

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

ITT70LT

Tanel Torn 121337IVCMM

SECURITY ANALYSIS OF ESTONIAN I-VOTING

SYSTEM USING ATTACK TREE

METHODOLOGIES

Master thesis

Supervisor: Vahur Kotkas, MSc

Tallinn 2014

Declaration

I hereby declare that I am the sole author of this thesis. The work is original and has not been

submitted for any degree or diploma at any other university.

…………………….. ……………………….

(Date) (Signature)

Abstract

This thesis provides a security analysis of the Estonian I-voting system using three different

attack tree methodologies. The computational models of each methodology are used to analyse

which attacks a rational and economically thinking attacker could undertake in order to attack

the system. The thesis concentrates on large-scale attacks.

The work shows that based on the assigned parameter values by the author, the Estonian I-

voting scheme is reasonably secure against large-scale vote manipulation attacks, but under

certain conditions, susceptible to large-scale revocation attacks. The work also shows that the

computational models of different attack tree methodologies can produce somewhat different

results.

Annotatsioon

Käesolev magistritöö analüüsib Eesti e-valimiste süsteemi turvalisust, kasutades selleks kolme

erinevat ründepuude metoodikat. Metoodikate arvutusmudelite abil uuritakse, millised on

võimalikud ründed ratsionaalse ning majanduslikult mõtleva ründaja puhul. Töös

keskendutakse laiaulatuslikele rünnetele.

Töös näidatakse, et töö autori poolt väärtustatud parameetrite järgi on Eesti e-valimiste süsteem

turvaline laiaulatusliku häältega manipuleerimise suhtes, kuid, teatud tingimustel, ebaturvaline

rünnete puhul, mille eesmärgiks on e-häälte tühistamine. Samuti selgub tööst, et erinevate

ründepuude arvutusmudelite kasutamine võib pakkuda mõnevõrra erinevaid tulemusi.

Table of Contents

Introduction .. 10

1. Concept of voting ... 12

2. Internet voting in Estonia ... 15

2.1 Beginnings of Internet voting in Estonia ... 15

2.2 Statistical analysis of I-voting results .. 16

2.3 Overview of the Estonian I-voting system .. 19

2.3.1 Voting process .. 21

2.3.2 Shortcomings of the system used in 2005-2011 ... 25

2.3.3 Proposed verification protocol ... 25

2.4 Internet voting projects in other countries ... 26

2.4.1 Norway ... 26

2.4.2 Switzerland ... 29

3. Security analysis of the Estonian I-voting system ... 31

3.1 Concept of attack trees .. 31

3.2 Models used in the analysis ... 32

3.2.1 BLPSW model .. 32

3.2.2 Parallel model ... 34

3.2.3 Serial model .. 35

3.3 Constructing the attack trees .. 38

3.3.1 Manipulation Attack ... 40

3.3.2 Revocation Attack .. 51

3.3.3 Reputation Attack ... 54

3.4 Simulation and results ... 55

Summary .. 61

References .. 62

2

Appendices ... 65

Appendix 1. Attack tree for the Manipulation Attack .. 65

Appendix 2. Attack tree for the Revocation Attack ... 66

Appendix 3. Attack tree for the Revocation Attack (continued) .. 67

Appendix 4. Attack tree for the Reputation Attack .. 67

Appendix 5. Complete results of the Manipulation Attack .. 68

Appendix 6. Complete results of the Revocation Attack ... 69

Figures

Figure 1. I-voting results by elections .. 16

Figure 2. General architecture of the system .. 20

Figure 3. Components of the voting process .. 22

Figure 4. Components of vote storage and cancellation processes .. 23

Figure 5. Components of vote counting process .. 24

Figure 6. Vote verification process .. 26

Figure 7. Vote verification process of the Norwegian system ... 28

Figure 8. Example attack tree ... 31

Figure 9. Algorithm 1 of the Serial model ... 36

Figure 10. Algorithm 2 of the Serial model ... 38

Figure 11. Attack tree for the Manipulation Attack ... 41

Figure 12. Relation between required number of infected machines and malware’s operating

period .. 47

Figure 13. Relation between missed out re-votes and total votes received by party (2011) 53

Figure 14. Computational results for Malware attacks by attack tree model (Manipulation

Attack) .. 57

Tables

Table 1. Estonian I-voting results by elections (NEC) ... 17

Table 2. Voter turnout for the elections held in the period 1996-2014 18

Table 3. Log-file entries ... 24

Table 4. Verbally labelled groups of attack probabilities .. 39

Table 5. Types of malware ... 43

Table 6. Required number of blocked votes to produce similar results as changing the votes 44

Table 7. Potential effects of the Revocation Attack on the election results of 2011 52

Table 8. Computational results for Malware and Central System attacks (Manipulation Attack)

 .. 56

Table 9. Computational results for Malware and Central System attacks (Revocation Attack)

 .. 58

Table 10. Profitability of attacks by model (Revocation Attack)... 59

List of abbreviations

NEC – National Electoral Committee

VMM – Vote Modifying Malware

VCM – Vote Changing Malware

VBM – Vote Blocking Malware

RVM – Re-voting Malware

SVM – Self-voting Malware

VFS – Vote Forwarding Server

VSS – Vote Storage Server

VCA – Vote Counting Application

FVA – Fake Voting Applications

10

Introduction

The inconspicuous integration between technology and everyday life has led many of us taking

the technology for somewhat granted. An average person does not usually wonder why or how

something works ‒ knowing that it does, provides to be sufficient. The same thing applies when

an average person casts a vote over the Internet and is unaware of the processes executed on

the background. The I-voter takes trusts in the system that his or her vote will be received by

the server in an unchanged form. Similarly, the regular voter also takes trust in the system by

inserting an anonymous vote into the ballot box, as she or he has no means to confirm that his

or her vote was correctly counted in the final tally. Therefore, a certain level of trust between

the voter and the system is required in both cases.

In order to consolidate the trust of the voter, the security of the system must be of a certain

level. To assess the security of a given system, we must use some sort of formal methodologies.

One of the ways this can be done is by using the concept of multi-parameter attack trees [4],

which allows us to evaluate parameters such as the cost and the success probability of the attack,

and based on that information, compute a result which would indicate whether a certain attack

is practical or not.

Although the concept of attack trees has been used to analyse the Estonian I-voting system

before [28], the computational models of the method have been improved over time and due to

the topicality of online voting, it is essential to carry out additional studies using contemporary

methods. As each research on the topic either confirms or disputes any previous results, the

author hopes to provide a better overview of the actual security level of the system.

The aim of the thesis is not to provide a complete risk analysis of the system with listing every

possible threat, but to concentrate on large-scale attacks that could have a significant impact on

the election results. Using computational models of the three attack tree methodologies, the

author analyses the feasibility of various attacks against the Estonian I-voting system.

Since the results of the computations are only as good as the corresponding input parameters,

the work does not strive for perfection, meaning that the author does not expect each numeric

value in the thesis to be unconditionally in accordance to real life cases. Instead, the purpose is

11

to determine the possible weak points of the system, which could be exploited to affect the

election results.

In Chapter 1, the author discusses the concept of voting and how it relates to the Internet voting

method. It focuses on the requirements that must be met in order to implement a new voting

method, and points out the goals and possible benefits of implementing the I-voting system.

In Chapter 2, the author provides an overview of Internet voting in Estonia. The chapter

discusses the potential effects of I-voting on the election results and provides a detailed

description of the Estonian I-voting system. The chapter also provides a brief comparison of

the Estonian system and systems used in other countries.

In Chapter 3, the author provides a security analysis of the Estonian I-voting system. It describes

the concept of attack trees and the models used to carry out the analysis. The body of the chapter

consists of describing the processes of constructing the attack trees and assigning the parameter

values as well as providing the results of the simulations. The author also discusses some of the

potential countermeasures to mitigate the risks of large-scale attacks against the I-voting

system.

12

1. Concept of voting

By elections we understand a formal process of delegating power to a small group of individuals

by voting. People, who are interested in taking part of selecting the representatives to the

government, are presented with a list of possible candidates and from that list, they cast their

vote in favour of a specific individual or a political party. If a person should decide that she

wants to be part of the delegated power of the people herself, she can list herself as a possible

candidate (given that she is eligible) and other people can vote for her. The means by which the

people are able to cast their vote (and how votes are gathered) are determined by the

implementation and availability of the voting methods in society.

In the 18th century, people in the United States called their votes aloud as the clerk wrote down

the votes next to the names of the voters [20]. This provided the voters the means to directly

verify how their votes were actually recorded, while the election as a whole was made

transparent, as the voting method ensured easily observable election process. The problem with

this approach, however, was that it left voters susceptible to bribery and coercion. The vote

buyers were able to verify in person that the voter who was intimidated or bribed into voting

for a specific candidate, actually voted for that candidate.

In order to safeguard against this kind of behaviour, and thus to ensure the sincere choice of the

voter, it is necessary for the voter to be able to cast her vote in secret. In the elections today, the

secrecy is usually achieved with the use of secret ballots. When a person goes to voting, she

receives an empty ballot, which contains no information about the person herself. To cast the

vote in private, the voter steps into the polling booth, where she fills in the ballot with her

candidate of preference and puts the ballot into the ballot box. As the ballot box only contains

anonymous ballots, no connection can be drawn between the voter and the vote, and the overall

goal of secrecy is achieved. The concept of secret ballot itself dates back to Ancient Greece

[35] and has now been widely adopted as de iure voting method in most (if not all) democratic

countries [6, 7, 8, 9]. The idea of the voter being able to cast her vote in private and in total

secrecy protects the voter against coercion and bribery. However, the use of secret ballots makes

the elections as a whole less transparent, as the observers cannot directly verify that each vote

was correctly (as intended) accounted for in the final tally.

It seems that secrecy and verifiability are essentially opposites and the contradiction between

these two requirements makes it difficult to develop a system that could, in one hand, be

13

thoroughly auditable, while on the other hand, maintain voter’s right to privacy and secrecy.

The development of such a system is made even more difficult as there are other requirements

that need to be taken into account as well. According to the paragraph §60 of the Constitution

of the Republic of Estonia [7], the following basic principles must be met.

 Authenticity – only eligible voters are allowed to vote

 Freedom – a voter himself/herself chooses whether or how to vote.

 Generality – all citizens have the right to vote

 Uniformity – all votes are equal and each voter has but one vote

 Directness – the vote is cast directly by the voter

 Secrecy – only voter knows how he/she voted

With the information from the Electoral Acts in Estonia [34], we can complement this list with

requirements that correspond to the key principles of information security.

 Confidentiality – voting results are published after the election

 Availability – voters have access to voting methods

 Integrity – all votes are taken correctly into account

Therefore, we get a set of rules that each voting method must correspond to in order to be

adopted by society. Violating these rules might lead to National Electoral Committee (NEC)

declaring the election results as invalid along with the possibility of abandoning the

corresponding voting method entirely. Before adopting a new voting method, however, it is

necessary to understand the goals of the method and determine whether achieving those goals

justifies the implementation of the method. With Internet voting, one of the primary benefits

would apparently be the increase of accessibility to the electoral process. Part of the electorate

may not be able to vote in the traditional way (or in any other way for that matter) due to several

reasons, such as living far from the polling stations with no simple means for transportation or

simply by being too busy on the election period. Voting online, however, only takes a fraction

of the time and effort from the voter to cast her vote. Increasing the accessibility, in turn, has

the potential to increase the overall voter turnout, which would benefit the society as a whole,

as more people would be able to take part of the democratic processes.

14

Internet voting would also help to lower the costs of elections in the long term, as the I-voting

system can be re-used in future elections and maintaining the system requires less human

resource than sustaining polling stations throughout the country. However, as Internet voting is

not yet nearly as popular as traditional voting (see Section 2.2 for statistics), it probably will

not start to replace paper voting in any time soon and we cannot talk about the decrease in costs

on a state level today, although the decrease in costs for the voter is evident even now.

15

2. Internet voting in Estonia

This chapter provides an overview of the Estonian Internet voting scheme. It begins by giving

a short history to the internet voting project in Estonia (Section 2.1), following a short statistical

analysis of the past election results. Section 2.2 describes the system currently in use as well as

pointing out the main weaknesses in the system used from 2005 to 2011 and describing the

solution implemented in 2013. Finally, a brief overview of the internet voting projects in other

countries is given in Section 2.4.

2.1 Beginnings of Internet voting in Estonia

The history of I-voting in Estonia can be traced back to 2001, when the Ministry of Justice

ordered an analysis of the realization possibilities of I-voting [24]. The report was unfavourable

in nature, completely ruling out the possibility of implementing the system in the Parliamentary

Elections of 2002 due to the lack of technological capabilities. However, the authors of the

paper did conclude that I-voting is possible (even inevitable) in the future and suggested a

research program towards the cryptographic and technological means necessary to implement

I-voting in the country as well as any social impacts it might have on the society.

Later that year, another report was ordered by the Ministry of Transport and Communications,

also analysing the possibilities of implementing I-voting in Estonia [40]. The latter one was far

more positive in nature than its predecessor, concluding that the implementing I-voting is

possible even in 2002 as well as giving recommendations on the required organisational and

technological means. Still, similarly to the first report, it also saw the development of the I-

voting system as a long-term process.

In regard to these two reports, it was decided in 2002 that I-voting would not be implemented

before the local government elections of 2005 [26]. In the following year, a group of security

experts proposed a scheme for implementing I-voting in Estonia [13]. The security analysis of

the scheme stated that while the proposed scheme is simplistic in nature, a mathematically more

secure yet more complex scheme would also make its implementation more complex with

increasing the number of components and links between them, and ultimately reducing the

security of the scheme. It proposed a compromise between the theoretical security and the

complexity of its implementation by maintaining the level of similarity between Internet voting

and traditional voting, and by the use of existing solutions for digital signatures, simplistic

cryptographic protocols and the know-how present in Estonia, while placing a level of trust in

16

the central servers and in the computers of the voters. The analysis concluded that such of a

compromise is reasonable and the proposed I-voting mechanism was believed to be more secure

than the regular voting.

2.2 Statistical analysis of I-voting results

The first electronic elections in Estonia took place during the local municipalities elections in

2005. Since then, people of Estonia have been able to cast their vote electronically on seven

different occasions and it is very likely that this number will increase in time, as no large-scale

incidents have occurred during this period.

Since the implementation of I-voting, the number of voters willing to cast their vote online has

seen a significant increase over the years, peaking with 24,3% (56,4% among advance voters)

during the Parliamentary elections in 2011 (Figure 1) [37]. Although the percentage of I-voters

saw a slight decrease during the local municipalities’ elections in 2013 in regards to the

Parliamentary elections of 2011, it still shows that a very large portion of Estonian society has

accepted the I-voting method as a valid means to cast a vote. It also shows that the tally of the

I-votes has a potential to have a significant impact on the outcome of the elections as a whole.

Figure 1. I-voting results by elections

As mentioned in Chapter 1, one of the primary goals of I-voting is to increase accessibility to

elections in terms of casting a vote, which in turn can serve as potential means to increase voter

turnout. Looking at the statistics, it can be argued that I-voting has indeed had a positive effect

on the elections as a whole (i.e. the voter turnout has increased). Table 1 [37] shows that the

voter turnout has fluctuated from 36,5% to 63,5% during the period from 2005 to 2014.

