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Abstract 

This thesis investigates sound pressure level data collected from the urban environment 

of Tallinn. The dataset was recorded using a large-scale, low-cost sensor network 

developed by the TalTech Proactive Technologies research group in collaboration with 

the Estonian company Thinnect and covers the period from January 2021 to May 2023. 

The first major component of the study addresses the persistent issue of missing data, 

which is common in large-scale asynchronous monitoring systems. Two imputation 

methods, specifically designed for this dataset, are proposed and evaluated. The first 

method, self-imputation, relies on a sensor’s own historical data to estimate missing 

values. The second method, nearest-imputation, utilizes data from geographically nearby 

sensors. Both methods were tested and validated using a dedicated 24-hour test set, 

allowing for direct comparison of their performance. 

The second main contribution of this thesis focuses on the dynamic visualization of the 

complete dataset, including the imputed values. A full-stack web application was 

developed for this purpose. The system includes a backend that interfaces with a database 

containing the cleaned dataset and performs simplified gap imputation, and a frontend 

that displays an interactive map. On the map, each sensor is represented by a coloured dot 

indicating sound pressure level, following a standardized colour scheme used by both the 

Estonian national noise regulation as well as the European Union’s Environmental Noise 

Directive. 

This thesis is written in English and is 56 pages long, including 6 chapters, 22 figures and 

1 table. 
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Annotatsioon 

Helirõhutaseme analüüs ja visualiseerimine Tallinna 

linnakeskkonnas madala maksumusega IoT-andurite andmete 

põhjal 

Käesolev magistritöö uurib Tallinna helirõhutaseme andmeid, mis on kogutud madala 

maksumusega andurite võrgustiku abil. Võrgustik on välja arendatud 

Proaktiivtehnoloogiate uurimisrühma poolt koostöös Eesti ettevõttega Thinnect. 

Analüüsitav andmestik hõlmab ajavahemikku 2021. aasta jaanuarist kuni 2023. aasta 

maini. 

Töö esimene põhiosa keskendub andmelünkade käsitlemisele. Selleks on välja töötatud 

ja kirjeldatud kaks spetsiaalselt antud andmestiku jaoks loodud asendusmeetodit. 

Esimene neist kasutab puuduolevate väärtuste ennustamiseks anduri enda varasemaid 

mõõtmisi. Teine meetod, lähimate andurite põhine asendus kasutab andmete 

täiendamiseks lähedalasuvate andurite andmeid. Mõlemad meetodid testiti ja valideeriti 

spetsiaalse 24-tunnise testandmestiku abil, võimaldades nende omavahelist võrdlust. 

Töö teine põhiosa keskendub andmestiku visualiseerimisele koos täidetud 

andmelünkadega. Selleks loodi täismahus veebirakendus, mis koosneb andmebaasist 

koos puhastatud andmetega, backend’ist, mis suhtleb andmebaasiga ning rakendab 

lihtsustatud lünkade täitmist, ning kasutajaliidesest, mis kuvab interaktiivse kaardi. 

Kaardil on iga andur kuvatud värvilise täpina, mis näitab vastavat helirõhutaseme 

väärtust, järgides nii Eesti riiklikus müraregulatsioonis kui ka Euroopa Liidu 

keskkonnamüra direktiivis kasutatavat standardset värviskeemi.  

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 56 leheküljel, 6 peatükki, 22 

joonist, 1 tabelit.



6 
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1 Introduction 

Noise is clearly identified as a cause of stress to humans and prolonged, elevated levels 

of stress are known to cause mental and physical health problems [1]. Environmental 

noise originates from many sources – road traffic, railway, aircraft noise and leisure 

activities [2]. The EU Environmental Noise Directive (END) establishes a common 

approach across EU Member States to avoid, prevent and reduce the harmful effects of 

environmental noise. The directive requires Member States to produce strategic noise 

maps every five years for major roads, railways, airports and agglomerations (urban areas 

with over 100,000 inhabitants), and to develop corresponding action plans to manage 

noise issues [3]. In Estonia, the requirements of the END are transposed into national 

legislation through the Estonian government’s regulation “Technical requirements for 

environmental noise map, strategic noise map and noise reduction action plan and 

preparation procedure” [4]. While the Estonian regulation closely follows the 

requirements set by the European Union’s END directive, Estonia applies the same 

general noise thresholds for strategic mapping as outlined in the END. In Estonia, 

strategic noise maps must be prepared every five years for Tallinn, which is the only 

agglomeration over 100,000 inhabitants, as well as for major roads, railways, and Tallinn 

Airport, where traffic volumes exceed thresholds specified in the directive.  

Traffic noise in Tallinn has become a growing concern, with levels exceeding 

recommended limits, primarily due to heavy traffic [5]. As stated in the Environmental 

noise guidelines for the European Region created by the World Health Organization, for 

average noise exposure, it is strongly recommended to reduce noise levels produced by 

road traffic below 53 dB over a 24-hour period and 45 dB for the night, as road traffic 

noise above this level is associated with adverse effects for health and sleep [2]. A study 

conducted by the University of Tartu found that 11.6% of residents are highly annoyed 

by the traffic noise, while 2.5% have high sleeping disturbances [6]. As car ownership 

continues to rise, noise pollution is likely increasing further. The issue is particularly 

severe along major roads across all districts, where traffic is the primary source of noise. 

The Tallinn city government has halted building permits in several areas due to high noise 
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levels, leading to a slowdown in new construction projects and keeping real estate prices 

high. The Health Board has also refused to approve several planning proposals, 

preventing residential developments along some of the major roads [5]. 

To address these challenges, the city government has adopted a noise reduction action 

plan. The plan prioritizes promoting public transport and cycling as alternatives to cars, 

as well as implementing speed regulations to help manage noise levels. Additionally, new 

noise measurements will be conducted, and an updated noise map is expected to be 

released in 2026. This data will provide a basis for future urban planning decisions, 

allowing policymakers to implement strategies for reducing noise pollution and 

improving city living conditions [7]. 

In addition to the planned new measurements, there is already an existing network of 

sensors across Tallinn that provides real-time sound pressure level (SPL) data, with each 

sensor collecting data every minute. The END regulations stipulate reporting over daily 

intervals, which themselves are aggregated into three periods consisting of several hours 

each. These periods are the day (07:00 – 19:00) evening (19:00 – 23:00) and night (23:00 

– 07:00) [3]. While official measurements remain essential for regulatory compliance and 

standardization, the availability of historical data from the sensor network enables a 

valuable opportunity for preliminary assessments. 

This thesis focuses on analysing data collected from a real sensor network, dynamically 

estimating missing values and developing meaningful visualizations of SPL at an hourly 

resolution. To achieve this, data cleaning methods are applied, including removing 

duplicates, correcting structural errors, eliminating irrelevant observations, and handling 

outliers. Following the cleaning process, two imputation methods – self-imputation and 

nearest-imputation – are developed. The final visualizations combine real data with 

estimates generated using a simplified version of the self-imputation method. 

