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Abstract 

In this thesis several experiments and research were carried out to generate random test 

vectors with better average diagnostic resolution for digital circuits. The Turbo Tester 

(TT) [1] tool suite was the target framework used for this experimental and research work, 

and a number of methods have been developed and proposed.  

Typically when generating test vectors the simplest method used is a random pattern 

generator [2] [3], the main goal is to generate a minimum number of test vectors with 

very high fault coverage. However such a set of test vectors may not produce good 

diagnostic resolution whereby it is difficult to narrow down to the specific location that 

has a fault. Most times since the test vectors have a high fault coverage a high number of 

candidate location qualify as the source of a fault hence this makes diagnostic inspection 

of a circuit difficult and evasive.  

A measure for evaluating the Average Diagnostic Resolution of a given test set is 

proposed and with this measure the average diagnostic resolution of the test patterns 

generated by the different methods proposed have been evaluated. The methods that have 

been developed in this thesis are based on the random pattern generation tool of Turbo 

Tester [1]. Also the effect of fault collapsing on the diagnostic resolution was also 

experimented with and shown. 

To provide a very rich set of result three benchmark families, ISCAS’ 85 [4], ISCAS’ 89 

[5] and ITC’ 99 [6] have been used for this work and the experimental results show that 

the methods proposed improve the average diagnostic resolution and have good potential. 

A comprehensive analysis and comparison of the new methods proposed has been carried 

out and suggestions are given on which particular new method is more advisable to use 

than the others, depending on the different constraints such as the test length, test 

generation time, and on the diagnostic resolution. 

This thesis is written in English and is 90 pages long, including 6 chapters, 22 figures and 

22 tables. 
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Annotatsioon 

Testide genereerimine juhuslike arvude meetodil digitaalskeemide 

rikete diagnoosiks 

Käesolevas töös on esitatud uurimus ja eksperimentide seeria, mille põhjal on välja 

töötatud uued meetodid testide genereerimiseks juhuslike arvude abil, mis võimaldaksid 

kõrget diagnostilist resolutsiooni. Uurimistöö läbiviimiseks on kasutatud Turbo-Tester 

[1] diagnostikakeskkonda. Läbi viidud uurimuse tulemusena töötati välja rida meetodeid, 

milliseid võrreldi nii omavahel kui ka senise tuntud meetodiga. 

Traditsiooniliselt on kõige lihtsamaks testide genereerimise meetodiks stohhastiline 

juhuslike arvude kasutamisel põhinev testide genereerimise meetod [2], [3]. 

Kriteeriumiks on siin valida juhuslikult genereeritud testvektorite hulgast välja 

võimalikult väike alamhulk vektoreid võimalikult kõrge rikete kattega. Paraku selline 

traditsiooniline lähenemisviis ei garanteeri seejuures head rikete diagnoosi ehk siis kõrget 

diagnostilist resolutsiooni – võimalikult täpset rikke asukoha määramist. 

Antud testi diagnoosivõime kvaliteedi hindamiseks on töös välja pakutud mõiste „testi 

keskmine diagnostiline resolutsioon“. Selle mõõdu abil on võimalik hinnata erinevate 

testide diagnoosivõimet ja ühtlasi ka erinevate testide genereerimise meetodite 

efektiivsust. Antud töös on aluseks võetud Turbo-Testris kasutatav juhuslike arvude 

kasutamisel põhinev testide generaator, mille juures on arvesse võetud ka nn. rikete 

kollapsi mõju diagnostilisele resolutsioonile. 

Võimaldamaks väga laiaulatuslikku ja usaldusväärset erinevate meetodite võrdlust on 

eksperimentide läbiviimiseks kasutatud kolme katseskeemide perekonda ISCAS’ 85 [4], 

ISCAS’ 89 [5] and ITC’ 99 [6]. Läbi viidud eksperimendid demonstreerisid, et uued 

väljatöötatud testide genereerimise meetodid võimaldavad saada teste, mis märgatavalt 

suudavad parandada diagnostilist resolutsiooni rikete otsimisel, võrreldes seniste testide 

genereerimise meetoditega. On läbi viidud ka uute meetodite analüüs ning antud 

soovitused, milliste kriteeriumite puhul (nõuetena testi pikkusele, testi genereerimise 

ajale või diagnostilisele resolutsioonile) üks või teine meetod on paremini sobiv. 
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Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 90 leheküljel, 6 peatükki, 22 

joonist, 22 tabelit. 
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1. Introduction 

The focus of this thesis is on generating random test patterns with better average 

diagnostic resolution for digital circuits. The outcome of a better resolution aids better 

diagnostics of digital circuits, and this helps the test engineer to easily find the specific 

location that has fault. 

The first section of this chapter begins with the problem statement, followed by a 

description of the scope of work carried out and the methodology. In concluding the 

chapter a summary of the work done in this thesis is presented. 
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1.1. Background and problem 

Over the years integrated circuits have improved tremendously with the continuous 

miniaturization of the transistor and tight integration of more components on a single die 

to form complex systems. These technological improvements gave birth to technologies 

like Systems on Chips (SoC) and complex Integrated Circuits (IC) [7]. Most of these 

improvements were predicted by Gordon Moore [8] [9]. 

All of the aforementioned development has made it possible for modern day systems to 

keep up with the ever increasing demand of faster and efficient performance, but this has 

introduced very high complexities in testing and diagnosis of such systems. 

During the design phase and after the design phase of any digital system, testing of the 

system is incorporated into the process to improve the yield and to ensure a certain level 

of acceptance [2] [10].  But testing of digital systems is costly [10] so a compact set of 

test vectors is desirable for reducing the cost of time when testing; hence the traditional 

goal when generating test set is for high fault coverage [11] and minimum test length.  

The random test generator is popularly used for generating such high volume test vectors 

because of its quickness, simplicity and cheapness and this is one of the motivation for 

this thesis, taking advantage of the quickness, simplicity and cheapness of a random test 

generator and at the same time guaranteeing a good average diagnostic resolution. 

However a high fault coverage test set does not always guarantee a high diagnostic 

resolution [2] [11].  

Diagnosis is important after a fault has been detected as it helps to locate the specific 

location of a fault and can help the designers to understand what caused a failure and to 

prevent them from reoccurring. A diagnostic test set is used for diagnosis and usually it 

must have a good diagnostic resolution in order for it to be very useful. This diagnostic 

test set is normally generated deterministically by a diagnostic generator, however the 

deterministic approach is computationally expensive because the diagnostic generator has 

to generate a distinguishing vector for every fault pair in the given test set. 

In this thesis a random approach has been used to avoid the expensive deterministic 

approach that is mostly used in a traditional diagnostic test generator and the experimental 
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result show that this approach actually improves the ADR and also has a good test 

generation time. 

There are two traditional diagnosis approaches effect-cause and cause-effect [12]. The 

cause-effect approach is the main focus in this thesis.  A number of methods are proposed 

for randomly generating test vectors with good average diagnostic resolution. 
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1.2. Description of the task solved 

A number of methods are proposed for random generation of test vectors with better 

average diagnostic resolution. To evaluate the diagnostic resolution, a measure for 

evaluating the Average Diagnostic Resolution (ADR) is proposed and with this measure 

the proposed methods have been evaluated and compared against each other and with 

traditional methods. 

The first set of methods generate random test patterns with better diagnostic quality 

during the random test generation phase. The second set of methods are more like 

optimization methods but with very slight determinism, they try to improve the diagnostic 

resolution after the random test patterns have been generated. 

The experimental results of the methods presented are compared against each other and 

with traditional methods that are used for generating test sets. 

A practical and experimental approach was the main drive behind this thesis. All of the 

ideas and hypothesis were analysed first, then implemented to verify the outcomes. 

In the end this thesis has contributed to the turbo tester tool by introducing additional 

functionality such as random diagnostic test generation. 
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1.3. Thesis Structure 

Chapter two gives background information related to this thesis such as diagnosis in 

digital circuits, fault models, diagnosis paradigms, some methods proposed by other 

authors for generating diagnostic tests then finally the challenges with generating 

diagnostic test and the motivation behind this thesis.  

In Chapter three, three out of the five methods proposed are presented and discussed. The 

effect of fault collapsing is also shown, and some experimental results are presented with 

a short discussion concluding the chapter.  

The remaining two methods proposed are captured in chapter four, some experimental 

results are also presented and a comparison concludes the chapter.  

Chapter five presents the general experimental result and compares the best methods that 

have been proposed to show the amount of improvement the random approach introduces 

to the normal test set that has been generated for testing using the Random ATPG and 

Deterministic ATPG. Finally chapter six summarises and concludes the findings of this 

thesis.  

The experimental platform used for the experiments was an Intel i7 octal core at 2.13 

GHz, 8 GB RAM Laptop.   
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2. Background 

This chapter gives an overview and background information related to this thesis. First 

the description and importance of digital circuit diagnosis is established. Then fault 

models and the major paradigms and approaches used for diagnosis are discussed. 

Furthermore some methods for generating diagnostic test are presented and discussed; 

finally in concluding the chapter the motivation for this thesis is discussed. 

2.1. Diagnosis in Digital Circuits 

In digital circuits diagnosis is the process of locating the faults present within a given 

fabricated copy of a circuit [13]. Typically after the fabrication of the IC some of the chips 

may be defective; a manufacturing test is used to screen out the bad chips [2]. But 

knowing that some particular chips have failed a test is not enough so the next step will 

be to locate the point where the failure has occurred. This is where diagnosis comes in. 

for Printed Circuit Boards (PCB) when the site of the fault has been located it is possible 

to repair, however this is not the case for IC so the main purpose or benefit of diagnosing 

IC is to gain useful insight on what caused the fault. This is particularly important as it 

helps to clarify what could be the possible cause of the failure. It is therefore important 

for a diagnostic tool to be able to generate diagnostic test quickly and to provide high 

accuracy. Depending on the information obtained from the diagnosis the chip can be 

redesigned to handle such failures or the fabrication process can be improved. Ultimately 

this would improve the yield. 

2.2. Terminologies and Definition 

Diagnostic Resolution (DR) – In summary this is defined as the ratio or fraction of the 

total number of faults by the number of detected fault groups [14] [15] [16]. Another 

source defines it as the total number of defect candidates [2]. A proper name will be 

Average Diagnostic Resolution (ADR). Throughout the rest of this literature the term 

ADR is used. 

Diagnostic Coverage (DC) – This is simply the inverse of the DR.  
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Section 3.1 of chapter 3 gives more details about calculation of ADR proposed. 

2.3. Fault models 

In order to generate logic test for digital circuits a fault model is used to represent the 

digital circuit. Fault modelling is the process of modelling defects at a higher level of 

abstraction in the design hierarchy [13] [17] [18] [19] [20]. The aim of the fault model is 

to provide an easy platform that could replicate possible faults which could occur in the 

circuit. Fault model is useful for both test generation and diagnostic test generation for 

the logic circuit; however no single fault model can reflect the behaviour of all possible 

defect that may occur in a digital circuit [2]. Several fault models have been proposed but 

in this thesis the Stuck-At Fault (SAF) model has been used. The SAF model is a logic 

fault model which could affect any of the primary Input/Output (I/O), internal I/O of gates 

etc. The idea is that any of the fault site of the digital circuit could either be Stuck-At-0 

(SA0) or Stuck-At-1 (SA1). For instance for an SA0 fault the logic will remain at logic 0 

even when it should be logic 1 and vice versa for SA1 fault. 

2.4. Logic Diagnosis Paradigms 

The traditional diagnosis algorithms follow two major paradigms: cause-effect and effect-

cause analysis. Another paradigm is the inject-and-evaluate paradigm. The following sub 

sections describe each of these paradigms. 

2.4.1. Cause-Effect paradigm 

This technique maps the causes of failures to specific fault models e.g. SAF model. It also 

relies on fault dictionaries. With the help of fault simulation, the fault dictionaries are 

built [21] [22]. Once the fault dictionary is ready the syndrome of the failing chip is 

analysed using dictionary look-up. 

2.4.2. Effect-Cause paradigm 

This paradigm is somewhat like the reverse reasoning of the cause-effect paradigm. It 

begins by identifying the failing outputs then starts reasoning on the logic structure of the 

circuit to be diagnosed. The algorithms based on this paradigm are simple when the single 
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fault assumption is adopted. In this case intersections of the input cones of failing outputs 

are calculated [23], or back-trace critical paths from failing outputs are processed [24]. 

Because of the sequential character of fault reasoning, this approach is called sequential 

or adaptive fault diagnosis.  

2.4.3. Inject-and-Evaluate paradigm 

As an alternative to back-trace approaches, which is utilized in the effect-cause paradigm, 

this inject and evaluate paradigm is introduced in [25] [26]. In [27]  and [28] this approach 

is further improved with an efficient metrics that relies on curable vectors.  This method 

uses injection and evaluation to predict locations of fault sites. This is different from the 

effect-cause approach which uses back-trace starting from the failing output and into the 

circuit to locate the fault site [29]. One major benefit of this approach is its high accuracy. 

