
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Karl Uibo 153620IVEM

DATABASE CREATION AND ANALYSIS OF
MULTI-ROTOR FLIGHT LOGS FOR

WEATHER DEPENDANT AUTONOMOUS
MISSIONS

Master's thesis

Supervisor: Olev Märtens

PhD

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Karl Uibo 153620IVEM

MULTIROOTORI LENNUINFO
ANDMEBAASI LOOMINE JA ANALÜÜS

ILMASTIKU TINGIMUSI ARVESTAVATE
AUTONOOMSETE LENDUDE TARBEKS

Magistritöö

Juhendaja: Olev Märtens

Doktorikraad

Tallinn 2018

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Karl Uibo

07.05.2018

3

Abstract

This thesis explores how to achieve consecutive autonomous flights without a pilots

input. Previously the focus of research has been in optimizing the flight characteristics

of a multi-rotor but we take a higher level approach to find the requirements needed to

be able to achieve fully autonomous flight with use cases in the industry.

We created python code to import data from individual log files into a database. An

algorithm for filtering the database to find necessary data to design a model of the flight

behaviour of an individual multi-rotor is created. An analysis of voltage graphs of the

available flights were analysed and a requirement for a smart controller in each battery

to monitor the state of charge, state of health and to identify each battery is found.

This thesis is written in English and is 37 pages long, including 5 chapters, 18 figures

and 9 tables.

4

Annotatsioon

Multirootori lennuinfo andmebaasi loomine ja analüüs ilmastiku

tingimusi arvestavate autonoomsete lendude tarbeks

Selles töös otsitakse lahendust probleemile, kuidas saavutada autonoomset multirootori

lennu missiooni nii, et lendude vahel ei peaks ükski inimene sekkuma samal ajal

maksimeerides lennuaega ja lennu pikust. Senini on põhiliselt uuritud autopiloodi juht-

algoritmide efektiivsust ja on loodud ilmastiku ja sensori müra kindlamaid algoritme.

Selles töös vaadeldakse laiemat pilti, kus selleks, et multirootorid saaksid olla tõeliselt

autonoomsed ja võiksid pakkuda senini liialt kulukateks osutunud funktsionaalsusi.

Selleks analüüsitakse erinevaid võimalusi binaarsetest lennulogidest ühtse andmestiku

loomiseks. Vaadeldakse erinevaid faili tüüpe ning lõpuks valitakse _SQLite_

andmebaas. Luuakse andmete mudel hoidmaks infot logidest ja kirjutatakse kood

python keeles, mis loob nimetatud andmebaasi. Andmebaasis olevate andmete

analüüsi tulemusel leitakse parameetrid, mille alusel on võimalik kogu andmebaasist

välja filtreerida andmed, mille abil on võimalik luua multirootori käitumise mudel

erinevatel lennu kiirustel õhu suhtes. Leitakse ka vajadus, lendude pinge graafikuid

analüüsides, et saavutada autonoomsus, mis arvestab ilma tingitud muutustega

autonoomsete missioonide vahel, on tarvilik intelligentne kontroller, mis teaks

autopiloodile anda infot aku täituvusest. Kontroller peaks mõõtma ja arvestama aku

temperatuuriga ja jälgima aku degradatsiooni ajas ning kasutus kordadel. Lisaks peaks

kontroller väljastama unikaalse identifikaatori, et andmeanalüüsi teostades oleks

võimalik jälgida muutusi aku parameetrites.

See töö on kirjutatud Inglise keeles, on 37 lehekülge pikk, sisaldab 5 peatükki, 18

joonist ja 9 tabelit.

5

List of abbreviations and terms

UAV Unmanned Aerial Vehicle

GPS Global Positioning System

GLONASS Global Navigation Satellite System

IMU Inertial Measurement Unit

GB Gigabyte – 10003 bytes

kB kilo Byte – 10001 bytes

MB Megabyte – 10002 bytes

GCS Ground Control Station

CSV Comma-Sepparated Values

JSON JavaScript Object Notation

SQL Structured Query Language

DBMS Database Management Systems

PTZ camera Point-Tilt-Zoom camera

RTL Return To Launch

NA Not Available

6

Table of Contents

1 Introduction...10

2 State of the art..12

3 Piloting a multi-rotor UAV..17

4 Database generation...21

4.1 Initial data...21

4.2 Choosing the output data type...21

4.3 Tidy data...25

4.4 Database normalization...27

4.5 The code..32

5 Initial analysis of the data..35

5.1 Extracting windless flight data..36

5.2 Analysis of battery performance...42

6 Summary..47

 References..48

 Appendix 1 – Python database creation code...50

7

List of Figures

 Figure 1.Search and rescue mission...12

 Figure 2.Heat signature of two deer in the woods..13

 Figure 3.A deer in the woods..14

 Figure 4.Stationary multi-rotor without and with wind..18

Figure 5.Example of JSON data..22

Figure 6.Log entries in JSON format..23

 Figure 7.Message and ATT relationship..29

 Figure 8.Final database schema..31

 Figure 9.Latitude and longitude data points of a flight..36

 Figure 10.Latitude and longitude data points of a flight..37

 Figure 11.Longitude data points in time-series of a flight...37

 Figure 12.Longitude and latitude on the same time-series graph of a flight..................38

 Figure 13.Longitude data points in time-series of a flight augmented with mode inform-

ation...39

 Figure 14.Low-pass filtered battery voltage graphs...41

 Figure 15.Improved low-pass filtered battery voltage graphs..42

 Figure 16.Improved low-pass filtered battery voltage graphs of the whole database.. . .43

 Figure 17.Improved low-pass filtered battery voltage graphs of selected flights..........44

 Figure 18.Improved low-pass filtered battery voltage graphs of selected flights of an-

other multi-rotor..44

8

List of Tables

Table 1.NTUN CSV file contents..21

Table 2.Tidy data...24

Table 3.Column headers as variables..25

Table 4.Excerpt from dump.txt..27

Table 5.Message ATT...27

Table 6.Message RATE...28

Table 7.Message PIDR..28

Table 8.Message table...29

Table 9.Long table...30

9

1 Introduction

This thesis aims to analyse flight data collected over a thousand flights to find the

requirements and problems with weather dependant multiple execution autonomous

missions. To be able to analyse the data it needs to be collected into a database. The

data is given as single flight logs in a binary format. For creation of the database several

types of file storage are considered.

Currently the autonomy of multi-rotor aircraft is limited to single flights. A mission can

be made that traverses a given path and points its camera at points of interest. The

current technology lets the pilot assign the speed of flight during the traversal of the

mission. Eli Ltd has developed a technology that they call nests. With this technology

the batteries of a multi-rotor can be recharged and swapped for charged ones. This

creates the possibility to create missions that are automatic and require no input from a

pilot. Due to the dynamic nature of weather the flight speeds of the mission need to be

changed. By changing the speeds safety and higher operational ability is achieved.

Current technology does not dynamically change the mission parameters to fit the

weather conditions.

This thesis does not concern itself with use cases where high situational awareness is

needed such as detecting objects in video, tracking objects in video, dynamically

generating new missions given external stimulus. Instead use cases that use missions

that follow a preplanned path are discussed. Such use cases are area surveillance

missions for securing a perimeter of a secure site or autonomous patrol of a segment of

a country's border.

More concretely in this thesis the library of binary flight logs of Eli Ltd is taken and

used to build a database for further analysis. In the first chapter we survey the state of

the art. The second chapter discusses the intricacies of piloting an unmanned aerial

multi-rotor vehicle. In the third chapter various file formats are analysed and chosen

from to be used as storage for the database. Furthermore the analysis prerequisites are

10

discussed and the database schema is designed accordingly. The schema is then used in

the python code created by the thesis author to translate the binary flight logs into a

SQLite database. In the following chapter initial analysis is conducted on the data. The

goal of which is to find the relevant data to model the multi-rotor behaviour in different

conditions and requirements for the model to be used in practice.