These visual outputs are intended to support faster initial conclusions and contribute to a 

more responsive and dynamic approach to urban noise management. The goal is to create 

an easy-to-use and reliable tool that can help the City of Tallinn to rapidly identify, 

quantify and understand problem areas enabling informed decisions to improve the city’s 

acoustic environment.
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2 Related Work 

2.1 Global approaches to SPL monitoring 

The regulation of environmental noise has deep historical roots, dating back to ancient 

civilizations. As early as the 6th century BCE, the Greek city of Sybaris banned roosters 

and noisy trades such as blacksmithing within city walls to preserve public peace. In 

ancient Rome, Julius Caesar restricted wagon traffic during the day to reduce noise in 

residential areas. By the 16th century, London implemented bylaws to prevent nighttime 

disturbances from singing and revelry. The industrial era brought growing concern for 

occupational noise, with early medical recognition of hearing loss among blacksmiths in 

the 1830s. In the late 19th and early 20th centuries, organized movements like the Society 

for the Suppression of Noise emerged in London and New York, advocating against 

motor horns. These efforts laid the foundation for modern legal frameworks, including 

the 1957 Chicago Zoning ordinance which is the first noise ordinance in the world to 

specify maximum noise levels [8]. 

In 2013, a research paper was published that described the situation in the United States. 

They estimated that 104 million individuals had an annual continuous average exposure 

level of >70 dBA over 24 hours in 2013 and were at risk of noise-induced hearing loss 

and tens of millions more were possibly going to be at risk of heart disease and other 

noise-related health effects [9]. Since the problem is similar in urban environments 

worldwide, three distinct approaches around the world will be showcased. 

2.1.1 New York, USA 

In New York, the city officials came out with the project Sounds of the New York city, 

shortly SONYC. The project integrates Human Computer Interaction (HCI) research into 

noise monitoring by deploying sensors and involving municipal agencies and residents. 

The initial approach was to deploy fixed-position sensors, using municipal buildings or 

streetlight poles. The project evolved to use portable, domestic sensors deployed in 

problem areas. To gather data that provides an informative view of the acoustic 

environment at problem sites, a program was launched in which novel domestic sensors, 
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designed by the team, were deployed for periods of two to four weeks. Residents were 

identified by the New York City Department of Environmental Protection via 311 reports 

of ongoing noise problems. These sensors provide acoustic data shared via a web app, 

enabling residents to monitor noise levels and report disturbances. Incorporating machine 

learning, the system aims to automate noise source identification. The project supports 

community action by leveraging open data for analysis and enforcement [10]. 

2.1.2 Barcelona, Spain 

The Barcelona Noise Monitoring Network is a comprehensive system designed to 

monitor and manage urban noise pollution across the city. The network comprises two 

primary components - the main network and the complementary network. The main 

network utilizes high-precision Class I noise monitors installed at strategic locations, such 

as municipal and university buildings, as well as urban infrastructure like streetlight poles. 

These devices provide accurate real-time data on noise levels. To enhance coverage and 

flexibility, especially in response to residents' concerns in various city areas, a 

complementary network of low-cost sound sensors was developed. A key objective of 

this expanded network is to increase the number of measurement points, enabling the 

detection of real-time changes in noise level trends. Barcelona's city sensor network was 

planned to enhance data sharing and cross-departmental collaboration. The main network 

utilized the IBM Cognos platform for data storing and analysis. Providers are required to 

submit data in a standardized .csv format. For the complementary network, data is 

managed through the Sentilo platform, designed to serve as a link between sensors and 

the applications managing urban data [11]. In 2021, the research paper “The Soundscape 

of the COVID-19 Lockdown: Barcelona Noise Monitoring Network Case Study” [12] 

utilized the network for analysing the changes in SPL during the pandemic lockdown, 

where it is revealed that from January 2020 to June 2020, which was the strictest 

lockdown time for the pandemic, Barcelona experienced significant reductions in noise 

levels – up to -9 dBA in nightlife areas, -7 dBA in commercial and restaurant zones and 

-5 dBA in dense traffic areas. 

2.1.3 Rezé, France 

In Rezé, France, a co-constructed experiment was taken place between researchers and 

local authorities of an urban noise diagnosis based on the residents and the use of the 

smartphone application NoiseCapture, which allowed a participative measurement of 
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sound levels. Data collection lasted 7 months, extending from December 2021 to June 

2022 inclusive. The participants were free to take measurements whenever they wished, 

with the instruction either to take measurements in spots of at least 1 min or to take mobile 

measurements, taking care not to pollute the measurements with their own steps and to 

pay attention to the weather conditions (avoid either rain or gusts of wind). The 

smartphones were properly calibrated to get correct values of sound level and time. They 

managed to collect a considerable amount of data to analyse it and make informative 

sound environment maps [13]. 
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2.2 Imputation methods for time series data 

The sensor data itself does not provide any meaningful insights in its raw form. To extract 

valuable information from the collected data, it is essential to clean and impute any 

missing values. This step is crucial to ensure the continuity of the data before proceeding 

with the visualization process. When selecting imputation methods for sensor data, it is 

important to consider the computational constraints of the deployment environment. The 

chosen methods must be autonomous, requiring no manual intervention once deployed. 

They should be lightweight as well in terms of memory and processing power, making 

them suitable for real-time execution. The methods must also be capable of running 

directly on a microcontroller, which often lacks the resources of a full computer. These 

requirements ensure that data imputation can be made locally on the sensors in the future. 

The following paragraphs will describe several lightweight time series imputation 

methods and explore how they have been applied in real-world scenarios in clinical and 

environmental research. 

2.2.1 Last Observation Carried Forward (LOCF) 

The LOCF method is a technique commonly used in longitudinal studies to handle 

missing data. When a data point is missing at a specific moment, LOCF imputes the 

missing value by carrying forward the last observed value from the previous time point. 

This approach assumes that the value at the last observed moment remains unchanged 

until the next available data point.  

In the article "Last observation carry-forward and last observation analysis" by Jun Shao 

and Bob Zhong [14], the authors discuss how the LOCF method is applied in clinical 

trials, particularly to handle missing data from participants who drop out of the study. In 

these trials, participants may leave before the study is completed, resulting in missing 

data. The LOCF method allows for the retention of this data by filling in the missing 

values with the last observed data point prior to the drop-out. This method is particularly 

useful in intention-to-treat analyses, which aim to evaluate the effects of a treatment 

across all randomized participants, even those who drop out before completing the study 

enlarging the amount of the population for the research [14].  

On the other hand, the LOCF can be considered as a rather conservative method in 

handling missing data, falsely enhancing the statistical precision, which increases the 
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likelihood of finding a statistically significant invalid treatment response. Multiple 

biostatisticians have recommended against the use of LOCF due to the introduction of 

bias [15]. 

Despite these concerns, the fundamental idea behind LOCF – relying on the most recently 

available observation – remains useful in certain contexts. In the current thesis, a modified 

version of this principle is employed, where missing values are imputed using the last 

known value or values from a specific sensor-hour group. Unlike traditional LOCF, which 

carries forward the most recent value regardless of temporal or structural context, the 

approach proposed in this work leverages temporal and spatial patterns specific to the 

sensor and time of day, making it more suitable for large datasets with recurring gaps and 

periodic behaviour. The specifics of this imputation method are detailed further in chapter 

4.2.1. 

