

TALLINN UNIVERSITY OF TECHNOLOGY

DOCTORAL THESIS
12/2018

Dependability Improvements of
NoC-Based Systems

BEHRAD NIAZMAND

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems
This dissertation was accepted for the defence of the degree of Doctor of Philosophy in
Computer and Systems Engineering on 11/04/2018.

Supervisor: Prof. Gert Jervan, PhD
Department of Computer Systems
Tallinn University of Technology
Tallinn, Estonia

Co-supervisor: Prof. Jaan Raik, PhD
Department of Computer Systems
Tallinn University of Technology
Tallinn, Estonia

Opponents: Prof. Dr.-Ing. Thilo Pionteck, PhD
Institut für Informations-und Kommunikationstechnik-IIKT
Otto-von-Guericke- Universität Magdeburg
Magdeburg, Germany

Prof. Masoud Daneshtalab, PhD
Embedded Systems,
Mälardalen University College,
Västerås, Sweden

Defence of the thesis: 16/05/2018, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been previously
submitted for doctoral or equivalent academic degree.

BEHRAD NIAZMAND BEHRAD NIAZMAND

signature

Copyright: Behrad Niazmand, 2018
ISSN 2585-6898 (publication)
ISBN 978-9949-83-230-9 (publication)
ISSN 2585-6901 (PDF)
ISBN 978-9949-83-231-6 (PDF)

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

12/2018

Töökindluse parandamine kiipvõrkudel
põhinevates süsteemides

BEHRAD NIAZMAND

5

Table of Contents
List of Publications .. 8

List of publications included to the thesis ... 8
Other related publications .. 8
Other publications ... 9
Awaiting publication .. 9

Author’s Contribution to the Publications .. 10
Author’s contribution to the publications included to the thesis 10
Contributions of other related publications .. 11
Contributions of other publications .. 11

1 Introduction ... 13
1.1 Motivation ... 14
1.2 Problem Formulation .. 14
1.3 Contributions of the Thesis ... 15
1.4 Thesis Organization ... 16

2 BACKGROUND .. 17
2.1 Introduction ... 17
2.2 Literature Review .. 17

2.2.1 Online Fault Detection Approaches for NoCs ... 17
2.2.2 Online Fault Localization Approaches for NoCs .. 21
2.2.3 Fault-Tolerant Routing Mechanisms for 3D NoCs 22

2.3 NoC Router Architectures Used in This Dissertation ... 24
2.3.1 NoC Router Architecture 1 ... 26
2.3.2 Project Bonfire Router Architectures ... 27
Bonfire Handshaking Router .. 28
Bonfire Credit-Based Router .. 28

2.4 Logic-Based Distributed Routing (LBDR).. 29
2.4.1 LBDR Extensions ... 30

2.5 Chapter Summary .. 30

3 ONLINE DETECTION OF FAULTS IN NETWORK-ON-CHIPS .. 31
3.1 Introduction ... 31
3.2 The Concept of Concurrent Online Checkers .. 31
3.3 Methodology for Devising, Evaluating and Minimizing Concurrent Online
Checkers for Control Part of NoC Routers ... 32

3.3.1 Devising Pseudo-combinational version of the circuit under check 33
3.3.2 Devising Initial Set of Checkers ... 34
Functional and Structural Checkers ... 34
3.3.3 Environment Generation for Checkers’ Evaluation 35
3.3.4 Fault-Free Simulation and Debugging Checkers ... 35
3.3.5 Fault Simulation of Checkers .. 35
Metrics used for Checkers’ Evaluation .. 36
3.3.6 Checkers’ Evaluation and Minimization ... 37

3.4 Application of the Proposed Methodology to the Control Part of a NoC Router 38
3.4.1 Example: Devising Checkers for the Control Part of NoC Router
Architecture 1 .. 38
3.4.2 Summary of Experimental Results .. 40

6

Experiment 1: ELBDR Scenario .. 40
Experiment 2: ELBDR and SArbiter Scenario ... 42
Experiment 3: FIFO Control Part Scenario ... 45

3.5 Applicability of the Proposed Methodology to Control Part of Any NoC Router
Architecture ... 47
3.6 Chapter Summary .. 47

4 FAULT LOCALIZATION AND ABSTRACTION IN NETWORK-ON-CHIPS 49
4.1 Introduction ... 49
4.2 Fault Localization and Fault Information Abstraction for Control Part of NoC
Routers .. 49
4.3 Hardware Overhead Analysis of Fault Localization Module for Modelling Turn
Faults ... 54
4.4 Chapter Summary .. 55

5 LOGIC-BASED MECHANISM FOR IMPLEMENTATION OF FAULT-TOLERANT ROUTING IN
3D NETWORK-ON-CHIPS ... 57

5.1 Introduction ... 57
5.2 LBDR3D Mechanism .. 57

5.2.1 The Foundations for LBDR3D logic ... 58
5.2.2 LBDR3D Logic Description ... 59
5.2.3 Offline Algorithm for Computation of Vertical Bits 61
5.2.4 Example Scenario of Fault-Tolerant Routing Using LBDR3D....................... 63

5.3 Summary of Experimental Results .. 65
5.3.1 Performance Analysis ... 65
5.3.2 Area Consumption and scalability Analysis .. 67

5.4 Chapter Summary .. 68

CONCLUSIONS ... 69

Abbreviations .. 72

List of Figures .. 74

List of Tables ... 75

References .. 76

Acknowledgements ... 82

Lühikokkuvõte ... 83

Abstract ... 85

Appendix A .. 87
Functional Checkers for Control Part of Bonfire Handshaking Router 89
Structural Checkers for Control Part of Bonfire Handshaking Router 92
Full Set of Devised Checkers for Control Part of Bonfire Handshaking Router 96

APPENDIX B ... 99
Example Three: Devising checkers for the Control Part of Bonfire Credit-based NoC
Router .. 101

APPENDIX C ... 107

APPENDIX D ... 117

APPENDIX E ... 127

7

APPENDIX F ... 137

APPENDIX G ... 141

Curriculum vitae .. 149

Elulookirjeldus ... 150

8

List of Publications

List of publications included to the thesis

The work of this thesis is based on the following publications:

A P. Saltarelli, B. Niazmand, R. Hariharan, J. Raik, G. Jervan and
T. Hollstein, “Automated Minimization of Concurrent Online Checkers for Network-
on-Chips”, 10th International Symposium on Re-configurable Communication-
centric Systems-on-Chip (ReCoSoC 2015), June 29- July 1, 2015, Bremen, Germany.

B P. Saltarelli, B. Niazmand, J. Raik, R. Hariharan, V. Govind,
T. Hollstein and G. Jervan, “A framework for combining concurrent checking and on-
line embedded test for low-latency fault detection in NoC routers”, 9th International
Symposium on Networks-on-Chip (NOCS) 2015, September 28-30, 2015, Vancouver,
Canada.

C B. Niazmand, S. P. Azad, J. Flich, J. Raik, G. Jervan and T. Hollstein, “Logic-based
implementation of fault-tolerant routing in 3D network-on-chips,” 2016 Tenth
IEEE/ACM International Symposium on Networks-on-Chip (NOCS), Nara, 2016, pp.
1-8.

D S. P. Azad, B. Niazmand, A. K. Sandhu, J. Raik, G. Jervan and
T. Hollstein, “Automated area and coverage optimization of minimal latency
checkers,” 2017 22nd IEEE European Test Symposium (ETS), Limassol, 2017, pp. 1-2.

E S. P. Azad, B. Niazmand, K. Janson, N. George, A. S. Oyeniran, T. Putkaradze, A.
Kaur, J. Raik, G. Jervan, R. Ubar, T. Hollstein, “From Online Fault Detection to Fault
Management in Network-on-Chips: A Ground-Up Approach”, 2017 The IEEE
International Symposium on Design and Diagnostics of Electronic Circuits and
Systems (DDECS), Apr 19-21 2017, Dresden, Germany.

Other related publications

Other related publications that the author has had contribution to them are as
follows:

F B. Niazmand, R. Hariharan, V. Govind, G. Jervan, T. Hollstein and
J. Raik, “Extended Checkers for Logic-Based Distributed Routing in Network-on-
Chips”, The 14th Biennial Baltic Electronics Conference (BEC), October 6-8, 2014,
Laulasmaa, Estonia.

