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1 Introduction
1.1 Background

Autonomous vehicles (AVs) shall be our ultimate formof ground transportation. Undoubt-edly there is a long way ahead to achieve fully autonomous driving. However, the historyof our explorations toward AVs is also long and dates back to the first thriving period ofmass motorization in the 1920s [1]. Technically, instead of self-driving, the attempts in theearly days were somewhat of the remote-controlling, which simply moved the driver out-side the vehicles. At that time, this task required the integration of equally smart vehiclesand roads [2]. One of the iconic pioneering experiments happened in the 1950s; GeneralMotors embedded the electric circuits in a section of a public highway to demonstrate aself-guiding system [3]; although the self-driving system is not inside the car, it achievedthe basic imagery of an AV. General Motors’ experiments reflect the research concentra-tions at that time for AVs, which use the road to interfere with the vehicles’ behavior toachieve autonomous driving and eliminate driver errors [4]. The rise of integrated circuitsin the second half of the 20th century shifted the scope of AV research from building so-phisticated roads to developing intelligent vehicles because computers and sensors aresmall enough to fit in ordinary production cars.
The advent of computer vision and machine learning marks the rapid progress of AVs,which are seen as independent transport able to perceive the environment and navigatethrough amultitude of sensor readings. The expectations toward AV are solving the trafficissues associated with ordinary vehicles, including pollution, congestion, and traffic acci-dents [5]. Alongside the development of AV’s automation and intelligence, concerns ofmore than technical perspective were raised by the researchers [6]. Among all ethicaland moral issues, the safety of AV draws the most attention [7]. The promises of safetyrequire that AV technology is advanced and integrated with all functional perspectives,which are categorized as four blocks in work [8]: perception, planning and decision, mo-tion and vehicle control, and system supervision.
The focus of this thesis is AV’s perception capability. Although the history of AV is al-ready decades long, the visions of theAVperception are ambiguous and have evolvedwiththe emerging technologies. In the very beginning, perception plays an auxiliary role in de-veloping the maps of surroundings through analyzing the distances of the AV and otherobjects [9]. For example, Simultaneous Localization and Mapping (SLAM) algorithms blurthe boundary between perception andmapping. However, due to the rapid developmentof computer vision techniques, the definition of perception for AVs is evolving. The fastand precise object detection and classification capabilities lead to the proposal integrat-ing the perception and planning/decision stages. Work [10] is a famous early attempt thatadopted the integration idea, named the paradigmof direct perception. In contrast tome-diated perception [11] and behavior reflex perception [12] referred in the paper, direct per-ception allocates more computation resources for environment perception, and aims toachieve autonomous drivingwith few classicmapping and localization stages. The essenceof work [10] is a Convolutional Neural Network (CNN) based model that maps image in-put to several key prediction indicators, such as the vehicle’s orientation to the road anddistance to other road-related objects. Apparently, due to neural networks’ limitationsin the early times, this proposal is a trade-off between parsing entire scenes (mediatedperception) and mapping images directly to driving actions (behavior reflex perception).Thus, global mapping and localization still exist in its process. Nonetheless, the direct per-ception method sparks the researcher’s interest to exploit the potential of deep learningtechnology within the AV perception field [13].
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The primary applications of neural networks for AV perception are traffic-related ob-ject detection and segmentation [14]. Due to the constant evolution of neural networktechnology, the recent trends of AV perception are multi-class classification and multi-modal sensor fusion. Moreover, the direct perception proposals for AVs aim to unify themapping and decision-making processing into the same framework, which can further in-crease the complexity of perception tasks. Correspondingly, the learning process requiresan exponentially increasing quantity of data. Therefore, datasets have become a pivotalissue for autonomous driving in recent years. To thoroughly analyze the advancement ofAV’s perception capabilities, besides the novel neural network proposals for scene inter-pretation, this thesis includes the dataset description and the corresponding acquisitionsystem. The following subsections will introduce these two topics in detail.
1.1.1 Dataset and Dataset Collection for Autonomous Driving
The concept of the dataset is not only for automated vehicles but also closely relatedto traditional vehicles [15]. On the spectrum of the automation level, vehicular datasetsare divided into two principal categories: naturalistic datasets for traditional driving andtraining datasets for autonomous driving.

The naturalistic datasets cover the insights related to traditional vehicles, which arefully under-controlled by human drivers with no automation. The system monitors thedriver’s behavior, the vehicle’s status, and external environments such as temperature,precipitation, and illumination conditions. The naturalistic datasets provide the panoramaof the transportation domains such as road safety [16], ecological effect [17], and trafficinsurance [18]. However, this thesis focuses on the training datasets for high-automation-level vehicles. Unlike the naturalistic datasets that analyze the interaction between vehicleand human drivers from the statistical perspective, training datasets aim to the quantityof data covering as many vehicle and contextual scenarios as possible.
Referring to the Society of Automotive Engineers (SAE) Levels of Driving Automation[19] standard (six levels in total from level 0 to level 5), an AV technology benchmarkbroadly utilized by AV developers. The detection and tracking of traffic objects in the sur-rounding environments are critical for both level 4 and 5, which correspond to ’high’ and’full’ automation, respectively. Currently, the achievements of scene-understanding tasksincreasingly rely on sophisticated deep-learning technology, which further promotes thenecessity for training datasets. Moreover, due to the strict requirements for AV safety, it isessential to ensure the AVs’ robustness in challenging scenarios such as scenario diversity,adverse weather, and illumination conditions. Therefore, the scale of training datasets forenvironment perception has significantly enlarged in recent years to cover various drivingconditions. As a result, no dataset currently individually fulfills all requirements. Intendingfor collaboration, innovation, and effort-sharing, both research communities and indus-trial groups endeavor to produce datasets and make them publicly available.
Nevertheless, the issues of training using large datasets are non-negligible. On theone hand, performing comprehensive dataset collection is limited to many research or-ganizations due to its complexity and its high resource burden. On the other hand, com-patibility and applicability are always researchers’ concerns. Because of the rapid devel-opment of sensor technology and distinct learned scenarios of autonomous driving tasks,researchers encounter issues such as inconsistent hardware configurations, limited trafficand environment scenes, and nontransferable data formats amongmost training datasets.For instance, the multi-sensor KITTI dataset [20] was introduced in 2012 and has beenfamous for autonomous driving research for a long time. However, the KITTI dataset isoutdated because it contains only clear weather scenarios, and the Light Detection and
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Ranging (LiDAR) sensor it uses, Velodyne HDL-64E, is discontinued from Velodyne’s prod-uct line [21]. Replication is another challenge for open training datasets because many ofthemare recorded by the customized sensormodules. For example,WaymoOpen dataset[22] does not reveal any sensor model. The data acquisition module for ApolloScape [23]dataset consists of six video cameras, two laser scanners, and an integrated Inertial Mea-surement Unit (IMU) and Global Navigation Satellite System (GNSS) system, which is toocomplicated for most research groups to replicate.

Figure 1: Examples of semantic and instance segmentation. (a) is the semantic segmentation, where
objects of the same class are highlighted by the same color. (b) is the instance segmentation, where
each object from the same class is assigned by an individual color. The sample image is from the
custom iseAuto dataset [24].

Data-driven end-to-end approach [25] has been investigated by many researchers asan alternative to the classic module-based counterpart to address problems of large-scaletraining datasets. The approach’s essence is a unified system that directly takes raw sen-sor data as input and produces training datasets for ultimate autonomous driving tasks.The key advancements of end-to-end data collection methods lie in simplicity, efficiency,and generalizability. The holistic end-to-end approach integrates all raw-data-related pro-cessing (i.e., denoising, synchronization) and the intermediate representations (i.e., LiDARpoint clouds filtering, data compressing) into a generic framework, practically improvingthe computational efficiency for dataset collection applications. Additionally, the meritsof end-to-end methods open up the potential for researchers to establish the datasetsbased on their realistic scenarios. For example, one of the contributions of this thesis is aunique training dataset [24] recorded at the TalTech campus, which has lower illuminationconditions than most other open datasets. Moreover, the iseAuto autonomous shuttle[26], which is the first level 4 self-driving shuttle in Estonia for research and educationalpurposes, was operated at the TalTech campus. Thus, a custom dataset provides the prac-tical substance to improve the reliability and performance of many autonomous drivingtechnologies. The accomplishment of this dataset relies on an end-to-end multi-sensordataset collection framework [27], which is another objective of this thesis.
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1.1.2 Scene Interpretation for Autonomous Vehicles

Scene interpretation for AVs is a concept built upon vehicle perception and requires com-prehensive contextual information extraction of the surrounding environment. As a mat-ter of fact, the concept of vehicle perception appears ahead of autonomous driving. Oneof the definitions of vehicle perception is the stage that directly receives data from sensors[28]. From this perspective, Advanced Driver Assistance System (ADAS), a developed andguaranteed technology for commercial vehicles throughout decades, is one of the mostwell-known examples that empower vehicles with perception capabilities. However, themost sophisticated ADAS can only be classified as level 2 ’Partial Automation’ standardamong the SAE’s six-level vehicle automation standard. Within SAE taxonomy, regardlessof level 5, which expects vehicles to perform full automation under all conditions, bothlevel 3 and 4 require vehicles to interpret the receiving data to generate a representationof the surrounding environment. This establishes the basic definition and requirement ofAV perception.
The research on scene interpretation consists mostly of traffic elements, includingpedestrians, vehicles, traffic signs, and lanes, among many others. The precise percep-tion of these traffic objects, such as detection, classification, and tracking, is the essenceof scene interpretation. Among all tasks related to object perception, segmentation isconsidered a challenging problem because it requires a particular class assignment foreach pixel, thus attracting broad interest from the community [29]. Research directionsfor object segmentation span 2D semantic segmentation, 3D semantic segmentation, andinstance segmentation. Semantic segmentation predicts per-pixel class labels, while in-stance segmentation provides individual instance information. The differences betweenthese two segmentation methods are visualized in Figure 1. According to the survey work[30], semantic segmentation is the most broadly investigated method, which interpretsthe ongoing scene into different classes that are critical for autonomous driving.
This thesis focuses on semantic segmentation and aims to investigate cutting-edgedeep learning technologies for camera and LiDAR fusion. For autonomous driving, the de-velopment of sensor technology in recent years provides the all-time perception regard-less of the weather and illumination conditions. In principle, as a sensor with a long devel-opment history, the camera provides enough data to estimate the object’s movement andinterpret the driving scenarios. Therefore, there are alreadymany popular studies that useCNNs to process camera images to detect [31, 32] and segment [33] 2D objects. However,camera sensors have the same limitations as human vision systems in darkness and lowvisibility, which are scenes that play crucial roles in traffic and road safety [34]. Moreover,one of the critical challenges for AVs is attaining an accurate real-time understanding ofthe 3D environment. To this point, scene interpretation based on range sensors becomean emerging research topic. The radar sensor is the earliest range sensor installed on ve-hicles and is the primary perceptive sensor for ADAS. The mainstream radar sensor forADAS is millimeter-wave radar, which cannot capture textual information and has limitedrange and resolution. Therefore, though ADAS technologies can perceive the existence ofobstacles in the sensors’ effective zones, they cannot classify the object types and, par-ticularly, assign any semantic meaning. Recently, LiDAR sensors have attracted broad in-terest from research and industrial communities because of their reliability improvementand cost decrease. Despite LiDAR sensors’ drawbacks, such as the absence of color andtexture information, which cannot be ignored, LiDAR sensors compensate for the short-comings of camera sensors concerning weather and illumination conditions. Therefore,modern AVs adopt LiDAR sensors for 3D spatial perception and sensor fusion, leveragingmultiple sensors with different characteristics to achieve comprehensive perception. The
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literature on camera and LiDAR fusion for perception is rich in survey [35–37]. The radarfusion research for AVs is relatively rare but has increasingly attracted attention in recentyears [38]. In contrast to camera and LiDAR sensors, radar sensors have complementaryadvantages in speed estimation, moving object detection, and promising perception inenvironments such as dust and fog. Therefore, in addition to using deep learning tech-nologies to fuse camera and LiDAR data, this thesis provides the signal-level fusion [30]algorithms to utilize the merits of the camera, LiDAR, and radar sensors in a manner toenhance the object perception and tracking.
1.2 Literature Review
This section extends the previous section’s discussion, providing deep insights into state-of-the-art literature regarding the thesis’ primary focuses related to the training dataset,multi-sensor system, and deep-learning technology for perceptive sensor fusion.
1.2.1 Training Dataset for Autonomous DrivingRecently, data is believed to be a valuable property for autonomous driving, especiallytraining datasets. Compared with the naturalistic datasets mentioned in Section 1.1 thatspan fields such as transportation ecology, insurance, and driver behavior, the trainingdatasets are primarily for autonomous driving tasks where deep learning technologiesare broadly involved. Thus, the data quantity directly affects the performance. More-over, training datasets are also repetitively used for benchmark comparison. Therefore,the research community and industry have allocated significant efforts to producing train-ing datasets for autonomous driving research. Work [15, 39, 40] have surveyed publiclyautonomous driving datasets in the last decade from different perspectives such as instru-mentation information, acquisition time, and sequence length. Because this thesis’s topicismulti-sensor-based scene interpretation in variousweather and illumination conditions,the open training datasets reviewed in this section all consider scenes andmodality diver-sities. Table 1 introduces the details of the common datasets with corresponding literaturereferences.
Table 1: The list of open training datasets with scene and modality diversity for autonomous driving.

Datasets Sensors Annotations Scenescamera LiDAR GNSS bounding box semantic mask weather illumination seasonKITTI [20] ✓ ✓ ✓ ✓ ✓ ✓ApolloScape [23] ✓ ✓ ✓ ✓ ✓ ✓Argoverse [41] ✓ ✓ ✓ ✓ ✓ ✓ ✓Waymo Open[22] ✓ ✓ ✓ ✓ ✓ ✓Berkeley DeepDrive [42] ✓ ✓ ✓ ✓ ✓ ✓PadanSet [43] ✓ ✓ ✓ ✓ ✓ ✓CityScapes [44] ✓ ✓ ✓ ✓IDD [45] ✓ ✓ ✓ ✓KAIST Multi-Spectral [46] ✓ ✓ ✓ ✓ ✓lyft Motion Prediction [47] ✓ ✓ ✓ ✓ ✓NightOwls [48] ✓ ✓ ✓ ✓ ✓NuScenes [49] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓A2D2 [50] ✓ ✓ ✓ ✓ ✓ ✓
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1.2.2 Multi-Modal Sensor System for AVs

The environment perception and data acquisition of the modern autonomous and as-sisted driving technology relies on the paradigm of multi-modal sensor systems [51]. Con-sidering this thesis concerns the AV’s perception of scene interpretation, the reviews ofmulti-modal sensor systems focus on exteroceptive sensors such as camera, LiDAR, andradar sensors for traffic object detection, tracking, and segmentation.
The research of the multi-modal sensor system can be divided into hardware and soft-ware two apects. From the hardware perspective, the development of sensor manufac-turing technology is outside the scope of autonomous driving research, so the reviewsconcentrate on vehicle sensor deployment. Practically, the basic requirement of sensordeployment for perception is covering as many blind zones as possible. For data acquisi-tion purposes, all the sensors should have a clear view field and less interference.
In general, there are two strategies for deploying sensors on vehicles. The first strategyinvolves installing the sensors around the vehicle’s body. The testing vehicle in [52] has15 sensors integrated on different sides of the vehicle. The vehicle’s appearance and per-formance are not much changed, hence, it does not need specific care and can conductexperiments in any situation. A similar sensor installation was adopted by BRAiVE [53]and VIAC [54]. All sensors and cables on BRiVE’s vehicle were hidden, and visual-basedsensors were mounted together on top of the testing van in the VIAC project. However,this strategy is mainly used for fulfilling the legal requirements for real-traffic deployment.The second strategy, which integrates all sensors on a separate mount, is more suitablefor experimental and testing cases, especially when multi-channel full Field of View (FoV)LiDAR sensors are used. The famous example in early times is the 2005 DARPA GrandChallenge winner Stenley [55], which has nearly all sensors held on a custom-made roofrack on top of a commercial vehicle. Other experimental platforms with sensors installedon detachable mounts for convenient accessibility and maintenance are [56, 57].
From the software perspective, the multi-modal sensor system for AVs primarily in-volves sensor calibration and fusion. For multi-sensor calibration, extrinsic and tempo-ral calibrations are the main focus; extrinsic calibration calculates the transformation be-tween sensors, and temporal calibration handles sensor synchronicity. The literature onextrinsic calibration is rich. Domhof et al. [58] proposed a thorough camera, LiDAR, andradar extrinsic calibration method that innovatively uses metallic trihedral corners to en-hance the radar reflection. Work [59] relied on 2D planar objects for extrinsic calibra-tion. Chequerboard and other auxiliary 2D objects were combined for estimating 3D-2Dtransformation. Calibrating sensors without a specific target is another strategy for multi-sensor calibration. Jeong et al. [60] estimated sensor motions by road markings and thendetermined the transformations between sensors. Schöller et al. [61] utilized a CNN net-work to calibrate camera and radar sensors. Compared with manually matching the radarpoint clouds and image features, neural networks have advantages in speed and efficiency.
The multi-sensor fusion has been one of the hottest topics in recent years. The corre-sponding works have been thoroughly reviewed by many researchers [62–64]. Remark-able work such as [65] employed low-level fusion for less computational consumptionand low latency, also the aims of the multi-sensor fusion strategy proposed in this thesis.Another similar work is [66], in which authors combined the Fully Convolutional NeuralNetwork (FCN) and Kalman Filter into a hybrid framework to fuse the camera, LiDAR, andradar data. Cost efficiencywas deeply explored inwork [67] that only relied on aMicrosoftKinect camera to produce color images and point clouds for road surface monitoring.

15



1.2.3 Deep Learning for Camera-LiDAR FusionDeep learning has been one of the hottest topics in recent years, and camera and LiDARare the two most adopted sensors for AVs. Thus, combining deep learning and camera-LiDAR fusion stands out as one of the most intensively investigated research. The tax-onomies to review the camera-LiDAR deep fusion algorithms are various. For instance,the approaches can be categorized based on applications such as depth completion, ob-ject detection, object tracking, instance segmentation, and semantic segmentation. How-ever, one essential focus of this thesis, scene interpretation, was achieved by signal-levelcamera-LiDAR-radar fusion and multi-level fusion neural networks. Therefore, this sec-tion reviews the camera-LiDAR deep fusion algorithms in the taxonomy of signal-level,feature-level, result-level, and multi-level.
• Signal-level. The signal-level fusion mainly conducts the raw data integration, suchas geometric coordinate matching or 3D-2D projection. Depth completion is theapplication that broadly adopts signal-level fusion. Ma et al. [68] proposed a super-vised model that takes RGB and depth images as input and learns a direct mappingfrom sparse depth to dense depth prediction. Work [69] used camera and LiDARdata and adopted signal-level fusion as part of its image-guided framework for Li-DAR completion. Other signal-level depth completion research are [70, 71]. Anotherapplication that can use signal-level fusion is road detection; the corresponding pos-sibility and shortcomings were explored by [72–74] in detail. Work [75, 76] are twoof the few research using a signal-level strategy for object detection because of therelatively heavy texture information loss in signal-level fusion.
• Feature-level. Feature-level fusion is broadly used for object detection and seg-mentation tasks. In general, the differences in feature-level approaches lie in LiDARdata processing. Work [77–79] used a strategy to project the LiDAR point clouds as2D representations, and VoxelNet [80] represents another strategy to voxelize theLiDAR data for fusion with camera input.
• Result-level. Relatively few works adopt the result-level fusion. [81, 82] are twoexamples using the weight-based logical mechanisms to integrate the predictionsfrom different modalities.
• Multi-level. Multi-level fusion is the trend nowadays for camera-LiDAR fusion be-cause it combines all three other fusion strategies to mitigate their limitations.PointFusion [83] is an example of the result-level and feature-level fusion combi-nation. The result-level lies in the LiDAR filtering, which is based on the 2D bound-ing boxes generated from images. The feature-level fusion uses ResNet [84] andPointNet [85] to integrate image and point cloud features for object prediction. VanGansbeke et al. [69] proposed a depth completion network combining signal-leveland feature-level fusion. Other multi-level fusion works are [86, 87].

1.2.4 Transformers for AV PerceptionA key contribution of this thesis is a transformer-based neural network for camera-LiDARfusion. Compared with other neural network proposals, transformer [88] has a relativelyshort history. In the vision field, the pioneering and iconic Vision Transformer [89] wasfirst proposed in 2020. Therefore, the transformer-related works for AV perception wereseparately briefed in this section.The deep-learning-based AV perception can be classified as 2D and 3D. Fortransformer-based works, the 2D perception application are [90–94]. Work [90–93] fo-
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cused on road/lane segmentation. BEVSegFormer [90] proposed a multi-camera-basedBEV network for road surface segmentation. Work [91] modeled lane marking as regres-sive polynomials and then used a transformer query algorithm to optimize the polynomialparameters. PersFormer [92] transformed the perspective view to the Bird Eye View (BEV)for precise lane detection. CurveFormer [93] used curve queries to transform the lane de-tection task to the curve propagation problem. Panoptic SegFormer [94] aimed to objectsemantic and instance segmentation by a supervised mask decoder and a query decou-pling method.For transformer-based 3D perception research, DETR3D [95] used multi-view imagesto computer 3D information and relied on backward geometric projection to combine 2Dfeature extraction and 3D prediction. FUTR3D [96] developed amodality-agnostic featuresampler to integrate multi-modal sensory input for 3D bounding box predictions. Othertransformers for 3D object detection including PETR [97] relied on 3D position-aware em-beddings and BEVFormer [98] employed spatial and temporal attention layers for BEVfeatures. Work [99, 100] dedicated to 3D object segmentation. TPVFormer [99] trans-formed the volume to three BEV planes to reduce computation. VoxFormer [100] pro-duced pseudo 3D voxels from 2D images, then performed cross and self-attention mech-anisms to 3D voxel queries for object segmentation.
1.3 Motivation and Research Problems
The motivation behind this thesis is to enhance the perceptive capability of AVs by pro-viding a comprehensive framework for deep-learning-oriented and multi-sensor-basedsegmentation tasks. This work not only focuses on state-of-the-art neural network ar-chitectures and deep learning techniques in the computer vision field but also dedicatessignificant efforts to datasets, which are valuable assets in the Artificial Intelligence (AI)era. Furthermore, there is a proposal for a generic dataset collection framework that aimsto allow researchers to collect large-scale sensory datasets in end-to-end applications.As indicated in Section 1.2, the research problems between the current literature andthis work were summarized as follows:
Dataset Collection Framework Compared with using open datasets, it is more impor-tant to have the capability to produce custom datasets efficiently to fulfill individ-ual needs. Existing dataset collection works have two problems: (i) lack of multi-modalities and corresponding post-processing. For instance, the fusion of synchro-nization of multi-sensors includes camera, LiDAR, and radar; and (ii) generic scala-bility and user-friendly end-to-end practical implementation.
Cross-datasets Domain Adaptation Neural networks, especially FCNs, have been broadlyused for traffic object segmentation for many years. However, few works focus onthe domain adaptation analysis of FCNs. Most models are presented based on aspecific public dataset. Scenes in real traffic scenarios are various and changingrapidly; thus, it is critical for models to maintain high-level performance in differentenvironments.
Attention Mechanism in Sensor Fusion for Scene Interpretation The models that based
           on the attention mechanism have been the ground-breaker for deep learning tech-
           nology in recent years. The popular proposal of Vision Transformer (ViT) [89]
           brought  the multi-head-attention  mechanism [101] to the computer vision field. 
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Due to the novelty of transformer [88] networks, there is limited research exploring 
the potential of transformers in camera and LiDAR fusion for traffic object segmen-
tation.

1.4 Research Objectives and Hypotheses
The primary objective of this research is to develop a thorough pipeline for using deeplearning technologies to improve the perception of AVs. To address the research problemsidentified in Section 1.3, this work focuses on the following objectives:
RO1 Developing an end-to-end generic multi-sensor dataset collection framework suit-able for rapid and large-scale deployment. The framework should cover hardwaresolutions and post-processing algorithms related to data synchronization, fusion,and transfer.
RO2 Collecting a custom training dataset for object detection and segmentation tasks.The dataset contains all-weather scenarios featuring the rainy and dark conditionsthat are common in the TalTech campus, where the iseAuto autonomous shuttle isoperated. The organization and format of the dataset should follow the state-of-the-art to guarantee the consistency of future research.
RO3 Developing an FCN-based network fusing camera and LiDARdata for object segmen-tation. Themodel’s performance evaluation should focus on the domain adaptationbetween different datasets and traffic scenes.
RO4 Adopting the popular ViT network for AV perception purposes. Developing acamera-LiDAR fusion transformer for semantic segmentation in autonomous driv-ing. Conducting the controlled experiments to evaluate the models regarding thebackbones and input modalities.

The research hypotheses of this thesis are:
• The autonomous shuttles should have the appreciate sensor configurations to en-sure the safety and efficiency.
• The hardware and computational power of autonomous platforms should be max-imally utilize to produce, process and share the data.
• The training datasets for AV perception should covers various weather and trafficscenarios.
• The traffic object segmentation tasks should make use of state-of-the-art deeplearning technologies.

1.5 Research Tasks and Contributions
In general, the research tasks of this work can be divided into two sub-tasks in sequentialorder:
(i) iseAuto Dataset Presentation This task explores the hardware configurations, estab-lishes the dataset collection standards and structures, and develops the toolbox forsensory data post-processing.
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(ii) Camera-LiDAR Fusion FCN and Transformer Networks (CLFCN and CLFT) This taskproposes two neural network architectures with different backbones for objectsegmentation and utilizes the iseAuto training dataset in experiments to evaluatethe models.
The first task is practical and demonstration-oriented, aims to have the iseAuto datasetproduced and the collection framework prototyped in real traffic scenario. The secondtask is theoretical and performance-pursued, explores various neural network backbones.Two network architectures based on FCN and transformer were proposed as the resultsof this stage to compete with other cutting-edge models. Table 2 indicates the contribu-tions of articles included in this thesis correspond to each research objective mentionedin Section 1.4.

Table 2: Correlation between research objectives and the included articles.

Objectives Article I Article II Article III Article IV1 ✓ ✓2 ✓3 ✓4 ✓
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2 Cyber-Physical Experimental Platforms
This section focuses on the hardware configurations for AV perception and presents thetraining datasets used for deep-learning-based object detection and segmentation.Firstly, there is an analysis of range sensor deployment specifically for autonomousshuttles to reduce the blind zone. Secondly, this section presents a testing platform witha multi-sensor perceptive system installed. The platform was used for demonstrating andevaluating the end-end-end framework for data collection and processing. The detailsof hardware setup, operating system, and public access are included in this section. Atlast, this section introduces two training datasets for scene interpretation. Both datasetswere thoroughly used in this work to train and test the two proposed neural networks forobject segmentation (corresponding to the RO3 and RO4 in Section 1.4). Specifically, theproduction of the iseAuto dataset follows the regulations and toolboxes from the datasetcollection framework, which is the RO2 in Section 1.4.
2.1 Range Sensor Deployment for Autonomous Shuttles
The autonomous shuttle is an AV branch, which usually has a shuttle appearance andruns at a relatively low speed. Autonomous shuttle is an autonomous solution for the’last-mile’ mobility domain in specific urban transportation scenarios [102], for instance,the movement between the transportation hub to the final destination.Currently, several autonomous shuttles have already been successfully demonstratedand validated in large-scale production. As shown in Figure 2, cubic design is commonfor autonomous shuttle appearance. Moreover, peculiar traffic scenes, such as childrensuddenly running across the streets, are highly likely to happen to autonomous shuttlesdue to where they are operated. Therefore, sensor deployment is critical for autonomousshuttles to improve their perceptive capability and reduce the blind zone.

Figure 2: Illustrations of several commercial autonomous shuttles. From left to right are Apollo
Minibus [103], Navya Evo [104], Easymile EZ10 [105], and AuveTech MiCa [106].

Range sensors are broadly used on AVs for emergency detection and blind zone de-duction. Specifically, LiDAR sensors attract the most interest because of their direct ob-ject detection and wide FoV. This section presents the LiDAR sensors deployment for theiseAuto shuttle, which plays the essential role in this thesis to validate the end-to-enddataset collection framework (RO1) and produce the iseAuto training dataset (RO2).The iseAuto shuttle depends on the laser-based sensors to actively perceive the en-vironment. Figure 3 illustrates the locations and orientations of all exterior laser-basedrange sensors. In total, there are five LiDAR sensors installed on the exterior of the iseAutoshuttle, including one Velodyne VLP-16 Puck, one Velodyne VLP-32C, two RoboSense RS-Bpearl, and one Benewake CE-30C. The choice of models and locations was based onpractical tests, with the aim of utilizing all LiDAR sensors and reducing the expense effi-ciently. The primary range sensor is the front-top Velodyne VLP-32C, which has 32 chan-nels in vertical. A Velodyne VLP-16P LiDAR sensor with 16 vertical channels was installedon the rear-top. Both Velodyne LiDAR sensors were tilted to the ground to reduce the
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Figure 3: Exterior LiDAR sensors layout for the iseAuto shuttle. Adopted from the Article II.

interference patterns and shadowed azimuth ranges that might appear when using multi-ple Velodyne sensors on top of the vehicle. Two Robosense RS-Bpearl LiDAR sensors wereinstalled on two sides of the shuttle to cover the blind zone that top LiDAR sensors cannotdetect. The RoboSense RS-Bpearl LiDAR sensor has a unique 90° vertical FoV, whichmakesit suitable for installation on the shuttle’s side. Figure 4 shows the point clouds producedby top Velodyne and side RS-Bpearl LiDAR sensors. The critical front-bottom blind zonefor the iseAuto shuttle (shown in Figure 5(a)) was covered by the solid-state BenewakeCE-30C LiDAR sensor, which has no internal rotational mechanism.

Figure 4: LiDAR point clouds in real outdoor environment. (a) is the combination of front-top and
rear-top Velodyne LiDAR. (b) is from the right side RS-Bpearl LiDAR. Adopted from the Article I.