2.2.2 Linear interpolation 

Linear interpolation estimates missing values based on the adjacent available values. It is 

preferred for estimating continuously missing data over a short time interval. For a 

missing value linear interpolation generates the estimation based on the closest preceding 

and succeeding available values. Linear imputation is simple, fast, and requires only two 

available samples to impute each missing data period. On the other hand, the accuracy of 

linear imputation typically decreases as the length of the missing data period increases. 

In the paper “Handling missing data in near real-time environmental monitoring: A 

system and a review of selected methods” by Yifan Zhang and Peter J. Thorburn [16] it 

is used as one of the methods for imputing the real-time water quality data. While linear 

interpolation might provide a reasonable estimate for missing water temperature or nitrate 

concentrations over a few hours, it may fail to accurately capture the true variability of 

these parameters over longer durations or in highly variable environments. Additionally, 

linear interpolation does not account for the potential influence of external factors such 

as weather events or upstream activities that could affect water quality. Despite these 

limitations, linear interpolation remains a useful initial approach for data imputation, 

particularly when computational simplicity is a priority and when the data gaps are 

relatively small [16]. 

However, in the context of the present research, linear interpolation is not used due to its 

inability to account for the periodic and structured nature of the sensor data. Many of the 
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sensor measurements exhibit recurring patterns based on the time of day and sensor-

specific behaviour, which linear interpolation does not capture. Because it assumes a 

linear transition between two points, the method may produce unrealistic values in 

situations where the underlying data fluctuates in a non-linear or cyclic manner. 

2.2.3 Least Squares based data imputation method 

The Least Squares data imputation method is a technique used to fill in missing values in 

datasets, especially those coming from environmental sensors or monitoring systems. As 

it is described in the paper “Open Environmental Data Assimilation Under Unknown 

Uncertainty and Multiple Spatio-Temporal Scales” by Lizaveta Miasayedava et al. [17], 

the main idea behind this method is to combine data from sensor measurements and model 

simulations to estimate a more accurate value when some data is missing or uncertain. 

This method works by giving weight to both data sources based on how certain they are. 

If one source is very accurate, it will have a higher influence on the result. If both sources 

have some uncertainty, the method balances them according to their estimated error and 

provides mathematically proven result that has lower uncertainty. However, in many real-

life cases, especially with open data or low-cost sensors, the exact uncertainty of the data 

is not known. To overcome this problem, the method uses a simple prediction model, 

which is based on past values, to estimate how much error or uncertainty each data source 

might have. This is done using an autoregressive model, where the next value is predicted 

based on the previous one. The difference between the predicted value and the actual 

value gives an idea of how uncertain that source is. The bigger the difference, the less 

trust is given to that data source when combining it with others. When the data comes 

from very different types of sources for example, a point measurement from a sensor and 

a large-scale simulation from a model the method includes a step to calibrate the model 

data to better match the sensor data. This calibration also has its own uncertainty, which 

is also considered [17]. 

While the Least Squares method offers a sophisticated way to combine multiple data 

sources with consideration of uncertainty, it is not well-suited for the current research. 

Autoregressive models usually work best when the data is consistent, does not have large 

gaps and is evenly spaced in time. In the dataset for current thesis, there are often gaps 

which are large and irregular. These gaps make it harder for autoregressive models to give 

good predictions, because the method expects a steady flow of data without missing steps. 
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2.3 Existing visualization methods 

Returning to the topic of noise, an effective way to gather information is by mapping it 

onto an actual visual map, depending on the specific insights we aim to derive from it. 

The visualization of noise data can be approached in different ways, each suited for 

distinct purposes and user requirements. This chapter describes two- and three-

dimensional mappings of the SPL data.  

2.3.1 Two-dimensional SPL visualization 

One example of the two-dimensional SPL visualization is an official noise map made in 

Tallinn in every 5 years. The maps are created according to the Strategical Guide to a 

Noise Map provided by the Ministry of Climate, which serves as a comprehensive guide 

for local governments and consultants involved in the creation of strategic noise maps in 

Estonia. Its primary aim is to provide detailed instructions on the data requirements, 

quality standards, computational settings and presentation formats. The guide is 

particularly tailored to ensure compliance with both national and European Union 

regulations. It also serves as a valuable resource for preparing procurement documents 

related to noise mapping projects [18]. 

According to the guide, four different maps are created – for day, which is measured from 

07:00 until 19:00, for evening, measured from 19:00 to 23:00 and for the night, from 

23:00 to 07:00 and for day-evening-night combined [19]. The example of the day-

evening-night map is shown on Figure 1. 
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While static noise maps like the one in Figure 1 are detailed and accurate, they have 

limitations when it comes to analysing how noise levels change over time. For the 

purposes of this thesis, a more dynamic approach is required, one that allows for 

observing temporal variations in SPL rather than relying solely on a fixed snapshot. This 

enables a deeper understanding of how noise behaves throughout the day and across 

different conditions, which is essential for the goals of this research.  

2.3.2 Three-dimensional SPL visualization 

For some visualizations, two dimensions may not provide sufficient detail. To achieve a 

more advanced representation, an additional dimension needs to be incorporated, 

allowing for a more comprehensive and insightful analysis of the data. In the paper “The 

Third Dimension in Noise Visualization - a Design of New Methods for Continuous 

Phenomenon Visualization” by Daniel Beran, Karel Jedlička, Kavisha Kumar, Stanislav 

Popelka and Jantien Stoter, the researchers collected some existing three-dimensional 

visualization practices which are worth investigating [21]. 

One such method is noise facade visualization, which goes beyond displaying noise 

distribution along streets. It also illustrates how noise spreads across building surfaces 

Figure 1. A strategic noise map of Tallinn city for day-evening-night measurements of 2022 from [20]. This 
map displays the environmental noise levels across Tallinn city during the whole day. Noise intensity is 
illustrated using a colour gradient from green to purple. 
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and how buildings influence and disrupt noise propagation. The example of such method 

is shown on the Figure 2. 

 

Another method that uses third dimension not in the classical way, but it utilizes the third 

dimension of a scene for the representation of time instead of vertical dimension. This 

approach to time visualization in mapping does not have a universally accepted 

cartographic term, but in the research paper, it is mentioned as space-time cube (STC). 

However, there are many examples of such an approach in data visualization. The 

problem with applying space time cube for continuous data is occlusion of layers as they 

cover the whole timeframe and thus disallow the user to see changes of phenomena [21]. 

The example of STC is shown on the Figure 3. 

Figure 2. A noise contour map showing the impact of a building adjacent to a motorway from [21]. This 
illustration depicts the levels of environmental noise around a building situated near a motorway. The 
contours represent noise intensity, starting from lower levels in green to higher levels in red. The building 
structure influences the propagation and concentration of noise, as indicated by the gradient changes around 
it. The motorway is labelled to highlight the primary source of noise. 
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While three-dimensional visualizations like facade mapping and space-time cubes offer 

deeper insights into how noise behaves in space and time, they are not ideal for the 

purposes of this thesis. These methods are often complex, visually dense, and require 

more detailed input data than is available in this study. Visualizations like the STC can 

suffer from visual clutter, especially when dealing with continuous data, making it harder 

to clearly observe changes over time. For this research, a simpler and more focused 

visualization method is preferred – one that still shows temporal changes but remains easy 

to interpret and suitable for the available data. 

