrass by IBM in 1995 for writing his book “The TSQL2 Temporal Query
Language” [45, p. xxiii]). Currently, temporal features are known to exist in at least IBM
DB2, Oracle DBMS, Teradata, and MS SQL Server commercial products [46].

In the open source camp, the choice is narrower. PostgreSQL has provided temporal
functionalities via external modules [47, p. 22], some of which got later included in the
core, most notably range data types (introduced in 2012 [48]). However, PostgreSQL does
not have built-in support for SQL:2011, specifically for the features T180 System-versioned

tables and T181 Application-time period tables [49]. MySQL is not known to have built-in
temporal support either, but its sister MariaDB has a largely SQL:2011 compliant set of
bitemporal features [41].

34

4. Results

This chapter presents the core output of the research: the abstract algorithm and its concrete
implementation. It starts from section 4.1 that lays out the necessary terminology and
then deep-dives into relational algebra and the SQL standard, explaining the rationale
for the algorithm, and the steps of its functioning. The theory is followed by practice in
section 4.2, where the prototype implementation is introduced. The third major part is
4.3, which explains why this whole endeavour makes sense, by showing how easy it is to
query the data across many snapshots. The chapter is concluded by a brief overview of the
tools and technologies involved in the prototype, and a note on where to find the remaining
artefacts of this research (i.e., outside the thesis document itself).

The solution to the research problem (i.e., the method of multi-snapshot access) consists of
two parts:

1. Preparation – merging multiple snapshots into one temporal database.
2. Access – performing queries on the temporal database.

4.1 Solution part 1: Merge snapshots – Theory

This section describes part one, and more narrowly, its theoretical side. At its core it is a
variation of what Bronselaer et al. call a “direct merge,” which itself is a kind of “temporal
merge” [20, p. 477].

4.1.1 Terminology

Before diving into the details, it is necessary to establish the symbols that will be used and
this is done in Table 6, which is a copy of Table 1 in [20], minus items that are not relevant
to this thesis, plus some new ones that are.

Table 6. Overview of symbols and key concepts

Symbol Meaning
R Relation

R Schema of R

R∗ Temporal relation

Continues. . .

35

Table 6 – Continues. . .

Symbol Meaning
D Database

D Schema of D

D∗ Temporal database

D(i) Snapshot i of database D

R(i,j) Relation j of snapshot i of database D

KR Primary key1 of relation schema R
R[K] Projection over K, i.e., the primary key attribute(s) of relation R

R[R] Projection over R, i.e., all attributes of relation R

S Start attribute of validity interval

E End attribute of validity interval

ti Timestamp at the moment of creation of shapshot i

tmax Maximum value allowed by the data type of timestamps

ri Tuple r as of shapshot i

“Relation” is the abstraction of “table” in a database. It is a collection of tuples (rows), that
consist of an ordered list of elements/attributes/domains (fields/columns), which have the
same semantics for all tuples (rows). The schema of a relation defines the semantics for
each positional element of the tuples (rows). Relations have their roots in mathematics, but
their use in databases was proposed by Edgar F. Codd in 1970 [44] (see especially Section
1.3).

Unfortunately, the word “relation” has become to be used mostly in the sense of references
between tables (i.e., a foreign key field in a table referencing a primary key field of another
table), which in some contexts causes confusion. Thus, in this document, “relation” is
always in the sense used in relational algebra (i.e., basically a synonym to “table”) and
the references between tables are denoted with the word “relationship.” The term is used
similarly by the long-time researcher of temporal databases Abdullah Uz Tansel, e.g., in
[50, Sec. 4.3].2

“Key” and some of its flavours need to be defined. “In the relational model, a key for a
relational schema is a set of attributes whose value(s) uniquely identify a tuple in a valid
instance of the relation” [51, p. 1587]. It can be one attribute in the relation (i.e., one

1Bronselaer et al. use K for natural key
2To add to the confusion, Codd introduced another meaning to “relationship”: content-identical domain-
unordered relations [44, Sec. 1.3]. E.g., Employee(id, first_name, last_name) and
Employee(id, last_name, first_name) are different relations, but one relationship. How-
ever, this definition seems to have completely fallen out of use.

36

column in the table) or the combination of several attributes, important is that the set of
values that form the key never repeat.

In the relational model, duplicate tuples (i.e., where all attribute values are shared between
tuples) are not allowed, thus by definition, there always exists at least one key. In practice,
RDBMS3 allow duplicates and consequently tables without a key.

“Candidate key.” There can be several attributes or combinations of them that have the
unique identification property – these alternatives are sometimes referred to as candidate
keys. [51, p. 1587]

“Natural key.” “Natural keys are meaningful values that identify records, such as social
security numbers, that identify specific customers, calendar dates in a time dimension,
or SKU numbers in a product dimension. A natural key is a column that has a logical
relationship to other pieces of data within the record.” 4 [52]

“Surrogate key” aka “synthetic key.” “. . . surrogate keys are meaningless generated values
that uniquely identify the rows in a table.” Their merit is in durability (they do not have
to change to reflect changes in the real world) and compactness (they are usually just one
numeric attribute). [53].

“Primary key” is the key (out of all candidates) that is chosen to serve as the unique
identifier [51, p. 1587]. In the context of this thesis, the formal declaration of the primary
key in the definition of the relation schema (i.e., in practice, in the CREATE TABLE

statement) plays an important role.

“Foreign key” is an attribute (or a set of them) that refer to an attribute (or a set of attributes)
in another relation. More formally, according to the SQL standard, FK is a constraint that
restricts the values of the referring attributes to the values present in the referred attributes
[17, Sec. 11.8]. In practice, FK usually refers to a PK.

“Projection,” in simple terms, is a vertical slicing of a tuple (row) or a whole relation (table).
E.g., if we have a tuple t with attributes {a1, a2, a3}, then the “projection of t over a2,”
expressed as t[a2], is what is left of the original t when a1 and a3 are removed.

3At least MariaDB is known to allow.
4This definition is from the domain of data warehousing, thus the use of the word "dimension" that has a
special meaning there.

37

4.1.2 Foundations

Bronselaer et al. define temporal merge as follows [20, Definition 2]:

“Definition 2 (Temporal merge) Let D be a relational database with schema D. A temporal
database D∗ is a temporal merge of the snapshots D(1), . . . , D(m), denoted by D∗ =

D(1) ⊕ · · · ⊕D(m), if we have for any i ∈ {1, . . . ,m} that we can reconstruct D(i) from
D∗, denoted by D∗ ⊢ D(i).”

Based on that, they define direct merge as follows [20, Definition 3]:

“Definition 3 (Direct merge) A temporal database D∗ with schema D is called a direct
merge if, for any i, we have that:

∀R(i) ∈ D(i) : R(i) = R∗
S≤i∧i≤E[R(i)].”

Definition 3 has a problem: index i is overloaded. This might be acceptable in abstract
formulations, but makes comprehension more difficult. It places R(i) and D(i) in different
ontological categories: D(i) is a single item, the snapshot i in a set of snapshots of database
D, while R(i) is a collection, the set of all relations in the database snapshot D(i). Having
D(i) and R(j) would fix it:

∀R(j) ∈ D(i) : R(j) = R∗
(j)S≤i∧i≤E

[R(j)].

An even clearer notation would be one with dual indices R(i,j), conveying the meaning
“relation j of snapshot i of database D”:

∀R(i,j) ∈ D(i) : R(i,j) = R∗
(S≤i∧i≤E,j)[R(j)].

Bronselaer et al. go on to formulate an algorithm for direct merges5, i.e., the addition
of snapshots into a temporal database that already contains at least one snapshot [20,
Algorithm 1], printed here verbatim as Algorithm 1.

There are three weaknesses in Algorithm 1.

Weakness 1: it shares the overloaded index i issue with Definition 3. In addition to
complicating abstract discussions, it can cause errors in implementations if insufficient

5According to the authors, the algorithm is actually for minimal direct merge as it is “minimal in the number
of tuples they require to model all snapshots” [20, p. 480].

38

Algorithm 1 Addition of D(i) to D(1) ⊕ · · · ⊕D(i−1)

Require: Snapshot D(i)

Require: D∗ = D(1) ⊕ · · · ⊕D(i−1)

Ensure: D∗ = D(1) ⊕ · · · ⊕D(i)

1: Get D(i−1) from D∗

2: Sort relations in D(i) s.t. R1 ≺ R2 if R2 ▷ R1

3: for all R(i) ∈ D(i) do
4: for all r ∈ R(i) do
5: if r /∈ R(i−1) then
6: insert r in R∗ time [i, i]
7: else
8: update r in R∗ set E = i
9: end if

10: end for
11: end for

care is taken in translating the pseudocode to an actual programming language. Namely, if
the traditional for-loop is used and i is adopted as the control variable.

Weakness 2: step 6 “insert r in R∗ time [i, i]” cannot be executed for system-versioned
tables6 in an SQL:2011 compliant RDBMS, as the standard requires that at INSERT,
the RDBMS sets row_start = timestamp and row_end = max_timestamp.
time [i, i] can be achieved if the RDBMS has relevant non-standard extensions.

In the case of MariaDB, there are two and one of them provides a solution. System
variable @@timestamp allows overriding the normal behaviour where the row_start
and row_end are filled with the current time (or max_timestamp for row_end in
the case of current records). When @@timestamp is set to a specific value, this value
is used in all cases that would normally get the current timestamp. This directly solves
row_start for the newly inserted rows. To fix row_end as well, every INSERT

statement must be followed by a DELETE. The process is illustrated by the following
example.

SET @@timestamp = UNIX_TIMESTAMP('2022-02-22 22:22:22');
INSERT INTO insurer (id, name, address)

VALUES (3, 'Ergo', 'Main Str. 1');
DELETE FROM insurer WHERE id = 3;
SELECT *, row_start, row_end

FROM insurer FOR SYSTEM_TIME ALL
WHERE id = 3;

Listing 2. Insert row with row_start = row_end

6Similarly to this thesis, the article by Bronselaer et al. explicitly deals with system time aka transaction
time: “. . . in what follows, we focus on the transaction time of databases” [20, Sec. 4.1]

39

The INSERT statement will produce the row with the desired row_start value:

id name address row_start row_end
3 Ergo Main Str. 1 2022-02-22 22:22:22.000 2038-01-19 05:14:07.999

Then the DELETE statement will set the row_end value:

id name address row_start row_end
3 Ergo Main Str. 1 2022-02-22 22:22:22.000 2022-02-22 22:22:22.000

The other extension in MariaDB that gives hope for time [i, i] periods is the system
variable value SET @@system_versioning_insert_history = 1, which switches off
the timestamp management altogether and allows for INSERT statements with explicit
values for row_start and row_end. However, it turns out this mode enforces
row_start < row_end and is thus not usable for the current goal.

Weakness 3: similarly to step 6, step 8 “update r in R∗ set E = i” cannot be executed in an
SQL:2011 compliant RDBMS, as it automatically sets row_end = max_timestamp.
The same workaround as with step 6 could be applied here.

The following Algorithm 2 is a version of Algorithm 1 by Bronselaer et al., where the
above-mentioned weakness 1 has been addressed.

Algorithm 2 Addition of D(i) to D(1) ⊕ · · · ⊕D(i−1) (improved)

Require: Snapshot D(i)

Require: D∗ = D(1) ⊕ · · · ⊕D(i−1)

Ensure: D∗ = D(1) ⊕ · · · ⊕D(i)

1: Get D(i−1) from D∗

2: Sort relations in D(i) s.t. R1 ≺ R2 if R2 ▷ R1

3: for all R(i,j) ∈ D(i) do
4: for all r ∈ R(i,j) do
5: if r /∈ R(i−1,j) then
6: insert r in R∗ time [i, i]
7: else
8: update r in R∗ set E = i
9: end if

10: end for
11: end for

Step 3 is to be read: “for all relations j in snapshot i do.” Step 4 is to be read: “for all
tuples in relation j of snapshot i do.”

40

4.1.3 Algorithm

The core product of this thesis is the algorithm for merging the archived database snapshots
into a temporal database. The algorithm has two manifestations: the abstract one, expressed
in the terminology of relational algebra, and the concrete one, expressed as Bash scripts
and SQL procedures. This section presents the abstract manifestation, labelled Algorithm
3. ChatGPT v.3.5 was used in drafting some of the formulas [54].

Although still abstract, it includes elements that make practical implementation on a
temporal RDBMS easier than that of Algorithm 1. The most apparent of these, almost
doubling the number of steps, is the special treatment for relations that have a formally
defined primary key (see the explanation of Step 4 below the algorithm listing). Another is
the introduction of timestamps in addition to snapshot indices. In most contexts, indices
are a more efficient tool for addressing the snapshots, but for the values of row_start
and row_end, the SQL standard and the RDBMS examined for this thesis7, mandate
timestamps. Thus, it makes sense to also use timestamps in the abstract algorithm.

Step 1 is important for the abstract algorithm, while in practical implementations, it is
performed implicitly whenever calls to D(i−1) or its components are made.

Step 2 sorting of the relations is retained for universality, while in practical implementations
it can usually be bypassed. The SQL:2011 standard8 includes the optional feature F492,
“Optional table constraint enforcement” that allows the constraints to be disabled by
supplementing their definition with the keyword NOT ENFORCED [17, Sec. 10.8]. When
applied to all foreign key constraints, tables can be processed in any order, with no regard
to their functional dependencies. Obviously, this can break referential integrity if the data
or the merging algorithm are faulty. In the current case, data can be assumed to be of
perfect referential integrity as the snapshots are created from real, functioning databases
and are technically validated after creation.

