
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Kristina Õim 163445IAPM

LEARNING AND RECOGNITION OF

FACIAL EXPRESSION WITH DECISION

TREES

Master’s thesis

Supervisor: Jüri Vain

 PhD

Co-supervisor: Sven Nõmm

 PhD

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Kristina Õim 163445IAPM

NÄOILMETE ÕPPIMINE JA

TUVASTAMINE OTSUSTUSPUUDE ABIL

Magistritöö

Juhendaja: Jüri Vain

 PhD

Kaasjuhendaja: Sven Nõmm

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Kristina Õim

07.05.2018

4

Abstract

Recognizing facial emotions has a wide area of application domains such as security,

marketing, health monitoring. It would be the next challenge in research after face

recognition. Goal of this thesis is to study and apply emotion recognition and analyse how

good of a result it gives using decision trees - a tool popular in machine learning. All the

data is gathered and preprocessed manually. Emotion recognition and features calculated

from data are based on the output of 3D Kinect feature HD Face tracking. Selected

features were put in decision tree classifier and the results were evaluated. Five features

give predictability of 89%. The use of decision tree gave good results in predicting three

different emotions. Results are trustworthy and were expected according to the similar

experiments found in research literature.

This thesis is written in English and is 41 pages long, including 6 chapters and 13 figures.

5

Annotatsioon

Näoilmete õppimine ja tuvastamine otsustuspuude abil

Näo ja näoilmete tuvastusel on palju võimalikke rakendusalasid nagu näiteks

turbekontroll, sotsiaalvõrgustikud, tervise jälgimine. Näoemotsioonide tuvastamine on

näotuvastuse uuringutele järgmine loogiline samm. Käesolev lõputöö eesmärk on uurida

ja rakendada otsustuspuudel põhinevaid emotsioonidega seotud näoilmete õppimis- ja

tuvastusalgoritme, samuti hinnata nende algoritmide sobivust antud ülesande

lahendamiseks. Lähteandmed näoilmetest on kogutud ja eeltöödeldud autori enda poolt

käsitsi. Emotsioonide tuvastuseks vajalikud tunnuste alusandmetena on kasutatud 3D

Kinect seadme näotuvastuse väljundandmeid, mis on esitatud näokujutise punktipilve ja

punktide vaheliste kauguste kaudu. Näoilmete andmestiku analüüsi tulemusena saadud

tunnuste alusel konstrueeriti otsustuspuu ja hinnati kontrollandmete põhjal selle

tuvastusprotsenti. Mudel viie tunnusega tuvastab kolme näoilmet täpsusega 89%.

Tulemus on usaldusväärne ja vastab teaduskirjanduses esitatud analoogsete katsete põhjal

ootustele. Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 41 leheküljel, 6

peatükki 13 joonist.

6

List of abbreviations and terms

DPI Dots per inch

TUT Tallinn University of Technology

CNN Convolutional Neural Network

FERA Facial Expression Recognition and Analysis

AU Action Unit

FACS Facial Action Coding System

GEMEP The Geneva Multimodal Emotion Portrayals

LBP Local Binary Pattern

SVM Support Vector Machines

SDK Software Development Kit

USB Universal Serial Bus

CSV Comma Separated Values

JSON JavaScript Object Notation

RGB Red Green Blue

DTW Dynamic Time Warping

7

Table of contents

1 Introduction ... 9

2 Methodology .. 11

2.1 Distinguishability of Emotion .. 11

2.2 Fisher score ... 11

2.3 Features and feature engineering .. 12

2.4 Classifier and Implementation in Python ... 12

3 Preliminaries .. 13

3.1 Ibug ... 13

3.2 Face API ... 13

3.3 Public challenges .. 14

4 Facial expression classifier .. 15

4.1 Usability.. 15

4.2 Technical requirements... 15

4.3 Kinect and data collection .. 17

4.4 The algorithm of extracting facial expression features .. 20

4.5 Decision Tree .. 23

5 Validation of results and their usability analysis ... 26

6 Summary .. 27

References .. 28

Appendix 1 – Code ... 30

8

List of figures

Figure 1. Happiness example [28]. ... 16

Figure 2. Sadness example [29]. ... 16

Figure 3. Kinect machine in TUT. .. 17

Figure 4. Laboratory. .. 18

Figure 5. Kinect Face Tracking output. .. 18

Figure 6. Subjects one emotion datafile example. .. 19

Figure 7. All point distances calculation. ... 20

Figure 8. Calculation for how much points move between emotions. 20

Figure 9. First 100 points selection. ... 21

Figure 10. Point numbers from positions. .. 22

Figure 11. Bezier curve calculation. ... 23

Figure 12. 2D face model of Kinect Face Tracking feature [34]. 24

Figure 13. Model classification report. ... 26

9

1 Introduction

In today’s modern technology, companies are competing to create more attractive

intelligent products and home entertainment systems. There are hands free systems that

react to spoken commands, they understand speech and what is asked by them. Such

amenities as calendar reminder, traffic supervision, music and smart home control are just

a few to point out [1] [2]. Next step of human adaptation for being closer to user comfort

is facial recognition and facial emotion recognition. Face recognition is already

implemented in our social networks and other products. Emotion recognition is used in

advertising based on the target audience response to a video [3]. Recognizing human

emotions has a wide area of application domains such as customer-attentive marketing,

health monitoring, and emotionally intelligent robotic interfaces, and security. Institute

of Software Science, TUT is collaborating with Estonian Police and Border Guard Board

on the development of face recognition and identification software. This work is an

extension to referred project where the technical tools developed will be applied also in

this thesis for collecting necessary training data and for arrangement of facial expression

recognition experiments.