2.5. Built In Self-Test and Built in Self Diagnosis 

Due to the rising complexity in digital circuits as a result of high integration of more 

components, diagnosing and testing has become difficult. Design for Testability methods 

such as the integration of a Built In Self Test (BIST) into the circuit greatly improves the 

testability and cost of testing. Basically a BIST comprises of a Test Pattern Generator 

(TPG) and an Output Response Analyser (ORA). Unlike traditional test techniques which 

may not achieve optimal fault coverage with chips designed with the nanometre scale 

technology, integration of the BIST at the design stage of the chip offers a solution to 

such a problem [30] [31], and this is gradually gaining acceptance in the industry [32]. 

Although the BIST has been successful in testing but it does not perform well in 

diagnosing hence cannot be relied on for Built In Self Diagnosis (BISD) because of the 

limited information it gives which is insufficient for diagnosis [33]. Some challenges that 

need to be overcome in order for the BIST to be useful for diagnosing are highlighted in 

[34].  
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2.6. Some methods for generating diagnostic test 

In this section a discussion of some methods for generating diagnostic test patterns is 

presented.  

Basically the job of a diagnostic test generator is to generate a test vector that can 

distinguish between a pair of faults that is supplied to it. Diagnostic test generation 

problem is a complex problem which requires repeated run for every pair of faults 

available in the test set in order to generate a distinguishing vector for every case. 

Sometimes some faults may be equivalent and as such it is not possible to distinguish 

them except in cases where one fault dominates the other. Some ways to cope with the 

complexity of generating diagnostic test are by removing redundant faults or fault 

collapsing and also by using the traditional test set meant for fault detection as a starting 

point; the advantage is that such a test set is usually compact so this reduces the number 

of pairs of faults the diagnostic generator has to generate distinguishing test vectors for. 

According to [13] the techniques for generating diagnostic test can be classified into two 

major categories. The first category uses the traditional test generation technique (which 

is used for generating fault detection test set) as a driver to obtain a vector that 

distinguishes between a given pair of faults, while the second category directly targets 

how to distinguish between a pair of faults.  

Two methods described in [13] that use the first category are described in the following. 

The first method proposed by [35] is based on two principles 

1. If there is at least one or more outputs that is in the transitive fan-out of one of the 

faults that needs to be distinguished but not in the other one, then generate a test 

vector that will detect a fault at the output(s). 

2. If (1) is not successful, then select an output that is in the transitive fan-out of 

both, however generate a test that propagates the effect of one fault to the output 

but not the other. 

If both (1) and (2) fail then another output is selected and the steps are continued. 
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The second method proposed by [36] uses the traditional fault detection test set. From the 

set a pair of faults that are not distinguishable by the test set, a vector v that detects both 

faults but at the same output is selected from the set. Such a vector is then used to generate 

a new vector v’, this new vector v’ is then fault simulated to see if it can distinguish the 

pair of faults. If it does the process moves to the next pair otherwise the vector v’ is 

discarded and procedure continues. 

In [14] a pair of faults f1 and f2 is distinguished by utilizing three copies of a fault model, 

a fault free model (M), a model with fault f1 (Mf1)  and a model with fault f2 (Mf2). 

Combining these three models a vector that can distinguish the pair of faults is generated. 

A second approach that uses two copies of a fault model was proposed by [37]. This 

method does not consider a fault free version of the model but only the models containing 

faults f1 and f2 (Mf1 and Mf2). Using the two fault models it tries to generate a vector that 

produces different values at the output of each model. If the process is successful then it 

must be propagated to at least a primary output. 

A number of methods were proposed in [11]. The main approach utilized here is targeting 

directly how to generate a distinguishing vector for a given pair of vectors. First they 

present a set of method which requires modification of circuit netlist in order to model it 

as a circuit with a single inserted fault then an ATPG is used to target that fault. They also 

present another algorithm which uses fault dropping.  When a fault is distinguished it is 

dropped but it is done without fault equivalence checking. Their main target is for 

Diagnostic Coverage.  

In [38] they propose a method that tries to avoid deterministic test generation. Their 

algorithm targets the equivalence classes of the test set as it is generated. The method 

does not take the approach of distinguishing a fault pair (one at a time) instead, all faults 

within the equivalent class are simultaneously targeted thus the number of test and the 

generation time is reduced. They also utilize a process based on test elimination for 

generating a test for every equivalence class. The algorithm begins with  the test set for 

fault detection V, using fault simulation and fault dropping of V they find the set of 

collapsed single stuck-at faults F that are detected by test set V.  Then a set of fault pairs 

F' that is not guaranteed to be distinguished by V is defined. A fault simulation of F' using 
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V is performed and then fault pairs in F' that are distinguished by V are dropped. The fault 

pairs remaining in F' are then used to define equivalence classes. When generating the 

diagnostic test in every iteration the largest equivalence class that has not been considered 

is selected. A test v  V which is the first test that is able to detect every fault in the 

selected equivalent class is recorded. Then the procedure proceeds by trying to detect at 

least a fault from the class in a single output while eliminating the detection of other 

faults. using a set of conditions to modify v for the test and a cost function to determine 

if all the faults within the selected class are distinguished, if the conditions are met then 

v is selected without any further modification. If not, modification of v continues until a 

certain constant number of consecutive passes of all the inputs do not improve the number 

of fault pairs distinguished by v. The test is selected if it is able to distinguish a fault pair 

from the supplied class. 

2.7. Challenges of  deterministic diagnostic test generation and 

motivation for random diagnostic test generation 

In the previous section the methods presented for diagnostic test generation attempt to 

generate deterministic diagnostic test set. When generating diagnostic test set for digital 

circuits the two major challenges faced are the computational cost when trying to generate 

a test vector for distinguishing between a fault pair and the time. A diagnostic pattern 

generator that is able to achieve both of the goals would be considered highly useful for 

practical cases. Some of the methods presented in the previous section for diagnostic test 

generation have proposed some solutions to cope with some of these challenges such as 

fault collapsing (for eliminating equivalent faults), the use of the original test set meant 

for fault detection as a starting point for fault diagnosis.   

This thesis has taken a different approach to the problem by using a random and semi 

random method to achieve the same goal. The motivation behind this approach is that by 

using such an approach it is possible to bypass the expensive deterministic operation of 

trying to generate a distinguishing vector between every pair of fault, improve the 

diagnostic test generation speed and finally improve the ADR. 

To evaluate the potential and effectiveness of this approach five methods which include 

two semi random methods were developed and experimented with using a wide 
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collection of circuit model from different benchmark families, ISCAS’85 [4], ISCAS’89 

[5] and ITC’99 [6]. The results from the experiment show that the random approach of 

diagnostic test pattern generation has some potential and is promising. The 

computational cost and time are reduced and it improves the ADR of the generated test 

set when compared to the original test set generated by the ATPG.   
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3. Methods for generating test patterns with high Average 

Diagnostic Resolution. 

Section 3.1 introduces a method for evaluating the Average Diagnostic Resolution (ADR) 

of a given test set. Section 3.2 discusses about random test generation, fault coverage 

(FC) and diagnostic resolution (DR). Sections 3.3 to 3.5 presents the methods for 

generating Random test patterns with very good ADR.  

3.1. Calculation of the average diagnostic resolution of a given test 

set. 

Let’s represent the fault table for a given circuit and a given test set as a diagnostic matrix 

DM =  dij  where i denotes a test pattern and j denotes a fault. We say dij = 1, if the 

test pattern ti detects the fault fj, otherwise dij = 0.  

Let’s call the column vectors CWj = (dj1, dj2, ... , djn) of DM as diagnostic codewords. 

Here n is the number of test patterns. Each fault fi has its own binary codeword, but several 

faults may have the same diagnostic codeword. 

Let F be the set of all faults in the circuit. Partition all the faults in F into a set of groups 

G, so that the codewords of the faults in a particular group Gk  G are equivalent. 

Obviously, G F, and G = F only in the case when all the columns CWj  in DM 

are different 

We can calculate now the average diagnostic resolution of the given circuit as follows: 

                              𝐷 =   
∑ 𝐺𝑘
𝐺
𝑘=1

𝐺
                            (1) 

Consider, as an example, the diagnostic matrix DM in Table 1, which provides the 

following partition of faults 

G = {{f1},{f2},{f3,f6,f9},{f4,f7},{f5,f8},{f10},{f11}}. 
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Table 1 Diagnostic matrix for fault diagnosis 

D 
Faults  fj 

1 2 3 4 5 6 7 8 9 10 11 

Tests 1 1       1     1     1 

ti 2   1     1     1     1 

  3     1     1     1 1 1 

  4       1     1     1   

 In this partition, there are three groups of indistinguishable faults: G3 = {f3, f6, f9}, G4 

= {f4, f7}, and G5 = {f5, f8}. The average diagnostic resolution of the given test set, 

according to (1), is D = 1.57.In the best case of diagnosis we may have Dmin = 1, but the 

worst case diagnostic resolution will be Dmax = 3. To improve the resolution, additional 

test patterns are needed to distinguish the faults in the groups G3, G4 and G5. 

3.2. Generation of random test set with better ADR 

Random Test Generation (RTG) is one of the simplest methods for generating test 

patterns. Patterns are randomly generated as packages and thereafter fault-simulated on 

the circuit under test (CUT) [2]. As an efficient and straightforward criterion for gradual 

test pattern selection has proven to select only those patterns which exceed a given lower 

level of the number of detected not yet covered faults [1] [39]. Denote the increment in 

the fault coverage as the contribution of a test pattern by . The selection criterion when 

=max supports fast convergence towards 100% FC with small test length as depicted in 

Figure 1a. The criterion is easy to calculate in the run of the test generation process. 

However, such an approach will not provide high diagnostic resolution ’ as depicted in 

Figure 1a. 
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Figure 1 Two approaches for generation of random test patterns 

Figure 1b illustrates the case where the pattern selection criterion is chosen so that ’’ < 

’. It is easy to see that in this case the final average diagnostic resolution ’’ may become 

far better than ’. Figure 2 illustrates how the two parameters FC and ADR are evolving 

during the run of random pattern selection according to the criterion   = max. 

 

Figure 2 Fault coverage and the average diagnostic resolution as the functions of random test length 
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3.3. Generating random test patterns with better ADR 

In this section a total of three (3) methods are presented. Let us refer to the methods with 

the following code names: 

1. Method 1 will be referred to as M1 

2. Method 2 will be referred to as M2, and 

3. Method 3 will be referred to as M3. 

M1 and M2 using two configurations each are first presented, then the effect of fault 

collapsing on the ADR is briefly shown. Finally M3 is presented. The methods presented 

in this chapter have small computational cost and they give better ADR when compared 

to a traditional random test generator (RTG). 

3.3.1. RTG with better ADR - M1 ( = max) 

Random test pattern generation with emphasis on high ADR and small TL, i.e. two targets 

are combined simultaneously. To increase the chances of getting a good ADR, a limit 

criterion LC is introduced so that only the patterns with Max ’’< LC are selected (Figure 

3). This is opposite to the traditional random test generation (RTG) where the patterns are 

selected according to Max ’. To slow down at the same time the growth of the test length, 

due to a number of other patterns satisfying the constraint ’’ < LC, the patterns with 

Max ’’ have to be selected 

 

Figure 3 Comparison of M1 (=max) with the traditional approach 

The effects of the two criterions (the traditional Max ’, and the proposed Max ’’< LC) 

for a benchmark circuit c432 [4] are shown in Table 2 where TL is test length, FC is fault 

coverage, and ADR is average diagnostic resolution. 

FC

100%

Max ’

Max ’’

LC

Method M1

Traditional method

Current

FC*
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Table 2 Two criterions for selecting patterns (circuit c432) 

Max ’ (Trad. method) Max ’’< LC (M1) 

LC TL FC% ADR LC TL FC% ADR 

1 39 95.3 7.9 22 56 95.3 5.9 

2 35 95 8.4 23 55 95.3 5.8 

3 32 95.5 9 24 55 95.3 6.1 

4 30 93.8 9.6 25 51 95.3 7 

5 27 92.7 10.5 26 50 95.3 6.9 

6 25 91.8 12.1 27 51 95.3 6.6 

7 23 90.6 13.9 28 51 95.3 6.4 

3.3.2. Effect of fault collapsing on the ADR 

In Table 3 the result of the method described in section 3.3.1 are shown after taking into 

account fault collapsing. The number of gate-level stuck-at-faults in c432 is 974, and after 

fault collapsing – 616. The FC in Table 3 is calculated in relation to the number of faults 

after fault collapsing.  

As we see, the impact of fault collapsing (in Table 3) on the diagnostic resolution is 

considerable.  