RDBMS support of the feature F492 is not uniform. IBM DB2 is claimed to be perfectly
compliant [55]. Microsoft SQL Server provides a close-to-the-standard keyword that can be
invoked using ALTER TABLE emp NOCHECK CONSTRAINT FK_emp_dept_dept_id; [56].
MariaDB lacks the surgical precision of F492 but has a system variable for the sweeping
SET FOREIGN_KEY_CHECKS = 0; [57], which in the prototype implementation in this

7The most attention was put on MariaDB, but IBM DB2 and MS SQL Server were looked at, too.
8In this thesis, the references to the temporal features of the standard are labeled SQL:2011. In this regard, a
late draft of SQL:2011 was used. At a further point in time, the official text of SQL:2023 was obtained and
cross-checked with the SQL:2011 draft. When the two concur, only SQL:2011 is cited, otherwise both are,
with differences highlighted.

41

Algorithm 3 Addition of D(i) to D(1) ⊕ · · · ⊕D(i−1) (enhanced)

Require: Snapshot D(i)

Require: D∗ = D(1) ⊕ · · · ⊕D(i−1)

Ensure: D∗ = D(1) ⊕ · · · ⊕D(i)

1: Get D(i−1) from D∗

2: Sort relations in D(i) s.t. R1 ≺ R2 if R2 ▷ R1

3: for all R(i,j) ∈ D(i) do
4: if Kj is defined for schema Rj then
5: for all r ∈ R(i,j) do
6: if r[Kj] /∈ R(i−1,j)[Kj] then
7: insert r in R∗

j time [ti, tmax]
8: else if r[Kj] ∈ R(i−1,j)[Kj] ∧ r[Rj] /∈ R(i−1,j)[Rj] then
9: update r(i−1) in R∗

j set E = ti
10: insert r in R∗

j time [ti, tmax]
11: end if
12: end for
13: for all r ∈ R(i−1,j) do
14: if r[Kj] /∈ R(i,j)[Kj] then
15: update r(i−1) in R∗

j set E = ti
16: end if
17: end for
18: else
19: for all r ∈ R(i,j) do
20: if r /∈ R(i−1,j) then
21: insert r in R∗

j time [ti, tmax]
22: end if
23: end for
24: for all r ∈ R(i−1,j) do
25: if r /∈ R(i,j) then
26: update r(i−1) in R∗

j set E = ti
27: end if
28: end for
29: end if
30: end for

thesis is called in the beginning of the main procedure sync_databases(). Regardless
of the details, there always seems to be a way to get around the sorting step.

Step 3 iterates over all relations in snapshot i, using j as index for the relation to be
processed.

Step 4 splits the algorithm into two major parts, to provide a standards-compliant treatment
of tables that have an explicitly defined primary key (which in the experience of NAE is
most tables in most databases). The emphasis is on explicitly defined, as opposed to any
candidate key that is not formally defined in the relation schema. Primary key is denoted

42

here by K with the index j (reminding that the key is specific to the relation). Similarly,
the j in Rj emphasises the specificity of the schema to the relation that is being processed
in the current run of the for-loop.

Respecting formal primary keys allows for uniquely identifying a row in both snapshots
and then comparing the values of the current with the previous, and if change is detected,
updating the row. Ignoring the primary keys and instead comparing all columns is non-
standard and risks breaking referential integrity. This is against the guiding principle nr 3:
Avoid hacks (see section 1.5).

Step 5 iterates over all tuples in relation j from snapshot i.

Step 6 tests if the tuple was present in the previous snapshot. The test relies on primary
keys, i.e., only the values of the attributes that form the primary key Kj are compared.

Step 7 inserts the new tuple into the temporal relation, setting system versioning period’s
S = ti (the time of creation of snapshot i) and E = tmax (to indicate the tuple is the most
current one available). The result is that the temporal relation R∗

j contains exactly one
tuple with this specific primary key r[Kj] and its system versioning period is [ti, tmax].

Step 8 tests for tuples that have changed, i.e., a tuple with the same primary key existed
in the previous snapshot, but the tuples are not identical in all attributes (across the full
schema Rj).

Step 9 marks the tuple that already exists in the temporal relation as historical by setting
its period end timestamp E to the timestamp of the current snapshot i. E.g., assuming the
tuple was first inserted for snapshot i− 1, its time period is now [t(i−1), ti], which in the
open-closed9 period semantics means the tuple became the official recorded state of the
data at t(i−1) and ceased being official at ti (i.e., was official up until right before ti).

There is a semantic finesse: the r in “r(i−1) in R∗
j” is not structurally identical to the

loop variable r in “r ∈ R(i,j)” (step 5) because the temporal relation R∗
j contains all the

attributes of the non-temporal Rj , plus the system versioning period’s start (S) and end (E)
timestamps. Therefore, the fully accurate formulation would be this SQL-like statement:

update R∗
j set E = ti where r[Kj] = r(i−1)[Kj].

However, this statement is confusing, because it is structurally identical to the SQL

9For some explanations, check out Table 10 and the paragraph below it.

43

statement that applies to the whole table, not just to the one row being processed here in
the for-loop. Consequently, the simpler wording for step 9 is left in place and it is meant to
be read: “in R∗

j , update the tuple that was current in snapshot i− 1 and set its E = ti.”

Step 10 inserts the tuple from snapshot i into the temporal relation and sets its system time
period to [ti, tmax] (indicating that the tuple was recorded at ti and is still current).

After steps 9 and 10, there are two versions of tuple r in R∗
j (K denotes primary key, vc

and wc are values of attribute c):

(K, v1, v2, . . . , vn, t(i−1), ti)

(K,w1, w2, . . . , wn, ti, tmax)

In an implementation on a temporal RDBMS, steps 9 and 10 would be called by one
statement, expressed here in abstract pseudocode:

update r in R∗
j set Ac = ri[Ac] where ri−1[Ac] ̸= ri[Ac] time [ti, tmax].

In effect, the RDBMS would be told to just update all the attributes that have changed,
and it would then break the statement down to its constituents depending on the temporal
storage setup. In the case of all records being in the same table (as is the default in
MariaDB, see section “Storing the History Separately” in [41]), the statements in step 9
and 10 are executed. In the case of historical records residing in a separate table (as is
the case with Microsoft SQL Server [58]), the steps are: 1) insert the current row into
the history table, only changing the period end to E = i, 2) update the current row to
match the attribute values in snapshot i, plus set S = i and E = tmax. This process is
concisely explained in a Microsoft Learn article: “When data is updated, it is versioned,
with the previous version of each updated row is inserted into the history table. When data
is deleted, the delete is logical, with the row moved into the history table from the current
table – it is not permanently deleted” [59].

Step 13 is the mirror image of step 5: it iterates over all tuples in relation j from snapshot
i− 1 (vs. i in step 5). The goal is to detect tuples that were present in snapshot i− 1 but
are not in snapshot i, which effectively means they have been deleted after snapshot i− 1

was created.

Step 14 tests if the tuple from the previous snapshot has been deleted.

Step 15 is identical to step 9, but there it was part of a higher level update, while here it

44

performs what on a temporal RDBMS would be “delete r from R∗
j”.

Step 18 begins the treatment of tuples that have no formally declared primary key.

Step 19 iterates over all tuples of the relation in the current snapshot.

Step 20 tests if the tuple was present in the previous snapshot. The comparison of the
tuples is done on all attributes (except for the timestamps S and E), i.e., a match means
r(i,j)[Rj] = r(i−1,j)[Rj].

Step 21 (identically to step 7) inserts the new tuple into the temporal relation.

Step 24 (identically to step 13) starts the loop to search for tuples that have been deleted
after snapshot i− 1 was created.

Step 25 (similarly to step 14) tests if the tuple from the previous snapshot has been deleted,
but dissimilarly to 14, does so based on all attributes.

Step 26 (identically to step 15) marks the tuple that was current as of ti−1 to have ceased
to be the current state of r at ti.

Missing step? The steps above lack one to handle the situation where r[Rj] = r(i−1)[Rj],
i.e., the tuple has not changed. That is because in the SQL:2011-style timestamping,
current tuples are marked E = tmax and therefore stay current until changed.

4.2 Solution part 1: Merge snapshots – Implementation

The prototype10 implementation of the abstract algorithm is based on MariaDB, which
was chosen for its best match to the guiding principles (see section 1.5). Namely, principle
1 “Do not reinvent the wheel” by having a largely SQL:2011 compliant set of temporal
functionalities, and principle 2 “Prefer open source” by being a proper open source project.

MariaDB handles both the system time (aka transaction time) and application time dimen-
sions (see section 3.4). The choice between these two fell on system time for two reasons.
First, it is supported by better functionality for the current task. For example, “UPDATE

10The terms “Prototype” and “Proof of Concept” are somewhat vague and overlapping, e.g., see SoftKraft,
“Prototype vs Proof of Concept — 6 Key Differences to Know,” Jan 17, 2023, https://medium.com/
@softkraft/prototype-vs-proof-of-concept-6-key-differences-to-know-e47bf32670b1 and N. Ferdous,
“Proof of Concept Vs. Prototype: How Do They Differ,” Sep 12, 2022, https://differencecamp.com/proof-
of-concept-vs-prototype/. For the product of this research, the term “prototype” seems more accurate.

45

https://medium.com/@softkraft/prototype-vs-proof-of-concept-6-key-differences-to-know-e47bf32670b1
https://medium.com/@softkraft/prototype-vs-proof-of-concept-6-key-differences-to-know-e47bf32670b1
https://differencecamp.com/proof-of-concept-vs-prototype/
https://differencecamp.com/proof-of-concept-vs-prototype/

and DELETE on system-versioned tables result in the automatic insertion of a historical
system row for every current system row that is updated or deleted” [60] – a behaviour
directly exploited by the prototype implementation. Second, it is more semantically accu-
rate, because it is concerned with the time when the data was recorded in the database, and
that is precisely what the snapshot creation time communicates. Application time is about
when the stored facts were true in the real world, but we have no information about that.

Using the prototype requires the following steps:

1. Find a computer with a Unix/Linux operating system, e.g., a Mac11.
2. Obtain administrator level access to a MariaDB server.
3. Install DBPTK Developer.
4. Collect the SIARD files into a folder, order chronologically and name systematically,

starting from the oldest, using the naming pattern dbname_s[i].siard, where
[i] is an integer counter that starts from 1.

5. Configure the connection parameters, folder for SIARD files and the naming prefix
in the beginning of Main_workflow.sh.

6. Configure the snapshot timestamps in Import_snapshots_into_temporal
_db.sql.

7. Run Main_workflow.sh.
8. Connect to the MariaDB server with your favourite database management tool (e.g.,

DBeaver) and start making queries.

The following is a brief description of the major workflow steps, further comments can be
found inside the code presented in Appendix 2. ChatGPT v.4 was used in drafting the code
[54] (for details see section 2.4).

4.2.1 Create blank databases

A for-loop in the main workflow script creates blank databases into the MariaDB engine.
The key is using a fixed naming pattern for both the SIARD files and database names.

4.2.2 Upload SIARD snapshots

Process the SIARD snapshots chronologically, starting from the oldest. For each SIARD
snapshot, upload it into the blank database created in the previous step. Technically it is

11Windows is also usable but more complicated. The problem part is the main workflow Bash script –
Windows cannot run it natively. There are several solutions, the easiest of which seems to be the Windows
Subsystem for Linux [61].

46

two substeps: first, create the structure defined in the SIARD file, and second, fill the tables
with the data. The upload is performed by DBPTK command line utility (called DBPTK
Developer).

This is all for the SIARD files, further on, all activities take place in the RDBMS.

4.2.3 Clone aggregate database from snapshot 1

Use the live database instance of the oldest snapshot to create a new database with the
same structure (but without data) – this will become the aggregate temporal database.

4.2.4 Add system versioning to aggregate database

Enable the temporal features for all tables in the newly created aggregate database. The
result is the creation of the columns row_start and row_end that store the system
time period, and the activation of the automated time-stamping of rows. Therefore, this
step must happen before merging the data.

4.2.5 Sync databases

This step is a concrete realisation of the abstract algorithm 3. For each snapshot database,
starting from the oldest (i.e., the one named dbname_s1), merge its data into the aggregate
temporal database (named named dbname_s0). Each row in the temporal database will
get a “system time” timestamp into its system-versioning period start field – use the
snapshot creation time to fill that field (i.e., all rows from all tables in the snapshot will get
an identical period designation).

Merging is done one table at a time, iterating over all the tables in the database. For each
row in a table, there are three possible cases for its presence in the current snapshot as
compared to the previous one:

• Case 1: INSERT. The row didn’t exist in the last snapshot, i.e., it has been created
after the last snapshot was made.

• Case 2: UPDATE. The row already existed in the last snapshot, but at least one
column differs.

• Case 3: DELETE. The row existed in the last snapshot, but not in the current one,
i.e., it was deleted after the last snapshot was made.

47

An example of these scenarios can be seen in Table 9. The data is from the table Product
that has three fields: ID – integer that serves as a surrogate12 primary key, Item – product
name, and Quantity – quantity of the product in stock. For instance, the first row in S1
(1, Apple, 100) means that there were 100 apples in stock at the time. Snapshots
were taken after the end of the business day on May 1 and May 2.

Table 9. Two snapshots of table Product(ID, Item, Quantity)

S1 – May 1 S2 – May 2 Case
(1, Apple, 100) (1, Apple, 40) UPDATE

(5, Banana, 10) INSERT

(2, Carrot, 33) DELETE

The merging of these rows from the two snapshots into a temporal database is processed
with SQL UPDATE, INSERT and DELETE statements correspondingly. By nature of SQL,
these statements can be crafted to apply for the whole table, without the need to manually
code row-by-row iteration.