The goal of this thesis is to study, apply and tune facial expression learning and

recognition methods for improving the face recognition algorithms applied in high traffic

establishments, i.e. border crossing and passport checks. It would be an extra feature to

pay more attention to passengers.

Thesis will consist of the following tasks:

- First of all extraction of facial features from the pointcloud of ~1350 3D-points

from Kinect [4].

- Then building a classifier from distance metrics which are calculated from those

exact points.

10

- The training set for the algorithm should consist about 100 images with 3 facial

expressions: happy, sad, neutral. This thesis will concentrate on these 3 emotions

from total of 7 which are universal for different cultures and races.

- Emotion learning should be conducted using Decision Trees [5]. They are helpful

for deciding on different problems. The model is a tree like structure (also known

as decision graph) with nodes and branches. The decision trees are widely used

for analysing decisions but are also used in machine learning [5].

- At last, the approach must be validated using a sample set including 20 instances.

This thesis includes 6 chapters on 41 pages and 13 figures.

11

2 Methodology

The methods for solving the tasks stated in the Introduction are chosen by following the

two principles:

1. The methods must be relevant for addressing the problem with satisfying

precision and certainty.

2. The methods selected must not be too complex to be implemented and used under

the time frame of preparing the thesis.

2.1 Distinguishability of Emotion

Sample data will be manually gathered with Kinect 3D [6]. It will be used to scan faces

and different emotions. Three emotions will be scanned from one subject. All emotions

will be saved separately referring to their emotion. Kinect gives out 1347 facepoints from

where the 35 main ones are named for better usability [7]. All the points are used to find

the best features to work with. The three selected emotions happy, sad and neutral are to

be distinguished from a sample size of 20 or more.

2.2 Fisher score

Fisher's scoring is a form of Newton's method used in statistics to solve maximum

likelihood equations numerically, named after Ronald Fisher [8] For Fisher score the

author will use all Kinect [7] output points. The goal here is to measure distances between

points and between different emotions, to choose the most useful ones for building the

classifier. Some features (certain points or distances) may give out more information than

others, because of that it is wise to use Fisher score. Fisher score is used to calculate the

importance of features [9]. This helps to determine the usefulness of feature and whether

to include the feature in the classifier. The score will be calculated for each feature

separately but considering all three emotions. Author has developed her own program

(see Subsection 4.4 for details) to calculate the Fisher score.

https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Maximum_likelihood
https://en.wikipedia.org/wiki/Maximum_likelihood
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Ronald_Fisher

12

2.3 Features and feature engineering

For building a good classifier it is expected that the features used for classification have

high Fisher score. The features of facial expression classifier are the distances between

different facepoints and contextual information about the emotions. Feature engineering

consists of calculating extra angles or curves on the set of facepoints i.e. Bezier curves

[10] which could be used in the classifier as well. There is also a chance to use both, the

features that Kinect [7] gives out directly and additional features that are computed by

feature engineering methods for developing extra input to classifier.

2.4 Classifier and Implementation in Python

Data pre-processing, feature calculation, classifier and implementation will all be written

using Python programming language. The choice is purely made on the authors

preference. The model of facial expression will be constructed using decision tree. Last

step will be training the model and determining how accurate the emotion recognition is.

It is expected that the model can separate happy emotion from a neutral one easily. Work

is finished with results analysis and with identifying the usability boundaries for the

method at hand.

13

3 Preliminaries

Machine learning and especially facial recognition including facial expression

recognition has been a topic of intensive research for some time now. Machine learning

has considerable advantages in a lot of businesses i.e. marketing, estimating the user

preferences or feelings towards a product or just simplifying everyday tasks and life in

general. This is what every industry is aiming towards for. Large number of publications

in the area suggesting different methods has been referred in [11]. Emotion recognition

is possible from images, speech [12] and videos [3]. Massive amount of methods is

accessible on Ibug [13] courtesy of Department of Computing, Imperial College London.

3.1 Ibug

Ibug is short for Intelligent Behaviour Understanding Group which analyses human

behaviour including face analysis, audio analysis and biometrics analysis [13]. There are

many publications on facial expression recognition where the features are extracted on

the baseis of Fischer score. Though, the tasks addressed in the thesis are carried out with

different methods [14] [15]. The overview in [11] is perfect for understanding what has

been achieved in this field and what are the different results with different methods. Many

publications are based on recognising emotions from images, using Bezier curve and they

are working with huge datasets [16]. The accuracy for different methods is benchmarked

in numbers using one of the well-known facial expression databases [17] [18] [19].

3.2 Face API

Face API was formerly included into Microsoft Project Oxford [20] but it has a separate

functionality now. There are few options to test methods on their webpage. Face

verification analyses provides the possibility of having the same person on two different

images while API returns its decision with percentage how confident the system is in the

output. Face detection searches human faces on images, and there is no limit how any

faces could be oriented. In addition to detecting a face or multiple faces, the API also

predicts the features from the image including emotion, age, position in image, gender,

14

smile and glasses [21]. Face verification and face detection are both publicly available for

testing without any need of downloading the application into a local repository. Though,

the option to search for similar faces and grouping faces is only possible in your local

repository.

3.3 Public challenges

EmotiW challenge or Facial Expressions in the Wild challenge is a competition held every

year since 2013. The challenge is to estimate group emotion from photos uploaded to

social media [22]. There is also an audio-video based emotion recognition challenge that

is continuation from previously held EmotiWs. Analysis takes place in the real world with

the presence of “noise” like head movement, etc. EmotiW competitions have been held

for a few years by now, each one in different country. 2017 winners used two types of

Convolutional Neural Networks (CNN) to validate their approach. Combining different

algorithms gave them accuracy overall of 80.9% [23].

