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Abstract

Malicious JavaScript files have been a popular attack vector for both server and client
applications for years. Machine learning has been used for malicious JavaScript file
detection in the form of static and dynamic analysis, but existing implementations may
not be sufficient when it comes to obfuscated JavaScript files. During the last year, the
topic of using large language models for static analysis has gained traction. The goal
of this research is to explore the applicability and development of a framework capable
of classifying JavaScript samples utilizing hybrid analysis with large language models
using different prompting methods and evaluating the results across different models to
demonstrate a novel method that can be used for mitigating cyber threats, as well as
blocking privacy-invading JavaScript files such as trackers with the highest accuracy as
possible. The outcome of the research shows a promising success of the proposed approach
to JS file detection in the topic, achieving robust results. Future work could involve refining
hybrid analysis methodologies and expanding model capabilities to address the limitations
observed, ultimately contributing to better cyber threat detection.

The thesis is written in English and is 40 pages long, including 8 chapters, 42 figures, and
2 tables.
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Annotatsioon
Suurte keelemudelite hindamine Javascripti failide klassifitseerimisel

hübriidanalüüsi abil

Pahatahtlikud JavaScripti failid on olnud populaarne ründevektor nii serveri- kui ka kliendi-
rakendustes juba aastaid. Masinõpet on kasutatud pahatahtlike JavaScripti failide tu-
vastamiseks läbi staatilise kui ka dünaamilise analüüsi, kuid hetkel olemasolevad lahen-
dused võivad osutuda ebapiisavaks, kui tegemist on hägustatud (obfuscated) JavaScripti
failidega. Viimase aasta jooksul on suurenenud huvi suurte keelte mudelite kasutamises ja
staatilise analüüsi sooritamiseks tuvastamaks pahatahtlike JavaScripti faile. Selle uurim-
istöö eesmärk on uurida ja arendada raamistik, mis suudaks klassifitseerida pahatahtlike
JavaScripti näidiseid, kasutades hübriidanalüüsi ja suuri keelemudeleid erinevate promp-
timise meetoditega. Tulemusi hinnatakse erinevate mudelite lõikes, et näidata uudset
meetodit, mida saab kasutada küberohtude leevendamiseks ning privaatsust rikkuvate
JavaScripti failide, näiteks jälgijate (trackers), blokeerimiseks võimalikult kõrge täpsusega.
Uurimistöö tulemused on näidanud pakutud lähenemisviisi edukust JS-failide tuvastamisel,
saavutades selgelt nähtavaid tulemusi. Tulevikus võiks antud uurimustöö hõlmata hübri-
idanalüüsi metoodikate täiendamist ja mudelite võimekuse laiendamist, et lahendada antud
uurimistöö raames täheldatud piiranguid ning seeläbi paremini kaasa aidata küberohtude
tuvastamisele.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 40 leheküljel, 8 peatükki, 42
joonist, 2 tabelit.
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1. Introduction

1.1 Motivation

Over the past years, malicious JavaScript files have become a popular attack surface for
both server, client, and web applications. Using machine learning for malware detection
has been a topic for a long time and there have been implementations made for JavaScript
using static analysis with large language models, however falling short on obfuscated files.

To overcome this shortcoming, as well as increase the support for the architecture of ever-
getting complex web applications, hybrid analysis will be utilized for the classification.
Hybrid analysis is an analysis method that uses statically available resources such as source
code or bytecode combined with the execution result of a given sample. To capture the
execution of the samples a sandbox will be used.

A prompt derived from static and hybrid analysis results of the JavaScript sample will be
used as input for the large language model. By providing the static and hybrid analysis
results in the same context, the rate of false positives during prediction can be reduced.

The motivation for this research is to leverage hybrid analysis of JavaScript files with
large language models using the analysis output and classify the purpose of a given file
using zero-shot and few-shot prompting methods, then evaluate the metrics across different
models with selected indicators.

1.2 Research problem

While machine learning in cybersecurity is already commonly used, the applications of
new machine learning breakthroughs such as large language models for the detection of
JavaScript files have already become a prominent research focus. Existing approaches are
based on static analysis and hybrid analysis which combines static and dynamic analysis
that shows promise on other machine learning approaches, its use with large language
models is yet to be explored.

The main research problem is exploring the limitations of current and past implementations
using LLMs and other machine learning approaches while exploring the hybrid analysis
with LLMs and addressing the challenges and limitations in the process such as the
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context length, as JavaScript files and the hybrid analysis result can exceed the token
limits of most models. This may lead to truncated analysis and reduce classification
accuracy. Additionally, JavaScript’s obfuscated and minified files can complicate model
interpretation due to overlapping features.

1.3 Research goal

The main goals of this research are aiming to;

1. Develop a JavaScript hybrid analysis framework that is usable for files targeting web,
server, and desktop applications.

2. Investigating how hybrid analysis results can be used to generate a context representation
of JavaScript files.

3. Assess the abilities of LLMs utilizing this representation to overcome challenges and
shortcomings of static analysis such as obfuscation.

4. Benchmarking zero-shot and few-shot prompting techniques to see changes in the
classification accuracy.

5. Analyze the results address limitations and challenges and explore the future work
needed to overcome them.

1.4 Research scope

The main research scope for this topic is to develop a framework for assessing large
language models’ capabilities in JavaScript file classification using hybrid analysis with
the selected classifications and analyze the success rate of different models using different
prompting techniques such as few-shot prompting and zero-shot prompting.

2



1.5 Research Questions

The research questions, which encompass the goal of the thesis, are as follows:

■ RQ1: Is it possible to use LLMs with hybrid analysis for classification accurately?
■ RQ2: When using LLMs for classification, are there any accuracy changes when

few-shot prompting is used?
■ RQ3: Will different LLMs result in the same classifications with the same input?