The outcome of the operations above is a temporal database that contains all the data from
the archived snapshots, stored efficiently, without duplicates. Every data row (or more
specifically, every version of every row) is timestamped, so that the full history of data
evolution can be reconstructed.

The result of the aggregation of the sample data can be seen in Table 10. The Product
table in the aggregate temporal database has two extra fields: row_start and row_end,
which indicate the time when the data in the row started to be current state and the time
when it ceased to. Note that the end time is exclusive, meaning that the data was valid up
until that time, but stopped being valid at exactly that time. row_end = 9999 stands
for currently official data, i.e., the end of it being official has not been recorded yet.

Table 10. Two snapshots of table Product(ID, Item, Quantity) merged

S1 – May 1 S2 – May 2 Aggregate Case
(1, Apple, 100) (1, Apple, 40) (1, Apple, 100, May 1, May 2)

(1, Apple, 40, May 2, 9999)13

UPDATE

Continues. . .

12Surrogate as opposed to natural, in the sense that a natural key consists of data that have a meaning in real
life, whereas a surrogate key is generated by the system with the sole purpose of identifying a record.

13“9999” denotes the largest possible time value the RDBMS can handle (notation borrowed from [38]) and
conveys the message that the data in this row are considered currently valid. Relational algebra would call
for NULL, the main definition of which is “value at present unknown” [62, p. 403], but to make the queries

48

Table 10 – Continues. . .

S1 – May 1 S2 – May 2 Aggregate Case
(5, Banana, 10) (5, Banana, 10, May 2, 9999) INSERT

(2, Carrot, 33) (2, Carrot, 33, May 1, May 2) DELETE

The default interpretation of timestamps in temporal databases assumes a continuous
timeline, i.e., the data are valid for the whole interval [row_start, row_end) (square
bracket denoting that start is inclusive, round bracket that end is exclusive). In the case of
infrequent snapshotting we can be almost certain that this is not a correct documentation
of the state of affairs in the real life, because the data could have gone through multiple
changes and we have only captured their state at a few moments. For instance, the data
tells us that there were 100 apples in stock in the evening of May 1 and 40 in the evening
of May 2. We do not know the level of stock at 10 AM or at noon of May 2. We also do
not know if the end state of 40 is a result of 60 apples being sold in one transaction at noon
of May 2, or was there a 10 AM incoming batch of 100 apples from the wholesaler and
then multiple sales totalling to 160 apples over the day.

Therefore the correct interpretation in the case of aggregated snapshots is that the data are
known to be valid at the snapshot times. For all other times, the values indicate the best

archived state of the data. We know them to be in a generally plausible range (after all, at
least at some point in time the data had been in this state), and in many cases they end up
being exactly correct, but we should always acknowledge the inherent indeterminacy.

4.3 Solution part 2: Query data

Querying is done using the standard SQL:2011 or later temporal query constructs. The
contribution of the author of this thesis is limited to gathering the examples and tweaking
the syntax in minor ways.

The options for querying are discussed on the example of vehreg – the database of a
hypothetical state vehicle registry. For a deeper understanding of the example queries,
the reader is encouraged to inspect the commented raw data files. The link to these files
is provided in section 4.5 and the rationale for using artificial data in the first place in
section 2.3. ERD is also there as Figure 3. The examples use unqualified table names, i.e.,
the name of the database is omitted. For this to work, the aggregate temporal database
must be set as the default database for the session. The current default can be displayed by:

on open-ended time periods work identically to closed time periods, the RDBMS use the largest possible
value instead. The SQL standard also follows this approach [17, Sec. 4.15.2.2], [39, Sec. 4.17.2.3].

49

SELECT DATABASE();

A new default can be set by (note that in the prototype, the aggregate temporal database
always has "s0" at the end of its name):

USE vehreg_s0;

The basic syntax of temporal queries on a single table is described in the MariaDB
knowledge base article “System-Versioned Tables” [41]. The following are the key items
from the section “Querying Historical Data” of that article, with examples replaced by the
author of the thesis.

4.3.1 Single table, at a moment

“To query the historical data one uses the clause FOR SYSTEM_TIME directly after the
table name (before the table alias, if any). /. . . / AS OF is used to see the table as it was at
a specific point in time in the past” [41].

SELECT *, row_start, row_end FROM vehicle

FOR SYSTEM_TIME AS OF '2016-10-09';

Table 11. Table vehicle at a moment

id owner_id number make model year row_start row_end
2 2 222BBB Zil 130 1970 2000-01-01 2038-01-19

3 3 333CCC MB E220 2002 2005-01-01 2038-01-19

4 4 444DDD Audi A4 2007 2010-01-01 2020-01-01

5 5 555EEE Opel Astra 2014 2015-01-01 2038-01-19

To conserve space and the reader’s attention, time is left out of the TIMESTAMP values in
the examples. In reality, MariaDB times are at microsecond precision, thus queries like
this are also possible:

SELECT *, row_start, row_end FROM vehicle

FOR SYSTEM_TIME AS OF '2016-10-09 08:07:06.000001';

50

If the user interface of the database management software hides some of the precision
from the query results (e.g., DBeaver defaults to milliseconds), then one way to see the
full values is to use the DATE_FORMAT() function:

SELECT DATE_FORMAT(row_end,'%Y-%m-%d %H:%i:%s.%f') FROM vehicle

FOR SYSTEM_TIME AS OF '2016-10-09';

4.3.2 Single table, over a period

“BETWEEN start AND end will show all rows that were visible at any point between
two specified points in time. It works inclusively, a row visible exactly at start or exactly at
end will be shown too” [41].

SELECT *, row_start, row_end FROM vehicle

FOR SYSTEM_TIME BETWEEN '2017-05-05' AND '2024-05-05';

Table 12. Table vehicle over a period

id owner_id number make model year row_start row_end
2 2 222BBB Zil 130 1970 2000-01-01 2038-01-19

3 3 333CCC MB E220 2002 2005-01-01 2038-01-19

4 4 444DDD Audi A4 2007 2010-01-01 2020-01-01

4 6 444DDD Audi A4 2007 2020-01-01 2038-01-19

5 5 555EEE Opel Astra 2014 2015-01-01 2038-01-19

6 4 666FFF Nissan Leaf 2019 2020-01-01 2038-01-19

Note that the period queries allow some temporal calculations, e.g., on 5 May 2024, the
exact14 same result could have been gotten using the “give me the last 7 years” syntax:

SELECT *, row_start, row_end FROM vehicle

FOR SYSTEM_TIME BETWEEN (NOW() - INTERVAL 7 YEAR) AND NOW();

There is an alternative syntax to achieve the same result: “FROM start TO end will
also show all rows that were visible at any point between two specified points in time,
including start, but excluding end” [41].

14As stated in the previous section, we are ignoring the time component of the TIMESTAMP fields, otherwise
the results could differ, as NOW() gives a timestamp with one second precision.

51

SELECT *, row_start, row_end FROM vehicle

FOR SYSTEM_TIME FROM '2017-05-05' TO '2024-05-06';

The TO ... value of FROM ... TO ... is not included in the period, so to get
identical results to BETWEEN ... AND ... we have to increase it by one unit of time.
In these examples we operate with days, thus +1 day. In reality, the TIMESTAMP type in
MariaDB has microsecond accuracy, so we would need to pick a moment 1 microsecond
later, e.g., '2024-05-05 00:00:00.000001'. This of course is artificial – the
alternative clauses BETWEEN ... AND ... and FROM ... TO ... are provided
precisely for the purpose of avoiding such play with microseconds.

The results above might seem counter intuitive because they contain rows that had
row_start before the start time specified in the query and row_end later than
the specified end time. This is because both the BETWEEN ... AND ... and
FROM ... TO ... syntaxes match rows using a concrete definition of overlap,
as already quoted above from the MariaDB manuals: “rows that were visible at any point
between two specified points in time” [41]. Safe navigation of temporal queries requires
the comprehension of period relationships, famously systematised by James F. Allen in
1983 [14] and their implementation in modern RDBMS. A concise listing of the SQL
standard’s interpretation can be found in its section “Operations involving periods,” which
is numbered 4.14.2 in SQL:2011 [17] and 4.16.2 in SQL:2023 [39].

If deviations from the standard overlap are desired, additional criteria to SELECT can be
used. For instance, to get only the rows that became current during the period defined in
the query, the following can be used (adopted from [63]):

SELECT *, row_start, row_end FROM vehicle

FOR SYSTEM_TIME FROM '2017-05-05' TO '2024-05-06'

WHERE row_start >= '2017-05-05';

Table 13. Table vehicle over a period, filtered by row_start

id owner_id number make model year row_start row_end
4 6 444DDD Audi A4 2007 2020-01-01 2038-01-19

6 4 666FFF Nissan Leaf 2019 2020-01-01 2038-01-19

52

4.3.3 Single table, whole history

The above query constructs were from SQL:2011. MariaDB complements them with the
non-standard extension ALL that will show all rows, historical and current [41].

SELECT *, row_start, row_end FROM vehicle

FOR SYSTEM_TIME ALL;

This is identical to an SQL:2011-compliant explicit period query that uses the min and
max values of the TIMESTAMP data type:

SELECT *, row_start, row_end FROM vehicle

FOR SYSTEM_TIME

BETWEEN '1970-01-01 00:00:00' AND '2038-01-19 03:14:07';

Table 14. Table vehicle whole history

id owner_id number make model year row_start row_end
1 1 111AAA Ford Ka 1999 2000-01-01 2005-01-01

1 2 111AAA Ford Ka 1999 2005-01-01 2010-01-01

1 3 111AAA Ford Ka 1999 2010-01-01 2015-01-01

2 2 222BBB Zil 130 1970 2000-01-01 2038-01-19

3 3 333CCC MB E220 2002 2005-01-01 2038-01-19

4 4 444DDD Audi A4 2007 2010-01-01 2020-01-01

4 6 444DDD Audi A4 2007 2020-01-01 2038-01-19

5 5 555EEE Opel Astra 2014 2015-01-01 2038-01-19

6 4 666FFF Nissan Leaf 2019 2020-01-01 2038-01-19

This looks similar to the result set in Table 12, but the difference is the group of three
rows with id = 1 that were left out previously due to period start having been set at
'2017-05-05'.

4.3.4 Single table, current data

“If the FOR SYSTEM_TIME clause is not used, the table will show the current data. This is
usually the same as if one had specified FOR SYSTEM_TIME AS OF CURRENT_TIMESTAMP,
unless one has adjusted the row_start value” [41].

53

SELECT *, row_start, row_end FROM vehicle;

Table 15. Table vehicle current data

id owner_id number make model year row_start row_end
2 2 222BBB Zil 130 1970 2000-01-01 2038-01-19

3 3 333CCC MB E220 2002 2005-01-01 2038-01-19

4 6 444DDD Audi A4 2007 2020-01-01 2038-01-19

5 5 555EEE Opel Astra 2014 2015-01-01 2038-01-19

6 4 666FFF Nissan Leaf 2019 2020-01-01 2038-01-19

4.3.5 Two tables, temporally joined

All the system versioning period specifications from SELECT can also be used as part of
JOIN clauses [64]:

FOR SYSTEM_TIME AS OF point_in_time

FOR SYSTEM_TIME BETWEEN point_in_time AND point_in_time

FOR SYSTEM_TIME FROM point_in_time TO point_in_time

FOR SYSTEM_TIME ALL

The following statement reports the owner of the vehicle at a moment in time. It requires
a JOIN, because the data are stored in two tables: vehicle’s details in vehicle and the
owner’s names in owner.

SELECT v.id, v.number, v.make, v.model, v.row_start, v.row_end,

o.first_name, o.last_name

FROM vehicle FOR SYSTEM_TIME AS OF '2007-01-01' AS v

LEFT JOIN owner FOR SYSTEM_TIME AS OF '2007-01-01' AS o

ON v.owner_id = o.id

WHERE v.number = '111AAA';

Table 16. Tables vehicle and owner joined over a moment

id number make model row_start row_end first_name last_name
1 111AAA Ford Ka 2005-01-01 2010-01-01 Ben Bennett

Similarly to single table queries, joined tables can also be queried over a period. Here is an
example for getting the ownership history over a ten year period.

54

SELECT v.id, v.number, v.make, v.model, v.row_start, v.row_end,

o.first_name, o.last_name

FROM vehicle FOR SYSTEM_TIME FROM '2002-02-02' TO '2012-02-02' AS v

LEFT JOIN owner FOR SYSTEM_TIME FROM '2002-02-02' TO '2012-02-02' AS o

ON v.owner_id = o.id

WHERE v.number = '111AAA';

Table 17. Tables vehicle and owner joined over a period

id number make model row_start row_end first_name last_name
1 111AAA Ford Ka 2000-01-01 2005-01-01 Alice Adams

1 111AAA Ford Ka 2005-01-01 2010-01-01 Ben Bennett

1 111AAA Ford Ka 2010-01-01 2015-01-01 Charlie Collins

4.3.6 System variable “system_versioning_asof”

There is a useful system variable for studying a specific moment in history (i.e., for making
many different queries for that time). “If set to a specific timestamp value, an implicit
FOR SYSTEM_TIME AS OF clause will be applied to all queries” [41].