9th IEEE International Conference on Face and Gesture Recognition was held in 2011.

The Facial Expression Recognition and Analysis (FERA) challenge consisted of 2 sub-

challenges: action unit (AU) detection and discrete emotion detection [15]. AU-s are

muscle movements that are adequate to a facial emotion, e.g. jaw drop [24]. They belong

to a Facial Action Coding System (FACS). At the moment using FACS is the only

solution to estimate the emotion in real life situation [24]. At the challenge they used the

GEMEP database of audio-visual recordings [25]. The goal for the first sub-challenge

was to detect the presence of AU in every frame of the video material. For the second

sub-challenge to detect which emotion out of five (anger, fear, joy, relief, sadness) was

present. Local Binary Pattern, Support Vector Machines were used to detect the changes

in AU and emotion detection. It was concluded that the task was difficult but not entirely

impossible [15].

15

4 Facial expression classifier

Machine learning starts from choosing the algorithm for classifier which works the best

with the given parameters and ultimately gives the best result in the end. There is also an

option to choose multiple algorithms and select the best amongst them via cross-

validation [26].

4.1 Usability

Since facial recognition is gaining popularity it has been tested on images, video, group

events, etc. The scale of opportunities and usability is wide starting from user friendly

services to security checks on boarder corssing. For instance, when client goes to the

phone operator office, then the client’s background regarding their services and client

complains is immediately known. As referred above, the facial emotion recognition could

have an immense impact also at border crossing and in airports when detecting suspicious

travellers. Of course, there are also more specific applications like grouping photos

according to emotions of people on photos.

4.2 Technical requirements

Specific technical requirements to facial expression recognition depend on the area of

application. A list of functional and non-functional requirements needs to be specified

before any actual coding starts. A correct requirements specification saves a lot of time

in the long run if everything is clear and decided before the actual work begins. When

some aspect of the task changes the adjustments in the presence of modluar and

unambiguous specification can be made without extensive redesign and implementation

effort.

Regarding the requirements to facial expresson classifier, the program should find

facepoints, at first, that move the most between emotions using output from Kinect [4].

Then the program should calculate Fisher score and construct Bezier curves from mouth

points indicating a smile. Next step is finding the points that move the most due to the

16

emotion under study and by calculation their Fischer score the best of them can be

extracted and used as input for the classiffier.

Predicting an emotion. Humans can detect already slight changes in face very accurately.

Whether it is a jaw drop or brow lowerer the person opposite detects the emotion. These

slight muscle movements are classified as micro expressions [27]. Computer, on the other

hand, needs formal rules to classify an emotion. Happiness (Figure 1) can be detected

from pushed up cheeks and rising lip corners but also many other facepoints are observed.

Figure 1. Happiness example [28].

Sadness, on contrary, pulls lip corners down and people are sad with their eyebrows and

eyelids slightly dropped (Figure 2).

Figure 2. Sadness example [29].

17

4.3 Kinect and data collection

The image data of facial expressions are recorded by Microsoft Kinect. It is a motion

sensing device which allows the user to communicate using motions and speech

commands [4] (Figure 3). It consists of RGB camera, infrared emitter, infrared depth

sensor, multi-array microphone and tilt motor. It is possible to capture a colour image and

a depth image [6]. Kinect is moderately accurate when scanning movement, it is used to

play games without holding on to the remote. Device detects the movements of objects

monitored and transfers them to the screen image.

Figure 3. Kinect machine in TUT.

For capturing and collecting the images some software needs to be installed. It is

necessary to download Microsoft Visual Studio and from there the Kinect for Windows

SDK. After that Kinect can be plugged in using USB port. Most of the theis work with

Kinect was conducted in the Software science department laboratory where experimental

data were collected (Figure 4).

All the data used in this work have been gathered and preprocessed using Kinect that has

been mounted in the laboratory. The images were captured from a group of people who

volunteered for face scanning. Test subjects were male and female Caucasian people of

age 9 to 63. For each person the data were gathered in the same conditions. In a fully

lighted room, Kinect placed approximately a meter away from the subject. Each subject

has been captured with 3 different emotions: happy, sad, neutral.

18

Figure 4. Laboratory.

Kinect saves the data as series of values to an Excel file (Figure 6). Values represent the

1347 points that Kinect records. They are represented as 3 dimensional vectors. The

points recorded always refer to the same point in the face and the more used 35 of them

are named accordingly [7]. Face that appears on the screen (Figure 5) is always the same

but the data behind every face changes.

Figure 5. Kinect Face Tracking output.

The idea is to scan subject’s facial expressions of three different emotions, analyse them

and determine which characteristics to use for the model. That means using all of the 1347

points from Kinect [6], filtering out the most useful points and extracting most important

19

features. They will be used to train the algorithm to distinguish sad from happy and happy

from neutral.

The program that records the facepoints has been written by a fellow student. The

recorded data is saved in CSV (Comma Separated Values) file format. Since Kinect

calibration stabilizing takes takes some time at the start of the recording author did not

use the data of first nine lines to avoid getting false data at the begging of the datafile.

Before applying the algorithm the data needs to be organized. Excel should save Kinect

output data as text (Figure 6). One should follow that the data cathegory is determined

correctly before saving, e.g. if the numbers are like a calendar date, then Excel changes

the values to date format. Since the datafiles are huge and there are many of them the

setup should be made at the very beginning of data processing.

Figure 6. Subjects one emotion datafile example.

