THESIS ON INFORMATICS AND SYSTEM ENGINEERING C80

Whiteboard Architecture for the
Multi-agent Sensor Systems

ENAR REILENT

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Science

Dissertation was accepted for the defence of the degree of Doctor of Philosophy in
Computer Science on 19 November, 2012

Supervisor: Professor Tanel Tammet
Department of Computer Science
Tallinn University of Technology

Opponents: Professor Juha Roning
Infotech Oulu and Department of
Electrical and Information Engineering
University of Oulu

Professor Mihhail Matskin
School of Information and Communication Technology
KTH Royal Institute of Technology

Defence of the thesis: 18 December 2012

Declaration:

Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology has not been
submitted for any academic degree.

/Enar Reilent/

* X %
* *
* *
* *
* 4 %
J ——

European Union
European Social Fund Investing in your future

Copyright: Enar Reilent, 2012

ISSN 1406-4731

ISBN 978-9949-23-408-0 (publication)
ISBN 978-9949-23-409-7 (PDF)

INFORMAATIKA JA SUSTEEMITEHNIKA C80

Tahvelarhitektuur multi-agent
sensorsiisteemide jaoks

ENAR REILENT

U
KIRJASTUS

ABSTRACT

This thesis investigates software architectures for multi-agent sensor systems.
Multi-agent systems are considered both in the context of robotics and the context
of personalized telecare systems. The goal of the work is to develop a software
architecture which combines the desired properties of flexibility and developer-
friendliness with efficiency and scalability.

The basic approach taken for building such architecture is to use the classical
blackboard principles with the new flavor we call whiteboard and combine these
with the RDF-based approach for knowledge representation. The desired
combination of flexibility and efficiency is achieved by taking specific
architectural choices suitable for the domain and introducing numerous detailed
improvements to the basic approach.

In particular, we take a content-centric approach in the sense that the
architecture is designed to support universal semantically described context
information and formal reasoning for automated profile generation and data
aggregation. The approach is implemented both in a multi-robot system and several
home telecare systems.

We compare the efficiency of selected components to a variety of alternatives
and consider several options for knowledge representation. We argue that the
choices and optimizations presented are suitable for a wide range of application
domains for multi-agent sensor systems.

KOKKUVOTE

Doktoritod teemaks on multi-agent sensorsiisteemid, mida késitletakse nii
robootika kui personaliseeritud telemeditsiini kontekstis. T60 eesmérgiks on luua
selline tarkvara arhitektuur, kus siisteemi paindlikkus ja arendajasdbralikkus oleks
kombineeritud efektiivsuse ja skaleeruvusega.

Soovitud arhitektuuri loomise aluspdhimotteks on kasutada klassikalist nn
blackboard-arhitektuuri uues vaates, mida kutsume whiteboard arhitektuuriks ja
kombineerida seda teadmiste esitamise RDF-pShise ldhenemisega. Paindlikkuse ja
efektiivsuse kombinatsioon saavutatakse vaadeldavate rakendusvaldkondadega
sobivate spetsiifiliste arhitektuursete valikutega ja aluspohimotetele mitmesuguste
tdienduste sisseviimisega.

T66 lahenemisviis arhitektuurile on sisu-keskne selles mottes, et arhitektuur
sobib universaalse, semantiliselt kirjeldatud konteksti-informatsiooni ja
formaalsete jareldusmeetoditega automaatseks profiili-genereerimiseks ja andmete
agregeerimiseks. Lahenemisviis on realiseeritud nii multi-robot siisteemis kui
mitmes kodukasutuseks moeldud telemeditsiini-siisteemis.

Me vordleme valitud komponentide efektiivsust mitme eri tehnilise
realisatsioonivariandi ja mitme eri teadmiste esitamise meetodi vahel. Kokkuvottes
nditame, et t00s esitatud valikud ja optimeeringud on sobivad multi-agent
stisteemide laia rakendusvaldkondade spektri jaoks.

ACKNOWLEDGEMENTS

First of all, I wish to express my highest gratitude to my supervisor Prof. Tanel
Tammet for the motivation, encouragement and all-around guidance through all
these years. This thesis would not have come to existence without him.

The thesis is mostly based on the work done in two projects. All what concerns
the robot’s middleware has its foundations in the Roboswarm project of the EU’s
6th Framework Program (FP6). The study in the field of telemonitoring and
telemedicine has been supported by the research project of the Eliko Competence
Centre.

I would like to thank all these people who have contributed to the process
leading to the completion of the given work. Special appreciation to Alar Kuusik
for all kinds of support with hardware issues and philosophical discussions on data
encoding; Madis Puju for implementing, providing technical support and tuning
the Roboswarm’s database — this is where it all began; Andres Puusepp for
providing the custom made simulator for the robot; Carlos Marques for mechanical
and structural help on the robot; Janne Haverinen for the initial concept of the
dispatcher module and low-level software for sensor devices; Tanel Tammet also
for the assistance with the reasoning engine on the robot and originating the
Wgandalf database, which plays important role in this work.

Also, I acknowledge Marko Parve for providing all sorts of medical
measurement devices; Prof. Jiiri Vain for counseling on Prolog issues; Priit Jarv for
providing technical support and fixing bugs upon my complaints in Wgandalf
issues; Ivor LoOGbas for the heated arguments in the early days of the
telemonitoring project; Margo Kopli for explaining the numerous versions of the
interfaces of the server side software which my telemonitoring home gateway
device had to interact with; and other colleagues from Eliko.

I must apologize to all my family members for not being able to spare my time
with them during the past months when composing the thesis. I sincerely thank
everybody for their tolerance and patience.

CONTENTS

ABSTRACT ...ttt sttt et sae et e ntesneeneeneas 5
KOKKUVOTE.......coiiriiiierieiiesiesisessessse st ssssssse s ssesasssssenes 6
ACKNOWLEDGEMENTSooiiiiiieieeeee ettt 7
ARTICLES PUBLISHED BY THE THESIS AUTHORccccvvviieeinnee. 10
1. INTRODUCTION ...ttt ettt 12
1.1. Motivation and the problem statement.............ccccevereerenerieeneneene. 12
1.2. Contribution of the thesiscceoeiirieiiiieeeeeeeee e 14
1.3. Thesis OTZaniZation.ccceereerierieeeieeeieesieesieeseesseeseeesnreeneeeneeeseeeeas 15
2. INTRODUCTION TO WHITEBOARD........ccoeoiiieieiecieieeeeeenne 16
2.1. Example systems — a robot and a telemonitoring gateway................. 17
2.2. Generalization, presumptions, refining requirements...............c......... 20
2.3. Related work on blackboards and alternatives............ccccceceeveenueenen. 21
2.4. Related Work 0N agentsceecvieeiieriieneenienienie e 24
3. WHITEBOARD DESIGN DETAILScoooieieieieieieceeeie e 25
3.1, Data mMOdelooueeeiiiiiiieeee e 26
3.2. The underlying medium and toOIS...........cccveevereeiiiieniiieeie e 30
3.3. API details fOr gentscccvveveeeieeriieniierie e e eee et 32
3.4. Processing with the reasoner..........cccceevveeviiereerierierierreereeneene e 35
4, THE IMPLEMENTATIONS AND EXPERIMENTScccceevnenns 37
4.1. RODOSWAIM....couviiiiiiiiiiiieieeiteiteste sttt 37
4.2, TeleMONItOTINGeeeveeieeieetieiieeiie ettt et e sttt et e sbe e 42
5. CONCLUSIONS ...ttt sttt 47
5.1. Advantages of the whiteboard solutionccccceeceeriiriiiiieseeieenen. 48
5.2. Summary of the contributions of thesis..........cccceevvveriieriiercrincriereennen, 49
5.3. Authors’ contribution in the published articlescccceeevevennennnne. 49
5.4, FUTUTE WOTK ...ouiiiiiiiiieiiei ettt 50

REFERENCES......coi ottt 51

Appendix 1 - Interprocess COMMmMUNICATIONcuveereveeeereeerreesirieesieeesreeeveeeenes 56
Appendix 2 — Scalability of tuples and triplesccoeevvreeevieeriereeieeeene 63
EIUIUGU ..ottt re e e ab e e e 66
CUPFICUTUI VEIEAC. ...c..oocvveiiesiiesiiesee e ettt stee e s vesese s e essa e saessaessaessaesnseans 67
PAPER 1 ottt ettt sttt ene e 69
PAPER 2 ..ottt sttt et 81
PAPER 3 ottt st 89
PAPER 4 ..ottt et 95
PAPER 5 et 101
PAPER 6 ..ttt 113
PAPER 7 ottt 119
PAPER 8 ..ottt ettt 127

ARTICLES PUBLISHED BY THE THESIS AUTHOR

J. Vain, T. Tammet, A. Kuusik, E. Reilent. Software Architecture for
Swarm Mobile Robots. BEC2008

T. Tammet, J. Vain, A. Puusepp, E. Reilent, A. Kuusik. RFID-based
communications for a self-organizing robot swarm. In: Proceedings
Second IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, SASO 2008: 20-24 October 2008, Venice, Italy:
(Toim.) Brueckner, Sven; Robertson, Paul; Bellur, Umesh. Los Alamitos,
Calif.: IEEE Computer Society, 2008, 45 - 54.

T. Tammet, E. Reilent, M.Puju, A. Puusepp, A. Kuusik, A. Knowledge
centric architecture for a robot swarm. In: 7th I[FAC Symposium on
Intelligent Autonomous Vehicles (2010). IFAC-PapersOnLine, 2010,
(Intelligent Autonomous Vehicles; 7/1). 2010.

E. Reilent, 1. Lodbas, R. Pahtma, A.Kuusik. BEC2010, Medical and
Context Data Acquisition System for Patient Home Monitoring. 2010.

A. Kuusik, E. Reilent, I. Loobas, M. Parve. Semantic Formal Reasoning
Solution for Personalized Home Telecare. In: Proceedings of 2010
International Conference on Mechanical and Electrical Technology
(ICMET2010): 2010 International Conference on Mechanical and
Electrical Technology, Singapore, September 10-12, 2010. (Toim.) Dr.
Parvinder et.al. Chengdu, China: IEEE Operations Center, 2010, 72 - 76.
A. Kuusik, E. Reilent, I. Lodbas, A. Luberg, A. Data Acquisition Software
Architecture for Patient Monitoring Devices. Journal of Electronics and
Electrical Engineering, Kaunas University, 105(9), 97 - 100. 2010.

A. Kuusik, E. Reilent, I. Loobas, M. Parve. Software architecture for
modern telehome care systems. In: Proceedings of the 6th International
Conference on Networked Computing (INC 2010): 6th International
Conference on Networked Computing, Gyeongju, Korea, May 11-13,
2010. (Toim.) Dr. Chun Yuan, Dr. Li-Shiang Tsay, Dr. Fei-Yue Wang and
others. IEEE Computer Society Press, 2010, (IEEE Conference Record
number 16757, CFP1084J-ART), 326 - 331.

I. Loobas, E. Reilent, A. Anier, A. Luberg, A. Kuusik. Towards semantic
contextual content-centric assisted living solution. In: Proceedings of 12th
IEEE International Conference on e-Health Networking Applications and
Services (Healthcom 2010): 12th IEEE International Conference on e-
Health Networking Applications and Services, Lyon 1-3 July 2010. IEEE
Operations Center, 2010, (1; 1), 56 - 60.

E. Reilent, A. Kuusik, I. Lddbas, P. Ross, P. Improving the data
compatibility of PHR and telecare solutions. In: 5th European Conference
of the International Federation for Medical and Biological Engineering 14
- 18 September 2011, Budapest, Hungary: (Toim.) Jobbagy, A.. Springer,
2011, (IFMBE Proceedings; 37), 925 - 928.

10

10.

11.

12.

13.

14.

E. Reilent, I. Loobas, A. Kuusik, M. Parve, P. Ross. Extendable Data
Model for Universal Health Records. AMA-IEEE Medical Technology
Conference, Boston, 16-18 October 2011. IEEE, 2011, 1 - 2.

A. Kuusik, E. Reilent, I. Loobas, M. Parve. Software architecture for
modern telehealth care systems. Journal of Advances on Information
Sciences and Service Sciences, 2011, 3(2), 141 - 151.

E. Reilent, A. Kuusik, M. Puju. Real-time data streaming for functionally
improved eHealth solutions. 2012,International Conference on Biomedical
and Health Informatics (BHI2012), Hong Kong and Shenzhen, China, 2-7
A. Kuusik, E. Reilent, K. Sarna, M. Parve. Home telecare and
rehabilitation system with aspect oriented functional integration. The 46th
annual conference of the German Society for Biomedical Engineering,
Jena, Germany, September 17-19, 2012.

A. Puusepp, T. Tammet, M. Puju, E. Reilent. Robot movement strategies
in the environment enriched with RFID tags. 16th International Conference
on System Theory, Control and Computing, Sinaia, Romania, 12-14
October 2012.

11

1. INTRODUCTION

This thesis concerns the software architecture of systems incorporating several
different sensor and monitoring systems and capable of taking autonomous action
when need arises.

The goal of our work is to develop a software architecture which combines the
desired properties of robustness, modularity and flexibility with efficiency and
scalability on the other hand. An important aspect of the systems is built-in
intelligence in the embedded devices themselves (robots, medical sensor systems,
etc.): the basic decisions about the necessary actions and the information to be
transferred are taken already at the device level, not just on the level of the central
server of the whole multi-agent system. We ground our approach on the use of
whiteboard and employ both the multi-robot and the personalized telecare systems
as the chief domains of our experimental implementations.

The thesis contributes to the area of whiteboard-focused architectures for multi-
agent sensor systems based on the articles added to the Appendix.

1.1. Motivation and the problem statement

When creating the systems that involve some independently running
components where several activities have to be performed in parallel, it is very
natural to use a multi-process architecture. Although it might be feasible and even
beneficiary - easier to optimize for performance - to use the monolithic approach,
the decomposition of the problem into separate sub-tasks and encapsulating these
to dedicated modules gives better maintainability. No less important is the
comprehensibility of the model to the developers in the first place.

However, based on the details of the planned system there are several
possibilities to create a multi-process architecture. Besides dividing the system
functionality among the processes one must decide how to make the processes
interact with each other. It is not a trivial issue, especially on the level of
implementation, as the communication mechanism adds new complexities and an
extra load. Depending on the posed requirements (e.g. security, speed, flexibility,
traceability) to the system and its parts there are numerous possible solutions for
the organization of synchronization and data passing between the processes, some
more and some less efficient.

An important issue to consider here is the kinds of data flows between the
processes. In case the multipoint to multipoint communications are common (the
data provided by one process is needed by several consumers and one consumer is
interested in the output of several data providers) as it happens, for example in the
sensor data acquisition and actuator controlling systems, then the blackboard
architecture would be a natural design choice. The classical blackboard systems
[1], [2], [3] originated as an architecture for problem solving: the problem is

12

written on the blackboard, the system runs and adds new data on the blackboard
until it produces the solution.

The blackboard allows to avoid the message passing frameworks: the system
can be set up with a shared medium — a global database — where all the system
components upload and access all the data they need.

The basic idea of the blackboard [1] system is very simple, but the
implementation details are rather not. There are three components to consider: the
knowledge sources, the blackboard and the control mechanism: the scheduler. The
knowledge sources (KSs) solve the given problem collaboratively by applying their
expertise on the present state of the problem. KS do not interact directly with one
another or know what other specific KSs are present in the system [2]. They add
their contribution to the shared blackboard as well as get their input by reading it.
The blackboard itself is just a storage. The scheduler is where the real complexity
stems from, as it has to drive the whole system towards the solution. It has to
manage issues like which KSs can be executed at the given state; if many
competing executions possible, which is the most helpful; preventing deadlocks.
This poses challenges to the implementation even if the tasks are understood in
detail.

In the blackboard systems discussed later in this work we do not strictly follow
the classical design ideas. To avoid confusion we will make a difference between
the official blackboard and the similar concept we will call hereafter whiteboard.

In the scope of this work we will define the whiteboard to be a shared database
for agents to be used as a communication channel. The whiteboard thus has dual
functionality, both of which are important and require corresponding architectural
choices.

As seen later, the blackboards and the whiteboards have slightly different
purposes. Whiteboard is used as a name because it carries linguistically the same
meaning and in a sense the whiteboard system under discussion is a lightweight
version of the blackboard system. Another fact in favor of the term whiteboard is
the circumstance that Wgandalf' was mostly used as a base for building the
whiteboards in the implemented systems. If generalized enough they can be taken
as synonyms. It is also more appropriate to call processes agents instead of
knowledge sources.

The whiteboard model poses several important questions which are tackled in
the scope of this thesis.

First, there is the issue of a data model. The relational data model with a fixed
schema is clearly a very straightforward way to build the whiteboard, but the poor
extendability is the main shortcoming of the relational model [4], [S]. Hence we
focus on RDF or RDF-like schemas and consider the aspects and suitable answers
for data modelling in the distributed sensor/actuator systems. The efficiency of
different data models is presented and compared in the experiments in the appendix
of the thesis.

' Wgandalf is the reincarnation of the Gandalf system where the W refers to white

13

One of the attractive benefits of using the whiteboard is the possibility to use
reasoning engines using the whole set of data as input and writing output to the
same whiteboard, similarly to the classical blackboard systems. We will consider
and experiment with several options, bring out the benefits, problems and
questions needing further work. The option of using reasoning engines is closely
tied to the question of finding suitable data modelling principles.

The issue of underlying tools comes next. A wide range of available options
(sockets, files, databases, shared memory, etc.) is described, measured and
compared in the appendix.

Yet another issue is the design of the frontend, including data presentation and
query languages, the prototypes of the API functions and access policies. The
whiteboard should not be very restrictive, but should maintain order and avoid
mistakes.

1.2. Contribution of the thesis

The thesis studies questions and options arising while designing architectures
for multi-agent systems of intelligent sensors. The focus of research is on the
details of using a whiteboard for intelligent communication between software
agents on a device.

The design decisions of a whiteboard affect the way the agents are created and
the final application is put together. The control functionalities still exist, even if
not explicitly, and should be divided reasonably between the whiteboard and the
agents.

Our main goal is to design architecture for the multi-agent sensor systems
which would be:

e robust. (temporal) failures of some agents should not bring the system

down,

e modular and flexible: it should be easy to add new types of sensor and
reasoning/data processing agents with new types of data,

e ¢fficient: the architecture should strive for enabling maximal possible
efficiency, i.e. being more efficient than other robust and modular
architectures.

The general idea of building multi-process systems with ambitious data sharing
around the central whiteboard is shown to be promising. We allow the system to be
built agent by agent, keeping the agents’ responsibilities clear and routing all
workflows through the whiteboard.

The cornerstone of our solution is to employ enhanced RDF-style knowledge
representation on the whiteboard, allowing good data interoperability, ontology-
based formal reasoning and sufficient independence and flexibility for separate
agents and software developers while achieving high efficiency at the same time.

14

The designed architecture is implemented and optimized on large combined
hardware/software projects in two significantly different domains, demonstrating
the feasibility of the approach in practice.

1.3. Thesis organization

The thesis starts with the general introduction, motivation and the contribution
overviews above.

The next part of the thesis presents an overview of the whiteboard: the
principles and the main differences between the classical blackboard and the
whiteboard as described in the current work. The two large projects where our
whiteboard architecture was designed and tested are presented next. The final
chapters of this part give an overview of the related work in blackboard and similar
systems, as well as multi-agent systems.

The third part of the thesis focuses on the details of whiteboard: architectural
options, motivations and reasons of using one or another option. We will consider
and explain our choices regarding the data model, the underlying communication
model, the API details and processing the data with the reasoning engine.

The fourth part describes the requirements, details and differences of our
solutions for the two different large research projects: the Roboswarm and the
Telemonitoring project.

The conclusions chapter summarizes the advantages of the whiteboard
architecture, our contributions in papers and gives suggestions for future work in
the topic.

The two appendixes present our experimental results of measuring and
comparing the performance of different alternative mechanisms for interprocess
communications and data representions.

The rest of thesis consists of the eight selected publications from the full list of
fourteen.

15

2. INTRODUCTION TO WHITEBOARD

The classical blackboard systems [1], [3] were proposed as architecture for
problem solving. In the initial state the problem is written to the blackboard. After
that the system will run until it produces the solution. The control mechanism has
the key role, with the blackboard component itself having no significant
importance. Opportunistic KSs are rather like procedures that can be called by the
control mechanism to perform some certain action. There is no parallelism to avoid
data access conflicts. To choose between KSs they are tested first. In the test a KS
reports whether it has enough input data to run successfully or what are the missing
items. It also predicts its outcome it should produce in the case of given a chance to
execute. Sometimes the test management is implemented as a part of the KS and
sometimes on the side of the control mechanism. However, we could still say that
these control issues are basically the matters of blackboard design.

Keeping in mind the sensor data acquisition systems which run for a longer
period of time and are not directly meant for problem solving, the blackboard
system in its classical sense is not exactly what is needed. Rather we could think of
the whiteboard as an environment that provides means for sustaining constantly
running agents around a common medium. Agents are meant to run in parallel and
without any special scheduler or testing mechanism. The whiteboard should be
simply the framework for all agents for communicating with each other which
enables the workflows. If someone writes a piece of knowledge to the whiteboard,
it can be read by either one interested agent or by everybody or by no one — the
data provider does not have to be concerned with the existence of possible
consumers. By slightly elaborating this idea we can say that the agent itself can be
the addressee or consumer of its own data. The whiteboard can be used just as a
data storage. Therefore the whiteboard in the scope of this work has two primary
roles:

e acommunication channel between agents,

e adatabase

By saying a database here we do not mean classical database management
systems with a database server, complex query handling and long term storage of
large amounts of data. Our database is just a temporary storage for variables,
parameters, configurations and results without guaranteeing ACID?. Parallels can
be drawn to the so called NoSQL databases as discussed in [4], [5], and [6] but we
do not share exactly the same goals. Here the idea of a database is also important
because it stresses the effect of history. Communication and message passing by
default do not include history. As an agent regularly writes some values (e.g.
sensor readings) to the whiteboard and these are not immediately deleted, there
will be a buildup of historical values available for using over and over again by
other agents, until the values are deleted. All in all, we may say that an agent does

? ACID - atomicity, consistency, isolation, durability

16

not have to get all its input by messages from the other agents, but it can search the
database instead.

As stated before, the whiteboard agents should be rather seen as constantly
running processes and not temporarily invoked KSs, even if their tasks can be the
same. However, this is an opportunity, not the obligation. If the system’s design
requires starting and stopping new agents during runtime, it should definitely be
possible in the whiteboard system. The data on the whiteboard remains intact and
available for further uses. Hence the whiteboard offers the possibility for the agents
to keep their states in the public storage and in the case of being stopped (or crash)
to continue from the last state when restarted.

By allowing only sequential execution of KSs the blackboard systems did not
have to deal with conflict situations where several agents update a single value
concurrently. Whiteboard’s agents run in parallel which is sensible from the
application’s point of view. It must be noted that also in the case of whiteboard the
previously mentioned complexities of synchronization cannot be overlooked. We
do not have the control (scheduler) as such, which means that the conflicts have to
be solved somewhere else — in the whiteboard’s implementation and in the
whiteboard’s API design.

2.1. Example systems — a robot and a telemonitoring
gateway

For getting a better understanding of the requirements for the whiteboard we
can examine two real life case studies. Both of these examples are sensor data
acquisition systems with actuators and built-in decision making. First there is the
Roboswarm project where the whiteboard is used as the middleware for controlling
a simple mobile robot with a small number of sensors. The second system is the
middleware for the home telemonitoring gateway device. The general idea of the
systems is exactly the same: get data from the sensor devices, deliver it to the
decision making modules, analyze the data and probably drive some actuators.
When we take a close look at the utilization of the whiteboards in these systems we
can spot several differences.

In the Roboswarm project had a set of identical mobile robots (based on the
iRobot Roomba) and a server. The robots were fairly simple in their design. The
equipment included some sensor devices (e.g. bumpers, cliff sensors, sonars, wheel
odometers, and magnetometer), some actuator devices (e.g. wheel motors, antenna
multiplexer, LED indicators) and devices which are both sensors and actuators at
the same time (RFID reader). On the logical level the wheels and bumpers are
totally independent entities. However, on the physical level they must be handled
together as they are connected through the same cable and protocol. There was also
a network device (WiFi). The server hosted the user interface system and the task
allocation mechanism.

Although a typical approach at that time would have been to use Player/Stage it
was decided to go with the whiteboard model (implemented as a fast shared

17

memory data store). The agents were created based on the physical hardware
devices because it was not realistic to share open connections among the processes.
As noted, there could be many logical entities behind one connection, but as the
devices were using serial or USB ports and had proprietary access libraries and
initialization procedures, only one process interacted with one device. The sensor
readings were sent to the whiteboard. All the commands were also sent to the
whiteboard. The corresponding actuator agent picked them up from the whiteboard
and delivered to the real device. If the devices used a bitwise protocol then a higher
level representation was used in the whiteboard and the communicating agent
performed the conversions.

The whiteboard itself could have two types of entries: regular and persistent.
Regular entries disappeared by themselves after a while because the whiteboard
was a circular buffer and old data got overwritten. That means no special garbage
collection was needed. For optimization reasons some exceptions were needed and
thus the persistent data entries did not follow the same pattern. The data entries
were rather simple and short, following a set of common principles. The possibility
to easily add new sensor devices and data types was highly important. There was
not much need for complex data structures, but good performance (15 ms sensor
polling time) and small footprint of code were crucial (Gumstix Verdex was the
controller). The data model used throughout the system was RDF triples with
additional meta-fields. Besides the robots and the server the RFID tags could also
store up to six RDF-like entries 32 bytes each (see Paper 1). The whiteboard’s API
was rather low-level due to the tradeoff between convenience and high
performance, yet it had to be easy to comprehend.

The telemonitoring gateway project introduces a set of medical measurement
devices to the home of a patient so that she can regularly check her health
parameters and report these to hospital. According to [7], recent surveys reveal that
elderly individuals prefer to remain in their accustomed living environment for as
long as possible, even in the eventuality of increasing reliance upon assistance
services and caregivers. Another target group is the patients with chronic diseases
are subjects to monitoring activities of daily living (ADLs), vital signs and self-
reporting [8]. For these kinds of use cases a gateway device is inevitable due to the
fact that measurement devices have local USB or Bluetooth (Zigbee, 6Lowpan)
connectivity and the data has to get to the hospital automatically. Manual transfer
with paper and pen has certain drawbacks ([9]). In addition to the sensors (blood
pressure monitor, ECG device, glucometer, scale, motion tracking
accelerometers/gyroscopes etc.) there exist actuators for patient notification and
guidance (display screen, loudspeakers). The gateway talks to the devices with
their low-level proprietary protocols (still preferred by many manufacturers [7])
and forwards the measurements to the hospital system, but it does some local
processing as well. Not all the data should be sent to the hospital (which can
become a bottleneck if too many patients) and therefore the gateway does some
computing locally, like aggregation, filtering, threshold checking and quick patient
feedback. Some measurements are not taken from the devices but are input through

18

the UI by the patient as a self-reporting evaluation of pain level, stress, mood,
breathlessness and tiredness [8], calories intake (for diabetes patient, extremely
hard to automate, e.g. [10] uses crowdsourcing for photo analyses) etc. All sensors
do not have to measure the patient: the environment can be monitored as well, like
ambient temperature, noise level, and humidity. Sensors can be virtual [11]
meaning that they combine outputs of other data sources.

The hardware used for running the gateway application is not a powerful PC but
an embedded computer: set-top box (Papers 3, 4) or media display (8 Chumby),
equipped with a network connector and all the necessary interfaces for sensor
connectivity. There are projects that use a PC at the home setup [12] or use many
computing devices [7] (a gateway plus a set-top box) which is a serious problem
for cost efficiency. For the majority of cases the fast performance is not really
important, because measurements are taken only a couple of times per day and
having a reaction time in seconds is acceptable enough. For the home monitoring
system the main focus is put to data structures and API. Compared to the robot’s
case one measurement event of telemonitoring may contain more details (fields)
and have a deeper structure. For example, a record of a blood glucose sample has
to include the indication of when the measurement was taken: before or after the
meal, and what meal it was (e.g. breakfast, snack). Parallel use of terminologies is
possible — “blood pressure” entity should contain the name used in the hospital
systems as well as the name from some global medical nomenclature. Ontologies
have a more important role here and there should be readiness for supporting
several of them simultaneously (e.g. as in HL7 v3 [13], [14]). The system has to
cope with various kinds of data. Some measurements have one clear output (for
example, weight of a person), some have one sample per second for a short period
of time (as pulse and SpO,). The ECG measurement (Paper 6) event is a signal
with one thousand samples per second (possibly more than one signal®). Another
contrast with the robot’s case is the longevity of the data items. In Roboswarm the
whiteboard records had typically meaning only for tens of milliseconds and at most
for the duration of the task (tens of minutes). In medical monitoring some data
must be available and interpretable tens of years later to check for long term trends
which again advocates for good annotations.

As the system is neither well defined nor complete, the ideas of flexibility and
extendibility are quite important. It must be as easy as possible to introduce new
sensor devices for known parameters and add new types of sensors to measure new
parameters. Patients with different diseases need different types of equipment and
it should be possible to switch off all the unneeded functionalities without
disturbing anything else. The ease of adding or removing devices is thus even more
important than in the robot case. In general, the system can contain a lot more
agents, both for device drivers and decision making. Thus the fine grained and easy
to use API would prove to be useful.

*If it is 12-lead or there can be extra signals, e.g. accelerometers

19

2.2. Generalization, presumptions, refining requirements

While trying to settle down the essence of the whiteboard in the scope of this
work it becomes clear that it is a shared database for agents to be used as a
communication channel. In addition to this functionality there are several key
factors which need to be constrained. How exactly do we want the whiteboard to
be designed — which responsibilities should be left to the agents and which to the
whiteboard’s API? As seen from the example cases it depends on the problem
domain. The expectations for the whiteboard’s functionality can be mismatching,
for example fast performance and comfortable high-level API calls for data
handling.

It is good to keep in mind that all of the target hardware platforms have had
limited processing capabilities. Therefore the whiteboard’s design and
implementation has to be lightweight enough for fitting onto embedded computers.
We exclude microcontrollers without a proper OS. Linux (e.g. Busybox)
environment is deemed necessary. But still, as it is an embedded system, there are
typically no high level tools, programming languages or libraries available. Issues
that are not noticed on the regular multicore PCs can become critical here,
especially when time constraints are important for the application. We have to
maintain balance between the footprint of the whiteboard’s code and the benefits
granted for the agents.

We consider the whiteboard spanning one physical machine only, to the
contrary of the principles of NoSql databases [4]. The mentioned sensor data
collecting systems were not heavily distributed — lots of the processes run on the
small number of machines. The processes running on one machine do much more
interaction among themselves than with the processes residing on different
machines, as noticed by [15]. The complete system spans over several machines
(robots, servers) but the processes of the different machines do not share a
whiteboard. Either they have their private instances or do not have a whiteboard at
all. In the example applications we have had communication agents who picked up
the send-worthy information from their local whiteboards and transmitted it to
some other machine. Another possible choice would have been to build a
whiteboard with inter-machine connectivity, as a usual database engine, but the
performance considerations and lack of need decided the matter.

It would be nice to have the same data format in every level of the system, but it
is not always achievable. As said, since most of the inter-agent traffic goes on
inside one machine, we will concentrate on that case. For example, if the server is
built by different parties and features its own data format, it does not automatically
mean that the whiteboard on a sensor gateway has to use that format which
typically is not compatible with the other requirements of the whiteboard. For
example, large XML documents with redundant fields on the server are not the best
option for storing high frequency sensor data on the gateway. Hence we use
converters. The set of local agents should just prepare all the data needed to make
coherent conversions possible in the future. Thus the whiteboard is free to use its

20

own data format. However, due to simplicity, clarity, and limited resources we
allow only one format for all the agents, fixing it in the whiteboard’s API.

The specification of the system is not known beforehand: the system is in a
constant state of evolution. The discussed measurement collecting systems had to
be open to new sensors and new business logic. We have in mind the extensibility
described by [16] — new knowledge sources can be developed and applied to the
system not changing the existing system and without having to specify its existence
in any other knowledge source. That means we want to restrict an agent as little as
possible — hence we assume it to be a regular Linux process. The whiteboard
should not be a complex framework that encapsulates the agents or uses special
language to define the agent (as [17], [18]). The agents’ behaviors (reactive and
goal-driven/deliberative, stateless and stateful) are up to themselves. The
whiteboard just provides an API for easy and flexible data management. Whatever
is that data format on the whiteboard, it should accept the data of the agents of new
sensor devices with little effort, regardless of whether the new data is laconic or
heavily annotated.

In short, we must keep in mind the list of requirements for the whiteboard in the
context of sensor data acquisition applications:

e Suitable for embedded computers

e Located in one machine

e Single data format

e Flexible for new agents

2.3. Related work on blackboards and alternatives

As the background scenario, the idea of blackboard/whiteboard architecture and
the basic set of requirements have been introduced, we will now take a broader
viewpoint on the topic. Obviously there exist systems for controlling sensors and
actuators. Several solutions have been created over time to manage data sharing in
the multi-agent systems with similar purposes. The prevalent approach appears to
be the utilization of message passing with the publisher-subscriber model between
the agents while the shared blackboard can also be found in some systems. The
very case of the robot’s middleware suits for illustrating the field.

The Player project is one substantial example. It offered a viable and strong
option to consider at the time when the Roboswarm project searched for its
foundation. The Player [19] functions as a device abstraction server which allows
remote client programs to access sensors and actuators over the TCP sockets. The
idea is to keep the server side simple and fast, and let the clients solve potential
complexities. Distributed architecture is certainly a goal. This allows putting the
control program off-board the robot, one robot can access other’s sensors,
monitoring and logging application can gather the data from different machines
over the Internet, etc. Thus sockets are inevitable.

There should be one instance of a Player server per single robot that manages
all the available sensor and actuator devices. Any number of client programs can

21

be connected to the server and can send commands to the devices or subscribe for
sensor data streams. The command protocol, as described in [20], is rather simple
and limited*. Implementation of the Player makes heavy use of threads: every
device is handled by a thread; there is one reader and one writer thread per every
client connection, plus the main thread. If several clients command the same
actuator simultaneously, the racing condition occurs [21] (all but the last one will
be lost) and a client can receive data packages with a constant frequency while the
package may contain output from sensors with different sampling rates (thus
missing some values or receiving old values again). Device specific threads are
called drivers and must be written and compiled into the Player when a new sensor
is added to the system. There was no intended communication between drivers and
the client side is also out of scope (a robot control program, which is a client for
sensors and actuators can also be a driver in a Player server). In later versions, each
driver has a single incoming message queue and can publish messages to the
incoming queue of other drivers [22].

The Orca [23] middleware for robots focuses on component based architecture,
thus turning sensor drivers into independent components (stand-alone processes)
with well-defined interfaces. This supports better reusability of device drivers and
control algorithm. The framework implements a proprietary transport mechanism,
which eventually relies on TCP sockets.

The UPnP approach for robot middleware [24] increases the freedom even more
and uses peer to peer communication between modules which can dynamically
leave the system or come online.

In ROS [25] processes (called nodes) communicate messages peer to peer using
both publish-subscribe model and services. ROS also provides a large
infrastructure with numerous utilities, including a data store (Parameter Server).

The Carnegie Mellon Navigation (CARMEN) Toolkit [26] organizes major
capabilities as separate modules. Modules are grouped into hierarchical layers and
communicate with each other over a communication protocol called IPCS,
developed at Carnegie Mellon University (using TCP sockets again).

Miro [27] is explicitly object-oriented robot middleware that uses the
distributed object paradigm. It relies on the common object request broker
architecture (CORBA) standard and its real-time C++ implementation TAO (The
Ace Orb). Sensors and actuators will be naturally modeled as objects and clients
use standard CORBA object protocols to interface to any object, either on a local
or a remote machine. Event-based communication services based on the CORBA
notification services are also available.

The intelligent robotic wheelchair project described in [28] solely relies on the
blackboard communication model and is very similar to the Roboswarm’s
approach in this respect. The agents communicate by manipulating information on

* Some examples:

c<device name><size><command> - sending a command to the device
dr<size><device name><access> - requesting read or write access to a device
> http://www.cs.cmu.edu/~IPC/

22

the blackboard and there is no global controller for the agents. Their system has,
however, only four agents and all the sensors and devices are managed by one
agent (also only one type of actuators exist, wheels’ motors).

The RoboFrame [29] framework uses blackboard besides message passing for
large structures (e.g. map data which is occasionally updated by different agents).
The regular messages are objects capable of serializing to and (deserializing from)
a byte stream. More information about these middlewares and many more can be
found in [30] and [31].

In the realm of telemedicine solutions there has been less focus on the internal
architecture of the home gateway device which collects the sensor readings,
preprocesses and eventually submits them to hospital. Still, the principal
possibilities are the same as with the robot middlewares. However, it should be
noted that some projects abandon the multi-agent approach completely, e.g. Home
Client in [32] is built as a Windows application or [33] uses gaming platforms
(Wii, Playstation 3, and Xbox 360) for interacting with the patient and gathering
data where the applications were built as platform specific applications (also no
USB or Bluetooth sensor connectivity). One explanation to the lack of motivation
to split the applications to independently running modules is that the home gateway
systems cannot be distributed similarly to the robot’s case. While it was usually
possible and sometimes practiced to put some parts of the robot’s system (e.g.
control process) off-board, i.e. on a server, then it is typically impossible to access
the sensors at home directly from the hospital’s servers. Those telemonitoring
solutions that comprise multiple modules use some sort of message passing. The
project described in [34] uses D-Bus ([35], messaging bus system originating from
Linux desktop environment KDE, later also in GNOME, relies on UNIX domain
sockets) which gave them several advantages over the previously used Java-based
solutions. Another health monitoring solution [36] claims that data acquisition
modules receive data from providers via SOAP messages (e.g. web service-enabled
sensor networks).

The basic idea of the blackboard communication model can be spotted in a
large number of arbitrary applications, but is not always recognized as such.
Indeed, we could think of a usual information system with a database and web
interfaces (e.g. e-store, e-banking) as a blackboard system where endpoints do not
exchange data directly but by editing and querying the database. However, using
ordinary SQL databases for interprocess communication when other, often faster
and lighter, possibilities exist is considered an anti-pattern in software engineering
(see also Appendix 1). The original (or official) blackboard does not seem to be a
popular research topic or a popular foundation for implementing systems. The [3]
brings out several problem domains for which the blackboard solution is especially
well suited: sensory interpretation, design and layout, process control, planning and
scheduling, computer vision. The early famous blackboard exploitations were the
speech understanding systems HEARSAY-II [37] and HASP project [38] for
interpreting continuous sonar signals for detecting submarines. The BB1 [1] added

23

the second level of blackboard to the architecture, thus providing better control
(next KS to be executed) in the latter two systems. More examples of blackboards
can be found in [39] — a movie theatre administration system and [40] — system for
forecasting the atmospheric transport of the radioactive noble gas radon based on
measure wind and emission fields.

