
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Engineering

Tallinn 2016

IAF70LT

Emmanuel Ovie Osimiry

IASM144689

RANDOM DIAGNOSTIC TEST GENERATION

FOR DIGITAL CIRCUITS

Master thesis

Prof. Raimund-Johannes Ubar

D.Sc. Institute of Computer Engineering, Tallinn University of Technology.

Professor, Chair of Computer Systems Test and Verification.

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the materials used, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Emmanuel Ovie Osimiry

29.08.16

3

Abstract

In this thesis several experiments and research were carried out to generate random test

vectors with better average diagnostic resolution for digital circuits. The Turbo Tester

(TT) [1] tool suite was the target framework used for this experimental and research work,

and a number of methods have been developed and proposed.

Typically when generating test vectors the simplest method used is a random pattern

generator [2] [3], the main goal is to generate a minimum number of test vectors with

very high fault coverage. However such a set of test vectors may not produce good

diagnostic resolution whereby it is difficult to narrow down to the specific location that

has a fault. Most times since the test vectors have a high fault coverage a high number of

candidate location qualify as the source of a fault hence this makes diagnostic inspection

of a circuit difficult and evasive.

A measure for evaluating the Average Diagnostic Resolution of a given test set is

proposed and with this measure the average diagnostic resolution of the test patterns

generated by the different methods proposed have been evaluated. The methods that have

been developed in this thesis are based on the random pattern generation tool of Turbo

Tester [1]. Also the effect of fault collapsing on the diagnostic resolution was also

experimented with and shown.

To provide a very rich set of result three benchmark families, ISCAS’ 85 [4], ISCAS’ 89

[5] and ITC’ 99 [6] have been used for this work and the experimental results show that

the methods proposed improve the average diagnostic resolution and have good potential.

A comprehensive analysis and comparison of the new methods proposed has been carried

out and suggestions are given on which particular new method is more advisable to use

than the others, depending on the different constraints such as the test length, test

generation time, and on the diagnostic resolution.

This thesis is written in English and is 90 pages long, including 6 chapters, 22 figures and

22 tables.

4

Annotatsioon

Testide genereerimine juhuslike arvude meetodil digitaalskeemide

rikete diagnoosiks

Käesolevas töös on esitatud uurimus ja eksperimentide seeria, mille põhjal on välja

töötatud uued meetodid testide genereerimiseks juhuslike arvude abil, mis võimaldaksid

kõrget diagnostilist resolutsiooni. Uurimistöö läbiviimiseks on kasutatud Turbo-Tester

[1] diagnostikakeskkonda. Läbi viidud uurimuse tulemusena töötati välja rida meetodeid,

milliseid võrreldi nii omavahel kui ka senise tuntud meetodiga.

Traditsiooniliselt on kõige lihtsamaks testide genereerimise meetodiks stohhastiline

juhuslike arvude kasutamisel põhinev testide genereerimise meetod [2], [3].

Kriteeriumiks on siin valida juhuslikult genereeritud testvektorite hulgast välja

võimalikult väike alamhulk vektoreid võimalikult kõrge rikete kattega. Paraku selline

traditsiooniline lähenemisviis ei garanteeri seejuures head rikete diagnoosi ehk siis kõrget

diagnostilist resolutsiooni – võimalikult täpset rikke asukoha määramist.

Antud testi diagnoosivõime kvaliteedi hindamiseks on töös välja pakutud mõiste „testi

keskmine diagnostiline resolutsioon“. Selle mõõdu abil on võimalik hinnata erinevate

testide diagnoosivõimet ja ühtlasi ka erinevate testide genereerimise meetodite

efektiivsust. Antud töös on aluseks võetud Turbo-Testris kasutatav juhuslike arvude

kasutamisel põhinev testide generaator, mille juures on arvesse võetud ka nn. rikete

kollapsi mõju diagnostilisele resolutsioonile.

Võimaldamaks väga laiaulatuslikku ja usaldusväärset erinevate meetodite võrdlust on

eksperimentide läbiviimiseks kasutatud kolme katseskeemide perekonda ISCAS’ 85 [4],

ISCAS’ 89 [5] and ITC’ 99 [6]. Läbi viidud eksperimendid demonstreerisid, et uued

väljatöötatud testide genereerimise meetodid võimaldavad saada teste, mis märgatavalt

suudavad parandada diagnostilist resolutsiooni rikete otsimisel, võrreldes seniste testide

genereerimise meetoditega. On läbi viidud ka uute meetodite analüüs ning antud

soovitused, milliste kriteeriumite puhul (nõuetena testi pikkusele, testi genereerimise

ajale või diagnostilisele resolutsioonile) üks või teine meetod on paremini sobiv.

5

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 90 leheküljel, 6 peatükki, 22

joonist, 22 tabelit.

6

Acknowledgements

I want to thank the God of my heart for giving me the opportunity, strong will and inner

strength to complete this Master’s degree program. Without your favour I would not have

been able to complete the program.

I immensely thank my supervisor, Prof Raimund-Johanesse Ubar for his superb

supervision and guidance during the course of this thesis. When I was lost you received

me and guided me. I will always remember your kindness.

Many thanks to Steven Oyeniran Adeboye for your insightful advice and suggestions,

now I see the benefits. Thank you once again.

Thank you to my friends and colleagues Nevin, Nish, Tsotne and Uzo for your friendship

and for challenging me, studying with you guys was very interesting, I am glad I met you

all. I want to acknowledge Siavoosh and Adeel for your advice and mentorship, I

appreciate every bit of it.

A big thank you to the Department of Computer and Systems Engineering, Tallinn

University of Technology and to the Estonian government for offering me an opportunity

to study for a master’s degree and for your collective support during the program, if not

for the opportunity you gave me I would not have written this thesis. I am very grateful.

Much appreciation to my parents and siblings especially to my big sister, Peace, for

encouraging and supporting me, your collective love reminded me of our everlasting

unity and this was very instrumental to my success. I am thankful to my fiancée, Chioma,

for showing and demonstrating understanding throughout the period, thank you dear.

This work was supported by Skype and the Estonia Information Technology Foundation

for Education (HITSA).

7

Table of abbreviations and terms

ATPG Automatic Test Pattern Generator

ADR Average Diagnostic Resolution

BISD Built In Self Diagnosis

BIST Built In Self Test

DR Diagnostic Resolution

DC Diagnostic Coverage

FC Fault Coverage

IC Integrated Circuit

LC Limiting Criterion

ORA Output Response Analyser

RTG Random Test Generation

RPG Random Pattern Generator

SAF Stuck-At Fault

SA0 Stuck-At-0

SA1 Stuck-At-1

SoC System on Chip

SSBDD Structurally Synthesized Binary Decision Diagrams

TPG Test Pattern Generator

PCB Printed Circuit Board

8

Table of contents

1. Introduction .. 13

1.1. Background and problem ... 14

1.2. Description of the task solved .. 16

1.3. Thesis Structure ... 17

2. Background ... 18

2.1. Diagnosis in Digital Circuits .. 18

2.2. Terminologies and Definition .. 18

2.3. Fault models ... 19

2.4. Logic Diagnosis Paradigms ... 19

2.4.1. Cause-Effect paradigm ... 19

2.4.2. Effect-Cause paradigm ... 19

2.4.3. Inject-and-Evaluate paradigm .. 20

2.5. Built In Self-Test and Built in Self Diagnosis ... 20

2.6. Some methods for generating diagnostic test .. 21

2.7. Challenges of deterministic diagnostic test generation and motivation for

random diagnostic test generation .. 23

3. Methods for generating test patterns with high Average Diagnostic Resolution. .. 25

3.1. Calculation of the average diagnostic resolution of a given test set. 25

3.2. Generation of random test set with better ADR... 26

3.3. Generating random test patterns with better ADR ... 28

3.3.1. RTG with better ADR - M1 ( = max) .. 28

3.3.2. Effect of fault collapsing on the ADR .. 29

3.3.3. RTG with better ADR - M1 ( = min) ... 30

3.3.4. Comprehensive result (M1). ... 30

3.3.5. Observations and summary for method M1 ... 33

9

3.4. RTG with better ADR - M2 ... 34

3.4.1. Comprehensive result (M2). ... 35

3.4.2. Observations and summary for M2 .. 38

3.5. RTG with better ADR - M3 ... 38

3.5.1. Comprehensive result (M1 M2 and M3) .. 39

3.6. Observations and summary for M1, M2 and M3 ... 41

4. Improving the ADR after RTG ... 43

4.1. Improving the ADR after RTG - A1 .. 43

4.2. Improving the ADR after RTG - A2 .. 45

4.2.1. Weighing function for selecting additional test vectors 46

4.3. Comprehensive result of methods A1 and A2 ... 50

4.4. Comparing methods A1 and A2 .. 53

5. Experimental Results .. 54

5.1. Comparison of proposed methods ... 54

5.2. Strength and weakness of the proposed methods .. 58

6. Summary and conclusion. .. 59

References .. 61

Appendix 1 – Program Description and Manual .. 65

Using the tool ... 66

Example 1 – How to generate diagnostic test with M1 .. 69

Example 2 - How to generate diagnostic test with M2... 70

Example 3 – How to generate diagnostic test with M3 .. 71

Example 4 – How to generate diagnostic test with A2... 72

Appendix 2 - How to compute/extract the average diagnostic resolution from the test

file. .. 73

Example – How to use the safdiag.jar tool to compute the average diagnostic resolution

of a test file. .. 74

10

Appendix 3 – How to use the GUI tool DiagBoost.exe for A1. 75

Appendix 4 – Source Code For method A2 ... 80

11

List of figures

Figure 1 Two approaches for generation of random test patterns 27

Figure 2 Fault coverage and the average diagnostic resolution as the functions of

random test length .. 27

Figure 3 Comparison of M1 (=max) with the traditional approach 28

Figure 4 Comparison of M1 (=min) with the traditional approach 30

Figure 5 Flow chart for method M2 ... 35

Figure 6 Flow chart describing A1 ... 45

Figure 7 normalizing the weights ... 49

Figure 8. Running command to generate diagnostic test with option M1. 69

Figure 9. Program output after running with option M1. ... 69

Figure 10. Running command to generate diagnostic test with option M2 70

Figure 11. Program output after running with option M2. ... 70

Figure 12. Running command to generate diagnostic test with option M3. 71

Figure 13. Program output after running with option M3. ... 71

Figure 14. Running command to generate diagnostic test with option A2. 72

Figure 15. Program output after running with option A2. .. 72

Figure 16 How to compute the ADR of a test file. ... 74

Figure 17. ADR computation complete. ... 74

Figure 18. DiagBoost GUI tool. ... 76

Figure 19. DiagBoost Successfully loaded test file and SSBDD file. 77

Figure 20. Number of iterations DiagBoost should perform. ... 77

Figure 21. Running the DiagBoost tool. ... 78

Figure 22. Generated files after DiagBoost stops. .. 78

12

List of tables

Table 1 Diagnostic matrix for fault diagnosis .. 26

Table 2 Two criterions for selecting patterns (circuit c432) .. 29

Table 3 Influence of the fault collapsing on M1 (c432) ... 29

Table 4 result for method M1 for ISCAS’85 .. 31

Table 5 result for method M1 for ISCAS’89 .. 32

Table 6 result for method M1 for ITC’99... 33

Table 7 result for M2 for ISCAS’85 ... 36

Table 8 result for M2 for ISCAS’89 ... 37

Table 9 result for M2 for ITC’99.. 38

Table 10 ICAS’85 family, Comparing M3 with best results of M1 and M2 39

Table 11 ICAS’89 family, Comparing M3 with best results of M1 and M2 40

Table 12 ITC’99 family, Comparing M3 with best results of M1 and M2 41

Table 13. Example of weighted fault vectors ... 46

Table 14 Example of a large fault group .. 46

Table 15 truth table for logic function .. 48

Table 16 Example of logic function with candidate vector .. 48

Table 17. Comparing method A1 and A2 with ISCAS' 85 circuits 50

Table 18 Comparing method A1 and A2 with ISCAS' 89 circuits 51

Table 19. Comparing A1 and A2 with ITC' 85 circuits ... 52

Table 20. Comparing ADR of best proposed methods with ADR of original test set

using ISCAS’85 .. 55

Table 21. Comparing ADR of best proposed methods with ADR of original test set

using ISCAS’89 .. 56

Table 22. Comparing ADR of best proposed methods with ADR of original test set

using ITC'99 ... 57

13

1. Introduction

The focus of this thesis is on generating random test patterns with better average

diagnostic resolution for digital circuits. The outcome of a better resolution aids better

diagnostics of digital circuits, and this helps the test engineer to easily find the specific

location that has fault.

The first section of this chapter begins with the problem statement, followed by a

description of the scope of work carried out and the methodology. In concluding the

chapter a summary of the work done in this thesis is presented.

14

1.1. Background and problem

Over the years integrated circuits have improved tremendously with the continuous

miniaturization of the transistor and tight integration of more components on a single die

to form complex systems. These technological improvements gave birth to technologies

like Systems on Chips (SoC) and complex Integrated Circuits (IC) [7]. Most of these

improvements were predicted by Gordon Moore [8] [9].

All of the aforementioned development has made it possible for modern day systems to

keep up with the ever increasing demand of faster and efficient performance, but this has

introduced very high complexities in testing and diagnosis of such systems.

During the design phase and after the design phase of any digital system, testing of the

system is incorporated into the process to improve the yield and to ensure a certain level

of acceptance [2] [10]. But testing of digital systems is costly [10] so a compact set of

test vectors is desirable for reducing the cost of time when testing; hence the traditional

goal when generating test set is for high fault coverage [11] and minimum test length.

The random test generator is popularly used for generating such high volume test vectors

because of its quickness, simplicity and cheapness and this is one of the motivation for

this thesis, taking advantage of the quickness, simplicity and cheapness of a random test

generator and at the same time guaranteeing a good average diagnostic resolution.

However a high fault coverage test set does not always guarantee a high diagnostic

resolution [2] [11].

Diagnosis is important after a fault has been detected as it helps to locate the specific

location of a fault and can help the designers to understand what caused a failure and to

prevent them from reoccurring. A diagnostic test set is used for diagnosis and usually it

must have a good diagnostic resolution in order for it to be very useful. This diagnostic

test set is normally generated deterministically by a diagnostic generator, however the

deterministic approach is computationally expensive because the diagnostic generator has

to generate a distinguishing vector for every fault pair in the given test set.