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

Local 2005 Parliament
2007

Euro.
Parliament

2009

Local 2009 Parliament
2011

Local 2013 Euro.
Parliament

2014

I-voters among citizens I-voters among total voters

17

Table 1. Estonian I-voting results by elections (NEC)

L
o

ca
l

2
0
0

5

P
a

rl
ia

m
en

ta
ry

2
0

0
7

E
P

 2
0

0
9

L
o

ca
l

2
0
0

9

P
a

rl
ia

m
en

ta
ry

2
0

1
1

L
o

ca
l

2
0
1

3

E
P

 2
0

1
4

Eligible voters 1059292 897243 909628 1094317 913346 1086935 902873

Participating

voters

502504 555463 399181 662813 580264 630050 329766

Voter turnout 47,40% 61,90% 43,90% 60,60% 63,50% 58,0% 36,50%

I-voters 9317 30275 58669 104413 140846 133808 103151

I-votes counted 9287 30243 58614 104313 140764 133662 103105

I-votes cancelled 30 32 55 100 82 146 46

I-votes invalid - - - - -1 1 -

Multiple I-votes 364 789 910 2373 4384 3045 2016

I-voters among

eligible voters

0,90% 3,40% 6,50% 9,50% 15,40% 12,3% 11,40%

I-voters among

participating

voters

1,90% 5,50% 14,70% 15,80% 24,30% 21,2% 31,30%

I-votes among

advance votes

7,20% 17,60% 45,40% 44% 56,40% 50,5% 59,20%

I-votes cast abroad

among I-votes

- 2%

51 states

3%

66 states

2,8%

82 states

3,90%

105

states

4,20%

105

states

4,69%

98

states

I-voting period 3 days 3 days 7 days 7 days 7 days 7 days 7 days

I-voters using

mobile-ID

- - - - 2690 11753 11609

I-voters using

mobile-ID among

I-voters

- - - - 1,90% 8,6% 11,00%

Share of I-votes

that were verified

by the voter

- - - - - 3,40% 4,10%

However, in sense of statistics, it is meaningful to look different types of elections separately

from each other as the general voter turnout differs in each case. The average voter turnout

(during the same period) for European parliament elections (40,2%) is lower than the average

turnout for local municipalities elections (55,3%). The latter one, in turn, is lower than the

average turnout for parliamentary elections (62,7%). Therefore, it makes sense to group

different kinds of elections together and study how the voter turnout has changed

correspondingly to each group.

1 One invalid vote is depicted among cancelled votes

18

In order to get a complete picture, we must also include the data from the past elections where

I-voting was not yet implemented as a method for voting. However, it must be noted that

including the data from all of the past elections in Estonia would likely yield in inaccurate

results in terms of measuring the effects of I-voting. Estonia regained its independence from

the Soviet Union in 1991 and the first elections were held in 1992. The following elections were

held in 1993 and 1995. During the first years after a country (re)gains independence, however,

people’s desire to vote can be expected to be significantly higher than it would be otherwise as

the political spirit is at an elevated state. It can be presumed that this was also the case in Estonia

during the period from 1991 to 1995.2 Therefore, it seems reasonable to exclude those years

from the data set and only consider the past few elections prior to the I-voting for each group.3

Table 2 shows the overall voter turnout for each election during the period from 1996 to 2014

[37, 38].

Table 2. Voter turnout for the elections held in the period 1996-2014

Local municipalities elections 1996 1999 2002 2005 2009 2013

Turnout (%) 52,5 49,8 52,5 47,4 60,6 58,0

Parliament elections 1999 2003 2007 2011

Turnout (%) 57,4 58,2 61,9 63,5

European Parliament elections 2004 2009 2014

Turnout (%) 26,8 43,9 36,5

With the data from Table 2, we can compute the average voter turnout for the elections that

were held before as well as after the implementation of I-voting. For the local municipalities’

elections, the average turnout prior to I-voting is 51,6%, while the average turnout for the

elections following I-voting is 55,3%. This shows a 7,2% increase in terms of overall turnout.

It can be argued that this number could be considered much higher as there were only 1,9% of

I-voters among participating voters in 2005, while the percentage was 15,8% in 2009. This

actually makes the I-voting results in 2005 closer to the results in 2002, rather than to results in

2009 (1,9% is closer to 0% than to 15,8%). It is reasonable to assume that the I-voting results

in 2005 could not have had any significant impact on the voter turnout, as there simply were

not enough people who voted online due to prudence. For the Parliamentary elections before

2 The period from 1991 to 1995 was chosen intuitively.
3 The reason for considering only few of the past elections prior to I-voting comes from the fact that there is a very

limited number of elections held between the first elections (where people were strongly inclined to patriotism)

and elections where I-voting was implemented.

19

and after I-voting, the average turnouts were 57,8% and 62,7% respectively. This means an

8,5% increase in the turnout, which is arguably quite significant. Following the same reasoning

in computing the average turnout for the European Parliament elections, would give us a 50,0%

rise in the turnout. However, it must be noted that the first European Parliament elections were

held in the same year (2004) when Estonia joined the European Union (EU). Although the

majority (66,8%) of Estonian citizens supported the idea of joining the EU [12], it was far from

unanimity. It can be argued that the opposition also resulted in low voter turnout during the

elections in 2004. The author expects the support for EU to have increased in time, mostly due

to the financial support and the sense of security the union provides. Therefore, following

similar reasoning of excluding the first elections in Estonia after the country regained

independence, the statistics for European Parliament elections cannot be adequately used to

assess the impact of Internet voting on voter turnout.

Although, it cannot be claimed that these increases in voter turnout were caused solely by the

implementation of Internet voting, it is this author’s belief that it is reasonable to assume that

Internet voting has had, at least partly, a positive effect on the voter turnout. In this respect, it

can be said that the voting method has achieved its primary goal.

2.3 Overview of the Estonian I-voting system

During the period from 2005 to 2014, the basic scheme for the Estonian internet voting has

remained largely the same with the most significant change – the verification protocol –

implemented in 2013. On the conceptual level, the scheme is rather straightforward and

resembles a double postal voting system, where a voter would identify herself with an ID

document, after which she would receive a paper ballot and two empty envelopes. The voter

would write a candidate of preference on the ballot and put it in the envelope, which contains

no information about the voter. She would enclose the envelope into the outer envelope, which

does contain information about the voter. Both envelopes would then be delivered to the voter’s

polling division of residence and after the eligibility of the voter is determined, the inner

envelope would be taken out from the outer envelope. The outer envelope would be cast aside,

while the inner (anonymous) envelope would be put in the ballot box. The purpose of the

envelope scheme is to ensure the secrecy of the vote, while recording the vote in the list of

voters in the polling district of residence prevents voting more than once.

20

There are altogether four main parties in the I-voting system, which are represented by

differently coloured squares in Figure 2. [14]

Figure 2. General architecture of the system

Voter encrypts and digitally signs the vote and sends it to the Central System using the Voting

Application. Using the Verification Application the voter is enabled to verify that the Central

System received the vote correctly.

Central System receives and processes the votes until the composite results of I-voting are

output. Central System is a system component that is under the responsibility of the NEC and

dependent on the Population Register to provide lists of eligible voters, and on NEC to provide

the lists of candidates. It consists of three main components:

Vote Forwarding Server (VFS) – Authenticates the voter with the means of ID-card (or

Mobile-ID), displays the candidates of voter’s constituency to the voter and receives the

encrypted and digitally signed I-vote. The I-vote is immediately sent to the Vote Storage Server

and the confirmation received from there is then forwarded to the voter. It ends its work after

21

the closing of advance polls. It is the only component of the Central System that is directly

accessible from the Internet.

Vote Storage Server (VSS) – Receives I-votes from the VFS and stores them. After the closing

of advance polls, it removes double votes, cancels the votes by ineligible voters, and receives

and processes I-vote cancellations. Finally, it separates inner envelopes from outer envelopes

and readies them for the Vote Counting Application.

Vote Counting Application (VCA) – Offline component to which encrypted votes are

transmitted with the digital signatures removed. The Vote Counting Server uses the private key

of the system, tabulates the votes and outputs the results of I-voting.

Key Management generates and manages the key pair of the system. The public key is

integrated into Voter’s applications, while the private key is delivered to Vote Counting

Application.

Auditing solves disputes and complaints, using logged information from the Central System.

A detailed description on how these parties and components relate to one another is given in

the next sub-section (3.1).

2.3.1 Voting process

The I-voting process follows the same principles that are used in the double postal scheme

described above, although the process is slightly more complicated. The process is as follows.

At first, the central voting system generates a RSA key pair and publishes the public key with

the Voter Application. The key pair is generated in a Hardware Security Module (HSM) without

the private component ever leaving the module. Communication with the HSM is carried out

by key managers with the necessary physical (key-card) and knowledge-based (PIN-code)

authentication devices. At least four members out of seven must be in present in order to activate

the module and perform security critical operations.

The voter, using the downloaded Voting Application, authenticates herself to the VFS either by

using an ID-card or a Mobile-ID and the VFS verifies the eligibility of the voter by performing

a query from the database containing the list of voters (Figure 3).

22

Figure 3. Components of the voting process

If the voter is eligible, the VFS checks from the VSS whether she has already voted and requests

a candidate list from the candidate database that corresponds to the voter’s constituency. The

voter makes her choice and after confirmation, the voter application encrypts the chosen

candidate number along with a random number using the public key of the VCA. The purpose

of using a random number is to ensure different cryptograms for similar votes. This serves as

the inner envelope in the aforementioned concept, where the voter makes her choice and puts

the ballot in the envelope that does not contain any information about the voter.

The effect of the outer envelope is achieved by signing the digital ballot using the voter’s ID-

card (or Mobile-ID) and the resulting complete ballot is sent to the VFS. After the formal

correctness of the received vote is verified by the VFS, the vote is forwarded to the VSS. The

VSS acquires a certificate confirming the validity of the digital signature from the Validity

Confirmation Server and adds it to the signed vote. In case the vote is valid, the VSS sends the

VFS a confirmation that the vote has been received and the corresponding message is displayed

to the voter. An entry that the vote was received is recorded in the log-file (LOG1). As the voter

can vote several times, all previous votes will be automatically revoked and the corresponding

entry will be recorded in the log-file (LOG2). After the end of I-voting period, the VFS ends

all communication.

23

After casting the vote, it is possible for the voter to verify her choice by downloading the

Verification Application and scanning the control code received from the server to her mobile.

Sub-section 2.3.3 describes this process in more detail.

When the I-voting period ends, lists of I-voters by polling station are compiled and sent to

polling stations simultaneously with the advance polls envelopes. This is done in order to

prevent effectively counting two votes (I-vote and a traditional vote) for the same person. The

polling divisions begin preparing the appeals for cancelling of I-votes. The people who have

cast an I-vote and voted in advance on paper as well are marked in the appeals. The NEC sends

a consolidated list of the lists received to the VSS, which checks the digital signature, saves the

cancellation appeal and executes the cancellations. The corresponding entries are recorded in

the log-file (LOG2). When the cancellation period ends, the digital signatures are removed from

the ballots and the votes are prepared for transfer to the VCA on an external storage medium.

All the entries sent to the VCA are recorded in log-file LOG3. Figure 4 illustrates this process

visually.

Figure 4. Components of vote storage and cancellation processes

As the last step, the votes are decrypted by constituencies using the private key of the VCA.

The decrypted vote is checked against the candidate list to determine if it is possible to vote for

the candidate in that constituency. If the candidate number is incorrect, the vote is declared

24

invalid and the corresponding entry is recorded in log-file (LOG4). The votes that are

considered as valid are tabulated by candidates and constituencies, and recorded in log LOG5.

Finally, the results of I-voting are added to the results of the regular voting (Figure 5).

Figure 5. Components of vote counting process

As mentioned above, information about the votes are recorded as entries in different log-files.

The audit application makes it possible to determine what happened with the vote cast with a

specific personal identification code (PIC) and storing a hash from the encrypted candidate

number and a random number ensures that one cannot reconstruct the original value of the vote.

Table 3 provides an overview of the entries recorded in log-files.

Table 3. Log-file entries

Log file Entries Format

LOG1 Received votes PIC, hash(vote)

LOG2 Cancelled votes PIC, hash(vote), reason

LOG3 Votes to be counted PIC, hash(vote)

LOG4 Invalid votes hash(vote)

LOG5 Accounted votes hash(vote)

The audit application is also able to check the integrity of logs. Entries from LOG2 and LOG3

combined must equal to the content of LOG1. Similarly, entries from LOG4 and LOG5

combined must equal to the content of LOG3.

25

2.3.2 Shortcomings of the system used in 2005-2011

During the period from 2005 to 2011, the system architecture was similar to the one described

above, except it did not allow the voter to verify her vote by alternative channels other than her

computer. The problem with this protocol was that manipulations with the votes could remain

unnoticed by the voter as she has no real guarantee on how or even if her vote was cast. The

confirmation of the vote is displayed on the voter’s computer screen, but it is very easy to attack

the voter’s computer environment and relying on the same computer for verification, does not

achieve much against malware.

In the Parliament elections of 2011, the most severe and widely published attack was

demonstrated by a student, who wrote a prototype of a malware that was capable of tampering

with the elections. Different versions of the malware were able to block and even change the

original I-vote [16]. The student made use of the fact that the system used from 2005 to 2011

gave no reliable feedback to the voter concerning how the vote was actually received by the

server. An appeal demanding the revocation of all I-votes was also submitted to the NEC [3],

which even made it to Supreme Court of Estonia, but was dismissed on the grounds that the

person's right to vote was not violated [10].

Although the appeal was dismissed and no indication of the malware being used for other

purposes than mere demonstration, it reinforced the need for reliable verification. As the voter’s

computer cannot be trusted, the verification of the vote must be done via alternative channels.

2.3.3 Proposed verification protocol

The proposed verification system that was implemented in 2013 added a post-channel between

the state and the citizen to inform the voter how her vote was received by the server as it uses

voters’ mobile devices to verify the vote. The central idea is the following [14]:

When the voter makes her choice and sends the signed encryption of the vote and a random

number to the voting server, the server sends back a unique code, which is later used to

download the correct vote to the mobile device. (Figure 6)

26

Figure 6. Vote verification process

The unique code vr (as in vote reference, denoted as OTP in Figure 6) and a random number r

that was used to encrypt the vote are displayed to the voter as a QR code. The voter transfers

them to her mobile phone by taking a picture of the QR code. The voter then sends the received

vr to server from her mobile, which would identify the I-vote being verified and the server

returns the digitally signed I-vote to the smart device along with a list of candidates she might

have voted for.

The Verification Application cannot decrypt the I-vote but it knows the random number r used

in encrypting the vote and the public key of the I-voting system that the data is encrypted with.

The Verification Application will then create cryptograms to all the candidates in the candidate

list using the random number. Once it finds the cryptogram that matches the I-vote received

from the server, the voter’s choice is confirmed.

2.4 Internet voting projects in other countries

Although there are many countries with I-voting projects, two of the most successful countries

(besides Estonia) could be considered to be Norway and Switzerland. The next two sections

will give a brief overview of the I-voting projects in both of these countries.

2.4.1 Norway

The first pilot project for internet voting in Norway was conducted in 2011 during the local

government elections [19]. Internet voting was available only during the advance voting period

and voters in 10 municipalities were allowed to cast their vote electronically. A total of 27 557

voters, or 16.4% of the eligible internet voters, chose to vote via Internet. [19]. As this was the

27

first time the Norwegians could cast their vote electronically, this number is surprisingly high.

In comparison to the Estonian local government elections of 2005 (when the I-voting method

was first introduced), the percentage of I-voters was only 1,9%. This could be partly related to

the fact that the average voter turnout in Norway is significantly higher than in Estonia [42].

For example, the average turnouts for the Norwegian Parliamentary Elections in 2009 and 2013

were 76,37% and 78,23% respectively, while in Estonia, those numbers were 61,90% and

63,50% for the elections held in 2007 and 2011. The statistics indicate that Norwegian people

are more interested in taking part of the elections than Estonians. This might also mean that

they are more open to new voting methods. Two years later, during the Parliamentary elections

of 2013, the percentage of the votes cast over the Internet in the municipalities piloting Internet

voting was already as high as 36% [31]. Although these numbers show a rapidly rising

popularity of I-voting among the Norwegian people, it must be noted that I-voting is currently

available only in certain parts of Norway.

The Norwegian I-voting system architecture is similar to the Estonian one, although it holds

some differences. For a detailed description, the author refers to [19] and [39]. The main

components of the Norwegian system are:

Voting Application manages all interactions between the internet voting system and the voter.

It provides the user (voter) interface, downloads the Java-based secure voting client that

encrypts the ballots and sends them to the Vote Collector Server.

ID-portal authenticates the registered voters

Vote Collector Server (VCS) contains the electronic ballot box.

Return Code Generator (RCG) calculates and transmits the return codes via SMS.

The ministry servers consists of cleansing, mixing and counting servers. The cleansing server

is responsible for the cleansing process to eliminate multiple ballots from the same voter, ballots

from voters that also voted by paper ballot, and ballots from voters not on the voter list. The

mixing server mixes the ballots. The counting server decrypts the mixed ballots and tallies the

election results.