2.4. Related work on agents

The next issue that has to be elaborated is the concept of agents. The term agent
is used extensively in literature and in this work. In the loose sense the agent is a
synonym for a program or process that runs independently and fulfilling some task
and that is how it should be taken generally. There are also the “official” agents
known from the agent-oriented software design. Based on this paradigm ([15],
[41], and [42]) the agents are fairly complex programs or even systems which are
reactive and proactive at the same time, also possessing the ability to learn and
improve with experience [43]. The biggest difference with the blackboard’s
knowledge sources is that an agent is always autonomous whereas a blackboard
has a scheduler. The proactiveness implies creating and adjusting plans to achieve
the agent’s goals, reactiveness is the ability to respond to the stimuli and events
from the environment. Finding the balance between proactiveness and reactiveness
is a key issue [41]. The agents are also assumed to be social and negotiate with
each other. However, no assumptions are made about the platform and agents of
the same system can be written in different programming languages [44].

We use the term agents in the loose sense while speaking about the whiteboard
design and the case studies (e.g. Roboswarm). Our lightweight agents, following
the statement by [16] that simple parts will make up robust system, are not
proactive. However, nothing actually prevented them to be. Although not being
consistent with the official concept of agent they are more similar to the agents
than to KS’. The closest classification by the [45] should be the response function
agent, because our agents do not build or possess internal representation of the
world/environment. Again, nothing deliberately prevents it.

Agents can be organized into various social structures [46] — flat, hierarchical,
subagents, modular (each module is a multi-agent system). For facilitating message
exchange between agents several middleware architectures have been proposed
with slight differences, e.g. [46], [47], [48]. Communication plays major role in the
world of agents mimicking the circumstance that most work in human
organizations is done based on intelligence, communication, cooperation, and
massive parallel processing [45]. However any kind of synchronization between
agents inhibits autonomy [18] and there is a conflict between the goals of
autonomous agents and the best interests of the group as a whole [49]. There are
special languages for creating messages like KQML [17] and FIPA ACL [50] and
even higher level data exchange languages which function in terms of
commitments as presented by [18]. On the other hand, these languages do not

24

specify how the real communication should be implemented, as pointed out by
[51].

In parallel to the genuine notion of autonomous agents some research in the
field is actually drifting towards the ideas of the blackboard approach. The [52]
advocates for separation of the code that implements some behavior from the code
that tells the agent when to apply each behavior. There exists also the
computational market topology (social structure) where all the agents have access
to a common marketplace where information can be exchanged and negotiations
take place [45] — resembling directly the blackboard architecture. Instead of being
maximally autonomous and communicate directly, in many cases agents rely on
supportive entities (middle agents) as brokers, auctioneers, facilitators, mediators,
matchmakers, agent name servers, information extraction agents, web proxies, and
agent management agents [43], [47]. The [46] adds a shared database, although
claiming it to be not as common or necessary as the other ones. The [53] uses
intermediate (interpreter) agents to solve the cases where two agents need to
change data but work with different ontologies. The [48] uses blackboard inside an
agent for belief structures.

It is also possible to observe other similarities between KSs and agents or
encounter properties of multi-agent systems among the blackboards. For example,
there is a natural tendency that KSs group into hierarchical (social) structures
because KSs respond only to a particular class or classes of hypotheses reflected in
the blackboard and information can be transferred from one level in the hierarchy
to another only through processing by the knowledge sources, as discussed by [54]
and [55]. The authors of [56] use a system (real-time strategy game Al) which
includes both agents (units in the field) and KSs (control) where the agents are kept
very simple but can appear in large numbers (400). The [57] calls their blackboard
whiteboard and builds an extra layer of managers between the whiteboard and real
KSs (called components), thus hiding the contents of the shared medium from the
KS and making them feel more like agents. In [58] each KS agent registers interest
in particular events that may be announced by other agents. When an event is
announced, the broadcasting system (connector) invokes all of the procedures that
have been registered for the event.

3. WHITEBOARD DESIGN DETAILS

When trying to implement the whiteboard according to the previously
mentioned principles there are several choices to be made. There hardly exists a
universal solution: if the optimizations are also considered, which the case is, then
the details of the domain have an important role here. We must find out how the
actual data items and their variability looks like and then choose the data model.
This will have a great effect on the whiteboard’s implementation, on the query
language and on the overall way how the agents access the data. Of course, the

25

inner structure can be hidden from the agents by the API, but only with extra stress
on resources.

The next question is the choice of underlying tools. One possibility is to use
third party libraries (D-bus, Sqlite, etc.) for realizing whiteboard’s functionality
which reduces development work and can be very convenient. At the same time it
brings along some useless stacks of calls and undesired effects on performance.
Another solution would be using the mechanisms for inter-process communication
that the OS provides (pipes, sockets, shared memory, etc.). Discarding libraries
means that several low-level functionalities have to be implemented from scratch
(locking, garbage collection). Theoretically it is possible to go down one more
level and change OS but this would need even more effort.

Yet another issue is the design of the frontend. This includes data presentation
and query languages, the prototypes of the API functions and access policies - what
should be allowed for the agents and what should be forbidden. The whiteboard
should not be very restrictive, but should maintain order and avoid mistakes; hence
there must be some constraints. For example, do all the entries need to be unique or
not (primary key) or can the agent update the output the second agent. As said
before, there is no direct obligation to have one to one mapping between the
internal storage of the data and the format presented to the agents — e.g. the data is
kept in tables but the query output yields objects or structures (with copies or direct
links to data).

Depending on the data flows between the agents and the desired workflows of
the application a need for special purpose control agents may rise. For example,
when the system wants to start and stop agents frequently and use whiteboard
entries for triggers, it could host a special dispatcher process (see Paper 2, similar
to the agent management agent of [47]). It is not directly a part of the whiteboard
but is also not a typical agent of business logic. Another example is the rule engine.
The behavior of the overall system is hardcoded into the agents but some of it (the
part which has no hardware access involved) might be expressed by rules as well.
The rule engine would be a general purpose agent that applies the rules
automatically and thus makes the behaviors to come alive. For doing it effectively
it has to adapt to the data without a major effort (searching, converting, and
coping) and that in turn affects the design choices of data model and API.

3.1. Data model

When talking about the data model we are referring to the method of how the
data is organized into records (entries). The term is usually associated with
databases but it is not wrong to apply it to the whiteboard. For simplicity we could
say that there is no difference whether the whiteboard is used as a message channel
or a database while the frontend of the whiteboard only accepts and returns entries
with certain syntax and semantics. As a part of the data model issue we also
discuss the schema because they are very closely related.

26

Let us imagine that a sensor agent running in the home telemonitoring gateway
system (adapter to blood pressure monitor) has acquired a piece of information it
wants to put into the whiteboard, e.g.: “Got a blood pressure measurement 135/98
with pulse 80 at timestamp 2012.01.01T10:20:30 by device Foo A10.” The pulse
value is included into the statement because the measurement device outputs this
parameter. There is no hint to the patient’s ID as the adapter agent has nor should
have any knowledge about that.

The relational data model with a fixed schema is clearly a very straightforward
way to build the whiteboard. Every measurement or message type should be given
its dedicated relation. This approach would allow good possibilities for
optimization, for example de-normalization for fast access and normalization for
memory conservation. From the perspective of the agent developer it is a well
understood data model. The example data item could look like this:

Blood pressure measurement
Systolic Diastolic Pulse Timestamp Source
135 98 80 2012.01.01T10:20:30 Foo A10

(note: id field is not necessarily needed as timestamp functions as the primary
key)

The poor extendability is the main shortcoming of the relational model [5]. The
set of relations form the explicit schema. The schema must be maintained (e.g.
system tables about user tables in Postgresql) and is expected to be rather static.
Adding a new measurement type means automatically updating the schema. Since
the whiteboard could experience lots of types of data items, like personal memos of
agents, the schema will grow in size, data validation takes time, conflicts can
happen. If the situation happens where some relation needs updating then serious
problems will arise. For example, let there be a new device Foo B20 which buffers
measurements internally and outputs timestamps of the measurement — thus adding
new attribute source timestamp to the entity. Or the source field is needed to split
into manufacturer and model. The whiteboard may manage with the schema
changes but all the agents, by default, might not.

Therefore, in the case where the schema is vaguely defined and can evolve, it
would be more appropriate to use a schema-less data model (i.e. a universal
schema). This means encoding attribute names in fields and not in column names
as usual. Roboswarm’s extended RDF is one example. An extreme case would be
to express everything in a triples model with the smallest possible number of
columns (assessed in Appendix 2). This data model belongs to the NoSQL theme
and is known as RDF or entity-attribute-value (EAV) model. The triples form a
hierarchical structure where single entries are linked by contents as in the relational
model. Though one triple may have only one value and one subject, many-to-many
connections are still possible. The example data would yield the following set of
triples:

27

Subject / entity Property / Value / object
predicate / attribute

Blood pressure Measurement #keyl

#keyl Systolic 135

#keyl Diastolic 98

#keyl Pulse 80

#keyl Timestamp 2012.01.01T10:20:30

#keyl Source Foo A10

Or

#keyl Source t#key2

t#key2 Manufacturer Foo

f#key?2 Model A10

RDF is not absolutely schema-less. The lower level schema of three columns
must exist anyway and higher level schema (of user data) exists implicitly because
the agents have to know what the attributes mean and which attribute to expect at
which situation. Totally unknown values could not be interpreted by the agents.

From the whiteboard’s point of view, however, the lower level schema is not
subject to changes and the upper level schema is left for the agents to manage. In
that sense we can call the RDF triples schema-less. By this choice the design and
implementation of the whiteboard becomes simpler. At the same time the risks of
misunderstandings and flaws in the communication between the agents grow. By
giving this task to the agents and taking it away from the central whiteboard we
split the schema to smaller sub-schemas shared by the small sets of corresponding
agents only (providers and consumers of some type of entities) who should agree
on the schema and schema changes.

The other set of data models organize information directly into graph structures:
object-oriented, hierarchical, and network models. With chains of parent and child
nodes they yield similar effect as RDF but without the triple encoding. Records are
not linked by content but by direct pointer references. The hierarchical model only
features the tree structure and disallows many-to-many relations. In the context of
the implementation of an agent it is very natural to think of the data items
(measurements, commands) in terms of objects or structures, thus making this data
model a credible choice. On the other hand there might be the need for more effort
to be put into the data search mechanisms, cleanup, defragmentation, etc. If data
types (object classes) are considered static (defined before use) then the model is
also sensitive to schema changes and type inconsistencies may result. With some
generalization we can also look at the graph based models as high-level wrappers
for the relational (and RDF) model. The research in graph databases is, however,
claimed to be died out since the early 1990s for a series of reasons [6].

28

In some situations - , especially in the case of simple data types - the key-value
pairs model can be very efficient (see QDBM® in Appendix 1). For the whiteboard
application with unlimited data types it is not a good candidate. The classical
implementation for a key-value store is the hash table where all searching is done
by keys. Though possible, the solution with a key-value model would be messy. A
lot of redundancy is needed and data fields will have to contain lists. For example,
to present a record there should be at least n+1 key-value pairs if the record has n
attributes: one pair has a list of names and values of all attributes and unique ID for
the key; other pairs construct keys from the name and the value of each attribute in
the original record and have a list of all matching record IDs in the value field.

The choice of whether to bother with extendibility or not depends on the needs
of application. It is worth of some attention. Let us come back to the example piece
of data encoded into the triples format. This is a raw output of a sensor agent.
Other agents might want to process and refine the given measurement, e.g.
evaluate the result. They could create a new entry with a different structure and
leave the original intact or save space and expand the original with additional
attributes and values. In some cases it is rather safe to add new sub-records (if
security policy permits it), for example consider the triple #keyl — evaluation —
above normal. Those agents who also access the same type of measurements can
just ignore the unknown attribute (or tree of attributes) and everything should
remain working regardless of the schema changes.

A more problematic case is when the new piece of information tries to extend
the triple with a terminal value. Say, we have a triple #keyl — pulse — 80 and there
is an extra piece of knowledge about the value, e.g. explicitly stated low
confidence (the patient moved during the measurement). The original triple has to
be split into pieces and only then it is possible to link the new information to the
triple. The same thing happens when a triple wants to refer to another triple that
has a terminal subject (not a key). The side effect of this splitting, referencing
through artificially added keys (blank nodes) and reassembling (reification) would
be problems for possible consumer agents of the data items. Searching becomes
more complex and reification (either on the side of the whiteboard’s API or in
agents’ implementation) consumes resources. The following examples illustrate the
row splitting:

Subject Property Value

#keyl Pulse #key3

#key3 Value 80

#key3 Confidence 30%

tkey4 Subject Blood pressure
#key4 Property Measurement
#key4 Value #keyl

Archive 1 Contains #key4

% QDBM - Quick DataBase Manager, http://sourceforge.net/projects/qdbm/

29

Again there is a tradeoff between performance and space. One might create
enough blank nodes in advance. Then it is easy to link with whatever new data and
the changes cannot come unexpectedly to any agent. All the data will be spread as
sparsely as possible, no splitting and reassembling are allowed. Managing the data
items becomes incredibly difficult and the result is not RDF anymore, but rather a
graph model encoded into triples. All the data will be in the edges (RDF property
column) and vertexes are just arbitrary points where the edges can start and end.
The higher level scheme is hard to observe. Whether there exists any potential use
case for such extreme extendibility or not, the data of the demo measurement can
be encoded as:

#keyO Blood pressure #keyl
#keyl Measurement t#key?2
t#key?2 Systolic #key3
#key3 135 t#key4
#key2 Diastolic #keyS
#key5 98 #key6
etc.

To conclude the issue of data model we can say that several possibilities exist
when choosing the core structures for holding the data in the whiteboard. The
models differ from each other mostly by the level of scheme explicitness. This in
turn affects the extendibility of data items which is not a common practice in the
realm of databases (fixed scheme) but suits together with the concept of
whiteboard.

3.2. The underlying medium and tools

There are several choices for the underlying medium of the whiteboard. As said
before, one could implement everything from scratch and even delve into the
kernel development of the OS used, but this approach does not belong into the
context of the current work. The focus is on the native mechanisms that the OS
provides and the functionalities of third party libraries built upon the same OS. The
key point of the whiteboard is inter-process communication combined with the
memory aspect. This opens up two perspectives: to use a communication tool and
to try to add memory or to use a memory tool (database) and to add
communication.

The Linux operating system kernel has several mechanisms for communicating
information from one process to another. Most of them are dedicated for message
passing with small differences and others are just shared mediums. They are all
accessible (create, open, send, receive) via small APIs of system calls. Let us
consider the list:

e TCP, UDP sockets

e UNIX domain sockets

30

Pipes

Files

Message queues
Shared memory
Signals

e Semaphores

Sockets and pipes are meant for sending and receiving byte streams. TCP/IP
sockets (stream type sockets with internet addresses) are a typical solution for
implementing inter-process communication. Internet sockets are the only option to
be used if some processes (agents) should run in a separate machine. If there is no
such need, the UNIX domain sockets provide a similar interface with a slightly
faster performance (comparison tests by [59], see Appendix 1). The pipes (the
named pipes are also known as FIFOs) have basically the same purpose but a
different interface. However, they yield lower performance than the UNIX domain
sockets [59]. As the whiteboard targets the exchanging of complex structures then
one must spend some processing power for serializing high-level messages into the
byte stream.

Message queues operate in terms of structures, not byte streams. They also do
not require the establishing of the connection in the first place as the sockets and
pips do. A process can just open a queue and insert the data without concerning the
receivers. Any number of agents can join a queue and insert or claim data items.
There can be more than one message type per queue and the reader can ask for the
next message with a particular type. Still, every message can be read only once
(removed from the queue) and the types of the messages are rather fixed, so that
the reader must know the length and the structure of the received message.

Files and shared memory are general purpose mediums not specially meant for
message passing. Agents can read and write whatever they like, in byte sequences.
Concurrent access is possible, but no locking or synchronization exists for ensuring
data consistency and integrity by default, hence this has to be added by the user
application. The schema has to be built by the user. Files and shared memory
match well with the idea of the whiteboard. On the other hand, semaphores and
signals are methods for synchronization and are not suitable for moving large
messages between processes. Their benefit can be seen in the supportive role of
helping to manage the shared access to the common medium inside the whiteboard.

It would seem that only files or shared memory are exploitable tools for
building the whiteboard, since sockets, pipes and queues have no memory effect.
However, one could create a dedicated server-like process that keeps the needed
data for a longer period of time and other agents connect to that process via the
channel tools like pipes. For example, [60] proposes the blackboard where contents
are stored in a set of distributed blackboard-data processes accessed through a set
of distributed blackboard-interface processes. What truly matters here is the
performance or the balance between performance and convenience/functionality of
the tool. For example, the solution with shared memory also does not come without
cost, since building proper locking is very important there in the perspective of fast

31

performance, while creating messaging functionality needs additional effort.
Intuition would say that channel tools are definitely better for channel tasks, but
experiments show (see Appendix 1) that memory (and file) based tools can
compete with the fastest messaging tools. The right choice depends on the precise
requirements of the whiteboard for the particular application. Of course, there is
actually nothing that prevents using a combination of these methods.

As can be concluded based on [61] there exist many dimensions in this problem
of choosing the right tools: the data, the queries, the indexes, column or row
orientedness, etc., so it is basically impossible to settle for any definite optimal
solution. By [6] the maturity, the level of support, ease of programming, flexibility,
and security are also significant criteria in deciding which type of database
implementation to adopt. One could also find a set of existing systems built for
different purposes that more or less overlap with the needs of the whiteboard. They
wrap the given methods and give the user a somewhat higher starting point by
solving synchronization and data management issues. Systems for fast inter-
process communications use different types of sockets, e.g. Player/Stage, D-Bus,
and ROS. Small scale database systems that function as libraries, not daemons, use
files. Good examples for this are Sqlite and QDBM. Using files automatically
means that they are slower than the other methods, even in the case of keeping the
database file on a ramdisk. From the tools that exert shared memory two
proprietary implementation are used in this work: Roboswarm’s database and its
successor Wgandalf (benchmarks in Appendixes 1 and 2).

3.3. API details for agents

The next set of decision points concerns the API design for the whiteboard. The
API not only shapes the character of the whiteboard but forces the developer of the
agents to think in a given direction. Experience has demonstrated that choices
made in the blackboard representation can have a major effect on system
performance and complexity [2]. One clear purpose of the API is to hide the
technical peculiarities of the whiteboard’s internal implementation from the agent
level and offer a well-defined easy to comprehend interface. As the performance of
the whiteboard and the overall system (agents included) matters, we have to be
careful to avoid unnecessary operations. In short, fixing the API means finalizing
the data model, applying a security model, and giving a set of commands what the
agents can call, including the query language.

The API layer is the place where the data models of the underlying tools and
whiteboard’s internal logic, as well as the data model of the agents come together.
For example, the whiteboard operates in terms of triples which it keeps in a
relational database (e.g. Sqlite) and present to the agents as objects or XML
documents (strings). Basically it means that the agents do not have to be aware of
the physical data modal or the tools used. It also leaves open the possibility to find
better opportunities to replace the components in the future. The model that
appears to the agents has the greatest impact. Customizations are possible here and

32

an intermediate approach between relational presentation and RDF can be used
(Paper 1). The interface might be made very application specific and feature the
schema of used data types or be rather universal, i.e. schema-less. A useful strategy
would be to create different access levels: low level function calls return original
records for fastest access and high level wrapper functions convert the data items
to structures or objects that can be handled more easily in large quantities.

Security is a separate topic and worthy of thorough investigation and
discussion. However, as the example systems presented in this work discard the
security concerns we decide not to tackle the data protection details in this work.
We could consider two types of protection, one against the accidental damage and
the other against the deliberate attacks. The first case is handled in the API
functions to some extent (e.g. check the uniqueness of RDF keys). The complex
system of user roles, access rights and authentication is not considered in the
current work, since the philosophy of the whiteboard is sharing and contributing,
not protecting the data which is often the case with regular database systems.
Therefore, all the agents which are allowed to run in the system are trusted not to
commit anything mischievous like stealing data, insert counterfeit measurements or
forge existing records. By the authors of [46] the similar situation holds for multi-
agent systems as only a few of them provide security services as part of their
infrastructure.

Using a universal schema does not exclude the possibility of having some
functions for handling specific data types. Should absolutely everything be forced
under the common universal schema or can there be exceptions is a matter of
optimizations and a clarity of the interface. Even as the system is simple, we could
encounter many entities, like measurements, other events, comments, goals, tasks,
commands, responses, configuration parameters, temporary variables, etc. The API
can provide special mechanisms for handling data types of different purposes (e.g.
measurements and commands) based on a completely different mechanism or
based on the ordinary universal scheme (e.g. triples). However, the first option is
discouraged as it adds lots of complexity to the whiteboard or isolates some data
from the global access space. The second option is what the agents should do
anyway in a usual situation. Doing it on the whiteboard side can have some
advantage in performance but risks with the fixed schema problem — some types of
data do not fit.

A similar dilemma occurs with the data flow: should there be only one read
function and one write function, or several. The basic idea of the whiteboard lays
in a very simple access policy: everybody just inserts their records and can read
whatever they like. However, this brings along lots of polling. Those agents who
expect some commands must poll the whiteboard regularly for the given data. The
solution would be to notify the receiver agent when a command arrives or directly
deliver the data to the receiver’s buffer. To name some drawbacks of this approach,
the receiver has to register itself first for some types of messages and the
whiteboard must examine all the incoming data to catch the matching records or
the sender agent should somehow specify the target process and the whiteboard

33

notifies the addressee. For example the [62] requires registering of every plugin
(agent) at the core. Nevertheless, this is not coherent with the initial goals of
decoupling data providers and consumers.

One major task of the API is query handling. It determines what kind of queries
can be made and how these queries would behave. Sometimes it is beneficiary to
limit the query mechanism to avoid misuse of resources. The query language itself
can have several forms. For example, if the whiteboard contains triples in a table,
then the query interface could be inspired by SQL, Sparql or RDQL. There are
usually many triples representing one agent level record and usually they are
needed at the same time, hence the query engine should automatically return the
referred triples. But hierarchies of triples can be deep — how many levels down or
up is reasonable? A similar situation happens when updating or deleting: there is
the risk of dangling references and unreferred triples. The common behavior would
be to return the copy of the demanded record. A more resource friendly solution
returns pointers to the original data record. Depending on the workflows of the
system this can also result in the case where the data changes in the middle of the
processing of the query result by the agent.

Suppose that the query interface returns a set of triples. While processing the
records of a SQL query (n fields) is generally acceptable for the developer of the
agents then handling a set of triples can be very inconvenient and barely human-
readable. The agent might loop over the result set over and over again or parse the
result into some structure. That brings us again to the idea of converting the triples
to some higher level structures already on the whiteboard’s side, i.e. moving
towards a hierarchical data model again. For example, there could be an XML
interface to the whiteboard or - even better - something like OEM [63] and JSON.
The basic idea of the latter two is to express the data with key-value pairs where
values are lists of other objects, like atomic values, arrays, key-value pairs. This
schema is perfectly extendible as new values can be added to the existing lists, thus
refining the original data items. OEM and JSON are textual data representations
and can be treated by the API as such while nothing really prohibits the whiteboard
to use structures/objects when serving the agents. As the RDF has the Sparql query
language the OEM, on the other hand, has Lorel [64].

The model of triples allows all kind of referencing which the hierarchical
structures usually do not allow. What is most useful for the whiteboard
implementation depends on the application and its requirements. Allowing a graph
like structure with references between the branches of the node tree helps to avoid
redundant copies of some data items, saving space, but adds more complexity. For
example, an agent saves a measurement which includes several values with the
same unit and the unit is described by a sub-tree of nodes (not a single string) — if
the referencing inside a document (measurement) is allowed as in OEM, only one
description is needed. We can also look at the issue from the perspective of
referencing in the global scope. If an agent saves one more measurement of that
type it can be required to give again the unit’s sub-tree regardless of any previous
actions or it can be required to look up the reference first (as somebody might have

34

already inserted that data before) and use the reference. In both cases there are
different policy choices for the whiteboard — save the data items exactly as given
by the agent or take steps to reduce redundancy.

The extendable hierarchical/network data models like the OEM can be easily
expressed in tabular formats. For example, [5] proposes to encode the OEM into
two tables: the binary relation VALUE (object id, atomic value) for specifying the
terminal atomic values and the ternary relation MEMBER (object id, label, object
id) to specify the values of complex objects. This gives us inspiration to organize
data into triples with possible OEM-like frontend (Paper 8) thus providing a
relatively strong extendibility. The following example illustrates the idea, (the
textual encoding is neither pure JSON nor OEM but very similar):

Subject | Property Value entry = {
Entry contains #keyl activity = {
Entry contains #key2 cycling,
#key1 is activity duration = {30 min}
t#keyl contains cycling §s
#keyl | contains #key3 - timestamp
#key3 is duration - {2011.08.20T17:15:00}
t#key3 contains 30 min }
t#key?2 is timestamp
#key2 | contains | 2011.08.20T
17:15:00

Similar practices exist in the RDF research where triple-stores are implemented
upon the relational databases and some authors specially advocate them for the
utilization of functionalities (ACID, indexes, query plan optimizer, intermediate
results table, etc.) offered by SQL databases [65]. The [66] builds the database of
RDF triples (3store) using MySQL with the schema of four tables. Obviously there
can be many different schemas depending on the design and implementation of the
query layer and string handling (e.g. should the subjects and values be put into the
same or separate tables, store strings in triples or string IDs). To name some, the
[6] uses two tables; [67] uses 5 tables.

3.4. Processing with the reasoner

When building a multi-process system in the described manner with lots of
small device-oriented agents and the central whiteboard we have gained an
interesting opportunity to use a rule-based processing mechanism. In a typical
setup all the business logic is hardcoded into the agents. There are three types of
agents: sensor device adapters, actuator device adapters, and decision making
agents. The latter ones perform the control operations. To do this they only need to
connect to the whiteboard and not anywhere else: by reading the data on the

35

whiteboard they can get all the needed input (including feedback) and by writing
the right records to the whiteboard they can cause actions. All the data passes
through or stays in the whiteboard and there is only one language to express
different types of data. Under these circumstances it can be very encouraging to
build a general purpose processing agent.

The main motivation for a general purpose processing agent is the reduction of
the ratio of the hard coded business logic. Of course, the processing agents can
have configuration parameters for adjustability but the core functionality which
resides in loops and conditional clauses remains typically static. When adding
some new behavior to the system or changing an existing one the only option
would be to edit the source code, recompile, and deploy. However, if the business
logic would be expressed by some kind of textual (human-readable) rules which
are repeatedly interpreted by a dedicated reasoner (rule-engine) agent, one has to
edit the given set of rules to change the behavior of the system. This is definitely a
cheaper way for refactoring and possibly allows doing it in a live system. The idea
of having agents’ behaviors written down in rules resembles very much the concept
of directly executing the formal specification of the agent as mentioned in [41]. A
rule engine can be also used for the distribution of messages, feeding the output of
some agent to another agent [62].

The reasoner agent behaves as a dummy control process managing the entire
system and the other agents behave as procedural attachments which gather input
data and execute commands. At any moment of time the whiteboard is a snapshot
of the entire knowledge of the system. The rules express the relations between the
different states (snapshots) of the whiteboard, e.g. if there are some particular
entries present then perform the given modifications, i.e. add/change some entries.
The reasoner takes the contents of the whiteboard and applies a set of rules: if any
of them fires and produces an output it will be put to the whiteboard. This
procedure is repeated infinitely.

Having the reasoner agent in the system does not exclude the possibility of
using anything else beside it. Regular hard-coded agents can exist in parallel to the
reasoner agent and realize some other tasks. Technically there could be even more
than one reasoner (as discussed by [54], e.g. rule based, case-based, model based).
In fact, the reasoner creates the need for another set of agents of procedural
attachments — the utility functions. Rules themselves are very inconvenient for
doing all kind of calculations, aggregations, and data conversions (e.g. dates). One
solution would be to add special functions to the rule language and corresponding
procedures into the reasoner. Another option is to build regular agents for
performing these tasks.

Nevertheless, rules must be used with caution, especially when they are
complex or there are a large number of rules. For example in e-health applications
rules are considered for contributing to the wide range of contextual, socio-
cultural, dynamically situated factors that influence practice guidelines and patient-
centered care, but may end up in a mess. [68]. One problem lays in poor

36

traceability. There are also several other technical details to pay attention to. For
example, when the reasoner is in a work phase the whiteboard should be isolated
from the modifications done by other agents or some rules from the set can have a
different input from the others. This can be allowed if the rules are independent,
but it should not happen during the processing of a single rule, e.g. the rule is: “if
entry A and entry B and entry C then derive entry D” and the rule engine has
checked for A and B already and at the time when it checks for C somebody
deletes the A. There should be a policy for contradicting rules and the rule engine
must avoid reproducing the same output over and over again (flooding the
whiteboard) if the presumptions happen to be continuously satisfied for a longer
period of time. The reasoner loops with one certain frequency but the data provider
agents have their own running frequencies, therefore the reasoner can either meet
the frequency of the slowest sensor agent and process faster data streams with
delay or execute with the frequency of the fastest sensor agent and thus create extra
load.

Including a reasoner agent to the system certainly affects the design choices
discussed previously. The key factor is the efficient access to the data, which
concerns the API and tools. All the database type tools are clearly more promising.
There can even be a separate access mechanism for the reasoner. Relational style
entries are easiest to handle with rules. Triples, on the other hand, need much more
attention by the rule writer because the data is scattered among several atomic
facts. If there is no tabular representation at all but objects in the memory then
these have to be converted to facts before usable by the reasoner.

4. THE IMPLEMENTATIONS AND EXPERIMENTS

4.1. Roboswarm

The Roboswarm system was the earlier version of the two practical cases of
using the whiteboard for inter-process communication as described in the current
work. The goal was to spend minimal resources but still have fast responsiveness
of the overall system while using the multi-agent architecture with reasoning
capabilities. Everything else, like security, API clarity and data integrity had only
minor significance. The whiteboard became the central component of the robot’s
middleware serving all the possible other agents which could also be introduced in
runtime (e.g. dynamic openness of [46]). There was no distinction made between
different types of data items as sensor readings, messages, commands, and derived
facts. Differently from [52], all data items were treated just as whiteboard entries.
While unconventional, it made all the possible send and receive operations really
straightforward.

The data model used was a hybrid of the relational and RDF models. The basic
idea was to use RDF in principle to guarantee preparedness to all kind of data that
can be encountered. In other words, it means schema-less design — no schema

37

defined in advance; changes to the schema can be done in a live system. Data
expandability was not initially considered. However, it was shortly noticed that the
majority of data items shared some common attributes anyway and it would have
taken many extra triples to encode them in the proper RDF. These attributes were
so called meta-data giving some information about the original data entry, namely
the ID, the timestamps (with microsecond precision, marking creation and last
modified), the source, and the context. (see Paper 1) As a result, the whiteboard’s
entries were extended triples: RDF fields plus meta-fields, resembling more the
relational model with one table than the RDF in the end.

From the implementation’s point of view the whole whiteboard became really
lightweight and minimalistic. We have earlier defined the whiteboard as the
intermediate layer between the agents and underlying tool. In the Roboswarm
system the whole whiteboard was comprised of the underlying tool and nothing
more, since the fast performance was more important than extra functionalities.
One option would have been to use socket-based Player/Stage for managing sensor
data streams, but then there would have been also the need for additional
components for the persistent storage and history effect, causing overhead and/or
messy APIL. Sqlite was initially considered suitable, but in reality it suffered from
severe performance problems when used concurrently by rapidly looping
processes. Eventually the choice was to use shared memory and to build a custom
database with the extended RDF schema.

Thus, the Roboswarm’s database was a set of functions (library) for saving the
records (extended triples) into the shared memory and also retrieving them. The
database’s functions were directly compiled into the agents, no separate database
process (e.g. server) existed, and there were no wrappers. This means the database
was the whiteboard. The first library call allocated a segment of shared memory
and this was preserved until reboot or intentional freeing, no matter if any agent
process existed or not. The segment of shared memory was split into subareas. The
key component was the fixed-length circular buffer of records. Each record held
the fields of one extended triple, some of them in place, and pointers to others. The
remaining part of the memory segment was filled with structures for keeping
strings (hash table) and control information like the pointers to the areas, locking
information, pointer to the latest record, etc.

The library functions either just located and returned the information from the
memory or did the proper modifications to right areas in case of writing, deleting
or updating. All of the functions also encapsulated locking routines so that the
agents had not to be aware of the locking matters. Locks were implemented by
exerting semaphores. One main idea was to spend as little time as possible in the
synchronized sections. The function call gets the lock, quickly does the operation
and releases the lock. The assumption is that an agent spends most of its time on
other activities than inside the whiteboard calls.

The API of the shared memory database was simple at first sight but tricky in
details. The agents could insert data by providing a single record at a time, but not
all the fields were specified by the agent: some meta-fields were filled

38

automatically by the whiteboard. Usually the fields had a predetermined type, e.g.
integer for /D and string for RDF subject but the RDF value field might contain
values of different types, not compatible with the principles of the relational model.
There was no query mechanism at all and the only way to find the data was to scan
the records. The records in the circular buffer were in the order of creation and an
API function returned the pointer to the latest record. By knowing a record, an
agent could get the pointer to the previous record, so it was possible to scan
through the entire whiteboard, starting from the latest data until the oldest.

The agent had to get the record pointer first and then ask for specific fields one
by one without the need to fetch the entire record. It was possible to check the type
of the value field before making the fetch call. Due to the scarce resources strings
were not copied to the agents but instead of that the pointers to the original strings
were returned, making the solution extremely vulnerable to accidental overwriting.
As the agents do not get copies of the records in general, this means that the
contents of the record can change during the processing by the agent. It can happen
between the fetching calls of the individual fields, but this causes no problem if
used carefully and is needed for some use cases.

Deleting and updating calls are present in the API. An agent can delete records
from the whiteboard but this functionality is not needed very frequently because
oldest records disappear by themselves when the new records are written to the
same slots (circular buffer). However, there is an exception — records could be
made persistent by writing a special value to the context field and these records
were not subjects for overwriting. In practice there were only a few persistent
records which were needed infinitely, thus the delete command had no real
significance. Updating operation was possible only on the RDF value field, while
the timestamp (last modified) changed automatically.

No transactions were allowed as the agents were given no control over locking
to avoid long periods of locked whiteboard, risk of deadlocks, and starvation. This
means no possibility for combining function calls to form larger atomic operations
(e.g. transactions in regular database systems). This makes the usage of triples’
data model inconvenient: for example, reading the data items that span over several
triples must be acquired record by record where the whiteboard might not yet
contain all the needed records at the moment when the reading begins. The same
happens when saving a larger data item where the agent must guarantee the
uniqueness of used reference keys by itself or different data items could get mixed.
In fact there were no special means for dealing with triples, which is the price of
having a very lightweight API. On the other hand, it is a still relatively easy way to
offer scheme-less solution for agents’ design. Besides, the whiteboard manages all
issues what are absolutely necessary and which are not offered by the OS’s API of
the shared memory, like bookkeeping of the records’ buffer, organizing the string
table and controlling the locking.

Let us take a look at some use cases of the whiteboard. For implementing the
robot control the essential input is the access to sensor readings. In the given
system the sensor devices were handled by adapter agents who uploaded the data

39

to the whiteboard. They had three possible options to do that. A new whiteboard
entry could have been created for every sample and the reader agent had to scan
the whiteboard to find the latest value. This approach clearly consumes resources,
especially when samples are taken with high frequency. Another option was to
create a persistent record (or many) and update its value as new samples arrive.
The reader needed to scan the whiteboard only once to locate the record and later
just fetch the value field, while the timestamp field could have been used to
determine if the given value is new or old (constant values vs. sensor stopped). No
trace of the historical values was left. The third solution was to use both methods
simultaneously — keep the latest data in one fixed place and save extra records
every now and then.

While the output data of one sensor device is produced in one place and can be
consumed in many places, it works the other way around with actuator commands.
There is an actuator agent managing the given actuator device and executing
commands found on the whiteboard. The control agent that gives a command must
encode the data (i.e. command parameters) into the records and write it to the
whiteboard. The receiver agent has to constantly monitor the whiteboard to
discover the added commands and to execute them. This causes a lot of scanning,
but optimizations are possible. In each cycle only the very latest part of the
whiteboard (circular buffer) had to be scanned — the scanning agent got the latest
record and memorized it as a bookmark (using /D and timestamp), then fetched
earlier records until the bookmark from the previous scan. In this way the agent
checks only the records added since its last cycle. To identify the commands that
the particular agent can handle the context field was used. Namely, the one who
gave the command put the name of the addressee (or command type in general)
into the context field and the reading agent makes the first filtering based on this
field, never examining the records with mismatching context further. In that sense
it is a form of message passing. Note that the records of commands could not have
been made to persistent records (thus no deleting required). The fact that the
majority of commands override the previous ones allowed the actuator agent to
scan to the first matching record (which is the latest by timestamp). A good
example is the velocity of wheels: there is no point to set it to the value A and then
to the value B, instead it should be set to the value B immediately. However, if all
the commands were to be executed in sequence, then the scan had to go up to the
bookmark.

The rest of the robot’s system was control-oriented. The concept of control
stands for guiding the robot’s actions either reactively or deliberatively (or both, on
different levels). To accomplish that, the controlling agent must use the sensor
input, the task information (given by a human user), and other feedback to give to
the actuator commands. There was the main control agent whose role was to pick
up the task from the whiteboard and to invoke suitable behaviors. The actual
control was divided among several agents called sub-behaviors because they held
the code for solving certain subtasks (e.g. navigate, travel, solve obstacle, etc.) and
they were able to launch each other (Paper 2). However, the launching operation

40

was indirect. The dispatcher agent was created which got the launching (and
stopping) commands from the whiteboard and physically started (or stopped) the
agents. Parallels can be drawn here to the agent-oriented design’s idea that agents
encapsulate certain functionalities and may be involved in a series of employer-
subcontractor relationships [15]. In every aspect the sub-behaviors were like the
normal agents but they did not run infinitely: after performing the task they also
produced the return value in the form of whiteboard’s record.

In addition to these agents the system included the reasoner and the
communication agent. The communication agent was managing the WiFi
connection to the server. Its role was to (a) receive task specifications (or whatever
data) from the server and write it into the whiteboard and (b) upload the feedback
data. In the case of the robot’s system the server’s data model was an extended
version of the robot’s data model and thus no conversions were needed to be done
on the robot’s side and only minimal conversions on the server’s side.