11

2 State of the art

A multi-rotor UAV may carry different payloads for different use cases but

predominantly the payload is a video or photo camera. The video and photos can be

used for 3D mapping, search and rescue operations, inspecting power lines,

surveillance, inspecting wind turbine structural integrity, counting deer in woods or

simply capturing cinematic footage to name a few. However the act of piloting itself is

secondary to the goal. The act of piloting is necessary to gather data with the payload. A

pilot needs to have certain skills and training to be able to safely operate an aerial

vehicle. The cost of hiring a pilot can be much higher than the operational costs of the

UAV and payload combined. Thus companies across the globe look to simplify the

piloting.

In movie industry camera drones are used with two people. One person to pilot the

multi-rotor and one person to manipulate the camera. This has the overhead of hiring

two people and the multi-rotor and the expensive payload. For the high-end movie

industry this is fine. Where this overhead becomes prohibitive is in the industrial

applications. To inspect power lines at least one person is needed to do the piloting and

directing of the camera. The video analysis can be done during the flight or later. To

keep the needs of man power to a minimum the operator needs to be able to operate the

multi-rotor as well as the camera and know enough of the power lines to analyse the

video feed. Another option is to have two people – one to pilot and film and a second

one to do the analysis. The operator however might not film the correct parts for the

analyst to do his job. Thus introducing the risk that the collected data is unusable. In the

case of power lines not only a single pylon needs to be inspected, rather several hundred

kilometres worth need to be assessed at a time. Having a single person drive to each

location to fly a multi-rotor would take a very long time for a single person and as the

person needs to be highly trained the process would become prohibitively expensive.

This problem is smaller when it comes to telecommunications companies as they have

single cell towers which allays need to be inspected one at a time. For the energy sector

12

a multi-rotor is prohibitively expensive and not because of the device costs but rather

the manpower costs.

The energy sector could use multi-rotors, but they have a more cost effective way of

detecting faults. The method involves renting a full size helicopter with a pilot and

fitting it with an expensive camera and camera operator to fly over the power lines at

the right angles to later analyse the photos or video taken. This has a higher chance of

missing faults but compared to multi-rotors is cheaper alternative.

Automating the missions to inspect power lines or cell towers requires high intelligence

on the part of the autopilot and will not be assessed in this thesis. Instead search and

rescue missions and surveillance missions are assessed. These missions have the

potential to be simplified to the point where additional training on the part of the pilot is

not needed.

To find a person lost in woods a mission such as seen on Figure 11 is used.

1 Image captured from Elix software made by Eli Ltd.

13

Figure 1.Search and rescue mission.

On Figure 21 the heat signature of deer can be seen.

On Figure 32 a deer from a day camera can be seen.

1 Source: Eli Ltd photo repository.
2 Source: Eli Ltd photo repository.

14

Figure 2.Heat signature of two deer in the woods.

To execute a mission such as seen on Figure 1 the pilot needs to take into account

several variables such as wind speed and battery condition. A naive simplification to

piloting can be made by limiting the maximum disturbance (wind) allowed by forcibly

landing when such disturbance is detected. This sets a hard limit to the conditions an

unskilled pilot can fly in. By enforcing such a limit the risk of failure can be minimized

and the producer of the multi-rotor would feel a lot better about their product. A skilled

pilot however would be able to fly and potentially save someone's life in that situation.

A better approach is needed.

Area surveillance requires an automated mission that allows for specification of the

camera direction and angle. A mission to survey the fences of a military compound

would have to include waypoints that specify the locations the multi-rotor flies to and

the locations or directions the multi-rotor camera is turned to while flying. While

building such a mission takes some knowledge of the software the actual mission takes

no input from a pilot (unless desired) and can be used the same way a regular camera

video is used. When the viewer of the video feed spots that something is wrong, the

multi-rotor could be set to manual control mode to be used as flying camera in a similar

fashion to PTZ cameras. Such systems could be used instead of stationary cameras in

15

Figure 3.A deer in the woods.

cases where the areas are to big to have stationary camera infrastructure or change

rapidly. Given the naive solution to dealing with different weather conditions outlined

above would leave the area vulnerable every time the weather conditions exceed the

piloting abilities of an untrained pilot. To remedy this the autopilot needs to be able to

adjust to the weather conditions in the same way an experienced pilot would.

16

3 Piloting a multi-rotor UAV

During the flight of a multi-rotor UAV several things happen at once. Firstly the UAV

fights against gravity to keep itself at the desired height. Secondly it has to follow the

orders of the pilot – fly as desired. Thirdly the UAV also fights against the wind. This

combination of three forces means that the system is highly dynamic. While the gravity

is constant, the desires of the pilot change as well as the wind.

The pilot can be in control largely by two ways:

1. Manual control via analogue controllers

2. Automatic flight mode via commands

During manual mode the UAV is directed by analogue controllers that give it some sort

of continuous input signal to adjust the throttle of the four motors. Changing the throttle

results in either tilting of the aircraft or changing of its altitude or both. Different

vendors offer differing levels of control. In arducopter[1] 1 firmware there is stabilize

mode that allows the pilot to fly manually, but the platform self-levels the roll and pitch

axis. If the pilot releases the controls the UAV falls to the ground. In *DJI* Phantom 42

there are modes such as Position Mode which uses GPS and GLONASS satellite

positioning where releasing the controls results in the platform remaining stationary in

air even in windy conditions. A similar mode exists in arducopter called _loiter_. In this

some simplification of piloting can be seen. The autopilot is there to remove a

component of skills needed for successful piloting. In these modes the pilot is in control

of the speed of flight and is in effect compensating for the effects of wind when flying

in some direction. While staying still the GPS location is used to stay still.

Both *arducopter* and *DJI* have automatic flight modes where the multi-rotor flies

according to a pre-programmed mission. The missions are user specified by global x/y

1 A full-featured, open-source multi-copter UAV controller firmware.
2 A Chinese producer of multi-rotor UAVs. Phantom 4 is a successful commercially available multi-

rotor platform.

17

coordinates, height values and the speed of flight between points. The multi-rotor

autonomously attempts to fly through given mission points at the given height and

speed. During such a flight the multi-rotor automatically compensates for wind. In the

case of DJI a wind warning is given at 6 m/s winds and high wind warning at 9 m/s.

Arducopter does not report the wind and leaves everything to the pilot.

The complications of piloting due to wind are numerous and we will look at a few of

them.

1. Angles of the multi-rotor when stationary (loiter mode) reflect wind direction.

2. Current draw from the battery increases.

3. Vibrations aboard the multi-rotor increase.

When the aircraft is stationary above ground the wind causes it to tilt into the wind. In

the reference frame of air, the multi-rotor is flying at the speed of the wind and in

opposite direction, to, in the reference frame of the ground, remain stationary. Looking

at the angles there is no difference between standing still in 5 m/s wind and flying in

some direction with the speed of 5 m/s in windless weather. An illustration of a

stationary multi-rotor can be seen on Figure 41.

1 Arrow icon made by https://www.flaticon.com/authors/lyolya, multirotor and tree icon made by
https://www.flaticon.com/authors/freepik from www.flaticon.com.

18

Figure 4.Stationary multi-rotor without and with wind.

Secondly, when flying against the wind, the current draw increases to match the

increased power required to stay airborne. From the power consumption point of view

there is no difference in flying 5 m/s in some direction to standing still in 5 m/s wind.

Thirdly the vibrations aboard the aircraft increase. This can cause trouble for the flight

controller as the output of the IMUs becomes noisy. Since the flight controller

calculates the outputs of the motors using various sensors and among them IMUs, high

vibration may cause the flight controller to be unable to determine its attitude and as a

result cause the aircraft to loose control and crash. In this thesis we will look mainly at

the first two effects.