G R. Hariharan, B. Niazmand, T. Hollstein, J. Raik and G. Jervan, “Extended Checkers
for Control Part of Routers in Network-on-Chips”, MEDIAN 2015, Manufacturable
and Dependable Multicore Architectures at Nanoscale, DATE Friday Workshop,
March 13, 2015, Grenoble, France (Workshop paper, not indexed).

H P. Saltarelli, B.Niazmand, J. Raik, R. Hariharan, G. Jervan and
T. Holistein, “A Framework for Comprehensive Automated Evaluation of Concurrent
Online Checkers”, Euromicro Conference on Digital System Design (DSD) 2015,
August 26-28, 2015, Funchal, Madeira, Portugal.

9

Other publications

Other publications that the author has had contribution to them are as follows:

I S. P. Azad, B. Niazmand, T. Kogge, K. Janson, J. Raik, G. Jervan and T. Hollstein, “An
Enumeration of All 2D-Turn Models and Their Characteristics in Network-on-Chips”,
2017 International Symposium on Circuits and Systems (ISCAS), May 28-31 2017,
Baltimore, MD, USA.

J S. P. Azad, B. Niazmand, J. Raik, G. Jervan and T. Hollstein, “Holistic Approach for
Fault-Tolerant Network-on-Chip based Many-Core Systems”, 2016 2nd International
Workshop on Dynamic Resource Allocation and Management in Embedded, High
Performance and Cloud Computing (DREAMCloud), Co-Located with HiPEAC 2016
Conference, Prague, Czech Republic, Jan 2016 (Indexed on arXiv.org).

K S. P. Azad, B. Niazmand, P. Ellervee, J. Raik, G. Jervan and
T. Hollstein, “SoCDep2: A framework for dependable task deployment on many-core
systems under mixed-criticality constraints,” 2016 11th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Tallinn, 2016,
pp. 1-6.

L T. Hollstein, S. P. Azad, T. Kogge and B. Niazmand, “Mixed-criticality NoC
partitioning based on the NoCDepend dependability technique,” 2015 10th
International Symposium on Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC), Bremen, 2015, pp. 1-8.

M T. Putkaradze, S. P. Azad, B. Niazmand, J. Raik and G. Jervan, “Fault-resilient NoC
router with transparent resource allocation,” 2017 12th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Madrid, 2017,
pp. 1-8.

Awaiting publication

Awaiting publications that have been accepted but not indexed yet and the author
has had contribution to them, are as follows:

N B. Niazmand, S. P. Azad, T. Ghasempouri, J. Raik and G. Jervan, “A Hierarchical
Approach for Devising Area Efficient Concurrent Online Checkers”, 2018, 2nd
International Test Conference in Asia (ITC-Asia), Harbin, China.

O T. Ghasempouri, S. P. Azad, B. Niazmand and J. Raik, “An automatic approach to
evaluate assertions' quality based on data-mining metrics”, 2018, 2nd International
Test Conference in Asia (ITC-Asia), Harbin, China.

P S. Avramenko, S. P. Azad, S. Esposito, B. Niazmand, M. Violante, J. Raik and M.
Jenihhin, “QoSinNoC: Analysis of QoS-Aware NoC Architectures for Mixed-Criticality
Applications”, 2018, IEEE 21st International Symposium on Design and Diagnostics
of Electronic Circuits (DDECS), Budapest, Hungary.

10

Author’s Contribution to the Publications

Author’s contribution to the publications included to the thesis

Contributions of the author to the papers based on which this dissertation is written,
are as follows:

A This paper proposes a methodology for automated minimization of concurrent
online checkers, guaranteeing shortest fault detection latency, for control part of
Network-on-Chips (NoCs) under given fault detection quality and area constraints.
In this work, the author has devised the initial set of checkers for the routing logic
and arbitration module of a NoC router.

B In this paper, a framework of tools for formally evaluating the quality of concurrent
online checkers and for optimizing the overhead area with given fault coverage
constraints is proposed. The proposed methodology has been applied to the full
control part of a NoC router, consisting of the control part of input buffer, routing
logic and arbitration logic. The author devised a new set of checkers for the router’s
input buffer’s control part. Moreover, the author participated in implementing the
single parity checker for protecting the data-path of the router against single stuck-
at faults. This work is an extension of publication A.

C The author has introduced the idea of logic-based distributed routing for 3D
Network-on-Chips (NoCs) in order to address implementation of fault-tolerant
deadlock free routing algorithms in 3D NoCs with partially faulty vertical links.
Implementation of the mechanism in an open-source NoC simulator and performing
the experiments of the paper have also been done by the author.

D The author, in collaboration with the first author of the paper, has devised the initial
set of combinational checkers for the control part of an open-source NoC router
(comprising of routing logic, arbitration module and control part of FIFO) using the
systematic methodology explained in details in this dissertation. The author has
performed the fault simulation experiments which is part of the framework that
performed the evaluation of the checkers in terms of fault detection capability and
minimization of checkers in terms of area. The minimized set of checkers have been
integrated in the open-source router design.

E This paper proposes a ground-up approach from fault detection to fault
management for NoC-based System-on-Chips (SoCs). This work use an open-source
NoC router. The fault detection in the control part of the routers is performed using
the concurrent online checkers, devised based on the proposed methodology in this
dissertation. The author has devised and integrated the full set of checkers in the
router design. Furthermore, the author has re-used the fault classification module
in the router and provided fault classification for checker outputs. Finally, in order
to compress fault information acquired from a large set of checkers (more than 1000
bits), the author has proposed and implemented a fault localization module, which
compresses the checkers information to a final set of 20 bits, representing turn faults
in the router.

11

Contributions of other related publications

F This paper proposes concurrent online checkers for structural faults in the NoC
routing algorithms utilizing the Logic-Based Distributed Routing (LBDR) concept.
Using fault injection experiments and an extended set of checkers for LBDR, the fault
coverage is increased more than three-fold facilitating detection of the majority of
structural faults within the routing logic.

G In this paper, the initial idea of the methodology for minimization of aa set of
concurrent online checkers for the control part of NoC router based on area
constraints and target fault coverage has been introduced. In this work, the routing
logic and arbitration unit of the router have been considered as the control part for
devising checkers.

H This paper proposes a framework for automated evaluation of concurrent online
checkers. The novelty of the underlying approach lies in its completeness (i.e. ability
of formally proving the presence or absence of true misses), minimal fault detection
latency and accurate, fully automated evaluation of the fault detection
characteristics of the checkers. The control part of a NoC router, consisting of the
routing and arbitration logic has been used as an example for applying the proposed
framework for devising checkers.

Contributions of other publications

I In this paper, all the uniform turn models for the 2D Mesh-based NoCs are
enumerated and the deadlock free ones are extracted, which provide full
connectivity in the network. An extended adaptivity metric is introduced to classify
the turn models. The turn models are compared in terms of adaptivity, robustness
and latency.

J In this paper, a holistic approach for fault-tolerant NoC-based many-core systems is
described that incorporates a System Health Monitoring Unit (SHMU) which collects
all the fault information from the system, classifies them and provides different
solutions for different fault classes. A Mapper/Scheduler Unit (MSU) is used for
online generation of different mapping and scheduling solutions based on the
current fault configuration of the system. All the experiments in this work are
performed in an open source tool, able to perform the mapping, scheduling and
simulation of the system.

K In this paper, an open-source framework for task deployment of mixed-critical and
non-critical applications under dependability constraints in Network-on-Chip (NoC)
based systems has been introduced. The system level design space exploration is
guided by a System Health Monitoring Unit which keeps a holistic view of system
health status. The framework supports task clustering, mapping and scheduling of
different applications, using different heuristics, on a NoC-based architecture which
can have different topologies. This enables exploration of 2D and 3D topologies, any
turn model based routing algorithm, fault monitoring mechanisms and different
fault models (Link, Turn, Node). The author has contributed to the related work
section of the paper, by finding different frameworks and tools that have addressed
mapping and scheduling, mixed criticality support and fault-tolerance support in
NoCs.

12

L In this paper, an approach for encapsulation of critical NoC communication
resources is presented, which guarantees no interference of non-critical data
packets with critical communication data on the network. The proposed mechanism
can be used in order to achieve partitioning of the NoC into several criticality
domains without additional overhead.