2.2 Multi-Sensor Perception and Collection Framework
Nowadays, a multi-sensor system is an essential requirement for AV to ensure reliabil-ity and safety. On the one hand, the involvement of sensors with different characteris-tics raises sensor calibration and synchronization issues. Moreover, sensor managementand integration have become important aspects of AV’s perception system. On the otherhand, the advancement of the vehicle’s onboard computational power allows for partiallyassigning data post-processing, such as decompressing, denoising, and fusion, to the ve-hicle’s computer.Considering the new requirements for AV perception systems, this thesis presents a

21



Figure 5: Front-bottom blind zone for iseAuto shuttle. (a) shows the point clouds from front-top and
two sides LiDAR sensors. The empty space illustrate the blind zone. The white points in (b) are from
the front-bottom solid state LiDAR sensor. Adopted from the Article I.

state-of-the-art multi-sensor framework that not only offers perception to AV but is alsointegrated with the algorithms for data fusion and collection. The framework containsproprioceptive sensors, such as Global Positioning System (GPS) sensors, to record vehiclepositions and exteroceptive sensors, such as cameras and LiDAR sensors, to capture tex-ture and distance information. Innovatively, this framework makes use of the advantagesof radar sensors to reinforce the detection of moving objects in LiDAR point clouds. Fur-thermore, the framework includes the algorithms for point clouds projection to achievethe camera-LiDAR-radar fusion. Figure 6 presents the overview of framework architectureand data flow. It is important to note that this section focuses on introducing the hardwareplatform designed for testing and evaluating the framework. The details of methodolo-gies related to sensor calibration, synchronization, and post-processing are available inSection 3.
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2.2.1 Hardware for Framework Validation
The primary purpose of the framework is serving the iseAuto shuttle (as shown in Figure3) to coordinate all onboard perceptive sensors. Moreover, the framework was designedas a generic end-to-end solution that is suitable for all kinds of urban autonomous plat-forms. In the development process, the testing and validation of the framework rely on aMitsubishi i-MiEV car with a portable top mount that has all sensors mentioned in Figure6 integrated.There are five sensors and twoprocessing units used on the testing platform to validatethe framework. Five sensors include one LiDAR, one camera, one GPS, and two radars.Two processing units are one Intel® NUC 11 with a Core™ i7-1165G7 Processor as the maincomputer and one ROCK PI N10 with four cortex-A53 processors as the supporting com-puter. As indicated in Figure 6, the NUC 11 handles most of the operations, including rawsensory data subscription, data post-processing, and communication with a remote cloudserver. The ROCK PI N10 stays outside the vehicle in a protective box (shown in Figure 7c),together with the camera, radar, and GPS sensors that lack water and dust prevention.Figure 7 and Table 3 show the sensor layout and restricted specifications for the test-ing platform. The LiDAR sensor is the Velodyne VLP-32C, which has 32 laser beams and40° FoV in vertical. The range of the LiDAR sensor was limited from 1.4 to 200 meters.Two Texas Instruments mmwave AWR1843BOOST radar sensors were used for the testingplatform. The radar sensors were calibrated to be mainly reactive to dynamic objects,which can be simplified as ’vehicle’ and ’human’, two classes for urban transportation.Therefore, the specification of the first radar sensor is preferable for detecting the ’vehi-cle’ class, and the second radar sensor is for the ’human’ class. The camera sensor for thetesting platform is the Raspberry Pi V2 camera with a wide 160° diagonal FoV. The camerawas restricted to operate at 15 Hz in resolution 1920x1080.

Figure 7: Sensor layout on testing platform. (a) is the overview of testing vehicle and top mount.
(b) is the sensor mount. (c) shows the camera, radar, and GPS sensors inside the waterproof box.
Adopted from the Article III.

Table 3: Restricted sensor specifications

Sensor Type FoV Range/Resolution FrequencyLiDAR 40° (V) 1.4 - 200 m 10 Hz
radar 1 90° (H)15° (V) 45 m15.73 m/s (radial) 76 GHz
radar 2 90° (H)15° (V) 30 m3.07 m/s (radial) 76 GHz
camera 160° (D) 1920 x 1080 15 Hz
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2.2.2 Software System and Server
The data capturing and communication of the dataset collection framework follow theRobot Operating System (ROS) regulations. The distributed computing environment ofthe ROS allows operating nodes to spread across multiple machines under the samemas-ter. Thus, the data in ROS format from different nodes is visible to the entire network. Inthe platform, the main computer, NUC 11, hosts the ROS master, which establishes com-munication between all other nodes. The supporting computer ROCK PI N10 acts as anROS slave, and hosts the nodes to initiate camera, radar, and GPS sensors. To reduce thedata transfer latency between main and supporting computers, the Gigabyte local areanetwork was established across the whole testing platform. In practical tests, the aver-age delay between the main and supporting computers when no data is transferred is0.441 ms. In comparison, the average delay increases to 0.49 ms when the camera, radar,and GPS sensors fully operate and transfer the data to the main computer. In practice,such a minor latency caused by physical connection is neglected for sensor fusion. Forinstance, the camera and LiDAR sensor synchronization error are bounded from -6 to 8ms in Waymo Open dataset [22].As shown in Figure 6, another contribution of this framework is a cloud server thatcan adapt to other autonomous platforms. The connection between the vehicle and thecloud server relies on the mobile network. Raw and processed perceptive data collectedby the testing plstform were stored in a database. Moreover, the timestamp labels andfile paths of data were simultaneously created in the database for public query tasks.
2.3 Training Datasets
In this work, the research objective related to scene interpretation for AV is achieved byexploring and analyzing cutting-edge neural networks for object detection and segmenta-tion. A comprehensive dataset covering various autonomous driving scenarios is criticalfor all neural network procedures, from developing to training and then evaluating.As discussed in Section 1.5, the thesis involves two models that segment objects byfusing camera and LiDAR data. The first model (CLFCN) is based on FCN, which has a rela-tively long history and has beenwidely explored. Therefore, the research of CLFCN focuseson the domain adaptation analysis between the datasets with different characteristics.Two datasets were used in domain adaptation experiments for CLFCN. The first one is theWaymo Open dataset, and the second is the iseAuto dataset (RO2) that was collectedby the iseAuto shuttle under the end-to-end multi-modal dataset collection framework(RO1).The second model (CLFT) is based on ViT, one of the most popular neural networkproposals in recent years. Due to CLFT’s novelty in terms of its LiDAR data processingstrategy for object segmentation tasks, the experiments for CLFT aim to benchmark itwith other models regarding object segmentation accuracy. The Waymo Open datasetwas used in coherent controlled benchmark experiments.
2.3.1 Waymo Open Dataset
Waymo Open dataset is a multi-modal dataset recorded by industrial-strength sensors. Itconsists of 1150 sequences spanning various illuminations, and the LiDAR data is providedas the range images with vehicle pose integrated into each pixel. The annotations of theWaymo Open dataset are represented as 2D and 3D bounding boxes in camera and LiDARdata, respectively. For CLFCN domain adaptation and CLFT benchmark experiments inthis work, 110 sequences were randomly selected. Since each Waymo sequence spans20 seconds and records samples at 10 Hz, there are 2200 frames with manual-labeled

24



annotation. The process towards Waymo’s 3D ground-truth bounding boxes follows thealgorithms presented in Section 3.2.1, the dense point clouds of objects are projected ontothe camera plane as annotations (shown in Figure 8(c)) for training and testing.The robustness and efficiency in challenging illumination and weather conditions arecritical for AV scene interpretation. The evaluation of neural network models for trafficobject segmentation should cover various real-world situations. Therefore, the WaymoOpen dataset was partitioned into sub-categories based on the illumination and weather:day-dry, day-wet, night-dry, and night-wet. Table 4 presents the details of sub-categoriesfor the Waymo Open dataset.

Figure 8: Examples of RGB and annotation images of the Waymo and iseAuto dataset. (a) and (c)
are from the Waymo Open dataset. (b) and (d) are from the iseAuto dataset

Table 4: Amount of frames for each sub-category in the Waymo and iseAuto datasets

Day-Dry Day-Wet Night-Dry Night-WetWaymo Open Dataset 14940 4520 1640 900iseAuto Dataset 2000 2000 2000 2000

2.3.2 iseAuto DatasetThe iseAuto Dataset contains the camera and LiDAR data collected by the iseAuto shut-tle under the dataset collection framework proposed in this thesis. The specifications anddeployment of sensors on the iseAuto shuttlewere introduced in Section 2.1. The architec-ture of the dataset collection framework was presented in Section 2.2. In addition to test-ing the iseAuto shuttle’s range sensors and validating the dataset collection framework,another motivation to produce the iseAuto dataset is to make up for the shortcomings ofthe Waymo Open dataset to evaluate the models’ performance and domain adaptationcapability comprehensively. The advantages of the iseAuto dataset compared with the
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Waymo Open dataset are as follows:
• The locations to produce the Waymo Open dataset are Phoenix, Mountain View,and San Francisco, where the climate and urban transportation differ greatly fromEstonia. The iseAuto dataset was collected at TalTech campus, which general illumi-nation is lower than the Waymo Open dataset (Figure 8 (a) and (b) show the com-parison). Therefore, the iseAuto dataset is more suitable for analyzing the model’sperformance in dark environments.
• Most of the sequences in the Waymo Open dataset are recorded in light and sunnyconditions; thus, the unbalanced data allocation of sub-categories poses challengesfor model training. For the iseAuto dataset, all four sub-categories (day-dry, day-wet, night-dry, and night-wet) have 2000 frames, which guarantees themodels canlearn the same amount of knowledge from different weather and illumination con-ditions.
• The object annotations in the Waymo Open dataset are based on the LiDAR pointclouds projection onto images, which results in somepixels for the objects having nolabels (shown in Figure 8 (c)). The ground-truth annotations in the iseAuto datasetweremanually selected from the image. Therefore, the objectmasks are solid-filledand contain detailed contour information (shown in Figure 8 (d)).
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3 Methodologies
This section presents the technical details of two aspects of this thesis: multi-modaldataset collection framework and camera-LiDAR fusion neural networks.The first subsection introduces the protocols of multi-sensor calibration and synchro-nization for end-to-end dataset collection framework (RO1). The calibration and synchro-nization methods proposed in this work focus on the sensors operating in a discontinuousmode. For instance, radar sensors deployed on testing platform are only reactive to mov-ing objects, resulting in a heterogeneous update rate. The second subsection concentrateson the signal-level fusion of camera, LiDAR, and radar sensors. A thorough camera-LiDAR-radar fusion algorithm was proposed as the backend of the end-to-end dataset collectionframework (RO1). The last subsection provides the architecture details of CLFCN and CLFT(RO3 and RO4), two camera-LiDAR fusion neural networks for object segmentation.
3.1 Sensor Calibration and Synchronization
Sensor calibration and synchronization are critical for any autonomous platform with amulti-sensor system. Specific to perceptive sensors, the calibration requires to acquiresensors’ intrinsic and extrinsic information, and the synchronization aims to compute thedata-pairs with the closest absolute timestamps from the sensors operating at differentacquisition rates. As part of the toolbox of the dataset collection framework, the sensorcalibration and synchronization methods proposed in this thesis focus on the camera, Li-DAR, and radar sensors. The corresponding visualized resultswere produced by the sensormodels mentioned in Section 2.2.1.
3.1.1 Sensor Intrinsic and Extrinsic CalibrationThe essence of intrinsic calibration is retrieving the geometric match of features’ positionand orientation in the real world and the relative coordinates detected by the sensors.The intrinsic calibrations are conducted independently for each sensor. Due to the datasetcollection framework focuses on the camera, LiDAR, and radar sensors, the intrinsic cali-bration processes for these three sensors in the framework’s toolbox are following:

• Camera: The literature on the intrinsic calibration of the camera and LiDAR sen-sors is rich [107, 108]. The most common intrinsic calibration methods for camerasensors rely on photogrammetry [109], in which planner patterns with precise ge-ometry are used during the calibration. The open-source ROS ’camera_calibration’package was integrated into the dataset collection framework’s toolbox for calibrat-ing pinhole and stereo cameras. The ’camera_calibration’ package is built upon theOpenCV camera calibration modules but exclusively provides the interface for pa-rameter tuning.
• LiDAR: The LiDAR sensors currently used on AV are highly integrated and industri-alized. The intrinsic calibration of LiDAR sensors is usually conducted during man-ufacturing to improve accuracy. For instance, referring to the manual book, therange accuracy of the Velodyne VLP-32C LiDAR sensor used by the iseAuto shuttleand testing platform is no more than ± 3 cm. Therefore, no LiDAR sensor intrinsiccalibration method was included in the framework.
• Radar: The existing literature on radar calibration concentrates on three aspects: i)coordinatematching of radar points and image objects [110], ii) radar points filteringto reduce the noise and faulty defections [111], iii) error corrections to compensatemathematical measurement errors [112]. The intrinsic calibration of radar sensors
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follows the second strategy. Most of the points for static objects were filtered out.As shown in Figure 9, only the points representing dynamic objects (color dots)werekept in the frame.

Figure 9: Comparison of Euclidean distance between LiDAR and radar points with and without the
extrinsic calibration. Color dots are radar points; white dots are LiDAR points. (a) and (c) are without
calibration, (b) and (d) have the radar points transformed based on the extrinsic calibration matrix.
Adopted from the Article III.

The extrinsic calibration of a multi-modal sensor system estimates the transformationbetween the different sensor coordinates. The precise transformation matrix containingrotation and translation information of all sensors is critical to signal-level sensor fusion.The extrinsic calibrationmodules in the dataset collection framework provide the camera-LiDAR and LiDAR-radar extrinsic calibration. The camera-LiDAR calibration module wasinspired by the work [113]. The planner patterns, such as checkerboard, are required incalibration. The LiDAR point and corresponding image pixel were manually paired in theprocess. The details and issues that needed to be noted are available in work [27] (Article
III included in this thesis). The LiDAR-radar extrinsic calibration in the framework wasconducted by a ROS-based tool that provides the Euclidean distance visualization of LiDARand radar sensors’ point clouds data. Manual tuning was required to ensure the pointclouds clusters overlapped. To increase the calibration accuracy, it is recommended tocarry out the calibration in the environment with the least interference and use the highreflective objects for radar sensors, such asmetallic surfaces. Figure 9 illustrates the resultof LiDAR-radar extrinsic calibration. The color and white points represent the radar andLiDAR point clouds, respectively. The pictures in the first row are without the extrinsiccalibration, and the pictures in the second row show the result after implementing thetransformation to radar points.
3.1.2 Sensor Synchronization
The perceptive sensors such as camera, LiDAR, and radar sensors operate at different fre-quencies. The camera sensors usually have high frequency, and the LiDAR sensors withinternal rotatingmechanisms scan at a rate of nomore than 20 Hz. The frequency of radarsensors varies in different situations. For example, in the testing platform used to validate
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the dataset collection framework, the radar sensors were configured to be only reactiveto moving objects; thus, the acquisition rate is heterogeneous.
The existing sensor synchronization methods, such as [114], are designed to processthe data streamswith a constant update rate. Work [114] selects the latestmessage along-side the timeline as the reference-frame, then find the nearest message from anotherdata stream to compose the synchronizedmessage-pair. If there is nomessage in anotherdata streamwithin the defined time threshold, it will discard the current reference-frameand move to the next message. However, such an algorithm only works for the sensormodalities with homogeneous update rates, such as camera and LiDAR sensors. This al-gorithm is unsuitable for the situation of sensor modalities with heterogeneous updaterates, because it always picks the nearest message to the synchronized message-pair asthe reference-frame. Figure 10(a) gives an example of how the algorithm in [114] synchro-nizes the multi-sensor modalities. The camera and LiDAR sensors operate at 15 and 10 Hz,respectively. The radar sensor works in heterogeneous mode. The reference-frame (reddot) was not fixed to the same sensor modality, resulting in significant sensor synchro-nization errors.
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Figure 10: The blue and red dots represent the sensor messages, while the red dots are reference
point picked by the algorithm for synchronization. Adopted from the Article III.

The gaps in existing techniques have been identified, and the multi-sensor synchro-nization approach proposed in the dataset collection framework aims to synchronize thesparse and unevenly scattered messages. The key point of the novel sensor synchroniza-tion method is dividing the synchronization process into three steps. The first step is thecamera-LiDAR synchronization, and the second is the LiDAR-radar synchronization. Thefirst two steps were illustrated in Figure 10(b) and (c), respectively. At last, a thoroughcamera-LiDAR-radar synchronizationwas conducted based on the results of camera-LiDARand LiDAR-radar synchronization, as shown in Figure 10(d). The advantage of this algo-rithm is that the reference-frame in each synchronization step can be fixed to the sensormodality with lower frequency, which is the LiDAR sensor in camera-LiDAR synchroniza-tion, and the radar sensor in LiDAR-radar synchronization. The sensor synchronizationmethod in this work keeps the advancements of all sensors such as the density and con-sistency of the camera and LiDAR data, while also provides the opportunity to synchronizethe sparse and irregular radar data.
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3.2 Signal-level Camera-LiDAR-radar Sensor Fusion
The sensor fusion backend is an essential composition of the multi-modal dataset collec-tion framework proposed in this thesis. Due to the dataset collection framework’s limitedcomputational resources and application scenarios, the sensor fusion backend focuses onthe signal-level fusion of camera, LiDAR, and radar data. The signal-level fusion is also ex-pressed as low-level or early-stage fusion in literature [115] as it is the fusion of raw data.For instance, integrating 3D geometric coordinates and image pixel values for camera-LiDAR fusion. For the sensing modalities with the same work principles, such as LiDARand radar sensors, the signal-level fusion usually targets spatial coordinate matching. Thecamera-LiDAR-radar fusion algorithms in thiswork follow the sensor synchronization strat-egy discussed in Section 3.1.2 and divide the process into three steps. The first step is thecamera-LiDAR fusion, which aims to acquire the maximum amount of fusion results. Thesecond step is the LiDAR-radar fusion, the point clouds clusters of moving objects in LiDARdata were highlighted and assigned with the velocity information. The last step combinesthe first two fusion stage results to achieve the thorough camera-LiDAR-radar signal-levelfusion. The following subsections introduce the details of camera-LiDAR and LiDAR-radarfusions.
3.2.1 Camera-LiDAR Fusion
The essence of signal-level camera-LiDAR fusion is representing the 3D LiDAR point cloudsas the 2D-based feature maps by 3D-2D projection. In general, there are three projectionstrategies:

• Spherical Map. The 3D LiDAR points are projected onto a front-view sphere withazimuth and zenith characters kept. The dense projection results have advan-tages in feature segmentation [116] but are unsuitable for deep-learning-basedfeature/multi-level fusion because of the different dimensions of camera images.
• Camera-planeMap. The perspective projections of LiDAR point clouds onto cameraplanes provide maps of the same size as camera images. Thus, the results can befused in neural networks. However, there is a need to up-sample the sparse featuremaps [117–119].
• BEV Map The BEV projections of LiDAR points clouds provide the objects’ localiza-tion and dimension information. The BEV results are broadly used in 3D perception[120] but not applicable for 2D scene interpretation, which is the focus of this thesis.
The camera-LiDAR fusion in this work adopts the second strategy that projects the 3DLiDAR point clouds onto the camera plane in XY, YZ, and ZX channels, shown in Figure 11.In general, there are three steps in this process.The first step is the transformation of LiDAR point clouds to the camera coordinatesystem based on the camera-LiDAR extrinsic calibration results. The process follows theequation:
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where xt , yt , and zt are the 3D point coordinates seen after transformation (seen fromthe camera frame); xi, yi, and zi are the 3D point coordinates before transformation (seenfrom the LiDAR frame); xc, yc, and zc denote the camera frame location coordinates. r, p,and y are the Euler rotation matrices to the camera frame, which are represented as the
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Figure 11: The LiDAR point clouds projection onto XY, YZ, and ZX camera planes. The first column (a-
d) was extracted from the Waymo Open dataset. The second column (e-h) was extracted from the
iseAuto dataset. In each column, from top to bottom, are RGB, XY, YZ, and ZX images, respectively. It
should be noted that for visualization purposes, the grayscale intensity in all camera-plane images
is proportionally scaled based on the numerical 3D coordinate values of the LiDAR point.
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where (ρ,θ ,φ) represents the corresponding Euler angles.The second step is projecting the transformed 3D LiDAR points as 2D image pixels ontocamera plane, which follows the equation:
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where u and v are column and row positions of the resulting 2D image pixels; fx and fydenote camera’s horizontal and vertical focal length; w and h represent image resolution;
xt , yt , and zt are same as in Equation 1, which are transformed 3D point coordinates.The last step is selecting the points that fall in the camera view and discarding the rest.Camera-plane maps denoted as XY, YZ, and ZX of LiDAR point clouds are generated in thisstep. The pixels of camera-planemaps with corresponding LiDAR points are assigned withx, y, and z coordinate values, while the rest are populated with zero. Algorithm 1 showsthe detailed procedure of this step.
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Algorithm 1 LiDAR points filtering and image pixel values population. Adopted from theArticle IV.
Input: LiDAR point 3D coordinates L, projected LiDAR point coordinates P, image resolu-tion w and h.
Output: LiDAR projection footprints XY , Y Z, and ZX .
1: idx = argwhere(P < {w,h,+∞}& P >= {0,0,0})
2: XY [w×h]← 0
3: Y Z[w×h]← 0
4: XZ[w×h]← 0
5: XY [idx] = L[idx,0]
6: Y Z[idx] = L[idx,1]
7: XZ[idx] = L[idx,2]

3.2.2 LiDAR-radar FusionThe goal of the signal-level LiDAR-radar fusionmodule in the dataset collection frameworkis to utilize the radar sensors’ advantages in detectingmoving objects and then integratingthe moving object information into the LiDAR points cloud data. As a result, the LiDARpoint clouds of moving objects were selected and assigned with velocity based on theradar detection results. Figure 12 illustrates the LiDAR-radar fusion process, which can besummarized as following four sequences:
1. Transforming the radar points from radar frame coordinate to LiDAR frame coordi-nate.
2. Applying the density-based spatial clustering of applications with noise (DBSCAN)algorithm [121] to LiDAR point clouds to filter the objects’ point clusters.
3. Looking up the LiDAR point clusterswith the nearest Euclidean distance to the trans-formed radar points.
4. Assigning the velocity readings from the radar sensor to the selected LiDAR pointclusters that represent the moving objects.

Transformed radar pointsseq 1
Transformation from radar
frame to LiDAR frame

seq 2
DBSCAN the 3D points to
find the clusters of objects

Radar points (sparse)

mmwave radar

LiDAR point clouds (dense)
Velodyne LiDAR

seq 3
Nearest Euclidean lookup of the
lidar clusters to radar points, to
highlight the moving objects

seq 4
Augmenting the selected clusters
and assigning radar velocity
readings

LiDAR point clusters

LiDAR point clusters
of moving objects

X
Y
Z

object_id
velocity

Figure 12: The workflow of signal-level LiDAR-radar fusion. Adopted from the Article III.

Following the algorithmsdescribed in Section 3.2.1, the resulting LiDAR clusters ofmov-ing objects were projected onto the camera plane to achieve the final camera-LiDAR-radar
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fusion. Figure 13 visualizes some procedures of the camera-LiDAR-radar fusion moduleproposedby dataset collection in this thesis. Figure 13(a) illustrates the first two sequencesof LiDAR-radar fusion. The green and red dots represent the radar points before and afterthe transformation, respectively. The blue dots are filtered LiDAR point clusters of mov-ing objects. Figure 13(b) shows the projection of radar data onto the camera plane. Incomparison, Figure 13(c) is the camera-plane projection of LiDAR point clusters concludedbased on radar detection results.

Figure 13: Illustrations of camera-LiDAR-radar fusion. (a) shows the relative locations of original
radar points (green), transformed radar points (red), and LiDAR point clusters of the moving object
(blue), (b) is the transformed radar points projection onto the camera plane, (c) visualizes the even-
tual outcome of camera-LiDAR-radar fusion, which is the object’s LiDAR point clusters projection
onto the camera plane. Adopted from the Article III.

3.3 Neural Networks for Object Segmentation
The perception of autonomous driving is a comprehensive domain. As a fundamental taskof AV perception, scene interpretation aims to identify the objects and analyze their re-lationships with other scene contexts. This thesis focuses on using neural networks toimprove the AVs’ scene interpretation capability because the sensory dataset is the directinput of the neural networks. On the one hand, the corresponding neural network ex-periments are the ideal application scenarios for training datasets proposed in this work.On the other hand, the unexplored potential of AI for autonomous driving is a strong mo-tivation for future research. This work involves two neural networks that fuse cameraand LiDAR data for object segmentation. The first one is based on FCN and was initiallydeveloped by Caltagirone et al. [74] for road surface detection. The application of thisnetwork is mainly for domain adaptation analysis between the Waymo Open dataset andthe iseAuto dataset. The second ViT-based neural networkwas first time proposed in [122](include in this thesis as the Article IV) and was used to compete with other cutting-edgemodels for traffic object segmentation tasks.
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3.3.1 Camera-LiDAR Fusion Convolutional Neural Network (CLFCN)The CLFCN network is based on the popular ResNet50 [84] that consists of 21 layers inits encoder-decoder structure. Caltagirone et al. [74] proposed three fusion strategies,namely, early, late, and cross that based on the layer depth to concatenate camera andLiDAR representations. Figure 14 illustrates how the camera and LiDARwere fused in thesethree fusion strategies.

Figure 14: The graphic illustrations of three fusion strategies in [74].

Inspired by the late-fusion strategy, the CLFCN divides the ResNet50 layers into fivestages and executes the concatenation of camera and LiDAR feature representations afterstage 4. The concatenated and single modalities were forwarded to the last stage sepa-rately. Thus, there are three sub-models in the network to compute loss for the camera,LiDAR, and fusion modalities concerning mutual ground truth. Figure 15 shows the work-flows of three sub-models of the CLFCN network.

Figure 15: The illustrations of the CLFCN sub-models’ workflow [77].

3.3.2 Camera-LiDAR Fusion Transformer (CLFT)The CLFT network maintains the generic encoder-decoder structure of the transformerbut invokes the progressive-assemble strategy from ViT on a double-direction network toprocess the camera and LiDAR data in parallel. The results of two directions for cameraand LiDARmodalities are then integrated into the decoder layer following the cross-fusionstrategy. As far as the latest literature reviews [123, 124], CLFT is the first open-sourcetransformer-based network that adopts the camera-plane-projection strategy discussed
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in Section 3.2.1 to process the LiDAR data for 2D object semantic segmentation. The pro-jection of LiDAR point clouds in XY, YZ, and ZX camera-planemaps were concatenated as athree-channel representation and then amalgamatedwith RGB camera data into a unifieddata representation for subsequent processing.
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Figure 16: The overall architecture of the CLFT network. Adopted from the Article IV.

Figure 16 shows the overall architecture of the CLFT network. The double-directionfor camera and LiDAR modalities was visualized from two ends of the diagram. From leftto right is the camera data flow to the ViT encoder, while the LiDAR data flow is repre-sented from right to left. The name of the CLFT encoder follows the ViT’s conventions,which are ’CLFT-base,’ ’CLFT-large,’ ’CLFT-huge,’ and ’CLFT-hybrid’. The ’base’, ’large’, and’huge’ variants use the patch-based embedding method, which divides the input imageinto fixed-size non-overlapping patches. The ’hybrid’ variant adopts the strategy to extractfeature patches from images’ CNN feature maps as input tokens for the transformer. Thedetails of encoder variants’ parameters, such as layer amount, feature dimension, patchsize, etc. are available in the work [122] (Article IV).
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Figure 17: Assemble architecture for each transformer decoder block. Adopted from the Article IV.

The CLFT decoder was consisted of assemble and fusion two stages. Figure 17 illus-trates the detailed assemble stage workflow. In general, the assemble stage can be di-vided into two steps. Algorithm 2 shows the detailed process of the first step. It firstreplicates and concatenates the patch-independent ’classification token’ to all other to-kens individually, then applies the GELU non-linear activation [125] to the concatenatedrepresentations. The ’classification token’ is similar to the ’class token’ concept in BERT[126]. The second step takes the concatenated results from the first step as input, and upor down-sample them to the same resolution based on the layer depth. The resolutionwas anchored to the input image size. Thus, the concatenated representations from thebeginning layers were up-sampled to a resolution higher than themselves, and the repre-sentations from deep layers were down-sampled to a resolution lower than themselves.
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The up and down-sample processes were achieved by two convolution operations and areillustrated in the following equation:
XD

t ⇒ X
h
s×w

s ×D̂
t (4)

Xt = {Xc,Xl} s = {4,8,16,32} t = {5,11,17,23}
Figure 18 illustrates the fusion stage of the CLFT decoder. The camera and LiDAR rep-resentations were forwarded through Residual Convolution Unit (RCU) and then summedwith the results from the previous fusion operation. The output of the last fusion layerwas passed to a deconvolutional and up-sampling module to compute the final predictedsegmentation.

Algorithm 2 The projection of the ’classification token’. Adopted from the Article IV.
Input: Input tensor T , representing either the camera or LiDAR channels containing the’classification token’ and patch tokens.
Output: Concatenated tensor representations XT1: Tcls = replicate{T [:,0]}
2: Tconcat = T [:, i]∥Tcls ∀ i = 1, . . . ,k
3: XT = GELU(W ·Tconcat +b)
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Figure 18: The progressive overview of fusion architecture. Adopted from the Article IV.
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4 Experiments and Results
This section introduces the experiments carried out to evaluate this thesis’s research ob-jectives and presents the numerical results attained from the corresponding experiments.The first part of this section focuses on the efficiency of the end-to-end multi-modaldataset collection framework (RO1) regarding the computational consumption for post-processing algorithms and storage space requirement for the produced dataset. The sec-ond part analyzes the CLFCN (RO3) network’s capability to extract and inherit the knowl-edge from a public training dataset, then use the knowledge to achieve reasonable perfor-mance on a custom iseAuto dataset (RO2) with fewer annotations and more challengingscenarios. The last part provides a performance and inference time benchmark for theCLFT (RO4) network with respect to other state-of-the-art networks regarding the trafficobject segmentation tasks.
4.1 Performance Evaluation for Dataset Collection Framework
The scope of the dataset collection framework is a generic practical solution for low-speedurban autonomous platforms such as autonomous shuttles and delivery robots to col-lect, process, and share perceptive data in their daily operations. Although the raw dataand processed dataset were transferred to the remote server through the mobile net-work, there is a need to consider the on-board data storage due to the network band-width. Moreover, the framework’s post-processing, such as data decompression, sensorsynchronization, and fusion, was carried out by vehicles’ built-in computers. Therefore,the evaluation of the dataset collection framework focuses on computational and storageefficiency. The inference time and storage occupation of each post-processingmodule areseparately analyzed in performance evaluation experiments.
Table 5: Data size and time consumption of framework’s modules to process the whole data se-
quence. Data size in gigabyte (GB) and time in second (s). Adopted from the Article III.