Table 3 Influence of the fault collapsing on M1 (c432) 

M1  (gate level faults) M1 (collapsed faults) 

LC TL FC% ADR LC TL FC% ADR 

1 36 93 5 22 45 93 3.7 

2 33 92.7 5.4 23 43 93 4 

3 28 91.2 6.6 24 43 93 4.2 

4 26 90.6 7.3 25 41 93 4.3 

5 22 88.2 8.6 26 41 93 4.2 

6 20 86.7 9.6 27 42 93 4.2 

7 19 85.7 10.4 28 42 93 4 
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3.3.3. RTG with better ADR - M1 ( = min) 

This is the same with what was described in section 3.3.1 except that in this case instead 

of taking patterns that meet the requirement of the LC where =max, the patterns with 

=min are selected, as illustrated in Figure 4.  

 

Figure 4 Comparison of M1 (=min) with the traditional approach 

3.3.4. Comprehensive result (M1). 

The results of M1 with both configurations, =max and =min are presented and 

compared against the traditional random method. Three families have been used for the 

experiments ISCAS’85 [4], ISCAS’89 [5] and ITC’99 [6].  
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RTPG: Random Test Pattern Generator, ADR=Average Diagnostic Resolution, FC= 

Fault Coverage, TL=Test Length, TIME=Test generation time 

Table 4 result for method M1 for ISCAS’85 

  
RTPG 

M1 

=max 

M1 

=min 

c432 

ADR 4.96 3.3 2.31 
FC 93.02 93.02 93.02 
TL 36 55 211 

TIME(S) 2.01 3.341 12.648 

c499 

ADR 2.33 2.19 2.03 
FC 99.33 99.33 99.33 
TL 84 90 288 

TIME(S) 4.62 5.697 28.897 

c880 

ADR 2.77 2.73 1.72 
FC 100 100 100 
TL 38 42 382 

TIME(S) 3.03 3.435 29.226 

c1908 

ADR 3.6 3.3 2.48 
FC 99.48 99.48 99.48 
TL 109 119 484 

TIME(S) 8.27 11.014 87.972 

c2670 

ADR 3.18 3.27 2.68 
FC 94.06 93.98 94.9 
TL 89 91 390 

TIME(S) 47.16 49.584 154.633 

c3540 

ADR 3.35 3.34 2.24 
FC 95.54 95.54 95.54 
TL 119 122 820 

TIME(S) 18.56 20.599 270.909 

c5315 

ADR 2.72 2.64 2.1 
FC 98.89 98.89 98.89 
TL 83 88 1043 

TIME(S) 25.78 31.337 552.499 

In Table 4 where we have the result for ISCAS’85 [4] benchmark circuits, it is very 

obvious to see the trend when =min (test patterns detecting the least faults are selected), 

the ADR is better when compared to the configuration where =max. However the test 

generation time (TIME) is much longer because test patterns detecting the list faults that 

satisfy the limiting criteria LC are selected, so obviously this will take more time before 

the FC converges. Nonetheless both configurations of M1 have a better ADR for the 

ISCAS’85 [4] circuits when compared to the ADR of the normal random test set (RTPG) 

except for circuit c2670 when M1 has the configuration =max.  
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Table 5 result for method M1 for ISCAS’89 

  RTPG 
M1 

=max 

M1 

=min 

s967mm 

ADR 2.65 2.66 2.18 
FC 100 100 100 
TL 93 91 321 

TIME(S) 7.06 6.413 30.225 

s1269mm 

ADR 2.9 2.93 1.98 
FC 100 100 100 
TL 41 41 397 

TIME(S) 5.48 10.119 43.633 

s1494mm 

ADR 4.49 3.78 2.66 
FC 99.17 99.17 99.17 
TL 106 124 435 

TIME(S) 7.281 8.928 37.457 

s3384mm 

ADR 2.31 2.31 2.23 
FC 96.69 96.69 96.36 
TL 46 48 246 

TIME(S) 23.74 23.054 62.926 

s13207mm 

ADR 6.75 6.93 6.25 
FC 98.19 98.2 98.2 
TL 412 407 1137 

TIME(S) 167.50 1506.242 6651.089 

s15850mm 

ADR 3.2 3.22 2.78 
FC 95.05 95.48 94.85 
TL 375 402 1414 

TIME(S) 417.32 2302.948 13397.131 

Just like in Table 4, we have almost the same situation in Table 5 which has the result of 

the ISCAS’89 [5] benchmark circuit. When =min (test patterns detecting the least faults 

are selected) the ADR is better when compared to the configuration where =max, 

however the test generation time (TIME) is much longer due to the fact that test patterns 

detecting the least faults that satisfy the limiting criterion (LC) are selected. This is also 

the reason for the shorter test generation time when M1 has the configuration =max 

because patterns detecting the most faults that satisfy the LC are selected instead. With 

the configuration =max for M1, the ADR does not improve very much for the ISCAS’89 

[5] circuits when compared with the ADR of the normal random test. 

.  
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Table 6 result for method M1 for ITC’99 

  RTPG 
M1 

=max 

M1 

=min 

b04 

ADR 3.31 2.65 1.87 
FC 98.52 98.52 98.52 
TL 74 81 340 

TIME 8.07 10.424 48.892 

b05 

ADR 5.1 5.14 4.29 
FC 77.52 77.52 77.52 
TL 71 75 307 

TIME(S) 20.16 21.257 126.591 

b07 

ADR 2.83 2.89 2.09 
FC 97.09 97.09 97.09 
TL 44 43 221 

TIME 4.46 4.134 18.225 

b11 

ADR 5.07 4.44 2.69 
FC 95.37 95.37 95.37 
TL 77 81 301 

TIME 12.21 11.53 58.913 

b12 

ADR 2.65 2.71 1.95 
FC 99.15 99.12 99.06 
TL 129 134 549 

TIME 29.67 31.459 157.005 

b14 

ADR 2.81 2.82 2.16 
FC 91.34 91.41 91.01 
TL 542 554 2230 

TIME 1523.73 1562.862 15130.59 

b15 

ADR 3.57 3.48 2.75 
FC 90.99 91.08 90.02 
TL 462 475 2474 

TIME 947.09 1086.828 16117.49 

 

3.3.5. Observations and summary for method M1 

From all the results presented in Table 4, Table 5 and Table 6, the configuration where 

=min has the best ADR and this can be attributed to growing the FC with smaller steps 

(=min) this is also the reason why the test generation time (TIME) is very long. 

Additional test patterns improved the ADR of the traditional method. The ADR also 

improved for the case when =max, although not in all cases and the level of 

improvement is not as good as when =min. 

One challenge encountered with M1 was with finding the appropriate value of the LC. 

This value was different for different circuit models hence it required several experiments 

with varying values to find the best value for the LC. For very small values of LC some 

experiments did not yield any test vectors while in other cases test vectors were found 
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however the FC was much below the maximum achievable. For example if you take a 

look at Table 2 you will notice that the LC values for M1 are much higher than the 

traditional method, e.g. the minimum value of LC was 22, and this was the least value 

that yielded the maximum FC obtainable.. 

3.4. RTG with better ADR - M2 

To resolve the problem of small values of LC in M1, in M2 the first test pattern is selected 

instead without the constraint  < LC, and then starting from the second pattern the 

constraint is taken into consideration when selecting new patterns (Figure 1b). To also 

reduce deadlocks when searching for suitable patterns the selection process in M2 is made 

more flexible by allowing the value of LC to change dynamically during test generation 

in cases where a test vector has not been found after a period of time. Figure 5 in the next 

page shows the flow chart for M2. 



 

 

35 

 

 

Figure 5 Flow chart for method M2 

3.4.1. Comprehensive result (M2). 

The same configurations that were used in M1 where the patterns that satisfied the LC 

with configuration =max and =min were selected, was also experimented with in M2. 

The following tables show the results for the following families ISCAS’85 [4], ISCAS’89 

[5] and ITC’99 [6]. The traditional random pattern generation method is compared against 

the two configurations of M2. 
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Table 7 result for M2 for ISCAS’85 

  
RTPG 

M2 

=max 

M2 

=min 

c432 

ADR 4.96 2.5 2.28 
FC 93.02 93.02 93.02 
TL 36 102 209 

TIME(S) 2.01 14.962 11.39 

c499 

ADR 2.33 2.09 2.03 
FC 99.33 99.33 99.33 
TL 84 99 282 

TIME(S) 4.62 10.426 31.527 

c880 

ADR 2.77 2.13 1.72 
FC 100 100 100 
TL 38 56 404 

TIME(S) 3.03 6.601 33.661 

c1908 

ADR 3.6 2.77 2.48 
FC 99.48 99.48 99.48 
TL 109 176 483 

TIME(S) 8.27 30.005 57.19 

c2670 

ADR 3.18 3.25 2.68 
FC 94.06 93.91 94.9 
TL 89 90 389 

TIME(S) 47.16 50.378 157.986 

c3540 

ADR 3.35 3.37 2.24 
FC 95.54 95.54 95.54 
TL 119 122 819 

TIME(S) 18.56 22.72 266.176 

c5315 

ADR 2.72 2.77 2.09 
FC 98.89 98.89 98.89 
TL 83 86 1117 

TIME(S) 25.78 32.262 584.397 

 

In Table 7Table 4 where we have the result for ISCAS’85 [4] benchmark circuits, it is 

very obvious to see the trend when =min (test patterns detecting the least faults are 

selected) the ADR is better when compared to the configuration where =max, however 

the test generation time (TIME) is much longer because patterns that satisfy the LC and 

that detect the least fault are selected so this takes more time. Both configurations of M2 

have a better ADR when compared to the ADR of the normal random test set (RTPG) 

except for circuit’s c2670, c3540, and c5315 the configuration =max does not produce 

a better ADR when compared the normal random test set.  
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Table 8 result for M2 for ISCAS’89 

  RTPG 
M2 

=max 

M2 

=min 

s967mm 

ADR 2.65 2.66 2.18 
FC 100 100 100 
TL 93 92 320 

TIME 7.06 6.319 33.614 

s1269mm 

ADR 2.9 3 2.01 
FC 100 100 100 
TL 41 44 418 

TIME(S) 5.48 5.367 41.9 

s1494mm 

ADR 4.49 3.26 2.65 
FC 99.17 99.17 99.17 
TL 106 161 437 

TIME 7.281 18.37 46.01 

s3384mm 

ADR 2.31 2.32 2.24 
FC 96.69 96.69 96.24 
TL 46 44 234 

TIME 23.74 20.389 65.98 

s13207mm 

ADR 6.75 6.82 6.23 
FC 98.19 98.2 98.2 
TL 412 413 1151 

TIME 167.50 297.972 5885.308 

s15850mm 

ADR 3.2 3.19 2.8 
FC 95.05 95.5 94.85 
TL 375 402 1406 

TIME 417.32 1671.041 13996.072 

 

Table 8 shows the results for ISCAS’89 [5] family and we can see from the table that the 

ADR of M2 when the configuration =min is used is better than when =max. Also we 

can observe from the result that the ADR of the normal random test (RTPG) is worse than 

M2 with configuration =min however it is almost similar in some cases to M2 with 

configuration =max. For instance for all circuits, apart from circuit s1494mm the ADR 

for M2 with configuration =max does not have a better ADR when compared to the 

ADR of the normal test set (RTPG).  
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Table 9 result for M2 for ITC’99 

 
 RTPG 

M2 

=max 

M2 

=min 

b04 

ADR 3.31 2.68 1.88 
FC 98.52 98.46 98.52 
TL 74 80 339 

TIME 8.07 10.85 50.994 

b05 

ADR 5.1 4.96 4.29 
FC 77.52 77.52 77.52 
TL 71 73 306 

TIME(S) 20.16 21.899 147.168 

b07 

ADR 2.83 2.72 2.11 
FC 97.09 97 97.09 
TL 44 45 220 

TIME 4.46 4.326 21.36 

b11 

ADR 5.07 4.86 2.69 
FC 95.37 95.2 95.37 
TL 77 79 300 

TIME 12.21 11.843 60.356 

b12 

ADR 2.65 2.78 1.96 
FC 99.15 99.02 99.06 
TL 129 133 567 

TIME 29.67 27.763 159.898 

b14 

ADR 2.81 2.85 2.16 
FC 91.34 91.38 91.01 
TL 542 553 2229 

TIME 1523.73 1601.621 15356.816 

b15 

ADR 3.57 3.48 2.75 
FC 90.99 91.06 90.02 
TL 462 474 2473 

TIME 947.09 1085.863 16449.786 

 

3.4.2. Observations and summary for M2 

The introduction of a dynamic LC during test pattern generation made it easier to look 

for a suitable LC value. However the result of method M2 did not improve considerably 

when compared to method M1. Analysing the results of M2 and M1 closely showed that 

both methods performed well when the test vectors are selected with min< LC. 

3.5. RTG with better ADR - M3 

The very similar result when comparing M1 and M2, inspired the creation of M3. In M3 

the LC is removed entirely and test vectors are ranked in ascending order with =min 

where  is the amount of new faults detected (previously described in section 3.2). There 

is no criterion constraint LC.  
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3.5.1. Comprehensive result (M1 M2 and M3) 

In this section the following tables compare the results of M3 with the best result of M1 

and M2. The traditional method for random test pattern generation is also placed in the 

table to show the improvement each method introduced. The results in the following 

tables are presented for the following benchmark families’ ISCAS’85 [4], ISCAS’89 [5] 

and ITC’99 [6]. 