The I-voting process It starts by the voter logging on to a web-based voting application, where

she authenticates herself by means of an electronic ID. If the authentication is successful, the

system automatically checks the eligibility of the voter. If the voter is eligible, the voter is

28

presented with a list of candidates to choose from. Unlike the system implemented in Estonia,

the Norwegian method also allows the voter to cast a blank ballot. After the choice is made and

confirmed, the vote is encrypted and signed with the voter’s digital signature. Since personal

ID-cards in Norway do not have digital signatures, the voting system assigns one to each voter

taking part in the pilot [39]. Finally, the vote is transmitted to server to be stored in the electronic

ballot box

After the vote has been cast, the voter receives a SMS containing the return code corresponding

to the vote. This return code can be compared to the voter’s individual poll card, which has

been previously sent to her by mail, and which contains a list of all the available candidates and

their corresponding return codes. These return codes are individually calculated per voter prior

to the election, which makes it possible for the voter to verify that her vote was cast as intended.

Figure 7 illustrates the verification process visually. [39]

Figure 7. Vote verification process of the Norwegian system

What makes the Norwegian I-voting system different from the Estonian one is the use of polling

cards and the SMS-based post-channel for verification. The main drawback of the Norwegian

system is its unintuitive user interface as the voter must compare digital codes from the SMS

to the ones on the polling card (rather than simply be presented the name of the candidate) in

order to verify the vote. This might in turn have an effect on the voter turnout. Additionally, as

the polling cards are distributed to voters by mail and the return codes are sent via SMS, the

implementation of the system can be rather costly.

29

2.4.2 Switzerland

The Swiss internet voting project is one of the oldest in Europe as it began in 2000, when three

cantons – Geneva, Zurich and Neuchâtel – of the Confederation volunteered to implement

Internet voting. At that time, Geneva was the only Swiss canton, who had a computerized and

centrally maintained voter registry [30] and in 2004, after some preliminary tests in the year

before, it introduced Internet voting for the first time for cantonal and federal ballots. Four

municipalities were offered internet voting as a valid voting option and 21,8% of the eligible

voters chose to cast their vote online. The average turnout for these municipalities reached

58,35% [33], while the turnout for the whole canton was 57,1% [25]. As of June 2013, there

have been 30 different electoral opportunities to vote online in the canton of Geneva, though

most of them having involved referendums, rather than election of representatives or parties.

There have been four occasions, when all eligible voters of the Geneva canton have been

granted the option to vote online. On these four occasions, approximately 240 000 citizens were

able to cast their vote via Internet with the average percentage of I-voters being 18,3% [25].

The Geneva’s I-voting system makes use of voting cards that are sent out to the voters by mail

prior to the elections. The voting cards are only valid for the upcoming ballot and essentially

mark the person’s right to vote. In order to cast a ballot, the voter first connects to the Internet

voting website and SSL communication is established between the browser and the website.

The voter is then asked to identify herself to the ballot management system by entering a unique

identification number located on her voting card. A cryptographic hash function is applied on

the voting card number to produce an imprint, which is then sent to the voting system. The

system then uses a correspondence table drawn up at the stage of the print files generation to

determine the voting card number based on the imprint.

After accepting the legal notices and filling out the ballot, the voter enters her birth date and the

password from their voting card. Additionally, the voter selects her municipality of origin from

a random list. The completed ballot paper is the sent, via the secure channel, to the voting server.

The server decrypts and checks the authenticity of the voter's ballot paper, and performs a

syntax check on the ballot paper to confirm the integrity of the vote. Finally, the server sends

the voter confirmation of the date and time of her vote along with a control code, which

corresponds to the control code on the voting card, confirming the server received the vote.

What makes the Swiss I-voting scheme significantly different from the Estonian and Norwegian

schemes is the lack of post-channel verification protocol in order for the voter to verify how her

30

vote was actually received by the server. It also relies on voting cards for identification. This

makes them different from the polling cards in Norway, which are only used to verify how the

vote was actually cast. From the voter’s point of view, it does not matter much as both systems

require the use of external cards in the voting process and the usage is ultimately rather similar.

31

3. Security analysis of the Estonian I-voting system

This chapter provides a security analysis of the Estonian I-voting system using three different

attack tree methodologies. It begins by describing the concept of attack trees (Section 3.1) and

follows with giving an overview of the computational models of each methodology (Section

3.2). In Section 3.3, the author describes the formulated attack trees and the process of assigning

parameter values. The chapter is concluded with Section 3.4, which describes the simulation

process and its results.

3.1 Concept of attack trees

Attack trees provide a formal and a methodical approach to security analysis by using

conceptual diagrams to describe how an asset or a system might be attacked. The analysis

begins by identifying a primary threat, also called the root node, which directly inflicts damage

on the system. The primary threat is divided into sub-attacks (sub-nodes) until such a state is

reached, where it becomes impractical to further divide the resulting attacks. Such attacks, also

called leaf nodes, describe an attack on the lowest level and are connected with each other

through refinement nodes. These refinement nodes function similarly to logical AND and OR.

In order to reach the goal of an AND-node (conjunctive), all of its child nodes need to be

executed, whereas in order to reach the goal of an OR-node, at least one of its child nodes needs

to be executed. An example of an attack tree is shown in Figure 8.

Figure 8. Example attack tree

In order to materialize the primary threat and publish confidential data in the example above,

the attacker must obtain the encrypted file as well as decrypt it (because the root node itself is

32

an AND-node). There are two options to obtain the encrypted file: either by breaking into the

system and stealing it, or by bribing an employee. Similarly, the file can be decrypted either by

using a key-logger, or by brute forcing the password.

Figure 8 shows the possible attack vectors of the attacker, but it does not speculate on which

attack(s) the attacker actually decides to execute. In order to get a sense of the potential

behaviour of the attacker, some sort of parameters must be associated with the nodes and

computational algorithms are needed to perform a quantitative security assessment.

The attack tree method derived from the concept of threat trees, which were used for tasks like

fault assessment and vulnerability analysis, and was adapted to information security by Bruce

Schneier in 1999 [36, 4]. Since then, the attack tree method has seen a significant development

as new models have been developed and the old ones improved [23].

3.2 Models used in the analysis

The following sub-sections (3.2.1 to 3.2.3) describe the three different attack tree

methodologies used to realize the security analysis of the Estonian internet voting system in the

present thesis. Although the methodology proposed by Buldas et al. [4], and described in sub-

section 3.2.1, could also be considered as a parallel model (due to the fact that all attacks in this

model are executed simultaneously), for the sake of distinction, it is denoted as BLPSW4 model,

and with the Parallel model in Sub-section 3.2.2, the author refers to the parallel model

described in [22].

3.2.1 BLPSW model

The models prior to the one proposed in [4] only considered one specific parameter for the

nodes at a time, such as the cost or probability of the attack [36, 27]. In real life, however, it is

reasonable to assume that the decision making process of the attacker is more complicated as

there are many parameters the attacker considers simultaneously before concluding whether to

launch the attack or not. This led the authors of [4] to develop a model that adopts a game-

theoretic approach to attacker’s decision making process and supports the use of multi-

parameter nodes in the construction of attack trees.

4 BLPSW comes from the initials of the authors.

33

The model views the attack as a game played by a rational attacker, meaning she is only willing

to play the game if it is profitable for her. The model uses following parameters in order to

decide about the profitability of the attack:

 Gains – gains of the attacker, in case the attack is successful

 Costs – the cost of the attack

 𝑝 – success probability of the attack

 𝜋+ – expected penalty, in case the attack was successful

 𝜋−– expected penalty, in case the attack was not successful

Here, the expected penalties can be computed as 𝜋+ = 𝑞+ ∙ 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠+ and 𝜋− = 𝑞− ∙

𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠−, where 𝑞+ denotes the probability of getting caught in case the attack was

successful, while 𝑞− denotes the probability of getting caught in case the attack was not

successful. Similarly 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠+ and 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠− denote the expected penalties the attacker

must pay if she is caught, in case the attack was successful or not. The overall value of the

game, i.e. the expected outcome for the attacker, can be computed as:

Outcome = −Costs + 𝑝 ∙ (Gains − 𝜋+) − (1 − 𝑝) ∙ 𝜋−

It is assumed that the attacker behaves in a rational way, meaning that she is only willing to

attack if Outcome > 0.

The parameters of the refinement (non-leaf) nodes are computed with the following routines:

For an OR-node with child nodes with parameters (Costsi, 𝑝𝑖, 𝜋𝑖
+, 𝜋𝑖

−)(𝑖 = 1,2) the parameters

(Costsi, 𝑝𝑖, 𝜋𝑖
+, 𝜋𝑖

−) are computed as follows:

(Costs, 𝑝, 𝜋+𝜋−) = {
(Costs1, 𝑝1, 𝜋1

+, 𝜋1
−), if Outcome1 > Outcome2

(Costs2, 𝑝2, 𝜋2
+, 𝜋2

−), if Outcome1 ≤ Outcome2
 ,

where Outcome𝑖 = 𝑝𝑖 ∙ Gains − Costs𝑖 − 𝑝𝑖𝜋𝑖
+ − (1 − 𝑝𝑖) ∙ 𝜋𝑖

−.

For an AND-node with child nodes with parameters (Costsi, 𝑝𝑖, 𝜋𝑖
+, 𝜋𝑖

−)(𝑖 = 1,2) the

parameters (Costsi, 𝑝𝑖, 𝜋𝑖
+, 𝜋𝑖

−) are computed as follows:

Costs = Costs1 + Costs2, 𝑝 = 𝑝1 ∙ 𝑝2, 𝜋+ = 𝜋1
+ + 𝜋2

+,

𝜋− =
𝑝1(1 − 𝑝2)(𝜋1

+ + 𝜋2
−) + (1 − 𝑝1)𝑝2(𝜋1

− + 𝜋2
+) + (1 − 𝑝1)(1 − 𝑝2)(𝜋1

− + 𝜋2
−)

1 − 𝑝1𝑝2

34

The formula for 𝜋− represents the average penalty of an attacker, assuming that at least one of

the two child-attacks was not successful. It is convenient to subsequently denote the cost of the

attack and the expected penalties for the node 𝑖 as Expenses𝑖 = Costs𝑖 − 𝑝𝑖𝜋𝑖
+ − (1 − 𝑝𝑖) ∙

𝜋𝑖
−.

3.2.2 Parallel model

The model described in the previous section provided simple, but effective semantics for

computing the expected outcome for the attacker. The model, however, had several drawbacks.

Most notably, it was inconsistent with the framework proposed by Mauw and Oostdijk [27],

which stated that the semantics of the tree should remain unchanged when the underlying

Boolean formula is transformed to an equivalent one. For example, let us suppose we have an

attack tree 𝑇1 = 𝐴 ∨ (𝐵 ∧ 𝐶) having parameters Gains = 5000, 𝑝𝐴 = 0.5, 𝑝𝐵 = 0.5, 𝑝𝐶 = 0.4,

Expenses𝐴 = 1500, Expenses𝐵 = 1000 and Expenses𝐶 = 500. According to the

computational rules of [4], we get Outcome1 = 1000. Converting the underlying Boolean

formula to conjunctive normal form (CNF), we get 𝑇2 = 𝐴 ∨ (𝐵 ∧ 𝐶) = (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶).

As the parameters for the resulting tree 𝑇2 remain the same, we get Outcome2 = −500. The

expected outcomes are different, although the corresponding Boolean formulas are equivalent.

This comes from the fact that when transforming the formula to CNF in the example above, the

model of [4] creates a duplicate node of the leaf 𝐴 and instead of having just one node

throughout the computational process, we would actually have 𝐴1 and 𝐴2.

There also were problems with the computational model regarding the OR-nodes. It was

assumed that the attacker would only choose to execute one attack in an OR-node (the one with

the highest outcome), whereas in real life, it would make sense for the attacker to launch several

attacks, if the success probabilities are high, while expected expenses are low. Additionally, the

decision in the OR-node was made comparing the outcomes of the child nodes using the global

Gains parameter. This means that each successful sub-attack would give the attacker the full

outcome, which is clearly an overestimation [22].

The proposed model by Jürgenson and Willemson [22] overcomes these issues by providing

more accurate semantics. In the model, the attacker first constructs an attack tree and evaluates

the parameters of its leaves. The attacker then considers all potential attack suites (subsets) 𝜎 ⊆

𝒳 = {𝑋𝑖: 𝑖 = 1, … , 𝑛}, evaluates the outcome for suites that materialise the root attack and

launches the attack suite with the highest outcome.

35

The attack tree can be viewed as a Boolean formula 𝐹 composed of the set of variables 𝜎 ⊆

𝒳 = {𝑋𝑖: 𝑖 = 1, … , 𝑛}, which correspond to the elementary attacks. Satisfying assignments 𝜎 ⊆

𝒳 of this formula correspond to the attack suites sufficient for materialising the root attack and

the exact outcome of the attack can be computed with the following formula:

𝑂 = 𝑚𝑎𝑥{𝑂𝜎 ∶ 𝜎 ⊆ 𝒳, 𝐹(𝜎 ∶= 𝑡𝑟𝑢𝑒) = 𝑡𝑟𝑢𝑒}

Here, Oσ denotes the expected outcome of the attacker if she decides to try the attack suite σ

and 𝐹(𝜎 ∶= 𝑡𝑟𝑢𝑒) denotes evaluation of the formula 𝐹, when all of the variables of σ are

assigned the value 𝑡𝑟𝑢𝑒, while all other variables are assigned the value 𝑓𝑎𝑙𝑠𝑒. The expected

outcome 𝑂𝜎 of the attack suite is computed as follows:

𝑂𝜎 = 𝑝𝜎 ∙ 𝑔 − ∑ 𝐸𝑖

𝑥𝑖 ∈ 𝜎

Here, 𝑝𝜎 denotes the success probability of the attack suite 𝜎, 𝑔 denotes the expected gains and

𝐸𝑖 denotes the expenses of carrying out the leaf attack, which can be computed with:

𝐸𝑖 = 𝑐𝑖 + 𝑝𝑖 ∙ 𝜋𝑖
+ + (1 − 𝑝𝑖) ∙ 𝜋𝑖

−

It must be noted that as the full suite 𝜎 is used to mount the attack, it may contain redundancy

as there may be subsets 𝜌 ⊆ 𝜎 that are sufficient for materialising the root attack. Therefore,

the elementary attacks in the 𝜎 \ 𝜌 that do not contribute to materialising the root attack, affect

the success probability of 𝑝ρ with (1 – 𝑝𝑗), and the success probability of the entire attack suite

𝜎 can be computed with:

𝑝𝜎 = ∑ ∏ 𝑝𝑖 ∏ (1 − 𝑝𝑗)

𝑋𝑗 ∈ 𝜎\𝜌𝑋𝑖 ∈ 𝜌𝜌 ⊆ 𝜎

ℱ(𝜌∶=𝑡𝑟𝑢𝑒)=𝑡𝑟𝑢𝑒

The downside of this model is the increase in computational complexity and therefore, this

model is impractical to be used with very large attack trees.

3.2.3 Serial model

The previous two models can be considered parallel models as the elementary attacks take place

simultaneously and the success or failure of such attacks are not considered by the attacker’s

decision making process. In practice, however, the attacker is able to order her actions and take

alternative routes based on the results of previously executed attacks. She might stop trying

altogether if some critical subset of elementary attacks has already failed or succeeded [21].

36

The model proposed in [21] can be considered as a serial model as it extends the basic parallel

model by introducing temporal order to the elementary attacks and gives the attacker the

possibility to skip some of them or stopping the attack before all of the elementary attacks have

been tried. It also generalizes the attack tree approach to accommodate arbitrary rooted directed

acyclic graphs (RDAG-s).

As the complexity of computation algorithms with this approach is much higher than in the

parallel models described above, this chapter provides an abridged description of the model and

the author refers to [21] for a more detailed one. In the Serial model, the attacker takes the

following steps:

1. Creates an attack RDAG with the set of leaf nodes 𝒳 = {X1,X2, . . . ,Xn}.

2. Selects a subset 𝑆 ⊆ 𝒳 materialising the primary threat and considers the

corresponding sub-tree.

3. Selects a permutation 𝛼 of 𝑆.

4. Based on the sub-tree and permutation 𝛼, computes the expected outcome.

5. Maximises the expected outcome over all the choices of 𝑆 and 𝛼.

Since only one subset 𝑆 and the corresponding subtree are relevant in step 4, it can be assumed

with any loss of generality that 𝑆 = 𝒳 and the attacker’s behaviour for permutation α is

described in Algorithm 1 (Figure 9).

