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Abstract 

 
In recent years, the European Union attempts to reduce losses from unpaid VAT and 

customs duties caused by the harmonized system code misclassification. The current 

study is designed to explore machine learning solutions for this problem by classifying 

six-digit HS codes required in the EU according to their textual cargo descriptions. Our 

research examined 1124874 US import cargo descriptions represented by 3243 unique 

HS-6 codes applying Rocchio, MLR, MNB, k-NN, Decision tree, Random forest, SVM, 

DNN, and CNN classifiers with TF-IDF, Word2Vec, Doc2Vec, and GloVe extracted 

feature vectors. DNN model with TF-IDF weights found by the RMDL achieved the 

highest weighted accuracy of 61%. The received results indicate that machine learning 

algorithms are efficient for assigning HS-6 level codes, even according to uninformative 

descriptions. 

 

This thesis is written in English and is 49 pages long, including 7 chapters, 19 figures 

and 23 tables. 
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Annotatsioon 

 
Viimastel aastatel püütakse Euroopa Liidus vähendada käibemaksu jatollimaksu 

tasumata jätmist, mis tuleneb kaupade valeklassifitseerimisega harmoneeritud 

süsteemis. Käesoleva uuringu eesmärkon leida masinõppe meetodeid, mis sobiks 

kaupade klassifitseerimisekskasutades nende tekstilisi kirjeldusi. Magistristöös 

vaadeldiandmehulka, kus on 1124874 USA-st imporditud kauba kirjeldust, 

misesindavad 3243 ainulaadset HS-6 koodi. Laheduses kasutati Rocchio, MLR, MNB, 

k-NN, otsustuspuude, juhuslike metsade, tugivektormasinate, DNN ja CNN põhiseid 

klassifikaatoreid koos TF-IDF, Word2Vec, Doc2Vec ja GloVe tunnusvektori 

süsteemiga. RMDL-i leitud TFN-IDF-i kaaludega DNN-mudelsaavutas suurimat 

kaalutud täpsust 61% ulatuses. Eksperimentidetulemused näitavad, et masinõpe 

algoritmid on võimelised HS-6 tasemekoode tuvastama isegi mitteinformatiivsetest 

kirjeldustest. 

 

Lõputöö on kirjutatud inglises keeles ning sisaldab teksti 49 leheküljel, 7 peatükki, 19 

joonist ja 23 tabelit.
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1 Introduction 

1.1 Motivation 

Both businesses and customers from the European Union (EU) are actively 

using e-commerce, ordering products on the internet. According to 2019, residents of 

the European Union spent 621€ billion on online sales [1]. In 2020, German online 

statistics agency Statista showed that during the COVID-19 pandemic, the number of 

online retail markets was growing and expected to expand even further [2]. To survive, 

even the smallest and inactive companies urged to go online. This additional growth, as 

well as e-commerce laws imperfections, force the EU to take action adequately handling 

the processing of goods within the EU and from abroad. 

All the commodities, entering the EU or any Member States, taxed by Value 

Added Tax (VAT), a general consumption tax. When an EU-based company sends its 

goods to consumers of another Member State, it either applies its local VAT (up to 

certain threshold) or VAT of the destination country [3]. Non-EU based sellers, on the 

other hand, have to pay VAT in the recipient country and are required to go through 

customs clearance. However, low-value goods (150€ or less) imported from outside of 

the EU are not subject to customs expenses, and packages worth 22€ or less (depending 

on the state), are fully exempted from VAT. 

These reliefs create an opportunity for fraudulent non-EU traders to abuse the 

system and avoid tax payment. According to recent studies [4], as a result of this 

politics, VAT is levied only on 35% of all EU imported cargo. In 2019 the Court of 

Auditors conducted an audit [5] and estimated losses on supplies of low-value imports 

from non-EU countries around 5 billion annually. The losses from the collection of 

customs duties were approximated to 0.25 billion per year. 

To mitigate the damage, the European Commission proposed the EU’s “e-

commerce package” [6], which comes into force on the 1st of July 2021. Among other 

provisions, this package introduces a complete rejection of the current VAT exemption 

rule for commodities cheaper than 22€. Another significant change is that the “Mini 

One Stop Shop” (MOSS) system, previously used for VAT payment for electronic 

services, is extending its scope to e-commerce, becoming “One Stop Shop” (OSS) [7]. 

When the package comes into force, both EU and non-EU traders will be obliged to 

register VAT payments and customs clearance costs inside the OSS. The purpose of 

these measures is to identify fraudulent sellers and build a unified taxation system 

convenient for all parties. 

Discovering fraud behavior is a complex technical task that is first related to 

determining the original price of the goods, and accordingly, the amount of levied tax. 

In its turn, the price can be defined only by the type of the product, or more specifically, 

its identification number called the Harmonized System (HS) code. The HS code 

assignment is often subject to errors, which leads to product misclassification and the 

possibility of fraud. Thus, to accurately determine the price, customs duties, VAT, and 

fraud attempts, the OSS has to solve the problem of correct HS code categorization. 
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1.2 Problem 

To get competitive advantages by reducing the final price for the consumers, 

sellers consciously hide the real value and category of the goods. Such sellers exploit 

the isolation of external trading systems from the EU customs that do not directly access 

this information. As a result, the data obtained by the customs are often inconsistent 

with the information on e-commerce platforms and real transaction details between the 

sellers and buyers. Nevertheless, the misclassification happens not only due to the fraud 

attempts. The product information loses its original state by going through several 

processing stages: from the seller to the sender, the shipper, and the carrier, that usually 

manually assign HS codes. The manual code assignment is a very error-prone task that 

requires following the World Customs Organization (WCO) guidelines and overall 

workers' high expertise, impossible with this number of stakeholders, and the volume of 

e-commerce. 

To solve the misclassification problem, we need to understand what form the 

information is dispatched to the customs. The acquired data usually include details 

about contacts, carriage, contracts, voyage, and other cargo-related information. Besides 

other fields, it contains HS numbers, and special remarks called cargo descriptions. 

Harmonized System code: HS code is a unique identification code given to 

each category of the products. Developed and maintained by WCO, HS codes are used 

by customs authorities to collect duties and taxes in more than 200 countries [8]. The 

WCO-defined version of the system contains six digits, having sections, chapters, 

headings, and subheadings in its structure (Figure 1). All imported commodities into the 

EU are required to present at least this basic six-digit version of the code (HS-6). 

 

 
 

Figure 1. The example of HS code structure 

 

The sellers often do not explicitly indicate the HS-6 when sending their goods, 

providing shorter codes, or merely generic product descriptions. At times, they are 

missing completely, and the customs, to identify the HS code, contact customers by 

sending them declarations (e.g., it is common in Estonia). Thus, HS codes reaching the 

customs are often either absent or incorrectly classified. 

Cargo descriptions: We suggest determining the real product codes by 

categorizing them based on the cargo descriptions. Cargo descriptions are special 

commentaries made by the sender, the shipper, and the carrier while processing the 

bookings. In addition to commodity descriptions, these notes usually contain a lot of 

product-unrelated data such as payment, shipment, or delivery details. 
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The first naive intuition of how to link cargo descriptions to their codes would 

be a database search. However, there are several reasons why a simple database query 

does not give any meaningful results when trying to match the cargo description to its 

product code: (1) the harmonized system complexity, (2) the necessity to follow 

guidelines, (3) the continuous nomenclature revisions, (4) the gap in vocabulary, and (5) 

the text noisiness. 

 

1. The harmonized system complexity: The HS system is complex; it contains 

approximately 5,300 commodity groups, 99 chapters, 21 sections, and an infinite 

number of local extensions. 

2. The necessity to follow guidelines: For the proper use of the system, it is necessary 

to apply recommendations and clarifications stated by the WCO. Unfortunately, 

neither the seller nor the carrier follows these rules creating an ambiguity.  

3. The continuous nomenclature revisions: HS code nomenclature is not static. The 

WCO regulates its development and maintenance, making amendments every 5-6 

years [8], which are then adopted for customs regulations by local governments. 

National authorities also continually refine, revise, and manage their extended 

versions of the system. This pace of change requires a classification approach to be 

flexible to any updates in the harmonized system. 

4. The gap in vocabulary: There is a considerable gap between goods text 

descriptions and their HS system counterparts. For instance, Apple Ipad may be 

classified as 8471.41 “Automatic data-processing machines and units thereof; 

magnetic or optical readers, machines for transcribing data onto data media in coded 

form and machines for processing such data, not elsewhere specified or included.”. 

This definition has almost no relevant connection with the tablet’s text description 

provided by sellers. 

5. The text noisiness: Text descriptions contain too much unnecessary information, 

such as transportation comments, brands, company names, typos, materials, color, 

and other keywords not related to the product’s class. 

 

Considering the listed points, the HS misclassification problem requires a 

different answer than a database string search. The solution proposed in our research is 

to use machine learning (ML) models, which in recent years became the primary tool 

for solving text classification problems. We intend to examine some of the popular ML 

classification algorithms and confirm or disapprove their practical application for HS-6 

categorization.  

Our work is exclusively interested in the HS-6, as it is the minimal prerequisite 

for imported goods into the EU, and because the existing studies only considered cases 

with chapter and heading level codes. The HS-2 and HS-4 codes contain significantly 

fewer classes, less detailed product definitions, and are overall better classified by short 

keywords extracted from cargo descriptions. 

