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Abstract

The purpose of this thesis is to explore if end-to-end deep neural networks can be used
to operate a camera motion control system in order to record or broadcast rhythmic gym-
nastics events. Specifically, presented research aims to determine if an end-to-end neural
network can produce an eye-pleasing output by tracking an individual rhythmic gymnast
performing on a standard competition area.

To answer this question, deep neural networks of different types and structures were cre-
ated, trained and compared to each other as well as to the performance of a human oper-
ator.

Results showed that end-to-end deep neural networks can be successfully used to operate
a camera motion control system during rhythmic gymnastics events. While a pure Con-
volutional Neural Network (CNN) solution solves the problem, a CNN+Long Short-Term
Memory (LSTM) network outperforms it.

This thesis is written in English and is 56 pages long, including 7 chapters, 29 figures,
and 1 table.
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Annotatsioon

Käesoleva lõputöö eesmärgiks on uurida, kas süvanärvivõrgud on sobiv vahend filmimis-
süsteemi juhtimiseks eesmärgiga filmida ja kajastada iluvõimlemisvõistlusi. Uurimistöö
peab andma vastuse, kas süvanärvivõrk on võimeline genereerida väljundit, mille abil
saaks jälgida standardsel võistlusväljakul esinevat individuaalvõimlejat.

Küsimusele vastamiseks luuakse ja treenitakse erinevat tüüpi ja erineva struktuuriga sü-
vanärvivõrke ning võrreldakse nende toimimist omavahel ning ka videooperaatoriga.

Tulemused näitavad, et konvolutsiooniline närvivõrk (CNN) lahendab probleemi, kuid
CNN+Long Short-Term Memory (LSTM) tüüpi närvivõrk toimib veelgi paremini.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 56 leheküljel, 7 peatükki,
29 joonist, 1 tabelit.
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List of abbreviations and terms

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MSE Mean Squared Error

ORB Oriented FAST and Rotated BRIEF

PTZ Pan-Tilt-Zoom

RNN Recurrent Neural Network

SIFT Scale-Invariant Feature Transform

SURF Speeded-Up Robust Features
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1 Introduction

Many local rhythmic gymnastics competitions are not being recorded or broadcast be-
cause of high expenses required to cover camera operator’s work for 10+ hours. In other
words, using human labor is not cost-effective for local sport events. This problem could
be solved by a fully automated system. Pure object tracking does not result in aesthetic
shots with good positioning and is inherently not predictive or proactive. Neural network-
based solution can reduce costs, making the process fully automated and therefore cost-
effective while still preserving eye-pleasing results.

The aim of this thesis is to create a neural network-based solution that can be used to
control pan, tilt and zoom of a camera. The solution must be able to keep an individual
performing gymnast in frame. Gymnasts perform on a standard floor area that is used for
rhythmic gymnastics. The solution must be fast enough to follow a gymnast in real time.

One way of formulating this task is to consider filming a performing gymnast to be a hu-
man detection problem. Human detection is a well researched area. Modern approaches
for human detection are largely based on deep convolutional neural networks. However,
pre-trained models often fail to detect people doing gymnastics poses (Figure 1). More-
over, human detection solutions are trained to detect multiple people, yet in scope of this
thesis we only need to detect and track one performing gymnast. This adds a new prob-
lem: how to distinguish a currently performing gymnast from people on the background.
Another problem is that human detection is quite slow. For example, Faster RCN Incep-
tion V2 COCO Model, which gives a fair trade-off between accuracy and speed for GPU
accelerated environments, works approximately at only 4 frames per second on GPU and
7-8 times slower on CPU [1].

There are some good object tracking solutions like GOTURN (Generic Object Tracking
Using Regression Networks), which is a neural network based solution that takes some
object of interest marked on one frame and locates this object in subsequent video frames
[2]. GOTURN was trained using a collection of videos and images with bounding box
labels but no class information. The problem is that the solution is too generic and requires
an object of interest to be selected first. In my case, the object of interest is always the
currently competing gymnast, the solution should be fully automated and is supposed to
detect the object of interest automatically as soon as the gymnast enters the floor area.
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Figure 1. Pre-trained models often fail to properly detect a gymnast (V2 COCO Model).

Even if I used rhythmic gymnastics data for training or tuning, and aforementioned solu-
tions were able to generate a perfect bounding box around gymnasts, it would still leave
the camera motion planning problem unresolved. Motion planning involves figuring out
pan and tilt motor speeds and zoom level change that need to be passed to the hardware.
In other words, this approach just shifts the problem into a different domain.

Another interesting approach is to use a master-slave setup which consists of a static
camera and another Pan-Tilt-Zoom (PTZ) camera. To create a correspondence between
master and slave, a mapping between cameras usually has to be done. This can be
achieved through camera calibration, which needs to be redone if cameras were moved.
The method proposed by Reis et al. aims to provide the correspondence between master
and slave cameras without performing a traditional calibration [3]. The method records
corresponding points between master and slave cameras that will be used as input in a
learning phase to perform target tracking in real time. After the corresponding points are
found, the method estimates pan, tilt and zoom parameters so that the target is in the cen-
ter of the PTZ camera view. The downside of this method is that it requires at least two
cameras, which makes the setup more expensive and less portable.

Simple image processing techniques were not considered in this thesis because this ap-
proach was implemented in another thesis and the result had some downsides [4]. The
biggest problem of that solution was the inability of the system to predict future camera
motion and zoom level change in order to start the motion proactively. Another prob-
lem was the inability to implement both tilt and zoom simultaneously. Moreover, as the
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solution is sensitive to color changes, it is sometimes required to reconfigure the system
during a competition if lighting conditions have changed.