The reasoner agent served as the general purpose processing agent. It was
especially useful for doing smaller independent operations with triples where
building an agent process would have been overkill. It enabled also the option to
replace higher level sub-behaviors with rules: when the preconditions are satisfied
then the rules launch lower level sub-behavior agents (with dispatcher command
records), these provide output which matches the assumptions of another rules and
so on. As all the knowledge passes the whiteboard it would have been theoretically
possible to substitute all control agents with rules. However, the reaction time of
the reasoner agent did not meet the tight requirements. The rules were expressed as
Horn clauses in the text file, basically telling the reasoner to insert the given record
to the whiteboard if certain records already exist there. The reasoner should loop
infinitely, which causes the problem of flooding: the triggering records remain in
the whiteboard for a while and the result can be deduced over and over again. To
avoid this kind of behavior the reasoner agent added the result to the whiteboard
only if at last one the assumption facts (records) was new, e.g. had a newer
timestamp in respect to the newest record of the previous working cycle of the
reasoner. The core of the reasoner was the theorem prover Gandalf which was put
to run in loop. The real-time performance complications came from the fact that in
each of its cycles the records of the whiteboard had to be converted to the
reasoner’s internal structures.

As the functionality of whiteboard was scarce, the agents had to take care of
several issues by themselves. Leaving the implementation of critical functionality
into the responsibility of the agents certainly comprises the risk of flaws. On the
other hand the argumentation here was that the custom solutions are more
optimized than the universal one and in many cases it encourages the agents not to
use the sophisticated solutions. One example is the use of (extended) triples. While
it was absolutely possible to create and retrieve hierarchical structures of records
(linked via the contents), in practice the sensor samples and actuator commands
were presented by using only one record. This can be achieved by encoding several
values (e.g. angular velocity and translational velocity of a motion command) into

41

one string and place it into the value field of the single record. The alternative
would be to create several independent records (one for ang. v and one for trans. v)
leaving the receiver agent the obligation to search for the set of necessary records.

There was also no explicit mechanism to connect the commands and their
responses: the implicit solution was to refer to the command’s /D in the response
record. However, no feedback was needed in the majority of cases. The commands
were executed and soon the effect was seen from the sensor readings. The RFID
write operation was one of the commands with the feedback (reports of fail,
success, used number of retries), but this was inserted into the whiteboard as
ordinary records not referring to the command. This was safe because there were
no other RFID tags nearby and no possible concurrent ongoing write operations.
The agent who gave the command just had to know what kinds of records to search
for.

Much of the system’s reliability was based on the carefulness of the developer
of the agents. For example, the situations where an actuator agent gets conflicting
commands (e.g. drive forward vs. stop) from different sources had to be solved or
avoided. There were no built-in protections for conflicting commands in actuator
agents to save resources. To do this the agent must check the source field of all
commands and have a policy to choose between different sources. While the list of
possible agents is not known in advance, there could also be agent classes or the
list of agent priority values in the whiteboard: none of them come cheap. However,
the situations where the conflicting commands can occur actually indicate design
flaws. In a normal scenario a control agent (sub-behavior) gives lead to another
process and gets it back later. There is no reason to make several agents do the
same thing at the same time and to issue possibly conflicting commands to the
same actuator.

The similar argument holds for the accidental re-launch of agents. The
dispatcher had no protection against the situations where the same sub-behavior is
launched over and over again while one instance is already running. There was no
reason to restrict the dispatcher because there was nothing wrong in calling the
same agent again (with different parameters for example). But when the sub-
behavior’s task is to retreat from an obstacle, for example, and it uses robot’s
wheels then chaos will result if many instances happen to run simultaneously. It
could happen in practice because of the design and implementation flaws of control
agents or rules. The agent can always implement self-protection, e.g. put (and
update) an aliveness token record to the whiteboard if there is none yet or stop at
once if there is.

4.2. Telemonitoring

The telemonitoring gateway system was very similar to the Roboswarm’s in
most of the aspects. Again, it is all about sensor readings, actuator commands, and
control in a multi-process environment, also featuring contact to the server,
reasoning, schema-less design, decoupled providers and consumers and scarce

42

resources. The basic concept of the whiteboard was borrowed from the Roboswarm
but in the end the whiteboard’s design differs well enough to take a closer notice.
The focus on the fast (near real-time) performance is no longer required and data
items tend to be more complex. This pushes the whiteboard towards a more
advanced API functionality with better support for building agents. This also
means the reduction of the number of low level details the agent developer has to
be aware of.

The problem of the data model of the Roboswarm’s whiteboard is that the
semantics of the meta-fields is not very clear. If the right set of meta-fields is
chosen then the number of triples needed to present data items can be reduced, to
one record in the ideal case. On the other hand, if a data item is encoded into many
triples, we experience duplicate meta-fields for all the records (except for the ID
field). The concept of meta-fields is rather vague because there is no explicit
border between the proper data and the meta-data. This makes it hard to choose a
good set of meta-fields. The meta-fields open up opportunities for better search and
optimizations but at the same time make the data model more confusing. The fields
can have different meanings in different situations, can be unused, can be used in
an ad-hoc manner, etc.

The data model of the telemonitoring gateway’s whiteboard discarded the use
of meta-fields in the sense they were used in robot’s whiteboard. Turning back to
the hierarchies of RDF triples is cumbersome, but can be more comprehensible for
agent developers. However, a few meta-fields still exist in the internal storage of
the whiteboard which are never presented to the agents in the APIL. On the user’s
level only triples exist. The additional fields are basically for utility purposes, as
the /D or the flag that indicates the status of the record (normal, to be deleted,
deleted). The triples are still organized into individual records which are linked by
matching contents of the subject and value fields, making it easy to store the data
into tables.

The Roboswarm’s data store inspired the creation of the next generation shared
memory database for general purpose usage. That database (a library to handle data
in shared memory) was developed by the makers of Gandalf theorem prover and is
deliberately designed with the capability of supporting the low level integration
with the reasoner, hence the name Wgandalf. It also features only one table of
records, but these are not organized into the circular buffer and no automatic
deleting (overwriting) of old data is performed. Every record can have any number
of fields and a field may contain any type of data. Not all the values were kept
directly in the fields of the record but were stored in other structures and pointed at
(as discussed in [65], reducing string comparison). User-defined columns as such
do not exist; all fields are addressed by their sequence number.

However, this database features a query interface in addition to scanning. For
serving queries there are also indexes. The scanning works in the different
direction compared to the robot’s database — starting from the oldest entry and
moving towards the newest. Locking is realized with custom-made spinlocks, the

43

responsibility of calling the locking functions at the right moments is put to the
user.

The agents in the robot connected to the memory database directly and had to
be well aware of the nuances of the database. The whiteboard of the telemonitoring
gateway followed a more systematic approach. The Wgandalf database is used here
as the underlying tool but is wrapped by the whiteboard’s API functions. The API
hides the interface of the real database from the user (agents) and performs
converting operations on the data. It is also important to notice that the API
manages locking internally and does not expose it to the agents (similarly to the
robot’s case). The overall purpose of the API was to simplify the use of triples for
the agents but it goes halfway with this goal. The agent stores and requests sets of
triples representing data items, the whiteboard helps to keep data integrity, and
manages reification, but there is no Sparql or other high-level query interface.

The API provides a small set of essential functionalities which includes reading,
writing and deleting. No update was allowed: one must remove the old record and
insert the new. All the data items consisted of one or more triples; all the fields
(subject, property, value) may contain only string. The write call replaced the
reference keys in the given set of triples with unique values before the actual
storage, thus the agent did not have to worry about the issue of accidentally
intermixing different data items. The API treated the given sets of triples
consistently, avoiding the situations where only a half of the set is written to the
whiteboard. As the storage space is limited and the whiteboard kept all the data
permanently as a regular database, the deleting function was inevitable. Triples
could be deleted one by one or in cascade (the function call internally followed the
references and deleted the given number of hierarchy levels). For optimization
reasons the deleted triples were not removed from the Wgandalf immediately but
marked for deletion (never visible to the agents).

The read call had two variations, the regular read and input buffer read. With
the regular read any triple could be fetched. The agent specified the query and got
the set of matching triples: the scanning option did not exist for the agents.
Reading operations behaved in the cascade manner by default, which means the
agent got the whole sub-tree of triples (a complete data item) with a single query.
Another major difference from the robot’s case is that the reading calls return no
pointers to the original data, i.e. the output is composed of copies, thus adding
more protection against accidental damage. The mechanism of the input buffers
(Paper 7) had the following motivation: make the command passing more reliable
from the receiver’s point of view. In the regular case the receiver has to always
keep track of both the executed commands and the commands yet to be executed.
The agent must delete the command data, keep bookmarks in its internal memory
space or keep bookmarks in the whiteboard — all have some inconveniences. The
more systematic approach is to move this functionality into the whiteboard and let
the agents just query their input buffers. The input buffers were not built aside the
triples’ model but upon this — to insert a data item to the buffer means to reify the
item and to add the encapsulating triple with the receiver’s name. The receiving

44

agent can fetch the contents of its input buffer with a simple command (evading
queries) and every item is delivered only once — as the read call returns the
contents, the whiteboard is slightly altered and the next call would not yield the
same item again. However, the data remains in the whiteboard and is perfectly
accessible via the usual query interface.

The reasoning agent of the gateway’s whiteboard (Paper 3, Paper 5) made use
of the SWI-Prolog similarly to how the [67] NoSQL database made use of the
Sicstus Prolog for query solving. Similarly to the robot’s case the stumbling block
was again the synchronization of data between the whiteboard and the reasoner. To
do it through the regular triples’ interface is inefficient, hence an alternative
interface to the whiteboard’s contents was given to the reasoner agent, making it an
intermediate entity between the whiteboard and the typical agents. At startup an
instance of Prolog is spawned and the reasoner agent maintains the connection to
this instance. The agent cyclically feeds (assert) the new data to the Prolog,
withdraws (retract) the deleted data, allows the physical deletion from the
Wgandalf and calls the rules to produce new knowledge. There is no timestamp
field in the data model, so the bookmarking is based on the /D field. Avoiding the
re-deduction of the same output was not a straightforward solution, but still
achievable — the reasoning agent gave the timestamp of the cycle to the rules (when
called) as an input parameter and the rules had the opportunity to compare the
timestamp to the timestamps found in the data items (which usually had
timestamps). The output of the rules was eventually stored in the whiteboard.

The workflow processes are more or less similar to the ones seen in the robot’s
case, but happening at a much slower pace. The sensors of the robot (e.g. wheel
odometers, sonars, cliff detectors) were outputting readings with regular intervals
many times per second. The medical measurement devices (e.g. scale, blood
pressure monitor, glucometer) on the other hand, produce output irregularly and a
couple of times per day at most. Everything depends on the behavior of the patient.
Because of these circumstances we could look at the measurements here as being
events rather than sensor values. Hence there is no need for a persistent place for
holding the latest value and all the events are saved into the whiteboard as
individual data items with as much context info as possible. The overall number of
fields per one data item representing an event is higher compared to the robot’s
records. Besides the timestamp, the sensor device name and unit there can be more
than one name for the measured phenomenon and there are usually some
proprietary outputs of the particular sensor device (e.g. flags low perfusion,
marginal perfusion, artifact of a SpO, meter; flags before meal, after meal of a
glucometer).

The control part had the role of checking the measurement data, producing
warnings and communicating the knowledge to the server. Every control agent was
specialized for dealing with certain events only. The input data was simply queried
from the whiteboard. Command passing was done via the input buffer mechanism
but had a fairly modest role: the commands were involved in the server
communication and user interaction. The dispatcher agent was not really needed,

45

since all the agents started at boot time and kept running infinitely. The server had
its own data format and communication protocol dictated by the gateway level —
this knowledge was encapsulated in the communication agent which had to convert
the messages (triples) received from the whiteboard. Data deletion was a relatively
important part of the control logic, because the whiteboard was finite and no
automatic cleanup was allowed. Basically two options existed (a) to do it centrally
by the cleanup process that should keep the number of different types of data items
in predefined limits; or (b) let the control agents remove the data items they are
managing. In reality both scenarios were used simultaneously as an agent deleted
all types of measurements and everything else was left to the agents. The gateway
featured also the user interaction apart from the robot’s case — a touchscreen was
used to show information (e.g. warnings, measurement feedback) to the patient and
gain input from the patient (e.g. confirmations, evaluations). Generally the reaction
times were accepted to be as high as several seconds — for example, when
delivering a blood pressure measurement from the sensor to the server. However,
the presence of the user interface directed the system to be near real-time as the
ease of use and usefulness are crucial elements to be considered during the design
stage [69].

46

5. CONCLUSIONS

This thesis summarizes the outcomes and carry-over of the two individual
projects, both making use of the whiteboard architecture. It explains some of the
details concerning the design and implementation of such systems. It is important
to understand that the research work is not complete in the given field and must
continue. However, the current findings suggest that there is a good potential in the
whiteboard systems as understood and defined in the context of the thesis.

There exist a lot of concepts similar to the whiteboard, hence it is important to
stress that by the whiteboard we do not mean the blackboard systems which
typically run on only one processing program (called the knowledge source) at a
time, or the official multi-agent systems where complex agents share no common
medium. The ideology of the whiteboard is to take the complexity out of the agents
and put it into the whiteboard, enabling a large number of fairly simple agents to
run simultaneously. The complexity should be avoided whenever possible, because
the small code base is an important premise for successful performance of the
whiteboard.

The very basic question of the whiteboard system is the intended usage — what
for is it built, how big is the role of the communication functionality, is the storage
aspect (called history in the thesis) present or not? Another key issue is the
presence of time constraints. Even if there are no explicit time constraints, this type
of solution — which is basically the database-as-IPC antipattern — works only if it
is possible to make the internal mechanisms fast enough for concurrent use.

We have investigated the requirements and design of the whiteboard model in
two scenarios based on the projects of a robot middleware and a telemonitoring
gateway. In the first scenario the focus is mainly on the real time performance and
a minimal API with a simple data model is satisfactory. In the second scenario we
have to work with more sophisticated data objects, which would have been tedious
without the proper APl moving the complexity into the whiteboard and out of the
agents.

The issue of the data model is especially interesting, since it combines the
questions of the internal data storage principles with the ways of accessing the data
by the user (agent). The data model is crucial in case we wish to use reasoner based
data processing, which is a feasible approach for the whiteboard system. Though
accompanied by several implementation problems, our practice has shown the
triples’ model to have good potential. Triples are relatively human-readable and
comprehensible, yet allow non-fixed schemas, which has been one of the common
goals in the applications discussed.

One cornerstone of the work of this thesis has been the exploitation of the
Linux shared memory. Linux kernel provides several methods and tools for
exchanging data between processes, like the well-known TCP/IP sockets and pipes
or less known UNIX domain sockets and Linux message queues. However, the
current experience suggests the shared memory to be the best suitable option for
building a whiteboard. We note that one must be careful with the implementation

47

aspects, especially locking, since shared memory does not have a built-in locking
mechanism.

All in all, there are numerous details which affect the design of the whiteboard
for any given application and assumedly there is no unanimous specification.
Hardware constraints matter and low-power hardware may exclude some desired
functionality, but the system can still benefit from the use of the whiteboard
architecture. As always, several choices are mutually exclusive and no silver bullet
solution should be expected.

5.1. Advantages of the whiteboard solution

There are several architectures and frameworks used in the field of multiprocess
sensor data management as discussed in the thesis. However, the majority of these
focuses on technologies different from the whiteboard. The blackboard solutions
were popular decades ago.

The whiteboard solution described in our work yields various benefits. The
primary application case for the whiteboard is a situation where the sensor agents
cannot or do not want to know the recipients of the created data items in advance.
This is an alternative to the use of sockets, either in client-server or publisher-
subscriber schema.

The whiteboard is especially suitable for the systems where the data items are
not perfectly structured. This means that the items of the same type may vary
slightly, e.g. if one sensor outputs temperature and the other one outputs
temperature with the battery voltage, then the records should be of the same type.
In case the system handles numerous different types of items and new types are
created during the system operation, then the whiteboard offers a good alternative
to SQL.

SQL is not available on all platforms, especially the embedded systems, which
cannot sustain large installations of SQL database engines. Although there exists
the Sqlite database which can be used on practically every Linux-running system,
it performs badly under parallel load. The whiteboard (based on shared memory) is
certainly more suitable for these cases.

The overall ideology of the whiteboard brings data out of the agents. By this we
mean both the control data (commands) and internal states of the agents (e.g.
active, idle, ten commands pending). This allows several interesting possibilities.
For example, we can create self-monitoring agents for the whiteboard systems that
keep an eye on the activities of the primary agents. If the data is kept in a human-
readable format, then system developers get a good insight about the actions of the
agents by simply reading the contents of the whiteboard. The entire whiteboard
represents the general state of the system and makes saving and reloading the state
easier.

The solutions discussed in the thesis assume the presence of the Linux kernel.
The kernel is the bottleneck one way or another, whether the sockets are used or
anything else. According to the current experience the shared memory based

48

whiteboard allows more efficient use of resources than the sockets. At the same
time the present solutions have small footprints — which allows them to be fitted
into embedded systems.

5.2. Summary of the contributions of thesis

The thesis studies the options for building multi-agent systems for controlling
sensors and actuators in real time or near real time situations on embedded
computing platforms. The background survey points out the popular technologies
used for similar kinds of situations and explains the differences from the
whiteboard.

The questions and options of different aspects of the whiteboard design are
discussed, including the overall architecture for the whiteboard, multiple agents
and communication of the agents. The thesis explains the motivations of choosing
between available options in different situations.

As a result, two different implementations of the whiteboard emerge in two
large projects from different domains: Roboswarm and Telemonitoring Gateway.
The case studies of the projects are used for demonstrating the issues of
implementing and using the whiteboard.

There is no single product that we refer by the term whiteboard. However, the
generalized whiteboard is a fast shared memory based data store meant for
exchanging knowledge between the agents which does not have to be explicitly
structured.

5.3. Authors’ contribution in the published articles

In the scope of the published papers 1 — 3 (listed at the beginning of the thesis,
before the introduction), the author of this thesis was responsible for designing the
software architecture and implementing the functional subsystems for RFID
sensors, guiding the Roomba robots, using the tiny Linux system added to the
Roombas along with several software components built by other authors (in-
memory database, the reasoning engine, infrastructure for accessing the server).
Overall, the author was responsible for implementing the core functionalities of the
Roomba robots as designed in the project.

In the scope of the papers 4 — 13 above, the author was responsible both for the
software architecture of the embedded devices, integrating the reasoning
subsystem, developing the communication methods between the devices and the
central server/data repository, as well as the actual implementation of the software
on the devices. The user interface aspects, the central data server/repository and the
medical aspects of the systems were in most cases not the focus of the author of
this thesis.

49

In the scope of the paper 14, the author was responsible for the robot simulation
subsystem and was actively involved in designing and evaluating the movement
strategies.

However, the intellectual input of every author of the above papers should not
be underestimated.

5.4. Future work

The research on the whiteboard solutions has many interesting follow-up
directions stemming from the details and use cases discussed. To give additional
insights we would like to name some of the most important directions.

The general use of reasoning algorithms and tools need further attention. One of
the goals here is better integration of the reasoning engine with the whiteboard’s
data. Another direction in the reasoning subtopic is to search for different
languages and corresponding tools for deriving new knowledge. The methods dealt
in this work use first order logic, yet nothing prohibits us from considering
alternative logical systems.

There is a huge potential of optimization and better performance if we can
reduce the number of queries and subqueries. Therefore, further investigation is
needed to find clever ways to link the data items and/or make the query
mechanisms more efficient.

The whiteboard implementations we have presented rely on a single core tool.
As long as it remains hidden from the user, the internal mechanism can basically
make use of several tools. Suppose the standard RDF is used to encode the data
items. Then it makes sense to add RDF tools and languages to the whiteboard for
parsing and querying.

Another possible topic for the future is the distribution of the whiteboard. The
architecture presented in this thesis does not consider the possibility of keeping the
same whiteboard distributed on different machines. It should be noted that the
problems of locking would become more complex and the distributed solution with
several services performed over the network will be significantly slower than the
performance of the single whiteboard running on shared memory. Nevertheless, for
several use cases it will be useful or necessary to have the network services
integrated into the whiteboard.

50

REFERENCES

[1] B. Hayes-Roth. A Blackboard Architecture for Control. Artificial
Intelligence 26. Pages 251-321. 1985.

[2] Daniel D. Corkill. Blackboard and MultiAgent Systems & the Future. In
Proceedings of the International Lisp Conference. 2003,

[3] D. D. Corkill. Blackboard systems. Al Expert, 6(9). Pages 40-47. 1991.

[4] Rick Cattell. Scalable SQL and NoSQL Data Stores. ACM SIGMOD
Record archive, Volume 39, Issue 4. Pages 12-27. 2010.

[5] Serge Abiteboul. Querying Semi-Structured Data. Database Theory —
ICDT '97 Lecture Notes in Computer Science, Volume 1186. 1997.

[6] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen,
Dawn Wilkins. A comparison of a graph database and a relational database: a data
provenance perspective. In ACM SE Proceedings of the 48th Annual Southeast
Regional Conference. 2010.

[7] Liliana Ferreira and Pedro Ambrosio. Towards an Interoperable Health-
Assistive Environment: the eHealthCom Platform. Proceedings of the In
Proceedings of the IEEE-EMBS International Conference on Biomedical and
Health Informatics. Pages 930 — 932. 2012.

[8] Yan Huang, Huiru Zheng, Chris Nugent, Paul McCullagh, Norman Black. A
Decision Support System for Self-Management of Chronic Conditions. AMA-
IEEE Medical Technology Conference. 2011

[9] Kovac Miroslav, Lehocki Fedor, Valky Gabriel. Multi-Platform
Telemedicine System for Patient Health Monitoring In Proceedings of the IEEE-
EMBS International Conference on Biomedical and Health Informatics. Pages 127
—130. 2012.

[10] Jon Noronha, Eric Hysen, Haoqi Zhang, Krzysztof Z. Gajos. PlateMate:
Crowdsourcing Nutrition Analysis from Food Photographs. In UIST 'l1
Proceedings of the 24th annual ACM symposium on User interface software and
technology. Pages 1-12. 2011.

[11] Michael Compton, Cory Henson, Laurent Lefort, Holger Neuhaus, and
Amit Sheth. A Survey of the Semantic Specication of Sensors. 2nd International
Workshop on Semantic Sensor Networks. A workshop of the 8th International
Semantic Web Conference. 2009.

[12] N.H. Lovell, B.G. Celler, J. Basilakis, F. Magrabi, K. Huynh, M. Mathie.
Managing chronic disease with home telecare: a system architecture and case
study. In Proceedings of The Second Joint EMBS-BMES Conference (Engineering
in Medicine and Biology with Annual Fall Meeting of the Biomedical Engineering
Society). Pages 1896 — 1897. 2002.

[13] George W. Beeler. HL7 Version 3—An object-oriented methodology for
collaborative standards development. International Journal of Medical Informatics,
48. Pages 151-161. 1998.

[14] R. H. Dolin, L. Alschuler, F. Behlen, P. V. Biron, S. Boyer, D. Essin, L.
Harding, T. Lincoln, J. E. Mattison, W. Rishel, R. Sokolowski, J. Spinosa, J. P.

51

Williams. HL7 document patient record architecture: an XML document
architecture based on a shared information model. In Proc AMIA Symp. Pages 52—
56. 1999.

[15] Nicholas R. Jennings and Michael Wooldridge. Agent-Oriented Software
Engineering. Artificial Intelligence, Volume 117. Pages 277 — 296. 2000.

[16] D. Rudenko and A. Borisov. An Overview Of Blackboard Architecture
Application For Real Tasks. Scientific Proceedings Of Riga Technical University.
2007.

[17] Tim Finin, Yannis Labrou, James Mayeld. KQML as an agent
communication language. MIT Press. 1995.

[18] Amit K. Chopra and Munindar P. Singh. An Architecture for Multiagent
Systems: An Approach Based on Commitments. In Proceedings of the AAMAS
Workshop on Programming Multiagent Systems. 2009.

[19] B.P. Gerkey, R.T. Vaughan, K. Stoy, A. Howard, G.S. Sukhatme, M.J.
Mataric. Most valuable player: a robot device server for distributed control. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems. Pages 1226-1231. 2001.

[20] B. Gerkey, K. Stoy, R. T. Vaughan. Player robot server. Tech. Rep. IRIS-
00-392. Institute for Robotics and Intelligent Systems, School of Engineering,
University of Southern California. 2000.

[21] B.P. Gerkey, R.T. Vaughan, A. Howard. The Player/Stage Project: Tools
for Multi-Robot and Distributed Sensor Systems. In Proceedings of the
International Conference on Advanced Robotics. Pages 317-323. 2003.

[22] Toby H. J. Collett and Bruce A. Macdonald. Player 2.0: Toward a practical
robot programming framework. In Proc. of the Australasian Conference on
Robotics and Automation. 2005.

[23] Alex Brooks, Tobias Kaupp, Alexei Makarenko, Stefan Williams. Towards
Component-Based Robotics. In Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems. Pages 163 — 168. 2005.

[24] Sang Chul Ahn, Jin Hak Kim, Kiwoong Lim, Heedong Ko, Yong-Moo
Kwon, Hyoung-Gon Kim. UPnP Approach for Robot Middleware. In Proceedings
of the IEEE International Conference on Robotics and Automation. Pages 1959 —
1963. 2005.

[25] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, Andrew Y. Ng. ROS: an open-source Robot
Operating System. ICRA Workshop on Open Source Software. 2009.

[26] Michael Montemerlo, Nicholas Roy, Sebastian Thrun. Perspectives on
Standardization in Mobile Robot Programming: The Carnegie Mellon Navigation
(CARMEN) Toolkit. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems. Pages 2436-2441. 2003.

[27] Hans Utz, Stefan Sablatndg, Stefan Enderle, Gerhard Kraetzschmar.
Miro—Middleware for Mobile Robot Applications. IEEE Transactions on
Robotics and Automation, Vol. 18, No. 4. 2002.

52

[28] Y. Ono, H. Uchiyama, W. Potter. A Mobile Robot For Corridor
Navigation: A Multi-Agent Approach. In Proceedings of the 42nd annual
Southeast regional conference. Pages 379 — 384. 2004.

[29] Sebastian Petters, Dirk Thomas, Oskar von Stryk. RoboFrame - A Modular
Software Framework for Lightweight Autonomous Robots. In Proc. Workshop on
Measures and Procedures for the Evaluation of Robot Architectures and
Middleware of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. 2007.

[30] Ayssam Elkady and Tarek Sobh. RoboticsMiddleware: A Comprehensive
Literature Survey and Attribute-Based Bibliography. Journal of Robotics. Hindawi
Publishing Corporation. 2012.

[31] Nader Mohamed, Jameela Al-Jaroodi, Imad Jawhar. Middleware for
Robotics: A Survey. In Proc. of The IEEE Intl. Conf. on Robotics, Automation,
and Mechatronics. Pages 736-742. 2008.

[32] F. Magrabi, N.H. Lovell, K. Huynh, B.G. Celler. Home telecare: system
architecture to support chronic disease management. In Proceedings of the IEEE
23rd Annual International Conference of Engineering in Medicine and Biology
Society. Pages 3559 — 3562. 2001.

[33] Eunme Cha, Jeffrey Wood, Joseph Finkelstein. Using Gaming Platforms
for Telemedicine Applications: A Cross-Platform Comparison. In Proceedings of
the IEEE-EMBS International Conference on Biomedical and Health Informatics.
Pages 918 —921. 2012.

[34] P. Hanék, N. Kiss, T. Kovacshazy, B. Pataki, M. Salamon, Cs. Seres, Cs.
Téth, J. Varga. System Architecture for Home Health and Patient Activity
Monitoring. In IFMBE Proceedings of the 5th European Conference of the
International Federation for Medical and Biological Engineering, Volume 37.
Pages 945-948. 2012.

[35] Robert Love. Get on the D-BUS. Linux Journal, Issue 130. 2005

[36] F. Paganelli, D. Giuli. An Ontology-based Context Model for Home Health
Monitoring and Alerting in Chronic Patient Care Networks. In Proc. of
International Conference on Advanced Information Networking and Applications
Workshops. Pages 838 — 845. 2007.

[37] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. The Hearsay-
IT speech-understanding system: Integrating knowledge to resolve uncertainty.
Computing Surveys, 12(2). Pages 213-253. 1980.

[38] H. P. Nii, E. A. Feigenbaum, J. J. Anton, and A. J. Rockmore. Signal-to-
symbol transformation: HASP/SIAP case study. Al Magazine, 3(2). Pages 23-35.
1982.

[39] C. Metzner, L. Cortez, D. Chacin. Using A Blackboard Architecture In A
Web Application. The Journal of Issues in Informing Science and Information
Technology, Volume 2. Pages 743-756. 2005.

[40] R. van Liere, J. Harkes, W. de Leeuw. A Distributed Blackboard
Architecture For Interactive Data Visualization. In Proceedings of the conference
on Visualization. Pages 225 — 231. 1998.

53

[41] Michael Wooldridge and Paolo Ciancarini. Agent-Oriented Software
Engineering: The State of the Art. In Agent-Oriented Software Engineering,
Volume 1957. Pages 55-82. 2001.

[42] Yoav Shoham. Agent-oriented programming. Artificial Intelligence,
Volume 60. Pages 51-92. 1993.

[43] Roberto A. Flores-Mendez. Towards the Standardization of Multi-Agent
Systems Architectures: An Overview. ACM CROSSROADS STUDENT
MAGAZINE, Volume 5. Pages 18—24. 1999.

[44] Michael Wooldridge, Nicholas R. Jennings, David Kinny. A Methodology
for Agent-Oriented Analysis and Design. In Proceedings of the third annual
conference on Autonomous Agents. Pages 69 — 76. 1999.

[45] Henk W.M. Gazendam and René J. Jorna. Theories about architecture and
performance of multi-agent systems. Tech. rep., SOM research report 98A02,
Groningen, NL. 1998.

[46] Onn Shehory. Architectural Properties of MultiAgent Systems. Technical
Report CMU-RI-TR-98-28. The Robotics Institute, Carnegic Mellon University.
1998.

[47] John R. Graham, Keith S. Decker, Michael Mersic. DECAF - A Flexible
Multi Agent System Architecture. Autonomous Agents and Multi-Agent Systems,
7(1-2):727. 2003.

[48] V. Julian and V. Botti. Developing real-time multi-agent systems.
Integrated Computer-Aided Engineering, Vol. 11. 10S Press. Pages 135-149. 2004.

[49] Edmund H. Durfee, Jeffrey S. Rosenschein. Distributed Problem Solving
and Multi-Agent Systems: Comparisons and Examples. AAAI Technical Report
WS-94-02. 1994.

[50] P D O’Brien and R C Nicol. FIPA — towards a standard for software
agents. BT Technology Journal, Volume 16, Number 3. Pages 51-59. 1998.

[51] Yannis Labrou. Standardizing Agent Communication. Mutli-agents
systems and applications. Pages 74 — 97. 2001.

[52] Jose M. Vidal and Paul Buhler. A Generic Agent Architecture for
Multiagent Systems. USC CSCE. 2002.

[53] Pablo R. Fillottrani. The multi-agent system architecture in SEWASIE.
Journal of Computer Science & Technology, Vol. 5, no. 4. Pages 225-231. 2005.

[54] John Hunt. Blackboard Architectures. JayDee Technology Ltd., Corsham,
UK. 2002.

[55] Simon Parsons, Tim Brown, Simon King, E. H. Mamdan. A blackboard
system for active decision support in configuring telecommunication services. In
Proceedings of the 13th International Conference on Artificial Intelligence, Expert
Systems and Natural Language. 1993.

[56] Marc Cavazza, Steven J. Mead, Alexander I. Strachan, Alex Whittaker. A
Blackboard System for Interpreting Agent Messages. From: AAAI Technical
Report SS-01-02. 2001.

54

[57] Christian Boitet and Mark Scligman. The "Whiteboard" Architecture: A
Way to Integrate Heterogeneous Components of Nlp Systems. In Proceedings of
the 15th conference on Computational linguistics, Volume 1. Pages 426-430. 1994,

[58] Jing Dong, Shanguo Chen, Jun-Jang Jeng. Event-Based Blackboard
Architecture for Multi-Agent Systems. In Proceedings of International Conference
on Information Technology: Coding and Computing. Pages 379 — 384. 2005.

[59] Kwame Wright, Kartik Gopalan, Hui Kang. Performance Analysis of
Various Mechanisms for Inter-process Communication.

[60] Malcolm D. Brown and Robert B. Fisher. A Distributed Blackboard
System for Vision Applications. University of Edinburgh. 1989.

[61] Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels Nes,
Stefan Manegold. Column-store support for RDF data management: not all swans
are white. In Proceedings of the VLDB Endowment, Volume 1, Issue 2. Pages
1553-1563. 2008.

[62] Y. Papakonstantinou, H. Garcia-Molina, J. Widom. Object exchange
across heterogeneous information sources. In Proceedings of the Eleventh
International Conference on Data Engineering. Pages 251 — 260. 1995.

[63] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, Janet L.
Wiener. The Lorel Query Language for Semistructured Data. International Journal
on Digital Libraries, Volume 1, Number 1. Pages 68-88. 1997.

[64] Steve Harris. SPARQL query processing with conventional relational
database systems. Web Information Systems Engineering — WISE Workshops
Lecture Notes in Computer Science, Volume 3807. Pages 235-244. 2005.

[65] Stephen Harris, Nicholas Gibbins. 3store: Ecient Bulk RDF Storage. In
Proc. of PSSS’03. Pages 1-15. 2003.

[66] Ching-Long Yeh and Ruei-Feng Lin. Design and Implementation of an
RDF Triple Store. In Proceedings of the First Workshop of Digital Archive
Technology. Taipei, Taiwan. 2002.

[67] Wolfgang Schramm, Harald Kostinger, Klaus Bayrhammer, Michael
Fiedler and Thomas Grechenig. Developing a Hospital Information System
Ecosystem for Creating new Clinical Collaboration Methodologies. In Proceedings
of the IEEE-EMBS International Conference on Biomedical and Health
Informatics. Pages 101 — 103. 2012.

[68] Obinna Anya, Hissam Tawfik, Atulya K. Nagar, Khalid M. Lootah. A
Framework for Practice-Centred Awareness and Decision Support in Pervasive E-
Health. In Proceedings of the IEEE-EMBS International Conference on
Biomedical and Health Informatics. Pages 937 — 940. 2012.

[69] Abdul Hakim H. M. Mohamed, Hissam Tawfik, Lin Norton, Dhiya Al-
Jumeily. Does e-Health technology design affect m-Health informatics acceptance?
A case study. In Proceedings of the IEEE-EMBS International Conference on
Biomedical and Health Informatics. Pages 968 — 971. 2012.

55

Appendix 1 - Interprocess communication

There are several possible solutions available for transferring data from one
Linux process to another. It is quite clear that different technologies yield diverse
performance characteristics and have unlike interfaces. But it is hard to tell the
exact suitability of the technologies for the given application because the
performance depends on the actual usage patterns by the application. Therefore
some comparative tests could prove useful. The following gives a short overview
of the related experiments performed while designing the whiteboard.

The most popular method of choice for transferring data is TCP/IP sockets.
However, there are alternative possibilities similar to the sockets, namely pipes,
queues and UNIX domain sockets. To give a reference point, we include some
database engines into our tests - Sqlite and PostgreSQL — storing data in files and
the QDBM key-value base also using files for storage. From the set of tools
utilizing the shared memory we examine the Roboswarm database and Wgandalf.

All these tools have different interfaces (APIs) which makes the straightforward
comparison impossible. The UNIX domain sockets, TCP/IP sockets and pipes
allow reading and writing byte streams. The message queues operate in terms of
structures. The SQL databases can be used for transferring data by inserting and
deleting records. The custom-made shared memory databases have their own
commands for the same purposes.

Hence, the comparison experiment was designed in the simplest possible way to
satisfy the most general common functionality of all the tools. The main idea was
to test message passing between Linux processes and measure how much time it
takes for the message (some piece of knowledge) to travel from the source to the
destination. The time mesaured includes also the composition on the sender’s side
and decoding the raw message on the receiver’s side. In other words, it is the time
spent to get the piece of knowledge from end point to end point.

Every message contains the same kind of information. The message has four or
five fields. There is one field for the sequentially increasing ID number, two fields
for the timestamp (seconds and microseconds), and the ballast field. The fifth field
is the channel identification which is needed, for example, by shared memory
databases while the sockets establish the connection between the sender and the
receiver beforehand. This field has nothing to do with the content of the message.

The basic scenario is as follows: the sender process generates a new message
and checks the current timestamp with the microseconds precision; then it forms
and sends the message according to the protocol of the tool (e.g. SQL statement or
byte sequence) and embeds the timestamp; the receiver waits or polls for the
incoming messages and parses them on arrival; after that it also checks the current
system timestamp. By subtracting the timestamp of the generation of the message
(parsed from the contents) from the timestamp of the reception of the message the
receiver process determines the “time of flight” for every single message which it
then aggregates to find the average and worst case values. Unlike the socket-like

56

tools, the receiver built upon the databases has to delete the processed messages to
avoid flooding the database. This is done as a part of the parsing phase.

There are some available parameters for adjusting the test details. By varying
the values of the parameters we can run the sender and receiver programs under
different conditions to get a better coverage of the domain. To name the basic
parameters, the number of parallel channels determines how many sender-receiver
pairs are executed simultaneously. The number of tests tells the programs how
many messages they have to transfer. The sleep between two messages affects the
frequency of message transfer. The ballast is the size of the ballast field. Some
parameters are tool specific, for example whether to run the database on RAM disk
or HDD, to use queries or scanning, to turn on or off Sqlite pragmas, etc.

The majority of the tests were conducted on an average laptop PC running
Linux in a virtual machine. Additionally, dome different platforms were used as
well. The processor of the main PC is Intel Core 2 Duo at 2,26GHz. Different
Linux installations were used: Ubuntu 8 with kernel 2.6.24, Ubuntu 10 with kernel
2.6.32, and Kubuntu 12 with kernel 3.2.0 — but as there were no remarkable
differences between these we will not indicate the kernel version on the following
charts.

All the time values in the tables and charts are in microseconds (us). For every
test there are two types of values: the average and the maximum. These are the
final results of two levels of aggregation. At first, a receiver program measures
transfer times for individual messages (say 5000, as in the Table 1) and calculates
the average time plus the maximum time. Observe that there are many pairs of
senders and receivers running simultaneously in the tests (called parallel channels,
e.g. 5 in Table 1). After all the parallel copies of the test programs have finished
and outputted their results, the overall average is calculated from the individual
averages and the same is done for the maximum. These values appear in the tables.
The global minimum value was collected in the same manner, but as it does not
yield much information, it is is omitted from the tables. The minimum values were
very small and static in the majority of the cases.