Thus, the product misclassification problem is caused by intentional fraud 

attempts and accidental errors in code assignment. We propose to classify HS-6 level 

codes, applied in the EU, according to cargo descriptions, special commentaries made at 

the shipping process. Due to the noisiness of cargo descriptions, the terminology 

inconsistencies, and the problems related to the domain of the harmonized system, 

misclassification cannot be solved by a simple database search. Therefore, our thesis 

suggests predicting product codes by using ML text classification models. 
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We conduct our study in five different parts: (1) Background and related work, 

(2) Methodology, (3) Results, (4) Discussion, and (5) Summary. 

 

1. Background and related work: This chapter introduces the reader to the text 

classification systems domain, overviews the existing studies related to HS code 

classification, and contains references to all relevant literature. 

2. Methodology: This chapter presents and analyzes the dataset, prepares it for the 

feature extraction and classification steps, sets the evaluation criteria, and conducts 

all related experiments. 

3. Results: This chapter contains the resulting performance table of examined 

classifiers and feature extractors. 

4. Discussion: This chapter sums all the findings of the research, compares and 

interprets applied methods, validates the results of the classification. 

5. Summary: The final part concludes the research and proposes further work.  



12 

2 Background and related work 

2.1 Background 

Significant development of machine learning algorithms, natural language 

processing (NLP), and text mining led to the broad application of text classification in 

many domains. It is utilized in recommender systems, document summarization, 

information filtering, sentiment analysis, knowledge management, and other fields. In 

this section, we research how text classification is accomplished and investigate 

algorithms more suitable for classifying HS-6 codes. This section is based on a state-of-

the-art survey [9] on text classification algorithms conducted in 2019. 

The text classification is a pipeline of operations consistently applied to the input 

text document. In general, the initial raw document is split into sequences of text as D = 
{X1, X2, ..., XN}, where Xi denotes a data point that consists of s sentences, each 

containing ws words with lw letters [10]. Text sequence may refer to a different scope 

of the text: whole document, paragraph, sentence, or sub-sentence levels. Every data 

point then binds to a class value index from an array of k classes. For instance, in our 

case, each product description represents a complete text segment that has to be labeled 

with the set of all possible HS-6 codes.  

The typical text classification system pipeline contains five stages (Figure 2):  

(1) Data pre-processing, (2) Feature extraction, (3) Dimensionality reduction,  

(4) Classification, and (5) Evaluation. 

 

 

 
 

 

Figure 2. Text classification system pipeline 

 

1. Data pre-processing: Text sequences are pre-cleansed by removing redundant 

characters or words. The cleansing can help eliminate punctuation marks, slang, 

transportation notes, brands, and unnecessary keywords, e.g., color or goods 

characteristics. Data cleansing is performed through Tokenization [11][12], 

Capitalization [13][14], Noise Removal [15], Stemming [16], Spelling Correction 

[17][18], Lemmatization [19][20], and other techniques. The data splitting, stratified 

sampling, and rebalancing may also be referred to the pre-processing phase. 

2. Feature extraction: At this stage, pre-processed text sequences are converted into a 

feature space needed for the classification step. Feature extraction is generally 

achieved using two methods: word embedding (e.g., Word2Vec [21], Doc2Vec [22], 

GloVe [23], FastText [24][25]), or weighted word techniques (e.g., Term 

Frequency-Inverse Document Frequency (TF-IDF), Term Frequency (TF) [26]). 
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3. Dimensionality reduction (Optional): Reducing the size of feature space increases 

the performance of the system. Decreasing complexity might be useful when there 

are too many unique words or too few pre-processing phases. Most common 

approaches are Principal Component Analysis (PCA) [27], Linear Discriminant 

Analysis (LDA) [28][29], and non-negative matrix factorization (NMF) [30] [31]. 

4. Classification: After being pre-processed, extracted into feature space, and 

optionally reduced, the data is taken for the classification. Choosing the right 

classification method is the most critical step in text categorization. Commonly used 

multi-class techniques are standard algorithms (Rocchio classification [32], 

Multinomial Logistic Regression (MLR) classifier [33][34], Multinomial Naïve 

Bayes (MNB) classifier [35]), non-parametric (k-nearest neighbors (k-NN) [36] 

[37], Support Vector Machine (SVM) [38][39]), tree-based (Decision trees [40], and 

Random Forests [41]), and deep learning neural networks [42] (e.g., convolutional 

neural network (CNN) [43], deep neural network (DNN) [44], or recurrent neural 

network (RNN) [45]). The deep learning algorithms are usually more precise than 

standard models but more complicated to understand and implement. Figure 3 gives 

a rough comparison of the complexity and accuracy of both types of algorithms: 

 
Figure 3. The interpretability and accuracy comparison between linear and deep 

learning models. 

 

5. Evaluation: The final phase of the classification system is evaluating predictions. It 

lets us assess the effectiveness of algorithms and compare them to find the best 

possible results. Most frequently used metrics are accuracy [46], F-1 Score [47], 

Matthews Correlation Coefficient (MCC) [48], receiver operating characteristics 

(ROC) [49], and area under the ROC curve (AUC) [50]. 

 

Thus, the obligatory pipeline structure of the common text classification system 

involves the cleansing, feature extraction, classification, and evaluation steps, which 

design is also a baseline for our methodology chapter. 
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2.2 Related work 

There are relatively few researches on the HS code categorization topic, 

especially it concerns classifying HS-6 level codes and covering full nomenclature. To 

be specific, we did not find any studies dedicated exclusively to HS-6 codes, despite 

being the minimum requirement for many countries. Most of the existing researches 

explored only HS-2, HS-4, or separate chapters. We believe that such a situation is due 

to the high demand in the commercial sphere, and in practice, HS-6 text classification 

systems are actually widely applied. Nevertheless, the work present in this section is 

highly valuable and used as a basis for our thesis. 

In 2015, researchers from the National University of Singapore published a 

paper [51] that suggested using the Background Net approach for the classifier and 

vector space model for feature extraction. The authors used the data provided by 

Singaporean Customs, which is not publicly available for the analysis. Data preparation 

steps included deletion of punctuations, content in brackets, capitalization, and 

duplicates. The research focused on classifying goods for Chapter 22 and Chapter 90 

without stating the classified code length. Their results showed that, in some instances, 

the B-Net delivered encouraging 90% accuracy. Unfortunately, despite the research 

value, the paper lacks details, and authors admit that their approach wrongly classified 

84.14% of short record descriptions and encountered issues with high-level descriptions. 

In 2018, researchers from Brazil conducted a study [52] written in Portuguese on 

classifying NCM codes (Brazilian HS code extension) for the same chapters 22 and 90. 

The data researched in a paper was collected from Brazil's government and is not 

publicly available for exploration. The authors proposed the application of the NBC 

classification technique with a TF-IDF feature extractor. Data pre-processing included 

deletion of stop words, tokenization, and stemming. The Naïve Bayes classifier 

achieved high numbers of accuracy varying from 83% to 98%. 

In 2019, researchers from the Beijing Institute of Technology conducted a case 

study [53] on classifying text descriptions and images from e-commerce websites 

according to HS codes for boots. By learning 10,000 images, text descriptions, and their 

parameters such as the height of the shoe shaft or length of the inner soles, they 

classified them into four HS categories: 64039111, 64039119, 64039191 and 

64039199. The pre-processing and feature extraction steps involved using the NLPIR 

library, the removal of numerals, quantifiers, and punctuation. The researchers proposed 

building two convolutional neural networks (CNN), a deep learning method, and a 

fusion algorithm for the classifier. Text CNN showed much higher overall accuracy 

achieving 93.4%; image CNN results, on the other hand, reached only 76.83%. 

All mentioned above papers focused on specific chapters or individual products, 

and their data is not accessible for the explicit analysis. A recent master’s thesis [54] 

attempted to classify around 1000 HS-2 and HS-4 codes altogether. The author used 

Enigma’s US import open data for text descriptions and HS codes and various 

accessible product ontologies to obtain well-defined word embeddings. The 

classification stages included using different models: LR, MNB, k-NN, SVM and CNN 

with TF-IDF, and Word2Vec as feature extractors. During the experiments, the 

researcher made a comparison between different conjunctions of classifiers and feature 

extractors. The analysis demonstrated more than 80% accuracy for all combinations; the 

CNN classifier showing the best performance, with 82.7% to 92.3% accuracy depending 

on the feature extractor and data. However, due to the lack of time and other constraints, 

there could be an enlargement of the number of unique words in a dictionary, more 
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further data preparation, improved Word2Vec parameters, and more extensive research 

in general. 

Most recent conference proceeding [48] explored more than 22,000,000 Dubai 

Customs records. Their data cleansing carried standard removal of duplicates, 

punctuation, non-English words, numbers, and lemmatization. To perform feature 

extraction, the authors used TF-IDF value-based vectors. Machine learning models 

applied and compared in the research were: MNB, k-NN, Decision tree, Random 

Forests, SVM, and Adaboost. Testing and evaluation were conducted on the HS-4 and 

“entire HS code”, most likely to be HS-6 or local HS extension because of the lower 

prediction results. Linear SVM was once again confirmed to be the best classifier with 

75.40% accuracy for the lengthened code. This work, published at the time of writing 

the thesis, is the first non-HS-4 code prediction study; and to some degree sample of 

measurement for our results. 