 

Figure 3. Space-time cube visualization for continuous data from [21]. This figure demonstrates an 
alternative method for time visualization in mapping by utilizing the Z-axis to represent time. 
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3 Urban Noise Data Collection in Tallinn 

The SPL data has been collected from Tallinn sensor network since 2019, but there is not 

much information generated out of this. The analysed and visualized data would be useful 

for city planners and residents to have a great overview for problematic areas with too 

loud environments. Currently the strategic noise maps of Tallinn are created manually 

every five years for average SPL for 07:00 to 19:00, 19:00 to 23:00, 23:00 to 07:00, and 

for the whole day [19]. However, having access to noise level data for specific days and 

hours would significantly enhance usability, allowing for real-time analysis and historical 

comparisons. This capability would provide valuable insights for city planners by 

enabling them to assess how urban development projects have influenced noise pollution 

over time. For instance, if certain streets have been redesigned to reduce traffic, noise 

maps could effectively illustrate whether the intended noise reduction has been achieved. 

3.1 Sensor network 

In 2019, the Laboratory for Proactive Technologies at the Institute of Software Science 

at TalTech and Thinnect OÜ were developing technology to monitor urban noise, air 

quality and measure traffic flows. A network of smart city sensors was installed on 

Tallinn’s streetlight poles, with ~900 devices equipped with batteries and solar panels to 

collect environmental and traffic density data [22]. Sensor locations are visible on the 

Figure 4.  
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These sensors can create a wireless network without a central control unit. This type of 

network is called a multi-hop, mesh network [23]. Collecting SPL data is one of the tasks 

performed by the network. In addition, the weatherproof sensors gather information on 

air temperature and pollution, as well as detect the presence of pedestrians and monitor 

vehicle movement and direction [22]. The example of the sensor mounted on the street 

pole is shown on the Figure 5. 

Figure 4. Network of low-cost IoT sensors installed on streetlight poles in Tallinn. In 2019, the Institute of 
Software Science in TalTech and Thinnect OÜ developed technology to monitor urban noise, air quality, 
and measure traffic flows. Approximately 900 devices equipped with batteries and solar panels were 
installed on streetlight poles across Tallinn to collect environmental and traffic density data [22]. The 
locations of these sensors are marked on the map. 
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3.2 Research questions 

The goal of the research is to create a visualization of the SPL in Tallinn based on the 

collected data. There are several challenges in creating these visualizations. The data 

provided by sensors can be sometimes intermittent and not fully adequate since they are 

based on low-cost IoT technology and running on the experimental mesh multi-hop 

network that is influenced by the surrounding environment. For example, since the 

sensors are powered with the solar panels, they tend to run out of battery during cloudy 

days, there can be radio interference and green leaves from trees can sometimes hinder 

radio communication. As well, since the sensors are small and the hole of the microphone 

can be filled with different kinds of dust, some values can be misinterpreted. 

Question 1: which methods are suitable for sensor data imputation to provide 

computationally efficient and reliable estimates of the SPL data quality? 

Figure 5. A single microphone SPL sensor installed on a streetlight pole. The device includes a solar panel 
for energy harvesting and a SPL sensor to monitor urban noise. 
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The current research approach focuses on identifying patterns across the entire dataset 

and using these patterns to impute missing data.  

Question 2: which methods are the best-suited to generate dynamic maps of the SPL 

in Tallinn, considering their accuracy and ease-of-interpretation by different types 

of end-users? 

There are numerous frameworks available for visualizing data. Given the large volume 

of data, it must first be analysed to extract only the relevant information. The visualization 

then generates dynamic point-based map based on the processed data, ensuring a clear 

and meaningful visual representation of the sound levels for users. 
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4 Data Processing Methods 

The sensors have been running for several years now, but for the current research, access 

is limited to approximately two and a half years of data. The dataset chosen for this 

research is from 1st of January 2021 until 24th of May 2023. Since the sensor network is 

experimental and operates over a wireless connection, its performance is affected by 

environmental factors, leading to occasional data corruption or misinterpretation. As 

mentioned before, since the system is low-cost and lightweight, it is necessary to be 

prepared for these consequences and obtain the best possible results. 

Current research involves deep analysis of the data, going through the raw values and 

getting familiar with them to find the algorithm to get best estimation of the missing gaps. 

In the first part of the chapter, there are two hypotheses described, one involves the history 

of the sensor data, another one deals with the data from neighbouring devices. Second 

part of the research finds the way to informatively plot the values and uses the lighter 

version of one of the hypotheses for the estimation. Implementation of both algorithms 

requires data cleaning, which consists of removing duplicates, correcting structural errors, 

eliminating irrelevant observations and handling outliers. 

The end goal of developing the algorithm is to enable real-time estimation of missing 

values. This means that if the best estimation is sufficiently accurate, the algorithms could 

be implemented directly in the sensor’s software. In cases where data is missing at a given 

moment, the system could automatically replace the missing data with the best estimation. 

4.1 Understanding the data 

The provided database contains large amount of data, as it does not solely consist of SPL 

data. The main tables relevant to this research are devices and events. The dataset contains 

353,570,349 rows of event data and 1015 rows of device metadata, reflecting 

measurements collected from the sensor network. The devices table includes information 

on all sensors, such as their names, types, and locations, along with additional details that 

are not relevant to the current research context. There are approximately 900 sensors in 
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total out on the streets and only about half of them are sound pressure level sensors, it is 

necessary to filter out the relevant ones. Among these, sensors with one or two 

microphones are considered. Sensors equipped with two microphones have been designed 

for the capability to determine the direction of the sound source. Although this 

functionality is not required for this research, the data from these sensors remains useful 

and can be incorporated into the final dataset. 

Once the data of correct sensors have been identified, they are transferred to an additional 

database, which is used to retain only the necessary values for the project and allows for 

further filtering in the next steps. The additional database is hosted on the Digital Ocean 

platform [24]. The new table for devices contains only the device ID, name, and location. 

There is an extension for PostgreSQL database called PostGIS that extends the 

capabilities of the relational database by adding support for storing, indexing, and 

querying geospatial data [25]. The GiST index is added to the location column for faster 

querying of the nearby devices.  

All the SPL values are stored in the events table, with the index on device id, date and 

hour combined. This includes the data for all the other sensors as well, but the SPL values 

are labelled accordingly. Since the data is very raw and not cleaned in any sense, there 

are many filtering rules that were developed during the analysing process. Figure 6 shows 

the Entity Relationship Diagram (ERD) of the end database.  

 

Figure 6. Entity Relationship Diagram illustrating the connection between the “device” table, containing 
device name and location, and the “raw_event” table, storing event records with details such as date, hour, 
and measured values. 
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4.1.1 Find the largest amount of valid data 

The first step in transferring the necessary data to the additional database is migrating the 

device information. As previously mentioned, the list comprises a total of 1015 devices. 