1.6 Novelty

The current state of the literature shows a gap in the hybrid analysis of JavaScript files using
large language models that are used for classification. The goal and the importance of this
research is to provide a framework to evaluate the large language models for accomplishing
the expected task and closing the gap in the research.
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2. Literature Review

2.1 Theoretical Background

JavaScript (JS) is an interpreted programming language created by Brendan Eich in 1995
as a scripting language for making web pages interactive. Over the years JS has evolved
from a simple scripting system for web pages to a programming language that is used
in server-side development, mobile app development, desktop application development,
and modern web development [1]. Based on the study in 2020, JS was the most popular
programming language used on open-source repositories available on GitHub [2].

In recent years with the advancement of web application technologies, the widespread
adaption of JS on the server-side applications, and scripting support for legacy systems
still being installed by default for applications like Windows Scripting Host (Wscript) [3]
and PDF have expanded the capabilities of JavaScript while expanding the attack surface
for the purposes ranging from basic privacy intrusion to various malicious activities like
remote code execution or information stealing [4].

One advancement during the same period was the machine learning models that are capable
of performing contextual analysis while providing reasoning such as Large Language
Models (LLMs), LLMs are machine learning models that are trained on vast number
of text data including but not limited to programming code to perform tasks such as
summarizing content and answering questions. There were research efforts that combined
LLMs with JS in the domain of cybersecurity for vulnerability detection, bug detection,
secret finding, and malicious file detection [5].

When the current state of the implementations using LLMs is observed, one thing that was
seen is the reliance on static analysis only to perform the task. Static analysis is performed
by examining the source code of the file or syntactic features, like the Abstract Syntax
Tree (AST) and opcodes, that are generated from it. AST is a structural tree representation
of the source code where each node of the tree stands for the construction in the code
whether a function calls binary operation or variable assignment, and the opcode is the
compiled version of the AST before execution by the JS engine [6]. With the common
usage of minification for JS files used by websites, which is a process that changes variable
names and code paths to as small as possible to save on bandwidth and some JS files using
obfuscation techniques that can behave similarly can cause the static analysis to fall short
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on accurately analyze the files. To overcome this, hybrid analysis can be used.

Hybrid analysis is an analysis technique where static and dynamic analysis are conducted,
and the dynamic analysis can be run on a sandbox environment that mimics the target
system or on the actual target [7]. The dynamic analysis’s results reveal the usage of the
file by capturing or instrumenting what the obfuscated or minified code is resolved to. To
achieve this kind of analysis with the JS files, a runtime environment that can expose all
the required application programming interfaces (APIs) for the target environment of the
file is needed. The most common runtimes JS files targeting for, namely; web, server-side,
PDF, and Wscript are chosen for the sandbox environment to support APIs for [8]. To
achieve the goal of exposing these APIs during dynamic analysis with minimal complexity,
a runtime that supports both web and server-side APIs, the node-webkit (NW.js) project is
selected as the dynamic analysis runtime environment.

NW.js extends the JS environment of a web browser, in this case, Chromium, with the
server-side JS runtime, NodeJS which has polyfills for the APIs of Wscript and PDF
runtimes available [9]. Polyfilling is the process of reimplementing features that are not
natively supported for the current runtime. This approach for dynamic analysis allows both
web and other JS files to be executed as accurately as possible in the same environment
and keeps the evaluation inputs the same across the files targeting different runtimes [10].

2.2 Search Strategy

Based on the problem statement and research questions, the systematic literature review
method, as outlined by Budagov et al. [11] and following the structured guidelines of the
Kitchenham method, was applied. Kitchenham method focuses on key steps, including
developing a protocol, defining research questions, establishing a search strategy, and
ensuring rigorous data extraction and reporting practices. A set of keywords: "machine

learning", "hybrid analysis", "large language models", "malware detection", "dynamic

analysis", and "cybersecurity" in combination with "JavaScript" were selected to conduct
a systematic literature review using electronic databases such as IEEE Xplore, Web of
Science, Scopus and SpringerLink.

A search string combining the selected keywords is generated to include all relevant
research. The literature review focused on journal articles and conference papers. The
publication period spanned January 2018 to October 2024, highlighting recent develop-
ments and reflecting the evolving nature of emerging technologies in machine learning
and cybersecurity in the context of JS. A summary of the search strategy is given in the
following table 1.
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Electronic databases

IEEE Xplore
Web of Science
Scopus
SpringerLink

Type of searched literature Journal and Conference Papers

Search string

(“machine learning” OR “hybrid analysis” OR
“large language models” OR “malware detection”
OR “dynamic analysis” OR “cybersecurity”) AND
“JavaScript”

Language of the study English
Publication period From January 2018 to October 2024

Table 1. Search strategy

2.3 Inclusion and Exclusion Criteria

The inclusion criteria used for the search results were:
1. Papers, articles, and journals published between the years 2018-2024.
2. Literature that include the keywords.
3. Literature that are publicly accessible.
4. Literature that is relevant to the topic and goal of this research.

Exclusion criteria for the search results were:
1. Literature about different programming languages than JavaScript unless it is
relevant to the goal of the topic.
2. Literature that is not related to classification or analysis.

2.4 Literature Search and Selection

The literature search resulted in 1191 articles on the sources as follows; IEEE Xplore (n
= 377), Web of Science (n = 312), Scopus (n = 182), Springer Link (n = 320). First, the
duplicate papers on the result set are merged, making the result set 995 papers. After a
preliminary screening based on the titles of the resulting papers, papers with titles that did
not fall within the scope of this research were excluded resulting in 183 articles left for
screening.

The screening process excluded 152 papers, 64 due to not being related to JavaScript but
to other programming languages or platforms, and 88 for not being related to analysis or
classification in the context of JavaScript. Lastly, an accessibility check was conducted
which excluded 6 papers that are behind a subscription resulting in 25 papers for the
literature review. The diagram of the selection process is given in figure 1.
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Figure 1. Diagram of the literature selection process

2.5 Summary of the selected literature

The following section reviews the selected literature in the research question’s context to
identify the research gap and explain the motivation for this research’s goal based on the
previous research.

JavaScript files have become a popular attack surface for server and client applications.
Neural networks and machine learning have been showing promising results when used
on the classification of malicious and non-malicious files with the advancement of deep
learning methods [12]. One such deep learning method, large language models, and its
application in cybersecurity applications became a topic of interest over the past years [5].