Sequence 1 Sequence 2
City Urban Indoor LabSequence Duration (s) 301 144Raw Bag File Size (GB) 3.7 0.78Synchronization (s) 4.28 1.24Raw Data Decompressing (s) 0.36 0.09Raw Data Writing (s)/(GB) 116.63/16.4 54.74/7.4Camera-LiDAR Fusion (s)/(GB) 510.94/9.2 261.34/4.6Camera-LiDAR-radar Fusion (s)/(GB) 61.97/5.8 39.38/3.3

Table 5 and Table 6 present the time consumption and data size of the framework’s dif-ferent post-processing modules. Table 5 provides the framework’s insight to process thewhole data sequence. Two example sequences are listed in the table: the first sequencewas collected in the Tallinn urban area, and the second was recorded at the indoor lab-oratory. Both sequences were produced and processed by the multi-sensor perceptionhardware described in Section 2.2.1; thus, the computational time shown in this section isbased on the specific and varies for different hardware setups. It is important to note thatthe ’Camera-LiDAR-radar Fusion’ in Table 5 indicates two processing streams because tworadar sensors are installed on the testing platform.Table 6 shows the data size and average time consumption of the framework’s post-processing modules to process a single data frame. The output of each listed post pro-
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cessing module is an RGB image in 1920x1080 resolution, and a binary pickle file containsthe points’ coordinates and velocity information.
Table 6: Data size and average time consumption of the framework’s post-processing modules for
single frame. Data size in megabyte (MB) and time in millisecond (ms). Adopted from the Article III.

Raw Data
Decompressing
and Writing

LiDAR
Projection

Radar-LiDAR
Clustering

Size per frameRGB image in 1920 × 1080 +LiDAR points in binary
3 MB1.2 MB 3 MB0.9 MB 3MB<0.1 MB

Average time per frame(RGB image in 1920 × 1080 +LiDAR points in binary) 79.7 ms 647.7 ms 108.44 ms

4.2 Domain Adaptation Analysis for CLFCN
The experiments to analyze CLFCN’s domain adaptation capability rely on transfer learn-ing and semi-supervised learning techniques. The supervised baseline models of theWaymo Open dataset and the iseAuto dataset were trained first. Waymo’s supervisedmodels were continuously trained by the iseAuto dataset to conclude the transfer learn-ing models. The best-performed transfer learning models were then used to predict theunlabeled iseAuto dataset. At last, the iseAuto dataset with manual-made ground-truthsand transfer-learning-model-made predictions were mixed and used to train the trans-fer learning models. In comparison, the mixed iseAuto dataset was also used to trainthe iseAuto supervised baseline models. Figure 19 illustrates the training procedures forCLFCN’s domain adaptation analysis.

Waymo baseline modelsWaymo ground-truths

iseAuto ground-
truths iseAuto TL models

iseAuto ground-truths iseAuto baseline models

iseAuto SSL-TL modelsiseAuto machine-
predictions

iseAuto SSL modelsiseAuto machine-
predictions

Figure 19: The training procedures of CLFCN’s domain adaptation analysis experiments. ‘TL’ and
‘SSL’ stand for transfer learning and semi-supervised learning, respectively. Green blocks mean the
dataset splits, and the blue blocks represent themodels in different stages. Adopted from the Article
II.

The hardware used to carry out the domain adaptation experiments is an NVIDIARTX2070 Super GPU. The weighted cross-entropy loss function and Adam optimization
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[127] were used in training. Moreover, data normalization, data augmentation, and early-stopping were employed to increase the dataset and save training time. The details offine-tuning and data pre-processing are available in the work [24] (Article II).
Table 7: Performance comparison between iseAuto supervised and semi-supervised baseline models

iseAuto baseline SSL-iseAuto baselineIoU(%) IoU(%)Vehicle Human Vehicle Human
Day-Dry camera 75.97 71.31 79.85 67.06LiDAR 71.19 56.87 73.69 58.05fusion 80.39 74.56 82.38 68.98
Day-Wet camera 77.71 39.87 80.27 53.61LiDAR 76.00 42.10 80.58 44.09fusion 83.20 56.24 83.98 54.28
Night-Dry camera 68.89 54.98 73.14 55.07LiDAR 74.25 47.19 75.75 49.59fusion 76.79 62.48 79.28 56.32
Night-Wet camera 52.17 29.40 60.42 42.06LiDAR 59.49 36.76 64.89 41.32fusion 64.68 46.09 63.97 43.63

Table 8: Performance comparison between the transfer learning models with and without semi-
supervised learning.

waymo2iseAuto TL SSL-waymo2iseAuto TLIoU(%) IoU(%)Vehicle Human Vehicle Human
Day-Dry camera 77.10 75.87 80.32 69.25LiDAR 72.14 55.71 76.10 61.81fusion 83.27 74.24 82.85 71.09
Day-Wet camera 80.26 48.11 82.49 57.12LiDAR 77.33 40.27 81.00 44.85fusion 84.92 57.61 85.04 54.84
Night-Dry camera 66.07 52.38 75.97 55.46LiDAR 74.50 45.38 76.01 51.63fusion 80.43 64.03 79.82 60.21
Night-Wet camera 51.70 41.39 60.79 48.30LiDAR 62.51 26.46 64.40 41.15fusion 67.89 45.68 66.92 48.36

Table 7 and Table 8 present the primary results of CLFCN domain adaptation experi-ments. A specific pixel-wise multi-class Intersection over Union (IoU) algorithm was de-veloped to measure the models’ performance on object segmentation. In the case of thiswork, two object classes, vehicleV and human H, were detected. The IoU of two classesis acquired by:
IoUV =

VpVg

VpVg +VpHg +HpVg
IoUH =

HpHg

HpHg +HpVg +VpHg
. (5)
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whereVpVg denotes the number of pixels referred as vehicle class in both prediction andground-truth. The same principle is applied toHpHg for the human class. VpHg representsthe number of pixels indicated as a vehicle in prediction, but human in ground-truth. Simi-larly, HpVg is the number of pixels labeled as human in prediction, but a vehicle in ground-truth.Table 7 compares the iseAuto’s supervised and semi-supervised baseline models.Compared with supervised baseline models, the semi-supervised baseline models attainthe apparent improvement in vehicle segmentation, which follows the general rule ofmachine learning that more data brings better performance. The semi-supervised base-line models behave weakly in some human segmentation scenes. This is because the hu-man class is less represented in the iseAuto dataset; extra machine-labeled annotationsin semi-supervised training increase the model’s uncertainty on the human class. Table8 compares transfer learning models with and without the help of the semi-supervisedlearning technique. In some cases, the semi-supervised transfer learning models show amaximum of 10%In summary, it is possible to say that the CLFCN network can adapt from one domain toanother. Cross-comparing the results shown in Table 7 and Table 8, it could be concludedthat the knowledge CLFCN network gains from one dataset is helpful in predicting anotherdataset. Work [24] (Article II) provides a more comprehensive evaluation of the CLFCNnetwork, including other measuring metrics such as precision, recall, and auc-AP [128].
4.3 Benchmark Comparison for CLFT
The benchmark comparison for CLFT networks focuses on two critical aspects of neuralnetworks: i) backbone architecture, and ii) input modality. The corresponding experi-ments for each aspect have another aspect identical to the environment. For instance,benchmark experiments to explore the effectiveness of different backbones take the sameinput data. Vice versa for experiments analyze the affection of input modality.
Table 9: Benchmark comparison of CLFT-hybrid variant, CLFCN and Panoptic SegFormer. Bold indi-
cates the best values in each row per class. (in percentage unit)

Day-Dry Day-Wet Night-Dry Night-WetVehicle Human Vehicle Human Vehicle Human Vehicle HumanCLFT-Hybird (C+L) 91.35 66.04 91.72 66.03 90.62 65.66 90.18 53.51CLFCN (C) 88.08 55.57 88.54 52.13 81.16 42.87 74.49 43.14CLFCN (L) 88.58 53.04 89.47 50.06 86.16 48.83 87.51 46.68CLFCN (C+L) 91.07 62.50 92.77 64.66 89.41 60.33 89.90 56.70Panoptic SegFormer (C) 85.89 61.02 83.58 49.70 81.45 44.67 70.50 14.68Panoptic SegFormer (L) 66.41 40.78 63.07 29.87 70.25 38.69 54.40 39.00
In detail, the CLFCN networks were selected to explore the advantages of the trans-former backbone. Because both CLFCN and CLFT networks rely on the camera-LiDAR fu-sion data for object segmentation and use the same LiDAR processing strategy, which isprojecting the 3D point clouds on the camera planes (details are available in Section 3.2.1).The Panoptic SegFormer [94] networks were used to evaluate the differences betweenvarious input modalities. The Panoptic SegFormer networks are also based on the trans-former but only take visual input. Following the procedures in Section 3.2.1, it is possibleto produce the LiDAR point clouds projection images, which can be regarded as the Li-DAR modality for the Panoptic SegFormer networks. Therefore, the Panoptic SegFormernetworks in a singular camera or LiDAR modality were compared with CLFT networks topresent the significance of sensor fusion in autonomous driving. Figure 20 demonstrates
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the visualized examples of segmented images from all models used in benchmark experi-ments.

Figure 20: Qualitative comparison of segmentation results between different models. Adopted from
the Article IV.

The dataset used for all benchmark experiments is theWaymoOpen dataset. The sub-datasets based on weather and illumination conditions discussed in Section 2.3.1 wereadopted in experiments. The CLFT networks’ transformer encoders were initiated fromImageNet pre-train weights, and the transformer decoders were initiated randomly. Theweighted cross-entropy loss function and Adam optimization were employed in training.The hardware for Panoptic SegFormer and CLFT-related training is an NVIDIA A100 80GBGPU due to the large memory requirements of transformer-based networks. The CLFCNtraining was executed on an NVIDIA RTX2070 Super GPU. Work [122] (Article IV) providesmore details of other hyper-parameter settings.The main results of the benchmark comparison work were reported in Table 9 andTable 10. The same IoUmetric presented in Section 4.2was adopted to evaluate networks’performance for two interest classes in different modalities and scenarios. The C, L, andC+L in two tables indicate the camera, LiDAR, and fusion modalities, respectively. In Table9, the CLFT-hybrid variant reaches an average of 90% IoU for vehicle segmentation andoutperforms the CLFCN and Panoptic SegFormer networks in most cases. There are twoconclusions can be drawn from the Table 9:
• Transformers have a natural advantage regarding underrepresented samples. The Panoptic SegFormer networks achieve higher performance than CLFCN in camera modality (which is the only modality originally designed for Panoptic SegFormer) for the less-represented human class with fewer fine-tuning efforts.
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• The combination of transformer and multi-modal sensor fusion has undoubted ad-vancements and strengths because the CLFT-hybrid network leads performance in most cases.
Table 10: Ablation Study based on CLFT-Hybrid variant. Bold indicates the best values(in percentage
unit)

C L IoU Precision RecallVehicle Human Vehicle Human Vehicle Human
All weather

✓ 91.16 64.38 93.86 73.33 96.88 84.05
✓ 91.19 65.17 93.93 72.89 96.85 84.19

✓ ✓ 91.26 65.46 94.15 75.76 96.69 82.75
Light-Dry

✓ 91.23 64.87 93.83 72.63 97.05 85.86
✓ 91.32 64.92 93.96 72.68 97.02 85.88

✓ ✓ 91.35 66.04 94.14 75.31 96.86 84.29
Light-Wet

✓ 91.67 64.87 94.52 76.49 96.82 81.36
✓ 91.52 64.28 94.40 74.43 96.78 82.49

✓ ✓ 91.72 66.03 94.69 78.27 96.96 80.84
Dark-Dry

✓ 90.51 65.62 93.15 74.30 96.96 84.66
✓ 90.47 65.18 93.27 74.30 96.96 84.16

✓ ✓ 90.62 65.66 93.38 77.39 96.68 81.25
Dark-Wet

✓ 89.62 52.46 93.60 70.00 95.70 67.69
✓ 89.74 49.95 93.69 67.28 95.51 65.97

✓ ✓ 90.18 53.51 94.40 68.68 95.29 70.79

Table 10 presents the ablation study of the CLFT network with different modalitiesof camera (C), LiDAR (L), and fusion (C+L). The ablation study was based on the best-performed CLFT-hybrid variant. The CLFT-hybrid network shows a minor improvementin the all-weather category, which can be explained by heavily unbalanced data splits indifferent weather sub-categories. As discussed in Section 2.3.1 and values shown in Ta-ble 4, the number of light scenarios constitutes over 88% of the total number of frames intheWaymoOpen dataset, affecting the overall resultsmainly. Theweather-based splittingcomparison in Table 10 offers a better view of the advancement of the fusion modalities.The CLFT-hybrid achieves a higher improvement (around 2-4%) in under-represented darkand wet scenarios.
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Table 11: Inference time comparison of all CLFT variants, CLFCN and Panoptic SegFormer networks
(in milliseconds unit).

NETWORK MODALITY TIMECLFT-base
C+L

16.23CLFT-Large 36.75CLFT-Hybrid 25.69CLFCN 15.94
Panoptic SegFormer C 93.52L 93.45

Table 11 presents the study of inference time for CLFCN, Panoptic SegFormer, and allCLFT variants. All inference time experiments were carried out on the NVIDIA A100 GPU.The CPU and GPU were synchronized when calculating the CUDA event time. In general,the CLFCN networks have obvious advantages against the other transformer-based net-works regarding computational efficiency. The evaluation results of other CLFT variantssuch as CLFT-base and CLFT-large were presented in work [122] (Article IV).
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5 Conclusions and Future Work
The perception of AVs is amultidisciplinary field that plays an essential role in autonomousdriving ecology. The requirements for AV perception evolve from the basic yes/no obsta-cle detection to intelligent environment analysis. Sensor fusion and artificial intelligenceare regarded as two promising technologies to fulfill the new requirements. This thesisfocuses on these two technologies and presents comprehensive research for advanced au-tonomous driving perception. The research outcomes cover all aspects of deep-learning-based AV perception, from hardware to software and from dataset production to modeltraining. The details achievements were outlined as follows:

• A practical and real-traffic-oriented exploration of range sensor deployment for au-tonomous shuttles. Part of the RO1 is exploring the hardware solutions for urbanautonomous/robotic platforms to perceive the environment and collect data. Thus,the aspects such as sensor type, sensor model, and installation location were thor-oughly analyzed to reduce the blind zones, which are critical for autonomous shut-tles concerning their appearances and application scenarios.
• An end-to-end generic multi-sensor dataset collection framework includes signal-level camera-LiDAR-radar fusion as the backend, a universal toolbox for multi-sensor calibration and synchronization, and data transfer and sharing protocols.The average time consumption based on the testing hardware for critical post-processing, camera-LiDAR projection and radar-LiDAR clustering, are 647 and 108milliseconds per frame, respectively. In real world tests, the time duration of thesetwo processes for a 300 seconds city urban scenario sequence are 510 and 61 sec-onds. The evaluation results show the potential of framework for large-scale de-ployment on various urban robotics and autonomous platforms, which successfullyaddresses the primary focus of the RO1.
• The iseAuto dataset, a custom camera and LiDAR training dataset for object de-tection and segmentation. As declared in RO2, the dataset was collected by theiseAuto shuttle at TalTech campus under the multi-modal sensor collection frame-work (RO1). There are totally 8000 frames and equally distributed into four dif-ferent weather subsets. All frames contain manual-made bounding box labels formultiple classes, and 30% of frames have manual-made mask labels for vehicle andhuman classes.
• Conducting a series of experiments to analyze the domain adaptation capability ofa camera-LiDAR fusion FCN-based network (CLFCN), which address the primary ob-jective inRO3. The iseAuto dataset (RO2) was used in the experiments. The purposeof this analysis is that as a custom training dataset produced with limited resources,the iseAuto dataset can not compete with the large-scale open datasets regardingthe aspects that require heavy labor work, for instance, manual-labeled ground-truth. The experiments prove it is possible to transfer the knowledge from anotherdataset to the iseAuto dataset. Thus, there is no need to allocate significant la-bor resources to the data annotation work. In general, the domain adaptation andsemi-supervised learning contribute an average increase to IoU between 2 to 5 per-centages. Specially, in the average of all scenarios, the vehicle segmentation in fu-sion mode increase from 76% in iseAuto baseline model to 79% in semi-supervisedtransfer learning model.
• Developing a camera-LiDAR fusion transformer-based neural network (CLFT) for ob-ject segmentation. The network is the first transformer-based proposal to invoke
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the strategy to project LiDAR point clouds as camera-plane maps for object seg-mentation tasks. The development of the CLFT network corresponds to the firstpart of the RO4. The second part of the RO4 is conducting the evaluation exper-iments to prove the CLFT network is more efficient than the FCN-based network(RO3), and the significance of sensor fusion in scene interpretation. The quantita-tive assessments show the CLFT networks achieve an improvement of up to 10% inchallenging dark-wet scenarios against to the FCN-based networks. Compared withother neural network models with transformer backbone, the all-around averageimprovement is 5-10%.
Overall, this thesis contributes to autonomous driving and intelligent transportationsocieties, and provides the vision and possibility to integrate sensor fusion and artificialintelligence into autonomous driving for precise and reliable perception.

Future WorkThe future research follows the line this thesis for AV perception are suggested as:
• Object tracking with radar sensors is a challenging task for autonomous driving. Theend-to-end dataset collection framework (RO1) has relatively weak performance re-garding object identification and tracking, where the future works lie. Additionally,the framework should include more sensor types and models and develop the cor-responding toolkit and sensor fusion algorithms.
• The iseAuto training dataset (RO2) was collected at the TalTech campus, with limitedtraffic volumes and identical road conditions. The extension work of the iseAutotraining dataset should focus on the various traffic and road scenarios. Moreover,weather conditions such as snow and fog and extra label classes should be coveredin the future.
• The characteristics of radar sensors, such as sparse point clouds and limited FoV,pose challenges to implementing the radar modality into neural networks for au-tonomous driving-related applications. However, the advantages of radar sensorsin moving object detection and speed estimation are critical for autonomous driv-ing. Both neural networks defined as research objectives in this thesis, CLFCN (RO3)and CLFT (RO4), have no radar inputmodality. Future development of the networksshould include different modalities and scenarios.
• The CLFT (RO4) networks fill the research gap regarding the multi-modal fusiontransformer that processes the LiDARpoint clouds data as camera-plane-projection.However, the CLFT networks were only verified by the Waymo Open dataset withlimited object classes. Future work should include testing the CLFT networks withmore benchmarking autonomous driving datasets.
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Abstract
Advancement in Perception Capabilities for Autonomous 
Vehicles: From Dataset Collection to Scene Interpretation
Autonomous Vehicles rely on various sensors to perceive the environment. The precise and reliable perception guarantees the safety and performance of autonomous vehicles. This thesis focuses on the advanced perception capabilities of autonomous vehicles. It is based on four research articles dedicated to sensor hardware, dataset collection, sensor fusion, and AI-based scene interpretation.The research begins with analyzing multiple range sensor deployment for autonomous shuttles. The analysis is based on the real-traffic-deployed iseAuto shuttle operating on the TalTech campus. Considering the appearance of shuttle buses and the LiDAR sensor characteristics such as full horizontal but limited vertical views, the sensor models and installation location choices are critical for autonomous shuttles to ensure the least sensor interference and cover the most blind zones.The thesis then presents an end-to-end generic dataset collection framework that includes hardware deployment, multi-sensor calibration and synchronization solutions, dataset transferring and sharing protocols, and signal-level sensor fusion algorithms. The framework generalizes the implementation of the multi-modal perceptive system on var-ious robotics and autonomous platforms. The camera, LiDAR, radar, and GNSS sensors were included in the framework. The merits of all sensors are fused in a manner useful for object detection and tracking.The dataset collection framework was deployed on different autonomous platforms. The initial validation was carried out on a car roof rack with all integrated sensors. The val-idation tests cover various transportation scenes such as highway, urban, and neighbor-hood. The practical implementation of the framework is on the iseAuto shuttle. Relying on the tools and algorithms proposed in the framework, the iseAuto dataset contains camera and LiDAR data produced for object detection and segmentation tasks. The dataset features the fierce weather and illumination conditions in Estonia.The iseAuto dataset was used by a fully convolutional neural network (FCN) for deep learning experiments. The experiment results prove two things: i) with the help of camera-LiDAR fusion, it is possible to achieve robust multi-class segmentation on a dataset with only a few annotations; ii) the proposed FCN-based network performs reasonably in poor weather and illumination scenarios.The thesis concludes by proposing a novel vision-transformer-based network to carry out camera-LiDAR fusion for semantic segmentation. The network invokes the progressive-assemble strategy on a double-direction network to process the camera and LiDAR data in parallel. Moreover, the network is the first transformer-based proposal that uses the strategy to project LiDAR point clouds as camera-plane maps for semantic segmentation. The evaluation experiments report robust performance in all scenarios and prove the significance of combining attention-mechanism and multi-sensor fusion.In summary, this thesis constitutes a comprehensive research journey through all as-pects of deep-learning-based AV perception, from sensor deployment to multi-modal per-ceptive system, then to real-world dataset collection, and last to deep model training for scene interpretation. This research facilitates advanced perception capabilities for a safe and reliable autonomous transportation system.
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Kokkuvõte
Autonoomsete sõidukite tajuvõimekuse täiustamine: andme-
kogumisest stseeni tõlgendamiseni
Autonoomsed sõidukid tuginevad oma juhtimisotsuste tegemisel mitmesugustele andu-ritele, et tajuda ümbritsevat keskkonda. Täpne ja usaldusväärne taju on autonoomsete sõidukite kriitiline funktsionaalsus. Käesolev uurimistöö keskendub autonoomsete sõidu-kite täiustatud tajumisvõimekusele ja põhineb neljal teadusartiklil, mis käsitlevad andurite riistvara, andmekogumite loomist, andurite kombineerimist ja tehisintellektil põhinevat olukorra tõlgendamist.Uurimus algab mitme kaugusanduri paigutuse analüüsiga autonoomsete minibusside jaoks. Analüüs põhineb reaalses liikluses kasutataval iseAuto minibussil, mis opereerib Tal-Techi ülikoolilinnakus. Arvestades minibusside füüsilist kuju ja LiDARite omadusi, mis ka-tavad küll täielikult horisontaalvaate, kuid on piiratud nägemisulatusega vertikaalses sihis, on andurite mudelid ja paigalduskohtade valik autonoomsete minibusside jaoks kriitilise tähtsusega, et vähendada andurite häireid ja katta võimalikult palju pimenurki.Uurimistöö kajastab üldist andmekogumise raamistikku, mis hõlmab riistvara paigu-tust, mitme anduri kalibreerimist ja sünkroonimist, andmete edastamise ja jagamise pro-tokolle ning signaalitasemel andurite kombineerimise algoritme. Raamistik üldistab mit-meliigilise tajusüsteemi rakendamist erinevatel robot- ja autonoomsetel platvormidel. Raamistikus kasutati kaamera, LiDARi, radari ja GNSS-i andureid. Kõigi andurite eeliseid kombineeritakse viisil, mis on kasulik objektide tuvastamiseks ja jälgimiseks.Andmekogumisraamistik juurutati erinevatel autonoomsete sõidukite platvormidel. Esialgne valideerimine toimus testsõidukiga, kus olid integreeritud kõik andurid. Validee-rimistestid hõlmasid mitmesuguseid liiklussituatsioone, nagu kiirtee, linn ja lähilinn. Raa-mistiku praktiline rakendamine toimus iseAuto minibussil. Tuginedes raamistikus pakutud tööriistadele ja algoritmidele, sisaldab iseAuto andmekogum kaamera- ja LiDARi andmeid, mis on mõeldud objektide tuvastamise ja segmenteerimise ülesannete jaoks. Andmeko-gum kajastab Eesti spetsiifiliste ilmastiku- ja valgustingimuste mõju.TalTech iseAuto andmekogu peal rakendati täielikult konvolutsiooniline närvivõrgu (FCN) süvaõpet. Katsete tulemused tõestavad kahte asja: i) kaamera ja LiDARi kombineeri-mise abil on võimalik saavutada töökindel mitmeklassiline segmenteerimine andmekogul, millel on vaid mõned annotatsioonid; ii) pakutud FCN-põhine närvivõrk toimib mõistlikult halva ilmastiku ja valgustuse stsenaariumides.Uurimistöö pakub välja uue nägemistransformaatori-põhise võrgu kasutamiseks kaa-mera ja LiDARi andmete kombineerimise semantilise segmenteerimise jaoks. Võrk kasu-tab progresseeruva komplekteerimise strateegiat kahesuunalises võrgus, et töödelda kaa-mera ja LiDARi andmeid paralleelselt. Lisaks on see esimene transformaatoripõhine lahen-dus, mis kasutab strateegiat LiDARi punktipilvede projektsiooniks kaameraplaane seman-tilise segmenteerimise jaoks. Tulemused näitavad head jõudlust kõigis stsenaariumides ja tõestavad tähelepanumehhanismi ning mitme anduri kombineerimise olulisust.Kokkuvõttes kujutab uurimistöö endast põhjalikku teadustööd, mis hõlmab kõiki süva-õppepõhise autonoomse sõiduki taju aspekte, alates andurite paigutamisest kuni mitme-liigilise taju süsteemini, reaalse maailma andmete kogumiseni ja lõpuks süvavõrgu treeni-miseni stseeni tõlgendamiseks. See uurimus hõlbustab luua täiustatud taju võimekusega ohutuid ja usaldusväärseid autonoomseid transpordilahendusi.
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Abstract. In recent years, with the advancement in sensor technologies, computing 
technologies and artificial intelligence, the long-sought autonomous vehicles (AVs) have become 
a reality. Many AVs today are already driving on the roads. Still, we have not reached full 
autonomy. Sensors which allow AVs to perceive the surroundings are keys to the success of 
AVs to reach full autonomy. However, this requires an understanding of sensor configurations, 
performance and sensor placements. In this paper, we present our experience on sensors obtained 
from AV shuttle iseAuto. An AV shuttle iseAuto designed and developed in Tallinn University 
of Technology is used as an experimental platform for sensor configuration and set-up.

1. Introduction
Recently, there has been growing interest in autonomous vehicles (AVs), which are regarded as
a potential trend of transportation in the future. A reliable AV perceives the environment
consistently by different sensors, then transfers the sensory data to a computer for post-
processing. Sensors in AVs produce information with different characteristics, Global Navigation
Satellite System (GNSS) provides the approximated location of vehicles with a general reference;
Inertial Measurement Unit (IMU) measures angular rates, linear velocities and orientation of the
vehicles base body; range sensors include cameras, LiDARs, radars and sonars detect the objects
that are around vehicles in different scales and properties. Sensor fusion algorithms combine
sensory data to create more coherent and certain results than using the data individually. Path
planning module uses real-time perception of the surrounding environment to update paths
of the vehicle in short and long ranges. Fully AVs are supposed to be able to control the
self-motions, as well as auxiliary functions in practical situations, for example, the closing and
opening of the door. The motion control module, at last, controls the movement of the vehicle
to follow the paths and execute the motion commands that are computed by path and motion
planners. Security measurements like emergency braking and obstacle avoidance are invoked to
the control system directly to improve the safety and reduce the accidents. Fig.1 summarizes
the general workflow of AV modules.

Range sensors provide 3D geometry information of vehicles surrounding environment and
reflect the properties (speed and acceleration) of objects that are expensive to compute from
vision-based perception systems. Examples of range sensors for AVs include radar, LiDAR,
sonar and infrared sensors. In particular, radar sensors make a crucial contribution to Advanced
Driver Assistance System (ADAS) in the aspects of emergency braking/brake assist, collision
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Figure 1. Modules workflow of autonomous vehicles

warning/avoidance, park assist, distance control and so on. LiDAR sensors are a relatively
new technology in the AVs field and have attracted much attention in recent years. LiDARs are
widely used to measure the distance and describe the environment in three dimensions. However,
because of the natural characteristics of laser-based systems, LiDARs are limited by the low level
of target reflectivity, resolution and refresh rate. Contrarily, the energy source of sonar sensors
is acoustic/ultrasonic waves in a specific frequency, which is less affected by the reflectivity level
of targets. Compared with LiDARs, sonar sensors have the advantage of low-cost and are widely
used in underwater applications. Typical infrared (IR) sensors are a relatively well-developed
technology, which has the advantages of cost, size and reliability. Active IR sensors share the
similar principle of sonar but rely on infrared waves (wavelength usually bigger than 780nm that
above the visible red light). Passive IR sensors only have receivers to detect infrared radiation
and are irreplaceable in the scenarios of human/human-motion detection. This paper analyzes
range sensor configurations and blind zones reductions for particular AV shuttle iseAuto.

2. Primary Perceptive Range Sensor Set-ups
In recent years, autonomous vehicles commonly use laser-based range sensors as the primary
approach to perceive the environment and measure distances. One of the most popular laser-
based sensors is LiDAR, a light-based detection and ranging remote sensing tool that has
contributed significantly to AV technology due to the high accuracy and precision.

Currently, decreasing cost and power consumption of LiDARs promote their usage in
applications that are sensitive to the vehicle’s size and weight, such as Unmanned Aerial Vehicles
for mapping and navigation purposes. Other related research and experimental platforms are:

• On the roof of Stanley, the vehicle that won the 2005 DARPA Grand Challenge, there are
five lasers measuring cross-sections of the approaching front terrain in different distances
out to 25 meters [1];

• VIAC vehicles were equipped with four laser scanners (two lateral laser scanners, one off-
road laser scanner and one central laser scanner ) which have different characteristics [2];

• More recently, Gao et al. [3] set four laser sensors (two single-line lasers, one four-line laser
and one 64-line laser) in their Mengshi autonomous vehicle;

• Other experimental vehicles that have laser-sensors installed [4] [5] [6];

AV shuttles are the most common low-speed vehicles using LiDARs, and not only for ranging
but also for localization and object classification. AV shuttles that were deployed on the real
traffic pilot cases around the world are in limited numbers. Most known brands are Navya and
Easymile, followed by iseAuto and GACHA. All these vehicles are relying mostly on LiDARs
as the main localization and ranging sensor. Fig.2 presents the main sensor locations on these
vehicles.

In this paper we are focusing on the TalTech iseAuto that was designed and developed in the
Autonomous Vehicles lab in TalTech, Estonia [7] [8]. The initial design and sensor configuration
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Figure 2. Real traffic AV shuttles: Navya Evo, Easymile EZ10, TalTech iseAuto and GACHA

development of iseAuto was supported by mechatronic modeling methodology [9] [10], which
emphasizes the importance of early design stage. The output of the initial conceptual design
stage proposed to use two Velodyne VLP-16 Puck LiDARs on the front top corners, as shown in
Fig.3(a). To detect as many blind zones that are in front of the shuttle as possible, the sensor
plane inclined toward the front and side (in practical, 8.3° toward the front and 6.9° toward the
side), as shown in Fig.3(b) and 3(c).