Thus, most reviewed studies were conducted on private data impossible to 

analyze and compare with our results. The higher numbers may indicate less noisiness 

of the descriptions in comparison with the US import dataset. The only study carried on 

the US import data except for 2016-2017 classified 1271 unique HS-4 codes, reaching 

88% accuracy with CNN. This result looks very promising, considering that it applied 

less pre-processing steps, and did not utilize the RMDL. For instance, we achieved 57% 

accuracy using the same Word2Vec Skip-gram and CNN on classifying 3243 HS-6 

codes, and 35% accuracy without lemmatization and the removal of non-English words 

steps missing in the compared research. The possible explanation could be that our 

results were received with stratified sampling and all class appearances in both train and 

test sets, hence taking into account the multi-class focus of the task. However, relevant 

weighted F-1 scores are not available, and we cannot compare the proportional 

performance of each class. Therefore, despite the significance of the related work, it is 

hard to compare due to the diverse data, absence of weighted accuracy scores, less 

descriptive HS codes, and the overall number of classes.  
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3 Methodology 

3.1 Data pre-processing 

Data pre-processing is the initial and critical step for the text classification 

system, as it directly affects the performance of both feature extraction and 

classification. This chapter introduces the dataset, implements, and describes methods 

applied for preparing, cleansing and splitting the data, explores and visualizes the results 

of each step. All listed actions were conducted using Jupyter notebooks and Python 

open-source libraries: Pandas, Matplotlib, Plotly, Cufflinks, Nltk, and others.  

3.1.1 Dataset 

US Imports - Automated Manifest System (AMS) Shipments is the Enigma 

dataset available at Amazon AWS via free subscription. Enigma sources this data from 

the US Customs and Border Protection (CBP), which gathers and weekly revives all the 

merchandise entering the country. The data comprises manufacturer, shipper, vessel and 

carrier details, cargo descriptions, tariff codes, and other fields.  

Tariff codes used in the dataset are either common HS-2, HS-4, HS-6, or a 

lengthened variation (7-10 digits) of the HS system called The Harmonized Tariff 

Schedule of the United States (HTS). The first six numbers of the HTS have the same 

definition as the HS-6 and can be successfully applied for our study. Our data 

preparation step, besides other procedures, is intended to truncate these codes to HS-6 

and remove irrelevant HS-2 and HS-4. 

Cargo descriptions are remarks made by booking officers to confirm the booking 

requests. Most of the time, these commentaries are written by non-native English 

speakers and contain many mistakes, typos, and unrelated information, such as shipment 

or payment details. The goal of further data cleansing is to eliminate this unnecessary 

information and keep only words related to product descriptions. 

In order to collect as much data as possible, we use all Enigma's available tables 

dated to 2018-2020 and revised in 29/01/2020, 08/01/2020, and /06/07/2020.  

3.1.2 Preparation 

The US is the largest importer on earth, and its 2018-2020 import data contains 

millions of records. However, the dataset requires comprehensive preparation to be 

cleansed at the upcoming stages. In general, this preparation involves the following 

steps: merging the data for different periods, excluding unnecessary or corrupt records, 

and converting it into shape ready for tokenization and normalization. 

In our dataset, we are solely interested in cargo descriptions and tariff codes 

tables that initially hold 124,000,000 and 41,000,000 records. Such a significant 

difference between the number of entries is described by information redundancy, e.g., 

when multiple containers hold the same commodities. Thus, most of these records are 

either duplicates or almost identical descriptions of the same products. 
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To prepare the data for our needs, we: (1) merge tables for different years, (2) 

make inner join of two tables, (3) drop unnecessary columns, (4) drop the duplicates, (5) 

drop missing values, (6) remove corrupted HS codes, (7) remove HS-2 and HS-4, (8) 

convert HTS to HS-6, (9) resolve the conflict with ambiguous records. 

 

1. Merge tables for different years: All Enigma's tables are available in separate 

revisions, at this step, merged into two big tables: cargo descriptions and tariff 

codes. 

2. Make an inner join of two tables: We join tables by the columns of identifier, 

description sequence number, and container. 

3. Drop unnecessary columns: The merged tables contain numerous irrelevant 

columns that are all being discarded, omitting only two columns: harmonized 

number and description text. 

4. Drop the duplicates: Duplicated records drastically reduce the performance of the 

classification and may mislead the actual results.  

5. Drop missing values: Some records include null values that may turn into errors at 

further processing stages.  

6. Remove corrupted HS codes: At the later stages, we recognized that the HS code 

column contained spaces, punctuation, non-existing codes and other symbols that 

led to crashes.  

7. Drop HS-2 and HS-4: We do not consider using HS-2 and HS-4 codes, as HS-6 is 

the minimal prerequisite for our research. 

8. Convert HTS to HS-6: As we stated before, HS-6 is the base for all the local 

extensions, and therefore, their first six digits are the same. To retain more records, 

we shorten the US HTS-7-10 to HS-6.  

9. Resolve the conflict with ambiguous records: Despite removed duplicates, 

particular entries hold the same text descriptions but point to two different HS codes 

(Table 1). To resolve the issue, we keep only the first occurrences of such records. 

 

HYDRAULIC PUMP PARTS 84122981 

HYDRAULIC PUMP PARTS 848389 

Table 1. An example of an ambiguous record. 

3.1.3 Preparation results 

Before applying the next cleansing techniques, we make an analysis of the 

prepared data. Data exploration allows us to discover additional cleaning methods, 

specify the number of classes, and collect various statistical information about 

researched columns.  

The data exploration is done in three parts: (1) overall statistics, (2) harmonized 

number, and (3) description text columns stats. 

 

1. The overall statistics: After steps executed in the data preparation, our final table 

contains only 1,220,834 entries. Table 2 shows the basic statistical details about 

both of the columns: 

 

 Count Unique Top Frequency 

Description text 1,220,834 1,220,834 R1CSUR R2 VPSUB … 1 

Harmonized number 1,220,834 4328 731815 39,391 

Table 2. Basic statistical information after the preparation 
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2. The harmonized number: Our next goal is to determine how unbalanced our data. 

It will directly impact the choice of evaluation metrics and the overall objectivity of 

our research.  

 

Table 3 shows statistics on the number of matches for every HS code: 

 

Count 4328.00 

Mean 282.08 

Standard deviation 1501.22 

Minimum 1.00 

Maximum 39,391.00 

Table 3. The harmonized number column statistics 

 

Figure 4 shows the frequency distribution of all the HS codes according to their 

number of entries.  

 
Figure 4. HS code frequency distribution plot 

 

3. The description text: The exploration of the description text column helps to 

compare prepared data with the cleansing results at the following cleansing step. 

There are several ways of comparing text descriptions: in terms of their (1) overall 

vocabulary, (2) symbolic length, and (3) word length. 

 

Vocabulary: In total, there are 20,265,061 words, from which 1,405,333 are unique. 

The longest word in the vocabulary contains 22 symbols. 

 

Length in symbols: The statistics about the symbolic length of the descriptions can 

be viewed in Table 4: 

 

Count 1,220,834.00 

Mean 94.11 

Standard deviation 61.68 

Minimum 1.00 

Maximum 367.00 

Table 4. The description length statistics in symbols 
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The frequency distribution histogram of the description length in symbols can be 

seen in Figure 5: 

 
Figure 5. The frequency distribution histogram in symbols 

 

      Length in words: Table 5 shows the statistics for description length in words: 

 

Count 1,220,834.00 

Mean 16.60 

Standard deviation 11.71 

Minimum 1.00 

Maximum 124.00 

Table 5. The description length statistics in words 

 

      Figure 6 shows the frequency distribution plot according to words: 

 
Figure 6. The frequency distribution histogram in words 
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3.1.4 Cleansing 

The cleansing step is aimed to clean the descriptions from the unnecessary text 

that will not affect the classification performance. It is achieved in two main stages: the 

tokenization and the normalization. 

Tokenization: is a key method for data cleansing, feature extraction, and 

classifier that is an absolute necessity for any text classification system. Tokenization is 

a process that splits text sequences into sentences, phrases, words, phrases, characters, 

or other units, called tokens. In essence, it can also be described as lexical analysis. 

When applied at the word level, it translates a sentence into a list of words by 

implementing particular segmentation rules. We use the word tokenizer available in the 

Natural Language Toolkit (Nltk) library.  

Normalization: In data pre-processing, normalization generally refers to a series 

of similar processing tasks that transform the tokenized text into a specific canonical 

form. In our work, we approach ten distinct operations on the tokenized text: (1) 

converting to lower case, (2) removing words with non-ASCII characters, (3) 

converting textual numbers to digits, (4) removing words with non-alphabetic 

characters, (5) removing punctuation and stop words, (6) part-of-speech (POS) tagging, 

(7) lemmatization, (8) removing non-English words, (9) removing noise, and (10) 

removing empty lists. 

 

1. Converting to lower case: In our domain, capitalized letters do not impact the 

classification. Moreover, ML models are case sensitive, hence lowering the case 

lessens the vocabulary and simplifies further computations. 

2. Removing words with non-ASCII characters: This is an optional step that allows 

us to speed up calculations at the next stages. 

3. Converting textual numbers to digits: Word numbers such as “one” or “twenty” 

are converted to digits to be removed at the subsequent step. 

4. Removing words with non-alphabetic characters: Several types of non-alpha 

symbols are met in text descriptions: digits, contract numbers, prices, HS codes, 

container numbers, number of packages, number of pallets, and other quantities. 

These words do not contribute any significant features to the goods and slow down 

the training process. 

5. Removing punctuation and stop words: In our case, punctuation and stop words 

do not represent any semantic values and still require computing resources. Their 

removal reduces the number of features and increases the speed of model training. 