In the tables /PC (Interprocess Communication) stands for UNIX domain
sockets. TCP stands for the ordinary TCP/IP sockets on the loopback interface
(“localhost”). By Roboswarm we mean the custom made shared memory database
used in the Roboswarm project.

A few notes on the sleep parameter: this value is kept fairly small and always
the same in all tests presented. The reason is our interest to benchmark the tools
under tight conditions. If we were to consider low frequency data streams with no
time constraints, all the tools would perform adequately. Omitting the sleep
completely and letting the operating system’s scheduler to solely manage the
racing, on the other hand, gave worse results, especially when the number of
parallel channels was high.

In the Table 1 the basic proportions of the tools are clearly draw out. The shared
memory tools are significantly faster than the classical sockets. The Linux message
queues give the best results, but not so much better when compared to the shared

57

memory databases. The problem with the queues is that the senders and receivers
must use predefined structures and the length of the message has to be known by

both.

Number of tests: 5000
Sleep: 1000 us
Ballast: 30 bytes
Parallel channels: 5
Tool Average (us) Maximum (us)
Pipe 292 672 558 068
IPC 108 371 232232
TCP 112 645 248 741
Roboswarm 13772 96 745
Queue 1463 26 592
Wgandalf 12 668 308 231

600 000

500 000

400 000

300 000

mavg
200 000 B — max
100 000 B —
Q\Q?' N S 9{@‘@ oe"e szb’b{\
& N

Table 1 — Test results for the shared memory and socket-like tools

Increasing the ballast size has an effect on the tools based on byte streams like

the pipes and sockets as shown in the Table 2.

58

Tests 1000, sleep 1000, parallel channels 5
ballast 100 ballast 200 ballast 500
Tool avg max avg max avg max
Pipe 127650 | 278184 | 392292 | 607539 | 395545 487567
IPC 194157 | 431972 | 280108 | 463088 | 346823 614854
TCP 176049 | 385762 | 416376 | 789639 | 1080481 2075322
Robosw. 3410 | 51540 2370 | 22387 2505 32290
Queue 1153 15470 1123 17164 1333 19222
Wgandalf 1796 | 21348 2032 | 20232 2715 25263
2500000
2000000
1500000
1000000
Havg
500000 1 max
ollllllll
25 ESS SROGESS BEGESS
SSgEfT sSobsif sofEgs
o 73 © 7 @ 17 C
29S2cf QRREcE BRRESS
< ™ 3 < 3 < 3
8 — 8 ~ 8 n
— o~ n

Table 2 — The effect of the ballast size

The large ballast and the high number of parallel channels increase load, thus
driving the message transfer times up. The bottleneck appears to be the kernel,
especially for the socket-like tools, including IPC which is designed for such types
of tasks. The Table 3 shows that the socket-like tools respond to the rise of
parallelism more or less linearly. Shared memory tools perform well. Notice that
Wgandalf gives better results with smaller loads than the Roboswarm’s database
but experiences problems under heavy use. This is especially the case with the
maximum value — the worst case message delivery time from the source to the
destination. 20 channels mean that there are 20 receiver processes and 20 sender
processes, running really fast paced. In real life situations there is usually no need
for a so high number of high-speed channels.

59

Tests 1000, sleep 1000, ballast 30
10 channels 20 channels 30 channels
Tool avg max avg max avg max
Pipe 236104 | 404068 | 1027645 | 1788553 | 1526335 | 3001597
IPC 58748 | 146407 615494 | 1822617 965838 | 2191074
TCP 183633 | 424815 | 1062106 | 1966551 | 1789346 | 3467861
Roboswarm 4939 | 40619 48182 571396 174902 965498
Queue 706 | 17012 2457 32010 6246 67347
Wgandalf 3160 | 30042 4405 19430 381002 | 1553501
4000000
3500000
3000000
2500000
2000000 ——
1500000 —— — = ave
po | ff
0'.'....1...7}'.].
& 9 2 9 e 9
S <]

Table 3 — Increasing load by adding more parallel instances

The Table 4 introduces three additional tools, namely the Sqlite database,
PostgreSQL database and QDBM. Sqlite was run on ramdisk, PostgreSQL both on
ramdisk and regular hard drive. For Postgres the ramdisk yields 12% to 30% faster
times when compared to standard disk files. This effect, however, does not matter
much since the performance numbers are far from the previously discussed tools.
Sqlite is not meant for heavy parallel use and thus gives the worst results in the
context of these tests. QDBM comes close to the queues which is a rather
encouraging finding. QDBM is a key-value database and uses a hash table. When
we would have to use more complex entries instead of the simple test messages, it
would need a lot of additional program code (in a whiteboard implemented on top
of the QDBM) and is expected to lose its advantages.

60

Tests 5000, sleep 1000, ballast 30, channels 5
Tool avg max
Pipe 142 933 672916
IPC 130 333 612 483
TCP 232134 1513342
Roboswarm 3010 25424
Queue 1534 12 532
Wgandalf 5268 19 964
Sqlite 9277 068 20 995 476
Postgres 5939 256 8385902
QDBM 1727 15 849

Table 4 — Adding Sqlite, Postgres and QDBM

The Table 5 shows the results of the same tests on an embedded hardware —
Chumby media display, kernel 2.6.28, Marvell Mohawk 800MHz processor.

Tests 2000, sleep 1000, ballast 30, channels 5

Tool avg max

Pipe 928 713 1409 113
IPC 490 104 894 036
TCP 1061330 1638 136
Roboswarm 15275 167 874
Queue 252 7871
Wgandalf 1873 28 564

1800 000
1600 000
1400 000
1200 000
1000 000

800 000

600 000

400000 -
200000 -
&

o

Havg

e AN
N
&£ &F

Table 5 — Benchmark results on Chumby

61

While the intended target architectures are the low-power Chumby-like
platforms, it is still interesting to have some insights for more powerful hardware.
The Table 6 shows the test results got from the same virtual machine that was used
before, but copied now onto the physical machine with a Core 17 3720QM
processor. Notice that the parameters are the same as in the Table 5. The familiar
patterns are still visible while the differences between tools are much smaller.
Surprisingly, Sqlite outperforms Postgres.

Tests 2000, sleep 1000, ballast 30, channels 5

Tool avg max

Pipe 124 326 484 648
IPC 5144 22271
TCP 13 639 58 739
Roboswarm 920 20 155
Queue 900 12 291
Wgandalf 2093 15612
Sqlite 5170 23316
Postgres 166 683 285173

600000

500000

400000 +—

300000 +—

200000 +— B

o _:I: t
0 -~ T - T T T T T
&

g \Qe \Q(’ /\Cz k@

Table 6 — On high-performance hardware, 17 3720QM

62

Appendix 2 — Scalability of tuples and triples

In this appendix we will present test results of another experiment, this time
focusing on the Wgandalf shared memory database as the underlying tool. The
basic scenario and measuring policies are exactly the same as described in the
previous appendix. The idea of the current test is to benchmark the ability of the
tool to withstand subqueries. Hence we measure two different cases (a) encoding
all n attributes of the message into a single Wgandalf record (tuple), and (b)
creating n separate records, each with three fields (triples).

It is clear that the schema using tuples is more efficient, both performance- and
memory-wise. The schema using triples requires more work on the sender side and
requires performing a tedious procedure of subqueries to collect all the pieces of
the original message on the receiver’s side. On the other hand, the tuples do not
possess the flexibility for extending the existing data objects. The tests try to
compare the two schemas in the real situation and assess the actual handicap of the
triples.

The mechanisms of test and data aggregation are the same as in the previous
appendix. The same holds for the test platforms on which the programs were
executed. However, there is one thing that needs to be clarified: the meaning of the
ballast parameter is changed. While previously it meant a string of n bytes, now it
means 7 attributes. For every attribute there are two fields saved into the record:
the name of the attribute and the value. The message has the number of attributes
indicated by ballast and four extra attributes which have no explicit name field:
message 1D, channel ID, seconds, and microseconds. For example, the ballast 10
means that the tuple type message has 24 fields (4 extra fields and 2 fields per 10
ballast attributes), the triples type message has 14 records (4 triples for extra
attributes, 1 triple for every ballast attribute, including name and value).

To get the idea of the worst case times there are no special optimization tricks
used in the case of triples schema. All the records have exactly three fields and
triples are linked through the contents. Technically it would be possible to create
more fields to records (which are hidden from the user) and use direct pointers to
link records. However, the purpose of the given test is to let the tool run in the
simplest setup and handle an extensive amount of subqueries.

The Table 1 presents the test results with some combinations of parameters in
the terms of absolute values. The Table 2 does the same in terms of ratio values.
Again, with small loads (not much parallelism) the triples schema does not cause
serious problems by falling far behind the tuples. But when the difference occurs, it
can be of the magnitude of several hundred times. In the Table 2 the numbers are
computed by dividing the average triples value by the average tuples value at the
same parameter values. In some rare cases the ratio appears to be below one, which
means that the triples schema gave faster result than the tuples schema. This does
not, however, change the overall picture.

The Table 3 and the Table 4 give the benchmark results for Chumby and a high-
performance platform, respectively. As expected, with lots of processing power

63

there is no penalty when using triples and in the case of low processing power the
extensive subquerying severely handicaps the performance.

Tests 1000
Sleep |Ballast | Channels | Type Avg (us) Max (us)
500 3 | tuples 2129 27 938
500 3 | triples 3178 9162
500 20 5 | tuples 2015 12 450
500 20 5 | triples 10 437 126 508
500 20 10 | tuples 4285 53 554
500 20 10 | triples 1019992 3923 560
1000 10 5 | tuples 1481 25 430
1000 10 5 | triples 3654 12 706
1000 20 10 | tuples 2137 7 341
1000 20 10 | triples 60 196 517 931
Table 1 —Test results on Core 2 Duo
1000 tests | 1000 tests 1000 tests
Ballast Channels | 500 sleep 1000 sleep 1500 sleep
2 3 1,5 5,0 4,0
5 3 12 12 1,4
10 3 1,7 0,9 0,9
20 3 1,6 1,5 1,4
5 32 1,6 1,3
5 22 3.9 2.4
10 5 52 2,5 0,5
20 5 5,2 0,9 1,1
2 10 8,2 3,8 32
10 39,8 52 8,6
10 10 425,2 6,5 6,2
20 10 238,0 28,2 12,3

Table 2 — Triples compared to tuples (Core 2 Duo)

64

Tests 1000,

channels | type avg max
sleep 1000,
ballast 10 5 | tuples 45515 129 116
5 | triples 2 033 755 12 484 603
10 | tuples 64 409 419 950
10 | triples 24 382 047 75 744 921
Table 3 — On Chumby
Tests 1000, channels | type avg max
sleep 1000,
ballast 10 5 tuples 1616 5350
5 | triples 2679 14 997
10 | tuples 2 835 9974
10 | triples 44212 139 898

Table 4 — On Core 17

65

Elulugu

Nimi

Siinniaeg ja -koht
Aadress

Telefon

e-post

Haridus:

1991 — 2003
2003 — 2008

Keeleoskus:

Eesti
Inglise

Teenistuskaik:

Alates 2006

Enar Reilent

22. august 1984, Tallinn, Eesti
Metsa 19, 11616 Tallinn
+37255938878
e.reilent@gmail.com

Tallinna Nomme Glimnaasium
Tallinna Tehnikaiilikool, informaatika magister

Emakeel
Korgtase

Eliko Tehnoloogia Arenduskeskus,
teadur ja tarkvarainsener

Teadust66 pohisuunad:

Multiprotsess-arhitektuurid kontrollerites;
Uhismilul to6tavad andmebaasid;

Loogika ja reeglimootorite kasutamine juhtimisel;
Sensori mddteandmete semantiline kirjeldamine.

66

Curriculum Vitae

Name Enar Reilent

Born August 22, 1984, Tallinn, Eesti
Aadress Metsa 19, 11616 Tallinn
Phone +37255938878

e-mail e.reilent@gmail.com
Education
1991 — 2003 Tallinn Némme Upper Secondary School
2003 — 2008 Tallinn University of Technology,
MSc in Computer Science
Language skills
Estonian native language
English advanced level

Professional employment

Since 2006 Eliko Competence Centre,
researcher and software engineer

Scientific research topics
Multiprocess software architectures for embedded systems;
Shared memory database systems;

Formal logic and reasoning engines for control;
Semantic descriptions of sensor data.

67

PAPER 1

T. Tammet, J. Vain, A. Puusepp, E. Reilent, A. Kuusik. RFID-based
communications for a self-organizing robot swarm. In: Proceedings Second IEEE
International Conference on Self-Adaptive and Self-Organizing Systems, SASO
2008: 20-24 October 2008, Venice, Italy: (Toim.) Brueckner, Sven; Robertson,
Paul; Bellur, Umesh. Los Alamitos, Calif.: IEEE Computer Society, 2008, 45 - 54.

69

Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems

RFID-based Communications for a Self-Organising Robot Swarm

Tanel Tammet, Jiiri Vain,
Andres Puusepp, Enar Reilent
Department of Computer Science,
Tallinn University of Technology
Ehitajate tee 5, 19086 Tallinn, Estonia
tammet @staff.ttu.ee, vain@ioc.ee,
e.reilent@gmail.com, anduoma@hot.ee

Abstract

We investigate the practical questions of building a self-
organising robot swarm, using the iRobot Roomba cleaning
robot as an experimental platform. Our goal is to employ
self-organisation for enhancing the cleaning efficiency of a
Roomba swarm. The implementation uses RFID tags both
for object and location-based task recognition as well as
graffiti- or stigmata-style communication between robots.
Easily modifiable rule systems are used for object ontolo-
gies and automatic task generation. Long-term planning
and central coordination are avoided.

1 Introduction

The concept of a robot swarm denotes a large number of
relatively simple physically embodied agents designed in
a way that the desired collective behaviour emerges from
the local interactions of agents and the interactions be-
tween the agents and the environment. The swarms are
meant to perform a wide range of tasks which are infea-
sible to accomplish by a single robot. Their application
ranges from simple cleaning tasks to exploration of large
unknown areas, surveillance, rescue, coordinated weight
lifting, minesweeping etc. where intervention from human
operators is minimized.

The goal of a swarm mission can be considered gener-
ally as an integrated service provided by the swarm mem-
bers collectively over a given period of time. Since swarms
typically act in a dynamic and partially observable environ-
ment, the service requires repetitive and coordinated action
by the swarm members throughout the mission.

The overall goal of our project is to develop simple and
low-cost technologies for making both single robots and
swarms of robots more intelligent. We use the dynamic

978-0-7695-3404-6/08 $25.00 © 2008 IEEE
DOI'10.1109/SAS0.2008.62

45

Alar Kuusik
Department of Electronics,
Tallinn University of Technology
Ehitajate tee 5, 19086 Tallinn, Estonia
kalar@va.ttu.ee

cleaning problem [1], [7] as a testbed for the developed
knowledge architecture, focusing on making swarm clean-
ing more efficient.

The crucial part of the project is to achieve the efficient
cooperative behaviour of robots without any central coordi-
nation and planning.

That, again, requires propagation of understandable and
reusable information among the robots which may be differ-
ent in hardware and software. The target goal can be called
“knowledge centric” architecture approach focusing on uni-
formal (or easily convertible) on-robot and inter-robot data
management.

‘We use ordinary passive RFID chips for marking objects
like chairs, walls, doors. This is significantly cheaper and
more flexible than using cameras on robots for object recog-
nition. The same RFID chips on objects are also used by
the robots to leave messages to other robots. The solution
is inspired by ants’ communication using pheromone trace
known as stigmery. The usage of RFID tags reduces the
communication overhead related with coordination signifi-
cantly [9].

We use a popular iRobot Roomba cleaning robot and
attach a tiny ARM-based Gumstix computer (500 MIPS
computing power) using a BusyBox 2.6 Linux distribu-
tion (without real-time capabilities) and a stock RFID
reader/writer on the Roomba. The attached computer takes
over control of the Roomba. While a standard Roomba is
fairly simple-minded, will clean places recently cleaned and
does not understand that some places should be avoided - or
vice versa, cleaned often - our system adds necessary intel-
ligence.

First, Roombas understand object descriptions and sim-
ple messages written on RFID chips by humans: like "go
away”, “fragile”, ’clean here”, “'this is a chair” etc. When
the robot notices an RFID chip ahead, it will read its content
and behave accordingly, following the configurable rules on
board. The rule engine uses ontologies and allows the robot

. IEEE
@ computer
soclety

to understand, for example, that chair is a furniture and you
can probably go around furniture.

Second, Roombas write their own messages on RFID
chips. For example, when the robot notices an RFID tag
while cleaning, it will write on the tag that it was cleaning
there at that particular time. Next time when it comes near
the same tag, it will not clean the place, unless enough time
has passed. What is more important, when we use a whole
swarm of Roombas for cleaning, all the other Roombas will
also avoid cleaning on this marked up place for some time,
avoiding wasted work. Similar optimizations are achievable
for spreading our swarm members to different rooms, map-
ping the area, etc.

2 Robot control architecture

The architecture for the robot control is based on a lay-
ered multi-agent system, with agents implemented as con-
tinuosly running processes, and contains three layers (figure

1):

e The sensor-actuator access layer dedicated to commu-
nication with robot control hardware. The lowest part
of robots sensor-actuator layer is executed by the iCre-
ate onboard microcontroller. The external service time
of this microcontroller was set to 20ms as shortest al-
lowed period. Tests showed that the core agent com-
munication solution did not add any additional men-
tionable response delays.

e The control layer that includes usual short-term plan-
ning and behavioural layer tasks. Merging two tradi-
tionally separate layers is reasonable due to the fact
that the swarm robots (e.g. cleaning devices, room pa-
trols) are relatively simple and the number of different
behaviours is rather limited.

e The knowledge layer that targets reasoning (deriving
new information from acquired data), communicating
with other robots (using RFID tags) and the optional
central server (using WIFL, if available).

The layered architecture is built around a fast and trans-
parent RDF database implemented in shared memory. The
RDF database realizes a core for interprocess communica-
tion of several on-board agents (processes), in particular
the Main Control Agent (Central Control Process, control
layer), Sensor Agent, Actuator Agent (sensor-actuator ac-
cess layer), Reasoner Agent (knowledge layer). Moreover,
the RDF database can manage the inter-robot communica-
tion using different functions/technologies for sending data
to other robots (knowledge layer as well).

The internal knowledge architecture follows the classical
blackboard model [4] In short, the agents communicate by

46

Other robots, servers

KNOWLEDGE
LAYER

Interrobot communication

Reasoner agent ‘

SENSOR/
ACTUATOR
LAYER

CONTROL
LAYER /A

Main control
agent

Other control
agents

Actuator agent

Sensor agent

Emergency
behavior agent
[

'

Sensor/actuator hardware

Figure 1. Robot architecture

writing data to the RDF database. The data on the RDF
database is available to all agents.
The RDF database serves three roles:

e A postbox between different process agents (including
external world communication).

e A fast and simple in-memory data store (circular
buffer).

e A deductive database, using a rule language for rule-
based generation of new facts.

Technologically the RDF database is built as a sim-
ple data store operating in shared memory. Shared mem-
ory based database approach is frequently used for low
latency robot control architectures performing sufficiently
well without real time OS. By our benchmarking tests per-
formed with S00MHz 32 bit embedded ARM processor run-
ning non-real-time BusyBox 2.6 Linux distribution, the re-
alized shared memory data store access time was in tens of
microseconds.

3 Languages, common data model and the
RDF database

The behaviour of the robot is primarily influenced by
four players: sensors and control software, internal RDF
database contents, RFID tags read, data and rule files read
from the swarm server.

The swarm server collects data from the robots and influ-
ences them by sending new data and modifications to rule
files in the robots.

The different players above use specialised language rep-
resentations, all based on RDF. Different syntaxes stem
from practical needs: for example, since RFID chips con-
tain very little memory, we have to use a space-efficient en-
coding for information on RFID-s. On the other hand, com-
munication between different servers does not require space
efficiency: rather, it is preferable to use common, verbose
XML-based standards.

We use the following RDF-based languages in the robot
swarm system:

e Our specialised RDF encoding in RFID tags.
e Our specialised rule language for deriving and adding
new data from/to the RDF database.

o Standard XML-based RDF syntax for data exchange
between robots and the central server (using WIFI if
available) and the central server and external systems.

All these languages/use cases share a common data
model and the concrete strings for sensor and task repre-
sentation (robot sensor/task language).

47

3.1 Common data model

The common data model is based on RDF triplets
(proper data fields) to which we add two additional groups
of data fields: contextual data fields and automatically gen-
erated metadata.

Proper data fields:

e Subject: id of whatever has the property.

e Property: name of the property of the subject.
e Object: value of the property.

The value field has an associated type, indicating the
proper way of understanding the value. Observe that the
property field typically - but not always - already determines
the suitable or expected type.

In addition to basic RDF, we will always add three con-
textual fields to the beforementioned proper data fields of
the triplet.

Contextual data fields:

e Date/time: when this fact held (in most cases same as
the time of storing the data).

e Source: identifies the origin of the data (RFID nr, per-
son id, other robot id, etc).

e Context: identifies a data group or addressee or in-
dicates the succession of robot commands, often left
empty.

Agents can enter their own contextual values to the RDF
database. If no values are given by the agent, the default val-
ues (current date/time, robot id, empty context) are entered
automatically.

Automatically generated metadata:
e Id: robot-unique id of the data row, auto-increased.
o Timestamp: date/time of storage.

Automatically generated metadata is present only in the
RDF database, and not in the other data formats/languages.
Agents cannot enter their own values at will. These two
fields are important for efficient and convenient manage-
ment of the data, and are used for example, by the reasoner.

Instead of using additional contextual and metadata
fields we could have chosen to use reification of RDF
triples to store the same information. However, this would
have cumbersome and inefficient both in the internal RDF
database used by agents inside the robot, and even more so
in the data representation inside RFID chips, as described
in the following chapters.

For data exchange between different swarms and exter-
nal applications we will use the reified form of the contex-
tual data fields, represented in the common XML syntax of
RDF.

3.2 RDF database

The RDF database is implemented in the Gumstix com-
puter on the robot as a library for storing and reading infor-
mation to/from shared memory. Agents in the robot use a
simple C API for writing, reading and searching data from
the RDF database. Special RDF query languages are not
used.

Strings in the RDF database are pointed to from the
data fields: they are kept in a separate table, guaranteeing
uniqueness: there is always only one copy of each string.

The data rows are organised as a circular list. The last
data element will disappear when a new one is added. How-
ever, there are exceptions to this order: data items deemed
critical are kept longer.

Although the data store should be normally seen as a
mid-term memory, containing tens of thousands of rows
(old data is thrown away), it is easy to use it as a post-
box between different agents onboard: just put the name
of the addressee agent in the context field and program the
addressee agent to look for the rows with her name, process
them and then delete them.

An agent X may also read “messages” intended to an
agent Y, but should under normal circumstances ignore
these “messages”: it should look for data rows with either
no addressee at all or an addressee with the name X.

4 Data encoding on RFID tags

The roboswarm architecture requires recognising
external objects/locations, reading location-specific mes-
sages/instructions from humans and reading/writing
location-specific messages from/for other robots.

All these three tasks use RFID tags at different locations.
The simplest types of RFID tags contain only the RFID id.
However, we have been using RFID tags with a small in-
ternal memory: both human operators and robots can write
information to the tags. We use the tags as information-
carrying graffiti.

A human user is expected to write to a tag information
like this tag is located on a chair”, "this tag has coordinates
Xand Y”, ’there is a tag at direction R at distance 5 meters”,
“keep away from here” etc.

A robot N is expected to write to a tag information like
”N was here at 10.06.2007 at 15.10”, ”N did brush the sur-
roundings at 17.10” etc.

48

4.1 Kinds of data on RFID chips: concep-
tual example

The following categorization gives a clearer picture of
kinds of data to be written on RFID:

e Present by default on all RFID tags: built-in RFID id
number, up to 12 bytes.

e Control information written to the tag by a human user:

— Stop immediately.

Keep away from here.

Turn to direction X and move N meters.

Do not clean here.

e General information about objects:

— What kind of object: wall, bed, chair, robot nr X.
— This place needs cleaning very often.
— Danger in direction X distance Y.

— Some object (lift,docking,...) in direction X dis-
tance Y.

— Robot nr X was here at time 7" and cleaned /
could not clean / did not want to clean.

o Localisation of a tag, either:

Global, for example gps coordinates.

— Local, relative to a given base vector: direction
and distance.

— Information about other tags in the neighbour-
hood: direction and distance.

Additional useful information: path to door, path
to charger.

o Information about a robot: tag glued on a robot

— T'am a robot.
— Tam arobot nr X.
— Kind/capabilities of a robot: simple cleaner /

complex control robot.

We are using local coordinate vectors and special meth-
ods and algorithms for coordinate vector markup and find-
ing. These methods are not covered in this paper.

4.2 Data encoding principles for RFID
tags

RFID tags contain relatively little memory: we are cur-
rently using tags with 256 bytes. Reading of RFID data over
wireless may be prone to error. Hence:

e The data format has to be extremely compact.
e Old data has to be regularly overwritten.

o There must be a way to indicate that some parts of data
should not be overwritten by robots.

e We need a control sum for data blocks.

We use 32 bytes for encoding one data block, hence we
can put 8 data blocks on our RFID tags.

Data encoded on tags must be easily understood both by
robot software and external applications: software used by
humans to read/write data to tags, agents different from the
roboswarm components.

Hence we provide a simple mapping from RFID data to
both robot internal data format and the generic RDF format
for data.

All data items written to the RFID tags are essentially
data rows with several predefined fields. All fields may con-
tain different data items: strings, integers, floats. Hence the
RFID data store is similar to a single database table.

Data is written, read and deleted one full row at a time:
while changing stored rows is technically possible, we do
not recommend doing that: it is better to add a new full row,
and if necessary, delete the old row(s).

Conceptually, each data row corresponds to several RDF
triplets. Standard RDF triplets contain the subject, property
name and value fields, like this:

performingaction, cleaning]
notperformingaction, cleaning]
lookingfortag , 244]
notfoundtag , 244]

[1z,
[1z,
[15,
[15,

The subject field is normally filled with an id of an object
which has the property with the value indicated. The value
field may be filled either with a direct value or an id of some
object (for example, a tag).

Using triplets will inevitably mean that recording one
data item may require several triplets to be written. Sup-
pose that a robot wants to write the message “Robot nr 15
has been here at 14.20 on 28. January looking for tag nr 244
and did not find a tag while here.” on the RFID tag.

Using standard triplet format this would translate to the
following triplet set:

[15, washereattime,
14.20 on 28 January]

49

(15,
(15,

waslookingfortag, 244]
didnotfindtag, 244]

For RFID tags we always add timestamp, context and
source (agent) id contextual fields. In our sextet data model
the information would contain the following fields:

[15, 14.20 on 28 Jan, general,
15,washereattime, 14.20 on 28 Jan]
[15, 14.20 on 28 Jan, general,
15, waslookingfortag, 244]
[15, 14.20 on 28 Jan, general,
15, didnotfindtag, 244]

Data field contents are either direct (integers, RFID chip
id-s) or indirect (identifiers of long strings):

e Direct values are put on the tag as-is.

e Long strings are not kept on the RFID, since we do not
have enough space: we use a string number in a global
string table instead.

The direct values are either 4 or 12 bytes long, depending on
the type of a data block (see later sections). A direct value
may either indicate one concrete measure (say, distance or
time), contain a short string (up to 4 or 12 characters) or
encode several short values, for example, a coordinate.

As the standard RDF format requires, the robot RDF
database uses strings for identifying subjects and property
names. RFID tags do not have enough space for long
strings.

Hence we assume that a roboswarm has a common string
table of predefined strings, where each string has a concrete
number, common for all robots and RFID chips. Robots
can certainly use more and dynamically created strings, but
these strings will not be encodable on RFID chips.

Property names (but normally not property val-
ues) have a namespace prefix. We will commonly
use http://www.roboswarm.eu/lang as a namespace for
property names in the roboswarm. However, other
namespaces may be used as well. For example, a
full name string of a “washereattime” property would
be http://www.roboswarm.eu/lang#washereattime and this
could be encoded as, say, number 135 in a common string
table.

Identifiers for robots and humans are swarm-specific.
We will use namespaces for these as well, however.
The default swarm namespace for our experiments is
http://www.roboswarm.eu/swarm. Concrete swarms may
use different namespaces.

The roboswarm environment may potentially contain a
huge number of different RFID tags. Old tags may be re-
placed, new ones may be glued on objects at any time.
It would be impractical to assume that the robot software

has predefined knowledge of all tags in the environment.
Hence the RFID id on the tags is used “as is”, without en-
coding it via a separate string table (see the next section).
The robot software components will identify RFID tags
by strings with the http://www.roboswarm.eu/RFID names-
pace followed by the hexadecimal encoding of the RFID id
number.

As said before, the RFID data blocks contain both direct
values (date/time, measures, coordinates, RFID id numbers,
short strings) and numbers of strings in a common string
table (external to chips)

The numbers in a string table start from number 0 and
continue with numbers 1, 2 etc. We use 2 bytes for string
table numbers, even if the field containg the string number
is longer.

The global string table is loaded into the robot and has
to be the same for the whole swarm. It is necessary only for
coding and decoding data for the RFID tags.

4.3 RFID tag id numbers and special
strings

RFID tags carry an id. The id size may vary. However,
there are several widely used standards for product encod-
ing, and most RFID tags are expected to conform to these
standards:

e UPC (universal product code): 12 digit numbers iden-
tifiying product type, commonly used on bar codes.

e 64-bit EPC (electronic product code): 64 bit code iden-
tifying concrete items, forward compatible with a 96-
bit version.

e 96-bit EPC (electronic product code): 96 bit code ca-
pable of identifying concrete items.

We use direct 96-bit EPC-s to identify RFID tags. In-
side the robot software the RFID tags numbers are not
used directly (as-is). Instead, they are encoded to iden-
tifier strings (uris) with the following algorithm: the
initial part of the string is always a namespace prefix
http://www.roboswarm.eu/rfid# and the following part of
the string is formed from the RFID id number (of whichever
length) by converting the number to a lower-case hex string
in a conventional manner.

It is very common for a tag to contain information
about its own location or the object it is glued to. In or-
der to avoid putting the full 96-bit EPC into the subject
id field, our string table contains contain a special string:
http://www.roboswarm.eu/lang#me stands for the EPC of
the RFID chip containing this data item.

50

4.4 Encoding details: data fields

We use 32 bytes for one data block (a sextet in our data
model). We have two types of blocks. First type contains a
short, 4-byte subject field and a long, 12-byte (96 bit) object
field. Second type contains a long, 12-byte (96 bit) subject
id field containing EPC and a short 4-byte object field.

Otherwise the structure and meaning of the data blocks
is identical for both types:

e Blocktype 1 byte: contains block type nr, either 1 or 2.

Agent 2 bytes: number of the agent string (robot, hu-
man, ...) writing data.

Datetime 4 bytes: datetime of writing, according to the
robot clock (up to one second), unix format.

Context 2 bytes: number of the context string
(adressee, data group, etc: often ignored)

Subject (blocktype 1) or object (blocktype 2) 4 bytes:
numeric, datetime, short string or string number in the
string table.

Property 2 bytes: number of the property name string
in the name string table.

Object (blocktype 1) or subject (blocktype 2) 12 bytes:
epc, numeric, datetime, short string or string number
in the string table.

Reserved 2 bytes.

Object type 2 bytes: number in the string table indi-
cating type of value (int, short string, some structure
etc).

e Checksum: 1 byte.

We use xml schema datatype names as value type indi-
cator strings, extended by our own specific datatype names.

We use the simplest checksum algorithm: adding bytes
0...31 one after another and keeping the lowest byte of the
sum after each addition.

Multibyte integers and floats have to follow the high-
endian (intel standard) byte order. Direct short strings start
from the leftmost byte and should be terminated with a zero
byte. In case there is no zero byte, the data reader has to ap-
pend the zero byte to the direct string (4 or 12 bytes) read.

In normal cases it is recommended to use the first type
of data blocks with a long value field. The second type
is suited for cases where we want to write information
about a specific RFID chip, different from the current chip
(in the latter case we should use the special 'me’ string
http://www.roboswarm.eu/lang#me).

4.5 Reading and writing data

In case a robot writes data to an RFID tag, it will nor-
mally have to delete some old data to make room for new
data to be written. It will also have to take care that impor-
tant data is not deleted. The robot follows these principles:

It will always delete the oldest data block which is al-
lowed to be deleted. By default all data blocks written by
humans have to be preserved. The internal datastore of a
robot contains information about kinds of writers (block
contains the writer id).

5 Antennas and other practical aspects of
RFID reading and writing

Before writing or reading data, the robot will have to un-
derstand that an RFID tag is in a reading or writing distance.
It will then start reading and - sometimes - also writing the
RFID.

‘We have conducted a number of RFID reading and writ-
ing experiments with an iRobot Create equipped with a
Gumstix Verdex microcomputer and the Skyetek M9 OEM
RFID reader card, operating frequency was 865MHz, out-
put power 27dBm.

Achieved dependable access ranges for ISO 18000-6B
and 6C tags have been between 0.7 and 1.2 meters, depend-
ing on tag orientation and various other factors.

The practical issue of detecting a tag depends on many
factors, quite significantly also on the shape of the tag’s
antenna and the orientation of tag in the robot’s RF field.
Therefore one antenna should be omnidirectional (e.g. cir-
cular polarization antenna).

However, two switched linearly polarized reader anten-
nas may be used giving additional direction information.
That idea will be evaluated further.

On the figure 2 we have an iRobot Create equipped with
the 6 dBi Yagi antenna. This antenna appeared to be too
sensitive directionally: it was hard to notice tags not directly
in front of the robot.

The figure 3 demonstrates a 13dBi spiral antenna de-
signed during the project. While detecting tags from a
somewhat longer distance than the Yagi antenna, it had
analogous problems with directionality.

The best choice so far has been the patch antenna on the
figure 4. The small loss in tag detection distance is compen-
sated by the significantly wider area of coverage, enabling
the robot to detect tags not directly in front of it. Figure 3. 13dBi spiral antenna

In our experiments it has been somewhat easier to detect
the RFID and read its id number than to read full RFID
memory. Hence, when a tag is detected somehwere in front
of the robot, we keep driving for a short while to get to the
practical reading/writing distance.

Figure 2. iRobot Create with a 6 dBi Yagi an-
tenna

51

Figure 4. iRobot Create with a 6.5dBi patch
antenna

Another important aspect is the frequency of scanning
for the RFID tags: since tag reading and scanning draws sig-
nificant amount of power, high frequency of scanning drains
the Roomba internal battery faster than would be practically
feasible.

6 Rule engine and the rule language

The central command agent uses the RDF database con-
tents as grounds for deciding whether the robot is doing ok,
is in trouble or what to do next.

Programming the robot to act correctly for each case is
hard. We are using a rule engine to perform specific checks
on data and make decisions based on the given set of rules.
Rules are written in a prolog-like syntax and stored initially
as a plain-text rule file in the robots file system. The rule
engine takes all the input data from RDF database and stores
derived facts again into the RDF database. Other agents do
not use the rule engine directly, they just read the output
from the in-memory database.

In other words, the rule engine is not used for answer-
ing queries, but for automatically deriving new facts added
to the RDF database. Obviously, the set of rules has to be
consistent and should not contain too many or too complex
rules. We are using the special modification of the Gandalf
first order resolution-based theorem prover [8] as a rule en-
gine.

The rule engine is fired automatically by the rule engine

52

process after each pre-determined interval. Using a rela-
tively simple set of rules we manage to keep the interval un-
der one second: during this time the rule engine performs
all possible derivations stemming from the facts added to
the RDF database after the last iteration.

The rule system is used for two main kinds of tasks:

e Deriving generalisations (chair is furniture) from on-
tology rules.

e Deriving commands and subcommands, depending on
the situation.

We are not using OWL directly as an ontology language.
Instead, the central server contains a component for convert-
ing given OWL files to the rule language syntax. These rule
files are then preloaded to robots and updated over WIFI, if
available.

The # mark in the following examples stands for the
full default namespace http://www.roboswarm.eu/lang. Al-
though we use the syntax based on Prolog, the derivation
algorithm is a specialized version of the bottom-up resolu-
tion algorithm as often used in automated theorem provers,
starting from the facts and deriving new facts/lemmas.
The derivation process does not attempt to solve a posed
”query”, just to derive new facts. Hence the language does
not contain extralogical predicates like cut and closed-world
not.

Two simple ontology rules, indicating that anything at-
tached to a glass object is attached to a fragile object, and
anything attached to a fragile object is attached to a danger-
ous object:

fattachedTo (X, fragile) :-
#attachedTo (X, glass) .

#attachedTo (X, dangerous) :-—
#attachedTo (X, fragile) .

Sample rules for firing executable commands with argu-
ment 0 and high priority 1 ("me” is a special macro constant
indicating robot itself):

command (escape, 0,1) :-
#attachedTo (X, dangerous) .

command (clean,0,1) :-
"found-tag" (me, tag2) .

The next rule derives information about a need to keep
away for 10 minutes from the given location. “now” is
a special macro constant indicating current time. There
should be further rules given to make the robot actually use
this information:

#keepaway (Loc, 600) :-—
#roombusy (Loc, Time),
lesstime (now, Time) .

7 Robot sensor/task language

The sensor/task language does not have a separate syn-
tax. Rather, it is a collection of strings with predetermined
meanings, designed for two goals: storing robot sensor data
and giving commands to the robot (clean here, drive away,
find a certain item).

The sensor/task language uses the RDF database for stor-
ing both tasks (commands) and sensor information. In other
words, all the commands to the robot and sensor informa-
tion items are stored in the RDF database as ordinary data
objects with a special meaning to the robot control process.

The sensor/task language contains several different cate-
gories of object strings:

e Task data items: used for giving general kinds of com-
mands to the robot (clean here, drive away, look for
object, exit room etc).

e Sensor/status values: information added by sensor pro-
cesses or derived using rules.

o Generally useful special values (me, now etc).

A typical task data item contains the following fields:

e Subject: a string indicating actual command, like “es-
cape” or “clean”.

e Property: special predicate ”command”.

e Object: used for tasks or commands requiring extra in-
formation (like how far to drive). In case the command
requires several information fields, these are encoded
into a single value.

e Context: used to indicate both the succession of com-
mands and nesting of commands.

