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Abstract

Discovery of Nonlinear Equations of Motion from Experimental and Numerical Data

This bachelor’s thesis explores how nonlinear differential equations describing the dynamics of
physical, ecological and biological systems can be identified directly from relevant data. The study
is based on the SINDy (Sparse Identification of Nonlinear Dynamics) method, which applies sparse
regression to extract essential terms from a large set of candidate functions to construct the system
of ODEs describing the underlying dynamics.

The analysis covers five different cases, including known models — a nonlinear oscillator and two
Lotka—Volterra population models — as well as real-world measurement data, such as selected
photoplethysmogram (PPG) and electrocardiogram (ECG) signals. All systems are treated as second-
order differencial equations systems or systems of two first order equations.

Results are evaluated by comparing the equations identified by SINDy with either the original
system models or the measured time series solutions. The aim of the thesis is to determine in which
cases the SINDy method can accurately reconstruct the system.



Annotatsioon

Kaesolevas bakalaureuset66s uuritakse, kuidas on vdéimalik andmepdhiselt leida mittelineaarseid
diferentsiaalvorrandeid, mis kirjeldavad fiisikaliste, 6koloogiliste voi bioloogiliste slisteemide
diinaamikat. T66 pdhineb SINDy (Sparse ldentification of Nonlinear Dynamics) meetodil, mis
kasutab  horedat regressiooni, et tuvastada olulised liikmed suurest hulgast
kandidaatfunktsioonidest, eesmargiga koostada liikumisvorrandid.

Anallitisi kaigus kasitletakse viit erinevat juhtumit, sealhulgas teadaolevaid mudeleid -
mittelineaarne ostsillaator ning kaks erinevat Lotka—Volterra populatsioonimudelit — ja reaalseid
katseandmeid, nagu fotopletismogrammi (FPG) ning elektrokardiogrammi (EKG) signaalid. K&iki
sisteeme kasitletakse teist jarku diinaamiliste diferentsiaalvérranditena voi kahe esimest jarku
vorrandististeemina.

Tulemusi hinnatakse vorreldes SINDy poolt tuvastatud vorrandeid kas originaalmudelite voi
mooteandmete pohjal saadud lahenditega. T66 eesmark on uurida, millistel juhtudel suudab SINDy
meetod taastada slisteemi tdpselt ning millal jadb mudeli tapsus vGi télgendatavus ebapiisavaks.



Lihendite-moistete sonastik

SINDy - Sparse Identification of Nonlinear Dynamics (eesti keeles Mittelineaarse siisteemi leidmine
héreda regressiooni meetodil)

EKG — elektrokardiogramm

FPG - fotopletiismogramm



1. Sissejuhatus

Loodusteaduses, inseneriteaduses ja meditsiinis esinevaid protsesse saab tihti kirjeldada
mittelineaarsete vorrandsilisteemidega. Nahtused nagu flitisikalised vonkumised, populatsioonide
diinaamika voi sidame elektriline  aktiivsus ei allu lihtsamatele lineaarsetele
diferentsiaalvorranditele. Mittelineaarsed slisteemid kirjeldavad aperioodilist ja kvasiperioodilist ja
kaootilist diinaamikat. [1-2].

Traditsiooniliste meetodite piiratus sellistes olukordades on viinud uute andmepdhiste meetodite
tekkimiseni. Uheks selliseks on SINDy (Sparse Identification of Nonlinear Dynamics) meetod, mille
esitasid Brunton, Proctor ja Kutz [1-2]. SINDy algoritm on aktuaalne teema mittelineaarsete
probleemide uurimisega tegelevate teadlaste seas. Viimastel aastatel on SINDy algoritmi
rakendatud erinevate probleemide uurimiseks [4-5]. Algoritmi vGimekust ja kasutusala laiendatakse
pidevalt, vrd. [5-11].

SINDy vbéimaldab héreda regressiooni meetodi abil leida mittelineaarseid diferentsiaalvérrandeid
otse andmetest. Kasutatakse kandidaatfunktsioonide kogumikku (nt. poliinoomide liikmed,
trigonomeetrilised funktsioonid), millest vdhimruutude ja LASSO-regressiooni meetodite abil
valitakse vilja vaid kdige olulisemad liikmed. [1-3]

Kdesolevas bakalaureuset6ds rakendan SINDy algoritmi teist jarku mittelineaarsete
differentsiaalvorrandite leidmiseks, kuid SINDy meetodit on vdimalik rakendada ka kdrgemat jarku
siisteemidele. T06 eesmark on uurida, kui tapselt on vdimalik siisteemi diinaamikat taastada ainult
andmete pohjal — ilma slsteemi teadmata — ning kas SINDy meetod suudab leida teist jarku
vorrandsisteemid ka keerukamate modtmisandmete korral. [1, 3]

Kaesolevas to0s katsetan ette teadaolevaid slisteeme — nagu mittelineaarne ostsillaator ning Lotka—
Volterra populatsioonimudelid: kahe konkureeriva liigi mudel ja kiskja-saak mudel. Seejarel pttan
SINDy meetodil leida liikumisvGrrandid reaalsete md&6tmisandmete pdhjal, kasutades
fotopletismogrammi (FPG) ja elektrokardiogrammi (EKG) signaale. Eeldan, et uuritavad siisteemid
on kirjeldatud kui teist jarku mittelineaarsete differentsiaalvérrandite abil. [1-3]