In this work, I use a one-camera setup and try to skip the human detection part, so that
given the provided frame or sequence of frames, the neural network can predict a required
camera motion and zoom directly (end-to-end approach). Recent research has shown that
a convolutional neural network can learn to detect secondary features without the need of
explicit labels for the position of the object of interest during training [5], [6]. Instead of
expensive PTZ systems being sold on the market, I use a low-cost camera motion system
that was developed by a Computer and Systems Engineering student of TalTech as part of
their Master’s thesis [4]. The output of my neural network is passed to the camera motion
control system. Predicted pan and tilt values affect motor speeds and zoom value is passed
to the camera through LANC protocol. This protocol allows the software to operate such
functions as power on/off, zooming in/out, etc. [7].

1.1 Author’s contributions

In this thesis, I created a manual annotation tool which was later replaced by another
solution created by me. This new solution is able to annotate images in a fully automated
way. Videos used for creating the dataset were also recorded by me. After the dataset was
generated, I applied some balancing and augmentation techniques in order to prepare the
data for training. When the input data for a neural network was ready, I created, trained
and adjusted a CNN and an Long Short-Term Memory (LSTM) networks. The training
was followed by a performance evaluation of the CNN, based on videos that I recorded
in a new environment. I then compared the result in this new environment to a human
operator. I also created a simulation tool where I compared the performance of the trained
CNN and LSTM models.
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2 Setups used

In this chapter, hardware and software setups and the communication between them are
described.

2.1 Hardware

Hardware setup consists of a camera motion control system, a camera, and an im-
age capture device. To make the neural network training process faster, GeForce
GTX 1070 graphics card with CUDA was used. For running the system (predict-
ing PTZ values in real time) a laptop with the following specifications is used:
Intel(R) Core(TM) i7-3520M CPU, 8 GB RAM, using x86_64 GNU/Linux as the OS.
The solution is expected to run on any modern laptop.

2.2 Pan and tilt system

I am using an existing pan and tilt system developed in the scope of another Master’s
thesis [4].

To interface with the pan and tilt system, zero-configuration (Zeroconf) networking is
used. Zeroconf is a set of technologies that allow services on the network to be discover-
able without special configuration servers or manual configuration [8]. ZeroMQ is used
as a messaging library [9]. ZeroMQ allows publish/subscribe pattern without a dedicated
message broker. A publish/subscribe pattern is used to pass the output of the neural net-
work to a separate node which then communicates with the hardware. Neural network
outputs (pan, tilt and zoom values) are published along with a topic. Another node, which
sends commands to the hardware, is subscribed to this topic. In this setup, computing
the output of the neural networks does not have to be performed on the same device that
communicates with the hardware, it is enough for all nodes to simply be on the same
network.
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2.3 Software

For training, a GPU-accelerated CUDA Deep Neural Network library (cuDNN) was in-
stalled. This library provides highly tuned implementations for standard routines such as
forward and backward convolution, pooling and activation layers [10]. Python Keras li-
brary with Tensorflow backend was used for implementing and training a neural network.
OpenCV was used for data preparation, extracting frames from videos, resizing images,
data augmentation and also for reading live frames from a capture device. OpenCV was
also used to create a simulation tool.

2.4 Required input and output

The neural network is expected to accept a video frame or a sequence of frames as an input
and return pan-tilt-zoom values that are passed to the camera motion control system (pan
and tilt angular speeds and zoom speed). Unlike a vanilla image processing solution which
only starts reacting when the gymnast is already moving, this system should be proactive.
In other words, it must be able to predict future camera motion based on the current and/or
past input data. The video capture device, software and hardware have cumulative latency
of around 150ms, which makes it even more important to have proactive characteristics.
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3 Data preparation

One of the most important parts of this work is data preparation which consists of creating
a dataset and augmenting it.

3.1 Annotation tool

The initial idea was to annotate each frame in the dataset manually. The annotation tool
was written using Python GTK (Figure 2). Frames were taken from videos every second
(e.g. at the interval of 50 frames in case of 50 fps videos). Then, a random unannotated
frame from the dataset was picked and the annotator (human being) was supposed to
submit pan, tilt and zoom values using a mouse and a keyboard. The values were based
on annotator’s point of view on how fast the system should pan and tilt, and how much it
was needed to zoom in or out. The annotator could see a current frame and what happens
in 1 second in the future. According to these images the annotator was able to submit
appropriate values for the current frame. Annotations were saved in JSON files.

The biggest downside of annotating frames manually was the amount of time required to
annotate large number of frames. The average time taken to annotate one frame manually
was 8 seconds and the maximum number of frames annotated in a row was 270. Not only
this is relatively slow, but this process cannot be sustained for a long time due to fatigue.
Unlike other annotation tasks, this process is harder because it requires human judgment
and prediction, not just marking an obvious feature on an image. Another problem is that
manual annotations are subjective and may also be inconsistent.

Moreover, this approach would not let me experiment with different time values in the
future. Thus, if I wanted to annotate frames according to what happens in less than or
more than 1 second, I would have to annotate every frame again.

After over 3000 frames from different events were annotated (during 52 sessions that
took cumulatively over 6 hours of work), the resulting dataset was used for the initial
CNN training. The results were promising, but the idea to annotate images manually was
abandoned and a new, fully-automated approach was implemented.
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Figure 2. Manual annotation tool that was created for this thesis. Pan, tilt and zoom values change when
the annotator moves the mouse. A keyboard is used to skip a frame, go back to a previous frame or save
values.