Earlier research from Fang et.al. [13] [14] shows the feasibility of using machine learning
to accomplish this goal for JavaScript files. The JSContanta [15] shows using large
language models for the static analysis of the JavaScript code is also possible.
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The use of static analysis is not only limited to malicious file detection. Research from
Brito et al., Chan et. al., and Chinthanet et. al. [16] [17] [18] shows that the static analysis
with LLMs shows promising results for vulnerability detection in JavaScript code. LLMs’
capabilities of analyzing source code for vulnerabilities are also further benchmarked by
Purba et.al [19] and Gao et. al. [20] showing the strength of LLMs for this task. However,
this approach still has the weakness of the code being obfuscated.

The effects of obstruction during static analysis and solutions using machine learning
are further explored in the research by Ren et.al [21]. One approach from the research
TransAST [22] reverses the obfuscation using a translation model. The research from
Moog et.al [23] and Si et.al [24] shows analyzing the AST of the JavaScript file can also be
used to overcome this challenge. Another approach for overcoming the obfuscation from
Alazab et.al. [25] is using the opcode from compiled AST for detection. Research from
Rozi et.al [26] also shows using machine learning to detect malicious scripts by analyzing
the opcode. The research from Lu et.al also provides insights about using compiled AST
into opcode for increased accuracy on pattern matching [27].

Static analysis alone is insufficient to address all threats, leading to the adoption of dynamic
and hybrid analysis approaches. Sandbox analysis, previously used for executable files, has
been adapted to JavaScript. Kishore et al. [28] demonstrated the feasibility of sandboxing
JavaScript for hybrid analysis.

Research from He et.al. [29] uses a hybrid approach that combines these methods and
focuses on the classification of the JavaScript file. However, this approach does not take
into account the contextual analysis provided by large language models. The goal of this
research is to use the same hybrid approach with a large language model.

Previous research from Xiao et al. [30] used hybrid analysis to implement a security
benchmark suite for server-side JavaScript. When it comes to other hybrid analysis
approaches, the research by Koide et.al successfully implements a phishing detector
using dynamic analysis on the website HyperText Markup Language (HTML) code and
screenshot [31] but without the focus on JavaScript files. Research from Rozi et.al [32]
focuses on JavaScript files for website detection but only with static analysis using AST.
A dynamic analysis approach that was used in the research of He et.al [33] incorporated
a browser extension to monitor the execution of the JavaScript in the webpage. This
approach has proven effective for detecting malicious activity in JS files used on web
pages.

A more general approach that monitors the execution from the runtime by Jueckstock
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et.al [34] also allows dynamic analysis of any JS file. This approach can be used as the
theoretical basis of the proposed dynamic analysis system proposed in the background
section which also allows the analysis of JS payloads in portable document format (PDF)
files which is a prevalent attack surface based on the work of Lemay et. al. [35]

The literature review shows the gap for hybrid analysis of JavaScript files using large
language models that are used for classification. While the previous methods have focused
on static or dynamic analysis of JS files, the usage of LLMs during hybrid analysis is still
unexplored. The goal and the importance of this research is to provide a framework to
evaluate the large language models for accomplishing the expected task and closing the
gap in the research.
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3. Methodology

To achieve the research goal and answer the research questions, an empirical method of
testing will be conducted using real JS samples with the inputs obtained.

3.1 Dataset Collection

To accurately evaluate the capabilities of hybrid analysis and LLMs, JS samples that are
publicly accessible and up to date need to be obtained. Although there are many types of
JS files targeting different environments, the sample collection needs to be scoped to a
selected inclusion criteria. This research aims to evaluate the LLMs with the most common
threat scenarios. Due to this reason, samples that are websites, PDF files with JS code,
Node packages and Wscript files will be collected for the dataset.

3.2 Labeling

With the broad threat landscape and privacy invading JS files, a set of labels with their
definitions must be defined to be used for labeling and classification. To keep the research
scope on evaluation of the capabilities of hybrid analysis and large language models,
four classifications are generated based on the work of Biswal and Pani [36]. These
classifications are;

Malware: Any malicious JS code that is explicitly designed to perform malicious actions
such as data theft, remote control, ransom or install additional harmful files are labeled as
malware.

Adware/Telemetry: JS files that are primarily used for collecting user data, such as
browsing habits or personal information and the files that are used for serving advertisement
are labeled as adware/telemetry. While these files are not malicious, they can compromise
the user privacy.

Skimmer: JS files used to skim payment information from payment forms will be labeled
as skimmer. These kinds of files are often found on web pages that are taken over by
attackers and injected into the legitimate checkout sections.

Normal: The normal label will be used for JS files that possess no threats or for the files
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that are not falling under any other categories. This label will be used for legitimate JS
files.

3.3 Evaluation

The evaluation will be conducted by running classification tasks with different LLMs using
the labeled dataset. To further benchmark the LLMs, each sample in the dataset will be
presented with a few-shot and zero-shot prompt and the results will be analyzed with
selected metrics and compared.
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4. Hybrid Analysis

This section aims to provide insight into how the hybrid analysis is conducted, going
over the static analysis, which information is extracted, and the dynamic analysis with the
technical details of the sandbox setup.

4.1 Static Analysis

Static analysis is the process of analyzing a code without executing it. This is achieved by
examining the source code or any information it generates. In, JS one such information
is the AST which is a structural tree representation of the source code. Each node of the
tree represents the construction of the code, whether a function call, binary operate, on, or
variable assignment, which will be compiled to a format the execution engine can use.

4.1.1 Source code analysis

Source code analysis involves going through the file source to identify the purpose of the
file. With the proven capabilities of LLMs related to source code analysis based on the
previous works on vulnerability detection, the source code of the files will be directly used
without any additional preprocessing.

4.1.2 AST analysis

JavaScript abstract syntax tree is a representation of the functional part of the source code
excluding the additional data such as comments in a structured format. Throughout this
research, the AST parsing library esprima is used. The AST representation of the sample
code given in figure 2 is represented in appendix 2.

