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Abstract 

Discovery of Nonlinear Equations of Motion from Experimental and Numerical Data 

This bachelor’s thesis explores how nonlinear differential equations describing the dynamics of 

physical, ecological and biological systems can be identified directly from relevant data. The study 

is based on the SINDy (Sparse Identification of Nonlinear Dynamics) method, which applies sparse 

regression to extract essential terms from a large set of candidate functions to construct the system 

of ODEs describing the underlying dynamics. 

 

The analysis covers five different cases, including known models – a nonlinear oscillator and two 

Lotka–Volterra population models – as well as real-world measurement data, such as selected 

photoplethysmogram (PPG) and electrocardiogram (ECG) signals. All systems are treated as second-

order differencial equations systems  or systems of two first order equations. 

 

Results are evaluated by comparing the equations identified by SINDy with either the original 

system models or the measured time series solutions. The aim of the thesis is to determine in which 

cases the SINDy method can accurately reconstruct the system. 
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Annotatsioon 

Käesolevas bakalaureusetöös uuritakse, kuidas on võimalik andmepõhiselt leida mittelineaarseid 

diferentsiaalvõrrandeid, mis kirjeldavad füüsikaliste, ökoloogiliste või bioloogiliste süsteemide 

dünaamikat. Töö põhineb SINDy (Sparse Identification of Nonlinear Dynamics) meetodil, mis 

kasutab hõredat regressiooni, et tuvastada olulised liikmed suurest hulgast 

kandidaatfunktsioonidest, eesmärgiga koostada liikumisvõrrandid. 

Analüüsi käigus käsitletakse viit erinevat juhtumit, sealhulgas teadaolevaid mudeleid – 

mittelineaarne ostsillaator ning kaks erinevat Lotka–Volterra populatsioonimudelit – ja reaalseid 

katseandmeid, nagu fotopletüsmogrammi (FPG) ning elektrokardiogrammi (EKG) signaalid. Kõiki 

süsteeme käsitletakse teist järku dünaamiliste diferentsiaalvõrranditena või kahe esimest järku 

võrrandisüsteemina. 

Tulemusi hinnatakse võrreldes SINDy poolt tuvastatud võrrandeid kas originaalmudelite või 

mõõteandmete põhjal saadud lahenditega. Töö eesmärk on uurida, millistel juhtudel suudab SINDy 

meetod taastada süsteemi täpselt ning millal jääb mudeli täpsus või tõlgendatavus ebapiisavaks. 
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Lühendite-mõistete sõnastik 

SINDy - Sparse Identification of Nonlinear Dynamics (eesti keeles Mittelineaarse süsteemi leidmine 

hõreda regressiooni meetodil)  

EKG – elektrokardiogramm 

FPG - fotopletüsmogramm 
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1. Sissejuhatus 

Loodusteaduses, inseneriteaduses ja meditsiinis esinevaid protsesse saab tihti kirjeldada 

mittelineaarsete võrrandsüsteemidega. Nähtused nagu füüsikalised võnkumised, populatsioonide 

dünaamika või südame elektriline aktiivsus ei allu lihtsamatele lineaarsetele 

diferentsiaalvõrranditele. Mittelineaarsed süsteemid kirjeldavad aperioodilist ja kvasiperioodilist ja  

kaootilist dünaamikat. [1-2].  

Traditsiooniliste meetodite piiratus sellistes olukordades on viinud uute andmepõhiste meetodite 

tekkimiseni. Üheks selliseks on SINDy (Sparse Identification of Nonlinear Dynamics) meetod, mille 

esitasid Brunton, Proctor ja Kutz [1-2]. SINDy algoritm on aktuaalne teema mittelineaarsete 

probleemide uurimisega tegelevate teadlaste seas. Viimastel aastatel on SINDy algoritmi 

rakendatud erinevate probleemide uurimiseks [4-5]. Algoritmi võimekust ja kasutusala laiendatakse 

pidevalt, vrd. [5-11]. 

SINDy võimaldab hõreda regressiooni meetodi abil leida mittelineaarseid diferentsiaalvõrrandeid 

otse andmetest. Kasutatakse kandidaatfunktsioonide kogumikku (nt. polünoomide liikmed, 

trigonomeetrilised funktsioonid), millest vähimruutude ja LASSO-regressiooni meetodite abil 

valitakse välja vaid kõige olulisemad liikmed. [1-3] 

Käesolevas bakalaureusetöös rakendan SINDy algoritmi teist järku mittelineaarsete 

differentsiaalvõrrandite leidmiseks, kuid SINDy meetodit on võimalik rakendada ka kõrgemat järku 

süsteemidele. Töö eesmärk on uurida, kui täpselt on võimalik süsteemi dünaamikat taastada ainult 

andmete põhjal – ilma süsteemi teadmata – ning kas SINDy meetod suudab leida teist järku 

võrrandsüsteemid ka keerukamate mõõtmisandmete korral. [1, 3] 

Käesolevas töös katsetan ette teadaolevaid süsteeme – nagu mittelineaarne ostsillaator ning Lotka–

Volterra populatsioonimudelid: kahe konkureeriva liigi mudel ja kiskja-saak mudel. Seejärel püüan 