Uurimuse oodatav tulemus on, et SINDy meetod suudab teada olevate slisteemide korral tuvastada
korrektsed voi neile ligilahedase vorrandsiisteemid ja keerukamate siisteemide korral véib mudeli
tapsus jaada puudulikuks ehk SINDy meetod vGib ebadnnestuda. [1, 3]



2. Teoreetiline taust

2.1. SINDy algoritm

T606 aluseks olen kasutanud Steven L. Brunton, Joshua L. Proctor ja J. Nathan Kutz poolt kirjutatud
artiklit [1, 3] ja artikli autorite poolt kirjutatud ja minu poolt kohandatud Matlabi koodi (Lisa 1).
Koodid on olemas ka Pythoni teegi kujul, nimega pySINDy [12].

Dinaamilise slisteemi liikumist voi kaitumist kirjeldatakse mittelineaarsete diferentsiaalvérrandite
abil. SINDy meetod vdimaldab need vérrandid numbriliste- ja katseandmete pdhjal automaatselt
leida. Meetod ldahtub eeldusest, et vaid vaike osa muutujate mittelineaarsetest kombinatsioonidest
mangivad slsteemi kirjeldamisel olulist rolli. Naiteks kahe muutujaga (2D) slsteemi korral on
kandidaatfunktsioonid moodustatud vabade muutujate kdikvdimalikest kombinatsioonidest kuni
mingi kindla astmeni, siin td66s astmeni 5. Kandidaatfunktsioonide hulgast valitakse vélja vaid need
funktsioonid, millel on nullist erinev koefitsient. Selleks kasutatakse hGreda regressiooni meetodit,
mis aitab tuvastada vaid olulisi kandidaatfunktsioone. [1-3, 13]

Diinaamilise stisteemi tldkuju:

X®) = f(X®), €y

kus X (t) on stisteemi olekuvektor ja X(t) selle ajatuletis. Funktsioon f on tundmatu mittelineaarne
funktsioon, mida soovime leida. Kogutud v6i m&ddetud andmete pdhjal koostatakse oleku ja
tuletise vektorid X ja X [1, 3, 13]:

xT(t1) [21(t1)  2a(t1) -+ an(t1)]
xT(t3) r1(fa)  walta) -+ wnlt2)

X = : - : : . : , (2a)
XT(Tm) _53’1”7?1} fI'Q(Tm) Tt J'n(fm}
X7 (ty) [31(t1) 2a(t1) - dnlt1)

. X7 (ts) wy(te)  dalla) -+ anl(l2)

X = : - : : . : (2b)
LXT(T’m)J _-’Eil(rm) To(tm) -+ ~'i’ﬂ.(rm)J

Seejirel koostatakse kandidaatfunktsioonide maatriks @(X), mis vo6ib sisaldada naiteks
jargmiseid liikmeid [13]:

X)=|1 X X? X* ... sin(X) cos(X) --- : 3)

Kandidaatfunktsioonide kogumiku @ (X) valimisel lahtutakse:

e susteemi olekutest, nt x(t), y(t);



e poliinoomi astmest p — see madrab, kui kdrge astmeni poliinomiaalsed liikmed kaasatakse,

nt. @ x, v, x%, xy, y% x3, x%y, xy?, y3, x%, x3y, x%y?, xy3, y* x>, xty, x3y?,
x2y3, xy*, y®;

e vdimalike trigonomeetriliste liikmete, nagu sin(x), cos(x), sin(xy), jne. kasutamist;

e silsteemi muutujate koguarvust n — antud juhul n =2, kuna siin t66s kasutame

kahemdotmelisi (2D) stisteeme. [3]
Seejarel pultakse leida sobiv f(X(t)), mis seob @(X) ja X [13]:
X =0(X)Z, 4)
kus Z on koefitsientide maatriks, mille iga veerg &, kirjeldab vastava oleku muutumise diinaamikat:

E=[6182 &kl 5)

Maatriksi = leidmiseks rakendatakse vahimruutude meetodit [13]:

Sk = arg,min”Xk - o0&, (6)

k

kus &, tahendab kandidaatliiget, mida optimeeritakse, erinevalt 18plikust liikmest &,. Saadakse
maatriks =, mis sisaldab palju mittevajalikke liikmeid &, sest kaasatud on kdik
kandidaatfunktsioonid. Seet6ttu kasutatakse hdéredat regressiooni, LASSO regressiooni (L), et
suruda paljud liikmed &, nulliks, jattes ainult olulised liikmed alles. Jargnev valem (7), kujutab
endast vihimruutude meetodi ja horeda regressiooni maaramise kombinatsiooni [13]:

& = ar%’min”)'(k - Q(X)f;(Hz + Mgkl )

k

kus A on horedat regressiooni maarav parameeter. Kui A on liiga suur, siis voidakse olulised
liikmed vilja jatta, kui A on liiga vaike, lubatakse rohkem liikmeid labi.