However, many of these either lack relevant information entirely or contain data solely 

from sensors other than SPL. Identifying which device types generate SPL values is 

essential. The main database included an additional table describing all device types, 

providing valuable insight into how to filter the relevant entries in the devices table. The 

device types considered in the final table are sensors with one microphone and sensors 

with two microphones.  

Other considerable insight was that some of the sensors had the broken location values. 

In the database it was stated that the latitude and longitude was valued as zero. 

Unfortunately, it is not possible to use such devices in the research and are also filtered 

out. 

The SPL values in the main database are recorded with minute-level accuracy. However, 

for this research, this level of detail is too granular and needs to be aggregated. The 

approach involves calculating the median for each sensor at every recorded hour. While 

processing the data, some events contain a flag indicating whether the data is valid. 

Flagged values often lack either a production timestamp or an SPL value. Due to this, all 

events where the “is_valid” column does not indicate a true value are filtered out. Once 

the filtering is complete, the remaining data is grouped by device, date, and hour, and the 

median is calculated for each group. These aggregated values are then stored in the 

“raw_event” table in the additional database.  

4.1.2 Extra cleanup for the data 

Not all the uploaded data turned out to be usable. During the development process, it 

occurs that some of the median values of some hours were valued as zero. It means that 

not all the values that had “is_valid” flag stated as true, were valid. Table also included 

one value, where the median value was 4.5 dB, which is highly unlikely value of decibel 

levels of SPL on a street condition. All the data that meets these conditions will be 

removed from the database.  

Another requirement for the “raw_event” values is sufficiency. All the data points must 

have at least 30 days of data for each device and hour groups. Each device must have at 
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least 30 distinct values of each hour, regardless of whether the values come from 

consecutive days. It is necessary for the imputation method development. The events that 

do not fulfil the rules will be excluded from the database, alongside with the other events 

that belong to the same sensor. 

If the unusable events have been sorted out from the table, the sensor table must be 

updated as well. There are some sensors that currently do not have any events connected 

to them, all such sensors will also be removed from the table.  

The final number of devices for the current project is 481, the number of hour-events is 

3,709,363. For the reminder, one event contains device ID, date, hour and dB value. The 

number of events per device ranges from 995 to 16,084. Grouping these numbers by 

hours, for each device there is a minimum of 31and maximum 687 values for one specific 

hour in a range from 0 to 23. The lowest dB value is 29, highest 100. 

4.2 Filling the gaps 

The lightweight system in use is prone to errors, leading to inconsistencies in the data. 

There are several reasons why data may be missing, such as devices running out of battery 

power, problems with radio communication or overheating, which are often beyond 

control. This suggests that the gaps in the dataset may be random in nature. Events may 

contain gaps lasting several days or even months. However, this is not the only challenge. 

The dataset spans multiple years, but data availability can differ substantially for each 

sensor. Each sensor has its own independent start and end dates, meaning their recording 

periods do not necessarily overlap. For example, one sensor may have data from 1st of 

January 2021 until 3rd of May 2021 while another only starts collecting data on 5th of May 

2021. This is an important factor to consider when implementing imputation methods. 

The research involves two specific types of imputation methods, one of them considers 

only neighbouring sensors data and another the history of a specific sensor. Both methods 

are computationally simple and do not require complex algorithms to calculate the 

estimated results. However, despite their simplicity, both methods aim to provide 

effective solutions for dealing with the missing data while maintaining a reasonable level 

of accuracy. 
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Both methods are designed to be lightweight in terms of computational resources. They 

are suitable for real-time applications where quick estimations are needed, and their 

algorithmic complexity remains manageable for large datasets. Nonetheless, it is 

important to note that while these methods are efficient, they still carry certain 

assumptions that may not always hold true. For instance, the nearest-imputation method 

assumes that neighbouring sensors provide similar data, which may not always be the 

case in environments with highly variable conditions. Similarly, self-imputation relies on 

the assumption that past trends of a sensor are reliable indicators for future behaviour. 

Therefore, while both methods offer practical solutions, they also require careful 

evaluation and validation, particularly in terms of how well they preserve data consistency 

and reflect true sensor behaviour over time. 

4.2.1 Self-imputation method 

The self-imputation method leverages the historical data from the same sensor to estimate 

the missing values. This method is inspired by the hot deck imputation, in which each 

missing value is replaced with an observed response from a similar unit [26]. In self-

imputation, the assumption is that the most suitable replacement can be found in the same 

hour from the previous days. By analysing the sensor’s past behaviour, this method 

calculates a median from a selected number of previous days to fill in the gaps. This 

allows the system to produce an estimate based on the sensor's own trends. 

Before performing self-imputation, it is crucial to determine the appropriate number of 

previous days needed to calculate a reliable median for estimating missing values. Since 

sensor data can change due to various factors, using an arbitrary fixed window size may 

lead to inaccurate imputations. To address this, a rolling window median approach is 

applied to analyse how the median stabilizes over different window sizes. Specifically, 

for each sensor and each hour of the day, medians are computed using increasing numbers 

of past days, starting from a small window and expanding it step by step. By comparing 

the medians across different window sizes, the point at which the median stabilizes can 

be identified – meaning additional days no longer significantly change the estimate. This 

ensures that the chosen window size is both sufficient for capturing patterns in the data 

and minimal enough to avoid unnecessary computational overhead. Once this analysis is 

complete, the determined window size can be used consistently for self-imputation, 
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improving the reliability of the estimated values while maintaining computational 

efficiency. Figure 7 is the flowchart of how the imputation map is generated.  

 

The generated imputation map gives the overview of each device and hour how many 

previous days does a sensor need to efficiently estimate the missing value. Once the 

imputation map is generated, its values remain static and are used over time. The map 

may need to be regenerated whenever new sensors are added, existing sensors are 

modified, or there are changes in the overall network or street structure, as these factors 

can lead to alterations in the SPL across the urban area. The map is stored into .csv file 

for visual overview and to the database to impute by singular SQL query. Updated 

database scheme is shown on the Figure 8. 

 

The data imputation process based on the imputation map works by identifying missing 

values for a sensor at a given hour. The algorithm first retrieves the required number of 

previous days from the table. Based on this value, it selects the latest available data points 

Figure 7. Flowchart illustrating the imputation process for missing data by calculating medians of rolling 
windows of increasing size, comparing the difference of medians against a threshold, and setting the 
imputation map value based on the findings. 

Figure 8. New ERD Scheme for the final database. ERD displaying the relationships among the 
“imputation_map” table, which stores imputation map values configured for each device and hour; the 
“device” table, containing metadata such as device name and location; and the “raw_event” table, recording 
event values with their respective date, hour, and related device ID. 
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from the same hour across the specified number of previous days and calculates the 

median of these values to estimate the missing data. If there are not enough values 

available, the algorithm uses as many data points as it can and calculates the median from 

those. The flowchart is visible on Figure 9. 