SINDy meetodil leida liikumisvõrrandid reaalsete mõõtmisandmete põhjal, kasutades 

fotopletüsmogrammi (FPG) ja elektrokardiogrammi (EKG) signaale. Eeldan, et uuritavad süsteemid 

on kirjeldatud kui teist järku mittelineaarsete differentsiaalvõrrandite abil. [1-3] 

Uurimuse oodatav tulemus on, et SINDy meetod suudab teada olevate süsteemide korral tuvastada 

korrektsed või neile ligilähedase võrrandsüsteemid ja keerukamate süsteemide korral võib mudeli 

täpsus jääda puudulikuks ehk SINDy meetod võib ebaõnnestuda. [1, 3] 
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2. Teoreetiline taust 

2.1. SINDy algoritm 
Töö aluseks olen kasutanud Steven L. Brunton, Joshua L. Proctor ja J. Nathan Kutz poolt kirjutatud 

artiklit [1, 3] ja artikli autorite poolt kirjutatud ja minu poolt kohandatud Matlabi koodi (Lisa 1). 

Koodid on olemas ka Pythoni teegi kujul, nimega pySINDy [12]. 

Dünaamilise süsteemi  liikumist või käitumist kirjeldatakse mittelineaarsete diferentsiaalvõrrandite 

abil. SINDy meetod võimaldab need võrrandid numbriliste- ja katseandmete põhjal automaatselt 

leida. Meetod lähtub eeldusest, et vaid väike osa muutujate mittelineaarsetest kombinatsioonidest 

mängivad süsteemi kirjeldamisel olulist rolli. Näiteks kahe muutujaga (2D) süsteemi korral on 

kandidaatfunktsioonid moodustatud vabade muutujate kõikvõimalikest kombinatsioonidest kuni 

mingi kindla astmeni, siin töös astmeni 5. Kandidaatfunktsioonide hulgast valitakse välja vaid need 

funktsioonid, millel on nullist erinev koefitsient. Selleks kasutatakse hõreda regressiooni meetodit, 

mis aitab tuvastada vaid olulisi kandidaatfunktsioone. [1-3, 13] 

Dünaamilise süsteemi üldkuju: 

𝑿̇(𝑡) = 𝑓(𝑿(𝑡)), (1) 

kus 𝑿(𝑡) on süsteemi olekuvektor ja 𝑿̇(𝑡) selle ajatuletis. Funktsioon f on tundmatu mittelineaarne 

funktsioon, mida soovime leida. Kogutud või mõõdetud andmete põhjal koostatakse oleku ja 

tuletise vektorid 𝑿 ja 𝑿̇ [1, 3, 13]: 

                             

, (2a) 

                            

. (2b) 

Seejärel koostatakse kandidaatfunktsioonide maatriks 𝜣(𝑿), mis võib sisaldada näiteks 

järgmiseid liikmeid [13]: 

                             

. (3) 

Kandidaatfunktsioonide kogumiku 𝜣(𝑿) valimisel lähtutakse:  

• süsteemi olekutest, nt 𝑥(𝑡), 𝑦(𝑡); 
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• polünoomi astmest 𝑝 – see määrab, kui kõrge astmeni polünomiaalsed liikmed kaasatakse, 

nt. : 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, 𝑥3, 𝑥2𝑦, 𝑥𝑦2, 𝑦3, 𝑥4, 𝑥3𝑦, 𝑥2𝑦2, 𝑥𝑦3, 𝑦4, 𝑥5, 𝑥4𝑦, 𝑥3𝑦2,

𝑥2𝑦3, 𝑥𝑦4,  𝑦5; 

• võimalike trigonomeetriliste liikmete, nagu sin(𝑥), cos(𝑥), sin(𝑥𝑦), jne. kasutamist; 

• süsteemi muutujate koguarvust 𝑛 – antud juhul 𝑛 = 2, kuna siin töös kasutame 

kahemõõtmelisi (2D) süsteeme. [3] 

Seejärel püütakse leida sobiv 𝑓(𝑿(𝑡)), mis seob 𝜣(𝑿) ja 𝑿̇ [13]: 

𝑿̇ = 𝜣(𝑿)𝛯, (4) 

kus 𝛯 on koefitsientide maatriks, mille iga veerg 𝜉𝑘 kirjeldab vastava oleku muutumise dünaamikat: 

𝛯 = [𝜉1𝜉2 ⋯ 𝜉𝑘]. (5) 

Maatriksi  𝛯 leidmiseks rakendatakse vähimruutude meetodit [13]: 

𝜉𝑘 = arg
         𝜉𝑘

′
min‖𝑿̇𝑘 − 𝛩(𝑿)𝜉𝑘

′ ‖
2

, (6) 

kus 𝜉𝑘
′  tähendab kandidaatliiget, mida optimeeritakse, erinevalt lõplikust liikmest 𝜉𝑘. Saadakse 

maatriks 𝛯, mis sisaldab palju mittevajalikke liikmeid 𝜉𝑘, sest kaasatud on kõik 

kandidaatfunktsioonid. Seetõttu kasutatakse hõredat regressiooni, LASSO regressiooni (L1), et 

suruda paljud liikmed 𝜉𝑘 nulliks, jättes ainult olulised liikmed alles. Järgnev valem (7), kujutab 

endast vähimruutude meetodi ja hõreda regressiooni määramise kombinatsiooni [13]: 

𝜉𝑘 = arg
         𝜉𝑘

′
min‖𝑿̇𝑘 − 𝛩(𝑿)𝜉𝑘

′ ‖
2

+ 𝜆‖𝜉𝑘
′ ‖1, (7) 

kus 𝜆 on hõredat regressiooni määrav parameeter. Kui 𝜆 on liiga suur, siis võidakse olulised 

liikmed välja jätta, kui 𝜆 on liiga väike, lubatakse rohkem liikmeid läbi.  