Say we have two main commands c¢; and cp which
should be performed in succession. Command c; has two
subcommands s; and ss. The command ¢; will be auto-
matically replaced by s; and so by the corresponding rule.
These three commands will then have the following context
sequences:

e si:[1,1]
e so:[1,2]
e ¢y [2]

Tasks are represented as data items the RDF database.
The robot control process starts fullfilling the task as soon
as it is seen in the database. The same process should mark
this task as being currently fullfilled. In case of conflict or
impossibility the robot control process should choose the
action itself.

53

There can be complex tasks that consist of number of
smaller subtasks. These kinds of tasks are presented using
rules. Suppose somebody adds a task into the in-memory
database. After a while the rule engine will take this task,
find the matching rules and add derived subtasks into the
database. The derived subtasks could again match some
rules, in which case they will also be derived and added
to database.

The sequence of tasks is encoded in the context field of
data item. Task and subtasks should be seen as an ordered
forest of trees with branches corresponding to subtasks.

Tasks are loosely grouped into four levels starting from
high-level down to low-level tasks. A high-level task is an
abstract representation of what should the robot do: for ex-
ample, clean a room for whole day. A typical low-level task
would be turning the robot 50 degrees.

Long-term activity - normally defined by human.

While fullfilling this type of task, the robot can also fill
subtasks like recharging, exiting room etc. These tasks do
not restrict robot from doing subtasks.

For example: property “’shalldocleaning”, object time in
seconds until which activity holds. Robot should be in the
general cleaning mode: driving around and cleaning.

Short-term activity - normally given by rules or control
process, but can also be defined by human.

Fullfilling this kind of task may consist of several small
tasks like turning and moving some distances.

The associated rules are expected to generate atomic
commands, which are put into in-memory database waiting
to be fullfilled one after another. Only one task is fullfilled
at time. Here the time information is not relevant, rather,
the succession should be followed.

Atomic activities - basically procedural, normally gen-
erated by rules or the control process.

For example:

e command (turn,Degrees, Context): robot
should turn the indicated amount of degrees. “turn”
here is a constant string indicating the actual pre-
programmed procedure the robot should follow.
Context should contain a task order/priority indicator
as explained before.

e command (move,Centimeters, Context):
robot should move (with 'normal’ speed) the given
amount of centimeters.

Direct activities - these kinds of tasks can be directly
delegated to the robot API for execution. The Roomba robot
has very few such direct commands available: the most im-
porant command is “drive with speed X and radius N”.

8 Related work

The SHAGE/Alchemist] framework [5] can be men-
tioned as one solution for robot knowledge exchange using
data repositories and component brokers.

Using high level data representation is a trend of modern
robotics. For example, XML based data coding has been
used on robots [5]. However, besides the benefits of uni-
versal high level representation the XML encoding requires
additional conversions between exchange and machine con-
trol domains.

Conventional XML based RDF format is used for time
uncritical inter-robot or server communication, the descrip-
tion can be found in [2]. A special, compact RDF format is
used for storing real-time algorithms of robot operation.

The RFID technologies with goals similar to our experi-
ments have been investigated in [9]. The authors use RFIDs
to allow an autonomous mobile robot to acquire a target and
approach it for task execution. The robot is equipped with
a dual directional antenna that communicates with control-
lable RF transponders.

See also [3], [6], [10].

9 Conclusions and future work

We have designed the architecture for the robot swarm
and started actual implementation and testing with real
tags and robots. So far we have successfully implemented
both the robot hardware and software, including the RDF
database, RFID and rule engine usage as described in the
paper. The experiments have been encouraging when we
consider processing power and reaction times: the tiny
onboard Gumstix computer manages to run the described
agents, use the RFID chips, RDF database and the rule en-
gine without slowing down the robot reactions. On the other
hand, detecting, reading and writing RFID tags requires
considerable care when selecting tag types, antennas and
the scanning frequency. A usable solution has been worked
out, but further optimisations and improvements are needed.

We have also started to implement components of the
central server and open connections to other robot swarms
and external software. However, this work is still ongoing,
specific details are being filled in and it is too early to report
experiments from the high-level perspective.

Acknowledgements. The work was
ported by FP6 ICT “"ROBOSWARM” project,
http://www.roboswarm.eu.

sup-
see
References

[1] Y. Altshuler Y, A.M. Bruckstein, I.A. Wagner: Swarm
Robotics for a Dynamic Cleaning Problem. In "IEEE

54

Swarm Intelligence Symposium”, pages 209-216,

2005.

[2] E. Ardizzone, A. Chella, I. Macaluco, D. Peri: A
Lightweight software architecture for robot navigation
and visual logging through environmental landmarks
recognition, in Proc of International Conference on Par-

allel Processing Workshops, ICPPW 2006.

—

A. Elci, B. Rahnama: Human-Robot Interactive Com-
munication Using Semantic Web Tech. in Design and
Implementation of Collaboratively Working Robots,
RO-MAN 2007. The 16th IEEE International Sympo-
sium, pages 273-278 (2007).

[4] B. Hayes-Roth: A blackboard architecture for con-
trol. Artificial Intelligence, 26(3): pages 251-321, July

1985.

[5] S. Lee, ILH. Suh and M.S. Kim (Eds): Recent Progress
in Robotics, LNCIS 370, Springer, pages 385-397,

2008.
[6

—

C. Stanton, M.-A. Williams: Grounding Robot Sensory
and Symbolic Information Using the Semantic Web in
RoboCup 2003: Robot Soccer World Cup VII, Springer
LNCS 3020/2004, pages 757-764, 2004.

[7] T. Tammet, J. Vain, A. Kuusik: “Using RFID tags
for robot swarm cooperation”. WSEAS Transactions on

Systems, 5(5), pages 1121-1128, 2006.
[8]

T. Tammet: Gandalf. Journal of Automated Reasoning
vol 18 No 2, pages 199-204, 1997.

[9] V. A. Ziparo, A. Kleiner, B. Nebel, D. Nardi: RFID-
Based Exploration for Large Robot Teams. In Proc.
IEEE International Conference on Robotics and Au-

tomation, pages 4606-4613, 2007.

[10] L. Vasiliu, B. Sakpota, K. Hong-Gee: A semantic Web
services driven application on humanoid robots. in the
Second International Workshop on Collaborative Com-
puting, Integration, and Assurance. SEUS 2006/WC-
CIA 2006. The Fourth IEEE Workshop, 2006.

PAPER 2

T. Tammet, E. Reilent, M.Puju, A. Puusepp, A. Kuusik, A. Knowledge centric
architecture for a robot swarm. In: 7th IFAC Symposium on Intelligent
Autonomous Vehicles (2010). IFAC-PapersOnLine, 2010, (Intelligent
Autonomous Vehicles; 7/1). 2010.

81

Knowledge Centric Architecture for a
Robot Swarm

Tanel Tammet, Enar Reilent, Madis Puju, Andres Puusepp

*

Alar Kuusik **

* Department of Computer Science, Tallinn University of Technology
Ehitajate tee 5, 19086 Tallinn, Estonia (e-mail: tammet@staff.ttu.ee,
e.reilent@gmail.com, pudismaju@gmail.com, anduoma@hot.ee).

** Department of Electronics, Tallinn University of Technology
FEhitajate tee 5, 19086 Tallinn, Estonia (e-mail: kalar@ua.ttu.ee).

Abstract: We have built and tested a knowledge centric system for a robot swarm. Our
implementation enhances iRobot Roomba cleaning robots with a tiny linux computer, RFID
tag reader/writer and optionally a WIFI card. Robots use the RFID tags for object recognition
and message passing. The knowledge architecture of the system is inspired by semantic web
principles, spanning over several layers: RFID tags on objects, process interaction in a single
robot via a main memory datastore and a rule system, central database for a swarm. The
communication components of the system have been already ported to the larger Pioneer and
Mugiro robots via the Player middleware. The paper presents our solutions to the knowledge
management and communication problems stemming from the robotics issues and demonstrates
feasibility of using the semantic web principles in the robotics domain.

1. INTRODUCTION

The overall goal of the project is to develop simple and
low-cost technologies for making both single robots and
swarms of robots more intelligent. We use the dynamic
cleaning problem Altshuler et al. (2005), Tammet et al.
(2006) as a testbed for the developed knowledge architec-
ture, focusing on making swarm cleaning more efficient.

Our goal requires propagation of understandable and
reusable information among the robots which may be
different in hardware and software. The target goal can
be called a "knowledge centric” architecture, focusing on
uniform (or easily convertible) on-robot and inter-robot
data management Tammet et al. (2008), which is achieved
by using prolog-like rules and first-order logic.

We use ordinary passive RFID chips for marking objects
like chairs, walls, doors. This is significantly cheaper and
more flexible than using cameras on robots for object
recognition. The same RFID chips on objects are also
used by the robots to leave messages to other robots.
The solution is inspired by ants’ communication using
pheromone trace known as stigmery. The usage of RFID
tags reduces the communication overhead related with
coordination Ziparo et al. (2007).

We use the popular iRobot Roomba cleaning robot and
attach a tiny ARM-based Gumstix computer (500 MIPS)
using a BusyBox 2.6 Linux distribution (without real-
time capabilities) and a stock RFID reader/writer on
the Roomba. The attached computer takes over control
of the Roomba. While the standard Roomba is fairly
simple-minded, will clean places recently cleaned and does
not understand that some places should be avoided - or
vice versa, cleaned often - our system adds necessary
intelligence.

The main communication components of the architecture
have been already ported by the industrial project partner
Fatronik to two different robots (Pioneer and Mugiro) via
the Player middleware.

2. ROBOT KNOWLEDGE ARCHITECTURE

The architecture for the robot control is based on a
layered multi-agent system, with agents implemented as
continuosly running processes. Three layers can be brought
out:

e The sensor-actuator access layer dedicated to commu-
nication with the robot control hardware. The lowest
part of robots sensor-actuator layer is executed by the
Roomba onboard microcontroller.

e The control layer consists of dispatcher process which
executes behavioral tasks in our context called bina-
ries.

e The knowledge layer that targets reasoning (deriving
new information from acquired data), communicating
with other robots (using RFID tags) and the optional
central server (using WIFI, if available).

The layered architecture is built around a fast and trans-
parent RDF inspired datastore implemented in shared
memory. This kind of approach is frequently used for low
latency robot control architectures performing sufficiently
well without using a real time OS. The internal knowledge
architecture follows the classical blackboard model Hayes-
Roth (1985). In short, the agents communicate by writing
data to the memory datastore and every agent can access
all data inserted to datastore.

The memory datastore serves three roles:

e A postbox between different process agents (including
external world communication).

e A fast and simple in-memory data store (circular
buffer).

o A deductive database, using a rule language for rule-
based generation of new facts.

3. COMMON DATA MODEL AND LANGUAGES

The behavior of the robot is primarily influenced by four
players:

e sensors and control software

e internal memory datastore contents

e RFID tags read

e binary executables plus data and rule files read from
the swarm server.

The swarm server collects data from the robots and
influences them by sending new data back to the robot
datastore, updating rule files in the robots and sending
new binary executables to the robots.

The different players above use specialised language rep-
resentations, all based on RDF triples plus metadata: the
combination which we will call RDFm. Different syntaxes
stem from practical needs. For example, since RFID chips
contain very little memory, we have to use a space-efficient
encoding for information on RFID-s. On the other hand,
communication between different servers does not require
space efficiency: rather, it is preferrable to use common,
verbose XML-based standards.

‘We use the following languages in the robot swarm system:

e RDFm encoding in RFID tags.

e Our specialised rule language for deriving new infor-
mation based on data in memory datastore.

e Both a CSV-based syntax and an XML-based RDF
syntax for data exchange between robots and the cen-
tral server (using WIFI if available) and the central
server and external systems.

All these languages share a common data model and the
concrete predefined strings for adressing data to agents.

3.1 Common data model

The common data model is inspired by RDF triples to
which we add two additional groups of data fields (meta-
data): contextual data fields and automatically generated
metadata.

Data fields taken from RDF triple:

e Subject: id of whatever has the property.
e Property: name of the property of the subject.
e Value: value of the property.

The value field has an associated type, indicating the
proper way of understanding the value. Observe that
the property field typically - but not always - already
determines the suitable or expected type.

In addition to basic RDF, we will always add three contex-
tual metadata fields to the beforementioned proper data
fields of the triplet.

Contextual metadata fields:

e Date/time: when this fact held (in most cases same
as the time of storing the data).

e Source: identifies the origin of the data (RFID nr,
person id, other robot id, agents, etc).

e Context: usually identifies addressee or data group,
can also indicate the succession of robot commands.

Agents can enter their own contextual values to the
memory datastore. If no values are given by the agent, the
default values (current date/time, robot id, empty context)
are entered automatically.

Automatically generated metadata:

e Id: unique data row nr for a robot, auto-increased.
e Timestamp: date/time of storage.

Automatically generated metadata is present only in the
memory datastore, and not in the other data languages.
Agents cannot enter their own values at will. These two
fields are important for efficient and convenient manage-
ment of the data and are used for example, by the reasoner
and dispatcher processes.

Instead of using additional contextual and metadata fields
we could have chosen to use reification of RDF triples to
store the same information. However, this would have been
cumbersome and inefficient both for the internal memory
datastore used by the agents inside the robot, and even
more so for the data representation inside RFID chips, as
described in the following chapters.

4. MEMORY DATASTORE

The memory datastore is implemented in the Gumstix
computer on the robot as a library for storing and reading
information to/from shared memory. Agents in the robot
use only a simple C API for writing, reading and searching
data from the memory datastore. Agents see datastore as
one table based on RDFm format.

Strings in the memory datastore are pointed to from the
data fields: they are kept in a separate table, guaranteeing
uniqueness: there is always only one copy of each string.

The data rows are organised as a circular list. The last
data element will disappear when a new one is added.
However, there are exceptions to this order: data items
deemed critical are kept longer.

Locking is implemented using semaphores and is row-
based. Reading operations do not lock anything. When
a row is being written it is invisible for all the concurrent
reads.

Writing one row on Gumstix platform takes about 0.14 ms
while looping over 2000 rows takes approximately 4.8 ms,
which is acceptable for our needs.

Although the data store should be normally seen as
a mid-term memory, containing thousands of rows (old
data is thrown away), it is easy to use it as a postbox
between different agents onboard: just put the name of
the addressee agent in the context field and program the
addressee agent to look for the rows with its name, process
them and then delete them.

5. DATA ENCODING ON THE RFID TAGS

The roboswarm architecture requires recognising ex-
ternal objects/locations, reading location-specific mes-
sages/instructions from humans and reading/writing lo-
cation specific messages from/for other robots. All these
three tasks use RFID tags at different locations. The
simplest types of RFID tags contain only the RFID id.
However, we have been using RFID tags with a small inter-
nal memory: both human operators and robots can write
information to the tags. We use the tags as information-
carrying graffiti, in other words, tiny data stores dis-
tributed all over the environment.

A human user is expected to write to a tag information like
"this tag is located on a chair”, ”this tag has coordinates
X and Y7, "there is a tag at direction R at distance 5
meters”, "keep away from here” etc.

A robot N is expected to write to a tag information like
"N brushed here for 10 minutes on 10.06.2007 at 15.10”,
"N left this place for the living room” etc.

Data encoded on tags must be easily understood both by
the robot software and the external applications: software
used by humans to read and write data to tags as well as
agents outside the roboswarm.

All data items written to the RFID tags are essentially
data rows with several predefined fields which may contain
strings, integers or floats. The RFID data store is very
similar to the robot’s memory datastore. Data is read,
written and deleted one full row at a time, updating is
allowed only on the value field, the timestamp field and
the source field.

For example, one tag might carry the following data:

subject property value source | context
me inRoom kitchen | human static
kitchen hasPriority 7 human static
kitchen dutyStatus cIP robot3 work
robot2 wentInDirection | 270 robot2 work

* cIP - cleaningInProgress

where the ”static” context is used for data describing the
surrounding enviroment and the ”work” messages are writ-
ten to the tag by swarm members to improve cooperation
while performing tasks.

Data field contents are either direct (integers, RFID chip
ids) or indirect (long strings). Direct values are put on the
chip as-is. Long strings are not kept on the RFID, since
we do not have enough space: we use a string number
in a global string table instead. This global string table
is loaded into the robot and has to be the same for the
whole swarm. It is necessary only for coding and decoding
data for the RFID tags. We use 2 bytes for the string table
numbers.

5.1 Reading and writing RFID tags

RFID tags carry a built-in id. The id size may vary.
However, there are several widely used standards for
product encoding, and most RFID tags are expected to
conform to these standards.

We use direct 96-bit EPC-s to identify RFID tags. It is
very common for a tag to contain information about its
own location or the object it is glued to. While referring
to itself we use the string "me” in the data row instead of
the real EPC value.

In case a robot writes data to an RFID tag, it will normally
have to delete some old data to make room for new
data to be written. It will also have to take care that
important data is not deleted. The robot follows these
principles: It will always delete the oldest data block which
is allowed to be deleted. By default all data blocks written
by humans and the blocks with the context ”static” have
to be preserved.

6. KNOWLEDGE BASED CONTROL SYSTEM

The robot control and decision making responsibilities in
our system are divided between several different agents.

The control system architecture has two layers: the sup-
porting framework and the user applications built upon
the framework.

The crucial element in our system is the memory datastore.
All the other subsystems are meant to be built around
the datastore and interact with each other only via the
datastore. As a consequence, all data - sensor readings,
decisions, commands, reports, etc - ever created by some
agent will be available to all the agents.

Gathering all kinds of knowledge into one place and
representing it in the same format encourages us to attach
a general data processing mechanism - the prover - to the
memory datastore. The prover is used to derive new data
items based on the existing data in the memory datastore
and predefined logic rules.

The supporting components like the prover, the communi-
cation process and the low level hardware access software
(sensor process, actuator process) run all the time as sepa-
rate never-ending processes. However, the control-specific
modules are not required to run all the time. Therefore, in
addition to the prover the control support framework uses
a special dispatcher process with the task to launch other
agent processes during runtime.

The implementation of ”the real” control software is very
flexible. The algorithm can be divided to various modules
and rules. For several subtasks we have created dedicated
modules (binary executables) which are relatively small
and simple. A binary executable can perform an atomic
task, for example play a sound or calculate an average, or
comprise a set of actions to achieve a complex goal, like
performing a localization procedure at the reference point
(RFID tag).

Rules have the role of linking binaries together and mak-
ing decisions during runtime. For example: the agent A
stores the fact B into the datastore. The prover derives
(according to the given rule files) the new fact C from the
fact B, where C is a command to start the agent D. When
the dispatcher sees the derived fact C in the datastore, it
launches the demanded agent D, which in turn can change
the contents of the datastore.

7. RULE ENGINE AND THE RULE LANGUAGE

The control system uses the memory datastore contents as
grounds for deciding whether the robot is doing ok, is in
trouble or what to do next.

Programming the robot to act correctly for each case
is hard. We are using a rule engine to perform specific
checks on data and make decisions based on the given
set of rules. Rules are written in a prolog-like syntax and
stored initially as a plain-text rule file in the file system
of the robot. The rule engine takes all the input data
from memory datastore and inserts derived facts into the
memory datastore. Other agents do not use the rule engine
directly, they just read the output from the datastore.

In other words, the rule engine is not used for answering
queries, but for automatically deriving new facts added
to the memory datastore. Obviously, the set of rules has
to be consistent and should not contain too many or too
complex rules. We are using the special modification of
the Gandalf first order resolution-based theorem prover
Tammet (1997) as a rule engine.

The rule engine is fired automatically by the rule engine
process after each pre-determined interval. In the following
we will call this "firing” process the derivation session.
Using a relatively simple set of rules we manage to keep
the derivation session interval under one second: during
this time the rule engine performs all possible derivations
stemming from the facts added to the memory datastore
after the last iteration.

The rule system is used for two main kinds of tasks:

e Deriving generalisations (chair is furniture) from
rules.
e Deriving commands depending on the situation.

While the rule system is working, it uses memory datastore
as an additional source of facts.

For example, if we have a rule

attachedTo (X, furniture) :-
attachedTo(X, chair).

and the following facts in the memory datastore

‘ subject ‘ property
‘ tagd ‘ attachedTo ‘ chair

‘ value ‘ source ‘ context ‘
| RFID [null |

then the rule body attachedTo(X,chair) will match the
datastore row and the rule will generate the new fact and
add it to the memory datastore as follows:

‘ subject ‘ property
‘ tagd

‘ value ‘ source ‘ context ‘

‘ attachedTo ‘ furniture ‘ wGandalf ‘ null ‘

All the words in the rules starting with uppercase are
variables. In our example X is a variable.

The following example demonstrates a simple session of
robot rule usage.

handleTask(me, Task) :-
state(me, stateIdle),
receivedTask(N, Task),

myNameIs(me, N).

state(me, stateWorking) :-
handleTask(me, T).

startMode(me, cleaningMode) :-
handleTask(me, clean).

startMode (me, patrollingMode) :-
handleTask(me, patrol).

state(me, stateldle) :-
state(me, stateWorking),
status(currentTask,finished) .

We start the rule system and then add the following fact
to the datastore:

subject property value source context

me state stateldle | init wGandalf
me myNamels robot3 init wGandalf
robot3 receivedTask | clean init wGandalf

The rule system will automatically derive and add these
facts to the datastore:

subject property value source context
me handleTask | clean wGandalf | null
me startMode cleaningMode | wGandalf | null

When we later add the fact

‘ subject ‘ property ‘ value ‘ source ‘ context ‘
‘ currentTask ‘ status ‘ finished ‘ cleaningAgent ‘ wGandalf ‘

the rule system will automatically derive and add this fact
to the datastore:

‘ subject ‘ property ‘ value ‘ source ‘ context ‘
‘ me ‘ state ‘ stateldle ‘ wGandalf ‘ null ‘

The rule engine uses both the main memory database and
a temporary storage area which is cleaned up after each
derivation session, typically after every second.

During the derivation process a large set of new facts and
clauses (temporary rules) is derived. Most of them are
stored in the temporary area and are not accessible to
other processes in the robot. Only positive singleton facts
without variables (ground unit clauses), not containing
nested terms and having a suitable number of arguments
are stored in the shared database available to all the
processes.

Each rule engine derivation session starts with reading and
parsing the rule file and adding all the read rules and
facts into the temporary space. Hence the rule file can
be changed on the fly.

We employ the widely used discrimination tree index for
unit subsumption and unit deletion. Only the temporary
area, not the facts in the shared memory database are kept
in the index.

The engine uses a version of a set-of-support binary
resolution with common optimisations like subsumption
and tautology elimination. See Robinson and Voronkov
(2001) for the common algorithms employed in first-order
automated reasoners.

We have to avoid re-derivation of facts which were already
derived during the last session. We cannot rely solely on
the subsumption algorithm for this. For example, the robot
should not get the derived command facts again each time
the derivation session finishes.

Hence we developed a timestamp-oriented special version
of the set of support algorithm. The initial facts in the
derivation are only those which have been added (or
modified) in the database after the previous derivation
session. This is possible, since all the facts in the database
have the automatically stored timestamp field.

We cannot use, for example, hyperresolution, since this
derivation algorithm is not complete in combination with
set of support. Hence the use of binary resolution.

The new facts and (partial) rules derived using a binary
resolution step can then be used for deriving new facts
and rules, guaranteeing that in each derivation chain at
least one of the facts has been added/modified after the
previous derivation session.

Using the timestamp-oriented set of support algorithm is
also crucial for efficiency. The number of new facts added
in one second is normally not very big, and most of them
typically do not match any or most rules. This keeps the
amount of derived facts during one derivation session down
even for relatively large rulesets.

7.1 Behaviors

Behaviors are collections of operations that the robot
will perform and which are called with one command.
Implementation of a behavior is a little binary executable
written in the C language. It contains a sequence of
commands and conditions to perform a relatively complex
operation by the robot.

For example, let us consider the following ruleset:

behavior (me, "monitorObstacles"):-
state(me, stateInitial).

behavior(me, "goAhead 200"):-
state(me, stateCanmove),
obstacle(me, nothing).

behavior(me, "handleFailState"):-
result(solveObstacle, fail),
state(me, stateDriveAround).

e behavior - a special name, indicates that the fact is
the command to launch the given binary.

e monitorObstacles - a binary monitoring whether any
obstacles are getting in the robots way. If there is an
obstacle in front of the robot, the obstacle(me, front)
row will be added to the datastore.

e goAhead - a binary that makes the robot to start
moving forward with the given speed (in the current
case with the translational velocity 200 mm/s and
angular velocity 0)

e handleFailState - a binary that stops the motors
and sensor equipement to save power, then tries
to communicate the information about the failure
situation to other robots or the central server. Used
when the robot is stuck and unable to move or

trapped in the place where it cannot find the way
out.

e solveObstacle - a binary that tries to drive the robot
away or around the obstacle which has gotten in the
way.

All the behaviours are handled by the process we call
dispatcher. The dispatcher executes binaries: small exe-
cutable programs implementing the behaviours. In order
to make the dispatcher to execute one binary, it must
be copied to a predefined folder on the robot and at the
desired time the proper command must be inserted to the
memory datastore.

An example of a command row which forces the dispatcher
to execute a binary:

‘ subject ‘ property ‘ value
‘ me ‘ behavior
* command - "behaviorName argl .. argN”

‘ source ‘ context ‘

‘ command ‘ wGandalf ‘ dispatcher ‘

While implementing the robot control application on top
of the prover and a relatively large set of behaviours,
timing becomes a critical issue. The elapsed time between
a stimulus and its reaction varies greatly depending on the
current contents of the memory datastore, the length and
the complexity of the rule file, the number of processes
running in the system, the length of the reaction chain
and other factors. However, in our case study the response
times have proved to be acceptable.

For example, let us consider a cooperation between the
prover, the dispatcher and two behaviours to avoid the
robot colliding with an obstacle. Typically it takes about
400 ms from the moment when one behaviour (monitorOb-
stacles) discovers an obstacle to the moment where the
prover inserts a command into the memory datastore to
launch another behaviour. After about 20 ms the dis-
patcher has received the command and is ready to start
the given behaviour. After additional 100 ms the second
behaviour (solveObstacle) takes over the control of the
robots movement.

High-level decision making can safely rely on the given ar-
chitectural scheme. However, critical emergency responses
like avoiding the robot falling down the stairs after the cliff
sensor detects descent should be implemented in hardware
or low-level software agents.

8. ROBOT DATA STORAGE ON THE SERVER

Robots using WIFI can use the robot-server centralised
communication and robot-robot ad hoc communication
in case no WIFI access-points are available. A separate
process on the robot sends new data items from the
memory datastore to the server, currently at an one-second
interval. On the server side the data of the whole swarm
is stored in a postgresql database for further processing.

The server replies each uploading act with the new data
items intended for this particular robot, accumulated since
the last communication session. Software agents on the
server cannot directly send any data or commands to
robots, in lieu of that they will write the data into the same
postgresql database. The special communication agent
then passes it to the selected robot as soon as the robot

contacts the server. The selected robot adds the data items
received from the server to its own memory datastore.

Human users can control and monitor swarm or single
robots via dedicated user interfaces built on the server
database. It is technically possible to assign a direct task
to the robot, even though the data flow normally passes
several intermediate agents on the server. Data produced
by the user interface is sent to the task decomposition
module which specifies and assigns proper subtasks for the
robots.

The server has an additional swarm coordination role in
some applications. For example, if we consider the task
where a group of robots must search for an RFID-tagged
object, it is reasonable to use the server. After the user has
given the task, the server distributes the task information
down to the suitable set of robots which then spread out
in the environment and start performing the search. As
soon as one of the robots has found the demanded object,
it will communicate the knowledge to the server which
then informs the user and notifies the other robots to stop
searching.

8.1 Communication protocols

The CSV protocol version sends data over http POST.
The first row in the data block contains a sender id, the
following rows contain the memory datastore rows in the
standard CSV format. The protocol is used to both send
data from the robot datastore to the swarm postgresql
database on the server, and vice versa: from the swarm
database to the single robot datastore.

The CSV protocol data format:

robots
subject,propery,...,usecstamp
subject,property,...,usecstamp

with the rows containing the same fields as the memory
datastore: subject, property, value, valuetype, source, con-
text and two timestamps both comprising seconds and
microseconds.

Some parts of the row may be omitted if the original record
in the memory datastore lacks these particular elements,
eg context. In this case we will simply have commas right
after another (,,,) as commonly used in the csv format.

In case the memory datastore contains an integer or float
in the value field, it will be presented as a human-readable
string according to the obvious xml schema principles. The
special subject value "me” in the memory datastore will
be replaced with the id of robot who is sending the data,
otherwise value is left as it is.

9. RELATED WORK

The SHAGE/AlchemistJ framework Lee et al. (2008)
should be mentioned as a solution for robot knowledge
exchange using data repositories and component brokers.

High level data representation is a trend of modern
robotics. For example, XML based data coding has been
used on robots Lee et al. (2008). However, besides the

benefits of universal high level representation the XML en-
coding requires additional conversions between exchange
and machine control domains.

Conventional XML based RDF format is used for time
uncritical inter-robot or server communication, the de-
scription can be found in Ardizzone et al. (2006). A spe-
cial, compact RDF format is used for storing real-time
algorithms of robot operation.

10. CONCLUSIONS AND FUTURE WORK

We have designed the robot swarm system and are con-
ducting actual testing with real tags and robots. So far we
have successfully implemented both the robot hardware
and software, including the memory datastore, RFID and
rule engine usage, communications with the server and the
server database as described in the paper. The experiments
have been encouraging, especially when we consider the
weak processing power and high reaction times: the tiny
onboard Gumstix computer manages to run the described
agents, use the RFID chips, memory datastore and the rule
engine without slowing down the robot reactions. Porting
the system to the larger Pioneer and Mugiro robots via
the Player interface (conducted by Fatronik) was relatively
easy. As a consequence, we now have three very different
robots able to communicate through the same infrastruc-
ture.

On the other hand, detecting, reading and writing RFID
tags requires considerable care when selecting tag types,
antennas and the scanning frequency. A usable solution
has been worked out, but further optimisations and im-
provements are needed.

REFERENCES

Altshuler, Y., Bruckstein, A., and Wagner, I. (2005).
Swarm robotics for a dynamic cleaning problem. IEEE
Swarm Intelligence Symposium 2005 (SIS05), 209-216.

Ardizzone, E., Chella, A., Macaluco, I., and Peri, D.
(2006). A lightweight software architecture for robot
navigation and visual logging through environmental
landmarks recognition. In International Conference on
Parallel Processing Workshops.

Hayes-Roth, B. (1985). A blackboard architecture for
control. Artificial Intelligence, 26(3), 251-321.

Lee, S., Suh, L., and (Eds), M.K. (2008). Recent progress
in robotics. In Lecture Notes in Control and Information
Sciences 370, 385-397. Springer.

Robinson, J.A. and Voronkov, A. (eds.) (2001). Handbook
of Automated Reasoning. MIT press.

Tammet, T. (1997). Gandalf. Automated Reasoning, 18(2),
199-204.

Tammet, T., Vain, J., and Kuusik, A. (2006). Using rfid
tags for robot swarm cooperation. WSEAS Transactions
on Systems, 5(5), 1121-1128.

Tammet, T., Vain, J., Kuusik, A., Puusepp, A., and
Reilent, E. (2008). Rfid-based communications for a
self-organising robot swarm. In Self-Adaptive and Self-
Organizing Systems.

Ziparo, V.A., Kleiner, A., Nebel, B., and Nardi, D. (2007).
Rfid-based exploration for large robot teams. In IEEE
International Conference on Robotics and Automation,
4606-4613.

PAPER 3

E. Reilent, I. Lodbas, R. Pahtma, A.Kuusik. Medical and Context Data Acquisition
System for Patient Home Monitoring. In Electronics Conference (BEC), 2010 12th
Biennial Baltic (pp. 269-272). IEEE.

89

Medical and Context Data Acquisition System for Patient Home Monitoring

Enar Reilent', Ivor Lodbas', Raido Pahtma?, Alar Kuusik®

'ELIKO Competence Centre, Teaduspargi 6/2, 12618 Tallinn, Estonia, E-mail: firsmame.lastname@eliko.ee
Laboratory for Proactive Technologies, TUT, Ehitajate tee 5, 19086 Tallinn, Estonia, E-mail:
raido.pahtma@dcc.ttu.ee
3Department of Electronics, TUT, Ehitajate tee 5, 19086 Tallinn, Estonia, E-mail: alar.kuusik@ttu.ee

ABSTRACT: Patient remote monitoring has continuously
rising importance for aging countries. Computer based
assisted living systems are too difficult to handle by elderly
people, therefore it has been proposed to extend smart home
control or entertainment systems with patient monitoring
functionalities. However, such implementations are usually
platform and data protocol specific making their extension
time consuming and data interpretation complicated. We
propose a semantics driven messaging system and agent
based software architecture for home telecare that is open
for adding any kind of medical or context sensors, either
wired or wireless ones. System can be reconfigured during
the operation and its output data is highly compatible with
eHealth databases. The solution is prototyped.

1 Introduction

Telecare (tele-home-care) provides a recognized solution
to control the growth of medical expenses caused by an
increasing proportion of elderly and chronically ill people
[1]. As well described by Doughty et al. the modern
telecare solutions should be able to monitor slow
deteriorations of well-being for early discovery of health
risks [2]. It is believed that discovery of slight deviations
in health condition requires lifestyle-monitoring in
addition to medical parameter measurements, as outlined
by Barnes [3]. In case of the long term monitoring,
especially while considering contextual data, a significant
increase in the amount of data and its handling involution
is usually not addressed on the system architecture level
in a comprehensive way. From one side, the existing
telecare solutions are designed as classical data
acquisition systems not providing the flexibility to add
weakly specified context information. From the other side
— which is more important — if the context information is
provided for a particular monitoring task, it is difficult to
analyse and compare the data against other content
sources like Electronic Health Records (EHR) and
different telecare implementations. The present paper
describes content centric software architecture for telecare
systems that simplifies machine processing of patient and
context information through the semantic representation
of data and semantic reasoning.

2 Previous work

The common approach in patient lifestyle monitoring is
utilization of Smart Home (SH) control platforms.
Monitoring of the duration, frequency, and patterns of
patient's daily activities gives important context for
medical measurements and even can be used for
discovery of emergency conditions [4, 5]. As presented by
Chen et al., the SH environments are producing massive
amounts of sensor data. However, until the data is imbued
with well-defined meaning, the potential use for
describing lifestyle context for patients is rather limited
[6]. The use of widely accepted ontologies (controlled,
relational vocabularies) allow more simple interpretation
and reasoning of the information - it is already proposed
to use ontologies for describing (smart) environment
context [7]. In the MATCH project, Turner et al.
proposes to use ontologies for data clustering [8].
However, while the works of both Chen and Turner show
that semantic enrichment of context information
simplifies its processing, they do not specify any practical
ontologies to use. Neither do they propose how the
semantic data should be handled within real
telemonitoring systems, starting from the information
source (semantic sensor) up to the hospital EHRs.
Essential components for modern patient
telemonitoring include patient profile and automated
sensor handling. From the theoretical side, the policy (i.e.
rule) based home care systems, by Turner and others [9,
10], are promising for personalization and simple
customization. Again, described solutions represent
prototype implementations not compatible with actual
EHRs or practical data acquisition systems by means of
sensor integration and existing formal reasoning tools.

3 Proposed software architecture

Based on analysis of recent related work we can say that
modern telecare solutions should support:
» Context monitoring to enrich the
information;
* Personalization up to the level of individuals;

medical

» Simple sensor integration, automated service
invocation and runtime reconfiguration;

Semantic content driven data processing and rule
based reasoning solutions should satisfy described
requirements for modern telecare systems. Existing
commercial telecare systems, even supporting HL7 v3
XML communication standard [11], have conventional
client server data acquisition system architectures and are
targeting single application use. The rule based and
semantic approaches of telemonitoring described above
represent theoretical State-of-the-Art and do not propose
any practical implementation frameworks for their
realizations.

We propose an open software architecture which
supports semantic data processing and (soft) real-time
reasoning with patient policies. The architecture is a
distributed multi-agent system of independent
asynchronous processes that follows the classical
blackboard communication model of Hayes-Roth [12].
All agents (executable processes) within the same
hardware device (e.g home embedded monitoring
controller - we call Smart Home GateWay (SHGW) or a
server) communicate by writing data to the central
datastore and every agent can access all data inserted to
the datastore.

The main advantage of data exchange via a
blackboard is that, opposite to the popular socket based
communication, there is no need to specify target user
processes (of local real-time data) in advance which
allows to implement subsumption architecture based
solutions. There is always possibility to add or modify
content processing agents without the need to modify
agents related to sensors and other hardware.

There can be various types of agents executed in a
telemonitoring SHGW device. Sensor agents acquire data
from sensors devices (and systems), store it on the local
blackboard and send configuration info published on the
blackboard back to sensors. As a sensor agent receives
raw data from a hardware device it has to convert the data
into the semantic representation to be described in the
following chapter. Data processing agents perform a
variety of tasks including analysis of measured samples
and discovery of data inconsistency. Essentially, data
processing agents are supposed to make use of (semantic)
formal reasoning on the data available on the blackboard.
Output agents communicate with the host services e.g
databases of responsible medical institution to upload
aggregated data and download new configuration setting
for sensing system.

4 Data presentation

All data in the system is gathered and saved into one
physical datastore — the blackboard. Therefore the data
format used by the blackboard must satisfy versatile needs
of all agents in the SHGW system. We have to stress that
existing semantic telemonitoring approaches do not
address special requirements of wireless devices
regarding the (data encoding) protocol efficiency by

means of energy use. We expect the data format to be
simple and efficient but the same time suitable for
accepting readings from both medical and contextual
sensors, patient's profile, messages from medical
personnel. Therefore we have to achieve trade-off
between efficiency and flexibility of the data format.

Considering these circumstances we propose to
express all knowledge in the system by using RDF triples.
The RDF-based data representation (and associated
OWL-based ontology systems) for defining and
describing relations and concepts is emerging in different
computerized data processing applications using "the
semantic web" standards and technologies. Using RDF
data (knowledge) coding makes it possible to integrate
existing formal reasoners and other knowledge processing
and querying (SPARQL) tools.

Thus, a fact (a data item) on the blackboard in our
system has the following three fields:

« Subject: id of whatever has the property.

« Property: name of the property of the subject. In

RDF terminology this would be the predicate.

* Value: value of the property. In RDF terminology

this would be the object.

To present all the data in the system semantically,
facts should be composed by using well-defined terms
that are understood by different parties in the same way.
Semantical content supports later processing, exchange
and unified interpretation of facts.