Table 10 ICAS’85 family, Comparing M3 with best results of M1 and M2 

  RTPG M1 

=min 

M2 

=min 

M3 

=min 
c432 

ADR 4.96 2.31 2.28 2.31 
FC 93.02 93.02 93.02 93.02 
TL 36 211 209 211 

TIME(S) 2.01 12.65 11.39 11.13 

c499 

ADR 2.33 2.03 2.03 2.03 
FC 99.33 99.33 99.33 99.33 
TL 84 288 282 288 

TIME(S) 4.62 28.90 31.53 25.04 

c880 

ADR 2.77 1.72 1.72 1.72 
FC 100 100 100 100 
TL 38 382 404 382 

TIME(S) 3.03 29.23 33.66 25.56 

c1908 

ADR 3.60 2.48 2.48 2.48 
FC 99.48 99.48 99.48 99.48 
TL 109 484 483 469 

TIME(S) 8.27 87.97 57.19 77.19 

c267 

ADR 3.18 2.68 2.68 2.68 
FC 94.06 94.90 94.90 94.90 
TL 89 390 389 390 

TIME(S) 47.16 154.63 157.99 140.01 

c3540 

ADR 3.35 2.24 2.24 2.24 
FC 95.54 95.54 95.54 95.54 
TL 119 820 819 820 

TIME(S) 18.56 270.91 266.18 238.32 

c5315 

ADR 2.72 2.10 2.09 2.09 
FC 98.89 98.89 98.89 98.89 
TL 83 1043 1117 1118 

TIME(S) 25.78 552.50 584.40 652.60 

Looking at Table 10 we can observe that all three methods, M1, M2 and M3 have similar 

ADR. Also comparing the ADR of all three methods to the ADR of the normal test set 

(RTPG) we can see that they all have a better ADR. In general all three methods have 

almost the same test TL except for circuit c5315 where M2 and M3 have the worse TL 

compared to M1. For circuit c880 M2 has the worse TL and M3 has the best TL for circuit 

c1908. As for the test generation time (TIME) M3 has the best or shortest time (apart 

from circuit c1908) when compared M1 and M2.  
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Table 11 ICAS’89 family, Comparing M3 with best results of M1 and M2 

 

 RTPG M1 

=min 

M2 

=min 

M3 

=min 
s967mm 

ADR 2.65 2.18 2.18 2.18 
FC 100 100 100 100 
TL 93 321 320 321 

TIME 7.06 30.23 33.61 41.84 

s1269mm 

ADR 2.90 1.98 2.01 2.01 
FC 100 100 100 100 
TL 41 397 418 419 

TIME(S) 5.48 43.63 41.90 52.93 

s1494mm 

ADR 4.49 2.66 2.65 2.66 
FC 99.17 99.17 99.17 99.17 
TL 106 435 437 435 

TIME 7.3 37.5 46.0 53.4 

s3384mm 

ADR 2.31 2.23 2.24 2.24 
FC 96.69 96.36 96.24 96.24 
TL 46 246 234 235 

TIME 23.74 62.93 65.98 80.59 

s13207mm 

ADR 6.75 6.25 6.23 6.26 
FC 98.19 98.20 98.20 98.20 
TL 412 1137 1151 1050 

TIME 167.50 6651.09 5885.31 1114.31 

s15850mm 

ADR 3.20 2.78 2.80 2.90 
FC 95.05 94.85 94.85 95.21 
TL 375 1414 1406 1305 

TIME 417.32 13397.13 13996.07 3317.01 

Looking at Table 11 we can observe that all three methods, M1, M2 and M3 have similar 

ADR except for circuit s15850mm where M3 has a slightly worse ADR. If we compare 

the ADR of all three methods to the ADR of the normal test set (RTPG) we can see that 

they all have a better ADR. The TL for all three methods are similar for only circuit 

s967mm and s1494mm but different in other cases. For the bigger circuits s13207mm and 

s15850mm, M3 has the best TL. As for the test generation time (TIME) M3 has the best 

or shortest time for the bigger circuits (s13207mm and s15850mm) but the worse test 

generation time for all other circuits. 
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Table 12 ITC’99 family, Comparing M3 with best results of M1 and M2 

  RTPG M1 

=min 

M2 

=min 

M3 

=min 
b04 

ADR 3.31 1.9 1.88 1.87 
FC 98.52 98.52 98.52 98.52 
TL 74 340 339 340 

TIME 8.07 48.89 50.99 63.69 

b05 

ADR 5.10 4.29 4.29 4.29 
FC 77.5 77.5 77.5 77.5 
TL 71 307 306 307 

TIME 20.16 126.59 147.17 184.74 

b07 

ADR 2.83 2.09 2.11 2.09 
FC 97.1 97.1 97.1 97.1 
TL 44 221 220 221 

TIME 4.46 18.23 21.36 26.96 

b11 

ADR 5.07 2.69 2.69 2.69 
FC 95.37 95.37 95.37 95.37 
TL 77 301 300 301 

TIME 12.21 58.91 60.36 76.13 

b12 

ADR 2.65 1.95 1.96 1.96 
FC 99.15 99.06 99.06 99.06 
TL 129 549 567 568 

TIME 29.67 157.01 159.90 202.83 

b14 

ADR 2.81 2.16 2.16 2.16 
FC 91.34 91.01 91.01 91.01 
TL 542 2230 2229 2230 

TIME 1523.73 15130.59 15356.82 18031.69 

b15 

ADR 3.57 2.75 2.75 2.75 
FC 90.99 90.02 90.02 90.02 
TL 462 2474 2473 2474 

TIME 947.09 16117.49 16449.79 19060.77 

3.6. Observations and summary for M1, M2 and M3 

The methods presented in this chapter for random test pattern generation attempt to 

generate test pattern with very good ADR value using the FC as the feedback or cost 

function. While the fault coverage may not be the best cost function for use, the result of 

the experiments show that the overall ADR of the generated test set improves. Another 

important point to take note of that is common with methods M1, M2 and M3 is that the 

average diagnostic resolution is improved during the generation of the test set and not 

after the test generation, i.e. the RTG is modified to generate the vectors for testing but 

with very good ADR; as the RTG runs it selects only vectors that detect minimum number 

of faults within a fault group so by doing this larger fault groups are avoided. This leads 

to a better ADR in the end. 

Method M3 has very similar result when compared to methods M1 and M2 for all the 

circuit models that were experimented with. Note that the results of M1 and M2 are based 
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on the experiment whereby =min. Previously the symbol  was introduced as the 

increment in the FC due to the contribution of a test pattern. For methods M1 and M2 a 

limiting criterion LC was introduced such that  must be within this LC (=max<LC or 

=min<LC), however in the tables comparing M1, M2 and M3, the configuration where 

the test vectors were selected with =min was selected since it has the best result. This 

was also the source of inspiration to implement method M3 but without a limiting 

criterion (LC); instead the vectors were selected with =min. 

 

  



 

 

43 

 

4. Improving the ADR after RTG 

The methods that were presented in Chapter 3 are for generating test patterns with better 

ADR. In this chapter two methods that aspire to achieve a better ADR after a test set has 

been generated are presented. 

We refer to the methods with the following code names: 

1. Improving ADR of a randomly generated test set by applying random test vectors 

and calculation of ADR in each step, referred to as A1 

2. Improving ADR of a randomly generated test set by applying random test vectors 

and a cost function to estimate ADR in each step, referred to as A2 

The methods presented here are applied to an already existing test set with a high FC and 

short TL, and then these methods try to optimize the ADR by adding test vectors that can 

improve the ADR. 

After the description of the A1 and A2, section 4.3 and section 4.4 compares the results 

of both methods. 

4.1. Improving the ADR after RTG - A1 

From the result of the previous experiments it is clear that additional TL improves the 

ADR but not all of the additional test patterns would contribute to the improvement of 

ADR because the ADR was not the primary cost function used for selecting the patterns 

in methods M1, M2 and M3 - instead  (Number of new faults detected by a test vector) 

was used, and this is mostly related to the FC.  

The FC and DR are related, for example a test vector that detects fewer faults within a 

group has a better DR than a test vector that detects more faults within a group, and of 

course selecting test patterns with this criteria indirectly improves the overall ADR, but 

using only this basis will not give the best result for both ADR and TL. The results in the 

previous section already serves as proof. In as much as we want a very good ADR we 
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still want to keep the cost low by making sure that the TL is small enough and also the 

speed at which the test set is generated is fast enough.   

The method presented under this section takes the test set that has been generated with a 

normal RTG (a test set with maximum FC and small TL) and then attempts to add semi 

deterministic patterns in a random way to the test set. The aim is to improve the ADR; 

also since it is computationally expensive to generate deterministic patterns which will 

target the ADR, the random approach is desired because with it, we can bypass the costly 

computation which not only improves the speed but also improves the ADR as well.  

In summary A1 basically generates a test vector, fault simulate to extract the fault vector 

then it introduces this fault vector into the already existing test set that was previously 

generated by the traditional RTG. It then calculates the overall ADR and if the newly 

introduced test vector and corresponding fault vector improves the ADR the test vector is 

added otherwise the vector is removed. This process continues until there are no 

improvements for a duration of time or for how long the test engineer wishes to run the 

process. 
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Figure 6 Flow chart describing A1 

 

4.2. Improving the ADR after RTG - A2 

In this method a cost function is used to assign weights to candidate test vectors then the 

best vectors are selected and then added to improve the ADR. The number of new test 

vectors that should be added to the original test set must be specified. The algorithm used 

in A2 is a greedy algorithm that always selects the best test vectors first; such vectors 

have the highest weights after each vector has been subjected to the cost function.  

Unlike in method A1 in method A2 the direct evaluation of the ADR in each step is 

avoided, so this method is a lot faster compared to A1 which evaluates ADR for every 

step. Referring back to section 3.1 where the calculation of ADR was described, the faults 

detected in a fault vector (the set of faults that are detected by a test vector) belong to 

groups. The ADR improves when the number of groups increases. For example given a 

set of fault vector that has two groups, if by adding two new vectors the total group splits 

further into four groups then the ADR will improve. Since the aim is to improve the ADR 
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which is made worse by larger groups, A2 tries to search for such vectors that can 

effectively breakup larger groups into smaller groups because by so doing the ADR can 

be improved further. 

All the vectors in the original test set are weighed by the number of faults detected and 

then the vectors are ranked from highest to lowest.  Table 13 shows an example of how a 

fault vector is weighed. For each of the fault vectors in the original test set, a new pack 

of vectors is generated and then fault simulated to extract their corresponding fault 

vectors. In order to estimate which new fault vectors will split the group of a given fault 

vector further, the weighing function is used. The weighing function is described in 

section 4.2.1. 

Table 13. Example of weighted fault vectors 

Fault 
vector 

1 2 3 4 5 6 7 8 9 10 11 Weight 

1 1 1 1 1   1 1 1   1   8 

2     1         1     1 3 

3         1 1         1 3 

4         1       1     2 

 

4.2.1. Weighing function for selecting additional test vectors 

Table 14 Example of a large fault group 

Fault 
vector 

1 2 3 4 5 6 7 8 9 10 11 Weight 

i 1 1 1 1  x 1 1 1  x 1  x 8 

Using Table 14 above the entry represents a fault vector which detects 8 out of 11 faults. 

For simplicity denote a stuck-out fault detection by ‘1’ and no fault detected by ‘x’.  

If the number of faults detected are counted then we get eight (8) which will be the weight 

of this fault vector. 

Also there are eight members in the group {f1, f2, f3, f4, f6, f7, f8 and f10} assuming 

there are no other vectors with overlapping members. To improve the ADR we need to 

split the group of eight members into several groups. 
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In other to determine the contribution of a test vector, the information on how much a 

group can be broken apart is determined by measuring its entropy using equation (2) 

below (Shannon’s equation for information entropy). 

I = - p log2 p – (1-p) log2 (1-p)           (2) 

This entropy information extraction is what has been referred to as the weight. Equation 

(2) is the general case for the amount of information. 

It is important to note that from equation (2) assuming the expression (1-p) = 0, then 

log2(1-p) = log20 => ∞, however (1-p) log2 (1-p) => 0 log2 0 => 0. 

Note that for every test vector there is an equivalent fault vector, i.e. every test vector v 

maps to its fault vector f after fault simulation. In equation (2) above p denotes the 

probability of overlap a candidate fault vector has with the base fault vector that we are 

interested in splitting. As an example assume that a given fault vector has a total of 8 

detected faults in a single group and a candidate fault vector which will split the base 

vector has a total of 10 detected faults but only 4 out of the 10 overlaps with the base 

vector, we consider the probability p of overlap as shown in equation (3).  

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑎𝑢𝑙𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑠 𝑖𝑛 𝑏𝑎𝑠𝑒 𝑣𝑒𝑐𝑡𝑜𝑟
   (3) 

Using equation (3) the probability will be 4/8 which gives ½.  