In this thesis a random approach has been used to avoid the expensive deterministic

approach that is mostly used in a traditional diagnostic test generator and the experimental

15

result show that this approach actually improves the ADR and also has a good test

generation time.

There are two traditional diagnosis approaches effect-cause and cause-effect [12]. The

cause-effect approach is the main focus in this thesis. A number of methods are proposed

for randomly generating test vectors with good average diagnostic resolution.

16

1.2. Description of the task solved

A number of methods are proposed for random generation of test vectors with better

average diagnostic resolution. To evaluate the diagnostic resolution, a measure for

evaluating the Average Diagnostic Resolution (ADR) is proposed and with this measure

the proposed methods have been evaluated and compared against each other and with

traditional methods.

The first set of methods generate random test patterns with better diagnostic quality

during the random test generation phase. The second set of methods are more like

optimization methods but with very slight determinism, they try to improve the diagnostic

resolution after the random test patterns have been generated.

The experimental results of the methods presented are compared against each other and

with traditional methods that are used for generating test sets.

A practical and experimental approach was the main drive behind this thesis. All of the

ideas and hypothesis were analysed first, then implemented to verify the outcomes.

In the end this thesis has contributed to the turbo tester tool by introducing additional

functionality such as random diagnostic test generation.

17

1.3. Thesis Structure

Chapter two gives background information related to this thesis such as diagnosis in

digital circuits, fault models, diagnosis paradigms, some methods proposed by other

authors for generating diagnostic tests then finally the challenges with generating

diagnostic test and the motivation behind this thesis.

In Chapter three, three out of the five methods proposed are presented and discussed. The

effect of fault collapsing is also shown, and some experimental results are presented with

a short discussion concluding the chapter.

The remaining two methods proposed are captured in chapter four, some experimental

results are also presented and a comparison concludes the chapter.

Chapter five presents the general experimental result and compares the best methods that

have been proposed to show the amount of improvement the random approach introduces

to the normal test set that has been generated for testing using the Random ATPG and

Deterministic ATPG. Finally chapter six summarises and concludes the findings of this

thesis.

The experimental platform used for the experiments was an Intel i7 octal core at 2.13

GHz, 8 GB RAM Laptop.

18

2. Background

This chapter gives an overview and background information related to this thesis. First

the description and importance of digital circuit diagnosis is established. Then fault

models and the major paradigms and approaches used for diagnosis are discussed.

Furthermore some methods for generating diagnostic test are presented and discussed;

finally in concluding the chapter the motivation for this thesis is discussed.

2.1. Diagnosis in Digital Circuits

In digital circuits diagnosis is the process of locating the faults present within a given

fabricated copy of a circuit [13]. Typically after the fabrication of the IC some of the chips

may be defective; a manufacturing test is used to screen out the bad chips [2]. But

knowing that some particular chips have failed a test is not enough so the next step will

be to locate the point where the failure has occurred. This is where diagnosis comes in.

for Printed Circuit Boards (PCB) when the site of the fault has been located it is possible

to repair, however this is not the case for IC so the main purpose or benefit of diagnosing

IC is to gain useful insight on what caused the fault. This is particularly important as it

helps to clarify what could be the possible cause of the failure. It is therefore important

for a diagnostic tool to be able to generate diagnostic test quickly and to provide high

accuracy. Depending on the information obtained from the diagnosis the chip can be

redesigned to handle such failures or the fabrication process can be improved. Ultimately

this would improve the yield.

2.2. Terminologies and Definition

Diagnostic Resolution (DR) – In summary this is defined as the ratio or fraction of the

total number of faults by the number of detected fault groups [14] [15] [16]. Another

source defines it as the total number of defect candidates [2]. A proper name will be

Average Diagnostic Resolution (ADR). Throughout the rest of this literature the term

ADR is used.

Diagnostic Coverage (DC) – This is simply the inverse of the DR.

19

Section 3.1 of chapter 3 gives more details about calculation of ADR proposed.

2.3. Fault models

In order to generate logic test for digital circuits a fault model is used to represent the

digital circuit. Fault modelling is the process of modelling defects at a higher level of

abstraction in the design hierarchy [13] [17] [18] [19] [20]. The aim of the fault model is

to provide an easy platform that could replicate possible faults which could occur in the

circuit. Fault model is useful for both test generation and diagnostic test generation for

the logic circuit; however no single fault model can reflect the behaviour of all possible

defect that may occur in a digital circuit [2]. Several fault models have been proposed but

in this thesis the Stuck-At Fault (SAF) model has been used. The SAF model is a logic

fault model which could affect any of the primary Input/Output (I/O), internal I/O of gates

etc. The idea is that any of the fault site of the digital circuit could either be Stuck-At-0

(SA0) or Stuck-At-1 (SA1). For instance for an SA0 fault the logic will remain at logic 0

even when it should be logic 1 and vice versa for SA1 fault.

2.4. Logic Diagnosis Paradigms

The traditional diagnosis algorithms follow two major paradigms: cause-effect and effect-

cause analysis. Another paradigm is the inject-and-evaluate paradigm. The following sub

sections describe each of these paradigms.

2.4.1. Cause-Effect paradigm

This technique maps the causes of failures to specific fault models e.g. SAF model. It also

relies on fault dictionaries. With the help of fault simulation, the fault dictionaries are

built [21] [22]. Once the fault dictionary is ready the syndrome of the failing chip is

analysed using dictionary look-up.

2.4.2. Effect-Cause paradigm

This paradigm is somewhat like the reverse reasoning of the cause-effect paradigm. It

begins by identifying the failing outputs then starts reasoning on the logic structure of the

circuit to be diagnosed. The algorithms based on this paradigm are simple when the single

20

fault assumption is adopted. In this case intersections of the input cones of failing outputs

are calculated [23], or back-trace critical paths from failing outputs are processed [24].

Because of the sequential character of fault reasoning, this approach is called sequential

or adaptive fault diagnosis.

2.4.3. Inject-and-Evaluate paradigm

As an alternative to back-trace approaches, which is utilized in the effect-cause paradigm,

this inject and evaluate paradigm is introduced in [25] [26]. In [27] and [28] this approach

is further improved with an efficient metrics that relies on curable vectors. This method

uses injection and evaluation to predict locations of fault sites. This is different from the

effect-cause approach which uses back-trace starting from the failing output and into the

circuit to locate the fault site [29]. One major benefit of this approach is its high accuracy.

2.5. Built In Self-Test and Built in Self Diagnosis

Due to the rising complexity in digital circuits as a result of high integration of more

components, diagnosing and testing has become difficult. Design for Testability methods

such as the integration of a Built In Self Test (BIST) into the circuit greatly improves the

testability and cost of testing. Basically a BIST comprises of a Test Pattern Generator

(TPG) and an Output Response Analyser (ORA). Unlike traditional test techniques which

may not achieve optimal fault coverage with chips designed with the nanometre scale

technology, integration of the BIST at the design stage of the chip offers a solution to

such a problem [30] [31], and this is gradually gaining acceptance in the industry [32].

Although the BIST has been successful in testing but it does not perform well in

diagnosing hence cannot be relied on for Built In Self Diagnosis (BISD) because of the

limited information it gives which is insufficient for diagnosis [33]. Some challenges that

need to be overcome in order for the BIST to be useful for diagnosing are highlighted in

[34].

21

2.6. Some methods for generating diagnostic test

In this section a discussion of some methods for generating diagnostic test patterns is

presented.

Basically the job of a diagnostic test generator is to generate a test vector that can

distinguish between a pair of faults that is supplied to it. Diagnostic test generation

problem is a complex problem which requires repeated run for every pair of faults

available in the test set in order to generate a distinguishing vector for every case.

Sometimes some faults may be equivalent and as such it is not possible to distinguish

them except in cases where one fault dominates the other. Some ways to cope with the

complexity of generating diagnostic test are by removing redundant faults or fault

collapsing and also by using the traditional test set meant for fault detection as a starting

point; the advantage is that such a test set is usually compact so this reduces the number

of pairs of faults the diagnostic generator has to generate distinguishing test vectors for.

According to [13] the techniques for generating diagnostic test can be classified into two

major categories. The first category uses the traditional test generation technique (which

is used for generating fault detection test set) as a driver to obtain a vector that

distinguishes between a given pair of faults, while the second category directly targets

how to distinguish between a pair of faults.

Two methods described in [13] that use the first category are described in the following.

The first method proposed by [35] is based on two principles

1. If there is at least one or more outputs that is in the transitive fan-out of one of the

faults that needs to be distinguished but not in the other one, then generate a test

vector that will detect a fault at the output(s).

2. If (1) is not successful, then select an output that is in the transitive fan-out of

both, however generate a test that propagates the effect of one fault to the output

but not the other.

If both (1) and (2) fail then another output is selected and the steps are continued.

22

The second method proposed by [36] uses the traditional fault detection test set. From the

set a pair of faults that are not distinguishable by the test set, a vector v that detects both

faults but at the same output is selected from the set. Such a vector is then used to generate

a new vector v’, this new vector v’ is then fault simulated to see if it can distinguish the

pair of faults. If it does the process moves to the next pair otherwise the vector v’ is

discarded and procedure continues.

In [14] a pair of faults f1 and f2 is distinguished by utilizing three copies of a fault model,

a fault free model (M), a model with fault f1 (Mf1) and a model with fault f2 (Mf2).

Combining these three models a vector that can distinguish the pair of faults is generated.

A second approach that uses two copies of a fault model was proposed by [37]. This

method does not consider a fault free version of the model but only the models containing

faults f1 and f2 (Mf1 and Mf2). Using the two fault models it tries to generate a vector that

produces different values at the output of each model. If the process is successful then it

must be propagated to at least a primary output.

A number of methods were proposed in [11]. The main approach utilized here is targeting

directly how to generate a distinguishing vector for a given pair of vectors. First they

present a set of method which requires modification of circuit netlist in order to model it

as a circuit with a single inserted fault then an ATPG is used to target that fault. They also

present another algorithm which uses fault dropping. When a fault is distinguished it is

dropped but it is done without fault equivalence checking. Their main target is for

Diagnostic Coverage.

In [38] they propose a method that tries to avoid deterministic test generation. Their

algorithm targets the equivalence classes of the test set as it is generated. The method

does not take the approach of distinguishing a fault pair (one at a time) instead, all faults

within the equivalent class are simultaneously targeted thus the number of test and the

generation time is reduced. They also utilize a process based on test elimination for

generating a test for every equivalence class. The algorithm begins with the test set for

fault detection V, using fault simulation and fault dropping of V they find the set of

collapsed single stuck-at faults F that are detected by test set V. Then a set of fault pairs

F' that is not guaranteed to be distinguished by V is defined. A fault simulation of F' using

23

V is performed and then fault pairs in F' that are distinguished by V are dropped. The fault

pairs remaining in F' are then used to define equivalence classes. When generating the

diagnostic test in every iteration the largest equivalence class that has not been considered

is selected. A test v  V which is the first test that is able to detect every fault in the

selected equivalent class is recorded. Then the procedure proceeds by trying to detect at

least a fault from the class in a single output while eliminating the detection of other

faults. using a set of conditions to modify v for the test and a cost function to determine

if all the faults within the selected class are distinguished, if the conditions are met then

v is selected without any further modification. If not, modification of v continues until a

certain constant number of consecutive passes of all the inputs do not improve the number

of fault pairs distinguished by v. The test is selected if it is able to distinguish a fault pair

from the supplied class.

2.7. Challenges of deterministic diagnostic test generation and

motivation for random diagnostic test generation

In the previous section the methods presented for diagnostic test generation attempt to

generate deterministic diagnostic test set. When generating diagnostic test set for digital

circuits the two major challenges faced are the computational cost when trying to generate

a test vector for distinguishing between a fault pair and the time. A diagnostic pattern

generator that is able to achieve both of the goals would be considered highly useful for

practical cases. Some of the methods presented in the previous section for diagnostic test

generation have proposed some solutions to cope with some of these challenges such as

fault collapsing (for eliminating equivalent faults), the use of the original test set meant

for fault detection as a starting point for fault diagnosis.

This thesis has taken a different approach to the problem by using a random and semi

random method to achieve the same goal. The motivation behind this approach is that by

using such an approach it is possible to bypass the expensive deterministic operation of

trying to generate a distinguishing vector between every pair of fault, improve the

diagnostic test generation speed and finally improve the ADR.

To evaluate the potential and effectiveness of this approach five methods which include

two semi random methods were developed and experimented with using a wide

24

collection of circuit model from different benchmark families, ISCAS’85 [4], ISCAS’89

[5] and ITC’99 [6]. The results from the experiment show that the random approach of

diagnostic test pattern generation has some potential and is promising. The

computational cost and time are reduced and it improves the ADR of the generated test

set when compared to the original test set generated by the ATPG.

25

3. Methods for generating test patterns with high Average

Diagnostic Resolution.

Section 3.1 introduces a method for evaluating the Average Diagnostic Resolution (ADR)

of a given test set. Section 3.2 discusses about random test generation, fault coverage

(FC) and diagnostic resolution (DR). Sections 3.3 to 3.5 presents the methods for

generating Random test patterns with very good ADR.

3.1. Calculation of the average diagnostic resolution of a given test

set.

Let’s represent the fault table for a given circuit and a given test set as a diagnostic matrix

DM =  dij  where i denotes a test pattern and j denotes a fault. We say dij = 1, if the

test pattern ti detects the fault fj, otherwise dij = 0.

Let’s call the column vectors CWj = (dj1, dj2, ... , djn) of DM as diagnostic codewords.

Here n is the number of test patterns. Each fault fi has its own binary codeword, but several

faults may have the same diagnostic codeword.

Let F be the set of all faults in the circuit. Partition all the faults in F into a set of groups

G, so that the codewords of the faults in a particular group Gk  G are equivalent.

Obviously, G F, and G = F only in the case when all the columns CWj in DM

are different

We can calculate now the average diagnostic resolution of the given circuit as follows:

 𝐷 =
∑ 𝐺𝑘
𝐺
𝑘=1

𝐺
 (1)

Consider, as an example, the diagnostic matrix DM in Table 1, which provides the

following partition of faults

G = {{f1},{f2},{f3,f6,f9},{f4,f7},{f5,f8},{f10},{f11}}.

