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This paper proposes a methodology for automated minimization of concurrent
online checkers, guaranteeing shortest fault detection latency, for control part of
Network-on-Chips (NoCs) under given fault detection quality and area constraints.
In this work, the author has devised the initial set of checkers for the routing logic
and arbitration module of a NoC router.

In this paper, a framework of tools for formally evaluating the quality of concurrent
online checkers and for optimizing the overhead area with given fault coverage
constraints is proposed. The proposed methodology has been applied to the full
control part of a NoC router, consisting of the control part of input buffer, routing
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The author has introduced the idea of logic-based distributed routing for 3D
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the experiments of the paper have also been done by the author.
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set of combinational checkers for the control part of an open-source NoC router
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systematic methodology explained in details in this dissertation. The author has
performed the fault simulation experiments which is part of the framework that
performed the evaluation of the checkers in terms of fault detection capability and
minimization of checkers in terms of area. The minimized set of checkers have been
integrated in the open-source router design.

This paper proposes a ground-up approach from fault detection to fault
management for NoC-based System-on-Chips (SoCs). This work use an open-source
NoC router. The fault detection in the control part of the routers is performed using
the concurrent online checkers, devised based on the proposed methodology in this
dissertation. The author has devised and integrated the full set of checkers in the
router design. Furthermore, the author has re-used the fault classification module
in the router and provided fault classification for checker outputs. Finally, in order
to compress fault information acquired from a large set of checkers (more than 1000
bits), the author has proposed and implemented a fault localization module, which
compresses the checkers information to a final set of 20 bits, representing turn faults
in the router.
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F

This paper proposes concurrent online checkers for structural faults in the NoC
routing algorithms utilizing the Logic-Based Distributed Routing (LBDR) concept.
Using fault injection experiments and an extended set of checkers for LBDR, the fault
coverage is increased more than three-fold facilitating detection of the majority of
structural faults within the routing logic.

In this paper, the initial idea of the methodology for minimization of aa set of
concurrent online checkers for the control part of NoC router based on area
constraints and target fault coverage has been introduced. In this work, the routing
logic and arbitration unit of the router have been considered as the control part for
devising checkers.

This paper proposes a framework for automated evaluation of concurrent online
checkers. The novelty of the underlying approach lies in its completeness (i.e. ability
of formally proving the presence or absence of true misses), minimal fault detection
latency and accurate, fully automated evaluation of the fault detection
characteristics of the checkers. The control part of a NoC router, consisting of the
routing and arbitration logic has been used as an example for applying the proposed
framework for devising checkers.

Contributions of other publications

In this paper, all the uniform turn models for the 2D Mesh-based NoCs are
enumerated and the deadlock free ones are extracted, which provide full
connectivity in the network. An extended adaptivity metric is introduced to classify
the turn models. The turn models are compared in terms of adaptivity, robustness
and latency.

In this paper, a holistic approach for fault-tolerant NoC-based many-core systems is
described that incorporates a System Health Monitoring Unit (SHMU) which collects
all the fault information from the system, classifies them and provides different
solutions for different fault classes. A Mapper/Scheduler Unit (MSU) is used for
online generation of different mapping and scheduling solutions based on the
current fault configuration of the system. All the experiments in this work are
performed in an open source tool, able to perform the mapping, scheduling and
simulation of the system.

In this paper, an open-source framework for task deployment of mixed-critical and
non-critical applications under dependability constraints in Network-on-Chip (NoC)
based systems has been introduced. The system level design space exploration is
guided by a System Health Monitoring Unit which keeps a holistic view of system
health status. The framework supports task clustering, mapping and scheduling of
different applications, using different heuristics, on a NoC-based architecture which
can have different topologies. This enables exploration of 2D and 3D topologies, any
turn model based routing algorithm, fault monitoring mechanisms and different
fault models (Link, Turn, Node). The author has contributed to the related work
section of the paper, by finding different frameworks and tools that have addressed
mapping and scheduling, mixed criticality support and fault-tolerance support in
NoCs.
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In this paper, an approach for encapsulation of critical NoC communication
resources is presented, which guarantees no interference of non-critical data
packets with critical communication data on the network. The proposed mechanism
can be used in order to achieve partitioning of the NoC into several criticality
domains without additional overhead.

In this paper, three novel fault-resilient Network-on-Chip (NoC) router architectures
have been proposed. The proposed architectures exploit the regularity of the router
and reallocate available existing and spare units to maintain functionality of certain
turns. The resource reallocation is performed transparently from system’s resource
manager and is based on predefined priorities. A new metric for architecture
reliability comparison based on reliability block diagrams is introduced. All proposed
architectures have shown remarkable reliability improvement compared to original,
Triple and Unit Duplication architectures, while at the same time, their area
overhead is less than or equal to unit-duplication mechanisms.
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1 Introduction

The shifting from computation-centric to computation- and communication-centric
operations in digital systems, has motivated moving from single processing core systems
to multi-processing core designs. This has led to integration of multiple components on
the same chip. In such systems, the communication infrastructure can become a
bottleneck, as the performance of the system also depends on the interconnection,
providing the communication between the components [1]. Traditional shared-medium
bus-based systems cannot catch up with the growing number of on-chip cores in terms
of performance, thus, Network-on-Chip has emerged as a scalable solution for providing
the interconnection infrastructure in Multi-Processor System-on-Chips (MPSoCs) [2]. In
a System-on-Chip using NoC as its communication infrastructure, the network usually
consists of routers, Processing Elements (PE), Network Interfaces (NIs) and
communication links. Routers are in charge of transmitting data to the corresponding
destination.

The miniaturization of semi-conductor technologies has jeopardized the reliability of
integrated circuits and has made transistors more susceptible to different types of faults,
including permanent, intermittent and transient. This also affects the reliability of NoCs,
including the control part of NoC routers which is the focus of this dissertation. The
control part of a NoC router plays an important role in successful transmission of data. A
transient or permanent fault in the control part can lead to malfunction of the whole
router, eventually leading to loss of data, mis-routing of packets or in worst case the
break-down of part of/the entire network.

Even though early-life failures are handled by techniques such as manufacturing
testing, it is impossible to ignore the adverse effect of run-time faults caused by
phenomena such as aging and wear-out. The waning reliability threat against NoCs has
been one of the focuses of research during the last years. Especially, capturing and
detecting the faults online in the NoC components is crucial for transient faults, because,
even if the permanent faults are detected by testing, transient faults (due to the nature
of their random occurrence and being active for short duration of time) manifest
themselves during system’s life-time. Approaches based on Built-In Self-Test (BIST)
introduced in the literature usually suffer from delayed fault detection as they require
the system operation to be partially/fully paused while being in test mode. On the other
hand, approaches based on Triple Modular Redundancy (TMR) or NMR based techniques
would be expensive in terms of area overhead for providing fault-tolerance in NoC
routers. Thus, in this dissertation, the concurrent online checking of faults in the control
part of NoC routers via checkers [3] is chosen. Checkers allow monitoring the control part
modules in parallel with their operation, without pausing the system functionality. They
raise up a flag denoting the captured fault. However, it is important that the goal in this
thesis is to have checkers with instantaneous fault detection latency, able to detect faults
within maximum one clock cycle of their occurrence. Because, otherwise, the fault could
get propagated to the rest of the system and causes total system failure [4]. One
advantage of using checkers instead of DMR and TMR-based approaches is that they
provide fault localization possibility.

This thesis proposes a set of techniques to improve the dependability of NoCs, i.e.
online detection of faults in the control part while meeting the area constraints,
abstracting the fault detection information, and implementing a generic and re-
confugrable fault-tolerant routing mechanism to circumvent faults on inter-router links.
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1.1 Motivation

The trend in shrinking size of transistors, extreme down-scaling of the nanometer
technologies beyond the sub-micron domain and shrinking voltage levels, makes devices
more susceptible to faults, both to permanent and especially transient ones. This also
applies to the on-chip components, including Network-on-Chip (NoC), introduced as an
alternative infrastructure to overcome the performance and scalability limitations of
traditional shared-bus architectures [5], [6]. All these circuits are prone to different fault
sources, e.g. Electro-Migration (EM), wear-out, Alpha particles and cosmic radiation [7],
(8].

Although a lot of efforts have been made in order to capture faults before the final
product is released (such as manufacturing testing), faults can still manifest themselves
during the life-time of the circuit. More specifically, Integrated Circuits (ICs) are
susceptible to wear-out and aging occurring during their life-time and if not handled
properly, they can corrupt system’s functionality and its normal operation. Online
detection is especially critical for transient faults. This is because, even if the permanent
faults are detected via testing or other techniques [9], transient faults (due to nature of
their random occurrence and being active for short duration of time) can occur during
system run-time and affect system’s operation. This motivates the need for
instantaneous detection of such faults [4]. In addition to the detection, fault localization
is of utmost importance, which would eventually facilitate re-configurating the NoC.

1.2 Problem Formulation

One of the main targets of this dissertation is online detection of faults in control part of
NoCs. This is due to the fact that detection of faults with lowest possible latency is
important in order to avoid propagation of the fault to the whole system. Therefore,
there is a need for a mechanism that can react as rapid as possible to the occurrence of
transient and permanent faults in the system. However, the area overhead of the
augmented fault detection circuitry should be taken into account, since the higher the
overhead, the higher the chance of faults occurring in the fault detection logic itself.

In addition to the importance of near-instantaneous online detection of faults, the
topic of fault localization is also significant. It is important to locate the faulty component,
so that the system could be re-configured with degraded performance by bypassing the
defective component, while leaving the healthy components intact. However, as the fault
information overhead grows, care must be taken that the acquired data would be
transmitted to higher layers (such as application layer) in form of compact and
meaningful information, which can further be used for system re-configuration. For
instance, a global fault manager can use the compressed fault information in the process
of computing a new routing algorithm to address the faulty system.

Finally, the implementation of fault-tolerant routing algorithms in NoCs is an
important issue to be addressed. The mechanism used for implementing a routing
algorithm must be generic, re-configurable and must guarantee deadlock and live-lock
freeness, in order not to affect system performance. It must also must not depend on
the location and number of faulty links in the network. Moreover, the scalability of the
mechanism is of utmost concern due to the on-chip limited area budget, as it should not
grow with network size. And finally, the mechanism must guarantee connectivity in the
network as long as faults do not disconnect it.
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1.3 Contributions of the Thesis

This dissertation focuses on the following topics: (1) a methodology for devising
concurrent online checkers for performing online fault detection in control part of NoCs,
providing a trade-off between fault coverage and area overhead of the checkers, (2) fault
localization via combining the checker outputs in order to find the location of the fault in
the circuit and compress fault information in order to model more abstract information
regarding turn faults, and (3) implementing fault-tolerant routing algorithms in 2D and
3D Network-on-Chips using a scalable logic-based mechanism.

The contributions of this dissertation are three-fold and summarized as follows:

1. In order to address the first problem in this dissertation, a methodology for
devising concurrent online checkers for performing online fault detection in
control part of NoCs is proposed. The proposed methodology provides a trade-
off between fault coverage and area overhead of the checkers. It allows devising
checkers at two levels, i.e. functional and structural, independent of the
architecture of the NoC router. The proposed methodology guarantees (1)
single-cycle fault detection latency for all the checkers, (2) formal proof of
absence of cases that faults occur in the circuit, but not captured by the
checkers (called True Misses) using fault simulation, and (3) automated
minimization of the checkers in terms of area using greedy heuristic, while
meeting the requirements of the target fault coverage. It is worth noting that
the concurrent online checkers operate in parallel with system’s operation. In
order to be able to measure the fault detection capability of the checkers, new
metrics have been proposed which enable clear definition of fault detection
quality of the checkers. This contribution has led to the publications A, B, and
D, mentioned in the list of publications included to the thesis.

2. A fault localization module is developed which takes into account the fault
information acquired from the concurrent online checkers for the control part
of the NoC. The fault localization circuitry is fully combinational, and takes
advantage of the single-cycle fault detection latency of the checkers, by
grouping them and providing compact, meaningful information regarding faults
for higher levels of abstraction. In case of the control part NoC router, in
addition to router-level and component-level, a third level of fault localization
has been proposed which models turn faults. This would compress the fault
information and tackle the issue of generation of excessive amount of data by
the checkers. At the same time, it reduces rendering the whole router as faulty,
and making it possible to be re-used with degraded performance with the intact
healthy turns. A System Health Monitoring Unit that keeps a holistic view of the
system’s health will make use of such information provided by the fault
localization module to re-configure the underlying routing algorithm, if needed.
This contribution has led to the publication E, mentioned earlier in the list of
publications included to the thesis.

3. Alogic-based mechanism is developed for implementation of turn model-based
routing algorithms in partially vertically connected 3D NoCs, named LBDR3D.
The mechanism does not use routing tables at the routers and only relies on a
fixed set of configuration bits which specify the topology, routing algorithm and
the existence of at least one node with vertical link in each layer. The proposed
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approach exceeds the state-of-the-art, by not storing the location address of
such nodes with vertical links at each router, thus, making it scalable. It also
does not incur any additional overhead to the packets being transmitted from
one layer to another. Moreover, it does not depend on the location and number
of faulty vertical links. Furthermore, LBDR3D guarantees live-lock freeness and
live-lock freeness, and also guarantees connectivity as long as faults do not
disconnect the network. The third contribution has led to the publication C,
mentioned earlier in the list of publications included to the thesis.

1.4 Thesis Organization

This thesis is organized in 5 Chapters and 7 Appendices.

In Chapter 1, an introduction to the thesis is provided, including the motivation,
problem formulation and the main contributions.

Chapter 2 covers the background of the topics discussed in this dissertation. It
consists of two sections. In the first section, a literature review, regarding the state-of-
the-art approaches related to the topics discussed in this thesis, i.e. approaches for
online detection of faults in control part of NoCs, approaches for fault localization in
NoCs, and approaches for implementing fault-tolerant routing algorithms for 3D NoCs.
In the second section, background information about the subjects that are used as
baseline in the next chapters, including the explanation of the open-source Bonfire
Network-on-Chip (NoC) project and Logic-Based Distributed Routing (LBDR), based on
which the contributions of this thesis are introduced.

Chapter 3 is dedicated to the explanation of the first contribution of this thesis, i.e.
the proposed methodology for devising concurrent online checkers for control part of
NoCs and automated evaluation of fault detection quality of checkers and minimization
in terms of area while meeting the target fault coverage.

Chapter 4 discusses the next contribution of the thesis, fault localization in NoCs,
taking into account the checker outputs information and providing meaningful and
abstract turn faults, by compressing the data acquired from checkers output. This would
facilitate the process of re-configuring the routing algorithm of the network by the
system fault manager in case of a fault occurrence.

Chapter 5 explains the third contribution of this dissertation, a scalable and re-
configurable mechanism for implementing fault-tolerant routing algorithms in 3D NoCs
with faulty vertical links.

Finally, the last chapter concludes the dissertation, remarking the theoretical
novelties of this work and summarizing the contributions.

This dissertation is accompanied with seven Appendices, from which Appendices A
and B serve as supplementary information regarding checkers in Chapter 3. Appendix A
includes the complete list of checkers for one of the examples used for applying the
proposed methodology for devising checkers, which is the control part of Bonfire
handshaking router. Appendix B covers the application of the same methodology for
devising checkers to the control part of Bonfire credit-based router as one of the other
examples. Appendices C to G present the research papers which form the basis of this
dissertation.
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2 BACKGROUND

2.1 Introduction

This chapter starts with a literature review regarding approaches related to the
contributions of this thesis, which are threefold: (1) a study of online fault detection
approaches for NoCs, mostly focusing on the control part, (2) a state-of-the-art review
regarding approaches for fault localization in NoCs with the focus on control part, and (3)
a literature review of fault-tolerant routing mechanisms addressing 3D NoCs with faulty
vertical links.

Afterwards, the chapter continues with the pre-requisite background information
which would be referred to in this thesis continuously in the following chapters, including
the fault model used in this thesis, different router architectures used as examples (three
different architectures) for applying the proposed methodology for devising and
minimizing checkers and also fault localization to abstract fault information. Finally, a
background regarding the logic-based distributed routing and its variations according to
the literature is provided, used as the baseline mechanism for implementation of fault-
tolerant routing algorithms in partially vertically connected 3D NoCs.

2.2 Literature Review

In the following three sub-sections, the state-of-the-art regarding the topics that this
dissertation focuses on, are reviewed.

2.2.1 Online Fault Detection Approaches for NoCs

The online fault detection approaches reviewed in this sub-section are reactive, meaning
that they detect the fault after its occurrence and react to it. In other words, they tackle
run-time failures by detecting hardware failures shortly after they manifest. The other
category of approaches would be pro-active, which predict the occurrence of faults
before their occurrence and try to mitigate the effects beforehand. However, pro-active
approaches are not in the scope of this dissertation. It is noteworthy that the focus of
the reviewed approaches in this sub-section is on control part of NoCs.

Online detection of errors in logic is a thoroughly studied research area. One of the
well-known techniques is hardware redundancy, which has also been studied in the field
of NoCs. Approaches such as traditional Triple-Modular Redundancy (TMR) and
Duplication With Comparison (DWC) approaches [10] exist, however, they are costly in
terms of multiplying the area and correspondingly the power consumption. Moreover,
despite providing fault detection capability, such approaches lack providing information
facilitating fine-grain fault localization. An alternative to minimize the area overhead of
such approaches is the selective TMR that identifies Single Event Upset (SEU) sensitive
sub-circuits that are to be protected [11], but it still suffers from the inability to localize
faults.

On the other hand, some of the approaches address detection of faults via information
redundancy, including a variety of solutions based on coding techniques, such as Berger
[12] or Bose-Lin [13] codes. In many works the coding techniques are combined with
synthesis [14], [15]. However, these approaches suffer from significant area overhead,
and they require alteration of the original circuit in order to generate the codes.
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Concurrent on-line built-in self-test techniques such as Built-In Concurrent Self-Test
(BICST) [16] and Reduced Observation Width Replication (ROWR) [17] provide high fault
coverage at low area overhead, but only consider a limited subset of pre-computed test
vectors. Hence, these approaches are likely to miss faults occurring in a normal circuit
operation.

Several alternatives based on checkers that do not require modification of the circuit
under test have been developed. Creating checkers automatically based on logic
implications derived from the circuit structure [18], [19] is feasible but suffers from low
fault coverage and high area overhead, often exceeding the duplication-based solutions.

On the other hand, deriving checkers from functional assertions, or reusing
verification assertions, is similarly known to yield low coverage of structural faults as it is
difficult to correlate functional coverage to structural one [20]. In [21], Grecu et al. have
introduced a method for online fault detection and location in NoC communication
fabrics. The proposed method is able to distinguish between faults in the communication
links and the ones in the NoC switches. This work is based on the utilization of code-
disjoint routing elements, combined with parity check encoding for the inter-switch links.
However, the method targets faults in the data-path only.

A group of works in the literature have focused on monitoring control part
components of NoC switches, such as [22]-[28]. Authors of [29] have introduced
SafeNoC, an end-to-end error detection and recovery solution, for ensuring the
functional correctness of Chip Multi-Processor (CMP) interconnects. In this solution, a
lightweight checker network is added to the existing interconnect, that guarantees to
deliver messages correctly. Therefore, for each data message, a look-ahead signature is
transmitted over the checker network, which is used for detecting errors in the
corresponding data message. The solution does not provide checking for faults within the
routers. Moreover, in case of the increase in the number of faults in the system, the
reconstruction and recovery process can take up to 39M execution cycles. It should be
noted that the focus of this dissertation is on fault detection and localization approaches in
NoCs, however, fault recovery approaches are not in the scope of this thesis.

Several works have proposed utilization of concurrent online checkers! for checking
faults in the control part of on-chip routers. In [26], the Inherent Information Redundancy
(lIR) in the control path of NoC routers is utilized to manage transient errors. The goal is
to prevent packet loss and misrouting by detecting such faults in the routing computation
and in the arbitration unit of a NoC router. However, their approach is only limited to XY
routing.

Yu et al. [27] have proposed a set of checkers for the NoC routing algorithmic blocks
implemented using LBDRhr for topologies with high-radix. To this end, the Inherent
Information Redundancy (IIR) [26] in LBDRhr logic is exploited in order to manage
transient errors in the routers. Despite the advantages their approach provides
compared to routing tables in terms of scalability, the proposed checkers for LBDRhr logic
cannot reach 100% fault coverage. Furthermore, the work in [27] only focuses on the
routing logic of a NoC router and not considering the full control part.

In [30], the set of checkers introduced in [27] are extended for the baseline LBDR logic
in order to increase the fault coverage (up to 64.9%). A final set of five checkers are

1 The concept of checkers used in this dissertation will be explained in more detail in the Chapter 3.
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proposed, which cover the majority of single stuck-at faults occurring in the LBDR
circuitry. Fault injection experiments have shown that the proposed method in [30]
allows increasing the fault coverage 3 times (compared to [27]), of course at the price of
26.8% checker area overhead. However, still 100% fault coverage is not reached and the
area overhead minimization aspect of the checkers is also not addressed neither in [27]
nor in [30].

Authors of [31] have presented a method for online error detection and diagnosis of
NoC switches. The proposed method deals with routing faults that cause NoC packets to
be forwarded to output ports that are not intended to. Regarding modelling routing
faults in switches, a high-level fault model has been introduced in this work. However,
this work targets functional level fault coverage only and does not guarantee a good
coverage for structural faults.

Parikh et al. have proposed ForEVeR [25], a solution that complements the use of
formal methods and runtime verification to ensure functional correctness in NoCs. In
order to deliver correctness guarantees for the complete network, a network-level
detection and recovery solution is proposed in [25] that monitors the traffic in the NoC
and protects it against functional bugs that were not detected during design time. To this
end, ForEVeR augments the baseline NoC with a lightweight checker network that alerts
destination nodes of incoming packets ahead of time and is used for the recovery
process. The use of an end-to-end, epoch-based scheme, such as ForEVeR, results in
significantly delayed fault detection. Additionally, Only 30% of the faults are detected
during the first clock cycle by their approach.

Authors of [23] (NoCAlert) have proposed checkers synthesized from a set of 32
assertions. The checkers detect most of the injected faults with minimum detection
latency. The faults that are not covered correspond to non-catastrophic failures.
However, it is not clarified with which type of checkers (9 in total reported in [23]) 100%
fault coverage is reached. Furthermore, the minimization aspect of the area overhead of
the checkers is not addressed in [23]. In addition, in high-level evaluation process,
NoCAlert checkers only consider faults occurring on the primary inputs and outputs of
the control logic and the modules themselves are viewed as black boxes, thus, not
considering fault locations inside the control part modules of the NoC router.

In [32], Secure Model Checkers (SMCs) have been proposed. Similar to NoCAlert, they
target the control part of NoC routers, but also focusing on the security aspects, for
instance, protection against Hardware Trojan (HT) attacks. However, similar to NoCAlert,
the methodology in [32] has not addressed the minimization aspects of the checkers in
terms of area overhead. It is worth noting that the focus of this dissertation is on online
fault detection in control part of NoCs and security aspects of NoCs is out of the scope of
this thesis.

In [33], an online checking mechanism is proposed for the switch allocator of a NoC
router that is able to detect every possible single transient or permanent fault in the
arbiter and handle it appropriately. The proposed checkers for the switch allocator of the
router in [33] have self-checking property. Despite the advantages, they have neglected
detection of faults in the full control part of the NoC router, i.e. the control part of input
buffers and the routing logic.
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Park et al. [22] have examined the impact of transient faults on the reliability of on-
chip interconnects and have developed an approach to recover from them. For the inter-
router link faults, they use Hop-By-Hop (HBH) retransmission method. However, the
retransmission buffer can add latency to the system in case of a fault occurrence.
Moreover, it is not mentioned whether the retransmission buffer itself is protected
against SEUs or not. Regarding the control part of router, an Allocation Comparator (AC)
unit is proposed, which provides full error protection to the Virtual Channels (VCs) and
Switch Allocation (SA) units at minimal cost, without affecting the router’s critical path.
The work in [22] assumes successful speculative allocation for the allocator. However,
mis-speculation can incur overhead.

In [28], illegal turns in the routers are detected, however, each router depends on the
information from its neighbour routers for online fault detection and judgment.

The following works have addressed detection of faults in NoC switches via Built-In
Self-Test (BIST)-based approaches. In [34], fault detection is performed via a BIST
mechanism executed during system boot-up. In [35], fault detection is performed via an
automatic go/no-go BIST operation at the start-up of the network. However, the
approach is only limited to 2D Mesh NoCs, and the fault coverage of the switch controller
is low. Petersen et al. have extended the idea of [35] in [36], in which, fault coverage
close to 100% is reached, with few thousand clock cycles fault detection latency. Despite
the advantages, their BIST architecture still incurs significant area and fault detection
latency overhead. Authors of [37] have taken advantage of the regularity of intra-switch
ports and also the regularity of inter-switch communication infrastructure of a NoC in
order to decrease test application time and decrease test data volume of NoC testing.
One of the main drawbacks of BIST-based architectures is that system operation needs
to be partially or fully paused, while the module under test is being examined, which can,
in turn, degrade performance.

There have also been works in the literature that have focused both on monitoring
the data-path and control part components of NoC router. In Cardio architecture [38],
fault detection is handled by hardware, whereas software is in charge of conducting
reconfiguration, leading to reduction of area overhead (as stated in [38]). To this end, a
distributed resource manager is utilized. Cardio targets run-time permanent faults in (a)
processor cores (by implementing counters and acknowledgement buffers in Network
Interface (NI)), (b) interconnect routers (via configurable routing table logic) and (c) links
in the intra-chip communication subsystem (via link monitors). In [39], both the data-
path and control part faults in Network-on-Chips are addressed via a multi-layer
diagnosis approach. However, the structural diagnosis approach imposes significant fault
localization latency. In [40], a fault-tolerant routing method is proposed which works
based on partial fault model. The approach addresses permanent faults in input buffer,
control unit, crossbar and output buffer of the NoC router and in the processor core
attached to the router. However, no details regarding handling and detection of
permanent faults are provided.

Even though there have been many approaches covering faults in the control part of
NoC online - as summarized in the above-mentioned paragraphs - to the best of this
dissertation’s author’s knowledge, none of the previous works have addressed a
methodology for devising checkers for the part of a circuit, which would guarantee single
cycle fault detection latency for Single Event Upsets (SEUs) and evaluation of checkers
under all possible set of valid input stimuli for all possible fault locations in the circuit,
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addressing the area minimization of the checkers, while guaranteeing the target fault
coverage. It is also noteworthy that since the focus of this dissertation is not on
protection of data-path components of NoCs, it is already assumed that the architecture
has a fault detection/correction mechanism integrated for handling faults in the data-
path (inter-router links and intra-router data-path components), e.g. one of the
approaches mentioned in [41], [42].

2.2.2 Online Fault Localization Approaches for NoCs

Online fault localization is one of the necessities in addition to fault detection for
performing fault diagnosis in a system. A variety of approaches have addressed diagnosis
of faults in NoCs at different levels. Some of the works in the literature have addressed
detection and localization of faults in NoCs using broadcasting of test vectors, at run-time
[7], [43]-[48]. In [43], Vicis architecture is introduced, in which a BIST procedure tests the
individual sub-blocks of the on-chip switch, covering both control part and data-path.
One of the drawbacks is the area overhead imposed by the wrapper cells used to isolate
the faulty sub-block from the system. Also, Vicis lacks the capability to find the exact root
of the faulty behaviour in the switch and does not have reasoning regarding defective
switch functionalities. Moreover, as mentioned before, one of the disadvantages of run-
time BIST in general is that the system operation needs to be either partially or fully
paused, while the module under test is being examined, which, in turn, does not allow
detecting soft errors at run-time and degrades performance.

Approaches based on online monitoring of faults such as [32], [15], [17], [21], [33]
have addressed faults in the control part components of NoC switches. It is worth noting
that since the focus of this dissertation is on fault detection and localization in control
part of NoCs, the works addressing only data-path components are not in the scope of
the reviewed literature in this chapter.

Alaghi et al. [31] have presented a method based on high-level fault model for online
error detection and diagnosis of routing faults in NoC switches. However, this work
targets only functional level fault coverage and does not guarantee a high coverage for
structural faults. In addition, for some of the fault models explained in the paper, fault
localization cannot be achieved. In [24], the NoCAlert mechanism for online detection of
faults in the control part of NoCs has been augmented with fault localization capability.
However, their approach lacks the area minimization aspect of the checkers and cannot
guarantee 100% fault coverage via checkers within a single cycle. Furthermore, the
proposed fault localization module in [24] does not address modelling turn faults (taking
fault information contributing to both input and output port related control part
components of the router). One of the approaches that addresses turn faults is the one
proposed in [28], in which illegal turns in the NoC routers are detected. However, each
router depends on the information from its neighbour routers for online fault detection
and judgment.

On the other hand, authors of [49] have introduced an online-structural approach.
They target the diagnosis of permanent faults on NoC links and the control-logic faults.
However, their approach might consider an entire switch as faulty when a fault occurs in
part of it, thus, suffering from low fault localization accuracy. Moreover, the work in [49]
does not guarantee low latency error detection. In [40], a fault-tolerant routing method
is proposed which works based on partial fault model. Their approach addresses
permanent faults in input buffer, control unit, crossbar and output buffer of the NoC

21



router and in the processor core attached to the router. However, to simplify the fault
model, an occurrence of fault in crossbar, control unit and the processor core are all
modelled as a node failure. This, reduces the granularity of fault localization. Also, no
details are provided in [40] regarding how the permanent faults are detected. Authors of
[50] have presented a mechanism for detection and localization of faults in dynamic
NoCs, with varying number of PEs during run-time. They target both transient and
permanent faults in data packets and errors related to adaptive routing algorithms.
However, their approach can localize faults in NoC routers at the level of input port,
output port and/or data bus. Moreover, in order to provide routing error detection, an
additional field is added to the transmitted packets, and also the routers communicate
diagonally with their neighbour routers for transmission of state information, in total
incurring a 63% area overhead in a 6x6 2D NoC.

The authors of [49] have addressed a diagnosis approach involving multiple layers, in
which the software part is responsible for locating faulty links and crossbar connections
in hardware. However, their approach lacks the cross-layer interaction and the proposed
diagnosis techniques for each layer are separated from each other. In [39], a multi-layer
diagnosis architecture is proposed for NoCs with cross-layer interaction. They have
demonstrated the combination of layer-specific diagnosis techniques could be beneficial
compared to using only individual layer-specific approaches. Both a top-down and a
bottom-up flow for cross-layer information flow is presented. The former is used to
narrow down the position of a fault, while the latter provides diagnostic feedback from
lower to higher layers, also, solving the cases of false positives. However, despite
obtaining 100% fault coverage, the fault localization latency suffers from significant
overhead. But, it should be noted that works such [39] target best fault localization
resolution via offline diagnostic reasoning. Therefore, their goal is different from this
dissertation, which is online concurrent detection of faults with minimal latency.

Aghaei et al. [41] have performed a survey on different link testing mechanisms
addressing stuck-at, bridge, delay and crosstalk fault detection and diagnosis in on-chip
inter-router links and links between Network Interface (NI) and router. They reached the
conclusion that none of the approaches up to that point had addressed a single platform
for fault detection, diagnosis and fault tolerance under the one single framework.

To the best of the author’s knowledge, none of the above-mentioned works have
addressed a cross-layer fault resilient NoC router architecture, utilizing online fault
localization in addition to fault detection for the control part of NoC routers, while
targeting minimal latency and matching acquired fault information with abstraction level
of system healthy information (e.g. health status of the turns of a router).

2.2.3 Fault-Tolerant Routing Mechanisms for 3D NoCs

The aggressive transistor scaling also affects the reliability of inter-router links in NoCs.
Especially in the domain of Mesh-based 3D NoCs, in which the vertical links are present
in addition to the horizontal links, faults in the vertical links can cause performance
bottlenecks. Moreover, if the vertical links are implemented using Through-Silicon Via
(TSV), it would not be area-efficient to have a full 3D Mesh NoC, as TSVs impose larger
area overheads compared to the horizontal links [51]. Due to these reasons, partially
vertically connected 3D NoCs can be formed. Similar to their 2D counterparts, fault-
tolerant routing in such 3D NoCs and how they are implemented can also bring some
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challenges. The following works review the state-of-the-art regarding fault-tolerant
routing mechanisms for handling partially vertically connected 3D NoCs.

In [52], 4NP-First is introduced, which is a low overhead fault-tolerant routing
algorithm for 3D NoCs. The algorithm is able to achieve high arrival rates of packets at
destination. It utilizes a hybrid turn model (based on an extension of the Negative-First
turn model to the 3D domain): 4N (Negative) First and 4P (Positive) First. Using a set of
forbidden turns in each layer, 4NP-First guarantees deadlock freeness. However, the
approach suffers from information overhead, as it replicates each packet if number of
faulty links in the network exceeds a specific threshold, thus, sending one replica of the
packet via one virtual channel using 4N-First and the other via another virtual channel
using the 4P-First routing algorithm.

In [53], a low-overhead fault-tolerant deflection routing algorithm is proposed for 3D
Mesh-based NoCs. The limitation of this work is scalability due to using routing tables per
layer. Authors of [54] have introduced AFRA, a deadlock-free and deterministic routing
algorithm (based on an extension of ZXY routing algorithm) for 3D NoCs. Normally, the
algorithm performs as ZXY. In case of a fault on a vertical link on the path to the
destination of a node, the algorithm tries to find an escape node with healthy vertical
link along the X direction, thus, changing the algorithm to XZXY. One of the drawbacks of
this work is the assumption of faults occurring only in one direction on the vertical links.
The other drawback is that if an escape node does not exist, the algorithm cannot handle
the faulty network, therefore, AFRA has limitations regarding the location of faulty
vertical links.

Ebrahimi et al. have proposed HamFA [55], which takes advantage of Hamiltonian
paths in order to tolerate faults in 2D and 3D NoCs without the need for any Virtual
Channels (VCs). Despite the advantages compared to 4NP-First [52] and [53], HamFA is
not able to address faults on vertical links at the end of the Hamiltonian paths and also
some of the horizontal links in each layer, as stated by the authors in [55]. Jiang et al.
have presented an efficient fully adaptive fault- tolerant routing algorithm for 3D NoCs
[56]. The algorithm consists of two phases: inter-layer and intra-layer routing. Two
assumptions that limit this work are as follows: Processing Elements (PEs) will never get
faulty and faults on links are considered as bidirectional. Also, the deadlock recovery
mechanism used in this work can impose additional performance overhead.

Authors of [57] have proposed a high-performance reliable and deadlock-free routing
scheme (HARS), which follows a mid-node searching method in 3D NoCs without
requiring any Virtual Channels (VCs). However, reliability results are only provided when
up to 10% of the network vertical links are faulty. In [51], Elevator-First, a distributed
routing algorithm has been proposed for partially vertically connected 3D Network-on-
Chips. The algorithm is able to tolerate faults on vertical links, regardless of the location
and the number of faults. In order to guarantee deadlock freeness, the method depends
on using two virtual channels along X and Y dimensions. Despite the advantages, the
algorithm relies on an additional overhead in header flits, when steering packets to nodes
with vertical links (called as elevator nodes). Also, each router stores the location of at
least one up and one down elevator node in its layer for fault-tolerance purposes which
can impose additional memory overhead and scalability issues as the network scales up.
In [58], TARAS, a topology-agnostic routing algorithm for 3D NoCs is proposed. However,
it depends on the Segment-based Routing (SR) and therefore it would only cover a set of
routing algorithms that address fault tolerance in 3D NoCs. In the proposed mechanism,
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it is possible set the routing bits of LBDR3D, so that it would be programmed to the SR
routing in each layer of the 3D NoC, thus making it a more generic approach.

In [59], [60], East-Then-West (ETW), an adaptive routing algorithm for supporting
partially vertically connected 3D NoCs is introduced, able to tolerate faults on vertical
links. It is claimed to be lightweight and only relies on using one Virtual Channel (VC)
along the Y dimension. Nevertheless, ETW is not fully independent on the location of
faulty links and it only works as long as there exists at least one vertical link at the east-
most column of each layer. Ying et al. have introduced North-East To Z (NETZ) [61] routing
algorithm based on Dynamic Quadrant Partitioning (DQP) for partially vertically
connected 3D NoCs, able to improve performance in comparison to deterministic routing
algorithms such as ZXY. The algorithm is implemented by disabling a set of turns in the
3D domain, thus, removing the need for routing tables and also guaranteeing deadlock
freeness without using Virtual Channels (VCs). However, similar to ETW [59], [60], NETZ
depends on the location of faulty vertical links. It requires the existence of a pillar at the
North-East corner position on all layers to guarantee the routing algorithm delivers
packets successfully to all destinations. Authors of [62] have introduced Advertiser
Elevator algorithm to address partially vertically connected 3D NoCs, however, the
approach in [62] depends on the existence of at least four healthy vertical links in the
network (corner links).