1 function answer() {

2 const x = 42

3 console.log(x);

4 }

5 answer();

Figure 2. Example of JavaScript code
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To briefly demonstrate the functionality of AST nodes, an example node targeting the
variable declaration in the code above will be used.

1 {

2 "type": "VariableDeclaration",

3 "declarations": [

4 {

5 "type": "VariableDeclarator",

6 "id": {

7 "type": "Identifier",

8 "name": "x",

9 "range": [

10 88,

11 89

12 ]

13 },

14 "init": {

15 "type": "Literal",

16 "value": 42,

17 "raw": "42",

18 "range": [

19 92,

20 94

21 ]

22 },

23 "range": [

24 88,

25 94

26 ]

27 }

28 ],

29 "kind": "const",

30 "range": [

31 82,

32 94

33 ]

34 }

Figure 3. Example AST node

The outer element "type" having the value "VariableDeclaration" indicates this node is a
variable declaration statement with the "kind" indicating this is a "const" to specify the
variable that will be declared as a constant. This node type can have multiple declarations,
in this example, there is only one with the "type" having a value of "VariableDeclarator".
The "id" node has the type identifier with the name value "x" which identifies the variable
name as "x" and the "init" node has the type "literal" with the integer value of 42, specifying
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that this variable will be initialized with the integer value of 42 after declaration.

Based on previous research on literature review related to AST and LLMs, LLMs can
analyze the raw AST input directly however, since the "range" objects are specifying the
character positions of the nodes in the source code which can be considered not relevant
for such analysis. Due to this reason, the range objects will be omitted from the AST
before being provided as input to LLMs to save on resources.

4.2 Dynamic analysis

Dynamic analysis is an analysis method where the code is executed in a monitored runtime
where the behavior is observed. Due to the malicious samples in the dataset, the dynamic
analysis will be conducted in a sandboxed environment. Sandboxing is a security technique
that isolates access to networking, filesystem, and memory during execution to prevent
potentially malicious files from causing harm to the host system or accessing sensitive
resources. In this research, for ease of use and simplicity, containerized sandboxing with
Docker is used [37].

4.2.1 Instrumentation

To obtain usable data the JS execution inside the sandbox needs to be monitored. This
is achieved by instrumentation. Instrumentation is the practice of adding hooks, logs, or
custom code to monitor and analyze the code behavior. In this research’s case, a method
where selected function calls, variable accesses, and assignments are instrumented is
implemented using AST patching. After traversing the AST for the top-level nodes with
the node types having the variable definitions, assignments, function calls, and function
definitions, the discovered top-level nodes are instrumented by being shifted as a child node
under a new top-level node that is inserted to invoke the sandbox’s logging function named
"sandbox". The diagram of this operation is given on the figure 4. The implementation
details of the sandbox function are given in section 4.3.
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Figure 4. Diagram of the AST patching process

4.2.2 Runtime selection

The JS files planned to be used in the dataset are JS files targeting websites, server-side
applications, PDF, and Wscript. Due to this reason a runtime that supports both web
and server-side APIs, the node-webkit (NW.js) project is chosen as the dynamic analysis
runtime environment.

NW.js extends the JS environment of a web browser, in this case Chromium using, NodeJS,
a server-side JS runtime that also allows polyfilling for the Wscript and PDF runtime
APIs. With this dynamic analysis method, web and other JS files can be run as correctly
as feasible in the same environment while maintaining the same outputs for all the files
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regardless of their target runtimes.

Another reason the NW.js is chosen is the ability to be controlled remotely using browser
test automation tools while the process is residing inside the sandboxed environment as
well as request and runtime modifiers offered by the test automation tools.

Test automation tools allow managing environment code execution and file loading behav-
ior. By using the code execution capabilities, the instrumentation code is executed on the
sandbox before any JS file is loaded, and by using the file loading hooks, the AST patching
is implemented to instrument the JS files.

4.3 Sandbox function

A function named "sandbox" is injected into the runtime before any code is executed. This
function will be used as the sandbox’s output function, allowing dynamic analysis on any
file that is successfully patched on the AST patching step.

In JavaScript, any function, method, or variable defined in the top-level context is also
accessible as a property under a global property named "globalThis". When the sandbox
code is injected, all the properties under globalThis are wrapped. This ensures the top-level
runtime objects such as "console", "eval" or "window" are instrumented too.

When it comes to the sandbox function that was injected before selected nodes on the
AST patching steps is used for monitoring any method or property call or assignment after
it. To be used in LLM input, each operation that is captured by the sandbox function is
logged with what the operation was, what the property accessed or called and what the
value assigned or passed in a format that closely resembles step-by-step execution. Since
the research goal is classification, reoccurring events can be omitted from the logs to save
resources. A partial sandbox output is given in figure 5 and the diagram of the sandbox
function is given in figure 6.
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...

[main.js] Accessed property: console

[main.js] Accessed property: log

[main.js] Called function: log with arguments: [("hello world")]

[main.js] Accessed property: document

[main.js] Accessed property: createElement

[main.js] Called function: createElement with arguments: ["fieldset"]

[main.js] Accessed property: appendChild

[main.js] Called function: appendChild with arguments: [{"innerHTML":""}]

...

Figure 5. Sample sandbox output

Figure 6. Diagram of the sandbox function
17



4.4 Framework design

The overall framework is designed as a sandbox that can read the dataset, apply transfor-
mations, and automatically run the runtime environment on an isolated Docker task that
prevents the running sample from accessing the host system’s memory, filesystem, and
processes [38]. The network was not isolated in the sandbox for allowing websites in the
dataset to function, as well as malicious scripts that are loading secondary payloads to
be able to continue executing. The runtime requests are being monitored by the sandbox
manager for instrumentation of files loaded from the dataset, these additional requests will
also have instrumentation applied. After the sandbox step, the framework also generates
the relevant prompt and supplies it to the selected models for classification. The overview
diagram of the sandbox framework is given in the figure 7.

Figure 7. Overview diagram of the framework
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5. Evaluation

This section outlines the process of evaluating LLMs for JS file classification. It covers
dataset collection, transformation, and labeling, as well as the models selected for testing
with the evaluation metrics and prompting techniques that will be used.