Kokkuvotvalt, vaikesed koefitsiendid nullitakse, seejarel korratakse regressiooni ainult nullist
erinevate lilkkmetega ja vdljastatakse koefitsientide maatriks, mis sisaldab liikmeid, mis on slisteemi
diinaamika kirjeldamiseks olulised. Lépuks kdikidest leitud liikkmetest moodustatakse diinaamiline
sisteem:

X = O(x)$g (8)
ja olemegi saanud lahendi. [13]

SINDy meetodi nditlikustamiseks on Joonisel 1 ndidatud protsessid, mida algoritm teostab.
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Joonis 1. SINDy algoritmi skeem, demonstreeritud teist jérku differentsiaalvérrandi lahendiga ehk kahe

esimest jérku vorrandsiisteemi lahendiga. [1]

Siire u [m] ja kiirus v [m/s]

Tépne u
Tapne v

= = = Leitud ujav

0 5 10

Aeg t [s]

Kiirus v [m/s]

Tapne lahend
I = = = Leitud lahend | ]
2 -1 0 1
Siire v [m]

Joonis 2. Vasakpoolsel joonisel on kujutatud siisteemi (9) lahendeid. Parempoolsel joonisel on kujutatud sama

olukorra faasiportree.

2.2. Mittelineaarse ostsillaatori naide

Demonstreerime SINDy algoritmi kasutamist rakendades seda allpool defineeritud sisteemi

lahendile. Anname ette mittelineaarse vorrandsiisteem:i:

10

= qu? + bv3,
= cud + dv?,

)



kus koefitsientide vaartused on a = —0.1,b = 2,c = —2,d = —0.1 [3]. Valime algtingimusteks
u(0) = 2m jav(0) = 0 m/s . Andmete genereerimiseks valime lahendi aegrea vahemikul [0, 20]
s, ajasammuga At = 0.1 s. Joonisel 2 mira ei kujutata. Miira lisatakse, et simuleerida reaalsemaid
mddtetingimusi. Igale valimile vahemikus [0, 20] s, lisatakse kindla amplituudiga valge miira: nihke
u valimitele 0.05 m ja kiiruse v valimitele 0.05 m/s.

Parim tulemus tuli, valides kandidaatfunktsioonide suurimaks astmeks p =4 ja horedat
regressiooni maaravaks parameeteriks A = 0.05. SINDy poolt leitud vérrandid:

{u = —0.10095u3 + 2.0001v3 =~ —0.1u3 + 2v3 (10)
v = —2.0020u® — 0.10048v3 ~ —2u3 — 0.1v3

Nagu ndha, leitud vorrandsiisteem vastab esialgsele vérrandsiisteemile (9). Suurim erinev liige on
|2.0020 — 2.2|] = 0.0020, mis on 0.1%. Saame Selda, et meetod tootab. Jooniselt 2 ndeme, et
SINDy meetodil leitud siire u ja kiirus v on Uisna sarnased tapsetele lahenditele. Ka faasiportreel
on tapne ja leitud lahend trajektoorid vaga ligilahedased. [3]

11



3.SINDy testimine

Selles peatikis testime SINDy meetodit kdigepealt ette teadaolevate liikumisvorrandite korral.
Anname ette vorrandsiisteemi, genereerime andmed ja uurime, kas SINDy algoritm suudab algse
vOrrandslsteemi leida. Seejarel katsetame, kas SINDy algoritmi suudab leida lahendi katseandmete
pdhjal, kui vérrandsiisteem pole ette teada.

3.1. Ette teadaolevad suisteemid
Valisin teadaolevateks siisteemideks Lotka-Volterra mudelid. Jargnevalt teeme kaks erinevat

vOrrandslsteemi katsetust, esmalt kahe konkureeriva liigi mudeli ja seejarel kiskja-saak mudeli
kohta. [2, 14, 15]

3.1.1. Lotka-Volterra kahe konkureeruva liigi mudel

3.5 T . 2 - - : 2

y/ Tapne trajektoor d

— 3 = = = Leitud trajektoor :

3 15 Vektorvali 4

— 2.5

= Tapne x

R Tépne y 1 y g

x 2y - = —Lleitudxjay| 1 -

he) =

§ 15 N

2

g. —_ " T

O b
[?_ 0571
0 ﬁ\&\ T

. . 3 3

ow
(8]
-
-
(5]

0 5 10 15 20 2 25
Aeg t[d.0.] x[d.i]

.5

Joonis 3. Vasakpoolsel joonisel on kujutatud siisteemi (11) lahendeid. Populatsioon ei saa olla negatiivne.
Parempoolsel joonisel on kujutatud sama olukorra faasiportree (ja vektorvdli, mille leidis SINDy). Punase
tdpiga on mdrgitud piisipunktid. Integreerimine teostati kasutades Matlabi ODE-integraatorit Runge-
Kutta 4,5, ajasammuga At = 0.01 s.