In [63], a logic-based mechanism is proposed for implementing fault-tolerant routing
algorithms in 3D NoCs, which is based on an extension to LBDR, however, the proposed
technique relies on high number of configuration bits per router for the routing logic.

To the best of author’s knowledge, based on the previous works studied, there is still
an open research direction for proposing a re-configurable and scalable mechanism that
would make it possible to implement deadlock- and livelock-free routing algorithms in
3D NoCs with faulty vertical links, while not sacrificing performance significantly, not
imposing any information overhead and not relying on the location and number of faulty
vertical links.

2.3 NoC Router Architectures Used in This Dissertation

This section is dedicated to explanation of the three NoC router architectures used in
Chapters 3 and 4 of this dissertation, which are used as examples of applying the
proposed methodology for devising checkers from the control part and one of them is
also used for integrating the fault localization module to model turn faults. The router
architectures explained in this chapter have the following features in common.

The NoC routers consist of a control part and a data-path. The data-path is composed
of input buffers (implemented as circular First-In-First-Out (FIFO)), one per each input
port, and a crossbar switch per each output port. The input buffers have one-hot
encoded pointers for reading from and writing to them. Each input buffer has 4 slots for
storing maximum 3 flits. This is due to the fact that one slot is used to distinguish the
empty case of the input buffer from the case when it is full. None of the three router
architectures in this dissertation use Virtual Channels (VCs) at input ports. However, the
proposed methodology for devising checkers can also be applied to the control part of a
router with VCs.

The flow of data through the data-path is managed and controlled by the control part
of the NoC router. The control part of the router architectures explained in this chapter,
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Figure 2.1 A Round-Robin (RR) arbiter for a 5 port of a 2D NoC router.

consist of a routing computation unit per each input port and an arbitration unit (arbiter)
for each output port, which prioritizes the requests from different input ports to the
same output port. Each router has 5 input/output ports, four ports connected to four
cardinal directions (North — N, East — E, South — S, West — W) and one Local (L) port
connected to the local Processing Element (PE). All three NoC router architectures utilize
wormhole switching. Therefore, packets are sent in form of flits, consisting of header flit,
body flit(s) and tail flit.

As faults in the control part can cause severe issues in the network (such as deadlock,
live-lock, misrouting of packets, loss/dropping of packets) [64], protection of the control
part against transient Single Event Upsets (SEUs) and permanent faults is of utmost
importance. Regarding the data-path, there has already been many approaches
proposed in the literature for protecting the data and links against faults and it is
assumed in this thesis that the data-path is already protected by an Error
Detection/Correction technique [41].

In the control part of all three router architectures, for the routing computation unit,
Logic-Based Distributed Routing (LBDR) [65] mechanism is used, which is a scalable
solution compared to routing tables. The mechanism describes the topology and the
routing function in form of fixed sets of connectivity and routing bits, therefore, the logic
can be easily re-configured. Routing decision is distributed and only requires local and
destination addresses for forwarding flits. The routing computation is only performed on
the header flit of a packet. Moreover, it must be noted that in all three router
architectures, U-turns (an input port sending data to itself in output direction) are not
allowed in order to avoid deadlock.

For the arbitration unit (shortly called the arbiter hereafter) Round-Robin (RR) policy
has been chosen in all three architectures. Round-Robin arbitration (as shown
in Figure 2.1) prioritizes multiple requests from the routing logic of different input ports
to avoid contention. Prioritization is performed in a circular manner, starting from the N,
E, W, S and then L and back to N. Arbiter grants the access to the requesting input port
winning the eventual contention, allowing data to go from the input FIFO of the
requesting input port to the granted corresponding output port, through its crossbar
switch. The RR arbitration mechanism is implemented in form of a Finite State Machine
(FSM). In all three router architectures, one-hot encoding has been considered for the
state variables of Arbiter’s FSM. Moreover, one-hot encoding is extended to grant signals
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and select lines for the crossbar switch for similar reason. One of the main reasons such
decision is to increase the fault detection quality of single-stuck at faults, which of course
comes at the price of additional area compared to binary-encoded state variables.

2.3.1 NoC Router Architecture 1

As the first example, the proposed methodology for devising checkers in this dissertation
has been applied to the control part of a generic NoC router, written in Verilog RTL.
Hereafter, for future reference throughout the dissertation, this NoC router is named as
Architecture 1, which is a 2D-Mesh based NoC router. Figure 2.2 demonstrates the high-
level overview of NoC router Architecture 1, illustrating both the control part and the
data-path. In addition to the input FIFOs and the crossbar switch, NoC router
Architecture 1 uses an output buffer per each output port, which can store one flit.

In NoC router Architecture 1, the routing logic (LBDR) is configured to the
deterministic XY turn model. Taking into account the fact that U-turns and also turns
from the Y dimension to X dimension (i.e. North and South, to East and West) are not
allowed in XY routing, this can lead to simplification of the logic of LBDR. As it will be
explained later in the experiments in Chapter 3, for router Architecture 1, the focus is on
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Figure 2.2 High-level overview of NoC router Architecture 1
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Figure 2.3 Logic-based Distributed Routing (LBDR) logic for the East input port
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the control part of router addressing the East input port and South output port and
further in the last experiment, the control part of FIFO is also considered.

The simplified logic of LBDR based on XY is shown in Figure 2.3 [3] for the East input
port of the router. According to XY routing, packets coming from East input, are only
allowed to send requests to North, West, South and Local directions.

2.3.2 Project Bonfire Router Architectures

The Bonfire project [66], [67] proposes a fault-tolerance framework for implementing
dependability mechanisms in a NoC-based System-on-Chips (SoCs). The targeted NoC in
Bonfire project is a 2D mesh topology where each tile of the network consists of a
wormhole switching router equipped with fault tolerance mechanisms and a Processing
Element (PE) connected to it via a Network Interface (NI). The project consists of two
types of NoC routers with two different flow control mechanisms, i.e. with handshaking
and credit-based flow control. Details of the components of the framework are available
online?, however, a brief explanation is also provided in this chapter for future references
in this dissertation. One of the shortcomings of the baseline router architectures of
Bonfire was the lack of fault detection mechanism. The author has contributed to
devising checkers for the control part of the Bonfire routers and also developing the fault
localization and abstract module.

Similar to NoC router Architecture 1, both NoC router designs of Bonfire consist of a
data-path and control part. However, their difference lie within the components used for
the data-path and the flow control mechanism used in the control logic. The data-path
comprises the inter-router links, the input buffers (implemented as circular FIFO) and
crossbar switch (no output buffer is used in Bonfire routers). The control part is
composed of the control part of input buffer (FIFO), routing logic (LBDR [65]), and
arbitration logic. As it will be explained later, the data-path and control part components
in both router designs have similarities, however, the way the flow control mechanism is
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Figure 2.4 High-level overview of Bonfire NoC router with handshaking flow control

2Project Bonfire is developed in department of Computer Systems Engineering at Tallinn University
of Technology, and maintained as an open-source project at: https://github.com/Project-
Bonfire/Bonfire
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implemented for transmitting the flits between routers is different in the two
architectures. It is also worth noting that none of the router architectures in Bonfire use
VCs.

Bonfire Handshaking Router

The first router design in project Bonfire is a 32-bit wormhole switching NoC router with
handshaking flow control. The names Bonfire Handshaking Router and NoC Router
Architecture 2, are used interchangeably in the following chapters of this thesis, which
refer to this router architecture. Figure 2.4 [66] shows an overview of the baseline
handshaking flow control router without any fault-tolerance mechanisms.

Bonfire Credit-Based Router

The second router design in project Bonfire is a 32-bit wormhole switching NoC router
which has credit-based flow control. The names Bonfire Credit-based Router and NoC
Router Architecture 3 are used interchangeably in the following chapters when referring
to this router architecture. Figure 2.5 [66] shows an overview of the baseline credit-based
router without any fault-tolerance mechanisms implemented in it. In credit-based flow
control, the transmitter router keeps a credit counter, which is initially set to the number
of free slots of the receiver router's input buffer. Each time a flit is sent, the counter gets
decremented by one. In case the receiver passes a flit, it issues a credit signal which will
increment the counter at the upstream router. One of the other differences of this
architecture with the previous ones is the support of adaptive routing, when the routing
logic might choose more than one output port as candidates for sending the flit.
Therefore, even though the same FSM-based Round-Robin arbitration logic is used in
router Architecture 3, its implementation is in two stages, one for handling multiple
requests from an input, and the other for handling multiple requests from different
inputs to the same output. The arbitration unit in router Architecture 3 is named
Allocator (as shown in Figure 2.5 [66]).

One of the advantages of the credit-based router over the handshaking version is its
better performance in terms of flow control. As long as the upstream router has valid
data to send and it also has the credit, the transmission of flit(s) can continue.
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Figure 2.5 High-level overview of Bonfire NoC router with credit-based flow control
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2.4 Logic-Based Distributed Routing (LBDR)

The LBDR mechanism [65] has been used as the routing computation component in all
three NoC router architectures used in this dissertation. As the mechanism is going to be
referred to in the coming chapters, a brief explanation of the mechanism is provided as
follows.

LBDR has been introduced as a solution to implement different deadlock-free routing
algorithms in 2D NoCs, while overcoming the scalability limitations of routing tables.
LBDR removes the need for routing tables at all in NoC routers. It codifies the routing
algorithm and topology in form of two sets of configuration bits, i.e. routing bits and
connectivity bits. The former describes the routing algorithm, in form the set of
allowed/restricted turns, whereas the latter describes the topology, showing the
connection of each router to its possible neighbor(s). As opposed to routing tables, as
the network scales up, the routing logic in LBDR is fixed, since it relies on the fixed sets
of configuration bits. The logic of LBDR is shown in Figure 2.6 [65], [68].

LBDR is distributed, thus, for routing computation it only relies on the current address
of the router and the address of the destination node included within the header flit of
a packet. This, removes the need for encoding the routing path in the packets (as
opposed to source-based routing [69]) at the source nodes. As shown in Figure 2.6, the
mechanism is composed of two phases. In the first phase, the quadrant or direction in
which the destination node is located compared to the current node is computed (N’, E/,
W’ and S’ signals). In the second phase, using the connectivity and routing bits, the
candidate output port(s) is (are) computed. In case of a deterministic routing algorithm,
such as XY routing, LBDR always will choose one direction as the candidate one. However,
in case of adaptive routing, two output ports can also be selected as candidates for
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Figure 2.6 Logic of LBDR mechanism (first phase computes the location of destination,
and the second phase computes the candidate output port(s).
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forwarding the flit(s). It is worth noting that LBDR logic only becomes active when
processing the header flit of a packet. Furthermore, when none of the signals in the
phase first are active (the packet has reached its destination), the Local (L) output port is
chosen as the candidate for forwarding the flit(s) to the Processing Element (PE)
connected to the local port of the router. More details regarding how the LBDR
mechanism works and implements different turn-model based routing algorithms in 2D
NoCs, are provided in [65].

2.4.1 LBDR Extensions

Several extensions to LBDR have been introduced in the literature. In [68], LBDR has been
extended to address collective communication (multicast and broadcast) in addition to
unicast communication. Authors of [70], [71] have added de-route and fork capability to
the mechanism, and proposed uLBDR, aiming to address link faults in 2D Mesh-based
networks, and providing non-minimal path support. However, for the mechanism to
work efficiently, the switching mechanism must be changed from wormhole to Virtual
Cut Through (VCT), thus, imposing additional input buffer overhead to the routers. This
issue is overcome by introducing d?-LBDR mechanism in [72], which uses the wormhole
switching, however, the mechanism is still limited regarding the increasing number of
faulty links. In [73], one further step is taken and LBDR is augmented with support for
irregular topologies in addition to regular 2D Mesh.

The scope of the proposed approach in [73], LBDRhr, is not limited to Mesh based 2D
NoCs, but it has also been extended to support topologies with higher radix and routers
with higher number of ports. In [27], in addition to tolerating permanent link failures,
LBDRhr is also equipped with a set of fault monitors for tackling the detection of transient
faultsin the routing logic (which is part of the control part of router). These fault monitors
are extracted using the Inherent Information Redundancy (lIR) [26] in the routing logic.
The fault detectors (also called as checkers) for LBDR are extended in [74], which led to
three-fold increase in the fault coverage. There have also been extensions to LBDR for
addressing congestion-aware routing in 2D Mesh-based NoCs in [75], [76]. Despite the
advantages each of the extensions to LBDR provide, the challenge of implementing fault-
tolerant routing in 3D NoCs with partially vertically connected nodes has not been
addressed yet using a scalable and re-configurable logic-based routing approach.

2.5 Chapter Summary

This chapter started with a comprehensive literature review, covering the state-of-the-
art regarding the topics which are the focus of this dissertation. The objective was to
provide an overview of the proposed online fault detection approaches for the control
part of NoCs, online fault localization and fault-tolerant routing algorithms for partially
vertically connected 3D NoCs, which all correspond to the contributions of this thesis.
Moreover, the preliminary materials and terminology which used throughout different
parts of the dissertation were explained, including the router architectures used in the
thesis as examples for applying the proposed fault detection mechanisms and a
background of different variations of logic-based routing in NoCs, related to the third
contribution of this thesis.
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3 ONLINE DETECTION OF FAULTS IN NETWORK-ON-CHIPS

3.1 Introduction

Online detection of faults in digital systems, including NoCs is important, as transient
faults might only manifest themselves during system run-time. Especially, capturing
faults in the control part of NoCs via an online detection mechanism is crucial, as such
faults can cause mis-routing of packets, data loss or deadlock, leading to the breakdown
of the whole system. However, the area overhead of the fault detection circuitry must
not be unacceptably high, as the probability of faults occurring in the fault detection logic
itself may also increase, which is not desirable. This chapter of this thesis proposes a
methodology for devising concurrent online checkers for online detection of faults in
control part of NoCs, while providing a trade-off between fault coverage and the incurred
area overhead.

First, as a background, the concept of concurrent online checkers is provided, along
with the fault model that would be the focus throughout this thesis. The literature review
regarding previously proposed online fault detection techniques for control part of NoCs
area already covered in Chapter 2. Next, the contribution of this chapter is explained in
detail, which is a methodology for devising concurrent online checkers from the control
part of a circuit in a systematic way, with the guarantee of single-cycle fault detection
latency and minimizing checkers in terms of area while satisfying the target fault
coverage. The methodology automates the process of devising two types of checkers, i.e.
structural and functional checkers, which are both elaborated in this chapter. The
proposed methodology has been applied to the control part of three different NoC router
architectures as examples. The details regarding these NoC architectures are already
covered in Chapter 2 as background. Experimental results regarding applying the
framework to the control of a NoC router will show the trade-off between checkers’ area
overhead and fault coverage. Finally, a short summary of the chapter is provided. The
contributions of this chapter of the dissertation have led to publications A, B and D listed
in Chapter 1.

3.2 The Concept of Concurrent Online Checkers

One of the methods used to detect faults online in a circuit is the use of concurrent online
checkers [4]. A checker is defined as a module monitoring the correctness of a design
based on the rules defined for the functionality of that design, taking into account a
specific fault model. In this dissertation, the focus is on NoC routers control part checkers.
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Figure 3.1 The concept of concurrent online checking of faults via checkers
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Figure 3.1 presents a checker attached to a functional logic. As it can be seen, in
addition to the original circuit (functional logic), a set of checkers (checker logic) are
connected to functional inputs/outputs of the circuit. These checkers are derived based
on the methodology that will be explained later in this dissertation. One set of checkers
are in form of functional assertions obtained from relationships between variables
corresponding to inputs and outputs (and possibly internal signals) of the circuit. The
other set of checkers are devised in a systematic way by traversing the RTL of the design.
The checker logic targets the faults at lines at the inputs of each gate within the functional
logic (marked by green circles in Figure 3.1). The lines at the functional outputs
succeeding the checker inputs (marked by a red cross in Figure 3.1) cannot be detected
by the checker. In addition, the checkers are not targeting the faults at functional inputs
preceding checker inputs, since the checker may not detect that the input value has been
altered by a fault (such functional input lines are also marked by a red cross in Figure
3.1).

In this dissertation, both transient and permanent faults are modelled as Single Stuck-
At-Faults (SAFs) occurring in single clock cycle. This information is used when evaluating
checkers for the control part of the NoC router. By means of this fault model, the
checkers cover SEUs (in form of transient faults) [77] and permanent faults. As example,
the proposed methodology has been applied to the control part of three different NoC
router architectures. It is worth noting that in this dissertation, it is already assumed that
the data-path of the NoC router is already protected by an error detection/correction
technique [15], [78].

3.3 Methodology for Devising, Evaluating and Minimizing Concurrent
Online Checkers for Control Part of NoC Routers

This Chapter focuses on the proposed methodology for devising, evaluating and
minimizing concurrent online checkers for the control part of circuits.

Figure 3.2 illustrates the proposed flow of the methodology. The flow starts by
taking into account the control part of the circuit. Next, it is followed by synthesizing the
pseudo-combinational version of the circuit under check and devising the initial set of
checkers from a set of combinational assertions. Additional checkers that also describe
relations on the pseudo primary inputs/outputs may be added to the checker suite in
order to increase the fault coverage. The initial set of checkers includes a set of structural
and a set of functional checkers. Subsequently, the checker evaluation environment is
created during the environment generation step by generating exhaustive valid set of
input stimuli which will serve as the environment for checker evaluation. If there is no
bug in the environment and no bug in the checkers, the fault-free simulation step would
confirm that. The checkers evaluation is performed afterwards, which leads to measuring
the fault detection quality of checkers in terms of metrics, such as CEl (Checkers
Efficiency Index), FC (Fault Coverage) and FPR (False Positive Ratio) and the checkers’
weight information (number of True Detections) and their corresponding area
consumption. The information acquired from this step is used for the minimization
process using a greedy heuristic, which provides a trade-off between the fault coverage
of the checkers and their area overhead. The final results of the methodology would be
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Figure 3.2 Checkers Evaluation and Minimization Flow

the minimized set of checkers in terms of area, meeting specified target fault coverage.
In the following sub-sections, each step of the proposed flow is explained in detail.

3.3.1 Devising Pseudo-combinational version of the circuit under check

In order to evaluate the checkers for all possible fault locations and under all possible
valid input stimuli, the methodology shown in Figure 3.2 first needs some preparation
steps. This includes extracting a pseudo-combinational equivalent of the module under
check

The pseudo-combinational circuit is derived by breaking the Flip-Flops and memory
elements (such as registers) and converting them to pseudo-primary inputs and pseudo-
primary outputs, as shown in Figure 3.3. Figure 3.3a illustrates a sequential circuit with
its primary inputs and outputs, while Figure 3.3b demonstrates its pseudo-combinational
equivalent circuit, which has additional pseudo- inputs and outputs. In the pseudo-
combinational circuit, the current state signals are converted to pseudo-primary inputs
and next state signals are converted to pseudo-primary outputs (Figure 3.3b). This would
facilitate the process of evaluating the checkers under all possible valid input stimuli and
making it possible to formally prove the presence or absence of cases of True Detection
and True Misses (which will be explained later in this chapter).

It should be noted that even though this step of the methodology might lead to
creation of additional inputs/outputs, at the end of the proposed flow, the checkers are
integrated in the sequential design, therefore, the final structure of the module under
check is not altered. Once the design to be checked is prepared, the next part of the flow
comes into play, which is devising the concurrent online checkers. It is worth noting that
in this dissertation, the control part of a NoC router is used as an example of the circuit
under check, from which the pseudo-combinational circuit is extracted.

33



Primary Primary Primary Primary
Inputs Outputs Inputs Outputs
——— > L >
Combinational Pseuda Combinational Fseudo
Inputs Outputs
Current State Next State
Signals Signals
Sequential Seqifitial
(a) (b)

Figure 3.3 a) A sequential circuit and b) its equivalent pseudo-combinational circuit

3.3.2 Devising Initial Set of Checkers

The methodology proposed in this work devises two types of checkers: functional and
structural checkers. The functional checkers take into account the functionality of the
module under check. They are not automatically devised and it needs the verification
engineer involved in the devising process. To this end the specification of the module
under check is also taken into account. On the other hand, structural checkers are
devised systematically and in an automated manner by parsing the RTL description of the
design. They check all the different paths through which the RTL code can be executed
and examine whether based on those paths, the generated output(s) is (are) correct and
valid. Examples of devising both types of checkers from the control part a NoC router are
provided in Sub-Section 3.4.1 and Appendices A and B.

The functional checkers might have overlaps in terms of the domain of the circuit they
are checking. In case of structural checkers, they check distinguished non-overlapping
parts of the circuit. It should be noted that after devising both set of functional and
structural checkers using the proposed methodology, one cannot necessarily predict
which type of checkers would outperform the other. As it will be explained later,
considering both checkers when performing the evaluation and minimization heuristics
using the proposed flow, can make the search space exploration more efficient, pruning
checkers with overlap, but keeping the necessary ones to satisfy the area budget, while
still guaranteeing the target fault coverage.

Functional and Structural Checkers

Functional checkers are devised by the verification engineer, from functional assertions.
Such assertions are obtained from relationships observed between variables
corresponding to inputs and outputs (or possibly the internal signals) of the circuit. Such
checkers are not devised by parsing the RTL code of the control circuit. Instead, they are
designed by the verification engineer taking into account the specification of the design.
i.e. checking the rules that must hold in order to confirm that the circuit is working. In
the proposed methodology, each checker is evaluated for all possible fault locations in
the pseudo-combinational version of the circuit and under all possible values for valid
input stimuli.

Structural checkers are extracted from the RTL code of the design. The methodology
for devising structural checkers from the control part of the NoC router traverses through
all different paths in the RTL code in a systematic way, and devises checkers for each
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condition in the pseudo-combinational version of the circuit under check, which would
have a relation between an input signal and an internal signal/output signal. It should be
noted that structural checkers, examine very specific behaviour(s) of the circuit and
usually, they do not check the same part of the circuit.

3.3.3 Environment Generation for Checkers’ Evaluation

Before performing any logic simulation or fault simulation for evaluating the checkers,
the environment under which the checkers are going to be evaluated must be generated.
This is handled by the next step of the proposed flow of the methodology, which is the
environment generation section (as shown in Figure 3.2). The checker evaluation
environment is created by generating exhaustive test stimuli for the extracted pseudo-
combinational circuit. These stimuli are fed through a filtering tool that selects only the
stimuli that correspond to functionally valid inputs of the pseudo-combinational circuit.
Itisimportant to note that the checkers will later be evaluated only under the set of valid
input stimuli and not the exhaustive set of all possible input patterns. As a result of this
step, the complete valid set of input stimuli that will serve as the environment for checker
evaluation, is obtained. In Sub-section 3.4examples of applying the methodology to the
control part of a NoC router will be provided, which will show the constraints that guide
the filtering tool to generate the valid set of input stimuli for the modules under check.

3.3.4 Fault-Free Simulation and Debugging Checkers

The obtained environment from the previous step, the pseudo-combinational circuit and
the synthesized checkers (structural and functional checkers) are applied to fault free
simulation. The simulation calculates fault free values for all the circuit lines. Additionally,
if any of the checkers fires during fault-free simulation, it means there is a bug in the
checker or the evaluated environment is incorrect. This facilitates the process of
debugging the checkers. If none of the checkers fire during fault-free simulation, the
checker evaluation step of the proposed methodology flow takes place (as shown in
Figure 3.2).

3.3.5 Fault Simulation of Checkers

The checker evaluation step is performed using a fault simulator developed as an
extension of a freeware test system Turbo Tester [79]. The system applies Structurally
Synthesized Binary Decision Diagram (SSBDD) models [80] for circuit modelling. Turbo
Tester injects faults to all the lines within the circuit one-by-one and this step is repeated
for each input vector. More specifically, faults are considered at the inputs and outputs
of all the fan-out free regions within the circuit. It is worth noting that unlike approaches
such as NoCAlert [23], [24] which treat the module under check as a black box during
high-level evaluation of the checkers, our proposed methodology, along with the fault
simulation tool, considers the internal signals of the design for which the checkers are
devised as well. As a result, the overall fault detection metrics (discussed later in this
chapter) for the set of checkers will be calculated.

What makes this work different from previous approaches regarding online checkers
is that all the experiments for evaluating the checkers are based on fault simulation.
Traditionally, in order to evaluate the fault detection quality of the checkers, fault
injection has been applied (e.g. the approaches in [23], [24], [81]). Fault injection refers
to injecting faults into a circuit at a certain time step and simulating it with the input
stimuli to see whether any functional output of the circuit changes and whether any of
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the checker outputs fire. Due to the fact that it is generally impossible to inject and
simulate all the faults at each circuit line at each time step, a statistically significant
sample of random faults would normally be injected and simulated.

However, as mentioned earlier, the proposed methodology in this dissertation is
based on automated extraction of a pseudo-combinational circuit out of the original
functional logic. Further, an exhaustive test for the extracted circuit is fed through a
filtering tool in order to derive the complete valid set of input stimuli which will serve as
the environment for checker evaluation. This means that in the proposed flow in this
dissertation, full evaluation of the checkers with all the valid stimuli and faults is obtained
through fault simulation. The advantage of fault simulation over fault injection is that for
considering different fault locations, there is no need for simulating the circuit at all
possible time instances. Only one fault simulation run would be sufficient to analyse the
effect of the faults [80].

Metrics used for Checkers’ Evaluation

After the overall fault simulation step for evaluating the set of checkers, the results of
their fault detection quality should be defined. This is what is performed in the next step
of the flow of the proposed methodology.

Given a fault at a line within the functional logic and a set of input stimuli, four
possible scenarios can occur:

- Case 1: Fault occurs at an internal line and is visible at functional output(s) and checker
logic flags a violation. The term True Detection is used to describe this situation, since a
critical fault is effectively detected by the checker.

- Case 2: Fault occurs at an internal line but is not visible at primary output(s). Checker
catches the fault and flags a violation. The term False Positive is used to describe this
situation. False positive is not harmful because an error is flagged which did not have any
effect. However, it has negative impact on design’s performance because normally it
causes re-execution of the task.

- Case 3: Fault occurs at internal line but is not visible at primary output(s) and the
checker logic does not detect the violation. The term Benign Miss is used to describe this
situation. Benign miss shows correct operation by the checker.

- Case 4: Fault occurs at internal node and is visible at primary output(s). Checker does
not detect violation. The term True Miss is used to describe this situation, which is the
worst possible case. True miss means that the fault propagates to the functional outputs
and onwards to the system. However, the system has no information that a critical fault
has occurred.

Let D be the number of True Detections, X be the number of Benign Misses, W be the
number of True Misses and F be the number of False Positives over all the injection runs.
In the proposed flow, the evaluation of the fault detection quality of the checkers based
is performed using the following metrics: Fault Coverage (FC), Checkers’ Efficiency Index
(CEl) and False Positive Ratio (FPR).

One of the contributions of this thesis (as also stated in [3]) is being able to formally
prove the presence or absence of True Misses, which has not been addressed in the
previous works such as [23], [24].
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D+ X

FC = m (Equation 31)
CEl = ﬁ (Equation 3.2)
FPR F (Equation 3.3)
= uation 3.
F+X I

Here, FC shows the probability of the checkers behaving correctly over all possible fault
cases (in addition to True Detections and True Misses, it also takes Benign Misses into
account), CEl shows the probability of checkers’ ability to detect critical faults (it covers
the cases that the fault is propagated to the output of the circuit, either detected by the
checkers or not), whereas FPR reports the ratio of false positives over all the cases a fault
did not propagate to circuit outputs. It is worth noting that in none of the experiments
of this dissertation, checkers resulted in false positive (FPR was zero). This is based on
our assumption that False Positives do not occur in our experiments and that is why they
are excluded from the formulas for CEl and FC calculation in Equation 3.1 and Equation
3.2. For reference purposes though, the formula used to calculate FPR is also provided,
in Equation 3.3 [82].

3.3.6 Checkers’ Evaluation and Minimization

In this step of the proposed methodology, after the fault simulation, the values for CEl
and FC and FPR when considering all the checkers, are calculated. The goal is to reach
100% coverage for SEUs both for CEl and FC. A 100% CEIl would mean that there were no
cases of True Misses during the fault simulation and thus checkers are able to capture all
SEUs at different locations in the design. In addition, each individual checker will be
weighted by summing up the total number of True Detections by the checker. This
information is used for the next step of the flow, which is the optimization and
minimization of checkers in terms of area.

Even though having the full set of checkers, devised for a design, might cover all the
faults due to SEUs, integrating all the checkers in the final design can impose significant
area overhead to the system. This can be mitigated using a methodology that would
analyse each checker one by one finally, choosing only the checkers that are necessary
for obtaining the target fault coverage, while consuming less area compared to the initial
set of checkers. This would save significant area in case some checkers cover other
checkers, i.e. one checker captures the same faults another checker can capture and on
top of that it detects some additional faults.

The weighting information obtained from the evaluation part of the proposed
methodology (the number of True Detections for each checker) will be exploited in
minimizing the number of checkers, eventually allowing to outline a trade-off between
CEl (and FC) and the area overhead due to the introduction of checker logic. The
minimization part of the flow is performed using a greedy heuristic. To this end, the
checkers are sorted based on their weight. i.e. based on the descending values of True
Detections. Then, the checker with the highest weight is chosen and fault simulation is
performed and the process is performed by considering each checker with the next
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highest weight until the target FC and CEl is reached. In the following sub-sections, some
examples of applying the framework to the control part of three NoC routers will be
provided, which will show the efficiency of the proposed methodology for devising
checkers for the design and the minimizing the checkers in terms of area in order to reach
a trade-off between area overhead and CEl (and FC).

3.4 Application of the Proposed Methodology to the Control Part of a
NoC Router

As mentioned earlier, the proposed methodology for devising, evaluating and minimizing
concurrent online checkers is not limited to the control part of a specific NoC router
architecture. To this end, three examples of applying the methodology to the control part
of NoC router Architecture 1, Architecture 2 and Architecture 3 (previously explained in
Chapter 2), are provided. However, since the underlying procedure for devising the
pseudo-combinational version of the circuit, checkers devising, fault simulation,
checkers’ evaluation and minimization are similar, only one of the examples is explained
in detail in this chapter, i.e. NoC router Architecture 1. The complete set of devised
checkers for the control part of NoC router Architectures 2 and 3 (Bonfire handshaking
and credit-based NoC routers) are listed in Appendices A and B, respectively.

3.4.1 Example: Devising Checkers for the Control Part of NoC Router Architecture 1

In the first example, the proposed methodology is applied to the control part of NoC
router Architecture 1 (explained in Chapter 2). The example consists of three
experiments. In the first experiment, the control part is only limited to the routing logic
(LBDRY), more specifically the LBDR of East input port (ELBDR), as shown in Figure 3.4. The
pseudo-combinational version of ELBDR has the flit type, destination address, empty
signal, and the previous values of the output requests as its inputs. The existing output
port signals for ELBDR are N, W, S and L (according to Figure 3.4).

In the first experiment, LBDR connectivity bits and routing bits and the current
address of the router are all hardcoded in the logic, which corresponds to the following
scenario: 2D Mesh topology, XY routing algorithm, U-turns not allowed, focus on router
with ID 5in a 4x4 2D Mesh network. This scenario allows minimizing the number of circuit

Eempty
FLIT_TYPE \L
DEST_ADDR
N
iN w
L E LBDR &
iS L
iL
#---1 FFs /
A

Figure 3.4 The pseudo-combinational circuit for the scenario with LBDR of East port for
NoC Router Architecture 1
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Figure 3.5 The pseudo-combinational circuit for the full scenario of connecting LBDR of
East port to Arbiter of South Output port

inputs and previous request values input bits that together form the inputs for the
pseudo-combinational circuit of ELBDR.

When only ELBDR is considered, the amount of inputs is limited to 11 bits:
o 2 flit type bits;
e 4 destination address bits;

e A4 ELBDR previous output values bits;
e 1 empty bit (coming from East input buffer (FIFO)).

For the second experiment, the control part is extended to LBDR and the arbitration
logic (arbiter), illustrated in Figure 3.5 [3]. The modules which have the most number of
connected signals are chosen, i.e. ELBDR (LBDR for East input) and SArbiter (Arbiter for
South output). The output request port signals for ELBDR are the same as the first
experiment, and for SArbiter, request and grant signals exist for N, E, W and L (each grant
signal corresponds to a request signal). Similar to the previous experiment, the following
assumptions have been made: 2D Mesh topology, XY routing algorithm, U-turns not
allowed, focus on router with ID 5 in a 4x4 2D Mesh network, and unicast
communication.

With the interconnection of ELBDR to SArbiter in the second experiment, the number
of input bits is increased to 19:

e 3 SArbiter request signals bits;

e 5 SArbiter previous state bits (iScurrentState) (which are used in the internal
FSM of SArbiter for prioritizing the input requests).

The reason that the above-mentioned scenarios are chosen for the first and second
experiment is that such scenarios provide the case with the most number of connections
signals between LBDR and arbiter logic. The checkers that cover faults for such scenario,
are symmetrical to the other cases (different connections between each LBDR logic to
arbiter logics).

Once the first preparation step for the proposed methodology has taken place and
the pseudo-combinational circuit to be studied is extracted, two sets of checkers are
devised, one from the functional behaviour of the considered circuit, evaluating the
possible implications existing in between input and output signals and the other one the
structural checkers, which are devised by traversing all different possible paths in the RTL
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of the design under check. It should be noted that a priori it may be very difficult to
outline the effectiveness of a single checker or the overlap of different checkers in
detection (in terms of the domain(s) of the circuit they are checking).

Together with the considered pseudo-combinational circuit and its sets of checkers,
a set of input patterns is neec{gd for performing fault simulation. The exhaustive test
would require 2 =2,048 and 2 =524,288 input stimuli, for the ELBDR and for the ELBDR
+ SArbiter control path experiments, respectively. However, in order to minimize the
number of stimuli, and more important, to avoid checkers being evaluated in non-
realistic conditions, the exhaustive set of stimuli has to be filtered to contain only the
functionally feasible values.

The filtering step of the proposed methodology is based on the implemented routing
algorithm (i.e. allowed destinations from the current router), restrictions in the routing
logic (e.g. no U-turns) and emptiness condition of the input buffer (FIFO) (for the first
experiment), as well as invalid conditions for the state variable of the arbiter logic (i.e.
violation of one-hot encoding) (for the second experiment). The constraints existing for
the inputs of the third experiment are also explained in detail when experiment 3 is
described. It is important to stress the fact that none of the checkers fired in fault free
simulation with any of the considered input stimuli, in neither of the experiments. The
filtering of the exhaustive set of stimuli led to a final set of 1536 vectors and 61440
vectors for the ELBDR and ELBDR+SArbiter scenarios, respectively.

3.4.2 Summary of Experimental Results

Experiment 1: ELBDR Scenario

By applying the proposed methodology to ELBDR of NoC router Architecture 1, the initial
set of functional and structural checkers was devised for its pseudo-combinational
equivalent circuit, as listed in Table 3.1.

Table 3.1 Proposed Checkers for LBDR of East Input Port (ELBDR)

Checkers for Routing Logic (LDBR)

If there is a request to the routing logic (the
corresponding input buffer is not empty), LBDR has to
compute at least one valid output direction (according
to XY routing).

If no flit arrives (the corresponding input buffer is
2 | No LBDR output empty), all the output port signals of LBDR should
remain zero.

If the corresponding input buffer is not empty (there is
a request to LBDR), because of using XY routing, at
most only one output port signal of the LBDR logic can
become active.

If the corresponding input buffer is not empty (there is
4 | Switch LBDR output a request to LBDR) and a non-header flit has arrived,
LBDR outputs should remain the same.

If the corresponding input buffer is not empty (there is
a request to LBDR) and a header flit has arrived, the
local output should become active only if the packet
has reached its destination.

1 | Valid LBDR output

3 | Single LBDR output

5 | Local Port output
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Figure 3.6 Weights of devised checkers (number of True Detections) for EBLDR

== CE| === FC AreaOv

1 2 3 4 5 6

Number of Checkers

Figure 3.7 ELBDR scenario FC, CEl and area overhead results

In order to evaluate the checkers under all possible values of valid input stimuli, the

following situations have been considered in the filtering tool of the proposed
methodology:

e [f input buffer’'s empty signal is high, any other input bit is meaningless, and
therefore any value is allowed for it.

e [f the incoming flit is a header, the destination address has to be valid
according to the XY routing and U-turn restrictions.

e |f the incoming flit is a body or tail flit, the previous output request values must

be valid, and they must follow a one-hot fashion, according to XY routing.
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Figure 3.6 displays the weight information output of the checkers’ evaluation,
corresponding to the initial set of checkers for the ELBDR. The values basically indicate
the number of True Detections.