3.2 Automated annotation process

The new approach is based on image registration [11]. During this process, a single
common coordinate system is found for different images.

In order to create an annotation automatically, features are found in two images using
Oriented FAST and Rotated BRIEF (ORB), an algorithm that was introduced by Ethan
Rublee et al. [12]. Speeded-Up Robust Features (SURF) [13] and Scale-Invariant Feature
Transform (SIFT) [14] algorithms, which are relatively popular, were not considered be-
cause of patent issues [12], [15], [16], [17]. Moreover, SIFT and SURF implementations
were removed from the default installation of OpenCV 3 [17].
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(a) Input image.

(b) ORB feature detect.

Figure 3. ORB algorithm visualization.

After finding features with ORB (Figure 3), features are then matched between the im-
ages, as shown in Figure 4. After matching is done, camera parameters are estimated
roughly and later refined by trying to minimize the error between matched features.

In OpenCV, image registration is available as part of the image stitching pipeline [18]. To
perform image registration in order to get pan, tilt and zoom values, a C++ program was
used. The program is based on the detailed image stitcher example from OpenCV which
was modified to only run steps that are required for image registration [19]. After image
registration is done, I am able to get pan and tilt values by examining camera extrinsic
parameters, and get zoom change by examining camera intrinsic parameters. This allows
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Figure 4. Matching features detected by ORB. This figure shows 20 best matches.

to annotate a large amount of data fully automatically and the annotations do not depend
on the annotator’s point of view. On the other hand, the algorithm does not produce
absolutely accurate values. Yet, produced values are consistent and usable for training
a neural network. The average speed of generating annotations for one frame using this
approach is approximately 3 seconds. Not only this is 2.5 times faster than annotating
frames manually, but also the process can be run without any interruptions caused by
annotator’s fatigue.
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3.3 Dataset

The dataset consists of videos recorded by me during several events in different Estonian
sport facilities. The total length of the used videos is over 85 hours. To generate a dataset,
a Python script was written. The script accepts a video stream and creates datapoints
every second of a video if image registration succeeds. Not only the annotated frame,
but also some previous frames are saved in order to create a neural network that can use
context. As context frames may be duplicated across different datapoints, I used jdupes
to minimize the size of the dataset on the storage device [20].

Before feeding frames into a neural network, they need to be resized. Bigger images need
more computational operations per layer and have higher memory requirements. For my
neural networks, I scaled down the width and the height of every frame 10 times and
kept the original ratio of 16:9. The size of a resized frame is 192x108 pixels, and its
area is 1⁄100 of a Full HD frame (1920x1080 pixels). The total size of resized images and
corresponding JSON annotations is 111.3 GB after hardlinking with jdupes.

3.4 Data filtering

The total number of datapoints in the dataset is 186130. Before using the dataset, some
datapoints need to be filtered out. A sanity threshold for each parameter (pan, tilt and
zoom) was specified. These thresholds help to filter out non-realistic values of camera
rotation and zoom. Upon inspection, it is clear that such datapoints are usually created
when someone walks in front of the camera, or if the camera was being moved to another
location during recording (Figure 5).
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Figure 5. Sample frames that were removed from the dataset during sanity filtering. Left: annotated frames.
Right: frames following in 0.5 seconds.

Next, zero threshold filtering was applied. As a result, datapoints with no camera move-
ment were removed. Most of the detected frames were recorded during warm-up and
awarding, when camera was not actively operated (Figure 6).
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Figure 6. Sample frames that were removed from the dataset during zero filtering. Left: annotated frames.
Right: frames following in 0.5 seconds. While zero filtering may also filter out some frames recorded
during performances, it efficiently removes frames that are useless for training.

After removing non-realistic and zero values, the number of datapoints was reduced from
186130 to 139628 (Figure 7). Next, the dataset was split into buckets of a certain width.
For example, pan values were split into buckets of width 0.5 °/s. To balance the dataset,
bucket capacity was specified. After pan values were balanced, each bucket consisted of
up to 8000 samples (Figure 8). The same approach was applied to tilt and zoom.
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Figure 7. Pan dataset before balancing.
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Figure 8. Pan dataset after balancing.
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3.5 Data augmentation

To avoid data overfitting, some augmentation techniques were applied. Data augmenta-
tion is a process of taking existing training data and deforming it to produce new training
data [21], [22], [23].

Augmentation can be done either offline or online. In the first case, data augmentation
is performed beforehand and a new extended training set is saved. Another option is to
enlarge a dataset during the training process by generating the augmented datapoints on
demand. In this work, online augmentation was used. Next filters are randomly applied
to datapoints during the training process (Figure 9):

� Horizontal flip

� Gaussian noise

� Color shift

� Brightness shift

� Blur

The effect of noise, color shift, brightness shift and blur filters is random each time they
are applied. This helps to make datapoints as different as possible and reduce risk of
overfitting. The order of effects is important and another order would produce different
output, see Figure 10.
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(a) Original image. (b) Flip.

(c) Noise. (d) Color shift.

(e) Brightness shift. (f) Blur.

Figure 9. Effects used for data augmentation. Filters are applied aggressively for demonstration purposes.
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(a) All effects applied in the described order.

(b) Same effects applied in reverse order.

Figure 10. Different order of filter application produces different output.
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4 Convolutional Neural Network

The next step after data preparation is a neural network implementation and training. To
predict a required camera motion and zoom, I started with implementing a convolutional
neural network.