To simplify the entropy extraction for each candidate fault vector, the logarithmic 

calculation is avoided by using a simplified process which happens in two phases, the 

first phase extracts the number of overlapping faults a candidate fault vector has with 

the base fault vector; this is achieved by using a logic operation defined in Table 15 and 

then the second phase uses the base vector to normalize the weight of the candidate 

vector. 

The logic operation is used to find the initial number of overlapping fault a candidate 

vector has with the base vector. If the candidate vector, after undergoing the second 

phase is selected then the base vector is split in two and produces two fault vectors in 

the end. The first is a fault vector having the number of overlapping faults with the base 
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fault vector and the second is composed of the remaining faults in the base fault vector 

that do not overlap with the candidate fault vector.  

For example let set V be the set of the original test vectors and let set F be the set of the 

equivalent fault vectors that correspond to V. For each test vector v there is a 

corresponding fault vector f which is the set of all the faults detected by test vector v. 

After f has been subjected to the cost function and it is found to be very useful in 

splitting a larger group, the corresponding test vector v that maps to f is put into the set 

V then f is split into two parts. Splitting f will yield f1 and f2 so after splitting, f is 

removed from set F and f1 and f2 are reintroduced into set F for the next iteration. The 

set F is then sorted in descending order using the weight of each fault vector f. 

 The truth table for the logic operation is defined in Table 15.   

Table 15 truth table for logic function 

x1 x2 result 

0 0 0 

1 1 1 

0 x x 

1 x x 

1 0 x 

In Table 15, value 0 refers to S-A-0 and value 1 refers to S-A-1. Refer to Table 16 for an 

example of the logic operation and three candidate vectors. 

Table 16 Example of logic function with candidate vector 

Fault 
vector 

1 2 3 4 5 6 7 8 9 10 11 
Original 

faults 
Overlapping 

faults 

Vector with 
large group 

1 1 1 1 x 1 1 1 x 1 x 8 
Not applicable 

Candidate1 1 1 1 1 1 x x x 1 x x 6 4 

Candidate2 1 1 1 1 x 1 1 1 x 1 x 8 8 

Candidate3 x x x x 1 1 1 1 1 x 1 6 3 

To show the effect of the logic operation I have intentionally added a candidate vector 

(Candidate2) which is the same as the fault vector that needs to be improved. Using the 

truth table in Table 15 since both vectors are one and the same the result will also be the 
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same so this gives an initial weight value of eight (8) overlapping faults which is the 

maximum achievable for this example. 

Obviously selecting this fault vector just because it has the highest overlapping faults 

compared to the other candidate does not add any improvement to the ADR because it is 

simply a duplicate vector. The second phase of the weighing process, which applies 

equation (2) is used to extract the entropy and then each candidate vector is finally ranked.  

 

Figure 7 normalizing the weights 

 

Using equation (2), a candidate fault vector that has complete overlap with the base vector 

e.g. candidate2 in Table 16 will have a probability of 1, substituting this value into 

equation (2) will yield 

I = - 1 log2 1 – (0) log2 0 = 0. 

Hence a candidate vector that fully overlaps with the base vector does not help to split 

the base vector. 

Figure 7 shows the original weight vs. normalized weight. The max weight value (8) in 

the figure is based on the example that was illustrated by Table 16 whereby the vector 

that needs to be improved has a weight of 8.  After subjecting all the candidate vectors to 

the normalization function then the former candidate vector (Candidate2) which had a 

higher weight will become zero (0) and then Candidate1 and Candidate 3 will be 4 and 3 

(1 and 0.9 if the logarithm function is used). With this arrangement Candidate1 will 

become the best since it is able to remove four members from the group of the original 

fault vector. This effectively splits the group and will result in a better ADR. 
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4.3. Comprehensive result of methods A1 and A2 

ADR = Average Diagnostic Resolution, FC= Fault Coverage,  

EP = Extra Patterns (Additional patterns added to the original test set)  

TL = Test Length, TIME = Test generation time (h=hours, s=seconds) 

Table 17. Comparing method A1 and A2 with ISCAS' 85 circuits 

  RTPG A1 A2 

c432 

ADR 5.0 2.3 2.3 

FC 93.0 93.0 93.0 

EP - 63 175 

TL 36 99 211 

TIME 2.0s 01:17:07h 2.1s 

c499 

ADR 2.3 2.0 2.3 

FC 99.3 99.3 99.3 

EP - 13 204 

TL 84 97 288 

TIME(S) 4.6s 02:38:54h 6.0s 

c880 

ADR 2.8 1.7 1.8 

FC 100.0 100.0 100.0 

EP - 45 344 

TL 38 83 382 

TIME 3.0s 03:11:05h 7.3s 

c1908 

ADR 3.6 2.7 3.3 

FC 99.5 99.5 99.5 

EP - 48 360 

TL 109 157 469 

TIME 8.3s 05:45:54h 18.4s 

c2670 

ADR 3.2 3.0 3.0 

FC 94.1 94.1 94.1 

EP - 14 301 

TL 89 103 390 

TIME 47.2s 08:02:13h 23.7s 

c3540 

ADR 3.4 2.3 2.2 

FC 95.5 95.5 95.5 

EP - 76 701 

TL 119 195 820 

TIME 18.6s 14:14:58h 71.2s 

c5315 

ADR 2.7 2.22  2.1 

FC 98.9 98.89  98.9 

EP - 40  1035 

TL 83 123  1118 

TIME 25.8s 38:14:21h 187.4s 

In Table 17 we can see that methods A1 and A2 have better ADR compared to the normal 

test set. On the other hand A2 is much faster than A1 due to the simplified cost function 



 

 

51 

 

it uses but even though A1 calculates the ADR each time a new candidate vector is 

introduced this gives it an advantage of very short TL.  

Table 18 Comparing method A1 and A2 with ISCAS' 89 circuits 

  RTPG A1 A2 

s967mm 

ADR 2.7 2.2 2.2 

FC 100.0 100.0 100.0 

EP - 31 228 

TL 93 124 321 

TIME 7.1s 02:04:26h 6.0s 

s1269mm 

ADR 2.9 2.0 2.0 

FC 100.0 100.0 100.0 

EP - 43 378 

TL 41 84 419 

TIME(S) 5.5s 02:40:42h 13.8s 

s1494mm 

ADR 4.5 2.8 2.7 

FC 99.2 99.2 99.2 

EP - 83 329 

TL 106 189 435 

TIME 7.3s 05:25:59h 9.2s 

s3384mm 

ADR 2.3 2.3 2.2 

FC 96.7 96.7 96.7 

EP - 4 189 

TL 46 50 235 

TIME 23.7s 07:51:30h 20.6s 

s13207mm 

ADR 6.8 6.6 6.5 

FC 98.2 98.2 98.2 

EP - 18 638 

TL 412 430 1050 

TIME 167.5s  134:41:0h 394.4s 

s15850mm 

ADR 3.2 3.1 3.0 

FC 95.1 95.1 95.1 

EP - 7 930 

TL 375 382 1305 

TIME 417.3s 45:39:0h  795.6s 

In Table 18 above the result of the traditional random test for testing (column RTPG) has 

been placed alongside with methods A1 and A2 and the reason for this, is to simply show 

the level of improvement the two methods proposed in this chapter can introduce. As you 

can see the two approaches improve the ADR. For example for circuit model s1494mm 

the ADR improved by almost 50% in both cases. A1 has a better test generation time 
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(TIME) because of the simplified cost function it uses but A1 on the other hand has a 

compact TL. 

Table 19. Comparing A1 and A2 with ITC' 85 circuits 

  RTPG A1 A2 

b04 

ADR 3.3 1.9 1.9 

FC 98.5 98.5 98.5 

EP - 30 266 

TL 74 104 340 

TIME 8.1s 02:45:32h 10.6s 

b05 

ADR 5.1 4.3 4.3 

FC 77.5 77.5 77.5 

EP - 42 236 

TL 71 113 307 

TIME(S) 20.2s 04:58:33h 21.6s 

b07 

ADR 2.8 2.0 2.3 

FC 97.1 97.1 97.1 

EP - 36 177 

TL 44 80 221 

TIME 4.5s 03:30:22h 4.5s 

b11 

ADR 5.1 2.7 2.8 

FC 95.4 95.4 95.4 

EP - 67 224 

TL 77 144 301 

TIME 12.1s 05:57:55h 10.3s 

b12 

ADR 2.7 2.0 2.0 

FC 99.15 99.15 99.15 

EP - 56 439 

TL 129 182 568 

TIME 29.7s 11:45:22h 36.6s 

b14 

ADR 2.81 2.64 2.3 

FC 91.34 91.34 91.34 

EP - 16 1688 

TL 542 558 2230 

TIME 1523.7s 90:34:57h 3443.9s 

b15 

ADR 3.6 3.4 2.8 

FC 91.0 91.0 91.0 

EP - 13 2012 

TL 462 475 2474 

TIME 947.1s 45:31:29h 2610.4s 

From Table 19 we can also see that on the average methods A1 and A2 improve the ADR 

by a reasonable magnitude, for instance both methods introduce approximately 50% 

improvement to the ADR for circuits models b04 and b11. 
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4.4. Comparing methods A1 and A2 

After running a reasonable number of experiments with a variety of circuits, the results 

of both methods A1 and A2 have been captured in Table 17, Table 18 and Table 19. The 

ADR of the original test set generated by a traditional random ATPG is also present on 

the table to show how much improvement the ADR can be benefit from by using either 

methods A1 or A2. 

From the results A1 has the best ADR when compared to A2. Since both methods use an 

already existing test set the FC is the same the only difference would be the ADR. A1 has 

a compact TL when compared to A2 and this is because, in A1 each time a new test vector 

is introduced the ADR of the entire test set is calculated but in A2, the ADR is estimated 

using a cost function. The biggest drawback of A1 is that it takes too much time. The 

reason for this is because of the ADR calculation in each step and this is a very expensive 

operation. A2 avoids this expensive calculation by approximating the ADR with a faster 

and less expensive cost function, hence the speed. 

In conclusion A1 trades-off speed for better ADR and shorter TL, while A2 trades-off 

better ADR and shorter TL for speed.  
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5. Experimental Results 

In this chapter the best method (M3) from chapter 3 for generating random test set with 

good ADR and the two methods (A1 and A2) for improving the ADR of an already 

generated test set are presented. The three approaches are then compared with the ADR 

obtained from test set generated with a random ATPG and with deterministic ATPG. The 

results show a high potential in terms of improved ADR resulting from the proposed 

methods. A discussion accompanies the results presented which highlights the strengths 

and weakness of the proposed methods. 

5.1. Comparison of proposed methods  

The following tables tries to compare the best methods from all the proposed methods 

using the ISCAS’85 [4], ISCAS’89 [5] and ITC’99 [6] benchmark circuits. Also to show 

the contribution or improvement to the ADR each proposed method introduces, the ADR 

of the test set generated with random ATPG and deterministic ATPG are also captured in 

the table.  

The following explain the meaning of the acronyms that are used in Table 20, Table 21, 

and Table 22. 

RTPG: Random Test Pattern Generator 

DTPG: Deterministic Test Pattern Generator. 

ADR: Average Diagnostic Resolution. 

FC: Fault Coverage. 

EP: Extra Patterns.  

TL: Test Length.  

TIME(h,s): Test generation time (h=hours, s=seconds). 
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Table 20. Comparing ADR of best proposed methods with ADR of original test set using ISCAS’85 

 

  
RTPG DTPG M3 A1 A2 

c432 

ADR 5.0 3.3 2.3 2.3 2.3 

FC 93.0 93.0 93.0 93.0 93.0 

EP - - - 63 175 

TL 36 84 211 99 211 

TIME 2.0s 45.7s 11.1s 01:17:07h 2.1s 

c499 

ADR 2.3 2.3 2.0 2.0 2.2 

FC 99.3 99.3 99.3 99.3 99.3 

EP - - - 13 204 

TL 84 132 288 97 288 

TIME(S) 4.6s 82.8s 25.0s 02:38:54h 6.0s 

c880 

ADR 2.8 2.0 1.7 1.7 1.8 

FC 100.0 100.0 100.0 100.0 100.0 

EP - - - 45 344 

TL 38 77 382 83 382 

TIME 3.0s 1.2s 25.6s 03:11:05h 7.3s 

c1908 

ADR 3.6 3.5 2.5 2.7 3.3 

FC 99.5 99.5 99.5 99.5 99.5 

EP - - - 48 360 

TL 109 143 469 157 469 

TIME 8.3s 41.6s 77.2s 05:45:54h 18.4s 

c2670 

ADR 3.2 2.9 2.7 3.0 3.0 

FC 94.1 95.5 94.9 94.1 94.1 

EP - - - 14 301 

TL 89 155 390 103 390 

TIME 47.2s 167.0s 140.0s 08:02:13h 23.7s 

c3540 

ADR 3.4 2.6 2.2 2.3 2.2 

FC 95.5 95.5 95.5 95.5 95.5 

EP - - - 76 701 

TL 119 205 820 195 820 

TIME 18.6s 339.4s 238.3s 14:14:58h 71.2s 

c5315 

ADR 2.7 2.3 2.1 2.22  2.1 

FC 98.9 98.9 98.9 98.89  98.9 

EP - - - 40  1035 

TL 83 171 1118 123  1118 

TIME 25.8s 13.41s 652.6s 38:14:21h 187.4s 

Table 21 holds the result for the ISCAS’85 [4] family. Columns RTPG and DTPG hold 

result for normal test set for testing (not for diagnosis). DTPG has a better ADR compared 

to RTPG. We can see also that generally the three methods, M3, A1 and A2 all have better 

ADR. For example there is an improvement of over 50% for circuit c432macro. With the 

same TL M3 has a slightly better ADR than A2 but A2 has the better test generation time. 
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A1 on the other hand has the worse test generation time but compared to M3 and A2 has 

a compact TL.  