Vaatame kahe erineva populatsiooni diinaamikat, kuidas nende arvukus muutub konkureerides
sama ressursi parast. Sellist konkurentsi vdib esineda naiteks taimede vahel samal kasvualal, janeste
ja lammaste vahel samas toidupiirkonnas vdi kahe bakteriliigi vahel Petri tassis, kus mdlemad
toituvad gliikoosist, mida lisatakse tassi konstantse kiirusega. Uldjuhul suretab (ks liik teise vilja.
[2, 14, 15]

Konkurentsi mudeli korral kehtivad eeldused, et tegemist on suletud siisteemiga, toimub pidev kasv
ajas, keskkond on konstante, kdik sama populatsiooni isendid kdituvad Uhtemoodi, slisteemi
koefitsiendid on konstantsed ja valised tegurid puuduvad. [2, 14, 15]

Populatsioonide x ja y diinaamika on kirjeldatav slisteemiga, normeeritud ja dimensioonitul kujul:
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{g:c:ax+bx§+cxy, (1)
y=dy+ey*+fxy,

kus koefitsientide vaartused on valitud meelevaldselt,a =3, b=—-1, c= -2, d =2, e = —1,
f = —1, siin a téhistab x-populatsiooni kasvumaéra, d téhistab y-populatsiooni kasvumaara, c ja

f tahistavad, mitu korda tugevamalt md&jutab teine populatsioon esimest, b = e kirjeldab seda, kui
suurt populatsiooni suudab 6koloogia kannab [2, 14, 15]. Valime populatsioonide algtingimused
x(0) = 2d.1.jay(0) = 1.5 d. . ning rakendame SINDy algoritmi.

Parim tulemus tuli, valides kandidaatfunktsioonide suurimaks astmeks p =2 ja horedat
regressiooni maaravaks parameeteriks A = 0.07. Leitud vGrrandsiisteem:

{ X = 2.9947x — 0.99821x2 — 1.9963xy ~ 3x — 1x? — 2xy (12)

¥ = 1.9949y — 0.99733y2% — 0.99791xy ~ 2y — 1y% — 1xy.

Nagu naha, leitud vBérrandsiisteem vastab esialgsele vorrandsiisteemile (11). Suurim erinev liige
on [2.9947 — 3| = 0.0053, mis on 0.18%. SINDy meetod leidis vBrrandsiisteemi tisna tapselt.

Jooniselt 3 ndeme, et mdlema populatsioonide arv langeb enne tasakaalu saavutamist. x sureb vilja
jay saavutavad maksimaalse populatsiooni. Faasiportreelt ndeme, et valitud lahend ldheneb thele
slisteemi pusipunktidest, milleks on (x,y) = (0.0,3.0). Ndeme, et kui see juhtub, vdheneb Uks
populatsioon nullini, samas kui teine suureneb maksimaalse populatsioonini - 6koloogia
kandevéimeni. [2, 16]

3.1.2. Lotka-Volterra kiskja-saak mudel

Kiskja ja saaklooma populatsiooni arvukuse diinaamika mudel. Kiskja-saak mudelisse sobivad
naiteks ahven-koger, janes-hunt. [2, 14, 15]

Saaklooma x ja kiskja y populatsiooni diinaamikat kirjeldatav slisteem, normeeritud ja
dimensioonitul kujul:

X = ax + fxy,
. 13
{y=yﬁxy+5y. (13)
kus koefitsientide vaartused: « = 1, = =2,y = —1.1,§ = —1.2, siin x on saakloomade arvukus,

y kiskjate arvukus. a tadhistab saakloomade kasvu, B on kiskjate rodvimise maar, y on
assimilatsiooni efektiivsus ja & on kiskjate loomuliku suremuse maar [2, 14, 15]. Valime
populatsioonide algtingimused x(0) = 2 d. . ja y(0) = 1 d. . ning rakendame SINDy algoritmi.

13
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Tapne x Tapne trajektoor
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Joonis 4. Vasakpoolsel joonisel on kujutatud stisteemi (12) lahendeid. Populatsioon ei saa olla negatiivne.
Parempoolsel joonisel on kujutatud sama olukorra faasiportree (ja vektorvili, mille leidis SINDy). Punase
tdpiga on mdrgitud piisipunktid. Integreerimine teostati kasutades Matlabi ODE-integraatorit Runge-Kutta
4,5, ajasammuga At = 0.01 s.

Parim tulemus tuli, valides kandidaatfunktsioonide suurimaks astmeks p =2 ja horedat
regressiooni maaravaks parameeteriks A = 0.001.

Leitud vorrandsisteem:

{ x = 0.99985x — 1.9998xy =~ 1x — 2xy (14)

y =21997xy — 1.1998y = (—1.1) - (—2)xy — 1.2y

Jooniselt 4 ndeme, et saakloomade x ja kiskjate y arvukused muutuvad tsiikliliselt. Algtingimusena
oleme madranud, et saakloomi on 2 korda rohkem kui kiskjaid, mis on nidha ka jooniselt, et
saakloomade arvukus esialgu kasvab, kuna kiskjaid on vahe. Kui saakloomi on palju, hakkavad
kiskjad kiiremini paljunema, kui kiskjaid on palju, siis hakkab saakloomade arvukus langema. L&puks
kiskjate arvukus langeb, kuna toitu pole piisavalt ja tsiikkel kordub. Faasiportreelt ndeme, et
trajektoorid on suletud kéverad — populatsioonid vonguvad perioodiliselt. Plsipunkte on 2 - punktis
(x,y) = (0.0,0.0) on sadulpunkt ja punktis (x,y) = (0.5454,0.5) on (Kolmogorovi stabiilne)
tsenter [2, 16]. Leitud vBrrandsiisteem vastab etteantud vorrandsiisteemile (13). Suurim erinev liige
on [2.1997 — 2.2| = 0.003, mis on 0.014%.