M In this paper, three novel fault-resilient Network-on-Chip (NoC) router architectures
have been proposed. The proposed architectures exploit the regularity of the router
and reallocate available existing and spare units to maintain functionality of certain
turns. The resource reallocation is performed transparently from system’s resource
manager and is based on predefined priorities. A new metric for architecture
reliability comparison based on reliability block diagrams is introduced. All proposed
architectures have shown remarkable reliability improvement compared to original,
Triple and Unit Duplication architectures, while at the same time, their area
overhead is less than or equal to unit-duplication mechanisms.

13

1 Introduction

The shifting from computation-centric to computation- and communication-centric
operations in digital systems, has motivated moving from single processing core systems
to multi-processing core designs. This has led to integration of multiple components on
the same chip. In such systems, the communication infrastructure can become a
bottleneck, as the performance of the system also depends on the interconnection,
providing the communication between the components [1]. Traditional shared-medium
bus-based systems cannot catch up with the growing number of on-chip cores in terms
of performance, thus, Network-on-Chip has emerged as a scalable solution for providing
the interconnection infrastructure in Multi-Processor System-on-Chips (MPSoCs) [2]. In
a System-on-Chip using NoC as its communication infrastructure, the network usually
consists of routers, Processing Elements (PE), Network Interfaces (NIs) and
communication links. Routers are in charge of transmitting data to the corresponding
destination.

The miniaturization of semi-conductor technologies has jeopardized the reliability of
integrated circuits and has made transistors more susceptible to different types of faults,
including permanent, intermittent and transient. This also affects the reliability of NoCs,
including the control part of NoC routers which is the focus of this dissertation. The
control part of a NoC router plays an important role in successful transmission of data. A
transient or permanent fault in the control part can lead to malfunction of the whole
router, eventually leading to loss of data, mis-routing of packets or in worst case the
break-down of part of/the entire network.

Even though early-life failures are handled by techniques such as manufacturing
testing, it is impossible to ignore the adverse effect of run-time faults caused by
phenomena such as aging and wear-out. The waning reliability threat against NoCs has
been one of the focuses of research during the last years. Especially, capturing and
detecting the faults online in the NoC components is crucial for transient faults, because,
even if the permanent faults are detected by testing, transient faults (due to the nature
of their random occurrence and being active for short duration of time) manifest
themselves during system’s life-time. Approaches based on Built-In Self-Test (BIST)
introduced in the literature usually suffer from delayed fault detection as they require
the system operation to be partially/fully paused while being in test mode. On the other
hand, approaches based on Triple Modular Redundancy (TMR) or NMR based techniques
would be expensive in terms of area overhead for providing fault-tolerance in NoC
routers. Thus, in this dissertation, the concurrent online checking of faults in the control
part of NoC routers via checkers [3] is chosen. Checkers allow monitoring the control part
modules in parallel with their operation, without pausing the system functionality. They
raise up a flag denoting the captured fault. However, it is important that the goal in this
thesis is to have checkers with instantaneous fault detection latency, able to detect faults
within maximum one clock cycle of their occurrence. Because, otherwise, the fault could
get propagated to the rest of the system and causes total system failure [4]. One
advantage of using checkers instead of DMR and TMR-based approaches is that they
provide fault localization possibility.

This thesis proposes a set of techniques to improve the dependability of NoCs, i.e.
online detection of faults in the control part while meeting the area constraints,
abstracting the fault detection information, and implementing a generic and re-
confugrable fault-tolerant routing mechanism to circumvent faults on inter-router links.

14

1.1 Motivation

The trend in shrinking size of transistors, extreme down-scaling of the nanometer
technologies beyond the sub-micron domain and shrinking voltage levels, makes devices
more susceptible to faults, both to permanent and especially transient ones. This also
applies to the on-chip components, including Network-on-Chip (NoC), introduced as an
alternative infrastructure to overcome the performance and scalability limitations of
traditional shared-bus architectures [5], [6]. All these circuits are prone to different fault
sources, e.g. Electro-Migration (EM), wear-out, Alpha particles and cosmic radiation [7],
[8].

Although a lot of efforts have been made in order to capture faults before the final
product is released (such as manufacturing testing), faults can still manifest themselves
during the life-time of the circuit. More specifically, Integrated Circuits (ICs) are
susceptible to wear-out and aging occurring during their life-time and if not handled
properly, they can corrupt system’s functionality and its normal operation. Online
detection is especially critical for transient faults. This is because, even if the permanent
faults are detected via testing or other techniques [9], transient faults (due to nature of
their random occurrence and being active for short duration of time) can occur during
system run-time and affect system’s operation. This motivates the need for
instantaneous detection of such faults [4]. In addition to the detection, fault localization
is of utmost importance, which would eventually facilitate re-configurating the NoC.

1.2 Problem Formulation

One of the main targets of this dissertation is online detection of faults in control part of
NoCs. This is due to the fact that detection of faults with lowest possible latency is
important in order to avoid propagation of the fault to the whole system. Therefore,
there is a need for a mechanism that can react as rapid as possible to the occurrence of
transient and permanent faults in the system. However, the area overhead of the
augmented fault detection circuitry should be taken into account, since the higher the
overhead, the higher the chance of faults occurring in the fault detection logic itself.

In addition to the importance of near-instantaneous online detection of faults, the
topic of fault localization is also significant. It is important to locate the faulty component,
so that the system could be re-configured with degraded performance by bypassing the
defective component, while leaving the healthy components intact. However, as the fault
information overhead grows, care must be taken that the acquired data would be
transmitted to higher layers (such as application layer) in form of compact and
meaningful information, which can further be used for system re-configuration. For
instance, a global fault manager can use the compressed fault information in the process
of computing a new routing algorithm to address the faulty system.

Finally, the implementation of fault-tolerant routing algorithms in NoCs is an
important issue to be addressed. The mechanism used for implementing a routing
algorithm must be generic, re-configurable and must guarantee deadlock and live-lock
freeness, in order not to affect system performance. It must also must not depend on
the location and number of faulty links in the network. Moreover, the scalability of the
mechanism is of utmost concern due to the on-chip limited area budget, as it should not
grow with network size. And finally, the mechanism must guarantee connectivity in the
network as long as faults do not disconnect it.

15

1.3 Contributions of the Thesis

This dissertation focuses on the following topics: (1) a methodology for devising
concurrent online checkers for performing online fault detection in control part of NoCs,
providing a trade-off between fault coverage and area overhead of the checkers, (2) fault
localization via combining the checker outputs in order to find the location of the fault in
the circuit and compress fault information in order to model more abstract information
regarding turn faults, and (3) implementing fault-tolerant routing algorithms in 2D and
3D Network-on-Chips using a scalable logic-based mechanism.

The contributions of this dissertation are three-fold and summarized as follows:

1. In order to address the first problem in this dissertation, a methodology for
devising concurrent online checkers for performing online fault detection in
control part of NoCs is proposed. The proposed methodology provides a trade-
off between fault coverage and area overhead of the checkers. It allows devising
checkers at two levels, i.e. functional and structural, independent of the
architecture of the NoC router. The proposed methodology guarantees (1)
single-cycle fault detection latency for all the checkers, (2) formal proof of
absence of cases that faults occur in the circuit, but not captured by the
checkers (called True Misses) using fault simulation, and (3) automated
minimization of the checkers in terms of area using greedy heuristic, while
meeting the requirements of the target fault coverage. It is worth noting that
the concurrent online checkers operate in parallel with system’s operation. In
order to be able to measure the fault detection capability of the checkers, new
metrics have been proposed which enable clear definition of fault detection
quality of the checkers. This contribution has led to the publications A, B, and
D, mentioned in the list of publications included to the thesis.