26

Table 1 Diagnostic matrix for fault diagnosis

D
Faults fj

1 2 3 4 5 6 7 8 9 10 11

Tests 1 1 1 1 1

ti 2 1 1 1 1

 3 1 1 1 1 1

 4 1 1 1

 In this partition, there are three groups of indistinguishable faults: G3 = {f3, f6, f9}, G4

= {f4, f7}, and G5 = {f5, f8}. The average diagnostic resolution of the given test set,

according to (1), is D = 1.57.In the best case of diagnosis we may have Dmin = 1, but the

worst case diagnostic resolution will be Dmax = 3. To improve the resolution, additional

test patterns are needed to distinguish the faults in the groups G3, G4 and G5.

3.2. Generation of random test set with better ADR

Random Test Generation (RTG) is one of the simplest methods for generating test

patterns. Patterns are randomly generated as packages and thereafter fault-simulated on

the circuit under test (CUT) [2]. As an efficient and straightforward criterion for gradual

test pattern selection has proven to select only those patterns which exceed a given lower

level of the number of detected not yet covered faults [1] [39]. Denote the increment in

the fault coverage as the contribution of a test pattern by . The selection criterion when

=max supports fast convergence towards 100% FC with small test length as depicted in

Figure 1a. The criterion is easy to calculate in the run of the test generation process.

However, such an approach will not provide high diagnostic resolution ’ as depicted in

Figure 1a.

27

Figure 1 Two approaches for generation of random test patterns

Figure 1b illustrates the case where the pattern selection criterion is chosen so that ’’ <

’. It is easy to see that in this case the final average diagnostic resolution ’’ may become

far better than ’. Figure 2 illustrates how the two parameters FC and ADR are evolving

during the run of random pattern selection according to the criterion  = max.

Figure 2 Fault coverage and the average diagnostic resolution as the functions of random test length

’

Fault coverage 100%

’’

Fault coverage < 100%

a)

b)

’ ’

’

’1 ’2 ’3 ’n

’’1 ’’2 ’’3 ’’n

’’ ’’

70

75

80

85

90

95

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

50 250 450 650 850

F
a
u

lt
 C

o
v

er
a
g
e

D
ia

g
 R

es
o
lu

ti
o
n

Test Length

DR

FC

28

3.3. Generating random test patterns with better ADR

In this section a total of three (3) methods are presented. Let us refer to the methods with

the following code names:

1. Method 1 will be referred to as M1

2. Method 2 will be referred to as M2, and

3. Method 3 will be referred to as M3.

M1 and M2 using two configurations each are first presented, then the effect of fault

collapsing on the ADR is briefly shown. Finally M3 is presented. The methods presented

in this chapter have small computational cost and they give better ADR when compared

to a traditional random test generator (RTG).

3.3.1. RTG with better ADR - M1 ( = max)

Random test pattern generation with emphasis on high ADR and small TL, i.e. two targets

are combined simultaneously. To increase the chances of getting a good ADR, a limit

criterion LC is introduced so that only the patterns with Max ’’< LC are selected (Figure

3). This is opposite to the traditional random test generation (RTG) where the patterns are

selected according to Max ’. To slow down at the same time the growth of the test length,

due to a number of other patterns satisfying the constraint ’’ < LC, the patterns with

Max ’’ have to be selected

Figure 3 Comparison of M1 (=max) with the traditional approach

The effects of the two criterions (the traditional Max ’, and the proposed Max ’’< LC)

for a benchmark circuit c432 [4] are shown in Table 2 where TL is test length, FC is fault

coverage, and ADR is average diagnostic resolution.

FC

100%

Max ’

Max ’’

LC

Method M1

Traditional method

Current

FC*

29

Table 2 Two criterions for selecting patterns (circuit c432)

Max ’ (Trad. method) Max ’’< LC (M1)

LC TL FC% ADR LC TL FC% ADR

1 39 95.3 7.9 22 56 95.3 5.9

2 35 95 8.4 23 55 95.3 5.8

3 32 95.5 9 24 55 95.3 6.1

4 30 93.8 9.6 25 51 95.3 7

5 27 92.7 10.5 26 50 95.3 6.9

6 25 91.8 12.1 27 51 95.3 6.6

7 23 90.6 13.9 28 51 95.3 6.4

3.3.2. Effect of fault collapsing on the ADR

In Table 3 the result of the method described in section 3.3.1 are shown after taking into

account fault collapsing. The number of gate-level stuck-at-faults in c432 is 974, and after

fault collapsing – 616. The FC in Table 3 is calculated in relation to the number of faults

after fault collapsing.

As we see, the impact of fault collapsing (in Table 3) on the diagnostic resolution is

considerable.

Table 3 Influence of the fault collapsing on M1 (c432)

M1 (gate level faults) M1 (collapsed faults)

LC TL FC% ADR LC TL FC% ADR

1 36 93 5 22 45 93 3.7

2 33 92.7 5.4 23 43 93 4

3 28 91.2 6.6 24 43 93 4.2

4 26 90.6 7.3 25 41 93 4.3

5 22 88.2 8.6 26 41 93 4.2

6 20 86.7 9.6 27 42 93 4.2

7 19 85.7 10.4 28 42 93 4

30

3.3.3. RTG with better ADR - M1 ( = min)

This is the same with what was described in section 3.3.1 except that in this case instead

of taking patterns that meet the requirement of the LC where =max, the patterns with

=min are selected, as illustrated in Figure 4.

Figure 4 Comparison of M1 (=min) with the traditional approach

3.3.4. Comprehensive result (M1).

The results of M1 with both configurations, =max and =min are presented and

compared against the traditional random method. Three families have been used for the

experiments ISCAS’85 [4], ISCAS’89 [5] and ITC’99 [6].

31

RTPG: Random Test Pattern Generator, ADR=Average Diagnostic Resolution, FC=

Fault Coverage, TL=Test Length, TIME=Test generation time

Table 4 result for method M1 for ISCAS’85

RTPG

M1

=max

M1

=min

c432

ADR 4.96 3.3 2.31
FC 93.02 93.02 93.02
TL 36 55 211

TIME(S) 2.01 3.341 12.648

c499

ADR 2.33 2.19 2.03
FC 99.33 99.33 99.33
TL 84 90 288

TIME(S) 4.62 5.697 28.897

c880

ADR 2.77 2.73 1.72
FC 100 100 100
TL 38 42 382

TIME(S) 3.03 3.435 29.226

c1908

ADR 3.6 3.3 2.48
FC 99.48 99.48 99.48
TL 109 119 484

TIME(S) 8.27 11.014 87.972

c2670

ADR 3.18 3.27 2.68
FC 94.06 93.98 94.9
TL 89 91 390

TIME(S) 47.16 49.584 154.633

c3540

ADR 3.35 3.34 2.24
FC 95.54 95.54 95.54
TL 119 122 820

TIME(S) 18.56 20.599 270.909

c5315

ADR 2.72 2.64 2.1
FC 98.89 98.89 98.89
TL 83 88 1043

TIME(S) 25.78 31.337 552.499

In Table 4 where we have the result for ISCAS’85 [4] benchmark circuits, it is very

obvious to see the trend when =min (test patterns detecting the least faults are selected),

the ADR is better when compared to the configuration where =max. However the test

generation time (TIME) is much longer because test patterns detecting the list faults that

satisfy the limiting criteria LC are selected, so obviously this will take more time before

the FC converges. Nonetheless both configurations of M1 have a better ADR for the

ISCAS’85 [4] circuits when compared to the ADR of the normal random test set (RTPG)

except for circuit c2670 when M1 has the configuration =max.

32

Table 5 result for method M1 for ISCAS’89

 RTPG
M1

=max

M1

=min

s967mm

ADR 2.65 2.66 2.18
FC 100 100 100
TL 93 91 321

TIME(S) 7.06 6.413 30.225

s1269mm

ADR 2.9 2.93 1.98
FC 100 100 100
TL 41 41 397

TIME(S) 5.48 10.119 43.633

s1494mm

ADR 4.49 3.78 2.66
FC 99.17 99.17 99.17
TL 106 124 435

TIME(S) 7.281 8.928 37.457

s3384mm

ADR 2.31 2.31 2.23
FC 96.69 96.69 96.36
TL 46 48 246

TIME(S) 23.74 23.054 62.926

s13207mm

ADR 6.75 6.93 6.25
FC 98.19 98.2 98.2
TL 412 407 1137

TIME(S) 167.50 1506.242 6651.089

s15850mm

ADR 3.2 3.22 2.78
FC 95.05 95.48 94.85
TL 375 402 1414

TIME(S) 417.32 2302.948 13397.131

Just like in Table 4, we have almost the same situation in Table 5 which has the result of

the ISCAS’89 [5] benchmark circuit. When =min (test patterns detecting the least faults

are selected) the ADR is better when compared to the configuration where =max,

however the test generation time (TIME) is much longer due to the fact that test patterns

detecting the least faults that satisfy the limiting criterion (LC) are selected. This is also

the reason for the shorter test generation time when M1 has the configuration =max

because patterns detecting the most faults that satisfy the LC are selected instead. With

the configuration =max for M1, the ADR does not improve very much for the ISCAS’89

[5] circuits when compared with the ADR of the normal random test.

.

33

Table 6 result for method M1 for ITC’99

 RTPG
M1

=max

M1

=min

b04

ADR 3.31 2.65 1.87
FC 98.52 98.52 98.52
TL 74 81 340

TIME 8.07 10.424 48.892

b05

ADR 5.1 5.14 4.29
FC 77.52 77.52 77.52
TL 71 75 307

TIME(S) 20.16 21.257 126.591

b07

ADR 2.83 2.89 2.09
FC 97.09 97.09 97.09
TL 44 43 221

TIME 4.46 4.134 18.225

b11

ADR 5.07 4.44 2.69
FC 95.37 95.37 95.37
TL 77 81 301

TIME 12.21 11.53 58.913

b12

ADR 2.65 2.71 1.95
FC 99.15 99.12 99.06
TL 129 134 549

TIME 29.67 31.459 157.005

b14

ADR 2.81 2.82 2.16
FC 91.34 91.41 91.01
TL 542 554 2230

TIME 1523.73 1562.862 15130.59

b15

ADR 3.57 3.48 2.75
FC 90.99 91.08 90.02
TL 462 475 2474

TIME 947.09 1086.828 16117.49

3.3.5. Observations and summary for method M1

From all the results presented in Table 4, Table 5 and Table 6, the configuration where

=min has the best ADR and this can be attributed to growing the FC with smaller steps

(=min) this is also the reason why the test generation time (TIME) is very long.

Additional test patterns improved the ADR of the traditional method. The ADR also

improved for the case when =max, although not in all cases and the level of

improvement is not as good as when =min.

One challenge encountered with M1 was with finding the appropriate value of the LC.

This value was different for different circuit models hence it required several experiments

with varying values to find the best value for the LC. For very small values of LC some

experiments did not yield any test vectors while in other cases test vectors were found

34

however the FC was much below the maximum achievable. For example if you take a

look at Table 2 you will notice that the LC values for M1 are much higher than the

traditional method, e.g. the minimum value of LC was 22, and this was the least value

that yielded the maximum FC obtainable..

3.4. RTG with better ADR - M2

To resolve the problem of small values of LC in M1, in M2 the first test pattern is selected

instead without the constraint  < LC, and then starting from the second pattern the

constraint is taken into consideration when selecting new patterns (Figure 1b). To also

reduce deadlocks when searching for suitable patterns the selection process in M2 is made

more flexible by allowing the value of LC to change dynamically during test generation

in cases where a test vector has not been found after a period of time. Figure 5 in the next

page shows the flow chart for M2.

35

Figure 5 Flow chart for method M2

3.4.1. Comprehensive result (M2).

The same configurations that were used in M1 where the patterns that satisfied the LC

with configuration =max and =min were selected, was also experimented with in M2.

The following tables show the results for the following families ISCAS’85 [4], ISCAS’89

[5] and ITC’99 [6]. The traditional random pattern generation method is compared against

the two configurations of M2.

36

Table 7 result for M2 for ISCAS’85

RTPG

M2

=max

M2

=min

c432

ADR 4.96 2.5 2.28
FC 93.02 93.02 93.02
TL 36 102 209

TIME(S) 2.01 14.962 11.39

c499

ADR 2.33 2.09 2.03
FC 99.33 99.33 99.33
TL 84 99 282

TIME(S) 4.62 10.426 31.527

c880

ADR 2.77 2.13 1.72
FC 100 100 100
TL 38 56 404

TIME(S) 3.03 6.601 33.661

c1908

ADR 3.6 2.77 2.48
FC 99.48 99.48 99.48
TL 109 176 483

TIME(S) 8.27 30.005 57.19

c2670

ADR 3.18 3.25 2.68
FC 94.06 93.91 94.9
TL 89 90 389

TIME(S) 47.16 50.378 157.986

c3540

ADR 3.35 3.37 2.24
FC 95.54 95.54 95.54
TL 119 122 819

TIME(S) 18.56 22.72 266.176

c5315

ADR 2.72 2.77 2.09
FC 98.89 98.89 98.89
TL 83 86 1117

TIME(S) 25.78 32.262 584.397

In Table 7Table 4 where we have the result for ISCAS’85 [4] benchmark circuits, it is

very obvious to see the trend when =min (test patterns detecting the least faults are

selected) the ADR is better when compared to the configuration where =max, however

the test generation time (TIME) is much longer because patterns that satisfy the LC and

that detect the least fault are selected so this takes more time. Both configurations of M2

have a better ADR when compared to the ADR of the normal random test set (RTPG)

except for circuit’s c2670, c3540, and c5315 the configuration =max does not produce

a better ADR when compared the normal random test set.