SET @@system_versioning_asof = '2016-10-09';

After executing that statement, the no timestamp (i.e., current time) query:

SELECT *, row_start, row_end FROM vehicle;

and the explicit timestamp query:

SELECT *, row_start, row_end FROM vehicle

FOR SYSTEM_TIME AS OF '2016-10-09';

will produce the same result (for the exact output see Table 11). The modified default can
still be overriden by supplementing the query with a different timestamp (for the exact
output of the following see Table 15):

SELECT *, row_start, row_end FROM vehicle

FOR SYSTEM_TIME AS OF '2024-01-01';

55

or a period (for the exact output of the following see Table 12):

SELECT *, row_start, row_end FROM vehicle

FOR SYSTEM_TIME BETWEEN '2017-05-05' AND '2024-05-05';

Normal behaviour can be restored using:

SET @@system_versioning_asof = DEFAULT;

4.4 Tools and technologies

The following tools and technologies are involved in the functioning of the prototype.

RDBMS is the server software for operating relational databases. Often used interchange-
ably with the term database engine, although technically the engine is only a component of
the RDBMS. The word is an initialism for Relational Data Base Management System.

https://www.techtarget.com/searchdatamanagement/definition/RDBMS-relational-database-
management-system

MariaDB Server (or simply MariaDB) is an open source RDBMS that was originally
cloned from the MySQL code base (and is still claimed to be functionally compatible), but
has over the years received unique features, too. Most notably, MariaDB has support for
SQL:2011 temporal features, which MySQL lacks.

https://mariadb.com/kb/en/documentation/

SIARD is an XML-based file format for archiving relational databases. The word is an
acronym for Software Independent Archiving of Relational Databases.

https://siard.dilcis.eu

DBPTK is an open source program for creating and viewing SIARD files. The word is an
initialism for Database Preservation Toolkit.

https://database-preservation.com

Bash is an open source Unix command line interpreter and programming language. The

56

https://www.techtarget.com/searchdatamanagement/definition/RDBMS-relational-database-management-system
https://www.techtarget.com/searchdatamanagement/definition/RDBMS-relational-database-management-system
https://mariadb.com/kb/en/documentation/
https://siard.dilcis.eu
https://database-preservation.com

word is an acronym for Bourne-Again SHell, hinting at its predecessor, the Bourne shell.

https://www.gnu.org/software/bash/

SQL is a language for interacting with RDBMS. The word is an initialism for Structured
Query Language. It includes many statements, out of which three groups are the most
relevant to the current thesis:

• Statements for defining the database structure, e.g., CREATE and ALTER, also called
Data Definition Language (DDL).

• Statements for reading and writing the data, e.g., SELECT, INSERT, UPDATE and
DELETE, also called Data Manipulation Language (DML).

• Programming statements that allow for the automation of DDL and DML operations,
including in the form of stored procedures that can be called upon need.

SQL is standardised as ISO/IEC 9075, the latest version being from 2023. For a brief
history and an overview of the constituent parts of the standard see [65].

https://www.w3schools.com/sql/

DBeaver is an open source program for administering databases, able to work with tens of
RDBMS.

https://dbeaver.io

4.5 File supplement

The program code and vehicle registry data are made available at:

URL: http://mantagir.ee/thesis/
File: Koit_Saarevet_MSc_File_Supplement.zip
Size: 59830
SHA256: 9438092ff55c2774524a83f30fef18630c923a49755374b584e748d07ddc3add

The file supplement contains two sets of files: the ones in the folder INSERT and the
others in SIARD. INSERT has the data files in the form of SQL INSERT statements,
while SIARD has data as SIARD files. Each folder contains program code for merging the
respective kind of source data (run Main_workflow.sh). Additionally, the INSERT
folder contains the program siard_create.sh to transform snapshots from the live

57

https://www.gnu.org/software/bash/
https://www.w3schools.com/sql/
https://dbeaver.io
http://mantagir.ee/thesis/

database into SIARD files.

Table 18. Contents of the file supplement

File Description
INSERT/Create_procedure_sync_databases.sql SQL procedure used for

merging

INSERT/Create_procedure_sync_single_table_no_pk.sql SQL procedure used for
merging

INSERT/Create_procedure_sync_single_table.sql SQL procedure used for
merging

INSERT/Create_tables_into_snapshot_db.sql SQL procedure used for
merging

INSERT/Import_snapshots_into_temporal_db.sql Configuration of snap-
shot timestamps

INSERT/Main_workflow.sh Main program (bash
script)

INSERT/siard_create.sh Create SIARD files
from the snapshots in
RDBMS

INSERT/Datafiles/vehreg_s1.sql Snapshot data

INSERT/Datafiles/vehreg_s2.sql Snapshot data

INSERT/Datafiles/vehreg_s3.sql Snapshot data

INSERT/Datafiles/vehreg_s4.sql Snapshot data

INSERT/Datafiles/vehreg_s5.sql Snapshot data

SIARD/Create_procedure_sync_databases.sql SQL procedure used for
merging

SIARD/Create_procedure_sync_single_table_no_pk.sql SQL procedure used for
merging

SIARD/Create_procedure_sync_single_table.sql SQL procedure used for
merging

SIARD/Import_snapshots_into_temporal_db.sql Configuration of snap-
shot timestamps

SIARD/Main_workflow.sh Main program (bash
script)

SIARD/Datafiles/vehreg_s1.siard Snapshot data

SIARD/Datafiles/vehreg_s2.siard Snapshot data

SIARD/Datafiles/vehreg_s3.siard Snapshot data

Continues. . .

58

Table 18 – Continues. . .

File Description
SIARD/Datafiles/vehreg_s4.siard Snapshot data

SIARD/Datafiles/vehreg_s5.siard Snapshot data

Readme.txt Comments

59

5. Discussion

This chapter is divided into three, starting from the evaluation of the work done. The
middle part, titled Contributions, highlights several ways of this thesis making the world
a better place. The third third starts from going into more detail on the highest-potential
impact, proceeding then to seven other ideas on how the journey might continue beyond
the commencement ceremony.

5.1 Evaluation

The objective of the research was to develop a method for accessing a series of archived
database snapshots. The success criteria were:

1. It is possible to prepare several snapshots for simultaneous access – this was
achieved, both theoretically in the form of algorithm 3 and in practice (see sec-
tion 4.2).

2. It is possible to make cross-snapshot temporal queries – demonstrated in sec-
tion 4.3.

3. The solution works with real SIARD files (i.e., not just a theoretical model) –
demonstrated through the sample queries in section 4.3, also the reader can use the
files and data in File supplement to repeat the experiments.

In conclusion, the research objective was achieved.

Next, referring to the plural “Methods” in the title: the research identified three methods of
access:

1. Manual aggregation – load one snapshot at a time into a viewer to perform the
queries, export results into an analytic tool, aggregate the results there.

2. Bronselaer algorithm 1 – merge the snapshots into an aggregate database that does
not have system versioning enabled, thus construct temporal queries in a bespoke
manner.

3. The method from this research (algorithm 3) – merge the snapshots into an
aggregate temporal database and query using the temporal extensions in SQL:2011.

A comparative analysis of these was not in the scope of this research. Intuitively, the

60

manual method is clearly inferior to the others due to being more time consuming and
error prone. The affairs of methods 2 and 3 are more murky and worth exploring (see
subsection 5.3.8).

5.2 Contributions

First, the prototype produced is ready to use for series of identically structured SIARD
snapshots (or with some tweaking, CSV snapshots). It can also be developed to handle
series of snapshots that have slightly differing structure, but this requires ad hoc decision-
making on how to handle the structural differences and then manual work in coding the
decisions in the Bash and SQL scripts.

This provides immediate value to the archival community, which was partly described in
section 1.6, but is actually wider than that – any medium or large sized private organisation
has likely the need, too. For example, in Denmark, there is a whole industry of private
companies that provide the service of preparing SIARD snapshots for transfer to the
National Archives. The official list contains 39 names of “suppliers who have prepared
and had one or more archiving versions of IT systems approved” [66]. It is highly likely
that they attempt to sell the same services to the business sector, too.

Second, multi-snapshot access is not only about very long time periods with a large number
of snapshots (as might seem at the first glance). The solution developed through this
research is already valuable for just two subsequent snapshots. The reason: most archiving
today is done in all-rows snapshots, i.e., there is no filtering out the rows that were already
archived in the previous snapshot. The archives would very much like to filter, but there
is simply no means of detecting such rows and even if there was, it would be too risky to
leave some rows out because any mistake can result in broken referential integrity.

Such incremental archiving would be easy to do from a system-versioned database, or
from a system where the selective export functionality is built in. Neither is the case in
practice: as of the completion of this thesis, NAE has not ingested (or even seen) any
system-versioned databases, nor has it seen an information system with a proper selective
export. Consequently, subsequent snapshots contain a lot of duplicate data, while the
duplicates are hard to detect. Typically, data are changed frequently in the early stages of
the life cycle and become rather static after that. Nevertheless, old data still get updated
occasionally. The solution produced in this thesis automatically resolves the problem of
duplicates, allowing the user to perform queries on clean data.

Third, there is a hypothesis that the solution from this research can (with moderate effort)

61

be developed further into a solution for incremental archiving. Not in the sense of the
previous paragraph, where the value is in the simplified access to ordinary snapshots, but
for producing archival snapshots that are already incremental (i.e., without duplications of
records that have been present in previous snapshots), see subsection 5.3.1 for details. If
this turns out to be feasible, the impact of the thesis will grow by an order of magnitude,
from providing comfortable access in multi-snapshot scenarios (a niche business) to saving
major storage and time in almost every database ingest (a mass market service).

Finally, in addition to the significant value delivered to the archival community, this thesis
also made a minor contribution to the database science by developing a temporal merge
algorithm that is executable on a temporal RDBMS.

Paraphrasing Neil Armstrong:

That’s one small step for database science, one giant leap for the archival community.

5.3 Future work

This section enumerates several directions for future research and development.

5.3.1 Incremental archiving

As started in the previous section, the current vague idea is to include the solution from
this thesis into the archiving process, e.g., first create a full snapshot, then merge it into the
temporal database and have that temporal database be the preservation copy. Or add one
more step and extract a delta snapshot from the temporal database, and archive only that
as the snapshot from the current year. Both approaches result in a no-duplicates archival
copy.

This is a big deal for the general principle of avoiding duplicates, but also for the storage
costs. Modern databases tend to be large, usually over a terabyte and some significantly
larger (the largest now at NAE is the Buildings Registry, which stands at 20 TB). Exac-
erbating the problem: often times duplicate data are archived on purpose, e.g., the full
snapshot with all the data and another one where personal data has been censored. Then
the whole set is kept in redundant storage, usually 3-4 copies, so the net 20 TB can end up
being gross 120-160 TB.

Another side avenue is the handling of external files – in most cases the files comprise the

62

bulk of the byte volume (in the Buildings Registry, 12 out of 20 TB are the files). Most of
these files stay in the live system for a long time and thus end up in multiple snapshots,
ballooning the storage needs. It seems relatively easy to adapt the solution from this thesis
to prevent duplicate files – a hash-based mechanism for detecting content changes plus the
algorithm to manage it at the row level.

A quick Scopus search Article title, Abstract, Keywords =

incremental AND archiving gave only 70 results, of which none were directly
relevant and the first one potentially indirectly useful was from 2011. Thus, there seems to
be a research gap.

5.3.2 Schema versioning

The current solution does not handle evolving schemas. Unlike incremental archiving,
where 70 results from 40 years contained effectively nothing, database schema versioning
has been systematically explored since the 1990s, as exemplified by the paper from De
Castro, Grandi and Scalas, where they discuss schema versioning for temporal databases
in 1997 [67]. A recent study of interest is from another Italian team who studied ways to
keep queries and views functional throughout the evolution of the underlying schema [68].

A related area is XML schema versioning – technically different, but conceptually the same,
so even if the research on relational database schema versioning proves sufficient to lay
the ground, it is still worth to review the XML field to avoid suffering from the silo effect.
For instance, a 2019 paper by Brahmia and colleagues that explores multi-temporal and
multi-schema-version XML databases [69]. Snodgrass and colleagues have also addressed
schema versioning time-varying XML documents in [27] as has Brahmia’s team, who also
provided a list of references to other relevant works in their “Related Work” section [25,
Sec. V].

In sum: there is plenty of material to explore about schema versioning.

5.3.3 Temporal queries

The product would be a library/taxonomy of temporal queries – the SQL syntax and really
the whole logic of temporal queries is unfamiliar for most users. Not all RDBMS have
temporal features (e.g., PostgreSQL has no native support) and the implementations vary.
Additionally, proper bitemporal thinking, or even the full implementation of one time
dimension is rare among database designers. Thus, it would be highly valuable to provide

63

the user with a toolkit of frequently needed queries. The review paper by Böhlen et al.
might be a good place to start [47, Sec. 6.4].

5.3.4 System-versioned snapshots

How to handle snapshots with tables that already had system versioning? One option is to
switch off system versioning (ALTER TABLE t DROP SYSTEM VERSIONING) and
treat the row_start and row_end columns as ordinary timestamp columns. Another
option is to build a complete history based on the system-versioning periods in different
snapshots.

5.3.5 More universal algorithm

A weak point in the abstract algorithm (see Algorithm 3) is the insertion directly into the
system-versioning columns. SQL:2011 does not define a method for it, so the implementa-
tion has to rely on the idiosyncrasies of RDBMS. In the case of MariaDB, there was an
easy one at reach: a system variable to fix the current-time timestamp to a bespoke value,
but other RDBMS do not have that feature. Microsoft SQL Server seems to have solution
through the non-standard feature ALTER TABLE t SET SYSTEM_VERSIONING = OFF;1.