(a)
(b) (c)

Figure 3. (a) Initial design of LiDARs location, (b) Front-tilted angle, (c) Side-tilted angle

However, in practical situations, our initial Velodyne VLP-16 sensor location (Fig.3(a)) has
no vision of the shuttle’s backside because laser beams shooting toward the back were heavily
blocked by the shuttle itself. The points cloud of initial location configuration were showed in
Fig.4(c). Additionally, the vision of left and right sides is too limited to cover the blind zones
of the automatic door, which directly affects the safety of the shuttle. Therefore, our latest
configuration of two VLP-16 sensors is locating them in the middle of the front and back sides
with some inclines, as shown in Fig.4(a). Moreover, an adjustable mount base allows us to change
the front-tilted-angle of the VLP-16 sensor, and a bigger angle helps to detect more blind zones
in the front/back of the shuttle but reduce the maximum detection range correspondingly. The
points cloud based on the latest configuration were presented in Fig.4(b). Compared with the
previous configuration (Fig.4(c)), the coverage of the left and right sides is reduced, but the full
view of the backside is available. On the other hand, current configuration helps to reduce the
occasional interference patterns and shadowed azimuth ranges that may appear in data when
using multiple Velodyne sensors close to one another (especially on top of the vehicle).

3. Blind Zones Reduction
Blind zones detection is an essential task for AVs because it has straight affections to safety.
LiDAR-based sensors generally are installed on top of the vehicles to have wider horizontal Field
of View (FoV) and further detection range. However, a top-placement configuration of LiDARs
results in bigger blind zones around the vehicles, which raise problems in many post-practical
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(a) (b) (c)

Figure 4. (a) Latest design of LiDARs location, (b) Points cloud of latest design, (c) Points
cloud of initial design

processes such as motion planning in multi-interaction environments and lane change alert in
ADAS.

The common solution to reduce the blind zones is installing specific sensors in corresponding
positions. Variety types of sensors can be used to detect the objects in blind zones.

• Jamaluddin et al. [11] installed an ultrasonic sensor above the rear tire to measure the
distance of approaching vehicles. The selection of the ultrasonic sensor maximally prioritizes
the cost of the total sensor setup but compromises the performance and accuracy in some
real-life scenarios [12].

• Using LiDARs to cover the blind zones is a popular topic in recent because they create
detailed 3D points cloud. Researchers can carry out complex post-processes that are based
on points cloud data to pursue the best performance. The work in [13] formulated the
blind zone problems by occupancy grid and proposed a generic algorithm to optimize the
configuration of LiDAR placements. Meadows et al. [14] introduced a system that has three
LiDARs and used neural work to evaluate the effectiveness of various LiDAR poses.

• Other sensor choices include cameras and radars. Image-based information is usually
processed alongside other sensory data. Rangesh et al. [15] described a multi-object tracking
approach which is capable of working with varying camera FoVs and LiDARs. Dey et al.
[16] put the camera and radar together and proposed a framework that can optimize the
location and orientation for a heterogeneous set of sensors on a given target vehicle.

Installing sensors in corresponding areas provides direct sensory information of the objects
in blind zones. However, in the scenarios that the objects’ detailed detections are not vital,
mathematical processes can be used to calculate the states of the objects when they are in
blind zones. Zhou et al. [17] proposed to use Kalman Filter to estimate the movement of the
approaching vehicles in blind zones for traffic intersection motion planning. Correspondingly,
substitute sensors with mathematical algorithms help to reduce power consumption and
hardware maintenance work.

In our case, because of the structure of the iseAuto shuttle, the front-top and back-top
Velodyne LiDARs cannot detect the blind zones on two sides. Accurate and detailed detection
of the objects in the right blind zone, especially the area that is close to the shuttle, is vital
for us because the control of the automatic door should be strictly based on it. Our solution is
installing two RS-Bpearl LiDARs on the left and right sides of the shuttle.

RS-Bpearl is a short-range LiDAR specifically designed for the detection of the blind zones.
Compared with VLP-16 Puck, RS-Bpearl has a shorter range of detection but a much wider
90° vertical FoV and 32 channels. For iseAuto shuttle, the unique FoV design of RS-Bpearl
helps to cover more areas on two sides, and the dense points cloud data provides more details
of the objects in blind zones. Fig.5 presents the points cloud data that was produced by an
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RS-Bpearl LiDAR that was installed on the right side of the shuttle. The scenario in Fig.5(a) is
the outdoor environment that has buildings and parking cars. Fig.5(b) shows the ability of the
right RS-Bpearl LiDAR to detect the object details (human and ladder) that are close to the
automatic door.

(a) (b)

Figure 5. (a) Points cloud in outdoor environment, (b) Details around automatic door area

Another key blind zone for iseAuto shuttle is the close front area, which is not able to be
detected by either front-top VLP-16 or side RS-Bpearl LiDARs, as shown in Fig.6(a). The
perception of small objects (kids, pets, etc.) in this area is important for the shuttle’s safety
system. Available sensor choices to detect this blind zone such as IR and ultrasonic sensors have
the economic advantages but compromise in the accuracy. In terms of cost and performance,
solid-state LiDARs are believed to be more suitable for large-scale deployment, because solid-
state LiDARs are relatively cheaper and do not have inside complex mechanical mirror systems.

(a) (b)

Figure 6. (a) Front blind zone, (b) Points cloud from bottom-front and top-front LiDARs

We deployed a Benewake CE30-C LiDAR on the front-bottom of the shuttle to detect the
blind zones. Benewake CE30-C is a typical solid-state LiDAR that is based on the Time of
Flight (ToF) ranging principle. The measurement is performed based on the received emitted
modulated near-infrared light, which is reflected by the objects. Fig.6(b) shows the merged
points cloud data from front-top Velodyne and front-bottom Benewake LiDARs. Benewake
solid-state LiDAR can detect the down part of traffic signs and human legs (white points) that
cannot be seen by the front-top Velodyne LiDAR.

4. Summary and Future Work
This paper provided an overview of the most common range sensors that are used for AVs and
more specifically for AV shuttle, iseAuto. We evaluated the configuration and location of all



Modern Materials and Manufacturing (MMM 2021)
IOP Conf. Series: Materials Science and Engineering 1140  (2021) 012006

IOP Publishing
doi:10.1088/1757-899X/1140/1/012006

6

range sensors that were deployed on iseAuto shuttle for primary perception and blind zones
detection. As a result of the analysis, we managed to get a full view of the shuttle surroundings
and cover most of the vital blind zones by five LiDARs that have different characteristics.

The future work will focus on the sensor fusion and integration of the long and short range
radars into the range-sensor set of the iseAuto as well as implementing AI-based situation
awareness defined in the research [18]. The second target is to create a digital twin, which is
compliant to our other research results [19] of the vehicle in order to simulate all critical traffic
situations and increase the total safety of the deployed system.
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Abstract: Object segmentation is still considered a challenging problem in autonomous driving,
particularly in consideration of real-world conditions. Following this line of research, this paper
approaches the problem of object segmentation using LiDAR–camera fusion and semi-supervised
learning implemented in a fully convolutional neural network. Our method was tested on real-world
data acquired using our custom vehicle iseAuto shuttle. The data include all weather scenarios,
featuring night and rainy weather. In this work, it is shown that with LiDAR–camera fusion, with only
a few annotated scenarios and semi-supervised learning, it is possible to achieve robust performance
on real-world data in a multi-class object segmentation problem. The performance of our algorithm
was measured in terms of intersection over union, precision, recall, and area-under-the-curve average
precision. Our network achieves 82% IoU in vehicle detection in day fair scenarios and 64% IoU in
vehicle segmentation in night rain scenarios.

Keywords: object segmentation; LiDAR–camera fusion; autonomous driving; artificial intelligence;
semi-supervised learning; iseAuto

1. Introduction

The ability to detect objects in different visibility conditions has caused wide interest
in computer vision techniques, which are comprehensively integrated with modern au-
tonomous vehicles. Being aware of any obstacles around the vehicle is a critical prerequisite
to achieve effective autonomous driving to ensure safe and accurate motion planning. As a
matter of fact, fully autonomous driving requires a detailed classification and segmentation
of objects in different illumination and weather conditions. Currently, advanced driver
assistance systems (ADASs) in many cars provide reliable collision warnings with the help
of radar and sonar sensors. However, ADASs can only detect the presence of obstacles
in the limited premises of the vehicle; they cannot recognize the types of objects and,
particularly, assign a semantic meaning.

Many state-of-the-art methods to classify objects use convolutional neural networks
(CNNs) to detect 2D objects [1,2], and semantic segmentation [3] of image data created by
cameras. As a passive sensor with a long history of development, cameras have advantages
such as reliability and texture-density under fair illumination. However, cameras are no-
ticeably susceptible to changes in lighting conditions. To address the problem of cameras,
light detection and ranging (LiDAR) sensors have attracted broad interest from researchers.
Due to the development of LiDAR sensor manufacturing, the affordability and accuracy
of LiDAR sensors have been improved significantly. Therefore, more LiDAR-data-based
research [4,5] for object detection and segmentation has appeared in recent years. Unfortu-
nately, LiDAR data is sparse and non-uniformly distributed. Furthermore, it lacks texture
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and color information compared to camera data. The drawbacks of LiDAR sensors make
LiDAR-only-based object detection and segmentation tasks more challenging to carry out.

Considering all the benefits and downsides of camera and LiDAR sensors, the straight-
forward solution is to combine the information from both LiDAR point clouds and camera
images. We choose to use a fully convolutional neural network (FCN), which was proposed
by Caltagirone et al. [6], to perform 3D semantic segmentation. The integration of point
clouds and images information was conducted at the last layers of the network, and this is
can be described as a late-fusion strategy [7,8]. This choice is due to late-fusion strategies
having a predefined depth level and thus being easier to build. More importantly, late-
fusion systems incorporate single-modality detectors. Therefore, our method projects point
clouds into the camera plane to create a three-channel tensor with the same width and
height of the image, of which each channel encodes one of the 3D spatial coordinates [9].

An additional focus of this work is the domain adaptation analysis of the network
from the public dataset to our custom dataset recorded during an extensive experimental
campaign in the campus of TalTech. Today, open datasets available for autonomous
driving have gained massive attention. For example, KITTI [10] is one of the most popular
datasets that was used in deep learning research for real traffic semantic segmentation.
Though successful for a very long period, KITTI is now outdated, and it no longer fulfills
research needs as it includes only clear weather scenes. The latest open datasets, such as
Waymo [11], Argoverse [12], and nuScenes [13], adopt state-of-the-art sensors and contain
various weather scenarios.

A comprehensive dataset for fully autonomous driving tests covers most traffic cases,
and different illumination and weather conditions. Collecting enough data requires a
considerable amount of expense. As a result, most deep learning studies use a public
dataset as the benchmark. Very little research focuses on evaluating the network for custom
data. To fill this gap, this work analyzes an FCN comparing performance between the
Waymo dataset and our custom dataset recorded by the iseAuto shuttle on the university
campus. iseAuto is an autonomous vehicle (AV) shuttle that was designed and developed
in the Autonomous Vehicles Lab in TalTech, Estonia [14–16]. This paper extends a work
submitted to the IEEE International Conference on Intelligent Transportation Systems.
In comparison, this paper exclusively reviews the relevant literature in the perspectives
of open datasets, semi-supervised learning proposals, and deep-learning-based LiDAR–
camera fusion algorithms. This version contains additional results and figures to describe
many technical details, such as the sensor specifications of the iseAuto shuttle, the workflow
of training procedures, and the description of data augmentation processes carried out
in the data loader; furthermore, the metrics used in this paper to evaluate the models’
performance are described in detail in the methodology section. Therefore, the section
containing results and discussion was presented from a different perspective.

The contributions of this work are summarized as follows:

• The development of a ResNet50 [17]-based FCN to carry out a late fusion of LiDAR
point clouds and camera images for semantic segmentation.

• A custom dataset (https://autolab.taltech.ee/data/) (accessed on 27 February 2022)
that was generated by the real-traffic-deployed iseAuto shuttle in different illumina-
tion and weather scenes. The dataset contains high-resolution RGB images and point
clouds information that was projected into the camera plane. Furthermore, the dataset
contains manual annotations for two classes: humans and vehicles.

• The performance evaluation for the domain adaptation of the neural network from
the Waymo Open dataset to custom iseAuto dataset.

• The evaluation of the contribution of pseudo-annotated data to the performance on
the iseAuto dataset.

The structure of the remainder of this paper is as follows: Section 2 reviews the open
datasets, semi-supervised learning proposals, and deep-learning-based LiDAR–camera
fusion algorithms for autonomous driving. Section 3 introduces the splits of the Waymo and
iseAuto datasets that were used in this work. Specifically, there is also a brief introduction
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of the sensor configurations used to produce the iseAuto dataset. Methodologies including
network structure, LiDAR projection, object segmentation, and metrics for model evaluation
were described in Section 4. Section 5 reports the experimental results and discussion.
Finally, a summary and conclusions were provided in Section 6.

2. Related Work

This section revisits literature on three aspects of LiDAR–camera fusion-based machine
learning for object segmentation. The first part is the existing datasets specifically for
autonomous driving research. The second part is the usage of semi-supervised learning
to improve the overall performance of the models. The last aspect is the popular deep
learning fusion algorithms to leverage the benefits of both camera and LiDAR sensors in
autonomous driving.

In recent times, data is believed to be a valuable asset. Focusing on autonomous
driving specifically, many research groups have dedicated themselves to producing datasets
recorded by mainstream perceptive sensors and covering various scenarios. In [18,19],
autonomous-driving-related datasets over the last 20 years were categorized by time of
acquisition, sensor configuration, illumination, and weather conditions. As it happens,
some datasets only contain sunny (including cloudy) and daytime scenes [20–22]. The
datasets that possess illumination and weather diversity, such as Nuscenes [13], Waymo [11],
and Argoverse [12], soon became the preferable option for training models. However, there
is no consistency of the sensor configuration in all these datasets, which means it is difficult
to merge the knowledge from different datasets together to improve the efficiency of the
learning process. In addition, some experiment-oriented datasets were recorded by highly
customized sensor modules on commercial cars. For example, in the ApolloScape [23]
dataset, a particular acquisition system consisting of two laser scanners, up to six video
cameras, and a combined IMU/GNSS system was mounted on top of a Toyota SUV. A
platform like this requires intensive maintenance routines and is unsustainable for large-
scale deployment. Very few works focus on the actual traffic pilot case considering finance
and reliability. For most open datasets, enormous human effort was applied to data
synchronizing, labeling, and denoising, which is not suitable for evaluating the models’
performance in extreme practical situations.

To reduce the amount of human work on the data processing task, several machine
learning techniques have been conceived. Semi-supervised learning is a machine learning
technique involving a small amount of labeled data and much unlabeled data. It provides
the benefits of supervised learning while avoiding the slow process requiring humans to
review samples one by one and give them the correct label. Recent survey papers [24,25]
summarize both previous and new research on semi-supervised learning, presenting a full
picture of the topic according to various taxonomies. The literature of semi-supervised
learning can be explored in different ways, referring to the availability of labels and
their relationship to the supervised learning algorithms. The classic methods include
generative models [26,27], semi-supervised support vector machines [28], and graph-based
methods [29]; all have a long research history. The method related to our work is pseudo-
labeling, which relies on high-confidence pseudo-labels added to the training split as
labeled data. There are two main patterns of the pseudo-labeling methods. The first one
is based on using disagreeing views from multiple networks to improve performance.
A typical example is co-training [30], a method to train two different models by using
different data splits. It is an iterated process that passes the prediction from one model to
the other; thus, each model is retrained with the additional unlabeled samples given by
the other model. The pattern used in our work is self-training, which is one of the earliest
semi-supervised learning ideas and can be dated back to the 1970s [31]. It starts by training
on the labeled data first. Then, part of the unlabeled data is predicted according to the
current decision function. The most confident prediction will be added to the training
set for the supervised learning algorithm. This procedure is repeated in self-training
methods until all the unlabeled examples have been predicted. The latest self-training
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research, for example [32], first trains a teacher model with a labeled dataset, then uses the
teacher model to generate labels for an unlabeled dataset that is re-used to train a student
model. The authors prove that the student model outperforms the teacher model with
the Cityscapes [33], CamVid [34], and KITTI [10] datasets. Xie et al. [35] propose utilizing
various techniques such as data augmentation, dropout, and stochastic depth to train the
student models. Similar approaches can be found in [36]; in addition to data augmentations,
extra cropping, rotating, horizontal mirroring, and color randomization were also used to
improve the model performance.

Recent breakthroughs in deep learning have significantly improved the capability of
LiDAR–camera fusion algorithms. The main applications that benefit from deep-learning-
based LiDAR–camera fusion methods include depth computation, object detection (bound-
ing box), and semantic segmentation. Although it is possible to extract the 3D geometry
from vision-based systems, LiDAR sensors naturally have the accuracy advantage in long-
range, textureless scenarios (such as nighttime scenes). The purpose of LiDAR–camera
fusion for depth computation is to combine the two sensors’ merits to acquire a dense and
accurate depth map. Ma et al. [37] propose a self-supervised learning model that requires
only sequences of RGB and sparse depth images for training. The deep regression model
learns a direct mapping from sparse depth input to dense depth prediction. In [8], early-
and late-stage fusions were combined in an image-guided framework that consisted of
a global and local network to process RGB data and depth information in parallel. The
stereo-cameras system is also widely used for depth completion because of the rich 3D
geometry in its disparity map. An example work is [38], which shows a two-stage CNN
design that first produces fused disparity by LiDAR and stereo disparity, then computes the
final disparity by fusing the fused disparity and left RGB image at the feature level. Three-
dimensional object detection aims to recover the pose and the bounding box dimensions for
all objects of interest in the scene. An example of early-stage fusion, [39] uses a ResNet [17]
and a PointNet [40]-based network to process cropped image and raw point cloud data.
Afterward, two fusion networks were used to regress the box corner locations and predict
the spatial offset of each corner relative to an input point, respectively. Liang et al. [41]
present a multi-task multi-sensor 3D object detection network. The authors exploit the
fact that multiple complementary tasks such as 2D object detection, ground estimation,
and depth completion are helpful for the network to learn better feature representations.
In contrast to 3D object detection that classifies the bounding boxes of objects, semantic
segmentation aims to predict per-pixel and per-class labels. Su et al. [42] employ bilateral
convolution layers in their network to compute spatially aware features of point clouds
data. Features from images and point clouds were fused to predict per-point labels. An-
other common semantic segmentation application for autonomous driving is road surface
detection; related research includes [6,43,44].

3. Dataset

As mentioned in the introduction, the primary purpose of this work is to evaluate
the model’s performance when adapting it from a public dataset to a realistic and coarser
environment. To train the supervised learning baseline models, we use the Waymo Open
dataset [11]. The dataset for semi-supervised learning and domain adaptation analysis is
collected using our custom vehicle, the iseAuto shuttle.

3.1. Waymo Open Dataset

Waymo Open dataset is an open-source autonomous driving dataset captured by
a high-quality camera and LiDAR sensors. The diversity across different weather and
illumination conditions of Waymo Open dataset offers opportunities in the research for
domain adaptation, which is one of the primary purposes in our work. Therefore, we
manually partition a total of 22,000 frames of data into four sub-categories based on
weather (fair or rain) and illumination (day or night) conditions. This includes a total of
14,940 frames in the day-fair subset, 4520 frames in the day-rain subset, 1640 frames in
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the night-fair subset, and 900 frames in the night-rain subset. Note that the proportions of
different weather conditions are highly unbalanced in the Waymo dataset since more data
was recorded under sunny daytime. Correspondingly, more frames (80%) were used for
training in the day-fair subset, while 60% of total frames were used in training for the other
three subsets.

Theoretically, K-fold cross-validation should be applied to reduce the performance-
dependence from the specific data split. However, the focus of this paper is transferring the
best knowledge gained in supervised learning to the new domain. Therefore, combining
the holdout method and early-stopping validation is more suitable in our case and saves a
large amount of training time. All frames were randomly shuffled before splitting them
into the training, validation, and testing datasets. The proportion for early-stop validation
is 10% of all four subsets, and the remaining data were used for testing.

3.2. iseAuto Dataset
3.2.1. iseAuto Sensor Configuration

The sensor configurations of the iseAuto shuttle evolved along with the comprehensive
practical tests [45]. The location of primary range sensors changed from two front-top
corners to the middle of the front-top and back-top. Two 90◦ vertical field-of-view (FoV)
LiDARs on two sides of the shuttle were installed to cover the essential side-blind zones,
especially in the proximity of door areas. Our latest upgrade is installing two solid-state
LiDARs on the inside-door-top and outside-front-bottom for the door-movements safety
and emergency brake, respectively. The main camera was installed inside the cabin, located
in the front and behind the windshield. Figure 1 illustrates the positions and orientations
of all perceptive sensors for the iseAuto shuttle.

Figure 1. Perceptive sensors layout. The Benewake CE-30C LiDAR is located inside the shuttle and
attached on top of the door.

In this work, the data collection was conducted by using the front-top Velodyne VLP-
32C and front-inside FLIR Grasshopper3. As the two primary perceptive sensors for the
iseAuto shuttle, the Velodyne VLP-32C has 32 channels that provide dense points clouds.
The resolution of FLIR Grasshopper3 is up to 4240 × 2824 to guarantee a sharp vision of
small objects such as traffic signs in the distance. Table 1 contains detailed specifications of
the camera and LiDAR sensors.
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Table 1. Specifications of the primary camera and LiDAR sensors of the iseAuto shuttle.

FoV (◦) Range (m)/Resolution Update Rate (Hz)

Velodyne VLP-32C 40 (vertical) 200 20

Grasshopper3
89.3 (D)
77.3 (H)
61.7 (V)

4240 × 2824 7

3.2.2. iseAuto Dataset Split

The environment of the iseAuto dataset is the TalTech campus, where the experimental
campaign was conducted. Compared to the Waymo dataset used in the supervised learning
baseline model, the night subset of the iseAuto data has a lower illumination condition.
The ambient light of the campus is typically darker than the urban area where Waymo
records their night data (shown in the first column of Figure 2). The partition of the iseAuto
dataset follows the same principle as the Waymo dataset partitions, with four categories:
day-fair, day-rain, night-fair, and night-rain. Both LiDAR and camera sensors were set to
work at 7 Hz, which is the maximum frequency that the camera can shoot at 4k resolution.
Correspondingly, one out of every seven frames of all point clouds and images were
selected. To avoid the unbalanced data allocation that exists in the Waymon dataset (more
data in day and fair conditions, less in night and rain), the total number of frames in each
subset of the iseAuto dataset is 2000, to make sure that the same amount of knowledge can
be gained from different weather and illumination conditions. For each subset, 600 frames
were manually annotated with vehicle and human pixel-level classes. The data splits for
training, early-stopping validation, and testing of all subsets have 300, 100, and 200 frames,
respectively.

Figure 2. Extract from the iseAuto dataset (a–c) on the first row; the second row represents the
Waymo dataset (d–f). For additional details, please refer to Section 4.

4. Methodology

Our work is an extension of the research presented in [9], where the authors differenti-
ate the Waymo dataset by illumination (day/night) and weather (fair/rain) conditions to
perform LiDAR–camera fusion and semi-supervised learning for semantic segmentation.
We first follow the same principle to partition the Waymo dataset into four subsets (day-fair,
day-rain, night-fair, and night-rain), then use them for the baseline model training. Sec-
ondly, we transfer the knowledge gained in the baseline supervised learning to the iseAuto
dataset, in order to evaluate the network’s performance in new domains. At last, we
conduct semi-supervised learning, which was expected to further improve the performance
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and domain adaptation. This section describes the data processing, model construction,
and training procedures specifically designed for our work.

4.1. LiDAR Point Cloud Projection

One of the most common methods to process LiDAR data is converting 3D point
clouds to 2D occupancy grids to efficiently exploit existing 2D convolutional networks.
The late-fusion FCN used in this work requires both LiDAR and camera input as 2D
images. Therefore, we apply perspective projection to project the point clouds into the
camera plane for the Waymo and iseAuto datasets. This means that both LiDAR data and
camera information need to be transformed into tensors. The usual procedure is to build
n-2D tensors of a specific size (for instance, the input of the CNN); thus, the 3D LiDAR
information should be projected into 2D tensors. For our case, the camera image tensor
is Ci ∈ Rh,w,3, where h is the height of the camera image, w is the width, and 3 is for the
RGB color channels. Analogously, the LiDAR tensor is Li ∈ Rh,w,3, where h and w are
the same height and width, and we use the three channels to represent the LiDAR data
projection into the XY-YZ-ZX planes. The projection is carried out in a typical reference
frame. For our case, the camera reference frame was chosen. Let pL

i = [xi, yi, zi]
T be the i-th

point of the point cloud obtained as a LiDAR reading, in its own reference frame. Please
observe that the reflective intensity value is ignored. The first step is to transform the point
cloud from the LiDAR to the camera reference frame using a homogeneous transformation
matrix, pC = TL

C pL, where pC = [x, y, z, 1] is a point represented in the camera reference
frame, pL = [x, y, z] is a point represented in the LiDAR reference frame, and TL

C ∈ R4,4 is
the LiDAR–camera transformation matrix.

Now, it is possible to simply project each point in a 2D image, and thus each pixel value
(u, v) of a generic point pi, where u = 1, . . . , h is the row pixel coordinate, v = 1, . . . , w is
the column coordinate in pixels, and h, w are the height and width of the camera image.
Let R be the rectification matrix, and P the projection matrix; then, [u, v, 1]T = PRpC.

The procedure above is applied to all points in the point clouds data. To ensure that
the projected LiDAR plane has the same dimensions as the camera image, only the points
within the field of view will be selected.

The Waymo dataset encodes the LiDAR data as range images with the same camera
images format. Each pixel in the range image corresponds to a laser point reading. All the
point information, such as range, vehicle pose, and camera projection, are included in the
range image pixel. With the assistance of the toolkit, developers can directly extract point
clouds images and well-overlaid camera projection from the Waymo dataset; thus, there no
need to deal with the raw data.

For the iseAuto dataset, since the shuttle was operated upon by the robot operating
system (ROS), LiDAR and camera data were captured as corresponding ROS formats and
stored as the bag files. Pre-processes are needed to handle the point clouds and images.
Extrinsic calibration of the LiDAR and camera first must be executed to compute the camera
projection matrix and the LiDAR–camera transformation matrix. The rectification matrix
was set to identity when projecting point clouds to images for the iseAuto dataset because
rectification has been done internally by the camera. An example output of point clouds
projection is shown in the second column of Figure 2. Note that the alignment of LiDAR
points and image pixels is not ideal without extra operations to optimize the calibration
and synchronization of LiDAR and camera sensors. Nevertheless, errors and interference
always exist in the real world, which are the factors that we want to consider in this work
through the iseAuto dataset.

4.2. Object Segmentation

Ground truth annotation is essential in machine learning and requires many labor
costs. In the Waymo dataset, annotations were created separately for LiDAR and camera
data. There are four kinds of objects (vehicles, pedestrians, signs, and cyclists) labeled
in LiDAR sensor readings and three kinds of objects (vehicles, pedestrians, and cyclists)
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labeled in camera images. Both 3D and 2D annotations were represented by bounding
boxes. Our process for the Waymo dataset is based on their LiDAR annotations. We select
all LiDAR points within the 3D bounding box and project them into the image plane. Each
projected point corresponds to a pixel in the image; the set of all projected points creates
the semantic mask of the objects. Compared to the 2D annotations, the most important
advantage of 3D annotations is that they provide a contour of the objects at a close distance.
Correspondingly, the drawback of using 3D annotation is that some pixels in the semantic
mask do not have labels because no LiDAR points fall into this area (see the third column
of Figure 2).

The annotations of the iseAuto dataset were created based on camera images, as our
high-resolution images contain more details of small objects (or objects that are far away).
We develop a labeling tool that allows human annotators to draw objects’ contours in
images and save the segmented area with its corresponding label. Semantic masks in the
iseAuto dataset are flood-filled, which means all pixels in the mask have a unique label.
Moreover, our annotations have an awareness of the contour of objects. It is a fact that
human error is inevitable in manual labeling work. For scenarios with poor illumination
conditions, point cloud projection was also used to identify possible objects that are not
clearly visible in the camera image. For the scope of this work, the resolution of annotation
images in the iseAuto dataset is 1920 × 1280; only vehicles and humans were masked out.
Further work includes labeling higher-resolution images and more object classes. More
objects and label verification are also needed.

Figure 2 shows some extracts of both datasets. The first row corresponds to the
iseAuto dataset, while the second row shows the Waymo dataset. The comparison of the
illumination condition in night scenarios is shown in the first column. Please note that, in
similar scenes, the iseAuto dataset is typically darker than the Waymo dataset due to the
external illumination and light source from the vehicle itself. The second column contains
an example of the point clouds projection. The camera coordinate of points was used to pick
out the corresponding pixels in the image. The colors of the pixels were assigned using the
HSV palette, based on the depth information of the point. An upsampling process was used
to make the iseAuto projection, as the point projection into a 4k resolution image is visually
sparse. The third column illustrates the annotations of two datasets. As discussed above,
no-label-zones exist in the Waymo dataset annotations because of the nature of LiDAR
sensors. These areas must be excluded from the metrics calculation. The annotation of the
iseAuto dataset is based on the camera image, in which the object masks are solid-filled
and contain contour information.

4.3. Model

The model implemented in this work can be considered the composition of three
different submodels. All of them are based on a well-known pre-trained ResNet50 [17]
model. The first model works only on camera images with their respective labels. The
second model has LiDAR data input instead. Lastly, the fusion model works as a joint
combination of feature maps coming from the camera images and the LiDAR point clouds,
which can be considered a late-fusion strategy. For each step, the loss function can be
calculated at the output of each submodel. This strategy is further described in [9].

4.4. Training

There are three training procedures for transfer learning experiments. The first step
is training supervised learning baseline models with only the Waymo dataset. The saved
models in this step were tested separately by the Waymo and iseAuto datasets. The second
procedure is the transfer learning experiment. Supervised learning baseline models of the
Waymo were continuously trained by the iseAuto dataset. To assess the contribution of the
knowledge attained from the Waymo dataset in the transfer learning process, there is also a
training process to get iseAuto baseline models (trained by only the iseAuto dataset from
scratch) in this step. The last procedure is semi-supervised learning (SSL). The literature is
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rich for SSL methods, such as the teacher-student model, co-training, or pseudo-labeling.
Machine-made annotations of the unlabeled dataset were made by the transfer learning
models from the Waymo to iseAuto dataset. Then unlabeled and labeled iseAuto data
were mixed to continuously train the transfer learning models, and to train the iseAuto
baseline model from scratch. Figure 3 summarily illustrates the training procedures that
were mentioned above.