Figure 9. Algorithm 1 of the Serial model

The expected outcome of the attack based on permutation α can be computed with:

37

𝑂𝛼 = 𝑝α ∙ 𝑔 − ∑ 𝑝𝛼,𝑖

𝑋𝑖𝜖 𝒳

 ∙ 𝐸𝑖

Here, 𝑝𝛼 denotes the success probability of the primary threat and 𝑝𝛼,i the probability that the

node 𝑋𝑖 is encountered during Algorithm 1.

For better describing the computational process, let us have an attack tree with the leaf nodes

𝑋1, . . . , 𝑋𝑛 with the corresponding success probabilities 𝑝1, . . . , 𝑝𝑛 that are independent from one

another. Considering the permutation 𝛼 𝜖 𝑆𝑛, we introduce two new parameters to each node

𝑌, namely 𝑌. 𝑡 and 𝑌. 𝑓, which denote the probabilities that the node has been proven to be

either 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒. The parameters for each leaf node are initially set 𝑌. 𝑡 = 𝑝𝑖 and 𝑌. 𝑓 =

1 − 𝑝𝑖, whereas the parameters for all other nodes are set 𝑌. 𝑡 = 𝑌. 𝑓 = 0. These values will be

incrementally adjusted until we have 𝑅. 𝑡 = 𝑝𝛼 for the root node 𝑅. The parameters for the

parent nodes are computed using the parameters of the child nodes. For an AND-node 𝐴 with

children 𝐵 and 𝐶, we set:

𝐴. 𝑡 = 𝐵. 𝑡 ∙ 𝐶. 𝑡

𝐴. 𝑓 = 𝐵. 𝑓 + 𝐶. 𝑓 − 𝐵. 𝑓 ∙ 𝐶. 𝑓

For an OR-node 𝐴 with children 𝐵 and 𝐶, we set:

𝐴. 𝑡 = 𝐵. 𝑡 + 𝐶. 𝑡 − 𝐵. 𝑡 ∙ 𝐶. 𝑡

𝐴. 𝑓 = 𝐵. 𝑓 ∙ 𝐶. 𝑓

Algorithm 2 (Figure 10) is used to calculate the probabilities 𝑝𝛼,𝑖.

38

Figure 10. Algorithm 2 of the Serial model

Similarly to the parallel model described in the previous section, a major drawback of the serial

model is the immense increase in computational complexity.

3.3 Constructing the attack trees

There is no general agreement on what the primary threat should be for online voting as various

researchers label the root attack differently. The author, himself, is most inclined towards the

categorization proposed in [17], which will also be used in this thesis. Following this

classification, three primary attacks are identified:

Manipulation Attack attempts to change the outcome of the elections by altering the voting

results. In the context of the present thesis, this refers to effectively changing a certain number

of votes in favour of the attacker’s candidate of preference without the attack being discovered.

Revocation Attack attempts to change the election outcome by cancelling unsuitable voting

results. In the context of the thesis, this attack assumes that a proportion of the I-voters will to

vote again on the Election Day after the I-voting results are revoked. This attack benefits those

parties, who receive proportionally less I-votes than regular votes.

Reputation Attack attempts to decrease voter confidence in the voting method and discredit

Internet voting as a whole. As a result, a fraction of the people not willing to vote online, might

39

not vote at all. Additionally, this attack may assume that vote distribution is different among

the potential voters and I-voters.

This thesis aims to focus on the Manipulation and Revocation attacks, and more specifically on

potential malware attacks. The concrete attack trees corresponding to the primary threats are

described in more detail in the following sub-sections (3.3.1 to 3.3.3).

In order to assign concrete values to the parameters, the author used the help of various cyber-

related acquaintances (friends and lectors), concrete computations, extensive Internet research

and in some cases also intuition. Some of the values were also determined with a reference to

the values given in [354]. At times, the author also rounded some of the values to get even

numbers. When assigning intuitive values it is reasonable to follow at least some sort of a

methodical approach. Instead of directly coming up with a numeric value for the probability of

the attack, it is easier to divide the attacks into verbally labelled groups that correspond to the

likelihood of a given attack. The author divided the attacks into six verbal groups and assigned

each of them a range of numeric values (Table 4).

Table 4. Verbally labelled groups of attack probabilities

Likelihood Probability range

Unrealistic 𝑝 < 0.001

Very unlikely 0.001 < 𝑝 ≤ 0.05

Unlikely 0.05 < 𝑝 ≤ 0.1

Feasible 0.1 < 𝑝 ≤ 0.5

Likely 0.5 < 𝑝 < 0.8

Highly likely 𝑝 ≥ 0.8

This way, the specific value to the attack is assigned in two steps. First, the attack is assigned

to one of the six verbally labelled groups and then a numeric value from the corresponding

range is determined.

For assigning the parameter values for potential penalties, the following approach was adopted.

Since there is no empirical data that would suggest what the potential penalties would be in

case of a large-scale election fraud in Estonia, it is very difficult to assess the numeric values.

The actual penalties are likely to depend on many factors, such as the volume and severity of

the act committed, the competence of legal representation, and other factors. In order to come

up with some estimates, the attacks in this thesis are compared to the paragraphs of the Estonian

40

Penal Code and maximum penalties are used in computations5. This should give us rough

estimates of what the penalties would actually be. Since most of the penalties for the attacks

described in the thesis include actual prison time, we have to calculate that time into money. In

order to get the base amount, we can use the (normal) hourly income of the attacker. Assuming

that normally (with a legal job) the attacker would make €15 per hour, we can compute the base

cost of spending one year in prison as 15 ∙ 24 ∙ 365 = €131 400. However, we must also

consider the cost of legal representation, protracted court cases, the possible involvement of

multiple people as well as long-term loss of trust. Therefore, the base amount is multiplied with

a factor of 5. Five years in prison, for instance, would then be equal to 131 400 ∙ 5 ∙ 5 =

€3 285 000. Since we have to consider two types of potential penalties, namely when the attack

is successful and when it is not, the author multiples the corresponding values with factors of

0.8 and 0.2 respectively. Therefore, five years of imprisonment would make 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠+ =

3285000 ∙ 0.8 = €2 628 000 and 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠− = 3285000 ∙ 0.2 = €657 000.

Due to length constraints and the main focus of the thesis, the parameter evaluation process is

described in detail only for the Malware sub-attack of the Manipulation Attack. The process is

similar for all other attacks.

3.3.1 Manipulation Attack

Manipulation Attack assumes that the attacker is able to effectively change a certain number of

votes without the attack being discovered. Here, this number is set to 5000 votes6. As for the

expected gains, the authors of [28] used a value of 100 million Estonian kroons. Due to

appreciation of everyday life, let us assume this value to be risen to 10 million Euros.

Successful Manipulation Attack can be carried out either by attacking the voter and her

computer (and mobile) environment, or by attacking the Central System (Figure 11).

5 The justification for taking the maximum sentences is that the paragraphs in the Penal Code define maximum

penalties, but do not specify the extent of the crimes. For example, strictly according to the paragraphs, the

maximum penalty for infecting one computer and infecting 10000 computers is the same. The author considers

large-scale election fraud as one of the most severe crimes and therefore uses the maximum penalty values.
6 The number was chosen, because it is assured to gain one additional seat in the Parliament with approximately

5000 votes. Also, changing 5000 votes will certainly fall into a category of large-scale election fraud.

41

Figure 11. Attack tree for the Manipulation Attack

There are two ways to attack the voter. The attacker can either develop and distribute malware

that is capable of modifying the original vote, or develop fake voting applications and get

enough voters to download them. As for attacking the Central System, the attacker can either

compromise the Vote Storage Server, the Vote Counting Application or the data carrier that is

used to transfer the list of votes from VSS to VCA. The full attack tree for the Manipulation

Attack is presented in Appendix 1.

The author lists altogether three types of possible malware. Each of them must be able to

effectively modify 5000 votes in favour of attacker’s candidate of preference. The basic tree

structure is the same for all three malware types, consisting of three sub-nodes: development,

distribution and avoiding detection. The first two are self-explanatory, the last one is

necessary to influence the overall success probabilities of each malware attack vector

(described in more detail below).

The probability of a successful development process of the malware is assumed to be 95%

irrespectively from the malware type, but as the complexity level of each type varies, the

development costs are different for each case. The probabilities of getting caught for developing

malware is assumed to be 5% in all cases.

After the developing process, the attacker needs to distribute the malware to voters’ computers

(and mobile devices), where it can start changing the behaviour of the application(s). Since

online voting period only lasts for seven days, it is not practical for the attacker to start

addressing the distribution issues only after the final product of malware is finished. It is

assumed that the attacker distributes the voting malware during the online voting period via

previously obtained botnet. Botnet is built by the attacker herself or purchased from external

42

parties. Here, buying botnet does not presume an already existing botnet in Estonia, but rather

that someone is willing to build and sell it to the attacker. It is assumed that the attacker is

significantly less likely to be caught if she buys the botnet instead of creating it herself. The

respective probabilities in case the attack is successful are assumed to be 5% (buy) and 50%

(create). In case the attack is not successful, the respective probabilities are 1% and 10%. These

values are the same for each type of malware.

According to [15], a suggested setup for building a botnet is expected to cost $595 (~€430) for

the first month of operations and an additional $225 (~€160) per month for sustaining the

operations. In order to calculate the cost of the botnet needed for a specific type of voting

malware, the author assumes that 1500 machines are added monthly to the botnet on average.

The author also assumes it takes the attacker about one month to research the subject and

establish the basis of the botnet. For additional months, it is assumed it takes the attacker 40

hours of work per month to sustain the operation. The cost of creating a botnet can be then

calculated as 𝑐𝑜𝑠𝑡 = 430 + 160 ∙ 50 +
𝑁

1500
∙ (160 + 40 ∙ 50), where N denotes the number of

required machines in the botnet.

For the cost of buying a botnet, the author refers to [29], which states that a botnet with 100

000 nodes was put on sale with $36000 (~€26000). For the sake of simplicity, the author

assumes that the relation between the size of the botnet and its cost is linear. Assuming it takes

approximately one month to find the right seller, the cost of the botnet for each type of voting

malware can be computes as 𝑐𝑜𝑠𝑡 =
𝑁

100000
∙ 26000 + 20 ∙ 8 ∙ 50, where 𝑁 denotes the number

of required machines in the botnet.

The attacker is also required to take steps to ensure the malware will not be discovered, as the

act of large-scale vote manipulation must remain secret. As the detection probability varies

from the type of malware used, this is regulated with the node Avoid detection in the attack tree

and it contributes to the success probability of the overall sub-attack.

As for potential penalties, according to §2161 of the Estonian Penal Code [11], development of

malicious malware for the purposes of carrying out a computer-related crime is punishable up

to three years of imprisonment. For the distribution penalties, in addition to §2161, §208 also

applies, which states that the dissemination of spyware, malware or computer viruses is

punishable up to five years of imprisonment when a significant damage is caused. We must also

include §163, which states that causing the destruction, damaging, elimination or falsification

43

of election or voting documents, or incorrect counting of votes is punishable up to one year of

imprisonment. Therefore, for developing such malware, the penalties are 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠+ = 0.8 ∙

3 ∙ 657000 = €1 576 800 and 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠− = 0.2 ∙ 3 ∙ 657000 = €394 200. For distributing

such malware, the penalties are 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠+ = 0.8 ∙ (3 + 5 + 1) ∙ 657000 = €4 730 400 and

𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠− = 0.2 ∙ (3 + 5 + 1) ∙ 657000 = €1 182 600. It is assumed that the same

potential penalties apply for each type of malware.

The three types of malware are listed in Table 5.

Table 5. Types of malware

Malware type Vote Modifying

Malware

Re-voting Malware Self-voting Malware

Abbreviation VMM (VCM/VBM) RVM SVM

Vote modification type Change/block Change Change

Vote modification instant During the legitimate

voting process

After the legitimate

voting process

Any time during the

online voting period

Official voting

application required

YES YES NO

Official verification

application required

YES NO NO

Learning of the PIN-

codes of ID-card

Not needed During the voting

process

Before and during the

voting period

Vote Modification Malware (VMM) activates itself when the victim launches the voting

application and starts the voting process. It must be able to bypass the verification protocol,

meaning that both the voters’ computer and her mobile device must be infected. In order to

know, which vote to “verify”, the infected voting application must send the corresponding

information to the infected verification application.

When the voter confirms her choice, the malware either changes the vote (VCM) or blocks it

entirely (VBM). The latter one can be considered slightly easier (i.e. less costly) to develop as

the application does not have to actually send the vote to the Central System, and blocking the

vote can be done as simply as cutting off the connection to the VFS. On the other hand, it is

also less effective as it would require significantly more computers to be infected in order to

produce effectively similar results. For example, let us propose a situation, where candidate A

receives 100 votes, while candidate B receives only 40. In order to alter the I-voting result in

such a way that A and B would receive the same number of votes, it is necessary to block 60

44

votes for candidate A. However, if we would change the votes (from A to B) instead of blocking

them, it is only necessary to modify 30 votes.

In real life, of course, there are several different candidates and the number of votes required to

be blocked depends on the number of votes a certain party received. In order to produce similar

results as changing 5000 votes in favour of a certain party, the necessary number of blocked

votes can be computed with the following formula:

𝑉𝑏𝑙𝑜𝑐𝑘 = 𝑁 −
𝑉𝑝

𝑉𝑝+
∙ 𝑁

Here, 𝑁 denotes the number of total I-votes, 𝑉𝑝 denotes the number of votes a certain party 𝑝

received and 𝑉𝑝+ denotes the number of votes party 𝑝 received plus 5000 votes. In the

Parliamentary elections of 2011, there were four parties that obtained seats in the Parliament

[38]. Table 6 shows the number and percentage of I-votes each party received. It also shows

how many votes need to be blocked for different parties in order to achieve similar results as

changing 5000 votes.

Table 6. Required number of blocked votes to produce similar results as changing the votes

Party RE IRL SDE KE

Actual results (votes) 52015 35735 25332 13892

Actual results (%) 36,95 25,39 18,00 9,87

Results with 5000 changed votes in favour of the party

(votes)

57015 40735 30332 18892

Results with 5000 changed votes in favour of the party (%) 40,50 28,94 21,55 13,42

Number of votes required to be blocked in order to achieve

the same results as changing 5000 votes

12344 17278 23204 37255

As it can be seen from Table 6, for each party, the attacker must block at least twice as many

votes to achieve the effect of 5000 changed votes. The Central Party (KE), for instance, would

need to infect more than seven times as many devices using Vote Blocking Malware instead of

45

Vote Changing Malware. Therefore, changing the votes instead of blocking them, proves to be

significantly more effective in terms of altering the results of the election.7

According to the author of the proof-of-concept malware in 2011 (see Sub-section 2.3.2 for

more details), developing such a malware is very simple and it only takes a few hours [32]8.

However, the aforementioned malware did not handle the situation, where the voter can verify

her vote via alternative channels nor did it take any measures to avoid getting detected. In order

to successfully carry out the Manipulation Attack, the developed malware needs to address both

of these issues.

The author of this thesis assumes that a skilled attacker is able to finish developing malware

before the third day of the I-voting period. Here, it must be noted that the attacker can make

preparations and start code writing before the official voting applications are made available.

Let us assume that the attacker begins researching the topic and writing preliminary code four

weeks before the I-voting period. This means 8 hours of work for 20 days. Additionally, let us

assume that on the first two days of the I-voting period, the attacker works with double

workload. This makes the development costs to be 𝑐𝑜𝑠𝑡 = (20 + 2 ∙ 2) ∙ 8 ∙ 50 = €9600. Here

(and throughout the thesis), the hourly rate of the attacker is assumed to be €50. As mentioned

before, developing malware that simply blocks the vote might be considered less costly. Hence,

20% of the computed cost is deducted for the Vote Blocking Malware.

Given that the malware has only five days to modify enough votes, let us compute, how many

computers should be infected in order to change 5000 votes. Let 𝑥 be the number of devices

necessary to infect in order to change 5000 votes. At first glance, it is tempting to set 𝑥 = 5000.

However, in order to change 5000 votes, it is not sufficient to infect only 5000 devices, as there

are many factors that must be taken into account. First of all, it is reasonable to assume that

some of the infected machines belong to citizens that are not eligible to vote and therefore their

computers are not used to cast a vote (at least by themselves). Let us suppose that out of the

infected machines, 90% belong to eligible voters. Secondly, it can be assumed that among

eligible voters, there are those, who use other voting methods or do not vote at all. The voter

turnout for the Parliamentary elections in 2011 was 63,5%, out of which 24,3% voted online

(Table 1). The above will contribute to 𝑥 with factors 0.9, 0.635 and 0.243. Thirdly, it does not

7 Here, only I-votes are considered. If we were to consider paper votes as well, the required number of blocked

votes would be significantly higher.
8 The author is inclined to consider it as a slight understatement.