In our approach we stress to use keywords from
ontologies published on the web. That way we can
guarantee that correct interpretation of information is
always possible for content user (correct use still remains
user responsibility). Especially important is the proper use
of concepts in the medical domain - for ,heart rate” for
example, around 20 different terms are in use, some of
them have a specific flavour. Therefore inadequate
labelling and later interpretation of sensor signals may
lead to critical situations for patients. It has to be
mentioned that correct interpretation of data encoded into
HL7 messages, remains fully user responsibility by
existing solutions. From the other side, if used ontologies
are published and accessible, automated conversion of
information becomes possible. Right now we are using
several different ontologies, narrowing of selection will
be done in the future. World-widely accepted SNOMED
CT domain ontology seems to be one of the most
attractive selections [13].

5 Instrumentation and data of demo system

For testing the proposed telecare solution we have
implemented the software for an enhanced DVB receiver
as a SHGW device. Beside cable and IP TV reception
capabilities and HDMI output, the device is equipped
with Bluetooth and Zigbee interfaces to support wireless
medical and presence sensors. The device has 300MHz
32bit dual core MIPS type CPU and non-RT Linux OS.
The blackboard is implemented as a transparent
custom shared memory datastore. There is no separate

process for the datastore, agents in the system can use a
set of API calls to insert and query data (triples) from
shared memory. The datastore serves as mid-term
memory for storing data and as a postbox between
different agents. It can also be seen as a deductive
database for a prover, using a rule language for rule-based
generation of new facts.

For demonstrating the implementation of an sensor
agent let us consider the adapter for the selected PPG
(PhotoPlethysmoGraphy, measures heart rate and oxygen
saturation in blood) sensor Nonin Onyx II which can
communicate via Bluetooth 1.1 interface. The PPG sensor
agent always runs in the background, monitoring whether
the sensor is online or not. When the sensor device is
turned on the agent establishes a connection and starts
receiving all the output generated by the device, which it
inserts to the database in the form of triples.

The example output of a single measurement sample
looks as following (,#3920% is a unique key for binding
the particular set of different triples into one entity):

PPG _URI, sample_URI, #3920
#3920, pulse_URI, 73

#3920, saturationO2_URI, 98
#3920, timestamp_URI, 1264423298

— where real URI strings are abbreviated. For
example, ,,PPG_URI“ identifies one sensor device like
LHhttp://www.eliko.ee/ssg/demo/hospital 1 /patient3/sensors
/PpgSensor®, »pulse URI“ stands for
,.http://bioinfo.icapture.ubc.ca/subversion/SIRS/clinicalph
enotype.owl#HeartRate™ to express sensor readings with
terms of particular ontology meaning system.

Environment (part of context) sensing capabilities can
be introduced to a patients home as a WSN (Wireless
Sensor Network), based on for example IEEE802.15.4
radio technology. The devices are unobtrusive, battery
operated and require little to no maintenance. We have
interfaced our Crossbow IRIS and TinyOS based WSN to
the home gateway. The nodes can be equipped with
sensors for measuring temperature, humidity, light
intensity, movement (PIR) etc. The nodes are location
aware, initial nodes are configured with information about
their placement in the environment.

A special agent runs on the SHGW to translate the
data received from the WSN (in compact encoding format
[14]) to RDF triples and inserts it to the blackboard. As
the sensor nodes are determined to conserve their batteries
for most of the time, the WSN adapter agent also has the
role of managing the activity of the network. Sampling
frequencies of sensor nodes in the WSN can be
reconfigured by sending subscription commands to the
network.

A sensor data subscription usually consists of the data
type, permitted maximum age of the last reading
(essentially specifying the sensing period), the area from
where the reading has to be taken from and the duration
of the subscription. Usually a subscription is directed to a

spatial area, not a specific node, however it can be. The
actual nodes that are going to provide the requested data
are determined in the WSN. This means that the agent on
the SHGW does not need to know the configuration of the
sensor network, just spatial information about the user's
environment. Additionally, the sensor subscription can
contain various rules for reconfiguration, which for
example specify how the sensing period should be
adjusted if the reading exceeds some threshold.
Subscriptions can also reference other environmental
parameters which can be measured by other sensor nodes,
for example, a light sensor reading is requested only if a
PIR sensor detected movement.

The knowledge base in a Smart Home GateWay
device could contain data about the patient's environment
as given in the following set of triples where raw sensor
readings have been aggregated and presented in a
structured way:

Room_3 URI, type URI, bedroom URI
Room_3_URI, environment_URI, #1205
#1205, latest _values URI, #2486

#1205, valid_time_URI, 15 min

#2486, light intensity URI, unknown
#2486, temperature URI, 20 °C

#2486, humidity URI, 67%

#2486, movement URI, 30

This set of facts reads that in the patient's bedroom
there are currently 20 °C of heat, humidity is 67%,
movement level is 30 (in agreed units), and there is no
fresh data about the light intensity in the room. Movement
level is calculated from the frequency of PIR sensor(s)
readings (movement detected) in the particular room. The
valid time tells that none of the present values are older
than 15 minutes in the current case. The system updates
these values based on the received sensor data and if no
data is to be found to fit into the given time limit then the
latest value of the parameter is set to unknown.

6 Semantic reasoner of demo system

By our architecture we can natively apply several formal
reasoners as different data processing agents in parallel
for the same physical datastore. For data processing and
decision making, e.g. strictly personalised emergency
condition detection, simple hard-coded agents can be
installed, as well as full formal reasoners like Jena,
Gandalf and others for handling thousands of patient and
context related facts. For example, we make use of Prolog
to process semantically represented data from the PPG
sensor with a blackboard agent executing a Prolog engine
as a child process and feeding it with queries.

For evaluating the patient's condition on behalf of the
heart rate measurements taken with a PPG sensor we also
have to take into account the available contextual
knowledge. In the simplified example of processing of
samples additionally PIR sensors and bed sensor are
considered. The bed sensor uses accelerometers to detect

when the patient goes to the bed, when she leaves the bed,
and how fitful or sound is the sleep.

Say, if a heart rate sample is found to be below 50
beats per minute we can predict health (or device
malfunctioning) problems. Alternatively, if there is a
sample above 90, derivation cannot be made. With sub-
queries we try to justify the high pulse first and only if it
is not possible then positive result (problem found) is
returned. For example, if the patient has had significant
physical movement activities 10 minutes prior the pulse
measurement, we have no reason to rise alarm.
Contrariwise, if the patient has not moved around or has
even been in bed then heart rate over 90 indicates health
problems. The Prolog rule of the main query to rise an
alarm is as follows:

problem_suspected :-
fact('PPG_URI', 'sample_URI', Y),
fact(Y, ‘pulse_URI', X),
Jfact(Y, 'timestamp', T),
(X<50;
X>90,
(not(was_active_between(T, T-(60*10)));
was_in_bed between(T, T-(60%10)))).

In experiments SWI-Prolog 5.6.58 was used to
execute Prolog programs at described SHGW platform.
The measured worst case reasoning time with several
thousand facts and ca 15 rules was 2 seconds and average
reasoning time below 200ms. The RT performance is
clearly sufficient to discover patient emergency
conditions quickly enough.

7 Conclusions and future work

Experiments show that proposed and prototyped semantic
reasoning based telecare system satisfies real life needs of
modern patient home monitoring with lifestyle context
information support.

The further work will focus on integration of feasible
set of medical and environmental sensors by means of
developing device adapter agents supporting SNOMED
CT taxonomy. The target is the real life use of the
developed telecare solution including enhanced DVB
receiver and wireless sensor subsystem.

8 Acknowledgements

This research has been supported by European Regional
Development Fund, Competence Centre program of
Enterprise of Estonia and ITEA2 EU program.

References

[1] The e-Health Innovation Professionals
http://www.health-
informatics.org/tehip/tehipstudy.PDF (2005)

[2] K. Doughty, K. Cameron, P. Garner, Three
generations of telecare of the elderly, Journal of

Group,

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]
[12]

[13]

[14]

Telemedicine and Telecare, vol. 2, no. 2, pp. 71-80,
1996.

N.M. Barnes, N.H. Edwards, D.A.D. Rose, P.
Garner, Lifestyle monitoring - technology for
supported independence. IEE Computing and
Control Engineering Journal, volume 9, number 4,
August, 1998, pp. 169-174.

T. Amaral, N. Hine, and J. L. Arnott, Integrating the
Single Assessment Process into a lifestyle-
monitoring system. In 3rd International Conference
On Smart homes and health Telematic (ICOST
2005), pages 42-49

A. Sixsmith, An evaluation of an intelligent home
monitoring system, Journal of Telemedicine and
Telecare 6 (2) (2000), pp 63-72

L. Chen, C. D. Nugent, MD. Mulvenna, DD. Finlay,
X. Hong X, Semantic Smart Homes: Towards
Knowledge Rich Assisted Living Environment, in
Intelligence on Intelligent Patient Management (Ed.
by McClean S., Millard P, El-Darzi, Nugent C),
Springer 2009, ISBN 978-3-642-00178-9, Pages
279-296

E. Kim and J. Choi, An Ontology-Based Context
Model in a Smart Home, Notes in Computer
Science Publisher Springer Berlin / Heidelberg
ISSN 0302-9743 (Print) 1611-3349 (Online)
Volume 3983/2006

K. J. Turner, L. S. Docherty, F. Wang and G A.
Campbell, Managing Home Care Networks, in
Robert Bestak, Laurent George, Vladimir S.
Zaborovsky and Cosmin Dini (eds.), Proc. 8th Int.
Conf. on Networks, IEEE Computer Society, 2009,
pp. 354-359

J. C. Augusto, J. Liu, P. McCullagh, H. Wang, and
J.-B. Yang, Management of uncertainty and spatio-
temporal aspects for monitoring and diagnosis in a
Smart Home. International ~ Journal — of
Computational Intelligence Systems, 1(4):361-378.
Atlantis Press. 2008.

K. Du, HYCARE: A hybrid -context-aware
reminding framework for elders with mild dementia,
ICOST 2008.

Integrating the Healthcare
http://www.ihe.net (2010)

B. Hayes-Roth, A blackboard architecture for
control, Artificial Intelligence, 1985, 26(3):251-321
International ~ Health Terminology Standards
Development Organisation, http://www.ihtsdo.org
(2010)

Preden, J.; Pahtma, R. Exchanging situational
information in embedded networks . In: Proceedings
of International Conference on Adaptive Science &
Technology : IEEE International Conference on
Adaptive Science & Technology ICAST 2009,
Accra, GHANA , 14-16 December 2009 . IEEE
Operations Center, 2009, 265 - 272.

Enterprise,

PAPER 4

A. Kuusik, E. Reilent, I. Lodbas, A. Luberg, A. Data Acquisition Software
Architecture for Patient Monitoring Devices. Journal of Electronics and Electrical
Engineering, Kaunas University, 105(9), 97 - 100. 2010.

95

ELECTRONICS AND ELECTRICAL ENGINEERING

ISSN 1392 - 1215

2010. No. 9(105)

ELEKTRONIKA IR ELEKTROTECHNIKA

MEDICINE TECHNOLOGY

T115

MEDICINOS TECHNOLOGIJA

Data Acquisition Software Architecture for Patient Monitoring Devices

A. Kuusik, E. Reilent, I. Lodobas, A. Luberg

ELIKO Competence Centre, Estonia,e-mail: alar.kuusik@eliko.ee

Introduction

Telecare (tele-home-care) provides a recognized
solution to control an increase of medical expenses caused
by an increasing proportion of elderly and chronically ill
people [1]. As well described already by Doughty et al. [2],
the modern telecare solutions should be able to monitor of
slow deterioration of well-being and discover health risks
early. It is believed that discovery of slight deviations in
health condition requires, additionally to medical
parameter measurements, lifestyle-monitoring as outlined
by Barnes [3]. Long term patient, especially such requiring
lifestyle monitoring, causes significant increase of amount
of data gathered and its handling involution that is usually
not addressed on system architecture level in complex way.
From one side, the existing telecare solutions are designed
as classical data acquisition systems not providing
flexibility to add context information. From the other side
— which is more important — if the context information is
provided in human readable way or binary encoded, it is
not machine processable outside of a single institution.
Present paper describes content centric software
architecture for telecare systems that simplifies machine
processing of patient and context information through the
semantic representation of data and semantic reasoning.

Previous work

For the patient lifestyle monitoring the use of Smart
Home (SH) control platforms is a common approach.
Monitoring of the duration, frequency, and patterns of
daily activities, e.g. sleeping and training times, give an
important context for acquired medical measurements data
and can be used for discovery of emergency conditions [4,
5]. As presented by Chen et al. [6], the SH environments
are producing massive amounts of data from sensors and,
until the data is imbued with well-defined meaning, the
potential use of the system for describing lifestyle context
for patients is rather limited. Obviously, it is difficult to
unify and organize the human lifestyle information using
low, communication message level terminology system.
The use of widely accepted ontologies (controlled,
relational vocabularies) allows higher level interpretation
and reasoning of information by a user. Therefore it is

97

already proposed to use ontologies for describing (smart)
environment context [7]. Within MATCH project, Turner
proposes to use ontologies for data clustering [8].
However, while the works of both Chen and Turner show
that semantic enrichment of context information simplifies
its processing, they do not specify any practical ontologies
to use and propose how the semantic data shall be handled
within a real telemonitoring system starting from the
information source (semantic sensor) up to the personal
health record database.

Essential components for patient modern
telemonitoring include patient profile and automated
sensor handling. From a theoretical side, the policy (i.e.
rule) based home care systems are promising for
personalization and simple customization by Turner and
others [8, 9]. Again, described solutions represent
prototype implementations not compatible with actual
health records and practical data acquisition systems by
means of sensor integration and existing formal reasoning
tools. Situation awareness and environmental condition
detection is sometimes performed ubiquitously by several
sensor motes [10] but semantic data exchange between
those motes is not applicable for practical
implementations.

Proposed software architecture for modern telecare
monitoring systems

Having based on analysis of recent related work we
can say that modern telecare solutions should support:
Lifestyle monitoring, in addition to medical
sensing;

Personalization of patient policies;
Simple sensor integration, automated service
invocation and runtime reconfiguration;

Semantic content driven data processing and rule
based reasoning solution should satisfy described
requirements for modern telecare systems. However, the
commercial telecare systems described above have
conventional client server based data acquisition system
architecture with fixed communication protocols and
preknown set of supported sensing devices. Naturally,
those implementations, even designed to be compatible
with with HL7 v3 XML standard [11] are targeting single

application use. The rule based and semantic approaches of
telemonitoring described above present theoretical State-
of-the-Art and do not propose any practical
implementation frameworks for their realizations. Essential
feature for telecare systems is the extendability by means
of simple reconfiguration of hardware and introduction of
new knowledge in form of rules, data processing
executables, etc.

We propose an open agent based software
architecture, which supports semantic data processing and
(soft) real-time time reasoning with patient policies.

Multiagent system

The proposed architecture is a distributed multi-agent
system of independent asynchronous processes that
follows the classical blackboard communication model of
Hayes-Roth [12] - the agents (executable processes) within
the same hardware device (embedded controller, server)
communicate by writing data to the central datastore
(within the same hardware device) and every agent can
access all data inserted to the datastore.

The main advantage of the blackboard (pull mode)
communication based architecture is that, opposite to
popular socket based communication, there is no need to
specify target user processes (of local real-time data) in
advance. There is always a possibility to add or modify
content processing agents without the need to modify
sensor and other hardware related agents.

The different Monitoring Device Hierarchy (MDH)
software agents are running on intelligent sensors, Smart
Home (SH) controller(s), hospital servers, PC clusters, etc.
The simplest practical telecare software implementation
contains telemonitoring gateway and hospital MDH levels
both having their own blackboard datastore. Main agents
by functionalities we propose:

Sensor agents acquiring data from individual
sensors, publish it on the blackboard and send the
configuration info published on the blackboard back to
sensor. Important is that there are no target user (agent)
specified for the acquired content in advance. In the case
the sensor agent receives raw data from hardware device it
has to convert data into the semantic representation
described below,

. Data processing agents performing variety of
signal processing data inconsistency discovery tasks,
essentially presenting data processing agents are
(semantic) formal reasoners,

. Output agents communicating with host services
(devices on higher MDH levels), for example an output
agent running on SH central controller is responsible to
export patient data to hospital system and download new
configuration settings,

. HCI agents for displaying profile based selection
of information on home screen or hospital web site.

Data presentation

All data in the system has to be presented
semantically by using well-defined terms that are
understood by different parties in the same way for

98

supporting later and unified
interpretation.

In our approach we stress to use the ontologies
available on the web. That way we can guarantee that
correct interpretation of information is always possible for
content user (correct use still remains user responsibility).
Especially important is the proper use of keywords in
medical domain - for ,heart rate” for example, around 20
different terms are in use, some of them are equal, some
have specific flavor. Inadequate labeling and later
interpretation of sensor signals may lead to critical
situations for patients. From the other side, if the used
ontologies are published and accessible, automated
conversion of information is a simple task. Good,
worldwidely accepted ontology (vocabulary) for medical
domain is proposed by SNOMED CT [13]. Right now we
are using several different ontologies, further narrowing of
selection will be done.

Different agents inside a system module (e.g., a set-
top box or a aggregation server) are determined to share a
common data model and data storage/exchange
environment (blackboard). The schema of data
representation within such system has to be universal and
flexible. Therefore we propose to use RDF triples to
present all the data, starting right from the sensors. The
RDF-based data representation (and associated OWL-
based ontology systems) for defining and describing
relations and concepts is emerging for different
computerized data processing applications using "the
semantic web" standards and technologies. Using RDF
data (knowledge) coding makes it possible to integrate
existing formal reasoners and other knowledge processing
tools. There are some XML-based semantic data
presentation solutions developed for sensors like
SensorML, Hydra middleware. However, those solutions
are not fully RDF compatible which makes formal
reasoning more complex. From the other side, XML format
has a certain communication overhead, especially for
wireless sensors. The additional advantage of using
standard RDF allows using existing SPARQL tools.

A fact (a data item) on the blackboard in our system
has the following fields:

Subject: id of whatever has the property;
Property: name of the property of the subject. In
RDF terminology this would be the predicate;
Value: value of the property. In RDF terminology
this would be the object.

For example, PPG sensor (Bluetooth Nonin Onyx I1
device to gather and formalize pulse and blood saturation
readings) could be described by following triples:

PPG URI, registeredAs URI, sensor_URI;
PPG _URI, measures _URI, pulse URI;

PPG _URI, measuers_URI, saturationO2 URI;
PPG_URI, modelNumber URI, 9560BT.

processing, exchange

Realization of agents

The blackboard is implemented as a transparent
custom shared memory datastore. There is no separate
process for handling the datastore, agents in the system can
use a set of API calls to insert and query data (triples) from
shared memory. The datastore serves as a mid-term

memory for storing data and as a postbox between
different agents. It can be also seen as a deductive database
for reasoner, using a rule language for rule-based
generation of new facts.

We demonstrate the common model of an agent on
the sensor adapter (agent) for the selected PPG sensor. The
agent runs always in background, monitoring whether the
sensor is online or not. When the sensor device is turned
on the agent establishes connection immediately and
receives all the output data generated by the device, which
is inserted into the database in the form of triples. The
agent also queries regularly the database for getting its
configuration parameters or other input data.

The example output of a single measurement looks as
following (,,#3920“ is a unique key for binding the
particular set of different triples into one entity):

PPG URI, sample URI, #3920;
#3920, pulse_URI, 73;

#3920, saturationO2_URI, 98;
#3920, timestamp_URI, 1264423298.

With our architecture we can apply several formal
reasoners as different data processing agents in parallel for
the same physical datastore. For data processing and
decision making, e.g. emergency condition detection,
simple hardcoded agents can be installed, as well as full
formal reasoners like Jena, Gandalf and others for handling
thousands of patient and context related facts. For
example, we can describe processing of semantically
represented rules and data of SpO2 meter with a
blackboard agent executing Prolog programs.

It is known that normal SpO2 value for healthy
people is 96-99%, whereby the value < 95% indicates
respiratory insufficiency and the value < 90% indicates
hypoxia with the need of emergency treatment. However,
for people with COPD (chronic obstructive pulmonary
disease) a normal SpO2 diagnosed value is between 88-
92%. Suppose we have a precalculated fact in our memory
datastore being specific to the patients's critical SpO2
value: patient URI, critical SpO2_URI, 90. The respective
agent could check whether the SpO2 value is critical or not
by querying Prolog the following rule, which answers
false” if no SpO2 sample is found below critical value
and ,.true® if all preconditions of the rule are satisfied (and
variable X is instantiated to one particular SpO2 value
which is under the limit):

spo2_problem(X) :-

fact('PPG_URI', 'sample_URI', Y),
Sact(Y, 'saturationO2_URI', X),
fact(patient_URI, 'critical SpO2 URI', Z),
X<Z.

For uploading data to next MDH levels, we have a
separate agent responsible for exchanging facts with a data
aggregation server for sending relevant data items from the
local memory database to the server and
downloading/receiving new commands and configurations,
which will be stored back into the memory database
available for all other agents.

Transmitted data amounts could become relatively
large, for example, one pulse-oxymeter sample as it was
presented previously (if encoded into full human-readable
string) takes 350 bytes. Compression or re-encoding of
URIs containing triples is possible, though one must

99

consider the trade-off for compatibility with potential data
consumers in other MDH layers.

For reducing the load of communication channels,
and especially central aggregation servers (can incorporate
monitoring data from several hundreds of patients), a
considerable amount of raw sensor data processing and
analyzing is done locally on home telemonitoring gateway.
Therefore, only the results/reports of the data processing
and irregular individual values shall be uploaded by
default, while other levels have possibility to query
additional raw (gathered) data.

Implementation and testing

For testing the proposed architecture, we
implemented the software for enhanced DVB receiver.
This device is equipped with Bluetooth and Zigbee
interfaces to support wireless medical and presence
sensors. The device has 300MHz 32bit MIPS type CPU
and non-RT Linux OS. Wireless Onyx II 9560 SpO2 sensor
was used for testing, see (Fig. 1.). The processed
information was sent to the hospital server using SOAP
(Simple Object Access Protocol) messages.

Home
DVB receiver /
medical gateway |}

with Bluetooth
and ZigBee
support

P —_
S SpO2 sensor
-

™

=
Fig. 1. Instrumentation of home monitoring system

Blackboard on home controller is a custom memory
database, reasoning agents use SWI-Prolog (Version
5.6.58) engine. Conventional Postgres database and Jena
reasoner run on hosptial server. The implementation
appears to fulfill requirements of simple customizability
and can handle semantic content. The most critical issue is,
as expected, the performance of the reasoner on smart
home controller, because of weak hardware platform. In
real tests we measured an average (of 750 tests) of Prolog
reasoning time of 310 ms of 4500 facts and 420ms of up to
7500 facts. The measured worst case reasoning time was
2sec, which is clearly sufficient to discover patient
emergency conditions quickly enough and the home factset
should not exceed 1-2 thousand facts by our expectations.

Future work and conclusions

The further work will focus on optimization of the
software implementation and integration of feasible set of
medical and smart environment domain ontologies. The
target is real life use of the developed telecare architecture
and its software implementation. Experiments show that

the proposed software architecture satisfies real life needs Hong X. Semantic Smart Homes: Towards Knowledge Rich

of modern patient home monitoring solutions, semantic Assisted Living Environment, in Intelligence on Intelligent

reasoning and computerized personalization. Patient Management (Ed. by McClean S., Millard P, El-
Darzi, Nugent C). — Springer, 2009.

7. Kim E., Choi J. An Ontology—Based Context Model in a
Smart Home, Notes in Computer Science. — Publisher

. Berlin/Heidelberg: Springer, 2006.

This research has been supported by European g Tyrper K. J., Docherty L. S., Wang F., Campbell G. A.

Acknowledgements

Regional Development Fund and Competence Centre Managing Home Care Networks (in Robert Bestak, Laurent
program of Enterprise of Estonia. George, Vladimir S. Zaborovsky and Cosmin Dini (eds.)) //

Proc. 8th Int. Conf. on Networks, IEEE Computer Society,
References 2009. — P. 354-359.

9. Augusto J. C., Liu J., McCullagh P., Wang H., Yang J.-B.
Management of uncertainty and spatio—temporal aspects for
monitoring and diagnosis in a Smart Home // International
Journal of Computational Intelligence Systems. — Atlantis
Press, 2008. — No. 1(4). — P. 361-378.

1. The e-Health Innovation Professionals Group. Online:
http://www.health—informatics.org/tehip/tehipstudy. PDF.

2. Doughty K., Cameron K., Garner P. Three generations of
telecare of the elderly // Journal of Telemedicine and

Telecare, 1996. — Vol. 2. — No. 2. — P. 71-80. 10. Leonaite A., Vainoras A. Heart Rate Variability during two
3. Barnes N. M., Edwards N. H., Rose D. A. D., Garner P. Relaxgtion Tef:hniques in Post-MI Men // Electronics and
Lifestyle monitoring — technology for supported Electrical Engineering. — Kaunas: Technologija, 2010. — No.
independence // TEEE Computing and Control Engineering 5(101). - P. 107-110. ‘ '
Journal, 1998. — Vol. 9. — No. 4. — P. 169-174. 11. Dimitrov D. Tz., Guergov S., Ralev N. D. Multifunctional
4. Amaral T., Hine N., Arnott J. L. Integrating the Single Adaptive System for Physiotherapy with Measurement

Assessment Process into a lifestyle-monitoring system // 3rd Devices // Electronics and Electrical Engineering. — Kaunas:

International Conference On Smart homes and health Technologija, 2010. — No. 5(101). — P. 111-114.

Telematic (ICOST 2005), 2005. — P. 42-49 12. HayesTRoth B A blackboard architecture for control //
5. Sixsmith A. An evaluation of an intelligent home monitoring Artlﬁc@] Intelligence, 1985j —No. 3(26). —P. 251-321.

system // Journal of Telemedicine and Telecare, 2000. — Vol. 13- International Health Terminology Standards Development

6.-No.2.—P. 63-72. Organisation. Online: http://www.ihtsdo.org (2010).

6. Chen L., Nugent C. D., Mulvenna M. D., Finlay D. D.,
Received 2010 02 15

A. Kuusik, E. Reilent, I. Lddbas, A. Luberg. Data Acquisition Software Architecture for Patient Monitoring Devices //
Electronics and Electrical Engineering. — Kaunas: Technologija, 2010. — No. 9(105). — P. 97-100.

Patient remote monitoring has continuously rising importance for aging countries. Computer based assisted living systems are too
difficult to use by elderly people, therefore it has been proposed to extend home multimedia devices with patient monitoring
functionalities. However, such implementations are usually platform and sensor specific making their extension and reuse complicated
and time consuming. We propose an agent based software architecture for embedded patient monitoring devices that is built around a
common database. The solution is open for adding any kind of medical sensors or signal processing software just by writing small
software adapter. System can be reconfigured during operation. As one of the unique feature the system has built in formal reasoner to
detect inconsistencies among sensor data and process patient unique safety rules in real time. The solution is prototyped. Ill. 1, bibl. 13
(in English; abstracts in English and Lithuanian).

A. Kuusik, E. Reilent, I. Lddbas, A. Luberg. Duomeny surinkimo programinés jrangos i§ pacienty stebésenai skirty jrenginiy
architektiira // Elektronika ir elektrotechnika. — Kaunas: Technologija, 2010. — Nr. 9(105). — P. 97-100.

Pacienty nuotoliniy stebéjimo sistemy svarba ypa¢ didéja ,,senstanciose valstybése. Vyresnio amZiaus zmonéms sunkiau naudotis
kompiuteriy sistemomis, todél buvo pasitilyta pacienty stebésenos funkcijas idiegti { multimedijos sistemas. Taciau jutikliy taikymas
tokiose sistemose sukelia nemazai problemy. Esamiems pacienty stebésenos jrenginiams pasiiilyta programinés jrangos architektiira,
pritaikoma jvairiy tipy jutikliams ar signaly apdorojimo programinei jrangai. Vienas i§ esminiy sitilomos sistemos pranaSumy — paciento
biisenos parametry stebésena esamuoju laiku lyginant jy tikroviskuma. Il. 1, bibl. 13 (angly kalba; santraukos angly ir lietuviy k.).

100

PAPER 5

A. Kuusik, E. Reilent, I. Lodbas, M. Parve. Software architecture for modern
telehealth care systems. Journal of Advances on Information Sciences and Service
Sciences, 2011, 3(2), 141 - 151.

101

Software architecture for modern telehealth care systems

Alar Kuusik', Enar Reilent', Ivor Lddbas', Marko Parve?
'ELIKO Technology Competence Centre, Tallinn, Estonia
’East Tallinn Central Hospital, Tallinn, Estonia
! Firstname.Lastname@eliko.ee, *marko.parve@itk.ee

Abstract
Results of several research groups indicate that modern home telehealth care systems should
support patient personalization and context awareness. To deal with accompanying increase of data
amount and processing complexity, a semantic reasoning approach is proposed. However, so far there
are no practical, system level software architectures proposed to address all related issues within one
complete solution. We describe a developed RDF blackboard based data processing solution for smart
home telecare supporting off-the-self reasoning tools and existing ontologies.

Keywords: telecare, patient monitoring, assisted living, smart home, semantics, agent software
architecture, formal reasoning.

1. Introduction

For the delivery of public healthcare, telecare (tele-homecare), an essential part of eHealth
technologies, provides the cost effective way to manage burdens on public services caused by an
increasing proportion of elderly and chronically ill people [1]. Additionally, to reduce demand on
clinics and home visits for patients the long term human monitoring is believed to be an effective way
for early discovery of health risks. Increased acceptance and adoption of preventative care regimes
within ‘wellbeing’ programs is important, for example smoking cessation and weight reduction also
require active patient monitoring at home. While the early patient telecare systems were designed just
for acquisition and offline monitoring of health parameters, and were later extended with real-time
monitoring of safety boundaries, then the modern patient home monitoring solutions essentially
analyze the context and focus on investigation of long term trends. Certainly, to discover slight drifts in
patient’s data the measurement context has to be taken into account. Strong external factors like recent
physical activities, stress, and irregular lifestyle may hide changes in patient's data over a long period.
From one side, the existing telecare solutions are designed as classical data acquisition systems not
supporting context information for detailed patient data analysis. From the other side, if context
information is provided, it is usually not machine tractable (outside of the particular system) making
large scale statistical data analysis virtually impossible. Present paper describes content centric
architecture for home monitoring solutions supporting machine reasoning of semantically encoded
sensor data and context information.

2. Previous work

2.1. Progress of home telecare services

Telecare and assisted living is an emerging topic of cost efficient health care. Average telecare
savings from the community perspective that are mentioned in the literature or achieved in trials are
about 15-30% [2]. As described by Doughty [3] et al., the first generation telecare technology solutions
enable to summon help in emergency, the second generation provide automated detection of
emergencies, and the third enable monitoring of deterioration of human well-being. The first
generation solutions in the form of panic buttons are available to the whole well-developed world. The
main disadvantage of such technology, though, is that patient may be unable to proceed with an
emergency call, or one tends to use the emergency hotline improperly. Significant involvement of
qualified medical staff is a disadvantage as well.

Commercial solutions of the second generation, e.g. Well@home, Zydacron, Docobo, and Philips
Motiva, have been available for about 10 years allowing automated monitoring of patient’s safety

based on periodic measurements. One of the significant advantages of the second generation is the
reduced need for professional medical assistance. However, existing practical solutions support only
resting condition measurements because of complexity of processing dynamically changing context.
On the other hand, trends clearly show improvements in the context awareness, e.g. use of
accelerometer data in mobile telemedicine [4]. For example, recent physical activities detected prior to
the heart rate measurements help to avoid faulty emergency actions while still maintaining high
sensitivity of the system. For simple personalization and context awareness policy-, i.e. ECA rule-
based home care systems are recommended by Turner [5] et al. Rule-based data interpretation for home
care solutions has been investigated in various research projects [6, 7] but there are no standardized
frameworks for simple reuse of the domain knowledge.

The third generation telecare solutions, also called lifestyle-monitoring by Barnes [8], essentially
focusing on continuous monitoring and analysis of Activities of Daily Living (ADL), primarily
including the duration, frequency and patterns of physical activities as described by Amaral [9] et al.
giving long term context to medical sensor data. Wide deployment of micro-mechanical sensors on
mobile phones just recently opened practical possibilities to allow ADL monitoring [10]. Continuous
ADL monitoring carries essential information about degradation of well-being [9] and can be used for
discovery of emergency conditions, even without medical parameter sensing [11]. Some recent telecare
system prototypes with lifestyle monitoring are created by Amaral, Kaushik [12] et al., and others.
However, there are several principal issues that are not addressed in such prototypes. Information
describing patient daily activities may be considered very delicate and in some countries there are legal
restrictions for centralized processing of such data. Amount of collected ADL information is
remarkable and therefore on-site data aggregation and processing is feasible as well. Development of
rules for processing broad range of ADL information is a complex and time consuming task stressing
the needs for knowledge formalization and reusability among many telecare patients.

2.2. Smart Home technology targeting modern telecare

Smart Home (SH) systems are the most widely used technology platforms for third generation
telecare targeting home based elderly and disabled people. Such improved SH systems have (wireless)
interfaces for medical sensors, typically cardiovascular and respiratory monitors, weight scales, blood
sugar meters, in addition to traditional micro-climate and entertainment control interfaces. Native SH
components, like movement detectors, video cameras, and home appliance control circuits, efficiently
provide required ADL context data. Recently, mobile communication devices equipped with micro-
mechanical sensors became useful for cost-efficient monitoring of physical activities and emergency
conditions like falling down. Therefore, importance of mobile telemedicine is rapidly increasing but it
is significantly harder to take into account the ADL information collected at different locations and
environments. In principle, the telecare software solutions described in present paper are also
applicable to mobile telemedicine. However, specific issues related to handling dynamic ADL data
sources will not be deeply analyzed.

Rule- and logic-based (including Fuzzy logic-based) control is the leading method for SH
implementations [13]. Therefore, rule-based patient data handling and personalization is natural for
ADL aware telecare. However, as stressed by Nugent and Chen [14] et al., even without telecare
functionality the SH environments are producing massive amounts of data and, until supplemented
with a well-defined meaning, the potential of smart homes assisting capabilities will not be fully
achieved, and propose semantic data integration approach demonstrated in their SemanticsAtHome
project. The importance of semantic context data fusion has also been stressed in AALIANCE telecare
roadmap [15]. The main disadvantage of conventional, non-semantic approach is complexity of
(automated) reuse of existing knowledge, e.g. interpretation of rules encoded within different
terminology systems. Apparently, it is very hard to copy and reuse the information and knowledge
derived from a particular SH installation because a) there are no widely accepted standards for
presenting sensor-actuator data, and b) systems typically use low-level data formats and its conversion
into human and machine understandable formats for wide reuse is weakly motivated and a hard task.
Semantic assisted living projects claim that processing of formal semantically enriched content, its
analysis, and decision support for intervention can be done more easily. As described by Redondo et al.
[16], semantic representation simplifies SH service composition which is also important for adaptive
telemonitoring. Additionally, semantically annotated data is more easily comprehensible for external

services, e.g. medical decision support systems, Electronic Health Record (EHR), and global health
statistic databases. Within the MATCH project Turner [17] proposed to use ontologies for data
clustering. However, the works of both Nugent and Turner do not specify any real existing ontologies,
essentially medical ones, to be used for achieving SH and telecare data interoperability in practice.
Authors of [18, 19] propose different ontologies for describing a SH environment context.
Comprehensive list of existing alternatives presented by W3C [20] show that is quite unlikely to agree
on a single ontology to be used for smart home telecare.

3. Proposed software architecture for modern telecare systems

3.1. Functional requirements for the telecare system and its software

Based on analysis of recent related work we can say that modern telecare solutions should have the
following capabilities:

e Support for ADL monitoring, in addition to the medical data acquisition.

e Support for personalization by means of customization of safety cutoff values and typical ADL

behavior patterns.

e Interoperability with SH automation systems for home based patient context monitoring.

e Interoperability with mobile context sensing devices, e.g. mobile phones with positioning and

acceleration sensing.

e Simple knowledge reuse and portability across different hardware based systems (sensors,

communication infrastructure).

e Possible run-time renewal of medical domain expert knowledge from centralized repositories.

Semantic content-driven data processing solutions simplify satisfying described requirements for
modern telecare systems. However, the existing commercial telecare systems are based on
conventional client-server architecture and predefined communication protocols. Systems support
restricted set of low-level messages and predefined set of hardware components. Naturally, those
implementations, even though designed to be compatible with HL7 [21] patient information exchange
standard, rely on predefined messages to be exchanged between the content source and the destination
user.

The existing rule-based and semantic approaches of telemonitoring present theoretical State-of-the-
Art and do not propose any practical implementation frameworks for their implementations. Essential
feature for modern telecare systems is the extendability by means of simple reconfiguration of
hardware and introduction of new knowledge in form of rules, signal processing algorithms, and
services. We propose an open, agent-based software architecture for home and mobile telemonitoring
which natively supports treatment of semantic content, including computationally feasible on-site
formal reasoning and data aggregation.

3.2. Agent based software architecture

The proposed architecture (Figure 1) is a distributed multiagent system of asynchronous processes
following classical blackboard model of Hayes-Roth [22]. The agents (typically executable processes)
are running on the same hardware device (embedded controller, server, smartphone) writing data into a
universal semi-realtime data-store (installed essentially on the same hardware device for high access
speed) while every agent can asynchronously access a// data inserted to the data-store. The complete
system containing different hardware platforms forms a Monitoring Device Hierarchy (MDH) with
several blackboard-agents sets. The first (lowest) MDH level software agents run on intelligent sensors
implemented on micro-controllers. For example, a wired or wireless motion detector may be a
hardware platform for the first level MDH agents. The 2™ MDH level agents and corresponding
blackboard data-store operate on SH controllers or mobile devices. The higher, 3..n MDH level
software agents operate on hospital servers and data clouds. The simplest practical telecare software
implementation contains 2™ and 3™ MDH levels, SH controller and hospital server levels, both having
their own blackboard data-stores.

Essential but not limited agent set for semantic telecare data processing includes:

e Sensor agents acquiring data from individual sensors and publishing data on the blackboard.
Sensor agents are responsible for propagating sensor configuration information from the
blackboard back to the sensor. It is important that there is no target user (agent) specified for
the acquired content in advance.

e Data processing agents performing variety of signal processing, outlier detection, and
aggregation tasks, as well as discarding obsolete data. Data processing also includes controlling
the behavior of the system and decision making based on the given set of rules. Thus, present
data processing agents are essentially formal (semantic) reasoners.

e Output agents communicating with host services (devices on higher MDH levels), for example
an output agent running on SH central controller is responsible for exporting patient’s data to
the hospital system and downloading new configuration settings, profiles, commands, and
messages.

e HCI agents used for adaption of user interfaces according to access profile on the home
controller screen or the hospital web site, also for alerting and user feedback processing.