To operate a multi-rotor manually the pilot needs to take those effects into account and

keep their eyes on the readings of those parameters. The simplified flight modes such as

loiter take most of the skill needed to pilot by implementing features on the autopilot.

Several control algorithms have been developed, such as the widely used _proportional_

integral derivative algorithm, cascaded linear proportional integral derivative[2]

algorithm or the newer incremental non-linear dynamic inversion[3] algorithm. These

algorithms optimize for the stability of the flight reducing the need for the pilot to do it

by hand but higher level algorithms are still at the level of naive implementations for

features such as optimizing for flight time or distance or speed, optimizing for safe

return to start. These features are of critical importance for achieving full autonomy in

some scenarios.

For safety both arducopter and DJI use fail-safe modes to guarantee that the multi-rotor

has enough power left to reach the take-off location. A naive approach that arducopter

employs is to look at the battery voltage and at a fixed point start flying back. This

safety behaviour can be triggered in both manual control mode and automatic mission

mode. This approach has to take into account the worst case scenario of flying against

the wind a long distance to make sure the multi-rotor makes it back. This leave a portion

of the available power in the battery as a buffer reserve. A smarter fail-safe would also

take into account the distance from the starting location to scale the value where the

fail-safe is triggered. This helps reduce the buffer energy requirement. To further reduce

the energy left in the buffer the fail-safe would also need to adjust for the weather

conditions. If the starting location is down wind then much less energy is needed than

19

when the return home trip is taken against the wind. To achieve this type of smart fail-

safe functionality the autopilot needs to be aware of two things:

1. The wind parameters – strength and direction.

2. The battery state – how much energy is left in the battery.

To find the wind parameters a fusion of an on-board wind sensor and magnetometer

could be used. An on board wind sensor has been used to measure winds in wind farms

to model airflow [4] . The multi-rotors that Eli Ltd produces do not have on-board wind

sensors. As there is no difference between a multi-rotor flying at a fixed speed in

windless conditions or staying stationary when the wind is equal to that of the previous

example. Therefore a model of behaviour could be created given flight data where wind

is minimal or zero. In the next chapter creating a database to use in modelling is

discussed and the code to do so is created.

Given a database of flight logs the behaviour of batteries can be analysed. This is done

later in this thesis.

20

4 Database generation

4.1 Initial data

Eli Ltd collects the binary flight logs that are saved by arducopter firmware aboard the

multi-rotor platform. The binary files contain MAVLink protocol packets. MAVLink

stands for Micro Air Vehicle Message Marshalling Library.

MAVLink is a very lightweight, header-only message library for communication between
drones and/or ground control stations. It consists primarily of message-set specifications for
different systems ("dialects") defined in XML files, and Python tools that convert these into
appropriate source code for supported languages.[5]

Not all possible messages that the autopilot generates are sent to the GCS. It is

configurable which packets are saved, which are sent to the GCS and which are

dropped. In general the GCS receives some subset of all messages that is important for

operating the multi-rotor. In the logs a bigger subset is recorded. For the logs present

most important messages and communications are saved but extremely high resolution

data is not saved. As such over a thousand logs have been collected. The total number of

binary logs available is 1363 and amount to 57.2 GB of data. This would average 41966

KB per log. Among them are logs that are not actual flights but rather tests on the

bench. These logs inflate the number of logs available. Some logs do contain the highest

amounts of data and can be several hundred MB large and thus inflate the average. A

normal flight can be expected to be between 4 to 100 MBs. An average forty plus

minute flight is expected to be over 40 MB.

4.2 Choosing the output data type

In this thesis R[6] programming language is used for data analysis. R is a language and

environment for statistical computing and graphics. As it is open source no licences are

required to set it up and use. This brings statistical computing and data science to the

hands of everyone interested in the topic and avoids expensive mathematics suites.

21

The binary data in the log files is not readily accessible from R. As a result it is

necessary to convert the data to some other format. The pymavlink project – a python

implementation of MAVLink protocol[7] - has a few tools that do just that. First of the

options is to convert the log into a CSV1 file. Mavlogdump.py[8] is the tool available

for conversion. With CSV files comes a caveat – you may only export one message type

at a time. This is to be expected since the CSV files separate table columns with

commas and the log files have message types with different lengths of columns. In

Table 1 we see example lines of CSV file taken from a flight log containing NTUN

packets.

Table 1.NTUN CSV file contents.

Timestamp TimeUS DPosX DPosY ...

1521817093.27547407 688646373 -489,633148193 86,0853424072 ...

1521817093.37760210 688748501 -489,633148193 86,0853424072 ...

1521817093.47829199 688849191 -489,633148193 86,0853424072 ...

In R it is very simple to import CSV files and this at first seemed a viable candidate file

type for storage. However since there are many different types of messages, each log

would in turn be converted to as many CSV files. Potentially leaving us with tens of

thousands of files. This means R would have to import the relevant files one by one and

processing them. With thousands of files to import the analysis time would be

negatively impacted as the data import poses an overhead.

Another option is to use JSON[9] . JSON is a data-interchange format designed to be

easily read and written by humans as well as to be easily parsed and generated by

machines. There are two structures in JSON:

• A collection of name/value pairs.

• An ordered list of values.

Both are familiar to programmers using the C-family languages. Both can be seen in

Figure 5.

1 Comma separated values file is a text file where a comma is used to separate values.

22

Two consecutive entries from the binary log converted to json format using

mavlogdump.py look like as shown on Figure 6.

23

{"menu": {

 "id": "file",

 "value": "File",

 "popup": {

 "menuitem": [

 {"value": "New", "onclick": "CreateNewDoc()"},

 {"value": "Open", "onclick": "OpenDoc()"},

 {"value": "Close", "onclick": "CloseDoc()"}

]

 }

}}

Figure 5.Example of JSON data.

R has libraries to deal with JSON data. Such as jsonlite [10] and rjson[11] . As with

CSV, JSON files need to be imported one by one, analysed and unloaded. This has

considerable overhead. Further more an output file from a 47.6 MB log file becomes

649.8 MB. That is an increase of size of thirteen times! The library of logs that is 57.2

GB becomes 743.6 GB of JSON data as a result. At least there are an order of

magnitude lower amount of files.

The final option to consider is SQLite[12] . SQLite is a SQL database engine that is self-

contained and server-less. It is designed to be SQL database, but without concerning

itself with a server process and user management and other common SQL attributes. As

24

{"meta": {

 "timestamp": 1521817579.039407,

 "type": "PIDP"

 },

 "data": {

 "D": -0.0005177092389203608,

 "TimeUS": 1174410306,

 "I": 0.0324220173060894,

 "AFF": 0.0,

 "Des": -0.012198338285088539,

 "P": -0.005622388795018196,

 "FF": -0.0

 }

}

{"meta": {

 "timestamp": 1521817579.039419,

 "type": "PIDY"

 },

 "data": {

 "D": -0.0,

 "TimeUS": 1174410318,

 "I": -0.08129391074180603,

 "AFF": 0.0,

 "Des": 0.006200382951647043,

 "P": 0.008107485249638557,

 "FF": 0.0

 }

}

Figure 6.Log entries in JSON format.

such its designed to be a competitor to both JSON and CSV. The benefit of SQLite is

that it can be used by various third party programs and programming languages. Python

and Tcl have SQLite built in. Raw data can be imported from CSV files and the data can

be compressed to similar sizes to Zip files. Since the database is a single file it can

easily be written to a USB memory stick or with smaller databases emailed to a

colleague directly. Given some understanding of SQL SQLite offers an easy to use

database.

R language has adapters to connect to SQL databases such as RODBC[13] , RJDBC[14]

, bigrquery[15] and many others among which is RSQLite[16] . RSQLite embeds the

SQLite database engine in R, providing a DBI[17] -compliant interface. DBI is an R

package that defines a common interface between R and database management systems

(DBMS). With RSQLite package it is possible to directly manipulate data in SQLite

database.