Waymo baseline modelsWaymo labeled splits

iseAuto labeled splits iseAuto TL models

iseAuto labeled splits iseAuto baseline models

iseAuto SSL-TL modelsiseAuto unlabeled splits

iseAuto SSL modelsiseAuto unlabeled splits

Figure 3. The workflow of the training procedures. ‘TL’ and ‘SSL’ stand for transfer learning and
semi-supervised learning, respectively. ‘Waymo labeled splits’ and ‘iseAuto labeled splits’ represent
the Waymo and iseAuto manual-labeled data. ‘iseAuto unlabeled splits’ means the iseAuto machine-
labeled data produced by the iseAuto transfer learning fusion model. ‘Waymo baseline models’
and ‘iseAuto baseline models’ stand for supervised learning baseline models of the the Waymo
and iseAuto dataset. ‘iseAuto TL models’ means the Waymo-to-iseAuto transfer learning models.
‘iseAuto SSL-TL models’ and ‘iseAuto SSL models’ are iseAuto semi-supervised learning models with
and without knowledge adapted from the Waymo dataset, respectively. Please refer to Section 4.4 for
further details.

Cross-entropy loss fusion and Adam optimization [46] were used in this work. The
hardware used for training is an Nvidia RTX2070 Super GPU. The batch size is 16. An early
stopping mechanism was applied to all training processes. The learning rate decay follows
the equation:

n(i) = n0(1−
i
N
)a (1)

where the n0 is the starting learning rate, a is 0.9, and N was denoted as the total iterations.
Data augmentation was composed of random crop, random rotate, color jitter, and random
horizontal and vertical flip. Figure 4 shows an example of the data augmentation. The
output size of the random crop is 128 × 128. The random rotate range is (−20◦, 20◦),
referring to the center of the images. The probability of executing the random vertical
and horizontal is 50%. To maximize the diversity of the data augmentation, the order
of the five augmentation processes was shuffled in every iteration. Remarkably, data
normalization plays a vital role in this work, especially for the LiDAR data. Given the
significant differences in specifications of the LiDAR sensors used in the Waymo and
iseAuto datasets, the normalization of point clouds data of the two datasets has different
factors. The x, y, z coordinates of all points were appended together to compute mean
and standard deviation values. Further fine-tuning to the normalization parameters was
conducted to ensure the best performance.
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Figure 4. Data augmentation processes: (a) is the original image, (b) is color jitter, (c) is horizontal
flip, (d) is random rotate in the range (−20◦, 20◦), (e) is the random crop of dimension 128 × 128.

4.5. Metrics

The measurements that were used to evaluate the performance of models include
intersection over union (IoU), precision, recall, and area-under-curve average precision
(auc-AP) [47].

IoU, also known as Jaccard index, is a measure to compare the similarity between
two sample sets. The practical applications of IoU are mainly related to object detection,
especially in the field of machine learning, to train a model to output boxes that fit around
the objects. In this case, the ground-truth boxes (the hand-labeled bounding boxes that
specify the location of the objects in the image) are needed to compute the IoU. The
calculation is as follows:

IoU =
AI
AU

(2)

where AI is the overlap area, and AU is the union area of predicted and ground-truth boxes.
The overlap and union area calculation is based on the image coordinates of the bounding
box corners. However, our model produces instance segmentation of objects (per-pixel
labeling), instead of bounding boxes. Therefore, we adopt a pixel-wise multi-class IoU
algorithm to evaluate the model. Two object classes (vehicles and humans) were detected
in this work. It was assumed that V represents the vehicle class and H represents the
human class. The total number of pixels inferred as vehicle class (or human class) in both
prediction and ground-truth was denoted as VpVg (or Hp Hg). Vp Hg represents the number
of pixels indicated as a vehicle in prediction, but human in ground-truth. Similarly, HpVg
is the number of pixels labeled as human in prediction, but a vehicle in ground-truth. The
IoU of two classes is attained by:

IoUV =
VpVg

VpVg + Vp Hg + HpVg
(3)

IoUH =
Hp Hg

HpHg + HpVg + VpHg
. (4)

Precision is a metric to reflect the model’s reliability in classifying samples as positive.
It is defined as the ratio between the number of positive samples correctly classified and the
total number of samples classified as positive (either correctly or incorrectly). In our case,
the total number of pixels detected as vehicle or human by the model is the denominator
of the precision calculation. Therefore, the precision of the two classes is given by the
following equations:

Precision of vehicle =
VpVg

VpVg + VpHg
(5)

Precision of human =
Hp Hg

Hp Hg + HpVg
(6)

Recall indicates the capability of the model to detect the positive result. It is the
ratio between the number of positive samples correctly classified as positive and the total
number of positive samples. In our work, the recall of two classes is calculated by:

Recall of vehicle =
VpVg

VpVg + HpVg
(7)
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Recall of human =
HpHg

Hp Hg + Vp Hg
(8)

In general, precision measures the capability of the model to classify the positive
samples, but it does not consider correctly classifying all positive samples. On the contrary,
recall measures the number of positive samples that the model correctly classified, but it
neglects if the negative samples were classified as positive. High-precision-and-low-recall
means that the model is reliable if it classifies a sample as positive, but only a few positive
samples were classified. By contrast, low-precision-and-high-recall means most positive
samples were correctly classified, but there are also many negative samples classified as
positive by the model.

Plotting precision (y-axis) against recall (x-axis), named the precision-recall curve, is
an efficient way to analyze the tradeoff between precision and recall at various thresholds.
Average precision (AP) summarizes the information of a precision-recall curve into a single
value. Typically, AP is defined as the area under the precision-recall curve between 0 and 1.
In practice, the integral is simplified as the sum over the precision of different thresholds
multiplied by the corresponding change in the recall. The auc-AP that was used in this
work was proposed by PASCAL VOC 2010 [47], and it computes the AP as a numerical
integration, with precision monotonically decreasing, by setting the precision for recall
r to the maximum precision obtained for any recall r′ ≥ r. The equation for computing
auc-AP is:

auc_AP =
N

∑
k=1

∆r(k)max
k̃≥k

p(k̃) (9)

5. Results and Discussion

As mentioned in Section 4.4, we conduct three training procedures in this work,
which are described in this section and structured in the following way. We first evaluate
the supervised learning baseline model of the Waymo dataset. Next, we analyze the
transfer learning from the Waymo dataset to the iseAuto dataset. Finally, semi-supervised
learning was applied for both iseAuto baseline and transfer learning models to assess its
performance.

5.1. Waymo Supervised Learning Baseline

The Waymo supervised learning baseline models were trained by using all weather
and illumination sequences of the Waymo dataset. As described in Section 3.1, the holdout
method was used in the Waymo dataset to create the testing splits. Table 2 refers to the
result of the models trained and tested using the Waymo dataset only, corresponding to
RGB, LiDAR, and fusion modes. This first test shows that our network compares well with
other state-of-the-art works in terms of instance segmentation for the Waymo dataset [48,49].
Please note that this paper does not aim to outperform the Waymo benchmarks, but rather
to analyze how much knowledge gained from the Waymo dataset can be transferred to a
custom dataset to achieve good performance with only a limited amount of labeling work.
Therefore, the same model trained by the Waymo dataset was tested by the iseAuto data
without any additional training; the result is shown in Table 3.

As the most represented class in the two datasets, the IoU and auc-AP of vehicles
detection in the Waymo dataset reaches 93% and 96%, respectively. In the iseAuto dataset,
the fusion model’s performance in vehicles detection is acceptable, ranging from 45% to 56%
for IoU, and from 52% to 68% for auc-AP in challenging nighttime scenarios. By contrast,
humans, which are smaller than vehicles in size and less represented in both datasets, show
a lower segmentation accuracy than vehicles in the iseAuto dataset. Particularly for the
LiDAR model, the performance degrades, as shown in Table 3. The knowledge gained
from the Waymo LiDAR data seems to be less effective in detecting humans in the iseAuto
dataset. This was expected due to the different LiDAR sensors used to capture the two
datasets. It is not easy to compare data from various sensor technologies.
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Table 2. Performance of supervised learning Waymo baseline models tested by the Waymo dataset.

IoU (%) Precision (%) Recall (%) auc-AP (%)

Vehicle Human Vehicle Human Vehicle Human Vehicle Human

Day-Fair
camera 88.08 55.57 91.21 59.77 96.25 88.77 92.60 71.13
LiDAR 88.58 53.04 91.23 55.94 96.82 91.08 93.23 69.89
fusion 91.07 62.50 93.05 65.16 97.72 93.87 94.35 76.05

Day-Rain
camera 88.54 52.13 91.14 57.43 96.88 84.97 94.04 76.12
LiDAR 89.47 50.06 91.38 53.04 97.73 89.92 94.83 73.63
fusion 92.77 64.66 94.35 68.53 98.23 91.97 95.80 84.55

Night-Fair
camera 81.16 42.87 86.77 49.33 92.62 76.60 86.74 61.10
LiDAR 86.16 48.83 89.35 52.51 96.02 87.46 92.38 68.98
fusion 89.41 60.33 91.96 65.08 97.00 89.22 92.18 73.02

Night-Rain
camera 74.49 43.14 83.39 51.91 87.47 71.87 85.83 53.04
LiDAR 87.51 46.68 90.72 48.44 96.11 92.77 92.90 53.87
fusion 89.90 56.70 92.86 60.84 96.58 89.28 94.52 66.81

Table 3. Performance of supervised learning Waymo baseline models tested by the iseAuto dataset.

IoU (%) Precision (%) Recall (%) auc-AP (%)

Vehicle Human Vehicle Human Vehicle Human Vehicle Human

Day-Fair
camera 63.64 64.39 84.15 66.74 72.07 94.81 83.04 71.30
LiDAR 40.56 0.06 63.19 57.87 53.12 0.06 49.68 0.35
fusion 60.07 12.68 81.48 76.20 69.57 13.20 72.45 24.98

Day-Rain
camera 51.51 13.66 54.28 16.60 91.00 43.58 68.11 27.39
LiDAR 43.56 2.86 67.96 11.96 54.81 3.62 51.98 7.62
fusion 69.19 14.75 81.86 40.28 81.73 18.89 75.84 35.33

Night-Fair
camera 45.06 29.42 73.21 63.85 53.96 35.30 62.84 55.86
LiDAR 41.75 0.54 56.92 20.72 61.04 0.55 48.20 1.61
fusion 55.68 5.07 75.33 69.82 68.09 5.18 68.26 13.36

Night-Rain
camera 17.34 5.64 19.34 13.71 62.72 8.74 24.43 20.33
LiDAR 33.55 0.01 48.09 0.33 52.59 0.01 41.26 0.08
fusion 44.90 7.72 59.60 55.61 64.53 8.23 51.83 56.41

Specifically, in Table 2, precision values are lower than recall values (more significant
difference for human class), which means that most of the objects were correctly classified.
However, models also recognize some pixels belonging to other classes (e.g., background)
as humans. In Table 3, it is the opposite: recall values are typically lower than precision
values, which means that models cannot classify most of the objects correctly, but detection
is relatively reliable. This shows that models trained by only the Waymo dataset realize
the locations of the objects in the iseAuto dataset, but cannot draw out the whole object’s
contour.

5.2. Transfer Learning to iseAuto

In the transfer learning experiment, supervised learning baseline models of Waymo
were continuously trained using 1200 frames of iseAuto data that included different illumi-
nation and weather scenarios. Table 4 provides the metric results of the Waymo-to-iseAuto
transfer learning models. For comparison, the same amount of iseAuto data was also used
to train the iseAuto baseline models. The models’ performances are shown in Table 5.

By comparing Tables 4 and 5, one can note that, with the exception of human seg-
mentation in the LiDAR model, all other metric results increase with transfer learning, as
expected, even in challenging conditions such as night and rain. However, compared to
the iseAuto baseline model, the transfer learning camera model significantly improves
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human segmentation, which results in the fusion model in the transfer learning process
also generally performing better than the baseline. Please note that the amount of iseAuto
data for training, 1200 frames in total, is much smaller than the Waymo data (16,188 frames)
used for transfer learning and domain adaptation. The transfer learning fusion model has
the best accuracy at this stage and is used to generate the machine-made labels for the
unlabeled iseAuto data.

Table 4. Performance of the iseAuto transfer learning models from the Waymo dataset.

IoU (%) Precision (%) Recall (%) auc-AP (%)

Vehicle Human Vehicle Human Vehicle Human Vehicle Human

Day-Fair
camera 77.10 75.87 85.02 79.40 89.22 94.46 84.59 81.67
LiDAR 72.14 55.71 81.07 57.48 86.75 94.75 80.65 61.08
fusion 83.27 74.24 89.41 76.46 92.38 96.24 88.34 82.91

Day-Rain
camera 80.26 48.11 85.82 67.13 92.53 62.93 84.15 72.22
LiDAR 77.33 40.27 82.35 45.06 92.70 79.11 81.48 63.36
fusion 84.92 57.61 88.75 65.08 95.16 83.37 87.99 73.99

Night-Fair
camera 66.07 52.38 75.02 61.38 84.71 78.13 77.61 74.58
LiDAR 74.50 45.38 80.58 47.78 90.79 90.04 82.93 60.75
fusion 80.43 64.03 86.55 73.18 91.92 83.67 87.66 76.88

Night-Rain
camera 51.70 41.39 63.11 47.21 74.09 77.06 61.50 63.29
LiDAR 62.51 26.46 68.24 27.05 88.15 92.38 73.02 50.79
fusion 67.89 45.68 75.26 49.48 87.40 85.61 79.46 74.34

Table 5. Performance of the supervised learning iseAuto baseline models.

IoU (%) Precision (%) Recall (%) auc-AP (%)

Vehicle Human Vehicle Human Vehicle Human Vehicle Human

Day-Fair
camera 75.97 71.31 86.43 74.10 86.26 94.99 84.26 79.01
LiDAR 71.19 56.87 78.74 59.01 88.14 94.03 78.00 66.99
fusion 80.39 74.56 87.26 77.63 91.08 94.97 86.40 83.10

Day-Rain
camera 77.71 39.87 81.15 51.82 94.82 63.35 82.28 66.49
LiDAR 76.00 42.10 81.44 46.52 91.93 81.58 80.43 59.12
fusion 83.20 56.24 87.37 65.16 94.58 80.43 87.52 75.12

Night-Fair
camera 68.89 54.98 76.04 62.79 87.99 81.54 79.27 73.55
LiDAR 74.25 47.19 80.03 50.52 91.13 87.75 82.96 54.16
fusion 76.79 62.48 85.75 75.66 88.02 78.19 87.11 77.40

Night-Rain
camera 52.17 29.40 60.88 32.26 78.49 76.81 66.67 54.27
LiDAR 59.49 36.76 64.82 37.91 87.85 92.33 82.30 62.08
fusion 64.68 46.09 74.42 50.30 83.17 84.64 78.96 76.59

5.3. Semi-Supervised Learning with Pseudo-Labeled Data

Semi-supervised learning uses the unlabeled iseAuto dataset, applied to the iseAuto
baseline models and Waymo-to-iseAuto transfer learning models. For each subset, there
are 1400 frames of data labeled by the Waymo-to-iseAuto transfer learning fusion model
(the best-performing model in earlier experiments). The machine-labeled data was mixed
with human-labeled frames to perform the semi-supervised training. The same iseAuto
data was used in all testing processes to ensure a parallel comparison. The evaluation of
semi-supervised learning models is illustrated in Tables 6 and 7.

Referring to Table 6, the semi-supervised learning iseAuto baseline models show 84%
IoU and 89% auc-AP for vehicle segmentation in fair illumination and weather conditions.
By comparing Tables 5 and 6, it is possible to see that the vehicle segmentation shows
robust performance improvement even in more challenging scenarios with the help of the
semi-supervised learning. The human segmentation is a weak point in this stage, which
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can be explained by the fact that the humans class is less represented in the dataset; too few
human samples are being recorded in the iseAuto dataset. Please note that recall shows
an effective increase in semi-supervised learning baseline models, which means that there
is an improvement of the models’ capability to detect the positive human samples. This
corresponds to the general principle in machine learning that more data can bring higher
performance. While there is a minor decline in precision, which means models detect
more negative samples as the human class, it proves the extra unlabeled data increases the
model’s uncertainty about the human class in semi-supervised learning.

Table 6. Performance of the semi-supervised learning iseAuto baseline models.

IoU (%) Precision (%) Recall (%) auc-AP (%)

Vehicle Human Vehicle Human Vehicle Human Vehicle Human

Day-Fair
camera 79.85 67.06 85.27 68.18 92.63 97.62 85.86 75.88
LiDAR 73.69 58.05 81.61 59.37 88.37 96.32 80.55 64.68
fusion 82.38 68.98 87.24 69.98 93.67 97.96 87.72 76.36

Day-Rain
camera 80.27 53.61 82.57 56.91 96.64 90.24 84.41 67.23
LiDAR 80.58 44.09 84.84 48.41 94.13 83.14 84.25 59.23
fusion 83.98 54.28 87.13 56.95 95.87 92.06 88.63 66.87

Night-Fair
camera 73.14 55.07 78.67 61.71 91.23 83.66 81.74 69.23
LiDAR 75.75 49.59 79.99 52.96 93.46 88.63 84.24 60.42
fusion 79.28 56.32 82.34 59.81 95.52 90.61 86.68 71.81

Night-Rain
camera 60.42 42.06 66.33 43.80 87.16 91.37 69.26 68.97
LiDAR 64.89 41.32 70.75 42.21 88.69 95.15 75.68 67.30
fusion 63.97 43.63 69.38 44.74 89.13 94.59 75.67 67.84

Table 7. Performance of the semi-supervised transfer learning iseAuto models.

IoU (%) Precision (%) Recall (%) auc-AP (%)

Vehicle Human Vehicle Human Vehicle Human Vehicle Human

Day-Fair
camera 80.32 69.25 87.41 70.53 90.83 97.45 85.04 76.99
LiDAR 76.10 61.81 83.28 63.30 89.83 96.34 81.32 71.22
fusion 82.85 71.09 87.93 72.55 93.49 97.24 87.91 78.48

Day-Rain
camera 82.49 57.12 86.33 60.85 94.87 90.31 87.75 69.98
LiDAR 81.00 44.85 85.03 49.57 94.48 82.50 85.05 60.68
fusion 85.04 54.84 88.16 61.61 96.00 83.32 88.36 70.4

Night-Fair
camera 75.97 55.46 83.13 65.45 89.81 78.41 84.64 71.00
LiDAR 76.01 51.63 80.16 55.07 93.63 89.20 84.01 64.51
fusion 79.82 60.21 83.88 67.71 94.28 84.46 88.20 73.43

Night-Rain
camera 60.79 48.30 69.38 51.45 83.07 88.76 71.65 72.03
LiDAR 64.40 41.15 69.95 42.17 89.04 94.45 73.63 64.49
fusion 66.92 48.36 73.19 50.64 88.65 91.49 77.76 72.81

Table 7 evaluates the semi-supervised learning iseAuto models with the transfer
learning knowledge from the Waymo dataset. The best-performing Waymo supervised
learning baseline models were continuously trained by full-annotated iseAuto dataset.
Comparing the results to Table 6, major improvement can be seen in all modalities and
domains, which means the knowledge gained from the Waymo dataset is still valuable
for the semi-supervised learning stage. Compared to the transfer learning iseAuto models
without semi-supervised learning (Table 4), the individual RGB and LiDAR networks
have a maximum of 10% increase in some cases. At the same time, the fusion model does
not show further improvement with additional machine-annotated data in training. This
effect is more evident in challenging scenarios with the human class. The reason might be
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attributed to a lack of accuracy in the labels, particularly in the semi-supervised learning
mode, and a scarcity of data points for smaller objects, such as a human.

In summary, through all the above scenarios, it is possible to say that domain adapta-
tion and semi-supervised learning can lead to an average increase between 2 to 5 percentage
points in vehicle segmentation. Specifically, in the average of all above scenarios, vehicle
segmentation in fusion mode improves from 76% in the iseAuto baseline to 79% in the
semi-supervised transfer learning mode, an increase of three percentage points. How-
ever, accurately segmenting less-represented classes with fewer points in the scenario,
such as the human class, remains a challenge due to the scarcity of data and inaccurate
machine labeling.

6. Conclusions

In this paper, the results of our machine learning algorithm involving LiDAR–camera
fusion, transfer learning, and semi-supervised learning on our custom dataset are shown.
The data used in this work are acquired using our custom autonomous shuttle, iseAuto.
This work extends the results presented in a previous conference paper by giving a deep
insight and analysis of the performance of our machine learning algorithm. Our algorithm’s
performance is first shown on a publicly available dataset, the Waymo data, used as a
benchmark to show that this algorithm is aligned with the state of the art. As the main focus
of this paper is to show that it is possible to achieve reasonable performance on a custom
dataset with only a limited amount of annotation, we have trained the network with little
data (only 10% of Waymo), showing an already reasonable performance. The baseline was
compared against a network trained on Waymo and combining iseAuto data in transfer
learning, providing over 80% performance in IoU in day-fair conditions and using the
fusion algorithm. In the future, this work can be extended by adding more labeled and
unlabeled data to the iseAuto dataset with more diversity for different weather conditions
and traffic scenarios, and including more classes. The performance of the fusion model has
enormous potential to be further improved. A different line of work could be adaptation
research of our algorithms for different dataset sources to improve the networks’ capability
in domain adaptation and detecting more challenging object classes.
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Abstract: Autonomous driving vehicles rely on sensors for the robust perception of their surround-
ings. Such vehicles are equipped with multiple perceptive sensors with a high level of redundancy to
ensure safety and reliability in any driving condition. However, multi-sensor, such as camera, LiDAR,
and radar systems raise requirements related to sensor calibration and synchronization, which are
the fundamental blocks of any autonomous system. On the other hand, sensor fusion and integra-
tion have become important aspects of autonomous driving research and directly determine the
efficiency and accuracy of advanced functions such as object detection and path planning. Classical
model-based estimation and data-driven models are two mainstream approaches to achieving such
integration. Most recent research is shifting to the latter, showing high robustness in real-world appli-
cations but requiring large quantities of data to be collected, synchronized, and properly categorized.
However, there are two major research gaps in existing works: (i) they lack fusion (and synchro-
nization) of multi-sensors, camera, LiDAR and radar; and (ii) generic scalable, and user-friendly
end-to-end implementation. To generalize the implementation of the multi-sensor perceptive system,
we introduce an end-to-end generic sensor dataset collection framework that includes both hardware
deploying solutions and sensor fusion algorithms. The framework prototype integrates a diverse
set of sensors, such as camera, LiDAR, and radar. Furthermore, we present a universal toolbox to
calibrate and synchronize three types of sensors based on their characteristics. The framework also
includes the fusion algorithms, which utilize the merits of three sensors, namely, camera, LiDAR,
and radar, and fuse their sensory information in a manner that is helpful for object detection and
tracking research. The generality of this framework makes it applicable in any robotic or autonomous
applications and suitable for quick and large-scale practical deployment.

Keywords: multimodal sensors; autonomous driving; dataset collection framework; sensor
calibration and synchronization; sensor fusion

1. Introduction

Nowadays, technological advancements such as deep learning and the introduction of
autonomous vehicles (AVs) have altered every aspect of our lives and become an integral
part of our economy. According to the Boston Consulting Group, the value of the AV
industry in 2035 is projected to be $77 billion [1]. In addition, the Brookings Institution
and IHS predict that by 2050, almost all users will possess AVs [2]. As AVs such as Tesla
self-driving cars and AuVe Tech autonomous shuttles become more prevalent in our daily
lives and an alternative to conventional vehicles, the safety and security concerns of AVs
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are growing [2]. Refining the current techniques can address concerns regarding AV safety
and security. For instance, by enhancing object detection, we can enhance perception and
reduce the probability of accidents.

Improving AV, particularly techniques such as object detection and path planning,
requires field-collected AV data because field-collected AV data provide important insights,
for example, human–machine interactive situations like merges, and unprotected turns [3],
which are otherwise difficult to obtain from any simulated environment.

Moreover, diverse field-collected data can help AV technology to mature faster [4]. This
is also why the amount of field-collected data for AVs is growing despite the availability
of simulation tools such as CARLA [5] and SUMO (Simulation of Urban Mobility) [6].
Waymo’s open motion [3] and perception [7] dataset and the nuScenes [8] dataset are two
examples.

However, collecting AV field data is a complex and time-consuming task. The difficulty
stems from the multi-sensory (e.g., using multiple sensors such as camera, light detection
and ranging (LiDAR), and radar) nature of AV environments, which are used to overcome
the limitations of individual sensors. For example, the camera input can correct the
abnormalities of inertial sensors [9]. However, the challenge lies in the fact that different
sensors, such as LiDAR and radar sensors, have different sensing rates and resolutions
and require the fusion of multimodal sensory data [10], thereby making the task of data
collection even more difficult. For example, the LiDAR sensor can capture more than a
million three-dimensional (3D) points per second, while the radar sensor has poor 3D
resolution [11], which needs to be synchronized before use in other AV tasks such as object
detection. Moreover, the data collection task is often performed alongside other regular
duties, making it even more time-consuming and prone to error, which we conclude from
our experience of iseAuto dataset collection [12].

With respect to the advantages of real-world field data, studies such as those by
Jacob et al. [4] (see Section 2 for more) have focused on data collection frameworks for
AVs. However, the work by Jacob et al. [4] does not consider the radar sensor; therefore,
extra effort is required when the data are collected from a vehicle equipped with the
radar sensor. Additional limitations of the work include the multi-sensor fusion of the
camera, LiDAR, and radar data to provide rich contextual information. Muller et al. [13]
leverage sensor fusion to provide rich contextual information like velocity, as in our work.
However, the work of Muller et al. [13] does not include the radar sensor, and it is based
on the CARLA simulator; hence, its effectiveness with real-world physical AVs is still
being determined. Therefore, we present our work, an end-to-end general-purpose AV
data collection framework featuring algorithms for sensor calibration, information fusion,
and data space to collect hours of robot-related application that can generate data-driven
models. The novelty of our dataset collection framework is that it covers the aspects from
sensor hardware to the developed dataset that can be easily accessed and used for other
autonomous-driving-related research. We provide detailed hardware specifications and
the procedures to build the data acquisition and processing systems. Our dataset collection
framework has backend data processing algorithms to fuse the camera, LiDAR, and radar
sensing modalities together.

In summary, the contributions of this work are given below.

• We present a general purpose scalable end-to-end AV data collection framework for
collecting high-quality multi-sensor radar, LiDAR, and camera data.

• The implementation and demonstration of the framework’s prototype, whose source
code is available at: https://github.com/Claud1234/distributed_sensor_data_collector
(accessed on 14 May 2023).

• The dataset collection framework contains backend data processing and multimodal
sensor fusion algorithms.

The remainder of the paper is as follows. Section 2 reviews the autonomous driving
dataset, the existing data collection frameworks, and the mainstream multimodal sen-
sor systems related to autonomous data acquisition. Section 3 introduces the prior and
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post-processing of our dataset collection framework, including sensor calibration, syn-
chronization, and fusion. Section 4 presents the prototype mount used for testing and
demonstrating the dataset collection framework. Specifically, there are detailed descrip-
tions of the hardware and software setups of the prototype mount and the architecture
configurations of the system operating, data communication, and cloud storage. Section 5
evaluates the performance of our dataset collection framework based on the hardware of
prototype we built for testing. Finally, Section 6 provides a summary and conclusion.

2. Related Work

Given the scope of this work, we present relevant studies distinguishing dataset
collection frameworks for autonomous driving research from multimodal sensor systems
for data acquisition. The reason is that many studies typically focus on one aspect or the
other, while we intend to merge these concepts in a general-purpose framework.

2.1. Dataset Collection Framework for Autonomous Driving

Recently, data have been regarded as valuable property. For autonomous driving
research, collecting enough data covering different weather and illumination conditions
requires a lot of investment. Therefore, most research groups use open datasets for the
experiments. For example, KITTI [14] has been one of the most successful open datasets
for a long time. Because of the development of sensor technology and the increasing
requirements for datasets to cover more weather and traffic conditions, the latest datasets,
such as Waymo [7] and nuScenes [8], have adopted modern perceptive sensors and covered
various scenarios. Other similar datasets include PandaSet [15], Pixset [16], and CADC [17].
Although public datasets offer researchers the convenience of obtaining data, their limi-
tations in practical and engineering applications must be addressed. Most open datasets
aim to provide well-synchronized, denoised, and ready-to-use data but are reckless in
publishing the details of their hardware configurations and open sourcing the developing
tools, which causes problems for other researchers to create the dataset they need. As a
result, dataset collection frameworks are proposed. These frameworks focus on analyz-
ing the feasibility of modern sensors and improving the system’s versatility on different
platforms. Yan et al. [18] introduced a multi-sensor platform for vehicles to perceive their
surroundings. Details of all the sensors, such as brand, model, and specifications, were
listed in the paper. The robot operating system (ROS) was used for calibrating the sen-
sors. Lakshminarayana et al. [19] focused on the protocols and standards for autonomous
driving datasets. The author proposed an open-source framework to regularize datasets’
collection, evaluation, and maintenance, especially for their usage in deep learning. By
contrast, the hardware cost was discussed in [4] as the budget is always critical for the
large-scale deployment of a framework. Therefore, some researchers build the dataset
pipelines by simulated vehicles and sensors to avoid the heavy investment of hardware
purchase and repeated human–labor work, for example, manual object labeling. Moreover,
simulation-based data generation frameworks can be used in applications that are difficult
to demonstrate in the real world. For example, Beck et al. [20] developed a framework to
generate camera, LiDAR, and radar data in the CARLA [21] simulator to reconstruct the
autonomous-vehicles-involved accidents. Muller et al. [13] used the same CARLA plat-
form to build a data collection framework to produce data with accurate object labels and
contextual information. In summary, very few works provide a comprehensive end-to-end
framework from hardware deployment to sensor calibration and synchronization, then
to the backend camera–LiDAR–radar fusion that can be easily implemented into the end
applications such as motion planning and object segmentation.

2.2. Multimodal Sensor System for Data Acquisition

The data acquisition of the modern autonomous and assisted driving system relies on
the paradigm in which multiple sensors are equipped [22]. For autonomous vehicles, most
of the onboard sensors serve the purposes of proprioception (i.e., inertia, positioning) and
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exteroception (i.e., distance measurement, light density). As our work concerns only the
perceptive dataset collection, the review of multimodal data acquisition systems focuses on
the exteroceptive sensors system for object detection and environment perception.