46

make sense to consider votes that are already cast in favour of the attacker’s preference. Let us

assume that party A would normally receive 10% of the overall Internet votes. This makes the

percentage of suitable votes (i.e. votes that are to be changed) to be 90% and it will contribute

to 𝑥 with the factor of 0.9. Fourthly, as the attacker must infect both the computers and mobile

devices of the voters’, it is reasonable to assume that the pools for infected computers and

infected mobile devices will likely differ from each other. Let us suppose that they overlap by

70%, therefore contributing to 𝑥 with the factor of 0.7. Finally, it is also possible that the

infected machine was used to cast the vote before the infection took place. Since it was

previously stated that the author assumes the actual vote modification will take place only in

the last five days of the I-voting period, it contributes to 𝑥 with the factor of
5

7
. Of course, it

must also be noted that several people may use the same computer to cast the vote. The author

assumes that there are approximately 1,5 people per computer.9 Following this reasoning, we

can compute 𝑥 as following:

𝑥 =
5000 ∙ 7

0.9 ∙ 0.635 ∙ 0.243 ∙ 0.7 ∙ 0.9 ∙ 5 ∙ 1.5
≈ 53 000

Therefore, in order to change 5000 votes over the period of five days, the attacker would need

to infect about 53000 computers. From this, a general formula can be derived to calculate the

relation between the number of days the malware is active and the required number of infected

machines:

𝑥 =
𝑁 ∙ 𝑃

∏ 𝑓𝑖 ∙ 𝑑𝑖∈ℐ

Here, 𝑥 denotes the required number of infected machines, 𝑁 denotes the number of votes that

are to be changed, 𝑃 denotes the I-voting period, ∏ 𝑓𝑖𝑖∈ℐ denotes the product of different factors

that affect the number of required infected machines, such as percentage of eligible voters or

voter turnout (different factors affect different types of malware) and 𝑑 denotes the number of

days the malware is active.

Figure 12, illustrates this relation visually for each type of malware.

9 There are no statistics available by the Statistics Estonia for the average number of computers per household in

Estonia. However, it is known that the average size of a household is 2,3 people [A39]. Considering that not every

person of a household is allowed to vote and as there are households with several computers, the author concludes

a rough estimate of 1,5 to be used in the calculations.

47

Figure 12. Relation between required number of infected machines and malware’s operating period

As seen from Figure 12, following the same computational logic, in order to produce the same

results with Vote Blocking Malware, the attacker would need to infect about 40% of the entire

electorate. Considering that compromising mobile devices requires similar number of

infections, it seems that distributing malware on such a scale without detection is unrealistic in

the Estonian context. The author assumes the probability of infecting 53 000 computers is about

5% and the probability of infecting the same number of mobile devices 0,1%. According to the

assumptions made in Section 3.3 between the size of the botnet and its price, the cost of creating

such a botnet is 𝑐𝑜𝑠𝑡 = 8430 +
53000−1500

1500
∙ 2160 ≈ €82 500 and the cost of buying such

botnet is 𝑐𝑜𝑠𝑡 =
53000

100000
∙ 26000 + 8000 ≈ €22 000.

Although the success probability of distribution also depends on the type of the malware (Vote

Blocking Malware requires more infections than Vote Changing Malware), it is not actually

necessary to produce sub-trees for the mobile and PC malware distribution processes. Since we

are using the example of party A, it is necessary to infect approximately seven times as many

devices and as the success probability of distributing VCM is already rather low, the probability

of distributing VBM is effectively close to zero.10 Instead of duplicating the attacks in the

10 Here, the relation between the size of the botnet and the probability of infecting additional machines is assumed

to resemble a logistic sigmoid function. This means that the larger the botnet is, the more difficult it is to gain

additional bots.

0

1

2

3

4

5

6

7

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

N
u

m
b

er
 o

f
d

ay
s

m
al

w
ar

e
is

 a
ct

iv
e

Number of infected machines

VCM VBM RVM SVM

48

malware distribution branch, we can produce similar result by lowering the success probability

of development costs of VBM since they are connected with an AND-node.

As for the detection probability, NEC has in its disposal the help of CERT-EE along with the

help of Estonian Cyber Defence League and a network of volunteers who monitor the Internet

activity with a peaked interest during the voting period. The author assumes that a large-scale

network of infected machines is detected with a probability of 95%.11

Re-voting Malware activates itself when the victim launches the voting application and starts

the voting process (similarly to VMM). However, RVM does not immediately change the vote,

but merely records the PIN-codes of user’s ID-card. Sometime later, when the voter re-inserts

her ID-card into the computer, the malware secretly casts another vote in the background. Since

the victim is not aware of this process, the malicious vote is not verified by the user.

It is also possible that the victim leaves her ID-card into the computer after the voting process.

In this case, the malware would wait for a certain period of time (e.g. 30 minutes) to allow the

user to verify her original vote and only then would cast a new vote. If the malware would vote

again immediately after the voting process, the verification of the original vote could fail and

thus compromise the attack. RVM is similar to the malware proposed by a group of experts in

the security analysis of the Estonian I-voting scheme in [A40].

The benefit of RVM is that the attacker does not need to infect mobile devices and can,

therefore, cut back on the development costs. Still, the RVM is likely to be slightly more

complicated than the PC part of the VCM. Assuming that RVM is 40% more costly to develop

than the PC part of VCM, which in turn forms 50% of the overall development costs of VCM,

the cost of RVM is 𝑐𝑜𝑠𝑡 =
9600

2
∙ (1 + 0,4) = €6720.

Computing the approximate number of machines required to be infected in order to change

5000 votes is similar as shown above, although there are some differences. As there is no need

to infect mobile devices, the factor of 0,7 does not contribute to 𝑥. There is, however, the need

for the ID-card to be in the computer, either by the voter re-inserting it during the voting period,

or simply by not removing it after the voting process. Let us suppose that 10% of the people re-

uses the ID-card sometime later during the voting period, and 10% will not remove the card

11 It must be noted that the botnet would have to avoid large-scale detection throughout the infection period.

49

from computer after casting the vote.12 As these percentages may overlap, this contributes to

the 𝑥 with the factor of 0,1 + 0,1 − 0,1 ∙ 0,1 = 0,19. Additionally, there are bound to be people

who will use Mobile-ID for authentication and digital signing, ruling out the possibility of

malware learning the PIN-codes from the ID-card. In 2011, 1,9% of the voters used Mobile-ID

(Table 1). Since the Parliamentary Elections of 2011 was the first time when Mobile-ID could

be used in voting, the percentage of users was expectedly low. In the European Parliamentary

elections of 2014, this percentage was already as high as 11% (Table 1) and the author expects

it to be at least 10% for the Parliamentary Elections of 2015. Therefore, the infected machines

required to change 5000 votes, can be computed as:

𝑥 =
5000 ∙ 7

0.9 ∙ 0.635 ∙ 0.243 ∙ 0.9 ∙ 5 ∙ 1.5 ∙ 0.19 ∙ 0.9
≈ 218 000

Infecting more than 200 000 machines without large-scale detection is arguably unrealistic in

the context of Estonia. Since it was previously assumed that the probability of infecting 53 000

machines is about 5%, the probability of infecting 218 000 machines is presumably less than

0,05%.13 The cost of creating such botnet is 𝑐𝑜𝑠𝑡 = 8430 +
218000−1500

1500
∙ 2160 ≈ €320 000

and the cost of buying such botnet is 𝑐𝑜𝑠𝑡 =
218000

100000
∙ 26000 + 8000 ≈ €65 000.

Self-voting Malware (SVM) activates itself as soon as the computer becomes part of the botnet

and starts collecting the PIN-codes of voters’ ID-cards. SVM does not require for the official

Voter Application to be downloaded to the voter’s computer, as it is capable of casting a vote

without it. During the online voting period, the malware uses previously collected PIN-codes

of ID-cards to cast a malicious vote secretly in the background without the knowledge of the

voter. Since it is not required to modify an existing program, the development costs of SVM

can be considered lower than the other types of malware. The author assumes it costs 50% less

than the PC part of VCM, which makes the development costs to be 𝑐𝑜𝑠𝑡𝑠 =
9600

2
∙ (1 − 0,5) =

€2400.

Since the Voting Application is not required, the necessary number of infected machines does

not depend on the overall voter turnout nor on the percentage of I-voters. The required number

is affected by the eligible voters (factor of 0,9), suitable votes (0,9), the number of average

people per computer (1,5), the percentage of PIN-codes the malware learns before and during

12 During the 30 minute window.
13 Again, the relation is presumed to resemble a logistic sigmoid function.

50

the voting period (the author assumes the factor to be 0,6) and the percentage of voters using

the ID-card during the voting period (assuming 25% of people using the ID-card for Internet

voting or for other purposes during the election period). This makes the necessary number of

infected machines to be:

𝑥 =
5000

0.9 ∙ 0.9 ∙ 1.5 ∙ 0.6 ∙ 0.25
≈ 27 000

The author assumes that the probability of creating a botnet of such magnitude is 30%. The cost

of creating such botnet is 𝑐𝑜𝑠𝑡 = 8430 +
27000−1500

1500
∙ 2160 ≈ €45 000 and the cost of buying

such botnet is 𝑐𝑜𝑠𝑡 =
27000

100000
∙ 26000 + 8000 ≈ €15 000.

As it follows, SVM is less costly to develop and more feasible to distribute than VMM and

RVM. However, the probability of detection is virtually 100%. First of all, the malware does

not address the situation where the voter tries to cast her first vote after the malware has already

voted. Since the Voter Application is not modified, the voter would be informed of a previously

cast vote. This would indicate that someone else voted on behalf of the voter. Secondly, and

more importantly, people who cast their vote over the internet (intentionally or otherwise) are

not allowed to vote on the Election Day. Since the malware also votes on behalf of those people

who specifically plan to vote on the Election Day, the act of foul play is certainly discovered.

In 2011, 56.9% of the voters cast their vote on the Election Day [38]. Therefore, SVM is not

suitable for carrying out the Manipulation Attack. It is, however, quite useful in the Revocation

Attack (see Sub-section 3.3.2).

As it can be seen from Figure 11, the Manipulation Attack can be also carried out by other

attacks besides malware:

Fake voting applications refers to the attacker developing fake versions of both voting

applications as well as getting the voters to download them. As previously stated, changing the

votes is much more effective than simply blocking them. Therefore, it is assumed that the

function of the fake Voting Application is to change votes instead of blocking them. For getting

the voters to download the fake Voting Application, the attacker can either upload the

application to a fake website or replace the official application on the NEC website. The author

considers the latter one less likely. Although the official website is bound to have more visitors,

it can be assumed that the fact it is compromised, would be discovered relatively quickly. For

51

getting the voters to download the fake Verification Application, the attacker needs to upload

the fake application to the official app stores or to other markets. Since the official app store

already contains the real application, the attacker needs to replace it or upload a similar one,

hoping that at least some of the voters would use the fake one instead of the original.

Compromising VSS refers to changing the list of votes in the Vote Storage Server. The attacker

would need to develop malicious code that is able to alter the stored votes. Here, developing

malicious code may refer to writing code that would change the votes in the list, or simply

replacing the list of votes with another one. This is expected to be done directly before the votes

are transferred to VCA. In order to insert the code into the server, the attacker has the options

of bribing either the software or the server administrator, and hacking into the server. According

to [354], 0,33% of the people are corruptible with approximately 30 000 Euros. However, in

order for the whole attack to succeed, the act of vote modification must remain secret. The

author considers the likelihood of that to be very unlikely since there are proper audit measures

in place. Therefore, the probability of a successful bribing attack (as well as several other

Central System attacks for the same reason) is multiplied with a factor of 0,01. As for hacking

into the server, the attacker needs to get access to the internal network first as VSS is not

available from the outside web.

Compromising VCA refers to using malicious code to change the vote counting algorithm or

compromising the counting results in any other way. The attack vector is similar to the attack

vector of compromising VSS with the exception that the attacker is not able to hack into the

VCA from the web, since it is offline at all times.

Compromising data carrier refers to modifying the voter list in the transferring phase from

VSS to VCA. The attacker would need to create an alternative list of votes and write them to

the fake transportation device. The attacker would then need to switch the original

transportation device with the fake one, which can be done by bribing a NEC’s worker or by

infiltrating as a participant of the elections (such as an employee or an observer).

3.3.2 Revocation Attack

The basic idea behind the Revocation Attack is to get the I-voting results revoked and hope that

a proportion of I-voter would not vote again on the Election Day. This attack only makes sense

if the preferred candidate receives proportionally less I-votes than regular votes. For example,

in the Parliamentary Elections of 2011, the Central Party (KE) received 23,32% of the total

52

votes, but only 9,87% of the I-votes [38]. Since the percentage of I-votes is lower than the

percentage of votes received in total, the Central Party could possibly benefit from the

revocation of I-votes. Let us suppose that the I-voting results are revoked and 10% of the I-

voters will not vote again on the Election Day. Table 7 shows the gain in percentage of total

votes for each party if the I-votes would have been revoked and 10% of I-voters would not have

voted again on the Election Day.

Table 7. Potential effects of the Revocation Attack on the election results of 2011

Party RE IRL SDE KE

Total votes 164255 118023 98307 134124

Total votes (%) 28,56 20,52 17,09 23,32

I-votes (%) 36,95 25,39 18,00 9,87

Total votes with 10% of I-voters not voting

again after the revocation of I-votes (%)

28,35 20,40 17,07 23,66

Gain in percentage of total votes (percentage

points)

-0,21 -0,12 -0,02 0,34

As seen from the table above, the Central Party would have seen an 0,34 percentage point

increase in the received votes from total votes. In order to achieve a similar percentage of the

total votes with the Manipulation Attack, the party would have change 134124 ∙ (
23,66

23,32
− 1) ≈

2000 votes. As this forms 40% from the 5000 votes required in the Manipulation Attack, it is

assumed that 𝐺𝑎𝑖𝑛𝑠𝑅𝑒𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 0,4 ∙ 𝐺𝑎𝑖𝑛𝑠𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. Figure 13 illustrates the relationship

between the I-voters who would not vote again and the total votes received by a party. This data

is also based on the Parliamentary Elections of 2011.

53

Figure 13. Relation between missed out re-votes and total votes received by party (2011)

As it can be seen from Figure 13, in order for the Central Party to get the same results as the

Reform Party, it would take approximately 80% of I-voters not voting again after the revocation

of the I-votes. Getting 80% of I-voters not to re-vote might prove to be infeasible to accomplish

in real life, but it does show that a successful Revocation Attack might have a quite significant

impact on the voting results. It must be noted, however, that this data assumes the I-votes are

revoked after the online voting period (but before the Election Day). It is very likely that the

revocation of I-votes would take place sometime during the election period (in which case the

gain in percentage of total votes would be lower), but since it is very difficult to assess the exact

moment, the author uses the worst case scenario.

Revocation Attack proposed in this thesis consists of conducting a violation of the election rules

and persuading NEC to revoke the election results. As the successfulness of the latter depends

on the extent of the violation, it is listed for each of the major sub-attacks in the attack tree.

There are several options to conduct the violation of the election rules. The attacker can attack

either the integrity or availability of the system, or the privacy of the voters. The attack vector

for attacking the integrity of the system is similar to the Manipulation Attack. The difference is

that the attacker does not need to address the issues of vote verification and the attack being

discovered. Therefore, the corresponding nodes have been excluded from the attack tree. This

also makes the parameter values (costs and success probabilities) more favourable to the

attacker. Here, it is also assumed that the attacker is required to change 1000 votes instead of

5000 in order to have a valid claim to have the Internet votes revoked. In addition to the

0,00

5,00

10,00

15,00

20,00

25,00

30,00

0,0 20,0 40,0 60,0 80,0 100,0

To
ta

l v
o

te
s

re
ce

iv
ed

 b
y

a
p

ar
ty

 (
%

)

I-voters who would not re-vote on the election day (%)

RE IRL SDE KE

54

aforementioned attacks, there is also a possibility of compromising the candidate list in the

VFS. This was excluded from the Manipulation Attack, because the detection probability is

extremely high.14

For attacking the privacy of the voters and the secrecy of the results, the attacker needs to get

the votes from the VSS and decrypt them. The attack vector for getting the votes from the VSS

is similar to the Compromising VSS Attack (see previous section). In order to decrypt the votes,

the attacker needs to obtain the private key of the server or using cryptanalysis to breach the

cryptographic security measures. However, even if the attacker is able to steal and decrypt the

votes, it may not be enough to get the I-voting results revoked, as the votes themselves were

not altered. Therefore, the probability of convincing NEC is rather low.