4.3 Tidy data

Tidy data is a set of principles that help organize data in data sets. This helps make data

cleaning easier and faster by not having to start from scratch every time. Another

benefit of tidy data is that it is easier to design data analysis tools which can assume that

the data input is always tidy. Both benefits help the data analyser to focus on the

underlying problem rather than managing data half the time [18] .

In Table 2 we are looking at the mtcars data set that is inbuilt in R. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

Table 2.Tidy data.

mpg cyl hp drat wt qsec vs ...

Mazda RX4 21,0 6 160 110 3,90 2,620 16,46 ...

25

mpg cyl hp drat wt qsec vs ...

Mazda RX4 Wag 21,0 6 160 110 3,90 2,875 17,02 ...

Datsun 710 22,8 4 108 93 3,85 2,320 18,61 ...

Hornet 4 Drive 21,4 6 258 110 3,08 3,215 19,44 ...

Hornet Sportabout 18,7 8 360 175 3,15 3,440 17,02 ...

This data set is already tidy. Each row is an observation and each column represents a

variable. Every element in the table is a value. Any other arrangement of data is

considered messy. By having tidy data it is easy to manipulate data such as group by

column info and tie break on another column. Tidy data is particularly well suited for

vectored programming languages like R where each observation of each variable is

always paired.

The five most common problems with messy data sets are:

1. Column headers are values, not variable names.

2. Multiple variables are stored in one column.

3. Variables are stored in both rows and columns.

4. Multiple types of observational units are stored in the same table.

5. A single observational unit is stored in multiple tables.

In Table 3 we can see a table of data where the column header – the variable itself is a

value. This can help make very dense and informative tables but for working with the

data it is not tidy. If we wish to separate the data into segments of 5000 dollars then we

can say that this table also has multiple variables in a single column. Rest of the

problems we will not look at.

Table 3.Column headers as variables.

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137

26

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Atheist 12 27 37 52 35 70

Buddhist 27 21 30 34 33 58

Catholic 418 617 732 670 638 1116

Don't know 15 14 15 11 10 35

Evangelical 575 869 1064 982 881 1486

Hindu 1 9 7 9 11 34

Historically 228 244 236 238 197 223

Jehovah's 20 27 24 24 21 30

Jewish 19 19 25 25 30 95

4.4 Database normalization

ArduPilot[1] development team hosts an organization of projects on GitHub1 that

contains several useful projects such as the _ardupilot_ autopilot firmware codebase for

multi-rotors, planes, rovers and much more. Among the project is pymavlink project

which provides a python MAVLink[7] interface and utilities. Among those utilities are

tools mentioned in 4.2. With these tools we determined that none of them fit our needs

exactly but those tools can be used as a source of information for building our own

tools.

The data storage format was decided to be SQLite database. To increase the efficiency

of working with the data the data set should be tidy. By taking that into account when

designing the SQLite database, time can be saved by not having to separately tidy up the

data set before analysis. Further more Edgar F. Codd[19] defined normal forms to

permit querying and manipulation by a universal data language2. The third normal form

(3NF)[20] is considered as being tidy data. Simply by designing the database using the

normal forms, especially the third normal form allows us to reach tidy data.

1 An online platform for version controlling software development.
2 One such language is SQL.

27

By instructing mavlogdump.py to dump the logs from binary form to a readable text file

we can see the general shape of the data in the binary logs.

First normal form is a property of a relation where each attribute of the domain contains

only indivisible values and the value of each attribute contains only a single value from

that domain[21] . In Table 4 we see that there are inner tables in the message. This is in

violation of the requirement of atomic values. The inner tables need to be removed from

the message and separated into another table.

Table 4.Excerpt from dump.txt.

Time Message Data

2018-03-23 17:26:57.12 ATT Inner Table

2018-03-23 17:26:57.12 RATE Inner Table

2018-03-23 17:26:57.12 PIDR Inner Table

From tables Table 5, Table 6 and Table 7 we can see that the inner tables are of

different shape. This means that each message requires a separate table. The current

message structure does not permit more than one data table to be used.

Table 5.Message ATT.

Message Data

TimeUS 2412496394

DesRoll -2,41

Roll -2,26

DesPitch 2,64

Pitch 43314

DesYaw 96,07

Yaw 96,28

ErrRP 0,01

ErrYaw 0,02

28

Table 6.Message RATE.

Message Data

TimeUS 2412496408

RDes -0,977470874786

R 0,30203345418

ROut -0,0680121853948

PDes -1,36304438114

P -1,30311119556

POut 0,0843362286687

YDes -1,62430250645

Y -0,70737850666

YOut -0,1534512043

ADes 1,88155674934

A -2,99711227417

AOut 0,368027120829

Table 7.Message PIDR.

Message Data

TimeUS 2412496431

Des -0,0153276510537

P -0,00370784359984

I -0,0374843552709

D -0,0268199834973

FF -0,0

AFF 0,0

Figure Figure 7 has two tables where message table represents all the different messages

and table ATT represents any single data table of a message – here the ATT message.

29

Another option would be to unwrap the inner data table to be a part of the outer message

table. Here we run into a similar problem. Since the inner data tables are of different

shape, the single message table would have to contain each possible variable in the logs

and be empty most of the time. Excerpt of this table is show in Table 8. This table is

realizable in a database.

Table 8.Message table.

... Message TimeUS DesRoll Roll ... RDes R ... Des

... ATT time value value ... NA NA ... NA

... RATE time NA NA ... value value ... NA

... PIDR time NA NA ... NA NA ... value

Table 8 contains mostly NA values as for every message only a subset of variables is

relevant. When working with this table, the NA values need to be removed. We can

solve this problem by converting this table from wide form to long form. Since we are

30

Figure 7.Message and ATT relationship.

storing several flights into the same database we need to add a flight identificator. In

Table 9 the parameters are merged into the same column as are the values.

Table 9.Long table.

Id Flight Message Timestamp Parameter Value

125 4 ATT 2018-03-23 17:26:57.12 TimeUS 2412496394

126 4 ATT 2018-03-23 17:26:57.12 DesRoll -2,41

127 4 ATT 2018-03-23 17:26:57.12 Roll -2,26

...

134 4 RATE 2018-03-23 17:26:57.12 TimeUS 2412496408

135 4 RATE 2018-03-23 17:26:57.12 RDes -0,977470874786

136 4 RATE 2018-03-23 17:26:57.12 R 0,30203345418

...

145 4 PIDR 2018-03-23 17:26:57.12 TimeUS 2412496431

146 4 PIDR 2018-03-23 17:26:57.12 Des -0,0153276510537

147 4 PIDR 2018-03-23 17:26:57.12 P -0,00370784359984

In table Table 9 we added flight identificator but we would like to have more

information on the flights. To reduce metadata repetition another table is needed. There

is also quite a lot of repetition in other values in the table. The message type and

timestamp repeat for each parameter in the inner table. The parameters also repeat each

time the message is repeated. Each of the repeating elements can be moved to a

dedicated table. In Figure 8 we can see the finished database schema.

31

4.5 The code

The code starts off with taking as an input the folder in which the binary files is stored

in. The folder is searched recursively so that sub folders containing log files are also

searched through. The files are counted and the sizes saved. A filtering is done by file

size. Files larger than 100 MB and smaller than 4 MB are skipped. After the first log file

is processed the time taken is used to calculate an estimation as to how long the whole

process will take. Further more the total time elapsed is also displayed.

Mavutil.py from pymavlink project is used for translating the binary data to in memory

representation. From there the data is buffered and written to the SQLite database. Each

new message type adds its parameter types to Parameter table as seen in figure Figure 8

and each new message type is added to the messages table. This allows for the

specification for messages to change and several versions of the specification to be used

in different logs. The message name and the parameter names are decoupled from each

other. An assumption that the message specification does not change in a single log is

made.

32

Figure 8.Final database schema.