These True Detections quantities were evaluated by iterating the fault simulation,
including at each step the next heaviest checker (checker with highest number of True
Detections) still not included in the currently considered set of checkers, initialized only with
the first heaviest checker. By performing the greedy heuristic on the initial set of 6 ELBDR
checkers, it was observed that when the 3 most significant checkers were used (i.e. checkers
err_nolLBDRout, err_validLBDRout and err_singleLBDRout in Figure 3.6 [3] with highest
number of True Detections), CEl and FC could reach 100% without encountering any cases of
True Misses using the valid set of input stimuli. The advantage is that the final set of three
checkers impose an area overhead of 78.57%, which is much less than the area overhead of
the initial set of checkers (185.71%) (as shown in Figure 3.7 [3]). It is worth noting that the
results obtained by greedy heuristic is not necessarily the most optimal result always, but, it
is a sub-set of sub-optimal results.

Experiment 2: ELBDR and SArbiter Scenario

In this scenario, the LBDR of East input port of the NoC router Architecture 1 is connected to
the arbiter of the South output port (ELBDR is connected to SArbiter), according to Figure 3.5.
Using the same methodology for devising the initial set of functional and structural checkers,
for the scenario of ELBDR and SArbiter, an initial set of 28 checkers was devised only for
the SArbiter logic. However, as it will be shown later, for the ELBDR + SArbiter scenario, when
evaluating the checkers for both units together, only the 3 checkers for ELBDR chosen
previously by the minimization flow (not the total initial set of 6 checkers for ELBDR) are
considered along with the 28 checkers of SArbiter. The checkers devised for SArbiter are
grouped and listed in Table 3.2 [3].

Table 3.2 Proposed Checkers for the Arbiter Logic of South Output Port (SArbiter)

Checkers for the Arbiter logic

If there is a request from LBDR, arbiter has to assert at least
6 Valid Grant output one of the grant signals for the corresponding output
direction.

If there is no request to the arbiter, it should not assert any of

7 No Grant output
P the grant signals for any direction.

Whenever there is a request to the arbiter, the grant signals
8 Invalid Grant output should go active corresponding to that specific requested
direction and invalid direction should not be chosen.

. . Output state variable (oScurrentState — which represents the
Invalid arbiter output

9 state grant signals) in arbiter’s pseudo-combinational circuit can not
possess invalid values due to the one-hot coding.
If the input previous state variable (iScurrentstate) is in IDLE
10 Invalid IDLE state for state and there is a request for arbitration from LBDR,
arbiter input state oScurrentstate should not remain in IDLE state i.e. a grant

signal should be asserted.

In case there is one or multiple request(s) to the arbiter, it
should follow the correct prioritization (Local, North, East and
then West) according to the input previous state variable
(iScurrentstate).

11 Priority Grant
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Figure 3.8 Weights of checkers proposed for the EBLDR and SArbiter scenario

In this scenario, in order to evaluate the checkers under valid input stimuli, the
considered filtering scheme is an extension of the one used for the ELBDR experiment.
In addition to the previous constraints, the new set of input patterns include adding the
one-hot encoding constraint to the 5 previous state value bits (iScurrentstate) of the
SArbiter’s pseudo-combinational unit.

First, the evaluation tool was run considering the whole set of checkers for the
SArbiter (28 checkers), altogether with only the minimized set of 3 checkers for the
ELBDR, which led to a total set of 31 checkers. Similar to the previous experiment, the
weights of the checkers (number of True Detections) are provided using the fault
simulation part of the proposed methodology and listed in Figure 3.8 [3] in descending
order. Focusing on the Sarbiter, it is observed that the two checkers monitoring different
aspects of the one-hot encoding condition for the arbiter's state variable, have the
highest weights.

Applying the greedy heuristic to the initial set of 31 checkers (3 for ELBDR and 28 for
SArbiter) led to the final minimized set of 3 checkers for ELBDR and 2 checkers for
SArbiter. With this final set of 5 checkers, it is still possible to reach 100% CEIl and FC for
single stuck-at faults for the ELBDR and SArbiter scenario. In case of SArbiter, the area
overhead of the final minimized set of 2 checkers (56.82%) is much less compared to
using the whole initial set of 28 checkers which would impose an area overhead of
170.45%. One of the observations that was also has been made during the experiments
is that the two set of checkers for the ELBDR and the SArbiter are independent, i.e. they
cover faults for different and separate parts of the circuit, without any overlap. This
observation will be explained later in this sub-section.

It is interesting to note that the minimized set of 5 checkers for the ELBDR and
SArbiter scenario corresponds to one-third of the whole 31 checkers set area. Figure 3.9
[3] shows the CEl, FC and area overhead results for the experiment in which the checkers
for only the SArbiter module are evaluated. As it can be noticed in Figure 3.9 [3], with
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Figure 3.9 SArbiter scenario FC, CEl and area overhead results

Table 3.3 Weights for minimized set of checkers

Weight

Checker Name (No. of True I%etections)
Serr_validgrant 871552
Serr_invalidstate 600512
Eerr_nolLBDRout 243840
Eerr_validLBDRout 57600
Eerr_singleLBDRout 47680

only 2 SArbiter checkers (out of 28 checkers) which have the highest number of True
Detection, it is possible to reach 100% CEl and FC, while imposing less than 60% area
overhead.

The final minimized set of 5 checkers along with their corresponding weights are
listed in Table 3.3 [3].

Impact of clustering the faults for ELBDR and SArbiter scenario: One of the
observations that was also made during the first and second experiment was that the
two set of checkers for the ELBDR and the SArbiter are independent, i.e. they cover faults
for different and separate parts of the circuit, without any overlap. Therefore, for the
ELBDR and SArbiter scenario, even though the control part consists of a path from ELBDR
to SArbiter, 100% fault coverage for SArbiter does not necessarily mean that they have
also covered all the faults occurring in ELBDR. For this reason, the minimized set of ELBDR
checkers is used, and the previously introduced weight-based greedy minimization
heuristic is applied to the SArbiter checkers set for the ELBDR + SArbiter scenario.

Assuming that there was no information of the overlap of faults detected by the
checkers for ELBDR and SArbiter, the weight-based greedy heuristic, starting from the
heaviest checker, would add at each step the next heaviest checker (from the whole set
of 31 checkers) still not considered in the current set of checkers, based on the weight
information displayed in Figure 3.8 [3].
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Figure 3.10 CEl and FC results without considering independent clusters

Figure 3.10 [3] shows the inefficiency of the heuristic approach caused by the lack of
the clustering information. The number of steps in the greedy procedure is heavily
increased, and only after 19 steps, when the Eerr_singleLBDRout checker for ELBDR is
considered, the 100% upper bound for CEl and FC is reached with large area overhead.

However, when partitioning the fault set to clusters is taken into account and
minimization is performed on the clusters separately, then total of 5 checkers are
needed. Table 3.3 [3] illustrates the importance of considering the clustering
information. As it can be observed in the table, the weights of the ELBDR checkers are
far less than those of the SArbiter, but they are still needed to achieve full coverage for
the considered design.

Experiment 3: FIFO Control Part Scenario

Fault Injection Experiments for the FIFO: Using the methodology proposed in this
dissertation, the experiments were extended to the full control part of the router
Architecture 1, adding control part of FIFO to the circuits under check (this experiment
is included in publication B [82] mentioned in Chapter 2, included to this thesis).

For the FIFO’s control part, an initial set of 8 checkers (functional and structural) were
devised from the verification assertions. These checkers are grouped and listed in Table
3.4 [82]. As mentioned in [82], it should be noted that additional checkers are devised
from temporal assertions for modules that do not achieve 100% fault detection. For
these checkers the formal qualification step described in the proposed flow of
methodology in this dissertation was not possible at the moment of writing the paper
and thus, traditional fault injection experiments were carried out by a sequential fault
simulation tool included to the methodology flow.

However, in experiments 1 and 2 and also in the experiments for the control part of
Bonfire NoC router Architecture 2 (included in Appendix A and also published in
publication D), the checkers’ evaluation process is carried out using fault simulation.

For evaluating the FIFO control part checkers in Experiment 3, a set of input stimuli
for the FIFO was devised, aiming to cover all the possible situations for the control logic.
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Table 3.4 Proposed Checkers for control part of FIFO

Checkers for FIFO control part

Whenever reset goes high, at the next clock cycle empty
1 Reset checker flag should be high (reading and writing pointer are reset
to the same value).

Empty and full flags should never be high at the same
2 Flags checkers time. Whenever the defining condition occurs, the
corresponding flag should go high at the next clock cycle.
Reading and writing pointers have to respect one-hot

3 One-hot pointers checkers .
encoding.
4 Registers enable DMR Duplication and comparison for the logic enabling the
checker writing operation in data registers.

Reading pointer update Whenever read enable is high and the FIFO is not empty,

5 checker 1 at the next clock cycle the reading pointer should be
updated.
. . If either read enable is low or the FIFO is empty, at the
Reading pointer update . . .
6 next clock cycle the reading pointer should preserve its
checker 2
value.
- . Whenever write enable is high and the fifo is not full, at
Writing pointer update . .
7 the next clock cycle the writing pointer should be
checker 1
updated.
3 Writing pointer update If either write enable is low or the fifo is full, at the next
checker 2 clock cycle the writing pointer should preserve its value.

Table 3.5 Proposed Checkers for FIFQO’s Control Part Infrastructure

Control Part Infrastructure Checkers

Logic producing read enable signals for the FIFOs (5 OR
FIFOs read enable DMR & p . & & . (
1 gates) is duplicated, then real and duplicated outputs are
checker
compared.

Logic producing enable signals for the output registers (5

Output registers enable

2 DMR checker OR gates) is duplicated, then real and duplicated outputs
are compared.
3 Flit type LBDR error Flit type field of a flit has to respect one-hot encoding.

The following conditions were considered in the pattern generation procedure:

Reset condition;
Filling the FIFO, followed by reading from it until it becomes empty;

e Smooth traffic condition, i.e. concurrent writing and reading operations, but
avoiding the FIFO to get full;

e Idle condition, i.e. write and read enable signals low, during reading and writing
operations, in different conditions of fulfilment of the FIFO.

Using fault injection experiments with the checkers listed in Table 3.4 [82], 100% FC and
CEl is obtained for the control part of the FIFO, considering the patterns derived from the
previously listed conditions. Similar to previous experiments, no false positives were
encountered in this experiment.

However, as mentioned earlier, achieving 100% FC and CEl became possible with the addition
of new checkers obtained from the fault injection experiments for the

46



control part of FIFO. This was performed in order to identify uncovered faults in the
interconnections of control part modules (as stated in [82]). The 3 additional checkers
proposed for the infrastructure of FIFO’s control part are listed and grouped in Table 3.5 [82].
Full details regarding the third experiment and also the impact of the router’s data-width on
the checker’s area overhead are reported in publication B (mentioned in the list of
publications in Chapter 1).

3.5 Applicability of the Proposed Methodology to Control Part of Any NoC
Router Architecture

One of the targets of the first contribution of this thesis is to keep the proposed methodology
as generic as possible. Of course, if the router architecture under check changes, depending
on the structure of the control part modules and their RTL code and the specification, the
checkers devised for that router would change. However, the principles and the basis of the
methodology would still remain the same, which includes identifying the control part
modules, extracting the pseudo-combinational version of the module under check and
providing the appropriate environment as inputs and devising the two sets of structural and
functional checkers, and finally evaluating the checkers in terms of CEl and FC and minimize
in terms of area, in an automated manner.

The complexity of the design can indeed affect the process of minimization when
performing the greedy heuristic. As some further examples of providing proof of applicability
of the proposed methodology to control part of routers, two other architectures are studied.
To this end, the methodology is applied to the control part of Bonfire handshaking and credit-
based router architectures, explained earlier in Chapter 2. However, for the sake of repetition,
the set of checkers for Architectures 2 and 3 are listed in Appendices A and B, devised using
the same methodology proposed in this dissertation.

3.6 Chapter Summary

In this chapter, the first contribution of this dissertation was proposed and explained in detail,
which was a methodology for devising concurrent online checkers for the control part of a
NoC router (regardless of its architecture). The proposed methodology has been applied to
the control part of three different NoC routers. The proposed methodology is able to reach
100% coverage for online detection of faults caused by SEUs and single stuck-at faults in the
control part of the NoC router for all three considered examples.

Moreover, the two sets of checkers devised for the circuit, i.e. functional and structural
checkers, guarantee single cycle fault detection latency, along with formal proof of True
Misses. In addition, the automated minimization part of the proposed methodology uses
greedy heuristics, providing the opportunity to reach a trade-off between area overhead of
the checkers and the target fault coverage with the minimized set of checkers. The
methodology proposed in this chapter has led to publications A and B [3], [82]. Also, the
same methodology was applied to the control part of Bonfire handshaking NoC router, which
led to publication D [83].

As a conclusion, the final area overhead of the minimized set of checkers conforms to the
statement mentioned in [4]: “In practice, a method of concurrent checking is of interest if the
necessary area is considerably smaller than the 220-250% of the area of the functional
circuit needed for duplication and comparison, and if the probability of detecting errors
due to single stuck-at faults is about 90%+x.”
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4 FAULT LOCALIZATION AND ABSTRACTION IN NETWORK-
ON-CHIPS

4.1 Introduction

In addition to the online detection of faults in control part of NoCs, the localization of
faults and also abstracting the fault information is of high value and must be performed
with lowest possible latency. Especially, in case of NoC routers, such abstraction can be
utilized in order to model faulty components of the routers or model fault in turns, which
can be further used for re-configuration of the system. The system fault manager is in
charge of this re-configuration, which has a holistic view of the healthy/faulty turns in
the network.

This chapter covers the second contribution of this dissertation, which makes use of
the information provided by the concurrent online checkers in the control part of a NoC
router for fault localization and abstraction. The literature review regarding fault
localization approaches in the control part of NoCs has already been covered in
Chapter 2. In this chapter, first, it is explained how the information acquired from online
checkers is interpreted and abstracted to meaningful data for higher levels in the system,
such as the application layer. To this end, the checker outputs (acquired using the
proposed methodology in Chapter 3) are fed to a fault localization module (developed
by the author of this dissertation) in the Bonfire router Architecture 3, making it possible
to find the location of faults in the control part of the router at different granularity
levels, i.e. router-level, component-level and input/output port level (which is used for
modelling turn faults). Especially, the third level of granularity will be explained in detail,
which is the contribution of this thesis and used by the system fault manager. However,
it is worth noting that the implementation details of the system fault manager is not in the
scope of this dissertation and the focus of this chapter is on the fault localization module
and compression of fault information via abstraction. The contribution of this chapter has
led to publication E [67].

4.2 Fault Localization and Fault Information Abstraction for Control
Part of NoC Routers

Two of the main aspects of fault diagnosis in NoCs are fault detection and fault
localization [7]. In this thesis, the former is performed via the concurrent online checkers,
integrated at each control part module of a NoC router, whereas the latter is performed
via a fully combinational logic integrated in the router to compress the fault information
acquired from checkers and model turn faults in routers (introduced in this chapter).

The accuracy and granularity level of fault localization in NoC routers is important.
Depending on the level of abstraction required by the system fault manager, the fault
localization granularity can be adapted. It should be noted that this dissertation covers
localization of faults and providing compressed information from the checker outputs,
which would be transmitted to the system fault manager. However, the implementation
details of the fault manager and how this information is transmitted, is out of the scope
of this work.

As an example, all of the proposed mechanisms in this chapter are implemented in
the Bonfire NoC router Architecture 3 (introduced in Chapter 2). The fault localization
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Figure 4.1 Router-level fault localization for control part of NoC router by means of
concurrent online checker outputs.

and abstraction module has been developed and integrated within the router design by
the author of this thesis.

The highest level of abstraction supported is router-level fault localization (Figure
4.1). This is achieved by ORing all the checker outputs for the control part components
of the router. In such a case, regardless of the fault location in the control part of the
router, the signal resulting from ORing all the checker outputs, indicates that the router
is faulty. However, this level of coarse granularity suffers from low fault localization
accuracy, since a fault in a single component results in the whole router rendered as
faulty, whereas some intact parts of the router could have been usable.

The next level of fault localization granularity is router control part module-level fault
localization (Figure 4.2). To this end, for each control part module (FIFO control part,
routing computation unit and arbitration unit), the corresponding checker outputs for
each module are ORed together and they form an error signal. This would help
distinguish faults occurring in different modules, for instance, if the control part of FIFO
for the North input port of a router becomes faulty, only the checkers corresponding to
that module which are ORed together, will fire. The advantage of this level of fault
localization granularity is that, for instance, by using resource-sharing based techniques
(such as [84]), the faulty component can be isolated and the router can still function with
remaining intact components, but at the price of gracefully degraded performance.

The third level of abstraction considered for localization of faults in the Bonfire NoC
router Architecture 3 takes into account the control part checker outputs in order to
model turn faults (Figure 4.3), which is the contribution and focus of this chapter. NoC
router Architecture 3 has been chosen due to its higher performance compared to
Architecture 2, because of using credit-based flow control (which is already explained in
Chapter 2).

50



/ ROUTER’S CONTROL PART \

F| FO AIIFIFO Control Part
Checkers of North Input Port
CONTROL PART [ CHECKERS || :I>7 Faulty_N_ FIFO_Control_Part
CONTROL PART [ CHECKERS [ ] ﬁi Faulty_E_ FIFO_Control_Part
N
CONTROL PART [CHECKERS || @— Faulty_W_ FIFO_Control_Part
B
- :I>— Faulty_S_ FIFO_Control_Part
W
CONTROL PART | CHECKERS [] ::I>— Faulty_L_ FIFO_Control_Part
S All FIFO Control Part
) l:l:l:m Chectreof Lons mot 7ot
ROUTING LOGIC AllLBDR Checkers
of North Input Port
CHECKERS [T ) Faulty_N_ LBDR
CHECKERS [ :I>— Faulty_E_ LBDR
N
I CHECKERS -- — S TR
£ [ |
CHECKERS [ :I>— Faulty_S_LBDR
W
CHECKERS | ) Faulty_L_LBDR
All LBDR Checkers of
L ROUTING LOGIC Local Input Port
ARBITER Al Arbiter Checkers of
North Output Port
CHECKERS [ } ) Faulty_N_ ARBITER
CHECKERS 1 # Faulty_E_ ARBITER
N
CHECKERS T # Faulty_W_ ARBITER
E
CHECKERS [ @— Faulty_S_ ARBITER
W
CHECKERS | ) Faulty_L_ ARBITER
ARBITRATION LOGIC All Arbiter Checkers
L of Local Output Port

Figure 4.2 Component-level fault localization for control part of NoC router by means of
concurrent online checker outputs.

A turn fault is specified as a fault present in a path from an input port to an output
port. For instance, in a 2D Mesh-based NoC router, a West to North turn fault (shown as
W2S turn fault) denotes the existence of a fault in either of the following modules:
control part of FIFO of West input port, routing computation unit of West input port, or
the arbitration logic related to West input and North output port. Of course, the fault can
also be in a combination of these locations or in all of them.

In either case, the faulty scenario is interpreted as a West to North (W2N) turn fault.
Such level of abstraction of checkers' fault information facilitates the process of
reconfiguring the routing algorithm by the system fault manager. Especially, if LBDR is
used to implement the routing logic (which is the case in all router architectures
discussed in this dissertation), the set of allowed and disallowed turns shown in form of
the routing bits can be re-configured by the system fault manager, using the information
acquired from the turn faults at each router.
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Figure 4.3 Combining concurrent online checker outputs and generating the abstracted
Turn Fault (West-to-North (W2N) turn fault shown as an example).

In addition to the 8 turns that denote a 90 degree change of direction in the router
(i.e. N2E, N2W, E2N, E2S, W2N, W2S, S2E and S2W), there are 4 straight paths (i.e. N2S,
S2N, E2W and W2E), and 8 paths/turns related to the local (L) port of the router (4
starting from the local port to the other output ports and 4 starting from the other ports
and leading to local port) (i.e. L2N, L2E, L2W, L2S, N2L, E2L, W2L and S2L), thus making
in total 20 different turns in a router. Therefore, the fault localization module proposed
in this dissertation, generates the values of these 20 turn faults based on the information
acquired from the checkers.

Example: In order to clarify how a turn fault is modelled using the proposed fault
localization module, the logic generating the West to North (W2N) turn fault in is
explained in details. This example corresponds to the control part of Bonfire credit-based
router. Recalling from Table B. 1 in Appendix B, which shows all the concurrent online
checkers devised for the control part Bonfire credit-based router, in order to model the
W2N turn fault, the following checkers from each control module are taken into account
in the fault localization unit (which is fully combinational):

e All checker outputs for the control part of FIFO for the West input port -
(Checkers 1-110 from the table in Appendix B for W FIFO)- are ORed together,
since the FIFO of West input port contributes to all turns deriving from the West
input (including W2N turn).

e The next component that contributes to any turn stemmed from the West input
would be the LBDR (routing computation unit) for the West input. However,
for the case of West LBDR, only the checkers that check part of the logic related
to North output request generation are considered and ORed together. The rest
of the checkers are excluded from the logic for W2N as they do not contribute
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to it (Checkers 1-7, 8, 9, 18-20, 21, 25-29, 145-154, 155-161 from the table in
Appendix B for W LBDR are included).

e Finally, as the last control part module, the Allocator (arbitration) unit of the
router is taken into account. The Allocator is composed of an internal logic
which handles the credit counters and the flow control signals, plus 5 Arbiter_in
modaules for handling requests from inputs to multiple output directions (in case
of using an adaptive routing algorithm), and 5 Arbiter_out modules which
handle the arbitration for multiple requests for the same output port, giving
grant to only one of the requests (as explained in Chapter 2). Since the focus is
on W2N turn fault, thus, the fault localization unit should only consider the
Arbiter_in for West input checkers and Arbiter_out module for North output
checkers for modelling such turn fault. In addition, all the Allocator internal
logic checkers that contribute to the W2N turn fault are also considered. Finally,
all the considered checker outputs are ORed together (Checkers 5, 6, 51, 52, 61,
62-67 for Allocator internal logic and credit counter handling logic, Checkers 1,
2-5, 24, 25, 34, 35, 44, 45, 54, 55, 62-64, 65 for West Arbiter_in, and Checkers
1,9-11, 20, 24, 25, 35, 40, 42-45, 46, 51 for North Arbiter_out, from the table in
Appendix B).

e As the last step, all the checkers ORed from the previous steps are ORed
together to create the final West to North (W2N) turn fault signal, which is one
of the 20 turn faults information generated by the fault localization module.
Similar deductions can be inferred to form the logic for localizing the remaining
19 turn faults in the router.

It is worth noting that in the implementation of the fault localization module in the
Bonfire credit-based router, the third level of abstraction (modelling turn faults) has been
chosen, however, the architecture supports all three above-mentioned levels of
granularity for fault localization. The growing number of checkers for a complex design
would make the fault detection information generated by the checkers quite large (in
terms of the number of bits). This can, in turn, make it infeasible to transmit all fault
information from the checkers to the system fault manager, which keeps a holistic view
of the health status of the components of the network. This is one of the motivations
behind introduction of the fault localization module in this dissertation, which would
help reduce the total of more than 1000 control part checker outputs (more than 1000
bits) for Bonfire credit-based router to a final set of only 20 bits (representing 20 the turn
faults).

Table 4.1 Area Overhead Analysis of the proposed Fault Localization Unit for modelling

turn faults
. Fault Localization Fault-Tolerant
Baseline Router
Module Router
Area (um?) 92800 5314 193568
Area Overhead (%) --- --- 107.3%
Critical Path Delay (ns) 7.69 2.42 7.82

Critical Path Delay

_— _—_— 0,
Overhead (%) 1.69%

53



The 20-bit turn faults obtained by the fault localization module could also be further
classified based on their frequency of occurrence, as transient, intermittent and
permanent, for instance using the approach proposed in [85]. This would also, in turn,
help the system fault manager make decisions about which resources to use or not use
when monitoring the health status of the system. In addition, how the classified fault
information is propagated to the fault manager is of utmost importance, for instance,
the main NoC can be used for this purpose (e.g. [67]), or a dual network could be used
(e.g. [86]). The latter imposes more area overhead though. The author would like to
emphasize that the details of both topics of fault classification and propagation of
classified fault information to the system fault manager are out of the scope of this
dissertation.

4.3 Hardware Overhead Analysis of Fault Localization Module for
Modelling Turn Faults

As mentioned earlier, the proposed fault localization module with the capability of
modelling turn faults is integrated in the Bonfire credit-based flow control NoC router.
Of course, beforehand, using the proposed methodology in this dissertation, the full set
of structural and functional checkers were devised for the control part of the router
(comprised of FIFO control part, LBDR and Allocator). The checker outputs are fed to the
fault localization module, integrated in the router. It is worth noting that similar to [24],
only one fault localization module exists per router and takes into account the checker
outputs from the current router and does not depend on the neighbour(s) (unlike [28]).

Table 4.1 has summarized the area overhead of the fault localization module with
respect to the whole router. The area results are synthesized using AMS 0.18 pum CMOS
technology library [87] and by means of Synopsys Design Compiler [88]. As it can be seen,
the fault-tolerant router (Bonfire NoC router Architecture 3) with all the checkers, fault
localization module and all fault-tolerance mechanism integrated, incurs 107.3% area
overhead compared to the baseline non-fault-tolerant router. However, the fault-
localization module only takes 2.76% of the area of the fault-tolerant router. This is less
than the amount reported for the fault localization unit proposed for NoCAlert [24] (4.4%
when considering the input/output port granularity level for localization with assertion
vector compaction), while the proposed approach in this thesis not only covers faults in
the control part modules related to input and output ports with single cycle latency, but
it also performs the compression of the fault information and models the turn faults, that
has not been addressed in the previous works. As mentioned earlier, such information
can further be used by the system fault manager, in charge of computing a new routing
algorithm to handle the faulty topology.

It is also worth noting that according to Table 4.1, the critical path delay of the fault
localization module is 2.42 ns (with a constraint of clock period set as 3 ns in the Synthesis
tool). The fault-tolerant router with all the fault detection and localization mechanisms
incurs a critical path delay of about 1.69% compared to the baseline router (without any
checkers and fault-tolerance mechanism).
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4.4 Chapter Summary

This chapter covered the second contribution of this dissertation, which is proposing
a fault localization module that takes into account the checker outputs and provides
abstract and compressed fault information to be used by higher levels of abstraction (e.g.
the application layer). The proposed mechanism has also been integrated into the
Bonfire credit-based NoC router. Using the proposed fully combinational fault
localization module, it was possible to compress more than 1000 checker outputs per
router to a final meaningful set of only 20 bits, representing different turn faults in the
router. The modelling of turn faults facilitates the process of routing re-configuration
when a system fault manager deals with the faulty topology, taking into account the
fault/health status of the routers. Synthesis results showed that the fault localization
module only takes 2.76% of the fault-tolerant router with all the fault detection and
localization mechanism integrated, which is still a lower amount compared to the state-
of-the-art. The fault localization and abstraction approach proposed in this chapter as
the second contribution of this dissertation has led to publication E [67].

55






5 LOGIC-BASED MECHANISM FOR IMPLEMENTATION OF
FAULT-TOLERANT ROUTING IN 3D NETWORK-ON-CHIPS

5.1 Introduction

In an on-chip network, processing cores communicate with each other on one layer and
they might also need access to their memory blocks at the same time, therefore one
approach can be placing the memory blocks on an adjacent layer in a 3D NoC
architecture. Different research works have focused on the topic of 3D integration of
NoCs by using stacked layers [89]. As the number of vertical links is reduced in a 3D NoC
- thus, transforming them into vertically partially connected 3D NoCs [51], [59] - the
utilization of the remaining vertical links increases, therefore creating a communication
bottleneck. These missing vertical links can be either the result of faults, such as wear-
out, or they can be related to saving area due to the on-chip area constraints. Therefore,
in order to run an application on such NoCs, a mechanism for implementing routing
algorithms which would be both fault-tolerant and adaptive, would help mitigate the
issue by uniformly distributing packets on the communication links and bypassing the
faulty links, while being re-configurable at the same time. This has been the focus of the
third contribution of this dissertation, explained in this chapter.

This chapter proposes a mechanism for implementing fault-tolerant routing
algorithms in 3D Mesh-based Network-on-Chips with partially connected vertical links.
The proposed mechanism removes the need for routing tables at routers, thus, making
it a scalable solution for large network sizes. In addition, it does not rely on the location
and number of faulty vertical links. Moreover, it does not augment the packets with any
additional information overhead when transmitting them across the layers of the 3D
NoC.

The literature review regarding the previously proposed fault-tolerant routing
algorithms and mechanisms for 3D NoCs and also the background covering the pre-
requisites for the baseline mechanism which the proposal of this chapter is based on, are
all provided in Chapter 2. Therefore, the chapter starts with the description of the
mechanism, named Logic-Based Distributed Routing for 3D NoCs (LBDR3D), which is an
extension to LBDR, and follows with an example scenario to show how the mechanism
handles routing in a 3D NoC with faulty vertical links. Afterwards, a summary of the
experimental results is provided, emphasizing the scalability of the proposed approach.
Finally, the chapter is concluded and a summary is provided, remarking the theoretical
novelties. The contribution of this chapter led to publication C [90], included in the list
of publications in Chapter 1.

5.2 LBDR3D Mechanism

One approach to address implementation of routing algorithms in Network-on-Chips
(NoCs) is by means of routing tables. They make it possible to implement any routing
algorithm for any type of topology [65]. However, they tend to grow with the increasing
size of the network (number of nodes), thus, facing the challenge of scalability. On the
contrary, implementing routing algorithms using a logical circuit distributed at each
router in the network, can overcome this scalability issue. To this end, in [65], a logic-
based approach named as LBDR was proposed which made it possible to implement any
dead-lock free routing algorithm for NoCs with 2D Mesh topology and topologies derived
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from the 2D Mesh. The mechanism basically describes the topology and routing
algorithm using two fixed sets of configuration bits, called connectivity and routing bits.
This brings the advantage of keeping the mechanism scalable, as it does not depend on
the size of the network. Moreover, it provides the possibility of re-configuration - for
instance, to address adaptation of the network to a situation with faulty links - by only
modifying a few set of bits at each router.

LBDR3D is an extension to the previously introduced LBDR mechanism. The
mechanism is inspired by the idea that for 3D NoCs with faulty vertical links, whenever a
cross-layer communication is going needed, data should be transmitted one step closer
to nodes with vertical links to eventually reach the corresponding destination layer and
destination node. In contrast to previous approaches such as Elevator-first [51], LBDR3D
does not need each router to store the location address of the nodes with vertical links,
making it a more scalable solution. Instead, it utilizes a new set of bits, called the vertical
bits (explained later in this chapter), which only indicate the existence of a node with
vertical link. Moreover, in LBDR3D, the packet information is not augmented with any
additional overhead, when transmitting data across the layers of the 3D NoC. More
importantly, unlike approaches such as [59]-[61], [91], LBDR3D does not depend on the
number and location of the faulty vertical links, and does not depend on the existence of
any pillars in the network. With regards to faults on the horizontal links in each layer,
LBDR3D supports the same number of faults as the baseline LBDR does (which is 2D Mesh
topology in each layer and topologies derived from the 2D Mesh, as stated in [65]).

5.2.1 The Foundations for LBDR3D logic

The terminology “the Foundations” for the LBDR mechanism has been introduced in
[92], which includes the configuration bits based on which LBDR would be able to
implement the routing algorithm. The configuration bits include: routing bits and
connectivity bits for the baseline LBDR mechanism. In the proposed LBDR3D mechanism,
a new set of vertical bits is also added, which will be explained shortly.

As stated earlier, LBDR3D is an extension to LBDR [65]. In order to add support for 3D
NoCs, the connectivity bits (Cx) of the logic are extended to cover Up and Down directions
in the 3D domain, in addition to the existing directions for 4 cardinal 2D directions (North,
East, West and South), therefore, leading to six connectivity bits per router, as follows:

Cx"cn/ Cel Cwl Cs: Cul Cd

LBDR3D uses the same number of routing bits (Rx) as LBDR for implementing the
routing algorithm in each layer, as follows:

RXy : Rnel Rnw; Renl RESI RW"I RWSI RSEI RSW

One of the new additions to the mechanism is a new set consisting of 8 bits per router,
named as vertical bits, based on which the logic can determine whether there is at least
one node with up and/or down vertical link(s) in the corresponding direction or not (4
bits for up and 4 bits for down links). This reduces the area overhead compared to
approaches such as Elevator-First [51], because the location address of the nodes with
vertical links does not need to be stored at every router and only a fixed set of bits
indicates the existence of at least one such node in a specific direction or quadrant with
respect to each router. The vertical bits for LBDR3D are defined as follows:

Ny, Eu, Wy, Su, Ng, Eq, Wa, Sa
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The bits ending with u indicate that there is at least one vertical node with up link in
the corresponding direction. The same applies to the bits ending with d, but for down
links. In order to cover the situations in which the vertical node is located on a quadrant
with respect to the current node, both the corresponding bits are set. For instance, if a
router has a node on the North-East quadrant with the up vertical link, both N, and Eu
bits at the current router are set.

One important issue is the approach taken to compute the values of the vertical bits
at each router, which is addressed in the sub-section 5.2.3 of this chapter. This is
performed via the proposed offline algorithm that calculates the vertical bits at each
router at the same time when connectivity and routing bits are initialized. The re-
configuration process of these bits is performed using the OSR-Lite framework [8] in a
transparent way, without imposing significant run-time latency and affecting normal
operation of the network. Details regarding the re-configuration process are however,
out of the scope of this dissertation.

5.2.2 LBDR3D Logic Description

The logic of LBDR3D is proposed based on the principle that packets should be steered
towards a node with vertical link when having cross-layer traffic, making the packet
getting closer to its destination eventually, but it should not wander between different
nodes with vertical links in one layer, since in that case, it can lead to live-lock and affect
performance. Also, the underlying routing algorithm in each layer of the 3D NoC must be
deadlock-free for the mechanism to guarantee deadlock freeness. The complete logic of
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Figure 5.1 Proposed logic of LBDR3D mechanism
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LBDR3D mechanism is shown in Figure 5.1 [90] (publication C).

In the first phase, the direction signals are computed by comparing the current
address of the packet (stored in the current router) and the destination address of the
packet (extracted from the header flit of the packet), i.e. signals N’, E/, W’, S/, U’ and D’
are computed. Also, in this phase, first the quadrants or directions that the packet cannot
traverse are filtered out temporarily for the packet.

In order to prevent a packet from fluctuating between two vertical nodes (which
guarantees live-lock freeness), four additional signals have been introduced and utilized
which are fed from the 2D input ports, as follows:

ipX : ipN, ipE, ipW, ipS

7For instance, if a packet comes from the North input port, ipN signal is set to one. As
the packet should not go back to the North direction again (avoiding U-turns), it must not
be possible for the packet to be steered towards North (N) direction in search of a vertical
link.

Next, the directions that the packet may take, are computed, that means the packet
is transmitted on the plane using any kind of deadlock-free turn model routing algorithm
that can already be implemented using LBDR on a 2D NoC. In order to explain the logic
of LBDR3D, the focus is on one output port, for instance the North (N) output port logic.

For the North port to be selected for forwarding the packet, one of the following
conditions must hold: (1) The packet’s destination is located on the same layer as the
current node and it is located towards the North direction (the term N’. U’. D’ in Figure
5.1), or (2) The current node is not a vertical node, but there exists at least one up/down
vertical node on the same layer as the current node towards the North direction (i.e. on
North direction or on North-East or North-West quadrant) (the term U’. (N’ + NE, +
NW.’) + D’. (Nd’ + NE4’ +NW,’) in Figure 5.1 [90]).

In the second phase of the logic, for instance, in case of the North output logic, if one
of the above-mentioned conditions hold, the North output port can be selected if either
(1) the destination is located on the same column as the current node in the North
direction or (2) it is located on the North-East (NE) or (3) North-West (NW) quadrant and
the turn at the next router along North direction allows the packet to take the North to
East (Rne = 1) or North to West turn (Rnw = 1), respectively. Finally, for the North port (N)
to be considered as the output port for transmitting the packet, the corresponding
connectivity bit of North port (Cn) should also be set to one. Therefore, in the end, the
packet will be forwarded to the North output port (if North is also chosen by the
arbitration unit) and it will either reach its final destination (if destination is on the same
layer as current node) or it will reach the nearest node with up/down vertical link,
depending on whether it needs to go upwards or downwards (when destination is not
on the same layer as current node).

Similar logic can be deduced for the E, W and S output ports. The output port signals
that have slightly different logics are U (Up) and D (Down) and the L (Local) output port
signals. If a packet reaches a vertical node and has to be steered upwards or downwards,
only U or D output port can become active, respectively, and other output port signals
are automatically set to zero (based on the logic’s behaviour and because the offline
algorithm will compute all the corresponding vertical bits as zero for a node with vertical
link, as will be explained later in this chapter). It should be noted that depending on the
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topology, and based on the nearest vertical node, the vertical bits for a node might
change during the life-time of the system, if re-configuration would be necessary.