From the hardware perspective, exteroceptive sensors such as camera and LiDAR,
and ultrasonic sensors, have to be installed in the exterior of the vehicles as they require a
clear view field and less interference. For independent autonomous driving platforms, the
typical solution is to install the sensors around the vehicles separately to avoid the body
frame’s dramatic changes. The testing vehicle [23] has 15 sensors installed on the front,
top, and rear sides to ensure the performance and appearance of the vehicles are not much
affected. Other autonomous driving platforms with similar sensor layouts include [24,25].
Furthermore, shuttle-like autonomous vehicles such as Navya [26] and iseAuto [27] also
adopt the same principle to fulfill the legal requirements for the real-traffic-deployed shuttle
bus. In contrast, another sensor installation pattern integrates all perceptive sensors as
an individual mount from the vehicle, which is often seen in the works related to dataset
collection and experimental platform validation. The authors of [28,29] showcase the
popular datasets in which all sensors are integrated. The experimental platforms examples
that have detachable mounts onto the vehicles are given by the authors of [30,31].

The multimodal sensor systems’ software mainly involves the sensors’ calibration
and fusion. Extrinsic and temporal calibration are two primary categories for multi-sensor
systems. Extrinsic calibration concerns the transformation information between different
sensor frames, and temporal calibration focuses on the synchronicity of multiple sen-
sors operating at various frequencies and latencies. The literature on extrinsic calibration
methodologies is rich. For example, An et al. [32] proposed a geometric calibration frame-
work that combines the planar chessboard and auxiliary 2D calibration object to enhance
the correspondences of 3D-2D transformation. Similarly, Domhof et al. [33] replaced the 2D
auxiliary object with a metallic trihedral corner to provide strong radar reflection, which
aims to reduce the calibration noise for radar sensors. In contrast to the calibration methods
that employ specific targets, there are approaches dedicated to calibrating sensors without
a target. Jeong et al. [34] utilized road markings to estimate sensor motions and then
determined the extrinsic information of sensors. In [35], the authors trained a convolutional
neural network to substitute humans to calibrate camera and radar sensors. The model au-
tomatically pairs radar point clouds with image features to estimate challenging rotational
information between sensors. The studies of multimodal sensor fusion for autonomous
driving perception and data acquisition were reviewed in [36,37]. Recent breakthroughs in
deep learning have significantly inspired researchers to fuse the multimodal data streams in
the level of feature and context [38,39]. On the other hand, neural-network-based fusion ap-
proaches require a significant amount of computing power. Remarkably, Pollach et al. [40]
proposed fusing the camera and LiDAR data at a probabilistic low level; the simple math-
ematical computation consumes less power and causes low latency. The authors of [41]
focused on the implementation feasibility of the multi-sensor fusion. Like our work, the
authors developed a real-time hybrid fusion pipeline composed of a fully convolutional
neural network and an extended Kalman filter to fuse the camera, LiDAR, and radar data.
Cost efficiency is the crucial point in [42]; the study resulted in a method that relies on Mi-
crosoft Kinect to produce color images and 3D point clouds. However, this data acquisition
and fusion system mainly works for road surface monitoring.

3. Methodology

Our dataset collection framework primarily focuses on exteroceptive sensors mainly
used in robotics for perception purposes, in contrast to sensors such as GPS and wheel-
encoder that record the status information of the vehicle itself. Currently, one of the primary
usages of the perceptive sensor data in the autonomous driving field is the obstacle-type-
objects (cars, humans, and bicycles) [43] and traffic-type-objects (traffic signs and road
surface) [44] detection and segmentation. The mainstream research in this field is fusing
different sensory data to compensate sensors for each other limitations. There is already
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a large amount of research focusing on the fusion of camera and LiDAR sensors [45], but
more attention should be given to the integration of radar data. Although LiDAR sensors
outperform radar sensors from the perspective of point-cloud density and object texture,
radar sensors have advantages in terms of moving object detection, speed estimation, and
high reliability in harsh environments such as fog and dust. Therefore, this framework
innovatively exploits the characteristics of radar sensors to highlight moving objects in
LiDAR point clouds and calculate their relative velocity. The radar and LiDAR fusion
result is then projected onto the camera image to achieve the final radar–LiDAR–camera
fusion. Figure 1 presents the framework architecture and data flow overview. In summary,
the framework is composed of three modules: sensors, processing units, and cloud server.
The radar, LiDAR, and camera sensors used in the framework’s prototype are TI mmwave
AWR1843BOOST, Velodyne VLP-32C, and Raspberry Pi V2, respectively. Sensor drivers
are the ROS nodes and forward data to the connected computing unit. The main computer
(ROS master) of the prototype is the Intel® NUC 11 with the Core™ i7-1165G7 Processor,
and the supporting computer (ROS slave) is the ROCK PI N10. The ROS master and salve
computers are physically connected by an Ethernet cable, and the ROS slave simply sends
sensory data coming from the camera and the radar to the ROS master for post processing.
The communication between the cloud server and the ROS master relies on the 4G network.

Camera
Raspberry Pi V2

 Radar
TI AWR1843BOOST

LiDAR
Velodyne VLP-32

ROCK PI N10

Intel® NUC 11

ROS master

ROS slave
File System

MySQL

Cloud Server
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File path

Encryption
CSI

Post Processing

Serial ports

Ethernet

Ethernet

ROS nodes

sql over 4G
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Decompressing
LiDAR camera projection
Radar-LiDAR-camera fusion

Bag files

Compressed images
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Bag
Files

Apache2
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Internet

Figure 1. Overview of the framework architecture and data flow. The bold arrow-pointers denote
data flow directions and corresponding protocols. Detailed descriptions of the sensor and other
framework prototype hardware are in Section 4.

3.1. Sensor Calibration

For any autonomous vehicle’s perceptive system equipped with both passive (camera)
and active (LiDAR, radar) sensors, referring to their capacity to measure the natural
electromagnetic radiation of objects or the reflected energy emitted by the sensor. The
sensor calibration is the calculation of the transformation matrices to bring all measurements
in the same reference frame in order to associate different readings of the same objects
coming from different sensors. A reliable calibration requires one to retrieve the intrinsic
and extrinsic parameters.

3.1.1. Intrinsic Calibration

The intrinsic calibration refers to the position and orientation of the sensor in real-
world coordinates by which the relative coordinate for the features is detected by the sensor.
Among all popular perceptive sensors in the autonomous driving field, there is already a
significant amount of work related to the intrinsic calibration of the camera and LiDAR
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sensors [46,47]. LiDAR and camera are the primary sensors in this work to perceive the
surrounding environment; therefore, they are the subject of intrinsic calibrations. Raspberry
Pi V2 is a pinhole camera that is a well-known and widely used model [48,49]. The intrinsic
calibration for the pinhole camera estimates the sensor’s internal parameters, such as
focal length and distortion coefficients, that comprise the camera matrix. Referring to the
classification in [50], we use the photogrammetric method to calibrate the Raspberry Pi
V2 camera. This method relies on planner patterns with precise geometric information
in the 3D real world. For example, using a checkerboard with known square dimensions,
the interior vertex points of the squares are used during the calibration. In addition, a
wide-angle lens (160°) was attached to the Raspberry Pi V2 camera, resulting in significant
image distortion. Therefore, rectifying the images before implementing them into any
post-processing is critical. The open-source ROS ‘camera_calibration’ package was used in
this work to calibrate the camera sensor. The ‘camera_calibration’ package is built upon
the OpenCV camera calibration and 3D reconstruction modules. It provides the graphic
interface for parameter tuning and gives the results of the distortion coefficients, camera
matrix, and projection matrix. Figure 2 compares the distorted image obtained directly
from the camera sensor and the processed rectified image based on the camera’s intrinsic
calibration results.

(a) (b)

Figure 2. Comparing images obtained directly from the sensor to those that have been processed.
(a) Raw distorted image obtained directly from the camera. (b) Rectified image.

As a highly industrialized and intact-sealed product, Velodyne VLP-32C LiDAR
sensors are usually factory calibrated before shipment. Referring to the Velodyne VLP-
32C’s user manual, the range accuracy is claimed to be up to ±3 cm [51]. In addition,
research works such as proposed by Glennie et al. [52] and Atanacio-Jiménez et al. [53] used
photogrammetry or planar structures to further calibrate the LiDAR sensors to determine
the error connection. However, considering the sparsity of the LiDAR points from spatial
perspective, factory calibration of the Velodyne LiDAR sensors is sufficient for most of the
autonomous driving scenarios. Therefore, no extra calibration work was conducted on the
LiDAR sensors in our framework.

Due to the characteristics of radar sensors in sampling frequency and spatial location,
the calibration of radar sensors usually concentrates on the coordinate calibration to match
the radar points and image objects [54]; points filtering to dismiss the noise and faulty
detection results [55]; and error correction to compensate the mathematical errors in mea-
surement [56]. The post-processing towards radar data in our work is overlaying radar
points with the LiDAR point clouds. Therefore, the intrinsic calibration for radar sensors
focuses on filtering out undesirable detection results and noise. A sophisticated method for
noise and ineffective target filtering was proposed by [57], which developed intra-frame
clustering and tracking algorithms to classify the valid objects signal from original radar
data. The straightforward approach to calibrate the radar sensors is given in [55], which
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filtered the point clouds by the speed and angular velocity information; thus, the impact of
stationary objects can be reduced in radar detection results. Our work implements a similar
direct method to calibrate the TI mmwave AWR1843BOOST radar sensor. The parameters
and thresholds related to the resolution, velocity, and Doppler shift were fine-tuned in
the environments where autonomous vehicles are operated. Most of the points for static
objects were filtered out in radar data (although the noise is inevitable in detection results).
As a result, there is a reduction in the number of points representing the dynamic objects in
each detection frame (shown in Figure 3). This issue could be addressed by locating and
clustering the objects’ LiDAR points through the corresponding radar detection result. This
part of the work will be detailed in Section 3.3.2.

Figure 3. Performance of the LiDAR and radar extrinsic calibration in visualization. Color dots are
radar points; white dots are LiDAR point clouds. The first row shows the relative locations of LiDAR
and radar points without the extrinsic calibration. The second row is the results after applying the
radar-LiDAR extrinsic calibration. The scene of (a,d) is indoor laboratory. (b,e) were captured in
city’s urban area. (c,f) are in the open area outside the city.

3.1.2. Extrinsic Calibration

For multimodal sensor systems, extrinsic calibration refers to the rigid transformation
of the feature from one coordinate system to another, for example, the transformation of
LiDAR points from the LiDAR coordinate frame to the camera coordinate frame. The
extrinsic calibration estimates transformation parameters between the different sensor
coordinates. The transformation parameters are represented as a 3 × 4 matrix containing
the rotation (R) and translation (t) information. Extrinsic calibration is critical for sensor
fusion post-processing in any multi-sensor system. One of the most important contributions
of our work is the backend fusion of the camera, LiDAR, and radar sensors; thus, the
extrinsic calibration was carried out between these three sensors. The principle of sensor
fusion in our work is filtering out the moving objects’ LiDAR points by applying the radar
points, augmenting the LiDAR point data with the object’s velocity readings from the
radar, and then projecting the enhanced LiDAR point clouds data (that contain the location
and speed information of the moving objects) onto camera images. Therefore, there is a
need to extract the Euclidean transformation between the radar and LiDAR sensors and
between the LiDAR and camera sensors. The standard solution is to extract the peculiar
and sensitive features from the different sensors in the calibration environment. The targets
used in extrinsic calibration usually have specific patterns such as planar, circular, and
checkerboard for simplicity to match the features between point clouds and images.

Pairwise extrinsic calibration between the LiDAR and camera sensors in our work
was inspired by the work [58]. The target for the calibration is a checkerboard with 9 and
7 squares in two directions. In practical calibration, several issues were raised and need to
be noted:
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• Before the extrinsic calibration, individual sensors were intrinsically calibrated and
published the processed data as ROS messages. However, to have efficient and reliable
data transmission and save bandwidth, ROS drivers for the LiDAR and camera
sensors were programmed to publish only Velodyne packets and compressed images.
Therefore, additional scripts and operations were required to handle the sensor data
to match the ROS message types for the extrinsic calibration tools. Table 1 illustrates
the message types of the sensors and other post-processing.

• The calibration relies on humans to match the LiDAR point and corresponding image
pixel. Therefore, it is recommended to pick the noticeable features, such as the
intersection of the black and white squares or the corner of the checkerboard.

• The point-pixel matches should be picked from the checkerboard in different locations
covering all sensors’ full field of view (FOV). For camera sensors, ensure that the
pixels from the image edges were selected. Depth varieties (the distance between the
checkerboard and the sensor) are critical for LiDAR sensors.

• It is a matter of fact that human errors are inevitable when pairing points and pixels.
Therefore, it is suggested to select as many pairs as possible and repeat the calibration
to ensure high accuracy.

Table 1. ROS message types for sensor drivers and calibration processes.

Sensor Message Type of Topic Published by Driver Message Type of Topic Subscribed by
Calibration Processes

LiDAR Velodyne VLP-32C velodyne_msgs/VelodyneScan

sensor_msgs/PointCloud2
(LiDAR-camera extrinsic)

velodyne_msgs/VelodyneScan
(radar-LiDAR extrinsic)

CameraRaspberry Pi V2 sensor_msgs/CompressedImage

sensor_msgs/Image
(camera intrinsic)

sensor_msgs/Image
(LiDAR-camera extrinsic)

RadarTI AWR1843BOOST sensor_msgs/PointCloud2
sensor_msgs/PointCloud2

(radar intrinsic) sensor_msgs/PointCloud2
(radar-LiDAR extrinsic)

Compared with the abundant resource for pairwise LiDAR and camera extrinsic
calibration, relatively little research addressed the multimodal extrinsic calibration that
includes the radar sensors. Radar sensors usually have smaller FoV than the camera and
LiDAR sensors, while they also lack elevation resolution and sparse point clouds. Therefore,
poor informativeness is the primary challenge for radar’s extrinsic calibration. To address
this problem, one of the latest references [59] proposed a two-step optimization method
in which the radar data was reused in the second step to refine the extrinsic information
gained from the first step calibration. However, the pursuit of our work is a universal
pipeline that can be easily adapted to different autonomous platforms. Therefore, a toolbox
bound with the standard ROS middleware is necessary to quickly deploy the pipeline
system and execute the calibrations on autonomous vehicles. In our work, radar sensors
were intrinsically calibrated to filter out most of the points for static objects. A minimum
number of points were kept in each frame to represent the moving objects. An ROS-based
tool was developed to compute the rotation and translation information between the
LiDAR and radar coordinate frames. The calibration is based on the visualization of the
Euclidean distance-based clusters of the point clouds data from two sensors. Corresponding
parameters of the extrinsic calibration, such as Euler angles and displacement in X, Y, and
Z directions, were manually tuned until the point cloud clusters overlapped. Please note
that to properly calibrate the radar sensor, a specific calibration environment with minimal
interference is required. Moreover, since the radar sensors are calibrated primarily to react
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to dynamic objects, the unique object in the calibration environment should move steadily
and ensure the preferable reflective capability (TI mmwave radar sensors showed higher
sensitivity to metallic surfaces than others during our practical tests). Figure 3 compares the
result of LiDAR and radar extrinsic calibration in visualization. Each pair of figures in the
column was captured from a specific environment related to the research and real-traffic
deployment of our autonomous shuttles. The first column (Figure 3a,d) shows an indoor
laboratory featuring a deficient interference; the only moving object is a human with a
checkerboard. The second and third columns represent the outdoor environment where
the shuttles were deployed. These two pairs also represent the different traffic scenarios.
The second column (Figure 3b,e) is the city’s urban area, which has more vehicles and other
objects (trees, street lamps, and traffic posts). The distance between the vehicles and sensors
is relatively small; in this condition, radar sensors can produce more points. The third
column (Figure 3c,f) is in the open area outside the city, which the vehicles run at a relatively
high speed and far away from the sensors. The color dots represent the radar points, and
the white dots are LiDAR point clouds data. The pictures in the first row illustrate the
Euclidean distance between the LiDAR and radar point clouds before implementing the
extrinsic calibration. The pictures in the second row show the results after the extrinsic
calibration. By comparing the pictures in rows and columns, it is possible to see that the
radar sensors produce less-noisy points data after the specific intrinsic calibration was
implemented onto them. They are also more reactive to the metal surface and objects at a
close distance. Moreover, after the extrinsic calibration of LiDAR and radar sensors, the
alignment of the two types of sensors’ point clouds data was obviously improved, which is
helpful for the further processing to identify and filter out the moving objects in LiDAR
sensor’s point clouds data by the detection results of the radar sensor.

3.2. Sensor Synchronization

For autonomous vehicles that involve multi-sensor systems and sensor fusion ap-
plications, it is critical to address the synchronization of multiple sensors with different
acquisition rates. The perceptive sensors’ operating frequencies are usually limited by
their own characteristics. For example, as the solid-state sensor, cameras operate at high
frequencies; on the contrary, LiDAR sensors usually scan at a rate of no more than 20 Hz
because of the internal rotating mechanisms. Although it is possible to set the sensors to
work at the same frequencies from the hardware perspective, the latency of the sensor data
streams is also a problem for matching the measurements.

In practical situations, it is not recommended to set all of the sensor frequencies
identically. For example, reducing the frame rate of the camera sensors to match the
frequencies of the LiDAR sensors means fewer images are produced. However, it is possible
to optimize the hardware and communication setup to minimize the latency caused by
the data transfer and pre-processing delays. The typical software solution to synchronize
sensors matches the message headers’ closest timestamps at the end-processing unit. One
of the most popular open-source approaches, ROS message_filter [60] developed an
adaptive algorithm that first finds the latest message as a reference point among the heads
of all topics (a term in ROS represents the information of sensing modality). The reference
point was defined as the pivot; based on the pivot and a given time threshold, messages were
selected out of all topics in the queues. The whole message-pairing process was shifted
along the time domain. Therefore, the messages that cannot be paired (the difference of
timestamps relative to other messages exceeds the threshold) would be discarded. One of
the characteristics of this adaptive algorithm is that the selection of the reference message
was not fixed into one sensor modality stream (shown in Figure 4a). For the systems with
multiple data streams, the number of synchronized message sets are always reconciled to
the frequency of the slowest sensor.
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Figure 4. Illustrations of the sensor synchronization logic for message_filter and our algorithms.
These illustrations are based on the real field data collected by our prototype. (a) shows the manner
that message_filter carry out the multi-sensor synchronization, (b,c) show the individual LiDAR-
camera and radar-LiDAR synchronization in our work, respectively. (d) is our final synchronized
radar–LiDAR–camera message triplet. The messages of each sensor modality were represented by
the blue points, the reference messages used for synchronization was highlighted in red. Green lines
indicate the synchronized message sets. Please refer to Section 3.2 for more details.

For any multi-sensor perceptive system, the sensor synchronization principle should
correspond to the hardware configuration and post-processing of the sensor fusion. As
discussed in Section 4.1.2 about the sensor configurations of our work, the camera sensor
has the highest rate of 15 FPS, and the LiDAR sensor operates at 10 Hz. Both camera and
LiDAR sensors work at a homogeneous rate, contrary to the heterogeneous radar sensors
that only produce data when moving objects are in the detection zone. Therefore, as shown
in Figure 4, depending on the practical scenarios, radar data can be sparser than the camera
and LiDAR data and also can scatter unevenly along the time domain. In this case, the
direct implementation of the synchronization algorithm [60] will cause significant data loss
of the camera and LiDAR sensors. For the generic radar–LiDAR–camera sensor fusion in
our work, we divide the whole process into three modules based on the frequencies of
the sensors. The first module is the fusion of the LiDAR and camera data because these
two sensors have constant rates. The second module is the fusion of the radar and LiDAR
sensors as they both produce the point clouds data. Finally, the last module is the fusion of
the result of the second module and the camera data, achieving the thorough fusion of all
three sensory modalities.

To address the issues of the hardware setup and fulfill the requirement of fusion
principles in our work, we develop a specific algorithm to synchronize the data of all sensors.
Inspired by the work [60], our algorithm also relies on the timestamps to synchronize the
messages. Instead of the absolute timestamp used in [60], we used the relative timestamp to
synchronize the message sets. The definitions of two types of timestamps are:

• Absolute timestamp is the time when data were produced in sensors. It was usually cre-
ated by the ROS drivers of the sensors and was written in the header of each message.

• Relative timestamp Relative timestamp represents the time data arrive at the central
processing unit. It is the Intel® NUC 11 in our prototype.

Theoretically, the absolute timestamp should be the basis of the sensor synchronization as
it represents the exact moment in which the data was created. However, absolute timestamp
is not always applicable and has certain drawbacks in practical scenarios. First of all, it can
be effectively implemented only if all sensors are capable of assigning the timestamp to
each message on the fly, which is not always possible because of the computational capacity
of the hardware, and software limitations. Regarding the cost consideration, some basic
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perceptive sensors are not integrated with the complex processing ability. For example,
our prototype’s Raspberry Pi V2 camera has no additional computing unit to capture the
timestamp. However, because it is a modular Raspberry camera sensor and is directly
connected with the ROCK Pi computer through the CSI socket, the absolute timestamp is
available in the header of each image message with the assistance of the ROCK Pi computer.
On the other hand, the radar sensors used in the prototype have only serial communications
with the computer, and there are no absolute timestamps for point clouds messages.

The second requirement for implementing the absolute timestamp is the clock synchro-
nization between all of the computers in the data collection framework. There are two
computers in our prototype; one serves as the primary computer performing all funda-
mental operations, and the second is the auxiliary computer used simply for launching the
sensor and forwarding data messages to the primary computer. There is a need to synchro-
nize the clock of all computers and sensor-embedded computing units to the precision of
millisecond if using the absolute timestamps for sensor synchronization. An important aspect
to be underlined in the specific field of autonomous driving is that sensor synchronization
becomes even more important as the speed of the vehicle increases, causing distortion in
sensors’ readings.

To simplify the deployment procedures of this data collection framework, our sen-
sor synchronization algorithms trade off simplicity with accuracy by using the relative
timestamps, which is the clock time of the primary computer when it receives the sensor
data. Consequently, the algorithm is sensitive to the delay and bandwidth of the local area
network (LAN). As mentioned in Section 4.1.1, all sensors and computers of the prototype
are physically connected by internet cables and in the same Gigabyte LAN. In practical
tests, before any payload was applied in the communication network, the average delay
times between the primary computer and LiDAR sensor, as well as the secondary com-
puter (camera and radar sensors), are 0.662 ms and 0.441 ms, respectively. By contrast,
the corresponding delay times were 0.703 ms and 0.49 ms when data were transferred
from the sensors to the primary computer. Therefore, the increasing time delay caused by
transferring data in LAN is acceptable in practical scenarios. For example, the camera and
LiDAR sensors’ time synchronization error of the Waymo dataset is mostly bounded from
−6 to 8 ms [7].

The reference frame selection is another essential issue for sensor synchronization, espe-
cially for the acquisition systems with various types of sensors. The essential difference be-
tween message_filter and our algorithms is that the ROS-implemented message_filter
selects the nearest upcoming message as a reference, while our algorithms fix the reference
onto the same modality stream (compare the red dot locations in Figure 4a–c). Camera
and LiDAR sensors have constant frame rates, but radar sensors produce data at a variable
frequency, e.g., in the presence of a dynamic object. Therefore, in this case, the single
reference frame is not applicable to synchronize all of the sensors. To address this problem,
we divide the synchronization process in two steps. The first step is the synchronization
of the LiDAR and camera data, as shown in Figure 4b. The LiDAR sensor was chosen as
the reference; thus, the frequency of the LiDAR-camera synchronized message set is the
same as the LiDAR sensor’s frame rate. The LiDAR-camera synchronization is continuous
until the radar sensors capture the dynamic objects; in that case, the radar-LiDAR synchro-
nization step begins, see Figure 4c. The radar sensor is the reference frame in the second
synchronization step, which means that every radar message has a corresponding matched
LiDAR message. As all LiDAR messages are also synchronized with the unique camera
image, for every radar message, there is a thorough synchronized radar–LiDAR–camera
message set (Figure 4d). The novelty of our synchronization method is separating the
LiDAR and camera synchronization process from the whole procedure. As a result, we
fully exploit the characteristics of density and consistency of the LiDAR and camera sensors
while also keeping the possibility of synchronizing the sparse and variable information
coming from radar sensors.
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3.3. Sensor Fusion

Sensor fusion is critical for most autonomous-based systems as it integrates acquisition
data from multiple sensors to reduce detection errors and uncertainties. Nowadays, most
perceptive sensors have advantages in specific perspectives but also suffer drawbacks when
working individually. For example, camera sensors may provide texture-dense information
but are susceptible to changes in illumination; radar sensors can detect the reliable relative
velocities of objects but struggle to produce dense point clouds; and state-of-the-art LiDAR
sensors are supposed to address the limitations of camera and radar sensors but lack color
and texture information. Relying on LiDAR data only makes object segmentation systems
more challenging to carry out. Therefore, the common solution is combining the sensors to
overcome the shortcomings of the independent sensor operation.

Camera, LiDAR, and radar sensors are considered the most popular perceptive sensors
for autonomous vehicles. Presently, there are three mainstream fusion strategies: cam-
era–LiDAR, camera–radar, and camera–LiDAR–radar. The fusion of camera and radar
sensors has been widely utilized in industry. Car manufacturers combine cameras, radar,
and ultrasonic sensors to perceive the vehicles’ surroundings. Camera–LiDAR fusion has
often been used in deep learning in recent years. The reliable X-Y-Z coordinates of LiDAR
data can be projected as three-channel images. The fusion of the coordinate-projected
images and the camera’s RGB images can be carried out in different layers of the neural
networks. Finally, the camera–LiDAR–radar fusion combines the characteristics of all three
sensors to provide the excellent resolution of color and texture, precise 3D understanding
of the environment, and velocity information.

In this work, we provide the radar–LiDAR–camera fusion as the backend of the dataset
collection framework. Notably, we divide the whole fusion process into three steps. The
first step is the fusion of the camera and LiDAR sensor because they work at constant
frequencies. The second step is the fusion of the LiDAR and radar point clouds data. The
last step combines the fusion result of the first two steps to achieve the complete fusion
of the camera, LiDAR, and camera sensors. The advantages of our fusion approach are as
follows:

• In the first step, camera–LiDAR fusion can have a maximum number of fusion results.
Only a few messages were discarded during the sensor synchronization because the
camera and LiDAR sensors have close and homogeneous frame rates. Therefore, the
projection of the LiDAR point clouds to the camera images can be easily adapted to
the input data of the neural networks.

• The second step fusion of the LiDAR and radar points grants the dataset the capability
to filter out moving objects from dense LiDAR point clouds and be aware of objects’
relative velocity.

• The thorough camera–LiDAR–radar fusion is the combination of the first two fusion
stage results, which consume little computing power and cause minor delays.

3.3.1. LiDAR Camera Fusion

Camera sensors perceive the real world by projecting the objects onto the 2D image
planes, while LiDAR point clouds data contain direct 3D geometric information. The study
of [61] classified the fusion of 2D and 3D sensing modalities into three categories: high-
level fusion, mid-level fusion, and low-level fusion. The high-level fusion first requires
independent post-processing, such as object segmentation or tracking for each modality,
then fuses the post-processing results; the low-level fusion is the integration of the basic
information such as 2D/3D geometric coordinates and image pixel values in raw data,
and the mid-level is an abstraction between high-level and low-level fusion, which is also
known as feature-level fusion.

Our framework’s low-level backend LiDAR-camera fusion focuses on the spatial
coordinate matching of two sensing modalities. Instead of deep learning sensor fusion
techniques, we use traditional fusion algorithms for LiDAR-camera fusion, which means
the input of the fusion process is the raw data, while the output is the enhanced data [62].
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One of the standard solutions for low-level LiDAR-camera fusion is converting 3D point
clouds to 2D occupancy grids within the FoV of the camera sensor. There are two steps of
LiDAR-camera fusion in our dataset collection framework. The first step is transforming
the LiDAR data to the camera coordinate system based on the sensors’ extrinsic calibration
results; the process follows the equation:
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where ax,ay, and az are the 3D point coordinates as seen from the original frame (before the
transformation); cx, cy, and cz are the camera frame location coordinates; θx, θy, and θz are
the Euler angles of the corresponding rotation of the camera frame; and dx, dy, and dz are
the resulting 3D point coordinates as seen from camera frame (after transformation). The
following step is the projection of the 3D points to 2D image pixels as seen from the camera
frame; under assumption, the camera focal length and the image resolution are known, and
the following equation performs the projection:
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where dx, dy, and dz are the 3D point coordinates as seen from the camera frame; fx
and fy are camera horizontal and vertical focal length (which is known from the camera
specification or discovered during the camera calibration routine); W

2 and H
2 here are the

coordinates of a principal point (the image center) derived from image resolution W and H;
finally, u and v are the resulting 2D pixel coordinates. After transforming and projecting
the 3D points into a 2D image, the filtering step removes all of the points that fall outside
the camera view.

The fusion results of each frame are saved as two files. The first is an RGB image with
projected point clouds, as shown in Figure 5a. The 2D coordinate of LiDAR points was
used to pick out the corresponding pixels in the image. The assignment of the pixel color is
based on the depth information of the point, and the HSV colormap was used to colorize
the image. The RGB image is the visualization of the projection result, which helps evaluate
the alignment of the point clouds and image pixels. The second file contains the projected
2D coordinates and X, Y, and Z axis values of the LiDAR points within the camera view.
All the information was dumped as a pickle file, which can be quickly loaded and adapted
to other formats, such as array and tensor. The visual demonstrations of the information in
the second file are shown in Figure 5b–d, which represents the LiDAR footprint projections
in XY, YZ and XZ planes, respectively. The color of pixels in each plane is proportionally
scaled based on the numerical 3D axes value of the corresponding LiDAR points.

The three LiDAR footprint projections are effectively formatted by, first, projecting the
LiDAR points onto the camera plane and, second, assigning the value of the LiDAR axis to
a projected point. The overall algorithm can be seen in the following subsequent steps:

1. LiDAR point clouds are stored in sparse triplet format L3×N , where N is the number
of points in LiDAR data.

2. The transformation of LiDAR point clouds to the camera reference frame occurs
through the multiplication of the LiDAR matrix L with the LiDAR-to-camera transfor-
mation matrix Tlc.

3. The transformed LiDAR points are projected to the camera plane, preserving the
structure of the original triplet structure; in essence, the transformed LiDAR matrix
LT is multiplied by the camera projection matrix Pc; as a result, the projected LiDAR
matrix Lpc now contains the LiDAR point coordinates on the camera plane (pixel
coordinates).