A potential standard-based solution is to first create the temporal table with the
row_start and row_end columns, but not add system versioning, then load all the data
with the required timestamps, then run ALTER TABLE t ADD SYSTEM VERSIONING; [17,
Sec. 11.29]. A few hours of tinkering with MariaDB showed that this path can be traversed,
but it does not lead to the expected destination: upon adding system versioning, all the
values in row_start and row_end get overwritten, nullifying all gains. Additionally,
some clauses of the standard might prevent adding system versioning on existing columns
[17, Sec. 11.27], in which case application time might be the way to go, as it is more
flexible, although semantically less accurate (see section 4.2) for timing the snapshots. In
any case, further research is needed.

5.3.6 Prototype improvements

The prototype has many weaknesses that need to be remedied before use in production
environments, e.g.:

1Aspects of this approach are discussed in these articles: https://sqlspreads.com/blog/temporal-tables-in-
sql-server/ and https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-table-system-
consistency-checks?view=sql-server-ver16, both accessed on May 1, 2024.

64

https://sqlspreads.com/blog/temporal-tables-in-sql-server/
https://sqlspreads.com/blog/temporal-tables-in-sql-server/
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-table-system-consistency-checks?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-table-system-consistency-checks?view=sql-server-ver16

• Add proper error handling.
• Optimise for performance.
• Dynamic SQL is a potential SQL smell – no thought has been given on security, incl.

protection against SQL injection.
• The current Dynamic SQL is hard to read: sometimes the strings are compiled using
SELECT, other times with string CONCAT.

• Analyse the potential weakness: INSERT into PK fields might be non-universal, i.e.,
not possible for some RDBMS and some data types, like for autoincrement.

• Most variables are passed between procedures as user-defined variables, not parame-
ters.

5.3.7 Visualisation

DBPTK has visualisation capabilities for the structure of single snapshots. They are
useful, but adhering to the 80:20 mindset2, they do not cater to the more sophisticated use
scenarios. Nevertheless, they are way better than the visualisations for the time dimension,
which simply do not exist at all, in any SIARD access tool, for the simple reason that none
of the tools provide multi-snapshot access. Fortunately, there are many great examples on
how to present time in a search engine, e.g., the Estonian movie portal Arkaader3, which
itself was inspired by other user interfaces, and there is also a significant body of scientific
research on the topic.

5.3.8 Comparison of methods

The overall, all-things-considered goodness of methods 2 (Bronselaer) and 3 (this thesis)
is not straight forward to assess and is worth exploring systematically. For the end user,
the queries in 3 are simpler, but after considering other vital aspects, the final conclusion
might differ. Bronselaer’s algorithm is only one third the length, so for large datasets
there might be a significant performance benefit. The added end user complexity might be
alleviated by a special front end application, or a set of stored procedures that hide some
of the complexity.

2https://www.investopedia.com/terms/1/80-20-rule.asp
3arkaader.ee > ENG > Timeline, https://arkaader.ee/landing/br/rHczO7kKnl/0KAFk1XQlz.

65

https://www.investopedia.com/terms/1/80-20-rule.asp
https://arkaader.ee/landing/br/rHczO7kKnl/0KAFk1XQlz

6. Summary

The objective of the research was to develop a method for accessing a series of archived
database snapshots. The objective was achieved in developing a method and its prototype
implementation.

According to the method, a number of identically structured snapshots in the XML-based
SIARD format are ordered chronologically and loaded into a temporal database starting
from the oldest. The system versioning period start timestamp for every row in the snapshot
is set to the creation time of the snapshot. This will result in an evolutionary timeline for
the data, e.g., if a row was present in the oldest snapshot, and one of its columns got a new
value in each subsequent snapshot, the temporal table will have the whole history with row
start and row end timestamps. The history can be queried using the temporal extensions
present in the SQL:2011 standard and in MariaDB, the RDBMS chosen for the prototype.
Thanks to the temporal features of the RDBMS, temporal referential integrity is preserved
automatically, i.e. foreign key values point to the version of the record that was valid at the
time.

Three research questions had been formulated, one main and two supportive.

MRQ: Is it possible to access a series of archived database snapshots simultaneously?

SRQ1: Are there existing tools for multi-snapshot access?

SRQ2: Are there theoretical methods for multi-snapshot access?

Literature review and personal communications with the experts confirmed the answer
to SRQ1 being negative – no complete tools exist. However, a number of tools were
identified that can serve as building blocks for creating a solution (MariaDB, DBPTK, etc.,
see section 4.4).

The answer to SRQ2 is a qualified yes. Qualified, because the algorithm proposed by
Bronselaer et al. (see algorithm 1) is not usable on a temporal database engine, therefore,
the temporal query extensions of SQL cannot be used, too. Consequently, the user must
construct query statements that are more complicated than would be the ones on a temporal
engine. To address this shortcoming, the algorithm was developed further to be executable

66

on a temporal RDBMS, and its correctness was proven via a prototype implementation on
MariaDB.

In sum, the answer to the main question is yes, it is possible to access a series of
archived database snapshots simultaneously.

67

References

[1] M. H. Jacinto, G. R. Librelotto, J. C. Ramalho, and P. R. Henriques, “Bidirectional
conversion between XML documents and relational data bases,” in Proc. Int. Conf.

on Computer Supported Cooperative Work in Design, vol. 7, 2002, pp. 437–443.

[2] S. Heuscher, S. Jaermann, P. Keller-Marxer, and F. Moehle, Providing authentic

long-term archival access to complex relational data, 2004. arXiv: cs/0408054.

[3] DILCIS Board, “Siard,” DILCIS Board, Accessed: May 8, 2024. [Online]. Available:
https://siard.dilcis.eu.

[4] DILCIS Board, “eCH-0165 SIARD-formatspezifikation,” eCH E-Government Stan-

dards, Accessed: May 8, 2024. [Online]. Available: https://www.ech.ch/de/ech/ech-
0165/1.0.

[5] SIARD Format Specification, SIARD-2.2. 2021.

[6] Rigsarkivet, “Extraction tool – freely available,” Copenhagen, Denmark, Gov-
ernment record, 2022, Accessed: May 7, 2024. [Online]. Available: https : / /en .
rigsarkivet.dk/wp-content/uploads/2022/09/DBPTK_introduction.pdf.

[7] K. Aas, “Digitaalsete andmebaaside ettevalmistamine pikaajaliseks säilitamiseks,”
M.S. thesis, Univ. Tartu, Tartu, Estonia, 2004.

[8] P. Tømmerholt, “Our story: Danish National Archive,” E-ARK Project, Accessed:
May 7, 2024. [Online]. Available: https://www.eark-project.com/stories/28-user-
stories/96-dna-story.html.

[9] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research,” MIS Q., vol. 28, no. 1, pp. 75–105, 2004. DOI: 10.2307/25148625.

[10] A. R. Hevner and S. T. March, “The information systems research cycle,” Comp.,
vol. 36, no. 11, pp. 111–113, 2003. DOI: 10.1109/MC.2003.1244541.

[11] Oracle Corporation, “World sample database,” 2024. [Online]. Available: https:
//dev.mysql.com/doc/world-setup/en/.

[12] Oracle Corporation, “Sakila sample database,” 2024. [Online]. Available: https:
//dev.mysql.com/doc/sakila/en/.

[13] J. Tepandi, Kuidas kirjutada ja kaitsta edukalt lõputööd, Accessed: Apr. 17, 2024,
Mar. 27, 2019. [Online]. Available: https://tepandi.ee/juhendatavatele.pdf.

[14] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun. ACM",
vol. 26, no. 11, pp. 832–843, 1983. DOI: 10.1145/182.358434.

68

https://arxiv.org/abs/cs/0408054
https://siard.dilcis.eu
https://www.ech.ch/de/ech/ech-0165/1.0
https://www.ech.ch/de/ech/ech-0165/1.0
https://en.rigsarkivet.dk/wp-content/uploads/2022/09/DBPTK_introduction.pdf
https://en.rigsarkivet.dk/wp-content/uploads/2022/09/DBPTK_introduction.pdf
https://www.eark-project.com/stories/28-user-stories/96-dna-story.html
https://www.eark-project.com/stories/28-user-stories/96-dna-story.html
https://doi.org/10.2307/25148625
https://doi.org/10.1109/MC.2003.1244541
https://dev.mysql.com/doc/world-setup/en/
https://dev.mysql.com/doc/world-setup/en/
https://dev.mysql.com/doc/sakila/en/
https://dev.mysql.com/doc/sakila/en/
https://tepandi.ee/juhendatavatele.pdf
https://doi.org/10.1145/182.358434

[15] E. Sciore, “Using annotations to support multiple kinds of versioning in an object-
oriented database system,” ACM Trans. Database Syst. (TODS), vol. 16, no. 3,
pp. 417–438, 1991. DOI: 10.1145/111197.111205.

[16] R. T. Snodgrass, I. Ahn, G. Ariav, et al., “TSQL2 language specification,” ACM

SIGMOD Rec., vol. 23, no. 1, pp. 65–86, 1994. DOI: 10.1145/181550.181562.

[17] Information technology – Database languages SQL – Part 2: Foundation (SQL/-

Foundation), ISO/IEC 9075-2. 2011.

[18] S. Huang, L. Xu, J. Liu, A. J. Elmore, and A. Parameswaran, “ORPHEUS DB:
bolt-on versioning for relational databases (extended version),” VLDB J., vol. 29,
no. 1, pp. 509–538, 2020. DOI: 10.1007/s00778-019-00594-5.

[19] C. Ramanathan and A. Kulkarni, “TSAPI: Enhancing existing OLTP databases
with temporal query capabilities for analytics,” in ACM Int. Conf. Proc. Ser., 2023,
pp. 268–271. DOI: 10.1145/3570991.3571069.

[20] A. Bronselaer, C. Billiet, R. De Mol, J. Nielandt, and G. De Tré, “Compact repre-
sentations of temporal databases,” VLDB J., vol. 28, no. 4, pp. 473–496, 2018. DOI:
10.1007/s00778-018-0535-4.

[21] W. H. Inmon, Building the Data Warehouse, 3rd Ed. New York, NY, USA: Wiley,
2002.

[22] R. Kimball and M. Ross, The Data Warehouse Toolkit, 3rd Ed. Indianapolis, IN,
USA: Wiley, 2013.

[23] F. Currim, S. Currim, C. Dyreson, and R. T. Snodgrass, “A tale of two schemas:
Creating a temporal XML schema from a snapshot schema with τXSchema,” Lect.

Notes Comput. Sci., vol. 2992, pp. 348–365, 2004. DOI: 10.1007/978-3-540-24741-
8_21.

[24] C. Dyreson, R. T. Snodgrass, F. Currim, and S. Currim, “Schema-mediated exchange
of temporal XML data,” Lect. Notes Comput. Sci., vol. 4215 LNCS, pp. 212–227,
2006. DOI: 10.1007/11901181_17.

[25] Z. Brahmia, R. Bouaziz, F. Grandi, and B. Oliboni, “Schema versioning in
τxSchema-based multitemporal XML repositories,” in Proc. Int. Conf. Res. Chal-

lenges Inf. Sci., 2011. DOI: 10.1109/RCIS.2011.6006845.

[26] C. Dyreson, R. T. Snodgrass, F. Currim, S. Currim, and S. Joshi, “Validating quick-
sand: Schema versioning in τXSchema,” in ICDEW 2006 - Proc. 22nd Int. Conf.

Data Eng. Workshops, 2006. DOI: 10.1109/ICDEW.2006.161.

[27] R. T. Snodgrass, C. Dyreson, F. Currim, S. Currim, and S. Joshi, “Validating quick-
sand: Temporal schema versioning in τXSchema,” Data Knowl. Eng., vol. 65, no. 2,
pp. 223–242, 2008. DOI: 10.1016/j.datak.2007.09.003.

69

https://doi.org/10.1145/111197.111205
https://doi.org/10.1145/181550.181562
https://doi.org/10.1007/s00778-019-00594-5
https://doi.org/10.1145/3570991.3571069
https://doi.org/10.1007/s00778-018-0535-4
https://doi.org/10.1007/978-3-540-24741-8_21
https://doi.org/10.1007/978-3-540-24741-8_21
https://doi.org/10.1007/11901181_17
https://doi.org/10.1109/RCIS.2011.6006845
https://doi.org/10.1109/ICDEW.2006.161
https://doi.org/10.1016/j.datak.2007.09.003

[28] Z. Brahmia, F. Grandi, B. Oliboni, and R. Bouaziz, “Versioning of conventional
schema in the τxSchema framework,” 2012, pp. 510–518. DOI: 10.1109/SITIS.
2012.153.

[29] Z. Brahmia, F. Grandi, and R. Bouaziz, “TauXUF: A temporal extension of the
XQuery Update Facility language for the tauXSchema framework,” in Proc. Int.

Workshop Temp. Represent. Reason., Cited by: 7, vol. 2016-December, 2016,
pp. 140–148. DOI: 10.1109/TIME.2016.22.

[30] S. Brahmia, Z. Brahmia, F. Grandi, and R. Bouaziz, “τJSchema: A framework
for managing temporal JSON-based NoSQL databases,” Lect. Notes Comput. Sci.,
vol. 9828 LNCS, pp. 167–181, 2016. DOI: 10.1007/978-3-319-44406-2_13.

[31] Z. Brahmia, F. Grandi, S. Brahmia, and R. Bouaziz, “τJUpdate: An update language
for time-varying JSON data,” J. Comp. Lang., vol. 79, 2024, Cited by: 0. DOI:
10.1016/j.cola.2024.101258.