Kokkuvõtvalt, väikesed koefitsiendid nullitakse, seejärel korratakse regressiooni ainult nullist 

erinevate liikmetega ja väljastatakse koefitsientide maatriks, mis sisaldab liikmeid, mis on süsteemi 

dünaamika kirjeldamiseks olulised. Lõpuks kõikidest leitud liikmetest moodustatakse dünaamiline 

süsteem: 

𝑥̇𝑘 = 𝛩(𝑥)𝜉𝑘 (8) 

ja olemegi saanud lahendi. [13] 

SINDy meetodi näitlikustamiseks on Joonisel 1 näidatud protsessid, mida algoritm teostab. 
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Joonis 1. SINDy algoritmi skeem, demonstreeritud teist järku differentsiaalvõrrandi lahendiga ehk kahe 

esimest järku võrrandsüsteemi lahendiga. [1] 

 

Joonis 2. Vasakpoolsel joonisel on kujutatud süsteemi (9) lahendeid. Parempoolsel joonisel on kujutatud sama 

olukorra faasiportree. 

 

2.2. Mittelineaarse ostsillaatori näide 

Demonstreerime SINDy algoritmi kasutamist rakendades seda allpool defineeritud süsteemi 

lahendile. Anname ette mittelineaarse võrrandsüsteemi: 

{
𝑢̇ = 𝑎𝑢3 + 𝑏𝑣3,

𝑣̇ = 𝑐𝑢3 + 𝑑𝑣3,
 (9) 
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kus koefitsientide väärtused on 𝑎 = −0.1, 𝑏 = 2, 𝑐 = −2, 𝑑 = −0.1 [3]. Valime algtingimusteks 

𝑢(0) = 2 𝑚 ja 𝑣(0) = 0 𝑚/𝑠 . Andmete genereerimiseks valime lahendi aegrea vahemikul [0, 20] 

s, ajasammuga ∆𝑡 = 0.1 𝑠. Joonisel 2 müra ei kujutata. Müra lisatakse, et simuleerida reaalsemaid 

mõõtetingimusi. Igale valimile vahemikus [0, 20] s, lisatakse kindla amplituudiga valge müra: nihke 

𝑢 valimitele 0.05 𝑚 ja kiiruse 𝑣 valimitele 0.05 𝑚/𝑠. 

Parim tulemus tuli, valides kandidaatfunktsioonide suurimaks astmeks 𝑝 = 4 ja hõredat 

regressiooni määravaks parameeteriks 𝜆 = 0.05. SINDy poolt leitud võrrandid: 

{𝑢̇ = −0.10095𝑢3 + 2.0001𝑣3 ≈ −0.1𝑢3 + 2𝑣3

𝑣̇ = −2.0020𝑢3 − 0.10048𝑣3 ≈ −2𝑢3 − 0.1𝑣3  (10) 

Nagu näha, leitud võrrandsüsteem vastab esialgsele võrrandsüsteemile (9). Suurim erinev liige on 

|2.0020 − 2.2| = 0.0020, mis on 0.1%. Saame öelda, et meetod töötab. Jooniselt 2 näeme, et 

SINDy meetodil leitud siire 𝑢 ja kiirus 𝑣 on üsna sarnased täpsetele lahenditele. Ka faasiportreel 

on täpne ja leitud lahend trajektoorid väga ligilähedased. [3] 
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3. SINDy testimine 

Selles peatükis testime SINDy meetodit kõigepealt ette teadaolevate liikumisvõrrandite korral. 

Anname ette võrrandsüsteemi, genereerime andmed ja uurime, kas SINDy algoritm suudab algse 

võrrandsüsteemi leida. Seejärel katsetame, kas SINDy algoritmi suudab leida lahendi katseandmete 

põhjal, kui võrrandsüsteem pole ette teada. 

 

3.1. Ette teadaolevad süsteemid 

Valisin teadaolevateks süsteemideks Lotka-Volterra mudelid. Järgnevalt teeme kaks erinevat 

võrrandsüsteemi katsetust, esmalt kahe konkureeriva liigi mudeli ja seejärel kiskja-saak mudeli 

kohta. [2, 14, 15] 

 

 

3.1.1. Lotka-Volterra kahe konkureeruva liigi mudel 

 

Joonis 3. Vasakpoolsel joonisel on kujutatud süsteemi (11) lahendeid. Populatsioon ei saa olla negatiivne. 

Parempoolsel joonisel on kujutatud sama olukorra faasiportree (ja vektorväli, mille leidis SINDy). Punase 

täpiga on märgitud püsipunktid. Integreerimine teostati kasutades Matlabi ODE-integraatorit Runge-

Kutta 4,5, ajasammuga ∆𝑡 = 0.01 𝑠. 