Also, regarding the Local output port (L), it is activated only when the packet has
reached its destination (all the direction signals N’, E/, W’, S’, U’ and D’ are zero). In such
case, since the current address of the router is the same as the destination address of
the packet, the flits of the packet are forwarded to the Processing Element (PE)
connected to the router’s Local port.

It is worth noting that in order to avoid the occurrence of deadlock when cross-layer
traffic transmission is performed by LBDR3D, two Virtual Channels (VCs) are used per
router, which separate the traffic going upwards from the one going downwards. The VC
of a packet is chosen at the source node, based on either the destination is on a higher
or lower layer. If the destination is on the same layer as the source, one of the VCs is
chosen randomly. It is worth noting that once a packet is injected into the network, it can
never change its VC, as otherwise, it would introduce possibility of deadlock.

5.2.3 Offline Algorithm for Computation of Vertical Bits

The next contribution of this chapter is the offline algorithm introduced for calculation
of vertical bits (shown in Algorithm 5.1 [90]) based on which LBDR3D performs routing
decisions, including cross-layer transmission of packets in the 3D NoC.

For each router (node), first, it is checked whether it is a vertical node itself (lines 5-6
and 14-15 of Algorithm 5.1). In that case, all the corresponding vertical bits are set to
zero (if the node is an up vertical node, all the 4 up vertical bits are set to zero, and
similarly the same approach is done for down vertical nodes). If the node is not a vertical
node, the node in the same layer with the shortest Manhattan distance to the current
node (explained in Algorithm 5.1) that has a vertical link is searched and based on the
location of that node, the corresponding vertical bits are set in the current node. If two
nodes exist with the same Manhattan distance from the current node, one is chosen
randomly to break the tie. The procedure is once performed for calculation of up vertical
bits (lines 8-13 of Algorithm 5.1 [90]) and the other time for the calculate of down vertical
bits (lines 17-22 of Algorithm 5.1 [90]). The outputs of the algorithm are the final set of
vertical bits for all routers of the network, which would serve as part of “the Foundations”
for LBDR3D and they are fed in a transparent manner via the OSR-Lite [86], [93], [94]
reconfiguration mechanism to the LBDR3D logic at system start-up. The mechanism
guarantees negligible re-configuration latency and deadlock freeness for the system, when
changing from routing algorithm to another.

Moreover, as proven in [90], as long as the routing algorithm in each layer of the 3D
NoC is dead-lock free and also faults do not disconnect the network nodes completely
from each other, LBDR3D guarantees deadlock-freeness, live-lock freeness and
connectivity. Details regarding proof of deadlock and live-lock freeness and connectivity
of LBDR3D are published in publication C [90].

Example: To further clarify the computation of the set of vertical bits for LBDR3D
using the offline algorithm, an example scenario with a 4x4x4 3D Mesh-based NoC with
88% faulty vertical links (as shown in Figure 5.2 [90]) is explained in the following.
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Algorithm 5.1:Offline algorithm for calculating vertical
bits at routers in each layer

1 forall the nodes router|curr] € NoC do

A AW

~

10

11
12

13

14
15

16
17
18

19

21

22

DVL =0 // Down Vertical Nodes List
UVL =0 // Up Vertical Nodes List
HTV =0// hops to Vertical node
if Cu[router|curr]] = 1 then

L SetVerticalBits("U”, router|[curr], 0)

else
forall the router(i] € Layer[curr] do
if router[i] # router[curr] then
// for each router([i] in current
layer except the current node
if Cu [router[i]] = I then
// router[i] is an up vertical
node
HTV = Distance (router[i],router|curr])
append HTV to UVL

| SetVerticalBits("U”,router [curr],FindMin(UVL))

if Cd[router[curr]] =1 then
L SetVerticalBits("D”, router|[curr], 0)

else

forall the router[i] € Layer|[curr] do

if router[i] # router|[curr| then

// for each router[i] in current
layer except the current node

if Cd [router[i]] = 1 then
// router[i] is a down vertical

node

HTV = Distance (router[i],router|curr])
append HTV to DVL

SetVerticalBits("D”,router|curr],FindMin(DVL))

// Functions Description:

// 1. Distance (router[i], router|curr]) returns
|A-'E + A?JI: I-'L'cu'rr — Trouter [7«]|+ |ycu7"r — Yrouter [Z]l

// 2. FindMin (VerticalNodesSet) returns the
vertical node in set VerticalNodesSet with
shortest distance to current node,ties are
broken randomly

// 3. SetVerticalBits (Dir, router([curr],VNode)
sets the vertical bits of router[curr] in
direction Dir ("U"=up, "D"=down), to vertical
node VNode

In the scenario shown in Figure 5.2 [90], if node 53 wants to send a packet to node
37, it has 3 choices for choosing a node on the current layer as an up vertical node (nodes
51, 60 and 63). A vertical node is defined as a node with vertical link. As it can be seen in

Figure 5.2, it cannot be necessarily guaranteed that the total path the packet takes to

reach its destination will be the
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Figure 5.2 A 4x4 x4 3D Mesh-based NoC with 88% faulty vertical links

minimal path. Instead of trying to take the minimal possible path from source to
destination, the offline algorithm calculates the values of vertical bits at each router
based on its Manhattan distance to a vertical node (as shown in
Algorithm 5.1). According to Figure 5.2, two nodes with shortest Manhattan distance of
3 with respect to node 53 can be chosen as candidates as up vertical nodes (i.e. nodes 51
and 60). In this case, the tie is broken by randomly choosing one of the possible
candidates, for instance, node 60 is chosen. Therefore, since node 60 is located on the
South-West quadrant of node 53, the values of up vertical bits at node 53 will be set as
follows by the offline algorithm:

Nu=0,Eu=0, Wu=1,Su=1

Also, since node 53 is located at the bottom-most layer of the 3D NoC of Figure 5.2,
all the down vertical bits for this node are set to zero, as follows:

Nu=0,Eu=0, Wu=0,$u=0

The configuration bits of LBDR3D are calculated offline and fed to the logic at system
start-up. Thereafter, the algorithm for computation of vertical bits will only be executed
if a new fault occurs in the network and there is a need for re-configuration of the vertical bits.

5.2.4 Example Scenario of Fault-Tolerant Routing Using LBDR3D

The functionality of LBDR3D logic is shown with an example scenario, demonstrated in
Figure 5.3.

The source of the communication is node 35 and the destination is
node 2. In such scenario, the destination node is on a different layer than the source
node, therefore, the part of LBDR3D logic in charge of transmitting the packet to the
node with vertical links and the values of pre-computed vertical bits also plays an
important role in routing. The routing algorithm in each layer is considered to be the
North-Last deadlock-free turn model [95] (as shown in Figure 5.3), which provides partial
adaptivity. It is assumed that the offline algorithm has already been applied to the faulty
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Figure 5.3 An example scenario of packet routing using a fault-tolerant routing algorithm
implemented with LBDR3D

topology of Figure 5.3 and the values of the vertical bits are sets at all nodes. Therefore,
at the source node (node 35) the vertical bits would be as follows:

Nu=0,Eu=0, Wu=0,$u=1
Ni=0,Ei=0,Wa=0,5:=0

This would mean that the up vertical node with the shortest possible Manhattan
distance with respect to node 35 is located on the South direction of it. Since node 35 is
a down vertical node itself, all the corresponding vertical bits related to the down
direction are set to zero at this node. However, since the flit must be sent upwards to
reach its destination, the down vertical bits do not play a role in this routing procedure.
According to the logic of LBDR3D, at this step, the flit is forwarded to node 39 on the
South direction of node 35. Node 39 is an up vertical node itself, therefore, all the
corresponding up vertical bits are set to zero at that node and LBDR3D gives the priority
to up direction. Thus, the flit is forwarded to node 23 in the upper layer. At node 23, the
values of the up vertical bits are set as follows:

Nu=0,Eu=0, Wu=1,Su=1

This indicates that there exists at least one node with up vertical link on the South-
West quadrant of node 23. According to the North-Last turn model, both West and South
output ports can be taken. It is assumed that the routing logic gives the priority to the
West output. Thus, the flit is forwarded to node 22 (as shown in Figure 5.3 with the path
shown by red arrows).

At node 22, the value of Sy vertical bit is set to 1 and the other vertical bits for up
direction are set to zero. Even though there exists both nodes 28 on South-West
quadrant and node 26 on South direction of node 22 for sending the flit upwards, the
priority is given to node 26 by the offline algorithm. The reason is that the Manhattan
Distance of node 26 with respect to node 22 is shorter. Thus, the flit is forwarded to the
South direction, reaching node 26. Node 26 is an up vertical node, which would forward
the flit directly upwards to node 10. Currently, the flit is in its destination layer.
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It should also be noted that since in this scenario the packet is going only upwards to
reach its destination, it is assigned to one of the VCs and therefore, it can never change
its VC. The existence of two VCs per each input port would guarantee that cross-layer
traffic transmission would not lead to deadlock during routing packets by LBDR.

The rest of the routing path would be the same as the way LBDR mechanism would
make decisions for routing in 2D NoCs. Since the destination node (node 2) is on the same
column as node 10, the flit is forwarded to North output port to node 6 and finally to
node 2 and it reaches its destination (as shown in Figure 5.3 with the red arrows). As this
example shows, LBDR3D is able to route the flit to its destination despite the faulty
topology with 88% faulty vertical links. As long as faults do not disconnect the network,
LBDR3D guarantees the connectivity between all source-destination pairs (more detailed
information is provided in publication C [90]).

5.3 Summary of Experimental Results

This sub-section is dedicated to the experimental results, first comparing the proposed
LBDR3D mechanism with state-of-the-art (the approaches [51], [59], [61] from the ones
reviewed in Chapter 2) in terms of performance (average packet latency). Afterwards,
the area consumption of LBDR3D are compared with the other fault-tolerant
mechanisms for 3D NoCs, showing the scalability of the proposed mechanism.

5.3.1 Performance Analysis

In [90], LBDR3D is compared with other state-of-the-art approaches proposed for fault-
tolerant routing in 3D NoCs with partially faulty vertical links. However, as LBDR3D does
not rely on the existence of a pillar in the network and does not rely on the number and
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Figure 5.4 Different considered scenarios: with (a) 20%, (b) 40%, (c) 84% faulty vertical
links, and (d) 88% faulty vertical links with some faulty horizontal links
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location of faulty vertical links, experimental results are only considered for LBDR3D and
Elevator-First [51]. The other two mechanisms, named NETZ [61] and ETW [59] depend
on existence of a pillar in the network and for instance, they do not support some of the
topologies shown in Figure 5.4, thus, they are only considered in the area overhead
comparison experiments.

The scenarios in which adaptive routing algorithms have been implemented using
LBDR3D mechanism and compared against Elevator-First, are shown in Figure 5.4 [90],
covering from scenarios with 20% (Figure 5.4a), 40% (Figure 5.4b), and 84% (Figure 5.4c)
faulty vertical links and a scenario with 88% (Figure 5.4d) faulty vertical links and some
faulty horizontal links. It should be noted that in Figure 5.4a and Figure 5.4b, the red
vertical links are the faulty and the vertical links that are not shown are the healthy ones.
Whereas, in figure Figure 5.4c and Figure 5.4d, only the healthy vertical links are shown
for the sake of figure’s simplicity and the faulty ones are not shown.

As reported in [90], the experiments have been performed by an extension of the
open-source NoC simulator, Noxim [96], [97] with 3D NoC support. The parameters used
in the experiments and the traffic scenarios considered (synthetic traffic patterns) for
simulations are summarized in Table 5.1 [90].

The performance (average packet latency) results for different simulation scenarios
are detailed in [90]. One of the observations that has been made in different fault
scenarios (ranging from 20% to 88% faulty vertical links), LBDR3D performs similar or
slightly better than Elevator-First when programmed to XY routing and also turn-model
based adaptive routing. Even thought, performance results might be similar, the
advantages of LBDR3D over Elevator-First are two-fold: (1) no extra information is added
to the packet when transmitting data from one layer to another through a node with
vertical link, and (2) There is no need to store the location address of the node(s) with
vertical link (up and/or down) at any node, and instead only the fixed set of 8 vertical bits
are set (calculated using the offline algorithm proposed in this dissertation) per each
router, making LBDR3D scalable, especially in large network sizes (beyond 25x25x25).
Moreover, in [51], the routing algorithm in each layer of the 3D NoCs has only been
considered as the deterministic XY (X-First as stated in [51]) routing. Whereas, in this
dissertation and in [90], an adaptive routing algorithm is used (such as the well-known
West-First and North-Last [95] turn models).

In addition, a scenario with 88% faulty vertical links and some horizontal faulty links
is considered (as shown in Figure 5.4d), which is still supported by LBDR3D when using
West-First turn-model routing in each layer of the 3D NoC.

Table 5.1 Considered Scenarios and simulation parameters
LBDR3D XY, Elevator-First X-First (XY), LBDR3D West-First, LBDR3D

North-Last
4x4x4 3D Mesh with 20%,40%, 84% faulty vertical links and 88% faulty

Routing Algorithm

Network Topology vertical links with some faulty horizontal links
Number of VCs 2 (per each router input port)
VC depth 4 flits

Network Frequency | 1 GHz
Simulation Time 10000 cycles (1 cycle = 1ns)
Warm-up time
1000 cycles (1 cycle = 1ns)
Traffic patterns Random Uniform, Bit-Reversal and Transpose

Warm-up time
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5.3.2 Area Consumption and scalability Analysis

In the experiments, the area consumption of LBDR3D has been compared with other
fault-tolerant routing mechanisms for partially vertically connected 3D NoCs, i.e.
Elevator- First, NETZ and ETW. To this end, the RTL logic of LBDR3D for a 4x4x4 and
10x10x10 3D Mesh, along with the logic of ZXY routing (which is a non-fault-tolerant
mechanism), Elevator- First, NETZ and ETW are described in Verilog, and synthesized
using Synopsys Design Compiler® [88]. The results showed 34.6% increase in area for a
4x4x4 3D Mesh and 11.7% increment in area for a 10x10x10 3D Mesh, when comparing
LBDR3D logic to Elevator-First using XY routing. The decrease in the area overhead can
be a proof of the scalability of LBDR3D as it does not store the location of nodes with
vertical links in each layer. In addition, when comparing LBDR3D programmed to XY
routing (LBDR3D XY) with NETZ and ETW for the case of a 4 x 4 x 4 3D Mesh network, the
area overhead was only around 5.02% and 5.1%, respectively. Another explanation for
the area overhead of LBDR3D compared to ZXY, LBDR, Elevator-First, NETZ and ETW
would be the additional set of vertical bits and the new logic for supporting 3D NoC
topologies, but at the same time it brings the advantage of providing flexibility and not
relying on existence of any pillars in the topology.

Figure 5.5 and Figure 5.6 [90] summarize the area consumption results for the
compared mechanisms both for a 4x4x4 and a 10x10x10 3D Mesh-based NoC. In
addition, the area of LBDR3D has been compared with ZXY routing, which is the one of
the simplest non-fault-tolerant routing algorithm for 3D NoCs and also with its 2D

®4x4x4 = 10x10x10

LBDR3D LBDR3D-XY ELEVATOR-FIRST

Figure 5.5 Area consumption (in um?) for different compared routing mechanisms for
showing scalability of LBDR3D over Elevator-First.

ZXY (4X4X4) LBDR (4X4) LBDR3D LBDR3D-XY NETZ ETW
(4X4X4) (4X4X4) (4X4X4) (4X4X4)

Figure 5.6 Area consumption (in um?) for different compared routing mechanisms for
comparison of LBDR3D to ZXY, original LBDR, NETZ and ETW.

3 Synopsys Design Compiler: http://www.synopsys.com
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counterpart, the original LBDR mechanism. The area results are obtained using NanGate
Open Cell 45 nm Library* [98] and synthesis of the RTL of the designs is performed using
Synopsys Design Compiler [88].

5.4 Chapter Summary

This chapter covered the third contribution of this dissertation, focusing on
implementation of fault-tolerant routing in 3D Mesh-based NoCs with partially faulty
vertical links. The proposed mechanism is a logic-based technique that makes it possible
to implement any deadlock-free turn model based routing algorithm in such topologies.
The mechanism is scalable and depends only on a fixed number of configuration bits, i.e.
connectivity, routing and vertical bits. The vertical bits are used to define the existence
of at least one node with a vertical link in a specific direction for each router, thus
removing the need for storing the location address of the node with vertical link at every
router. Moreover, using only two Virtual Channels (VC), the proposed approach
guarantees deadlock freeness for cross-layer communication. It also guarantees live-lock
freeness and connectivity, as long as faults do not disconnect the network.

What also makes LBDR3D different from the previous works is that it does not rely on
the existence of a pillar in the network and does not rely on the location and number of
faulty vertical links. Moreover, it does not augment packets with additional information
when being sent across layers of the 3D NoC. Performance and area overhead results
showed the advantages of the proposed mechanism, reaching similar or better average
packet latency compared to state-of-the-art, and being scalable for large network sizes.
The proposed mechanism in this chapter as the third contribution of this dissertation has
led to publication C [90], included in the list of publications in Chapter 1.

4 NanGate 45nm Open Cell Library: http://www.nangate.com/?page id=2325
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CONCLUSIONS

The trend in moving from computation-centric to communication-centric systems and
the integration of more processing elements on the same chip, has increased the value
of Network-on-Chips (NoCs) as a scalable interconnection paradigm. However, the
miniaturization of semi-conductor technologies beyond the sub-micron domain
jeopardizes the reliability of on-chip components, including NoC routers. Transient and
permanent faults can cause serious problems such as mis-routing of packets, corruption
of data and eventually deadlock and breakdown of the whole system. This dissertation
focused on (1) online detection of faults in control part of NoCs, while providing a trade-
off between fault coverage and area overhead, (2) localization of faults in NoC routers
and abstraction of fault information, and (3) a generic scalable approach for
implementing fault-tolerant routing algorithms in NoCs.

The first contribution of this dissertation was proposing a methodology for devising
concurrent online checkers for online detection of faults in control part of a circuit. As an
example, the proposed methodology was applied to the control part of a NoC router. The
proposed methodology allows extracting two sets of checkers, i.e. structural and
functional. Moreover, the methodology provides automated evaluation of the checkers
and minimization in terms of area overhead, while meeting the target fault coverage.
The checkers guarantee single cycle fault detection latency for Single Event Upsets (SEUs)
in the control part of NoC routers. Moreover, the proposed methodology is capable of
formally proving the existence or absence of True Misses when evaluating the checkers
under the exhaustive set of valid input stimuli. The additional area for the checkers
imposed to the circuit under check comes with the advantage of providing fault
localization capability, as opposed to approaches such as Duplication With Comparison
(DMR) and TMR.

In general, the number of functional checkers might be less than structural ones, but
they can still cover a larger part of the circuit. However, they cannot always guarantee
reaching 100% coverage for SEUs. On the other hand, structural checkers will always
guarantee reaching 100% coverage of SEUs, but at the price of duplicating every part of
the circuit, as each part of the RTL code is checked for the occurrence of SEUs. The
advantage of structural checkers compared to functional ones would be remarkable
when high fault localization accuracy is of utmost importance, as they can pinpoint in
which part of the logic the fault has occurred, whereas the functional checkers are more
abstract. The minimization part of the proposed methodology provides a final trade-off
between reaching the target coverage while still meeting the area budget provided by
the user. However, in case the highest level of fault localization accuracy is required, it
would be recommended to consider the full set of structural checkers, whereas where
area constraints are stringent and fault localization accuracy is not a major issue, having
the final minimized set of checkers (including a combination of structural and functional
checkers) would also be acceptable, provided by the proposed methodology. Therefore,
at a first glance, no specific final decision can be made whether only structural or
functional checkers are sufficient and depending on the verification engineer’s goals and
available area budget, they can be chosen accordingly.

The second contribution of this dissertation was addressing the problem of big data
acquired by the checker outputs when the design is complex. To this end, a fault
localization and abstraction module was introduced. This unit allows abstracting fault
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information, which compresses and translates the fault data to meaningful information
(i.e. turn faults) for higher layers of abstraction (such as application layer). As an example
of integrating the fault localization module in the control part of Bonfire router, a final
set of more than 1000 checkers were compressed to a fixed set of 20 bits, denoting 20
turn faults in the router. Such compact information can be further used by the global
fault manager in the system in charge of keeping a holistic view of the health status of
the components, also facilitating the routing algorithm re-configuration process.

The fault localization latency is also as important as fault detection latency. As
opposed to the state-of-the-art which captures 97% of the stuck-at faults during the first
cycle, the proposed checkers and fault localization module in this thesis are able to detect
and localize 100% of the SEUs in maximum one clock cycle of their occurrence. Thus, the
abstracted turn faults (in form of the compressed 20 bits) are also provided in the same
clock cycle as fault localization, which can be further utilized by the system fault manager
to take actions upon re-configuration of the system. As the fault localization module is
fully combinational, it can contribute to the increase of the critical path delay of the
circuit, and one might argue that one solution to this would be to store all the checker
outputs in a set of Flip-Flops. However, this would impose a significant area overhead to
the system, as storing more than 1000 checker outputs in Flip-Flops would translate into
memory elements when synthesized. Therefore, in this dissertation, it has been chosen
to keep the fault localization and abstraction module fully combinational, and not storing
any of the checker outputs in a memory-based element. With regards to the information
provided by the abstraction of checker outputs to a final set of 20 turn faults, one step
that can be taken as future research would be to classify the occurrence of these turn
faults in terms of their frequency (as transient, intermittent or permanent). However,
the approach used to implement the classification logic must be designed with care, as,
for example, using counter-threshold based approaches can introduce additional area
overheads to the system.

The third contribution of this thesis addresses the problem of implementing fault-
tolerant routing algorithms in NoCs. As a solution, a scalable and re-configurable
mechanism (LBDR3D) was proposed. The mechanism allows implementation of any
dead-lock free turn model-based routing algorithm in 3D NoCs with faulty vertical links.
The proposed mechanism removes the need of routing tables at all in the routers. Also,
it guarantees live-lock and deadlock freeness and connectivity both in case of intra- and
inter-layer traffic, while it also does not depend on the location and number of faulty
vertical links. In order to codify the topology, routing algorithm and location of nodes
with vertical links, a fixed set of configuration bits are implemented. This would
guarantee scalability of the mechanism for larger network sizes, and also remove the
need to store any location address of nodes with vertical link at every router, and also
avoids incurring overhead to the transmitted packet information.

The motivation behind LBDR3D was to provide a scalable and flexible solution for
implementing different routing algorithms, however, this might not necessarily mean
that the performance of LBDR3D is always better than all other approaches proposed in
the literature for partially vertically connected 3D NoCs. For instance, performance-wise
(in terms of average packet latency), ETW performs better than LBDR3D (programmed
to turn model-based routing) under most traffic patterns. Despite this, the remarkable
feature of LBDR3D becomes noticeable when the focus is on generality of the
mechanism, i.e. not being dependent on the location of faulty vertical links. For ETW and
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NETZ, they depend on existence of vertical links in some locations in the network or
require the existence of a pillar, respectively. However, in reality, faults can occur on any
of the links in the network. Both Elevator-First and LBDR3D take this into account and
regardless of the location of the faulty link, as long as faults do not disconnect the
network layers completely, they both provide a valid path for every source-destination
pair. With regards to area overhead, LBDR3D would be more compact than Elevator-First,
asit does not need to store the location address of nodes with vertical links at each router
in the network. This has been codified instead (in LBDR3D) by just a few sets of bits,
showing the existence of such nodes (with vertical link). The same advantage exists for
LBDR3D when transmitting packets between layers, as there is no need to store the
address of intermediate nodes with vertical link in the header, whereas Elevator-First
imposes such packet information overhead.

As future work, the following works can be pursued:

e  With regards to the first and second contributions of this thesis, the re-action to
the faults and how the system could recover based on the detected faults and
their location can be further explored, for instance augmenting the checkers with
correction capability as well. Also, taking into account the classification of faults
based on the frequency of this occurrence would be important. Furthermore,
considering the security aspects in addition to fault detection when devising
checkers for the digital circuit would be of research value.

e Regarding the third contribution of this dissertation, extending the mechanism
to support any possible combination of faults on the horizontal links in each layer
of the 3D NoC (in addition to the faults in the vertical links) would be important.
Also, adding support for irregular topologies derived from 3D Mesh-based NoCs
is a feature that can be further explored and added to the proposed mechanism
for implementing routing algorithms in such topologies.
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Abbreviations

BICST Built-In Concurrent Self-Test
BIST Built-In Self-Test

CEl Checkers’ Efficiency Index

CMP Chip Multi-Processor

CTS Clear To Send

DCTS Detect Clear To Send

DQP Dynamic Quadrant Partitioning
DRTS Detect Request To Send

DWC Duplication With Comparison
EM Electro-Migration

ETW East-Then-West

FC Fault Coverage

FIFO First In First Out

FIFO First-In-First-Out

FPR False Positive Ratio

FSM Finite State Machine

HBH Hop-By-Hop

IR Inherent Information Redundancy
LBDR Logic-Based Distributed Routing
NETZ North-East To Z

NI Network Interface

NoC Network-on-Chip

PE Processing Element

ROWR Reduced Observation Width Replication
RR Round-Robin

RTL Register Transfer Level

RTS Request To Send

SEU Single Event Upset

SMC Secure Model Checker

SoC System-on-Chip

SR Segment-based Routing

SSBDD Structurally Synthesized Binary Decision Diagram
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TMR
TSV
VvC
VCT

Triple Modular Redundancy
Through-Silicon Via
Virtual Channel

Virtual Cut-Through
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Lithikokkuvote
Tookindluse parandamine kiipvorkudel pohinevatel
suisteemides

Pooljuhttehnoloogia mG66tmete vahenedes integreeritakse thele kiibile iha rohkem
arvutustuumasid, mist6ttu  muutub  kiipsisteemide  joudluse  kitsaskohaks
tuumadevaheline Ghendustaristu. Harilikud, siinipohised Ghendused ei suuda tuumade
arvu kasvades piisavat joudlust pakkuda. Nende puuduste lahendamiseks on
alternatiivse kiipstiisteemi Ghendustaristuna valja pakutud kiipvorgud.

Paraku mojutab praegune suundumus kahandada transistoride mootmeid
pooljuhttehnoloogial pGhinevate seadmete, kaasaarvatud kiipvorkude téokindlust. Kuigi
pisivad rikked on tihtipeale voimalik avastada tehases toote testimise kaigus, tuleb
ikkagi tegeleda normaalse kulumise ja vananemise tulemusena tekkinud rikete ja
siisteemi eluajal esinevate modduvate vigadega. Seetottu on vaja ldhenemist, mis
suudaks ilma t66d katkestamata vigu tuvastada ja vajadusel neile voimalikult kiiresti
reageerida. Uks kirjanduses vélja pakutud lahendusest kiipsiisteemimarsruuterite
juhtosas t66ajal avalduvate vigade tuvastamiseks on slisteemiga paralleelselt to6tavad
rikkemonitorid. Juhul, kui sellised rikkemonitorid ei ole piisavalt hasti disainitud, on
nende peamine puudus suur pindala kiibil. See omakorda tekitab vajaduse luua
metoodika, mida saaks kasutada kiipsiisteemide juhtosale selliste rikkemonitoride
loomiseks, mis suudaks voimalikult vaikese kiibipindala juures tagada soovitud
veakatvusprotsendi. Selle vaitekirja esimene panus ongi sellise metoodika
vdljatootamine. Rikkemonitoride hindamiseks ja minimeerimismetoodika analuisiks
korraldatud eksperimentide tulemuste analiiiis nditab, et minimeeritud komplekt
valjatéotatud  kiipslisteemimarsruuteri  juhtosa  rikkemonitoridest garanteerib
sajaprotsendilise Uksikute konstantsete rikete katvuse, tagades samal ajal peaaegu
kohest vigade tuvastamist. Rikkemonitoride arvelt disainile lisanduv kiibipindala ei lileta
pindala, mis oleks vaja kolmekordse liiasuse (TMR) saavutamiseks.

Disaini keerukuse kasvades suureneb rikkemonitoride arv margatavalt, mistGttu
kasvab silisteemi rikkehaldurile saadetav andmete kogus liiga suureks. Sisteemi
rikkehaldur on eraldi moodul, mis vdib olla implementeeritud nii tarkvaras, riistvaras kui
ka kombinatsioonina neist kahest. Veahaldur omab informatsiooni kiipvorgu
komponentide nagu marsruuterite, nende vaheliste Uhenduste ja ka marsruuterites
paiknevate poorete veaoleku kohta. Rikkehaldur saab seda informatsiooni kasutada
rikkehaldusmehanismide tarbeks, naiteks marsruutimisalgoritmi Umberseadistamiseks
komponendi- voi poordevea tuvastamise korral. Selleks et rikke tuvastamiseks
kasutatava teabe Uldistustase vastaks veahalduris kasutatava teabe Uldistustasemele, on
vaja tehnikat rikkemonitoridelt saadava informatsiooni lldistamiseks ja tihendamiseks.
Lisaks vea tuvastamisele on oluline ka vea asukoha kindlaks m&aramine, sest see
voimaldab tagada siisteemi t60 rikete korral, kasutades vaid t66tavaid komponente ja
minnes modda rikkis komponentidest. Seetottu ongi selle vaitekirja teiseks panuseks
rikete lokaliseerimiseks ja veainformatsiooni Uldistamiseks kasutatava mehanismi
vdljatootamine.  Valjatootatud  rikete  lokaliseerimis- ja  veainformatsiooni
Uldistamismooduli sunteesitulemused nditavad, et vorreldes teiste moodsate
lahendustega, kasutab valjatootatud moodul vdahem kiibiala, garanteerides samas
madala hilistumise.
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Kuna vorgusdlmedevaheliste Gihenduste rikked kiipvorkudes voivad mojutada kogu
vorgu joudlust, on oluline kasitleda ka marsruutimisalgoritmi mojutavaid
vorgukihirikkeid. Lisaks peab veakindla marsruutimisalgoritmi implementeerimiseks
kasutatav mehhanism olema skaleeritav ja taasseadistatav. Samuti peab see olema
paindlik, et rikkehalduril oleks voimalik marsruutimisalgoritmi vajadusel muuta.
Eelmainitud mehhanism ei tohi soltuda vigaste vorgusdlmede asukohast ega arvust.
Selleks on selle vaitekirja kolmanda panusena valja té6tatud loogikapdhine jaotatud
marsruutimismehhanism, mis on vorreldes marsruutimistabelitega palju skaleeritavam,
kuna selle pindala kiibil ei soltu kiipvorgu sdlmede arvust. Selle mehhanismi t66 soltub
ainult fikseeritud seadistusbittidest (mille vaartused arvutatakse selles viitekirjas toodud
algoritmiga stisteemi t66 valiselt), omades samas nii kahe- kui ka kolmemddtmeliste
kiipvorkude tuge ning garanteerides tupikude ja ndiaringide puudumise kiipvorgus.
Viljapakutud  mehhanismiga tehtud katsete tulemused tdestavad selle
skaleerimisvoimekust vorreldes teiste tdnapdevaste alternatiividega, mdjutamata
tuntavalt kiipvorkude joudlust. Seetdttu on see mehhanism suurte kiipvorkude puhul
soositud lahendus.
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Abstract
Dependability Improvements of NoC-based Systems

The trend in shrinking size of semiconductor technology beyond the sub-micron domain,
and the need for integrating more Processing Elements (PEs) on the same chip would
render the underlying interconnection infrastructure as a bottle-neck. For instance, the
traditional shared-medium bus-based architecture cannot catch up with the growing
number of Intellectual Property (IP) cores, due to performance and scalability limitations.
Network-on-Chip (NoC) has emerged as an interconnection infrastructure paradigm to
address the parallelism and performance limitation of conventional bus-based
architectures [5], and handle communication-centric Systems-on-Chips (SoCs) with large
number of communicating PEs.

Unfortunately, the current trend in miniaturization of transistors, affects the
reliability of devices based on semiconductor technology, including NoCs. Even if
permanent faults are captured using manufacturing testing, the circuits being susceptible
to run-time faults (caused by phenomena such as wear-out and aging) and transient
faults during system’s lifetime must still be addressed. There is a need for an online
approach, which would instantaneously detect faults at run-time, concurrent with the
system operation and would react rapidly to them. Concurrent online checkers have
been one of the approaches introduced in the literature for handling run-time faults
online in control part of NoCs. However, the area overhead of the fault detection circuitry
would become a concern if not envisioned properly. This necessitates a methodology for
devising checkers for the control part of NoCs, while addressing both, fault detection
quality of the checkers and minimization of checkers in terms of area, while guaranteeing
the target fault coverage. Proposing such methodology has been the focus of the first
contribution of this dissertation. Experimental results for checkers’ evaluation and
minimization methodology show that the minimized set of the devised structural and
functional checkers guarantee 100% single stuck-at fault coverage in the control part
modules of a NoC router, while providing near-instantaneous (single-cycle) fault
detection latency and formal proof of presence/absence of True Misses, and in worst
case, an area overhead between duplication and triplication-based approaches, such as
Duplication With Comparison (DWC) and Triple Modular Redundancy (TMR).

As the designs become more complex, the number of concurrent online checkers
tends to grow significantly, therefore, when transmitting the fault information to the
system fault manager, it would generate excessive amount of data. The system fault
manager is a module in the system, which can be a separate block implemented in
hardware or software or combination of both, having information of fault/health status
of network components (including routers, links and turns in the routers). The system
fault manager can make use of the detected fault information in order to re-configure
the routing algorithm, for instance in case of a fault in a component or a turn fault. In
order to match the abstraction of fault detection information to the information used by
the system fault manager, a technique would be needed to make such information
compact and compressed. Moreover, in addition to detection of faults, finding the
location of the fault is important, for instance, in order to make use of the healthy parts
of the device, while bypassing the faulty component(s). Therefore, to achieve the best of
both worlds, a fault localization and abstraction mechanism would be required, which is
the focus of the second contribution of this dissertation. Synthesis results for the fault
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localization and abstraction module, proposed in this thesis show that compared to the
state-of-the-art, lower area overhead is achieved, while performing its operation in a
single clock cycle.

As the faults on the NoC links can affect the network performance, it is crucial to
handle network-layer faults affecting the routing algorithm. Moreover, the mechanism
used for implementation of the fault-tolerant routing algorithm must be scalable and re-
configurable. The mechanism must also be flexible, so that it would allow changing the
routing algorithm from one regime to another by the system fault manager.
Furthermore, the mechanism must not depend on the location and number of faulty links
in the network. This has been the focus of the third contribution of this dissertation. To
this end, a logic-based distributed routing mechanism is developed, which is scalable
solution compared to routing tables, thus not growing in size with the increasing number
of network nodes. The mechanism relies only on a fixed set of configuration bits
(computed offline via an algorithm proposed in this dissertation), while having support
both for 2D and 3D NoCs and allows deadlock and live-lock-free implementation of turn
model-based routing algorithms in such networks. Experimental results for the proposed
mechanism for implementing fault-tolerant routing algorithms confirms the scalability of
the proposed mechanism compared to the state-of-the-art, making it a viable solution
for large network sizes, while not affecting the performance (average packet latency)
significantly compared to other approaches.
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This Appendix includes the second example in which the proposed methodology for
devising and evaluating and minimizing concurrent online checkers is applied to the full
control part of the Bonfire handshaking router. This can serve as supplementary
information for checkers’ experiments, related to Chapter 3 of this dissertation. The
Appendix covers how functional and structural checkers are devised for Bonfire
handshaking router using the proposed methodology in this dissertation, a published in
publication D [83]. It is worth noting that in this example, similar to the first one, single
stuck-at fault has been considered as the fault model. Moreover, the data-path is
assumed to be already protected using an Error Detection/Correction Coding technique.

Functional Checkers for Control Part of Bonfire Handshaking Router

For better clarification regarding how functional checkers are devised, the control part
of the Bonfire handshaking NoC router (Architecture 2) [66] has been chosen as the
second example. Functional checkers are devised for FIFO control part, routing logic
(LBDR [65]) and arbitration logic (arbiter), as explained in the following.

Bonfire handshaking NoC router FIFO control part functional checkers: Based on the
rules existing for the control part of FIFO implemented in Bonfire handshaking flow
control router, which is a circular buffer, the following properties must always hold:

e The FIFO cannot be full and empty at the same time.

e According to the design of Bonfire’s FIFO, the read pointer and write pointer
must always follow the one-hot fashion (since in the router design the read and
write pointer are encoded as one-hot). The choice of one-hot encoding is for
providing better fault detection capability regarding SEUs and single stuck-at
faults.

e ltis not possible to read from an empty FIFO or write to a full FIFO.

Bonfire handshaking NoC router routing logic (LBDR) functional checkers: Based on
the rules existing for the routing logic, implemented using LBDR, the following properties
must always hold:

e When LBDR is configured to the deterministic XY routing algorithm, during the
processing of header flit, the output request signals must always follow the one-
hot fashion.

e Since the baseline LBDR supports only minimal paths, during routing
computation, opposite direction output requests cannot become active at the
same time (e.g. the request for East and West output cannot be active
simultaneously).

e If there is an approved request to LBDR for routing, the output request signals
cannot be all zero.

o If the tail flit of the packet is processed by LBDR, all the output request signals
must become zero.