6. Part-of-speech tagging: To support correct lemmatization for different parts of 

speech, we tag words for adjectives, nouns, verbs, and adjectives by utilizing Nltk 

corpus. 

7. Lemmatization: Two main strategies to shorten and unify word form while keeping 

the same semantic meaning are lemmatization and stemming. Lemmatization 

replaces a word’s suffix with a different one or eliminates it to get the basic word 

form called a lemma. Stemming is a more radical method; it reduces inflected words 

to their word stem without substitutions, hence not implying full morphological 

analysis. Despite stemming advantages in computational speed, it usually has fewer 

precision gains than lemmatization. In our work, we use lemmatization in a 

combination with POS tagging, which allows us to get rid of many useless words at 

the next cleansing step. The lemmatized results are especially useful for TF-IDF 

extracted values, which in our research are used by all linear models and DNN. 

However, lemmatization may affect the performance of CNN that uses word 
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embeddings as input to its model, as it reduces the text's semantic and syntactic 

properties. To utilize the benefits of both feature extraction approaches, we keep two 

separate datasets: for TF-IDF and word embeddings. 

8. Removing non-English words: To delete abbreviations, incorrect spellings, and 

non-English words from the list of tokens, we use Nltk WordNet and Unix words 

corpora. Unix corpus contains approximately 250,000 English words. WordNet 

provides about 155 000 English words. Both corpora contain only words basic 

forms, and therefore should be processed after POS and lemmatization. 

9. Removing noise: After previous procedures, there are still many irrelevant tokens 

that corrupt our data. To exclude these words, we define a dictionary by searching 

for the most frequent occurrences within all descriptions. Generally, unnecessary 

tokens can be divided into three groups: words related to logistics, words related to 

payments, and random noise. Common examples of transportation comments are 

related to contacts, packing, shipping, containers, quantity, and weight. Words 

linked to payments include contracts, freight, duties, invoices, and business parties, 

i.e., shipper, forwarder, consignee, carrier, or notify. The last group covers country 

full names and their abbreviations, color, single characters, and other redundant 

noise. The deletion of determined vocabulary reduced the number of tokens and 

improved accuracy. 

10. Removing empty lists of tokens: Some records did not contain words associated 

with the product information, and therefore, turned into empty lists. Our final pre-

processing iteration eliminates these rows. 

3.1.5 Cleansing results 

In this section, we review the cleansing outcomes and their difference from the 

initial preparation in terms of the amount of unique HS codes, the symbolic and word 

length of descriptions, and its vocabulary. The data analysis follows the same structure 

as in the data exploration section; we describe: (1) overall statistics, (2) harmonized 

number, and (3) description text columns statistics. 

 

1. The overall statistics: After applying preceding procedures, the table held 

1,125,750 entries. Consequently, the table size in memory reduced more than three 

times, from 191,6 MB to 60.2 MB. Table 6 shows overall changes in statistical 

details after the cleansing:  

 

 Count Unique Top Frequency 

Description Text 1,125,750 405,941 screw 8236 

Harmonized Number 1,125,750 4119 731815 37,437 

Table 6. Basic statistical information after the cleansing 

 

2. The harmonized number: The removal of empty lists resulted in a slight decrease 

in the number of classes; there remained 4119 product categories.  

  



22 

3. The description text: For the fair comparison with the preparation step, we 

removed all duplicated tokens, sorted them alphabetically, and joined to a single 

space-separated string. Such a representation illustrates how many descriptions are 

actually the same, despite having different order and inner duplicates. As in the 

exploration section, we make a comparison of: (1) vocabulary, (2) length in 

symbols, and (3) length in words. 

 

Vocabulary: Total number of words dropped from 20,265,061 to 5,158,174, unique 

words shrunk from 1,405,333 to 17,476. The longest word in a dictionary still 

contains 22 characters. 

 

Length in symbols: Table 7 compares the symbolic length statistics at both steps: 

 

 The preparation The cleansing 

Count 1,220,834.00 1,125,750.00 

Mean 94.11 25.33 

Standard deviation 61.68 18.54 

Minimum 1.00 2.00 

Maximum 367.00 267.00 

Table 7. The symbolic description length statistics comparison 

 

A modified frequency distribution histogram of the symbolic length of the 

descriptions can be observed in Figure 7: 

 
Figure 7. The symbolic frequency distribution histogram after the cleansing 

 

      Length in words: Table 8 shows the statistics for description length in words: 

 

 The preparation The cleansing 

Count 1,220,834.00 1,125,750.00 

Mean 16.60 4.01 

Standard deviation 11.71 2.76 

Minimum 1.00 1.00 

Maximum 124.00 45.00 

Table 8. The word description length statistics comparison 
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Figure 8 shows the word frequency distribution histogram after the applied 

cleansing. 

 
Figure 8. The word frequency distribution histogram after the cleansing 

3.1.6 Splitting 

Data splitting is a partitioning operation that splits the dataset into training and 

test chunks used for model learning and evaluation. In multi-class problems, correct 

splitting aims two purposes: to separate data proportionally and keep the same number 

of unique classes in both sets. 

Stratification: Proportional splitting is achieved by stratified sampling, a 

method that remains the equal data distribution in test and training sets. To apply 

stratification, we had to remove additional 876 classes, as it requires each class to have 

at least two occurrences. Hence, despite a slight change in the number of records, our 

data only remained 3243 categories. To preserve all classes unique occurrences in both 

sets, we had to split the data in the proportion of 0.69/0.31, or 776,163 / 348,711 in 

entries. Figure 9 shows the train and test data distribution plot after the stratification 

(with the same number of bins): 

 

 
 

Figure 9. The train and test data classes distribution plots 

 

Rebalancing: Another useful technique frequently used in splitting is data 

rebalancing. However, we do not consider rebalancing our classes to save its original 

nature and the models applicability in a real-world context. 
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3.2 Feature extraction 

In text classification systems, feature extraction is a process that transforms pre-

cleaned textual tokens into structured feature vectors suitable for the classifier input. In 

other words, tokenized text sequences must be converted into numerical values to be 

accepted by the classification model. 

There are two primary techniques for determining token weights: weighted 

words and word embeddings. In this chapter, we review and implement methods from 

both strategies as well as discuss their advantages and limitations. 

3.2.1 Weighted words 

Weighted words are a set of techniques for extracting features that assign every 

token a weight according to specific criteria and transform lists of tokens to vectors of a 

corpus length. The concept of weighted words is closely related to the Bag-of-Words 

(BoW) model. While researching this topic, we encountered confusion about its 

definition, as it is usually mentioned in the context of TF and TF-IDF. To clarify, we 

consider the BoW nothing but a procedure for extracting bags (lists) of words from the 

text. Later, they are converted into Bag-of-Features by applying binary, TF, TF-IDF, 

raw counts, log normalization, or other weighting schemes. 

In the upcoming section, we review the two most popular TF and TF-IDF 

feature extraction schemes as well as discuss their application in our research. 

3.2.2 TF and TF-IDF 

In our work, TF and TF-IDF value-based feature extraction is the primary 

technique for simple models such as Decision trees or MLR, and one deep learning 

model - DNN.  

TF is the most basic and straightforward weighting scheme for extracting 

features from the text. It is computed by counting the number of word’s occurrences in 

each of the text sequences. TF is a robust and cost-effective method, useful for 

extracting misspelled or unknown words. We do not use it directly in our work, but to 

calculate the TF-IDF, introduced in the following section. The mathematical 

representation of TF weight in a text document is formulated in Equation (1): 

 

 𝑡𝑓(𝑡, 𝑑) = 𝑓𝑡,𝑑 (1) 

 

TF-IDF is a TF-based weight factor that has several advantages over TF. TF-

IDF decreases the weight assigned to common words, and conversely, increases it for 

rare ones. According to the study [48], TF-IDF applied in 83% digital libraries of text 

recommendation systems. The mathematical representation of TD-IDF weight in a text 

document given in Equation (2):  

 

 𝑤(𝑑, 𝑡) = 𝑡𝑓(𝑑, 𝑡) ∗ log(
𝑁

𝑑𝑓(𝑡)
)  (2) 

 

Where N is the number of documents and df(t) is the number of documents containing 

the term t in the vocabulary. 
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TF-IDF limitations: Despite simplicity and calculation speed, two possible 

limitations are usually encountered while using TF and TF-IDF values. First, weighed 

words only consider word multiplicity, not taking into account the order nor semantic 

properties, a characteristic that differs them from word embeddings. Ignoring these 

properties may result in considerably lower accuracy. Secondly, their application is 

limited by the number of unique words in the vocabulary, as it increases the vectors’ 

length and leads to memory-related issues. The latter problem can be partially resolved 

by taking advantage of sparse matrices, or arrays, where most of the elements are zeros.  

3.2.3 Word embedding 

Word embeddings are computed numerical representations of text sequences 

where words with similar meanings have similar weight. Contrary to the weighted 

words, word embeddings consider both semantic and syntactic values, by determining 

the distance between words and capturing the position of a word in a sentence. Indeed, 

these syntactic and semantic meanings have their limitations since word embeddings 

cannot recognize polysemy, a situation when a word’s meaning depends on the context. 

However, it is still a significant improvement over the capabilities of the weighted 

words. 