Table 21. Comparing ADR of best proposed methods with ADR of original test set using ISCAS’89 

  RTPG DTPG M3 A1 A2 

s967mm 

ADR 2.7 2.3 2.2 2.2 2.2 

FC 100 100 100 100 100 

EP - - - 31 228 

TL 93 124 321 124 321 

TIME 7.1s 0.02s 41.8s 02:04:26h 6.03s 

s1269mm 

ADR 2.9 2.2 2.0 2.0 2.0 

FC 100 100 100 100 100 

EP - - - 43 378 

TL 41 68 419 84 419 

TIME(S) 5.48s 0.1s 52.9s 02:40:42h 13.8s 

s1494mm 

ADR 4.5 3.6 2.7 2.8 2.7 

FC 99.2 99.2 99.2 99.2 99.2 

EP - - - 83 329 

TL 106 175 435 189 435 

TIME 7.3s 0.04s 53.4s 05:25:59h 9.2s 

s3384mm 

ADR 2.3 2.2 2.2 2.3 2.2 

FC 96.7 100.0 96.2 96.7 96.7 

EP - - - 4 189 

TL 46 113 235 50 235 

TIME 23.7s 0.03s 80.6s 07:51:30h 20.6s 

s13207mm 

ADR 6.8 6.5 6.3 6.6 6.5 

FC 98.2 98.2 98.2 98.2 98.2 

EP - - - 18 638 

TL 412 600 1050 430 1050 

TIME 167.5s 293.5s 1114.3s 134:41:0h 394.3s 

s15850mm 

ADR 3.2 3.0 2.9 3.1 3.0 

FC 95.1 95.7 95.2 95.1 95.1 

EP - - - 7 930 

TL 375 541 1305 382 1305 

TIME 417.3s 1516.9s 3317.0s 45:39:0h 795.6s 

In Table 21 columns RTPG and DTPG hold result for normal test set for testing (not for 

diagnosis). DTPG has a better ADR compared to RTPG. We see that there is an 

improvement in the ADR for the traditional TPG under column (RTPG) when comparing 

with methods M1, A1 and A2. The test length (TL) is best with method A1 when 

compared to A2 and M3 but the test generation time (TIME) is best for method A2.  
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Table 22. Comparing ADR of best proposed methods with ADR of original test set using ITC'99 

  RTPG DTPG M3 A1 A2 

b04 

ADR 3.3 2.1 1.9 1.9 1.9 

FC 98.5 98.5 98.5 98.5 98.5 

EP - - - 30 266 

TL 74 121 340 104 340 

TIME 8.1s 18.3s 63.7s 02:45:32h 10.5s 

b05 

ADR 5.0 5.0 4.0 4.0 4.0 

FC 78 78 78 78 78 

EP - - - 42 236 

TL 71 120 307 113 307 

TIME(S) 20.2s 0.3s 184.7s 04:58:33h 21.6s 

b07 

ADR 2.8 2.3 2.1 2.0 2.3 

FC 97.1 99.5 97.1 97.1 97.1 

EP - - - 36 177 

TL 44 54 221 80 221 

TIME 4.5s 0.2s 27.0s 03:30:22h 4.4s 

b11 

ADR 5.1 3.1 2.7 2.7 2.8 

FC 95.4 95.4 95.4 95.4 95.4 

EP - - - 67 224 

TL 77 118 301 144 301 

TIME 12.2s 0.2s 76.1s 05:57:55h 10.3s 

b12 

ADR 2.7 2.2 2.0 2.0 2.0 

FC 99.2 100.0 99.1 99.2 99.2 

EP - - - 56 439 

TL 129 199 568 182 568 

TIME 29.7s 0.04s 202.8s 11:45:22h 36.6s 

b14 

ADR 2.8 2.5 2.2 2.6 2.3 

FC 91.3 97.0 91.0 91.3 91.3 

EP - - - 16 1688 

TL 542 1128 2230 558 2230 

TIME 1523.7s 32991.2s 18031.7s 90:34:57h 3443.9s 

b15 

ADR 3.6 3.3 2.8 3.4 2.8 

FC 91.0 94.1 90.0 91.0 91.0 

EP - - - 13 2012 

TL 462 740 2474 475 2474 

TIME 947.1s 35192.1s 19060.8s 45:31:29h 2610.3s 

Table 21 holds the result for the ITC’99 [6] family. Columns RTPG and DTPG hold result 

for normal test set for testing (not for diagnosis). DTPG has a better ADR compared to 

RTPG. We can see also that generally the three methods, M3, A1 and A2 all have better 

ADR. For example there is an improvement of about 45% for circuit b11. With the same 

TL M3 has a slightly better ADR than A2 but A2 has the better test generation time. A1 
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on the other hand has the worse test generation time but compared to M3 and A2 has a 

compact TL  

5.2. Strength and weakness of the proposed methods  

The tables in section 5.1 show the results of the best methods that have been proposed. 

Comparing M3 with the original test set generated by the random or deterministic TPG 

in Table 20, Table 21 and Table 22 shows good improvement in the ADR however the 

TL is higher and also the time to generate the test is also high. In M3 the FC is used as a 

guide during the generation of the test and also due to the selection criteria of candidate 

test vectors whereby vectors that detect the minimum number of faults are selected; The 

consequences is that the FC converges to its maximum value very slowly hence the longer 

test generation time. 

A1 and A2 on the other hand use a different approach to improve the ADR of an already 

existing test set generated by the random ATPG. In Table 20, Table 21, and Table 22 the 

results of A1 and A2 show good improvement in the ADR when compared to the random 

and deterministic test set generated for testing. A1 evaluates the ADR of the entire test 

set each time a new test vector is introduced, due to this approach it has an advantage of 

improved ADR with very short TL compared to the other proposed methods. However 

the calculation of ADR for the entire test set in each step impacts negatively on the speed 

because the calculation of ADR is computationally intensive. 

A2 on the other hand avoids the expensive ADR calculation but instead uses a a simplified 

cost function to estimate the ADR in each step. The advantage is that the speed is 

improved but the disadvantage is that the TL is longer. 
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6. Summary and conclusion. 

The traditional approach for generating a diagnostic test set is usually to generate 

deterministically such a set, however the method is very expensive in terms of time and 

computational cost because the deterministic generator has to generate a distinguishing 

test vector for every pair of faults in the test set. 

In trying to solve the same problem two approaches were introduced and both approaches 

are based on some form of randomness which does not require high computational cost, 

but still at the end, is able to produce a test set with good ADR.  

The first approach was introduced in chapter 3 and it produced three methods (M1, M2 

and M3) which aim to achieve the goal by incorporating a measure for selecting test 

vectors with good DR during the generation of the test set. A side experiment showed the 

impact of selecting such test vectors with maximum number of detectable faults and 

minimum number of detectable faults and the latter produced a better result. Also the 

impact of fault collapsing on the ADR was shown, from the experimental result method 

M3 came out as the best method in the first approach.  

The second approach produced two methods (A1 and A2) and each required two stages, 

first a random ATPG is used to generate a normal test set for testing with the main target 

of maximum FC and short TL. The first stage is common to both A1 and A2. The second 

stage involved finding additional test vectors that would ultimately improve the ADR of 

the original test set. A1 randomly generates a test vector, then introduces it into the current 

test set and calculates the ADR of the entire set in order to determine if the introduced 

test vector will improve the ADR. A1 produced good ADR with very good TL, however 

the calculation of ADR for the entire set is an expensive operation so this method suffered 

greatly in terms of longer diagnostic test generation time. Method A2 avoided the 

expensive operation of A1 by using a simplified cost function for estimating the relevance 

and contribution of a test pattern that would be introduced into the test set. This approach 

introduced a better performance due to short test generation time, but suffered in terms of 

longer TL and degraded ADR compared to method A1. All the methods proposed show 

very good improvement in the ADR and have very good potential for further 

development.  
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The goal of this thesis was to provide a tool for randomly generating diagnostic test set 

for digital circuits with better ADR, this is opposite to the deterministic approach. While 

it is desirous to achieve the optimal ADR this was not the main goal but instead to 

approach the problem in a random way and investigate the improvement the random 

approach introduces. As previously stated in section 2.7 the motivation behind the random 

approach is that by using such an approach it is possible to bypass the expensive 

deterministic operation of trying to generate a distinguishing vector between a pair of 

fault, improve the diagnostic test generation speed and finally improve the ADR. 

This thesis yielded two papers the first paper is titled “A Tool for Random Test 

Generation Targeting High Diagnostic Resolution” and the paper was accepted as a 

conference paper in the 15th Biennial Baltic Electronics Conference - BEC, Tallinn on 

the 7th of July, 2016.  

The second paper titled “A novel random approach to diagnostic test generation” was 

submitted on the 17th of August 2016 to the NORCAS 2016 conference and as at the time 

of writing this thesis no feedback of acceptance has been received yet. 

In the future I would like to improve on the methods proposed to achieve a higher ADR. 

An interesting idea would be to introduce some more determinacy into the proposed 

algorithms  
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Appendix 1 – Program Description and Manual 

There are three separate tools. A java applet (safdiag.jar) developed by [32] (described in 

Appendix 2), a GUI based tool (DiagBoost.exe) for improving the average diagnostic 

resolution of a given test set using A1 (Described in Appendix 3) and finally the random 

command line tool (random.exe). The random command line tool is originally part of the 

Turbo Tester tool suite developed in [1]. This random tool has now been developed 

further to support random generation of test sets with better diagnostic resolution. It 

supports 4 new methods for providing such a test set and the methods are represented 

with the following names M1, M2, M3 and A2. M1, M2 and M3 are used during the 

generation of the test set and A2 is used after the generation of the test set. 

It is assumed that the reader is familiar with the Turbo Tester tool suite, if not please refer 

to the reference manual [39] for more information on the “random” tool. The reference 

provided here focuses mostly on the contribution this Thesis has introduced into the tool 

and the original options of the tool that are relevant. 

To setup the environment for using the tool on a windows machine follow the three steps 

below. 

1. Copy the application (random.exe) into a folder. 

2. Copy the SSBDD  model file (*.agm) that you want to generate a test set for into 

the same folder 

3. Open the command console (CMD) and navigate to the location of the folder 

created in step 1. 
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Using the tool 

command: random  

input: SSBDD model file (.agm) 

output: test pattern file (.tst) 

 

syntax: random [options] <design>  

design: Name of the design file without the 

.agm extension. 

options relevant  

-failure_limit <limit> The maximum number of packages 

that can fail before program terminates 

Default 64. 

-pack_size <size> The number of vectors in a package is 

size multiplied by 32. Default for size 

is 1. 

-criterion <faults> Needed by options [-M1] and [-M2]. 

Specifies the maximum limit of 

detected faults below which a test 

vector can be selected. 

-packages <packages> Maximal number of packages to be 

simulated. Default is 1000. 
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-select_max <vectors> Maximal number of vectors selected 

from a package. Default is 32.  

-fault_table Perform fault simulation for the final 

patterns. 

Options for diagnostic patterns  

-max_sort Vectors are sorted with maximum 

weight (number of faults detected). By 

default the vectors are sorted with 

minimum weight. 

-M1 Generate diagnostic pattern using M1. 

Select the patterns that meet the [-

criterion] option. E.g. if criterion=7 

then only vectors that detect below or 

equal to 7 faults will be selected. 

-M2 Generate a diagnostic test set using 

M2. Less strict with option [criterion] 

uses option [-criterion_increment] to 

break deadlock. 

-criterion_increment <step> Only useful with option [-M2]. The 

number by which the criterion should 

increase after four consecutive fails. 

Default value is 1. 
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-M3 Generate a diagnostic test set using 

M3. Does not require any limiting 

criterion option [-criterion]. 

-A2 Optimize the normal random test set 

with additional test set to improve 

diagnostic resolution. 

-extra_test_vectors <value> Needed by option [-A2] to indicate 

how many extra vectors should be 

added. Has no default value so a valid 

input must be supplied by the user. 

 



 

 

69 

 

Example 1 – How to generate diagnostic test with M1 

Assuming the environment has been setup as described in the beginning of Appendix 1. 