Kasutatuna SINDy meetodit vorrandite leidmiseks, ndeme, et mdlema Lotka-Volterra mudeli korral
olid vérrandid kergesti leitavad, meetod to6tas. [1, 3]

3.2. Tundmatud siisteemid

Jargnevalt katsetame SINDy meetodit kahe tundmatu siisteemi korral, fotopletismogrammi ja
elektrokardiogrammi signaalide korral. Siinkohal kasutame me mddteandmeid ja soovime teada
saada, kas SINDy meetod suudab leida neile vastavad vorrandid. [17, 18]
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3.2.1. Fotopletiismogrammi signaal

Fotopletiismogramm (FPG) on meetod, mis kasutab valguse neeldumist ja peegeldumist, et mdota
verevoolu muutusi veresoontes. FPG signaali abil saab hinnata mitmeid fisioloogilisi parameetreid,
nagu pulss, vererdhk ja hapnikukillastust (Sp0,). [18]

Kasutasin internetist kattesaadavat FPG signaali andmeid [19]. Signaali m&6tmissagedus on 100
valimit sekundis ehk iga 0.01 s tagant tehti ks mootmine. Allikas [19] ei tapsusta signaali Ghikuid,
seega eeldame Uhikute dimensioonitut kuju.

Kasutame allika [19] signaali periodiseeritud kuju. Periodiseeritud signaali saime valides
meelevaldselt (ihe perioodi. Vorrandi muutujatena kasutan siinkohal FPG signaali ja selle tuletist.

Parim tulemus tuli, valides kandidaatfunktsioonide suurimaks astmeks p =5 ja horedat
regressiooni maaravaks parameeteriks A = 0.01.

sl Moodetud FPG | |
5 : = = = Leitud FPG 25

Mo6r

T T T TT
Moodetud trajektoor
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Q.
WLosf oy
5 1.5
04F : | : i i | 3 -
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Aegtfs] FPG [d.i.]
Joonis 5. Vasakpoolsel joonisel on kujutatud FPG signaali ja selle tuletise aegread. Parempoolsel joonisel on
kujutatud sama olukorra faasiportree (ja vektorvdli, mille leidis SINDy). Punase tdpiga on mdrgitud plisipunkt.
Integreerimine teostati kasutades Matlabi ODE-integraatorit Runge-Kutta 4,5, ajasammuga At = 0.01 s.

Joonisel 5 kujutatud faasiportreel on ndidatud iks pusipunkt (FPG,FPG tuletis) = (0.5,0.0).
Tegemist on ebastabiilse spiraaliga, mis tdhendab, et imbritsev vektorvali surutukse sellest punktis
eemale. SINDy poolt leitud kinnine trajektoor on piirtsiikkel kuna saab naidata, et Umbritsev
vektorvali laheneb sellele nii seest- kui ka valjastpoolt. Stabiilne piirtsiikkel on mittelineaarne
nahtus, millel puudub analoog lineaarsetes slisteemides.[2, 16] Leitud vorrandsiisteem:

( X = y

y = 19927.023527 — 183128.95123x — 2533.0696513y +

+674337.0758x2 + 2008.083234xy + 749.44953889y2 —

—1240818.4697x3 — 67254.805632x2y — 4463.8192664xy% —
| —243.033129y3 + 1138609.1529x* + 87497.266772x3 + (15)
+8711.0721836x2y2 + 751.49771171xy3 + 41.851187256y* —
—416227.20204x5 — 41434.64822x*y — 5543.8829285x3y2 —
—550.89580665x2y3 — 81.437418626xy* + 0.24205966526y°
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Leitud vorrandslisteem on vaga paljude liikmetega, SINDy mudel ei suutnud leida lahendit, mis on
hore kandidaatfunktsioonide ruumis. Saadud tulemust saab seletada sellega, et FPG signaal pole 2-
jarku mittelineaarne ostsillaator [1-2]. Originaalandmete (mitteperioodiline) signaal andis veel
halvema tulemuse.

3.2.2. Elektrokardiogrammi signaal

4
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Joonis 7. Vasakpoolsel joonisel on kujutatud EKG signaali ja selle tuletise aegread. Parempoolsel joonisel on
kujutatud sama olukorra faasiportree (ja vektorvdli, mille leidis SINDy). Integreerimine teostati kasutades
Matlabi ODE-integraatorit Runge-Kutta 4,5, ajasammuga At = 0.0033 s.

EKG mo&otmiseks kasutasin nutikella Withings ScanWatch 2 (Joonis 6). Antud kell on saanud
Ameerika Uhendriikide Toidu- ja Ravimiameti Food and Drug Administration (FDA) poolt heakskiidu
ehk see seade on labinud ranged testid ning on USA-s tunnustatud kui usaldusvaarne meditsiiniline
abivahend. [20]

Joonis 6. Withings ScanWatch 2 [13].
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M®&8tsin nutikellaga enda EKG signaali. Uhe md&tmise aeg on 30 sekundit. Signaali md&tmissagedus
on 300 valimit sekundis ehk iga 0.0033 s tagant tehti (iks m&6tmine. Matlabi koodi (Lisal) lugesin
sisse modtmisandmete vektori, milles on 9000 valimit. [21-22]

Parim tulemus tuli, valides kandidaatfunktsioonide suurimaks astmeks p =3 ja horedat
regressiooni maaravaks parameeteriks A = 0.0001.