20

4.4 The algorithm of extracting facial expression features

In the first phase the program analyses all faces with 3 different emotions. That means

calculating all point distances from zeroPoint which in this case is one of the points named

by Kinect, i.e. NoseTop point number 24. For calculation of distances between points

Eucleidean distance [30] is used. Calculated distances are grouped in the file based on the

emotions (Figure 7).

current_point = 0

for all_points in datafile:

point = datafile(current_point)

distance = euclidean(NoseTop, point)

add array(distance, emotion)

if file ends:

 stop

current_point += 1

Figure 7. All point distances calculation.

Current_point in the example stands for one point in datafile and it starts from zero. It is

used to calculate the distance from NoseTop. The point value increases with each cycle.

This loops for all the datafiles and all 1347 points.

Next step is to take all the neutral emotion distances calculated above and subtrackt them

from “happy face” distances. The same point distance is taken from both neutralFace and

happyFace distances. Output from them is absolute value that indicates how much points

move when emotin changes, in this case it shows the distance of point locations between

neutral and happy emotion (Figure 8).

position = -1

for i in neutralFace:

 for j in happyFace:

 if i == j:

 position = position + 1

 distance = abs(neutralFace[i]-happyFace[j])

 add array(distance, position)

Figure 8. Calculation for how much points move between emotions.

21

This gives a good dataset to start looking for the points useful for detecting different

emotions. All the distances and their point references (positions) are stored in a separate

column and then sorted in ascending order by distance length. Then it is possible to get

the positions of the facepoints which moved the most between emotions. Position list is

reversed for extracting the most influential features, the first 100 positions are selected

for further analysis (Figure 9) and saved into positions.json file. The same has been done

also with “sad face” distances.

positions = []

distance = 0

distanceListForHappyFace = sorted(distance)

for distance in distanceListForHappyFace:

 distance += 1

 if distance >= distanceListForHappyFace:

 stop

 add positions(distanceListForHappyFace.position)

positionsReversed = []

for position in reversed(positions):

 add positionsReversed(position)

firstHundred = positionsReversed[:100]

write_to_file(positions, firstHundred)

Figure 9. First 100 points selection.

When positions are selected they have to be converted to right point references. The

following method is applied in the begging of the calculation of Fisher score. Points are

read in from positions.json file where they were previously saved into. Because all the

distances are saved in the same list their position enumeration starts from the multiple of

1346, i.e. this is how many facepoints are in use for each datafile. When the program

takes a new face, the numbers start again from 0. That means, the original point reference

of the face point can be restored by dividing the point’s serial number in the file by

greatest multiple of 1346 such that the reminder remains nonnegative (Figure 10). The

reminder is then the original reference. They are returned to Fisher score algorithm.

22

def calculate_points_from_positions(points):

 new_points = []

 for point in points:

 if point > 1346:

 multiplier = point // 1346

 score = point - (multiplier * 1346)

 new_points.append(score)

 else:

 score = point

 new_points.append(score)

 return new_points

Figure 10. Point numbers from positions.

After that, Fisher score can be calculated for each of the 100 points. Fisher score

calculation program implementation is made by the author of this thesis. Importance of

Fisher score is explained in chapter 2.2. Algorithm was constucted by mathematical

formula (1) in “Data Mining” written by Charu C. Aggarwal. In Formula (1) µj and σj

stand for mean [31] and standart deviation [32] of datapoints in j-th class in a feature, pj

represents fraction of data points in j-th class and µ global mean of feature.

𝐹 =
∑ 𝑝𝑗 (𝜇𝑗−𝜇)

2𝑘
𝑗=1

∑ 𝑝𝑗𝜎𝑗
2𝑘

𝑗=1

 (1)

For Fisher score only the selected point distances are calculated. Calculation takes place

between zero point and points sorted in previous step. After that the distance is

normalised. It is standard tehnique since faces differ in size. Normalisation means taking

the calculated distance and dividing it with that subjects face length. For face length the

distances of chin center and forehead center given by Kinect are used. Score is calculated

for each feature separately and all three emotions are taken into account. They are sorted

by value and saved with point reference to a different file. From there most influential

points for the model are selected.

Since Kinect outputs extensive amount of information to be used for facial expression

recognition, incorporating Bezier curves [10] into a set of recognition features is a

reasonable step forward to get more meaningful information. In this thesis Bezier curve

is being used to form a curve between lip corners. For the algorithm there is used 3

facepoints: MouthRightCorner, MouthLeftCorner, MouthLowerLipMidBottom (Figure

11). There is also an opportunity to use MouthUpperLipMidBottom but in this thesis it is

not used to calculate the Bezier curves because using lower lip point has generally given

better results. The program fragment in Figure 11 returns the 100 points for each curve to

be constructed of. Curves formed from neutral face is compared to curves formed from

23

happy face and curves formed from sad face. This comparison is made with Dynamic

Time Warping (DTW) algorithm [33] that compares two curves and gives the minimal

distance between the two of them. Distances are saved into separate file.

for i in range(0, 100):

 P0 = face_matrix[10:11, (687 * 3):((687 * 3) + 3)]

 P1 = face_matrix[10:11, (10 * 3):((10 * 3) + 3)]

 P2 = face_matrix[10:11, (91 * 3):((91 * 3) + 3)]

 B=(1 - t) ** 2 * P0 + 2 * (1 - t) * t * P1 + t ** 2 * P2

curveFeatures.get(n).get(file_to_read).append(B.flatten().

tolist())

 t += 1

Figure 11. Bezier curve calculation.

Files for all point distances, Fisher score and Bezier curve are equipped with control point

if the file already exists and they are not over written.