 

The current method is effective when each device has at least one data point per hour that 

can be used for imputation. However, problems arise when there is a need to impute 

values for sensors that lack prior data. This situation can occur, particularly at the 

beginning of the dataset, where many sensors have no historical data to reference. While 

this may seem problematic, it does not pose a significant issue in the long run. The goal 

is for the sensors themselves to handle imputation once enough data has been collected. 

Generating the imputation map requires at least 30 days of data before any imputation 

can begin. The period length of 30-days is a practical choice that is necessary for the 

balance because it is short enough to allow researchers to quickly gather meaningful data 

from the sensor, but also long enough to capture variations in weather, weekends, and 

other relevant conditions. Therefore, although some sensors may initially lack data for 

imputation, this is only a temporary challenge. Once the imputation map is established, 

the sensors will be capable of imputing values independently, ensuring that the system 

becomes self-correcting over time. 

4.2.2 Nearest-imputation method 

Nearest-imputation method utilizes data from neighbouring sensors to estimate missing 

values. This method assumes that sensors located in proximity should exhibit similar data 

Figure 9. Flowchart demonstrating the imputation process by fetching previous days count from the 
imputation map, retrieving values for the current device and hour, checking if at least one value exists, and 
taking the median of the values as the estimated value, or indicating impossibility of imputation if no values 
exist. 
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patterns. It is inspired by the kNN imputation, which works by identifying the k nearest 

neighbours of an incomplete instance from among all complete instances in the dataset 

and using them for filling the missing value [27]. The nearest-imputation method differs 

from the kNN approach in that it selects neighbours based on their location within a 

predefined radius, rather than using a fixed number of nearest neighbours. This approach 

provides an alternative for filling gaps when there is insufficient historical data for a 

specific sensor. 

The method imputes the sensors missing data based on the other sensors that exist in the 

110m radius from the main sensor. In case there are sensors in this radius, the algorithm 

will check the values for the date and hour where in the main sensor the data is missing. 

If there are values for the specific timestamp for neighbouring sensors, it takes the median 

of all of those. The calculated value will be the estimated value for the gap. The flowchart 

is displayed on the Figure 10. 

 

As mentioned earlier, the current approach is effective when no historical data is 

available. However, it relies on nearby sensors having the necessary data, and here two 

conditions must be met – first, the sensors must exist within the specified radius, and 

secondly, data must be available at the given point in time where imputation is carried 

out. The radius is set to 110 meters because most sensors are placed approximately 100 

meters apart, with an additional 10-meter threshold to account for slight variations. Since 

many sensors were removed during data cleaning, some remaining sensors do not have 

neighbours within this radius. To avoid overestimating values, the radius is not increased, 

as doing so could incorporate too many sensors into the estimation process, potentially 

leading to less accurate imputation values. 

Figure 10. Flowchart illustrating the imputation process by checking for devices within a 110-meter radius, 
retrieving values from nearby devices, confirming the existence of at least one value, and taking the median 
of these values as the estimated value, or indicating impossibility of imputation if no values exist. 
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4.3 Developing the web application 

For visualization, several ideas were explored regarding the best approach to present the 

data. Initially, the plan was to impute all the data first and then use the imputed values for 

visualization purposes. However, this approach would have resulted in an overwhelming 

amount of data, which could have negatively impacted performance and usability. To 

mitigate this issue, imputation is instead performed on-demand, only when required, 

which helps optimize resource usage and ensures that the system remains efficient. 

The final project is a full-stack web application with an architecture that consists of a 

well-defined database layer that includes only the essential “device” and “raw_event” 

tables, which store the core data. A server handles communication between the front-end 

and the database, while also managing the imputation process. The client-side application 

focuses solely on displaying the appropriate imputed values on the map in real-time, 

ensuring a seamless and responsive user experience. This structure allows for efficient 

data management and visualization without overburdening the system with unnecessary 

computations. 

4.3.1 Server-side application 

The backend of the visualization application has been built using NestJS. It was chosen 

due to its simplicity and the speed it offers, making it well-suited for the relatively low-

complexity requirements of the backend [28]. There are two main responsibilities for the 

backend – ensuring fast communication between the database and the frontend and 

performing data imputation. At present, the application utilizes a lightweight version of 

the self-imputation method, where only the most recent value is used for estimating 

missing data. This approach helps maintain efficiency while still providing estimates for 

the missing values in the system. The server-side application also utilizes the TypeORM 

library to streamline communication with the database [29]. 

The backend operates as a REST application with a single controller. This controller is 

responsible for fetching all the devices. Along with retrieving the devices, the controller 

also performs a join with the events table for the specified date and hour. Additionally, it 

handles the imputation for each device, also for the devices that already have the real 

value. This approach allows the application to display both the real and imputed values, 
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enabling users to compare both. Visual representation of the request is displayed on 

Figure 11. 

 

4.3.2 Client-side application 

The frontend of the application is developed using TypeScript with the React framework. 

To fetch data from the backend, the TanStack Query library is utilized, providing an 

efficient way to handle data fetching and caching [30]. The data fetched from the backend 

is then cast to a GeoJSON object for compatibility with the “vis.gl/react-maplibre” 

library, which is used to display the sensor locations and their corresponding values on 

the map. The current frontend components are inspired by the official VisGL React-Map-

GL heatmap example, which is available in the React-Map-GL GitHub repository in [31]. 

The map visualization currently highlights the sensor locations, with colour coding based 

on the estimated value when the real value is unavailable. However, users also have the 

option to view both the real and estimated values. The colour codes used in the map 

visualization are derived from the Strategical Guide to a Noise Map provided by the 

Ministry of Climate [18]. This guide outlines the colour schemes that correspond to 

different noise levels, ensuring that the visualization accurately reflects the environmental 

noise data. 

The frontend is designed exclusively for visualizing data based on a selected hour and 

date. It displays all available sensor data for a specific timestamp simultaneously. Time 

Figure 11. Diagram illustrating the process of handling a GET request for device data on specific date/hour 
by fetching device information from the device table, real values from the “raw_event” table, the latest 
existing value for each device, and assembling the response as a list of DeviceDTO (Device Data Transfer 
Object) objects containing device ID, name, location, real value, and estimated value. 
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selection is facilitated through an interactive slider, enabling users to adjust the timestamp 

and observe the corresponding data points dynamically. This approach provides an 

intuitive way to explore temporal variations in noise levels while maintaining a clear and 

efficient visualization of the dataset. 
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5 Results 

The results analysis focuses on two key aspects – the imputation of missing sensor data 

and the creation of dynamic point-based map to visualize noise distribution in Tallinn. 

The goal is to evaluate how well different imputation methods restore missing values and 

assess the effectiveness of the map in representing SPL across the city. 

Since imputation methods can be time-consuming, especially when many values need to 

be estimated in real-time, this research focuses on a selected test set for evaluating 

imputation methods while using a simplified self-imputation approach for data 

visualization. The test set includes data from sensor 203C, positioned on Kaarli Boulevard 

at coordinates 59°25'55.9"N 24°44'17.8"E. The timeframe of the calculations is 7th 

September 2022 at 18 to 8th of September at 17. The sensor and timeframe were selected 

because, during this 24-hour period, the sensor primarily records its own event values, 

making it suitable for comparison. The sensor provides data for 21 out of the 24 hours, 

which is sufficient for drawing meaningful conclusions. Additionally, the sensor does 

have 3 nearby sensors that also mostly have values on that timeframe and the main sensor 

have enough historical data to successfully apply both imputation methods. 