5.1 Dataset

This section provides the information related to dataset that will be used in evaluation with
the encountered challenges and solutions for these challenges as well as technical details
of these solutions.

5.1.1 Dataset collection

For the generation of the dataset to be evaluated in this research, four forms of JavaScript
files are targeted. These are the JS files that are standalone and can be executed by Windows
machines in a WScript environment, JS code that is embedded into PDF files, the Node
packages that are used for server-side applications and JavaScript files that are loaded in
the webpage.

Samples are collected from a variety of sources. These sources include Node Package
Manager (NPM) for widely used Node packages, MalwareBazaar and VirusTotal for
malicious samples, and open-source repositories on GitHub and Kaggle. Additionally,
general web scraping is employed to gather JavaScript files embedded in live webpages.
The sources and the sample count obtained from sources is given on appendix 3.

A key consideration during dataset generation is the inherent structural differences be-
tween these JS files. WScript files are standalone and typically do not require external
dependencies or further transformation. In contrast, JavaScript embedded in PDF files,
Node packages, and web-based JavaScript often rely on external dependencies.

To address these challenges, a transformation process is implemented for non-standalone
JavaScript samples. This process varies depending on the source:

1. JavaScript in PDF Files: PDF analysis tools are used to extract the script compo-
nents, which are then isolated and analyzed as a standalone JS file.

19



2. Node Packages: Node packages frequently include dependencies. For analysis, the
package is unpacked, and the dependency tree is flattened to ensure that all required
JS code is available for analysis.

3. JavaScript in Webpages: Websites often load multiple JavaScript files asyn-
chronously or through bundling. Web scraping tools are used to download entire
web pages, and embedded scripts are extracted. This process helps ensure that
dynamically injected scripts are not overlooked.

The details of the transformation process for each sample type are given on the following
section 5.1.2.

5.1.2 Dataset transformation

The JS code in the PDF files is extracted by enumerating the PDF tree for all the objects
containing /JavaScript where all the enumerated JS code are assembled as a single JS file.
A sample of a parsed object from a PDF file is given in the figure 8, where the JS code is
residing in the parenthesis following /JS.

1 0 obj

<<

/Type /Catalog

/Pages 2 0 R

/OpenAction <<

/S /JavaScript

/JS (this.exportDataObject({ cName: "calc.exe",nLaunch: 2 });)

>>

>>

endobj

Figure 8. PDF object containing JS code

For the Node packages, the module bundling is used [39]. Bundling is a technique where
different JS files are combined into a single file, where the required functions and variables
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are placed in the correct order in the final JS file. Bundlers can also include the code
of the required dependencies in the final JS file, which can come from different NPM
packages. This option is used in this research to ensure any external dependency exist on
hybrid-analysis environment. The diagram of this process is given on the figure 10.

Figure 9. Diagram of the bundling process

Websites can load various JS files to function, which can also load additional JS files that
are executed in the same context. This context can also be shared between other websites
loaded into the current website, which can also load its own set of JS files. Additional to
the JS files, the HTML elements might be required by the JS files used by the website. To
generate the dataset for website samples, the hierarchy of the frames and loaded JS files by
those frames are extracted by using a web browser. The HTML content of each frame and
which frame the JS file is loaded is also included in the dataset for the website to be used
on dynamic analysis. The diagram of this process is given on the figure 10.
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Figure 10. Diagram of website sample transformation process

5.1.3 Dataset labeling

Since the goal of this research is to classify the JavaScript files with the chosen classifica-
tions on the section 3; malware, ad/telemetry, skimmer and normal, the dataset needs to be
labeled to compare against the model classification for evaluation.

The samples which are collected from the collections that match the criteria of the chosen
classifications are labeled with their respective classifications. The remaining samples in
the dataset that are collected by scraping or from a mixed collection are labeled manually
according to the criteria.
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5.1.4 Final Dataset

After the collection, transformation and labeling steps, the final dataset with the following
structure is obtained.

Key Purpose
fileName Name of the file.
fileContents JS source code of the file.
fileAST AST of the source code.
mainFrame Frame of the file, used by web samples.
target Target of the file, can be web/pdf/package/wscript.
sandboxOutput The dynamic-analysis sandbox output of the file.
knownType The classification type which this sample labeled with.
classifiedTypeA The classification result for using model A.
classifiedTypeB The classification result for using model B.
classifiedTypeC The classification result for using model C.

Table 2. Dataset fields and their purposes

The total size of the final dataset is 2685 with the distribution of labels given on figure 11.

70.4%

12.2%

14.4%

3.0%

Malware (1881)
Ad - Telemetry (328)
Normal (387)
Skimmer (89)

Figure 11. Distribution of the sample labels in dataset
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5.2 Evaluation Setup

This section provides the details of how the input for large language models is derived,
which metrics are used for evaluation, and the details of the models that will be used for
evaluation.

To address context length constraints and potential financial limitations in reproducing
this study, commercial models such as ChatGPT [40] or Claude [41] are not used in this
research. Instead, the evaluation utilizes publicly available and locally runnable models
given in the following section.

5.2.1 Model selection

The three models chosen for evaluation are Gemma2 with 9 billion parameters[42], Mis-
tral with 7 billion parameters [43], and LLama2 with 7 billion parameters [44] with no
additional fine-tuning applied to the models.

Throughout this thesis, the Gemma2 model will be referred to as Model A, the LLama2
model will be referred to as Model B, and the Mistral model will be referred to as Model
C.

5.2.2 Evaluation Metrics

The metrics used for model evaluation are accuracy, precision, and recall where precision
and recall will be evaluated per classification type to determine the performance of the
LLMs for classification of the given type. The formula for each metric is given in the
following figures.

Accuracy =
Successful classification

Total classification

Figure 12. Accuracy Formula

Precision =
True Positives

True Positives + False Positives

Figure 13. Precision Formula
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Recall =
True Positives

True Positives + False Negatives

Figure 14. Recall Formula

5.2.3 Few-shot prompting

Few-shot prompting is a prompting technique used with LLMs where a model is provided
with a small number of examples (few shots) within the input prompt to guide it in
generating responses or performing tasks. [45]

The source code, AST, and sandbox output of a sample from each classification type is
given as an example in the model before the classification inputs.