4.5 Decision Tree

Decision Tree is a non- cyclic oriented flowchart like graph consisting of leaves and

branches [5]. The decision tree gets a JSON file as an input with selected features. The

file consists of distances between emotions and Bezier curves which were selected using

Fisher score. Program converts JSON to dataframe type to make it easier for the selection

of different columns and splitting the training and test sets. Training and test set are split

with the ratio of 80:20 . Decision Tree Classifier comes from the sklearn library. After

creating the training and test sets they are put into Decision Tree Classifier and the results

are tested.

Selected features are the 4 with the highest Fisher score [9] calculated and Bezier curve

[10] from lip corners. The four features refer to four points on the face. The exact location

cannot be named beacause they are not named by Kinect although the region they are

located can be looked up on 2D face model (Figure 12) [34].

24

Figure 12. 2D face model of Kinect Face Tracking feature [34].

25

Face model shows that point 557 (Feature 1) should belong to the right eye region since

point 554 is visible. Feature 2 point 1333 can be found on the left side of the face between

lower lip corner and jaw line. The face model in Figure 13 is not ideal covering many

points at transition regions such as surroundings of lips, eyes and nose. Since there isn’t

a full list available, of where each point is, the model is the best source to derive that

information. Feature number 3 point 558 should also belong to the right eye region but

looking at the model the numbers don’t run in succsession. Feature 4 point 296 is not to

be seen but point number 294 is on the nose. Points used to calculate Bezier curve 687

and 91 are lip corner points and named accordingly. Point number 10 belongs to lower

lip mid top and is used to get the curve shape out of Bezier curve. Using only two points

draws a straight line.

Experiments with different selections of points show that there is no need to select more

features to classifier because they don’t give new information. The data sets fall into the

same cathegory as the first 4 features and the accuracy score stays about the same. Adding

more features just increases the computing time which is not needed.

The features are given in JSON file. First thing to do is to convert JSON to data frame

type for combining the 4 distance features and Bezier curve data into one file. Then the

data is split forming the training and test sets. Test set includes 20 instances. Even that

gives surprisingly high accuracy score of 89%.

26

5 Validation of results and their usability analysis

A facial expressions leaning case study has been conducted using about 30 test subjects

and Kinect [4] image capturing system for collecting the data. The feature calculation and

selection has been programmed by the author in Python and the results were implemented

in the classifier model.

Model accuracy of 89% is achived with 5 features. Running the tests with one person test

data reveals that the model relies mostly to the 5th feature when deciding on an emotion.

Feature number 5 is the Bezier curve connecting between lip corners and lower lip point.

When the curve distances are similar, the other features weigh more in deciding on an

emotion. Validation of the result was made in decision tree with 20 instances, in addition

15 manul tests were enforced. Failure rate for them was 13%, neutral emotion was

detected with 100% accuracy. The model labeled one instance of happy emotion to

neutral and one instance of sad emotion to happy. Classification report shows accuracy

for each class separetly as well as combined (Figure 13).

Figure 13. Model classification report.

Boundaries for the method created include not using data directly from the source. Data

that is used, is processed previously to get the distances that define the features. Directly

giving image data from Kinect to the model is not reasonable and presumably won’t work

in expected way . The model would interprete the point data as distance data and give a

false prediction. Files from Kinect are usually big and would take also more computing

time.

27

6 Summary

The goal of this thesis is to study and apply facial expression recognition using decision

trees. Thesis consist of data collecting, data pre-processing, feature calculation,

classificator building and validation of the results. The model developed as a result of

thesis work is capable of recognizing three facial expressions, sad, happy and neutral,

with the accuracy score of 89%. This gives a trustworthy apprehension of the methods

usability.

For future research there is an option to extend the facial expression recognition also for

the other four main emotions and to test the scalability of the decision tree classifier in

the presence of all of them. Another challenging task is to incorporate the body language

recognition with facial expressions to estimate the mismatch between the facial

expression and real emotion. Third potential research line would be using the facial

emotions to interprete the spoken speech. The last is actual research topic in human-

machine interfaces design domain.

28

References

[1] Google, "Google Home," [Online]. Available:

https://store.google.com/gb/product/google_home?hl=en-GB.

[2] Apple Inc., "HomePod," [Online]. Available: https://www.apple.com/homepod/.

[Accessed 28 04 2018].

[3] realeyes, "Case Studies," [Online]. Available: https://www.realeyesit.com/results.

[Accessed 28 04 2018].

[4] Microsoft, "Kinect for Windows SDK Beta," 15 04 2011. [Online]. Available:

https://www.microsoft.com/en-us/research/project/kinect-for-windows-sdk-

beta/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-

us%2Fum%2Fredmond%2Fprojects%2Fkinectsdk%2Fdownload.aspx. [Accessed

04 05 2018].

[5] scikit learn, "1.10 Decision trees," [Online]. Available: http://scikit-

learn.org/stable/modules/tree.html. [Accessed 04 05 2018].

[6] Microsoft, "Kinect for Windows Sensor Components and Specifications,"

Microsoft, [Online]. Available: https://msdn.microsoft.com/en-

us/library/jj131033.aspx. [Accessed 28 04 2018].

[7] V. Pternas, "How to use Kinect HD Face," 06 06 2015. [Online]. Available:

https://pterneas.com/2015/06/06/kinect-hd-face/. [Accessed 10 01 2018].

[8] R. I. Jennrich and P. F. Sampson, "Newton-Raphson and related algorithms for

maximum likelihood variance component estimation. Technometrics, 18, .,"

Technometrics, vol. 18, no. Feb., pp. 11-17, 1976.

[9] C. C. Aggarwal, Data Mining The Textbook, Springer.

[10] javascript.info, "Bezier curve," [Online]. Available: https://javascript.info/bezier-

curve. [Accessed 04 05 2018].

[11] Imperial College London, "ibug," Department of Computing, [Online]. Available:

https://ibug.doc.ic.ac.uk/publications/by_theme/face-analysis/. [Accessed 10 01

2018].