2. A fault localization module is developed which takes into account the fault
information acquired from the concurrent online checkers for the control part
of the NoC. The fault localization circuitry is fully combinational, and takes
advantage of the single-cycle fault detection latency of the checkers, by
grouping them and providing compact, meaningful information regarding faults
for higher levels of abstraction. In case of the control part NoC router, in
addition to router-level and component-level, a third level of fault localization
has been proposed which models turn faults. This would compress the fault
information and tackle the issue of generation of excessive amount of data by
the checkers. At the same time, it reduces rendering the whole router as faulty,
and making it possible to be re-used with degraded performance with the intact
healthy turns. A System Health Monitoring Unit that keeps a holistic view of the
system’s health will make use of such information provided by the fault
localization module to re-configure the underlying routing algorithm, if needed.
This contribution has led to the publication E, mentioned earlier in the list of
publications included to the thesis.

3. A logic-based mechanism is developed for implementation of turn model-based
routing algorithms in partially vertically connected 3D NoCs, named LBDR3D.
The mechanism does not use routing tables at the routers and only relies on a
fixed set of configuration bits which specify the topology, routing algorithm and
the existence of at least one node with vertical link in each layer. The proposed

16

approach exceeds the state-of-the-art, by not storing the location address of
such nodes with vertical links at each router, thus, making it scalable. It also
does not incur any additional overhead to the packets being transmitted from
one layer to another. Moreover, it does not depend on the location and number
of faulty vertical links. Furthermore, LBDR3D guarantees live-lock freeness and
live-lock freeness, and also guarantees connectivity as long as faults do not
disconnect the network. The third contribution has led to the publication C,
mentioned earlier in the list of publications included to the thesis.

1.4 Thesis Organization

This thesis is organized in 5 Chapters and 7 Appendices.

In Chapter 1, an introduction to the thesis is provided, including the motivation,
problem formulation and the main contributions.

Chapter 2 covers the background of the topics discussed in this dissertation. It
consists of two sections. In the first section, a literature review, regarding the state-of-
the-art approaches related to the topics discussed in this thesis, i.e. approaches for
online detection of faults in control part of NoCs, approaches for fault localization in
NoCs, and approaches for implementing fault-tolerant routing algorithms for 3D NoCs.
In the second section, background information about the subjects that are used as
baseline in the next chapters, including the explanation of the open-source Bonfire
Network-on-Chip (NoC) project and Logic-Based Distributed Routing (LBDR), based on
which the contributions of this thesis are introduced.

Chapter 3 is dedicated to the explanation of the first contribution of this thesis, i.e.
the proposed methodology for devising concurrent online checkers for control part of
NoCs and automated evaluation of fault detection quality of checkers and minimization
in terms of area while meeting the target fault coverage.

Chapter 4 discusses the next contribution of the thesis, fault localization in NoCs,
taking into account the checker outputs information and providing meaningful and
abstract turn faults, by compressing the data acquired from checkers output. This would
facilitate the process of re-configuring the routing algorithm of the network by the
system fault manager in case of a fault occurrence.

Chapter 5 explains the third contribution of this dissertation, a scalable and re-
configurable mechanism for implementing fault-tolerant routing algorithms in 3D NoCs
with faulty vertical links.

Finally, the last chapter concludes the dissertation, remarking the theoretical
novelties of this work and summarizing the contributions.

This dissertation is accompanied with seven Appendices, from which Appendices A
and B serve as supplementary information regarding checkers in Chapter 3. Appendix A
includes the complete list of checkers for one of the examples used for applying the
proposed methodology for devising checkers, which is the control part of Bonfire
handshaking router. Appendix B covers the application of the same methodology for
devising checkers to the control part of Bonfire credit-based router as one of the other
examples. Appendices C to G present the research papers which form the basis of this
dissertation.

17

2 BACKGROUND

2.1 Introduction

This chapter starts with a literature review regarding approaches related to the
contributions of this thesis, which are threefold: (1) a study of online fault detection
approaches for NoCs, mostly focusing on the control part, (2) a state-of-the-art review
regarding approaches for fault localization in NoCs with the focus on control part, and (3)
a literature review of fault-tolerant routing mechanisms addressing 3D NoCs with faulty
vertical links.

Afterwards, the chapter continues with the pre-requisite background information
which would be referred to in this thesis continuously in the following chapters, including
the fault model used in this thesis, different router architectures used as examples (three
different architectures) for applying the proposed methodology for devising and
minimizing checkers and also fault localization to abstract fault information. Finally, a
background regarding the logic-based distributed routing and its variations according to
the literature is provided, used as the baseline mechanism for implementation of fault-
tolerant routing algorithms in partially vertically connected 3D NoCs.

2.2 Literature Review

In the following three sub-sections, the state-of-the-art regarding the topics that this
dissertation focuses on, are reviewed.

2.2.1 Online Fault Detection Approaches for NoCs

The online fault detection approaches reviewed in this sub-section are reactive, meaning
that they detect the fault after its occurrence and react to it. In other words, they tackle
run-time failures by detecting hardware failures shortly after they manifest. The other
category of approaches would be pro-active, which predict the occurrence of faults
before their occurrence and try to mitigate the effects beforehand. However, pro-active
approaches are not in the scope of this dissertation. It is noteworthy that the focus of
the reviewed approaches in this sub-section is on control part of NoCs.

Online detection of errors in logic is a thoroughly studied research area. One of the
well-known techniques is hardware redundancy, which has also been studied in the field
of NoCs. Approaches such as traditional Triple-Modular Redundancy (TMR) and
Duplication With Comparison (DWC) approaches [10] exist, however, they are costly in
terms of multiplying the area and correspondingly the power consumption. Moreover,
despite providing fault detection capability, such approaches lack providing information
facilitating fine-grain fault localization. An alternative to minimize the area overhead of
such approaches is the selective TMR that identifies Single Event Upset (SEU) sensitive
sub-circuits that are to be protected [11], but it still suffers from the inability to localize
faults.

On the other hand, some of the approaches address detection of faults via information
redundancy, including a variety of solutions based on coding techniques, such as Berger
[12] or Bose-Lin [13] codes. In many works the coding techniques are combined with
synthesis [14], [15]. However, these approaches suffer from significant area overhead,
and they require alteration of the original circuit in order to generate the codes.

18

Concurrent on-line built-in self-test techniques such as Built-In Concurrent Self-Test
(BICST) [16] and Reduced Observation Width Replication (ROWR) [17] provide high fault
coverage at low area overhead, but only consider a limited subset of pre-computed test
vectors. Hence, these approaches are likely to miss faults occurring in a normal circuit
operation.

Several alternatives based on checkers that do not require modification of the circuit
under test have been developed. Creating checkers automatically based on logic
implications derived from the circuit structure [18], [19] is feasible but suffers from low
fault coverage and high area overhead, often exceeding the duplication-based solutions.

On the other hand, deriving checkers from functional assertions, or reusing
verification assertions, is similarly known to yield low coverage of structural faults as it is
difficult to correlate functional coverage to structural one [20]. In [21], Grecu et al. have
introduced a method for online fault detection and location in NoC communication
fabrics. The proposed method is able to distinguish between faults in the communication
links and the ones in the NoC switches. This work is based on the utilization of code-
disjoint routing elements, combined with parity check encoding for the inter-switch links.
However, the method targets faults in the data-path only.

A group of works in the literature have focused on monitoring control part
components of NoC switches, such as [22]–[28]. Authors of [29] have introduced
SafeNoC, an end-to-end error detection and recovery solution, for ensuring the
functional correctness of Chip Multi-Processor (CMP) interconnects. In this solution, a
lightweight checker network is added to the existing interconnect, that guarantees to
deliver messages correctly. Therefore, for each data message, a look-ahead signature is
transmitted over the checker network, which is used for detecting errors in the
corresponding data message. The solution does not provide checking for faults within the
routers. Moreover, in case of the increase in the number of faults in the system, the
reconstruction and recovery process can take up to 39M execution cycles. It should be
noted that the focus of this dissertation is on fault detection and localization approaches in
NoCs, however, fault recovery approaches are not in the scope of this thesis.

Several works have proposed utilization of concurrent online checkers1 for checking
faults in the control part of on-chip routers. In [26], the Inherent Information Redundancy
(IIR) in the control path of NoC routers is utilized to manage transient errors. The goal is
to prevent packet loss and misrouting by detecting such faults in the routing computation
and in the arbitration unit of a NoC router. However, their approach is only limited to XY
routing.