5.1 Self-imputation method 

The self-imputation method employed in this study involves two main calculations, with 

the first being the creation of an imputation map based on the 30 most recent events of 

each sensor for each hour, chosen for their stability and reliability, regardless of whether 

they fit within a 30-day timeframe. This approach was developed through trial and error, 

where it was found that values taken from the beginning of the dataset, certain sensor 

hours may have needed more than 30 values for stabilizing the medians. Using the values 

from the end avoids this problem and all the imputation map values which state how many 

of previous days value does one sensor has to use in certain hour remains less than 30.  

Upon deeper investigation of the imputation map, it is observed that values stabilize 

relatively quickly. As shown in Figure 12, most of the sensor hours stabilize within one 
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day. This means that for most missing hours, the best estimation can be made by simply 

using the last existing value, which serves as the most accurate approximation for those 

hours. 

 

There are 481 devices in total, which means that the imputation map has all the values for 

each hour for each device. On the Figure 12, it only shows the first 25 rows, but the overall 

pattern looks similar for all the sensors. The maximum number of previous days to 

stabilize the value is 22, and it only exists on a singular device. All the values for previous 

days are 11544 in total. For the validation, 481 devices times 24 hours gives the same 

number. 9115 device/hour pairs have the value 1 for the previous days. This indicates that 

for approximately 80% of the device/hour pairs it is possible to get the best estimate by 

just taking the last existing value prior to the missing data. On Figure 13, it is shown the 

hourly distribution of the previous days where the value equals 1. They all are around 

80% as the total value, which indicates that all the hours are quite equally distributed as 

well. Only outliers are 7 and 8 o’clock, where the percentage of 1 previous day is around 

Figure 12. Table showing 25 rows on the imputation map, which consists of device IDs, hours and the 
previous days count which indicates the number of days needed for the best estimation for missing data for 
device/hour. The colours give the visual overview of the amount of different number of days needed.  
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70%. This may be due to rush hour patterns in traffic, where the weekends and weekdays 

may have different SPL values at these times.  

 

On the Figure 14, the test device’s previous days counts for each hour are displayed. The 

values are used for applying the self-imputation on the test set. The device has relatively 

stable values, according to the map, having only 1 or 2 previous days needed for the 

estimation for missing hours. 

 

Using this imputation map, the self-imputed values are generated. The estimated SPL 

values compared to the real values are displayed on the Figure 15.  

Figure 13. Hourly distribution where previous day value equals 1. This figure shows the hourly distribution 
of data indicating the percentage of instances where the previous day count equals 1 for each hour. It 
provides insight into how often a single previous day is used for estimating missing data across different 
hours. 

Figure 14. The imputation map for the device used in the test set, where device_id is 550, showing the 
number of previous days required for each hour's estimation, with colour coding to indicate different hour 
counts. 



43 

 

Figure 15 shows the self-imputed values compared to the real values found in the test set 

timeframe for sensor 203C. To compare the Figure 14 and Figure 15, it is possible to see 

that the past values count corresponds to the imputation map. For the reminder, it may 

not always be like that – if there are not enough past values for current sensor’s current 

hour it does take as much values as possible. It leads to the possibility of having less 

values than required in the map. In current test set, it is not the case. Checking the values 

that have used 2 past values, on the hours 18, 19, 23 and 12, it is clearly visible, that the 

values are relatively accurate. The maximum error of the previously mentioned hours is 

1.5 dB, minimum 0.25 dB. All the values for the rest also remain in the borders of ± 3.5 

and there are 5 hours, where the real and estimated values are the same, 6 if rounding the 

value of 0.25 dB.  

In conclusion, for the current test set, it is possible to say that the imputation method is 

relevant and does give accurate results. Having the imputation map which is calculated 

based on the stabilization of the data does give positive outcomes not only for the better 

estimates, but also for the performance. The less data that needs to be stored in memory 

and processed, the lower the computational power required to draw conclusions and get 

best estimates. 

Figure 15. The example of the self-imputation method. The image shows the data from timeframe of 7th 
September 2022 at 18 to 8th of September at 17 on the device 503C with the real values and estimated 
values based on the self-imputation method, alongside with the error on each timestamp and the number of 
past values used for calculating the estimation. 
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5.2 Nearest-imputation method 

The nearest-imputation method utilizes the neighbours’ data instead of the historical data 

of the current sensor. It takes all the devices that are in the 110m radius, checks their 

values for the specific moment and uses the median values of those to get the best 

estimate. Problems with current approach is that in case there are no values for the sensor 

that needs to be imputed, it is relatively likely that there are also no values for the nearby 

sensors as well, which may be because of the solar based battery charging system. Second 

problem is the possibility of the sensors not having the nearby sensors in the 110m radius 

at all. As the test set being chosen the way that it does meets these two conditions, it is 

possible to generate the estimated values based on the nearest imputation methods. On 

the Figure 16, the estimates and differences with the real values are listed. 

  

It is visible on the Figure 16 that most of the values of our test set do have the neighbours, 

and they do have the values on the timeframe. It is worth mentioning that only one hour 

on the test set, 1 o’clock on the 8th of September 2022, have 2 neighbouring values instead 

of 3 in total. Investigating and comparing this specific hour and its difference with other 

values provides no reason to suggest that using the two nearest values and their median, 

instead of three, would be invalid in this current test set. Overall results are relatively 

accurate. The maximum error of the estimates is 3.5 dB, existing for only single hour, 

minimum error is 0, existing for 4 different hours. This means the current test set 

demonstrates a relatively low level of error, with most estimates being quite accurate. 

Figure 16. The example of the nearest-imputation method. The image shows the data from timeframe of 
7th September 2022 at 18 to 8th of September at 17 on the device 503C with the real values and estimated 
values based on the nearest-imputation method, alongside with the error on each timestamp and the number 
of near values used for calculating the estimation. 
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5.3 Comparison of the methods 

The self- and nearest-imputation methods give similar results according to the 

computations made on the test set. Both have a maximum error of 3.5 dB and contain 

many estimations that match the real values exactly. It can be concluded that both 

methods yield informative and accurate estimations, but as mentioned before, there are 

several conditions under which one or another may work better. For the self-imputation 

method, it is necessary to have historical values to calculate the estimation, moreover, 

there must be at least 30 values for each hour creating the imputation map, it is not good 

method for freshly applied devices that yet have too little number of values. In that case, 

nearest-imputation method would give the estimates from the first hour, if there are 

nearest sensors with values. The nearest-imputation method may also correlate better with 

the rush hour pattern, as the self-imputation method does not account for whether the 

missing hour falls on a weekend or a weekday. This means that estimates may be invalid 

in 8-9 and 16-17 o’clock if weekend missing hours are imputed using weekday data, or 

vice versa. On the other hand, there is a higher chance that using the nearest-imputation 

method, the estimated value would remain null since there are either no sensors nearby 

or no values in nearby sensors. For self-imputation method, similar problem only occurs 

in the earlier stages, if there is at least one existing value for each sensor, all the sensors 

can have future estimates based on that. Table 1 includes the overview of advantages and 

disadvantages of both methods. 