For the case of LBDR module in the Bonfire handshaking NoC router (Architecture
2), by taking into account the properties shown in the flowchart of Figure A. 1, the
following higher level (functional) checkers are devised:
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Figure A. 1 Functional checkers devised for the routing logic (LBDR) of Bonfire
handshaking NoC router using the proposed.

e If the flit type is header and the corresponding input FIFO is not empty:

o The output requests must follow the one-hot fashion (when LBDR is
configured to the deterministic XY routing algorithm).

o If the destination is on the North side of the current node (on the same
column), then the output request for North port (Req_N_in) must be
set to 1 and the other requests must be set to 0. Similar deduction can
be inferred for the output requests for other directions (i.e. East, West
and South).

These checkers are still more abstract than the structural checkers, which will be
explained later in this chapter.

Bonfire handshaking NoC router arbitration logic (arbiter) functional checkers:
Based on the rules existing for the arbitration logic of Bonfire handshaking router, which
is implemented as an FSM-based Round-Robin (RR) prioritization logic, the following
properties must always hold:

e The arbiter states must always follow the one-hot fashion (both current and
previous values of arbiter states). This is considered in the specification in order
to increase the fault detection capability of arbiter against single stuck-at faults
and SEUs.

e It would not be possible for arbiter to give grant to a request that is not active.
Thus, if a request is zero, its corresponding grant signal must also be zero.

e Since by specification, the Bonfire router only supports unicast communication,
it is not possible to send data from an input port to multiple output ports at the
same time. Therefore, no matter how many requests from the routing modules
(LBDR modules) come to the arbiter of an output port, arbiter must always
generate the grant signals following the one-hot fashion, or in case no request
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Figure A. 2 Flowchart of applying the proposed methodology for devising checkers from
arbiter of Bonfire handshaking flow control router (checkers for arbiter’s FSM)
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Figure A. 3 Flowchart of applying the proposed methodology for devising checkers from
arbiter of Bonfire handshaking router (checkers for arbiter’s handshaking signals, grant
signals and crossbar select lines)
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is granted, all grant signals must remain zero (grant signals can only be one-hot
or all zero).

e Since arbiter is also in charge of selecting the crossbar to allow the flits be
forwarded to the granted output, the select lines of crossbar switch are handled
by arbiter. In Bonfire handshaking router, the select lines of crossbar switches
are encoded as one-hot, for higher fault detection capability in case of SEUs and
single stuck-at faults.

The yellow rectangles in Figure A. 2 and Figure A. 3 demonstrate the higher level
(functional) checkers devised for the arbiter logic of Bonfire handshaking router.

Structural Checkers for Control Part of Bonfire Handshaking Router

For the example of Bonfire handshaking NoC router, in addition to high-level (functional)
checkers, the methodology for devising structural checkers is also applied to the pseudo-
combinational version of each control part module. The flowcharts representing the
devised structural checkers for FIFO’s control part, routing logic (LBDR) and arbiter
Bonfire handshaking router are explained in the following.

Structural checkers for the routing logic (LBDR) of Bonfire handshaking NoC router:
As it can be seen in the flowchart of Figure A. 4, the following cases are possible to occur
in the RTL code of routing logic (LBDR) of Bonfire handshaking router:

e If the flit type is header and the corresponding input FIFO is empty, then all

request must keep their previous value.

e If the flit type is body (or invalid), then all requests must keep their previous
values.

e If the flit type is tail, then all requests must be zero.

e 8 checkers can be devised that check the properties of N1, E1, W1 and S1
(shown with green and red arrows in Figure A. 4). These signals show the
direction or quadrant on which the destination node is located with respect to
the current node:

o If the destination node is located on the North side with respect to the
current node, then N1 must be 1.

o If the destination node is not located on the North side with respect to
the current node, then N1 must be 0.

o If the destination node is located on the East side with respect to the
current node, then E1 must be 1.

o If the destination node is not located on the East side with respect to
the current node, then E1 must be 0.

o If the destination node is located on the West side with respect to the
current node, then W1 must be 1.

o If the destination node is not located on the West side with respect to
the current node, then W1 must be 0.

o If the destination node is located on the South side with respect to the
current node, then S1 must be 1.

o If the destination node is not located on the South side with respect to
the current node, then S1 must be 0.
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Figure A. 4 Flowchart of applying the proposed methodology for devising structural

checkers from LBDR (routing) logic of Bonfire handshking flow control router

If the flit type is header and the corresponding FIFO connected to the routing
logic is not empty, then output request for North port (Req_N_in) must be
correctly set according to the logic of LBDR (the routing algorithm is assumed to
be XY routing).

If the flit type is header and the corresponding FIFO connected to the routing
logic is not empty, then output request for East port (Req_E_in) must be
correctly set according to the logic of LBDR (the routing algorithm is assumed to
be XY routing).

If the flit type is header and the corresponding FIFO connected to the routing
logic is not empty, then output request for West port (Req_W_in) must be
correctly set according to the logic of LBDR (the routing algorithm is assumed to
be XY routing).

If the flit type is header and the corresponding FIFO connected to the routing
logic is not empty, then output request for South port (Req_S_in) must be
correctly set according to the logic of LBDR (the routing algorithm is assumed to
be XY routing).

If the flit type is header and the corresponding FIFO connected to the routing
logic is not empty, then output request for Local port (Req_L_in) must be
correctly set according to the logic of LBDR. This case would occur when the
current node is the destination node and therefore, all the N1, E1, W1 and S1
signals are zero.

Structural checkers for the arbitration logic (arbiter) of Bonfire handshaking NoC
router: The flowcharts in Figure A. 2 and Figure A. 3 demonstrate the different possible
pathsin the RTL code of the Round-Robin (RR) arbiter for the Bonfire handshaking router.
The arbiter has an internal Finite State Machine (FSM) with five different states, encoded
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as one-hot: IDLE, North, East, West, South and Local. Each state denotes that the arbiter
is serving the corresponding input port. For the case of IDLE, it means there is no request
for arbitration from the inputs. The order in which the arbiter in Bonfire handshaking
router serves the requests from inputs (LBDR logics) is from highest to lowest: North,
East, West, South, Local and again North and so on (in a circular manner). Based on this
prioritization, as it can be seen in Figure A. 2, For example, when the current state of the
arbiter is IDLE (no requests to arbitrate), first the request from Local input (Req_L) is
checked and if there is such a request, the state variable of the FSM changes to Local at
the next clock cycle (meaning that it will be serving Local input).

The same applies to other states in the order of L, N, E, W and S. Thus, the structural
checkers devised for checking the correct order of state variable of the arbiter can be
extracted using the proposed methodology from the RTL code the pseudo-combinational
version of the FSM of the arbiter.

Similar approach has been followed, parsing the other sections of the Bonfire
handshaking arbiter’s RTL code, including the code sections in charge of the computation
of the handshaking signals, i.e. RTS and DCTS (as shown in Figure A. 3). RTS is in charge
of generating request from current router to the next router or Network Interface, if the
data on the corresponding output port is valid. DCTS is used for receiving the signal from
the next router or Network Interface that there are enough free buffer slots in the
downstream side to receive data from the current router.

In addition, as shown in Figure A. 3, part of the structural checkers is checking the
values generated for the grant signals based on the current state of arbiter. Each grant
signal corresponds to a request from an input direction. Finally, since arbiter is also in
charge of activating the correct path from an input to the granted output and selecting
the correct crossbar switch, the final set of checkers check the logic used to generate
select signals (which are also encoded as one-hot in the arbiter of Bonfire handshaking
router). The values of the select lines are checked by taking into account the current state
of the arbiter’s FSM (as dictated by its RTL code and demonstrated in Figure A. 3).

Bonfire handshaking NoC router FIFO control part structural checkers: As it can be
seen in Figure A. 5, based on the RTL code of the FIFO of Bonfire handshaking router, the
control part consists of a write pointer and read pointer which are both encoded as one-
hot for improving the fault detection capability. The first two parts of Figure A. 5, parse
the part of the code related to the values of read and write pointers. The write pointer
only gets updated when there is a request for writing to a FIFO slot. Similarly, the read
pointer gets updated only when there is a request for reading from a FIFO slot and the
corresponding input buffer is not empty.

In addition to arbiter, FIFO is also charge of handling part of the handshaking signals,
i.e. generating CTS and interpreting DRTS (both connected to the previous router or
Network Interface (NI)). CTS informs the previous router or Network Interface that the
FIFO of the current router has at least one free slot and therefore, it is not full. DRTS
examines the RTS signal from the previous router or Network Interface, which denotes
when the input data on the links are valid for the current router to read. The checkers
related to DRTS and CTS are shown in Figure A. 5, which are also connected to a compact
FSM consisting of two states in the FIFO’s control part, i.e. IDLE and READ_DATA states.
The FIFO’s control part will only go to the READ_DATA state if CTS has been zero in the
previous cycle and there is an active input request from the
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checkers from control part of FIFO in Bonfire handshaking flow control router

previous router/Network Interface (DRTS is one), and also the buffer of the current
router is not full. The structural checkers related to this part of logic, which are devised
from the RTL code of the control part of the FIFO using the proposed methodology, are
shown in Figure A. 5.

Finally, since the full and empty signals of the FIFO get their values based on the
positions where the read and write pointers point to in the buffer, their correct values
must also be checked. This is done by taking into account the RTL code of FIFO’s control
part in charge of generating the full and empty signals.

It is worth noting that none of the devised structural checkers are inferred by the
functionality of the FIFO’s control part, but they are all rather devised by traversing all
possible paths in the RTL code of the pseudo-combinational version of FIFO’s control
part, checking each condition and the corresponding outputs of that condition (which
would be a relation between an input signal and an internal signal/output signal). That is
one reason why it is mentioned earlier in this thesis that as opposed to the functional
checkers, the structural checkers examine different specific parts of the same circuit
which do not have any overlaps.
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Full Set of Devised Checkers for Control Part of Bonfire Handshaking
Router

Table A. 1 lists the initial set of checkers for control part modules of Bonfire handshaking
router, devised using the methodology proposed in this dissertation.

It is worth noting that the each of the control part modules with all the checkers
integrated (without any minimization) impose area overhead to the control part module
as follows: LBDR, Arbiter and FIFO control part with full set of checkers incur an overhead
of 159%, 193% and 96%, respectively to their corresponding non-fault-tolerant circuits
(without any checkers).

Table A. 1 The complete list of devised functional and structural checkers for the
control part of Bonfire handshaking NoC router

FIFO Control Part Logic Checkers

Nﬁ:fg';f(rs) Checker(s) description

192 Depending on the value of the write enable signal, the write pointer of FIFO's
! control part must update accordingly (one-hot).

32 The value of empty signal should be set based on the values of read pointer
! and write pointer.

56 The value of full signal should be set based on the values of read pointer and
! write pointer.

7.8 Depending on the value of the read enable and empty signals, the read

pointer of FIFQ's control part must update accordingly (one-hot).
Depending on the previous value the handshaking signals and also the full
9-12 signal, the current value of handshaking signals and write enable signals of
FIFQO's control part must have the correct values.

If FIFO is not empty and at least one of the read enable signals is active, the
read enable signal generated inside FIFO's control part must be set to one.

Routing Logic (LBDR) Checkers

If the flit type is header and input FIFO is not empty, current values of output

! requests of LBDR must be one-hot.

24 If the flit type is header or body and input FIFO is empty, the output requests
! of LBDR must preserve their previous values.
3 If the flit type is tail, the current values of LBDR output requests must be all

zero (there should be no request generated).

Based on the location of the destination node with respect to the current
node, the correct corresponding internal signal of LBDR, related to each
cardinal direction (North, East, West or South) should get activated.

If the flit type is header and the input FIFO is not empty, when all the internal
signals of LBDR corresponding to the cardinal directions are zero, only the
13,14 request for Local (L) output port can be activated. Also, when the destination
address of the header flit is not the same as the current address of the router
(node), the Local (L) output request of LBDR must not go high.

If the flit type is header (routing computation must be performed on it) and
the input FIFO is not empty, the output requests of LBDR for the cardinal
directions (North, East, West and South) must go active according to
calculated internal signals in one-hot fashion (due to XY routing).

5,6,7,8,9,10,
11,12

15,16, 17,18




Arbitration Logic (Arbiter) Checkers

If the FSM of Arbiter is in IDLE state, the select lines for XBAR (Crossbar
1,2 Switch) must correspond to it. Also, if it is not in IDLE state, the XBAR select
lines must always follow the one-hot encoding.

If Arbiter's FSM is in IDLE state, the current value of RTS handshaking signal

3
must be zero.
4-6 If Arbiter is not in IDLE state then corresponding handshaking signals must
have correct value.
789 Depending on the values of the handshaking signals, the previous and

current values for Arbiter's FSM state variable must be set accordingly.
Depending on the values of the handshaking signals and state of Arbiter's
10-14 FSM, the output grant signals of Arbiter must have the correct value and a
one-hot grant should be issued.

Depending on the previous state of Arbiter's FSM and the request signals
from LBDR modules, the correct order of prioritization must always be
15-44 followed in Arbiter's FSM in a circular way (Local, North, East, West and then
South and then back to Local) and also the state of the FSM must be updated
accordingly.

The current and next values of Arbiter's FSM state variable must always

45,46 follow the one-hot encoding.

47-51 If the handshaking signals are high, depending on the state variable of the
Arbiter's FSM, the grant signal should also be generated correctly.

52.56 The value of the XBAR select lines must correspond to the state that Arbiter's

FSM is in it.
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This Appendix is dedicated to the third example for applying the proposed methodology
for devising, evaluating and minimizing checkers to the control part of the Bonfire credit-
based router.

Example Three: Devising checkers for the Control Part of Bonfire Credit-
based NoC Router

In the third example, since the fault detection information of all checkers was necessary
for the fault localization module in order to model turn faults and compress the big data
obtained from the checkers (explained in Chapter 4 of this dissertation), minimization
part of the proposed methodology is not used and all the devised set of checkers are
maintained for maximum fault localization accuracy.

The final set of checkers, along with the fault localization module for modelling turn
faults have been integrated in the Bonfire credit-based router. As it was already
explained in more detail in Chapter 4, the fault localization and abstraction module
compresses the checker outputs to a final set of only 20 bits, representing 20 turn faults
in the router.

Table B. 1 lists the full set of devised checkers for the control part of Bonfire credit-
based router. The checkers are grouped based on the property and/or part of the module
they are checking. Also, for each checker it is marked whether it is structural (marked
as Sin the table) or functional (marked as F in the table).

Table B. 1 Full set of devised functional and structural checkers for Bonfire credit-based

NoC router
FIFO Control Part Logic Checkers
Checker C:'eCkeer Checker(s) description
Number(s) = yp S P
1 v FIFO cannot be empty and full at the same time.
2 v Reading from an empty FIFO is not possible.
3 v Writing to a full FIFO is not possible.
4 v The states of the packet dropping FSM of FIFO must always be one-
hot.
5 v Read pointer of FIFO must follow the one-hot fashion.
6 v Write pointer of FIFO must follow the one-hot fashion.

Checkers related to the logic of FIFO write pointer value update: Write
7,8 v | pointer must get updated according to the one-hot encoding, when
there is a request for writing to the FIFO (the FIFO is circular).
Checkers related to the logic of empty signal in FIFO: Only when read
9,10 v | pointer and write pointer are pointing to the same location, the empty
signal should go high (the FIFO is circular).

Checkers related to the logic of full signal in FIFO: Only when read
pointer is pointing to the immediate location after where write

11,12 v . . - i . :
pointer is pointing to, the full signal should go high (the FIFO is
circular).

Checkers related to the logic of FIFO read pointer value update: Read

13,14 v | pointer must get updated according to the one-hot encoding, when

there is a request for reading from the FIFO (the FIFO is circular).
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15-18

Checkers contributing to the logic of write enable signal, which is used
for flagging a write request to FIFO.

19,20

Checkers contributing to the logic of read enable signal, which is used
for flagging a read request from FIFO.

21-25

Checkers related to the fake credit counter update logic in FIFO. This
is used in the packet dropping process to manipulate the previous
router or NI by generating a fake credit out.

26-28

Checkers contributing to the logic of credit out signal, which is used
to signal the previous router or Network Interface (NI) that the
current router has enough free FIFO slots for storing a flit.

29-110

1-4

Checkers related to the packet dropping FSM logic of FIFO.
Routing Logic (LBDR) Checkers

Checkers related to the generated Requests by LBDR (Requests are

generated based on the routing algorithm and the destination
address of the packet).

Checker related to the grants signal received from the allocator
corresponding to different output directions. If there is at least one
grant signal from one of the output directions, the grants signal
cannot be zero.

Checker related to the grants signal received from the allocator
corresponding to different output directions. If there are no active
grant signals, the grants signal cannot go high.

Checkers related to the generated Requests by LBDR (Requests are
generated based on the routing algorithm and the destination
address of the packet). These checkers check the previous and current
values of the Requests generated by LBDR logic.

8,9

Checkers contributing to the first phase of LBDR logic, which
generates the signals indicating that the destination node is towards
to the North direction or a quadrant related to North direction (North-
East or North-West quadrant).

10,11

Checkers contributing to the first phase of LBDR logic, which
generates the signals indicating that the destination node is towards
to the East direction or a quadrant related to East direction (North-
East or South-East quadrant).

12,13

Checkers contributing to the first phase of LBDR logic, which
generates the signals indicating that the destination node is towards
to the West direction or a quadrant related to West direction (North-
West or South-West quadrant).

14, 15

Checkers contributing to the first phase of LBDR logic, which
generates the signals indicating that the destination node is towards
to the South direction or a quadrant related to South direction (South-
East or South-West).

16, 17

Checkers contributing to the logic for generating Local output request.
If the packet has reached its destination, the Local output request
must go high Also, if the packet has not reached its destination, the
Local output request cannot go active.

18,19

Checkers contributing to the packet dropping request generated by
LBDR module in case of detection of a faulty flit of a packet. This is
used for packet dropping in case a flit's contents get damaged after
read from FIFO and entered the LBDR logic.
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Checker related to the generated Requests by LBDR (Requests are

20 v | generated based on the routing algorithm and the destination
address of the packet).
21 v Checker contributing to the second phase of LBDR logic, generating
the request for North output port.
2 v Checker contributing to the second phase of LBDR logic, generating
the request for East output port.
23 v Checker contributing to the second phase of LBDR logic, generating
the request for West output port.
22 v Checker contributing to the second phase of LBDR logic, generating
the request for South output port.
Checkers contributing to the packet dropping request generated by
LBDR module in case of detection of a faulty flit of a packet. This is
25-29 4 L .
used for packet dropping in case a flit's contents get damaged after
read from FIFO and entered the LBDR logic.
30-39 v Checkers contributing to the reconfiguration of the connectivity bits
(4 bits per router).
40-46 v Checkers contributing to the reconfiguration of the routing bits (8 bits

per router).

Arbitration Logic (Allocator) Checkers

Allocator Internal Logic and Credit Counter Logic Checkers

Checkers related to the logic generating internal grant signals for

1-10 d North output port based on requests from different input ports.
11-20 v Checkers related to the logic generating internal grant signals for East
output port based on requests from different input ports.
21-30 v Checkers related to the logic generating internal grant signals for
West output port based on requests from different input ports.
31-40 v Checkers related to the logic generating internal grant signals for
South output port based on requests from different input ports.
41-50 v Checkers related to the logic generating internal grant signals for Local
output port based on requests from different input ports.
51 52 v Checkers contributing to final grant signal related to North output
! port.
53,54 v | Checkers contributing to final grant signal related to East output port.
55 56 v' | Checkers contributing to final grant signal related to West output
! port.
57 58 v' | Checkers contributing to final grant signal related to South output
! port.
59 60 v" | Checkers contributing to final grant signal related to Local output
! port.
This checker makes sure the valid out signal generated by the
61 Allocator matches the grant signal generated (each valid out signal for
a specific output direction corresponds to the grant signal for that
direction).
62-67 v Checkers contributing to the credit counters related to North output
port.
68-73 v Checkers contributing to the credit counters related to East output
port.
74-79 v Checkers contributing to the credit counters related to West output

port.
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80-85

Checkers contributing to the credit counters related to South output
port.

86-91

Checkers contributing to the credit counters related to Local output
port.

Allocator Arbiter_in Checkers

(5 Arbiter_in modules per Allocator)

If there are no requests from the LBDR modules to Arbiter_in of North
input port, the FSM state variable of the arbiter must keep its previous
value.

Checkers contributing to checking the prioritizing algorithm of the
Round-Robin arbiter. The priority of the requests from inputs from
highest to lowest are as follows: North, East, West, South, Local and
then again North, and so on (in circular manner).

The FSM state variable of Arbiter_in must follow the one-hot
encoding.

If there are no requests from the LBDR modules to Arbiter_in of North
input port, all grant signals must remain low.

If there is at least one requests from the LBDR modules to Arbiter_in
of North input port, the grant signals cannot be all zero.

A grant for North input port to an output port cannot be generated if
there is no request generated for it by LBDR.
Allocator Arbiter_out Checkers
(5 Arbiter_out modules per Allocator)
If there are no requests from the LBDR modules to Arbiter_in of North
input port, the FSM state variable of the Arbiter_out must stay in IDLE
state.

20-41

Checkers contributing to checking the prioritizing algorithm of the
Round-Robin arbiter. The priority of the requests from inputs from
highest to lowest are as follows: North, East, West, South, Local and
then again North, and so on (in circular manner).

The FSM state variable of Arbiter_out must follow the one-hot
encoding.

If there are no requests from the Arbiter_in modules to Arbiter_out
of a specific output port, all grant signals must remain low.

If there is at least one requests from the Arbiter_in modules to
Arbiter_out of a specific output port port, the state variable of
Arbiter_out cannot be IDLE.

If the Arbiter_out FSM is in IDLE state, there must be a generated
grant and grants cannot be all zero.

46-50

Checkers that make sure the generated grant corresponds to the state
that Arbiter_out FSM is currently in. For example, it would be
impossible that Arbiter_out FSM is in North state, but the grant signal
for another direction except North output goes high.

Arbiter_out follows the one-hot fashion for the grants, therefore,
since the router does not support multi-casting or broadcasting of
packets, grant signals must always be one-hot or all zeros, no other
possible combination for them is allowed.
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Table B. 2 Total number of functional and structural checkers for Bonfire credit-based

NoC router
Total No. of No. of Functional No. of Structural
checkers checkers checkers

FIFO Control Part 110 4 104
LBDR 46 0 46

Allocator
(Arbiter_in) 345 5 330

Allocator
(Arbiter_out) 255 1 240
Allocator 691 30 661

A summary of the number of functional and structural checkers for each control part
module of Bonfire credit-based router is provided in Table B. 2.

It is worth noting that the each of the control part modules of Bonfire router
Architecture 3 with all the checkers integrated (without any minimization) imposes area
overhead to the control part module as follows: LBDR, Allocator and FIFO control part
with full set of checkers incur an overhead of 324.33%, 196.47% and 36.17%, respectively
to their corresponding non-fault-tolerant circuits (without any checkers).
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Abstract— The paper introduces automated minimization of a
set of concurrent online checkers for Network-on-Chips (NoCs)
under given fault detection quality constraints. The proposed
framework allows accurate and complete evaluation of the fault
detection capabilities of checkers, which in turn enables finding
seamless trade-offs between the overhead area of the checkers and
the fault detection quality. The features of the automated
minimization approach include formal proof for the absence or
presence of true misses in checkers and a minimal fault detection
latency. The minimization technique is based on a divide-and-
conquer approach of partitioning the checkers’ fault table into
independent clusters. The checkers within the cluster are weighted
and the set of checkers is minimized based on a heuristic method.
Experiments on the control part (routing and arbitration) of an
NoC router show that 100% fault coverage with very low overhead
area will be achieved by the proposed minimization approach.

Keywords—Network-on-Chip, arbitration,
concurrent online checking.
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I. INTRODUCTION

Network-on-Chip (NoC) has been introduced as a solution
to overcome the scalability and performance constraints of
previous on-chip communication architectures such as bus-
based networks. One of the challenges in the design of NoC
routers is that as more cores get integrated on the same die and
nanometer technologies get extremely scaled down, the
probability of vulnerability of the components to wear-out and
environmental effects increases. These are effects occurring
during the life time of the system and cannot be filtered out by
manufacturing testing. Thus, concurrent online fault monitors
(i.e. checkers) for detecting faults during circuit’s life time are
needed. These checkers would report errors within routers and
would allow reconfiguration of the routing infrastructure.

In this paper, we introduce an automated tool flow for
obtaining a minimized list of checkers for checking on-chip
communication architectures. The flow is based on accurate,
automated evaluation of concurrent online checkers. The
methodology includes preparation of the checkers in the form of
verification assertions (or reuse of existing assertions), creation
of a pseudocombinational version of the circuit under test and
specifying the environment in terms of valid input stimuli for it.
Subsequently, the set of the fault detection characteristics for the
checkers, together with the stimuli and the circuit are applied to
accurate evaluation. As a result, weights for individual checkers
belonging to the set are obtained.

Finally, the number of checkers within the set will be
minimized. The minimization technique is based on a divide-
and-conquer approach of partitioning the checkers’ fault table
into independent clusters. Further, weight information of the
checkers within the cluster is applied in a heuristic minimization
method. The ultimate result will be a minimal selection of
checkers to achieve a target fault coverage level.

The underlying approach is complete, i.e. it allows proving
the absence or presence of true misses by the checkers. In
addition, it provides minimal fault detection latency due to the
fact that the circuit is transformed into a pseudo-combinational
one and therefore only checkers with a single clock cycle latency
are considered. Experiments on the control part (routing and
arbitration) of a Network-on-Chip (NoC) router show that 100%
fault coverage with very low overhead area will be achieved by
the proposed minimization approach.

The paper is organized as follows. Section 2 provides an
overview of related works in concurrent online testing. Section
3 explains the concurrent online checking concept. In Section 4,
the automated tool flow and the corresponding methodology for
checkers’ minimization are presented. Section 5 presents the
target architecture of the control part of an NoC router. Section
6 discusses application of the checker evaluation and
minimization framework to the NoC Router design. Section 7
provides the checkers’ evaluation and minimization
experiments. Finally, Section 8 concludes the paper.

II. RELATED WORKS

Online detection of errors in logic is a thoroughly studied
research area. Traditional Triple-Modular Redundancy (TMR)
and duplication based approaches are too costly in terms of
multiplying the area and correspondingly the power
consumption. An alternative to minimize this overhead is the
selective TMR that identifies Single Event Upset (SEU)
sensitive sub-circuits that are to be protected [1].

In addition, there exists a variety of solutions based on
coding techniques such as Berger [2] or Bose-Lin [3] codes. In
many works the coding techniques are combined with synthesis
[4,5]. The approaches suffer from significant area overhead as
well as require alteration of the original circuit in order to
generate the codes.

Concurrent on-line built-in self-test techniques such as Built-
In Concurrent Self-Test (BICST) [6] and Reduced Observation
Width Replication (ROWR) [7] provide high fault coverage at
low area overhead but only consider a limited subset of pre-



computed test vectors. Hence these approaches are likely to miss
faults occurring in a normal circuit operation.

Several alternatives based on checkers that do not require
modification of the circuit under test have been developed.
Creating checkers automatically based on logic implications
derived from the circuit structure [8] is feasible but suffers from
low fault coverage and high area overhead, often exceeding the
duplex solutions. On the other hand, deriving checkers from
functional assertions, or reusing verification assertions, is
similarly known to yield low coverage of structural faults as it is
difficult to correlate functional coverage to structural one [9].

Many previous works have focused on addressing faults in
the control logic of NoC routers. In [15], Yu et al. have
addressed fault tolerance for NoC topologies and proposed an
error control method for detecting transient errors in routing
logic implemented using Logic-Based Distributed Routing
(LBDR) mechanism and its extension for high-radix topologies,
LBDRhr. The proposed error control method utilizes the
inherent information redundancy (IIR) to reduce the error
control overhead. However, the method does not guarantee full
fault coverage.

Authors of [16] have presented a method for online error
detection and diagnosis of NoC switches. The proposed method
deals with routing faults that cause NoC packets to be forwarded
to output ports that are not intended to. Regarding modeling
routing faults in switches, a high-level fault model has been
introduced in this work. The fault coverage is measured only at
the functional level and there is no estimate of correlation to
gate-level fault coverage.

Parikh et al. have proposed ForEVeR [13], where in order to
deliver correctness guarantees for the complete network, a
network-level detection and recovery solution is devised that
monitors the traffic in the NoC and protects it against functional
bugs that were not detected during design time. To this end,
ForEVeR augments the baseline NoC with a lightweight checker
network that alerts destination nodes of incoming packets ahead
of time and is used for the recovery process. The approach
suffers from extremely high latency. Only 30% of the faults will
be detected during the first clock cycle by the approach.

[14] proposes checkers synthesized from a set of 32
verification assertions. The checkers detect most of the injected
faults. The faults that are not covered correspond to non-
catastrophic failures. The work proposed in [14] lacks the
completeness and minimization aspects present in the current
paper.

This paper exceeds the existing state-of-the-art in concurrent
online checking by proposing a tool flow for automated
evaluation and minimization of the verification checkers. We
show that starting from a realistic set of verification assertions a
minimal set of checkers will be synthesized that provide 100%
fault coverage at a low area overhead and the minimum fault
detection latency of a single clock-cycle. The latter is especially
crucial for enabling rapid fault recovery in reliable real-time
systems.

An additional feature of the proposed approach is that it
allows formally proving the absence or presence of true misses
over all possible valid inputs for a checker, whereas in the case

of traditional fault injection only statistical probabilities can be
calculated without providing the user with full confidence of
fault detection capabilities.

The formal proof as well as the minimal fault detection
latency will be guaranteed by reasoning on a pseudo-
combinational version of the circuit and by the application of
exhaustive valid set of input stimuli as the verification
environment.

II1. THE CONCEPT OF CONCURRENT CHECKERS

Fig. 1 presents the role of concurrent on-line checkers in
detecting faults within a circuit. In addition to the original circuit
(functional logic), a set of checkers (checker logic) will be
connected to functional inputs/outputs of the circuit. These
checkers are derived based on functional assertions obtained
from relationships between variables corresponding to inputs
and outputs of the circuit. The checker logic targets the faults at
lines at the inputs of each gate within the functional logic
(marked by green circles). The lines at the functional outputs
succeeding the checker inputs (marked by a red cross) cannot be
detected by the checker. In addition, the checkers are not
targeting the faults at functional inputs preceding checker inputs,
since the checker may not detect that the input value has been
altered by a fault (such functional input lines are also marked by
ared cross in Fig. 1). In this paper, we consider the single stuck-
at fault model. However, due to the fact that concurrent checkers
are implemented and a single time-frame is targeted, the model
also covers timing related faults.

checker
Logic

checker
output

functional
functional Logic functional
input o ouput
Fig. 1. The concept of concurrent checking

Given a fault at a line within the functional logic and a set of
input stimuli, four possible scenarios may occur:

- Case I: Fault occurs at an internal line and is visible at
functional output(s) and checker logic flags a violation. The
term True Detection is used to describe this situation, since a
critical fault is effectively detected by the checker.

- Case 2: Fault occurs at an internal line but is not visible at
primary output(s). Checker catches the fault and flags a
violation. The term False Positive is used to describe this
situation. False positive is not harmful because an error is
flagged which did not have any effect. However, it has negative
impact on design’s performance because normally it causes re-
execution of the task. In the experiments in this paper we did not
encounter any cases of false positives.

- Case 3: Fault occurs at internal line but is not visible at primary
output(s) and the checker logic does not detect the violation. The
term Benign Miss is used to describe this situation. Benign miss
shows correct operation by the checker.



- Case 4: Fault occurs at internal node and is visible at primary
output(s). Checker does not detect violation. The term True Miss
is used to describe this situation, which is the worst possible
case. True miss means that the fault propagates to the functional
outputs and onwards to the system. However, the system has no
information that a critical fault has occurred.

Traditionally, in order to evaluate the fault detection quality
of the checkers, fault injection has been applied. Fault injection
refers to injecting faults into a circuit at a certain time step and
simulating it with the input stimuli to see whether any functional
output of the circuit changes and whether any of the checker
output fires. Due to the fact that it is generally impossible to
inject and simulate all the faults at each circuit line at each time
step, a statistically significant sample of random faults would
normally be injected and simulated.

However, in this paper a methodology is proposed which is
based on automated extraction of a pseudo-combinational circuit
out of the original functional logic by breaking the flipflops and
converting them to pseudo primary inputs and pseudo primary
outputs. Further, an exhaustive test for the extracted circuit is fed
through a filtering tool in order to derive the complete valid set
of input stimuli which will serve as the environment for checker
evaluation. This means that in this paper full evaluation of the
checkers with all the valid stimuli and faults is obtained.

Let D be the number of true detections, X be the number of
benign misses and 7 be the number of true misses over all the
injection runs. Then we define the metrics of Fault Coverage
(FC) and Checkers’ Efficiency Index (CEI) as follows.

FC:% )
D+X+W

CEI=L 2)
D+W

Here, FC shows the probability of the checkers behaving
correctly over all possible fault cases while CEI shows the
probability of checkers ability to detect critical faults. Due to the
fact that none of the checkers resulted in false positives, this
information is excluded from the metrics.

IV. CHECKERS EVALUATION AND MINIMIZATION FLOW

Fig. 2 presents the evaluation and minimization flow for the
checkers. The flow starts with synthesizing the checkers from a
set of combinational assertions. Thereafter, a pseudo-
combinational circuit will be extracted from the circuit of the
design under checking. The pseudo-combinational circuit is
derived out of the original circuit by breaking the flipflops and
converting them to pseudo primary inputs and pseudo primary
outputs. Note, that at this point additional checkers that also
describe relations on the pseudo primary inputs/outputs may be
added to the checker suite in order to increase the fault coverage.

Subsequently, the checker evaluation environment is
created by generating exhaustive test stimuli for the extracted
pseudo-combinational circuit. This stimuli are fed through a
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Fig. 2. Checkers’ Evaluation and Minimization Flow

filtering tool that selects only the stimuli that correspond to
functionally valid inputs of the circuit. As a result, the complete
valid set of input stimuli that will serve as the environment for
checker evaluation is obtained.

The obtained environment, pseudo-combinational circuit
and synthesized checkers are applied to fault free simulation.
The simulation calculates fault free values for all the lines
within the circuit. Additionally, if any of the checkers fires
during fault-free simulation it means a bug in the checker or an
incorrect environment. During the case study presented in
Section 5 several bugs were detected by this simulation step.

If none of the checkers is firing in the fault-free mode then
checker evaluation takes place. The tool injects faults to all the
lines within the circuit one-by-one and this step is repeated for
each input vector. As a result, the overall fault detection
capabilities for the set of checkers, in terms of FC and CEI
metrics will be calculated. In addition, each individual checker
will be weighted by summing up the total number of true
detections by the checker.

Finally, the weighting information will be exploited in
minimizing the number of checkers, eventually allowing to
outline a trade-off between CEI, or FC, and the area overhead
due to the introduction of checker logic.

The framework is developed as an extension of a freeware
test system Turbo Tester [10]. The system applies Structurally
Synthesized Binary Decision Diagram (SSBDD) models [11]
for circuit modeling.
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V. TARGET ARCHITECTURE: NOC ROUTER

Fig. 3 demonstrates the high-level overview of a 5-port 2D
NoC router that we have chosen as a target architecture for
applying the checkers. Mainly, the router consists of a datapath
and a control part. The datapath is composed of input buffers
(implemented as First-In-First-Out (FIFO)), one for each input
port, a crossbar switch and an output buffer for each output port.

The flow of data through the data path is managed and
controlled by the control part, which consists of a routing
computation unit for each input port and an arbitration unit
(arbiter) for each output port, which prioritizes the requests from
different input ports to the corresponding output port. The router
has 5 input/output ports, four ports connected to four cardinal
directions (North — N, East — E, South — S, West — W) and one
Local (L) port connected to the local processing element. The
NoC router utilizes wormhole switching. Therefore, packets are
sent in form of flits, consisting of header flit, body flit(s) and tail
flit.

For the routing computation unit of our target architecture,
we have opted for Logic-Based Distributed Routing (LBDR)
[12], which is considered as a scalable solution compared to
routing tables. The mechanism describes the topology and the
routing function in form of connectivity and routing bits,
therefore the logic can be easily re-configured. Routing decision
is distributed and only requires local and destination addresses
for forwarding flits.

In this work we focus on a 2D Mesh topology, we consider
XY as the routing algorithm, which is a deterministic
dimension-ordered algorithm, and we assume that 180 degrees
turns are not allowed. This would in turn lead to further
simplification of the logic of LBDR. The basic mechanism of
the logic is shown in Fig. 4, for instance for the East input port.