In real-world applications, the most popular word embedding algorithms are 

Word2Vec, Doc2Vec, GloVe, and FastText. Our research particularly uses Word2Vec, 

Doc2Vec, and GloVe trained vectors as input to CNN. We make use of Gensim, an 

open-source library that provides its adaptation of both Word2Vec and Doc2Vec. For 

the GloVe we use the official stand-alone application, which can be downloaded from 

the Stanford University site [48]. All implemented word embedding models are trained 

on sets of data before and after the lemmatization, to verify whether the pre-cleansing 

step removed too many semantic and syntactic text properties.  

The most important evaluation criteria of any feature extractor are undoubtedly 

the classification results. However, it is useful to analyze model output by constructing 

a two-dimensional Principal Component Analysis (PCA) model of resulting word 

vectors and visualizing it on the plot. This visual representation allows us to observe the 

similarities between particular words, evaluate how accurate they were given weights, 

and compare the layout of different models.  

Hence, in the next sections, we briefly introduce all used algorithms, implement 

them for our datasets, and compare their PCA projections. 

3.2.4 Pre-trained word vectors  

Conceptionally, listed above algorithms are quite similar and differ only in the 

implementation details. Before jumping into these details, we need to decide whether 

we will train model ourselves or use pre-trained word vectors by one of the algorithms 

on Wikipedia, Google, Twitter, Common Crawl, or other data source. 

The words used in our dataset are very domain-specific, and our attempts to use 

pre-trained models such as Wikipedia trained by Glove were very unsuccessful. The use 

of pre-made models severely slowed down the training and did not lead to improved 

accuracy. We believe that the reason for such low results was that models were not 

directly related to logistics and its jargon’s peculiarity. However, this may be due to the 

ambiguity of HS-6, since the work [54] that studied HS-2 and HS-4 achieved notable 

results by using pre-trained models. 

Thus, due to the poor performance of pre-trained vectors, our further explanation 

only concerns models trained on our specific dataset. 
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3.2.5 Word2Vec 

Word2Vec is one of the most successful implementations of word embeddings, 

proposed and developed by Mikolov and researchers from Google [55]. It is a two-layer 

neural network that utilizes two model architectures: Continuous Bag-of-Words 

(CBOW) and Continuous Skip-gram. The CBOW makes a weight prediction based on 

the word’s context, and Skip-gram is vice versa, predicts weights of adjacent words 

based on the current word (Figure 10). 

 

 
 

Figure 10. CBOW (left) and Skip-gram (right) model architectures  

 

The list of parameters we used for both Word2Vec implementations in Gensim: 

{vector_size = 100, iterations = 20, min_count = 1, window=5}. Figure 11 displays the 

PCA model of the calculated weights by the CBOW method. To avoid text overlapping, 

it shows only names of the first hundred words. Nevertheless, it is still visible that 

“acid” and “acetate” are the close neighbors on the plot, indicating that the algorithm 

correctly determined their semantic meaning. 

 

 
Figure 11. The PCA model of the Word2Vec CBOW trained vectors 
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Figure 12 shows the same graph for Skip-gram architecture. It has a significantly 

different graphics layout where same words “acid” and “acetate” are still close to each 

other, but others such as “engineer” and “excavator” have opposite meanings from the 

CBOW model. 

 

 
Figure 12. The PCA model of the Word2Vec Skip-gram trained vectors 

3.2.6 Doc2Vec 

Doc2Vec is an extension to the Word2Vec, built on top of the CBOW and Skip-

gram architectures, which are called the Distributed Memory Model of Paragraph 

Vectors (PV-DM) and Distributed Bag-of-Words version of Paragraph Vector (PV-

DBOW). The only distinction of these architectures from CBOW and Skip-gram is that 

after predicting weight, the algorithm concatenates it to a vector of unique paragraph 

identifiers assigned to every document. Figure 13 shows this difference in the Doc2Vec 

neural network model scheme, where V is vocabulary size, P is a number of all 

documents, and N is the size of a hidden layer. 

 

 
 

Figure 13. The Doc2Vec network architecture scheme 
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Thus, Doc2Vec considers the difference in both words and document levels, 

which, in theory, should better determine the similarities between related product 

descriptions.  

The list of Gensim settings we applied for both Doc2Vec implementations: 

{vector_size = 100, epochs = 20, min_count = 1, alpha = 0.025, min_alpha = 0.00025}, 

and manual learning rate decrease by 0.0002 for each epoch. Figure 14 and Figure 15 

show the resulting PCA models for both Doc2Vec architectures. 

 

 
Figure 14. The PCA model of the PV-DM Doc2Vec trained vectors 

 

 
Figure 15. The PCA model of the PV-DBOW Doc2Vec trained vectors 
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3.2.7 GloVe 

Global Vectors for Word Representation (GloVe) is another word embedding 

technique we use for CNN input. The algorithm is based on a paper [49] published by 

researchers from Stanford University. Contrary to Word2Vec and Doc2Vec, GloVe is 

not a predictive neural network, but a count-based model that calculates co-occurrences 

of words over the whole corpus. In theory, this should work equally well as TF-IDF for 

our short descriptions, and at the same time, catch the remaining syntactic and semantic 

meaning.  

The list of settings applied in GloVe application: {VOCAB_MIN_COUNT=1, 

VECTOR_SIZE=100, MAX_ITER=20, WINDOW_SIZE=5, BINARY=2, 

NUM_THREADS=8, X_MAX=10}. Figure 16 shows the PCA model of the GloVe 

trained vectors: 

 

 
Figure 16. The PCA model of the GloVe trained vectors 

 

  



30 

3.3 Evaluation 

In this chapter, we introduce the metrics and the evaluation strategy applied in 

our research. These metrics are the leading and the most relevant performance 

indicators of classification models proposed in our work. Still, before diving into the 

details, we should understand their limitations and be very cautious with their 

interpretation for our specific dataset.  

As we discovered in the pre-processing data chapter, after the splitting, our 

dataset contained 3243 unevenly distributed classes and 1,124,874 records. Thus, 

approximately 8% of initial entries turned into empty lists or were removed at the 

stratified sampling, and about 35% of remaining records, in essence, became identical. 

We did not remove these similar records and overall did not rebalance our data to retain 

natural context and practical relevance. Therefore, all subsequent metrics should be 

considered in the context of data imbalance and applied text pre-processing. 

The metrics we orient when evaluating our models are (1) confusion matrix, (2) 

precision, (3) recall, (3) F-1 score, (4) support, and their (6) accuracy, (7) weighted and 

(8) macro averages.  

 

1. Confusion matrix: A confusion matrix is a table layout (Figure 17) used to 

visualize the classification model’s performance. The table represents the mapping 

between negative and positive cases of the predicted and actual classes in the form 

of the definitions of True Positives (TP), True Negatives (TN), False Positives (FP) 

and False Negatives (FN). What is essential, this representation is valuable for 

visualizing both the binary and the multinomial classification performance. 

 

 Predicted class 

Positive Negative 

 

 

Actual 

class 

 

Positive 

True 

Positive 

(TP) 

False 

Negative 

(FN) 

 

Negative 

False 

Positive 

(FP) 

True 

Negative 

(TN) 

Figure 17. Confusion Matrix 

 

2. Precision: The precision is a classification model metric that shows what percent of 

all instances classified positive was correct. Mathematically, it is expressed in 

Equation (3): 

 

 
𝑃 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

(3) 

 

3. Recall: The recall is a classification model metric that shows what percent of all 

truly positive instances were classified correctly. The latter can be formulated in 

Equation (4): 

 

 
𝑅 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

(4) 
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4. F-1 score: The F-1 score is one of the primary indicators of the model’s 

performance. It can be described as a harmonic mean of precision and recall, as 

formulated in Equation (5): 

 

 
𝐹 = 2 × 

𝑃 × 𝑅

𝑃 + 𝑅
 

(5) 

           

5. Support: The support shows how many times the class instances occurred in the 

dataset. This metric stays the same between models and indicates the requirement of 

rebalancing or stratified sampling.  

6. Accuracy: Multi-class accuracy is a ratio of correctly predicted instances to the total 

number of instances, or simply the average of correct predictions. The formula of a 

multi-class accuracy can be viewed in Equation (6): 

 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
1

𝑁
∑ 

|𝐺|

𝑘=1

∑ 𝐼(𝑔(𝑥) =  �̂�(x))
𝑥:𝑔(𝑥)=𝑘

 

 

 

(6) 

Here, and in the following formula, N is the number of observations, G is the set of 

all classes, and I is the characteristic function that returns either one or zero 

depending on class hit or miss [46]. Despite being the most intuitive and 

straightforward way to evaluate classification results, accuracy does not consider the 

imbalance of classes and therefore is not the best performance score for our 

particular dataset. 

7. Weighted average: To be equally fair to all individual classes, every class is 

assigned a weight 𝑤𝑘 such that 𝑤𝑘 = 
1

|𝐺|
 , ∀𝑘 ∈ {1,… , 𝐺}, what is described in the 

Equation (7): 

 

 

𝑤𝑒𝑖𝑔𝑡𝑒𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
1

𝑁
∑ 

|𝐺|

𝑘=1

𝑤𝑖 ∑ 𝐼(𝑔(𝑥) =  �̂�(x))
𝑥:𝑔(𝑥)=𝑘

 

 

 

(7) 

We consider the weighted average to be the most reliable evaluation score as it 

counts the proportion of each class. 