<<< A random sample from each type is appended to the prompt

Sandbox.txt

```

${sandbox output}

```

AST

```

${AST}

```

sample.js

```

${source code}

```

classification: malware / skimmer / ad/telemetry / normal

<<<
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Sandbox.txt
```
${sandbox output}
```
AST
```
${AST}
```
sample.js
```
${source code}
```
Classify this JavaScript file as "normal", "malware","skimmer",
"ad/telemetry".
classification:

Figure 15. Few-shot prompt template to be used as input for the models

5.2.4 Zero-shot prompting

Zero-shot prompting is a prompting technique used with LLMs where a model is given a
task without any specific training or examples for that task, making the model rely solely
on its training data. [46] The Same prompting template as the few-shot prompting is used
without the examples.

Sandbox.txt
```
${sandbox output}
```
AST
```
${AST}
```
sample.js
```
${source code}
```
Classify this JavaScript file as "normal", "malware","skimmer",
"ad/telemetry".
classification:

Figure 16. Zero-shot prompt template to be used as input for the models
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6. Evaluation Result

6.1 Few-shot prompting results

This section summarizes the performance of each model when evaluated with few-shot
prompting for the classification task. The results highlight the success and failure rates for
different classification categories.

6.1.1 Model A

57.3%

42.7%

Success (221)
Failure (166)

Figure 17. Success rate for "nor-
mal" using model A with few-shot
prompting

92.4%
7.6%

Success (303)
Failure (25)

Figure 18. Success rate for
"ad/telemetry" using model A with
few-shot prompting

99.4% 0.6%
Success (1869)
Failure (12)

Figure 19. Success rate for "mal-
ware" using model A with few-shot
prompting

100.0% 0.0%
Success (89)
Failure (0)

Figure 20. Success rate for "skim-
mer" using model A with few-shot
prompting

27



6.1.2 Model B

98.2% 1.8%

Success (380)
Failure (7)

Figure 21. Success rate for "nor-
mal" using model B with few-shot
prompting

18.9%

81.1%

Success (62)
Failure (266)

Figure 22. Success rate for
"ad/telemetry" using model B with
few-shot prompting

22.8%

77.2%

Success (269)
Failure (1612)

Figure 23. Success rate for "mal-
ware" using model B with few-shot
prompting

80.0%

20.0%

Success (71)
Failure (18)

Figure 24. Success rate for "skim-
mer" using model B with few-shot
prompting
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6.1.3 Model C

86.0%

14.0%

Success (332)
Failure (55)

Figure 25. Success rate for "nor-
mal" using model C with few-shot
prompting

36.6%

63.4%

Success (120)
Failure (208)

Figure 26. Success rate for
"ad/telemetry" using model C with
few-shot prompting

41.5%

58.5%

Success (780)
Failure (1101)

Figure 27. Success rate for "mal-
ware" using model C with few-shot
prompting

70.0%

30.0%

Success (62)
Failure (27)

Figure 28. Success rate for "skim-
mer" using model C with few-shot
prompting
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Figure 29. Accuracy, Precision, and Recall for Models A, B, and C by classification
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6.2 Zero-shot prompting results

This section summarizes the performance of each model when evaluated with zero-shot
prompting for the classification task. The results highlight the success and failure rates for
different classification categories.

6.2.1 Model A

54.9%

45.1%

Success (212)
Failure (175)

Figure 30. Success rate for "nor-
mal" using model A with zero-shot
prompting

97.4% 3.0%

Success (319)
Failure (9)

Figure 31. Success rate for
"ad/telemetry" using model A with
zero-shot prompting

99.2% 0.8%
Success (1866)
Failure (15)

Figure 32. Success rate for "mal-
ware" using model A with zero-shot
prompting

99.2% 0.8%
Success (82)
Failure (7)

Figure 33. Success rate for "skim-
mer" using model A with zero-shot
prompting
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6.2.2 Model B

95.1%
4.9%

Success (361)
Failure (26)

Figure 34. Success rate for "nor-
mal" using model B with zero-shot
prompting

12.5%

87.5%

Success (41)
Failure (287)

Figure 35. Success rate for
"ad/telemetry" using model B with
zero-shot prompting

20.6%

79.4%

Success (387)
Failure (1494)

Figure 36. Success rate for "mal-
ware" using model B with zero-shot
prompting

27.6%

72.4%

Success (25)
Failure (64)

Figure 37. Success rate for "skim-
mer" using model B with zero-shot
prompting
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6.2.3 Model C

84.7%

15.3%

Success (328)
Failure (59)

Figure 38. Success rate for "nor-
mal" using model C with zero-shot
prompting

29.6%

70.4%

Success (97)
Failure (231)

Figure 39. Success rate for
"ad/telemetry" using model C with
zero-shot prompting

41.1%

58.9%

Success (773)
Failure (1108)

Figure 40. Success rate for "mal-
ware" using model C with zero-shot
prompting

10.0%

90.0%

Success (9)
Failure (80)

Figure 41. Success rate for "skim-
mer" using model C with zero-shot
prompting
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Figure 42. Accuracy, Precision, and Recall for Models A, B, and C by classification
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6.3 Analysis of the results

On the zero-shot prompting, model A demonstrated success in the specialized classifica-
tions, achieving an accuracy of 97.4% for classifying files that are ad/telemetry, 99.2% for
classifying the files that are malware and skimmer but faltered in classification of normal
files with the success rate of 54.9%.

In few-shot prompting, model A continued to demonstrate success in the specialized
classifications, achieving 92.4% accuracy for ad/telemetry, 99.4% for Malware, and 100%
for skimmer classification. With a slight but not significant increase in accuracy at the
classification of normal files with a success rate of 57.3%.