For communication between the second and higher MDH levels conventional SOAP messages may
be an optimal solution. However, between (wireless) sensor devices and the gateway level device the
custom communication protocols, given by sensor manufacturers, are difficult to avoid. The agents
within one machine are built around a fast and transparent RDF [23] data-store implemented in shared
memory for embedded home controllers, or in conventional database for servers. In the future it would
be possible to use internal data-stores of reasoning tools for RDF encoded data [24]. Making use of the
RDF representation for data encoding allows handling and saving different structures (like sensor
readings, configurations, profiles, commands, reports, etc.) in the same universal manner. As
mentioned, data written to the data-store is available to every process running on the same device.
Thus, every write is like a broadcast. The RDF data-store serves three roles:

e A postbox between different agents within one controller device (including transparent external

world communication with the aid of dedicated agents).

e A low-latency in-memory universal data-store for keeping data.

e A deductive database, using a rule language for rule-based generation of new facts.

1st MDH level: 2nd MDH level: 3rd MDH level:
intelligent SH gateway hospital
sensors blackboard
system
Sensor 1 * ocal HCI agen
Sensor 1 agent r‘ ™)

!

Blackboard data store
(embedded RT database)

Sensor n s Sensor n agent

SOAP

) messages
Binary 9

protocols

Reasoner
agent I

Figure. 1. 3-level example of proposed telehealth care architecture

The main advantage of the blackboard based architecture in comparison to the popular socket based
systems is that there is no need to specify target user processes (of local real-time data) in advance.
Agents producing the data can work independently from the receiving agents regardless of their
existence. For monitoring applications it is crucial not to miss any incoming events while data
processing has weaker real-time constraints. By using the proposed architecture it is always possible to
add or modify content processing agents without the need to modify sensor specific and other low-
level, performance optimized, agents. It is possible to run (even simultaneously) different sensors that
measure and output the same parameter. As no sockets are used in the implementation of the
blackboard on the MDH level 2 device, certain load on the operating system (kernel) is reduced that is

essential for acquisition of streaming sensor data, e.g. ECG. Benchmarking experiments show that
writing data into the implemented RDF data store is at least 100 times faster in comparison with the
conventional SQLite database.

4. Semantic content presentation

We propose using full RDF representation of data within the system, starting right from the sensors.
The RDF format (and associated OWL-based ontology systems) for defining and describing relations
and concepts is emerging for different computerized data processing applications using “the semantic
web” standards and technologies. RDF data (knowledge) encoding simplifies integration with
(different) existing formal knowledge processing tools. As noticed by Tian [25] et al., the multimodal
reasoning has advantages for efficient processing medical domain information that natively contains
both rules and behavioral data. There exist some XML-based semantic data representation solutions
developed for sensors, like SensorML, and Hydra middleware. However, those solutions are not fully
RDF compatible which makes formal reasoning more complex, which also applies to encoding and
handling of structures from various different domains. From the other side, XML format has certain
communication overhead which is especially problematic for wireless sensors. The additional
advantage of using standard RDF is the possibility of using existing SPARQL tools.

In our approach we stress to use real existing ontologies available on the web. That way we can
guarantee that correct interpretation of information is always possible for content user (while correct
use still remains the responsibility of the user). The proper use of keywords in medical domain is
especially important. For example for “heart rate” there are around 20 different terms in use, some of
them are equal while some have specific flavor. Inadequate labeling and later interpretation of sensor
signals may lead to critical situations for patients. From the other side, if used ontologies are published
and accessible, automated conversion of information is a relatively simple task. The widely accepted
good medical taxonomy is SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms)
[26]. Wordnet linguistic vocabulary can satisfy the broadest range of information formalization needs.
However, the large number of existing and competing semantic sensor ontologies [27] demonstrate that
simultaneous support for multiple terminology systems is a must.

Tables 1 and 2 show representation examples of semantic medical sensor data encoded into RDF
triplets. Every sensor agent (adapter) in the system is identified by a URI. Using this URI all relevant
information concerning any particular agent is easy to find, for example agent's configuration data,
description, and output data. Table 1 presents configuration data about the pulse oximeter sensor agent,
a particular wireless instrument for taking photoplethysmographic (PPG, tissue transparency)
measurements and outputting heart rate and blood oxygen saturation level (SpO,).

Table 1. RDF coding of PPG sensor description:

Subject Property Value
http://www.eliko.ee/demo/ssg/ http://www.eliko.ee/demo/ssg/schema |http://www.csiro.au/Ontologies/200
schema#nonin_onyx2 #Type 9/SensorOntology.owl#Sensor
http://www.eliko.ee/demo/ssg/ http://www.csiro.au/Ontologies/2009/ 9560BT
schema#nonin_onyx2 SensorOntology.owl#ModelNumber
http://www.eliko.ee/demo/ssg/ http://www.csiro.au/Ontologies/2009/ |http://bioinfo.icapture.ubc.ca/subver
schema#nonin_onyx2 SensorOntology.owl#measures sion/SIRS/clinicalphenotype.owl
#HeartRate
http://www.eliko.ee/demo/ssg/ http://www.csiro.au/Ontologies/2009/ |http://bioinfo.icapture.ubc.ca/subver
schema#nonin_onyx2 SensorOntology.owl#measures sion/SIRS/clinicalphenotype.owl
#SaturationO2
http://www.eliko.ee/demo/ssg/ |http://xmlns.com/wordnet/1.6/Configuratio #3021
schema#nonin_onyx2 n
#3021 http://xmlns.com/wordnet/1.6/Sleep 1

The first triple says that the agent identified by the URI
“http://www.eliko.ee/demo/ssg/schema#nonin_onyx2” is registered as a physical PPG sensor (with the
dedicated software agent) in our system. The second fact records the model number of the sensor used
and the two following facts indicate that the sensor measures heart rate and SpO,. The last two rows

demonstrate the usage of RDF hierarchy — one triple represents the configuration data of the agent and
the other one (linked through the system internal ID #3021) is a PPG device agent parameter with a
value (sleep time 1 sec). URIs for different concepts are taken directly from ontologies, if available, or
are otherwise composed artificially. For example “urn:snomed-ct:271650006” represents
SNOMED CT term “271650006 Diastolic blood pressure (observable entity)”.

The same sensor adapter writes its output data (of one measurement) as shown by the four rows in
the Table 2. The first triple defines the data to be a sample by the particular agent and links all triples
together as one object. The remaining three triples describe the result of the measurement — indicating
that the measured heart rate value was 73 beats per minute and the blood oxygen saturation was 98%.
Also the timestamp of the moment when the measurement was taken is recorded.

Table 2. RDF coding of PPG sensor output data:

Subject Property Value
http://www.eliko.ee/demo/ssg/sch | http://www.eliko.ee/demo/ssg/schema#Sa #3920
ema#fnonin_onyx2 mple
#3920 http://bioinfo.icapture.ubc.ca/subversion/SI 73
RS/clinicalphenotype.owl#HeartRate
#3920 http://bioinfo.icapture.ubc.ca/subversion/SI 98
RS/clinicalphenotype.owl#SaturationO2
#3920 http://knowledgeweb.semanticweb.org/irib 1264423298
a/ontologies/ResultOntology#timestamp

5. Semantic reasoner agent integration

Proposed software architecture with RDF data-stores natively supports semantic rule-based
reasoning — dedicated agent(s) can read any data from the blackboard data-store and write output back
there for any other agent to use. Some applications for reasoning agents can be outlined:

e Derivation of personal safety threshold parameters from potentially large set of expertise
facts, which are difficult to handle correctly by humans.

e Continuous real-time validation of safety requirements of patient supporting dynamically
changing rules.

e Aggregation of sensor data with semantically annotated output.

e Interpretation of semantic context information.

e Profile based selection of HCI information optimized for patient itself or medical professional,
etc.

Through our architecture we can apply several formal reasoners as different data processing agents
in parallel for the same physical data-store. Apparently, the feature of concurrent processing is crucial
to maintain real-time service for incoming sensor data. For real-time sensitive decision making, e.g.
emergency condition detection, simple hard-coded rule-processing agents can be installed, as well as
formal reasoning tools like Jena, CHR, Gandalf, Otter (Prover9), and others, for processing thousands
of patient and context related facts.

5.1. Example of semantic reasoning with Prolog

For better illustration of using formal reasoning in the system, we can examine an example of
processing of semantically represented rules and medical data with a blackboard agent executing
Prolog programs.

To demonstrate some issues of the patient's data processing in home telecare system let us consider
the following case of monitoring SpO, level on people with lung diseases. Too low oxygen saturation
level in blood may have lethal consequences for such patients. However, from the healthcare practice it
is known that normal saturation level depends on diagnosis of the particular patient. For example,
normal SpO, indication for healthy people is 96 — 99%, less than 95% indicates respiratory
insufficiency, and less than 90% indicates hypoxia with the need of emergency treatment. On the other
hand, for people with chronic obstructive pulmonary disease (COPD) the normal SpO, value can be as

low as 88 — 92%. It is also possible that individual harmless level of SpO, for a given patient is
assigned by a doctor and standard limits should be discarded.

Due to that essential personalization feature, our knowledge base inside a home telecare controller
may contain contradicting data. For example, based on the described patient's illnesses the rule system
assumes that the minimal SpO, lower threshold value is “96” while at the same time other records
suggest the threshold to be “90” (e.g. said by the doctor). Therefore, a defeasible logic inspired [28]
reasoning is used. Our rule system keeps additional records related to the genuine data indicating origin
of data and respective priority system.

For reasoning on given knowledge-base we use SWI-Prolog which is executed as a child process
spawned by the corresponding adapter agent. The adapter agent feeds Prolog with blackboard data and
queries. The following rule examples assume the data items are presented as individual triples
separately forming facts with three arguments, e.g.: “fact (subject, property, value)”

Due to the space constraints and better readability long URIs (as in Tables 1, 2) actually used in the
rules are abbreviated in the following examples and replaced by intuitive short strings, e.g.
“ppg_sensor uri” stands for the identifier of the sensor agent managing the PPG sensor device
(http://www.eliko.ee/demo/ssg/schema#nonin onyx2). We can monitor all available
SpO, data (as seen in Table 2) samples produced by the given agent and evaluate the emergency level
with the given Prolog rule:

spo2_emergency condition :-
get spo2 threshold(patient uri, T),
fact (ppg_sensor_uri, sample uri, X),
fact (X, spo2 uri, N),
N<T.

The rule succeeds (Prolog answers 'true') if there exists at least one measured SpO, sample that is
below the threshold value calculated by the rule “get spo2 threshold” and fails in all other
cases. The following rule “get spo2 threshold” is meant to resolve all contradictions in the
facts defining the threshold and return allowed minimal SpO, value for the given patient:

/* first alternative - if threshold given directly by a doctor, use
it, ignore others */
get spo2 threshold(P, T) :-

fact (P, profile uri, Y),

fact (Y, thresholds uri, Z2),

fact (Zz, lower SpO2 limit uri, L),

fact (L, set by uri, W),

belongs_to class (W, medical personnel uri),

fact (L, threshold value uri, T),!.

/* second alternative - maybe there exists a threshold computed
previously by the rule system itself */
get spo2 threshold(P, T) :-

fact (P, profile uri, Y),

fact (Y, thresholds uri, Z7),

fact (Zz, lower Sp0O2 limit uri, L),

fact (L, set by uri, W),

belongs to class (W, rule system uri),

fact (L, threshold value uri, T),!.

/* third alternative - if no threshold records found (by doctors or
by rules), give some general default */
get spo2 threshold(P, T) :- T = 97.

The real threshold values are kept as regular facts under the patient's profile and each of them has
sub-record indicating whom it was written by. Therefore, one parameter (e.g. threshold value) may

have any number of values assigned if set by different sources. As values like SpO, threshold do not
change very often but are used quite frequently then they are usually calculated in advance and stored
on the blackboard, however they could be derived also during run time every time they are needed by
any other rule. Under usual circumstances the rule “get spo2 threshold” returns a value
calculated by the system itself. However, if there exists a SpO, threshold value given directly by a
doctor then it overrules all other possible values. For the extreme case, where no threshold records are
found from the set of facts the rule returns a hard-coded value of “97”.

Another (simplified) rule (written in three alternatives in Prolog syntax) demonstrates how the
system might derive the current minimal SpO, value for the given patient. If the patient has COPD
diagnosed the value will be “88”, in case of any other pulmonary disease “92”, otherwise “96”:

calculate lower spo2 limit(P,V) :-
fact (P, profile uri, X),
fact (X, diseases uri, Y),
fact (Y, disease uri, copd uri),
V=88.

calculate lower spo2 limit(P,V) :-
fact (P, profile uri, X),
fact (X, diseases uri, Y),
fact (Y, disease uri, D),
is_subclass of (D, lung disease uri),
V=92.

calculate lower spo2 limit(P,V) :- V=96.

The acquired value is stored under the patient's profile facts and its source is set to “rule system”
indicating that the data is not given by medical staff but was automatically generated by rules instead.
Responsible medical professionals can add new data at any time and it becomes superior from the
rules' point of view — the software rule system has to take such “super user” facts into consideration
and cannot erase or modify them.

As the central blackboard incorporates contextual and environmental sensor data besides pure
medical data it is natural to make use of the contextual data in rules to enrich medical knowledge of the
patient’s condition. For example, if a heart rate sample is found to be below 50 beats per minute we can
predict health (or device malfunctioning) problems. Alternatively, if there is a sample above 90,
derivation cannot be made immediately. With sub-queries we try to justify the high pulse first and only
if it is not possible then positive result (problem found) is returned. Say, if the patient has had
significant physical movement activities 10 minutes prior to the pulse measurement, we have no reason
to raise alarm. Contrariwise, if the patient has not moved around or has even been in bed then a heart
rate over 90 indicates health problems. Contextual data needed for calculations in this case comes
typically from the set of PIR sensors in the patient’s home environment and/or accelerometer sensors
attached to the patient (mobile phone, pedometer, wrist watch). The rule of the main query in Prolog
syntax to raise alarm is as follows:

problem suspected :-
fact(_, 'sample URI', Y),
fact (Y, 'pulse URI', X),
fact (Y, 'timestamp', T),
(
X<50;
X>90,
(
not (was_active between(T, T-(60%*10)));
was_in bed between (T, T-(60*10))

6. Solution testing

For testing feasibility of proposed telecare software architecture and semantic data encoding we
implemented the prototype solution containing a home controller (2nd MDH level device), set of
wireless Bluetooth and Zigbee sensors and PC based server emulating hospital server (3rd MDH level).
Communication between the home controller and the hospital server is based on SOAP messages
always initiated by the home controller for network safety reasons. According to the proposals of
Continua Health Alliance [29] the home controller is realized as an advanced DVB-T receiver
equipped with Ethernet and wireless sensor interfaces. The home controller has standard Linux running
on 300MHz 32bit MIPS type CPU. Its blackboard is an original RDF memory database following the
ideas described. Reasoning agents use SWI-Prolog (Version 5.6.58) engine. The hospital server runs
conventional Postgres database. The implementation fulfills the performance requirements and
interoperability framed by the hospital personnel. The most critical issue, as expected, is embedded
reasoner performance due to the relatively weak hardware platform and the real time demands of the
sensor communication. In benchmark tests we measured an average Prolog reasoning time of 310 ms
for 4500 facts, and 420ms for up to 7500 facts. 750 tests were executed. The measured worst case
reasoning time measured was 2 seconds. Achieved real life reasoning response is clearly sufficient to
discover patient emergency occasions quickly enough for realistic medical knowledge base of some
thousand facts.

7. Conclusions

For efficient utilization of ADL information, required for modern telecare, the data driven approach
has advantages over constrained predefined solutions. Semantics driven approach is well suitable for
interoperability in medical domain having strong terminology standardization background. However,
existing semantic telecare proposals did not offer practical solutions for flexible representation of data
through the accepted medical code systems that are suitable for machine reasoning. In this paper we
described a flexible agent based software architecture solution that is compatible with RDF data
representation, unrestricted amount of domain ontologies and supporting existing reasoning tools.
Feasibility and efficiency of proposed telehealth care system architecture and data encoding solution
was successfully evaluated in tests on a real telemonitoring system. Further enhancement of the system
will focus on development of specific data processing agents for data validation and aggregation.

8. Acknowledgments

This research has been supported by the European Regional Development Fund, Competence
Centre program of Enterprise of Estonia.

9. References

[1] http://www.health-informatics.org/tehip/tehipstudy.PDF (2005).

[2] Paré G, Jaana M, Sicotte C. Systematic review of home telemonitoring for chronic diseases: The
evidence base. Journal Am Med Inform Association 2007;14, pp. 269-277; pp. 2007

[3] K. Doughty, K. Cameron, P. Garner, “Three generations of telecare of the elderly”, Journal of
Telemedicine and Telecare, vol. 2, no. 2, pp. 71-80, 1996.

[4] L.C. Jatoba, U. Gromann, J. Ottenbacher, S. Hirtel, B. von Haaren, W. Stork, K.D. Miiller-
Glaser, and K. Bgs, “Obtaining Energy Expenditure and Physical Activity from Acceleration
Signals for Context-aware Evaluation of Cardiovascular Parameters,” IFMBE Proc. 18, Springer-
Verlag Heidelberg, pp. 475-479, 2007

[5] F. Wang, K. J. Turner, Towards personalised home care systems, in Proc of the 1st international
conference on Pervasive Technologies Related to Assistive Environments, Article 44, ISBN:978-
1-60558-067-8, 2008

[6] J. C. Augusto, J. Liu, P. McCullagh, H. Wang and J.-B. Yang. Management of uncertainty and
spatio-temporal aspects for monitoring and diagnosis in a Smart Home. International Journal of
Computational Intelligence Systems, 1(4), pp. 361-378, Atlantis Press, 2008

[7]1 K. Du et al, HYCARE: A hybrid context-aware reminding framework for elders with mild
dementia, in Proc of the 6th Int Conference on Smart Homes and Health Telematics (ICOST),
Lecture Notes in Computer Science, Springer, Vol 5120/2008, Ames, 1A, USA, pp. 9-17, 2008

[8] N. M. Barnes, N. H. Edwards, D. A. D. Rose, P. Garner, Lifestyle monitoring - technology for
supported independence. IEEE Computing and Control Engineering Journal, vol. 9, nr. 4, 1998,
pp. 169-174, 1998

[9] T. Amaral, N. Hin and J. L. Arnott, Integrating the Single Assessment Process into a lifestyle-
monitoring system, in 3rd International Conference On Smart homes and health Telematic
(ICOST), pp. 4249, 2005

[10]G. Bieber, J. Voskamp, and B. Urban, Activity recognition for everyday life on mobile phones, in
HCI (6), vol. 5615/2009 of Lecture Notes in Computer Science, pp. 289-296, Springer, 2009

[11]A. Sixsmith, An evaluation of an intelligent home monitoring system, Journal of Telemedicine and
Telecare 6 (2), pp. 63-72, 2000

[12]A. R. Kaushik , B. G. Celler, Characterization of PIR detector for monitoring occupancy patterns
and functional health status of elderly people living alone at home, Technology and Health Care,
v.15 n.4, pp. 273-288, 2007

[13]D. Cook and S. K. Das, How Smart are our Environments? An Updated Look at the State of the
Art, Journal of Pervasive and Mobile Computing, 2007

[14]L. Chen, C.D. Nugent, MD. Mulvenna, D.D. Finlay DD, X. Hong; Semantic Smart Homes:
Towards Knowledge Rich Assisted Living Environment, in book Intelligence on Intelligent Patient
Management; Ed by S. McClean et al., Springer, ISBN 978-3-642-00178-9, pp. 279-296, 2009

[15]G. v. d. Broek et al. (Ed by) AALIANCE Ambient Assisted Living Roadmap, IOS Press 2010,
doi:10.3233/978-1-60750-499-3-62 , 2010

[16]Rebeca P. Diaz Redondo, Ana Fernandez Vilas, Manuel Ramos Cabrer, José Juan Pazos Arias,
Jorge Garcia Duque, Alberto Gil Solla, Enhancing Residential Gateways: A Semantic OSGi
Platform, IEEE Intelligent Systems, vol. 23, no. 1, pp. 32-40, 2008.

[17]K. J. Turner, L. S. Docherty, F. Wang and G A. Campbell, Managing Home Care Networks, in
Proc. 8th Int. Conf. on Networks (ICN), IEEE Computer Society, NY, pp. 354-359, ISBN 978-1-
4244-3470-1, 2009.

[18]E. Kim and J. Choi, An Ontology-Based Context Model in a Smart Home, Lecture Notes in
Computer Science, Volume 3983/2006, Springer, Heidelberg, ISSN 0302-9743, DOI:
10.1007/11751632_2, 2006

[19]Context Inferring in the Smart Home: An SWRL Approach, in Proc of the 21st Int Conf on
Advanced Information Networking and Applications Workshops, Vol. 02, ISBN:0-7695-2847-3,
pp. 290-295, 2007

[20] http://www.w3.0rg/2005/Incubator/ssn/wiki/Review of Sensor and Observations_Ontologies
(2011)

[21] http://www.ihe.net (2011)

[22] B. Hayes-Roth, A blackboard architecture for control, Artificial Intelligence, 26(3), pp 251-321,
1985

[23]www.w3.org/RDF (2011)

[24]B. Parsia, An Introduction to Prolog and RDF, XML.com,
http://www.xml.com/pub/a/2001/04/25/prologrdf/, 2001

[25]J. Tian et al., Multi-Modal Reasoning Medical Diagnosis System Integrated With Probabilistic
Reasoning, Int Journal of Automation and Computing 2, pp. 134-143, 2005

[26] http://www.ihtsdo.org (2011)

[27]M. Compton, C. Henson, L. Lefort, H. Neuhaus and A. Sheth, A Survey of the Semantic
Specification of Sensors, In Proc of the 2nd International Workshop on Semantic Sensor
Networks, 8th Int Semantic Web Conference (ISWC), Washington, pp. 17-32, 2009

[28]D. Nute, Defeasible Logic. In Web Knowledge Management and Decision Support, Springer,
ISBN: 978-3-540-00680-0 , pp. 151 — 169, 2003

[29]R. Carroll, R. Cnossen, M. Schnell, D. Simons, An Interoperable Personal Healthcare Ecosystem,
IEEE Pervasive Computing, Vol. 6, No. 4, pp. 90-94, 2007

PAPER 6

E. Reilent, A. Kuusik, M. Puju. Real-time data streaming for functionally
improved eHealth solutions. 2012,International Conference on Biomedical and
Health Informatics (BHI2012), Hong Kong and Shenzhen, China, 2-7

113

Real-time data streaming for functionally improved eHealth
solutions

E. Reilent, A. Kuusik Member, IEEE, M. Puju

Abstract — Present eHealth solutions developed for EHRs
lack for motivation of use for competing healthcare enterprises
and attraction for citizens. Proposed Universal Health
Repositories supporting both clinical and home-measurement
data related to telemedicine and well applications may force
both institutions and individuals for active data sharing and
exchange. However, HL7 protocol based communication
solutions and installable software traditionally used in
professional healthcare does not suit well for rapidly changing
user driven application field. In the paper we describe a
developed mobile data streaming and completely web based
real-time access solution. The software has been developed for
demonstrating novel services within an existing nation-wide
eHealth system. The long term goal deploying similar
applications is engage more citizens and healthcare enterprises
to use eHealth services.

I. INTRODUCTION

Despite the effort of eHealth standardization bodies like
Certification Commission for Health Information Technology
(CCHIT) and IHE in US or European Commission, there are
significant interoperability ~problems between health
information solutions of different healthcare enterprises.
However, as stated in global analysis the interoperability and
standardization are crucial to allow widespread use of the
emerging technologies like telemedicine, to enable them to
benefit from the uniformal markets and to contribute to its
completion [1]. Beside of that, as agreed by European
Commission in 2008, European Union member states should
have developed national regulations for telemedicine as an
enhancement of conventional eHealth solutions by the end of
2011 [2]. As seen by an example of Estonian eHealth
solution eTervis [3], which was the first launched nationwide
EHR solution [4], operational since 2008, relatively small
amount of existing electronic patient data has been (a) made
accessible for the patients through the web portal, (b)
accessed and reused by the patients. Limited amount of
available EHR data and weak popularity of the website

Manuscript received November 10, 2011. This research has been
supported by European Regional Development Fund, Competence Centre
program of Enterprise of Estonia.

E. Reilent is with the Eliko Competence Centre, Teaduspargi 6/2, Tallinn
12618, Estonia

A. Kuusik is with the Eliko Competence Centre, Teaduspargi 6/2, Tallinn
12618, Estonia (corresponding author, e-mail: alar.kuusik@eliko.ee, phone:
+372-659-9881)

M. Puju is with Tallinn University of Technology, Ehitajate tee 5, Tallinn
19086, Estonia

among the patients restricts third parties to create novel
services for citizens as targeted for the eTervis system.
Apparently, the healthcare enterprises are not motivated
sharing high quality patient data with other hospitals acting
as direct competitors for their customers (patients). Based on
extensive analysis by Fontain et al. there is so far no
documented evidence of direct savings through the EHR data
exchange in primary care [5]. In particular case Estonian
national legislation is forcing hospitals to share certain EHR
data. However, in real life, legal requirements cannot
guarantee the equal quality and, especially, force to publish
all meaningful personal health information available within
each single healthcare institution. Interoperability issues of
different IT solutions used by hospitals, uncertainties of HL7
v3 messages used, require manual work prior data publishing
add additional complexity and reduce the content provider
side motivation even more. At current implementation
eTervis does not handle patient created content. Quite
remarkable popularity of (unfortunately discontinued)
Google Health and Microsoft Health Vault indicate that,
from the user perspective, there are clear benefits for
interoperable EHR solutions to make health service
competition really present.

The real life situation with eTervis leads to an opinion that
state control and purely formal requirements (at particular
stage of the existing EHR exchange infrastructure) cannot
fundamentally improve utilization of the solution among
citizens and healthcare enterprises. Discontinuation of
Google Health indicates that similar basic EHR data
exchange is not sufficiently vigorous business model for
repository keepers. eTervis and similar EHR data warehouse
maintainers need novel approaches to admit buildup of new
applications for better attraction of both healthcare
institutions and citizens.

II. FrRoM EHR TO UHR

Possible applications where both hospitals and citizens can
profit from exploiting common data stores are user
controlled (a) wellness monitoring and (b) telemedicine
services. Such rapidly interest gaining applications may
overrule protectionism of institutional content owners and
definitely can attract more users to consume eHealth services
including existing feature set. Technically speaking, extended
proposed eHealth repositories supporting telecare and
wellness information shall be compatible with UHRs
(Universal Health Records) combining both imprecise home-

based measurement and high quality EHR data. Similar idea
of supporting user generated data is presented in Australian
eHealth standard IT-014 [6]. To justify the idea of common
nationwide UHR repository is popularity of fitness services
from Runkeeper, Sportlyzer, Garmin, Polar. Similarly to
telehealth services from Docobo, Doc@home and other there
is insufficient confidence for users that the sensitive and
safety related data has been handled by professionals and data
retention is guaranteed throughout the human lifetime.
Besides of our main target of user attraction eHealth driven
telemedicine is a promising way for healthcare cost reduction
[71.
A. Extending functionalities of the eHealth solution

In context of existing eTervis system we started to develop
novel (demo) telecare services to be realized on top of
existing IT infrastructure and web portals. The demo
applications shall attract both citizens and institutions to
evaluate in practice the potential of user application driven
eHealth data warechouses in the further. Additional agreed
prerequisites were generic web access i.e. no need for special
software installation and functionality that is technically novel
for traditional eHealth solutions. As a motivated and
interesting application the mobile devices based streaming
and real-time monitoring of cardiac signals was selected.
Practical applications kept in mind include postsurgical
monitoring of heart disease (CVD) patients and risk pregnant
condition (fetal monitoring). The current state of art in RT
ECG monitoring over mobile devices is proprietary protocols
and special workstation software [8]. According to the
European Society of Cardiology (ESC), it is expected that by
2015 12 million Europeans will have a heart failure [9]. A
review paper [10] analyzing scientific publications issued
between 1966 and 2006 on telemonitoring of chronic heart
failure concluded that telemonitoring might be an effective
strategy for disease management of high-risk heart failure
patients. Good overview of recently developed mobile
telecare solutions by Kang et al. [11] demonstrates clearly
that the development focus is on data acquisition, data
presentation — absolutely essential for carers and clinicians -
has been left out of attention. On the same time, overview of
Standing et al. demonstrates that eHealth software
interoperability and use issues are important restrictions for
the users [12]. Attempts to deploy web based and handheld
device technologies for clinical applications and data access
have not been successful because of performance issues [13].
Today the computing power of handheld devices exceeds
capabilities of desktop computers five years ago. We believe
that due to the rapid evolution of mentioned technologies
such components may be key enablers for UHR applications.
It has to be stressed, that the technological solution for heart
data streaming was implemented separately from eTervis to
avoid possible failures of public service. For certain testing
public PHRBox [14] data repository was used. The patient
experiments are just about starting.

III. MOBILE RT MONITORING SOLUTION FOR ETERVIS

A. Existing functionality and interoperability of eTervis

Currently the Estonian eTervis solution is offering EHR
services for cross-institutional patient data exchange. System
is organized as distributed data cloud with universal access
control system. Image archive as most actively used data
service is based on conventional Picture Archiving and
Communication System (PACS). Health records are stored in
relational databases. Data exchange between software
modules is based on HL7 v3 messages. SNOMED CT
nomenclature is used for content annotation. HL7 XML
protocol selection is completely proper for hospitals and
healthcare enterprises but may be too complex for personal
use. For example, home nursing epicrisis contains of 1500
XML lines. For RT streaming signals (e.g. ECG) current
solution is too much resource consuming.

Goal of the current project is to create and evaluate
streaming data upload and web based real-time access
interfaces for eTervis data store suitable for user driven
mobile telecare applications.

B. Mobile data streaming use case and requirements

Similarly to mentioned mobile telecare solutions the post-
infarction or postsurgical patients are given simple (1-lead)
ECG monitoring devices on their leave from hospital. Sensor
connects via the Bluetooth link to the user’s gateway device
(typically smartphone) forwarding measurement data to
server. ECG measurements are encoded as standard EDF
[15] files which together with additional knowledge
formulates a proper EHR entry. Especially important are the
activity of the patient during the ECG recording (e.g. lying,
walking, sitting, exercising) and feeling or complaint (good,
bad, weak, pain, etc.).

Both ends of the monitoring link can be assumed to be
mobile. Another key feature for the system is to satisfy both
the live view possibility during the measurement and access
to complete recordings afterwards. While a regular
EHR/PHR web environment has no time-critical constraints
and is usually implemented by using full scale of
contemporary technologies the live view solution, on the
other hand, should be as much platform-independent as
possible and not rely on any special frameworks — therefore it
makes use of simple HTML and Javascript on the client side
and fast lightweight CGI programs and in-memory buffers on
the server side. The overview of the data flow in the system
is presented in Figure 1.

C. Data flow

Doctor’s live view interface works asynchronously from
the patient’s gateway device. Bluetooth sensor devices are
connected to and driven/controlled by patient’s gateway (e.g.
phone) which decodes proprietary sensor protocols and
forms standard EDF file with filled out header fields and real
data values in records as they are received in real time. On

the other hand, these EDF records (segments) have to be sent
to the central server over the Internet (WLAN, mobile
communication) as they are produced during the
measurement. The segments of the EDF file and supporting
annotations (e.g. context) are encapsulated into Google’s
Protocol Buffer [16], a faster and smaller substitute for XML
encoding.

/ Doctor’s device (phone, PC)
fmmmmm e
Ordinary web browser - '>: (EDF tools))
(N
HTTP \
!

s

Server[CGl interface][PHR web interface]\

==~
Shared memory
database

EDF receiver

PHR datasources

et o
EDF repositol

7 P ry

Annotated EDFin
Protocol Buffers format

(Patient’s device (phone, tablet) J

i]: Bluetooth rfcomm serial

(ECG sensor / other streaming device W

Fig. 1.
screen.

Principal scheme of data transfer from sensor to doctor’s

On the server side the decoded EDF file is stored into the
proper repository as is and also entry about the measurement
act is made to the patient’s profile in PHR with annotations
not fitting to EDF header. This entry also contains links to
the EDF file and to a dedicated web page for live view.
However, we use a separate channel for live view and do not
access the data through the general PHR web application,
therefore, the software agent who receives the streaming
EDF data writes all incoming samples also to the shared
memory database.

Patients and doctors can use web interface to access PHR
profiles and follow the links of specific measurements to be
able to download EDF file (for opening with standard EDF
tools), or open live view web page for seeing the real time
stream flow. The lightweight live view page fetches recent
samples form the server and renders the live graph by making
calls to server side CGIs which provide latest measurement
results found from the memory database.

D. Data structures for serving live view web interface

The central component for fast data handling in purpose of
enabling live view with web page is the shared memory
database described in [17]. For every signal in an incoming
EDF file one entry is created into the memory database that
is updated during the measurement. After the measurement
has finished and no more live stream exists the corresponding

entry is removed from the memory. Signals are separated in
memory in contrast to EDF file structure with respect to
simpler access at request handling.

Each entry has several fields for representing all the
information of the EDF header (e.g. unit, sampling rate,
signal name etc.), a circular buffer for containing recent
samples of the last n seconds, and supporting structures for
internal stream identification and bookkeeping of data flow.
When a next patch of samples comes into the server it is
immediately inserted into the circular buffer of the relevant
entry in memory database with minimal effort and is
henceforth available for serving to the viewing clients
(several clients can view the same signal simultaneously).

User can follow the links given in the PHR web
environment and open the live view page for the selected
measurement, this page however, starts loading recent data
from the server based on the parameters specified in the link.
Also user can adjust several parameters (scaling,
displacement, filtering). The live view page requests samples
of the signal as well as static attributes (unit, starting time,
range, etc.) and updating attributes (how often data is
received from the patient’s device, how much time passed
since last data income) from the server by accessing
dedicated CGI scripts/programs which in turn gets samples
and other information directly from the memory database
where it is easily locatable, especially these particular samples
that the client is needing. The alternative to using memory
would be reading the continuously growing EDF file and
seeking relevant data from that which has several
inefficiencies (operating system’s buffering and delays, slow
access time, locking issues).

E. Experiments and RT performance evaluation

The performance and smoothness of live graph of the
viewed signal depends on the network throughput and ability
of the current browser to render the samples. While the data
amounts to be transferred from server to browser are quite
small the network times are still varying for individual
batches as are inconsistent times for processing by browser
due to the multitasking operating system. The Table I
compares different setups of devices, networks and data
volumes. The numbers represent the moving average of the
amount of signal’s samples retrieved and rendered by the
viewer in a loading cycle. If one cycle takes longer time than
usual, the following cycles have to catch up and put more
effort to rendering. The moving average varies notably, thus
intervals given in the table. No data loss is allowed, smaller
numbers mean smoother graph flow on the viewing interface.

IV. SOLUTION DEPLOYMENT IN PRACTICE

The system is currently put into use for ECG monitoring
for post-infarction rehabilitation patients. The sensor device
exerted is MegaEMG ECG [18] (Figure 2 a and b). By
furnishing health records’ environment with the live
streaming support, that does not require special software or

some certain device from the doctor, more complete EHR
system is given to users. Doctors are given possibilities for
convenient (CVD) patient monitoring they lacked so far.
Henceforth we hope to attract more eHealth users and

healthcare professionals.
TABLEI
TEST RESULTS OF RT STREAM DISPLAYING

Viewing device Number of samples shown per second
50 500 1000

PC*, network 1 4106 35t0 65 70 to 80
PC*, network 2 4t012 60 to 70 70 to 150
PC*, network 3 6to 10 50to 120 150 to 200
Phone, Symbian Anna, CPU 16 to 20 220 to 300 500 to 700
680MHz, WLAN
Phone, Android 2.3, CPU 4105 30to 50 70 to 80
1.2GHz dual core, WLAN
Phone, Android 2.3, CPU 6to7 90 to 100 150 to 200
1.2GHz dual core, 3.5G/ HSPA
Tablet, Android 2.2, CPU 9to 10 110 to 130 200 to 300
1GHz, WLAN
Theoretical optimum 4 40 80

* The same hardware, different network service providers and testing
locations

The overall usability of the live view web page is
satisfactory on larger screens like of PCs and tablet
computers, and also quite feasible but not generally
convenient for the ECGs waveform on screens of typical
phones due to their modest dimensions (e.g. 4 inch). Figure 3
¢ shows three different screens displaying the live viewer’s
test page. However, browser technologies, including
Javascript engines, as well as overall capabilities of mobile
devices (phones, tablet computers) have been recently
developed to fairly good levels to allow browser-based
solutions, instead of custom (platform-dependent)
applications, for live signal visualization, compared to the
situation some years ago [19].

a

il

Fig. 2. MegaEMG ECG sensor a: emergency attachment using
bracelets, b: conventional placement. c: Live EDF signal viewer
(web page) on 22” PC monitor, 10” tablet computer, and 4~
smartphone respectively.

V. CONCLUSIONS

We suppose that enabling telemedicine and wellness
applications within eHealth systems may motivate healthcare
enterprises and citizens to pay more attention to all kind of
eHealth services. Currently eHealth solutions are EHR
centric which makes integration and use of new applications
complex or impossible. We propose streaming data upload
solution based on widely accepted EDF and Google Protocol
Buffers data standards. For simultaneous real time data
access fully web based solution for clinicians or carers was
developed and successfully benchmarked on desktop and
mobile devices.

REFERENCES

[1] Health Information Network Europe (HINE), 2006 - European eHealth
forecast (report)

[2] European Commission. Communication from the Commission on
telemedicine for the benefit of patients, healthcare systems and society.
http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0689:FIN:E
N:PDF (accessed 09/11/11)

[3] e-Tervis SA at http://www.e-tervis.ee/ (accessed Nov 2011)

[4] Tiik M, Ross P. Patient opportunities in the Estonian Electronic Health
Record System. Stud Health Technol. Inform. 2010;156:171-7. PMID:
20543352.

[5] Fontaine P, Ross SE, Zink T, Schilling LM. Systematic review of
health information exchange in primary care practices.] Am Board
Fam Med. 2010 Sep-Oct;23(5), pp 655-70

[6] http://www.e-health.standards.org.au (last accessed 10.10.2011)

[7] Omre, A.H.: “Reducing Healthcare costs with wireless
technology*,Bus. Dev., Nordic Semicond. ASA, Oslo, Norway., 2009,
ISBN 978-0-7695-3644-6.

[8] Guang-Zhong Yang:“ Body Sensor Networks®, SpringerVerlag New
York, Inc., Secaucus, NJ, USA., 2006, ISBN 978-1-84628-272-0

[9] Cleland J, Habib F. Assessment and diagnosis of heart failure
(Minisymposium: Heart failure). J Intern Med 1996;239: pp 317-25,
online 2003, DOI: 10.1046/.1365-2796.1996.462801000.x.