37

Table 8 result for M2 for ISCAS’89

 RTPG
M2

=max

M2

=min

s967mm

ADR 2.65 2.66 2.18
FC 100 100 100
TL 93 92 320

TIME 7.06 6.319 33.614

s1269mm

ADR 2.9 3 2.01
FC 100 100 100
TL 41 44 418

TIME(S) 5.48 5.367 41.9

s1494mm

ADR 4.49 3.26 2.65
FC 99.17 99.17 99.17
TL 106 161 437

TIME 7.281 18.37 46.01

s3384mm

ADR 2.31 2.32 2.24
FC 96.69 96.69 96.24
TL 46 44 234

TIME 23.74 20.389 65.98

s13207mm

ADR 6.75 6.82 6.23
FC 98.19 98.2 98.2
TL 412 413 1151

TIME 167.50 297.972 5885.308

s15850mm

ADR 3.2 3.19 2.8
FC 95.05 95.5 94.85
TL 375 402 1406

TIME 417.32 1671.041 13996.072

Table 8 shows the results for ISCAS’89 [5] family and we can see from the table that the

ADR of M2 when the configuration =min is used is better than when =max. Also we

can observe from the result that the ADR of the normal random test (RTPG) is worse than

M2 with configuration =min however it is almost similar in some cases to M2 with

configuration =max. For instance for all circuits, apart from circuit s1494mm the ADR

for M2 with configuration =max does not have a better ADR when compared to the

ADR of the normal test set (RTPG).

38

Table 9 result for M2 for ITC’99

 RTPG

M2

=max

M2

=min

b04

ADR 3.31 2.68 1.88
FC 98.52 98.46 98.52
TL 74 80 339

TIME 8.07 10.85 50.994

b05

ADR 5.1 4.96 4.29
FC 77.52 77.52 77.52
TL 71 73 306

TIME(S) 20.16 21.899 147.168

b07

ADR 2.83 2.72 2.11
FC 97.09 97 97.09
TL 44 45 220

TIME 4.46 4.326 21.36

b11

ADR 5.07 4.86 2.69
FC 95.37 95.2 95.37
TL 77 79 300

TIME 12.21 11.843 60.356

b12

ADR 2.65 2.78 1.96
FC 99.15 99.02 99.06
TL 129 133 567

TIME 29.67 27.763 159.898

b14

ADR 2.81 2.85 2.16
FC 91.34 91.38 91.01
TL 542 553 2229

TIME 1523.73 1601.621 15356.816

b15

ADR 3.57 3.48 2.75
FC 90.99 91.06 90.02
TL 462 474 2473

TIME 947.09 1085.863 16449.786

3.4.2. Observations and summary for M2

The introduction of a dynamic LC during test pattern generation made it easier to look

for a suitable LC value. However the result of method M2 did not improve considerably

when compared to method M1. Analysing the results of M2 and M1 closely showed that

both methods performed well when the test vectors are selected with min< LC.

3.5. RTG with better ADR - M3

The very similar result when comparing M1 and M2, inspired the creation of M3. In M3

the LC is removed entirely and test vectors are ranked in ascending order with =min

where  is the amount of new faults detected (previously described in section 3.2). There

is no criterion constraint LC.

39

3.5.1. Comprehensive result (M1 M2 and M3)

In this section the following tables compare the results of M3 with the best result of M1

and M2. The traditional method for random test pattern generation is also placed in the

table to show the improvement each method introduced. The results in the following

tables are presented for the following benchmark families’ ISCAS’85 [4], ISCAS’89 [5]

and ITC’99 [6].

Table 10 ICAS’85 family, Comparing M3 with best results of M1 and M2

 RTPG M1

=min

M2

=min

M3

=min
c432

ADR 4.96 2.31 2.28 2.31
FC 93.02 93.02 93.02 93.02
TL 36 211 209 211

TIME(S) 2.01 12.65 11.39 11.13

c499

ADR 2.33 2.03 2.03 2.03
FC 99.33 99.33 99.33 99.33
TL 84 288 282 288

TIME(S) 4.62 28.90 31.53 25.04

c880

ADR 2.77 1.72 1.72 1.72
FC 100 100 100 100
TL 38 382 404 382

TIME(S) 3.03 29.23 33.66 25.56

c1908

ADR 3.60 2.48 2.48 2.48
FC 99.48 99.48 99.48 99.48
TL 109 484 483 469

TIME(S) 8.27 87.97 57.19 77.19

c267

ADR 3.18 2.68 2.68 2.68
FC 94.06 94.90 94.90 94.90
TL 89 390 389 390

TIME(S) 47.16 154.63 157.99 140.01

c3540

ADR 3.35 2.24 2.24 2.24
FC 95.54 95.54 95.54 95.54
TL 119 820 819 820

TIME(S) 18.56 270.91 266.18 238.32

c5315

ADR 2.72 2.10 2.09 2.09
FC 98.89 98.89 98.89 98.89
TL 83 1043 1117 1118

TIME(S) 25.78 552.50 584.40 652.60

Looking at Table 10 we can observe that all three methods, M1, M2 and M3 have similar

ADR. Also comparing the ADR of all three methods to the ADR of the normal test set

(RTPG) we can see that they all have a better ADR. In general all three methods have

almost the same test TL except for circuit c5315 where M2 and M3 have the worse TL

compared to M1. For circuit c880 M2 has the worse TL and M3 has the best TL for circuit

c1908. As for the test generation time (TIME) M3 has the best or shortest time (apart

from circuit c1908) when compared M1 and M2.

40

Table 11 ICAS’89 family, Comparing M3 with best results of M1 and M2

 RTPG M1

=min

M2

=min

M3

=min
s967mm

ADR 2.65 2.18 2.18 2.18
FC 100 100 100 100
TL 93 321 320 321

TIME 7.06 30.23 33.61 41.84

s1269mm

ADR 2.90 1.98 2.01 2.01
FC 100 100 100 100
TL 41 397 418 419

TIME(S) 5.48 43.63 41.90 52.93

s1494mm

ADR 4.49 2.66 2.65 2.66
FC 99.17 99.17 99.17 99.17
TL 106 435 437 435

TIME 7.3 37.5 46.0 53.4

s3384mm

ADR 2.31 2.23 2.24 2.24
FC 96.69 96.36 96.24 96.24
TL 46 246 234 235

TIME 23.74 62.93 65.98 80.59

s13207mm

ADR 6.75 6.25 6.23 6.26
FC 98.19 98.20 98.20 98.20
TL 412 1137 1151 1050

TIME 167.50 6651.09 5885.31 1114.31

s15850mm

ADR 3.20 2.78 2.80 2.90
FC 95.05 94.85 94.85 95.21
TL 375 1414 1406 1305

TIME 417.32 13397.13 13996.07 3317.01

Looking at Table 11 we can observe that all three methods, M1, M2 and M3 have similar

ADR except for circuit s15850mm where M3 has a slightly worse ADR. If we compare

the ADR of all three methods to the ADR of the normal test set (RTPG) we can see that

they all have a better ADR. The TL for all three methods are similar for only circuit

s967mm and s1494mm but different in other cases. For the bigger circuits s13207mm and

s15850mm, M3 has the best TL. As for the test generation time (TIME) M3 has the best

or shortest time for the bigger circuits (s13207mm and s15850mm) but the worse test

generation time for all other circuits.

41

Table 12 ITC’99 family, Comparing M3 with best results of M1 and M2

 RTPG M1

=min

M2

=min

M3

=min
b04

ADR 3.31 1.9 1.88 1.87
FC 98.52 98.52 98.52 98.52
TL 74 340 339 340

TIME 8.07 48.89 50.99 63.69

b05

ADR 5.10 4.29 4.29 4.29
FC 77.5 77.5 77.5 77.5
TL 71 307 306 307

TIME 20.16 126.59 147.17 184.74

b07

ADR 2.83 2.09 2.11 2.09
FC 97.1 97.1 97.1 97.1
TL 44 221 220 221

TIME 4.46 18.23 21.36 26.96

b11

ADR 5.07 2.69 2.69 2.69
FC 95.37 95.37 95.37 95.37
TL 77 301 300 301

TIME 12.21 58.91 60.36 76.13

b12

ADR 2.65 1.95 1.96 1.96
FC 99.15 99.06 99.06 99.06
TL 129 549 567 568

TIME 29.67 157.01 159.90 202.83

b14

ADR 2.81 2.16 2.16 2.16
FC 91.34 91.01 91.01 91.01
TL 542 2230 2229 2230

TIME 1523.73 15130.59 15356.82 18031.69

b15

ADR 3.57 2.75 2.75 2.75
FC 90.99 90.02 90.02 90.02
TL 462 2474 2473 2474

TIME 947.09 16117.49 16449.79 19060.77

3.6. Observations and summary for M1, M2 and M3

The methods presented in this chapter for random test pattern generation attempt to

generate test pattern with very good ADR value using the FC as the feedback or cost

function. While the fault coverage may not be the best cost function for use, the result of

the experiments show that the overall ADR of the generated test set improves. Another

important point to take note of that is common with methods M1, M2 and M3 is that the

average diagnostic resolution is improved during the generation of the test set and not

after the test generation, i.e. the RTG is modified to generate the vectors for testing but

with very good ADR; as the RTG runs it selects only vectors that detect minimum number

of faults within a fault group so by doing this larger fault groups are avoided. This leads

to a better ADR in the end.

Method M3 has very similar result when compared to methods M1 and M2 for all the

circuit models that were experimented with. Note that the results of M1 and M2 are based

42

on the experiment whereby =min. Previously the symbol  was introduced as the

increment in the FC due to the contribution of a test pattern. For methods M1 and M2 a

limiting criterion LC was introduced such that  must be within this LC (=max<LC or

=min<LC), however in the tables comparing M1, M2 and M3, the configuration where

the test vectors were selected with =min was selected since it has the best result. This

was also the source of inspiration to implement method M3 but without a limiting

criterion (LC); instead the vectors were selected with =min.

43

4. Improving the ADR after RTG

The methods that were presented in Chapter 3 are for generating test patterns with better

ADR. In this chapter two methods that aspire to achieve a better ADR after a test set has

been generated are presented.

We refer to the methods with the following code names:

1. Improving ADR of a randomly generated test set by applying random test vectors

and calculation of ADR in each step, referred to as A1

2. Improving ADR of a randomly generated test set by applying random test vectors

and a cost function to estimate ADR in each step, referred to as A2

The methods presented here are applied to an already existing test set with a high FC and

short TL, and then these methods try to optimize the ADR by adding test vectors that can

improve the ADR.

After the description of the A1 and A2, section 4.3 and section 4.4 compares the results

of both methods.

4.1. Improving the ADR after RTG - A1

From the result of the previous experiments it is clear that additional TL improves the

ADR but not all of the additional test patterns would contribute to the improvement of

ADR because the ADR was not the primary cost function used for selecting the patterns

in methods M1, M2 and M3 - instead  (Number of new faults detected by a test vector)

was used, and this is mostly related to the FC.

The FC and DR are related, for example a test vector that detects fewer faults within a

group has a better DR than a test vector that detects more faults within a group, and of

course selecting test patterns with this criteria indirectly improves the overall ADR, but

using only this basis will not give the best result for both ADR and TL. The results in the

previous section already serves as proof. In as much as we want a very good ADR we

44

still want to keep the cost low by making sure that the TL is small enough and also the

speed at which the test set is generated is fast enough.

The method presented under this section takes the test set that has been generated with a

normal RTG (a test set with maximum FC and small TL) and then attempts to add semi

deterministic patterns in a random way to the test set. The aim is to improve the ADR;

also since it is computationally expensive to generate deterministic patterns which will

target the ADR, the random approach is desired because with it, we can bypass the costly

computation which not only improves the speed but also improves the ADR as well.

In summary A1 basically generates a test vector, fault simulate to extract the fault vector

then it introduces this fault vector into the already existing test set that was previously

generated by the traditional RTG. It then calculates the overall ADR and if the newly

introduced test vector and corresponding fault vector improves the ADR the test vector is

added otherwise the vector is removed. This process continues until there are no

improvements for a duration of time or for how long the test engineer wishes to run the

process.

45

Figure 6 Flow chart describing A1

4.2. Improving the ADR after RTG - A2

In this method a cost function is used to assign weights to candidate test vectors then the

best vectors are selected and then added to improve the ADR. The number of new test

vectors that should be added to the original test set must be specified. The algorithm used

in A2 is a greedy algorithm that always selects the best test vectors first; such vectors

have the highest weights after each vector has been subjected to the cost function.

Unlike in method A1 in method A2 the direct evaluation of the ADR in each step is

avoided, so this method is a lot faster compared to A1 which evaluates ADR for every

step. Referring back to section 3.1 where the calculation of ADR was described, the faults

detected in a fault vector (the set of faults that are detected by a test vector) belong to

groups. The ADR improves when the number of groups increases. For example given a

set of fault vector that has two groups, if by adding two new vectors the total group splits

further into four groups then the ADR will improve. Since the aim is to improve the ADR

46

which is made worse by larger groups, A2 tries to search for such vectors that can

effectively breakup larger groups into smaller groups because by so doing the ADR can

be improved further.

All the vectors in the original test set are weighed by the number of faults detected and

then the vectors are ranked from highest to lowest. Table 13 shows an example of how a

fault vector is weighed. For each of the fault vectors in the original test set, a new pack

of vectors is generated and then fault simulated to extract their corresponding fault

vectors. In order to estimate which new fault vectors will split the group of a given fault

vector further, the weighing function is used. The weighing function is described in

section 4.2.1.

Table 13. Example of weighted fault vectors

Fault
vector

1 2 3 4 5 6 7 8 9 10 11 Weight

1 1 1 1 1 1 1 1 1 8

2 1 1 1 3

3 1 1 1 3

4 1 1 2

4.2.1. Weighing function for selecting additional test vectors

Table 14 Example of a large fault group

Fault
vector

1 2 3 4 5 6 7 8 9 10 11 Weight

i 1 1 1 1 x 1 1 1 x 1 x 8

Using Table 14 above the entry represents a fault vector which detects 8 out of 11 faults.

For simplicity denote a stuck-out fault detection by ‘1’ and no fault detected by ‘x’.

If the number of faults detected are counted then we get eight (8) which will be the weight

of this fault vector.

Also there are eight members in the group {f1, f2, f3, f4, f6, f7, f8 and f10} assuming

there are no other vectors with overlapping members. To improve the ADR we need to

split the group of eight members into several groups.

47

In other to determine the contribution of a test vector, the information on how much a

group can be broken apart is determined by measuring its entropy using equation (2)

below (Shannon’s equation for information entropy).