 

Vaatame kahe erineva populatsiooni dünaamikat, kuidas nende arvukus muutub konkureerides 

sama ressursi pärast. Sellist konkurentsi võib esineda näiteks taimede vahel samal kasvualal, jäneste 

ja lammaste vahel samas toidupiirkonnas või kahe bakteriliigi vahel Petri tassis, kus mõlemad 

toituvad glükoosist, mida lisatakse tassi konstantse kiirusega. Üldjuhul suretab üks liik teise välja. 

[2, 14, 15] 

Konkurentsi mudeli korral kehtivad eeldused, et tegemist on suletud süsteemiga, toimub pidev kasv 

ajas, keskkond on konstante, kõik sama populatsiooni isendid käituvad ühtemoodi, süsteemi 

koefitsiendid on konstantsed ja välised tegurid puuduvad. [2, 14, 15] 

Populatsioonide x ja y dünaamika on kirjeldatav süsteemiga, normeeritud ja dimensioonitul kujul: 
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{
𝑥̇ = 𝑎𝑥 + 𝑏𝑥2 + 𝑐𝑥𝑦,

𝑦̇ = 𝑑𝑦 + 𝑒𝑦2 + 𝑓𝑥𝑦,
 (11) 

kus koefitsientide väärtused on valitud meelevaldselt, 𝑎 = 3, 𝑏 = −1, 𝑐 = −2, 𝑑 = 2, 𝑒 = −1,    

𝑓 = −1, siin 𝑎 tähistab 𝑥-populatsiooni kasvumäära, 𝑑 tähistab 𝑦-populatsiooni kasvumäära, 𝑐 ja 

𝑓 tähistavad, mitu korda tugevamalt mõjutab teine populatsioon esimest, 𝑏 = 𝑒 kirjeldab seda, kui 

suurt populatsiooni suudab ökoloogia kannab [2, 14, 15]. Valime populatsioonide algtingimused 

𝑥(0) = 2 𝑑. ü. ja 𝑦(0) = 1.5 𝑑. ü. ning rakendame SINDy algoritmi. 

Parim tulemus tuli, valides kandidaatfunktsioonide suurimaks astmeks 𝑝 = 2 ja hõredat 

regressiooni määravaks parameeteriks 𝜆 = 0.07. Leitud võrrandsüsteem: 

{
𝑥̇ = 2.9947𝑥 − 0.99821𝑥2 − 1.9963𝑥𝑦 ≈  3𝑥 − 1𝑥2 − 2𝑥𝑦

𝑦̇ = 1.9949𝑦 − 0.99733𝑦2 − 0.99791𝑥𝑦 ≈ 2𝑦 − 1𝑦2 − 1𝑥𝑦 .
 (12) 

Nagu näha, leitud võrrandsüsteem vastab esialgsele võrrandsüsteemile (11). Suurim erinev liige 

on |2.9947 − 3| = 0.0053, mis on 0.18%. SINDy meetod leidis võrrandsüsteemi üsna täpselt. 

Jooniselt 3 näeme, et mõlema populatsioonide arv langeb enne tasakaalu saavutamist. x sureb välja 

ja y saavutavad maksimaalse populatsiooni. Faasiportreelt näeme, et valitud lahend läheneb ühele 

süsteemi püsipunktidest, milleks on (𝑥, 𝑦) = (0.0, 3.0). Näeme, et kui see juhtub, väheneb üks 

populatsioon nullini, samas kui teine suureneb maksimaalse populatsioonini - ökoloogia 

kandevõimeni. [2, 16] 

3.1.2. Lotka-Volterra kiskja-saak mudel 

Kiskja ja saaklooma populatsiooni arvukuse dünaamika mudel. Kiskja-saak mudelisse sobivad 

näiteks ahven-koger, jänes-hunt. [2, 14, 15] 

Saaklooma 𝑥 ja kiskja 𝑦 populatsiooni dünaamikat kirjeldatav süsteem, normeeritud ja 

dimensioonitul kujul: 

{
𝑥̇ = 𝛼𝑥 + 𝛽𝑥𝑦,

  𝑦̇ = 𝛾𝛽𝑥𝑦 + 𝛿𝑦,
 (13) 

kus koefitsientide väärtused: 𝛼 = 1, 𝛽 = −2, 𝛾 = −1.1, 𝛿 = −1.2, siin 𝑥 on saakloomade arvukus, 

𝑦 kiskjate arvukus. 𝛼 tähistab saakloomade kasvu, 𝛽 on kiskjate röövimise määr, 𝛾 on 

assimilatsiooni efektiivsus ja 𝛿 on kiskjate loomuliku suremuse määr [2, 14, 15]. Valime 

populatsioonide algtingimused 𝑥(0) = 2 𝑑. ü. ja 𝑦(0) = 1 𝑑. ü.  ning rakendame SINDy algoritmi. 
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Joonis 4. Vasakpoolsel joonisel on kujutatud süsteemi (12) lahendeid. Populatsioon ei saa olla negatiivne. 

Parempoolsel joonisel on kujutatud sama olukorra faasiportree (ja vektorväli, mille leidis SINDy). Punase 

täpiga on märgitud püsipunktid. Integreerimine teostati kasutades Matlabi ODE-integraatorit Runge-Kutta 

4,5, ajasammuga ∆𝑡 = 0.01 𝑠. 

Parim tulemus tuli, valides kandidaatfunktsioonide suurimaks astmeks 𝑝 = 2 ja hõredat 

regressiooni määravaks parameeteriks 𝜆 = 0.001. 