[10] Chaudhry SI et al. Telemonitoring for patients with chronic heart
failure: a systematic review. J Card Fail. 2007 Feb;13(1):56-62

[11] Kang K., Bae C., et al., UHaS: Ubiquitous Health-assistant System
based on Wearable Biomedical Devices, IJIPM: International Journal
of Information Processing and Management, Vol. 2, No. 2, pp. 114-26,
2011

[12] Standing S., Standing C., Mobile technology and healthcare: the
adoption issues and systemic problems. Int J Electron Healthc.
2008;4(3-4): pp 221-35. PMID: 19174359

[13] McAlearney, A. S., Schweikhart, S. B., & Medow M. A. (2004).
Doctors’ experience with handheld computers in clinical practice:
Qualitative study, British Medical Journal, 328(1162), 1-5.

[14] www.phrbox.com

[15] B.Kemp, A. Virri, et al., "A simple format for exchange of digitized
polygraphic recordings" Electroencephalography and Clinical
Neurophysiology, 82 (1992): 391-393.

[16] http://code.google.com/apis/protocolbuffers/docs/overview.html

[17] Reilent, E.; Lodbas, I.; Pahtma, R.; Kuusik, A. Medical and Context
Data Acquisition System for Patient Home Monitoring. In: The 12th
Biennial Baltic Electronics Conference BEC2010, Tallinn, October 4-6,
2010., 2010, (15 1), 269 - 272.

[18] http://www.megaemg.com/

[19] Ros, M., D'Souza, M. and Postula, A. J. (2008). Wireless interactive
system for patient healthcare monitoring using mobile computing
devices. In: B. J. Wysocki, Signal Processing and Communication
Systems 2008. 2nd International Conference on Signal Processing and
Communication Systems, 2008 (ICSPCS 2008), Gold Coast |,
Australia, (1-6). 15-17 December 2008.

PAPER 7

I. Loobas, E. Reilent, A. Anier, A. Luberg, A. Kuusik. Towards semantic
contextual content-centric assisted living solution. In: Proceedings of 12th IEEE
International Conference on e-Health Networking Applications and Services
(Healthcom 2010): 12th IEEE International Conference on e-Health Networking
Applications and Services, Lyon 1-3 July 2010. IEEE Operations Center, 2010, (1;
1), 56 - 60.

119

Towards semantic contextual content-centric assisted
living solution

Ivor Lodbas, Enar Reilent, Andres Anier, Ago Luberg, Alar Kuusik
ELIKO Technology Competence Centre
Tallinn, Estonia
{ivor.loobas, enar.reilent, andres.anier, ago.luberg, alar.kuusik } @eliko.ee

Abstract—We present a content-centric software architecture of
home monitoring solution designed to support universal semantically
described context information and formal reasoning for automated
profile generation and data aggregation. At the core of each data
processing node in the system is a semantic RDF-based datastore to
which a peripheral agent cloud is connected. An agent cloud is a
collection of independent programs that are used to perform various
tasks including sensor integration and semantic reasoning to derive
new knowledge from existing semantic data. A way of
communication between the agents is also described with a simplified
data aggregation example. The presented architecture is a first
iteration of assisted living research platform for further research.

Home care monitoring, semantic, context-aware, reasoning, data
acquisition, data management.

L INTRODUCTION

For the delivery of public health care, remote patient
monitoring provides a cost-effective way to manage burdens
on public services caused by an increasing portion of elderly
and chronically ill people. Additionally, to reduce demand on
clinics and home visits for doctors, the long term human
monitoring is believed to be an effective way for early
discovery of health risks. Increased acceptance and adoption of
preventative care regimes within “well-being” programs is also
important, for example smoking cessation and weight
reduction are also requiring active patient monitoring at home.

Early patient home monitoring systems were designed only
to acquire medical data to be analyzed by doctors off-line.
Later ones were enhanced with automated warning generation
and personalization features leading towards the increase of
complexity in instrumentation and processing software. From
one side, the existing telecare solutions are designed as
classical data acquisition systems with static configurations of
devices, patients and data processing algorithms. From the
other side, which is more important, the context information
which can be understood by the end-user might not be easily
interpreted by machines. However, in order to address the issue
of the rapidly increasing amount of collected data, it is crucial
that context processing is automated.

In the present paper we describe a content centric
architecture of home monitoring solutions designed to support
semantically described universal context information and
formal reasoning for automated profile generation and data

aggregation. In the second chapter of the paper we take a
deeper look at what has already been done in telecare R&D
topics. In the third chapter we present our multi-level data
acquisition architecture which makes use of a semantic RDF-
based datastore concept we call whiteboard, and a peripheral
agent cloud for data acquisition and processing. In the fourth
chapter we describe semantic communication within the
system and present a simplified data-aggregation example to
illustrate a way of dealing with massive amounts of incoming
raw sensor data within the system to derive higher-level
information. Finally, in the last chapter we outline our plans for
future developments.

II. Previous Work

As the population ages, telemedicine and home monitoring
is an emerging topic of cost-efficient health care. As already
well described by Doughty [1], the first generation telecare
technology solutions enable patients to summon help in case of
an emergency, the second generation provided automated
detection of emergencies, and the third enabled monitoring the
deterioration of well-being. The first generation solutions are
available practically for the whole well-developed world.
Commercial solutions of the second group, e.g. well@home in
US [2], Zydacron [3] and Docobo [4] in Europe, have been
around for 10 years as well. The third generation, also called
lifestyle-monitoring by Barnes [5], essentially includes
continuous monitoring of physical and social activities, also
called Activities of Daily Living (ADL) by Chen [6], sleeping
times, etc., for early discovery of health problems through
indirect impact and providing contextual information for
medical measurements. Some recent prototypes worth
mentioning are by Amaral [7], Kaushik [8], and others.

As outlined in [6], the interpretation of ADL information
has to be personalized making data processing quite a complex
task. Typically measurement data pattern recognition
algorithms are applied allowing one to later operate with
predetermined (logical) states like health conditions and
activities. Per Turner [9] “one size fits all” solution is
unsuitable for patient monitoring as the system must be easily
customizable by non-technical people, which apparently is not
the case in real life.

Policy- (i.e. rule-)based home care systems are promising
[9] in making it easier for end-users to modify the response

behavior (e.g. set triggers) of a home care system. Rule-based
home care has been investigated in various research projects
[10, 11]. This approach is well in-line with Smart Home (SH)
solutions because rule- and logic-, including Fuzzy logic-,
based control is the leading control method in this area [12].
SH platforms are the leading technological solutions in
providing cost-efficient assistance and monitoring for the
elderly and disabled people. Logical reasoning is also the most
natural method to derive additional knowledge expressed with
ontological relations.

However, the SH environments are producing massive
amounts of data from sensors and other devices around people
and, until enriched with a well-defined meaning, the potential
of SH-s assisting capabilities will not be fully achieved [6].
The main reason is complexity of reuse of acquired knowledge
due to the lack of high-level uniform data representation.
Apparently, the information and knowledge derived within a
particular SH installation is very hard to copy and use at
different locations because a) there are no widely accepted
ontologies for presenting sensor-actuator data; and b) systems
typically use low-level data formats, and conversion into
higher level presentation and publishing is weakly motivated,
which makes converting it into universal presentation a
difficult task.

Chen's activities related to SemanticsAtHome [13] and
other projects show that if SH data is semantically described
and this semantic content is machine-readable then processing
for analysis and decision support for intervention can be done
more easily, and possibly with distributed computing power.
Similarly, as shown by the Roboswarm project [14] deploying
semantic web technologies for mobile (service robot) sensing
for public indoor areas, significantly simplifies information
reuse and service decomposition.

While there have been various proposed solutions to deal
with issues of data structure, automatization and
personalization arising in home care, not many attempts have
been made to make use of many of them together. While not
targeting medical home care, Xue and Pung [15] have
addressed the issues presented above with their middleware
solution and have even described a semantic P2P cluster
overlay. Similarly addressing the presented issues and making
heavy use of the experience gained in the Roboswarm project
[14], we are applying the ideas deployed there to the medical
home care system.

III. ARCHITECTURE

Modern home monitoring solutions involve numerous
amounts of various sensors that generate a lot of output
information. To address the issue of massive incoming sensor
data, we propose a hierarchical multi-level architecture where
each node consists of similar components that follow similar
processes while each node and component may have a different
implementation. Through hierarchical multi-level architecture
we intend to achieve low-level sensor data aggregation into
high-level knowledge for end-user, and vice versa propagating
high-level system management through the levels to low-level
node-specific management, thus reducing the amount of raw
data on higher levels. The system is intended to behave in a

uniform way on all nodes and all levels. However, while
sharing similar architecture, different implementations may
specifically be tailored to suit various needs and possibilities of
different computing platforms.

-
hiteboard

Figure 1. Whiteboard and peripheral agent cloud.

Each node consists of a whiteboard and a peripheral agent
cloud. What we call an agent cloud is a collection of
independent small programs that perform specific tasks on the
given node. An agent cloud includes computational,
communication, as well as wrapping agents for sensor
integration. What we call a whiteboard is a concept that stands
for a semantic datastore which is readable and writable by any
agent at any given time. Whiteboard serves two objectives at
the same time. Firstly, it is a persistent database for agents.
Secondly, it is a communication medium for information
exchange between the agents. Information exchange between
the nodes on different levels is achieved through the specific
communication agents which communicate information from
whiteboard on one level to the whiteboard on another level.
This makes a lower level node appear to a higher level node as
yet another agent in the peripheral cloud. Similar whiteboard-
centered approach with various agents for different tasks has
been previously used in the Roboswarm project to make a
mobile service robot operational. Various small agents were
used for different tasks and the whiteboard was used as a
central datastore and communication medium. As this
architecture with central whiteboard has been successfully
deployed in the Roboswarm project [14], we intend to build on
this and make use of the previous experience.

In order to make our data understandable to other
components in the system as well as outside of the system, we
treat whiteboard as a semantic datastore. We make use of

Resource Description Framework (RDF) [16] which is based
on making statements about resources in expressions in the
form of subject-predicate-object called triples. Thus, our
whiteboard datastore implementation can be viewed as a
database having 3 columns: the subject, the predicate, and the
object (or: the subject, the property, and the value). Which
looks very similar to the N-Triples notation [18].

The subject of an RDF statement is used to identify
resources. It can either be a Uniform Resource Identifier (URI)
or a blank node, in which case it denotes an anonymous
resource. To identify each node uniquely, a whiteboard within
any node is assigned a URI which is stored on the whiteboard.
Each agent running within the node has a unique identifier.
Since our data representation is semantic, each agent is also
assigned a unique URI which is formed by appending the
agent's unique identifier to the URI of the whiteboard.

whiteboard URI: http://www.eliko.ee/ssg/wb/1
agent's unique ID: MyAgent1

resulting URI: http://www.eliko.ee/ssg/wb/1/MyAgent1

Figure 2. URI formation.

By similar approach we can also build URI-s to identify
nodes (whiteboards) of the lower level, whose agents' URI-s in
turn are formed by appending unique identifiers to the URI of
the whiteboard. This enables us to identify any component
within the system uniquely, which in our estimation should be
beneficial for system management.

12 buffers to
upper level

et 1

O

Whiteboard

—={ Agyerit M |
[buffersto
] 1 0 EO geer e

Figure 3. Structure of a single node with whiteboard, IO buffers and agents.

1D buffersto
upper level

O O

YWhite board |

[buffersto
[t el |:|

D_
L]

[bufferz to

¥ ¥
upper level |:| |:|

[
D-.-'.

[bffers to
[t el

o

N

Figure 4. Communication between whiteboards.

Agents in our system can be divided roughly into two types
by the way they acquire necessary data. There are agents that
query data they need from the whiteboard, and there are
consumer agents whose data is provided by the provider
agents. Moreover, while reading from the whiteboard is open
to all, writing to the whiteboard is a more complicated task if
data collision and corruption is to be avoided. This all has lead
us to introduce the concepts of input and output buffers which
means that every agent has a dedicated areas for reading and
writing which we currently identify through a RDF property.

@prefix e: <http://www.eliko.ee/ssg/schema> .

<http://www.eliko.ee/ssg/wb/1/MyAgent1>
e:InputBuffer _:1 .

_:1 e:Propertyl "valuel" .

_:1 e:Property2 "value2" .

Figure 5. Input buffer example in Notation3 [17].

Output buffer is a similar concept. Everything written by
any agent to the whiteboard is first stored in the respective
agent's output buffer where it remains until it is picked up by
another agent responsible for processing output buffers. This
agent then decides where to move corresponding data.

Introduction of input and output buffers opens up a
possibility of chaining agents together for data processing. For
example if agent Agentl outputs heart rate in ontology Ol
while the system works with heart rate in ontology O, an
additional agent Agent2 can be built to convert heart rate from
ontology Ol into ontology O, thus making heart rate
understandable to other agents in the system.

Semantic RDF-based representation of data makes it
possible to apply predicate calculus and make use of rule-based
reasoners (e.g. Jena) and programming in logic (e.g. Prolog) in
the system for deduction of new knowledge. One way to
include such reasoners is to write a specific agent for the
reasoner that would mediate data from the whiteboard to the
reasoner and vice versa. However, if reasoning on larger
amounts of data is to be considered then this will prove to be
ineffective. Because of this we also plan to introduce a
reasoner within the whiteboard with either direct access to the
whiteboard data or synchronizing changes made to whiteboard
data to the reasoner database. This will result in data
duplication but will allow the reasoner to have all the necessary
data readily in memory when the task requiring reasoning is
called.

IV. CoMMUNICATION AND DATA AGGREGATION

Whiteboards serve as a data exchange medium between the
agents. For this purpose every whiteboard provides a
communication interface. Depending on the whiteboard
implementation in the given node the protocol, syntax and
implementation of the interface may be different while the
behavior remains the same. In addition, more than one
implementation of the communication interface may be
exposed. For example, communication between the nodes is
based on web-services while communication within the node
may be implemented using a whiteboard client library and
direct function calls.

Communication is based on semantic data representation.
Currently for handling simplicity, everything exchanged
through communication interface is presented in N-Triples
notation, or a notation similar to that. For example, a message
sent from one node to another may be encoded in N-Triples
notation enclosed in a SOAP message envelope, while a direct
function call within the node may make use of an array of
structs with separate fields for the subject, the predicate, and
the object.

Any message exchange follows N-Triples notation where
RDF blank nodes have only meaning within the message
exchanged. In the example that follows a blank node identified
by _:113 should not be considered as having meaning outside
of the message. When whiteboard receives anything to be
stored, all blank nodes are iterated through and replaced so that
no data collision happens with data already stored on the
whiteboard. Hence, _:113 may easily be replaced by _:217.

<http://www.eliko.ee/ssg/wb/1/MyAgent1>
<http://www.owl-
ontologies.com/nullontology.owl#Sample>_:113 .

_:113
<http://bioinfo.icapture.ubc.ca/subversion/SIRS/clinicalphe
notype.owl#HeartRate> "70" .

113
<http://bioinfo.icapture.ubc.ca/subversion/SIRS/clinicalphe
notype.owl#SaturationO2> "97" .

Figure 6. A sample message.

Whiteboard communication interface exposes three
methods, two of them for reading, one for writing.
list — a method for listing data stored on the

whiteboard, as well as a method for searching by the
subject, the predicate, or the object values. The search
results return matches including sub-properties. In the
example above, if search is made by the predicate
<http://www.owl-
ontologies.com/nullontology.owl#Sample> all of the
triples above will be returned.

listBuffer — a method for listing contents of the input
buffer of the agent querying.

storeBuffer — a method for storing data to the output
buffer of the agent.

To deal with massive incoming amounts of sensor data, we
intend to make use of multiple agents and multi-level
architecture. What may initially be a computationally heavy
task to achieve on a central node for numerous patients in
home care, may become considerably simpler if raw sensor
data is aggregated and analyzed on the home node, thus
making use of the distributed computing power.

Let us consider a simplified example where a number of
home care patients are requested to take Electrocardiogram
(ECG) readings daily. In order to analyze long term heart rate
variability trends to assess conditions of the cardiovascular
system.

1. On a home node we have an ECG agent that takes raw
samples coming from the ECG amplifier, enriches
them semantically, e.g. with meta data like sensor
maker, pre- and post-, low- and high-pass filters
applied, pre- and post-processors, sampling rate, etc.,
and stores it on the local whiteboard.

2. A second agent on the home node picks up the stored
ECG samples of the measurement, extracts heard beat
period (RR interval) values and stores them on the
whiteboard.

3. A third agent on the home node picks up the stored RR
interval values of the measurement, calculates heart
rate variability (HRV) value and stores it on the
whiteboard.

4. A communication agent on the home node picks up the
HRYV value and sends it to the parent node.

5. On a parent node there can be one or more agents
which analyze stored HRV values, calculate long-
term trends, compare them with the trends from other
patients under the observation while taking into
account data not available on the lower level nodes,
like information about the environment, activity
history, medical history, etc.

While home nodes hold all the raw sensor data, there is no
actual need for it on the higher level to calculate HRV trends
and trend comparison. Thus, the actual sensor data remains on
the lower level node for some predefined period. As long as the
communication framework defines ways to retrieve this data

when the need should arise, such scheme should ease the data
load on central nodes and make use of distributed computing
power.

V. ConNcLusioNs AND FURTHER WORK

At present time we have implemented an assisted living
research platform for further research. As outlined in this
paper, we have used experience gained in the Roboswarm
project and extended the Roboswarm architecture to fit our
vision of the home care infrastructure.

We have created two implementations for different nodes,
one representing a lower level node with sensors attached to it,
the other a higher level node without sensors. On both nodes
we have a whiteboard with input and output buffers and a
number of agents. On the lower level node there are agents for
specific sensors (e.g. PPG), communication agent that links the
lower level node to the higher level node. On both nodes we
have also implemented a reasoning agent, using Jena reasoner
on the higher level node and Prolog on the lower level node,
for deduction of new knowledge. Moreover, higher level node
is implemented in Java and web-services as communication
interface while lower level node is implemented in C and using
direct function calls for communication with the whiteboard.

We have made use of the Roboswarm architecture
experience and have confidence it will scale in a home care
solution as well. Our further work involves refining current
implementations, defining data that is needed for operation of
the nodes, optimization of data storage, exchange and transfer,
implementation of various agents for different sensors and
computation tasks. Furthermore, it is necessary to design rule
sets for automated profile generation and automated data
aggregation.

ACKNOWLEDGMENT

This research has been supported by European Regional
Development Fund.

REFERENCES

[1] K. Doughty, K. Cameron, P. Garner, “Three generations of telecare of
the elderly,” Journal of Telemedicine and Telecare, vol. 2, no. 2, pp. 71—
80, 1996.

[2] well@home, http://wellathome.com/.
[3]1 Zydacron, http://www.zydacron.com/.
[4] Docobo, http://www.docobo.co.uk/.

[51 N. M. Barnes, N. H. Edwards, D. A. D. Rose, & P. Garner, “Lifestyle
monitoring — technology for supported independence,” IEEE Computing
& Control Engineering Journal, vol. 9, no. 4, pp. 169-174, August 1998.

[6] L. Chen, C. D. Nugent, M. D. Mulvenna, D. D. Finlay, X. Hong,
“Semantic smart homes: towards knowledge rich assisted living
environment,” Special Issue on Studies in Computational Intelligence on
Intelligent Patient Management (Edited by S. McClean), Springer, 2008.

[7] T. Amaral, N. Hine, and J. L. Arnott, “Integrating the single assessment
process into a lifestyle-monitoring system,” 3rd International
Conference On Smart homes and health Telematic (ICOST 2005), pp.
42-49.

[8] Alka R. Kaushik, B. G. Celler, “Characterization of PIR detector for
monitoring occupancy patterns and functional health status of elderly
people living alone at home,” Technology and Health Care, vol. 15, no.
4, pp. 273-288, December 2007.

[91 F. Wang, K. J. Turner, “Towards personalised home care systems,”
Proceedings of the Ist international conference on PErvasive
Technologies Related to Assistive Environments, Article 44, 2008,
ISBN:978-1-60558-067-8.

[10] J. C. Augusto, J. Liu, P. McCullagh, H. Wang, and J.-B. Yang,
“Management of uncertainty and spatio-temporal aspects for monitoring
and diagnosis in a Smart Home,” International Journal of Computational
Intelligence Systems, 1(4):361-378, Atlantis Press, 2008.

[11] K. Du “HYCARE: A hybrid context-aware reminding framework for
elders with mild dementia,” Smart Homes and Health Telematics, vol.
5120/2008, pp. 9-17, 2008.

[12] D. Cook and S. K. Das, “How Smart are our Environments? An Updated
Look at the State of the Art,” Journal of Pervasive and Mobile
Computing, 2007.

[13] SemanticsAtHome,
bin/infdb/resprojview?projid=1275.

[14] T. Tammet, J. Vain, A. Puusepp, E. Reilent, A. Kuusik. “RFID-based
communications for a self-organizing robot swarm,” In S. Brueckner, P.
Robertson, U. Bellur, eds., Proc. of 2nd IEEE Int. Conf. on Self-
Adaptive and Self-Organizing Systems, SASO 2008 (Venice, Oct.
2008), pp. 45-54, IEEE CS Press, 2008.

[15] W. Xue, H. Pung, W. L. Ng, and T. Gu, “Data Management for context-
aware computing”, accepted for The 2008 IEEE/IFIP International
Conference On Embedded and Ubiquitous Computing (EUC 2008),
December 17-20, 2008 Shanghai, China.

[16] Resource Description Framework (RDF), http://www.w3.org/RDF/.

[17] Notation3, http://www.w3.org/Designlssues/Notation3.html.

[18] N-Triples, http://www.w3.0org/2001/sw/RDFCore/ntriples/.

http://www.infc.ulst.ac.uk/cgi-

PAPER 8

E. Reilent, A. Kuusik, I. Ldodbas, P. Ross, P. Improving the data compatibility of
PHR and telecare solutions. In: 5th European Conference of the International
Federation for Medical and Biological Engineering 14 - 18 September 2011,
Budapest, Hungary: (Toim.) Jobbagy, A.. Springer, 2011, (IFMBE Proceedings;
37), 925 - 928.

127

Improving the data compatibility of PHR and telecare solutions
E. Reilent', I. Loobas', A. Kuusik' and P. Ross™*

" ELIKO Technology Competence Centre, Tallinn, Estonia
? East-Tallinn Central Hospital, MD, Tallinn, Estonia
3 Institute of Clinical Medicine, Tallinn University of Technology, Estonia

Abstract— Personal Health Records (PHRs) and wellness
telecare systems are emerging and shall enable individuals to
take more responsibility of maintaining their own health.
However, practical data interoperability with existing THE
systems has been not achieved yet due the wide range of differ-
ent PHR information collected by users. We describe an HL7
v3 protocol based data interoperability solution that enables
seamless integration of telecare data with an existing Estonian
nation-wide Electronic Health Record System targeting na-
tion-wide Universal Health Record (UHR) data repository.

Keywords— Telecare, universal health record, e-health

I. INTRODUCTION

Personal Health Record (PHR) solutions are targeting
safe, high quality and cost-efficient proactive healthcare.
Health and wellness information collected by telecare sys-
tems should essentially be recorded into PHR for long-term
monitoring and evaluation of trends of well-being. The most
significant benefits of PHRs can be achieved through the
interoperability of different existing patient data stores and
IHE systems [1]. However, as stated by Lahteenmaki [2]
most PHR systems do not communicate with other
healthcare information systems well enough yet. Integration
of telecare and subjective feeling data in meaningful and
formalized way suitable for computerized processing is
even more complex task. 2008 saw Google adapt Continuity
of Care Record (CCR) for Google Health [3] thus showing
high potential of the CCR to become leading standard for
interoperable PHR systems. However, since CCR has been
developed in accordance with the hospitals’ requirements to
Electronic Health Records (EHRs), there are certain limita-
tions to include telecare and lifestyle information into CCR
based PHRs.

As stressed in [4] there is significant lack of interopera-
bility among health, rehabilitation and care information
systems. Modern telecare systems essentially support life-
style monitoring [5] and provide context information for
measurement and event data. While such data carries im-
portant information about degradation of well-being [6] it
shall be considered as essential part of PHR.

eliko.doc

In some countries, for example in Estonia [7], national
eHealth systems are developed for simple access to patient
EHR data collected by any kind of healthcare organizations.
Natural way is to enrich such healthcare databases with
personal wellness and telecare content resulting true UHR
repository. From one side, such long term infrastructure
projects raise more deeply the issues of feasible interopera-
bility of PHR, EHR and telemedicine systems with manage-
able data access right system. From the other side, due the
increased demand for flexible data presentation standards
leaded by telecare, wellness equipment manufacturers and
end users, such interoperable UHR systems are more like to
become available.

Current paper presents proposals how to integrate per-
sonal data from telemonitoring systems into Estonian na-
tion-wide Electronic Health Record System — eTervis
(eHealth) portal. For our analysis we rely on existing
knowledge developing interoperable, semantics driven
telemonitoring systems [8] to be used by East-Tallinn Cen-
tral Hospital.

11. PROPOSED CENTRALIZED REPOSITORY FOR EHR AND
TELECARE DATA

For most of the countries there exist several competing
and typically incompatible legacy repositories for EHR and
PHR data. However, in some countries, for example in
Estonia, exists a public, state controlled and centrally main-
tained infrastructure for citizens’ EHR data. Such infrastruc-
ture offers (controlled) a single service to keep and access
patient data. Since privacy and data retention issues for state
driven data warchouses are carefully addressed and legally
validated, such repositories are suitable for storing personal
welfare information. Possible extension of centralized EHR
system with telemonitoring capabilities is shown on Figure
1. Dashed lines present proposed data flows of telecare
information.

Designed capable enough for storing high resolution im-
age content and real time data access, the particular eTervis
EHR repository can technically support telemonitoring
services including recording narrow bandwidth (10kbps)
streaming data, e.g. ECGs. Context enriched ECG monitor-

ing can be considered as most demanding and modern prac-
tical telecare application for EHR/PHR systems to date [9].

y

fiel

| [&

Patient portal Ul:

= J
data read and IR i Doctor portal Ul
write

UHR data reposito-
N ry (e.g. CCR) e,
Telecare data 4 ! ,u
Laboratory data
(SNOMED CT) (L7 + SNOMED
CT
(@
\
Patient epicrisis
Wellness data
(SNOMED CT, (SNOMED CT)
Wordnet)

Fig. 1 eHealth EHR system extended with telecare
and wellness monitoring functionality

I1I. REQUIREMENTS FOR EXPANDABLE PHR sysTEm

Despite the existence of many PHR systems there is a
growing interest to expand centralized EHR infrastructures
by accepting and keeping data coming directly from the
patients. The motivation to manage PHR data alongside
with the clinical data collected by the healthcare profession-
als in the same system is to provide physicians with better
access to their patients’ nonclinical information. Because
centralized EHR repositories are already responsible for
keeping track of all medical data provided by different med-
ical establishments, about one patient in the same place,
they could as well concentrate private home-made meas-
urements, training diary, drug taking history, etc.

However, if it is decided that PHR data has to be sent di-
rectly to EHR holder where the ordinary clinical data is, it
cannot happen just out of the box. Typically, EHR systems
have complex proprietary input protocols which do not suit

eliko.doc

well for PHRs. For example, eHealth has a large number of
HL7 v3 XML message formats for storing and requesting
predefined number of specific rather large and well-defined
documents like medical case histories, ambulant cases,
medical bills, referral letters, prescriptions, etc., while PHR
data entries are usually small but vary from patient to pa-
tient.

The situation is similar with standalone PHR implemen-
tations in systems like described by [2], Google Health,
Microsoft HealthVault [10], etc., which have actually very
fixed formats for certain events, for example home-made
blood pressure measurements. Even though many of them
reference external vocabularies like SNOMED CT for creat-
ing interoperability on conceptual level, they fail to adapt
great diversity of possible PHR entries beyond the given
formats of a particular coding system.

The goal is to find the practical way to represent data
gathered by the patient. The focus is to add expandability
and refine-ability where fine-tuned formats and schemas
lack certain flexibility and need considerable intervention
when new data types are introduced or old ones require
expansion. For example, when a patient uploads weight
measurement data it is important in some cases to add meta-
information, like the type of scale used, but if the current
schema has no slot for this kind of information, there is no
seamless solution to enable recording of such data. On the
other hand, we cannot force every entry to have the device
field. Therefore, some data organization methods will not fit
the best. We must also not forget that data still has to be
automatically manageable by expert systems and rule en-
gines which are usually present in EHR systems (e.g. deci-
sion support algorithms Map of Medicine [11] in eHealth).

In the realm of PHR there are many different behavior
models of users, some want to keep diary of physical activi-
ties, others track their health parameters like blood pressure
daily, or at random times. In general, patients want to send
not very precisely defined wellness data as well as results of
medical measurements to their PHR. While clinical data is
unanimous, PHR data can be medical as well as describing
subjective wellness feeling, or data not even directly con-
nected to the patient but rather contextual, like outdoor
temperature at jogging time, etc.

As an example of volatile nature of PHR data schema we
could consider the case of keeping workout diary. While
one patient just logs the history of exercises taken at the
gym with duration data, the other patient wants to enrich her
training diary with data output by the pulse watch. Suppose
the PHR repository is capable of accepting all that but if the
person wants to add some conclusion of how she felt after
the training session, this might not be possible to accom-
plish in the system. Additionally, in some cases person

would like to add aggregated data of particular measure-
ments to the PHR.

IV. DATA MODEL

Hereby the underlying core data structure has rather im-
portant role for effective connectivity of versatile data
sources and platforms for creating expandable PHR ecosys-
tem. Tightly fixed formats of recordable events can be re-
lied on to some extent, but rather general and universal
basic data schema could perform better for the patient’s
point of view even if it poses inconveniences for technical
side.

PHR builds up in a natural way as a diary of entries
which are typically rather short and based on a single meas-
urement, test, activity etc. In most of the cases complex
HL7 v3 messages with lots of required field as regular in
the EHR system eHealth can be avoided but still easily
introducible if necessary. There are not many fields in PHR
entries that have to be present in every case, perhaps patient
identification data and the timestamp of the entry are most
common, still not omnipresent as the patient ID can be
transmitted outside of the contents of the entry (already
needed during the creation of communication channel and
authentication) and the timestamp might be omitted with
some static personal data (name, genetic information, disa-
bilities). Therefore no compulsory fields are required on the
general level. Also grouping entries to components or divid-
ing them to certain number of subtypes is dropped.

According to the proposed data model a PHR entry shall
be a list of key = value pairs, which is actually cover-
ing lots of possible cases of usage. The key is always ter-
minal node and refers to an external ontology or vocabulary
concept (SNOMED CT, LOINC, WordNet, etc). As it is
publicly accepted to use many coding systems simultane-
ously for enabling semantic interoperability all identifiers
split to root and extension (HL7, Google Health, [2]). For
example the key weight in pseudo code takes the form of

<key extension = "363809009" <root =
"2.16.840.1.113883.6.96" codeingSys-
temName = "SNOMED CT" displayName =

"Weight "> in an arbitrary XML representation.

The value node can, however, be either a single termi-
nal (string, number) as 42 or a list of elements as [ele-
mentl, element?2, enementn] where a list element
can be terminal node or another key = value pair, thus
making the schema hierarchical. Still, the encoding is more
intuitive than the core model of entity-role-participation-act
from the HL7 v3 and compared to the <TestResult>
node from Google Health it can express list of values, for
example recorded data stream of a handheld ECG device

eliko.doc

ECG
10246,

(CardGuard SelfCheck
1 lead ECG=[6918,
w1

[12]) like
10246, 9734,

For better illustration we could consider a minimalistic
example of an entry of how a patient could evaluate her
current feeling in the following pseudo code:

entry = [
feeling = tired,
timestamp = 14 Feb 2011 17:52

Another entry represents the usage of nested lists of key
= value pairs and depicts the results of one blood pres-
sure measurement. It is worth of noticing that as the meas-
urement device outputs also the pulse rate reading besides
the blood pressure, it is very natural and simple to encode
that data into the same entry:

entry = [

type = measurement,

blood pressure = [
systolic = 120,
diastolic = 80,
unit = mmHg

JI

pulse = [67, unit = ppm],

timestamp =

user comment =

device =

For considering the case of enriching data the following
entry demonstrates a log of a training event where the pa-
tient got the data from a pulse watch:

entry = [
training = [burned calories = 5701,
device = [polar watch, model = 1]

But if the same patient uses different model of pulse
watch later which outputs more parameters, the data stream
of that patient could be enriched with backward compatibil-
ity and corresponding user applications adopt the new data
schema with reasonable effort:

entry = [
training = [
burned calories = 570,
duration = [120, unit = minutes],

sport = avg speed=25 km/h]

]I

device =

[cycling,

[suunto watch, model = 2]

V. PROPOSED ENHANCEMENTS TO EHEALTH ECOSYSTEMS

For making use of the potential of eHealth system to ac-
cept PHR type data coming directly from patients either by
inserted manually in dedicated web-applications or automat-
ically from telemonitoring installations which connect (e.g.
using Blutooth) to physical sensor devices and process in-
coming sensor data, some additional development is needed
to be done on the EHR s side.

As soon as the concrete transferring carrier is picked for
the proposed hierarchical entry format and authentication
procedures are agreed on there are no major obstacles on
uploading and saving the PHR data to eHealth. In general,
access interfaces to the system do not have to be differently
designed from the existing web-services used for managing
ordinary clinical EHR data encoded in HL7 v3 XML mes-
sages.

The PHR entries could be expressed in XML and parsed
into the tree of objects for accustomed processing and man-
aging on the server side or be encoded into RDF triples and
handled respectively. While precise storage or querying
issues and displaying PHR data streams on the user inter-
face are not in the scope of this paper, experiments show
that it is feasible to encode the data given in the proposed
schema into ordinary relational databases as well as into
dedicated XML databases (e.g. [13]) for hierarchical rec-
ords.

VI. CONCLUSIONS

PHR systems are quickly winning popularity among the
competitive healthcare users. On the same time, vogue of
different fitness and training data exchange services is in-
creasing even more rapidly. It has been expected a break-
through in telemedicine utilization to manage the aging
Western populations. There are some attempts, even in large
scale — for example eTervis (eHealth) in Estonia - to merge
all such information into one public UHR cyberspace.
However, present PHR data encoding standards developed
from hospitals’ perspectives have insufficient flexibility to
present quite loose and context dependent telecare or life-
style information. We propose to extend existing CCR,
CCD and proprietary PHR data formats with refinement
potentiality for storing specific detailed records. Proposed

eliko.doc

data encoding solution was successfully tested with cardio-
logical telecare data and context information to be fitted
into strictly predefined schema of existing eTervis EHR
system.

ACKNOWLEDGMENT

This research has been supported by European Regional
Development Fund, Competence Centre program of Enter-
prise of Estonia.

REFERENCES

1. Kaelber D, Pan E C, et al. (2008) The Value of Personal Health
Record (PHR) Systems, AMIA Annu Symp Proc. 2008: 343-347,
PMCID: PMC2655982

2. Lahteenmaki J, Leppanen J, Kaijanranta H (2009) Interoperability of
personal health records. in Conf Proc IEEE Eng Med Biol Soc.
2009:1726-1729 PMID: 19964259

3. Google at (2011)
EE/apis/health/ccrg_reference.html

4. AALIANCE Ambient Assisted Living Roadmap Ger van den Broek
et al. (Eds.) IOS Press, 2010 doi:10.3233/978-1-60750-499-3-62

5. 6 Nugent C D, Mulvenna MD et al. (2008), Semantic Smart Homes:
Towards Knowledge Rich Assisted Living Environment, Special Is-
sue on Studies in Computational Intelligence on Intelligent Patient
Management (Edited by McClean S.), Springer, Heidelberg

6. 7 Amaral T, Hine N, Arnott J L (2005), Integrating the Single As-
sessment Process into a lifestyle-monitoring system. In 3rd Interna-
tional Conference On Smart homes and health Telematic ICOST
2005, pp 42-49

7. e-Tervis SA at http://www.e-tervis.ee/

8. Kuusik A, Reilent E, Lodbas I, Parve M (2010) Software architecture
for modern telehome care systems; in proc 6th International Confer-
ence on Networked Computing INC 2010, ISBN 978-89-88678-20-6,
IEEE Catalogue number CFP1084J-ART, pp 326-331

9. Schmidt S, Schuchert A, Krieg T, Oeff M (2010), Home
Telemonitoring in Patients With Chronic Heart Failure, Deutsches
Arzteblatt International, 107(8), pp. 131-138

10. Microsoft HealthVault at
http://www.healthvault.com/personal/index.aspx

11. Map of Medicine at http://www.mapofimedicine.com/

12. PMP4 Self Check ECG at
http://www.lifewatch.com/telehealth_monitors

13, eXist at http://exist.sourceforge.net/

http://code.google.com/intl/et-

Use macro [author address] to enter the address of the corresponding
author:

Author: Enar Reilent

Institute: ELIKO Technology Competence Centre
Street: Teaduspargi 6/2

City: Tallinn

Country: Estonia

Email: enar.reilent@eliko.ee

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON
INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.
2. Kalle Tammemaée. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments — Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral
Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with Relational
Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia kdiduhaldussiisteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of
Digital Systems. 2004.

133

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to Semiconductor
Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-
Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Okonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level L
2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique
Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.
28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.
29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. BuxTtop BoiiToBuu. Pa3paboTka TeXHOIOTHH BBIpAIIMBAHUS U3 KUIAKON (hazbl
SMUTAKCHAIBHBIX CTPYKTYp apCEHU/A TaJUIHs C BBICOKOBOJBTHBIM pP-N IEPEXOIOM
U U3TOTOBJICHUS JUOI0B Ha uX ocHoBe. 2006.

31. Tanel Alumée. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management
Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater
Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis
and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

134

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear
Information Processing Methods: Case Studies of Estonian Islands Environments.
2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. 1lja TSahhirov. Security Protocols Analysis in the Computational Model —
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.
46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivosei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
20009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.
50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 20009.

53. Maris Tonso. Computer Algebra Tools for Modelling, Analysis and Synthesis
for Nonlinear Control Systems. 2010.

54. Aivo Jiirgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User Interfaces.
2010.

135

56. Jiirgo-Soren Preden. Enhancing Situation — Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.
2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja SleptSuk. Investigation of the Intermediate Layer in the Metal-Silicon
Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.
66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavsin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting Algorithms
Using Tree-like Structures and HFSM Models. 2012.

70. Anton TSertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web — Analysing and Recommending Web
Users' Behaviour. 2012.

136

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

79. Marko kidramees. A Symbolic Approach to Model-based Online Testing.
2012.

137