The attacker can also attack the availability of Internet voting by performing distributed denial

of service (DDoS) on the NEC’s servers. The author assumes that the servers must be

overloaded during at least 80% of the online voting period in order to have any sort of a claim

to get the results revoked. As with previous attack, this may also not be enough to convince

NEC. The full attack tree for the Revocation Attack is presented in Appendices 2 and 3.

3.3.3 Reputation Attack

Reputation Attack in this thesis consists of discrediting the voting method by launching a public

campaign against I-voting to attack the voters’ confidence (legal), or by attacking the

availability of the system with the hope of people losing interest in casting their vote via Internet

(illegal).

In order to organize a meaningful anti-campaign, the trustworthiness of the system must be

discredited. This can be done by pointing out problems with previous elections, finding

contradictions with the law, or by developing a proof-of concept attack. All of these claims

might have an effect on people’s attitude towards Internet voting. As soon as the trustworthiness

of the system has been discredited, the attacker would need to gain public’s attention by

advertising against I-voting. This can be done via internet or by physical media (e.g. leaflets or

billboards). The attacker could also organize public events such as public lectures and seminars.

In order for the attack to have a substantial effect, the attacker would also need to gain support

14 The voters are very likely to immediately detect that the candidate list is not a valid one.

55

of IT security related experts, public figures or general public. The full attack tree for Reputation

Attack is presented in Appendix 4.

As previously stated in Section 3.3, one of the assumptions of the Reputation Attack can be that

vote distribution is different among the potential voters and I-voters. However, this assumption

has never been proven and the I-voter cannot be distinguished from the regular voter with

statistical means [41]. Although Table 7 clearly shows that the distribution of I-votes is different

from the distribution of regular votes, it only suggests that Internet voting is more favourable

among voters of candidate A than among voters of candidate B. This, however, makes no

indications whether candidate A would receive more votes in total as people who I-vote merely

change their voting method, not their political preference.

Although I-voting itself does not give any advantages to a specific party, it is possible that

voters whose confidence in the voting method has been decreased may not vote online, and as

a consequence, may not vote at all. However, it is not clear how it would affect the election

results, as the attack is likely to influence voters of different candidates differently. If I-voting

is more popular among voters of candidate A, they might be less susceptible to this attack than

voters of candidate B. As there is no statistical data that would suggest how an anti-campaign

could affect the outcome of the elections, it is very difficult to assess the parameters of the

attack tree. Another possible aim of the attack could be to achieve cancelling of I-voting entirely

for future elections, making it similar to the Revocation Attack. The difference with Reputation

Attack, however, is that voters would also be able to cast their vote during the advance voting

period. Therefore, the effect of the Reputation Attack would likely to be lower.

The effect of the anti-campaign is also likely to be largely dependent on the financial

investment. In order to achieve better results, the more costly the attack is going to be.

Therefore, the parameters of the Reputation Attack would require function values.

Unfortunately, this is something the contemporary attack tree models are not capable of and

thus, the author decided to exclude the exact computations for the Reputation Attack from this

thesis.

3.4 Simulation and results

For the simulations of BLPSW model, the author used an application of CoCoViLa, which itself

is a model-based software development platform [5]. For the Parallel and Serial models, the

author used a prototype computer tool [1, 2]. As stated in Sections 3.2.2 and 3.2.3, the parallel

56

and serial computational models proposed in [22] and [21] respectively cannot be used in

practical analysis of trees with large number of leaf nodes.15 Therefore, it becomes necessary

to divide the attacks proposed in Section 3.3 into smaller chunks. Using all three models, the

author analysed each of the major sub-attack separately from each other. For the Manipulation

Attack, this includes each type of the Malware attack, Fake Voting Application attack and each

attack against the Central System. For the Revocation Attack, the attacks are the same as for

the Manipulation Attack with addition of attacks against privacy and availability. Using the

BLPSW and Parallel models, the author analysed Malware and Central System attacks as

wholes. The entire attack trees (Manipulation and Revocation) are analysed only with the

BLPSW model.

The computations for each attack suite and with each model for the Manipulation Attack were

done in 20 steps, setting the value of 𝐺𝑎𝑖𝑛𝑠 from 1 000 000 to 20 000 000 with the increment

of 1 000 000. The expected outcomes for Malware and Central System attacks with 𝐺𝑎𝑖𝑛𝑠 =

{1 000 000; 10 000 000; 20 000 000} along with the best possible attack vector are presented

in Table 8. Complete results for the Manipulation Attack are presented in Appendix 5.

Table 8. Computational results for Malware and Central System attacks (Manipulation Attack)

Attack Identifier AT

Model

Outcome

(Gains = 1M)

Outcome

(Gains =
10M)

Outcome

(Gains =
20M)

Best attack suite (Gains =

10M)

Vote modifying malware M1.1.1 BLSPW -195 275 € -195 233 € -195 185 € ML1, ML4, ML6, ML7

Vote modifying malware M1.1.1 Parallel -68 281 € -68 280 € -68 280 € ML1, ML4, ML6, ML7

Vote modifying malware M1.1.1 Serial -1 991 € -1 910 € -1 818 € ML7, ML6, ML4, ML3,
ML1

Re-voting malware M1.1.2 BLSPW -221 353 € -220 925 € -220 450 € ML8, ML10, ML11

Re-voting malware M1.1.2 Parallel -151 400 € -150 972 € -150 497 € ML8, ML10, ML11

Re-voting malware M1.1.2 Serial -6 841 € -6 414 € -5 939 € ML11, ML10, ML8

Self-voting malware M1.1.3 BLSPW -169 500 € -169 500 € -169 500 € ML12, ML14, ML15

Self-voting malware M1.1.3 Parallel -110 173 € -110 173 € -110 173 € ML12, ML14, ML15

Self-voting malware M1.1.3 Serial 0 € 0 € 0 € -

Compromise VSS M2.1 BLSPW -2 660 790 € -2 637 030 € -2 610 630 € ML31, ML32

Compromise VSS M2.1 Parallel -420 978 € -397 218 € -370 818 € ML31, ML32

Compromise VSS M2.1 Serial -150 943 € -150 941 € -150 939 € ML34, ML35, ML31

Compromise VCA M2.2 BLSPW -2 660 790 € -2 637 030 € -2 610 630 € ML25, ML26

Compromise VCA M2.2 Parallel -420 978 € -397 218 € -370 818 € ML25, ML26

Compromise VCA M2.2 Serial -349 225 € -325 465 € -299 065 € ML25, ML26

Compromise data carrier M2.3 BLSPW -5 184 550 € -5 181 580 € -5 178 280 € ML39, ML41

Compromise data carrier M2.3 Parallel -1 038 374 € -1 035 404 € -1 032 104 € ML39, ML41

Compromise data carrier M2.3 Serial -353 542 € -350 572 € -347 272 € ML41, ML39

15 For example, using the serial model, the author let the computations for the Malware Attack (M1.1) ran for more

than 8 hours before cancelling the process.

57

As it follows from Table 8 and Appendix 5, the expected outcomes for the Manipulation Attack

were non-positive for each attack suite. This means that a rational (economically thinking)

attacker would not try to undertake a large-scale vote manipulation attack. Although each attack

suite proved to be unprofitable, the simulations show that attacking the voter and his or her

computer environment proves to yield better results than attacking the Central System. This is

mainly due to high probability of being detected and getting caught when trying to get access

to the Central System. The results also show that using malware would likely achieve better

results than using fake voting applications.

Figure 14 illustrates the comparison of expected outcomes according to the three computational

models when using different malware types (VMM, RVM and SVM) to launch the

Manipulation Attack with 𝐺𝑎𝑖𝑛𝑠 = €10 000 000.

Figure 14. Computational results for Malware attacks by attack tree model (Manipulation Attack)

As it can be seen from the figure above, the models provide numerically very different results.

The Serial model (SM) produces a higher outcome than the Parallel model (PM), which in turn

gives a better result than the BLPSW model. This is a recurrent characteristic in the

computations. The best outcome for the Manipulation Attack is achieved by carrying out the

Self-voting Malware attack (M1.1.3), which produces an outcome value of €0 using the serial

model. This is because the probability of Avoid detection node is set to zero (the reasons for

-450000

-400000

-350000

-300000

-250000

-200000

-150000

-100000

-50000

0

VMM
(BLPSW)

VMM
(PM)

VMM
(SM)

RVM
(BLPSW)

RVM
(PM)

RVM
(SM)

SVM
(BLPSW)

SVM
(PM)

SVM
(SM)

O
u

tc
o

m
e

58

this are presented in Section 3.3), which, according to the Serial model, renders any additional

attacks pointless to launch.

For the Revocation Attack, the results are vastly different. With all three models and 𝐺𝑎𝑖𝑛𝑠 =

€4𝑀, each malware attack is profitable. The best outcome is achieved by Self-voting malware

(R1.1.1.1.3 + R1.1.2) attack, which produces the outcomes of €2 371 804 (BLPSW), €2 428

765 (Parallel) and €2 608 410 (Serial). This is also the best outcome of the entire Revocation

Attack (R) using the BLPSW model. Similarly to Self-voting Malware, Vote modifying malware

(R1.1.1.1.1 + R1.1.2) attack also produces very profitable results with the expected outcome

values being €1 459 764 (BLPSW), €1 586 011 (Parallel) and €2 020 150 (Serial). (Table 9)

Table 9. Computational results for Malware and Central System attacks (Revocation Attack)

Attack Identifier AT

Model

Outcome

(Gains = 1M)

Outcome

(Gains = 4M)

Outcome

(Gains = 10M)

Best attack suite (Gains =

40M)

Vote modifying

malware

R1.1.1.1.1

+ R1.1.2

BLSPW 91 764 € 1 459 764 € 4 195 764 € RL2, RL4, RL19

Vote modifying

malware

R1.1.1.1.1

+ R1.1.2

Parallel 212 294 € 1 586 011 € 4 886 087 € RL2, RL3, RL4, RL19

Vote modifying

malware

R1.1.1.1.1

+ R1.1.2

Serial 309 882 € 2 020 150 € 6 042 070 € RL19, RL4, RL3, RL2, RL1

Re-voting malware R1.1.1.1.2

+ R1.1.2

BLSPW -315 316 € -132 916 € 231 884 € RL5, RL7, RL19

Re-voting malware R1.1.1.1.2

+ R1.1.2

Parallel -73 605 € 108 795 € 665 940 € RL5, RL7, RL19

Re-voting malware R1.1.1.1.2

+ R1.1.2

Serial 13 472 € 195 872 € 845 045 € RL19, RL7, RL5

Self-voting malware R1.1.1.1.3

+ R1.1.2

BLSPW 319 804 € 2 371 804 € 6 475 804 € RL8, RL10, RL19

Self-voting malware R1.1.1.1.3

+ R1.1.2

Parallel 376 765 € 2 428 765 € 6 532 765 € RL8, RL10, RL19

Self-voting malware R1.1.1.1.3

+ R1.1.2

Serial 446 555 € 2 608 410 € 7 122 810 € RL19, RL8, RL10, RL9

Compromise VFS R1.2.1 BLSPW -2 603 760 € -2 600 010 € -2 592 510 € RL20, RL23, RL24

Compromise VFS R1.2.1 Parallel -207 520 € -203 770 € -196 269 € RL20, RL23, RL24

Compromise VFS R1.2.1 Serial -68 511 € 112 582 € 939 232 € RL24, RL20, RL21, RL22

Compromise VSS R1.2.2 BLSPW -2 509 680 € -2 039 430 € -1 098 930 € RL25, RL26, RL30

Compromise VSS R1.2.2 Parallel -877 298 € -407 048 € 613 904 € RL25, RL26, RL30

Compromise VSS R1.2.2 Serial -130 333 € 692 894 € 2 903 210 € RL30, RL25, RL28, RL26,
RL27

Compromise VCA R1.2.3 BLSPW -2 509 680 € -2 039 430 € -1 098 930 € RL31, RL32, RL34

Compromise VCA R1.2.3 Parallel -877 298 € -407 048 € 613 904 € RL31, RL32, RL34

Compromise VCA R1.2.3 Serial -365 103 € 216 606 € 1 787 240 € RL34, RL31, RL32, RL33

Attack privacy/secrecy R2 BLSPW -4 682 835 € -4 666 500 € -4 633 830 € RL44, RL46, RL48

Attack privacy/secrecy R2 Parallel -13 247 374 € -13 247 374 € -13 247 374 € RL44, RL45, RL47, RL48

Attack privacy/secrecy R2 Serial -129 055 € -129 055 € -36 868 € RL39, RL45, RL43, RL42,

RL48, RL47

Attack availability R3 BLSPW -65 429 € -65 426 € -65 421 € RL49, RL50, RL51

Attack availability R3 Parallel -28 412 € -28 409 € -28 404 € RL49, RL50, RL51

Attack availability R3 Serial -3 103 € -3 100 € -3 094 € RL51, RL50, RL49

59

As for attacking the Central System, with all three models and 𝐺𝑎𝑖𝑛𝑠 = €4𝑀, the unprofitable

attacks are Compromise data carrier (R1.2.4), Attack privacy/secrecy (R2) and Attack

availability (R3). Compromise VFS (R1.2.1), Compromise VSS (R1.2.2) and Compromise VCA

(R1.2.3) attacks are profitable only with the serial model with the outcome values being

€112 582, €692 894 and €216 606 respectively. As these are lower than the outcome values for

malware attacks, the author assumes that the attacker is more likely to attack the voter and his

or her computer environment than the Central System. Complete results for the Revocation

Attack with 𝐺𝑎𝑖𝑛𝑠 = {1 000 000; 4 000 000; 10 000 000} are presented in Appendix 6. Table

10 shows the profitability of attacks by model for 𝐺𝑎𝑖𝑛𝑠 = 4 000 000.

Table 10. Profitability of attacks by model (Revocation Attack)

Attack Identifier BLPSW Parallel Serial

Revocation attack R YES n/a n/a

Malware R1.1.1.1 + R1.1.2 YES YES n/a

Vote modifying malware R1.1.1.1.1 + R1.1.2 YES YES YES

Re-voting malware R1.1.1.1.2 + R1.1.2 NO YES YES

Self-voting malware R1.1.1.1.3 + R1.1.2 YES YES YES

Fake voting applications R1.1.1.2 + R1.1.2 NO NO n/a

Attack Central System R1.2 NO n/a n/a

Compromise VFS R1.2.1 NO NO YES

Compromise VSS R1.2.2 NO NO YES

Compromise VCA R1.2.3 NO NO YES

Compromise data carrier R1.2.4 NO NO NO

Attack privacy/secrecy R2 NO NO NO

Attack availability R3 NO NO NO

As seen from the table above, attacking the central system components (R1.2.1, R1.2.2, and

R1.2.3) are unprofitable with BLPSW and Parallel models, but profitable with the Serial model.

This shows that using different models, one can produce different results. Unfortunately, as

stated before, the Parallel and Serial models could not have been used to analyse larger

(sub)trees. However, based on the information from Table 10, it is reasonable to assume that

the entire Revocation Attack is profitable also with the Parallel and Serial models since some

of its sub-attacks, which realize the root attack, are profitable. The same applies for Malware

(R1.1.1.1 + R1.1.2) and Attack Central System (R1.2) with the Serial model.

Following the results of the simulations, the author is inclined to conclude that the Estonian I-

voting system is reasonably secure against large-scale vote manipulation attacks. The main

60

bottleneck for these attacks seems to be the large-scale distribution of malware in the Estonian

context as well as keeping the act of manipulation secret.

As for the Revocation Attack, many of the sub-attacks are profitable mostly due to the fact that

the act of vote modification does not have to remain secret. In addition, the distribution process

of malware is easier as there are fewer number of machines required to be infected. In that

sense, it can be said that the I-voting system is susceptible to large-scale revocation attacks.