8. Macro average: The macro average does not estimate the proportion of each class 

in the dataset, but a high macro averaged F-1 score indicates that a classifier 

adequately performs for every individual class. Equations (8, 9, 10) show the macro-

averaged formula of precision, recall, and F-1 score: 

 

 

𝑃𝑚𝑎𝑐𝑟𝑜 = 
1

|𝐺|
∑

|𝐺|

𝑖=1

𝑡𝑝𝑖
𝑡𝑝𝑖 + 𝑓𝑝𝑖

 

 

𝑅𝑚𝑎𝑐𝑟𝑜 =
1

|𝐺|
∑ 

|𝐺|

𝑖=1

𝑡𝑝𝑖
𝑡𝑝𝑖 + 𝑓𝑛𝑖

 

 

𝐹𝑚𝑎𝑐𝑟𝑜 = 2 × 
𝑃𝑚𝑎𝑐𝑟𝑜 ×𝑅𝑚𝑎𝑐𝑟𝑜

𝑃𝑚𝑎𝑐𝑟𝑜 + 𝑅𝑚𝑎𝑐𝑟𝑜
 

 

(8) 

 

 

 

(9) 

 

 

(10) 
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There are a few other popular metrics, which are frequently used to evaluate the 

performance of classification models. First of all, it is MCC, ROC, and AUC, 

mentioned in the background section. However, we found them valuable only for binary 

classification tasks or when the number of classes was relatively low. The same 

concerns another standard evaluation score: micro averages of Recall, Precision, and 

F1-score as they occurred to be misleading for our unbalanced dataset. 

Thus, all further classification results are assessed by the final evaluation report 

matrix (Table 9), with F-1 weighted accuracy and accuracy being the most appropriate 

performance indicators. 

 

 Precision Recall F-1 score Support 

Accuracy   0 0 

Macro avg 0 0 0 0 

Weighted avg 0 0 0 0 

Table 9. Evaluation report matrix 
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3.4 Classification 

Choosing the right classifier is the most critical part of the text classification 

system. In this chapter, we review some popular algorithms for classifying text and 

evaluate their performance for predicting HS-6. For clarity, all sections follow the same 

pattern: we introduce the model’s basic theory and our specific implementation details, 

and then show the evaluation matrix for one or various cases. 

Initially, we test non-deep learning classifiers: Rocchio, MLR, MNB, k-NN, 

Decision Tree, Random Forest, and SVM. By default, all listed algorithms use TF-IDF 

value-based feature vectors for their model input. Next, we examine deep neural 

network algorithms: DNN and CNN. CNN is the only model tested on Word2Vec, 

Doc2Vec, and GloVe extracted feature vectors and studied on two sets of differently 

cleansed data: lemmatized and without lemmatization. DNN, on the other hand, uses a 

standard TF-IDF weighting scheme. To find the most performant model, we utilize the 

Random Multimodel Deep Learning for Classification (RMDL), a tool based on 

researches [56][57], which we discuss in detail in a separate section. 

All experiments were conducted in Jupyter and Spyder using Keras and Scikit-

learn open-source libraries, and utilizing Intel Xeon E5-2680 v2, 10 core and 20 thread 

processor with 2.8-3.6 Hz frequency, 25M L3 cache, and 32GB of RAM.  

3.4.1 Rocchio classification 

Introduced by J.J. Rocchio [32], Rocchio classification is a method that applies 

relevance feedback to query full-text information retrieval systems. The algorithm 

determines class boundaries by building a prototype vector for each class on a training 

set of documents, assigning each test document a class by defining the most similar 

prototype vector, and measuring the distance between calculated centroids (centers of 

mass of their members) for every class. 

Despite the algorithm’s universality and computational speed (almost instant), 

Rocchio has issues with classifying multi-class data, confirmed by our results. Rocchio 

is the only algorithm tested in our research where weighted F-1 average overcame the 

standard accuracy. 

  

 Precision Recall F-1 score Support 

Accuracy   0.26 348711 

Macro avg 0.18 0.28 0.16 348711 

Weighted avg 0.58 0.26 0.31 348711 

Table 10. Rocchio classifier evaluation report 
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3.4.2 Multinomial Logistic Regression 

Multinomial Logistic Regression (MLR) classification algorithm generalizes 

traditional binomial Logistic Regression (LR) to multi-class applications. MLR does not 

predict classes but rather probabilities of various possible outcomes of categorically 

distributed dependent variable, given one or multiple independent variables [34].  

MLR classification did not have memory problems but took approximately 12 

hours to calculate, proving to be adequate for multi-class tasks. 

 

 Precision Recall F-1 score Support 

Accuracy   0.56 348711 

Macro avg 0.25 0.16 0.18 348711 

Weighted avg 0.57 0.56 0.54 348711 

Table 11. MLR classifier evaluation report 

 

3.4.3 Multinomial Naïve Bayes 

In general, Naïve Bayes classifier is a Bayes’ theorem-based method that 

assumes naïve or strong conditional independence between the features [35]. 

Multinomial Naïve Bayes classifier is a particular case of Naïve Bayes that uses a 

multinomial distribution for each feature. 

MNB occurred to be a very memory-consumable model that also delivered poor 

results. To fit our data into MNB, we had to apply partial fit and transform TF-IDF 

sparse matrices every iteration.  

 

 Precision Recall F-1 score Support 

Accuracy   0.43 348711 

Macro avg 0.11 0.04 0.05 348711 

Weighted avg 0.50 0.43 0.38 348711 

Table 12. MNB classifier evaluation report 

3.4.4 K-Nearest Neighbor  

K-Nearest Neighbors (k-NN) is a non-parametric algorithm that attempts to 

predict a class by searching for the closest or k-defined data points [36]. Thus, behind 

the k-NN lies the simple idea that related data points are most often located close to 

each other. The performance of k-NN may indirectly reflect how well was conducted 

data pre-processing, as it relies on measuring the distance between nearby features. 

K-NN turned out to be the fastest classification algorithm in our research, also 

achieving great results for such a simple model. Besides, these results indirectly proved 

the effectiveness of our pre-cleansing step. 

 

 Precision Recall F-1 score Support 

Accuracy   0.59 348711 

Macro avg 0.31 0.28 0.27 348711 

Weighted avg 0.60 0.59 0.59 348711 

Table 13. k-NN classifier evaluation report 
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3.4.5 Decision tree 

The decision tree classification model predicts a class by utilizing a tree 

structure that represents leaves as categorical values and branches as a set of associated 

features led to those values [40]. Such tree composition is achieved through binary 

recursive partitioning, a process that iteratively breaks the data into partitions based on 

feature-dependent splitting rules. Decision tree classifier needs little data pre-processing 

and usually works well with large datasets.  

 In our experiments, the decision tree model did not struggle with overfitting and 

proved to be a very robust and effective way of classifying HS-6 codes. 

 

 Precision Recall F-1 score Support 

Accuracy   0.60 348711 

Macro avg 0.34 0.29 0.30 348711 

Weighted avg 0.60 0.60 0.59 348711 

Table 14. Decision tree classifier evaluation report 

3.4.6 Random forest 

Random forest classifier is an ensemble learning algorithm that makes a 

category prediction by building numerous decision trees and calculating the classes 

mode for each built tree [41]. Random forests reduce the problem of training data 

overfitting frequently encountered by decision trees, what in theory, should lead to 

better results. However, random forests generally have issues with large datasets as they 

grow too fast in memory. 

As a result, Random forests required too much memory, and we could not find a 

proper way to train them incrementally: warm start method always encountered issues, 

despite incrementing the number of estimators each iteration. The maximum tree depth 

we managed to achieve without kernel crashes were the following parameters: 

{n_estimators=100, max_depth=35}. Unfortunately, such an insufficient depth was not 

enough for adequate results, which is a matter of further exploration with more RAM, or 

correctly configured warm starts. 

 

 Precision Recall F-1 score Support 

Accuracy   0.35 348711 

Macro avg 0.17 0.04 0.05 348711 

Weighted avg 0.61 0.35 0.34 348711 

Table 15. Random forest classifier evaluation report 
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3.4.7 Support Vector Machine 

Invented by Vapnik and Chervonenkis in 1963, Support Vector Machine (SVM) 

is a classification algorithm that defines boundaries between classes by utilizing a set of 

hyperplanes in infinite-dimensional space [38]. SVM is especially powerful in text 

categorization as it does not require too many labeled training instances, which might be 

helpful for our unbalanced dataset.  

SVM model took a few hours to train and did not encounter any memory-related 

problems, demonstrating considerably high results. 

 

 Precision Recall F-1 score Support 

Accuracy   0.58 348711 

Macro avg 0.35 0.27 0.28 348711 

Weighted avg 0.58 0.58 0.56 348711 

Table 16. k-NN classifier’s evaluation report 

3.4.8 RMDL 

RDML is a technique used to search for the most accurate CNN, RNN, and 

DNN deep learning classification models, proposed by K. Kowsari, M. Heidarysafa, and 

other researchers [55][56]. RDML architecture consists of CNN, DNN, and RNN layers 

(Figure 18), that generate models with an arbitrary number of hidden layers, nodes, and 

the optimizer type. Each randomly generated model is then trained and compared with 

the best previously found structure until it discovers the most accurate classification 

model. This iterative way allows deep learning models to achieve state-of-art results for 

various text and image classification problems.   

 

 
Figure 18. RDML architecture 
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In order to utilize the RDML approach for our specific task, we added (1) 

Word2Vec and Doc2Vec support, solved (2) memory-related issues, and (3) trained 

DNN and CNN models for some time to gain an intuition about suitable architecture 

parameters. 