For the arbitration unit (arbiter) we have chosen Round-
Robin (RR) policy for prioritizing the requests from the routing
logic of different input ports. Prioritization is circular, thus
ensuring the absence of starvation, and guaranteeing that
eventually any input port will get access to the requested output
port.

Arbiter grants the access to the requesting input port winning
the eventual contention, allowing data to go from the input FIFO
to the corresponding output port, through the crossbar switch.
The arbitration mechanism is based on an internal Finite State
Machine (FSM). In this work one-hot encoding has been

considered for the state variable, in order to improve detections
of faults in the logic. Moreover, one-hot encoding is extended to
grant signals and select lines for the crossbar switch.

The design decision to implement a one-hot encoded arbiter
state machine versus a decimal encoded one did increase the
area of the arbiter by 27.7%. However, the CEI nearly doubled
from 58.55% to 100% and the fault coverage increased from
93.69% to 100%, respectively.

Header Flit | flit_type dst_addr
Routing and Connectivity bits Rne = 0 Ren = 1
(based on XY Routing and - e
2D Mesh topology) Row Res 1
Ch =1C =1 Rwn =1 Rse =0
Cw=1GCs = 1 Rws =1Rsw =0
First part of the routing logic
X_curr Y_curr
X_dst —~E . >N
S|
L CMP L > w X CMP L > s
Second partof | N" = N'. EVK N =N"Cn
therouting | W"= W.N.S5'+ W.N" | W =W"Cw
logic +w's' S =8".Cs
(forELBDR) | §" = §'.E'. W' L =N.E.W.§

Fig. 4. Logic-based Distributed Routing
(LBDR) logic for the East input port

VI. APPLICATION OF THE FRAMEWORK TO THE DESIGN

In the control part of the router, we have limited our focus to
the case in which the LBDR and arbiter logic have the most
number of connected signals, more specifically considering
ELBDR and SArbiter. For ELBDR the existing output port
signals are N, W, S and L and for SArbiter, request and grant
signals exist for N, E, W and L. Such scenario provides the case
with the most number of connectivities between LBDR and
arbiter logic. The checkers that cover faults for such scenario,
are symmetrical to the other cases (different connections
between each LBDR logic to arbiter logics).

From the output of the checker evaluation tool it can be
observed that the two set of checkers for the ELBDR and the
SArbiter are independent, i.e. they cover faults for different and
separate parts of the circuit, without any overlap. Therefore the
fault table will be partitioned into two clusters. First, the ELBDR
alone will be considered. Secondly, the circuit under study will
be expanded, interconnecting the routing logic with the
SArbiter. The second considered scenario is depicted in Fig. 5.

Connectivity and routing bits and also the current address are
set to fixed values according to the scenario under consideration:
2D Mesh topology, XY routing algorithm, 180 degrees turns not
allowed, focus on router with ID 5 in a 4x4 network. This
scenario allows minimizing the number of circuit inputs and
previous state input bits that together form the inputs
for the pseudo-combinational circuit to be considered in both
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experiments. When ELBDR only is considered, the amount of
inputs is limited to 11 bits:

= 2 flit identifier bits;

= 4 destination address bits;

= 4 ELBDR previous output values bits;

= | empty bit (coming from East input buffer).

With the interconnection to the SArbiter in the second
experiment, the number of input bits is increased to 19,
introducing:

= 3 SArbiter request signals bits;
= 5 SArbiter previous state bits.

This, in turn, makes the exhaustive approach in checker
evaluation fully feasible.

Once the pseudo-combinational circuit to be studied is
extracted, a set of checkers can be devised from the functional
behaviour of the considered circuit, evaluating the possible
implications existing in between input and output signals. It is
interesting to underline that a priori it may be very difficult to
outline the effectiveness of a single checker or the overlap of
different checkers in detection.

Together with the considered pseudo-combinational circuit
and its set of checkers, a set of input patterns is needed for
performing fault simulation. The exhaustive test would require
211=2,048 and 2'°=524,288 input stimuli, respectively for the
ELBDR and for the East-South control path experiments.
However, in order to minimize the stimuli, and more important,
to avoid checkers being evaluated in non-realistic conditions, the
exhaustive set of stimuli has to be filtered to contain only the
functionally feasible values.

The filtering step is based on the implemented routing
algorithm (i.e. allowed destinations from the current router),
restrictions in the routing logic (e.g. no 180 degrees turns) and
emptiness condition of the input buffer, as well as on invalid
conditions for the state of the arbiter logic (i.e. violation of one-
hot encoding - only for the second experiment). It is important
to stress the fact that none of the checkers is firing in fault free
simulation with any of the considered input stimuli, in neither of
the scenarios.

TABLE 1. PROPOSED CHECKERS FOR ELBDR

or Routing Logic (LDBR)
If there is a request to the routing

1 | Valid LBDR
output logic (the corresponding input
buffer is not empty), LBDR has to
compute at least one valid output
direction (according to XY routing).
If no flit arrives (the corresponding
input buffer is empty), all the output
port signals of LBDR should remain
Zero.

If the corresponding input buffer is
not empty (there is a request to
LBDR), because of using XY
routing, at most only one output port
signal of the LBDR logic can
become active.

If the corresponding input buffer is
not empty (there is a request to
LBDR) and a non-header flit has
arrived, LBDR outputs should
remain the same.

If the corresponding input buffer is
not empty (there is a request to
LBDR) and a header flit has arrived,
the local output should become
active only if the packet has reached
its destination.

2 | No LBDR output

3 | Single LBDR
output

4 | Switch LBDR
output

5 | Local Port output

VII. EXPERIMENTAL RESULTS

Experiments for the checker evaluation and minimization
framework were carried out on the scenarios described in
previous section, first on the ELBDR circuit only, then on its
interconnection with the SArbiter, as displayed in Fig. 5. In both
cases an initial set of checkers was devised a priori, together with
a filtering scheme to obtain a valid set of input stimuli. Each
individual checker was weighted by the tool by summing up the
total number of true detections by the checker, and this
information was used in a heuristic way to minimize the initial
set of checkers, with the final aim of achieving highest possible
CEI and FC, and at the same time with the lowest possible area
overhead. These quantities were evaluated iterating the fault
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simulation, including at each step the next heaviest checker still
not included in the currently considered set of checkers,
initialized only with the first heaviest checker.

ELBDR experiment
All the experiments in this paper were carried out on an
Asus ux32vd-r4002v computer with a 1.9 GHz Intel Core i7-
3517U processor and 10 GB RAM. Table I lists the initial a
priori set of checkers for ELBDR, devised from the
functionality of the logic. The pseudo-combinational circuit for
ELBDR has 11 input bits, as mentioned in the previous section,
thus the exhaustive set of stimuli presents 2''=2,048. A filtering
scheme based on the following statements was devised:
= if input buffer’s empty signal is high, any other input bit is
meaningless, and therefore any value is allowed for it;
= if the incoming flit is a header, the destination address has to
be valid according to the XY routing and turns restrictions;
= if the incoming flit is a body or tail flit, the previous output
values must be valid, they must follow a one-hot fashion,
according to XY routing.

This allowed to obtain a valid and complete set of stimuli
consisting of 1536 vectors, which forms 75% of the exhaustive
set. The run-time for generating the stimuli was 2 seconds.

Fig. 6 displays the weight information output of the tool, on
the initial set of checkers for the ELBDR. The checker,
err_noLBDRout (checker 2 in Table ) is considerably detecting
more faults than any other checker. The 5 remaining checkers,
in descending order of weights are err_validLBDRout (checker
1), err_singleLBDRout (checker 3), err switchLBDRout
(checker 4), and finally the two err_localport checkers (entry 5).
The checkers’ analysis required 10 ms of run-time from the
proposed framework.

Fig. 7 depicts the results obtained with the weight-based
greedy heuristic approach applied to the ELBDR and its initial
set of checkers, in terms of achieved CEI, FC and area overhead.
Considering at first only the heaviest weight, and adding at each
step the next heaviest checker still not included in the considered
set, all the quantities gradually increase. When the three most
significant checkers are used, CEI and FC reach 100%. This
result shows that minimization of the set of considered checkers
is achieved, with the three heaviest checkers dominating the
three lightest, i.e. the three considered checkers cover all the
faults detected by the other checkers. Reducing the used set of
checkers to the three most significant ones allows to limit the
area overhead to 78.57% over the ELBDR circuit, far lower than
185.71% imposed by the initial non-minimized set of checkers.

TABLE IL. PROPOSED CHECKERS FOR THE ARBITER LOGIC

Checkers for the Arbiter logic
If there is a request from LBDR, arbiter

6 | Valid Grant

output has to assert at least one of the grant
signals for the corresponding output

direction.
7 | No Grant If there is no request to the arbiter, it
output should not assert any of the grant signals

for any direction.
Whenever there is a request to the arbiter,
the grant signals should go active

8 | Invalid Grant
output

corresponding to that specific requested
direction and invalid direction should not
be chosen.

Output state variable (oScurrentState —
which represents the grant signals) in
arbiter’s pseudo-combinational circuit
can not possess invalid values due to the
one-hot coding.

If the input previous state variable
(iScurrentstate) is in IDLE state and there
is a request for arbitration from LBDR,
oScurrentstate  should not remain in
IDLE state i.e. a grant signal should be
asserted.

In case there is one or multiple request(s)
to the arbiter, it should follow the correct
prioritization (Local, North, East and
then West) according to the input
previous state variable (iScurrentstate).

9 | Invalid arbiter
output state

10 | Invalid IDLE
state for arbiter
input state

11 | Priority Grant

ELBDR + SArbiter combined scenario experiment

ELBDR is connected to SArbiter according to Fig. S, thus
providing the East request signal to the arbitrating logic.
Table II lists the a priori initial set of checkers for the arbiter.
Multiple individual checkers are grouped to the same table entry
according to types. The initial set amounts to 28 checkers.

The exhaustive test for the considered pseudo-combinational
circuit would require 2'°=524,288 input stimuli. The test stimuli
were generated in 270 seconds run time. The considered filtering
scheme is an extension of the one used for the ELBDR
experiment valid input patterns set, adding the one-hot encoding
restraint to the 5 previous state value bits of the arbitrating
pseudo-combinational unit. This allowed to shrink the
exhaustive set of 2!° input stimuli to a valid and complete set
consisting of 61,440 input vectors, which is less that 12% of the
initial number. This may be considered as a proof of the
effectiveness of the one-hot encoding for the arbiter state
variable.

First, the evaluation tool was run considering the whole set
of checkers for the SArbiter, altogether with the minimized set
of 3 checkers for the ELBDR. This analysis required 1 second
of run time by the framework. Figure 8 lists the considered 31
checkers, with their corresponding weights in a descending
order. Focusing on the arbitrating unit, two checkers look to be
far more significant than the others, Serr_validgrant (checker 6
in Table II), Serr invalidstate (checker 9), both of them
monitoring different aspects of the one-hot encoding condition
for the arbiter's state variable.

From the output of the evaluation tool it can be observed that
the two set of checkers for the ELBDR and the SArbiter are
independent, i.e. they cover faults for different and separate parts
of the circuit, without any overlap. For this reason the minimized
set of ELBDR checkers is used, and the previously introduced
weight-based greedy minimization heuristic is applied to the
SArbiter checkers set.

Fig. 9 displays the obtained results. As it could have been
expected from the weighting information in Fig. 8, the two most
significant checkers dominate all the lightest checkers, ensuring



100% CEI and FC. Thus, considering a total of 3 ELBDR and 2
SArbiter checkers, area overhead over the partial control path
circuit is limited to 56.82%, while using the whole initial set of
28 checkers for the SArbiter would lead to 170.45% area
overhead. It is interesting to observe that the minimized set of 5
checkers corresponds to one third of the whole 31 checkers set
area.
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[ Checker | Weight |
Serr_validgrant 871552
Serr_invalidstate 600512
Eerr_noLBDRout 243840
Eerr_validLBDRout | 57600
Eerr_ singleLBDRout | 47680

Fig. 11. Weights for minimized set of checkers

Impact of clustering the faults

Assuming that we had no information of the overlap of faults
detected by the checkers for ELBDR and SArbiter, the weight-
based greedy heuristic, starting from the heaviest checker
Serr_validgrant, would add at each step the next heaviest
checker still not considered in the current set of checkers, based
on the weight information displayed in Fig. 8. Fig. 10 shows the
inefficiency of the heuristic approach caused by the lack of the
clustering information. The number of steps in the greedy
procedure is heavily increased, and only after 19 steps, when the
Eerr_singleLBDRout checker is considered, the 100% upper
bound for CEI and FC is reached.

However, when partitioning of the fault set to clusters is
taken into account and minimization is performed on the clusters
separately then total of five steps are needed. Fig. 11 illustrates
the importance of considering the clustering information. It can
be observed that the weights of the ELBDR checkers are far less
than those of the SArbiter, but they are still needed to achieve
full coverage for the considered design.

VIII. CONCLUSIONS

The paper proposes a new tool providing an automated flow
for evaluation and minimization of concurrent online checkers,
which is formal (able of proving the presence or absence of true
misses), yields minimal fault detection latency and enables
accurate, fully automated evaluation of the fault detection
characteristics of a given set of checkers.

Experiments carried out on the control part (routing and
arbitration) of a Network-on-Chip (NoC) router showed on a
realistic application the feasibility and efficiency of the
framework and the underlying methodology. Experimental
results showed that the approach allowed selecting the minimal



set of 5 checkers out of 31 verification assertions with the fault
coverage of 100% and area overhead of only 56.82%.
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Abstract— The focus of the paper is detection of faults in
NoC routers by combining concurrent checkers with
embedded on-line test to enable cost-effective trade-offs
between area-overhead and test coverage. First, we propose a
framework of tools for formally evaluating the quality of the
checkers and for optimizing the overhead area with given
fault coverage constraints. The stress is in particular on the
minimization of the error detection latency, which is a crucial
aspect in order to eliminate (or limit) error propagation.
Second, the concurrent checkers will be complemented by
embedded on-line test packets which are to be applied as a
periodic routine during the idle periods in router operation.
The framework together with the corresponding methodology
has been successfully applied to a realistic case-study of a fault
tolerant NoC router design. The case study shows that
combining concurrent routers with embedded test allows
reducing the area overhead of the checkers from 31-35%
down to 1.5-10% without sacrificing the fault coverage.

Keywords—network-on-chip, fault tolerant router design,
concurrent online checking, embedded test, test packets.

I. INTRODUCTION

One of the main challenges related to the design of
Network-on-Chip (NoC) routers is the extreme down-
scaling of modern technologies that increases the
probability of the components to wear-out as well as their
vulnerability towards environmental effects. These are
phenomena occurring during the life-time of the system and
cannot be screened out by manufacturing testing. Thus,
cost-efficient mechanisms for detecting faults during
system’s life-time are needed. These mechanisms should
detect errors within routers and enable reconfiguration of
the routing network in order to isolate the problem and
provide graceful degradation for the system. In this paper,
we propose combining concurrent checkers with embedded
on-line test packets in order to achieve early and cost-
effective detection of faults in NoC routing infrastructure.

Regarding the development of on-line checkers, we
introduce a new framework and a methodology with a stress
on the level of automation, fault coverage, detection latency
and area-efficiency. The methodology consists of four main
steps. The first step of the methodology is formal checker
qualification which includes identification of control-
intensive parts of the router architecture, converting them to
pseudo-combinational counterparts, preparation of the

checkers synthesized from verification assertions and
specifying the environment in terms of valid input stimuli
for the pseudo-combinational circuit. As a result, the faults
detected by each individual checker will be calculated.

Second, the number of checkers within the set will be
minimized by applying the checker optimization step. As a
starting point is the fault detection characteristics for each
individual checker as well as their weights in terms of
silicon area. Further, a heuristic minimization method is
applied resulting in a minimal selection of checkers to
achieve a target fault coverage level. The minimization
technique is based on a divide-and-conquer approach of
partitioning the checkers’ fault table into independent
clusters. This approach is very effective as the checkers
devised for different modules normally do not have
overlapping fault sets.

Third, and optional, step of the methodology includes
devising additional checkers from temporal assertions for
modules that do not achieve 100% fault detection. For these
checkers the formal qualification step described above is not
possible and traditional fault injection experiments are
carried out by a sequential fault simulation tool included to
the framework.

Finally, the checkers for the control part of the router are
to be complemented by embedded on-line test packets
which are to be applied as a periodic routine during the idle
periods in router operation, e.g. slacks in the task
scheduling. The framework together with the corresponding
methodology has been successfully applied to a realistic
case-study of a fault tolerant NoC router design. The case
study shows that combining concurrent checkers with
embedded test packets allows reducing the area overhead of
the checkers from 31-35% down to 1.5-10%, depending on
the router bitwidth, without sacrificing the fault coverage.

The paper is organized as follows. Section 2 provides an
overview of related works in concurrent online testing and
embedded test for NoC routers. Section 3 explains the
concurrent online checking concept. Section 4 discusses
application of embedded test packets. In Section 5, the
automated framework and the corresponding methodology
for checkers’ minimization combined with the embedded
test are presented. Section 6 discusses application of the
framework and the underlying methodology to the NoC
router design. Section 7 provides the experiments. Finally,
Section 8 concludes the paper.



II. RELATED WORKS

Online detection of errors in logic is a thoroughly
studied research area. Traditional Triple-Modular
Redundancy (TMR) and duplication based approaches are
too costly in terms of multiplying the area and
correspondingly the power consumption. An alternative to
minimize this overhead is the selective TMR that identifies
Single Event Upset (SEU) sensitive sub-circuits that are to
be protected [1].

In addition, there exists a variety of solutions based on
coding techniques such as Berger [2] or Bose-Lin [3]
codes. In many works the coding techniques are combined
with synthesis [4,5]. The approaches suffer from
significant area overhead to the design to be checked.

Concurrent on-line built-in self-test techniques such as
Built-In Concurrent Self-Test (BICST) [6] and Reduced
Observation Width Replication (ROWR) [7] provide high
fault coverage at low area overhead but only consider a
limited subset of pre-computed test vectors. Hence these
approaches are likely to miss faults occurring in a normal
circuit operation.

Several alternatives based on checkers that do not
require modification of the circuit under test have been
developed. Creating checkers automatically based on logic
implications derived from the circuit structure [8] is
feasible but suffers from low fault coverage and high area
overhead, often exceeding the duplex solutions. On the
other hand, deriving checkers from functional assertions, or
reusing verification assertions, is similarly known to yield
low coverage of structural faults as it is difficult to correlate
functional coverage to structural one [9].

Many previous works have focused on addressing faults
in the control logic of NoC routers. In [16], Yu et al. have
addressed fault tolerance for NoC topologies and proposed
an error control method for detecting transient errors in
routing logic implemented using Logic-Based Distributed
Routing (LBDR) mechanism and its extension for high-
radix topologies, LBDRhr. The proposed error control
method utilizes the inherent information redundancy (IIR)
to reduce the error control overhead. However, the method
does not guarantee full fault coverage.

Authors of [17] have presented a method for online
error detection and diagnosis of NoC switches. The
proposed method deals with routing faults that cause
packets to be forwarded to unintended output ports.
Regarding modeling routing faults in switches, a high-level
fault model has been introduced in this work. The fault
coverage is measured only at the functional level and there
is no estimates on correlation to gate-level fault coverage.

In order to deliver correctness guarantees for the
complete network, Parikh et al. have proposed a network-
level detection and recovery solution ForEVeR [14] that
monitors the traffic in the NoC and protects it against
functional bugs that were not detected during design time.
To this end, ForEVeR augments the baseline NoC with a
lightweight checker network that alerts destination nodes
of incoming packets ahead of time and is used for the

recovery process. The approach suffers from extremely
high latency. Only 30% of the faults will be detected during
the first clock cycle by the approach.

The work in [15] proposes checkers synthesized from a
set of 32 verification assertions. The checkers detect most
of the injected faults. The faults that are not covered
correspond to non-catastrophic failures. The work
proposed in [15] is not automated and lacks the
completeness and minimization aspects present in the
current paper.

In [18] a hybrid method is introduced for synthesis of
fault-secure NoC switches utilizing error detecting codes
for the data path (data flits) and a concurrent error detection
structure for dealing with faults not covered by the flit
encoding (using multiple parity trees). However, the work
still results in more than 50% area overhead.

The use of embedded test configurations for testing the
datapath of NoC routers has been proposed in [19], with
design-for-testability structures included in [20] and built-
in self-test application in [21]. However, all the mentioned
approaches are targeting the global network and not a
concrete router. Furthermore, only off-line test scenarios
have been considered in [19-21].

This paper exceeds the existing state-of-the-art in fault
tolerant router design by proposing:

- a framework for formal checker qualification. The
underlying approach is complete, i.e. it allows proving
the absence or presence of true misses by the checkers. In
addition, it provides minimal fault detection latency due
to the fact that the circuit is transformed into a pseudo-
combinational one and therefore only checkers with a
single clock cycle latency are considered.

automated minimization of checkers. The formal
qualification of the combinational checkers provides the
fault detection capabilities for them. These, along with
the checker area requirements are applied in an
automated minimization process resulting in a minimal
area overhead checker solution under certain fault
coverage constraints.

- complementing the resulting checkers withtemporal
checkers and on-line embedded test packets. This enables
combining best of both worlds. In the case of NoC control
part, where embedded test packet based approaches have
proven inefficient, low area concurrent checkers are
applied. On the other hand, in the datapath, the embedded
test yields full fault coverage whereas error correcting
codes would be expensive.

Experimental results on a realistic NoC router design
demonstrate the efficiency of the proposed approach.

IIT. THE CONCEPT OF CONCURRENT CHECKERS

Fig. 1 presents the role of concurrent on-line checkers
in detecting faults within a circuit. In addition to the
original circuit (functional logic), a set of checkers (checker
logic) will be connected to functional inputs/outputs of the
circuit. These checkers are derived based on functional
assertions obtained from relationships between variables



corresponding to inputs and outputs of the circuit. The
checker logic targets the faults at lines at the inputs of each
gate within the functional logic (marked by green circles).
The lines at the functional outputs succeeding the checker
inputs (marked by a red cross) cannot be detected by the
checker. In addition, the checkers are not targeting the
faults at functional inputs preceding checker inputs, since
the checker may not detect that the input value has been
altered by a fault (such functional input lines are also
marked by a red cross in Fig. 1). In this paper, we consider
the single stuck-at fault model. However, due to the fact
that concurrent checkers are implemented and at-speed
embedded test packets are applied, the model also covers

timing related faults.
checker
Logic

functional
functional & Logic functional

input 0 ouput

checker
output

Figure 1. The concept of concurrent checking

Given a fault at a line within the functional logic and
a set of input stimuli, four possible scenarios may occur:
Case I: Fault occurs at an internal line and is visible at
functional output(s) and checker logic flags a violation. The
term True Detection is used to describe this situation, since
a critical fault is effectively detected by the checker.

Case 2: Fault occurs at an internal line but is not visible at
primary output(s). Checker catches the fault and flags a
violation. The term False Positive is used to describe this
situation. False positive is not harmful because an error is
flagged which did not have any effect. However, it has
negative impact on design’s performance because normally
it causes re-execution of the task.

Case 3: Fault occurs at internal line but is not visible at
primary output(s) and the checker logic does not detect the
violation. The term Benign Miss is used to describe this
situation. Benign miss shows correct operation by the
checker.

Case 4: Fault occurs at internal node and is visible at
primary output(s). Checker does not detect violation. The
term True Miss is used to describe this situation, which is
the worst possible case. True miss means that the fault
propagates to the functional outputs and onwards to the
system. However, the system has no information that a
critical fault has occurred.

Traditionally, in order to evaluate the fault detection
quality of the checkers, fault injection has been applied.
Fault injection refers to injecting faults into a circuit at a
certain time step and simulating it with the input stimuli to
see whether any functional output of the circuit changes
and whether any of the checker output fires. Due to the fact
that it is generally impossible to inject and simulate all the

faults at each circuit line at each time step, a statistically
significant sample of random faults would normally be
injected and simulated.

However, in this paper a methodology is proposed
which is based on automated extraction of a pseudo-
combinational circuit out of the original functional logic by
breaking the flipflops and converting them to pseudo
primary inputs and pseudo primary outputs. Further, an
exhaustive test for the extracted circuit is fed through a
filtering tool in order to derive the complete valid set of
input stimuli which will serve as the environment for
checker evaluation. This means that in this paper full
formal qualification of the combinational checkers with all
possible stimuli and faults can be obtained.

Let D be the number of true detections, X be the number
of benign misses, F be the set of false positives and ¥ be
the number of true misses over all the injection runs. In
order to evaluate the fault detection capabilities of the
checkers we define the metrics of Fault Coverage (FC),
Checkers’ Efficiency Index (CEI) and False Positive Ratio
(F'PR) as follows.

Fczi )
D+ X+W

CEI:L )
D+W

FPR:L 3)
F+X

Here, FC shows the probability of the checkers
behaving correctly over all possible fault cases, CEI shows
the probability of checkers ability to detect critical faults
whereas FPR reports the ratio of false positives over all the
cases a fault did not propagate to circuit outputs. The
mentioned three metrics are calculated for checkers by the
automated checker qualification framework proposed in
this paper.

IV. EMBEDDED ONLINE TEST PACKETS

The functional fault model that is applied to cover
the stuck-at faults in the datapath of the NoC router is based
on the idea proposed for functional testing of mesh-like
NoC networks in [19-21]. However, in this paper the fault
model is applied to a “localized” approach, where resources
(i.e. processing elements) connected to neighbouring
routers West (W), East (E), North (N), South (S), and Local
(L) are utilized as senders/receivers of test packets to test
the central router as the Circuit Under Test (CUT). Figure 2
visualizes the overall setup of the sending/receiving
resources and the CUT.

In the proposed setup, whenever there are idle periods
or slacks in scheduling with length K for the send/receive
resources, K test patterns will be applied from them. This
will be done periodically fetching K next tests from the test
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Figure 2. The setup for sending/receiving test packets
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set in a circular manner, i.e. if the end of the test is
reached then it starts again from the beginning. This
scenario provides online test capabilities for regularly
checking the health of the datapath of the routing
infrastructure.

In the proposed setup, whenever there are idle periods
or slacks in scheduling with length K for the send/receive
resources, K test patterns will be applied from them. This
will be done periodically fetching K next tests from the test
set in a circular manner, i.e. if the end of the test is reached
then it starts again from the beginning. This scenario
provides online test capabilities for regularly checking the
health of the datapath of the routing infrastructure.

A fault model proposed in [19-21] is applied, where the
value at a selected router input is distinguished from the
values at other inputs of the router. In order to fully cover
the structural faults in the multiplexers of the crossbar, tests
for each address value have to be performed. An additional
constraint is that all turns must be covered by the
distinguishing tests. In [19] it was shown that by applying
them, near 100% fault coverage for the crossbar switch and
the 1/0 buffers comprising the datapath of the NoC router is
achieved.

V. FRAMEWORK AND METHODOLOGY

This Section presents the framework for fault tolerant
NoC router design that has been developed as an extension
of the Turbo Tester test framework [10]. The proposed
methodology of combining concurrent checkers with
embedded online test consists of three main steps:

1. Checkers’ qualification
(combinational checkers);

and  minimization

2. Checkers’ evaluation by fault injection (temporal
checkers);

3. Fault simulation of the embedded online test
packets.

In the following, these steps are explained in more detail.

A. Checker Qualification and Minimization

Fig. 3 presents the qualification and minimization flow
for the checkers. The flow starts with synthesizing the
checkers from a set of combinational assertions. Thereafter,
a pseudo-combinational circuit will be extracted from the
circuit of the design under checking. The pseudo-
combinational circuit is derived out of the original circuit by
breaking the flipflops and converting them to pseudo
primary inputs and pseudo primary outputs. Note, that at
this point additional checkers that also describe relations on
the pseudo primary inputs/outputs may be added to the
checker suite in order to increase the fault coverage.

Subsequently, the checkers’ qualification environment
is created by generating exhaustive test stimuli for the
extracted pseudo-combinational circuit. This stimuli are
fed through a filtering tool that selects only the stimuli that
correspond to functionally valid inputs of the circuit. As a
result, the complete valid set of input stimuli that will serve
as the environment for checkers’ qualification is obtained.

Extraction of pseudo-
combinational circuit

Environment generation

Generation of
exhaustive stimuli

pseudo-combinational

circuit

Fault-free simulation
Fault-free values for circuit line

A checker firing?
Bugs in checkers

or in the environment N

Checkers evaluation

Detection Info. (CEI, FC, FPR)
Checkers weights

Filtering of stimuli
Exhaustive valid stimuli

N U ISR

Weights evaluation

Minimization
procedure

Optimized set
of checkers

Figure 3. Checkers’ qualification and minimization flow

The obtained environment, pseudo-combinational
circuit and synthesized checkers are applied to fault free
simulation. The simulation calculates fault free values for
all the lines within the circuit. Additionally, if any of the
checkers fires during fault-free simulation it refers either to
a bug in the checker or an incorrect environment.

If none of the checkers is firing in the fault-free mode
then checkers’ qualification takes place. The tool injects
faults to all the lines within the circuit one-by-one and this
step is repeated for each input vector. As a result, the
overall fault detection capabilities for the set of checkers,
in terms of FC, CEI and FPR metrics will be calculated. In




addition, each individual checker will be weighted by
summing up the total number of true detections by the
checker.

The weighting information will then be exploited in
minimizing the number of checkers, eventually allowing to
outline a trade-off between the fault coverage, and the area
overhead due to the introduction of checker logic.

B. Checkers’ Evaluation by Fault Injection

There are cases when a module under checking cannot
be handled by the combinational checker qualification and
minimization approach. For example the module may have
a large number of inputs so that the set of generated valid
input stimuli would be too large (e.g. datapath modules)
and/or the fault coverage reached by the combinational
checkers is too low.

In those cases, the checkers are to be evaluated by
traditional fault injection. Here a test bench is created for
the design and the circuit with the checkers is simulated by
a sequential fault simulator with a sufficiently large random
sample of faults injected into the circuit. In this paper, all
the datapath checkers and the FIFO checkers were
evaluated using this approach.

C. Fault Simulation of the Embedded Online Test

Finally, the stuck-at fault coverage of the online
embedded test packets for the datapath of the NoC router is
measured by a fault simulator belonging to the framework.
As experimental results show, full fault coverage for the
datapath with the test application time of 196 clock cycles
is achieved.

VI. EXPERIMENTAL RESULTS

Fig. 4 demonstrates the high-level overview of a 5-port
2D NoC router that we have chosen as a target architecture
for applying the checkers. The router consists of a datapath
and a control part. The datapath is composed of input
buffers (implemented as FIFO), one for each input port, a
crossbar switch and an output buffer for each output port.
The control part contains routing units, arbiters and FIFO
control. For the routing unit of our target architecture, we
have opted for Logic-Based Distributed Routing
(LBDR)[13], which is considered as a scalable solution
compared to routing tables. As an arbiter, round-robbin
arbitration was implemented.
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Figure 4. High level architecture of the NoC router
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A. Checker qualification/minimization for LBDR /Arbiter

The pseudo-combinational circuit for ELBDR has 11
input bits, as mentioned in the previous section, thus the
exhaustive set of stimuli presents 2''=2,048. A filtering
scheme based on the following statements was devised:
= if input buffer’s empty signal is high, any other input bit
is meaningless, and therefore any value is allowed for it;
= if the incoming flit is a header, the destination address
has to be valid according to the XY routing and turns
restrictions;

= if the incoming flit is a body or tail flit, the previous
output values must be valid, they must follow a one-hot
fashion, according to XY routing.

This allowed to obtain a valid and complete set of
stimuli consisting of 1536 vectors, which forms 75% of the
exhaustive set. The run-time for generating the stimuli was
2 seconds. (All the experiments in this paper were carried
out on an Asus ux32vd-r4002v computer with a 1.9 GHz
Intel Core i7-3517U processor and 10 GB RAM.)

Table I lists the obtained minimized set of three
checkers for the LBDR. Reducing the set of checkers to the
three most significant ones allows to limit the area
overhead to 78.57% over the ELBDR circuit, far lower than
185.71% imposed by the initial non-minimized set of
checkers, while the CEI and FC remain at 100%.

TABLE L. MINIMIZED LIST OF CHECKERS FOR LBDR

Checkers for Routing Logic (LDBR)

1 | Valid LBDR
output

If there is a request to the routing
logic (the corresponding input buffer
is not empty), LBDR has to compute
at least one valid output direction
(according to XY routing).

2 | No LBDR output | If no flit arrives (the corresponding
input buffer is empty), all the output
port signals of LBDR should remain

Zero.

3 | Single LBDR
output

If the corresponding input buffer is
not empty (there is a request to
LBDR), because of using XY
routing, at most only one output port
signal of the LBDR logic can
become active.

Similarly, Table II lists the minimized set of two
checkers for the Arbiter that was obtained from an initial
set of 28 verification checkers by applying the checker
qualification and minimization framework.

TABLE II. MINIMIZED LIST OF CHECKERS FOR ARBITER

Checkers for Arbiter logic

If there is a request from LBDR,
arbiter has to assert at least one of the
grant signals for the corresponding
output direction.

4 | Valid Grant
output

State variable of the arbiter FSM has

5 | Invalid arbiter
state to respect one-hot encoding.




B. Fault injection experiments for the FIFO

Table III lists the set of 8 checkers generated from the
verification assertions for the FIFO control part. The
checkers were evaluated by the fault injection tool of the
framework. A set of input stimuli for the FIFO was devised,
aiming to cover all the possible situations for the control
logic. The following conditions were considered in the
pattern generation procedure:

- reset condition;

- filling the FIFO, followed by reading up to empty
condition;

- smooth traffic condition, i.e. concurrent writing and
reading operations, avoiding the FIFO to get full;

- idle condition, i.e. write and read enable signals low,
during reading and writing operations, in different
conditions of fulfillment of the buffer.

100% CEI and FC were achieved on the control part of
the fifo, considering the pattemns derived from the
previously listed conditions, amounting to 134. Run time
for the experiment was 0.06 s. No false positives were
encountered in this experiment.

TABLE III. CHECKERS FOR THE FIFO CONTROL PART

Checkers for FIFO control part

6 | Reset checker Whenever reset goes high, at the
next clock cycle empty flag should
be high (reading and writing pointer

are reset to the same value).

TABLE 1V.

CONTROL PART INFRASTRUCTURE CHECKERS

Control Part Infrastructure Checkers

14 | FIFOs read

Logic producing read enable signals

enable DMR for the FIFOs (5 OR gates) is
checker duplicated, then real and duplicated
outputs are compared.
15 | Output Logic producing enable signals for
registers enable | the output registers (5 OR gates) is
DMR checker duplicated, then real and duplicated

Empty and full flags should never be
high at the same time. Whenever the
defining condition occurs, the
corresponding flag should go high at
the next clock cycle.

7 | Flags checkers

8 | One-hot pointers | Reading and writing pointers have to

checkers respect one-hot encoding.
9 | Registers enable | Duplication and comparison for the
DMR checker logic enabling the writing operation

in data registers.

10 | Reading pointer
update checker 1

Whenever read enable is high and
the fifo is not empty, at the next
clock cycle the reading pointer
should be updated.

If either read enable is low or the fifo
is empty, at the next clock cycle the
reading pointer should preserve its
value.

11 | Reading pointer
update checker 2

12 | Writing pointer
update checker 1

Whenever write enable is high and
the fifo is not full, at the next clock
cycle the writing pointer should be
updated.

If either write enable is low or the
fifo is full, at the next clock cycle the
writing pointer should preserve its
value.

13 | Writing pointer
update checker 2

Table IV lists the set of 3 additional checkers which were
included in order to achieve the full fault coverage after
fault injection experiments for the control part identified
uncovered faults in the interconnections of control part
modules.

outputs are compared.
Flit type field of a flit has to respect
one-hot encoding.

16 | Flit type LBDR
error

C. Checkers for the datapath

In order to fully cover the faults in the NoC datapath
two types of concurrent checkers were introduced (listed in
Table V). First, for each input port an even parity bit is
included, whereas each output port has a checker
evaluating the even parity. Second, since fault injection
experiments for the whole router identified undetected
faults within the crossbar multiplexers, dedicated checkers
for the crossbar were devised.

TABLE V. CHECKERS FOR THE NOC DATAPATH

Datapath Ck

An even parity bit is computed and
added to data entering each input
port, which is later evaluated before
data leaves the router through any of
the output ports.

Crossbar MUXSs are duplicated, then
real and duplicated outputs are
compared.