4.1 Background

CNN is a type of neural network. A neural network is a collection of connected units
which can pass a signal from one unit to another. However, if we use regular neural net-
works for images, they will be very large due to a huge number of connections, resulting
in a very slow training process and low performance when using the model. A CNN has
one or more layers of convolution and maxpooling which reduce the complexity of the
network. Typically, a CNN is followed by fully connected layers.

An image can be represented as an array of pixels. In my case, the dimensions of each
input image are 192x108 pixels and, as they are not grayscale, there are three channels for
each pixel (red, green, blue). This means that each image in the training and validation
set is a 192x108x3 array. Before images are fed to a convolutional neural network, some
normalization has to be done. Normalizing input values for the training samples helps
to speed up the training process [24]. To normalize images, min-max normalization was
used (1). As a result, each value in the array was converted from the range [0. . . 255] to
[0. . . 1].

x′ =
x−min(x)

max(x)−min(x)
(1)

A convolutional neural network typically consists of following layers:

� 2D Convolution

� 2D MaxPooling

� Dropout

Aforementioned layers are followed by Flattening and Dense layers.
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Convolutional 2D layer uses a convolution kernel that is convolved with the layer input
to produce the output (Figure 11). Kernel size and stride can be different. The size can
be any dimension of a rectangle. Stride is the number of pixels moved per every output
value. The learned filters of a CNN detect features or patterns in images. The deeper the
layer, the more abstract the pattern is [25].
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Figure 11. Illustration of applying a kernel.

Convolution layers are usually followed by pooling layers. Pooling layers reduce the size
of the image across layers by sampling [25]. During maxpooling, a window moves across
a 2D input space, and the maximum value within that window is the output (Figure 12).

9 5 10 8

4 2 12 10

13 5 7 8

6 6 3 4

9 12

13 8

Figure 12. Illustration of maxpool with 2x2 window and stride 2.
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Dropout layers are used to prevent the neural network from overfitting. Overfitting occurs
when a network models the training data too well and fails to generalize [26]. The term
“dropout” means to temporarily remove a unit from a network, along with its incoming
and outgoing connections, see Figure 13 [27].

Figure 13. Illustration of applying dropout on a neural network.

A flattening layer takes a multi-dimensional volume and flattens it into a one-dimensional
array prior to feeding the inputs into dense (i.e. fully connected) layers [26]. The idea of
flattening is shown in Figure 14.

9 12

13 8
9 12 13 8

Figure 14. Illustration of flattening.

4.2 Architecture of the created network

The exact structure of the created neural network is shown in Figure 16.

The created network consists of a convolutional layer, followed by maxpooling and
dropout layers, repeated three times with a different number of filters applied on con-
volutional layers. These are followed by three fully connected layers, with a dropout
layer after each of them.

I used convolutions with a stride of 2 pixels in the first convolutional layer and convo-
lutions with a stride of 1 pixel in the second and third convolutional layers. The size of
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the kernel applied to find features was 4x4 pixels. The number of filters applied was 16
on the first convolutional layer, 32 on the second convolutional layer and 64 on the third
layer. After each convolutional layer, an activation function is applied. ReLU (Rectified
Linear Unit) was used as an activation function. This is the most used activation function
for CNNs. ReLu activation function transforms the input to the maximum of either zero
or the input itself (Figure 15). In other words, f(z) returns zero when z is less than zero
and f(z) is equal to z when z is above or equal to zero. With this activation function, the
more positive the neuron, the more activated it is.

-3 -2 -1 0 1 2 3

f(z) = max(0, z)

1

2

3

Figure 15. ReLu activation function.

Convolutional and maxpooling layers are followed by three fully connected layers. The
first two fully connected layers consist of 50 neurons each, the third one consists of 20
neurons and the last one is just one neuron which returns the output.

Mean Absolute Error (MAE) was used as a loss function (2). Absolute error is the abso-
lute value of the difference between the actual value and the output of the neural network.
The smaller the mean absolute error is, the better the neural network model.

MAE =
1
n

n

∑
t=1
|et | (2)

Widely used Mean Squared Error (MSE), which is the sum of squared differences between
the actual value and the output of the network, was not used because in case of this
network we do not want to penalize for bigger errors as we do not expect annotated values
to be extremely accurate.

To achieve the minimum possible error for a model, hyperparameters have to be tuned. To
improve the accuracy of my models, I tuned such hyperparameters as number of epochs,
dropout value and batch size. These are the parameters that had the biggest influence
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Figure 16. CNN structure. In the illustration, the number of filters is scaled down four times, but the ratio
is kept to demonstrate how the number of filters increased on each convolutional layer..
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on the neural network validation loss. Tuning other hyperparameters, such as number of
layers and number of filters did not result in a significantly different loss.

The number of epochs determines how many times the training has to go through the
full training dataset. If the validation loss is still decreasing at the end of all epochs, the
number of epochs can be increased [25]. The optimal number of epochs was 98 for pan
model and 175 for zoom model. The tilt model was not properly trained due to the lack
of variation in tilt values in the existing dataset, therefore only pan and zoom models will
be analyzed further in this work. However, as tilt is not critical for this type of a system,
the setup can be successfully operated only by panning and zooming.

The process of pan model training is shown in Figure 17. Larger amounts of epochs were
also tried for the pan model, however there was no measurable improvement after 100
epochs.