However, as stated before, the Revocation Attack described in this thesis only works (in such a

scale) under the assumption that I-voting is available during the entire advance voting period

and I-votes are revoked only after the online voting period (but before the Election Day). This

leaves the I-voters the option to cast their vote again only on the Election Day. However, relying

only on a single day to have all of the I-voters to be able to cast a vote in the polling station

may not be sufficient. There are bound to be people who simply do not have the time or the

means to vote at the polling station on the Election Day. This is, however, what the Revocation

Attack relies on.

In order to safeguard against this threat, the voters should be provided enough time to cast their

vote again in the traditional way. A timely detection of an ongoing attack against the system is

of a vital importance, since it would enable the voters to re-vote during the advance voting

period as well as on the Election Day. Additionally, the possible gain in percentage of total

votes would lower, as there would be fewer I-votes. Another possibility is to hold a repeat

voting, although it would mean additional costs. It must also be emphasized that the Revocation

Attack only benefits those parties who receive proportionally less I-votes than regular votes.

Propagating the practical security of the I-voting system could balance vote distribution by

voting method, thus mitigating the impact of large-scale revocation attacks.

61

Summary

In this thesis, the author analysed the security of the Estonian I-voting system using three

different attack tree methodologies. The author identified three primary threats and studied the

feasibility of the attacks using the computational models of each of the methodologies. The

work focused mostly on large-scale vote manipulation and the attempts to get I-voting results

revoked. Reputation attacks against the system were excluded from the concrete computations

due to the limitations of contemporary attack tree models.

Due to the complexity of the computational models of two of the more recent attack tree

methodologies used in this thesis, the author could not have used them to analyse the attack

trees as wholes in a reasonable amount of time. Instead, the author split the attack trees into

sub-attacks that would all materialize the primary threat, and analysed them separately from

each another.

Based on the results of the computations, the author concluded that, under the assigned

parameter values, the Estonian I-voting scheme is secure against large-scale vote manipulation

attacks since all attacks rendered out to be unprofitable for the attacker. The analysis also

showed that a large-scale revocation attack might have a sound impact on the election results

and the attack itself could be profitable for the attacker under certain conditions. The

computations showed that the most probable attack vector is the use of malware in voters’

computers. The author also made some suggestions on how to mitigate or avoid the impact of

the revocation attacks. Lastly, the work showed that different methodologies produce different

results.

62

References

1. AForest. Available at http://research.cyber.ee/~alexander/ (27.05.2014)

2. Andrusenko, A. Ründepuude metoodika ja seda toetav tarkvaraline raamistik : Master

Thesis. Master Thesis. Tallinn, Tallinn University of Technology, 2010.

3. Appeal no. 14-11/406 to NEC, March 5 2011. [WWW] In Estonian,

http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad

(27.05.2014)

4. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J. Rational Choice of Security

Measures via Multi-Parameter Attack Trees. – Critical Information Infrastructures

Security First International Workshop, 235-248. CRITIS 2006, LNCS 4347, 2006.

5. CoCoViLa. Available at http://www.cs.ioc.ee/cocovila/ (27.05.2014)

6. Constitution of Belgium. Available at

http://home.scarlet.be/dirkvanheule/compcons/ConstitutionBelgium/ConstitutionBelgium.

htm (27.05.2014)

7. Constitution of Estonia. (Passed 28.06.1992, redaction in force from 22.07.2011) – Riigi

Teataja, 1992, 26, 349.

8. Constitution of France. Available at

http://www.legislationline.org/documents/action/popup/id/8808/preview (27.05.2014)

9. Constitution of Ireland. (Passed 1.07.1937, redaction in force from 1.11.2013)

10. Decision of Supreme Court 3-4-1-10-11, March 31 2011. [WWW] In Estonian,

http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad

(27.05.2014)

11. Estonian Penal Code. (Passed 06.06.2001, in force from 01.04.2014) – Riigi Teataja I

2001, 61, 364.

12. Euroopa Liit: küsimus ja vastus. [WWW]

http://valitsus.ee/UserFiles/valitsus/et/riigikantselei/euroopa/EL%20ja%20Euroala%20k%

C3%BCsimused%20ja%20vastused%20viidetega%282%29.pdf (27.05.2014)

13. E-voting concept security: analysis and measures. Estonian National Electoral Commitee,

EH-02-02, 2010.

14. E-Voting System, General Overview. Estonian National Electoral Committee, 2013.

15. Goncharov, M. Underground Market 101. – Security Forum 2013, 2013. [WWW]

https://www.securityforum.at/wp-

content/uploads/2012/02/Sec.Con_.Max_.Goncharov.Underground.Market.101.pdf

(27.05.2014)

16. Heiberg, S., Laud, P., & Willemson, J. The Application of I-voting for Estonian

Parliamentary Elections of 2011. – Proceedings of VOTEID 2011, 2011, 208-223.

17. Heiberg, S., Willemson, J. Modeling Threats of a Voting Method. – Design,

Development, and Use of Secure Electronic Voting Systems. Information Science

Reference, 2014.

18. Households. Statistics Estonia. [WWW] http://www.stat.ee/households (27.05.2014)

19. Internet Voting Pilot Project, Local Government Elections, 12 September 2011.

OSCE/ODIHR Election Expert Team Report, 2012.

63

20. Jones, D. W., Simons, B. Broken Ballots. Will Your Vote Count? Center for the Study of

Language and Information, 2012.

21. Jurgenson, A., Willemson, J. Serial model for attack tree computations. – International

Conference on Information Security and Cryptololgy. ICISC 2009, LNCS, 2009.

22. Jürgenson, A., Willemson, J. Computing exact outcomes of multi-parameter attack trees. –

On the Move to Meaningful Internet Systems, 1036-1051. Volume 5332 of LNCS.

Springer, 2008.

23. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P. DAG-Based Attack and Defense

Modeling: Don’t Miss the Forest for the Attack Trees. CoRR abs/1303.7397, 2012.

24. Lipmaa H., Mürk, O. E-valimiste realiseerimisvõimaluste analüüs (An analysis of the

possibility to organise e-voting), 2001. Analysis ordered by Estonian Ministry of Justice.

In Estonian.

25. List of all eEnabled official ballots conducted in Geneva since the start of the internet

voting project. Republic and State of Geneva. [WWW]

http://www.ge.ch/evoting/doc/list_of_GVA_ballots.pdf (27.05.2014)

26. Local Government Council Election Act. (Passed 27.03.2002, redaction in force from

01.04.2013) – Riigi Teataja I 2002, 36, 220.

27. Mauw, S., Oostdijk, M. Foundations of attack trees. – International Conference on

Information Security and Cryptology, 186-198. ICISC 2005. Volume 3935 of LNCS.

Springer, 2005.

28. Mägi, T. Practical Security Analysis of E-voting Systems : Master Thesis. Tallinn, Tallinn

University of Technology, 2007.

29. Namestnikov, Y. The economics of Botnets. [WWW]

https://www.securelist.com/en/analysis/204792068/The_economics_of_Botnets

(27.05.2014)

30. Online voting: challenges and outcomes. Republic and State of Geneva. [WWW]

http://www.geneve.ch/evoting/english/presentation_projet.asp (27.05.2014)

31. Parliamentary Elections, 9 September 2013. OSCE/ODIHR Election Assessment Mission

Final Report, 2013.

32. Pihelgas, P. Interview with M. Kärmas, 2011. Pealtnägija, e. 422.

33. Press release by the Geneva State Chancellery. Republic and State of Geneva. [WWW]

http://www.geneve.ch/evoting/english/communiques_20040926.asp (27.05.2014)

34. Riigikogu Election Act. (Passed 12.06.2002, redaction in force from 01.04.2014) – Riigi

Teataja I 2002, 57, 355.

35. Saalfeld, T. On Dogs and Whips: Recorded Votes. – Parliaments and Majority Rule in

Western Europe, 531. New York: St. Martin's Press, 1995.

36. Schneier, B. Attack trees: Modeling security threats. – Dr. Dobb's Journal, 1999, 24 (12),

21-29.

37. Statistics about Internet Voting in Estonia. Estonian National Electoral Committee.

[WWW] http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics/ (27.05.2014)

38. Statistikakogumik "Valimised Eestis 1992-2011" (Collection of statistics “Elections in

Estonia 1992-2011). Tallinn : Estonian National Electoral Committee, 2010.

64

39. Stenerud, S. G., Bull, C. When Reality Comes Knocking Norwegian Experiences with

Verifiable Electronic Voting. Norwegian Ministry of Local Government and Regional

Development, 2012.

40. Tammet, T., Krosing, H. E-valimised Eesti Vabariigis: võimaluste analüüs (E-voting in

Estonia: feasibility study), 2001. Analysis ordered by Estonian Ministry of Transport and

Communications. In Estonian.

41. Vassil, K. Postimehe valimisstuudio. [WWW]

http://poliitika.postimees.ee/2793128/postimehe-valimisstuudios-arutati-e-valimiste-

teemat (27.05.2014)

42. Voter turnout data for Norway. International IDEA. [WWW]

http://www.idea.int/vt/countryview.cfm?CountryCode=NO (27.05.2014)

65

Appendices

Appendix 1. Attack tree for the Manipulation Attack

Identifier Attack Type p cost q+ penalties+ q- penalties- p+ p- Expenses

M Manipulation attack ROOT

M1 Attack voters' environment OR
M1.1 Malware OR

M1.1.1 Vote modifying malware AND

M1.1.1.1 Develop malware OR

M1.1.1.1.1 (ML1) Vote changing malware LEAF 0,95 9600 0,05 1576800 0,05 394200 78840 19710 108150

M1.1.1.1.2 (ML2) Vote blocking malware LEAF 1,00E-07 7680 0,05 1576800 0,05 394200 78840 19710 106230

M1.1.1.2 Distribute malware AND

M1.1.1.2.1 Compromise voters' computers OR

M1.1.1.2.1.1 (ML3) Create botnet LEAF 0,05 82500 0,5 2365200 0,1 591300 1182600 59130 1324230

M1.1.1.2.1.2 (ML4) Buy botnet LEAF 0,05 22000 0,05 2365200 0,01 591300 118260 5913 146173

M1.1.1.2.2 Compromise voters' mobile devices OR

M1.1.1.2.2.1 (ML5) Create mobile botnet LEAF 0,001 82500 0,5 2365200 0,1 591300 1182600 59130 1324230

M1.1.1.2.2.2 (ML6) Buy mobile botnet LEAF 0,001 22000 0,05 2365200 0,01 591300 118260 5913 146173

M1.1.1.3 (ML7) Avoid detection LEAF 0,1 0 0 0 0 0 0 0 0

M1.1.2 Re-voting malware AND

M1.1.2.1 (ML8) Develop malware LEAF 0,95 6720 0,05 1576800 0,05 394200 78840 19710 105270

M1.1.2.2 Compromise voters' computers OR

M1.1.2.2.1 (ML9) Create botnet LEAF 0,0005 320000 0,5 4730400 0,1 1182600 2365200 118260 2803460

M1.1.2.2.2 (ML10) Buy botnet LEAF 0,0005 65000 0,05 4730400 0,01 1182600 236520 11826 313346

M1.1.2.3 (ML11) Avoid detection LEAF 0,1 0 0 0 0 0 0 0 0

M1.1.3 Self-voting malware AND

M1.1.3.1 (ML12) Develop malware LEAF 0,95 4800 0,05 1576800 0,05 394200 78840 19710 103350

M1.1.3.2 Compromise voters' computers OR

M1.1.3.2.1 (ML13) Create botnet LEAF 0,3 45000 0,5 4730400 0,1 1182600 2365200 118260 2528460

M1.1.3.2.2 (ML14) Buy botnet LEAF 0,3 15000 0,05 4730400 0,01 1182600 236520 11826 263346

M1.1.3.3 (ML15) Avoid detection LEAF 0 0 0 0 0 0 0 0 0

M1.2 Fake voting applications AND

M1.2.1 Develop fake apps AND

M1.2.1.1 (ML16) Develop fake Voting App. LEAF 0,95 3840 0,1 1576800 0,1 394200 157680 39420 200940

M1.2.1.2 (ML17) Develop fake Verification App. LEAF 0,95 3840 0,1 1576800 0,1 394200 157680 39420 200940

M1.2.2 Distribute fake Voting App. OR

M1.2.2.1 Use fake website AND

M1.2.2.1.1 (ML18) Develop fake website LEAF 0,95 800 0,1 4800 0,1 1200 480 120 1400

M1.2.2.1.2 Get voters to visit fake website OR

M1.2.2.1.2.1 (ML19) E-mail LEAF 0,001 8045 0,005 2628000 0,005 657000 13140 3285 24470

M1.2.2.1.2.2 (ML20) Network attacks LEAF 0,005 10000 0,5 2628000 0,1 657000 1314000 65700 1389700

M1.2.2.1.2.3 (ML21) Social media LEAF 0,002 400 0,005 2628000 0,005 657000 13140 3285 16825

M1.2.2.2 Replace app. On NEC web server OR

M1.2.2.2.1 (ML22) Bribe server admin LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

M1.2.2.2.2 (ML23) Bribe SW developer LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

M1.2.2.2.3 (ML24) Exploit configuration error LEAF 0,005 15000 0,5 4730400 0,1 1182600 2365200 118260 2498460

M1.2.3 Distribute fake Verification App. OR

M1.2.3.1 From official appstore OR

M1.2.3.1.1 (ML25) Upload similar LEAF 0,05 150 0,01 2102400 0,01 525600 21024 5256 26430

M1.2.3.1.2 Replace original OR

M1.2.3.1.2.1 (ML26) Bribe server admin LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

M1.2.3.1.2.2 (ML27) Bribe SW developer LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

M1.2.3.1.2.3 (ML28) Exploit configuration error LEAF 0,005 15000 0,5 4730400 0,1 1182600 2365200 118260 2498460

M1.2.3.2 (ML29) From other markets LEAF 1,00E-05 150 0,01 2102400 0,01 525600 21024 5256 26430

M1.2.4 (ML30) Avoid detection LEAF 0,005 0 0 0 0 0 0 0 0

M2 Attack Central System OR
M2.1 Compromise VSS AND

M2.1.1 (ML31) Develop malicious code LEAF 0,50 12000 0,05 1576800 0,05 394200 78840 19710 110550

M2.1.2 Insert code into server OR

M2.1.2.1 (ML32) Bribe server admin LEAF 0,0033 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

M2.1.2.2 (ML33) Bribe SW developer LEAF 0,0033 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

M2.1.2.3 Get access to server AND

M2.1.2.3.1 (ML34) Get access to internal network LEAF 0,005 15000 0,5 2628000 0,1 657000 1314000 65700 1394700

M2.1.2.3.2 (ML35) Exploit configuration error LEAF 0,00005 15000 0,5 4730400 0,1 1182600 2365200 118260 2498460

M2.2 Compromise VCA AND

M2.2.1 (ML36) Develop malicious code LEAF 0,50 12000 0,05 1576800 0,05 394200 78840 19710 110550

M2.2.2 Insert code into server OR

M2.2.2.1 (ML37) Bribe server admin LEAF 0,0033 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

M2.2.2.2 (ML38) Bribe SW developer LEAF 0,0033 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

M2.3 Compromise data carrier AND

M2.3.1 Get access to device OR

M2.3.1.1 (ML39) Bribe worker LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

M2.3.1.2 (ML40) Infiltrate as participant LEAF 0,05 20000 0,9 4204800 0,9 1051200 3784320 946080 4750400

M2.3.2 (ML41) Compromise device LEAF 0,001 4000 0,8 4204800 0,2 1051200 3363840 210240 3578080

66

Appendix 2. Attack tree for the Revocation Attack

Identifier Name Type p cost q+ penalties+ q- penalties- p+ p- Expenses

R Revocation attack ROOT

R1 Attack integrity OR

R1.1 Attack voter AND

R1.1.1 Compromise voters' computers OR
R1.1.1.1 Malware OR

R1.1.1.1.1 Vote modifying malware AND

R1.1.1.1.1.1 Develop malware OR

R1.1.1.1.1.1.1 (RL1) Vote changing malware LEAF 0,95 4800 0,05 1576800 0,05 394200 78840 19710 103350

R1.1.1.1.1.1.2 (RL2) Vote blocking malware LEAF 0,95 3840 0,05 1576800 0,05 394200 78840 19710 102390

R1.1.1.1.1.2 Compromise voters' computers OR

R1.1.1.1.1.2.1 (RL3) Create botnet LEAF 0,60 21500 0,5 4730400 0,1 1182600 2365200 118260 2504960