After processing a log a new entry to the Flight table is made. The metadata that is

added is the path where the file was stored. As the logs are separated into folders by

which multi-rotor it was obtained from or from which period in time or which version

of the multi-rotor was used then the path gives some sort of information that could be

used for filtering in the analysis stage.

Timestamps are allowed to repeat as searching through the whole table means more

processing needed while creating the database. This leaves a possibility to create a

secondary script that would look through the Timestamp table and removing duplicates

and substituting the Id in the Value table.

There is an overhead to writing into the SQLite database. A single write entails opening

the database connection, writing to the database and closing the connection. The

opening and closing operation adds an overhead that over hundreds of thousands of

writes becomes significant. To remedy this a bulk insert operation is available. Every 10

000 lines of the binary log a bulk write is done. That number is experimental in nature

as in testing making the number bigger did not seem to save any processing time.

Making it smaller however slows the processing down. There is a possibility that further

optimization can be done.

In case where the script crashes or some error happens or new logs are to be added to

the database the code first checks the existence of the database. If the database exists the

supporting tables are read into memory to be tested against so that new messages and

parameters get added to the database.

While SQLite is a good option for an on disk storage of the database, other databases are

available and have some useful features. One of which is the ability to use window

functions on the database. This means that it is possible to use filter kernels on the data

while still in database. Such functions using SQLite require loading the relevant

segment of data (such as a single flight) into R. An attempt was made to port the

working python code to instead of SQLite to use PostgreSQL[22] . The code does work

but is orders of magnitude slower. Heavy optimization is needed to streamline the

process and as SQLite interface is simpler in nature this idea was left as something to be

done later given more time. Moving to a full featured relational database management

33

system would allow easier porting of the analysis to a web based service later, but that

is not relevant in the context of this thesis.

The code for creating the database is written in python and is added to the appendix

Appendix 1 – Python database creation code.

34

5 Initial analysis of the data

As mentioned in the second chapter for the multi-rotor there is no difference whether it

is flying at a given direction at a set speed and staying stationary in winds opposite to

the flying direction of the previous example and with the same speed as the multi-rotor

was flying. The following equation can be written w⃗=v⃗+u⃗ where w⃗ is the ground

speed of the multi-rotor. v⃗ is the wind speed of the multi-rotor and u⃗ is the wind

speed. If we increase the wind speed u⃗ the multi-rotor autopilot finds the angles and

motor power that allow it to fulfil the desired ground speed w⃗ . When w⃗ stays

constant and u⃗ increases v⃗ changes to account for the change in wind speed. The

change in v⃗ is dependent on the flight direction and wind direction. When flying

against the wind v⃗ and u⃗ point in opposite directions as the multi-rotor has to

compensate for the increased wind speed. When flying down wind the speeds add up –

the multi-rotor has to do less work to fly at the desired speed w⃗ . To find the wind

speed a model of the multi-rotor behaviour is needed. Another way of looking at it is to

instead look for wind speed of the multi-rotor. This itself is the model of the multi-rotor

flight. The user gives the desired ground speed w⃗ , the wind is u⃗ and what we are

after is the resultant behaviour v⃗ . To find the flight model v⃗ we can take the

aforementioned equation and substitute the wind speed u⃗ with 0. Now w⃗=v⃗ . This

way the desired speed equals the wind speed. With this in mind it is necessary to extract

from the database the data of the flights where wind speed is close to zero to create the

model. The chapter 5.1 does just that.

Another important factor to consider is the state of the battery. To accurately model the

multi-rotor behaviour in diverse flight conditions the information about how much

energy is left is tantamount. In the chapter 5.2 the data available is analysed.

35

5.1 Extracting windless flight data

To find the flights where the wind is minimal we could look at the levels of vibration

aboard the multi-rotor but that is not the easiest way nor is it very accurate due to its

non-linear nature. Further more the vibration levels stay relatively low for normal flight

conditions. As such it is more useful for estimating the upper limits of air speed the

multi-rotor is able to achieve.

A better option is to note that when wind speed is zero the multi-rotor moves at the

desired ground speed. If the desired ground speed is also zero then the behaviour of the

multi-rotor should be stable as well. Without wind the angles of the multi-rotor should

fluctuate around zero degrees and by looking at the average angles when the multi-rotor

is commanded to hold its position in loiter or position hold mode we can detect the logs

that have nearly no wind. There will be some fluctuation in the angles due to GPS

inaccuracy and barometric drift and drift of the IMUs and other sensors. This should

amount to white noise and average out given time. By taking the average angles over

the time of remaining stationary we will get the average angle and direction of the wind

as the multi-rotor will effectively be flying to counteract the wind. Any sufficiently

large angle constitutes wind. For training the model only the windless flights are

needed, but since some wind is expected the level of cut-off where a flight is considered

to have been in windless condition. Various levels of "windless" data could be used as

different cut-off values result in different amounts of training data.

In figure Figure 9 we can see a flight that consists of segments of noisy data. This flight

was mostly flown in manual loiter mode and as a result is this noisy.

36

In figure Figure 10 a flight using auto mode is used. In this mode the autopilot does its

best to directly fly to the points specified in the mission. While this information is

useful for getting an idea of the flight trajectory it does not help us with finding

windless flights as the information we are looking for is missing. Namely the sections

that the multi-rotor is stationary. Since the graph does not contain any data about time,

only individual points, we are unable to see where the multi-rotor stands still. A guess

would be that at the turning points of the straight segments the multi-rotor could

potentially stand still.

37

Figure 9.Latitude and longitude data points of a flight.

Looking at the longitude time-series graph of the same flight on figure Figure 11 we can

clearly see where the multi-rotor stands still in the longitude axis. However this is not

sufficient to tell where the multi-rotor is truly stationary as motion could be had on the

latitude axis.

38

Figure 10.Latitude and longitude data points of a flight.

Figure 11.Longitude data points in time-series of a flight.

Figure Figure 12has time on the x axis and latitude/longitude point value changes on the

y axis. The figure is made by taking both latitude and longitude axes and merging them

into a single one. Then the data is shifted to very nearly zero so that both graphs can be

seen. This helps us see where the multi-rotor is actually stationary.

Where the value of both latitude and longitude stays unchanged for a period of time the

multi-rotor is stationary. Graphically we can see where this is so but as a function of

data we still need an additional function to find the segments where the multi-rotor stays

still. To find the segments various approaches could be attempted. One of them would

be to construct lines through points in the time-series and looking for where the slope of

the line changes compared to the last one. Filtering would be needed to account for the

noise present. After that line segments where the graph moves perpendicular to either

latitude/longitude axis are taken into consideration. From there latitude and longitude

segments have to be compared to find the segments where both are perpendicular to the

axis. This is to remove segments where motion is recorded as perpendicular to either

axis. This can be seen on the end of the latitude longitude graphs on figure Figure 12.

There we can see motion on the longitude graph but not on the latitude graph. Where

both graphs are parallel to time the multi-rotor is truly stationary. However the

aforementioned approach is not the best on as it ignores corner cases such as when the

multi-rotor has turned to face the direction of future motion and taken some angle to

39

Figure 12.Longitude and latitude on the same time-series graph of a flight.

start moving but from inertia has not yet started moving. Luckily we have more

parameters than latitude and longitude coordinates in the logs. We also have

information about what mode the multi-rotor was in.

On figure Figure 13 the longitude time-series graph is augmented with information

about which mode the multi-rotor was in during the flight.

The take off sequence starts with brief entry to stabilize mode which we will ignore.

After that auto mode with the setting to stay still until a non-empty mission is uploaded.