Leitud võrrandsüsteem: 

{
𝑥̇ = 0.99985𝑥 − 1.9998𝑥𝑦 ≈ 1𝑥 − 2𝑥𝑦

𝑦̇ = 2.1997𝑥𝑦 − 1.1998𝑦 ≈ (−1.1) ∙ (−2)𝑥𝑦 − 1.2𝑦
 (14) 

Jooniselt 4 näeme, et saakloomade 𝑥 ja kiskjate 𝑦 arvukused muutuvad tsükliliselt. Algtingimusena 

oleme määranud, et saakloomi on 2 korda rohkem kui kiskjaid, mis on näha ka jooniselt, et 

saakloomade arvukus esialgu kasvab, kuna kiskjaid on vähe. Kui saakloomi on palju, hakkavad 

kiskjad kiiremini paljunema, kui kiskjaid on palju, siis hakkab saakloomade arvukus langema. Lõpuks 

kiskjate arvukus langeb, kuna toitu pole piisavalt ja tsükkel kordub. Faasiportreelt näeme, et 

trajektoorid on suletud kõverad – populatsioonid võnguvad perioodiliselt. Püsipunkte on 2 - punktis 

(𝑥, 𝑦) = (0.0, 0.0) on sadulpunkt ja punktis (𝑥, 𝑦) = (0.5454, 0.5) on (Kolmogorovi stabiilne) 

tsenter [2, 16]. Leitud võrrandsüsteem vastab etteantud võrrandsüsteemile (13). Suurim erinev liige 

on |2.1997 − 2.2| = 0.003, mis on 0.014%.   

Kasutatuna SINDy meetodit võrrandite leidmiseks, näeme, et mõlema Lotka-Volterra mudeli korral 

olid võrrandid kergesti leitavad, meetod töötas. [1, 3] 

3.2. Tundmatud süsteemid 

Järgnevalt katsetame SINDy meetodit kahe tundmatu süsteemi korral, fotopletüsmogrammi ja 

elektrokardiogrammi signaalide korral. Siinkohal kasutame me mõõteandmeid ja soovime teada 

saada, kas SINDy meetod suudab leida neile vastavad võrrandid. [17, 18] 
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3.2.1. Fotopletüsmogrammi signaal 

Fotopletüsmogramm (FPG) on meetod, mis kasutab valguse neeldumist ja peegeldumist, et mõõta 

verevoolu muutusi veresoontes. FPG signaali abil saab hinnata mitmeid füsioloogilisi parameetreid, 

nagu pulss, vererõhk ja hapnikuküllastust (SpO2). [18] 

Kasutasin internetist kättesaadavat FPG signaali andmeid [19]. Signaali mõõtmissagedus on 100 

valimit sekundis ehk iga 0.01 s tagant tehti üks mõõtmine.  Allikas [19] ei täpsusta signaali ühikuid, 

seega eeldame ühikute dimensioonitut kuju. 

Kasutame allika [19] signaali periodiseeritud kuju. Periodiseeritud signaali saime valides 

meelevaldselt ühe perioodi. Võrrandi muutujatena kasutan siinkohal FPG signaali ja selle tuletist.  

Parim tulemus tuli, valides kandidaatfunktsioonide suurimaks astmeks 𝑝 = 5 ja hõredat 

regressiooni määravaks parameeteriks 𝜆 = 0.01. 

 

Joonis 5. Vasakpoolsel joonisel on kujutatud FPG signaali ja selle tuletise aegread. Parempoolsel joonisel on 

kujutatud sama olukorra faasiportree (ja vektorväli, mille leidis SINDy). Punase täpiga on märgitud püsipunkt. 

Integreerimine teostati kasutades Matlabi ODE-integraatorit Runge-Kutta 4,5, ajasammuga ∆𝑡 = 0.01 𝑠. 

Joonisel 5 kujutatud faasiportreel on näidatud üks püsipunkt (𝐹𝑃𝐺, 𝐹𝑃𝐺 tuletis) = (0.5, 0.0). 

Tegemist on ebastabiilse spiraaliga, mis tähendab, et ümbritsev vektorväli surutukse sellest punktis 

eemale. SINDy poolt leitud kinnine trajektoor on piirtsükkel kuna saab näidata, et ümbritsev 

vektorväli läheneb sellele nii seest- kui ka väljastpoolt. Stabiilne piirtsükkel on mittelineaarne 

nähtus, millel puudub analoog lineaarsetes süsteemides.[2, 16] Leitud võrrandsüsteem: 

   

(15) 
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Leitud võrrandsüsteem on väga paljude liikmetega, SINDy mudel ei suutnud leida lahendit, mis on 

hõre kandidaatfunktsioonide ruumis. Saadud tulemust saab seletada sellega, et FPG signaal pole 2-

järku mittelineaarne ostsillaator [1-2]. Originaalandmete (mitteperioodiline) signaal andis veel 

halvema tulemuse. 

 

 

3.2.2. Elektrokardiogrammi signaal 

 

Joonis 7. Vasakpoolsel joonisel on kujutatud EKG signaali ja selle tuletise aegread. Parempoolsel joonisel on 

kujutatud sama olukorra faasiportree (ja vektorväli, mille leidis SINDy). Integreerimine teostati kasutades 

Matlabi ODE-integraatorit Runge-Kutta 4,5, ajasammuga ∆𝑡 = 0.0033 𝑠. 