17 | Even parity
checker

18 | Crossbar
checker

D. Putting it all together

Fig. 5 reports the area overhead required by the checkers
for routers of varying bitwidth (from 32 bits to 256 bits). It
can be observed from the Figure that the required area for
the control part checkers stays constant while the overhead
area of datapath checkers (parity and crossbar) grow
proportionally to the router size.
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Figure 5. Area consumption for different data-widths



TABLE VI.  OVERHEAD AREA FOR DIFFERENT DATAWIDTHS
32-bit | 64-bit [128-bit| 256-bit

Router (w/o checkers)| 12636 [22620| 42588 | 82524

Control part checkers | 1274 | 1274 | 1274 | 1274

Xbar Checkers 1789 | 3455 | 6781 | 13439

Parity 1345 | 2690 | 5390 | 10790

Area overhead

(contr. p. checkers), % | 10.08 | 5.63 | 2.99 | 1.54

Area overhead

(all checkers), % 34.88 |32.80| 31.57 | 30.90

The same trend is revealed in Table VI. It can be seen
that if datapath checkers are included then the required area
overhead would be in the range of 31-35%. Whereas, the
control part checker circuitry demands significantly less
area, especially for larger bitwidths.

However, when combining the control part checkers
with embedded online test packets presented in Section 4,
full fault coverage for the NoC router can be achieved with
aminor area overhead. As it has been shown by experiments
in [21] an embedded test of length K=196 clock cycles will
achieve FC=100% within the NoC router datapath. Thus,
combining the concurrent checkers for the control with
embedded test solution for the datapath results in a cost-
effective solution for fault tolerant NoC routers.

VIL

The paper proposes a framework for formal
qualification of checkers and for minimizing the overhead
area with the given fault coverage constraints. The goal is to
achieve low-latency, low area overhead checkers for
network on chip routers. In addition the paper proposes
complementing the concurrent checkers with embedded on-
line test packets which are to be applied as a periodic routine
during the idle periods in router operation.

CONCLUSIONS

The framework together with the -corresponding
methodology has been successfully applied to a realistic
case-study of a fault tolerant NoC router design. The case
study shows that combining concurrent routers with
embedded test allows reducing the area overhead of the
checkers from 31-35% down to 1.5-10% without sacrificing
the fault coverage.
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Abstract—The susceptibility of on-chip communication links
and on-chip routers to faults has guided the research towards
focusing on fault-tolerance aspects of 2D and 3D Network-on-
Chips (NoCs). In this paper, we propose Logic-Based Distributed
Routing for 3D NoCs (LBDR3D), a scalable, re-configurable and
fault-tolerant mechanism, which utilizes only two virtual channels
for implementing any deadlock-free turn model routing algorithm
in partially vertically connected 3D NoCs. Such networks might
emerge either due to the limitation of on-chip area for vertical
links or due to occurrence of fault because of wear-out. LBDR3D
guarantees live-lock freeness as well as connectivity regardless of
the location and number of vertical links as long as faults do not
disconnect the network. Our method relies on a limited set of
bits which describe the topology and routing algorithm, updated
using an offline algorithm. Our Experimental results show the
comparison of LBDR3D with three previously proposed fault-
tolerant mechanisms, Elevator-First, North-East To Z (NETZ)
and East-Then-West (ETW). Compared to Elevator-First, our
proposed mechanism is more flexible and in terms of packet
latency, it performs better or equal under even extreme fault
scenarios for vertical links. Furthermore, as long as the topology
is supported by the routing algorithm, LBDR3D can tolerate
faults on horizontal links in each layer. In contrast to NETZ and
ETW, LBDR3D does not rely on the location of vertical links as
long as the network is connected.

Keywords—fault-tolerance; routing algorithm; reconfigurabil-
ity; reliability; Network-on-Chip.

I. INTRODUCTION

Three-dimensional (3D) integration is one of the solutions
that has gained momentum recently in order to alleviate the
interconnect wire delay by stacking active silicon layers [1].
On the other hand, Network-on-Chip (NoC) is one of the trends
that has been considered in research in order to overcome
the communication bottleneck in previous architectures such
as shared bus [2] [3], by providing scalability, flexibility,
transparency and modularity.

In an on-chip network, processing cores communicate with
each other on one layer and they might also need access to
their memory blocks at the same time, therefore one approach
can be placing the memory blocks on an adjacent layer in a
3D NoC architecture. Different research works have focused
on the topic of 3D integration of NoCs by using stacked layers
[1].

As the number of vertical links is reduced in a 3D NoC
- thus, transforming them into vertically partially connected
3D NoCs [4] [5] - the utilization of the remaining vertical
links increases, therefore creating a communication bottleneck.

These missing vertical links can be either the result of faults,
such as wear-out, or they can be related to saving area due
to the on-chip area constraints. Therefore, in order to run an
application on such NoCs, a routing mechanism that is both
fault-tolerant and adaptive, would help to mitigate the issue
by uniformly distributing packets on the communication links
and bypassing the faulty links, while being re-configurable at
the same time.

A scalable logic-based distributed routing mechanism,
named LBDR, supporting turn model adaptive routing algo-
rithms, has been proposed in [6] for 2D NoCs, however, the po-
tential exists for the case of 3D NoCs with partially vertically
connected links. In this paper, we extend the logic of LBDR
to support 3D NoC topologies, and we name it LBDR3D. The
mechanism is augmented with additional configuration bits, i.e.
new connectivity bits for supporting 3D topologies and a new
set of bits called as vertical bits. The proposed mechanism is
scalable in a sense that, unlike some previous works (e.g. [7]),
routers do not require to store the location address of nodes
with vertical links in each layer. In addition, the approach does
not incur additional overhead to packets when steering them
across the layers of a 3D NoC.

LBDR3D gives the highest priority to the vertical links
if the destination of a packet is not on the same layer as
source, thus, steering it to the nearest node with vertical link,
if needed. the nearest node is calculated using an offline
algorithm (described later in Section IIL.LB) and fed into the
logic of the mechanism by setting the so called vertical bits
using a re-configuration framework [8]. In case the destination
is on the same layer as the source, any deadlock-free adaptive
and deterministic turn model routing algorithm (already sup-
ported by LBDR [6]) can be implemented using LBDR3D.
By using only two Virtual Channels (VCs) and not allowing
packets to change their VC, the mechanism separates packets
going upwards and downwards (a separate VC is used for
each direction), thus guaranteeing deadlock freeness for cross-
layer traffic flows. In addition, the mechanism ensures live-
lock freeness using signals from the input ports (described
in Section III.C), and guarantees connectivity as long as faults
do not disconnect the network, therefor,e making it possible to
tolerate scenarios with extreme faulty vertical links and faulty
horizontal links (as long as LBDR supports the topology in
each layer).

The rest of the paper is organized as follows: Section
II reviews the previous works in the field of fault-tolerant
routing algorithms for 3D NoCs. Section III is dedicated to



the description of the LBDR3D logic, along with the proposed
offline algorithm for computing the vertical bits. Section IV
is dedicated to proofs of deadlock and live-lock freeness
of LBDR3D, along with a proof of providing connectivity
for every source-destination pair. Section V is dedicated to
the experimental results and comparison with three other
fault-tolerant routing mechanisms for 3D NoCs in terms of
performance (average latency), reliability, flexibility and area
overhead. Finally, section VI concludes the paper.

II. RELATED WORK

There has been a number of works proposing fault-tolerant
routing algorithms for Network-on-Chips. In this paper, we
have mostly focused on the state-of-the-art regarding fault-
tolerant routing algorithms for 3D NoCs, however, our pro-
posed mechanism also works for the 2D domain. Authors
of [9] have introduced a fault-tolerant routing scheme in 3D
NoCs, named 4NP-First, based on the Negative-First turn
model. The drawback of the algorithm is the overhead of the
packet replication if the number of faulty links in the network
exceeds a threshold. In [10], a low-overhead fault-tolerant
deflection routing algorithm is proposed for 3D Mesh NoCs.
The limitation of this work is scalability due to using routing
tables per layer. Authors of [11] have introduced AFRA, a
deadlock-free and deterministic routing algorithm (based on an
extension of ZXY routing algorithm) for 3D NoCs. However,
the proposed algorithm has limitations regarding the location
of faults occurring on vertical links. Ebrahimi et al. have
proposed HamFA [12], which takes advantage of Hamiltonian
paths in order to tolerate faults in 2D and 3D NoCs. Despite
the advantages compared to [9] and [10], HamFA is not able
to address faults on vertical links at the end of the Hamiltonian
paths and also some of the horizontal links in each layer, as
shown in [12].

Jiang et al. have presented an efficient fully adaptive fault-
tolerant routing algorithm for 3D NoCs [13]. The algorithm
consists of two phases: inter-layer and intra-layer routing. Two
assumptions that limit this work are as follows: 1) Processing
Elements (PEs) will never get faulty and 2) faults on links are
considered as bidirectional. Also, the deadlock recovery mech-
anism used in this work can impose additional performance
overhead. Authors of [14] have proposed a high-performance
reliable and deadlock-free routing scheme (HARS), which
follows a mid-node searching method in 3D NoCs without
requiring any Virtual Channels (VCs). However, reliability
results are only provided when up to 10% of the network
vertical links are faulty.

In [4] a distributed routing algorithm has been proposed for
partially vertically connected 3D NoCs, named Elevator-First.
The algorithm can tolerate faults on vertical links, regardless
of the location and the number of faulty links. In order to
guarantee deadlock freeness, the method depends on using
two virtual channels along X and Y dimensions. Despite the
advantages, the algorithm relies on an additional overhead in
header flits, when steering packets to nodes with vertical links
(called as elevator nodes). Also, each router should store the
location of at least one up and one down elevator node in its
layer for fault-tolerance purposes which can impose additional
memory overhead as the network scales up.

The mechanism proposed in this work is based on an exten-
sion of Logic-Based Distributed Routing (LBDR) [6] to the 3D
domain. LBDR is capable of implementing different deadlock
free turn model routing algorithms and depends only on a set of
routing and connectivity bits that describe the routing function
and the topology, respectively. The mechanism removes the
need for routing tables at routers, thus being scalable. LBDR
is able to support 2D Mesh and topologies derived from the
2D Mesh (as shown in [6]), however, it lacks the support
for 3D NoC topologies. In [15], cLBDR is introduced which
is a congestion-aware version of LBDR, able to take routing
decisions based on the traffic status of links connecting each
router to its neighbors, however, it only supports 2D topologies
and support for the 3D is remained as future work. On the other
hand, LBDR3D uses the concept of inter-layer and intra-layer
routing, depending on the location of packet’s destination with
respect to the source node. The proposed mechanism relies
on 2 Virtual Channels (VCs) per input port at each router.
Based on whether the packet should be steered upwards or
downwards, a fixed VC is assigned to it at the source node
and therefore, up-going and down-going packets are separated
until they reach their corresponding destinations, which can
guarantee the prevention of deadlock even when different data
flows are transferred across different layers of a 3D NoC.

The main contributions of this work are the following: 1)
LBDR3D, A logic-based routing mechanism which supports
implementing dead-lock free routing algorithms in partially
vertically connected 3D Network-on-Chips, 2) an offline algo-
rithm integrated with a framework (OSR-Lite [8]) for calculat-
ing and updating the new set of configuration bits (i.e. vertical
bits) of LBDR3D logic, 3) providing proof of dead-lock
freeness, by using only two VCs at each router and utilization
of input signals for prevention of live-lock, while at the same
time guaranteeing connectivity between all communicating
nodes. 4) Tolerating extreme cases of faulty vertical links, as
long as faults on vertical links do not disconnected the network,
thus not being dependent on the number and location of the
faulty vertical links, unlike [S] [16]. As it will be shown in
Section 5, LBDR3D is also capable of tolerating faults on
horizontal links in each layer, as long as the topology of each
layer is supported by the original LBDR mechanism.

III. DESCRIPTION OF LBDR3D MECHANISM

In this section, first the LBDR3D mechanism and its
logic are described. Afterwards, the proposed offline algorithm
which is used for calculating the vertical bits, is explained in
detail.

A. LBDR3D Mechanism

Our proposed mechanism is based on LBDR, which sup-
ports 2D Mesh and some of the topologies derived from 2D
Mesh [6]. However, in order to add support for 3D NoCs, the
connectivity bits (C) of the logic are extended to cover Up and
Down directions, in addition to the existing ones for 4 cardinal
2D directions (North, East, West and South), therefore, leading
to six connectivity bits per router, as follows:

C:c : Cna 067 Cwa Caa Cu7 Cd
LBDR3D uses the same number of routing bits (R,y) as

LBDR for implementing the routing algorithm in each layer,
as follows:



Fig. 1: A 4 x 4 x 4 3D Mesh with 88% faulty vertical links

Rmy : Rne7 Rnw, Ren, RES? R’wna R'wsa Rsey Rs'w

One of the new additions to the mechanism is a new set
consisting of 8 bits per router, named as vertical bits, based
on which the logic can determine whether there is at least one
node with up/down vertical link in the corresponding direction
or not (4 bits for up and 4 bits for down links). The vertical
bits are as follows:

Nu, Eu, Wu, Su, Nd, Ed, Wd, Sd

The bits ending with u indicate that there is at least one
vertical node with up link in the corresponding direction. The
same applies to the bits ending with d, but for down links.
For instance, if the S, bit is set, it means that there exists at
least one vertical node with up link in the Southward direction
in the current layer. In order to cover the situations in which
the vertical node is located on a quadrant with respect to the
current node, both the corresponding bits are set. For instance,
if a router has a node on the North-East quadrant with the
up vertical link, both Nu and Eu bits at the current router are
set. Such approach for showing the existence of vertical nodes
would save area, as there would not be any necessity to store
the location (address) of the node(s) with vertical links (unlike
the methods used in [4] and [5]).

One important issue is the approach taken to compute the
values of the vertical bits, which is addressed in the next sub-
section via the proposed offline algorithm that calculates the
vertical bits at each router at the same time when connectivity
and routing bits are initialized.The re-configuration process is
performed using the OSR-Lite framework [8] in a transparent
way, without imposing significant run-time latency and affect-
ing normal operation of the network.

B. Offline algorithm for calculating vertical bits

In order to select a node (router) as a vertical node in a 3D
NoC for steering a packet upwards or downwards (if the layer
of the destination node is not the same as the current node),
a policy is required for prioritization of the direction to take.
As shown in Fig. 1, for example, in a 4 x 4 x 4 3D Mesh with

Algorithm 1: Offline algorithm for calculating vertical
bits at routers in each layer

1 forall the nodes router[curr] € NoC do
2 DVL =0 // Down Vertical Nodes List
3 UVL =0 // Up Vertical Nodes List
4 HTV =0 // hops to Vertical node
5 if Cu[router[curr]] =1 then
6 L SetVerticalBits("U”, router[curr], 0)
7 else
8 forall the router[i] € Layer[curr] do
9 if router[i] # router[curr] then
// for each router[i] in current
layer except the current node
10 if Cu [router[i]] = I then
// router[i] is an up vertical
node
11 HTV = Distance (router|i],router|curr])
12 append HTV to UVL
13 SetVerticalBits("U”,router [curr],FindMin(UVL))
14 if Cd[router[curr]] = 1 then
15 L SetVerticalBits("D”, router[curr], 0)
16 else
17 forall the router[i] € Layer[curr] do
18 if router[i] # router|[curr] then
// for each router[i] in current
layer except the current node
19 if Cd [router[i]] = I then
// router[i] is a down vertical
node
20 HTV = Distance (router|i],router|curr])
21 append HTV to DVL
2 SetVerticalBits("D”,router [curr],FindMin(DVL))

// Functions Description:

// 1. Distance (router[i], router[curr]) returns
[Az + Ayl= [Tcurr — Trouter[i][+ |Yeurr — Yrouter[d]|

// 2. FindMin (VerticalNodesSet) returns the
vertical node in set VerticalNodesSet with
shortest distance to current node,ties are
broken randomly

// 3. SetVerticalBits(Dir, router[curr],VNode)
sets the vertical bits of router[curr] in
direction Dir ("U"=up, "D"=down), to vertical
node VNode

88% faulty vertical links, if node 53 wants to send a packet to
node 37, it has 3 choices for choosing a node on the current
layer as an up vertical node (nodes 51, 60 and 63). As it can
be seen, we can not guarantee that the total path the packet
will take to reach its destination will be the minimal path.
Therefore, instead of trying to take the minimal possible path
from source to destination, the offline algorithm calculates the
values of vertical bits at each router based on its Manhattan
distance to a vertical node. As it can be seen in Fig. 1, two
nodes can be chosen as candidates for up vertical nodes (nodes
51 and 60), values of vertical bits for the up direction for node
53 would be as follows (calculated by the offline algorithm):

Nu=0,Eu=0Wu=1,Su=1

Also, since node 53 is located on the bottom-most layer,
all the down vertical bits for this node would be set to zero,
as follows:

Nu=0,Fu=0,Wu=0,Su=0

The pseudo-code for the algorithm that computes the
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Fig. 2: Proposed logic of LBDR3D mechanism

vertical bits for each router is summarized in Algorithm 1.
These calculations are performed once for up and once for
down vertical nodes. As mentioned before, the algorithm
is executed offline and before the normal operation of the
network, and afterwards, the values of vertical bits are re-
configured (if necessary) using the OSR-Lite framework [8].
Thereafter, the algorithm will only be executed if a new fault
occurs in the network and there is a need for re-configuration
of the connectivity, routing and vertical bits. How the faults are
detected on the links would be out of the scope of this paper.
It is worth noting that if a node is an up (down) vertical node
itself, all the up (down) vertical bits for that router are set to
zero, as the current node can already be chosen by LBDR3D
for steering the packets one layer up (down).

C. Description of LBDR3D Logic

The logic of LBDR3D is proposed based on the principle
that packets should be steered towards a node with vertical
link, making the packet getting closer to its destination (if
possible), but it should not wander between different nodes
with vertical links in one layer, since in that case, it can lead
to live-lock and affect performance. The complete logic of
LBDR3D mechanism is shown in Fig. 2. In the first phase,
the direction signals are computed by comparing the current
address of the packet (stored in the current router) and the
destination address of the packet (extracted from the header
flit of the packet), i.e. signals N, B/, W' S’ U’ and D’ are
computed. Also, in this phase, first the quadrants or directions
that the packet cannot go are filtered out temporarily for the

packet. In order to prevent a packet from fluctuating between
two vertical nodes (which guarantees live-lock freeness), we
have utilized four additional signals which are fed from the
2D input ports, as follows:

ipX :ipN,ipE,ipW,ipS

As an example, if a packet comes from the North input
port, épN signal is set to one. As the packet should not go
back to the North direction again, it should not be possible for
the packet to be steered towards North (N) direction in search
of a vertical link. Next, the directions that the packet may
take, are computed, that means the packet is transmitted on
the plane using any kind of deadlock free turn model routing
algorithm that can already be implemented using LBDR on a
2D NoC. In order to explain the logic of LBDR3D, we focus
on one output port, for instance the North (N) output port logic.
Similar deductions can be inferred for other output port signals.
For the North port to be selected for forwarding the packet,
one of the following conditions can hold: (1) The packet’s
destination is located on the same layer as the current node
and it is located towards the North direction (N’.U’.D’), or (2)
The current node is not a vertical node, but there exists at least
one up/down vertical node on the same layer as the current
node towards the North direction (i.e. on North direction or
on North-East or North-West quadrant):

U'. (N +NEW + NWu')+ D'(Nd + NEd + NWd')

The second phase of the logic of LBDR3D is similar to the
basic LBDR. For instance, in case of the North output logic, if
one of the above-mentioned conditions hold, the North output
port can be selected if either (1) the destination is located on
the same column as the current node in the North direction
or (2) it is located on the North-East (NE) or (3) North-West
(NW) quadrant and the turn at the next router along North
direction allows the packet to take the North to East (R, = 1)
or North to West turn (R,, = 14), respectively. Finally, for
the North port (N) to be considered as the output port for
transmitting the packet, the corresponding connectivity bit of
North port (C),) should also be set. Therefore, in the end, the
packet will be forwarded to the North output port (if North is
also chosen by the arbitration unit) and it will either reach its
final destination (if destination is on the same layer as current
node) or it will reach the nearest node with up/down vertical
link, depending on whether it has to go upwards or downwards
(when destination is not on the same layer as current node).

The only output port signals that have slightly different
logics are U (Up) and D (Down) and the L (Local) output
port signals. If a packet reaches a vertical node and has
to be steered upwards or downwards, only U or D output
port can become active, respectively, and other output port
signals are automatically set to zero (based on the logic’s
behavior and because the offline algorithm will calculate all
the corresponding vertical bits as zero for a node with vertical
link). It should be noted that depending on the topology, and
based on the nearest vertical node, the vertical bits for a
node might change during the lifetime of the system, if re-
configuration would be needed.

Also, regarding the Local output port (L), it is activated
only when the packet has reached its destination (all the
direction signals N, B/, W' S’ U’ and D’ are zero). In such
case, the packet is forwarded to the Processing Element (PE)



Fig. 3: Different topology scenarios considered for analysis of routing mechanisms: with (a) 20%, (b) 40%, (c) 84% faulty vertical links, and (d) 88% faulty
vertical links with some faulty horizontal links for a 4 x 4 x 4 3D Mesh. It should be noted that in figures (a) and (b), the red vertical links are the faulty
and the vertical links that are not shown are the healthy ones. However, in figure (c) and (d) only the healthy vertical links are shown for the sake of figure’s

simplicity and the faulty ones are not shown.

connected to the router through its Local port.

IV. DEADLOCK AND LIVE-LOCK FREENESS AND
CONNECTIVITY GUARANTEE

A. Proof of deadlock freeness

In this section, a formal proof is provided regarding the fact
that any deadlock free routing algorithm that is implemented
using LBDR3D in each layer of a 3D NoC, would not lead to
deadlock when packets are transmitted across the layers. To
this end, similar to [4], virtual channels are introduced in this
work.

A deadlock situation can occur whenever nodes in the
network try to access resources (communication links and/or
buffers) in a circular way, which can cause the packets to
get locked and not advance anymore. In 3D NoCs, Intra-layer
communications might still lead to deadlock situation even if
each layer already has a deadlock free routing algorithm. The
proof of deadlock freeness for LBDR3D is as follows, using
only two Virtual Channels (VCs) per each input port and the
concept of Channel Dependency Graph (CDG) [17], [18]. A
CDG is a directed graph whose nodes are network channels
and edges represent dependencies between these channels. If
we assume that a cycle exists in the CDG, the cycle can either
(1) include vertical links at least one in each direction (up or
down), or (2) not include any vertical links. If (2) is the case,
then the cycle cannot be formed since all the packets follow the
deadlock-free CDG-acyclic routing algorithm on the plane of
the supposed cycle (as mentioned before, the routing algorithm
used in each layer is deadlock-free). If (1) is the case, then
there is at least one link in the up direction and one in the
down direction. These two links have no dependency through
the cycle since one is using VC1 (for up direction) and the
other is using VCO (for down direction). In that case, we need
to demonstrate that there are no dependencies from the down
resource (VCO) to the up resource (VCI). This would mean
there is one layer where there is a dependency between link
X of VCI and link Y of VCO. Since we do not allow VCO to
VCI and VCI to VCO transitions, therefore the cycle can not
form, thus the proof.

B. Proof of live-lock freeness

A live-lock situation can occur when packets usually take
non-minimal paths and never reach their destination. However,

as mentioned in Section III, LBDR3D uses a set of signals
from input ports when computing the candidate output port(s)
for routing packets and it does not allow a packet that has come
from a direction going back to the same direction (input signals
are denoted as ipN, ipFE, ipW and ipS, each corresponding to
one of the 4 main cardinal 2D directions). Therefore, the logic
automatically guarantees packets would not fluctuate between
different nodes with vertical links when they are being routed
to another layer in a 3D NoC, thus, it guarantees live-lock
freeness.

C. Proof of connectivity

Similar to the Original LBDR, the proposed mechanism
also guarantees connectivity between every pair of communi-
cation nodes as long as faults do not disconnect the network.
In other words, as long as for each source, at least one
minimal path exists to its destination under the current routing
algorithm, connectivity is assured. Our work outperforms [5]
and [16] in a sense that there are no limitations on the location
of vertical links in each layer for guaranteeing connectivity
and there is no need for the existence of a pillar connecting
all layers.

V. EXPERIMENTAL RESULTS
A. Performance analysis

In order to analyze the performance of LBDR3D, we
have compared it with Elevator-First [4]. Both approaches
are implemented in an extended cycle-accurate NoC simulator
supporting 3D NoCs, i.e. Noxim simulator [19]. The extended
version of Noxim supporting Virtual Channels (VC) and
LBDR3D is maintained as an open-source project on [20].
In order to evaluate the effect of faulty links on the perfor-
mance of the network using different routing mechanisms, we
considered different scenarios for a 4 x 4 x 4 3D NoC with
20%, 40%, 84% faulty vertical links and 88% faulty vertical
links with some faulty horizontal links, as shown in Fig. 3a-
d. The location of faulty vertical links are chosen randomly
in the scenarios. However, it is noteworthy that LBDR3D
is not limited only to these scenarios. The two other fault-
tolerant routing mechanisms are North-East to Z (NETZ) [16]
and East-Then-West (ETW) [5], [21]. However, since NETZ
relies on the existence of a pillar on the North-East column
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Fig. 4: Average latency results for different fault scenarios under (a),(b)
Random Uniform, (c),(d) Transpose and (e)(f) Bit-Reversal traffic patterns

of the network and also ETW relies on the existence of at
least one vertical link on the East side of each layer, they
are excluded from the performance analysis results (we have
assumed random locations for faulty vertical links).

Fig. 4a-f illustrate the simulation results of average packet
latency for the compared algorithms, in case of 20%, 40%,
84% faulty vertical links(the percentages correspond to the
fault rates written in the figure). The scenarios represent the
ones shown in Fig. 3a-c. In addition, in order to show that
LBDR3D supports faults on some horizontal links in addition
to vertical ones, simulation results for one scneario is provided
in Fig. 4f which corresponds to the topology scenario in Fig. 3d
(88% faulty vertical links with some faulty horizontal links).
Three different synthetic traffic patterns, i.e. Random Uniform,
Bit-Reversal and Transpose are considered in the simulation
in order to assess the effect of different fault scenarios on the
average network latency and analyzing network’s saturation
point for latency. The simulation setup parameters (for Noxim
simulator) and the considered scenarios for the experiments
are summarized in Table I. It should be noted that during the
experiments, each simulation is performed 10 times for each
packet injection rate (pir) and the average value of the latency
is considered.

As it can be seen, in Fig. 4a, 4c, 4e, under 20% and 40%
random faulty vertical link configurations (which correspond
to the scenarios shown in Fig. 3a and Fig. 3b, respectively),
LBDR3D is able to achieve slightly better average latency
results compared to Elevator-First, under Random Uniform
(Fig. 4a), Transpose (Fig. 4c) and Bit Reversal (Fig. 4e)
traffic patterns. Of course, as it can be observed, when the
fault rate increases to 40%, the network starts saturating at a
lower packet injection rate (pir) compared to the 20% fault
rate case. In addition, when LBDR3D is programmed to a
partially adaptive routing algorithm such as West-First and
North-Last in each layer (as shown in Fig. 4a, 4c and 4e),
under all considered traffic scenarios except random uniform,
it can achieve better or similar performance (average latency)
results due to lowering the chance of congestion in the net-
work, compared to deterministic routing (Elevator-First and
LBDR3D-XY). This also conforms to the observation made



TABLE I: Considered Scenarios and simulation parameters

LBDR3D-XY,Elevator-First XY, LBDR3D-
West First, LBDR3D-North Last

4 x4 x4 3D Mesh with 20%,40%, 84% faulty
vertical links and 88% faulty vertical links with
some faulty horizontal links

2 (per each router input port)

Routing Algorithm

Network Topology

Number of VCs

VC depth 4 flits
Network 1 Ghz
Frequency

Simulation Time
‘Warm-up time
Traffic patterns

10000 cycles (1 cycle = Ins)
1000 cycles (1 cycle = 1ns)
Random Uniform, Bit-Reversal and Transpose

in [22] which illustrates that deterministic dimension-ordered
routing algorithms such as XY achieve better latency results
compared to the adaptive routing algorithms as they distribute
the traffic in a more uniform manner in the long run.

Furthermore, as demonstrated in Fig. 4b, 4d and 4f, as the
percentage of faulty vertical links increases to 84%, LBDR3D
still achieves comparable average latency results to Elevator-
First under the three considered synthetic traffic patterns. In
addition, Fig, 4b, 4d and 4f confirm that as more links get
faulty, there would be less path diversity for packets being
transmitted between layers and therefore the network saturates
at a lower packet injection rate. This is also due to higher
utilization of vertical links for cross-layer traffic flows.

It is noteworthy that all the scenarios demonstrated in Fig.
3 can be simulated using the configuration files (for Noxim)
provided available at [20], [23] for all the considered traffic
patterns and the packet injection rates shown in Fig. 4.

B. Flexibility and scalability analysis

In order to evaluate the flexibility and scalability of
LBDR3D, it is compared with Elevator-First. As mentioned
earlier, both LBDR3D and Elevator-First follow the concept
of inter-layer and intra-layer routing when the desintation of a
packet is not on the same layer as the current node. However,
unlike Elevator-First [4], in our approach, the packets are not
augmented with additional intermediate destination address of
the elevator nodes. Moreover, we remove the need for storing
the location address of elevator node(s) per each router at the
current layer, and substitute it by a fixed limited set of vertical
bits, thus making LBDR3D scalable (more details explained
in Section V-C).

From another point of view, in [4] only the deterministic
XY routing is considered and for simplicity, the topology of
each layer is assumed to be 2D Mesh. Thus, one might infer
that the routing logic of Elevator-First is fixed, therefore, if a
fault occurs in the network and the topology changes or the
routing algorithm needs to be re-configured, the whole routing
logic needs to be re-designed, and only the addresses of the
elevator nodes can be updated. However, in case of LBDR3D,
if a fault occurs, during the re-configuration phase, not only
the vertical bits, but also the connectivity and routing bits
can be updated, thus, in addition to add support for the new
faulty topology, the routing algorithm can also be updated.
As an example, Elevator-First with XY routing would not
be able to support the topology shown in Fig. 3d, however
LBDR3D when programmed to West-First routing, can still

BORSD " BORIDY Eetorist LEDRID T LSORIDHY zxv TEDR O CREDED T2
0x1010)  (10x10x10)  ( axd)  (axaxa)

(a> (b)

Fig. 5: Area consumption (in um?) for different routing mechanisms, (a) for
showing scalability of LBDR3D over Elevator-First, (b) for comparison of
LBDR3D to ZXY, LBDR, NETZ and ETW.

guarantee connectivity among all nodes and tolerate faults
on horizontal links to some extent. Also, for such scenario,
LBDR3D can obtain acceptable performance (average latency)
results compared to the other scenarios, as shown in Fig. 4f
(under Bit-Reversal traffic pattern).

C. Area consumption analysis

In our experiments, we also made an area consumption
comparison, by describing the RTL logic of LBDR3D for a
4x4 x4 and 10x 10 x 10 3D Mesh and also the logic of ZXY
routing (which is a non-fault-tolerant mechanism), Elevator-
First, NETZ and ETW, and synthesized them using Synopsys
Design Compiler [24]. The results showed 34.6% increase in
area for a 4 x 4 x 4 3D Mesh and 11.7% increment in area
for a 10 x 10 x 10 3D Mesh, when comparing LBDR3D logic
to Elevator-First using XY routing. The decrease in the area
overhead can be a proof of the scalability of LBDR3D as it
does not store the location of nodes with vertical links in each
layer. In addition, when comparing LBDR3D programmed to
XY routing (LBDR3D XY) with NETZ and ETW for the case
of a 4 x 4 x 4 3D Mesh network, the area overhead was only
around 5.02% and 5.1%, respectively. Another explanation for
the area overhead of LBDR3D compared to ZXY, LBDR,
Elevator-First, NETZ and ETW would be the additional set
of vertical bits and the new logic for supporting 3D NoC
topologies, but at the same time it brings the advantage of
providing flexibility and not relying on existence of any pillars
in the topology.

The area consumption results are illustrated in Fig. 5.
For better readability, two groups are considered. In Fig. 5a
LBDR3D is compared only to Elevator-First (both the general
logic and also when programmed to XY routing). Also, its
scalability comparison is performed in Fig. 5a when the size
of the network grows. Our experiments showed that after the
network size of 25 x 25 x 25, LBDR3D can even achieve
better area results, as it does not rely on the location address
of elevator nodes. The second group, which is shown in Fig.
5b, includes comparison of the ZXY routing, LBDR3D and
LBDR3D XY, NETZ and ETW, all for a 4 x 4 x 4 network. It
is noteworthy that the area results are obtained using NanGate
Open Cell 45 nm Library [25] and synthesis of the RTL of the
designs is performed using Synopsys Design Compiler [24].

D. Reliability analysis

In terms of reliability and tolerance to faults on vertical
links, we have compared LBDR3D with two other proposed
approaches in [5], [21] and [16], named East-Then-West
(ETW) and North-East To Z (NETZ). Both methods rely on
the existence of a pillar, i.e. NETZ requires the existence of
at least one pillar in the North-East column of the network



and ETW also needs at least one vertical link on the East
column of the network. However, our proposed mechanism
does not impose such limitations. For instance, as mentioned
before, LBDR3D supports all the topologies shown in Fig. 1
and Fig. 3a-d. In case of faults on horizontal links, LBDR3D
and Elevator-First, both support all the topologies shown in
Fig. 1 and Fig. 3a-c. But in the case of Fig. 3d, since the routing
algorithm of Elevator-First in each layer is XY, the topology is
not supported as some of the minimal paths between the nodes
are broken. However, in such topology (Fig. 3d) LBDR3D can
be re-programmed, for instance, to the West-First turn model.

VI. CONCLUSION

In this paper, LBDR3D, a fault-tolerant, deadlock and live-
lock free logic-based distributed mechanism for implementing
routing algorithms in 3D NoCs was introduced. The mecha-
nism, which is an extension to the baseline LBDR approach,
only relies on a fixed set of configuration bits describing the
routing algorithm and the topology. In addition, an offline
algorithm was utilized in order to calculate the new set of
vertical bits for the proposed mechanism, re-configured in
transparent way using a previously introduced framework. The
proposed mechanism is able to tolerate extreme fault scenarios
for vertical links in a 3D NoC as long as the network is not dis-
connected. Moreover, faults on horizontal links are tolerated,
as long as the topology in each layer is already supported by
LBDR. Experimental results, compared LBDR3D with three
other proposed fault-tolerant routing algorithms for vertically
partially connected 3D NoCs. It was shown that it can achieve
similar performance results under synthetic traffic patterns
compared to the Elevator-First routing algorithm, without
storing the location of elevator nodes and not augmenting
packets with additional information. In addition, our proposal
does not rely on the existence of pillars in the network, unlike
NETZ and ETW. Finally, area consumption results showed the
scalability of the mechanism compared to Elevator-First and
its insignificant overhead compared to NETZ and ETW, which
comes at the price of more flexibility.
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Abstract—With the scaling of silicon technology beyond the
sub-micron domain, the probability of the system being exposed
to different sources of faults increases. Manifestation of new
defects during system’s run-time, necessitates the need for a
mechanism providing cost-effective online fault detection which
performs concurrently with the circuit’s normal operation and
has low area overhead and high fault coverage. Especially crucial
is the fault detection latency, as the system’s ability to isolate
faults and recover from them is highly dependent on the detection
time. This paper proposes two heuristics (branch-and-bound and
greedy) for minimization of concurrent online checkers. Both
algorithms use the concept of dominant checkers, proposed in
this work. The method allows generating minimal area checkers
satisfying a target fault coverage with the shortest possible fault
detection latency. Experimental results demonstrate the area
efficiency of the approach compared to other methods.

I. INTRODUCTION

Miniaturization of nano-electronic technology increases the
vulnerability of components towards wear-out and environ-
mental effects. Thus, concurrent online checkers for detecting
faults during circuit’s life-time are a must in modern reliable
systems. In this paper, we propose an approach for evaluation
and minimization of concurrent online checkers using two
different heuristics: branch-and-bound, and greedy. Greedy
heuristic scales well with the growing number of checkers
while branch-and-bound provides an exact solution. Both
algorithms utilize the concept of dominant checkers, proposed
in this work, in order to speed up the heuristics. The method
allows generating minimal area checkers satisfying a target
fault coverage with the shortest possible fault detection latency.

II. CONCURRENT ONLINE CHECKERS CONCEPT

In this work, the concept of concurrent online checkers,
introduced in [1], has been utilized, and single stuck-at fault
model has been used. When applying a set of valid input
stimuli to the circuit under check, four different conditions
may occur, which are named as True Detection, True Miss,
False Positive and Benign Miss. Checkers’ Efficient Index
(CEI) [2] has been used as a metric for evaluating the checkers
for minimization heuristics.

III. CHECKERS EVALUATION AND MINIMIZATION FLOW

The proposed flow for evaluation and minimization of the
checkers is demonstrated in Fig. 1. Details of the framework’s
flowchart has been explained in [2]. An important part of the
framework is to minimize the area of the checkers (by trading-
off with fault localization capability) while having 100% CEI.
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Fig. 1: Checkers Evaluation and Minimization Framework Flowchart

In this work, the minimization part of the flow is equipped
with two new heuristics, Branch-and-Bound and Greedy.