I = - p log2 p – (1-p) log2 (1-p) (2)

This entropy information extraction is what has been referred to as the weight. Equation

(2) is the general case for the amount of information.

It is important to note that from equation (2) assuming the expression (1-p) = 0, then

log2(1-p) = log20 => ∞, however (1-p) log2 (1-p) => 0 log2 0 => 0.

Note that for every test vector there is an equivalent fault vector, i.e. every test vector v

maps to its fault vector f after fault simulation. In equation (2) above p denotes the

probability of overlap a candidate fault vector has with the base fault vector that we are

interested in splitting. As an example assume that a given fault vector has a total of 8

detected faults in a single group and a candidate fault vector which will split the base

vector has a total of 10 detected faults but only 4 out of the 10 overlaps with the base

vector, we consider the probability p of overlap as shown in equation (3).

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑎𝑢𝑙𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑠 𝑖𝑛 𝑏𝑎𝑠𝑒 𝑣𝑒𝑐𝑡𝑜𝑟
 (3)

Using equation (3) the probability will be 4/8 which gives ½.

To simplify the entropy extraction for each candidate fault vector, the logarithmic

calculation is avoided by using a simplified process which happens in two phases, the

first phase extracts the number of overlapping faults a candidate fault vector has with

the base fault vector; this is achieved by using a logic operation defined in Table 15 and

then the second phase uses the base vector to normalize the weight of the candidate

vector.

The logic operation is used to find the initial number of overlapping fault a candidate

vector has with the base vector. If the candidate vector, after undergoing the second

phase is selected then the base vector is split in two and produces two fault vectors in

the end. The first is a fault vector having the number of overlapping faults with the base

48

fault vector and the second is composed of the remaining faults in the base fault vector

that do not overlap with the candidate fault vector.

For example let set V be the set of the original test vectors and let set F be the set of the

equivalent fault vectors that correspond to V. For each test vector v there is a

corresponding fault vector f which is the set of all the faults detected by test vector v.

After f has been subjected to the cost function and it is found to be very useful in

splitting a larger group, the corresponding test vector v that maps to f is put into the set

V then f is split into two parts. Splitting f will yield f1 and f2 so after splitting, f is

removed from set F and f1 and f2 are reintroduced into set F for the next iteration. The

set F is then sorted in descending order using the weight of each fault vector f.

 The truth table for the logic operation is defined in Table 15.

Table 15 truth table for logic function

x1 x2 result

0 0 0

1 1 1

0 x x

1 x x

1 0 x

In Table 15, value 0 refers to S-A-0 and value 1 refers to S-A-1. Refer to Table 16 for an

example of the logic operation and three candidate vectors.

Table 16 Example of logic function with candidate vector

Fault
vector

1 2 3 4 5 6 7 8 9 10 11
Original

faults
Overlapping

faults

Vector with
large group

1 1 1 1 x 1 1 1 x 1 x 8
Not applicable

Candidate1 1 1 1 1 1 x x x 1 x x 6 4

Candidate2 1 1 1 1 x 1 1 1 x 1 x 8 8

Candidate3 x x x x 1 1 1 1 1 x 1 6 3

To show the effect of the logic operation I have intentionally added a candidate vector

(Candidate2) which is the same as the fault vector that needs to be improved. Using the

truth table in Table 15 since both vectors are one and the same the result will also be the

49

same so this gives an initial weight value of eight (8) overlapping faults which is the

maximum achievable for this example.

Obviously selecting this fault vector just because it has the highest overlapping faults

compared to the other candidate does not add any improvement to the ADR because it is

simply a duplicate vector. The second phase of the weighing process, which applies

equation (2) is used to extract the entropy and then each candidate vector is finally ranked.

Figure 7 normalizing the weights

Using equation (2), a candidate fault vector that has complete overlap with the base vector

e.g. candidate2 in Table 16 will have a probability of 1, substituting this value into

equation (2) will yield

I = - 1 log2 1 – (0) log2 0 = 0.

Hence a candidate vector that fully overlaps with the base vector does not help to split

the base vector.

Figure 7 shows the original weight vs. normalized weight. The max weight value (8) in

the figure is based on the example that was illustrated by Table 16 whereby the vector

that needs to be improved has a weight of 8. After subjecting all the candidate vectors to

the normalization function then the former candidate vector (Candidate2) which had a

higher weight will become zero (0) and then Candidate1 and Candidate 3 will be 4 and 3

(1 and 0.9 if the logarithm function is used). With this arrangement Candidate1 will

become the best since it is able to remove four members from the group of the original

fault vector. This effectively splits the group and will result in a better ADR.

50

4.3. Comprehensive result of methods A1 and A2

ADR = Average Diagnostic Resolution, FC= Fault Coverage,

EP = Extra Patterns (Additional patterns added to the original test set)

TL = Test Length, TIME = Test generation time (h=hours, s=seconds)

Table 17. Comparing method A1 and A2 with ISCAS' 85 circuits

 RTPG A1 A2

c432

ADR 5.0 2.3 2.3

FC 93.0 93.0 93.0

EP - 63 175

TL 36 99 211

TIME 2.0s 01:17:07h 2.1s

c499

ADR 2.3 2.0 2.3

FC 99.3 99.3 99.3

EP - 13 204

TL 84 97 288

TIME(S) 4.6s 02:38:54h 6.0s

c880

ADR 2.8 1.7 1.8

FC 100.0 100.0 100.0

EP - 45 344

TL 38 83 382

TIME 3.0s 03:11:05h 7.3s

c1908

ADR 3.6 2.7 3.3

FC 99.5 99.5 99.5

EP - 48 360

TL 109 157 469

TIME 8.3s 05:45:54h 18.4s

c2670

ADR 3.2 3.0 3.0

FC 94.1 94.1 94.1

EP - 14 301

TL 89 103 390

TIME 47.2s 08:02:13h 23.7s

c3540

ADR 3.4 2.3 2.2

FC 95.5 95.5 95.5

EP - 76 701

TL 119 195 820

TIME 18.6s 14:14:58h 71.2s

c5315

ADR 2.7 2.22 2.1

FC 98.9 98.89 98.9

EP - 40 1035

TL 83 123 1118

TIME 25.8s 38:14:21h 187.4s

In Table 17 we can see that methods A1 and A2 have better ADR compared to the normal

test set. On the other hand A2 is much faster than A1 due to the simplified cost function

51

it uses but even though A1 calculates the ADR each time a new candidate vector is

introduced this gives it an advantage of very short TL.

Table 18 Comparing method A1 and A2 with ISCAS' 89 circuits

 RTPG A1 A2

s967mm

ADR 2.7 2.2 2.2

FC 100.0 100.0 100.0

EP - 31 228

TL 93 124 321

TIME 7.1s 02:04:26h 6.0s

s1269mm

ADR 2.9 2.0 2.0

FC 100.0 100.0 100.0

EP - 43 378

TL 41 84 419

TIME(S) 5.5s 02:40:42h 13.8s

s1494mm

ADR 4.5 2.8 2.7

FC 99.2 99.2 99.2

EP - 83 329

TL 106 189 435

TIME 7.3s 05:25:59h 9.2s

s3384mm

ADR 2.3 2.3 2.2

FC 96.7 96.7 96.7

EP - 4 189

TL 46 50 235

TIME 23.7s 07:51:30h 20.6s

s13207mm

ADR 6.8 6.6 6.5

FC 98.2 98.2 98.2

EP - 18 638

TL 412 430 1050

TIME 167.5s 134:41:0h 394.4s

s15850mm

ADR 3.2 3.1 3.0

FC 95.1 95.1 95.1

EP - 7 930

TL 375 382 1305

TIME 417.3s 45:39:0h 795.6s

In Table 18 above the result of the traditional random test for testing (column RTPG) has

been placed alongside with methods A1 and A2 and the reason for this, is to simply show

the level of improvement the two methods proposed in this chapter can introduce. As you

can see the two approaches improve the ADR. For example for circuit model s1494mm

the ADR improved by almost 50% in both cases. A1 has a better test generation time

52

(TIME) because of the simplified cost function it uses but A1 on the other hand has a

compact TL.

Table 19. Comparing A1 and A2 with ITC' 85 circuits

 RTPG A1 A2

b04

ADR 3.3 1.9 1.9

FC 98.5 98.5 98.5

EP - 30 266

TL 74 104 340

TIME 8.1s 02:45:32h 10.6s

b05

ADR 5.1 4.3 4.3

FC 77.5 77.5 77.5

EP - 42 236

TL 71 113 307

TIME(S) 20.2s 04:58:33h 21.6s

b07

ADR 2.8 2.0 2.3

FC 97.1 97.1 97.1

EP - 36 177

TL 44 80 221

TIME 4.5s 03:30:22h 4.5s

b11

ADR 5.1 2.7 2.8

FC 95.4 95.4 95.4

EP - 67 224

TL 77 144 301

TIME 12.1s 05:57:55h 10.3s

b12

ADR 2.7 2.0 2.0

FC 99.15 99.15 99.15

EP - 56 439

TL 129 182 568

TIME 29.7s 11:45:22h 36.6s

b14

ADR 2.81 2.64 2.3

FC 91.34 91.34 91.34

EP - 16 1688

TL 542 558 2230

TIME 1523.7s 90:34:57h 3443.9s

b15

ADR 3.6 3.4 2.8

FC 91.0 91.0 91.0

EP - 13 2012

TL 462 475 2474

TIME 947.1s 45:31:29h 2610.4s

From Table 19 we can also see that on the average methods A1 and A2 improve the ADR

by a reasonable magnitude, for instance both methods introduce approximately 50%

improvement to the ADR for circuits models b04 and b11.

53

4.4. Comparing methods A1 and A2

After running a reasonable number of experiments with a variety of circuits, the results

of both methods A1 and A2 have been captured in Table 17, Table 18 and Table 19. The

ADR of the original test set generated by a traditional random ATPG is also present on

the table to show how much improvement the ADR can be benefit from by using either

methods A1 or A2.

From the results A1 has the best ADR when compared to A2. Since both methods use an

already existing test set the FC is the same the only difference would be the ADR. A1 has

a compact TL when compared to A2 and this is because, in A1 each time a new test vector

is introduced the ADR of the entire test set is calculated but in A2, the ADR is estimated

using a cost function. The biggest drawback of A1 is that it takes too much time. The

reason for this is because of the ADR calculation in each step and this is a very expensive

operation. A2 avoids this expensive calculation by approximating the ADR with a faster

and less expensive cost function, hence the speed.

In conclusion A1 trades-off speed for better ADR and shorter TL, while A2 trades-off

better ADR and shorter TL for speed.

54

5. Experimental Results

In this chapter the best method (M3) from chapter 3 for generating random test set with

good ADR and the two methods (A1 and A2) for improving the ADR of an already

generated test set are presented. The three approaches are then compared with the ADR

obtained from test set generated with a random ATPG and with deterministic ATPG. The

results show a high potential in terms of improved ADR resulting from the proposed

methods. A discussion accompanies the results presented which highlights the strengths

and weakness of the proposed methods.

5.1. Comparison of proposed methods

The following tables tries to compare the best methods from all the proposed methods

using the ISCAS’85 [4], ISCAS’89 [5] and ITC’99 [6] benchmark circuits. Also to show

the contribution or improvement to the ADR each proposed method introduces, the ADR

of the test set generated with random ATPG and deterministic ATPG are also captured in

the table.

The following explain the meaning of the acronyms that are used in Table 20, Table 21,

and Table 22.

RTPG: Random Test Pattern Generator

DTPG: Deterministic Test Pattern Generator.

ADR: Average Diagnostic Resolution.

FC: Fault Coverage.

EP: Extra Patterns.

TL: Test Length.

TIME(h,s): Test generation time (h=hours, s=seconds).

55

Table 20. Comparing ADR of best proposed methods with ADR of original test set using ISCAS’85

RTPG DTPG M3 A1 A2

c432

ADR 5.0 3.3 2.3 2.3 2.3

FC 93.0 93.0 93.0 93.0 93.0

EP - - - 63 175

TL 36 84 211 99 211

TIME 2.0s 45.7s 11.1s 01:17:07h 2.1s

c499

ADR 2.3 2.3 2.0 2.0 2.2

FC 99.3 99.3 99.3 99.3 99.3

EP - - - 13 204

TL 84 132 288 97 288

TIME(S) 4.6s 82.8s 25.0s 02:38:54h 6.0s

c880

ADR 2.8 2.0 1.7 1.7 1.8

FC 100.0 100.0 100.0 100.0 100.0

EP - - - 45 344

TL 38 77 382 83 382

TIME 3.0s 1.2s 25.6s 03:11:05h 7.3s

c1908

ADR 3.6 3.5 2.5 2.7 3.3

FC 99.5 99.5 99.5 99.5 99.5

EP - - - 48 360

TL 109 143 469 157 469

TIME 8.3s 41.6s 77.2s 05:45:54h 18.4s

c2670

ADR 3.2 2.9 2.7 3.0 3.0

FC 94.1 95.5 94.9 94.1 94.1

EP - - - 14 301

TL 89 155 390 103 390

TIME 47.2s 167.0s 140.0s 08:02:13h 23.7s

c3540

ADR 3.4 2.6 2.2 2.3 2.2

FC 95.5 95.5 95.5 95.5 95.5

EP - - - 76 701

TL 119 205 820 195 820

TIME 18.6s 339.4s 238.3s 14:14:58h 71.2s

c5315

ADR 2.7 2.3 2.1 2.22 2.1

FC 98.9 98.9 98.9 98.89 98.9

EP - - - 40 1035

TL 83 171 1118 123 1118

TIME 25.8s 13.41s 652.6s 38:14:21h 187.4s

Table 21 holds the result for the ISCAS’85 [4] family. Columns RTPG and DTPG hold

result for normal test set for testing (not for diagnosis). DTPG has a better ADR compared

to RTPG. We can see also that generally the three methods, M3, A1 and A2 all have better

ADR. For example there is an improvement of over 50% for circuit c432macro. With the

same TL M3 has a slightly better ADR than A2 but A2 has the better test generation time.

56

A1 on the other hand has the worse test generation time but compared to M3 and A2 has

a compact TL.