[12] Vokaturi, "Vokaturi," [Online]. Available: https://vokaturi.com/. [Accessed 15 03

2018].

[13] Imperial College London, "ibug," Department of Computing, [Online]. Available:

https://ibug.doc.ic.ac.uk/home. [Accessed 10 01 2018].

[14] G. Sandbach, S. Zafeiriou, M. Pantic and D. Rueckert, "Recognition of 3D facial

expression dynamics," 2012. [Online]. Available:

https://ibug.doc.ic.ac.uk/media/uploads/documents/sandbach2012recognition.pdf.

[Accessed 20 01 2018].

[15] M. F. Valstar, B. Jiang, M. Mehu, M. Pantic and K. Scherer, "The First Facial

Expression Recognition and Analysis Challenge," [Online]. Available:

https://ibug.doc.ic.ac.uk/media/uploads/documents/pdf17.pdf. [Accessed 20 02

2018].

[16] S. Bansal and P. Nagar, "Emotion recognition from facial expression based on

Bezier curve," 2015. [Online]. Available:

http://aircconline.com/ijait/V5N6/5615ijait01.pdf. [Accessed 25 03 2018].

29

[17] "Cohn-Kanade AU-Coded Expression Database," Affect Analysis Group,

[Online]. Available: http://www.pitt.edu/~emotion/ck-spread.htm. [Accessed 28

04 2018].

[18] "The Japanese Female Facial Expression (JAFFE) Database," [Online]. Available:

http://www.kasrl.org/jaffe.html. [Accessed 15 03 2018].

[19] "MMI Facial Expression Database," 2002. [Online]. Available:

https://mmifacedb.eu/. [Accessed 15 03 2018].

[20] A. Linn, "Microsoft The AI Blog," Microsoft, 2015. [Online]. Available:

https://blogs.microsoft.com/ai/microsofts-project-oxford-helps-developers-build-

more-intelligent-apps/. [Accessed 15 03 2018].

[21] Microsoft, "Face API," [Online]. Available: https://azure.microsoft.com/en-

us/services/cognitive-services/face/?cdn=disable. [Accessed 28 04 2018].

[22] "Facial Expressions Wild," 2017. [Online]. Available:

https://sites.google.com/site/emotiwchallenge/challenge-details.

[23] L. Tan, K. Zhang, K. Wang, X. Zeng, X. Peng and Y. Qiao, "Group Emotion

Recognition with Individual Facial Emotion," [Online]. Available:

https://kpzhang93.github.io/papers/icmi.pdf. [Accessed 25 03 2018].

[24] B. Farnsworth, "Facial Action Coding System (FACS) – A Visual Guidebook," 6

December 2016. [Online]. Available: https://imotions.com/blog/facial-action-

coding-system/.

[25] Affective Sciences, "Swiss Center for Affective Sciences," [Online]. Available:

http://www.affective-sciences.org/gemep. [Accessed 15 03 2018].

[26] E. Chen, "Choosing a Machine Learning Classifier," [Online]. Available:

http://blog.echen.me/2011/04/27/choosing-a-machine-learning-classifier/.

[Accessed 01 04 2018].

[27] Paul Ekman Group LLC., "Micro Expressions," [Online]. Available:

https://www.paulekman.com/micro-expressions/. [Accessed 28 04 2018].

[28] Body Language Experts, "Happiness as emotion," 06 06 2013. [Online].

Available: http://www.bl-expert.com/emotions/happiness-as-emotion/. [Accessed

28 04 2018].

[29] Body Language Experts, "Sadness as emotion," 06 06 2013. [Online]. Available:

http://www.bl-expert.com/emotions/sadness-as-emotion/. [Accessed 30 04 2018].

[30] Wolfram MathWorld, "Distance," Wolfram Reasearch Inc., [Online]. Available:

http://mathworld.wolfram.com/Distance.html. [Accessed 04 05 2018].

[31] Wolfram MathWorld, "Mean Deviation," Wolfram Research Inc., [Online].

Available: http://mathworld.wolfram.com/MeanDeviation.html. [Accessed 04 05

2018].

[32] Wolfram MathWorld, "Standard Deviation," Wolfram Research Inc, [Online].

Available: http://mathworld.wolfram.com/StandardDeviation.html. [Accessed 04

05 2018].

[33] MathWorks, "dtw," The MathWorks Inc., [Online]. Available:

https://se.mathworks.com/help/signal/ref/dtw.html. [Accessed 05 05 2018].

[34] "Kinect 2 Face HD," [Online]. Available:

https://social.msdn.microsoft.com/Forums/getfile/668131. [Accessed 05 05 2018].

30

Appendix 1 – Code

31

constants.py

import csv

import glob

import json

import os.path

import numpy as np

sad = 0

happy = 1

neut = 2

emotionList = [sad, happy, neut]

files = glob.glob("faces/*")

distance = "distance"

Results

all_points_result = "results/positions.json"

bezier_curves_result = "results/curves.json"

fisher_result = "results/fisher.json"

bezier_floats_result = "results/bezier_floats1.json"

bezier_floats_result_sad = "results/bezier_floats0.json"

bezier_floats_neut = "results/bezier_floats_neut.json"

distances_for_tree = "results/distances_for_tree.json"

def get_emotion_from_file(file):

 n = 3

 if file.endswith("_sad.csv") or

file.endswith("_kurb.csv"):

 n = sad

 elif file.endswith("_happy.csv"):

 n = happy

 elif file.endswith("_neut.csv") or

file.endswith("_neutral.csv"):

 n = neut

 return n

def calculate_face_matrix(file):

 data_rows = get_data_rows(file)

 lenght1 = len(data_rows) + 1

 lenght2 = len(data_rows[2]) + 1

 face_matrix = np.empty([lenght1, lenght2])

 for i in range(2, len(data_rows)):

 a = np.asarray(data_rows[i])

 for j in range(0, len(data_rows[2])):

 face_matrix[i - 2, j] = float(a[j])

 return face_matrix

def get_data_rows(file):

 with open(file, 'r') as file:

 data_rows = list(csv.reader(file, delimiter=';'))