Soon after loiter mode is entered. From figure Figure 12 we can see that the multi-rotor

remained stationary for the duration of loiter mode. After entering guided mode, which

is also an automatic mission mode, the multi-rotor starts moving. In this flight each time

the multi-rotor is stationary the mode is loiter, excepting take off sequence and landing

procedure. In the landing procedure the RTL mode returns the multi-rotor to the launch

location and lands. During the landing the multi-rotor remains stationary. Before fully

landing the RTL mode is interrupted by the pilot by issuing loiter command. We can

assume that here we had a skilled pilot who wanted to see how long the battery would

last until being truly empty and thus estimating the overall health of the battery. After

that an automatic landing fail-safe is executed by the autopilot only to be interrupted

40

Figure 13.Longitude data points in time-series of a flight augmented with mode information.

again with the loiter command by the pilot. From this graph we can see that to find the

windless flights we need to find all flight segments where:

• The mode is loiter and both latitude and longitude coordinates are stationary.

• The segment after launch where the initial mission is empty and both latitude

and longitude coordinates are stationary.

We could also use mode land to check for wind conditions but it needs to be taken into

account that the latitude is changing and land and loiter are not comparable. Also in

land mode the multi-rotor can be manipulated manually so latitude and longitude

coordinates need to be checked for changes. RTL mode should be split in two parts

since it internally contains both guided segment and land segment. For the land part in

RTL same considerations need to be made.

Once the segments have been filtered out the average angle of the multi-rotor needs to

be calculated. Since the multi-rotor operates in three dimensional space there are three

angle parameters. As the vehicle is capable of moving in any direction the orientation of

the front is not important for our purposes. The parameter for that is yaw. Instead we

average over the pitch and roll parameters.

The previous analysis is sufficient to filter help filter out relevant flights from the

database. From there the relevant data may be separated into training and verification

data to test the model. Further decimation of data is needed as the data is collected at a

high frequency. The desired directions of flight need to be found from the data as well

as the desired flight speed. The exact details for the model creation are left for the

model creator.

After the model is created the direction of the wind needs to be calculated. The direction

of wind helps us optimize our battery use in the case of automated missions. Flying

against the wind takes more power than flying by the wind. As we mentioned

w⃗=v⃗+u⃗ which means that the angle difference between w and u⃗ have to be

compensated by v⃗ . Since all elements in the equation are vectors where the

magnitude is the speed of motion and the angle is the angle. By subtracting from the

desired ground speed w⃗ the model of the air speed v⃗ we get the calculated wind

41

speed u⃗ . From here we can extract the wind direction. The calculated wind speed can

be compared to real measurements to assess the accuracy of the model. An experiment

may be conducted by flying to multi-rotors with 10 to 100 meters apart from each other

where one of the multi-rotors is the multi-rotor from which the model is built from. The

other multi-rotor should carry an accurate wind measurement device such as the one

mentioned in Wind Estimation in the Lower Atmosphere Using Multirotor Aircraft[4] .

Both multi-rotors should fly at the same height and at the same time to reduce variance

of measurements in time. The missions should be identical except for the spatial

displacement to avoid unwanted collisions.

5.2 Analysis of battery performance

On figure Figure 15 we have 9 heavily filtered graphs of voltage during 9 flights. The

smoothing is done by applying a moving average filter with width of 1000 values to

smooth the otherwise noisy graphs. There is problem in that the logs start before launch

command. The graphs can be shifted in time and thus not align. This can be counter

acted to shifting all the graphs by the first voltage measurement value.

42

Figure 14.Low-pass filtered battery voltage graphs.

On figure Figure 15 these problems have been rectified.

Figure Figure 16 displays all the voltage graphs of all the flights in the database. That is

1363 graphs. Here we can see that some shorter flights are not really flights at all and

need to be filtered out from the database. We also see that there are at least two distinct

battery types used. Ones that fly for 40 minutes maintaining higher voltage and ones

that fly for longer while loosing voltage at a higher rate. On the bottom left we can see a

few graphs that start off by dropping rapidly and then recovering a little. This is a sign

of cold batteries. The multi-rotor uses 550 watts on average and thus heats the battery

rapidly. Launching with a cold battery reduces the flight time considerably but warming

due to consumption helps restore some of the capacity. This exemplifies the need for

pre-heated batteries.

43

Figure 15.Improved low-pass filtered battery voltage graphs.

Figure Figure 17 displays the graphs of a single multi-rotor aircraft during a few days of

time where counting wildlife in Estonian woods was carried out. The graphs show the

improved battery that is capable of consistently flying for the guaranteed by Eli Ltd 40

minutes in good weather but also going above that and reaching 50 minutes on most

flights. On 4 graphs we can see the effects of not letting the battery cool off after use

and before recharging and not fully charging the batteries.

44

Figure 16.Improved low-pass filtered battery voltage graphs of the whole database.

Figure Figure 18 displays the graphs of another multi-copter that was also used in the

aforementioned missions. Here we can see that during one flight the battery was

allowed to empty more than usual. This risks breaking the batteries.

45

Figure 17.Improved low-pass filtered battery voltage graphs of selected flights.

Figure 18.Improved low-pass filtered battery voltage graphs of selected flights of another multi-rotor.

From the graphs we can determine that battery estimation is very difficult without

knowing the type of the battery, the internal temperature and the state of charge.

Another important parameter is the state of health of a battery as they degrade over

time. Any smart algorithm needs to take into account the wear and tear of the battery.

As long as there is no smart controller inside the battery to uniquely identify it, give its

state of charge and state of health any smart algorithm will need to take into account the

variability of the battery output. A simplification can be made by expecting fully

charged batteries for every flight and placing that cognitive load on the pilot. Each piece

of missing information about the battery state requires a bigger buffer for the safety

mechanism reducing overall flight time and distance.

46

6 Summary

In order to create automatic missions that can be executed multiple times without

external input regardless of weather a model of the multi-rotor behaviour and a smart

battery controller is needed. Until now the main focus of research has been on

improving the autopilot flight controller algorithms.

Multiple data storage types were assessed. SQLite was chosen to be used as it is simple

to use and acts like a real SQL database and it is easy to share as it is in a single file.

Compared to other options it takes less disk space.

The data representation was analysed and designed for ease of use in the analysis. The

relevant code was created in python programming language converting the binary logs

into SQLite database. This allows us to analyse several flights of data at the same time

and make comparisons. Until now the tools allowed for analysis of a single log at a

time. Further improvement suggestions were made.

Using the created database initial data analysis is done. As a result we present the way

to filter out the relevant data to train the model of multi-rotor behaviour on. Furthermore

the need for a smart battery controller is shown. An experiment to test the behaviour

model accuracy in calculating wind speed and direction is proposed.

47

References

[1] Team, ArduCopter. Ardupilot, s.a. http://ardupilot.org/.

[2] Yu, Yun, Shuo Yang, Mingxi Wang, Cheng Li, ja Zexiang Li. „High performance full attitude

control of a quadrotor on SO(3)“. 2015 IEEE International Conference on Robotics and Automa-

tion (ICRA), 1698–1703, 2015. https://doi.org/10.1109/ICRA.2015.7139416.

[3] Smeur, E. J. J., G. C. H. E. de Croon, ja Q. Chu. „Cascaded incremental nonlinear dynamic inver-

sion for MAV disturbance rejection“. Control Engineering Practice 73 (2018): 79–90.

https://doi.org/10.1016/j.conengprac.2018.01.003.

[4] Palomaki, Ross T., Nathan T. Rose, Michael van den Bossche, Thomas J. Sherman, ja Stephan F.

J. De Wekker. „Wind Estimation in the Lower Atmosphere Using Multirotor Aircraft“. Journal of

Atmospheric and Oceanic Technology 34, nr 5 (2017): 1183–91. https://doi.org/10.1175/JTECH-

D-16-0177.1.

[5] Team. Marshalling / communication library for drones., s.a. https://github.com/mavlink/mavlink.

[6] R Development Core Team. R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing, 2004. http://www.R-project.org.

[7] Team, ArduPilot. Python implementation of MAVLink protocol, s.a. https://github.com/ArduPilot/

pymavlink.

[8] https://github.com/ArduPilot/pymavlink/blob/master/tools/mavlogdump.py.