Dropout is most commonly used on each of the fully connected layers before the output,
as it was proposed by Hinton [28]. However, recent research has shown the efficiency
of using dropout in a CNN after a downsampling operation [29]. In my tests, without
applying dropout at all, the mean absolute error of the model was 1.68 after 100th epoch.
With dropout applied after fully connected layers it was only 1.55. However, the smallest
error, 1.47, was achieved with dropouts applied after both maxpooling and fully connected
layers.

Before training, the dataset is split into batches. The batch size is the number of samples
that will be passed through the network at one time. Typical batch size ranges from 32
to 512 datapoints [30]. For my CNN, I used a batch size of 64 samples. The higher
the batch size, the more memory is required [25]. Even though there was no issue with
memory usage, smaller batch sizes result in neural networks that generalize better. The
downside of using small sizes is that the training process is slower because of the data
passing overhead.

During training, a model is saved after every epoch in hdf5 file, which contains [31]:

� the architecture of the model, allowing to re-create the model

� the weights of the model

� the training configuration (loss, optimizer)
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� the state of the optimizer

Figure 17. Pan model training.

Saving a model after each epoch allows to choose the most accurate model, stop the
training and resume where it was left off.

4.3 Interpreting the output

To apply trained models to an input frame, a prediction script reads a video stream from
the capture device, scales input frames down and passes those to the models. Reading
and resizing frames is done using OpenCV. Outputs of neural networks are pan, tilt and
zoom values. Pan and tilt values represent angular speed (degrees per second) and zoom
values stand for focal length change (mm per second). In this part, data augmentation is
not done and input frames are only scaled down before applying a model.

For every parameter (pan, tilt, zoom) a different model is used. While it is possible to
create a single combined model, this approach is not used because multiple models offer
higher flexibility. This means that any model can be replaced by another model or a
different solution.

As CNN processes each frame independently, the output may be too noisy to be used to
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control the hardware. This is the reason why some smoothing needs to be done before
values are passed to the hardware. To achieve this, exponential smoothing was used
(3). This technique allows to remove noise from time series data. To smooth the output
of the neural network, the decay coefficient for each model type was specified. Decay
coefficient α is a value between 0 and 1. Decay coefficients were chosen experimentally.
The coefficients used were 0.2 for pan and tilt and 0.1 for zoom.

St = (1−α)St−1 +αYt (3)

Another smoothing method, a moving average, was also tried. This method is based on
computing the average of last n values. A moving average was not efficient for the task
because all values have the same weight. In case of the exponential smoothing, the last
value can have a bigger influence.
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5 Performance analysis

Before training, all datapoints were split into two sets: a training set and a validation set.
I used 80% of the data for training and the rest for validation. Mean absolute error was
used to evaluate how accurate a model was. The lowest mean absolute value I managed
to achieve was 1.42 for pan and 236.90 for zoom. The MAE was a good measure to
evaluate if one model was better than another one, but to present the efficiency of the
neural network, manual evaluation was used.

5.1 Manual evaluation

To evaluate the results, 15 performances were recorded during the “Elegance Cup” com-
petition held in March, 2019. Recorded videos were split into frames that were manually
evaluated by a human operator. The length of each routine is approximately 90 seconds.
Frames were extracted every 3 seconds, therefore there were about 30 frames generated
for every routine, see Figure 18. Three seconds is a reasonable amount of time to recover
the camera angle in case the system has lost track of a gymnast.

Another metric was how many times the performer was lost by the system. In other words,
how many times it was needed to switch to another camera or to operate the camera
manually until the gymnast was back in frame, or to wait until the system starts tracking
again by itself.

Table 1 shows that the tracking was perfect from the beginning to the end for one third of
the videos recorded to test the system. There were three main reasons why the tracking
was lost:

� The podium on the background

� Gymnasts on posters on the background

� Insufficient max angular speed (too low gain used for the neural network output)

The problem with the podium is related to the noisy dataset, which not only consists of
frames extracted from videos of rhythmic gymnastics performances, but also includes
awarding ceremony and warm-up videos. This may be the reason why the neural network
starts tracking the podium instead of the performing gymnast. This problem can be solved
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Figure 18. Frames generated for manual evaluation.

by creating a better dataset which does not contain frames that are not useful for training.

The posters with gymnasts on them can also be an issue (Figure 19). However, in most
cases, the performing gymnast was properly tracked even if there were posters on the
background. To solve this problem, more data with gymnasts on the background should
be added to the dataset.
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Table 1. Manual evaluation of videos.

Video Frames total Bad frames Good frames (%) Tracking lost (times)

1 31 2 93.5 1

2 32 0 100 0

3 32 4 87.5 2

4 34 1 97.1 1

5 32 2 93.8 1

6 32 5 84.4 2

7 32 0 100 0

8 32 0 93.5 1

9 32 3 90.6 3

10 32 0 100 0

11 32 0 100 0

12 32 1 96.9 1

13 32 0 100 0

14 32 1 96.9 1

15 32 2 93.8 2

In rare cases, angular speed was not enough to follow a gymnast who was moving very
fast. This could be solved by increasing the gain (scaling up the output of the neural
network), but that would result in more noise when a gymnast is standing still, which can
cause small camera movements from side to side. As I wanted the video to be smooth
and eye-pleasing, clean output had priority over tracking at high speeds. When tracking
is lost, there are at least two options. One option is to let a human operator to adjust the
camera angle until the gymnast is back in frame. Another option is to switch to another
automated camera, or alternatively just a static wide-angle camera. As the developed
solution is used as part of a multi-camera setup, this is not considered to be a big issue.
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Figure 19. Demonstration of posters on the background.