 

1. Word2Vec and Doc2Vec support: First, we added the possibility of Word2Vec 

and Doc2Vec CNN model input as RDML initially only worked with TF-IDF and 

GloVe vectors.  

2. Memory-related issues: RDML was not designed to work with relatively large 

datasets, and our first attempts to train models resulted in crashes. Kernel crashes 

primarily concerned DNN that required a lot of RAM both for the model and TF-

IDF based vectors input. To solve the issue, we decided to train our models in small 

batches by unwrapping sparse matrices inside Keras fit generators. In theory, this 

approach does not impact the performance, as small batches tend to achieve the 

same accuracy as large ones and even show less model degradation [58] (Figure 19).  

 

 
Figure 19. Two samples of convergence trajectories of training and testing accuracy 

for small (SB) and large batches (LB). 

 

In addition, after every epoch, we saved the model and cleaned the memory by the 

garbage collector. As a result, we were able to train models with our limited 

memory resources. 

3. DNN and CNN training: Both models took approximately a day to learn until they 

started overfitting. Due to these time constraints, we did not achieve the best 

possible results directly in RDML but rather gained an intuition about the models 

settings. We observed that for DNN two hidden layers, 512-1024 nodes, and 

“RMSprop” optimizer give better outcomes. As for CNN, it was five hidden layers, 

128 nodes, and “adam” optimizer. Therefore, further training was done manually 

within found boundaries. 

 

RDML observations could be misleading, and we do not consider found models to 

be the state-of-art results, requiring more exploration. Better results could be achieved 

by faster training utilizing GPU, which in our case is very poor, dimensionality 

reduction, or more learning time. Thus, the resulting models reviewed in subsequent 

sections are just a starting point for improvements and further research. 
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3.4.9 DNN 

 A deep neural network is an artificial neural network that calculates the 

probability of each outcome by passing through multiple hidden layers [42]. Each 

hidden layer generates a map of virtual neurons with arbitrary weights between them, 

that are then adjusted each epoch. The number of hidden layers and neurons is 

determined by the data and type of features vectors. In our case, their amount was 

discovered using the RDML and general intuition. Figure 20 shows the summary of 

DNN that achieved the best results during our experiments: 
 

_____________________________________________________________________________________ 

  Layer (type)                  Output Shape              Param # 

=========================================================================== 

  dense (Dense)              (None, 839)                14,653,135 

____________________________________________________________________________________ 

  dropout (Dropout)          (None, 839)                0 

____________________________________________________________________________________ 

  dense_1 (Dense)               (None, 839)                704,760 

____________________________________________________________________________________ 

  dropout_1 (Dropout)           (None, 839)                0 

____________________________________________________________________________________ 

  dense_2 (Dense)              (None, 839)                704,760 

____________________________________________________________________________________ 

  dropout_2 (Dropout)           (None, 512)                0 

____________________________________________________________________________________ 

  dense_3 (Dense)               (None, 3243)              2,724,129 

=========================================================================== 

  Total params: 39,461,396 

  Trainable params: 39,461,396 

  Non-trainable params: 0 

_____________________________________________________________________________________ 

 

Figure 20 DNN model summary 

 Precision Recall F-1 score Support 

Accuracy   0.62 348711 

Macro avg 0.31 0.23 0.25 348711 

Weighted avg 0.63 0.62 0.61 348711 

Table 17. DNN classifier evaluation report 

3.4.10 CNN 

A convolutional neural network is a deep neural network whose neurons in all 

layers are fully connected to each other [42]. The layers relatedness makes CNNs less 

vulnerable to overfitting data, frequently struggled by DNNs. Also, with CNNs, on the 

contrary to DNNs, we did not face any memory issues as it used vectors extracted by 

word embedding algorithms.  

We trained CNNs on Word2Vec CBOW and Skip-gram, Doc2Vec PV-DM and 

PV-DBOW, and GloVe models on two sets of data: with and without lemmatization. 

Without lemmatization, it showed very weak performance (maximum 35% accuracy), 

omitted in the final evaluation reports. Thus, all results reviewed in this section were 

accomplished by using lemmatized data. Figure 21 shows the summary of CNN that 

achieved the best performance during our experiments: 
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_____________________________________________________________________________________ 

  Layer (type)                                    Output Shape              Param #         Connected to 

=========================================================================== 

  input_1 (InputLayer)               [(None, 22)]                0                

____________________________________________________________________________________ 

  embedding (Embedding)           (None, 22, 100)           1,746,500                     input_1[0][0] 

____________________________________________________________________________________ 

  reshape (Reshape)                (None, 22, 10, 10)       0                               embedding[0][0] 

____________________________________________________________________________________ 

  conv2d (Conv2D)            (None, 22, 10, 128)     5248                              reshape[0][0] 

____________________________________________________________________________________ 

  conv2d_1 (Conv2D)            (None, 22, 10, 128)     11,648                           reshape[0][0] 

____________________________________________________________________________________ 

  conv2d_2 (Conv2D)            (None, 22, 10, 128)     20,608                           reshape[0][0] 

____________________________________________________________________________________ 

  conv2d_3 (Conv2D)            (None, 22, 10, 128)     32,128                           reshape[0][0] 

____________________________________________________________________________________ 

  conv2d_4 (Conv2D)            (None, 22, 10, 128)     46,208                    reshape[0][0] 

____________________________________________________________________________________ 

  average_pooling2d (AveragePooling2D)      (None, 5, 10, 128)       0                     conv2d[0][0] 

____________________________________________________________________________________ 

  average_pooling2d _1 (AveragePooling2D) (None, 5, 10, 128)       0                                 conv2d_1[0][0] 

____________________________________________________________________________________ 

  average_pooling2d _2 (AveragePooling2D) (None, 5, 10, 128)       0                                 conv2d_2[0][0] 

____________________________________________________________________________________ 
  average_pooling2d _3 (AveragePooling2D) (None, 5, 10, 128)       0                                 conv2d_3[0][0] 

____________________________________________________________________________________ 

  average_pooling2d _4 (AveragePooling2D) (None, 5, 10, 128)       0                                 conv2d_4[0][0] 

____________________________________________________________________________________ 

  concatenate (Concatenate)            (None, 25, 10, 128)     0                  average_pooling2d[0][0] 

                      average_pooling2d_1[0][0] 

                      average_pooling2d_2[0][0] 

                      average_pooling2d_3[0][0] 

                      average_pooling2d_4[0][0] 

____________________________________________________________________________________ 

  conv2d_5 (Conv2D)                                 (None, 25, 10, 128)     409,728              concatenate[0][0] 

____________________________________________________________________________________ 

  average_pooling2d _5 (AveragePooling2D) (None, 5, 5, 128)         0                                 conv2d_5[0][0] 

____________________________________________________________________________________ 

  conv2d_6 (Conv2D)                                 (None, 5, 5, 128)         409,728   average_pooling2d_5[0][0] 

____________________________________________________________________________________ 

  average_pooling2d _6 (AveragePooling2D) (None, 1, 3, 128)         0                                conv2d_6[0][0] 

____________________________________________________________________________________ 

  dropout (Dropout)                             (None, 1, 3, 128)         0              average_pooling2d_6[0][0] 

____________________________________________________________________________________ 

  flatten (Flatten)                             (None, 384)                 0                                    dropout[0][0] 

____________________________________________________________________________________ 

  dense (Dense)                                               (None, 128)                 49,280                             flatten[0][0] 

____________________________________________________________________________________ 

  dropout_1 (Dropout)                             (None, 128)                 0                                       dense[0][0] 

____________________________________________________________________________________ 

  dense_1 (Dense)                                            (None, 3243)               418,347                     dropout_1[0][0] 

=========================================================================== 

  Total params: 3,149,423 

  Trainable params: 3,149,423 

  Non-trainable params: 0 

_____________________________________________________________________________________ 

 

Figure 21. CNN model summary 
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 Precision Recall F-1 score Support 

Accuracy   0.56 348711 

Macro avg 0.20 0.14 0.15 348711 

Weighted avg 0.60 0.56 0.54 348711 

Table 18. Word2Vec CBOW evaluation report 

 

 Precision Recall F-1 score Support 

Accuracy   0.57 348711 

Macro avg 0.20 0.14 0.15 348711 

Weighted avg 0.60 0.57 0.55 348711 

Table 19. Word2Vec Skip-gram evaluation report 

 

 Precision Recall F-1 score Support 

Accuracy   0.56 348711 

Macro avg 0.19 0.13 0.14 348711 

Weighted avg 0.59 0.56 0.53 348711 

Table 20. Doc2Vec PV-DM evaluation report 

 

 Precision Recall F-1 score Support 

Accuracy   0.56 348711 

Macro avg 0.20 0.14 0.15 348711 

Weighted avg 0.59 0.56 0.54 348711 

Table 21. Doc2Vec PV-DBOW evaluation report 

 

 Precision Recall F-1 score Support 

Accuracy   0.57 348711 

Macro avg 0.21 0.14 0.15 348711 

Weighted avg 0.59 0.57 0.55 348711 

Table 22. GloVe evaluation report 
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4 Results 

After done preparation, cleansing, and stratified random splitting, our data 

remained 1,124,874 out of 1,220,834 entries. Most of these records were dropped either 

because they did not contain any product-related keywords or required more than a 

single class occurrence at the splitting. After the removal, the data retained 3243 of the 

initial 4328 unequally distributed HS-6 categories, which were not rebalanced to keep 

the original context.  

Here, we present the resulting table for different combinations of classifiers and 

feature extractors examined in our research. Their performance is assessed and sorted 

by an F-1 weighted average metric, a score that considers every class proportionality. 