R1.1.1.1.1.2.2 (RL4) Buy botnet LEAF 0,60 10500 0,05 4730400 0,01 1182600 236520 11826 258846

R1.1.1.1.2 Re-voting malware AND

R1.1.1.1.2.1 (RL5) Develop malware LEAF 0,95 6720 0,05 1576800 0,05 394200 78840 19710 105270

R1.1.1.1.2.2 Compromise voters' computers OR

R1.1.1.1.2.2.1 (RL6) Create botnet LEAF 0,08 69000 0,5 4730400 0,1 1182600 2365200 118260 2552460

R1.1.1.1.2.2.2 (RL7) Buy botnet LEAF 0,08 19500 0,05 4730400 0,01 1182600 236520 11826 267846

R1.1.1.1.3 Self-voting malware AND

R1.1.1.1.3.1 (RL8) Develop malware LEAF 0,95 4800 0,05 1576800 0,05 394200 78840 19710 103350

R1.1.1.1.3.2 Compromise voters' computers OR

R1.1.1.1.3.2.1 (RL9) Create botnet LEAF 0,90 14000 0,5 4730400 0,1 1182600 2365200 118260 2497460

R1.1.1.1.3.2.2 (RL10) Buy botnet LEAF 0,90 9500 0,05 4730400 0,01 1182600 236520 11826 257846

R1.1.1.2 Fake voting applications AND

R1.1.1.2.1 (RL11) Develop fake Voting App. LEAF 0,95 3840 0,1 788400 0,1 394200 78840 39420 122100

R1.1.1.2.2 Distribute fake Voting App. OR

R1.1.1.2.2.1 Use fake website AND

R1.1.1.2.2.1.1 (RL12) Develop fake website LEAF 0,95 800 0,1 4800 0,1 1200 480 120 1400

R1.1.1.2.2.1.2 Get voters to visit fake website OR

R1.1.1.2.2.1.2.1 (RL13) E-mail LEAF 0,001 8045 0,005 2628000 0,005 657000 13140 3285 24470

R1.1.1.2.2.1.2.2 (RL14) Network attacks LEAF 0,005 10000 0,5 2628000 0,1 657000 1314000 65700 1389700

R1.1.1.2.2.1.2.3 (RL15) Social media LEAF 0,002 400 0,005 2628000 0,005 657000 13140 3285 16825

R1.1.1.2.2.2 Replace app. On NEC web server OR

R1.1.1.2.2.2.1 (RL16) Bribe server admin LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

R1.1.1.2.2.2.2 (RL17) Bribe SW admin LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

R1.1.1.2.2.2.3 (RL18) Exploit configuration error LEAF 0,005 15000 0,5 4730400 0,1 1182600 2365200 118260 2498460

R1.1.2 (RL19) Convince NEC LEAF 0,80 3000 0 0 0 0 0 0 3000

R1.2 Attack Central System OR
R1.2.1 Compromise VFS AND

R1.2.1.1 (RL20) Develop malicious code LEAF 0,50 5000 0,05 1576800 0,05 394200 78840 19710 103550

R1.2.1.2 Insert code into server OR

R1.2.1.2.1 (RL21) Bribe server admin LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

R1.2.1.2.2 (RL22) Bribe SW admin LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

R1.2.1.2.3 (RL23) Exploit configuration error LEAF 0,005 15000 0,5 4730400 0,1 1182600 2365200 118260 2498460

R1.2.1.3 (RL24) Convince NEC LEAF 0,5 3000 0 0 0 0 0 0 3000

R1.2.2 Compromise VSS AND

R1.2.2.1 (RL25) Develop malicious code LEAF 0,50 12000 0,05 1576800 0,05 394200 78840 19710 110550

R1.2.2.2 Insert code into server OR

R1.2.2.2.1 (RL26) Bribe server admin LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

R1.2.2.2.2 (RL27) Bribe SW admin LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

R1.2.2.2.3 Get access to server AND

R1.2.2.2.3.1 (RL28) Get access to internal network LEAF 0,5 15000 0,5 2628000 0,1 657000 1314000 65700 1394700

R1.2.2.2.3.2 (RL29) Exploit configuration error LEAF 0,005 15000 0,5 4730400 0,1 1182600 2365200 118260 2498460

R1.2.2.3 (RL30) Convince NEC LEAF 0,95 3000 0 0 0 0 0 0 3000

R1.2.3 Compromise VCA AND

R1.2.3.1 (RL31) Develop malicious code LEAF 0,50 12000 0,05 1576800 0,05 394200 78840 19710 110550

R1.2.3.2 Insert code into server OR

R1.2.3.2.1 (RL32) Bribe server admin LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

R1.2.3.2.2 (RL33) Bribe SW admin LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

R1.2.3.3 (RL34) Convince NEC LEAF 0,95 3000 0 0 0 0 0 0 3000

R1.2.4 Compromise data carrier AND

R1.2.4.1 Get access to device OR

R1.2.4.1.1 (RL35) Bribe worker LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

R1.2.4.1.2 (RL36) Infiltrate as participant LEAF 0,05 20000 0,9 4204800 0,9 1051200 3784320 946080 4750400

R1.2.4.2 (RL37) Compromise device LEAF 0,1 4000 0,8 4204800 0,2 1051200 3363840 210240 3578080

R1.2.4.3 (RL38) Convince NEC LEAF 0,95 3000 0 0 0 0 0 0 3000

67

Appendix 3. Attack tree for the Revocation Attack (continued)

Appendix 4. Attack tree for the Reputation Attack

Identifier Name Type p cost q+ penalties+ q- penalties- p+ p- Expenses

R2 Attack privacy/secrecy AND
R2.1 Get votes from the VSS OR

R2.1.1 Use malicious code AND

R2.1.1.1 (RL39) Develop malicious code LEAF 0,50 12000 0,05 1576800 0,05 394200 78840 19710 110550

R2.1.1.2 Insert code into server OR

R2.1.1.2.1 (RL40) Bribe server admin LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

R2.1.1.2.2 (RL41) Bribe SW admin LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

R2.1.1.2.3 Get access to server AND

R2.1.1.2.3.1 (RL42) Get access to internal network LEAF 0,50 15000 0,5 2628000 0,1 657000 1314000 65700 1394700

R2.1.1.2.3.2 (RL43) Exploit configuration error LEAF 0,005 15000 0,5 4730400 0,1 1182600 2365200 118260 2498460

R2.1.2 (RL44) Bribe employee LEAF 0,33 30000 0,7 3153600 0,4 788400 2207520 315360 2552880

R2.2 Decrypt votes OR

R2.2.1 Obtain private key OR

R2.2.1.1 (RL45) Steal LEAF 1,00E-04 4000 0,6 2628000 0,2 657000 1576800 131400 1712200

R2.2.1.2 (RL46) Bribe key manager LEAF 0,33 30000 0,7 2628000 0,4 657000 1839600 262800 2132400

R2.2.2 (RL47) Use cryptanalysis LEAF 0,01 10000000 0,005 2628000 0,005 657000 13140 3285 10016425

R2.3 (RL48) Convince NEC LEAF 0,05 3000 0 0 0 0 0 0 3000

R3 Attack availability AND
R3.1 (RL49) Rent botnet LEAF 0,95 800 0,01 1576800 0,01 394200 15768 3942 20510

R3.2 (RL50) Perform DDoS for 5 days LEAF 0,0001 2500 0,01 3153600 0,01 788400 31536 7884 41920

R3.3 (RL51) Convince NEC LEAF 0,01 3000 0 0 0 0 0 0 3000

Identifier Name Type

D Reputation attack ROOT

D1 Anti-campaign AND
D1.1 Question trusthworthiness OR

D1.1.1 (DL1) Point out problems with previous elections LEAF

D1.1.2 (DL2) Find contradictions with constitution LEAF

D1.1.3 (DL3) Develop proof-of-concept attack LEAF

D1.2 Get public's attention OR

D1.2.1 (DL4) Use internet/social media LEAF

D1.2.2 (DL5) Use physical media LEAF

D1.2.3 (DL6) Organize public events LEAF

D1.3 Get support OR

D1.3.1 (DL7) Involve experts LEAF

D1.3.2 (DL8) Involve public figures LEAF

D1.3.3 (DL9) Involve general public LEAF

D2 Attack public system OR
D2.1 DDoS AND

D2.1.1 (DL10) Rent botnet LEAF

D2.1.2 (DL11) Perform DDoS for 5 days LEAF

D2.2 (DL12) Defacement LEAF

68

Appendix 5. Complete results of the Manipulation Attack

Attack Identifier

AT

Model

Outcome

(Gains = 1M)

Outcome

(Gains = 10M)

Outcome

(Gains = 20M) Best attack suite (Gains = 10M)

Manipulation attack M1 BLSPW -366 696 € -366 696 € -366 696 € ML12, ML14, ML15

Malware M1.1 BLSPW -366 696 € -366 696 € -366 696 € ML12, ML14, ML15

Malware M1.1 Parallel -88 851 € -88 851 € -88 851 € ML1, ML4, ML6, ML7

Vote modifying malware M1.1.1 BLSPW -400 491 € -400 449 € -400 401 € ML1, ML4, ML6, ML7

Vote modifying malware M1.1.1 Parallel -88 851 € -88 851 € -88 851 € ML1, ML4, ML6, ML7

Vote modifying malware M1.1.1 Serial -2 739 € -2 723 € -2 631 € ML7, ML6, ML4, ML3, ML1

Re-voting malware M1.1.2 BLSPW -418 569 € -418 141 € -417 666 € ML8, ML10, ML11

Re-voting malware M1.1.2 Parallel -159 494 € -159 067 € -158 592 € ML8, ML10, ML11

Re-voting malware M1.1.2 Serial -7 650 € -7 223 € -6 748 € ML11, ML10, ML8

Self-voting malware M1.1.3 BLSPW -366 696 € -366 696 € -366 696 € ML12, ML14, ML15

Self-voting malware M1.1.3 Parallel -174 918 € -174 918 € -174 918 € ML12, ML14, ML15

Self-voting malware M1.1.3 Serial 0 € 0 € 0 € ML15, ML12, ML13

Fake voting applications M1.2 BLSPW -446 535 € -446 535 € -446 535 € ML16, ML17, ML22, ML26, ML30

Fake voting applications M1.2 Parallel -322 262 € -322 262 € -322 262 € ML16, ML17, ML18, ML21, ML29, ML30

Attack Central System M2 BLSPW -2 661 780 € -2 646 930 € -2 630 430 € ML31, ML32

Attack Central System M2 Parallel -281 589 € -281 588 € -281 586 € ML31, ML32

Compromise VSS M2.1 BLSPW -2 661 780 € -2 646 930 € -2 630 430 € ML31, ML32

Compromise VSS M2.1 Parallel -281 589 € -281 588 € -281 586 € ML31, ML32

Compromise VSS M2.1 Serial -87 581 € -87 580 € -87 579 € ML34, ML31, ML35

Compromise VCA M2.2 BLSPW -2 661 780 € -2 646 930 € -2 630 430 € ML36, ML37

Compromise VCA M2.2 Parallel -411 229 € -396 379 € -379 879 € ML36, ML37

Compromise VCA M2.2 Serial -235 427 € -220 577 € -204 077 € ML36, ML37

Compromise data carrier M2.3 BLSPW -5 184 550 € -5 181 580 € -5 178 280 € ML39, ML41

Compromise data carrier M2.3 Parallel -1 038 374 € -1 035 404 € -1 032 104 € ML39, ML41

Compromise data carrier M2.3 Serial -353 542 € -350 572 € -347 272 € ML41, ML39

69

Appendix 6. Complete results of the Revocation Attack

Attack Identifier AT Model

Outcome (Gains

= 1M)

Outcome (Gains

= 4M)

Outcome (Gains

= 10M) Best attack suite (Gains = 4M)

Revocation attack R BLSPW 319 804 € 2 371 804 € 6 475 804 € RL8, RL10, RL19

Malware R1.1.1.1 + R1.1.2 BLSPW 319 804 € 2 371 804 € 6 475 804 € RL8, RL10, RL19

Malware R1.1.1.1 + R1.1.2 Parallel 376 765 € 2 456 380 € 6 957 100 € RL2, RL4, RL8, RL10, RL19

Vote modifying malware R1.1.1.1.1 + R1.1.2 BLSPW 91 764 € 1 459 764 € 4 195 764 € RL2, RL4, RL19

Vote modifying malware R1.1.1.1.1 + R1.1.2 Parallel 212 294 € 1 586 011 € 4 886 087 € RL2, RL3, RL4, RL19

Vote modifying malware R1.1.1.1.1 + R1.1.2 Serial 309 882 € 2 020 150 € 6 042 070 € RL19, RL4, RL3, RL2, RL1

Re-voting malware R1.1.1.1.2 + R1.1.2 BLSPW -315 316 € -132 916 € 231 884 € RL5, RL7, RL19

Re-voting malware R1.1.1.1.2 + R1.1.2 Parallel -73 605 € 108 795 € 665 940 € RL5, RL7, RL19

Re-voting malware R1.1.1.1.2 + R1.1.2 Serial 13 472 € 195 872 € 845 045 € RL19, RL7, RL5

Self-voting malware R1.1.1.1.3 + R1.1.2 BLSPW 319 804 € 2 371 804 € 6 475 804 € RL8, RL10, RL19

Self-voting malware R1.1.1.1.3 + R1.1.2 Parallel 376 765 € 2 428 765 € 6 532 765 € RL8, RL10, RL19

Self-voting malware R1.1.1.1.3 + R1.1.2 Serial 446 555 € 2 608 410 € 7 122 810 € RL19, RL8, RL10, RL9

Fake voting applications R1.1.1.2 + R1.1.2 BLSPW -141 881 € -137 549 € -128 885 € RL11, RL12, RL15, RL19

Fake voting applications R1.1.1.2 + R1.1.2 Parallel -160 591 € -115 034 € 2 113 410 € RL11, RL12, RL15, RL16, RL19

Attack Central System R1.2 BLSPW -2 509 680 € -2 039 430 € -1 098 930 € RL25, RL26, RL30

Comromise VFS R1.2.1 BLSPW -2 603 760 € -2 600 010 € -2 592 510 € RL20, RL23, RL24

Comromise VFS R1.2.1 Parallel -207 520 € -203 770 € -196 269 € RL20, RL23, RL24

Comromise VFS R1.2.1 Serial -68 511 € 112 582 € 939 232 € RL24, RL20, RL21, RL22

Compromise VSS R1.2.2 BLSPW -2 509 680 € -2 039 430 € -1 098 930 € RL25, RL26, RL30

Compromise VSS R1.2.2 Parallel -877 298 € -407 048 € 613 904 € RL25, RL26, RL30

Compromise VSS R1.2.2 Serial -130 333 € 692 894 € 2 903 210 € RL30, RL25, RL28, RL26, RL27

Compromise VCA R1.2.3 BLSPW -2 509 680 € -2 039 430 € -1 098 930 € RL31, RL32, RL34

Compromise VCA R1.2.3 Parallel -877 298 € -407 048 € 613 904 € RL31, RL32, RL34

Compromise VCA R1.2.3 Serial -365 103 € 216 606 € 1 787 240 € RL34, RL31, RL32, RL33

Compromise data carrier R1.2.4 BLSPW -6 102 610 € -6 008 560 € -5 820 460 € RL35, RL37, RL38

Compromise data carrier R1.2.4 Parallel -1 469 703 € -1 371 693 € -1 175 673 € RL35, RL37, RL38

Compromise data carrier R1.2.4 Serial -590 642 € -492 632 € -296 612 € RL38, RL37, RL35

Attack privacy/secrecy R2 BLSPW -4 682 835 € -4 666 500 € -4 633 830 € RL44, RL46, RL48

Attack privacy/secrecy R2 Parallel -13 247 374 € -13 247 374 € -13 247 374 € RL44, RL45, RL47, RL48

Attack privacy/secrecy R2 Serial -129 055 € -129 055 € -36 868 € RL39, RL45, RL43, RL42, RL48, RL47

Attack availability R3 BLSPW -65 429 € -65 426 € -65 421 € RL49, RL50, RL51

Attack availability R3 Parallel -28 412 € -28 409 € -28 404 € RL49, RL50, RL51

Attack availability R3 Serial -3 103 € -3 100 € -3 094 € RL51, RL50, RL49