4. The camera frame width W and height H are used to cut off all the LiDAR points
that fall outside the camera view. In consideration of the projected LiDAR matrix Lpc
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from the previous step, we calculate the matrix row indices where the values satisfy
the following:

• 0 <= Xpc < W
• 0 <= Ypc < H
• 0 <= Zpc

The row indices where Lpc satisfies the expressions are stored in an index array
Lidx; the shapes of the LT and Lpc are the same, therefore it is secure to apply the
derived indices Lidx to both the camera-frame-transformed LiDAR matrix LT and the
camera-projected matrix Lpc.

5. The resulting footprint images XY, YZ, and XZ are initialized following the camera
frame resolution W × H and subsequently populated with black pixels (zero value).

6. Zero-value footprint images are populated as follows:

• XY[Lidx] = L[Lidx, 0]
• YZ[Lidx] = L[Lidx, 1]
• XZ[Lidx] = L[Lidx, 2]

Figure 5. The projection of the LiDAR point clouds onto the camera plane in X, Y, and Z channels.
(a) is RGB image, (b) is X channel projection, (c) is Y channel projection, and (d) is Z channel footprint.
The color map of (a) is HSV, and (a–c) is JET.

The Algorithm 1 illustrates the procedures described above.

Algorithm 1 LiDAR transposition, projection populating the images

1: L[3× N]← nextFrame
2: Tlc ← conf
3: Pc ← conf
4: Lpr = L ∗ Tlc ∗ Pc
5: Lidx = argwhere(Lpr >= {0, 0, 0} & Lpr < {W, H,+∞})
6: XY[W × H]← 0
7: YZ[W × H]← 0
8: XZ[W × H]← 0
9: XY[Lidx] = L[Lidx, 0]

10: YZ[Lidx] = L[Lidx, 1]
11: XZ[Lidx] = L[Lidx, 2]
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3.3.2. Radar LiDAR and Camera Fusion

This study uses millimeter wave (mmwave) radar sensors installed on the prototype
mount. The motivations of equipping mmwave radar sensors on autonomous vehicles
are to robustify perception against adverse weather; to prevent individual sensor failures;
and, most importantly, to measure the target’s relative velocity based on the Doppler
effect. Currently, mmwave radar and vision fusion can be seen as a promising approach to
improve object detection [63]. However, most research relies on advanced image processing
methods to extract the features from the data. Therefore, an extra process is needed to
process the radar points into an image-like data format. Moreover, data conversion and
deep-learning-based feature extraction consume a great amount of computing power and
require noise-free sensing streams. As radar and LiDAR data are both represented as 3D
Cartesian coordinates, the most common solution for data fusion is simply applying a
Kalman Filter [64]. Another example work [65] first converted the 3D LiDAR point clouds
to virtual 2D scans and then converted the 2D radar scans to 2D obstacle maps. However,
their radar sensor is the mechanical pivoting radar, which differs from our mmwave
radar sensors.

In our work, the entire radar–LiDAR–camera fusion operation is divided into two steps.
The first step is the fusion of radar and LiDAR sensors. The second step uses the algorithms
proposed in Section 3.3.1 to fuse the first step’s results and camera images. As discussed in
Section 3.1, we calibrate the radar sensors primarily reactive to the dynamic objects. As a
result, the principle of the radar-LiDAR fusion in our work is selecting the LiDAR point
clouds of the moving objects based on the radar detection results. Figure 6 illustrates four
subsequent procedures of the radar-LiDAR fusion. The first involves transforming the radar
points from the radar frame coordinate to the LiDAR frame coordinate. Corresponding
transformation matrices are attained from the extrinsic sensor calibration. The second
involves applying the density-based spatial clustering of applications with noise (DBSCAN)
algorithm to the LiDAR point clouds to cluster out the points that potentially represent
the objects [66]. The third involves looking up the nearest LiDAR point clusters for the
radar points that were transformed into the LiDAR frame coordinate. The fourth involves
marking out the selected LiDAR point clusters in raw data (arrays contain the X, Y, and
Z coordinate values) and appending the radar’s velocity readings as an extra channel for
selected LiDAR point clusters (or −∞ in case a LiDAR point belongs to no cluster).

Figure 7 demonstrates the relative locations of the original and coordinate-transformed
radar points, and the results of the radar-LiDAR fusion in our work (LiDAR point clusters of
the moving objects). The reference frame for the point-cloud scattering is the one positioned
at the center of the LiDAR sensor. Green dots symbolize the original radar points, whereas
red dots stand for the radar points transformed to the LiDAR frame coordinate, which are
the result of the first subsequent of our radar-LiDAR fusion. Blue dots are the LiDAR point
of the moving objects. The selection of the LiDAR point clusters, representing the detected
moving object, relies on the nearest neighbor lookup based on the Euclidean distance
metric that takes coordinate-transformed radar points as the reference. Due to inherent
characteristics and post-intrinsic calibration, radar sensors in our prototype only produce a
handful of points for moving objects in each frame, which means the computation of the
whole radar-LiDAR fusion operation is computationally efficient and can be executed on
the fly.
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Figure 6. The workflow of radar-LiDAR fusion procedures.

Figure 7. Relative locations of the original radar points (green), transformed radar points (red), and
LiDAR point clusters of the moving object (blue). Scenario taken from a sequence similar to Figure 8.

The second step of the radar–LiDAR–camera fusion is the continuous process toward
the results of the first step of radar-LiDAR fusion. The LiDAR point clusters that belong to
the moving objects will be projected onto the camera plane. Figure 8a visualizes the final
outcome of the radar–LiDAR–camera fusion in our dataset collection framework. LiDAR
point clouds representing moving objects were filtered from the raw LiDAR data and
projected onto the camera images. For each frame, moving objects’ LiDAR point clusters
were dumped as a pickle file containing 3D-space and 2D-projection coordinates of the
points and the relative velocity information. Because of the sparsity of the radar points
data, the direct projection of the radar points onto camera images has very little practical
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significance (see Figure 8b). In fact, only two radar points are shown in this frame, and for
this reason the significant result is the LiDAR point cluster in Figure 8a.

Figure 8. Illustration of the radar-LiDAR-camera. (a) Overposed LiDAR point cluster as extracted
using the radar point as a reference, and (b) projection of the radar data onto the camera image.

4. Prototype Setup

This section presents our prototype for demonstrating and testing the dataset col-
lection framework. In addition, we provide detailed introductions of the hardware in-
stallation, framework operating system, data transferring protocols, and architecture of
cloud services.

4.1. Hardware Configurations

This work aims to develop a general framework for autonomous vehicles to collect
sensory data when performing regular duties. In addition, process the data in formats
that can be used in other autonomous-driving-related technologies, such as sensor-fusion-
based object detection and real-time environment mapping. A Mitsubishi i-MiEV car was
equipped with a mount on the top (shown in Figure 9b), and all the sensors were attached
to the mount. To increase the hardware compatibility, two processing units were used for
the prototype mount to initiate the sensors and collect data. The main processing unit,
which initiates the LiDAR sensor and handles the post-processing of the data, is located
inside the car. Another supporting processing unit connected to the camera and radar
sensors stays on the mount (outside the car and protected by water-dust-proof shells).
The dataset collection framework was operated upon by the ROS; all sensory data were
captured in corresponding ROS formats.

Figure 9. The prototype of the dataset collection framework. (a) is the Mitsubishi i-MiEV testing
vehicle with the sensors mounted on the top. (b) shows the locations of sensors and other hardware.
(c) shows the inside of the waterproof shell, which has one supporting computer, one camera, and
two radar sensors.
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4.1.1. Processing Unit Configurations

Three requirements have to be satisfied for the processing units and sensor components
for the prototype:

• All the sensors must be modular, in a manner that they can work independently and
can be easily interchanged. Therefore, there is a need for independent and modular
processing units to initiate sensors and transfer the data.

• Some sensors have hardware limitations. For example, our radar sensors rely on
serial ports for communication, and the cable’s length affects the communication
performance in practical tests. A corresponding computer for radar sensors has to
stay nearby.

• The main processing unit hardware must provide enough computation resources to
support complex operations such as real-time data decompression and database writing.

The main computer for the prototype is an Intel® NUC 11 with a Core™ i7-1165G7
Processor, and the supporting computer is a ROCK PI N10 with four Cortex-A53 processors.
The main computer is connected to the LiDAR sensor and 4G router, subscribes to data
streams of the camera and radar sensors (published by supporting processing unit), carries
out the data post-processing, and then sends corresponding information to the remote
database server. The supporting computer is connected to the camera and radar sensors
and stays inside the water-dust-proof shell that protects other electronic devices outside
the vehicle (shown in Figure 9c). The communication between the two computers relies on
the LAN.

4.1.2. Sensor Installation

All the sensors installed in the prototype have been used and tested by other autonomous-
driving-related projects [67,68] in the autonomous driving lab. Four perceptive sensors are
installed on the prototype mount: one LiDAR, one camera, and two radars.

Currently, LiDAR and camera sensors are the mainstream in the autonomous driving
field. Although it is a relatively new technology, LiDAR has become an essential sensor
for many open datasets [28,69] and autonomous driving platforms [23,70]. The trend
in the research community towards LiDAR sensors is using high-resolution models to
produce the dense point clouds data; the maximum number of the vertical channels of
the LiDAR sensors can be 128, and the range can reach 240 m. Correspondingly, dense
point clouds data requires a large amount of bandwidth transference and processing power.
To explicitly demonstrate our dataset collection framework and simplify the hardware
implementation process, the LiDAR sensor used on the prototype is the Velodyne VLP-32C,
which has 32 laser beams and vertically 40° FoV. The LiDAR sensor was connected to the
main computer (NUC 11) by ethernet cable.

Camera sensors have a long developing history and are still important in modern
autonomous driving technologies because of their advantages, such as reliability and cost-
effectiveness. Moreover, the recent breakthrough of vision-based deep learning algorithms
for object detection and segmentation has brought the researchers’ focus back to the camera
sensor. Therefore, it is critical for our framework to have the capability to produce and
process the camera data. Since the supporting computer (Rock Pi) has the specific camera
serial interface (CSI) socket, the choice of the camera sensor for the prototype mount is the
Raspberry Pi V2 camera with a wide angle (160° diagonal FoV). The camera can capture
3280 × 2464 pixel static images and up to 90 Hz video mode in resolution 640 × 480.

Radar sensors have been comprehensively used on commercial cars for driving as-
sistance. However, most of the radar-based assistant functions, such as collision warning
and distance control, simply use the character of reflectivity of the radar sensors. Another
iconic characteristic of the mmwave radar sensors is their capability to detect moving
objects. The velocity of the moving objects can be derived based on the Doppler effect. In
addition, compared with the LiDAR sensors’ point clouds data that homogeneously project
to all surrounding objects and whose total number of points are counted in millions, radar
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sensors can only focus on moving objects and produce much more sparse point clouds
data that is friendly to the data transfer and storage. As mentioned in Section 3, one of the
contributions of our work is using the mmwave radar sensors to detect moving objects
and enhance them in LiDAR and camera data. The testing mmwave radar sensor used for
our data collection framework is Texas Instruments mmwave AWR1843BOOST with 76 to
81 GHz frequency coverage and 4 GHz available bandwidth.

Figure 9 and Table 2 show all sensors’ aspects and detailed specifications. Please note
that the parameters in Table 2 are the maximum values sensors can manage under the
firmware and developing kit versions used in our experiments. In practical terms, the
resolution and frame rate were reduced to meet the bandwidth and computation power
limits. The LiDAR sensor operates at 10 Hz, and the camera runs at 15 Hz with a resolution
of 1920 × 1080. Moreover, the maximum unambiguous range of the radar sensor was set
as 30 m, and the maximum radial velocity is 15.37 m/s. The corresponding resolution
of range and radial velocity is 0.586 and 0.25 m, respectively. To address the common
problems of the radar sensors, such as sparse and heterogeneous point clouds, and a high
level of uncertainty and noise for moving object detection, there are two radars installed
next to each other in the box, as shown in Figure 9c. Camera and radar sensors are in
close proximity, so the image and points data are consistent with each other and produce
accurate perceptive results. Unlike the camera and radar sensors with limited horizontal
FoV, LiDAR sensors have 360° horizontal views. To fully utilize this characteristic of the
LiDAR sensors, one of the most popular methods is installing multiple camera and radar
sensors in all directions. For example, the acquisition system of Apolloscape [29] has up to
six video cameras around the vehicle; multiple LiDAR and radar sensors were installed in
pairs in [23] to cover most of the blind spots. It is a fact that the prototype mount in this
work only records camera and radar data in front view. However, the scope of this work is
demonstrating a generic framework for data collection and enhancement. Future work will
include setting more camera–radar modules in different directions.

Table 2. Specifications of the sensors ion prototype mount.

FoV (◦) Range (m)/Resolution Update Rate (Hz)

Velodyne VLP-32 40 (vertical) 200 20

Raspberry Pi V2 160 (D) 3280 × 2464 90 in 640 × 480

TI mmwave
AWR1843BOOST

100 (H)
40 (V)

4 cm (range resolution)
0.3 m/s (velocity resolution) 10–100

4.2. Software System

The software infrastructure of the dataset collection framework was adapted from the
iseAuto, the first autonomous shuttle deployed in real-traffic scenarios in Estonia. Based
on the ROS and Autoware [71], the software infrastructure of the iseAuto shuttle is a
generic solution for autonomous vehicles for sensor launching, behavior making, motion
planning, and artificial intelligence-related tasks. The infrastructure contains a set of
modules, including human interface, process management, data logging, and transferring.
Like the iseAuto shuttle, the pipeline of the dataset collection framework was operated
upon the ROS and captures all the sensory data in the corresponding ROS formats. As ROS
is designed with distributed computing capability, multiple computers can run the same
ROS system with only one master; thus, the ROS data from different slaves is visible to the
whole network. In this work, the supporting computer connected to the camera and radar
sensors works as an ROS slave, and the main computer hosts the ROS master. Complete
and bi-directional connectivity exists between the main and supporting computers on all
ports. In addition, the Gigabyte Ethernet connection guarantees low latency to transfer the
camera and radar data from the supporting computer to the main computer.
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4.3. Cloud Server

In our work, the cloud server is another important component because it hosts the
database module, which stores the post-processing data. The private cloud server plays a
critical role in the processes of data storage and public service requests. For the iseAuto
shuttle, multiple database architectures were used in the cloud server to store all kinds
of data produced by the vehicle. Log data related to the low-level control system, such
as braking, steering, and throttle, were stored in a PostgreSQL database. Perceptive data
from the sensors were stored in a MySQL database set in parallel in the cloud server.
We deploy a similar MySQL database in a remote server to store original sensory and
post-processed data collected by prototype, such as camera-frame-projected and radar-
enhanced LiDAR data. The database module communicates with the main computer
through 4G routers. Moreover, we develop the database in a manner to be able to adapt
to other autonomous platforms quickly. There is an interface that allows users to modify
the database structure for different sensors and their corresponding configurations. The
data that were stored in the database have the labels of the timestamps and path in file
systems, which will be useful for the database query tasks. We also deploy this data
collection framework onto our autonomous shuttle and publish the data collected by the
shuttles when they are on real-traffic duty. The web page interface to access the data is
https://www.roboticlab.eu/finest-mobility (accessed on 14 May 2023).

5. Performance Evaluation

We developed this dataset collection framework primarily for the purpose of deploying
on low-speed urban autonomous vehicles such as autonomous shuttles and food-delivery
robots. Perceptive data were collected while autonomous vehicles were performing routine
duties. Post-processing such as data decompression, sensor synchronization, and fusion
were supposed to be carried out on board. Considering the computational limit of vehicles’
in-built computers, it is critical to evaluate the efficiency of dataset collection framework
regarding time and storage space consumption. Please note that the scope of our work is to
build a generic practical solution for autonomous vehicles to collect and process perceptive
data. The potential usages of the published dataset include scooter speed monitoring, and
traffic-sign enhancement, which serve as transportation management for smart cites [72].
Benchmarks for other kinds of autonomous-driving-related research such as object seg-
mentation, tracking, and path completion might benefit from the implementation of this
framework, but remain out of the scope of this work.

Tables 3 and 4 evaluate the performance of this dataset collection framework in our
prototype. Table 3 shows the storage occupation and time consumption of the framework’s
different modules to process the whole data sequence. The raw data collected from the
sensors are stored as ROS bag files. There are two examples listed in this table: the first
sequence is the filed-test data collected at the scene where our autonomous shuttles were
deployed in Tallinn urban area. The second sequence was recorded at the indoor laboratory.
The duration of our tests is 301 and 144 s, corresponding to the size of 3.7 and 0.78 GB.
The output of the decompression and fusion operations in our framework are portable
network graphics (PNG) images and binary pickle files for each frame, which are explained
in detail in Section 3. The final output of our dataset collection framework for these two
example sequences is available at https://www.roboticlab.eu/claude/finest_framework/
(accessed on 14 May 2023). As there are two radar sensors installed in our prototype, the
‘radar–LiDAR–camera Fusion’ in Table 3 indicates the time consumption and data size for
two radar streams. Please note that the post-processing in our framework was executed in
parallel using multiple threads; therefore, the time consumption of the decompression and
fusion might vary for different hardware setups and conditions. The data in Table 3 were
computed by the main onboard computer of our prototype, which is Intel® NUC 11 with
Core™ i7-1165G7 featuring 8 processing threads.

Table 4 shows our evaluation on the framework’s per-frame performance. The first
row shows the size of the RGB image and binary LiDAR points per frame. The second row
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is the sum of the time consumption to produce one image, and one point-cloud binary file
since the camera and LiDAR data were synchronized to the same frequency before being
forwarded to the post-processing modules. The input of the ’LiDAR Projection’ process is
all of the LiDAR point clouds; therefore, this process takes the longest time compared with
the other processes.

Table 3. Data size and time duration of framework’s modules to process the data sequence. The unit
of the data size is gigabyte (GB), and the unit of the time is second (s).

Sequence 1
City Urban

Sequence 2
Indoor Lab

Sequence Duration (s) 301 144

Raw Bag File Size (GB) 3.7 0.78

Synchronization (s) 4.28 1.24

Raw Data Decompressing (s) 0.36 0.09

Raw Data Writing (s)/(GB) 116.63/16.4 54.74/7.4

LiDAR-Camera Fusion (s)/(GB) 510.94/9.2 261.34/4.6

radar–LiDAR–Camera Fusion (s)/(GB) 61.97/5.8 39.38/3.3

Table 4. Data size and average time consumption of the framework’s post-processing for each frame.
The output of each post-processing is an RGB image with resolution of 1920 × 1080, and the binary
pickle file contains the coordinates and the velocity information of the points in each corresponding
frame. The unit of the data size is megabyte (MB), and the unit of the time is millisecond (ms).

Raw Data
Decompressing

and Writing

LiDAR
Projection

Radar-LiDAR
Clustering

Size per frame
RGB image in 1920 × 1080 3 MB 3 MB 3 MB

LiDAR points in binary 1.2 MB 0.9 MB <0.1 MB

Average time per frame
(RGB image in 1920 × 1080 +

LiDAR points in binary)
79.7 ms 647.7 ms 108.44 ms

6. Conclusions

In conclusion, this study successfully presents a comprehensive end-to-end generic
sensor dataset collection framework for autonomous driving vehicles. The framework
includes hardware deploying solutions; sensor fusion algorithms; and a universal toolbox
for calibrating and synchronizing camera, LiDAR, and radar sensors. The generality of this
framework allows for its application in various robotic or autonomous systems, making it
suitable for rapid, large-scale practical deployment. The promising results demonstrate the
effectiveness of the proposed framework, which not only addresses the challenges of sensor
calibration, synchronization, and fusion, but also paves the way for further advancements
in autonomous driving research. Specifically, we showcase a streamlined and robust
hardware configuration that maintains ample room for customization while preserving a
generic interface for data gathering. Aiming to simplify cross-sensor data processing, we
introduce a framework that efficiently handles message synchronization, and low-level
data fusion. In addition, we develop a server-side platform allowing for the redundancy of
connections from the recording of multiple in-field operational vehicles and the uploading
of sensors data. Finally, we feature the framework with the basic web interface allowing
one to overview and download the collected data (both raw and processed). Moreover,
the framework has the potential for expansion through the incorporation of high-level
sensor data fusion, which would enable one to track dynamic objects more effectively. This
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enhancement can be achieved by integrating LiDAR-camera deep fusion techniques that
not only facilitate the fusion of data from these sensors, but also tackle the calibration
challenges between LiDAR and camera devices. By integrating these advanced methods,
the framework can offer even more comprehensive and efficient solutions for autonomous
vehicles, and other applications, requiring the robust and precise tracking of objects in
their surroundings. In addition, we view comprehensive evaluations, such as the image
quality assessment described by Zhai and Min [73] and the real-traffic object detection
benchmark [74] of the results, as future work.
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CLFT: Camera-LiDAR Fusion Transformer for
Semantic Segmentation in Autonomous Driving

Junyi Gu , Mauro Bellone , Tomáš Pivoňka , and Raivo Sell

Abstract—Critical research about camera-and-LiDAR-based
semantic object segmentation for autonomous driving signifi-
cantly benefited from the recent development of deep learning.
Specifically, the vision transformer is the novel ground-breaker
that successfully brought the multi-head-attention mechanism to
computer vision applications. Therefore, we propose a vision-
transformer-based network to carry out camera-LiDAR fusion
for semantic segmentation applied to autonomous driving. Our
proposal uses the novel progressive-assemble strategy of vision
transformers on a double-direction network and then integrates
the results in a cross-fusion strategy over the transformer decoder
layers. Unlike other works in the literature, our camera-LiDAR
fusion transformers have been evaluated in challenging conditions
like rain and low illumination, showing robust performance.
The paper reports the segmentation results over the vehicle
and human classes in different modalities: camera-only, LiDAR-
only, and camera-LiDAR fusion. We perform coherent controlled
benchmark experiments of the camera-LiDAR fusion trans-
former (CLFT) against other networks that are also designed for
semantic segmentation. The experiments aim to evaluate the per-
formance of CLFT independently from two perspectives: multi-
modal sensor fusion and backbone architectures. The quantitative
assessments show our CLFT networks yield an improvement of
up to 10% for challenging dark-wet conditions when comparing
with Fully-Convolutional-Neural-Network-based (FCN) camera-
LiDAR fusion neural network. Contrasting to the network with
transformer backbone but using single modality input, the all-
around improvement is 5-10%.

Our full code is available online for an interactive demonstra-
tion and application1.

Index Terms—Camera-LiDAR fusion, Transformer, Semantic
Segmentation, Autonomous driving.

I. INTRODUCTION

Semantic segmentation of the surrounding environment
is a challenging topic in autonomous driving and plays a
critical role in various intelligent-vehicle-related research-
tasks such as maneuvering, path planning [1] [2], and scene
understanding [3]. The field of semantic segmentation has
greatly advanced due to the evolution of deep neural net-
works, particularly Convolutional Neural Networks (CNN),
along with the availability of open datasets. Early studies
[4] took camera RGB images as input and tested them with
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datasets that had relatively monotonous scenarios [5]. In recent
years, the blooming of perceptive sensor industries and strict
safety requirements motivated semantic segmentation research
related to different sensors and comprehensive scenarios. Li-
DAR sensors are involved the most in all kinds of research.
Examples of the popular LiDAR-only methods include VoxNet
[6], PointNet [7], and RotationNet [8]. However, multimodal
sensor fusion is perceived as a promising technique to solve
the problem of autonomous driving and has become the
mainstream option for semantic segmentation [9].

As an applied research, the advancement of semantic
segmentation is driven by the proposals of neural network
backbones. One of the most popular neural networks re-
cently proposed is the transformer [10], which implemented
the multi-head attention mechanism [11] into the Natural
Language Processing (NLP) application. The proposal of the
Vision Transformer (ViT) [12] inspired researchers to explore
its potential in environment perception for autonomous driv-
ing. In this work, we introduce the camera-LiDAR fusion
transformer (CLFT). CLFT maintains the generic encoder-
decoder architecture of a transformer-based network but uses
a novel progressive-assemble strategy of vision transformers
on a double-direction network. The results of the two network
directions are then integrated using a cross-fusion strategy over
the transformer decoder layers.

The CLFT aims to address the following issues that are
challenging and less explored in the autonomous driving
community.

(i) Unbalanced sample distribution. In real-traffic scenar-
ios, dealing with an unbalanced sample distribution poses a
significant challenge for autonomous vehicles. For instance,
while vehicle lanes consistently have more cars than humans
(primarily encountered at crossings or sidewalks), achieving
precise perception of human entities remains paramount for
the optimal functioning of any autonomous vehicle. Our pre-
vious camera-LiDAR FCN-based fusion model (CLFCN) [13]
achieved more than 90% accuracy in vehicle classification.
However, its accuracy in the human class is limited, reaching
only 50%. Due to the under-representation of the human class
in the dataset, CNNs face challenges in effectively learning
knowledge during explicit down-sampling processes. In con-
trast, vision transformers maintain a consistent resolution for
representations across all stages. Furthermore, their incorpo-
ration of a multi-head self-attention mechanism inherently
provides an advantage in handling global context, making
them more adept at addressing challenges associated with
imbalanced class distributions.

(ii) The consistency of multimodal input data formats.
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LiDAR sensors have attracted broad interest from autonomous
driving community and there are different strategies to process
the LiDAR’s point clouds data [14]. Unlike previous works
in this field that integrate a voxel view of the LiDAR with
the camera view [15] [16], our work uses the strategy to
project the LiDAR point clouds along XY , Y Z, and XZ
plane views; thus, the camera and LiDAR inputs are amal-
gamated into a unified data representation for subsequent
operations, encompassing feature extraction, assembly, and
fusion. Although our CLFT models require the pre-processing
of LiDAR point clouds such as calibration, filtering, and
projection, we have verified that it is possible to carry out
all these operations on the fly based on the current hardware
specifications on autonomous vehicles [17] without significant
overhead. Together with the inference time analysis in Section
V, it is possible to claim the practical potential applicability
of our models.

The niche of our work compared to other state-of-the-art
transformer-based multimodal fusion techniques is detailed in
Section II. The contribution of this work can be summarily
outlined as follows:

• We introduce a new network architecture named CLFT,
employing an innovative progressive-assemble strategy of
vision transformers within a double-direction network.

• To the best of our knowledge [18] [19], CLFT is the
first open-source transformer-based network that directly
uses camera and LiDAR sensory input for object semantic
segmentation tasks.

• We divide datasets based on illumination and weather
conditions. This approach allows us to compare and
highlight the robustness and efficacy of different models
in challenging real-world situations.

• We prove the advancement and prospect of multimodal
transformer-based models in the autonomous driving
perception field, especially the segmentation of under-
represented traffic objects.

The remainder of the paper is as follows. Section II reviews
the state-of-the-art literature on camera-LiDAR deep fusion
and transformer usage in autonomous driving. We analyze the
gap in current research and explain how our work contributes
to the field. Section III introduces the CLFT architecture de-
tails. Section IV presents the pre-processing and configurations
of the dataset we used in this work. Section V reports the
experiment results and discussion. Finally, a conclusion is
conducted in Section VI.

II. RELATED WORK

Given the scope of this work, we revisit relevant literature on
two aspects of semantic object segmentation for autonomous
driving. The first part reviews the popular camera-LiDAR
fusion-based deep learning proposals. The second part presents
the recent usage of transformers in autonomous driving re-
search.

A. Camera-LiDAR fusion-based deep learning

The fusion of camera and LiDAR data stands out as one
of the extensively investigated topics in multimodal fusion,

particularly in the context of traffic object detection and
segmentation. Various taxonomies are employed to categorize
deep fusion algorithms that integrate camera and LiDAR infor-
mation. To distinguish different fusion principles we adopt the
patterns suggested in [9], namely signal-level, feature-level,
result-level, and multi-level fusion. This systematic categoriza-
tion aids in better understanding and comparing the diverse
approaches employed in the fusion of camera and LiDAR data
for enhanced performance in traffic-related applications.

(i) The signal-level fusion is expressed as early-stage fu-
sion as it relies on spatial coordinate matching and raw
data (e.g. 2D/3D geometric coordinates, image pixel values)
integration to achieve the fusion of two sensing modalities.
Depth completion [20] [21] is an iconic application which
is instinctively suitable for signal-level fusion. Work [22]
[23], and [24] explored the possibility of using signal-level
fusion in road/lane detection scenarios and its performance-
computation trade-off. There are relatively few works that
implement signal-level fusion for traffic object detection and
segmentation [25] [26] because texture information loss is
inevitable in sparse mapping and projection process.

(ii) On the other hand, the literature of feature-level fusion
is rich. In general, the LiDAR data is involved in fusion as
either a voxel grid or 2D projection, and the feature map is
the most common format for image input. VoxelNet [27] is
the leading work to sample raw point clouds as sparse voxels
before the fusion with camera data. The examples of the fusion
of LiDAR’s 2D projections and camera images are [28] [29]
[30].

(iii) The intuition of result-level fusion is using the weight-
based logical operations to combine the prediction results from
different modalities, which is adopted in work [31] [32].

(iv) The multi-level fusion combines the other three fusion
approaches mentioned above to overcome the shortcomings
of the respective method. Van Gansbeke et al. [33] com-
bined signal-level and feature-level fusion in a network for
depth prediction. PointFusion [34] explored the result-level
and feature-level fusion combination by first generating 2D
bounding boxes, then filtering the LiDAR points based on
these 2D boxes, at last, using a ResNet [35] and PointNet [7]
network to integrate image and point clouds features to 3D
object predictions. Other multi-level fusion research includes
[36] [37].

During the literature review, we observe that the transition
from signal/result-level to multi-level fusion is the general
trend of camera-LiDAR deep fusion. To mitigate some limi-
tations such as computational complexity, early works usually
extract geometric information directly from LiDAR data to
leverage the existing ready-to-use image processing networks.
The recent research tends to carry out the fusion in a multi-
level format, that adopts various fusion strategies and context
encoding processes. Our work contributes in the line of a
multi-level fusion architecture which uses a transformer head
to encode the input and then execute the cross-fusion of
camera and LiDAR data.
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Fig. 1. The overall architecture of our double-direction network shows camera data flowing from the left side into the ViT encoder, while LiDAR data flows
from the right. The camera input is individual RGB channels, and the LiDAR input stands as XY, YZ, and XZ projection planes. The cross-fusion strategy
is shown in the center and highlighted using a dashed rectangle.

B. Transformers in autonomous driving research

The attention mechanism [11] has garnered significant at-
tention from researchers across diverse fields since its in-
troduction by Vaswani et al. in the transformer architecture
for natural language processing (NLP) tasks [10]. Among the
most notable transformer variants is the Vision Transformer
(ViT) [12], showcasing its capabilities in computer vision
with direct applications in autonomous driving. Specifically,
the autonomous driving perception tasks benefit the most
from the attention-mechanism’s strengths in global context and
long-range dependencies handling. In this section, we review
the state-of-the-art transformer-based works for 2D and 3D
general perception in autonomous driving.