 

Classifier Features F-1 macro avg F-1 accuracy F-1 weighted avg 

DNN TF-IDF 0.25 0.62 0.61 

Decision tree TF-IDF 0.30 0.60 0.59 

k-NN TF-IDF 0.27 0.59 0.59 

SVM TF-IDF 0.28 0.58 0.56 

CNN GloVe 0.15 0.57 0.55 

CNN 
Word2Vec 

Skip-gram 
0.15 0.57 0.55 

MLR TF-IDF 0.18 0.56 0.54 

CNN 
Word2Vec 

CBOW 
0.15 0.56 0.54 

CNN 
Doc2Vec 

PV-DBOW 
0.15 0.56 0.54 

CNN 
Doc2Vec 

PV-DM 
0.14 0.56 0.53 

MNB TF-IDF 0.05 0.43 0.38 

Random Forests TF-IDF 0.05 0.35 0.34 

Rocchio TF-IDF 0.16 0.26 0.31 

Table 23. The resulting evaluation matrix  
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5 Discussion 

5.1 Dataset analysis 

Before analyzing the results, we want to discuss the extreme noisiness of the 

dataset investigated in our thesis. The pre-processing step showed that the average 

number of words and symbols after the cleansing decreased by 76% and 74%, and the 

number of overall words reduced from 20,265,061 to 5,158,174. The received statistics 

mean that only about 25% of descriptions length had keywords connected to product 

definitions. In addition, 8% or 95,960 entries did not contain any product-related words 

at all.  

The variety of words in descriptions also drastically dropped: the final 

vocabulary contained only 17,476 words contrary to 1,405,333 words before the 

cleansing procedures, or approximately 1.24% of all original unique words. Most of the 

word diversity was expelled by the lemmatization and the removal of non-English 

words, which unified words with the same roots, and excluded typos, abbreviations, and 

other unnecessary keywords. As a result, the received dictionary describes every 

product class on average in five words. 

Thus, the remaining descriptions held on the average 4 words or 25 symbols 

with a variety of 17,476 unique words. Such a significant decrease in overall and unique 

words means that the final descriptions applied in classification were too short and not 

very representative. The latter is very sensitive for HS-6 level codes studied in our 

thesis, as they usually have minor differences between the neighboring product 

definitions. This tendency is visible at the distribution plot of our 3243 classes, where 

most codes are namely concentrated in specific bordering areas. 

The above analysis does not consider the fact that most product codes in the 

harmonized number column are originally misclassified; we take their correctness for 

granted. However, as we stated in the introduction, the classification done by booking 

officers and sellers is most often incorrect, and especially it concerns HS-6 codes with 

its similarities between adjacent descriptions, sometimes hard to distinguish even 

having physical goods. 
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5.2 Classification analysis 

This section discusses and compares the obtained classification results in terms 

of preparation, feature extraction, implementation complexity, and real-world 

applicability. In the end, we try to validate and interpret the received results to real-

world applicability. 

5.2.1 Lemmatized vs non-lemmatized 

 At the pre-processing step, we were doubtful about using data lemmatization for 

word embeddings, as we did not want to lose important semantic and syntactic 

meanings. For this purpose, we maintained two sets of data, expecting better results in 

further CNN training. However, CNN, trained on features vectors extracted by the 

Word2Vec algorithm from non-lemmatized data, started overfitting at about 35% 

accuracy. Therefore, considering other algorithms similarities and long training 

processes of both the CNN and word embedding models themselves, we decided to stop 

further explorations and ignored these results in the final table. 

Low results without the lemmatization are explained by the quality of our data. 

As we asserted in the dataset analysis, most descriptions are too short and simply do not 

hold any semantic or syntactic properties. As a result, a lemmatization in combination 

with POS-tagging and the removal of basic English forms gives much better 

performance outcomes for both weighted words and word embeddings. 

5.2.2 Weighted words vs Word embeddings 

In our research, we used weighted words for all the models except CNN, which 

applied five variations of word embedding algorithms. Overall, TF-IDF weights 

delivered equal and even slightly better accuracy than word embeddings as our short 

descriptions contained too little context for them to be efficient. At the same time, this 

difference is not very significant and, in theory, could be compensated by finding a 

better CNN model.  

From the implementation perspective, both approaches had certain difficulties. 

Word embeddings did not have problems fitting into memory as their dimensions were 

much smaller than TF-IDF matrices, but were a little harder to implement to be input to 

the CNN. Weighted words are vice versa, had huge issues with memory, but were 

relatively easy to put into classification models. In order to solve memory-related 

problems for some models such as MNB and DNN, we had to struggle with unzipping 

sparse matrices in fit generators, and training models in very small batches. In case it is 

not important to utilize the original dataset, another way to solve these problems could 

be using dimensionality reduction techniques. 

5.2.3 Doc2Vec vs Word2Vec vs GloVe 

Our CNN model was taught on three various word embedding algorithms and 

their specific architectures: Doc2Vec PV-DM and PV-DBOW, Word2Vec CBOW and 

Skip-gram, and GloVe. The classification results did not show any significant 

differences between these models, except that Word2Vec Skipgram and GloVe 

displayed slightly better accuracy, weighted average, and macro average. However, this 

difference could simply be a matter of training deviations and should not be considered 

serious. 
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5.2.4 Linear vs deep learning models 

The classification results showed that the DNN classifier with TF-IDF extracted 

features had the highest F-1 weighted average score of 61% and 62% accuracy. CNNs 

with word embeddings, on the other hand, were slightly behind Decision tree, k-NN, 

SVM, and MLR classifiers, achieving only a 55% weighted average and 57% accuracy 

by GloVe. Thus, most linear models displayed approximately the same weighted 

accuracy as deep learning models, except Random Forests, MNB, and Rocchio 

classifiers. However, despite high results, linear models reached their limits and cannot 

be further progressed on the contrary to deep neural networks, which are subject to 

improvements by RDML. 

In terms of implementation complexity, linear models almost did not require any 

additional configuration and were considerably fast to compute. The only exceptions 

were MNB and Random Forests, which after the model adjustment and partial fit, 

occurred not very effective for classifying so many classes. At the same time, DNNs 

and CNNs took an enormous time to implement and to train, and we still did not 

manage to find the best models.  

5.2.5 Validation 

The validation of the received results is the subject to practice and the 

applicability in real-world EU customs system. However, due to the lack of such an 

opportunity, we attempt to validate these results according to the existing data. As we 

stated in the introduction, the volume of tax underpayment related to HS code 

misclassification in the EU is roughly estimated at 65% of all imported commodities 

[4]; hence, the accuracy of current customs methods in detecting real price is about 

35%. Our study covers a significant part of this nomenclature (3243 classes), and 

assuming there is a direct link between the wrong code and the price, that number 

should increase to 61%. Of course, this is a very naive conclusion that has nothing to do 

with reality, but with utilizing proposed ML algorithms, it would at least be possible to 

assign weights to unreliable companies or find another useful way to detect fraud. 

Moreover, these models can be further improved by applying less noisy data or using 

RMDL, which we did not fully utilize due to the time and hardware constraints. Thus, 

despite the dataset quality and relatively low 61% weighted accuracy, the received 

results are a solid starting point for using ML algorithms in the actual EU customs HS-6 

classification systems or the currently developed OSS. 
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6 Summary 

The aim of this master’s thesis was to examine the efficiency of machine 

learning algorithms for classifying HS-6 codes according to their cargo descriptions. To 

achieve this goal, we utilized the US Import 2018-2020 dataset provided by Enigma that 

initially held about 41,000,000 records. After the removal of duplicates, corrupted 

values, HS-2, HS-4, and HTS codes, the dataset only remained nearly 1,200,000 entries. 

This data was then applied to the cleansing, which included tokenization and a list of 

normalization procedures: converting to lower case, POS tagging, lemmatization, and 

removing non-English words, punctuation, stop words, domain-related noise, textual 

digits, non-ASCII, and non-alpha characters. Finally, after the stratified sampling and 

splitting, the dataset kept 3243 product classes and the vocabulary of 17,476 unique 

words in the descriptions. The remaining records were extracted feature weights using 

weighted words and word embedding algorithms: TF-IDF and Doc2Vec, Word2Vec, 

and GloVe. The received feature vectors were used as input to classification models: 

Rocchio, MLR, MNB, k-NN, Decision tree, Random forest, SVM, DNN, and CNN 

classifiers. DNN and CNN deep neural networks were trained using the RMDL 

approach that enabled us to find the most performant classification model in our 

research. As a result, the highest 61% F-1 weighted average and 62% accuracy were 

achieved by the DNN model.  

Thus, we classified 3243 distinct HS-6 classes according to 1,124,874 cargo 

descriptions using Rocchio, MLR, MNB, k-NN, Decision tree, Random forest, SVM, 

and DNN, and CNN classifiers with TF-IDF, Word2Vec, Doc2Vec, and GloVe 

extracted feature vectors and achieved 61% F-1 weighted accuracy by the DNN model. 

Considering the extreme noisiness of the dataset, shortness and ambiguity of HS-6 

descriptions, and the overall amount of classes, 61% proportional accuracy is a 

significant achievement. However, this could still be further improved by utilizing 

RMDL and speeding up computations by dimensionality reduction or GPU training.  

All the relevant materials, Jupyter notebooks with all models outputs and code 

for each chapter are available at https://github.com/denissruder/master_thesis.  
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