EKG mõõtmiseks kasutasin nutikella Withings ScanWatch 2 (Joonis 6). Antud kell on saanud 

Ameerika Ühendriikide Toidu- ja Ravimiameti Food and Drug Administration (FDA) poolt heakskiidu 

ehk see seade on läbinud ranged testid ning on USA-s tunnustatud kui usaldusväärne meditsiiniline 

abivahend. [20] 

 

Joonis 6. Withings ScanWatch 2 [13]. 
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Mõõtsin nutikellaga enda EKG signaali. Ühe mõõtmise aeg on 30 sekundit. Signaali mõõtmissagedus 

on 300 valimit sekundis ehk iga 0.0033 s tagant tehti üks mõõtmine. Matlabi koodi (Lisa1) lugesin 

sisse mõõtmisandmete vektori, milles on 9000 valimit. [21-22] 

Parim tulemus tuli, valides kandidaatfunktsioonide suurimaks astmeks 𝑝 = 3 ja hõredat 

regressiooni määravaks parameeteriks 𝜆 = 0.0001. 

Jooniselt 7 näeme, et SINDy suudab modelleerida EKG signaali  üldkuju ja tsüklilisust, kuid jääb hätta 

väikeste P-, T- ja Q-lainete (vt. Joonis 7) tuvastamises. SINDy-ga saadud signaal on siledam. 

Samamoodi ka EKG tuletise korral ei suutnud SINDy tabada signaali järske muutuseid. Kuna EKG 

signaal sisaldab järske piike ja keerukamaid dünaamilisi mustreid, siis on need omadused raskesti 

modelleeritavad madala astme kandidaatfunktsioonidega, mida meetod kasutab. 

Kandidaatfunktsioonide suurim aste kasutatud koodis on 5, see ilmselt jäi liiga väikeseks. [2] 

Leitud võrrandsüsteem: 

{
𝑥̇ = 𝑦                                                                                                                                               

  𝑦̇ = −47.7003𝑦 + 12.7022𝑥2 + 0.260551𝑥𝑦 − 0.0250877𝑥3 − 0.000163314𝑥2𝑦.
 (16) 

SINDy poolt leitud võrrandsüsteemi saab lugeda hõredaks, aga kuna lahend on vale, siis järeldame, 

et EKG signaal pole kirjeldatav teist järku mittelineaarse ostsillaatoriga.  
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4. Kokkuvõte 

Antud töös katsetasin SINDy meetodit viiel erineval juhtumil: mittelineaarsel ostsillaatoril, kahel 

ette teadaoleval Lotka-Volterra mudelil (konkureerivad liigid ja kiskja-saak mudelitel) ning kahel 

tundmatul süsteemil (fotopletüsmogrammi ja elektrokardiogrammi signaalidel). Kasutatud on 

Matlabi skriptimiskeskonnad kirjutatud SINDy algoritmi koodi (Lisa 1) ja abifaile poolData.m, 

sparseGalerkin.m ja sparsifyDynamics.m (Lisa 2. Abifailid).  

Peatükis 2.2 demonstreerisin, kuidas SINDy meetodit rakendada mittelineaarse ostsillaatori näitel. 

Andsin ette diferentsiaalvõrrandid, mille põhjal genereerisin numbrilised andmed. Seejärel 

rakendasin nende andmete peal SINDy algoritmi, mis kasutas vähimruutude ja hõreda regressiooni 

meetodit, leidmaks hõredat lahendit. Esialgse ja leitud võrrandite suurima liikmeerinevus oli vaid 

0.1%. Jooniselt 2 näeme ka, et täpsete ja leitud lahendite aegread ja faasiportree langevad hästi 

kokku. Seega võime järeldada, et SINDy algoritm toimis edukalt. 

Peatükis 3.1.1 Kasutasin teadaolevat Lotka-Volterra kahe konkureeriva liigi mudelit. Andsin ette 

vastava populatsioonide dünaamikat kirjeldava võrrandsüsteemi, mille põhjal genereerisin 

numbrilised andmed. Seejärel rakendasin nende andmete peal SINDy algoritmi leidmaks süsteemi 

hõredat lahendit. Esialgse ja leitud võrrandi suurim erinev liige oli 0.18%. Jooniselt 3 näeme ka, et 

täpsete ja leitud lahendite aegread ja faasiportree langevad samuti hästi kokku. Seega saame öelda, 

et SINDy algoritm töötas edukalt ka bioloogilise mudeli korral. 

Peatükis 3.1.2 Katsetasin Lotka-Volterra kiskja-saak mudelit. Andsin ette kahe liigi tsüklilist 

dünaamikat kirjeldava võrrandsüsteemi, mille põhjal genereerisin andmed ja seejärel rakendasin 

SINDy algoritmi, leidmaks süsteemi hõredat lahendit. Esialgse ja leitud võrrandi suurim erinev liige 

oli 0.014%. Jooniselt 4 näeme ka, et täpsete ja leitud lahendite aegread ja faasiportree langevad 

hästi kokku. Seega saame öelda, et SINDy suutis edukalt leida ka tsüklilise süsteemi dünaamika. 