[32] F. Rizzolo and A. A. Vaisman, “Temporal XML: Modeling, indexing, and query
processing,” VLDB J., vol. 17, no. 5, pp. 1179–1212, 2008. DOI: 10.1007/s00778-
007-0058-x.

[33] F. Zhang, Z. Li, D. Peng, and J. Cheng, “RDF for temporal data management
– a survey,” Earth Science Informatics, vol. 14, no. 2, pp. 563–599, 2021. DOI:
10.1007/s12145-021-00574-w.

[34] J. D. Fernández, J. Umbrich, A. Polleres, and M. Knuth, “Evaluating query and
storage strategies for RDF archives,” Semantic Web, vol. 10, no. 2, pp. 247–291,
2019. DOI: 10.3233/SW-180309.

[35] S. Stefanova and T. Risch, “Scalable long-term preservation of relational data
through SPARQL queries,” Semantic Web, vol. 7, no. 2, pp. 117–137, 2016, Cited
by: 1. DOI: 10.3233/SW-150173.

[36] R. Snodgrass and I. Ahn, “A taxonomy of time in databases,” ACM SIGMOD Rec.,
vol. 14, no. 4, pp. 236–246, 1985. DOI: 10.1145/971699.318921.

[37] C. S. Jensen, C. E. Dyreson, M. Bohlen, et al., “The consensus glossary of temporal
database concepts – February 1998 version,” Lect. Notes Comput. Sci., vol. 1399,
pp. 367–405, 1998. DOI: 10.1007/bfb0053710.

[38] T. Johnston, Bitemporal Data: Theory and Practice. Waltham, MA, USA: Morgan
Kaufmann, 2014. DOI: 10.1016/C2012-0-06609-4.

[39] Information technology – Database languages SQL – Part 2: Foundation (SQL/-

Foundation), ISO/IEC 9075-2. 2023.

70

https://doi.org/10.1109/SITIS.2012.153
https://doi.org/10.1109/SITIS.2012.153
https://doi.org/10.1109/TIME.2016.22
https://doi.org/10.1007/978-3-319-44406-2_13
https://doi.org/10.1016/j.cola.2024.101258
https://doi.org/10.1007/s00778-007-0058-x
https://doi.org/10.1007/s00778-007-0058-x
https://doi.org/10.1007/s12145-021-00574-w
https://doi.org/10.3233/SW-180309
https://doi.org/10.3233/SW-150173
https://doi.org/10.1145/971699.318921
https://doi.org/10.1007/bfb0053710
https://doi.org/10.1016/C2012-0-06609-4

[40] P. Bruni, R. Garcia, S. Kaschta, et al., DB2 10 for z/OS Technical Overview. Armonk,
NY, USA: IBM, 2010, Accessed: Apr. 17, 2024. [Online]. Available: https://www.
redbooks.ibm.com/redbooks/pdfs/sg247892.pdf.

[41] MariaDB, “System-versioned tables,” MariaDB KnowledgeBase, Mar. 12, 2024,
Accessed: Apr. 17, 2024. [Online]. Available: https://mariadb.com/kb/en/system-
versioned-tables/.

[42] T. Burroughs and S. Cheevers, “SELECT,” Oracle9i SQL Reference Release 2 (9.2),
Mar. 2002, Accessed: May 6, 2024. [Online]. Available: https://docs.oracle.com/cd/
A97630_01/server.920/a96531/title.htm.

[43] C. M. Saracco, M. Nicola, and L. Gandhi, “A matter of time: Temporal data man-
agement in DB2 for z/OS,” IBM, Armonk, NY, USA, White paper, 2010, Accessed:
Apr. 17, 2024. [Online]. Available: https://public.dhe.ibm.com/software/data/sw-
library / db2 / papers / A _ Matter _ of _ Time_ - _DB2 _ zOS _ Temporal _ Tables_ -
_White_Paper_v1.4.1.pdf.

[44] E. Codd, “A relational model of data for large shared data banks,” Commun. ACM,
vol. 13, no. 6, pp. 377–387, 1970. DOI: 10.1145/362384.362685.

[45] R. Snodgrass, The TSQL2 Temporal Query Language. New York, NY, USA:
Springer, 1995.

[46] J. Gamper, M. Ceccarello, and A. Dignös, “What’s new in temporal databases?”
Lect. Notes Comput. Sci., vol. 13389 LNCS, pp. 45–58, 2022. DOI: 10.1007/978-3-
031-15740-0_5.

[47] M. H. Böhlen, A. Dignös, J. Gamper, and C. S. Jensen, “Temporal data management
– an overview,” Lect. Notes Bus. Inf. Process., vol. 324, pp. 51–83, 2018, Accessed:
May 7, 2024. DOI: 10.1007/978-3-319-96655-7_3.

[48] PostgreSQL GDG, “Release notes,” Documentation - PostgreSQL 9.2, Sep. 10,
2012, Accessed: May 7, 2024. [Online]. Available: https://www.postgresql.org/
docs/release/9.2.0/.

[49] PostgreSQL GDG, “D.2. unsupported features,” Documentation - PostgreSQL 16,
Accessed: May 4, 2024. [Online]. Available: https://www.postgresql.org/docs/16/
unsupported-features-sql-standard.html.

[50] A. U. Tansel, “Temporal data modelling and integrity constraints in relational
databases*,” Int. J. Comput. Math. Comput. Syst. Theory", vol. 9, no. 1, pp. 1–20,
2024. DOI: 10.1080/23799927.2023.2300083.

[51] L. Liu and M. T. Özsu, Encyclopedia of Database Systems. New York, NY, USA:
Springer, 2009. DOI: 10.1007/978-0-387-39940-9.

71

https://www.redbooks.ibm.com/redbooks/pdfs/sg247892.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg247892.pdf
https://mariadb.com/kb/en/system-versioned-tables/
https://mariadb.com/kb/en/system-versioned-tables/
https://docs.oracle.com/cd/A97630_01/server.920/a96531/title.htm
https://docs.oracle.com/cd/A97630_01/server.920/a96531/title.htm
https://public.dhe.ibm.com/software/data/sw-library/db2/papers/A_Matter_of_Time_-_DB2_zOS_Temporal_Tables_-_White_Paper_v1.4.1.pdf
https://public.dhe.ibm.com/software/data/sw-library/db2/papers/A_Matter_of_Time_-_DB2_zOS_Temporal_Tables_-_White_Paper_v1.4.1.pdf
https://public.dhe.ibm.com/software/data/sw-library/db2/papers/A_Matter_of_Time_-_DB2_zOS_Temporal_Tables_-_White_Paper_v1.4.1.pdf
https://doi.org/10.1145/362384.362685
https://doi.org/10.1007/978-3-031-15740-0_5
https://doi.org/10.1007/978-3-031-15740-0_5
https://doi.org/10.1007/978-3-319-96655-7_3
https://www.postgresql.org/docs/release/9.2.0/
https://www.postgresql.org/docs/release/9.2.0/
https://www.postgresql.org/docs/16/unsupported-features-sql-standard.html
https://www.postgresql.org/docs/16/unsupported-features-sql-standard.html
https://doi.org/10.1080/23799927.2023.2300083
https://doi.org/10.1007/978-0-387-39940-9

[52] IBM, “Natural key analysis,” IBM InfoSphere Information Server 11.7 Documenta-

tion, Feb. 26, 2021, Accessed: May 2, 2024. [Online]. Available: https://www.ibm.
com/docs/en/iis/11.7?topic=relationships-natural-key-analysis.

[53] IBM, “Surrogate keys,” IBM Db2 10.5 Documentation, Mar. 1, 2021, Accessed:
May 2, 2024. [Online]. Available: https://www.ibm.com/docs/en/db2/10.5?topic=
operators-surrogate-keys.

[54] OpenAI, ChatGPT large language model, 2024. [Online]. Available: https://chatgpt.
com/.

[55] IBM, “CREATE TABLE statement,” IBM Db2 11.5 Documentation, Jan. 25, 2024,
Accessed: May 1, 2024. [Online]. Available: https://www.ibm.com/docs/en/db2/11.
5?topic=statements-create-table#sdx-synid_enforced.

[56] WilliamDAssafMSFT, rwestMSFT, rothja, et al., “Disable foreign key constraints
with INSERT and UPDATE statements,” Microsoft Learn SQL, Mar. 3, 2023,
Accessed: May 1, 2024. [Online]. Available: https : / / learn .microsoft . com/en-
us/sql/relational-databases/tables/disable-foreign-key-constraints-with-insert-and-
update-statements?view=sql-server-ver16.

[57] MariaDB, “Foreign_key_checks,” MariaDB Documentation, Accessed: May 1,
2024. [Online]. Available: https : / /mariadb.com/docs/server / ref /mdb/system-
variables/foreign_key_checks/.

[58] rwestMSFT, rothja, pritamso, et al., “Temporal tables,” Microsoft Learn SQL,
Oct. 16, 2023, Accessed: May 5, 2024. [Online]. Available: https://learn.microsoft.
com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver16.

[59] rwestMSFT, rothja, pcpronk, et al., “Modifying data in a system-versioned temporal
table,” Microsoft Learn SQL, Mar. 1, 2023, Accessed: May 3, 2024. [Online].
Available: https: / / learn.microsoft .com/en- us/sql /relational- databases/ tables/
modifying-data-in-a-system-versioned-temporal-table?view=sql-server-ver16.

[60] K. Kulkarni and J.-E. Michels, “Temporal features in SQL:2011,” SIGMOD Rec.,
vol. 41, no. 3, pp. 34–43, 2012, Cited by: 138. DOI: 10.1145/2380776.2380786.

[61] craigloewen-msft, mattwojo, suelsp, et al., “How to install Linux on Windows with
WSL,” Microsoft Learn Windows, Aug. 28, 2023, Accessed: May 13, 2024. [Online].
Available: https://learn.microsoft.com/en-us/windows/wsl/install.

[62] E. Codd, “Extending the database relational model to capture more meaning,” ACM

Trans. Database Syst. (TODS), vol. 4, no. 4, pp. 397–434, 1979. DOI: 10.1145/
320107.320109.

72

https://www.ibm.com/docs/en/iis/11.7?topic=relationships-natural-key-analysis
https://www.ibm.com/docs/en/iis/11.7?topic=relationships-natural-key-analysis
https://www.ibm.com/docs/en/db2/10.5?topic=operators-surrogate-keys
https://www.ibm.com/docs/en/db2/10.5?topic=operators-surrogate-keys
https://chatgpt.com/
https://chatgpt.com/
https://www.ibm.com/docs/en/db2/11.5?topic=statements-create-table#sdx-synid_enforced
https://www.ibm.com/docs/en/db2/11.5?topic=statements-create-table#sdx-synid_enforced
https://learn.microsoft.com/en-us/sql/relational-databases/tables/disable-foreign-key-constraints-with-insert-and-update-statements?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/tables/disable-foreign-key-constraints-with-insert-and-update-statements?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/tables/disable-foreign-key-constraints-with-insert-and-update-statements?view=sql-server-ver16
https://mariadb.com/docs/server/ref/mdb/system-variables/foreign_key_checks/
https://mariadb.com/docs/server/ref/mdb/system-variables/foreign_key_checks/
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/tables/modifying-data-in-a-system-versioned-temporal-table?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/tables/modifying-data-in-a-system-versioned-temporal-table?view=sql-server-ver16
https://doi.org/10.1145/2380776.2380786
https://learn.microsoft.com/en-us/windows/wsl/install
https://doi.org/10.1145/320107.320109
https://doi.org/10.1145/320107.320109

[63] ysth and Tim, “Selecting from SYSTEM VERSIONING with BETWEEN not work-
ing?” stack overflow, Apr. 4, 2024, Accessed: Apr. 21, 2024. [Online]. Available:
https://stackoverflow.com/questions/78276246/selecting-from-system-versioning-
with-between-not-working.

[64] MariaDB, “JOIN syntax,” MariaDB KnowledgeBase, Jan. 18, 2018, Accessed: May
11, 2024. [Online]. Available: https://mariadb.com/kb/en/join-syntax/.

[65] B. Kelechava, “The SQL Standard – ISO/IEC 9075:2023 (ANSI X3.135),” ANSI

Blog, 2023, Accessed: Apr. 18, 2024. [Online]. Available: https://blog.ansi.org/sql-
standard-iso-iec-9075-2023-ansi-x3-135/.

[66] Rigsarkivet, “Leverandøroversigt,” Copenhagen, Denmark, Government record,
2022, Accessed: May 8, 2024. [Online]. Available: https://en.rigsarkivet.dk/wp-
content/uploads/2022/08/Leverandoroversigt-februar-2022.pdf.

[67] C. De Castro, F. Grandi, and M. R. Scalas, “Schema versioning for multitemporal
relational databases,” Inf. Syst., vol. 22, no. 5, pp. 249–290, 1997, Cited by: 62. DOI:
10.1016/S0306-4379(97)00017-3.

[68] L. Caruccio, G. Polese, and G. Tortora, “Synchronization of queries and views upon
schema evolutions: A survey,” ACM Trans. Database Syst., vol. 41, no. 2, 2016,
Cited by: 28; All Open Access, Bronze Open Access. DOI: 10.1145/2903726.

[69] Z. Brahmia, H. Hamrouni, and R. Bouaziz, “TempoX: A disciplined approach for
data management in multi-temporal and multi-schema-version XML databases,” J.

King Saud Univ. Comput. Inf. Sci, vol. 34, no. 1, pp. 1472–1488, 2022, Cited by: 7;
All Open Access, Gold Open Access. DOI: 10.1016/j.jksuci.2019.08.009.