32

 return data_rows

def calculate_points_from_positions(points):

 new_points = []

 for point in points:

 if point > 1346:

 multiplier = point // 1346

 score = point - (multiplier * 1346)

 new_points.append(score)

 else:

 score = point

 new_points.append(score)

 return new_points

def write_to_file(file_name, content):

 with open(file_name, 'w') as jsonFile:

 json.dump(content, jsonFile)

def load_file(file_name):

 with open(file_name) as data_file:

 data = json.load(data_file)

 return data

def is_file_exists(path):

 return os.path.isfile(path)

def is_action_verified(action):

 text = input("There is response file for " + action + "

do you need to replace the old one? Y/N")

 if text is "Y" or text is "y":

 return True

 else:

 return False

33

all_point_distances.py

from scipy.spatial.distance import euclidean

from constants import *

features = {}

features.update(

 {

 distance: [

 {

 sad: []

 },

 {

 happy: []

 },

 {

 neut: []

 }]

 }

)

class Distance(object):

 def __init__(self, distance, position):

 self.distance = distance

 self.position = position

def get_distance(dist):

 return dist.distance

def calculate_all_point_distances():

 for file_to_read in files:

 n = get_emotion_from_file(file_to_read)

 face_matrix = calculate_face_matrix(file_to_read)

 # NoseTop point 24

 zeroPoint = face_matrix[10:11, 72:75]

 x = 0

 z = 3

 file_lenght = len(get_data_rows(file_to_read)[2])

 for i in range(2, file_lenght):

 anotherPoint = face_matrix[10:11, x:z]

 dist = euclidean(zeroPoint, anotherPoint)

 features.get(distance)[n].get(n).append(dist)

 if point_ends == 4041:

 break

 point_starts += 3

 point_ends += 3

 zeroPointFace = features.get(distance)[2]

 happyPointFace = features.get(distance)[1]

34

 sadPointFace = features.get(distance)[0]

 difference = []

 m = -1

 print('pointface calculation')

 for i in range(0, len(zeroPointFace[2])):

 for j in range(0, len(happyPointFace[1])):

 if i == j:

 m = m + 1

 var1 = zeroPointFace[2][i]

 var2 = happyPointFace[1][j]

 happy_no = abs(var1 – var2)

 sad_no = abs(var1 - sadPointFace[0][j])

 difference.append(Distance(happy_no, m))

 difference.append(Distance(sad_no, m))

 positions = []

 i = 0

 distListFace=sorted(difference,key=get_distance)

 for i in range(0, len(distListFace)):

 i += 1

 if i >= len(distListFace):

 break

positions.append(distListFace.__getitem__(i).position)

 positionsReversed = []

 for position in reversed(positions):

 positionsReversed.append(position)

 first_hundred = positionsReversed[:100]

 write_to_file(all_points_result, first_hundred)

if is_file_exists(all_points_result) is not True:

 print("FIle is not there")

 calculate_all_point_distances()

else:

 if is_action_verified("Calculate all point distances")

is True:

 print("Start calculating point distances...")

 calculate_all_point_distances()

 print("Finished calculating point distances.")

35

fisher.py

from scipy.spatial.distance import euclidean

from constants import *

features = {}

fisherScores = []

Arvuta P (kui palju esineb klassi featuuri sees)

Eeldused: Klasse on 3

def calculate_p(feature, emotion):

 divider = 0

 for emo in emotionList:

 divider = divider + len(feature[emo][emo])

 return len(feature[emotion][emotion]) / divider

Arvuta standardhälve (np.std)

def calculate_standard_deviation(feature, emotion):

 return np.std(feature[emotion][emotion])

Arvuta featuuri ühe klassi aritmeetiline keskmine

def calculate_mean_deviation(feature, emotion):

 return sum(feature[emotion][emotion]) /

len(feature[emotion][emotion])

Arvuta featuuri kõikide klasside aritmeetiline keskmine

def calculate_global_mean_deviation(feature):

 answer = 0

 count = -1

 for emotion in emotionList:

 answer = answer + sum(feature[emotion][emotion])

 if count == -1:

 count = len(feature[emotion].get(emotion))

 else:

 count=count+len(feature[emotion].get(emotion))

 return answer / count

Arvuta fisheri skoor!

def calculate_fisher_score(feature):

 top_fraction = 0

 bottom_fraction = 0

 for emotion in emotionList:

 fraction = calculate_p(feature, emotion)

 mean_dev=calculate_mean_deviation(feature,emotion)

 global=calculate_global_mean_deviation(feature)

 stn_dev=calculate_standard_deviation(feature,emotion)

 top_fraction = top_fraction + (fraction *

((mean_deviation - global_mean_deviation) ** 2))

36

 bottom_fraction = bottom_fraction + (fraction *

(standard_deviation)**2)

 fisher_score = top_fraction / bottom_fraction

 return fisher_score

def calculate_fisher_from_points():

 for index, newPoint in

enumerate(calculate_points_from_positions(load_file(all_p

oints_result))):

 distance = 'feature' + str(index)

 features.update(

 {

 distance: [

 {

 sad: []

 },

 {

 happy: []

 },

 {

 neut: []

 }]