Järgnevalt uurisin kahe tundmatu süsteemi mõõtmisandmeid, mille liikumisvõrrandid pole ette 

teada. Peatükis 3.2.1 katsetasin SINDy meetodit fotopletüsmogrammi (FPG) signaali korral. 

Kasutasin periodiseeritud mõõteandmeid, ning rakendasin SINDy algoritmi. Parim tulemus tuli, kui 

valisin kandidaatfunktsioonide suurimaks astmeks 𝑝 = 5 ja hõredat regressiooni määravaks 

parameetriks 𝜆 = 0.01. Leitud võrrandsüsteemi liikmete hulk oli suur, seega SINDy ei suutnud leida 

hõrendat lahendit. Võib järeldada, et FPG signaali ei saa kirjekdada lihtsa teist järku mittelineaarse 

ostsillaatori mudelina. 

Peatükis 3.2.1 katsetasin SINDy meetodit elektrokardiogrammi (EKG) signaali korral. Kasutasin enda 

mõõdetud andmeid, mille peal rakendasin SINDy algoritmi. Parim tulemus tuli, kui valisin 

kandidaatfunktsioonide suurimaks astmeks 𝑝 = 3 ja hõredat regressiooni määravaks parameetriks 

𝜆 = 0.0001. Kuigi saadud võrrand oli hõre, ei suutnud mudel kirjeldada EKG signaali olulisi 

elemente. Seega EKG signaal ei ole piisavalt hästi kirjeldatav teist järku mittelineaarse 

ostsillaatorina ja SINDy meetod ei andnud rahuldavat tulemust. 
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Tänuavaldused 

Soovin tänada oma bakalaureusetöö juhendajat Dmitri Kartofelevi konstruktiivse tagasiside, 

suunamise ja abi eest Matlabi koodi modifitseerimisel, mis olid selle töö valmimisel hindamatu 

väärtusega.  
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Lisad 

Lisa 1. SINDy meetodil mittelineaarse võrrandsüsteemi leidmise kood 
 

Siin on autori poolt kergelt modifitseeritud originaalne SINDy meetodi kood, mis on kirjutatud 

Steven L. Bruntoni poolt [1-2]. Kasutan kahemõõtmelise mittelineaarse ostsillaatori mudeli koodi. 

Teised töös kasutatud näited saab arvutada sarnase koodi alusel. Antud SINDy algoritm on Matlabi 

(R2021a) skriptimiskeeles kirjutatud kood. 

 
clear all, close all, clc 
addpath('./utils'); 
  
%% generate Data, Nonlinear system 
polyorder =4;             % search space up to fifth order polynomials 
usesine = 0;              % no trig functions 
n = 2;                    % 2D system 
A = [-0.1 2; -2 -0.1];    % System coefficient matrix 
rhs = @(x) A*x.^3;        % ODE right hand side - non-linear system, cubic 
tspan = [0:0.01:20];      % time span 
x0 = [2; 0];              % initial conditions 
options = odeset('RelTol', 1e-10, 'AbsTol', 1e-10*ones(1, n)); 
[t, x] = ode45(@(t, x) rhs(x), tspan, x0, options);  % integrate 
  
%% compute Derivative  
eps = 0.05;      % noise strength 
for i = 1:length(x) 
    dx(i, :) = A*(x(i, :).^3)'; 
end 
dx = dx + eps*randn(size(dx));   % add noise 
  
%% pool Data (i.e., build library of nonlinear time series) 
Theta = poolData(x, n, polyorder, usesine); 
m = size(Theta, 2); 
  
%% compute Sparse regression: sequential least squares 
lambda = 0.05;      % lambda is our sparsification knob. 
Xi = sparsifyDynamics(Theta, dx, lambda, n) 
  
%% integrate true and identified systems 
[tA, xA] = ode45(@(t, x) rhs(x), tspan, x0, options);   % true model 
[tB, xB] = ode45(@(t, x) sparseGalerkin(t, x, Xi, polyorder, usesine), tspan, 
x0, options);  % approximate 
  
%% FIGURES!! 
figure('Position', [100 100 1000 350])      % Non-linear 2D system  
subplot(1,2,1);     % [left bottom width height] 
plot(tA, xA(:, 1), 'r', 'LineWidth', 1.5) 
hold on 
plot(tA, xA(:, 2), 'b-', 'LineWidth', 1.5) 
plot(tB(1:10:end), xB(1:10:end, 1), 'k--', 'LineWidth', 1.5) 
hold on 
plot(tB(1:10:end), xB(1:10:end, 2), 'k--', 'LineWidth', 1.5) 
grid on 
xlabel('Aeg \it{t} \rm{[s]}', 'FontSize', 13); 
ylabel('Siire \it{u} \rm{[m] ja kiirus} \it{v} \rm{[m/s]} ', 'FontSize', 13) 
legend('Täpne \it{u}', 'Täpne \it{v}', 'Leitud \it{u} \rm{ja} \it{v}') 
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% Phase portrait 
subplot(1,2,2); 
dtA = [0; diff(tA)]; 
plot(xA(:, 1), xA(:, 2), 'm', 'LineWidth', 1.5); 
hold on 
dtB = [0; diff(tB)]; 
plot(xB(:, 1), xB(:, 2), 'k--', 'LineWidth', 1.5); 
grid on 
xlabel('Siire \it{u} \rm{[m]}', 'FontSize', 13); 
ylabel('Kiirus \it{v} \rm{[m/s]}', 'FontSize', 13); 
legend('Täpne lahend', 'Leitud lahend'); 
exportgraphics(gcf, 'Joonis2_Mittelineaarne süsteem.png', 'Resolution', 250)  % 
save figure to current directory 
  