Yu et al. [27] have proposed a set of checkers for the NoC routing algorithmic blocks
implemented using LBDRhr for topologies with high-radix. To this end, the Inherent
Information Redundancy (IIR) [26] in LBDRhr logic is exploited in order to manage
transient errors in the routers. Despite the advantages their approach provides
compared to routing tables in terms of scalability, the proposed checkers for LBDRhr logic
cannot reach 100% fault coverage. Furthermore, the work in [27] only focuses on the
routing logic of a NoC router and not considering the full control part.

In [30], the set of checkers introduced in [27] are extended for the baseline LBDR logic
in order to increase the fault coverage (up to 64.9%). A final set of five checkers are

1 The concept of checkers used in this dissertation will be explained in more detail in the Chapter 3.

19

proposed, which cover the majority of single stuck-at faults occurring in the LBDR
circuitry. Fault injection experiments have shown that the proposed method in [30]
allows increasing the fault coverage 3 times (compared to [27]), of course at the price of
26.8% checker area overhead. However, still 100% fault coverage is not reached and the
area overhead minimization aspect of the checkers is also not addressed neither in [27]
nor in [30].

Authors of [31] have presented a method for online error detection and diagnosis of
NoC switches. The proposed method deals with routing faults that cause NoC packets to
be forwarded to output ports that are not intended to. Regarding modelling routing
faults in switches, a high-level fault model has been introduced in this work. However,
this work targets functional level fault coverage only and does not guarantee a good
coverage for structural faults.

Parikh et al. have proposed ForEVeR [25], a solution that complements the use of
formal methods and runtime verification to ensure functional correctness in NoCs. In
order to deliver correctness guarantees for the complete network, a network-level
detection and recovery solution is proposed in [25] that monitors the traffic in the NoC
and protects it against functional bugs that were not detected during design time. To this
end, ForEVeR augments the baseline NoC with a lightweight checker network that alerts
destination nodes of incoming packets ahead of time and is used for the recovery
process. The use of an end-to-end, epoch-based scheme, such as ForEVeR, results in
significantly delayed fault detection. Additionally, Only 30% of the faults are detected
during the first clock cycle by their approach.

Authors of [23] (NoCAlert) have proposed checkers synthesized from a set of 32
assertions. The checkers detect most of the injected faults with minimum detection
latency. The faults that are not covered correspond to non-catastrophic failures.
However, it is not clarified with which type of checkers (9 in total reported in [23]) 100%
fault coverage is reached. Furthermore, the minimization aspect of the area overhead of
the checkers is not addressed in [23]. In addition, in high-level evaluation process,
NoCAlert checkers only consider faults occurring on the primary inputs and outputs of
the control logic and the modules themselves are viewed as black boxes, thus, not
considering fault locations inside the control part modules of the NoC router.

In [32], Secure Model Checkers (SMCs) have been proposed. Similar to NoCAlert, they
target the control part of NoC routers, but also focusing on the security aspects, for
instance, protection against Hardware Trojan (HT) attacks. However, similar to NoCAlert,
the methodology in [32] has not addressed the minimization aspects of the checkers in
terms of area overhead. It is worth noting that the focus of this dissertation is on online
fault detection in control part of NoCs and security aspects of NoCs is out of the scope of
this thesis.

In [33], an online checking mechanism is proposed for the switch allocator of a NoC
router that is able to detect every possible single transient or permanent fault in the
arbiter and handle it appropriately. The proposed checkers for the switch allocator of the
router in [33] have self-checking property. Despite the advantages, they have neglected
detection of faults in the full control part of the NoC router, i.e. the control part of input
buffers and the routing logic.

20

Park et al. [22] have examined the impact of transient faults on the reliability of on-
chip interconnects and have developed an approach to recover from them. For the inter-
router link faults, they use Hop-By-Hop (HBH) retransmission method. However, the
retransmission buffer can add latency to the system in case of a fault occurrence.
Moreover, it is not mentioned whether the retransmission buffer itself is protected
against SEUs or not. Regarding the control part of router, an Allocation Comparator (AC)
unit is proposed, which provides full error protection to the Virtual Channels (VCs) and
Switch Allocation (SA) units at minimal cost, without affecting the router’s critical path.
The work in [22] assumes successful speculative allocation for the allocator. However,
mis-speculation can incur overhead.

In [28], illegal turns in the routers are detected, however, each router depends on the
information from its neighbour routers for online fault detection and judgment.

The following works have addressed detection of faults in NoC switches via Built-In
Self-Test (BIST)-based approaches. In [34], fault detection is performed via a BIST
mechanism executed during system boot-up. In [35], fault detection is performed via an
automatic go/no-go BIST operation at the start-up of the network. However, the
approach is only limited to 2D Mesh NoCs, and the fault coverage of the switch controller
is low. Petersen et al. have extended the idea of [35] in [36], in which, fault coverage
close to 100% is reached, with few thousand clock cycles fault detection latency. Despite
the advantages, their BIST architecture still incurs significant area and fault detection
latency overhead. Authors of [37] have taken advantage of the regularity of intra-switch
ports and also the regularity of inter-switch communication infrastructure of a NoC in
order to decrease test application time and decrease test data volume of NoC testing.
One of the main drawbacks of BIST-based architectures is that system operation needs
to be partially or fully paused, while the module under test is being examined, which can,
in turn, degrade performance.

There have also been works in the literature that have focused both on monitoring
the data-path and control part components of NoC router. In Cardio architecture [38],
fault detection is handled by hardware, whereas software is in charge of conducting
reconfiguration, leading to reduction of area overhead (as stated in [38]). To this end, a
distributed resource manager is utilized. Cardio targets run-time permanent faults in (a)
processor cores (by implementing counters and acknowledgement buffers in Network
Interface (NI)), (b) interconnect routers (via configurable routing table logic) and (c) links
in the intra-chip communication subsystem (via link monitors). In [39], both the data-
path and control part faults in Network-on-Chips are addressed via a multi-layer
diagnosis approach. However, the structural diagnosis approach imposes significant fault
localization latency. In [40], a fault-tolerant routing method is proposed which works
based on partial fault model. The approach addresses permanent faults in input buffer,
control unit, crossbar and output buffer of the NoC router and in the processor core
attached to the router. However, no details regarding handling and detection of
permanent faults are provided.

Even though there have been many approaches covering faults in the control part of
NoC online - as summarized in the above-mentioned paragraphs - to the best of this
dissertation’s author’s knowledge, none of the previous works have addressed a
methodology for devising checkers for the part of a circuit, which would guarantee single
cycle fault detection latency for Single Event Upsets (SEUs) and evaluation of checkers
under all possible set of valid input stimuli for all possible fault locations in the circuit,

21

addressing the area minimization of the checkers, while guaranteeing the target fault
coverage. It is also noteworthy that since the focus of this dissertation is not on
protection of data-path components of NoCs, it is already assumed that the architecture
has a fault detection/correction mechanism integrated for handling faults in the data-
path (inter-router links and intra-router data-path components), e.g. one of the
approaches mentioned in [41], [42].

2.2.2 Online Fault Localization Approaches for NoCs

Online fault localization is one of the necessities in addition to fault detection for
performing fault diagnosis in a system. A variety of approaches have addressed diagnosis
of faults in NoCs at different levels. Some of the works in the literature have addressed
detection and localization of faults in NoCs using broadcasting of test vectors, at run-time
[7], [43]–[48]. In [43], Vicis architecture is introduced, in which a BIST procedure tests the
individual sub-blocks of the on-chip switch, covering both control part and data-path.
One of the drawbacks is the area overhead imposed by the wrapper cells used to isolate
the faulty sub-block from the system. Also, Vicis lacks the capability to find the exact root
of the faulty behaviour in the switch and does not have reasoning regarding defective
switch functionalities. Moreover, as mentioned before, one of the disadvantages of run-
time BIST in general is that the system operation needs to be either partially or fully
paused, while the module under test is being examined, which, in turn, does not allow
detecting soft errors at run-time and degrades performance.

Approaches based on online monitoring of faults such as [32], [15], [17], [21], [33]
have addressed faults in the control part components of NoC switches. It is worth noting
that since the focus of this dissertation is on fault detection and localization in control
part of NoCs, the works addressing only data-path components are not in the scope of
the reviewed literature in this chapter.