The 2D perception applications of autonomous driving
extract the information from camera images. Lane detection
is the most prevalent task among 2D perception research.
Peng et al. [38] proposed a bird’s eye view transformer-based
architecture for road surface segmentation. Work [39] adopted
a lightweight transformer structure for lane shape prediction,
first modeled lane markings as regressive polynomials, then
optimized the polynomial parameters by a transformer query
and Hungarian fitting loss algorithms. Other transformer deep
networks for road/lane segmentation include [15] [40]. There
are relatively fewer works of 2D segmentation because the
multimodal fusion is the trend for semantic segmentation in
recent. Panoptic SegFormer [41] proposed a panoptic segmen-
tation framework utilizing a supervised mask decoder and a
query decoupling method to execute the semantic and instance
segmentation.

The research of transformer-based 3D object detection and
segmentation is abundant. DETR3D [42] is a variant of the
popular DETR [43] model but extended its 2D object detection
potential to 3D detection scenarios. DETR3D relied on multi-
view images to recover 3D information and used backward
geometric projection to combine 2D feature extraction and

3D prediction. FUTR3D [44] is a counterpart network to
DETR3D, featuring a modality-agnostic feature sampler de-
signed to accommodate multimodal sensory input for precise
3D bounding box predictions. PETR [45] embedded 3D coor-
dinate information into image to produce 3D position-aware
features. BEVFormer [46] employed spatial and temporal
attention layers for bird’s eye view features to improve the per-
formance of 3D object detection and map segmentation. Work
[47] and [48] focused on the 3D segmentation. TPVFormer
[47] reduced the computational requirement by transforming
the volume to three bird’s eye view planes. VoxFormer [48]
generated 3D voxels from 2D images, then performed cross
and self attention mechanisms to 3D voxel queries to compute
semantic segmentation results.

With reference to our review, there are relatively few
research works on the semantic object segmentation, let alone
the multimodal fusion of camera and LiDAR sensors. Work
[44] and [16] directly used LiDAR input, but their focus are
3D detection and occupancy prediction. Moreover, other latest
works [47] and [48] produced the voxel and pseudo-point-
clouds from the camera input, then carried out the semantic
occupancy prediction. While our CLFT models directly take
LiDAR data as input, and adopt another strategy to process
the LiDAR point clouds as image views in camera plane to
achieve 2D semantic object segmentation. Foremost, our work
plays a crucial role in bridging the gap in multimodal semantic
object segmentation within the realm of autonomous driving
research.

III. METHODOLOGY

There are two aims of our CLFT models in this work; first
is to outperform the existing state-of-the-art single modality
transformer-based models; second is to compete with the
recent CNN-based models in terms of traffic object segmen-
tation by fusing the camera and LiDAR data. We maintain
the overall structure of the transformer network for dense
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prediction (DPT) [49] but invoke a late fusion strategy in
its convolutional decoder, which first assemble the LiDAR
and camera data in parallel and then integrate their feature
map representations. We explore the capability of transformer-
based networks in semantic segmentation with the advantages
of LiDAR sensors, prove transformer networks’ potential to
classify the less represented samples in contrast with CNNs,
at last, provide a late fusion strategy for transformer-related
sensor fusion research.

The encoder-decoder structure has been widely imple-
mented in image analysis transformers. We closely follow the
protocol of ViT [12] to establish the encoders in our network
to create the multi-layer perceptron (MLP) heads for camera
and LiDAR data separately. For the decoders, we refer, but
leverage proposals in work [49] to assemble and integrate
the feature representations from camera and LiDAR sensors
to create the object segmentation that is more precise than
single modality. Figure 1 shows the overall architecture of our
network.

1) Encoder: ViT innovatively proposed an encoder to con-
vert an image into multiple tokens that can be treated in the
same way as words in a sentence; consequently, transferred
the standard transformer from NLP to computer vision ap-
plications. The ViT encoder uses two different procedures to
transfer the images into tokens. The first approach divides
an image into fixed-size non-overlapping patches, followed
by linear projection of their flattened vector representations.
The second approach extracts feature patches from a CNN
feature map and then feeds them into the transformer as
tokens. We retain the ViT’s conventions to define the encoder
variants in our work, namely, ‘CLFT-base’, ‘CLFT-large’,
‘CLFT-huge’, and ‘CLFT-hybrid’. The ‘base’, ‘large’, and
‘huge’ indicate the encoder’s configuration such as layer, size,
and amount of parameters. The ‘hybrid’ means other neural
network backbones are integrated in the model. The ‘CLFT-
base’, ‘CLFT-large’, and ‘CLFT-huge’ architectures use patch-
based embedding methods, have 12, 24, and 32 transformer
layers, and the feature dimension D of each token are 768,
1024, and 1280, respectively. The ‘CLFT-hybrid’ encoder
employs a ResNet50 network to extract pixel features as image
embeddings, followed by 12 transformer layers. The patch
size p of all our experiments is 16. The resolution of the
input camera and LiDAR image (h,w) is (384, 384), which
means the total amount of pixels for each patch h∗w

p2 = 576
is smaller than feature dimensions D of all variants; thus,
the knowledge can be retrieved from input in pixel-wise. For
the ‘CLFT-hybrid’ encoder, it extracts the features from the
input patch of 384÷ 16 = 24 resolution. All the encoders are
pretrained using ImageNet [50]. Following work in ViT, we
concatenate position embeddings with image embeddings to
retain positional information. Moreover, there is an individual
learnable token in sequence for classification purposes. This
classification token is represented as red block with the asterisk
in Figure 1. It is similar to BERT’s ‘class’ token [51], inde-
pendent from all image patches and positionally embedded.
Please refer to the original work [12] for the details of these
encoder architectures.

2) Decoder: The transformer networks designed for com-
puter vision usually modify the decoder by implementing
convolutional layers at different stages. Ranftl et al. [49]
proposed a transformer network for dense prediction (DPT)
that progressively assembles tokens from various encoder
layers into image-like representations to achieve final dense
prediction. Inspired by DPT’s decoder architecture, we con-
struct a decoder to process the LiDAR and camera tokens in
parallel.

As illustrated in Figure 1, we pick four transformer encoder
layers denoted as t (t = {2, 5, 8, 11} for ‘CLFT-base’ and
‘CLFT-hybrid’, t = {5, 11, 17, 23} for ‘CLFT-large’), then
assemble the tokens from each layer to an image-like repre-
sentation of feature maps. The feature map representations at
the initial layers of the network are up-sampled to a high res-
olution, whereas representations from deep layers ware down-
sampled to a low resolution. The resolutions are anchored to
input image size (h,w), and the sampling coefficients corre-
sponding to encoder layers t are s = {4, 8, 16, 32}. In detail,
there are two steps in the assembly process. As illustrated
in Algorithm 1, the first step replicates and concatenates the
patch-independent ‘classification token’ with all other tokens
individually, then forwards the concatenated representations to
an MLP process with GELU non-linear activation [52]. The
number of individual tokens is denoted as k.

Algorithm 1 The projection of the ‘classification token’.
Input: Input tensor T , representing either the camera or

LiDAR channels containing the ‘classification token’ and
patch tokens.

Output: Concatenated tensor representations XT

1: Tcls = replicate{T [:, 0]}
2: Tconcat = T [:, i] ∥ Tcls ∀ i = 1, . . . , k
3: XT = GELU(W · Tconcat + b)

Equation 1 shows the second step, which first concate-
nates the tokens from the first step based on their initial
positional order to yield an image-like representation, then
passes this representation to two convolution operations. The
first convolution projects the representation from dimension
D to D̂ (D̂ is set as 256 in our experiments). The second
convolution applies up-sampling and down-sampling toward
representation concerning the different layers of transformer
encoders. Xc and Xl are the concatenated camera and LiDAR
representations, N represents the total amount of patches. The
generic workflows of these two steps are shown in Figure 2.

XN×D
t ⇒ X

h
s ×w

s ×D̂
t (1)

Xt = {Xc, Xl} s = {4, 8, 16, 32}
t = {2, 5, 8, 11} or {5, 11, 17, 23}

The last process of our decoder is the cross-fusion of
camera and LiDAR feature maps, which is progressively
illustrated in Figure 3. We refer to the feature fusion strategy
from RefineNet [53] that forwards the camera and LiDAR
representations through two residual convolution units (RCU)
in sequence. The camera and LiDAR’s representations are
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Fig. 2. Assemble architecture for each transformer decoder block, tokens of each layers are assembled to image-like representations of feature maps.
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Fig. 3. Each fusion block receives data from the previous stage and integrates
camera-LiDAR data coming from the ViT encoder. Each of this block has
residual units, de-convolution, and up-sampling.

summed with the results from the previous fusion operation
and then went through one additional RCU. We pass the
output of the last fusion layer to a deconvolutional and up-
sampling module to compute the final predicted segmentation.
The fusion of the information coming from the LiDAR and the
camera can happen in any of the fusion block as the connection
weights are automatically learned in the network through error
back-propagation. The idea of our multiple fusion blocks is to
integrate the concept of late-fusion (as each fusion blocks is
placed after each assemble block) and the concept of cross-
fusion [24] as the connection with each feature map can
happen in any of the fusion blocks with different weights.
The network automatically learns to weight the best block to
integrate tensor information coming from different sensors.

IV. DATASET CONFIGURATION

The primary purpose of this work is to compare the per-
formance of the vision transformer and CNN backbones for
semantic segmentation. Our previous work [13] successfully
modeled and evaluated a ResNet50-based FCN to carry out
camera-LiDAR fusion. In order to maintain an accordant
experiment environment, we construct the input data based
on Waymo dataset [54] to evaluate CLFT and other models.

Waymo dataset is recorded by multiple high-quality cameras
and LiDAR sensors. The scenes of Waymo dataset span
various illumination levels, weather conditions, and traffic sce-
narios. Therefore, as shown in Table I, we manually partitioned
the data sequences into four subsets: light-dry, light-wet, dark-
dry, and dark-wet. The ‘light’ and ‘dark’ indicate the relative

illumination conditions. The ‘dry’ and ‘wet’ represent the
weather difference in precipitation.

TABLE I
AMOUNT OF THE FRAMES IN FOUR BROAD SUBSETS FOR WAYMO OPEN

DATASET.

Light-Dry Dark-Dry Light-Wet Dark-Wet
14940 1640 4520 900

We provide intersection over union (IoU) as the primary
indication of model evaluation, with precision and recall values
as supplementary information. Please note that the IoU is
primarily used in object detection applications, in which the
output is the bounding box around the object. Therefore, We
modify the ordinary IoU algorithm to fit the multi-class pixel-
wise semantic object segmentation. The essential change is
related to the ambiguous pixels (pixels have no valid labels,
details in Section IV-B) that fall out of the class list. We assign
these pixels as void and exclude them from the evaluation.
The performance of networks is measured by the statistics of
the number of pixels that have identical classes indicated in
prediction and ground truth.

A. LiDAR Data Processing

The LiDAR readings reflect the object’s 3D geometric
information in the real world. Coordinate values in three
spatial channels contain features that can be exploited by
neural networks. As a result, regarding camera-LiDAR fusion,
it is common to extract and fuse multi-target features such as
images’ color textures and point clouds’ location information,
which is an approach namely as feature-level fusion [55].

We adopt feature-level fusion in this work. Thus, we project
3D LiDAR point clouds into the camera plane to create 2D
occupancy grids in XY , Y Z, and XZ planes. All the points in
LiDAR point clouds are transformed and projected following
Equation 2 and 3, respectively.
[
xt, yt, zt

]T
=

(
r p y

) ([
xi, yi, zi

]T −
[
xc, yc, zc

]T) (2)

r =



1 0 0
0 cos(ρ) sin(ρ)
0 −sin(ρ) cos(ρ)


 p =



cos(θ) 0 −sin(θ)

0 1 0
sin(θ) 0 cos(θ)


 y =




cos(ϕ) sin(ϕ) 0
−sin(ϕ) cos(ϕ) 0

0 0 1




In Equation 2, xt, yt, and zt are the 3D point coordinates
after transformation (in camera frame); r, p, and y represent
the Euler rotation matrices to the camera frame with (ρ, θ, ϕ)
representing the corresponding Euler angles. xi, yi, and zi
are the 3D point coordinates before transformation (in LiDAR
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Fig. 4. Examples of camera image, semantic annotation mask, and pre-processing of LiDAR data. (a) is the RGB image. (b) illustrates the object semantic
masks obtained from LiDAR ground truth bounding boxes. (c) (e) (g) are LiDAR projection images in X, Y, Z channels, respectively, while (d) (f) (h) are
corresponding up-sampled dense images. Please note that for visualization purposes, the grayscale intensity in (c)-(h) is proportionally scaled based on the
numerical 3D coordinate values of the LiDAR points.

frame); xc, yc, and zc denote the camera frame location
coordinates.

(
u, v, 1

)T
=



fx 0 w

2

0 fy
h
2

0 0 1


(

x, y, z
)T

(3)

In Equation 3, u and v are column and row positions of the
point in 2D image plane; fx and fy denote camera’s horizontal
and vertical focal length; w and h represent image resolution;
x, y, and z are transformed 3D point coordinates (same as xt,
yt, and zt in Equation 2).

Algorithm 2 LiDAR points filtering and image pixel values
population
Input: LiDAR point 3D coordinates L, projected LiDAR

point coordinates P , image resolution w and h.
Output: LiDAR projection footprints XY , Y Z, and ZX .

1: idx = argwhere(P < {w, h,+∞} & P >= {0, 0, 0})
2: XY [w × h]← 0
3: Y Z[w × h]← 0
4: XZ[w × h]← 0
5: XY [idx] = L[idx, 0]
6: Y Z[idx] = L[idx, 1]
7: XZ[idx] = L[idx, 2]

The operation after transforming and projecting the 3D point
clouds into 2D images is filtering, which aims to discard all the
points that fall out of the camera view. Waymo Open dataset is
collected using five LiDAR and five camera sensors covering
all vehicle directions. This work uses the top LiDAR’s point
clouds and the front camera’s image data. As shown in
Algorithm 2, three projection footprint images denoted as XY ,
Y Z, and ZX are generated. The pixels corresponding to 3D
points are assigned with x, y, and z coordinates, while the
rest are populated with zero. At last, we up-sample the LiDAR
images before feeding them to machine learning algorithms,
as it is a common practice in LiDAR-based object detection
research [56] [57]. Figure 4 (c)-(g) show the results of the
procedure described in this subsection.

B. Object Semantic Masks
Ground truth annotations in Waymo dataset are represented

by 2D and 3D bounding boxes, which correspond to camera
and LiDAR data separately. There are three classes in image
annotations: vehicles, pedestrians, and cyclists. Point clouds
annotations have an extra class which is traffic signs. There are
two obstacles when using Waymo’s ground truth annotations
in our networks.

Firstly, vision-transformer-based networks are well-known
for requiring vast samples [12]. However, the cyclists and
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TABLE II
PERFORMANCE COMPARISON OF CLFT-HYBRID VARIANT, CLFCN AND PANOPTIC SEGFORMER. BOLD INDICATES THE BEST VALUES IN EACH ROW PER

CLASS. (IN PERCENTAGE UNIT) (C, L, AND C+L INDICATE CAMERA-ONLY, LIDAR-ONLY, AND FUSION MODALITIES, RESPECTIVELY)

CLFT-Hybird
(C+L)

CLFCN
(C)

CLFCN
(L)

CLFCN
(C+L)

Panoptic SegFormer
(C)

Panoptic SegFormer
(L)

Vehicle Human vehicle Human Vehicle Human Vehicle Human Vehicle Human Vehicle Human
Light-Dry 91.35 66.04 88.08 55.57 88.58 53.04 91.07 62.50 85.89 61.02 66.41 40.78
Light-Wet 91.72 66.03 88.54 52.13 89.47 50.06 92.77 64.66 83.58 49.70 63.07 29.87
Dark-Dry 90.62 65.66 81.16 42.87 86.16 48.83 89.41 60.33 81.45 44.67 70.25 38.69
Dark-Wet 90.18 53.51 74.49 43.14 87.51 46.68 89.90 56.70 70.50 14.68 54.40 39.00

traffic signs are relatively rare-represented in the Waymo
dataset. We notice our CLFT models struggle to learn and
predict these two classes in experimental setting as they are
less represented in the dataset. We assume that with additional
data also traffic signs and cyclists can be properly classified.
Therefore, we discard the traffic signs in this work and merge
the cyclists and pedestrians as a new class of so-called human.

Secondly, our research aims for semantic segmentation,
which requires annotations denoted as object contours. Since
Waymo dataset labeled the object in LiDAR sensor readings
as a 3D upright bounding box, we project all the points in
the bounding box into the image plane by the same procedure
described in Section IV-A. Figure 4 (b) shows an example of
semantic masks for vehicle and human classes. Please note that
a limitation of this approach is that some object pixels have no
valid labels because there are no corresponding LiDAR points.

V. RESULTS

As mentioned in Section I, our CLFT is the first transformer-
based model fusing the camera and LiDAR sensory data for
semantic segmentation. The experiments in this work focus
on the controlled benchmark comparisons in two aspects: i)
neural network architecture, ii) input modality.

The FCN is believed to be the recent generation of deep
learning methods with remarkable performance improvements
and has become the mainstream for semantic segmentation
[58]. Therefore, we choose the CLFCN [13], an FCN-based
network that fuses camera and LiDAR data for semantic
segmentation, as the reference to explore the advantages of
transformer backbone. Since the transformer is well-known
for its strengths in capturing global context and solving long-
range dependencies, we expect our transformer-based model
to outperform the FCN-based model in scenarios such as
unevenly distributed datasets and underrepresented samples.

Only a few existing deep learning methods process the
LiDAR input using the same principle as in this work: rep-
resenting the 3D point clouds as 2D grid-based feature maps
[14]. We compare the CLFT with the Panoptic SegFormer [41]
that is also transformer-backbone to evaluate the significance
of various input modalities. However, the Panoptic SegFormer
is purely vision-based. We follow the procedures in Section
IV to produce the point clouds projection images as Li-
DAR modality input for Panoptic SegFormer, but the camera-
LiDAR-fusion mode is not directly applicable to Panoptic
SegFormer. It is critical to maintain the same input data splits
and configurations in experiments for all models.

A. Experimental setup

The details of the input dataset configuration are described
in Section IV. The dataset splits for training, validation, and
testing are 60%, 20%, and 20% of the total number of frames,
respectively. The four data subsets, light-dry, light-wet, dark-
dry, and dark-wet, are shuffled and mixed for training and
validation but tested individually. We adopt the default hyper-
parameter configurations for CLFCN and Panoptic SegFormer
in training. Please refer to authors’ original work for details
[41]. We employ weighted cross-entropy loss function and
Adam optimization [59] for CLFT networks training. The
transformer encoder of CLFT is initiated from ImageNet
pre-trained weights. The transformer decoder and CLFCN’s
ResNet backbone are initiated randomly. The learning rate
decay of CLFT networks training follows li = l0(α

i), where
l0 is the initial learning rate, and α is 0.99. The batch size
of CLFT networks training is set as 32 by default, but set
as 24 for several experiments that exceed the memory limit,
for example, the fusion mode of CLFT-large variant. Other
hyperparameter settings can be found in the code we public.
The transformer-based networks are trained using an NVIDIA
A100 80GB GPU due to the large memory requirement of
transformer networks. Relatively low-memory-required FCN
training is executed on a desktop equipped NVIDIA RTX2070
Super GPU. The software environment of all experiments is
Python3.9 and CUDA11.2. Please refer to our GitHub link
for more details about the environment. Data normalization,
augmentation and early stopping are also used to generate the
models as in all most recent state-of-the-art methods.

B. Network performance and comparison

The main result of this work is reported in Table II and
Table III. Values are shown as the IoU for the two interest
classes, vehicle and human, in different modalities and weather
scenarios. The modalities are indicated as C, L, and C+L,
referring to the camera, LiDAR, and fusion, respectively.

As shown in Table II, the CLFT-hybrid variant outperforms
the CLFCN and Panoptic SegFormer in all scenarios, demon-
strating high segmentation capabilities over the same data.
Specifically, in dry environmental conditions, CLFT-hybrid
fusion modality archives 91% IoU for vehicles and 66% for
humans, while CLFCN fusion modality has 90% for vehicles
and 61% for humans. For single modality, Panoptic Seg-
Former achieves a similar performance of CLFCN for vehicle
class but outperforms for human class with less fine-tuned
works (61.02% against 55.57% in light-dry environment),
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TABLE III
PERFORMANCE COMPARISON OF ALL CLFT VARIANTS, CLFCN, AND PANOPTIC SEGFORMER. (IN PERCENTAGE UNIT)(C, L, AND C+L INDICATE

CAMERA-ONLY, LIDAR-ONLY, AND FUSION MODALITIES, RESPECTIVELY)

VEHICLE HUMAN
Precision Recall IoU Precision Recall IoU

CLFT-Base (C+L) 93.63 95.95 90.12 71.97 79.47 60.68
CLFT-Large (C+L) 93.81 96.14 90.46 72.27 77.76 60.56
CLFT-Hybrid (C+L) 94.15 96.69 91.26 75.76 82.75 65.46
CLFCN (C+L) 93.17 97.67 91.19 65.63 92.89 62.51
Panoptic SegFormer (C) 94.82 88.43 84.40 81.11 63.78 55.55
Panoptic SegFormer (L) 89.57 70.85 65.48 67.84 46.85 38.29

which reinforces the transformer’s strength regarding under-
represented samples. The difference between our CLFT and
other models is even more evident in challenging conditions
such as dark and wet, where CLFT-hybrid performance drops
by 1-2 percentage points while CLFCN and Panoptic Seg-
Former in single modalities drop by 5-10 percentage points.
In these cases, fusion seems to play a pivotal role in CLFCN
while showing only slight improvements in CLFT-hybrid,
demonstrating the robustness of CLFT-hybrid in performing
data fusion in all types of conditions.

The Panoptic SegFormer has obvious weak performance in
LiDAR modality. This is because it is designed to process
RGB visual input. We carry out the LiDAR processing sepa-
rately to produce the camera-plane maps with 3D coordinate
information; then we feed the maps to Panoptic SegFormer.
The experiment results prove the necessity to integrate the
LiDAR processing into the neural networks’ architecture.
Though CLFT-hybrid outperforms the CLFCN in fusion in
most cases, it is essential to see that CLFCN models benefit
more from the fusion, as the improvement from individual
modalities seems to be higher, particularly in night conditions.
On the other hand, our CLFT models already show high
performance in challenging conditions with the fusion of
camera and LiDAR data.

Table III summarizes the performance of CLFT variants,
CLFCN, and Panoptic SegFormer. We present the precision,
recall, and IoU for all models. In order to have a straight-
forward comparison, we combine four weather scenarios for
performance evaluation. In all cases, the CLFT-hybrid variant
performs better than the base and huge variants. This result is
consistent with what Dosovitskiy et al. [12] reported in their
ablation experiments, in which ResNet-based transformer vari-
ants outperform the variants that use patch-based embedding
procedures. Though the CLFT-hybrid achieves the highest IoU
score, CLFCN and Panoptic SegFormer have higher recall and
precision results, respectively.

C. Ablation study

Table IV reports our results using camera (C), LiDAR (L),
and fusion (C+L). According to our ablation study in Table IV,
it is possible to conclude that fusion provides an improvement
over single-modality networks.

One might note that results for the individual modalities,
particularly LiDAR, show already performance over 90%
(before fusion); this result is also in line with many other
studies in the field, for instance, in [60] the authors reached

TABLE IV
ABLATION STUDY BASED ON CLFT-HYBRID VARIANT. (IN PERCENTAGE

UNIT)

(C, L, and C+L indicate camera-only, LiDAR-only, and fusion modalities,
respectively)

C L IoU Precision Recall
Vehicle Human Vehicle Human Vehicle Human

All weather
✓ 91.16 64.38 93.86 73.33 96.88 84.05

✓ 91.19 65.17 93.93 72.89 96.85 84.19
✓ ✓ 91.26 65.46 94.15 75.76 96.69 82.75

Light-Dry
✓ 91.23 64.87 93.83 72.63 97.05 85.86

✓ 91.32 64.92 93.96 72.68 97.02 85.88
✓ ✓ 91.35 66.04 94.14 75.31 96.86 84.29

Light-Wet
✓ 91.67 64.87 94.52 76.49 96.82 81.36

✓ 91.52 64.28 94.40 74.43 96.78 82.49
✓ ✓ 91.72 66.03 94.69 78.27 96.96 80.84

Dark-Dry
✓ 90.51 65.62 93.15 74.30 96.96 84.66

✓ 90.47 65.18 93.27 74.30 96.96 84.16
✓ ✓ 90.62 65.66 93.38 77.39 96.68 81.25

Dark-Wet
✓ 89.62 52.46 93.60 70.00 95.70 67.69

✓ 89.74 49.95 93.69 67.28 95.51 65.97
✓ ✓ 90.18 53.51 94.40 68.68 95.29 70.79

over 90% IoU in the car class on the SemanticKitti dataset
[61].

Inspecting the analysis on all-weather, one can see that
CLFT-hybrid provides a small improvement (less than one
percentage point in both classes). However, as by construction,
the dataset split is strongly unbalanced (see Table I) toward
light-dry scenario (roughly 68% of the total). The amount of
light scenarios covers over 88% of the total number of frames.
Clearly, the class that is better represented in the dataset affects
the overall result the most.

To better appreciate the improvement in our studies, Table
IV is also divided according to the data split in Table I. Under
these conditions, it is possible to assert that fusion has a higher
impact in dark scenarios, covering roughly 12% of the total
number of frames in our dataset.

The unbalance of the dataset has an impact on both envi-
ronment conditions and object classes, thus the vehicle class
(with already over 90% accuracy) is less affected, while the
human class shows better improvements, reaching around 2-
4% in rainy conditions.
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D. Inference time analysis

Table V presents an additional study on the inference time.
In the experiments, we make the statistic of CUDA event time
on NVIDIA A100 GPU for fusion modality of all models.
All the models are set in evaluation mode for inference time
calculation. We use the image in Figure 4 as input, first warm
up the GPU with 2000 iterations, then calculate the mean time
of the event stream for another 2000 iterations. The CPU and
GPU are synchronized when recording timestamps. In gen-
eral, FCN-based models have obvious advantages against the
transformer-based models in terms of computational efficiency.
The Panoptic SegFormer has the highest inference time among
all models in experiments. It appears that the CLFCN is faster
than our best-performing model, the CLFT-hybrid. However,
this difference is only about 10ms per frame, which can be
considered reasonable in a trade-off between performance and
speed. For autonomous driving, where safety comes first, clas-
sification performance should always be considered a crucial
parameter in the network design.

TABLE V
INFERENCE TIME COMPARISON OF ALL CLFT VARIANTS, CLFCN AND

PANOPTIC SEGFORMER (IN MILLISECONDS UNIT)(C, L, AND C+L
INDICATE CAMERA-ONLY, LIDAR-ONLY, AND FUSION MODALITIES,

RESPECTIVELY)

NETWORK MODALITY TIME
CLFT-base

C+L

16.23
CLFT-Large 36.75
CLFT-Hybrid 25.69
CLFCN 15.94

Panoptic SegFormer C 93.52
L 93.45

E. Qualitative results

Figure 5 presents examples of segmented images from
the Waymo dataset to appreciate the results of this work
from a qualitative point of view. Following the above men-
tioned contribution of this work, the qualitative evaluation is
also divided by network structure, weather and illumination
conditions. The three CLFT variants, ‘Base’, ‘Large’, and
‘Hybrid’, are compared with the Panoptic SegFormer and
CLFCN modalities. The segmentation results from models are
overlaid to the camera images for comparison. The first row is
the ground truth segmentation provided by the dataset. Please
note that the annotations of the Waymo dataset are based on
the LiDAR point clouds data, which is a common labeling
strategy adopted by many famous multi-modal datasets for
autonomous driving, including SemanticKitti and nuScenes
[62] datasets. The LiDAR-points-based labeling strategy re-
sults the 2D semantic masks contain the pixels without valid
label. Waymo dataset claimed to have the highest per-frame
point clouds density among the SemanticKitti, nuScenes, and
Argoverse [63] datasets, which is the reason why the Waymo
dataset better fits for the evaluation of CLFT networks for 2D
semantic segmentation tasks.

The qualitative results generally follow the same consis-
tency as in numerical benchmarks. The CLFT-Hybrid variant
discloses the most contextual details and its segmentation

results are more identical to ground truth than other networks,
especially in challenging and under-represented environments.
For example, the vehicles in night-dry (the third column) sce-
nario, the CLFCN networks detect less details even with fine-
tuning efforts, proves that the transformer is more effective
than FCN in specific situations. Moreover, the single-modality
segmentation results from Panoptic SegFormer and CLFCN
networks show the necessities and advancements of multi-
modal sensor fusion in autonomous driving.

VI. CONCLUSION

In this paper, we propose a transformer-based multimodal
fusion method for semantic segmentation. Based on all the
above cases, it is possible to say our CLFT model is one
of the cutting-edge neural networks for 2D traffic object
semantic segmentation. Specifically, the CLFT models benefit
from the multimodal sensor fusion and transformer’s multi-
attention mechanism, make a significant improvement for
under-represented samples (maximum 10 percent IoU increase
for human class). However, it is worth mentioning that trans-
former networks intuitively require a large amount of data for
training. In our experiments, light-wet and dark-wet subsets
only take into account 12% of the total input data, which
explains that the CLFCN model outperforms the CLFT-hybrid
model in some cases in Table II.

This work proposes the adoption of a vision transformer’s
strategy to divide the input image into non-overlapping patches
or extract feature patches from CNN feature maps. Intuitively,
we project and up-sample LiDAR data to dense point clouds
images, then design a double-direction network to assemble
and cross-fuse the camera and LiDAR representations to
achieve final segmentation. We maintain the same input dataset
splits and configurations in all our experiments and success-
fully demonstrate the transformer’s merit against the FCN
regarding object segmentation tasks. Specifically, we classify
the input data into sub-categories of different illumination and
weather conditions dedicated to comprehensively evaluating
the models. Similar to prior transformer works, we prove its
potential on uneven-distributed datasets and under-represented
samples. At last, we want to highlight that the initiation of
CLFT lies on the progress to extend our framework that
aims to cover all aspects of low-speed autonomous shuttles,
including hardware configuration, dataset collection and post-
processing for perception [17], validation [64], and path plan-
ning [65]. We develop the CLFT to be compatible with other
systems in terms of environment, data formats, and operating
platforms, which grants our work the advantages in scalability
and practical application on real autonomous shuttles.
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Fig. 5. Qualitative comparison of segmentation results between different models.
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