It is worth noting that this work focuses on combinational
checkers for control-oriented circuits. Regarding the data-
path, it is assumed to be already protected by an error detec-
tion/correction technique. As an example in our experiments,
we have used the control part of a NoC router as the circuit
under check. However, the idea of checkers is not limited to
a specific control-oriented circuit and it can be applied to any
arbitrary one.

IV. CHECKERS’ MINIMIZATION HEURISTICS

In this work, two heuristics are used for the minimization
and optimization part of the flow: greedy and branch-and-
bound. Greedy algorithm uses Checkers’ Efficiency Index
(CEI) for sorting the checkers and then tries picking them
from the top of the list and calculates CEI and checks
for the area feasibility of the solution. Also, a depth First
Search (DFS) implementation of Branch-and-Bound algorithm
was implemented for checker minimization. At each step, a
checker is chosen (to be taken or being discarded), and the
CEI and area of the selected checkers are estimated. Also,
optimistic evaluation of sub-tree below the chosen option is
estimated (which is the CEI of all the remaining checkers
without considering the area constraint). Branch-and-bound
algorithm provides exact solution for any set of checkers. In
our experiments, two techniques are used to improve the result
quality:



TABLE I: The result of checkers optimization without application of area
constraints and comparison with DMR and TMR of the control circuit.

Unit Information

TABLE II: Area comparison of router with checkers and with the base-line
router

Opt. checkers without Dominant checkers Opt. checkers with Dominant checkers

Control OPL | acq | Overhead | Scarch | Control [~ Opt Area | Overhead | Search
Unit method (%) | space size | Unit | method (%) | space size
Routing B&B | 99 128% [, Routing |_Greedy N o
1 Greedy | 111 143% 262144 ogic B&B 123 139% !
Atbiter Greedy | 261 150% [ 710 | Amiter | Greedy | 266 | 1528% | 35107
B&B | 120 93% B&B 120 93%
5192
FIFO Greedy | 122 94.5% 192 FIFO ety 2 91.5% o

1) Coverage Density (CD) as sorting factor: In this variation,
instead of just using CEI as the selection function of checkers
for greedy algorithm, the coverage density (CD) is utilized as
the sorting factor (based on the checker’s area) (Eq. 1):

_ CElcphecker

CD =
Areachecker

&)

2) Dominant checkers’ extraction : While evaluating the
checkers separately, based on the number of detected and
undetected stuck-at-0 and stuck-at-1 faults (which denote the
number of True Detections and True Misses), it might be
possible to extract checkers which provides the smallest values
of True Misses for each line in the circuit, hence improving
the CEL. A dominant checker for a circuit line is defined
as a checker that has a minimum number of True Misses,
while having a non-zero value for True Detections for that
specific circuit line. If the number of dominant checkers for
a circuit line is only one, that checker is called a single
dominant checker. By selecting single dominant checkers in
the beginning of the minimization process, the search space
size is reduced, leading to speed-up of the optimization algo-
rithm. However, it should be noted that picking such checkers
does not necessarily result in a global optimal solution and
it might be the case that the combination of two or more
checkers results in 100% CEI with lower area. But, starting
the optimization by picking the dominant checkers first, adds
significant speed-up to the process.

V. EXPERIMENTAL RESULTS

In this section, experimental results of checker minimization
for control part of a NoC router are presented, which include
the control part of FIFO, the routing logic and the arbitration
unit. The synthesis of all the circuitsis performed using Class
library by means of Synopsys Design Compiler [3]. For
fault simulation, all the experiments are carried out using an
extension of an in-house freeware test system Turbo Tester
[4]. The experimental results for checker minimization are
represented in Table I. DMR and TMR circuits for pseudo-
combinational equivalent of each control unit circuitry are
designed and synthesized. For routing logic and control part
of FIFO, both optimization methods are used, but branch-and-
bound algorithm was not applied to arbiter unit due to the huge
problem size. The area overhead of the checkers are calculated
based on the original control circuit size. The greedy algorithm
used in the experiments, uses Coverage Density (CD) as
sorting factor for checkers. The experiments show that the
proposed method falls between DMR and TMR in terms of

area area critical path critical path
‘Control unit area Control unit DMR Control unit TMR Complete set of checkers 2 erl d (% del h d (%
Control Fall [ pseudo |, = | Overhead | Nomber | An Overhead i (um?) | overhead (%) elay (ns) overhead (%)
Unit unit_| comb. © (%) o v < (%) Baseline router 91163 - 3.38 -
Routing Logic |77 39 o1 67.5% 153 18 173 159% Router with opt. 107237 T49% 343 T4%
Abiter a1 209 8% | 464 5 56 337 193% heck
FIFO B 50 133 56.5% 735 | 1356% 13 125 96.5% checkers

area overhead while providing fault localization information.
Considering the search space size, using dominant checkers
for speeding up the search process depends on the design
of the checkers. In case of routing logic, mostly structural
checkers are used which are directly extracted from the RTL.
Most of the resulting fine tuned checkers will be categorized as
dominant checkers which in turn results in massive reduction
in search space and leaves no room for optimization (in case
of routing logic, reducing the search space size to 1). A more
balanced initial set of checkers (for example in case of arbiter
unit), will result in a more balanced set of dominant checkers
and will provide a reasonable search space size.

The full router with final set of minimized checkers and the
baseline router (without any checkers) are synthesized using
AMS 0.18 um CMOS technology library [5]. The full router
with checkers includes the control part, the data-path and the
minimized set of checkers obtained from table I. The results of
the synthesis and area overhead and critical path delay of the
proposed method are presented in Table II. The area overhead
compares the router including all checkers for all modules of
the control part, with the baseline router without any checkers.
The area overhead when considering the minimized set of
checkers (while still reaching 100%) is about 15%, which
is small compared to the total area of the baseline router.
Moreover, with regards to the timing, the additional delay in
the critical path of the router is also negligible.
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Abstract—Due to the ongoing miniaturization of silicon tech-
nology beyond the sub-micron domain and the trend of inte-
grating ever more components on a single chip, the Network-
on-Chip (NoC) paradigm has emerged to address the scalability
and performance shortcomings of bus-based interconnects. As
the feature size shrinks, the system gets much more susceptible
to faults caused by wear-out and environmental effects. Thus,
in order to increase the reliability, creates the need for having
mechanisms embedded into such a system that could detect and
manage the faults in run-time.

In this paper, a ground-up approach from fault detection
to fault management for such a NoC-based system on chip
is proposed that utilizes both local fault management for fast
reaction to faults and a global fault 2 i
for triggering a large-scale reconfiguration of the NoC. Also,
detailed description of strategies for fault detection, localization,
classification and propagation to a global fault management
unit are provided and methods for local fault management are
elaborated.

Keywords—Fault Detection, Checkers, Fault Classifica-
tion, Fault Localization, Fault management, Reconfiguration,
Network-on-Chip.
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I. INTRODUCTION

Network-on-Chip (NoC) has emerged as a paradigm to
address the scalability and performance shortcomings of tradi-
tional bus-based architectures [1], [2]. The trend of nano-scale
electronics shrinking in size, makes them more susceptible
to wear-out and environmental effects. This necessitates the
detection and management of faults occurring at the run-time
of the system, in order to provide higher reliability.

This work addresses a reliable NoC framework, which is
maintained as an open-source project named Bonfire [3]. It
provides support for fault detection and localization, local fault
management, local fault classification, and fault information
propagation to a global system health monitoring unit. In
a NoC-based System-on-Chip, routers are responsible for
transmitting data between the Processing Elements (PEs).

In Network-on-Chip, a router is composed of a data-path
and a control part. The packets are transmitted via the data-
path, while the control part directs the flow of data and the path
the data should take when being transmitted between routers.
Thus, both for the data-path and the control part, fault toler-
ance is of utmost importance for a reliable communication.

For the data-path, error detection and/or error correction
techniques (such as single parity and Hamming encoding [4])
can be used. However, due to the area overhead of error
correction techniques such as Hamming, the focus of this work
is on single bit parity for the detection of faults in the data-path
(inter-router links and data-path components of the routers).

On the other hand, faults in the control part of NoC routers
should be handled. One way is to detect them via concurrent
online checkers (for instance via the approaches proposed in
[51, [6]) due to their low fault detection latency. There are also
other methods such as Built-In-Self-Test (BIST) [7]. However,
they interrupt the normal operation of the system for testing
upon a fault occurrence. Thus, in the scope of this work, we
focus on concurrent online detection of faults for the control
part of routers. It is important to note that the checker outputs
also facilitate fault localization [8], pinpointing the defective
part in the circuit. Additionally, higher abstract deductions can
be made based on them, such as existence of defect in turns
in a router (a path from an input port to an output port). Such
information can be used for reconfiguration of the routing
algorithm or re-mapping of the tasks by units in charge of
application mapping and scheduling. Works such as [9] have
addressed multi-layer fault diagnosis and combining checkers
at different levels of abstraction, however, they impose high
latency. Furthermore, they have not addressed any mechanism
for classification of faults and fault management, which are
considered in our work.

In this work a ground-up approach from fault detection
to management for NoC-based System-on-chips is proposed.
Strategies for fault detection, localization, classification and
propagation to a global fault management unit are described.
Furthermore, in order to improve the reaction time to faults,
methods for local fault management are elaborated.

The rest of this paper is organized as follows: in section II
the basics of the Bonfire framework, including the NoC and
router architecture are discussed. Section III describes the fault
model used in this work and the method of fault injection on
the links. In section IV different fault detection mechanisms
for control and data path of the routers are discussed. Section
V describes methods of fault localization. Sections VI describe
the the process of fault classification and Section VII provides
methods of handling faulty packets at the router level. Section
VIII details fault information propagation to system health
monitoring unit and finally, section X concludes the paper.

II. BONFIRE FRAMEWORK
A. Bonfire NoC Architecture

The aim of the Bonfire project is to create a fault-tolerant
framework for testing dependability mechanisms in a NoC-
based System-on-Chip(SoC). The targeted NoC is using a 2D
mesh topology where each tile of the network consists of
a wormhole switching router equipped with fault tolerance
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Fig. 1. Overview of the architecture of baseline credit-based flow control
NoC router used in Bonfire network

mechanisms and a Processing Element (PE) connected to it via
a Network Interface (NI). Each PE comprises a Plasma core
[10], which is a 32-bit MIPS-I based open-source processor
with three pipeline stages, along with 8 KB of RAM (as local
memory). Details of the components of the framework are
described in the following subsections. Bonfire is maintained
as an open-source project, available at [3] .

B. Bonfire Router

The Bonfire network described in this paper utilizes 32
bit credit-based wormhole switching in the routers. Fig. 1
shows an overview of the baseline router used in the Bonfire
network, without any fault-tolerance mechanism. The router
comprises of an input buffer (implemented as First-In-First-
Out (FIFO)), routing computation unit (implemented using
Logic-Based Distributed Routing (LBDR) mechanism [11]),
switch allocator (prioritizing multiple requests to the same
output port based on Round-Robin policy) and crossbar switch.

We have opted for LBDR [11], since it is scalable compared
to table-based routing in NoCs. Furthermore, LBDR describes
the topology and the routing algorithm in a 2D NoC in terms
of a fixed number of configuration bits, i.e. connectivity and
routing bits. This makes it possible to use the connectivity bits
for the indication of links in the 4 main directions as healthy
or faulty, by setting the corresponding connectivity bit to zero
(faulty) or one (healthy). Routing algorithm re-configuration
(if necessary) can be done by changing the routing bits.

C. System Health Monitoring Unit (SHMU)

The Bonfire project targets a holistic system health monitor-
ing and management solution. To implement this, a dedicated
unit, called System Health Monitoring Unit (SHMU) [12],
[13], is proposed which handles fault information collection
and system-scale fault management and reconfiguration.

In Bonfire project SHMU runs as software on one of the
Processing Elements (PEs) in the network. And if the proces-
sor fails, the SHMU tasks can be mapped on another node.
Details about functionality and implementation of SHMU is
beyond the scope of this paper.

III. FAULT MODEL

In this work, we focus on single stuck-at fault model [14],
which means in each router module only one fault can occur at
a time. For data-path related modules, including the links, only
one bit can get faulty at a time on the specific link. The same
applies to the control part related modules. Thus, separate
control part modules and data links from different ports can

get faulty at the same time, but only one fault in each of them
at a time. Transient faults are modeled as single stuck-at faults
which last one clock cycle. Intermittent faults are modeled as
bursts of transient faults in short periods. Permanent faults are
modeled as a moving from transient fault to intermittent state
and then finally with a permanent stuck-at fault.

In this work, fault injection is done using force command of
ModelSim from Mentor Graphics [15]. The injection points are
links between routers and also internal signals of the individual
modules inside the router.

IV. FAULT DETECTION

The Bonfire framework uses different methods for detection
of faults in data-path and in the control part of the network.

A. Data-path Fault Detection

Since this work focuses on a single stuck-at-fault model,
a simple parity checker module is used to cover all single-
bit faults on the input ports of the router. Upon receiving a
faulty flit, the router starts a fault classification process and
also manages the fault locally in order to prevent network
congestion (for more information, please refer to section VII).

B. Control Part Fault Detection

Concurrent Online checkers are utilized to detect faults
in the control part of the NoC routers. A checker is a
concurrent online fault detection module [5], [6]. It detects
faults occurring at inputs and outputs of fan-out free regions
[16] of the circuit with low latency. Since checkers provide
fault information required for fault localization, this method
is preferable to Double or Triple Modular Redundancy (DMR
and TMR) schemes. The use of concurrent checkers for online
fault detection in control part of NoC routers are described in
more detail in [5], [6], [17], [18]. It is worth noting that the
complete set of checkers for the control part of Bonfire NoC
are available at [3], which covers the control part of FIFO,
routing logic (LBDR) and allocator unit (allocator) shown in
Fig. 1.

V. FAULT LOCALIZATION

As the number of checkers can grow very large (in the
order of hundreds per router), it is not feasible to send the
fault detection information from all these checkers to SHMU.
Also, in case of a NoC router, for example, flipping of a bit
in a register in one of the router’s internal modules will not
provide valuable information to the SHMU in the application
layer. However, if the outputs of the checkers connected to this
module are combined, it is possible to translate the output of
the checkers into more meaningful abstracted information.

By combining the checkers for the control part of the router,
it is possible to report faults at a more abstract level. For
instance, in [8], a fault localization method is introduced
which groups sets of checkers, making an assertion vector,
facilitating finding fault location at different granularity levels
in the control part of a NoC router. This can also be used
when signaling higher levels in the architecture, such as the
application level about the occurrence of faults.

Works such as [19], model faults in the control part as
a complete node failure. In [20], illegal turns in the routers
are detected, however, each router depends on the information
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Fig. 3. Finite State Machine (FSM) for the fault classifier unit

from its neighbor routers for online fault detection. On the
other hand, in our work, we combine checker outputs (as
shown in Fig. 2) for the control part of a router. Further, this
can be translated into detection of a rurn faulr. Unlike [20],
we use the checker outputs in the current router to model turn
faults, and there is no need for collecting information from
neighbor routers. A turn fault is defined as a fault occurring
in one of the components on the path from an input port to
an output port of the router (e.g. a West to North turn fault or
a straight path). This information can be passed to SHMU to
the application layer. Later, if required, the SHMU can initiate
re-configuration of the routing algorithm or re-mapping of the
tasks on the nodes based on the fault information received
from the lower (hardware) level.

VI. FAULT CLASSIFICATION

With the growing number of transient faults, it would be
impractical to send a separate notification to SHMU for each
occurring fault. Not only would this impose additional latency
by sending a notification from hardware to application layer,
but it will also incur a significant power overhead.

To overcome this problem, faults are classified locally
in the routers as permanent, intermittent or transient. The
classified fault information is transmitted to SHMU if the fault
is classified as intermittent or permanent. In [21], [22], an
online fault classification mechanism is introduced as part of
a cross-layer fault management framework, however, no details
regarding the implementation of the fault classifier is provided.
Whereas, in our work, a fault classification method based on
[23], [24] is implemented; where a set of counters are used to
count the healthy and faulty packets going through a network
link. Each of the counters are compared with a threshold value.
When a counter reaches its threshold, a signal is issued which
is used by a control Finite State Machine (FSM) in charge of
health making decision. Fig. 3 illustrates the FSM Diagram
of the classifier unit. Every time the faulty packet counter

Healthy
packet
> i I—»Health
Fault Classifier [ Intermittent
> Controller > Faulty
Faulty

packet H “
counter || counter

Fig. 4. Fault classifier block diagram

reaches its threshold, the FSM moves one step closer to the
Faulty state. Every time the a counter reaches its threshold,
both counters would be reset. It is noteworthy to mention that
there could be different variations of state diagram models
implemented for classification. The current state diagram as
described in the Fig. 3 implements a scheme where there is
no recycling of once faulty links. In contrast to [23], [24], since
no error correction method has been used in this method, only
two four-bit counters are utilized (see Fig. 4).

VII. LoCAL FAULT MANAGEMENT

Once a fault has been detected in the system, if it is
classified as intermittent or permanent, the SHMU is notified.
After obtaining the fault information, processing and making
a decision, the SHMU can issue a command regarding that
particular fault. But, during this time the effect of the fault
has already propagated to other parts of the system and
containment of the effects would be difficult if not impossible.
So even though SHMU is responsible for fault management in
the system, it can only manage the faults (in global scale) and
some more detailed, distributed, mechanisms are needed for
management of faults locally. This problem can be solved by
implementing local fault management at each router. In this
section two solutions for local management of the faults are
provided.

A. Packet Dropping Mechanism

One of the important cases to be addressed is appearance
of faulty flit at the input port of a router, where the following
situations might happen:

« Fault in the flit type: in this case, it is usually not possible
to identify the flit type and it (and also subsequent flits
belonging to the same packet) cannot be routed. If this is
not taken care of, eventually the input buffer (FIFO) of the
router will get full, which can, in turn, leads to network
congestion.

Fault in the payload data: this type of fault does not have
any effect on the network performance. However, since the
packet data is corrupt, the fault will manifest itself in the
application layer.

Fault in the destination address field: the routing module
might not be able to route the packet or the packet gets
forwarded to a wrong destination. This might also result in
network congestion if it is not properly taken care of.

One of the approaches to bypass the problem of having
faulty flits is to use error-correction techniques, such as
Hamming coding (single bit error correction, double bit error
detection) for all flits. By comparing the overhead of these
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AREA AND FLIT SIZE OVERHEAD COMPARISON OF SINGLE BIT PARITY
AND HAMMING DECODER

Unit name Unit ] Overhead in
area (um?) flit size (bits)
32-bit single bit parity checker 663 1
32-bit H ing decoder 7050 8
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Fig. 5. Finite State Machine (FSM) diagram for the packet dropping
mechanism

methods (shown in Table I) using AMS 0.18 um CMOS
technology library [25], it becomes clear that those methods
impose additional area overhead to the correction circuit and
also increase the flit (due to the additional bits needed for
error correction). This, will affect the size of other network
parameters, such as the physical link width which, in turn,
also increases the size of the input buffer (FIFO) and crossbar
switch.

In order to handle the above-mentioned situations, a packet
dropping mechanism is incorporated in Bonfire framework.
However, while using wormhole switching, in some cases,
dropping the packet is not possible, for instance, when packet’s
header flit has already left the router. In such case, it is possible
to cut the packet from the current position and attach a fake
tail to it and forward it, while dropping the rest of the packet.
This will not affect the network’s operation. The results of
such measures would manifest themselves in the application
layer by comparing the packet length with the information in
the header flit or as corrupt data. In our router architecture,
the packet dropping mechanism is handled by a Finite State
Machine (FSM), as is shown in Fig. 5. Additionally, the
packet dropping mechanism has to generate fake credits for
the upstream router in order not to interrupt the flow of the
traffic.

In the Bonfire router, the packet dropping mechanism is
improved even further by adding the flit saving functionality
— a capability to detect position of the error in flits. In case the
error is in the payload part, the packet will still be transmitted
to its destination, thus making the application layer to handle
the data errors. This will avoid re-transmissions in non-critical
applications (for example many multimedia applications).

B. Routing Management

Once a link is classified as faulty, the router automatically
sends this information to upstream router to update its LBDR

connectivity bits (these bits can be over-written by SHMU
later). If the change in connectivity bits happens when a
packet is being processed, it might result in the packet being
divided or mis-routed. In order to avoid this problem, the new
connectivity bits should be stored in a register and routing
module should wait until a new header flit arrives. The same
approach is applied to routing bits of LBDR reconfiguration.
The reconfiguration command is issued by the processing
element at each node (once the reconfiguration message is
issued by SHMU).

Another important point is to take care of faults occurring in
the FIFOs which will be propagated to LBDR modules. In this
case, to prevent congestion and network failure, the routing
module (LBDR) should manipulate the FIFO modules in order
to drop the packet. This is performed with a secondary and
much simpler packet dropping mechanism, which generates
fake grant signal to the FIFO when a faulty header is detected
using a simple parity unit. Since LBDR is only sensitive to
the header flit when making routing decisions, there is no need
for support for cutting the packet and attaching fake tail. It is
assumed that the dropped packets would be handled at the
application layer.

VIII. FAULT INFORMATION PROPAGATION

The process of information transmission to the SHMU is
also crucial. This can be done either (1) via reusing the existing
network, or (2) by using an additional infrastructure working in
parallel with the main NoC. There have been many proposals
for fault information propagation to a global fault management
unit. Some of the proposals, such as iJTAG [21], [22], [26],
use scan chains. However, using an infrastructure like iJTAG
requires single (or very limited) number of access points which
limits the mapping possibilities for the SHMU on nodes since
SHMU must have direct access to iJTAG access point. In
addition, in approaches such as [21], [22], [26], the Instrument
Manager (IM), which works as the iJTAG network controller
and knows the structure of the instrumentation network, can
become a single point of failure.

Some of the previous works in the literature have taken
advantage of dual NoC architectures, such as [27]-[34]. In
[34], in addition to the main network, a checker network is
used (which is assumed to be 100% reliable) in order to deliver
data to its destination in case of a fault occurrence in the
main network. In [33], in parallel to the main NoC (which is
used for transmitting the data), an additional control network
is considered which is used for sending reconfiguration data
for updating the connectivity and routing bits of LBDR in
the network routers. The control network is used to inform
a global manager node regarding faults occurring in different
nodes. Despite the advantages these works might bring, they
all incur additional area and power overhead. Moreover, if
the area of the augmented circuitry for transmitting the fault
information is not negligible, it can increase the probability of
faults occurring in the additional network itself as well.

In this work, the classified fault information is propagated to
SHMU via the NoC itself. The information would be bypassed
to the Network Interface (NI). The NI will check the address
of the SHMU and will pass the info to the node if SHMU is
mapped on the same node (self diagnostic) or will generate
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TABLE II TABLE III
AREA AND AVERAGE PACKET AND FLIT DROP FOR DIFFERENT PACKET AREA OVERHEAD RESULTS OF SELF-UPDATING LBDR OVER BASELINE
DROPPING MECHANISMS. LBDR
Unit name Unit Arca Average | Average Unit Unit Tncrease in Tncrease in
arca (um?) | overhead% | packet drop | flit drop name area (um?®) | LBDR size | baseline router size
Original FIFO 14357 - - - LBDR 1744 - —
FIFO with packet dropping | 16043 7% ~1% 33% Self updating LBDR 2940 685% 59%

FIFO with Tt saving

16042

11.7%

~1%

1.14%

and send packets through the network to SHMU as soon as it
finds idle time.

As mentioned in the previous section, after the local classi-
fication of the faults the information is sent to SHMU, which
updates the system health map and can also trigger global
re-configuration of the system in order to compensate for
the faults. The reconfiguration packets will be sent to each
node from SHMU and the node will send the reconfiguration
information through the NI to the router. However, if the main
NoC is used for transmission of the fault information and
reconfiguration packets, under the running routing algorithm,
the faults that should be reported, might also themselves
prevent the messages to be correctly transmitted to the SHMU.

IX. RESULTS

Table IT shows the area overhead of solutions for FIFO
described in section VII (obtained using AMS 0.18 pm CMOS
technology library [25] and synthesized via Synopsys Design
Compiler [35]) along with the average flit and packet drop-
ping ratio with random single stuck-at-fault injection on the
network links with average rate of 5x 10 faults per second. As
it can be seen, when comparing the packet dropping approach
to flit saving, the average full packet drop rate is not changing.
This is due to the faults occurring in the header flit. However,
the amount of flit drops is reduced by half, since the flits with
the faulty payload will not be dropped in case of flit saving.

Table IIT shows the area overhead of the self updating LBDR
unit. Both the area overhead of the self updating LBDR over
the original LBDR (around 68%) and also its area overhead
with respect to the baseline router without any fault tolerant
mechanism (around 6%) are assessed.

By putting together all the mechanisms described in pre-
vious sections (fault detection, localization, classification and
local management as shown in Fig. 6), the router grows 60.7%
in area which is still lower than duplicate/triplicate-based
methods such as DMR and TMR, while it also provides fault
localization, management and system reconfiguration support
at the same time. Moreover, the instantaneous detection of
faults in the control part via the concurrent online checkers
and combining them facilitates inferring more abstract and
high level fault information (such as turn faults). Two main
reasons for using such abstraction of the information are:
(1) there is no advantage in transmitting very detailed fault
information to the SHMU, since in order to make high-level
decisions, SHMU has to abstract the information into turn
faults. (2) Additionally, it reduces the amount of information
to be transferred to SHMU through the NoC, thus, reducing
the network latency and power consumption.

X. CONCLUSION

In this paper, a ground-up approach from fault detection
to fault management for a Network-on-Chip based system is
proposed. Concurrent online checkers are utilized to detect
the faults in the control path and single parity check is
used for the data-path. Fault localization and abstraction (into
turn faults) are achieved by grouping information gathered
from the control part checkers. Moreover, methods of local
fault management at the hardware level using different packet
dropping mechanisms are introduced and compared. To reduce
the overhead of fault information propagation to application
layer and its additional processing load, local fault classifi-
cation mechanism is implemented which generates minimal,
classified fault information for propagation.



Additionally, the necessity of having a relocatable System
Health Monitoring Unit (SHMU) at the software layer is
elaborated. SHMU utilizes the NoC itself for transmitting
fault information after classification, thus avoiding a dual-
NoC architecture and results in lower area overhead. The
experimental results show the overall cost of applying such
mechanisms, having 60.7% area overhead, which still makes
it a better option than DMR/TMR-based approaches.

ACKNOWLEDGMENTS

The work has been supported by EU’s FP7 STREP BAS-
TION, H2020 RIA IMMORTAL, H2020 Twinning TUTO-
RIAL, Estonian institutional research grant IUT 19-1, by the
Estonian Center of Excellence in IT EXCITE funded by
the European Regional Development Fund, and supported by
Estonian IT Academy programme.

[2

[3

E =

[5]

=

[71

(8]

[9

[10]
[11]

[12]

[13]

[14]
[15]

[16]

REFERENCES

‘W. J. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in Design Automation Conference, 2001. Proceed-
ings, 2001, pp. 684-689.

L. Benini and G. D. Micheli, “Networks on chips: a new soc paradigm,”
Computer, vol. 35, no. 1, pp. 70-78, Jan 2002.

“Project bonfire network-on-chip,” https:/github.com/

Project-Bonfire, 2015.

S. Ghosh, N. A. Touba, and S. Basu, “Synthesis of low power ced
circuits based on parity codes,” in 23rd IEEE VLSI Test Symposium
(VTS’05), May 2005, pp. 315-320.

A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, “NoCAlert:
An On-Line and Real-Time Fault Detection Mechanism for Network-on-
Chip Architectures,” in Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-45. TEEE
Computer Society, 2012, pp. 60-71.

P. Saltarelli, B. Niazmand, J. Raik, V. Govind, T. Hollstein, G. Jervan,
and R. Hariharan, “A framework for combining concurrent checking and
on-line embedded test for low-latency fault detection in noc routers,” in
Proceedings of the 9th International Symposium on Networks-on-Chip,
ser. NOCS ’15. New York, NY, USA: ACM, 2015, pp. 6:1-6:8.

R. Sharma and K. K. Saluja, “An implementation and analysis of a
concurrent built-in self-test technique,” in Fault-Tolerant Computing,
1988. FTCS-18, Digest of Papers., Eighteenth International Symposium
on, June 1988, pp. 164-169.

K. Chrysanthou, P. Englezakis, A. Prodromou, A. Panteli, C. Nicopou-
los, Y. Sazeides, and G. Dimitrakopoulos, “An online and real-time
fault detection and localization mechanism for network-on-chip architec-
tures,” ACM Trans. Archit. Code Optim., vol. 13, no. 2, pp. 22:1-22:26,
Jun. 2016.

G. Schley, A. Dalirsani, M. Eggenberger, N. Hatami, H. J. Wunderlich,
and M. Radetzki, “Multi-layer diagnosis for fault-tolerant networks-on-
chip,” IEEE Transactions on Computers, vol. PP, no. 99, pp. 1-1, 2016.
Plasma CPU. http://plasmacpu.no-ip.org.

J. Flich and J. Duato, “Logic-based distributed routing for nocs,” IEEE
Computer Architecture Letters, vol. 7, no. 1, pp. 13-16, Jan 2008.

S. P. Azad, B. Niazmand, P. Ellervee, J. Raik, G. Jervan, and T. Hollstein,
“Socdep2: A framework for dependable task deployment on many-core
systems under mixed-criticality constraints,” in 2016 11th International
Symposium on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), June 2016, pp. 1-6.

S. P. Azad, B. Niazmand, J. Raik, G. Jervan, and T. Hollstein,
“Holistic approach for fault-tolerant network-on-chip based many-core
systems,” CoRR, vol. abs/1601.07089, 2016. [Online]. Available:
http://arxiv.org/abs/1601.07089

A. Dalirsani, “Self-diagnosis in network-on-chips,” PhD Thesis, Institut
fr Technische Informatik der Universitt Stuttgart, July 2015.
“ModelSim, Mentor Graphics,” https://www.mentor.com/products/fv/
modelsim/, 2017.

R. Ubar, J. Raik, and H. Vierhaus, Design and Test
Technology for Dependable Systems-on-chip, ser. Premier reference
source. Information Science Reference, 2010. [Online]. Available:
https://books.google.ee/books?id=_1zzPfTZND8C

[17]

[18]

[19]

[20]

[21]

[22

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30

[31]

[32]

[33

[34]

1351

P. Saltarelli, B. Niazmand, R. Hariharan, J. Raik, G. Jervan, and
T. Hollstein, “Automated minimization of concurrent online checkers for
network-on-chips,” in Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC), 2015 10th International Symposium on, June 2015,
pp. 1-8.

P. Saltarelli, B. Niazmand, J. Raik, R. Hariharan, G. Jervan, and
T. Hollstein, “A framework for comprehensive automated evaluation
of concurrent online checkers,” in Digital System Design (DSD), 2015
Euromicro Conference on, Aug 2015, pp. 288-292.

Y. Jojima and M. Fukushi, “A fault-tolerant routing method for 2d-mesh
network-on-chips based on components of a router,” in 2016 IEEE 5th
Global Conference on Consumer Electronics, Oct 2016, pp. 1-2.

L. Huang, X. Zhang, M. Ebrahimi, and G. Li, “Tolerating transient
illegal turn faults in nocs,” Microprocessors and Microsystems,
vol. 43, pp. 104 - 115, 2016, many-Core System-on-Chip
Architectures and Applications (PDP 15). [Online]. Available:
Ilwww.sciencedirect.com/science/article/pii/S0141933116000284

K. Shibin, S. Devadze, and A. Jutman, “On-line fault classification and
handling in ieee1687 based fault management system for complex socs,”
in 2016 17th Latin-American Test Symposium (LATS), April 2016, pp.
69-74.

A. Jutman, K. Shibin, and S. Devadze, “Reliable health monitoring and
fault management infrastructure based on embedded instrumentation and
ieee 1687, in 2016 IEEE AUTOTESTCON, Sept 2016, pp. 1-10.

J. Silveira, M. Bodin, J. M. Ferreira, A. C. Pinheiro, T. Webber, and
C. Marcon, “A fault prediction module for a fault tolerant noc operation,”
in Sixteenth International Symposium on Quality Electronic Design,
March 2015, pp. 284-288.

J. Silveira, C. Marcon, P. Cortez, G. Barroso, J. a. M.
Ferreira, and R. Mota, “Scenario preprocessing approach for the
reconfiguration of fault-tolerant noc-based mpsocs,” Microprocess.
Microsyst., vol. 40, no. C, pp. 137153, Feb. 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.micpro.2015.08.005

(2016) AMS 0.18um CMOS process. http://ams.com/eng/
Products/Full-Service-Foundry/Process-Technology/CMOS/0.18-m-
CMOS-process/.

“Ieee approved draft standard for access and control of instrumentation
embedded within a semiconductor device,” IEEE P1687/D1.71, March
2014, pp. 1-347, Nov 2014.

A. K. Abousamra, R. G. Melhem, and A. K. Jones, “Deja vu switch-
ing for multiplane nocs,” in Networks on Chip (NoCS), 2012 Sixth
IEEE/ACM International Symposium on, May 2012, pp. 11-18.

R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski, “Catnap:
Energy proportional multiple network-on-chip,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, ser.
ISCA *13. New York, NY, USA: ACM, 2013, pp. 320-331. [Online].
Available: http://doi.acm.org/10.1145/2485922.2485950

A. Flores, J. L. Aragon, and M. E. Acacio, “Heterogeneous interconnects
for energy-efficient message management in cmps,” IEEE Transactions
on Computers, vol. 59, no. 1, pp. 16-28, Jan 2010.

S. Volos, C. Seiculescu, B. Grot, N. K. Pour, B. Falsafi, and G. D.
Micheli, “Ccnoc: Specializing on-chip interconnects for energy effi-
ciency in cache-coherent servers,” in Networks on Chip (NoCS), 2012
Sixth IEEE/ACM International Symposium on, May 2012, pp. 67-74.
N. E. Jerger, A. Kannan, Z. Li, and G. H. Loh, “Noc architectures for
silicon interposer systems: Why pay for more wires when you can get
them (from your interposer) for free?” in 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec 2014, pp. 458—470.

J. Balfour and W. J. Dally, “Design tradeoffs for tiled
cmp on-chip networks,” in Proceedings of the 20th Annual
International Conference on Supercomputing, ser. ICS ’06. New

York, NY, USA: ACM, 2006, pp. 187-198. [Online]. Available:
http://doi.acm.org/10.1145/1183401.1183430

A. Strano, D. Bertozzi, F. Trivino, J. Sanchez, F. Alfaro, and J. Flich,
“Osr-lite: Fast and deadlock-free noc reconfiguration framework,” in
Embedded Computer Systems (SAMOS), 2012 International Conference
on, July 2012, pp. 86-95.

R. Parikh and V. Bertacco, “Formally enhanced runtime verification to
ensure noc functional correctness,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
44, ACM, 2011, pp. 410-419.

(1994) Synopsys design compiler. http://www.synopsys.com.



Curriculum vitae

Personal data
Name: Behrad Niazmand
Date of birth: 03/12/1986
Place of birth: Tehran
Citizenship: Iran

Contact data
E-mail: bniazmand@ati.ttu.ee , bniazmand@gmail.com

Education
2014- 2018 Tallinn University of Technology—PhD
2010- 2012 MSC, Science and Research Branch, Azad University
2005- 2009 BSC, South-Tehran Branch, Azad University
2001- 2005 Roshd High school and Pre-University
Language competence
Persian Fluent (Mother Tongue)
English Fluent (B2)
Estonian Basic (A1)
German Basic (A2)
Professional employment
2014- Present Early Stage Researcher, Tallinn University of Technology

149


mailto:bniazmand@ati.ttu.ee
mailto:bniazmand@gmail.com

Elulookirjeldus

Isikuandmed
Nimi: Behrad Niazmand
Suinniaeg: 03.12.1986
Stnnikoht: Teheran
Kodakondsus: Iraan

Kontaktandmed
E-post: bniazmand@ati.ttu.ee, bniazmand@gmail.com

Hariduskaik
2014-2018 Tallinna Tehnikaulikool — doktorikraad
2010-2012 Azadi llikool — tehnikateaduse magister
2005-2009 Azadi Ulikool — tehnikateaduse bakalaureus
2001-2005 Roshdi keskkool ja kdrgkool — keskharidus

Keelteoskus
Parsia keel — kdrgtase (emakeel)
Inglise keel — kdrgtase (B2)
Eesti keel — algtase (A1)
Saksa keel — algtase (A2)

Teenistuskaik
2014 —praegune nooremteadur, arvutisiisteemide instituut, Tallinna Tehnikadlikool

150


mailto:bniazmand@ati.ttu.ee
mailto:bniazmand@gmail.com




	Blank Page
	Blank Page