Alaghi et al. [31] have presented a method based on high-level fault model for online
error detection and diagnosis of routing faults in NoC switches. However, this work
targets only functional level fault coverage and does not guarantee a high coverage for
structural faults. In addition, for some of the fault models explained in the paper, fault
localization cannot be achieved. In [24], the NoCAlert mechanism for online detection of
faults in the control part of NoCs has been augmented with fault localization capability.
However, their approach lacks the area minimization aspect of the checkers and cannot
guarantee 100% fault coverage via checkers within a single cycle. Furthermore, the
proposed fault localization module in [24] does not address modelling turn faults (taking
fault information contributing to both input and output port related control part
components of the router). One of the approaches that addresses turn faults is the one
proposed in [28], in which illegal turns in the NoC routers are detected. However, each
router depends on the information from its neighbour routers for online fault detection
and judgment.

On the other hand, authors of [49] have introduced an online-structural approach.
They target the diagnosis of permanent faults on NoC links and the control-logic faults.
However, their approach might consider an entire switch as faulty when a fault occurs in
part of it, thus, suffering from low fault localization accuracy. Moreover, the work in [49]
does not guarantee low latency error detection. In [40], a fault-tolerant routing method
is proposed which works based on partial fault model. Their approach addresses
permanent faults in input buffer, control unit, crossbar and output buffer of the NoC

22

router and in the processor core attached to the router. However, to simplify the fault
model, an occurrence of fault in crossbar, control unit and the processor core are all
modelled as a node failure. This, reduces the granularity of fault localization. Also, no
details are provided in [40] regarding how the permanent faults are detected. Authors of
[50] have presented a mechanism for detection and localization of faults in dynamic
NoCs, with varying number of PEs during run-time. They target both transient and
permanent faults in data packets and errors related to adaptive routing algorithms.
However, their approach can localize faults in NoC routers at the level of input port,
output port and/or data bus. Moreover, in order to provide routing error detection, an
additional field is added to the transmitted packets, and also the routers communicate
diagonally with their neighbour routers for transmission of state information, in total
incurring a 63% area overhead in a 6x6 2D NoC.

The authors of [49] have addressed a diagnosis approach involving multiple layers, in
which the software part is responsible for locating faulty links and crossbar connections
in hardware. However, their approach lacks the cross-layer interaction and the proposed
diagnosis techniques for each layer are separated from each other. In [39], a multi-layer
diagnosis architecture is proposed for NoCs with cross-layer interaction. They have
demonstrated the combination of layer-specific diagnosis techniques could be beneficial
compared to using only individual layer-specific approaches. Both a top-down and a
bottom-up flow for cross-layer information flow is presented. The former is used to
narrow down the position of a fault, while the latter provides diagnostic feedback from
lower to higher layers, also, solving the cases of false positives. However, despite
obtaining 100% fault coverage, the fault localization latency suffers from significant
overhead. But, it should be noted that works such [39] target best fault localization
resolution via offline diagnostic reasoning. Therefore, their goal is different from this
dissertation, which is online concurrent detection of faults with minimal latency.

Aghaei et al. [41] have performed a survey on different link testing mechanisms
addressing stuck-at, bridge, delay and crosstalk fault detection and diagnosis in on-chip
inter-router links and links between Network Interface (NI) and router. They reached the
conclusion that none of the approaches up to that point had addressed a single platform
for fault detection, diagnosis and fault tolerance under the one single framework.

To the best of the author’s knowledge, none of the above-mentioned works have
addressed a cross-layer fault resilient NoC router architecture, utilizing online fault
localization in addition to fault detection for the control part of NoC routers, while
targeting minimal latency and matching acquired fault information with abstraction level
of system healthy information (e.g. health status of the turns of a router).

2.2.3 Fault-Tolerant Routing Mechanisms for 3D NoCs

The aggressive transistor scaling also affects the reliability of inter-router links in NoCs.
Especially in the domain of Mesh-based 3D NoCs, in which the vertical links are present
in addition to the horizontal links, faults in the vertical links can cause performance
bottlenecks. Moreover, if the vertical links are implemented using Through-Silicon Via
(TSV), it would not be area-efficient to have a full 3D Mesh NoC, as TSVs impose larger
area overheads compared to the horizontal links [51]. Due to these reasons, partially
vertically connected 3D NoCs can be formed. Similar to their 2D counterparts, fault-
tolerant routing in such 3D NoCs and how they are implemented can also bring some

23

challenges. The following works review the state-of-the-art regarding fault-tolerant
routing mechanisms for handling partially vertically connected 3D NoCs.

In [52], 4NP-First is introduced, which is a low overhead fault-tolerant routing
algorithm for 3D NoCs. The algorithm is able to achieve high arrival rates of packets at
destination. It utilizes a hybrid turn model (based on an extension of the Negative-First
turn model to the 3D domain): 4N (Negative) First and 4P (Positive) First. Using a set of
forbidden turns in each layer, 4NP-First guarantees deadlock freeness. However, the
approach suffers from information overhead, as it replicates each packet if number of
faulty links in the network exceeds a specific threshold, thus, sending one replica of the
packet via one virtual channel using 4N-First and the other via another virtual channel
using the 4P-First routing algorithm.

In [53], a low-overhead fault-tolerant deflection routing algorithm is proposed for 3D
Mesh-based NoCs. The limitation of this work is scalability due to using routing tables per
layer. Authors of [54] have introduced AFRA, a deadlock-free and deterministic routing
algorithm (based on an extension of ZXY routing algorithm) for 3D NoCs. Normally, the
algorithm performs as ZXY. In case of a fault on a vertical link on the path to the
destination of a node, the algorithm tries to find an escape node with healthy vertical
link along the X direction, thus, changing the algorithm to XZXY. One of the drawbacks of
this work is the assumption of faults occurring only in one direction on the vertical links.
The other drawback is that if an escape node does not exist, the algorithm cannot handle
the faulty network, therefore, AFRA has limitations regarding the location of faulty
vertical links.

Ebrahimi et al. have proposed HamFA [55], which takes advantage of Hamiltonian
paths in order to tolerate faults in 2D and 3D NoCs without the need for any Virtual
Channels (VCs). Despite the advantages compared to 4NP-First [52] and [53], HamFA is
not able to address faults on vertical links at the end of the Hamiltonian paths and also
some of the horizontal links in each layer, as stated by the authors in [55]. Jiang et al.
have presented an efficient fully adaptive fault- tolerant routing algorithm for 3D NoCs
[56]. The algorithm consists of two phases: inter-layer and intra-layer routing. Two
assumptions that limit this work are as follows: Processing Elements (PEs) will never get
faulty and faults on links are considered as bidirectional. Also, the deadlock recovery
mechanism used in this work can impose additional performance overhead.

Authors of [57] have proposed a high-performance reliable and deadlock-free routing
scheme (HARS), which follows a mid-node searching method in 3D NoCs without
requiring any Virtual Channels (VCs). However, reliability results are only provided when
up to 10% of the network vertical links are faulty. In [51], Elevator-First, a distributed
routing algorithm has been proposed for partially vertically connected 3D Network-on-
Chips. The algorithm is able to tolerate faults on vertical links, regardless of the location
and the number of faults. In order to guarantee deadlock freeness, the method depends
on using two virtual channels along X and Y dimensions. Despite the advantages, the
algorithm relies on an additional overhead in header flits, when steering packets to nodes
with vertical links (called as elevator nodes). Also, each router stores the location of at
least one up and one down elevator node in its layer for fault-tolerance purposes which
can impose additional memory overhead and scalability issues as the network scales up.
In [58], TARAS, a topology-agnostic routing algorithm for 3D NoCs is proposed. However,
it depends on the Segment-based Routing (SR) and therefore it would only cover a set of
routing algorithms that address fault tolerance in 3D NoCs. In the proposed mechanism,

24

it is possible set the routing bits of LBDR3D, so that it would be programmed to the SR
routing in each layer of the 3D NoC, thus making it a more generic approach.