 }

)

 for file_to_read in files:

 n = get_emotion_from_file(file_to_read)

 face_matrix=calculate_face_matrix(file_to_read)

 # NoseTop p 24

 zeroPoint=face_matrix[10:11,(24*3):((24*3)+3)]

 chinCenter = face_matrix[10:11,(4*3):((4*3)+3)]

 foreheadCent=face_matrix[10:11,(28*3):((28*3)+3)]

 feature=

face_matrix[10:11,(newPoint*3):((newPoint*3)+3)]

 dist1 = euclidean(zeroPoint, feature)

 dist01 = euclidean(chinCenter, foreheadCenter)

 normalisationForMainPoint = dist1 / dist01

 norm = normalisationForMainPoint

 features.get(distance)[n].get(n).append(norm)

 score=

str(calculate_fisher_score(features.get(distance)))

 print(distance + " Fisher score is " + score)

 fisherScores.append({"feature": distance, "score":

score, "point": newPoint})

 fisherScores.sort(key=lambda x: x['score'],

37

reverse=True)

 write_to_file(fisher_result, fisherScores)

 write_to_file(distances_for_tree, features)

if is_file_exists(fisher_result) is not True:

 print("File is not there!")

 calculate_fisher_from_points()

 print("Finished calculating fisher score!")

else:

 if is_action_verified("Calculate fisher score from

points") is True:

 print("Start calculating fisher score...")

 calculate_fisher_from_points()

 print("Finished calculating fisher score!")

38

bezier_curve.py

from scipy.spatial.distance import euclidean

from constants import *

from dtw import dtw

curves = "curves"

curveFeatures = {

 sad: {},

 happy: {},

 neut: {}

}

def calculate_bezier_curve(files_to_read):

 for index, file_to_read in enumerate(files_to_read):

 n = get_emotion_from_file(file_to_read)

 face_matrix = calculate_face_matrix(file_to_read)

 curveFeatures.get(n).update(

 {

 file_to_read: []

 }

)

 # Bezier curve for mouth 0<=t<=1

 t = 0

 for i in range(0, 100):

 P0=face_matrix[10:11,(687*3):((687*3) + 3)]

 P1=face_matrix[10:11,(10*3):((10*3) + 3)]

 P2=face_matrix[10:11,(91*3):((91*3) + 3)]

 B=(1-t)**2*P0+2*(1-t)*t*P1+t**2*P2

curveFeatures.get(n).get(file_to_read).append(B.flatten()

.tolist())

 t += 1

 return curveFeatures

def get_person_emotion(emotion, file_name):

 person_name = file_name.split("_")[0]

 feature = curve_features.get(str(emotion))

 for file_name in feature:

 if person_name in file_name:

 return feature.get(file_name)

if is_file_exists(bezier_curves_result) is not True:

 print("File is not there!")

 write_to_file(bezier_curves_result,

calculate_bezier_curve(files))

else:

 if is_action_verified("Calculate Bezier Curves") is

39

True:

 print("Start calculating Bezier curve...")

 write_to_file(bezier_curves_result,

calculate_bezier_curve(files))

print("Load Bezier result..")

curve_features = load_file(bezier_curves_result)

neutral_curve = curve_features.get(str(neut))

floats = []

i=1

for neutral_file_name in neutral_curve:

 x = neutral_curve.get(neutral_file_name)

 #y=neutral_curve.get(neutral_file_name)[i]

 y = get_person_emotion(happy, neutral_file_name)

 path = dtw(x, y, dist=euclidean)

 floatPoint = path[0]

 print(floatPoint)

 floats.append(floatPoint)

 i += 1

#floats.sort(key=lambda x: x['float'], reverse=True)

write_to_file(bezier_floats_result, floats)

40

decision_tree.py

import pandas as pd

from sklearn.cross_validation import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

import json

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

def convertJSON(dataset):

 new_json = {"label": []}

 for index, data in enumerate(dataset):

 new_json.update({data: []})

 for index, distances in enumerate(dataset.get(data)):

 for float in distances.get(str(index)):

 new_json.get(data).append(float)

 if data == list(dataset.keys())[0]:

 new_json.get("label").append(index)

 return new_json

dataset =

json.load(open('results/distances_for_tree.json'))

sad=pd.DataFrame(json.load(open

('results/bezier_floats0.json')))

happy=pd.DataFrame(json.load(open

('results/bezier_floats1.json')))

neut=pd.DataFrame(json.load(open

('results/bezier_floats_neut.json')))

frames = [sad, happy, neut]

result = pd.concat(frames, ignore_index=True)

df = pd.DataFrame(convertJSON(dataset))

X = df.values[:, :4]

X = pd.concat([pd.DataFrame(X),result], axis=1)

Y = df.values[:, 6:]

Train and test data split

X_train, X_test, y_train, y_test = train_test_split

(X, Y, test_size = 0.2, random_state = 100)

clf_gini = DecisionTreeClassifier(criterion = "gini",

random_state = 100, max_depth=3, min_samples_leaf=5)

clf_gini.fit(X_train, y_train)

41

DecisionTreeClassifier(class_weight=None,criterion='gini'

,max_depth=3,max_features=None,max_leaf_nodes=None,

min_samples_leaf=5,min_samples_split=2,min_weight_fractio

n_leaf=0.0,presort=False,random_state=100,

splitter='best')

clf_gini.predict(X_test)

y_pred = clf_gini.predict(X_test)

score = accuracy_score(y_test,y_pred)*100

Make predictions on validation dataset

predictions = clf_gini.predict(X_test)

print(accuracy_score(y_test, predictions))

print(confusion_matrix(y_test, predictions))

print(classification_report(y_test, predictions))