Jooniselt 7 ndeme, et SINDy suudab modelleerida EKG signaali Gldkuju ja tstklilisust, kuid jadb hatta
viikeste P-, T- ja Q-lainete (vt. Joonis 7) tuvastamises. SINDy-ga saadud signaal on siledam.
Samamoodi ka EKG tuletise korral ei suutnud SINDy tabada signaali jarske muutuseid. Kuna EKG
signaal sisaldab jarske piike ja keerukamaid diinaamilisi mustreid, siis on need omadused raskesti
modelleeritavad madala astme kandidaatfunktsioonidega, mida meetod kasutab.
Kandidaatfunktsioonide suurim aste kasutatud koodis on 5, see ilmselt jai liiga vaikeseks. [2]

Leitud vorrandsisteem:

(522

y = —47.7003y + 12.7022x2 + 0.260551xy — 0.0250877x3 — 0.000163314x2y. (16)

SINDy poolt leitud virrandsiisteemi saab lugeda horedaks, aga kuna lahend on vale, siis jareldame,
et EKG signaal pole kirjeldatav teist jarku mittelineaarse ostsillaatoriga.
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4. Kokkuvote

Antud t606s katsetasin SINDy meetodit viiel erineval juhtumil: mittelineaarsel ostsillaatoril, kahel
ette teadaoleval Lotka-Volterra mudelil (konkureerivad liigid ja kiskja-saak mudelitel) ning kahel
tundmatul slsteemil (fotopletismogrammi ja elektrokardiogrammi signaalidel). Kasutatud on
Matlabi skriptimiskeskonnad kirjutatud SINDy algoritmi koodi (Lisa 1) ja abifaile poolData.m,
sparseGalerkin.mja sparsifyDynamics.m (Lisa 2. Abifailid).

Peatikis 2.2 demonstreerisin, kuidas SINDy meetodit rakendada mittelineaarse ostsillaatori naitel.
Andsin ette diferentsiaalvorrandid, mille pohjal genereerisin numbrilised andmed. Seejarel
rakendasin nende andmete peal SINDy algoritmi, mis kasutas vahimruutude ja héreda regressiooni
meetodit, leidmaks hoéredat lahendit. Esialgse ja leitud vorrandite suurima liikmeerinevus oli vaid
0.1%. Jooniselt 2 ndeme ka, et tapsete ja leitud lahendite aegread ja faasiportree langevad hasti
kokku. Seega vdime jareldada, et SINDy algoritm toimis edukalt.

Peatikis 3.1.1 Kasutasin teadaolevat Lotka-Volterra kahe konkureeriva liigi mudelit. Andsin ette
vastava populatsioonide diinaamikat kirjeldava voérrandsiisteemi, mille pdhjal genereerisin
numbrilised andmed. Seejarel rakendasin nende andmete peal SINDy algoritmi leidmaks slisteemi
horedat lahendit. Esialgse ja leitud vorrandi suurim erinev liige oli 0.18%. Jooniselt 3 ndeme ka, et
tapsete ja leitud lahendite aegread ja faasiportree langevad samuti hasti kokku. Seega saame 6elda,
et SINDy algoritm tootas edukalt ka bioloogilise mudeli korral.

Peatiikis 3.1.2 Katsetasin Lotka-Volterra kiskja-saak mudelit. Andsin ette kahe liigi tsiklilist
diinaamikat kirjeldava vorrandsiisteemi, mille péhjal genereerisin andmed ja seejarel rakendasin
SINDy algoritmi, leidmaks siisteemi horedat lahendit. Esialgse ja leitud v&rrandi suurim erinev liige
oli 0.014%. Jooniselt 4 ndeme ka, et tapsete ja leitud lahendite aegread ja faasiportree langevad
héasti kokku. Seega saame 6elda, et SINDy suutis edukalt leida ka tstklilise siisteemi diinaamika.

Jargnevalt uurisin kahe tundmatu slisteemi mootmisandmeid, mille liikkumisvérrandid pole ette
teada. Peatiikis 3.2.1 katsetasin SINDy meetodit fotopletiismogrammi (FPG) signaali korral.
Kasutasin periodiseeritud mdoteandmeid, ning rakendasin SINDy algoritmi. Parim tulemus tuli, kui
valisin kandidaatfunktsioonide suurimaks astmeks p =5 ja hdredat regressiooni maaravaks
parameetriks A = 0.01. Leitud vorrandsisteemi liikmete hulk oli suur, seega SINDy ei suutnud leida
horendat lahendit. Voib jareldada, et FPG signaali ei saa kirjekdada lihtsa teist jarku mittelineaarse
ostsillaatori mudelina.