5.2 Comparison to a human operator

To compare the performance of trained CNNs to a human operator, a manually operated
camera and a system operated by the CNN models were placed side by side (Figure 20).

Figure 20. A manually operated camera (left) and a PTZ system operated by CNNs (right).

5.2.1 Positioning

The difference in positioning can be seen in Figure 21. In some frames recorded by CNN
models, the gymnast is slightly less centered than in frames recorded by a human. Overall,
the frames look very similar.
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Figure 21. Frames extracted from videos recorded simultaneously by a human operator (left) and CNNs
(right).
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5.2.2 Other aspects

Comparing to a human operator, zoom level change was smoother. This can be explained
by smoothing being applied to the output of the neural network before passing it to the
hardware. Since CNN makes predictions based on one frame only and does not see the
context, predicted pan values can be quite inconsistent and may result in small jerks of
the camera. Exponential smoothing helps to smooth the output of CNN but in some cases
jerks are still visible while panning and this is one of the main differences that can be
noticed when comparing between a human operator and the developed CNN.
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6 Long Short-Term Memory network

After CNN models were successfully trained and evaluated, it was decided to try another
type of a neural network. LSTM is a type of Recurrent Neural Networks (RNN) and can
process sequences of data. This means, that instead of passing only one frame, we can
feed multiple frames. To implement a model that combines CNN and LSTM, CNN layers
are followed by an LSTM layer (Figure 22). In the scope of this thesis, LSTM was only
used to train a model for panning, as pan model is the most important for the system and
the performance of the trained CNN pan model is not ideal.

Input

CNN
(time distributed) 

LSTM

Dense

Output
 

Figure 22. CNN + LSTM.

For LSTM, an extended dataset is needed. If CNN training only required one frame
and corresponding annotations, for LSTM additional context frames recorded before the
annotated frame are also used. To generate the context, the length of the context and time
between context frames had to be specified during the generation of annotations.

Even though the process of generating the dataset is fully automated, it still requires time.
To reduce the number of times I regenerate the dataset, I decided to save frames for a
maximum context of 3 seconds for each annotated frame. This context length was enough
to try different configurations.
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To train an LSTM, following configurations have been tried:

� context of 16 frames, 3 seconds long

� context of 6 frames, 1 seconds long

First configuration resulted in a very slow training and prediction. As the system needs
to work in real-time, the context length was reduced to one second, 0.2 seconds between
frames. As the input shape for LSTM differs from CNN, both training and prediction
scripts had to be modified by adding a new dimension for context frames. Also, in case of
LSTM, data augmentation has to be applied with the same parameters to the full context,
not only one frame.

6.1 Simulation tool

To test the performance of the trained CNN+LSTM models, a simulation tool was devel-
oped. For the simulation, camera calibration had to be done. To calibrate the camera,
40 pictures of a classical black-white chessboard were taken with the same camera that
was used to record videos for the simulation. One of the calibration images is shown in
Figure 23. These images were fed into an OpenCV calibration program, and the camera
parameters were saved in a YAML file [32].

Figure 23. Camera calibration using a classical black-white chessboard.

The simulation tool was written in Python. The program reads a video stream using
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OpenCV. It requires a video that covers the whole competition area and is recorded in 4K
or better resolution with a static camera, see Figure 24.

(a) (b)

Figure 24. Simulation tool. a) Screenshot of a simulation tool when the camera is zoomed out for demon-
stration purposes. b) Demonstration of a projection of the virtual camera which is used as an input to neural
networks.

During the simulation, a virtual pan, tilt and zoom are applied to the video. The output
of the simulation is passed to a prediction script as a video source. The prediction script
is running on another computer and receives the video stream via HDMI cable that is
connected to a capture device. A setup like this preserves latency of a real system. Pre-
dictions are published on the network (publisher-subscriber pattern). The output of the
neural network is then used by the simulation script to change current pan, tilt and zoom
speeds accordingly, where the acceleration profiles of the real hardware are approximated.
Although a cropped image is upscaled to Full HD (1920x1080 pixels) and the quality is
worse than what a Full HD frame should be, this quality is enough for the prediction script
which scales input images down to 192x108.

As a first step of simulating camera motion, current camera rotation angles are converted
to a rotation matrix. Next step is to reproject the given video stream into the view of
a virtual camera. For this task, OpenCV initUndistortRectifyMap() function is used to
undistort the image and rotate the virtual camera given the rotation matrix. This function
computes corresponding coordinates in the source image for each pixel in the destination
image [33]. Then the projected image is generated using OpenCV remap() function,
upscaled to desirable dimensions using OpenCV resize() function (in our case, 1920x1080
pixels) and displayed on the screen. The simulation tool can also be operated manually
by pressing keys on the keyboard, which is used to get ground truth angles. Pan, tilt and
zoom values at each frame are saved into a log file.
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While the projected video from the simulation tool closely resembles a camera, it does not
have some properties of a real camera. For example, the output does not have distortions
or vignetting. Moreover, the motion blur in the simulation is incorrect. In case of a real
camera following a gymnast, there will be less motion blur on a gymnast than on the
background. However, in case of a virtual camera, the opposite is true.