We can begin to run the command. In Figure 8 the name of the SSBDD model is 

c432macro.agm but only the name (without the .agm extension) has been used. 

 

Figure 8. Running command to generate diagnostic test with option M1. 

 

 

Figure 9. Program output after running with option M1. 

Figure 9 is the output after we run the command. The application then generates an output 

file c432macro.tst and this file contains the test set with better diagnostic resolution. 
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Example 2 - How to generate diagnostic test with M2 

Assuming the environment has been setup as described in the beginning of Appendix 1. 

We can begin to run the command. Figure 10 shows how to run the command with the 

relevant options for generating diagnostic vectors with M2. The name of the SSBDD 

model is c432macro.agm but only the name (without the .agm extension) has been used. 

 

Figure 10. Running command to generate diagnostic test with option M2 

 

 

Figure 11. Program output after running with option M2. 

When the command has finished executing it produces an output similar to Figure 11. 

The output file c432macro.tst is also generated.  
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Example 3 – How to generate diagnostic test with M3 

Assuming the environment has been setup as described in the beginning of Appendix 1. 

We can begin to run the command. Figure 12 shows how to run the command with the 

relevant options for generating diagnostic vectors with M3; if you notice the option [-

criterion] is omitted because it is not needed by M3. The name of the SSBDD model is 

c432macro.agm but only the name (without the .agm extension) has been used. 

 

Figure 12. Running command to generate diagnostic test with option M3. 

Figure 13 below is the output produced when the program terminates. Upon completion 

the output file c432macro.tst is produced. 

 

Figure 13. Program output after running with option M3. 
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Example 4 – How to generate diagnostic test with A2. 

Assuming the environment has been setup as described in the beginning of Appendix 1. 

We can run the command to use option A2. In Figure 14 the name of the SSBDD model 

is c432macro.agm but only the name (without the .agm extension) has been used. 

 

Figure 14. Running command to generate diagnostic test with option A2. 

 

Figure 15. Program output after running with option A2. 

The output of the program is shown in Figure 15, looking closely at the output in the 

figure you will notice that the random tool first generates a normal test set for testing 

(High fault coverage and short test length). After that A2 comes in to improve the 

generated test set by adding a number of extra diagnostic test vectors specified by the 

user, in this case 175 diagnostic vectors have been added. Two output files are generated 

the normal test file c432macro.tst and the diagnostic test file DR_c432macro.tst. 
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Appendix 2 - How to compute/extract the average diagnostic 

resolution from the test file. 

To setup the environment for using the safdiag.jar tool on a windows machine follow the 

four steps below. 

1. Must have Java JRE 8 installed on your PC. 

2. Copy the application (safdiag.jar) into a folder. 

3. Copy the test file (*.tst) that you want to compute average diagnostic resolution 

for. 

4. Open the command console (CMD) and navigate to the location of the folder 

created in step 1. 

tool: safdiag.jar  

input: test file (*.tst) 

output: diagnostic resolution report file 

(*.saf) 

 

syntax: Java –jar safdiag.jar <design>  

design:  Name of the test file but without the .tst 

extension. 

options: None. 
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Example – How to use the safdiag.jar tool to compute the 

average diagnostic resolution of a test file. 

Assuming the test environment has been setup as described in the beginning part of 

Appendix 2 the figure below shows how to run the command. In the figure the test file is 

c432macro.tst but notice that it has been entered without the extension. 

 

Figure 16 How to compute the ADR of a test file. 

After the program executes it generates the output as shown below in Figure 17.  

 

Figure 17. ADR computation complete. 

An output file with .saf extension is also generated so in this case the file will be 

c432macro.saf. The file is a text file that contains the details of the diagnostic resolution. 
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Appendix 3 – How to use the GUI tool DiagBoost.exe for A1. 

tool: DiagBoost  

input: test file (*.tst) and SSBDD file 

(*.agm) 

 

output: statistics file (.output), test file 

(*.tst) and diagnostic report file (*.saf). 

 

requirements: Windows 7 and above, .NET framework 

4.5 minimum, Java JRE 8. 

DiagBoost.exe combines the analyse tool which is also a part of the Turbo Tester tool 

suite [1] and the safdiag.jar tool [32] into an easy to use GUI. It then uses both tools 

together with the algorithm described in section 434.1 to improve the average diagnostic 

resolution of an already generated test set. 

The tool was developed with c# programming language and is only supported on the 

windows platform at the moment. To use the tool Windows 7 or above, the .NET 

framework 4.5 and Java JRE 8 must be available on your PC. No installation is required, 

a zipped folder DiagBoost contains all the necessary items required to use the application.  

1. After unzipping the folder just copy it to suitable location on your PC. 

2. Double click on DiagBoost.exe to bring up the GUI in Figure 18. 
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Figure 18. DiagBoost GUI tool. 

3. Initially the only buttons that are active are the Load .tst and Load .agm buttons. 

The start (circled in red) and stop buttons are not active because no files have been 

provided. 

4. Click on the Load .tst button then navigate to the location of the test file (*.tst), 

select the file. 

5. Click on the Load .agm button navigate to the location where the SSBDD file 

(*.agm) corresponding to the test file is (Note the SSBDD file must match the 

selected test file in step 4). 

6. Once the files have been successfully loaded by DiagBoost the start button 

becomes active also the initial status is displayed on the left corner of the GUI 

(circled in red) see Figure 19. 
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Figure 19. DiagBoost Successfully loaded test file and SSBDD file. 

The status of current file loaded into DiagBoost in Figure 19 is displayed. The only values 

that will change are the ADR and FC. 

7. By default the number of iterations the tool will perform is 10,000 but this value 

can be changed only after the test (*.agm) and SSBDD (*.tst) files have been 

loaded to the tool and before the tool begins to run. 

 

Figure 20. Number of iterations DiagBoost should perform. 

8. Click on the Start button to run the DiagBoost tool.  
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Figure 21. Running the DiagBoost tool. 

Figure 21 shows what to expect when the tool begins to run. There are two animated bars 

(Activity) and (Diagnostic pattern) that gives the user a visual feedback. The top right 

corner of the tool displays the current status showing the ADR and the number of new 

test vectors that have been added. Also notice that the Stop button (circled in red) becomes 

active when the tool begins to run. 

9. Click on the Stop button to stop DiagBoost. 

 

Figure 22. Generated files after DiagBoost stops. 

DiagBoost can finish running in two ways, the first is when DiagBoost has run for the 

number of cycles specified or when the user presses the Stop button. When DiagBoost 
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finishes it will create a folder in its root directory with the following path 

ttemp/<Name_of_SSBDD_File>/experiment_HR_MM_SS_DD_MM_YYYY. The 

content of this folder will be similar to Figure 22. 
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Appendix 4 – Source Code For method A2 

- genDiagPatterns.h - 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include "messages.h" 
#include "mudel.h" 
#include "vector.h" 
#include "psimul.h" 
#include "randomgen.h" 
#include "random.h" 
 
#define LIST_SIZE_CHECKPOINT 128 
#define MAX_PATTERN_THRESHOLD __INT_MAX__ 
 
 
typedef struct _list 
{ 
 void (*init)(void **); 
 void (*deinit) (void **); 
 void (*push)(void **, char *); 
 unsigned (*getCount)(void **); 
 char *(*getItem)(void **, int i); 
 char **items; 
 unsigned * weights; 
 unsigned count; 
}c_list_t; 
 
void CreateList(c_list_t ** list); 
void init_list_type(void **); 
void deinitListType(void **); 
void push(void ** const, char *o); 
unsigned getListcount(void **); 
char *getitem(void **, int i); 
void getWeightOfFaultVectors(void); 
void assignFvectWeights(c_list_t ** list); 
void sortAscendingByListWeight(c_list_t ** list); 
void sortAscendingMainVectAndFtable(unsigned limit); 
void sortAscendingResultVectAndFtable(void); 
void normalizeResultFtable(int maxWeight); 
void improveDiagResolution(unsigned maxNumOfVectsToAdd, char * origfileName); 
void initMem(unsigned size); 
void free_mem(void); 
void multiplyFaultVectors(c_list_t ** list ,int index); 
int vectAlreadyInList(c_list_t **list, char **vect); 
void myRandVec(void); 
void splitFvector(c_list_t **source,int src_index, int result_index); 
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- genDiagPatterns.c - 
 
#include "genDiagPatterns.h" 
unsigned * newFvWeights = NULL; 
unsigned vcount_bkup; 
char ** myVects = NULL; 
char ** myResultFtable = NULL; 
char * myFaults = NULL; 
char fileName[] = "fvWeights.txt"; 
 
void initMem(unsigned size) { 
 myVects = vects; 
 vects = NULL; 
 myResultFtable = (char**) malloc(size * sizeof(char*)); 
 if (!myResultFtable) { 
  Error("Out of memory: genDiagPattern.c, line 20", -1); 
 } 
 
 for (int i = 0; i < size; i++) { 
  myResultFtable[i] = (char*) malloc(NodCount); 
  if (!myResultFtable) 
   Error("Out of memory: genDiagPattern.c, line 25", -1); 
  memset(myResultFtable[i], 'X', NodCount); 
 } 
} 
 
void free_mem(void) { 
 int i; 
 if (myVects) { 
  for (i = 0; i < vcount; i++) { 
   _free(myVects[i]); 
  } 
  _free(myVects); 
 } 
 
#ifndef NO_FTABLE 
 for (i = 0; i < vcount; i++) { 
  _free(myResultFtable[i]); 
 } 
 _free(myResultFtable); 
 
#endif 
 free((unsigned*) newFvWeights); 
} 
 
void sortAscendingByListWeight(c_list_t ** list) { 
 c_list_t * alist = (c_list_t *) *list; 
 unsigned * fvWeight = alist->weights; 
 
 if (fvWeight) { 
  for (int i = 0; i < alist->count - 1; i++) { 
   for (int j = i + 1; j < alist->count; j++) { 
    char *p; 
    if (fvWeight[i] < fvWeight[j]) { 
     int ajut; 
 
     ajut = fvWeight[i]; 
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     fvWeight[i] = fvWeight[j]; 
     fvWeight[j] = ajut; 
     p = alist->items[i]; 
     alist->items[i] = alist->items[j]; 
     alist->items[j] = p; 
    } 
   } 
  } 
 } 
} 
 
void sortAscendingMainVectAndFtable(c_list_t ** list) { 
 c_list_t * alist = (c_list_t *) *list; 
 unsigned * fvWeight = alist->weights; 
 if (fvWeight) { 
  for (int i = 0; i < alist->count - 1; i++) { 
   for (int j = i + 1; j < alist->count; j++) { 
    char *p; 
    if (fvWeight[i] < fvWeight[j]) { 
     int ajut; 
 
     p = myVects[i]; 
     myVects[i] = myVects[j]; 
     myVects[j] = p; 
     ajut = fvWeight[i]; 
     fvWeight[i] = fvWeight[j]; 
     fvWeight[j] = ajut; 
     p = alist->items[i]; 
     alist->items[i] = alist->items[j]; 
     alist->items[j] = p; 
    } 
   } 
  } 
 } 
} 
 
void sortAscendingResultVectAndFtable(void) { 
 if (newFvWeights) { 
  for (int i = 0; i < vcount - 1; i++) { 
   for (int j = i + 1; j < vcount; j++) { 
    char *p; 
    if (newFvWeights[i] < newFvWeights[j]) { 
     int ajut; 
     p = vects[i]; 
     vects[i] = vects[j]; 
     vects[j] = p; 
 
     ajut = newFvWeights[i]; 
     newFvWeights[i] = newFvWeights[j]; 
     newFvWeights[j] = ajut; 
 
     p = ftable[i]; 
     ftable[i] = ftable[j]; 
     ftable[j] = p; 
 
     p = myResultFtable[i]; 
     myResultFtable[i] = myResultFtable[j]; 
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     myResultFtable[j] = p; 
    } 
   } 
  } 
 } 
} 
 
void assignFvectWeights2(c_list_t ** list) { 
 c_list_t * alist; 
 char logic; 
 if (list) 
  alist = (c_list_t *) *list; 
 else 
  Error("Error the **list is NULL: line 261", -1); 
 
 if (alist->weights != NULL) { 
  free((unsigned *) alist->weights); 
  alist->weights = NULL; 
 } 
 

if (!(alist->weights = (unsigned*) calloc(alist->count, 
sizeof(unsigned)))) { 

  Error("Out of memory: vector.c, line 298", -1); 
 } 
 
 for (int i = 0; i < alist->count; ++i) { 
  for (int j = 0; j < NodCount; ++j) { 
   logic = alist->items[i][j]; 
   switch (logic) { 
   case '1': 
   case '0': 
    ++(alist->weights[i]); 
    break; 
   default: 
    break; 
   } 
  } 
 } 
} 
 
void assignFvectWeights(char** fvec, unsigned **fvWeight, unsigned size) { 
 char logic; 
 if ((*fvWeight) != NULL) { 
  free((unsigned *) *fvWeight); 
  *fvWeight = NULL; 
 } 
 