%% Display coefficients in a table 
funkid0 = poolDataLIST({'x','y'}, Xi, n, polyorder, usesine); 
disp(table(funkid0,Xi(:,1),Xi(:,2),'VariableNames',{'Võrrandi liige', 'x_tul', 
'y_tul'})); 
  
% Function for generating equations 
fmt = @(c) strjoin(strcat(num2str(c(c~=0)),'*',funkid0(c~=0)),' + '); 
dxdt = fmt(Xi(:,1)); if isempty(dxdt), dxdt = '0'; end 
dydt = fmt(Xi(:,2)); if isempty(dydt), dydt = '0'; end 
  
%% Show formed equations 
disp('Leitud võrrandid:'); 
disp(['dx/dt = ' dxdt]);  
disp(['dy/dt = ' dydt]); 
 
 

Lisa 2. Abifailide sisu 
1. poolData.m – siin koostatakse kandidaatfunktsioonide maatriks 𝛩(𝑿). 
 
function yout = poolData(yin,nVars,polyorder,usesine) 
% Copyright 2015, All Rights Reserved 
% Code by Steven L. Brunton 
% For Paper, "Discovering Governing Equations from Data:  
%        Sparse Identification of Nonlinear Dynamical Systems" 
% by S. L. Brunton, J. L. Proctor, and J. N. Kutz 
 
n = size(yin,1); 
% yout = 
zeros(n,1+nVars+(nVars*(nVars+1)/2)+(nVars*(nVars+1)*(nVars+2)/(2*3))+11); 
 
ind = 1; 
% poly order 0 
yout(:,ind) = ones(n,1); 
ind = ind+1; 
 
% poly order 1 
for i=1:nVars 
    yout(:,ind) = yin(:,i); 
    ind = ind+1; 
end 
 
if(polyorder>=2) 
    % poly order 2 
    for i=1:nVars 
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        for j=i:nVars 
            yout(:,ind) = yin(:,i).*yin(:,j); 
            ind = ind+1; 
        end 
    end 
end 
 
if(polyorder>=3) 
    % poly order 3 
    for i=1:nVars 
        for j=i:nVars 
            for k=j:nVars 
                yout(:,ind) = yin(:,i).*yin(:,j).*yin(:,k); 
                ind = ind+1; 
            end 
        end 
    end 
end 
 
if(polyorder>=4) 
    % poly order 4 
    for i=1:nVars 
        for j=i:nVars 
            for k=j:nVars 
                for l=k:nVars 
                    yout(:,ind) = yin(:,i).*yin(:,j).*yin(:,k).*yin(:,l); 
                    ind = ind+1; 
                end 
            end 
        end 
    end 
end 
 
if(polyorder>=5) 
    % poly order 5 
    for i=1:nVars 
        for j=i:nVars 
            for k=j:nVars 
                for l=k:nVars 
                    for m=l:nVars 
                        yout(:,ind) = 
yin(:,i).*yin(:,j).*yin(:,k).*yin(:,l).*yin(:,m); 
                        ind = ind+1; 
                    end 
                end 
            end 
        end 
    end 
end 
 
if(usesine) 
    for k=1:10; 
        yout = [yout sin(k*yin) cos(k*yin)]; 
    end 
end 
 
 
2. sparsifyDynamics.m – see funktsioon teostab vähimruutude meetodit ja hõredat 

regressioon 
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function Xi = sparsifyDynamics(Theta,dXdt,lambda,n) 
% Copyright 2015, All Rights Reserved 
% Code by Steven L. Brunton 
% For Paper, "Discovering Governing Equations from Data:  
%        Sparse Identification of Nonlinear Dynamical Systems" 
% by S. L. Brunton, J. L. Proctor, and J. N. Kutz 
  
% compute Sparse regression: sequential least squares 
Xi = Theta\dXdt;  % initial guess: Least-squares 
  
% lambda is our sparsification knob. 
for k=1:10 
    smallinds = (abs(Xi)<lambda);   % find small coefficients 
    Xi(smallinds)=0;                % and threshold 
    for ind = 1:n                   % n is state dimension 
        biginds = ~smallinds(:,ind); 
        % Regress dynamics onto remaining terms to find sparse Xi 
        Xi(biginds, ind) = Theta(:,biginds)\dXdt(:,ind);  
    end 
end 
 
3. sparseGalerkin.m  - siin kasutatakse leitud koefitsiente, et hinnata süsteemi 

dünaamikat, kasutatakse poolData.m, et esitada hetkeseisule sobiv 
kandidaatide rida. 

 
function dy = sparseGalerkin(t,y,ahat,polyorder,usesine) 
% Copyright 2015, All Rights Reserved 
% Code by Steven L. Brunton 
% For Paper, "Discovering Governing Equations from Data:  
%        Sparse Identification of Nonlinear Dynamical Systems" 
% by S. L. Brunton, J. L. Proctor, and J. N. Kutz 
  
yPool = poolData(y',length(y),polyorder,usesine); 
dy = (yPool*ahat)'; 
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