6.2 Performance analysis

The first approach to training the LSTM was to train it from scratch. This means, the CNN
structure was wrapped into a TimeDistributed layer and was followed by an LSTM layer
and fully connected layers, and a full network was trained. The performance of this LSTM
model was analyzed during a competition. The network did not track gymnasts properly,
and it looked like it learned to continue the current motion of the camera regardless of
where the gymnast is. This makes sense because in most cases human operators do not
stop the motion abruptly, so continuing the same motion is a good rough guess. The
same was observed in the simulation tool (Figure 25). In other words, if LSTM started to
pan left, it would just continue panning left even if the gymnast was no longer in frame.
While the model seemed to track gymnasts correctly when low gains were used (when
the output of the network was artificially scaled down significantly), such performance is
not satisfactory.

Better results were achieved when weights from the pre-trained CNN were loaded into
a CNN+LSTM network. The structure stayed the same, but CNN weights were frozen.
This model had a lower validation error (1.22) compared to a pure CNN solution (1.42).
The values produced by the LSTM are less noisy and applying decay smoothing on them
makes the output video even smoother. Another interesting observation made during
the performance analysis is that this model leaves no negative lead room in front of a
gymnast and makes the frame look more natural for the eye. This behavior is caused by
the predictive capabilities of the trained LSTM network (Figure 26).

45



30 35 40 45 50 55

−20

−10

0

10

20

Simulation time (s)

Pa
n

an
gl

e
(°

)

Ground truth 1

CNN
LSTM

Figure 25. Results of using CNN and CNN+LSTM models (where CNN for LSTM is not pre-trained). CNN
is tracking the gymnast correctly, while LSTM tends to continue the camera motion after small disturbances.
This results in oscillations and eventually the tracking is lost, because the camera keeps moving even when
the gymnast is no longer in the frame.

1Ground truth represents the manually annotated pan angle to the center of the gymnast. It is not related
to how a human operates a camera or the ideal camera angle. It is shown on the graphs to demonstrate that
produced camera movement is related to the actual gymnast position.
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Figure 26. Results of using CNN and CNN+LSTM models (where CNN for LSTM is pre-trained).
CNN+LSTM model shows its superior tracking and predictive capabilities, while pure CNN model lags
behind in time. The dashed line indicates the frame that was used for Figure 27.

(a) CNN. (b) LSTM-pretrained.

Figure 27. Same frame taken from CNN and LSTM-pretrained simulations. The gymnast is moving from
left to right. LSTM manages to keep the gymnast centered even though the gymnast is moving fast and the
system has latency. CNN noticeably lags behind and the video looks less eye pleasing because of negative
lead room. The gray line is added for illustration purposes and indicates the center of the image.

1Ground truth represents the manually annotated pan angle to the center of the gymnast. It is not related
to how a human operates a camera or the ideal camera angle. It is shown on the graphs to demonstrate that
produced camera movement is related to the actual gymnast position.
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7 Results

This chapter discusses software that was developed for this thesis and highlights the most
important conclusions of the study.

7.1 Developed software

During this work, five main pieces of software were written.

The first developed tool was used to annotate pre-generated frames manually. The anno-
tator was supposed to enter pan, tilt and zoom values using a mouse and a keyboard. The
performance of the initial CNN trained on the manually annotated data was promising,
but the amount of time needed to annotate frames and a possible inconsistency of values
was the reason to find a better solution.

The second developed tool is used to split videos into frames and annotate those in a
fully automated way. This program replaced the aforementioned manual annotation tool.
It is able to generate a dataset for either a CNN or a CNN+LSTM network depending
on arguments passed to the program. In both cases, a current frame and a frame that
follows in a specified amount of time (normally 0.5 s) are used to produce an annotation.
This process is done on many frames of a given video file using a specified time interval
(normally 1 s). For CNN+LSTM, additional context frames before the current one are
also saved.

The third program is used to train a neural network. This program is also responsible for
data augmentation done during training. The program is parameterizable and is suitable
for training both CNN and CNN+LSTM models. Depending on the specified context
length, a CNN or a CNN+LSTM model will be produced. A context length of 1 frame
will result in a CNN model.

The fourth program is used to predict pan, tilt and zoom values required to operate the
camera using the trained neural networks. This program is also used to visualize the
predicted values, see Figure 28. Smoothing of the outputs of neural network models is
also done in this program. For every model, different smoothing coefficients are specified.

Finally, the last program is responsible for the simulation. It was used to test created
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networks with no need to attend a competition. The simulation tool was used to visualize
predictions of CNN+LSTM networks and compare them to the CNN model.

Figure 28. Visualization of the values predicted by the neural network. Red arrow: predicted pan value,
blue arrow: predicted zoom value, green arrow: predicted tilt value, black arrows: smoothed values.

7.2 Conclusions

The lowest MAE was 1.42 for CNN pan model and 236.90 for CNN zoom model. These
values should not be compared to each other as they are completely different. In the case
of zoom, values represent focal length change speed (mm per second), while pan values
represent angular speed (degrees per second).

These values alone do not give us enough information to determine whether or not the
performance of the models was satisfactory. After the models were used to control the
system during a real gymnastics event, it became clear that this result was good enough
to successfully follow a gymnast and change the zoom level when needed. Most of the
frames extracted from videos that were recorded by the system look very similar to frames
from another camera that was operated by a human. There are some differences in po-
sitioning when a gymnast is moving fast. Specifically, the CNN manages to keep the
gymnast in frame, but sometimes fails to keep the gymnast centered.

Tilt model was not properly trained due to insufficient tilt variation in the dataset. Due
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to restrictions of the tripod that was used to record some of the videos for the dataset, a
large number of the frames did not have changes in tilt values, or those changes were not
big enough to be learned by a neural network. The values produced by the trained CNN
tilt model are small and do not affect the camera motion much, but those values seem to
be incorrect. As tilt is not critical for recording rhythmic gymnastics events and can be
chosen once for a group of gymnasts of the same age and roughly the same height, the
camera can be successfully operated by applying only a trained pan and zoom models. To
train a better tilt model, a dataset with more active vertical motion has to be gathered.