 if (!(*fvWeight = (unsigned*) calloc(size, sizeof(unsigned)))) { 
  Error("Out of memory: vector.c, line 64", -1); 
 } 
 unsigned * temp = *fvWeight; //get the main pointer 
 for (int i = 0; i < size; ++i) { 
  for (int j = 0; j < NodCount; ++j) { 
   logic = fvec[i][j]; 
   switch (logic) { 
   case '1': 
   case '0': 
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   ++temp[i]; 
   break; 
   default: 
    break; 
   } 
  } 
 } 
} 
 
void multiplyFaultVectors(c_list_t ** list, int index) { 
 
 c_list_t * alist; 
 if (!list) 
  Error("The list is empty: line 361", -1); 
 
 alist = (c_list_t *) *list; 
 
 for (int i = 0; i < vcount; ++i) { 
  for (int j = 0; j < NodCount; ++j) { 
   /* 
    The table below is what I am trying to implement 
    X and X = X 
    X and 1 = X 
    X and 0 = X 
    1 and 0 = X 
    1 and 1 = 1 
    0 and 0 = 0 
    */ 
   if (alist->items[index][j] == 'X' || ftable[i][j] == 'X') 
    myResultFtable[i][j] = 'X'; 
   else { 
 
    switch (alist->items[index][j]) { 
 
    case '1': 
     if (ftable[i][j] == '0') 
      myResultFtable[i][j] = 'X'; 
     else 
      myResultFtable[i][j] = '1'; 
     break; 
 
    case '0': 
     if (ftable[i][j] == '1') 
      myResultFtable[i][j] = 'X'; 
     else 
      myResultFtable[i][j] = '0'; 
     break; 
 
    default: 
     break; 
    } 
   } 
  } 
 } 
} 
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void normalizeResultFtable(int maxWeight) { 
 if (newFvWeights) { 
  int maxW = maxWeight / 2; 
  for (int i = 0; i < vcount; ++i) { 
   /* Intent 
    *    maxWeight 
    *    | 
    *    | 
    *    middle| newFvWeights[i]=maxWeight - newFvWeights[i] 
    *    | 
    *    |  do nothing 
    *    0 
    * */ 

//if the weight is equal or greater than half of 
maxWeight then enter. 

   if (!(newFvWeights[i] < maxW)) { 
    newFvWeights[i] = maxWeight - newFvWeights[i]; 
   } 
  } 
 } else { 
  Error("[W] Null Pointer (*newFvWeights): genDiagPatterns.c, line 
314",-1); 
 } 
} 
 
int vectAlreadyInList(c_list_t **list, char **vect) { 
 c_list_t * tempList = *list; 
 
 if (!tempList) 
  return 1; 
 int limit = tempList->getCount((void **) &tempList); 
 if (limit == 0) 
  return 0; 
 int retValue = 1; 
 
 for (int i = 0; i < limit; ++i) { 
  retValue = 1; 
  for (int j = 0; j < InpCount; ++j) { 
 
 if ((tempList->getItem((void **) &tempList, i))[j] != (*vect)[j]) { 
    retValue = 0; 
    break; 
   } 
  } 
 
  if (retValue == 1) { 
   return 1; 
  } 
 } 
 return retValue; 
} 
 
void splitFvector(c_list_t **source, int src_index, int result_index) { 
 c_list_t * srFvec; 
 char * p; 
 if (source == NULL) 
  Error("splitFvector: source pointer is NULL, line 430", -1); 
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  srFvec = (c_list_t *) *source; 
 
 if (!(p = (char*) malloc(NodCount))) { 
  Error("Out of memory", -1); 
 } 
 for (int i = 0; i < NodCount; ++i) { 

//make a deep copy of the result, this will be the first part of 
the divided group;   
p[i] = myResultFtable[result_index][i];  

 } 
 
 srFvec->push((void**) source, p); //make a shallow copy; 

p = NULL; //A shallow copy was made so it cannot be freed. Instead it 
is assigned NULL so that it can be reassigned again. 

 
 for (int j = 0; j < NodCount; ++j) { 
  if (srFvec->items[src_index][j] == 
myResultFtable[result_index][j]) { 
   srFvec->items[src_index][j] = 'X'; 
  } 

//These part takes care of the fault that will be detected in 
the 2nd part of the group.   

  else if ((srFvec->items[src_index][j] != 'X') 
    && myResultFtable[result_index][j] == 'X') { 
 
   ; 
  } else { 
   srFvec->items[src_index][j] = 'X'; 
  } 
 } 
} 
 
void improveDiagResolution(unsigned maxNumOfVectsToAdd, char * origfileName) 
{ 
 
 free((char *) faults); //free the faults vector 
 c_list_t * tempVecList; 
 c_list_t * tempFtable1; 
 unsigned nSize = 200; //buffer size is set to 200. 
 unsigned numOfVectOptimize = vcount; 
 unsigned numOfVectsAdded = 0; 
 char *p = NULL; 
 initMem(nSize); 
 CreateList(&tempVecList); 
 CreateList(&tempFtable1); 
 

//No need to initialize tempFtable1 since its been assigned to valid 
memory of ftable which has not been deallocated. 

 tempFtable1->items = ftable; //copy the initial ftable. 
 ftable = NULL; // reset pointer ftable. 
 tempFtable1->count = vcount; 
 
 tempFtable1->items =  

(char **) realloc(tempFtable1->items, 
sizeof(char *) * (tempFtable1->count + LIST_SIZE_CHECKPOINT)); 

 
 if (!tempFtable1->items) { 
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  Error("Out of memory",-1); 
 } 
 
 tempVecList->init((void **) &tempVecList); 
 
 vcount_bkup = vcount; 
 vcount = nSize; 
 alloc_vec(); //reallocate the normal vectors. 
 StartTimer(); 
 for (int i = 0; i < 1; ++i) { 
  rand_vec(); //generate a random vector. 
 } 
 

//initialize the weights pointer of the list and assign valid weights. 
 assignFvectWeights2(&tempFtable1);  
 sortAscendingMainVectAndFtable(&tempFtable1); 
 
 for (int i = 0; i < tempFtable1->count; ++i) { 
  rand_vec(); //generate a random vector. 
  fsimul(); //simulate with the 
  multiplyFaultVectors(&tempFtable1, 0); 
  assignFvectWeights(myResultFtable, &newFvWeights, nSize); 
  normalizeResultFtable(tempFtable1->weights[0]); 
  sortAscendingResultVectAndFtable(); 
  int k = 0; 
  while (k < nSize) { 
   if (vectAlreadyInList(&tempVecList, &vects[k++]) == 0) { 
    if (!(p = (char*) malloc(VarCount))) { 
     Error("Out of memory", -1); 
    } 

//take the first vect since it will be the max. 
    memcpy(p, vects[k - 1], VarCount);  
    tempVecList->push((void **) &tempVecList, p); 
    p = NULL; 
    ++numOfVectsAdded; 
    splitFvector(&tempFtable1, 0, k - 1); 
    free(tempFtable1->weights); 
    tempFtable1->weights = NULL; 
    assignFvectWeights2(&tempFtable1); 

//initiliaze the weights pointer of the list and 
assign valid weights. 

    sortAscendingByListWeight(&tempFtable1); 
    break; 
   } 
  } 
 
  if (numOfVectsAdded >=  

maxNumOfVectsToAdd|| numOfVectsAdded >= 
MAX_PATTERN_THRESHOLD) 

   break; 
 } 
 tempFtable1->deinit((void **) &tempFtable1); 
 
 int newSize = vcount_bkup +  

tempVecList->getCount((void **) &tempVecList); 
 myVects = (char **) realloc(myVects, newSize * sizeof(char *)); 
 if (!myVects) 
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  Error("Out of memory: genDiagPattern.c, line 405",-1); 
 
 for (int i = 0; i < tempVecList->count; ++i) { 
  //make a shallow copy of the items in the list. 
  myVects[vcount_bkup + i] =  

tempVecList->getItem((void **) &tempVecList, i); 
 } 

//since. we have made a shallow copy we set to NULL to prevent the 
memory from being freed. 

 tempVecList->items = NULL;  
 
 free_vec(); // free the main vectors so that they can be reassigned 
 
 vects = myVects; 

//set to null so that when we call free_mem it will not free myVects 
since we have made a shallow copy of it. 

 myVects = NULL;  
 
 free_mem(); 
 vcount = newSize; //change the size. 
 
 if (!(ftable = (char**) malloc(vcount * sizeof(char*)))) { 
  Error("Out of memory", -1); 
 } 
 for (int i = 0; i < vcount; i++) { 
  if (!(ftable[i] = (char*) malloc(NodCount))) 
   Error("Out of memory", -1); 
  memset(ftable[i], 'X', NodCount); 
 } 
 if (!(faults = (char*) malloc(NodCount * sizeof(char)))) { 
  Error("Out of memory", -1); 
 } 
 memset(faults, 'X', NodCount); 
 
 alloc_psimul(); 
 init_psimul(); 
 psimul(); 
 EndProcessing(); 
 EndTimer(); 
 serial_vec(); 
 char newFileName[strlen(origfileName) + 1 + 7]; 
 newFileName[0] = 'D'; 
 newFileName[1] = 'R'; 
 newFileName[2] = '_'; 
 newFileName[3] = 0; 
 strcat(newFileName, origfileName); 
 strcat(newFileName, ".tst"); 
 write_vec(newFileName, DEFAULT_OUTPUT); 
 free_vec(); 
 tempVecList->deinit((void **) &tempVecList); 
} 
 
void CreateList(c_list_t ** list) { 
 *list = (c_list_t *) malloc(sizeof(c_list_t)); 
 if (!(*list)) { 
  Error("Out of memory: genDiagpattens, line 451",-1); 
 } 
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 c_list_t * _list = *list; 
 _list->init = init_list_type; 
 _list->weights = NULL; 
 _list->items = NULL; 
 _list->push = push; 
 _list->getItem = getitem; 
 _list->getCount = getListcount; 
 _list->deinit = deinitListType; 
} 
 
void init_list_type(void ** list) { 
//get a hold of the list pointer.  
c_list_t * alist = (c_list_t *) *list;  
 if (alist) { 
  alist->count = 0; 
  alist->items =  

(char **) malloc(sizeof(char *) * LIST_SIZE_CHECKPOINT); 
 } else { 
  Error("[W] Null Ptr (*myList): genDiagPatterns.c, line 489",-1); 
 } 
} 
 
void deinitListType(void ** list) { 

//get a hold of the list pointer. Note this is just a copy by value 
(or a duplication of the original pointer) so this local pointer and 
the original 
//pointer that was passed as a pointer to pointer now points to the 
same memory. This does not mean that alist can change the content of 
tempFvList1 or tempFvList2. 
//These two pointer variables declared in "improveDiagResolution" are 
passed as pointer to pointer to this function. tempFtable2-
>deinit((void **)&tempFtable2); 

 c_list_t * alist = (c_list_t *) *list; 
 if (alist) { 

//if the memory pointer is empty then we do not free because a 
shallow copy has been made. 

  if (alist->items) 
  { 
   for (int i = 0; i < alist->count; ++i) { 
    free((char *) alist->items[i]); 
   } 
   free((char *) alist->items); 
 
  } 

 
//if the memory pointer is empty then we do not free because a 
shallow copy has been made. 

  if (alist->weights)  
  { 
   free((char *) alist->weights); 
  } 
  free((c_list_t *)alist); 

//This will only affect the local copy pointer and not the 
original pointer that was passed to this function   
alist = NULL; 
//set the original pointer that was passed to this function to 
point to NULL since the memory has been freed.  
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  *list = NULL;  
 
 } else { 
  Error("[W] Null Ptr (*myList): genDiagPatterns.c, line 464",-1); 
 } 
 
} 
 
unsigned getListcount(void ** list) { 

//get a hold of the list pointer. 
 c_list_t * alist = (c_list_t *) *list; 
 if (alist) 
  return alist->count; 
 else 
  Error("[W] Null Ptr (*myList): genDiagPatterns.c, line 502",-1); 
 return 0; //should never get here 
} 
 
char *getitem(void **list, int i) { 

//get a hold of the list pointer. 
 c_list_t * alist = (c_list_t *) *list;  
 if (alist) 
  return alist->items[i]; 
 else 
  Error("[W] Null Ptr (*myList): genDiagPatterns.c, line 510",-1); 
 return NULL; //should never get here 
} 
 
void push(void ** const list, char *o) { 

//get a hold of the list pointer.  
c_list_t * alist = (c_list_t *) *list; 

 if (alist) { 
  if (alist->count >= LIST_SIZE_CHECKPOINT) { 
   if (!(alist->count % LIST_SIZE_CHECKPOINT)) 
    alist->items =  

(char **) realloc(alist->items, 
sizeof(char *) * (alist->count + 
LIST_SIZE_CHECKPOINT)); 

  } 
  alist->items[alist->count++] = o; 
  int c = alist->count; 
 } else { 
  Error("[W] Null Ptr (*myList): genDiagPatterns.c, line 519",-1); 
 } 
} 

 

 