Table 21. Comparing ADR of best proposed methods with ADR of original test set using ISCAS’89

 RTPG DTPG M3 A1 A2

s967mm

ADR 2.7 2.3 2.2 2.2 2.2

FC 100 100 100 100 100

EP - - - 31 228

TL 93 124 321 124 321

TIME 7.1s 0.02s 41.8s 02:04:26h 6.03s

s1269mm

ADR 2.9 2.2 2.0 2.0 2.0

FC 100 100 100 100 100

EP - - - 43 378

TL 41 68 419 84 419

TIME(S) 5.48s 0.1s 52.9s 02:40:42h 13.8s

s1494mm

ADR 4.5 3.6 2.7 2.8 2.7

FC 99.2 99.2 99.2 99.2 99.2

EP - - - 83 329

TL 106 175 435 189 435

TIME 7.3s 0.04s 53.4s 05:25:59h 9.2s

s3384mm

ADR 2.3 2.2 2.2 2.3 2.2

FC 96.7 100.0 96.2 96.7 96.7

EP - - - 4 189

TL 46 113 235 50 235

TIME 23.7s 0.03s 80.6s 07:51:30h 20.6s

s13207mm

ADR 6.8 6.5 6.3 6.6 6.5

FC 98.2 98.2 98.2 98.2 98.2

EP - - - 18 638

TL 412 600 1050 430 1050

TIME 167.5s 293.5s 1114.3s 134:41:0h 394.3s

s15850mm

ADR 3.2 3.0 2.9 3.1 3.0

FC 95.1 95.7 95.2 95.1 95.1

EP - - - 7 930

TL 375 541 1305 382 1305

TIME 417.3s 1516.9s 3317.0s 45:39:0h 795.6s

In Table 21 columns RTPG and DTPG hold result for normal test set for testing (not for

diagnosis). DTPG has a better ADR compared to RTPG. We see that there is an

improvement in the ADR for the traditional TPG under column (RTPG) when comparing

with methods M1, A1 and A2. The test length (TL) is best with method A1 when

compared to A2 and M3 but the test generation time (TIME) is best for method A2.

57

Table 22. Comparing ADR of best proposed methods with ADR of original test set using ITC'99

 RTPG DTPG M3 A1 A2

b04

ADR 3.3 2.1 1.9 1.9 1.9

FC 98.5 98.5 98.5 98.5 98.5

EP - - - 30 266

TL 74 121 340 104 340

TIME 8.1s 18.3s 63.7s 02:45:32h 10.5s

b05

ADR 5.0 5.0 4.0 4.0 4.0

FC 78 78 78 78 78

EP - - - 42 236

TL 71 120 307 113 307

TIME(S) 20.2s 0.3s 184.7s 04:58:33h 21.6s

b07

ADR 2.8 2.3 2.1 2.0 2.3

FC 97.1 99.5 97.1 97.1 97.1

EP - - - 36 177

TL 44 54 221 80 221

TIME 4.5s 0.2s 27.0s 03:30:22h 4.4s

b11

ADR 5.1 3.1 2.7 2.7 2.8

FC 95.4 95.4 95.4 95.4 95.4

EP - - - 67 224

TL 77 118 301 144 301

TIME 12.2s 0.2s 76.1s 05:57:55h 10.3s

b12

ADR 2.7 2.2 2.0 2.0 2.0

FC 99.2 100.0 99.1 99.2 99.2

EP - - - 56 439

TL 129 199 568 182 568

TIME 29.7s 0.04s 202.8s 11:45:22h 36.6s

b14

ADR 2.8 2.5 2.2 2.6 2.3

FC 91.3 97.0 91.0 91.3 91.3

EP - - - 16 1688

TL 542 1128 2230 558 2230

TIME 1523.7s 32991.2s 18031.7s 90:34:57h 3443.9s

b15

ADR 3.6 3.3 2.8 3.4 2.8

FC 91.0 94.1 90.0 91.0 91.0

EP - - - 13 2012

TL 462 740 2474 475 2474

TIME 947.1s 35192.1s 19060.8s 45:31:29h 2610.3s

Table 21 holds the result for the ITC’99 [6] family. Columns RTPG and DTPG hold result

for normal test set for testing (not for diagnosis). DTPG has a better ADR compared to

RTPG. We can see also that generally the three methods, M3, A1 and A2 all have better

ADR. For example there is an improvement of about 45% for circuit b11. With the same

TL M3 has a slightly better ADR than A2 but A2 has the better test generation time. A1

58

on the other hand has the worse test generation time but compared to M3 and A2 has a

compact TL

5.2. Strength and weakness of the proposed methods

The tables in section 5.1 show the results of the best methods that have been proposed.

Comparing M3 with the original test set generated by the random or deterministic TPG

in Table 20, Table 21 and Table 22 shows good improvement in the ADR however the

TL is higher and also the time to generate the test is also high. In M3 the FC is used as a

guide during the generation of the test and also due to the selection criteria of candidate

test vectors whereby vectors that detect the minimum number of faults are selected; The

consequences is that the FC converges to its maximum value very slowly hence the longer

test generation time.

A1 and A2 on the other hand use a different approach to improve the ADR of an already

existing test set generated by the random ATPG. In Table 20, Table 21, and Table 22 the

results of A1 and A2 show good improvement in the ADR when compared to the random

and deterministic test set generated for testing. A1 evaluates the ADR of the entire test

set each time a new test vector is introduced, due to this approach it has an advantage of

improved ADR with very short TL compared to the other proposed methods. However

the calculation of ADR for the entire test set in each step impacts negatively on the speed

because the calculation of ADR is computationally intensive.

A2 on the other hand avoids the expensive ADR calculation but instead uses a a simplified

cost function to estimate the ADR in each step. The advantage is that the speed is

improved but the disadvantage is that the TL is longer.

59

6. Summary and conclusion.

The traditional approach for generating a diagnostic test set is usually to generate

deterministically such a set, however the method is very expensive in terms of time and

computational cost because the deterministic generator has to generate a distinguishing

test vector for every pair of faults in the test set.

In trying to solve the same problem two approaches were introduced and both approaches

are based on some form of randomness which does not require high computational cost,

but still at the end, is able to produce a test set with good ADR.

The first approach was introduced in chapter 3 and it produced three methods (M1, M2

and M3) which aim to achieve the goal by incorporating a measure for selecting test

vectors with good DR during the generation of the test set. A side experiment showed the

impact of selecting such test vectors with maximum number of detectable faults and

minimum number of detectable faults and the latter produced a better result. Also the

impact of fault collapsing on the ADR was shown, from the experimental result method

M3 came out as the best method in the first approach.

The second approach produced two methods (A1 and A2) and each required two stages,

first a random ATPG is used to generate a normal test set for testing with the main target

of maximum FC and short TL. The first stage is common to both A1 and A2. The second

stage involved finding additional test vectors that would ultimately improve the ADR of

the original test set. A1 randomly generates a test vector, then introduces it into the current

test set and calculates the ADR of the entire set in order to determine if the introduced

test vector will improve the ADR. A1 produced good ADR with very good TL, however

the calculation of ADR for the entire set is an expensive operation so this method suffered

greatly in terms of longer diagnostic test generation time. Method A2 avoided the

expensive operation of A1 by using a simplified cost function for estimating the relevance

and contribution of a test pattern that would be introduced into the test set. This approach

introduced a better performance due to short test generation time, but suffered in terms of

longer TL and degraded ADR compared to method A1. All the methods proposed show

very good improvement in the ADR and have very good potential for further

development.

60

The goal of this thesis was to provide a tool for randomly generating diagnostic test set

for digital circuits with better ADR, this is opposite to the deterministic approach. While

it is desirous to achieve the optimal ADR this was not the main goal but instead to

approach the problem in a random way and investigate the improvement the random

approach introduces. As previously stated in section 2.7 the motivation behind the random

approach is that by using such an approach it is possible to bypass the expensive

deterministic operation of trying to generate a distinguishing vector between a pair of

fault, improve the diagnostic test generation speed and finally improve the ADR.

This thesis yielded two papers the first paper is titled “A Tool for Random Test

Generation Targeting High Diagnostic Resolution” and the paper was accepted as a

conference paper in the 15th Biennial Baltic Electronics Conference - BEC, Tallinn on

the 7th of July, 2016.

The second paper titled “A novel random approach to diagnostic test generation” was

submitted on the 17th of August 2016 to the NORCAS 2016 conference and as at the time

of writing this thesis no feedback of acceptance has been received yet.

In the future I would like to improve on the methods proposed to achieve a higher ADR.

An interesting idea would be to introduce some more determinacy into the proposed

algorithms

References

[1] A.Markus, P.Paomets, J.Raik, R.Ubar G.Jervan, "A CAD System for Teaching

Digital Test," in Proc. of the 2nd European Workshop on Microelectronics

Education, Kluwer Academic Publishers, Noordwijkerhout, the Netherlands, May

14-15, 1998, pp. 287-290.

[2] L.T. and Wu, C.W. and Wen, X. Wang, VLSI Test Principles and Architectures:

Design for Testability.: MORGAN KAUFMANN PUBL Incorporated, 2006.

[3] D. and Paschalis, A. and Zorian, Y. Gizopoulos, Embedded Processor-Based Self-

Test.: Springer US, 2013.

[4] H.Fujiwara F.Brglez, "A Neutral Netlist of 10 Combinational Benchmark Circuits

and a Target Translator in Fortran," in Int. Test Conference, 1985, pp. 785-794.

[5] D.Bryan, K.Kominski F.Brglez, "Combinational Profiles of Sequential

Benchmark Circuits," in Int. Symp. on Circuits and Systems, 1989, pp. 1929-1934.

[6] M.S.Reorda, G.Squillero F.Corno, "RT-level ITC'99 Benchmarks and First ATPG

Results," Proc. Of the IEEE Design & Test of Computers, vol. 17, no. 3, pp. 44-

53, 2000.

[7] E. J. Marinissen and Y. Zorian, "Challenges in testing core-based system ICs,"

IEEE Communications Magazine, vol. 37, no. 6, pp. 104-109, June 1999.

[8] Moore G., "Cramming More Components onto Integrated Circuits.," – Reprint

from IEEE proceedings on Electronics, vol. 38, no. 8, 1965.

[9] A. Prabhu and V. Vorisek and H. Lang and T. Schumann, "Analysis of cell-aware

test pattern effectiveness — A case study using a 32-bit automotive

microcontroller," 2014 19th IEEE European Test Symposium (ETS), pp. 1-2, May

2014.

[10] Navabi, Digital System Test and Testable Design: Using HDL Models and

Architectures.: Springer US, 2010.

62

[11] Zhang Y. and Agrawal V. D., "A diagnostic test generation system," in 2010 IEEE

International Test Conference., Nov 2010, pp. 1-9.

[12] M.A.Breuer, A.D.Friedman M.Abramovici, Digital Systems Testing and Testable

Design.: IEEE Press, Piscataway, NJ, 1994.

[13] Jha N.K. and Gupta S.K., Testing of Digital Systems. London: Cambridge

University Press, 2003.

[14] P. Camurati, D. Medina, P. Prinetto, and M. Sonza Reorda, "A diagnostic test

pattern generation algorithm," in Test Conference, Washington, DC, 1990, pp. 52-

58.

[15] Shung-Chih Chen and Jer Min Jou, "Diagnostic fault simulation for synchronous

sequential circuits," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 16, no. 3, pp. 299-308, March 1997.

[16] I. Hartanto, W. K. Fuchs, E. M. S. Venkataraman, "Rapid Diagnostic Fault

Simulation of Stuck-at Faults in Sequential Circuits using Compact Lists," in

Design Automation, San Francisco, 1995, pp. 133-138.

[17] C.Timoc et al., "Logical Models of Physical Failures," in Proceedings of the

International Test, 1983, pp. 546-553.

[18] J.A. Abraham and W.K. Fuchs, "Fault and error models for VLSI," Proc. of IEEE,

vol. 74, no. 5, pp. 639–654, 1986.

[19] J.P Hayes, "Fault modeling," IEEE Design and Test of Computers, vol. 2, no. 2,

pp. 88–95, 1985.

[20] J.P. Shen, W. Maly, and F.J. Ferguson, "Inductive fault analysis of MOS

integrated circuits," IEEE Design and Test of Computers, vol. 2, no. 6, pp. 13–26,

1985.

[21] C. Liu, "Compact Dictionaries for Fault Diagnosis," IEEE Trans. On Computers,

vol. 53, no. 6, June 2004.

63

[22] S.Holst and H.J. Wunderlich, "Adaptive debug and diagnosis without fault

dictionaries.," in 12th European Test Symposium, Freiburg, , 2007, pp. 7-12.

[23] S.Venkataraman and S.B.Drummonds, "Poirot: a logic fault diagnosis tool and its

application.," in Proc. IEEE International Test Conference, 2000, pp. 253-262.

[24] A. Rousset and al et, "A tool for unified logic diagnosis," in 12th European Test

Symposium, Freiburg, 2007, pp. 13-20.

[25] I.Pomeranz and S.M.Reddy, "On correction of multiple design errors," IEEE

Trans. CAD, vol. 14, no. 2, pp. 255-264, 1995.

[26] B.Boppana, R.Mukherjee, J.Jain, and M.Fujita., "Multiple error diagnosis based

on Xlists," DAC, pp. 100-110, June 1999.

[27] Shi-Yu Huang, "On improving the accuracy of multiple defect diagnosis," in VLSI

Test Symposium, Marina Del Rey, CA, 2001, pp. 34-39.

[28] T.Bartenstein and al et, "Diagnosing combinational logic design using the single

location at-a-time (SLAT) paradigm," in Proc IEEE ITC, 2001, pp. 287-296.

[29] Horng-Bin Wang, Shi-Yu Huang, and Jing-Reng Huang, "Gate-delay fault

diagnosis using the inject-and-evaluate paradigm," in Defect and Fault Tolerance

in VLSI Systems,., 2002, pp. 117-125.

[30] Stroud C. E., A Designer's Guide to Built-In Self-Test. Norwell MA: Kluwer

Academic, 2002.

[31] Mourad S. and Zorian Y., Principles of Testing Electronic Systems. Somerset, NJ:

John Wiley & Sons, 2000.