[9] Crockford, Douglas. JavaScript Object Notation, s.a. https://WWW.json.org/.

[10] Ooms, Jeroen. „The jsonlite Package: A Practical and Consistent Mapping Between JSON Data

and R Objects“. arXiv:1403.2805 [stat.CO], 2014. https://arxiv.org/abs/1403.2805.

[11] Couture-Beil, Alex. rjson: JSON for R, 2014. https://CRAN.R-project.org/package=rjson.

[12] About SQLite, s.a. https://www.sqlite.org/about.html.
[13] Ripley, Brian, ja Michael Lapsley. RODBC: ODBC Database Access, 2017. https://CRAN.R-

project.org/package=RODBC.

[14] Urbanek, Simon. RJDBC: Provides Access to Databases Through the JDBC Interface, 2018.

https://CRAN.R-project.org/package=RJDBC.

[15] Wickham, Hadley. bigrquery: An Interface to Google’s „BigQuery“ „API“, 2018.

https://CRAN.R-project.org/package=bigrquery.

[16] Müller, Kirill, Hadley Wickham, David A. James, ja Seth Falcon. RSQLite: „SQLite“ Interface for

R, 2017. https://CRAN.R-project.org/package=RSQLite.

[17] R Special Interest Group on Databases (R-SIG-DB), Hadley Wickham, ja Kirill Müller. DBI: R

Database Interface, 2018. https://CRAN.R-project.org/package=DBI.

[18] Hadley Wickham. „Tidy data“. The Journal of Statistical Software 59, nr 10 (2014).

http://www.jstatsoft.org/v59/i10/.

[19] Edgar F. Codd. Wikimedia Foundation, 2018. https://en.wikipedia.org/wiki/Edgar_F._Codd.

[20] Third normal form. Wikimedia Foundation, 2018.

https://en.wikipedia.org/wiki/Third_normal_form.

48

https://en.wikipedia.org/wiki/Third_normal_form
https://en.wikipedia.org/wiki/Edgar_F._Codd
http://www.jstatsoft.org/v59/i10/
https://CRAN.R-project.org/package=DBI
https://CRAN.R-project.org/package=RSQLite
https://CRAN.R-project.org/package=bigrquery
https://CRAN.R-project.org/package=RJDBC
https://CRAN.R-project.org/package=RODBC
https://CRAN.R-project.org/package=RODBC
https://www.sqlite.org/about.html
https://CRAN.R-project.org/package=rjson
https://arxiv.org/abs/1403.2805
https://WWW.json.org/
https://github.com/ArduPilot/pymavlink/blob/master/tools/mavlogdump.py
https://github.com/ArduPilot/pymavlink
https://github.com/ArduPilot/pymavlink
http://www.R-project.org/
https://github.com/mavlink/mavlink
https://doi.org/10.1175/JTECH-D-16-0177.1
https://doi.org/10.1175/JTECH-D-16-0177.1
https://doi.org/10.1016/j.conengprac.2018.01.003
https://doi.org/10.1109/ICRA.2015.7139416
http://ardupilot.org/

[21] First normal form. Wikimedia Foundation, 2018. https://en.wikipedia.org/wiki/First_normal_form.

[22] Source, Open. The World’s Most Advanced open source relational database, s.a.

https://www.postgresql.org/.

49

https://www.postgresql.org/
https://en.wikipedia.org/wiki/First_normal_form

Appendix 1 – Python database creation code

The following code was created in chapter 4.5:

50

#!c:\python27\python.exe

-*- coding: utf-8 -*-

'''

read a mavlink binary file into SQLite database

'''

from __future__ import print_function

from __future__ import division

from builtins import range

from argparse import ArgumentParser

from pymavlink import mavutil

from timeit import default_timer as timer

import os

import sys

import re

import sqlite3

import collections

import datetime

import math

extensions = collections.defaultdict(int)

def main(argv):

 # parser = ArgumentParser(description=__doc__)

 # parser.add_argument("database", help='Path to SQLite Database')

 # parser.add_argument("logs", metavar="LOG", nargs="+", help='List of

 # logs to process')

 # args = parser.parse_args(argv)

 # for filename in args.logs:

 # process_tlog(filename)

 size = 0

 folder_path = argv[1]

 for path, dirs, files in os.walk(folder_path):

 for filename in files:

 if os.path.splitext(filename)[1].lower() == '.bin':

 filesize = os.path.getsize(path+os.sep+filename)

 if filesize < 100000000 and filesize > 4000000:

 size += filesize

51

 print('Total filesize to process: ' + humanize_bytes(size))

 todo_size = size

 time_elapsed = 0

 for path, dirs, files in os.walk(folder_path):

 for filename in files:

 if os.path.splitext(filename)[1].lower() == '.bin':

 filesize = os.path.getsize(path+os.sep+filename)

 if filesize > 100000000 or filesize < 4000000:

 continue

 print('Processing file\tFile size\tFolder')

 print('{}\t{}\t\t{}'.format(filename,

 humanize_bytes(filesize), path))

 start = timer()

 process_tlog(path+os.sep+filename)

 end = timer()

 diff = end-start

 time_elapsed += diff

 time_spent = str(datetime.timedelta(

seconds=math.floor(time_elapsed)))

 processing_time = str(datetime.timedelta(

seconds=math.floor(diff)))

 todo_size -= filesize

 processed = ((float(size) - float(todo_size)) /

float(size)) * float(100)

 bit_time = float(diff) / float(filesize)

 time_left = str(datetime.timedelta(seconds=math.floor(

float(bit_time) * float(todo_size))))

 print('File\t\tProcessing Time\tTime Elapsed\tTime Left

\tPercentage done')

 print('{}\t{}\t\t{}\t\t{}\t\t{:2.2f}%'.format(filename,

 processing_time, time_spent, time_left, processed))

def process_tlog(filename):

 '''convert a ardupilot BIN file to SQLite database'''

 mlog = mavutil.mavlink_connection(filename, dialect='ardupilotmega',

zero_time_base=True)

 connection = create_connection('rmkRoheline.db')

 # conn = create_connection(args.database)

 database = {}

52

 try:

 database = load_database_to_ram(connection)

 except:

 database = create_database(connection)

 add_flight(database, filename, connection)

 counter = 0

 while True:

 line = mlog.recv_match()

 # Exit on file end

 if line is None:

 break

 message = line.get_type()

 # Remove bad packets

 if message == 'BAD_DATA':

 continue

 # FMT defines the format and PARM is params... not sure if i

 # need em or not

 if message in ['FMT', 'PARM']:

 continue

 process_header(line, database, connection)

 process_data(line, database)

 counter+=1

 if counter % 10000 == 0:

 bulk_write_values(database, connection)

 bulk_write_timestamps(database, connection)

 bulk_write_values(database, connection)

 bulk_write_timestamps(database, connection)

 connection.commit()

 connection.close()

def process_header(line, database, connection):

 message = line.get_type()

 if message not in database['messages']:

 add_message(message, database, connection)

 fieldnames = line._fieldnames

 parameters = []

 for field in fieldnames:

53

 val = getattr(line, field)

 if not isinstance(val, str):

 if type(val) is not list:

 parameters.append(field)

 else:

 for i in range(0, len(val)):

 parameters.append(field + '%s'% i+1)

 add_parameters(parameters, database, connection)

 if 'buffer' not in database:

 database['buffer'] = {}

 database['buffer'][message] = parameters

def process_data(line, database):

 # add message type with parameters to buffer to be able to save to

 # sqlite db later

 message = line.get_type()

 fieldnames = line._fieldnames

 data = []

 add_timestamp(line._timestamp, database)

 for field in fieldnames:

 val = getattr(line, field)

 if not isinstance(val, str):

 if type(val) is not list:

 data.append("%.20g"% val)

 else:

 for i in range(0, len(val)):

 data.append("%.20g"% val[i])

 parameters_and_values = zip(database['buffer'][message], data)

 parameter = 0

 value = 1

 if 'values' not in database['buffer']:

 database['buffer']['values'] = []

 for parameter_pair in parameters_and_values:

 database['last value id'] += 1

 database['buffer']['values'].append((

 database['last value id'],

 database['last flight id'],

 database['last timestamp id'],

 database['messages'][message],

 database['parameters'][parameter_pair[parameter]],

 parameter_pair[value]