Peatiikis 3.2.1 katsetasin SINDy meetodit elektrokardiogrammi (EKG) signaali korral. Kasutasin enda
moddetud andmeid, mille peal rakendasin SINDy algoritmi. Parim tulemus tuli, kui valisin
kandidaatfunktsioonide suurimaks astmeks p = 3 ja hdredat regressiooni maaravaks parameetriks
A =0.0001. Kuigi saadud vorrand oli hore, ei suutnud mudel kirjeldada EKG signaali olulisi
elemente. Seega EKG signaal ei ole piisavalt hasti kirjeldatav teist jarku mittelineaarse
ostsillaatorina ja SINDy meetod ei andnud rahuldavat tulemust.
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Tanuavaldused

Soovin tdnada oma bakalaureuset66 juhendajat Dmitri Kartofelevi konstruktiivse tagasiside,

suunamise ja abi eest Matlabi koodi modifitseerimisel, mis olid selle t66 valmimisel hindamatu
vaartusega.
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Lisad

Lisa 1. SINDy meetodil mittelineaarse vorrandsiisteemi leidmise kood

Siin on autori poolt kergelt modifitseeritud originaalne SINDy meetodi kood, mis on kirjutatud
Steven L. Bruntoni poolt [1-2]. Kasutan kahemddtmelise mittelineaarse ostsillaatori mudeli koodi.
Teised t66s kasutatud naited saab arvutada sarnase koodi alusel. Antud SINDy algoritm on Matlabi
(R2021a) skriptimiskeeles kirjutatud kood.

clear all, close all, clc
addpath('./utils");

%% generate Data, Nonlinear system

polyorder =4; % search space up to fifth order polynomials
usesine = 0; % no trig functions

n = 2; % 2D system

A=1[-0.12; -2 -0.1]; % System coefficient matrix

rhs = @(x) A*x.”3; % ODE right hand side - non-linear system, cubic
tspan = [0:0.01:20]; % time span

x0 = [2; 0]; % initial conditions

options = odeset('RelTol', 1le-10, 'AbsTol', 1le-10*ones(1l, n));
[t, x] = oded45(@(t, x) rhs(x), tspan, x@, options); % integrate

%% compute Derivative
eps = 0.05; % noise strength
for i = 1:length(x)
dx(i, :) = A*(x(i, :).”3)';
end
dx = dx + eps*randn(size(dx)); % add noise

%% pool Data (i.e., build library of nonlinear time series)
Theta = poolData(x, n, polyorder, usesine);
m = size(Theta, 2);

%% compute Sparse regression: sequential least squares
lambda = 0.05; % lambda is our sparsification knob.
Xi = sparsifyDynamics(Theta, dx, lambda, n)

%% integrate true and identified systems

[tA, xA] = ode45(@(t, x) rhs(x), tspan, x0, options); % true model

[tB, xB] = ode45(@(t, x) sparseGalerkin(t, x, Xi, polyorder, usesine), tspan,
X0, options); % approximate

%% FIGURES!!

figure('Position', [100 100 1000 350]) % Non-linear 2D system
subplot(1,2,1); % [left bottom width height]

plot(tA, xA(:, 1), 'r', 'LineWidth', 1.5)

hold on

plot(tA, xA(:, 2), 'b-', 'LineWidth', 1.5)

plot(tB(1:10:end), xB(1:10:end, 1), 'k--', 'LineWidth', 1.5)

hold on

plot(tB(1:10:end), xB(1:10:end, 2), 'k--', 'LineWidth', 1.5)

grid on

xlabel('Aeg \it{t} \rm{[s]}', 'FontSize', 13);

ylabel('Siire \it{u} \rm{[m] ja kiirus} \it{v} \rm{[m/s]} ', 'FontSize', 13)
legend('Tapne \it{u}', 'Tapne \it{v}', 'Leitud \it{u} \rm{ja} \it{v}'")

22



% Phase portrait

subplot(1,2,2);

dtA = [0; diff(tA)];

plot(xA(:, 1), xA(:, 2), 'm', 'LineWidth', 1.5);
hold on

dtB = [0; diff(tB)];

plot(xB(:, 1), xB(:, 2), 'k--', 'LineWidth', 1.5);
grid on

xlabel('Siire \it{u} \rm{[m]}', 'FontSize', 13);
ylabel('Kiirus \it{v} \rm{[m/s]}', 'FontSize', 13);
legend('Tédpne lahend', 'Leitud lahend');
exportgraphics(gcf, 'Joonis2_Mittelineaarne siisteem.png', 'Resolution’', 250) %
save figure to current directory

%% Display coefficients in a table

funkid® = poolDatalIST({'x"','y'}, Xi, n, polyorder, usesine);
disp(table(funkido,Xi(:,1),Xi(:,2), 'VariableNames',{'Vorrandi liige', 'x_tul',
'y_tul'}));

% Function for generating equations

fmt = @(c) strjoin(strcat(num2str(c(c~=0)), " '*"',funkido(c~=0)),"' + ');
dxdt = fmt(Xi(:,1)); if isempty(dxdt), dxdt = '@'; end

dydt = fmt(Xi(:,2)); if isempty(dydt), dydt = '@'; end

%% Show formed equations
disp('Leitud vOrrandid:');
disp(['dx/dt = ' dxdt]);
disp(['dy/dt = ' dydt]);

Lisa 2. Abifailide sisu

1. poolData.m - siin koostatakse kandidaatfunktsioonide maatriks 6(X).

function yout = poolData(yin,nVars,polyorder,usesine)

Copyright 2015, All Rights Reserved

Code by Steven L. Brunton

For Paper, "Discovering Governing Equations from Data:
Sparse Identification of Nonlinear Dynamical Systems"

by S. L. Brunton, J. L. Proctor, and J. N. Kutz

3% 3% 3R % X

n = size(yin,1);
% yout =
zeros(n,l+nVars+(nVars*(nVars+1l)/2)+(nVars*(nVars+1)*(nVars+2)/(2*3))+11);

ind = 1;

% poly order ©
yout(:,ind) = ones(n,1);
ind = ind+1;