[32] Kostin S., Self-Diagnosis in Digital Systems (Ph.d Dissertation). Tallinn: TUT

Press, 2012.

64

[33] Elm M. and Wunderlich H. J., "BISD: Scan-based Built-In self-diagnosis," in

2010 Design, Automation Test in Europe Conference Exhibition (DATE 2010).,

2010, pp. 1243-1248.

[34] Khang A. B. and S. Reda, "Combinationatorial group testing methods for BIST

diagnosis problem," in Proc. of the ASP-DAC., 2004, pp. 113-116.

[35] J. Savir and J.P. Roth, "Testing for, and distinguishing between failures," in Proc.

Int. Test Conference., 1982, pp. 165-172.

[36] Pomeranz I. and Fuchs W.K., "A diagnostic test generation procedure for

combinational circuits based on test elimination," in Proc. Asia Test Symposium.,

1998, pp. 486-491.

[37] T. Gruning, U. Mahlstedt, and H. Koopmeiners, "DIATEST: a fast diagnostic test

pattern generator for combinational circuits," in Proc. Int. Conference on

Computer-Aided Design., 1991, pp. 194-1197.

[38] Pomeranz I. and Reddy S. M., "Diagnostic Test Generation Targeting Equivalence

Classes," in 16th Asian Test Symposium (ATS 2007)., October 2007, pp. 301-306.

[39] (2016, May) http://www.pld.ttu.ee/tt/. [Online]. http://www.pld.ttu.ee/tt/

[40] Bushnell M. L. and Agrawal V. D., Essentials of Electronic Testing for Digital,

Memory and Mixed-Signal VLSI Circuits. New York: Springer Science, 2000.

http://www.pld.ttu.ee/tt/

65

Appendix 1 – Program Description and Manual

There are three separate tools. A java applet (safdiag.jar) developed by [32] (described in

Appendix 2), a GUI based tool (DiagBoost.exe) for improving the average diagnostic

resolution of a given test set using A1 (Described in Appendix 3) and finally the random

command line tool (random.exe). The random command line tool is originally part of the

Turbo Tester tool suite developed in [1]. This random tool has now been developed

further to support random generation of test sets with better diagnostic resolution. It

supports 4 new methods for providing such a test set and the methods are represented

with the following names M1, M2, M3 and A2. M1, M2 and M3 are used during the

generation of the test set and A2 is used after the generation of the test set.

It is assumed that the reader is familiar with the Turbo Tester tool suite, if not please refer

to the reference manual [39] for more information on the “random” tool. The reference

provided here focuses mostly on the contribution this Thesis has introduced into the tool

and the original options of the tool that are relevant.

To setup the environment for using the tool on a windows machine follow the three steps

below.

1. Copy the application (random.exe) into a folder.

2. Copy the SSBDD model file (*.agm) that you want to generate a test set for into

the same folder

3. Open the command console (CMD) and navigate to the location of the folder

created in step 1.

66

Using the tool

command: random

input: SSBDD model file (.agm)

output: test pattern file (.tst)

syntax: random [options] <design>

design: Name of the design file without the

.agm extension.

options relevant

-failure_limit <limit> The maximum number of packages

that can fail before program terminates

Default 64.

-pack_size <size> The number of vectors in a package is

size multiplied by 32. Default for size

is 1.

-criterion <faults> Needed by options [-M1] and [-M2].

Specifies the maximum limit of

detected faults below which a test

vector can be selected.

-packages <packages> Maximal number of packages to be

simulated. Default is 1000.

67

-select_max <vectors> Maximal number of vectors selected

from a package. Default is 32.

-fault_table Perform fault simulation for the final

patterns.

Options for diagnostic patterns

-max_sort Vectors are sorted with maximum

weight (number of faults detected). By

default the vectors are sorted with

minimum weight.

-M1 Generate diagnostic pattern using M1.

Select the patterns that meet the [-

criterion] option. E.g. if criterion=7

then only vectors that detect below or

equal to 7 faults will be selected.

-M2 Generate a diagnostic test set using

M2. Less strict with option [criterion]

uses option [-criterion_increment] to

break deadlock.

-criterion_increment <step> Only useful with option [-M2]. The

number by which the criterion should

increase after four consecutive fails.

Default value is 1.

68

-M3 Generate a diagnostic test set using

M3. Does not require any limiting

criterion option [-criterion].

-A2 Optimize the normal random test set

with additional test set to improve

diagnostic resolution.

-extra_test_vectors <value> Needed by option [-A2] to indicate

how many extra vectors should be

added. Has no default value so a valid

input must be supplied by the user.

69

Example 1 – How to generate diagnostic test with M1

Assuming the environment has been setup as described in the beginning of Appendix 1.

We can begin to run the command. In Figure 8 the name of the SSBDD model is

c432macro.agm but only the name (without the .agm extension) has been used.

Figure 8. Running command to generate diagnostic test with option M1.

Figure 9. Program output after running with option M1.

Figure 9 is the output after we run the command. The application then generates an output

file c432macro.tst and this file contains the test set with better diagnostic resolution.

70

Example 2 - How to generate diagnostic test with M2

Assuming the environment has been setup as described in the beginning of Appendix 1.

We can begin to run the command. Figure 10 shows how to run the command with the

relevant options for generating diagnostic vectors with M2. The name of the SSBDD

model is c432macro.agm but only the name (without the .agm extension) has been used.

Figure 10. Running command to generate diagnostic test with option M2

Figure 11. Program output after running with option M2.

When the command has finished executing it produces an output similar to Figure 11.

The output file c432macro.tst is also generated.

71

Example 3 – How to generate diagnostic test with M3

Assuming the environment has been setup as described in the beginning of Appendix 1.

We can begin to run the command. Figure 12 shows how to run the command with the

relevant options for generating diagnostic vectors with M3; if you notice the option [-

criterion] is omitted because it is not needed by M3. The name of the SSBDD model is

c432macro.agm but only the name (without the .agm extension) has been used.

Figure 12. Running command to generate diagnostic test with option M3.

Figure 13 below is the output produced when the program terminates. Upon completion

the output file c432macro.tst is produced.

Figure 13. Program output after running with option M3.

72

Example 4 – How to generate diagnostic test with A2.

Assuming the environment has been setup as described in the beginning of Appendix 1.

We can run the command to use option A2. In Figure 14 the name of the SSBDD model

is c432macro.agm but only the name (without the .agm extension) has been used.

Figure 14. Running command to generate diagnostic test with option A2.

Figure 15. Program output after running with option A2.

The output of the program is shown in Figure 15, looking closely at the output in the

figure you will notice that the random tool first generates a normal test set for testing

(High fault coverage and short test length). After that A2 comes in to improve the

generated test set by adding a number of extra diagnostic test vectors specified by the

user, in this case 175 diagnostic vectors have been added. Two output files are generated

the normal test file c432macro.tst and the diagnostic test file DR_c432macro.tst.

73

Appendix 2 - How to compute/extract the average diagnostic

resolution from the test file.

To setup the environment for using the safdiag.jar tool on a windows machine follow the

four steps below.

1. Must have Java JRE 8 installed on your PC.

2. Copy the application (safdiag.jar) into a folder.

3. Copy the test file (*.tst) that you want to compute average diagnostic resolution

for.

4. Open the command console (CMD) and navigate to the location of the folder

created in step 1.

tool: safdiag.jar

input: test file (*.tst)

output: diagnostic resolution report file

(*.saf)

syntax: Java –jar safdiag.jar <design>

design: Name of the test file but without the .tst

extension.

options: None.

74

Example – How to use the safdiag.jar tool to compute the

average diagnostic resolution of a test file.

Assuming the test environment has been setup as described in the beginning part of

Appendix 2 the figure below shows how to run the command. In the figure the test file is

c432macro.tst but notice that it has been entered without the extension.

Figure 16 How to compute the ADR of a test file.

After the program executes it generates the output as shown below in Figure 17.

Figure 17. ADR computation complete.

An output file with .saf extension is also generated so in this case the file will be

c432macro.saf. The file is a text file that contains the details of the diagnostic resolution.

75

Appendix 3 – How to use the GUI tool DiagBoost.exe for A1.

tool: DiagBoost

input: test file (*.tst) and SSBDD file

(*.agm)

output: statistics file (.output), test file

(*.tst) and diagnostic report file (*.saf).

requirements: Windows 7 and above, .NET framework

4.5 minimum, Java JRE 8.

DiagBoost.exe combines the analyse tool which is also a part of the Turbo Tester tool

suite [1] and the safdiag.jar tool [32] into an easy to use GUI. It then uses both tools

together with the algorithm described in section 434.1 to improve the average diagnostic

resolution of an already generated test set.

The tool was developed with c# programming language and is only supported on the

windows platform at the moment. To use the tool Windows 7 or above, the .NET

framework 4.5 and Java JRE 8 must be available on your PC. No installation is required,

a zipped folder DiagBoost contains all the necessary items required to use the application.

1. After unzipping the folder just copy it to suitable location on your PC.

2. Double click on DiagBoost.exe to bring up the GUI in Figure 18.

76

Figure 18. DiagBoost GUI tool.

3. Initially the only buttons that are active are the Load .tst and Load .agm buttons.

The start (circled in red) and stop buttons are not active because no files have been

provided.

4. Click on the Load .tst button then navigate to the location of the test file (*.tst),

select the file.

5. Click on the Load .agm button navigate to the location where the SSBDD file

(*.agm) corresponding to the test file is (Note the SSBDD file must match the

selected test file in step 4).

6. Once the files have been successfully loaded by DiagBoost the start button

becomes active also the initial status is displayed on the left corner of the GUI

(circled in red) see Figure 19.

77

Figure 19. DiagBoost Successfully loaded test file and SSBDD file.

The status of current file loaded into DiagBoost in Figure 19 is displayed. The only values

that will change are the ADR and FC.

7. By default the number of iterations the tool will perform is 10,000 but this value

can be changed only after the test (*.agm) and SSBDD (*.tst) files have been

loaded to the tool and before the tool begins to run.

Figure 20. Number of iterations DiagBoost should perform.

8. Click on the Start button to run the DiagBoost tool.

78

Figure 21. Running the DiagBoost tool.

Figure 21 shows what to expect when the tool begins to run. There are two animated bars

(Activity) and (Diagnostic pattern) that gives the user a visual feedback. The top right

corner of the tool displays the current status showing the ADR and the number of new

test vectors that have been added. Also notice that the Stop button (circled in red) becomes

active when the tool begins to run.

9. Click on the Stop button to stop DiagBoost.

Figure 22. Generated files after DiagBoost stops.

DiagBoost can finish running in two ways, the first is when DiagBoost has run for the

number of cycles specified or when the user presses the Stop button. When DiagBoost

79

finishes it will create a folder in its root directory with the following path

ttemp/<Name_of_SSBDD_File>/experiment_HR_MM_SS_DD_MM_YYYY. The

content of this folder will be similar to Figure 22.

80

Appendix 4 – Source Code For method A2

- genDiagPatterns.h -
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include "messages.h"
#include "mudel.h"
#include "vector.h"
#include "psimul.h"
#include "randomgen.h"
#include "random.h"

#define LIST_SIZE_CHECKPOINT 128
#define MAX_PATTERN_THRESHOLD __INT_MAX__

typedef struct _list
{
 void (*init)(void **);
 void (*deinit) (void **);
 void (*push)(void **, char *);
 unsigned (*getCount)(void **);
 char *(*getItem)(void **, int i);
 char **items;
 unsigned * weights;
 unsigned count;
}c_list_t;

void CreateList(c_list_t ** list);
void init_list_type(void **);
void deinitListType(void **);
void push(void ** const, char *o);
unsigned getListcount(void **);
char *getitem(void **, int i);
void getWeightOfFaultVectors(void);
void assignFvectWeights(c_list_t ** list);
void sortAscendingByListWeight(c_list_t ** list);
void sortAscendingMainVectAndFtable(unsigned limit);
void sortAscendingResultVectAndFtable(void);
void normalizeResultFtable(int maxWeight);
void improveDiagResolution(unsigned maxNumOfVectsToAdd, char * origfileName);
void initMem(unsigned size);
void free_mem(void);
void multiplyFaultVectors(c_list_t ** list ,int index);
int vectAlreadyInList(c_list_t **list, char **vect);
void myRandVec(void);
void splitFvector(c_list_t **source,int src_index, int result_index);

81

- genDiagPatterns.c -

#include "genDiagPatterns.h"
unsigned * newFvWeights = NULL;
unsigned vcount_bkup;
char ** myVects = NULL;
char ** myResultFtable = NULL;
char * myFaults = NULL;
char fileName[] = "fvWeights.txt";

void initMem(unsigned size) {
 myVects = vects;
 vects = NULL;
 myResultFtable = (char**) malloc(size * sizeof(char*));
 if (!myResultFtable) {
 Error("Out of memory: genDiagPattern.c, line 20", -1);
 }

 for (int i = 0; i < size; i++) {
 myResultFtable[i] = (char*) malloc(NodCount);
 if (!myResultFtable)
 Error("Out of memory: genDiagPattern.c, line 25", -1);
 memset(myResultFtable[i], 'X', NodCount);
 }
}

void free_mem(void) {
 int i;
 if (myVects) {
 for (i = 0; i < vcount; i++) {
 _free(myVects[i]);
 }
 _free(myVects);
 }

#ifndef NO_FTABLE
 for (i = 0; i < vcount; i++) {
 _free(myResultFtable[i]);
 }
 _free(myResultFtable);

#endif
 free((unsigned*) newFvWeights);
}

void sortAscendingByListWeight(c_list_t ** list) {
 c_list_t * alist = (c_list_t *) *list;
 unsigned * fvWeight = alist->weights;

 if (fvWeight) {
 for (int i = 0; i < alist->count - 1; i++) {
 for (int j = i + 1; j < alist->count; j++) {
 char *p;
 if (fvWeight[i] < fvWeight[j]) {
 int ajut;

 ajut = fvWeight[i];