It imbalance of accuracy of normal classification against specialized classifications suggests
that specialized classifications have distinct patterns or features in their input, whether
on the AST, source code, or sandbox result, that the model readily identifies even in a
zero-shot context. The lower accuracy on normal files can be either due to a lack of features
or patterns in the input that can stand out to specify the given sample as a normal JS file
or the overall features and patterns overlapping with the other categories that were in the
training of the model. The slight improvement in the accuracy in few-shot prompting
suggests that the problem might be the overlapping issue because the additional examples
of each type helped the model’s understanding of the normal type although minimal.

Using zero-shot prompting, model B demonstrated strong performance in the classification
of normal files with a success rate of 95.1% but struggled significantly in specialized
classifications with the accuracy on classifying ad/telemetry files being 18.9%, malware
files being 22.7% and skimmer files being 80%. In few-shot prompting, model B had
an increased accuracy for classifying normal files with a 98.2% success rate, however,
its accuracy on specialized classification remained low, with success rates of 18.9% for
ad/telemetry, 22.8% for malware and 80% for skimmer files.

The imbalance in the performance across classifications suggests that model B is a model
that is more generalized and effective for common patterns but lacks the training or
fine-tuning for identifying the specialized files.

On zero-shot prompting, model C showed balanced but moderate results across all clas-
sifications with an accuracy of 29.6% for ad/telemetry classification, 41.1% for malware
classification, and 10% for skimmer classification while performing relatively better for
normal file classification with an accuracy of 84.7%. In few-shot prompting, model C
displayed an improvement in classification with an accuracy of 41.5% for malware files,
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36.6% for ad/telemetry files, and 70% for normal files. The relatively higher accuracy in
classifying normal files suggests that model C is also great at classifying typical files but
struggles to classify specialized files which can be due to the training of the model C being
conducted on a more generalized dataset. Its performance on specialized files highlights its
need for further training or fine-tuning with the samples from specialized specifications.
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7. Discussion

This section will serve as a discussion on overall analysis results and try to answer the
research questions defined after the literature review based on which were defined at the
beginning of the research:

■ RQ1: Is it possible to use LLMs with hybrid analysis for classification accurately?
■ RQ2: When using LLMs for classification, are there any accuracy changes when

few-shot prompting is used?
■ RQ3: Will different LLMs result in the same classifications with the same input?

Is it possible to use LLMs with hybrid analysis for classification accurately?

The analysis result shows that the LLMs can be used with hybrid analysis for classification,
but their accuracy heavily depends on the specific model, the type of data, and the classifi-
cation categories. The three models used in the analysis resulted in different performances
across classification categories with major differences.

Model A showed its strength in specialized classification with high accuracy even in
zero-shot prompting with no examples but struggled with the identification of normal files
with a high false positive rate indicating that it is training data or architecture might not
focus on less distinctive patterns of normal JS files.

Model B demonstrated high accuracy in classifying normal files but poor accuracy in
specialized classifications. This suggests that model B is optimized for general patterns
while lacking the fine-tuning required for specialized classification.

Model C showed moderate but weak results across all classification categories showing its
generalist training which suggests without additional training, it is not feasible to use it for
this task.

In summary, the answer to the research question is: It is possible to use LLMs with
hybrid analysis for classification; however, their accuracy depends on their pre-
training. Fine-tuning can be used to increase accuracy and achieve better results for
this task.
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When using LLMs for classification, are there any accuracy changes when few-shot
prompting is used?

Based on the analysis results, few-shot prompting showed a general improvement in
classification accuracy across different LLMs. When few-shot prompting results compared
to zero-shot prompting results, only a minor improvement in file classifications is observed
at an average of 3%. This indicates that additional examples in the few-shot prompts help
the model to disambiguate the overlapping features but for a slight accuracy gain.

Overall, the question can be answered with few-shot prompting can improve accuracy
by helping models to understand the context better to some extent, but the underlying
model training and fine-tuning remain the critical component for the classification
task.

Will different LLMs result in the same classifications with the same input?

When provided with the same input, Model A excelled in specialized classifications but
struggled with generalized ones, indicating its strength in identifying distinct patterns
but difficulty in handling overlapping features. Model B performed well in generalized
classifications, but it was falling short in specialized tasks, suggesting a broader but less
targeted understanding of it. Model C maintained a balanced yet lower overall accuracy,
reflecting its more generalized training approach. Based on these results the question can
be answered that different LLMs yield varying classifications when provided with the
same input, reflecting differences in their training methodologies, architectures, and
domain specializations for the classification task.
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8. Conclusion

In this research, a systematic literature review is conducted based on the topic and theo-
retical background, and the gap in the literature related to hybrid analysis and LLMs is
identified. The methodology for testing and validation is defined and a dataset is generated
to further conduct the empirical testing with the development and implementation details
of the testing environment explained.

The tests are conducted with the selected models with the generated dataset and results
are analyzed individually and as a whole, the research questions are answered based
on the evaluation results followed by the limitations of this research and future work
on this topic. The findings show the promising success of the proposed approach to JS
file detection in the topic and underscore the importance of model selection, prompting
techniques, and dataset quality in achieving robust results. Future work could involve
refining hybrid analysis methodologies and expanding model capabilities to address the
limitations observed, ultimately contributing to better cyberthreat detection.

8.1 Limitations

During the research on this study, several limitations were encountered that impacted its
scope and findings.

The primary limitation was the constraints on usable samples from the dataset. While the
initial dataset comprised 16,000 JS files, only 2638 were included in the final dataset with
the criteria of being successfully patched on the AST level for dynamic analysis. This
reduced dataset hindered the overall sample size of the research during evaluation.

Another limitation was the limitations on model selection and fine-tuning due to constraints
on computational resources. The evaluation was carried out with limited computational
resources that restricted the use of more capable LLMs for evaluation. The selected
models, Gemma2 (9B), Llama2 (7B), and Mistral (7B), were evaluated without additional
fine-tuning. While this approach reflects real-world applications where pre-trained models
are deployed, it constrained the ability to fully evaluate the LLMs for this specific task,
potentially impacting classification accuracy, particularly in specialized categories.
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8.2 Future Work

To overcome these limitations given above, future work can use a different dynamic
analysis approach where the JS samples are instrumented not through the code by AST
patching but from the runtime by having a custom JavaScript execution engine that logs
the similar output that is used in this research during execution in the native code, without
affecting the code. This approach can allow the full initial dataset to be used for evaluation.