In [59], [60], East-Then-West (ETW), an adaptive routing algorithm for supporting
partially vertically connected 3D NoCs is introduced, able to tolerate faults on vertical
links. It is claimed to be lightweight and only relies on using one Virtual Channel (VC)
along the Y dimension. Nevertheless, ETW is not fully independent on the location of
faulty links and it only works as long as there exists at least one vertical link at the east-
most column of each layer. Ying et al. have introduced North-East To Z (NETZ) [61] routing
algorithm based on Dynamic Quadrant Partitioning (DQP) for partially vertically
connected 3D NoCs, able to improve performance in comparison to deterministic routing
algorithms such as ZXY. The algorithm is implemented by disabling a set of turns in the
3D domain, thus, removing the need for routing tables and also guaranteeing deadlock
freeness without using Virtual Channels (VCs). However, similar to ETW [59], [60], NETZ
depends on the location of faulty vertical links. It requires the existence of a pillar at the
North-East corner position on all layers to guarantee the routing algorithm delivers
packets successfully to all destinations. Authors of [62] have introduced Advertiser
Elevator algorithm to address partially vertically connected 3D NoCs, however, the
approach in [62] depends on the existence of at least four healthy vertical links in the
network (corner links).

In [63], a logic-based mechanism is proposed for implementing fault-tolerant routing
algorithms in 3D NoCs, which is based on an extension to LBDR, however, the proposed
technique relies on high number of configuration bits per router for the routing logic.

To the best of author’s knowledge, based on the previous works studied, there is still
an open research direction for proposing a re-configurable and scalable mechanism that
would make it possible to implement deadlock- and livelock-free routing algorithms in
3D NoCs with faulty vertical links, while not sacrificing performance significantly, not
imposing any information overhead and not relying on the location and number of faulty
vertical links.

2.3 NoC Router Architectures Used in This Dissertation

This section is dedicated to explanation of the three NoC router architectures used in
Chapters 3 and 4 of this dissertation, which are used as examples of applying the
proposed methodology for devising checkers from the control part and one of them is
also used for integrating the fault localization module to model turn faults. The router
architectures explained in this chapter have the following features in common.

The NoC routers consist of a control part and a data-path. The data-path is composed
of input buffers (implemented as circular First-In-First-Out (FIFO)), one per each input
port, and a crossbar switch per each output port. The input buffers have one-hot
encoded pointers for reading from and writing to them. Each input buffer has 4 slots for
storing maximum 3 flits. This is due to the fact that one slot is used to distinguish the
empty case of the input buffer from the case when it is full. None of the three router
architectures in this dissertation use Virtual Channels (VCs) at input ports. However, the
proposed methodology for devising checkers can also be applied to the control part of a
router with VCs.

The flow of data through the data-path is managed and controlled by the control part
of the NoC router. The control part of the router architectures explained in this chapter,

25

consist of a routing computation unit per each input port and an arbitration unit (arbiter)
for each output port, which prioritizes the requests from different input ports to the
same output port. Each router has 5 input/output ports, four ports connected to four
cardinal directions (North – N, East – E, South – S, West – W) and one Local (L) port
connected to the local Processing Element (PE). All three NoC router architectures utilize
wormhole switching. Therefore, packets are sent in form of flits, consisting of header flit,
body flit(s) and tail flit.

As faults in the control part can cause severe issues in the network (such as deadlock,
live-lock, misrouting of packets, loss/dropping of packets) [64], protection of the control
part against transient Single Event Upsets (SEUs) and permanent faults is of utmost
importance. Regarding the data-path, there has already been many approaches
proposed in the literature for protecting the data and links against faults and it is
assumed in this thesis that the data-path is already protected by an Error
Detection/Correction technique [41].

In the control part of all three router architectures, for the routing computation unit,
Logic-Based Distributed Routing (LBDR) [65] mechanism is used, which is a scalable
solution compared to routing tables. The mechanism describes the topology and the
routing function in form of fixed sets of connectivity and routing bits, therefore, the logic
can be easily re-configured. Routing decision is distributed and only requires local and
destination addresses for forwarding flits. The routing computation is only performed on
the header flit of a packet. Moreover, it must be noted that in all three router
architectures, U-turns (an input port sending data to itself in output direction) are not
allowed in order to avoid deadlock.

For the arbitration unit (shortly called the arbiter hereafter) Round-Robin (RR) policy
has been chosen in all three architectures. Round-Robin arbitration (as shown
in Figure 2.1) prioritizes multiple requests from the routing logic of different input ports
to avoid contention. Prioritization is performed in a circular manner, starting from the N,
E, W, S and then L and back to N. Arbiter grants the access to the requesting input port
winning the eventual contention, allowing data to go from the input FIFO of the
requesting input port to the granted corresponding output port, through its crossbar
switch. The RR arbitration mechanism is implemented in form of a Finite State Machine
(FSM). In all three router architectures, one-hot encoding has been considered for the
state variables of Arbiter’s FSM. Moreover, one-hot encoding is extended to grant signals

N

EL

S

Priority
L INPUT

N INPUT

E INPUT

W INPUT

Grant

Signals

Round-Robin (RR)

ARBITER

FSM

State

S INPUT

W

Crossbar

Select Lines

Figure 2.1 A Round-Robin (RR) arbiter for a 5 port of a 2D NoC router.

26

and select lines for the crossbar switch for similar reason. One of the main reasons such
decision is to increase the fault detection quality of single-stuck at faults, which of course
comes at the price of additional area compared to binary-encoded state variables.

2.3.1 NoC Router Architecture 1

As the first example, the proposed methodology for devising checkers in this dissertation
has been applied to the control part of a generic NoC router, written in Verilog RTL.
Hereafter, for future reference throughout the dissertation, this NoC router is named as
Architecture 1, which is a 2D-Mesh based NoC router. Figure 2.2 demonstrates the high-
level overview of NoC router Architecture 1, illustrating both the control part and the
data-path. In addition to the input FIFOs and the crossbar switch, NoC router
Architecture 1 uses an output buffer per each output port, which can store one flit.

In NoC router Architecture 1, the routing logic (LBDR) is configured to the
deterministic XY turn model. Taking into account the fact that U-turns and also turns
from the Y dimension to X dimension (i.e. North and South, to East and West) are not
allowed in XY routing, this can lead to simplification of the logic of LBDR. As it will be
explained later in the experiments in Chapter 3, for router Architecture 1, the focus is on

L FIFO

N FIFO

W FIFO

E FIFO

S FIFO

Local

Input

North

Input

East

Input

West

Input

South

Input

Local

Output

North

Output

East

Output

West

Output

South

Output

L ARBITER

E ARBITER

W ARBITER

S ARBITER

N ARBITER

CROSSBAR

SWITCH

S LBDR

W LBDR

E LBDR

L LBDR

N LBDR

L OUTPUT

BUFFER

N OUTPUT

BUFFER

E OUTPUT

BUFFER

W OUTPUT

BUFFER

S OUTPUT

BUFFER

Control part of router

Control	Part

Control	Part

Control	Part

Control	Part

Control	Part

Figure 2.2 High-level overview of NoC router Architecture 1

Figure 2.3 Logic-based Distributed Routing (LBDR) logic for the East input port

27

the control part of router addressing the East input port and South output port and
further in the last experiment, the control part of FIFO is also considered.

The simplified logic of LBDR based on XY is shown in Figure 2.3 [3] for the East input
port of the router. According to XY routing, packets coming from East input, are only
allowed to send requests to North, West, South and Local directions.

2.3.2 Project Bonfire Router Architectures
The Bonfire project [66], [67] proposes a fault-tolerance framework for implementing
dependability mechanisms in a NoC-based System-on-Chips (SoCs). The targeted NoC in
Bonfire project is a 2D mesh topology where each tile of the network consists of a
wormhole switching router equipped with fault tolerance mechanisms and a Processing
Element (PE) connected to it via a Network Interface (NI). The project consists of two
types of NoC routers with two different flow control mechanisms, i.e. with handshaking
and credit-based flow control. Details of the components of the framework are available
online2, however, a brief explanation is also provided in this chapter for future references
in this dissertation. One of the shortcomings of the baseline router architectures of
Bonfire was the lack of fault detection mechanism. The author has contributed to
devising checkers for the control part of the Bonfire routers and also developing the fault
localization and abstract module.