[70] TalTech, Author guidelines and formatting requirements for thesis preparation,
Accessed: Apr. 17, 2024, Apr. 27, 2021. [Online]. Available: https://haldus.taltech.
ee/sites/default/files/2021-04/FIT_Author_Guidelines_ENG.pdf.

[71] T. Nugteren, J. Buijs, F. Korving, and K. Janson, “Tallinn University of Technology
- bachelor, master thesis template,” Overleaf, Accessed: Apr. 3, 2024. [Online].
Available: https : / / www. overleaf . com / latex / templates / tallinn - university - of -
technology-bachelor-master-thesis-template/ptxvgdhnvmhc.

[72] IEEE, Reference guide, Accessed: Apr. 17, 2024, Nov. 29, 2023. [Online]. Available:
http : / / journals . ieeeauthorcenter. ieee .org /wp- content /uploads /sites /7 / IEEE_
Reference_Guide.pdf.

[73] IEEE, IEEE editorial style manual for authors, Accessed: Apr. 17, 2024, Feb. 29,
2024. [Online]. Available: http://journals.ieeeauthorcenter.ieee.org/wp-content/
uploads/sites/7/IEEE-Editorial-Style-Manual-for-Authors.pdf.

73

https://stackoverflow.com/questions/78276246/selecting-from-system-versioning-with-between-not-working
https://stackoverflow.com/questions/78276246/selecting-from-system-versioning-with-between-not-working
https://mariadb.com/kb/en/join-syntax/
https://blog.ansi.org/sql-standard-iso-iec-9075-2023-ansi-x3-135/
https://blog.ansi.org/sql-standard-iso-iec-9075-2023-ansi-x3-135/
https://en.rigsarkivet.dk/wp-content/uploads/2022/08/Leverandoroversigt-februar-2022.pdf
https://en.rigsarkivet.dk/wp-content/uploads/2022/08/Leverandoroversigt-februar-2022.pdf
https://doi.org/10.1016/S0306-4379(97)00017-3
https://doi.org/10.1145/2903726
https://doi.org/10.1016/j.jksuci.2019.08.009
https://haldus.taltech.ee/sites/default/files/2021-04/FIT_Author_Guidelines_ENG.pdf
https://haldus.taltech.ee/sites/default/files/2021-04/FIT_Author_Guidelines_ENG.pdf
https://www.overleaf.com/latex/templates/tallinn-university-of-technology-bachelor-master-thesis-template/ptxvgdhnvmhc
https://www.overleaf.com/latex/templates/tallinn-university-of-technology-bachelor-master-thesis-template/ptxvgdhnvmhc
http://journals.ieeeauthorcenter.ieee.org/wp-content/uploads/sites/7/IEEE_Reference_Guide.pdf
http://journals.ieeeauthorcenter.ieee.org/wp-content/uploads/sites/7/IEEE_Reference_Guide.pdf
http://journals.ieeeauthorcenter.ieee.org/wp-content/uploads/sites/7/IEEE-Editorial-Style-Manual-for-Authors.pdf
http://journals.ieeeauthorcenter.ieee.org/wp-content/uploads/sites/7/IEEE-Editorial-Style-Manual-for-Authors.pdf

[74] E. L. Ayubi, C. L. Bromstad Lee, H. S. Kamin, T. L. McAdoo, A. T. Woodworth,
and A. A. Adams, Publication Manual of the American Psychological Association,

Seventh Edition (2020). Washington, DC, USA: APA, 2020.

[75] S. Vinz, “Capitalization in titles and headings,” Scribbr, Jul. 23, 2023, Accessed:
Apr. 17, 2024. [Online]. Available: https://www.scribbr.com/academic-writing/
capitalization-titles-headings/.

74

https://www.scribbr.com/academic-writing/capitalization-titles-headings/
https://www.scribbr.com/academic-writing/capitalization-titles-headings/

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Koit Saarevet

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Methods of Access to Series of Archived Database Snapshots”, supervised
by Innar Liiv
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

18.05.2024

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

75

Appendix 2 – Source Code Listing

The three "Create procedure . . . " scripts are kept separate for clearer presentation, otherwise
they could have been placed into one .sql file.

A2.1 Main_workflow.sh

This is the main program. Implemented as a Bash script because the Unix shell is familiar
to a wider audience than the MariaDB/MySQL management tools. Its job is to create the
blank databases, enable the temporal features, create the SQL stored procedures and then
run the merging procedure.

Having a password inside a source file, in plain text, is a painful sight for any security-
conscious person, but it is used here as the least effort solution. This MariaDB server was
a local instance without network access.

#!/bin/bash

Set MariaDB credentials and db name

user="dba"

password="pwd123"

db="vehreg_" # root name for databases

snapshots_count=5 # number of snapshots

host_name="localhost"

port_number=3306

siard_folder="Datafiles" # Use "." for current folder

This workflow assumes:

- MariaDB server and an administrator account for accessing it

- $snapshots_count identically structured SIARD files

- SIARDs are ordered chronologically and named ${db}s${i}.siard,

where:↪→

- ${db} is the root of the name and

- ${i} is a continuously incrementing integer {1, 2, ...,

$snapshots_count}↪→

Step 1: Create blank databases

s0 - aggregate temporal db, named 0 to simplify for-loops

s[1..n] - source snapshots

for ((i = 0; i <= snapshots_count; i++)); do

76

mariadb -u $user -p"$password" <<-EOB

CREATE DATABASE ${db}s${i}

DEFAULT CHARACTER SET utf8mb3

DEFAULT COLLATE utf8mb3_general_ci;

EOB

done

echo "Done: Step 1: Create blank databases"

Step 2: Load snapshots (structure and data) from SIARD

for ((i = 1; i <= snapshots_count; i++)); do

echo "Start processing of ${siard_folder}/${db}s${i}.siard" >>

"dbptk_${db}_siard_upload_log.txt"↪→

date "+%H:%M:%S" >> "dbptk_${db}_siard_upload_log.txt"

java -jar "-Dfile.encoding=UTF-8" /Applications/dbptk-app-2.11.0.jar

migrate \↪→

--import=siard-2 \

--import-file="${siard_folder}/${db}s${i}.siard" \

--export=mysql \

--export-hostname="$host_name" \

--export-database="${db}s${i}" \

--export-username="$user" \

--export-password="$password" \

--export-port-number="$port_number" \

1>>"dbptk_${db}_siard_upload_log.txt"

echo >> "dbptk_${db}_siard_upload_log.txt"

done

echo "Done: Step 2: Load snapshots (structure and data) from SIARD"

Step 3: Clone snapshot 1 to aggregate temporal db (structure only)

mysqldump $db"s1" --no-data -u $user -p"$password" | mysql $db"s0" -u

$user -p"$password"↪→

echo "Done: Step 3: Clone snapshot 1 to aggregate temporal db

(structure only)"↪→

Step 4: Add system versioning to aggregate temporal db

Get all table names in the database

tables=$(mariadb -u $user -p"$password" -D $db"s0" -Bse "SHOW TABLES")

Enable system versioning for each table

for table in $tables; do

mariadb -u $user -p"$password" -D $db"s0" -e "ALTER TABLE $table ADD

SYSTEM VERSIONING;"↪→

done

echo "Done: Step 4: Add system versioning to aggregate temporal db"

77

Step 5: Create procedure: sync_single_table

mariadb $db"s0" -u $user -p"$password" <

"Create_procedure_sync_single_table.sql"↪→

echo "Done: Step 5: Create procedure: sync_single_table"

Step 6: Create procedure: sync_single_table_no_pk

mariadb $db"s0" -u $user -p"$password" <

"Create_procedure_sync_single_table_no_pk.sql"↪→

echo "Done: Step 6: Create procedure: sync_single_table_no_pk"

Step 7: Create procedure: sync_databases (main procedure)

mariadb $db"s0" -u $user -p"$password" <

"Create_procedure_sync_databases.sql"↪→

echo "Done: Step 7: Create procedure: sync_databases (main procedure)"

Step 8: Import snapshots into temporal db

mariadb $db"s0" -u $user -p"$password" <

"Import_snapshots_into_temporal_db.sql"↪→

echo "Done: Step 8: Import snapshots into temporal db"

A2.2 Create_procedure_sync_single_table.sql

sync_single_table() merges the data of one table from the source database to the
target temporal database. This procedure relies on primary keys and thus can distinguish
between new rows (INSERT), changed rows (UPDATE) and removed rows (DELETE).

DELIMITER //

CREATE PROCEDURE sync_single_table(

IN source_table_name VARCHAR(128), -- fully qualified, i.e.

database_name.table_name↪→

IN target_table_name VARCHAR(128) -- fully qualified, i.e.

database_name.table_name↪→

)

BEGIN

-- Case 1: INSERT

-- The row didn't exist in the last snapshot, i.e., it has been

created↪→

-- after the last snapshot was made.

78

SET @insert_query = CONCAT(

'INSERT INTO ', target_table_name, ' (', @all_col_names_list, ')',

' SELECT ', @all_col_names_s_list,

' FROM ', source_table_name, ' s',

' LEFT JOIN ', target_table_name, ' t ON ', @pk_col_join_on_clause,

' WHERE t.', @col1_name, ' IS NULL;'

);

-- @all_col_names_list = "a, b, c"

-- @all_col_names_s_list = "s.a, s.b, s.c"

-- @pk_col_join_on_clause = "s.a = t.a AND s.b = t.b" for PK(a, b)

PREPARE stmt_insert FROM @insert_query;

EXECUTE stmt_insert;

-- Case 2: UPDATE

-- The row already existed in the last snapshot, but at least one

column differs.↪→

SET @update_query = CONCAT(

'UPDATE ', target_table_name, ' t',

' JOIN ', source_table_name, ' s ON ', @pk_col_join_on_clause,

' SET ', @set_clause,

' WHERE ', @where_clause, ';'

);

-- @set_clause = "t.b = s.b, t.c = s.c" for a table (a, b, c) with

PK(a)↪→

-- @where_clause = "t.b != s.b OR t.c != s.c" for a table (a, b, c)

with PK(a)↪→

PREPARE stmt_update FROM @update_query;

EXECUTE stmt_update;

-- Case 3: DELETE

-- The row existed in the last snapshot, but not in the current one,

-- i.e., it was deleted after the last snapshot was made.

SET @delete_query = CONCAT(

'DELETE t',

' FROM ', target_table_name, ' t',

' LEFT JOIN ', source_table_name, ' s ON ', @pk_col_join_on_clause,

' WHERE s.', @col1_name, ' IS NULL;'

);

PREPARE stmt_delete FROM @delete_query;

EXECUTE stmt_delete;

79

DEALLOCATE PREPARE stmt_insert;

DEALLOCATE PREPARE stmt_update;

DEALLOCATE PREPARE stmt_delete;

END;

//

DELIMITER ;

A2.3 Create_procedure_sync_single_table_no_pk.sql

sync_single_table_no_pk() is similar to sync_single_table() in that it
merges one table, but it is used for tables that have no formally defined primary key. There-
fore it only handles two scenarios: new rows (INSERT) and removed rows (DELETE).
Changed rows are indistinguishable from the combination of DELETE and INSERT, so
there is no separate handling for them.

DELIMITER //

CREATE PROCEDURE sync_single_table_no_pk(

IN source_table_name VARCHAR(128), -- fully qualified, i.e.

database_name.table_name↪→

IN target_table_name VARCHAR(128) -- fully qualified, i.e.

database_name.table_name↪→

)

BEGIN

-- Case 1: INSERT

-- No row with this exact combination of column values existed in the

last snapshot,↪→

-- i.e., it has been created after the last snapshot was made. This

is logically↪→

-- equivalent to an existing row having been updated, as rows without

keys have no↪→

-- identity (RDBMS may implement autogenerated hidden primary keys

but these are not↪→

-- visible to the user).

SET @insert_query = CONCAT(

'INSERT INTO ', target_table_name, ' (', @all_col_names_list, ')',

' SELECT ', @all_col_names_s_list,

' FROM ', source_table_name, ' s',

' LEFT JOIN ', target_table_name, ' t ON ',

@all_col_join_on_clause,↪→

' WHERE t.', @col1_name, ' IS NULL;'

);

80

-- @all_col_names_list "a, b, c"

-- @all_col_names_s_list "s.a, s.b, s.c"

-- @all_col_join_on_clause "s.a = t.a AND s.b = t.b AND s.c = t.c"

PREPARE stmt_insert FROM @insert_query;

EXECUTE stmt_insert;

-- Case 2: DELETE

-- The row existed in the last snapshot, but not in the current one,

-- i.e., it was deleted after the last snapshot was made. This is

logically↪→

-- equivalent to an update, see the note above for INSERT.

SET @delete_query = CONCAT(

'DELETE t',

' FROM ', target_table_name, ' t',

' LEFT JOIN ', source_table_name, ' s ON ',

@all_col_join_on_clause,↪→

' WHERE s.', @col1_name, ' IS NULL;'

);

PREPARE stmt_delete FROM @delete_query;

EXECUTE stmt_delete;

DEALLOCATE PREPARE stmt_insert;

DEALLOCATE PREPARE stmt_delete;

END;

//

DELIMITER ;

A2.4 Create_procedure_sync_databases.sql

sync_databases() is the main procedure for managing the merging inside the
RDBMS. Its core function is to iterate over all tables in the database and, depending on the
existence of a primary key, call the appropriate procedure to merge that table. Much of the
code are the creators of the strings that are needed to build the dynamic SQL statements
that do the actual merging.