Another future work is to use the labeled dataset to fine-tune an LLM that is specialized
for the classification task to further show the strength of the hybrid-analysis approach.
Fine-tuning a model with the dataset could improve accuracy, particularly in specialized
classifications, by adapting the model to patterns in those files as well as reducing the false
positives in normal file classifications.

Future work can also explore the integration of more feature representations, such as
incorporating runtime behavior graphs or enhanced metadata from the JavaScript execution
environment such as the website’s HTML source code. These additions might improve
the models’ ability to differentiate between closely related classifications and adapt to
real-world use cases.
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Appendix 2 - AST representation of the sample JS code

1 {

2 "type": "Program",

3 "body": [

4 {

5 "type": "FunctionDeclaration",

6 "id": {

7 "type": "Identifier",

8 "name": "answer",

9 "range": [

10 9,

11 15

12 ]

13 },

14 "params": [],

15 "body": {

16 "type": "BlockStatement",

17 "body": [

18 {

19 "type": "VariableDeclaration",

20 "declarations": [

21 {

22 "type": "VariableDeclarator",

23 "id": {

24 "type": "Identifier",

25 "name": "x",

26 "range": [

27 88,

28 89

29 ]

30 },

31 "init": {

32 "type": "Literal",

33 "value": 42,

34 "raw": "42",

35 "range": [

36 92,

37 94

38 ]

39 },

40 "range": [

41 88,

42 94

43 ]

44 }

45 ],

46 "kind": "const",

47 "range": [

48 82,

49 94

50 ]

51 },

52 {

53 "type": "ExpressionStatement",

54 "expression": {

55 "type": "CallExpression",

56 "callee": {

57 "type": "MemberExpression",

58 "computed": false,

59 "object": {

60 "type": "Identifier",

61 "name": "console",

62 "range": [

63 99,

64 106

65 ]

66 },

67 "property": {

68 "type": "Identifier",

69 "name": "log",

70 "range": [

71 107,

72 110

73 ]
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74 },

75 "range": [

76 99,

77 110

78 ]

79 },

80 "arguments": [

81 {

82 "type": "Identifier",

83 "name": "x",

84 "range": [

85 111,

86 112

87 ]

88 }

89 ],

90 "range": [

91 99,

92 113

93 ]

94 },

95 "range": [

96 99,

97 114

98 ]

99 }

100 ],

101 "range": [

102 18,

103 116

104 ]

105 },

106 "generator": false,

107 "expression": false,

108 "async": false,

109 "range": [

110 0,

111 116

112 ]

113 },

114 {

115 "type": "ExpressionStatement",

116 "expression": {

117 "type": "CallExpression",

118 "callee": {

119 "type": "Identifier",

120 "name": "answer",

121 "range": [

122 118,

123 124

124 ]

125 },

126 "arguments": [],

127 "range": [

128 118,

129 126

130 ]

131 },

132 "range": [

133 118,

134 127

135 ]

136 }

137 ],

138 "sourceType": "module",

139 "range": [

140 0,

141 127

142 ]

143 }
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Appendix 3 - Dataset Sources

Source Sample Count
GitHub 1678
Kaggle 50
VirusTotal 215
MalwareBazaar 95
tripadvisor.com 1
bbc.co.uk 5
wikia.com 3
naver.com 7
youth.cn 4
eksisozluk.com 3
sina.com.cn 1
baidu.com 2
youku.com 14
mozilla.org 10
mega.nz 1
fiverr.com 1
www.npmjs.com 2
sohu.com 6
moodle.com 1
pixnet.net 2
outbrain.com 5
popads.net 2
chase.com 3
wellsfargo.com 8
globo.com 1
google.co.za 1
alipay.com 2
dailymail.co.uk 1
slideshare.net 2
orange.fr 5
salesforce.com 38
steamcommunity.com 6

Source Sample Count
msn.com 3
qq.com 2
office.com 3
gap.com 12
zillow.com 1
ask.com 4
washingtonpost.com 8
paypal.com 7
udemy.com 2
target.com 2
tudou.com 13
chinadaily.com.cn 4
capitalone.com 6
yelp.com 2
walmart.com 4
uol.com.br 18
wix.com 7
hdfcbank.com 12
uptodown.com 1
samsung.com 8
bbc.com 4
mediafire.com 5
indeed.com 2
aliexpress.com 22
onedio.com 4
theguardian.com 11
alibaba.com 7
diply.com 5
yahoo.com 5
instagram.com 1
nytimes.com 15
t-mobile.com 24

48



Source Sample Count
soundcloud.com 9
foxnews.com 7
youtube.com 5
360.cn 5
taltech.ee 2
huffingtonpost.com 4
yandex.ru 1
mail.ru 2
milliyet.com.tr 12
stackexchange.com 1
ok.ru 5
cnet.com 2
pinterest.com 1
myway.com 3
tumblr.com 23
cnn.com 10
americanexpress.com 9
gmw.cn 2
wikihow.com 3
zhihu.com 4
aol.com 7
wikipedia.org 1
stackoverflow.com 4
9gag.com 2
daum.net 6
varzesh3.com 2
ameblo.jp 1
etsy.com 1
deviantart.com 3
vimeo.com 1
playstation.com 18
oracle.com 3
roblox.com 35
tmall.com 4
ebay.com 6

Source Sample Count
linkedin.com 2
flipkart.com 1
indiatimes.com 8
vk.me 5
airbnb.com 3
menthorq.com 5
bet365.com 1
taobao.com 3
xfinity.com 3
imgur.com 5
bilibili.com 7
twitch.tv 20
flickr.com 4
ikea.com 7
booking.com 9
w3schools.com 6
forbes.com 3
amazon.com 4
fc2.com 1
jd.com 13
ibm.com 3
craigslist.org 1
microsoft.com 6
vice.com 8
rakuten.co.jp 24
buzzfeed.com 1
go.com 8
feedly.com 1
weather.com 9
apple.com 7
quora.com 4
so.com 3
spotify.com 3
malwarebytes.com 11
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