82

 fvWeight[i] = fvWeight[j];
 fvWeight[j] = ajut;
 p = alist->items[i];
 alist->items[i] = alist->items[j];
 alist->items[j] = p;
 }
 }
 }
 }
}

void sortAscendingMainVectAndFtable(c_list_t ** list) {
 c_list_t * alist = (c_list_t *) *list;
 unsigned * fvWeight = alist->weights;
 if (fvWeight) {
 for (int i = 0; i < alist->count - 1; i++) {
 for (int j = i + 1; j < alist->count; j++) {
 char *p;
 if (fvWeight[i] < fvWeight[j]) {
 int ajut;

 p = myVects[i];
 myVects[i] = myVects[j];
 myVects[j] = p;
 ajut = fvWeight[i];
 fvWeight[i] = fvWeight[j];
 fvWeight[j] = ajut;
 p = alist->items[i];
 alist->items[i] = alist->items[j];
 alist->items[j] = p;
 }
 }
 }
 }
}

void sortAscendingResultVectAndFtable(void) {
 if (newFvWeights) {
 for (int i = 0; i < vcount - 1; i++) {
 for (int j = i + 1; j < vcount; j++) {
 char *p;
 if (newFvWeights[i] < newFvWeights[j]) {
 int ajut;
 p = vects[i];
 vects[i] = vects[j];
 vects[j] = p;

 ajut = newFvWeights[i];
 newFvWeights[i] = newFvWeights[j];
 newFvWeights[j] = ajut;

 p = ftable[i];
 ftable[i] = ftable[j];
 ftable[j] = p;

 p = myResultFtable[i];
 myResultFtable[i] = myResultFtable[j];

83

 myResultFtable[j] = p;
 }
 }
 }
 }
}

void assignFvectWeights2(c_list_t ** list) {
 c_list_t * alist;
 char logic;
 if (list)
 alist = (c_list_t *) *list;
 else
 Error("Error the **list is NULL: line 261", -1);

 if (alist->weights != NULL) {
 free((unsigned *) alist->weights);
 alist->weights = NULL;
 }

if (!(alist->weights = (unsigned*) calloc(alist->count,
sizeof(unsigned)))) {

 Error("Out of memory: vector.c, line 298", -1);
 }

 for (int i = 0; i < alist->count; ++i) {
 for (int j = 0; j < NodCount; ++j) {
 logic = alist->items[i][j];
 switch (logic) {
 case '1':
 case '0':
 ++(alist->weights[i]);
 break;
 default:
 break;
 }
 }
 }
}

void assignFvectWeights(char** fvec, unsigned **fvWeight, unsigned size) {
 char logic;
 if ((*fvWeight) != NULL) {
 free((unsigned *) *fvWeight);
 *fvWeight = NULL;
 }

 if (!(*fvWeight = (unsigned*) calloc(size, sizeof(unsigned)))) {
 Error("Out of memory: vector.c, line 64", -1);
 }
 unsigned * temp = *fvWeight; //get the main pointer
 for (int i = 0; i < size; ++i) {
 for (int j = 0; j < NodCount; ++j) {
 logic = fvec[i][j];
 switch (logic) {
 case '1':
 case '0':

84

 ++temp[i];
 break;
 default:
 break;
 }
 }
 }
}

void multiplyFaultVectors(c_list_t ** list, int index) {

 c_list_t * alist;
 if (!list)
 Error("The list is empty: line 361", -1);

 alist = (c_list_t *) *list;

 for (int i = 0; i < vcount; ++i) {
 for (int j = 0; j < NodCount; ++j) {
 /*
 The table below is what I am trying to implement
 X and X = X
 X and 1 = X
 X and 0 = X
 1 and 0 = X
 1 and 1 = 1
 0 and 0 = 0
 */
 if (alist->items[index][j] == 'X' || ftable[i][j] == 'X')
 myResultFtable[i][j] = 'X';
 else {

 switch (alist->items[index][j]) {

 case '1':
 if (ftable[i][j] == '0')
 myResultFtable[i][j] = 'X';
 else
 myResultFtable[i][j] = '1';
 break;

 case '0':
 if (ftable[i][j] == '1')
 myResultFtable[i][j] = 'X';
 else
 myResultFtable[i][j] = '0';
 break;

 default:
 break;
 }
 }
 }
 }
}

85

void normalizeResultFtable(int maxWeight) {
 if (newFvWeights) {
 int maxW = maxWeight / 2;
 for (int i = 0; i < vcount; ++i) {
 /* Intent
 * maxWeight
 * |
 * |
 * middle| newFvWeights[i]=maxWeight - newFvWeights[i]
 * |
 * | do nothing
 * 0
 * */

//if the weight is equal or greater than half of
maxWeight then enter.

 if (!(newFvWeights[i] < maxW)) {
 newFvWeights[i] = maxWeight - newFvWeights[i];
 }
 }
 } else {
 Error("[W] Null Pointer (*newFvWeights): genDiagPatterns.c, line
314",-1);
 }
}

int vectAlreadyInList(c_list_t **list, char **vect) {
 c_list_t * tempList = *list;

 if (!tempList)
 return 1;
 int limit = tempList->getCount((void **) &tempList);
 if (limit == 0)
 return 0;
 int retValue = 1;

 for (int i = 0; i < limit; ++i) {
 retValue = 1;
 for (int j = 0; j < InpCount; ++j) {

 if ((tempList->getItem((void **) &tempList, i))[j] != (*vect)[j]) {
 retValue = 0;
 break;
 }
 }

 if (retValue == 1) {
 return 1;
 }
 }
 return retValue;
}

void splitFvector(c_list_t **source, int src_index, int result_index) {
 c_list_t * srFvec;
 char * p;
 if (source == NULL)
 Error("splitFvector: source pointer is NULL, line 430", -1);

86

 srFvec = (c_list_t *) *source;

 if (!(p = (char*) malloc(NodCount))) {
 Error("Out of memory", -1);
 }
 for (int i = 0; i < NodCount; ++i) {

//make a deep copy of the result, this will be the first part of
the divided group;
p[i] = myResultFtable[result_index][i];

 }

 srFvec->push((void**) source, p); //make a shallow copy;

p = NULL; //A shallow copy was made so it cannot be freed. Instead it
is assigned NULL so that it can be reassigned again.

 for (int j = 0; j < NodCount; ++j) {
 if (srFvec->items[src_index][j] ==
myResultFtable[result_index][j]) {
 srFvec->items[src_index][j] = 'X';
 }

//These part takes care of the fault that will be detected in
the 2nd part of the group.

 else if ((srFvec->items[src_index][j] != 'X')
 && myResultFtable[result_index][j] == 'X') {

 ;
 } else {
 srFvec->items[src_index][j] = 'X';
 }
 }
}

void improveDiagResolution(unsigned maxNumOfVectsToAdd, char * origfileName)
{

 free((char *) faults); //free the faults vector
 c_list_t * tempVecList;
 c_list_t * tempFtable1;
 unsigned nSize = 200; //buffer size is set to 200.
 unsigned numOfVectOptimize = vcount;
 unsigned numOfVectsAdded = 0;
 char *p = NULL;
 initMem(nSize);
 CreateList(&tempVecList);
 CreateList(&tempFtable1);

//No need to initialize tempFtable1 since its been assigned to valid
memory of ftable which has not been deallocated.

 tempFtable1->items = ftable; //copy the initial ftable.
 ftable = NULL; // reset pointer ftable.
 tempFtable1->count = vcount;

 tempFtable1->items =

(char **) realloc(tempFtable1->items,
sizeof(char *) * (tempFtable1->count + LIST_SIZE_CHECKPOINT));

 if (!tempFtable1->items) {

87

 Error("Out of memory",-1);
 }

 tempVecList->init((void **) &tempVecList);

 vcount_bkup = vcount;
 vcount = nSize;
 alloc_vec(); //reallocate the normal vectors.
 StartTimer();
 for (int i = 0; i < 1; ++i) {
 rand_vec(); //generate a random vector.
 }

//initialize the weights pointer of the list and assign valid weights.
 assignFvectWeights2(&tempFtable1);
 sortAscendingMainVectAndFtable(&tempFtable1);

 for (int i = 0; i < tempFtable1->count; ++i) {
 rand_vec(); //generate a random vector.
 fsimul(); //simulate with the
 multiplyFaultVectors(&tempFtable1, 0);
 assignFvectWeights(myResultFtable, &newFvWeights, nSize);
 normalizeResultFtable(tempFtable1->weights[0]);
 sortAscendingResultVectAndFtable();
 int k = 0;
 while (k < nSize) {
 if (vectAlreadyInList(&tempVecList, &vects[k++]) == 0) {
 if (!(p = (char*) malloc(VarCount))) {
 Error("Out of memory", -1);
 }

//take the first vect since it will be the max.
 memcpy(p, vects[k - 1], VarCount);
 tempVecList->push((void **) &tempVecList, p);
 p = NULL;
 ++numOfVectsAdded;
 splitFvector(&tempFtable1, 0, k - 1);
 free(tempFtable1->weights);
 tempFtable1->weights = NULL;
 assignFvectWeights2(&tempFtable1);

//initiliaze the weights pointer of the list and
assign valid weights.

 sortAscendingByListWeight(&tempFtable1);
 break;
 }
 }

 if (numOfVectsAdded >=

maxNumOfVectsToAdd|| numOfVectsAdded >=
MAX_PATTERN_THRESHOLD)

 break;
 }
 tempFtable1->deinit((void **) &tempFtable1);

 int newSize = vcount_bkup +

tempVecList->getCount((void **) &tempVecList);
 myVects = (char **) realloc(myVects, newSize * sizeof(char *));
 if (!myVects)

88

 Error("Out of memory: genDiagPattern.c, line 405",-1);

 for (int i = 0; i < tempVecList->count; ++i) {
 //make a shallow copy of the items in the list.
 myVects[vcount_bkup + i] =

tempVecList->getItem((void **) &tempVecList, i);
 }

//since. we have made a shallow copy we set to NULL to prevent the
memory from being freed.

 tempVecList->items = NULL;

 free_vec(); // free the main vectors so that they can be reassigned

 vects = myVects;

//set to null so that when we call free_mem it will not free myVects
since we have made a shallow copy of it.

 myVects = NULL;

 free_mem();
 vcount = newSize; //change the size.

 if (!(ftable = (char**) malloc(vcount * sizeof(char*)))) {
 Error("Out of memory", -1);
 }
 for (int i = 0; i < vcount; i++) {
 if (!(ftable[i] = (char*) malloc(NodCount)))
 Error("Out of memory", -1);
 memset(ftable[i], 'X', NodCount);
 }
 if (!(faults = (char*) malloc(NodCount * sizeof(char)))) {
 Error("Out of memory", -1);
 }
 memset(faults, 'X', NodCount);

 alloc_psimul();
 init_psimul();
 psimul();
 EndProcessing();
 EndTimer();
 serial_vec();
 char newFileName[strlen(origfileName) + 1 + 7];
 newFileName[0] = 'D';
 newFileName[1] = 'R';
 newFileName[2] = '_';
 newFileName[3] = 0;
 strcat(newFileName, origfileName);
 strcat(newFileName, ".tst");
 write_vec(newFileName, DEFAULT_OUTPUT);
 free_vec();
 tempVecList->deinit((void **) &tempVecList);
}

void CreateList(c_list_t ** list) {
 *list = (c_list_t *) malloc(sizeof(c_list_t));
 if (!(*list)) {
 Error("Out of memory: genDiagpattens, line 451",-1);
 }

89

 c_list_t * _list = *list;
 _list->init = init_list_type;
 _list->weights = NULL;
 _list->items = NULL;
 _list->push = push;
 _list->getItem = getitem;
 _list->getCount = getListcount;
 _list->deinit = deinitListType;
}

void init_list_type(void ** list) {
//get a hold of the list pointer.
c_list_t * alist = (c_list_t *) *list;
 if (alist) {
 alist->count = 0;
 alist->items =

(char **) malloc(sizeof(char *) * LIST_SIZE_CHECKPOINT);
 } else {
 Error("[W] Null Ptr (*myList): genDiagPatterns.c, line 489",-1);
 }
}

void deinitListType(void ** list) {

//get a hold of the list pointer. Note this is just a copy by value
(or a duplication of the original pointer) so this local pointer and
the original
//pointer that was passed as a pointer to pointer now points to the
same memory. This does not mean that alist can change the content of
tempFvList1 or tempFvList2.
//These two pointer variables declared in "improveDiagResolution" are
passed as pointer to pointer to this function. tempFtable2-
>deinit((void **)&tempFtable2);

 c_list_t * alist = (c_list_t *) *list;
 if (alist) {

//if the memory pointer is empty then we do not free because a
shallow copy has been made.

 if (alist->items)
 {
 for (int i = 0; i < alist->count; ++i) {
 free((char *) alist->items[i]);
 }
 free((char *) alist->items);

 }

//if the memory pointer is empty then we do not free because a
shallow copy has been made.

 if (alist->weights)
 {
 free((char *) alist->weights);
 }
 free((c_list_t *)alist);

//This will only affect the local copy pointer and not the
original pointer that was passed to this function
alist = NULL;
//set the original pointer that was passed to this function to
point to NULL since the memory has been freed.

90

 *list = NULL;

 } else {
 Error("[W] Null Ptr (*myList): genDiagPatterns.c, line 464",-1);
 }

}

unsigned getListcount(void ** list) {

//get a hold of the list pointer.
 c_list_t * alist = (c_list_t *) *list;
 if (alist)
 return alist->count;
 else
 Error("[W] Null Ptr (*myList): genDiagPatterns.c, line 502",-1);
 return 0; //should never get here
}

char *getitem(void **list, int i) {

//get a hold of the list pointer.
 c_list_t * alist = (c_list_t *) *list;
 if (alist)
 return alist->items[i];
 else
 Error("[W] Null Ptr (*myList): genDiagPatterns.c, line 510",-1);
 return NULL; //should never get here
}

void push(void ** const list, char *o) {

//get a hold of the list pointer.
c_list_t * alist = (c_list_t *) *list;

 if (alist) {
 if (alist->count >= LIST_SIZE_CHECKPOINT) {
 if (!(alist->count % LIST_SIZE_CHECKPOINT))
 alist->items =

(char **) realloc(alist->items,
sizeof(char *) * (alist->count +
LIST_SIZE_CHECKPOINT));

 }
 alist->items[alist->count++] = o;
 int c = alist->count;
 } else {
 Error("[W] Null Ptr (*myList): genDiagPatterns.c, line 519",-1);
 }
}