DELIMITER //

CREATE PROCEDURE sync_databases(IN source_db VARCHAR(64), IN target_db

VARCHAR(64), IN snapshot_time TIMESTAMP(6))↪→

BEGIN

81

DECLARE done INT DEFAULT 0; -- cursor control variable

DECLARE tbl_name VARCHAR(64);

DECLARE cur CURSOR FOR

SELECT TABLE_NAME

FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_SCHEMA = source_db;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

SET FOREIGN_KEY_CHECKS = 0;

-- MariaDB uses @@timestamp to fill the row_start and row_end

columns.↪→

-- Change it to use snapshot_time instead of the current clock time.

SET @@timestamp = UNIX_TIMESTAMP(snapshot_time);

OPEN cur;

-- Loop through all tables in source_db

read_loop: LOOP

FETCH cur INTO tbl_name;

IF done THEN

LEAVE read_loop;

END IF;

-- Generate the dynamic SQL parts for the sync_single_table()

procedure↪→

-- @pk_col_names_list

-- List of PK column names

-- Provided as "a, b" for PK(a, b)

SET @pk_col_names_list = (

SELECT GROUP_CONCAT(COLUMN_NAME)

FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE

WHERE CONSTRAINT_SCHEMA = source_db AND CONSTRAINT_NAME =

'PRIMARY' AND TABLE_NAME = tbl_name↪→

);

SET @pk_col_names_list = IFNULL(@pk_col_names_list, '');

-- @pk_col_names_quot_list

-- List of PK column names in quotes

-- Provided as "'a', 'b'" for PK(a, b)

SET @pk_col_names_quot_list = (

SELECT GROUP_CONCAT(CONCAT("'", COLUMN_NAME, "'"))

FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE

WHERE CONSTRAINT_SCHEMA = source_db AND CONSTRAINT_NAME =

'PRIMARY' AND TABLE_NAME = tbl_name↪→

);

82

-- @col1_name

-- Name of column 1

SET @col1_name = (

SELECT COLUMN_NAME

FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_SCHEMA = source_db

AND TABLE_NAME = tbl_name AND ORDINAL_POSITION = 1

);

-- @all_col_names_list

-- List of all columns

-- Provided as "a, b, c" for a table with columns (a, b, c)

SET @all_col_names_list = (

SELECT GROUP_CONCAT(COLUMN_NAME ORDER BY ORDINAL_POSITION)

FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_SCHEMA = source_db

AND TABLE_NAME = tbl_name

);

-- @all_col_names_s_list

-- List of all columns prefixed "s."

-- Provided as "s.a, s.b, s.c" for a table with columns (a, b, c)

SET @all_col_names_s_list = (

SELECT GROUP_CONCAT(CONCAT("s.", COLUMN_NAME) ORDER BY

ORDINAL_POSITION)↪→

FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_SCHEMA = source_db

AND TABLE_NAME = tbl_name

);

IF @pk_col_names_list != '' THEN -- PK exists, consists of 1 or

more columns↪→

-- @pk_col_join_on_clause

-- List of PK columns for JOIN ON clause

-- Provided as "s.a = t.a AND s.b = t.b" for PK(a, b)

SET @pk_col_join_on_clause = (

SELECT GROUP_CONCAT(CONCAT("s.", COLUMN_NAME, " = t.",

COLUMN_NAME) ORDER BY ORDINAL_POSITION SEPARATOR " AND ")↪→

FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE

WHERE CONSTRAINT_SCHEMA = source_db AND CONSTRAINT_NAME =

'PRIMARY' AND TABLE_NAME = tbl_name↪→

);

-- @pk_col_names_compare_clause

-- List of PK columns for "WHERE COLUMN_NAME !=" clause

83

-- Provided as "AND COLUMN_NAME != pk_col1_name AND COLUMN_NAME

!= pk_col2_name"↪→

-- for PK(pk_col1_name, pk_col2_name)

SET @pk_col_names_compare_clause = (

SELECT CONCAT(" AND ", GROUP_CONCAT(CONCAT("COLUMN_NAME != '",

COLUMN_NAME, "'") ORDER BY ORDINAL_POSITION SEPARATOR " AND

"))

↪→

↪→

FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE

WHERE CONSTRAINT_SCHEMA = source_db AND CONSTRAINT_NAME =

'PRIMARY' AND TABLE_NAME = tbl_name↪→

);

SET @pk_col_names_compare_clause =

IFNULL(@pk_col_names_compare_clause, '');↪→

-- @data_col_names_list

-- List of data columns, i.e. all columns except PK

-- Provided as "c, d, e" for a table (a, b, c, d, e) with PK(a,

b)↪→

SET @data_col_names_dyn_query = CONCAT(

"SET @data_col_names_list = (",

"SELECT GROUP_CONCAT(COLUMN_NAME)",

" FROM INFORMATION_SCHEMA.COLUMNS",

" WHERE TABLE_SCHEMA = '", source_db, "'",

" AND TABLE_NAME = '", tbl_name, "'",

@pk_col_names_compare_clause,

");"

);

PREPARE stmt_data_col_names_composer FROM

@data_col_names_dyn_query;↪→

EXECUTE stmt_data_col_names_composer;

DEALLOCATE PREPARE stmt_data_col_names_composer;

SET @data_col_names_list = IFNULL(@data_col_names_list, '');

-- @set_clause

-- List of data column pairs for SET clause

-- Provided as "t.b = s.b, t.c = s.c" for a table (a, b, c) with

PK(a)↪→

SET @set_clause = (

SELECT GROUP_CONCAT(CONCAT('t.', COLUMN_NAME, ' = s.',

COLUMN_NAME))↪→

FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_SCHEMA = source_db

AND TABLE_NAME = tbl_name

AND COLUMN_NAME NOT IN (@pk_col_names_quot_list)

);

84

-- @where_clause

-- List of data column pairs for WHERE clause

-- Provided as "t.b != s.b OR t.c != s.c" for a table (a, b, c)

with PK(a)↪→

SET @where_clause = (

SELECT GROUP_CONCAT(CONCAT('t.', COLUMN_NAME, ' != s.',

COLUMN_NAME) SEPARATOR ' OR ')↪→

FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_SCHEMA = source_db

AND TABLE_NAME = tbl_name

AND COLUMN_NAME NOT IN (@pk_col_names_quot_list)

);

CALL sync_single_table(CONCAT(source_db, '.', tbl_name),

CONCAT(target_db, '.', tbl_name));↪→

ELSE -- no PK is defined for the table

-- @all_col_join_on_clause

-- List of all columns for JOIN ON clause

-- Provided as "s.a = t.a AND s.b = t.b AND s.c = t.c" for a

table (a, b, c)↪→

SET @all_col_join_on_clause = (

SELECT GROUP_CONCAT(CONCAT("s.", COLUMN_NAME, " = t.",

COLUMN_NAME) ORDER BY ORDINAL_POSITION SEPARATOR " AND ")↪→

FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_SCHEMA = source_db AND TABLE_NAME = tbl_name

);

CALL sync_single_table_no_pk(CONCAT(source_db, '.', tbl_name),

CONCAT(target_db, '.', tbl_name));↪→

END IF;

END LOOP;

CLOSE cur;

SET @@timestamp = default;

SET FOREIGN_KEY_CHECKS = 1;

END;

//

DELIMITER ;

A2.5 Import_snapshots_into_temporal_db.sql

Import_snapshots_into_temporal_db.sql is effectively a configuration file
that sets the snapshot creation time for each snapshot. It could have been designed as a

85

traditional config file with key-value pairs, e.g., {snapshot_id, timestamp} and the CALL
statements executed from a loop in Main_workflow.sh, but this optimisation idea,
like many others, did not get implemented due to time restrictions.

-- The timestamps here are used as snapshot timestamps in the aggregate

temporal db↪→

CALL sync_databases('vehreg_s1', 'vehreg_s0', '2000-01-01

00:00:00.000000');↪→

CALL sync_databases('vehreg_s2', 'vehreg_s0', '2005-01-01

00:00:00.000000');↪→

CALL sync_databases('vehreg_s3', 'vehreg_s0', '2010-01-01

00:00:00.000000');↪→

CALL sync_databases('vehreg_s4', 'vehreg_s0', '2015-01-01

00:00:00.000000');↪→

CALL sync_databases('vehreg_s5', 'vehreg_s0', '2020-01-01

00:00:00.000000');↪→

86

Appendix 3 – Installation Instructions

The following instructions apply for macOS and assume the package manager Macports is
installed (see https://www.macports.org/install.php).

A3.1 MariaDB

Determine the newest available version and the exact name of the port

$ port search mariadb

Install the port

$ sudo port install mariadb-10.11

Run MariaDB installer

$ sudo -u _mysql /opt/local/lib/mariadb-10.11/bin/mysql_install_db

Set the PATH variable

$ echo "/opt/local/lib/mariadb-10.11/bin" | sudo tee

/etc/paths.d/mariadb↪→

Run the MariaDB server

$ cd '/opt/local' ; sudo -u _mysql

/opt/local/lib/mariadb-10.11/bin/mysqld_safe

--datadir='/opt/local/var/db/mariadb-10.11'

↪→

↪→

Create user dba

From an account that has sudo rights, sudo to root privileges and

connect to mariadb.↪→

It uses the unix_socket authentication, i.e., no password needed

$ sudo -u _mysql mariadb

CREATE USER 'dba'@'localhost' IDENTIFIED BY 'pwd123';

GRANT ALL PRIVILEGES ON *.* TO 'dba'@'localhost' WITH GRANT OPTION;

FLUSH PRIVILEGES;

EXIT;

To shut down the server:

$ sudo -u _mysql /opt/local/lib/mariadb-10.11/bin/mariadb-admin

SHUTDOWN↪→

87

https://www.macports.org/install.php

A3.2 DBPTK

Download the dbptk-developer from:

https://github.com/keeps/dbptk-developer/releases

A3.3 DBeaver

DBeaver is not strictly mecessary, but has a highly functional, time-saving GUI.

$ sudo port install dbeaver-community

88

https://github.com/keeps/dbptk-developer/releases

Appendix 4 – Formatting Conventions

This appendix lists some of the deliberate formatting decisions applied to this document.

The foundation was formed by the School of IT’s “Author guidelines and formatting
requirements for thesis preparation” [70] and the LATEX template [71], both linked from
https://taltech.ee/en/thesis-and-graduation-it.

The next layer of conventions was taken from IEEE “Reference Guide” [72], i.e., the list
of references is formatted as closely as possible to its requirements. Unfortunately it is
not fully achieved due to the limitations of the default styles in BibLaTeX, the technology
used for reference management in LATEX. Achieving perfection here would have required
unreasonable effort and caused the content of the thesis to suffer. However, consistency is
maintained, in that each kind of imperfection appears in all instances of that type of source.

URLs are provided as clickable links for the benefit of the reader, in conflict with “URLs
are not hyperlinked in the proof” [72, p. 22]. The perfectly reasonable IEEE guidelines for
URL breaking (e.g., “Break ‘before’ the hyphen that is part of an address, but do not break
after”) [72, p. 22] are not fully met due to limitations of the default macros in LATEX.

“IEEE Editorial Style Manual for Authors” [73] was used for guidance in more general
stylistic issues, such as the spelling and singular form of the chapter title “Acknowledg-
ment.”

The use of verb tense was guided by APA Publication Manual, [74, Sec. 4.12].

Capitalisation of titles and headings was inspired by the recommendations of Scribbr, a
language services company [75], and the appearance of TalTech’s guidelines [70], then
finalised by the author of the thesis:

• Thesis title is in title case (e.g., “This is Title Case”).
• Chapter titles are in title case.
• Section titles and below are in sentence case (e.g., “This is sentence case”).
• Captions for figures, tables and code listings are in sentence case.

Latin words, phrases, and abbreviations that appear in English dictionaries are not italicised

89

https://taltech.ee/en/thesis-and-graduation-it

[74, Sec. 6.22].

The rule against single-paragraph, or worse, single-sentence sections is knowingly violated
in sections 4.2.1 – 4.2.4 for the purpose of listing these steps in the Table of Contents.

The uneven line spacing in the List of Figures and the List of Tables is not a formatting
convention, it is a LATEX bug. Apologies for the aesthetic atrocity.

90

	Introduction
	Background
	Problem statement
	Objectives
	Research questions
	Guiding principles
	Significance of the study
	Document structure

	Method
	Design Science Research
	Work plan
	Data
	Use of generative AI

	Literature Review
	Data warehouse
	XML
	Semantic web
	Temporal database

	Results
	Solution part 1: Merge snapshots – Theory
	Terminology
	Foundations
	Algorithm

	Solution part 1: Merge snapshots – Implementation
	Create blank databases
	Upload SIARD snapshots
	Clone aggregate database from snapshot 1
	Add system versioning to aggregate database
	Sync databases

	Solution part 2: Query data
	Single table, at a moment
	Single table, over a period
	Single table, whole history
	Single table, current data
	Two tables, temporally joined
	System variable “system_versioning_asof”

	Tools and technologies
	File supplement

	Discussion
	Evaluation
	Contributions
	Future work
	Incremental archiving
	Schema versioning
	Temporal queries
	System-versioned snapshots
	More universal algorithm
	Prototype improvements
	Visualisation
	Comparison of methods

	Summary
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – Source Code Listing
	Main_workflow.sh
	Create_procedure_sync_single_table.sql
	Create_procedure_sync_single_table_no_pk.sql
	Create_procedure_sync_databases.sql
	Import_snapshots_into_temporal_db.sql

	Appendix 3 – Installation Instructions
	MariaDB
	DBPTK
	DBeaver

	Appendix 4 – Formatting Conventions