Table 1. The advantages and disadvantages of the self- and nearest-imputation methods. 

Self-imputation method Nearest-imputation method 

– Not suitable for newly added sensors, 

since it requires at least 30 values for 

each hour. 

+ Suits well for new sensors, does not 

need historical data for estimations. 

– Does not differentiate between 

weekdays and weekends. 

+ May reflect time patterns better (e.g. 

rush hours). 

+ If there is at least one historical value 

for the missing hour, the estimation is 

possible.  

– If there are no nearby sensors or the 

values of nearby sensors, the imputation 

would not be possible. 
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5.4 Visualization 

Current visualization applies the lightweight version of self-imputation method, which 

means that instead of the values on the imputation map, every sensor only uses the last 

existing value of the specific sensor’s specific hour. It is justified by the analyse of the 

imputation map in chapter 5.1, that stated that 80% of the device/hour pairs have 1 as the 

previous days’ count. The benefits of using the lightweight version are better speed at 

processing, getting the estimated values for all the sensors of a specific timestamp in 

milliseconds. The nearest-imputation method is excluded from the visualization primarily 

also due to performance concerns, as well as the issue of missing data from nearby sensors 

previously discussed.  

The application itself consists of one user input, which gives user the opportunity to 

choose the moment when do they want to investigate the results. The user gets the output 

where it does have the map of Tallinn with all the sensor locations and values of each 

sensor on a chosen moment. All the values displayed on the map are rounded to the closest 

integer. On Figure 17, the earliest possible map is shown.  
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The map consists of the devices positions as well as the existing values. Since it is the 

earliest possible visualization, there are no estimations yet and only 8 sensors have values 

at that moment. Grey dots indicate the sensors that will eventually have values during the 

full timeframe from 1st of January 2021 at 1 to 24th of May 2023 at 14. Larger dots with 

the colours listed on the legend show the SPL of the moment. On the Figure 17, there is 

no big picture formed, but on the Figure 18, where the latest possible map of SPL is 

displayed, all the sensors have either real or estimated value. 

Figure 17. The earliest possible map of SPL of Tallinn created with the application. It consists of 8 different 
real values and 0 estimated values, since there is no historical data at that point. On the image, there are 4 
green and 4 yellow dots indicating the existing values of the sensors for chosen moment. 
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On the latest possible map, there are many sensors indicated the white dot, which means 

that the value used for the indicator colour is estimated. Where the grey dot remained, 

there is the real value used for the indicator.  

Comparing the values of the day and night, images from the same timeframe are used as 

comparing the self- and nearest-imputation values, which is 7th September 2022 at 18 to 

8th of September at 17. On the Figure 19, the map of 8th of September at 3 o’clock is 

displayed. 

Figure 18. The latest possible map of SPL of Tallinn created with the application. There are no sensors 
without values, since all the sensors do have at least 1 historical value to make an estimate with. The 
colourful dots indicate each sensor values for chosen moment, white small dots in the centre indicate that 
the indicator colour is based on estimated value, grey dot in the middle shows it is based on the real value. 
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It is clearly visible that during the night, SPL values are green, which means they are 

mostly lower than 49 dB. It justifies the accuracy of the measures, since it is very likely 

that during the night the traffic is calmer and there are not many noise producers on the 

streets. On the other hand, passing 12 hours from the moment and observing the 15 

o’clock of the same day, the colours on the image look quite different, as seen on the 

Figure 20. 

Figure 19. The SPL map of 8th of September 2022 at 3 o'clock. Most of the sensors are coloured green, 
which indicates the low overall SPL.   
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Based on the image, it can be stated that the overall visualization appears predominantly 

orange, indicating that the SPL mostly range between 65 and 69 dB. While there are some 

exceptions, the map effectively reflects the general trend of SPL values for the current 

hour.  

There are two moments captured on the Figure 21 and Figure 22. The test sensor 203C is 

displayed on the 8th of September 2022 at 14 o'clock and 7th of September 2022 at 18 

o'clock with the real and estimated values. The same values are visible on the Figure 15 

where the self-imputation methods’ values are displayed. When analysing the values for 

8th of September 2022 at 14, they remain consistent across two different calculation 

methods – one performed via an SQL query (real values with estimated values based on 

the self-imputation method) and the other through the application backend (real plus 

estimated data based on the simplified self-imputation method, using only last existing 

value) upon request. This consistency supports the correctness of the algorithms and 

indicates that different calculation methods do not produce different results. 

Figure 20. The SPL map of 8th of September 2022 at 15 o'clock. Most of the sensors are yellow/orange, 
which indicates relatively noisy environment, between 60-69 decibels.  
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On the Figure 22, there are values displayed for 7th of September 2022 for 18 o'clock. As 

it is possible to notice, the estimated values are not really the same with the one stated on 

the Figure 15.  

Figure 21. The real and estimated values of test device 203C at 8th of September 2022 for 14 o'clock, which 
are necessary for the comparison with the previously made self-imputation method calculations.  
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The value created with the SQL query would round up to the exact same value as the real 

one, but in the visualization part, it does show that the estimated value is 1 dB higher. The 

difference comes from the fact that the visualization uses lightweight version of the self-

imputation method which makes the estimation on 1 last possible value, but on the Figure 

15, the past values count reveals that for the test set calculation, it used 2 last values. The 

insight tells that the imputation map can help with the accuracy of the imputation. 

 

Figure 22. The real and estimated values of test device 203C at 7th of September 2022 for 18 o'clock, which 
are necessary for the comparison with the previously made self-imputation method calculations. 
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6 Summary and Conclusions 

This thesis focuses on improving the way noise data is collected and managed from 

sensors placed around Tallinn. The sensors sometimes fail to capture data, creating gaps 

that need to be filled accurately for effective analysis. To address this, two different 

methods were developed and tested - self-imputation method, which relies on the sensor's 

own historical data to fill in the missing information, and nearest-imputation method, 

which uses data from nearby sensors to estimate and fill the gaps. Both methods were 

analysed to determine their accuracy and reliability in providing complete datasets. 

The thesis also involves creating a visual map to represent noise levels across the city. 

This visualization is designed to help city planners and authorities quickly identify noisy 

areas and make decisions to address these issues effectively. By doing so, the goal is to 

improve the acoustical environment of the city, making it quieter and more pleasant for 

residents and visitors. 

Future work might be to understand how each method performs and when one might be 

more useful than the other, to find the best possible estimation for each hour that will be 

missing on the specific sensor on the street. If the best estimation is generated on the fly, 

the sensors could give out either the real or the estimated data directly and the application 

for the visualization can only deal with the data from the sensors, without having to create 

estimates on the request. Ideally the estimates will always be in the initial dataset 

alongside with the real data.  

By continuing to refine these methods and tools, the city's noise management can become 

more data-driven and responsive. This will help in making informed decisions to reduce 

noise pollution and enhance the overall quality of life in Tallinn. 
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