% poly order 1

for i=1:nVars
yout(:,ind) = yin(:,1i);
ind = ind+1;

end

if(polyorder>=2)

% poly order 2
for i=l:nVars
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for j=i:nVars
yout(:,ind) = yin(:,1i).*yin(:,3);
ind = ind+1;
end
end
end

if(polyorder>=3)
% poly order 3
for i=1:nVars
for j=i:nVars
for k=j:nVars
yout(:,ind) = yin(:,1i).*yin(:,3j).*yin(:,k);
ind = ind+1;
end
end
end
end

if(polyorder>=4)
% poly order 4
for i=1:nVars
for j=i:nVars
for k=j:nVars
for l=k:nVars
yout(:,ind) = yin(:,1i).*yin(:,j).*yin(:,k).*yin(:,1);
ind = ind+1;
end
end
end
end
end

if(polyorder>=5)
% poly order 5
for i=1:nVars
for j=i:nVars
for k=j:nVars
for l=k:nVars
for m=1:nVars
yout(:,ind) =
yin(:,i).*yin(:,3).*yin(:,k).*yin(:,1).*yin(:,m);
ind = ind+1;

end
end
end
end
end
end
if(usesine)
for k=1:10;
yout = [yout sin(k*yin) cos(k*yin)];
end
end

2. sparsifyDynamics.m - see funktsioon teostab vahimruutude meetodit ja horedat
regressioon
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function Xi = sparsifyDynamics(Theta,dXdt,lambda,n)

Copyright 2015, All Rights Reserved

Code by Steven L. Brunton

For Paper, "Discovering Governing Equations from Data:
Sparse Identification of Nonlinear Dynamical Systems"

by S. L. Brunton, J. L. Proctor, and J. N. Kutz

3R 3R 3R ¥ X

S

4 compute Sparse regression: sequential least squares
Xi = Theta\dXdt; % initial guess: Least-squares

% lambda is our sparsification knob.

for k=1:10
smallinds = (abs(Xi)<lambda); % find small coefficients
Xi(smallinds)=0; % and threshold
for ind = 1:n % n is state dimension

biginds = ~smallinds(:,ind);
% Regress dynamics onto remaining terms to find sparse Xi
Xi(biginds, ind) = Theta(:,biginds)\dXdt(:,ind);
end
end

3. sparseGalerkin.m - siin kasutatakse leitud koefitsiente, et hinnata siisteemi
dinaamikat, kasutatakse poolData.m, et esitada hetkeseisule sobiv
kandidaatide rida.

function dy = sparseGalerkin(t,y,ahat,polyorder,usesine)

Copyright 2015, All Rights Reserved

Code by Steven L. Brunton

For Paper, "Discovering Governing Equations from Data:
Sparse Identification of Nonlinear Dynamical Systems"

by S. L. Brunton, J. L. Proctor, and J. N. Kutz

3% 3R 3R ¥ ¥

yPool = poolData(y',length(y),polyorder,usesine);
dy = (yPool*ahat)';
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Lisa 3
rektori 07.04.2020 kéaskkirjale nr 1-8/17

Lihtlitsents 16put66 reprodutseerimiseks ja 16putdo lldsusele kittesaadavaks tegemiseks!

Mina, Annaliisa Kangur (autori nimi)

1. Annan Tallinna Tehnikadlikoolile tasuta loa (lihtlitsentsi) enda loodud teose

,Mittelineaarsete liikumisvGrrandite leidmine katse- ja numbrilistest andmetest”,
(I6putéé pealkiri)

mille juhendaja on Dmitri Kartofelev,
(juhendaja nimi)

1.1 reprodutseerimiseks I6putdo sdilitamise ja elektroonse avaldamise eesmargil, sh Tallinna
Tehnikalilikooli raamatukogu digikogusse lisamise eesmargil kuni autoriGiguse kehtivuse
tahtaja [Gppemiseni;

1.2 uldsusele kattesaadavaks tegemiseks Tallinna Tehnikatlikooli veebikeskkonna kaudu,
sealhulgas Tallinna Tehnikatlikooli raamatukogu digikogu kaudu kuni autoridiguse kehtivuse
tahtaja [Gppemiseni.

2. Olen teadlik, et kdesoleva lihtlitsentsi punktis 1 nimetatud digused jaavad alles ka autorile.

3. Kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega isikuandmete
kaitse seadusest ning muudest digusaktidest tulenevaid digusi.

23.05.2025 (kuupaev)

1 Lintlitsents ei kehti juurdepddsupiirangu kehtivuse ajal vastavalt ilidpilase taotlusele I8putééle juurdepddsupiirangu
kehtestamiseks, mis on allkirjastatud teaduskonna dekaani poolt, viélja arvatud iilikooli digus I6put6éd reprodutseerida
liksnes sdilitamise eesmdrgil. Kui I6put66 on loonud kaks véi enam isikut oma Gihise loomingulise tegevusega ning I6put66
kaas- voi Ghisautor(id) ei ole andnud I6putd6d kaitsvale ilibpilasele kindlaksmdédratud tdhtajaks néusolekut 16puté6
reprodutseerimiseks ja avalikustamiseks vastavalt lihtlitsentsi punktidele 1.1. jqg 1.2, siis lihtlitsents nimetatud tdhtaja
jooksul ei kehti.
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