The CNN+LSTM solution based on the pre-trained CNN showed better results for pan
when compared to a pure CNN solution. Not only the MAE of 1.22 was lower than
a CNN alone could achieve, but the CNN+LSTM network has predictive capabilities
that help it to avoid negative lead room despite the latency of the system. In addition,
unlike the CNN, the CNN+LSTM was not confused when a gymnast was turning around
a vertical axis, and the direction of the face was changing rapidly.

The important step when training CNN+LSTM was to load the pre-trained CNN
with frozen weights rather than train CNN+LSTM from scratch. While the MAE of
CNN+LSTM trained from scratch was the lowest, the performance was not satisfactory
and the network tended to just continue the current motion of the camera regardless of
where the gymnast was. This may indicate that in this configuration the network has
learned features that are not useful for the task.
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8 Future work

In this chapter, planned future work is presented.

8.1 Better dataset

The currently used dataset is noisy and lacks a variation in tilt values. The performance of
the CNN may improve if a better dataset is created. Other approaches to annotate frames
may be applied. Although the annotating approach based on image registration worked
well, and CNN was successfully trained using those annotations, those are only estimated
values. The most precise annotations could be created if a real data of angular speeds and
zoom level change were recorded.

8.2 Multi-view setups and view switching

The next step to improve the developed system is to add support for multiple cameras,
so that all cameras track a performing gymnast and the system automatically switches to
the camera which has the most aesthetic view, see Figure 29. To evaluate how aesthetic a
frame is, another CNN has to be created and trained.

(a) Less aesthetic view. (b) More aesthetic view.

Figure 29. Comparison of views from different angles.

8.3 Filming between two performances

The current solution works well for tracking the competing gymnast, but there is still
a problem with filming automatically between performances. The system usually stops
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tracking a gymnast where they leave the floor, and when another gymnast comes, it auto-
matically starts tracking again. This works especially well if there’s a gate of some sort,
because the neural network seems to know where the gate is. However, sometimes the
next gymnast would come to the floor before the previous one has left it. Also, in some
cases a gymnast does not return to the gate at all. These situations make the problem more
complex.

8.4 Group performances

As the current solution is only trained on data gathered mostly from individual perfor-
mances, another neural network is needed to automate the filming of group performances.
This neural network should be able to keep all group performers in frame.

8.5 Automatic fallback to the vanilla image processing solution

If, for some reason, the neural network does not perform well, the system could automat-
ically fall back to the vanilla image processing solution that was implemented in another
thesis [4]. The challenge is to detect when this happens and to react fast enough, because
that solution only works when a gymnast is still in frame.

8.6 Other camera angles

Similar network models could be trained for a close up camera that only keeps the upper
part of the body or just the face in frame. Other networks can also be trained for other
camera angles like a top view camera.

8.7 Other sports

The developed system can be used for similar sports, such as figure skating, acrobatics,
sport aerobics, baton twirling – every sport where an individual athlete performs on a
standard area. For another sport, a new dataset has to be created, but the methods of data
preparation and neural network training should remain the same.
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8.8 Other systems

The developed system may be used as a precursor for gymnast pose estimation and body
element detection. There are neural networks that take an image of a human as an input
and return estimated joint positions on the image. This can be used during trainings in or-
der to analyze the gymnast’s technique and during competitions in order to automatically
evaluate difficulty and execution.
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9 Summary

The aim of this thesis was to determine if end-to-end deep learning networks can be used
to operate a camera motion control system during rhythmic gymnastics events. To study
this problem, a dataset consisting of frames extracted from rhythmic gymnastics videos
was created. Different approaches for creating annotations were tried. An annotation
tool was developed to annotate frames manually, but later an approach based on image
registration was implemented and taken into use. This approach annotates frames auto-
matically, making the annotation process much faster, and does not depend on annotator’s
point of view. Each annotation contains pan, tilt and zoom values to be passed to the
camera motion control system in order to track the currently performing gymnast. Before
datapoints were fed into the neural network, some data augmentation techniques were
applied.

This thesis first examined if the problem could be solved using a CNN. Results were
analyzed by using trained neural networks to control the camera movement during a com-
petition. Recorded videos were split into frames and the percent of good frames was
counted. Performance analysis of the created CNN pan and zoom models showed that
this approach works and can be used to capture rhythmic gymnastics events. The CNN
tilt model was not properly trained due to insufficient tilt variation in the dataset. How-
ever, tilt is not critical for the system and the camera can be successfully controlled by
just applying the output of pan and zoom models. To train a better tilt model, the dataset
has to have more variability in tilt values.

In the second part of the thesis, a different type of neural network (CNN+LSTM) was
created and evaluated. To evaluate a CNN+LSTM model and compare results between
different model types, a simulation tool was created. The results of the research showed
that both CNN and CNN+LSTM solve the problem, but the performance of the latter is
better. Even though the video capture device, the software and the hardware have some la-
tency, the CNN+LSTM pan model is able to track a gymnast with no negative lead room
even when the gymnast is moving fast. The important step of training a CNN+LSTM
was to load a pre-trained CNN with frozen weights instead of training the network from
scratch. Without using existing weights from a CNN, the trained network tended to con-
tinue the motion regardless of gymnast’s location.
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