))

54

def load_database_to_ram(connection):

 """ load a database specified by connection into memory

 :param connection: connection to database

 :return: database

 """

 cursor = connection.cursor()

 cursor.execute('SELECT * FROM parameter')

 parameters = dict(map(lambda (id, name): (name.encode('ascii'), id),
cursor.fetchall()))

 cursor.execute('SELECT * FROM message')

 messages = dict(map(lambda (id, name): (name.encode('ascii'), id),
cursor.fetchall()))

 cursor.execute('SELECT * FROM parameter ORDER BY id DESC LIMIT 1')

 last_parameter_id = (cursor.fetchall())[0][0]

 cursor.execute('SELECT * FROM message ORDER BY id DESC LIMIT 1')

 last_message_id = (cursor.fetchall())[0][0]

 cursor.execute('SELECT * FROM timestamp ORDER BY id DESC LIMIT 1')

 last_timestamp_id = (cursor.fetchall())[0][0]

 cursor.execute('SELECT * FROM value ORDER BY id DESC LIMIT 1')

 last_value_id = (cursor.fetchall())[0][0]

 cursor.execute('SELECT * FROM flight ORDER BY id DESC LIMIT 1')

 last_flight_id = (cursor.fetchall())[0][0]

 database = {

 'last value id': last_value_id,

 'last flight id': last_flight_id,

 'last message id': last_message_id,

 'last timestamp id': last_timestamp_id,

 'last parameter id': last_parameter_id,

 'messages': messages,

 'parameters': parameters

 }

 return database

def create_database(connection):

 """ create a database specified by connection and leave a copy into

 memory

 :param connection: connection to database

 :return: database

 """

 cursor = connection.cursor()

 cursor.execute('CREATE TABLE flight (id INTEGER NOT NULL PRIMARY KEY,

 path TEXT)')

 cursor.execute('CREATE TABLE message (id INTEGER NOT NULL PRIMARY KEY,

message TEXT)')

55

 cursor.execute('CREATE TABLE timestamp (id INTEGER NOT NULL PRIMARY KEY,

 timestamp INTEGER)')

 cursor.execute('CREATE TABLE parameter (id INTEGER NOT NULL PRIMARY KEY,

parameter TEXT)')

 cursor.execute("""

 CREATE TABLE value (

 id INTEGER NOT NULL PRIMARY KEY,

 flight INTEGER NOT NULL,

 message INTEGER NOT NULL,

 timestamp INTEGER NOT NULL,

 parameter INTEGER NOT NULL,

 value REAL,

 FOREIGN KEY(flight) REFERENCES flight(id)

 FOREIGN KEY(message) REFERENCES message(id)

 FOREIGN KEY(timestamp) REFERENCES timestamp(id)

 FOREIGN KEY(parameter) REFERENCES parameter(id)

)""")

 database = {

 'last flight id': 0,

 'last message id': 0,

 'last timestamp id': 0,

 'last parameter id': 0,

 'last value id': 0,

 'messages': {},

 'parameters': {}

 }

 return database

def bulk_write_values(database, connection):

 # write buffered values to database

 cursor = connection.cursor()

 sql = get_sql('value',['id', 'flight', 'timestamp', 'message',

'parameter', 'value'])

 cursor.executemany(sql, database['buffer']['values'])

 database['buffer']['values'] = []

def bulk_write_timestamps(database, connection):

 cursor = connection.cursor()

 sql = get_sql('timestamp',['id', 'timestamp'])

 cursor.executemany(sql, database['buffer']['timestamps'])

 database['buffer']['timestamps'] = []

def add_flight(database, filename, connection):

 database['last flight id'] += 1

56

 cursor = connection.cursor()

 sql = 'INSERT INTO flight(id, path) VALUES(?,?)'

 cursor.execute(sql, [database['last flight id'], scrub(filename)])

def add_message(message, database, connection):

 database['last message id'] += 1

 database['messages'][message] = database['last message id']

 sql = get_sql('message', ['id', 'message'])

 data = (database['messages'][message], message)

 cursor = connection.cursor()

 cursor.execute(sql, data)

def add_timestamp(timestamp, database):

 if 'timestamps' not in database['buffer']:

 database['buffer']['timestamps'] = []

 database['last timestamp id'] += 1

 database['buffer']['timestamps'].append((database['last timestamp id'],
timestamp))

def add_parameters(parameters, database, connection):

 buffer = []

 params = filter(lambda p: p not in database['parameters'], parameters)

 for parameter in params:

 database['last parameter id'] += 1

 database['parameters'][parameter] = database['last parameter id']

 buffer.append((database['last parameter id'], parameter))

 sql = get_sql('parameter', ['id', 'parameter'])

 cursor = connection.cursor()

 cursor.executemany(sql, buffer)

 connection.commit()

def get_sql(table_name, column_names):

 questionmarks = ','.join(map(lambda x: '?', column_names))

 column_names_string = ','.join(column_names)

 return 'INSERT INTO {}({}) VALUES({})'.format(scrub(table_name),
column_names_string, questionmarks)

def create_connection(db_file):

 """ create a database connection to the SQLite database

 specified by db_file

 :param db_file: database file

 :return: Connection object or None

 """

57

 try:

 conn = sqlite3.connect(db_file)

 return conn

 except Exception as e:

 print(e)

 return None

def scrub(table_name):

 return ''.join(chr for chr in table_name if chr.isalnum())

def humanize_bytes(bytes, precision=1):

 """Return a humanized string representation of a number of bytes.

 Assumes `from __future__ import division`.

 >>> humanize_bytes(1)

 '1 byte'

 >>> humanize_bytes(1024)

 '1.0 kB'

 >>> humanize_bytes(1024*123)

 '123.0 kB'

 >>> humanize_bytes(1024*12342)

 '12.1 MB'

 >>> humanize_bytes(1024*12342,2)

 '12.05 MB'

 >>> humanize_bytes(1024*1234,2)

 '1.21 MB'

 >>> humanize_bytes(1024*1234*1111,2)

 '1.31 GB'

 >>> humanize_bytes(1024*1234*1111,1)

 '1.3 GB'

 """

 abbrevs = (

 (1<<50L, 'PB'),

 (1<<40L, 'TB'),

 (1<<30L, 'GB'),

 (1<<20L, 'MB'),

 (1<<10L, 'kB'),

 (1, 'bytes')

)

 if bytes == 1:

 return '1 byte'

58

 for factor, suffix in abbrevs:

 if bytes >= factor:

 break

 return '%.*f %s' % (precision, bytes / factor, suffix)

if __name__ == "__main__":

 main(sys.argv)

	1 Introduction 10
	2 State of the art 12
	3 Piloting a multi-rotor UAV 17
	4 Database generation 21
	4.1 Initial data 21
	4.2 Choosing the output data type 21
	4.3 Tidy data 25
	4.4 Database normalization 27
	4.5 The code 32

	5 Initial analysis of the data 35
	5.1 Extracting windless flight data 36
	5.2 Analysis of battery performance 42

	6 Summary 47
	References 48
	Appendix 1 – Python database creation code 50
	1 Introduction
	2 State of the art
	3 Piloting a multi-rotor UAV
	4 Database generation
	4.1 Initial data
	4.2 Choosing the output data type
	4.3 Tidy data
	4.4 Database normalization
	4.5 The code

	5 Initial analysis of the data
	5.1 Extracting windless flight data
	5.2 Analysis of battery performance

	6 Summary
	References
	Appendix 1 – Python database creation code