Similar to NoC router Architecture 1, both NoC router designs of Bonfire consist of a
data-path and control part. However, their difference lie within the components used for
the data-path and the flow control mechanism used in the control logic. The data-path
comprises the inter-router links, the input buffers (implemented as circular FIFO) and
crossbar switch (no output buffer is used in Bonfire routers). The control part is
composed of the control part of input buffer (FIFO), routing logic (LBDR [65]), and
arbitration logic. As it will be explained later, the data-path and control part components
in both router designs have similarities, however, the way the flow control mechanism is

2 Project Bonfire is developed in department of Computer Systems Engineering at Tallinn University
of Technology, and maintained as an open-source project at: https://github.com/Project-
Bonfire/Bonfire

Figure 2.4 High-level overview of Bonfire NoC router with handshaking flow control

28

implemented for transmitting the flits between routers is different in the two
architectures. It is also worth noting that none of the router architectures in Bonfire use
VCs.

Bonfire Handshaking Router
The first router design in project Bonfire is a 32-bit wormhole switching NoC router with
handshaking flow control. The names Bonfire Handshaking Router and NoC Router
Architecture 2, are used interchangeably in the following chapters of this thesis, which
refer to this router architecture. Figure 2.4 [66] shows an overview of the baseline
handshaking flow control router without any fault-tolerance mechanisms.

Bonfire Credit-Based Router

The second router design in project Bonfire is a 32-bit wormhole switching NoC router
which has credit-based flow control. The names Bonfire Credit-based Router and NoC
Router Architecture 3 are used interchangeably in the following chapters when referring
to this router architecture. Figure 2.5 [66] shows an overview of the baseline credit-based
router without any fault-tolerance mechanisms implemented in it. In credit-based flow
control, the transmitter router keeps a credit counter, which is initially set to the number
of free slots of the receiver router's input buffer. Each time a flit is sent, the counter gets
decremented by one. In case the receiver passes a flit, it issues a credit signal which will
increment the counter at the upstream router. One of the other differences of this
architecture with the previous ones is the support of adaptive routing, when the routing
logic might choose more than one output port as candidates for sending the flit.
Therefore, even though the same FSM-based Round-Robin arbitration logic is used in
router Architecture 3, its implementation is in two stages, one for handling multiple
requests from an input, and the other for handling multiple requests from different
inputs to the same output. The arbitration unit in router Architecture 3 is named
Allocator (as shown in Figure 2.5 [66]).

One of the advantages of the credit-based router over the handshaking version is its
better performance in terms of flow control. As long as the upstream router has valid
data to send and it also has the credit, the transmission of flit(s) can continue.

Figure 2.5 High-level overview of Bonfire NoC router with credit-based flow control

29

2.4 Logic-Based Distributed Routing (LBDR)

The LBDR mechanism [65] has been used as the routing computation component in all
three NoC router architectures used in this dissertation. As the mechanism is going to be
referred to in the coming chapters, a brief explanation of the mechanism is provided as
follows.

LBDR has been introduced as a solution to implement different deadlock-free routing
algorithms in 2D NoCs, while overcoming the scalability limitations of routing tables.
LBDR removes the need for routing tables at all in NoC routers. It codifies the routing
algorithm and topology in form of two sets of configuration bits, i.e. routing bits and
connectivity bits. The former describes the routing algorithm, in form the set of
allowed/restricted turns, whereas the latter describes the topology, showing the
connection of each router to its possible neighbor(s). As opposed to routing tables, as
the network scales up, the routing logic in LBDR is fixed, since it relies on the fixed sets
of configuration bits. The logic of LBDR is shown in Figure 2.6 [65], [68].

LBDR is distributed, thus, for routing computation it only relies on the current address
of the router and the address of the destination node included within the header flit of
a packet. This, removes the need for encoding the routing path in the packets (as
opposed to source-based routing [69]) at the source nodes. As shown in Figure 2.6, the
mechanism is composed of two phases. In the first phase, the quadrant or direction in
which the destination node is located compared to the current node is computed (N’, E’,
W’ and S’ signals). In the second phase, using the connectivity and routing bits, the
candidate output port(s) is (are) computed. In case of a deterministic routing algorithm,
such as XY routing, LBDR always will choose one direction as the candidate one. However,
in case of adaptive routing, two output ports can also be selected as candidates for

CMP

X_curr

X_dst

E’

W’

CMP

Y_curr

Y_dst

N’

S’

Flit type

Header Flit

X_dest Y_dest

Rne Rnw Ren Res Rwn Rws Rse Rsw

Routing bits

Cn Ce Cw Cs

Connectivity bits

Cn

N’
E’
W’

N’
E’

Rne

N’
W’

Rnw

N

E = Ce . (E’ . N’ . S’ + E’ . N’ . Ren + E’ . S’ . Res)

W = Cw . (W’ . N’ . E’ + W’ . N’ . Rwn + W’ . S’ . Rws)

S = Cs . (S’ . E’ . W’ + S’ . N’ . Rsn + S’ . W’ . Rsw)

L = N’ . E’ . W’ . S’

West

North

East

South

Figure 2.6 Logic of LBDR mechanism (first phase computes the location of destination,

and the second phase computes the candidate output port(s).

30

forwarding the flit(s). It is worth noting that LBDR logic only becomes active when
processing the header flit of a packet. Furthermore, when none of the signals in the
phase first are active (the packet has reached its destination), the Local (L) output port is
chosen as the candidate for forwarding the flit(s) to the Processing Element (PE)
connected to the local port of the router. More details regarding how the LBDR
mechanism works and implements different turn-model based routing algorithms in 2D
NoCs, are provided in [65].

2.4.1 LBDR Extensions

Several extensions to LBDR have been introduced in the literature. In [68], LBDR has been
extended to address collective communication (multicast and broadcast) in addition to
unicast communication. Authors of [70], [71] have added de-route and fork capability to
the mechanism, and proposed uLBDR, aiming to address link faults in 2D Mesh-based
networks, and providing non-minimal path support. However, for the mechanism to
work efficiently, the switching mechanism must be changed from wormhole to Virtual
Cut Through (VCT), thus, imposing additional input buffer overhead to the routers. This
issue is overcome by introducing d2-LBDR mechanism in [72], which uses the wormhole
switching, however, the mechanism is still limited regarding the increasing number of
faulty links. In [73], one further step is taken and LBDR is augmented with support for
irregular topologies in addition to regular 2D Mesh.

The scope of the proposed approach in [73], LBDRhr, is not limited to Mesh based 2D
NoCs, but it has also been extended to support topologies with higher radix and routers
with higher number of ports. In [27], in addition to tolerating permanent link failures,
LBDRhr is also equipped with a set of fault monitors for tackling the detection of transient
faults in the routing logic (which is part of the control part of router). These fault monitors
are extracted using the Inherent Information Redundancy (IIR) [26] in the routing logic.
The fault detectors (also called as checkers) for LBDR are extended in [74], which led to
three-fold increase in the fault coverage. There have also been extensions to LBDR for
addressing congestion-aware routing in 2D Mesh-based NoCs in [75], [76]. Despite the
advantages each of the extensions to LBDR provide, the challenge of implementing fault-
tolerant routing in 3D NoCs with partially vertically connected nodes has not been
addressed yet using a scalable and re-configurable logic-based routing approach.

2.5 Chapter Summary

This chapter started with a comprehensive literature review, covering the state-of-the-
art regarding the topics which are the focus of this dissertation. The objective was to
provide an overview of the proposed online fault detection approaches for the control
part of NoCs, online fault localization and fault-tolerant routing algorithms for partially
vertically connected 3D NoCs, which all correspond to the contributions of this thesis.
Moreover, the preliminary materials and terminology which used throughout different
parts of the dissertation were explained, including the router architectures used in the
thesis as examples for applying the proposed fault detection mechanisms and a
background of different variations of logic-based routing in NoCs, related to the third
contribution of this thesis.

31

3 ONLINE DETECTION OF FAULTS IN NETWORK-ON-CHIPS

3.1 Introduction

Online detection of faults in digital systems, including NoCs is important, as transient
faults might only manifest themselves during system run-time. Especially, capturing
faults in the control part of NoCs via an online detection mechanism is crucial, as such
faults can cause mis-routing of packets, data loss or deadlock, leading to the breakdown
of the whole system. However, the area overhead of the fault detection circuitry must
not be unacceptably high, as the probability of faults occurring in the fault detection logic
itself may also increase, which is not desirable. This chapter of this thesis proposes a
methodology for devising concurrent online checkers for online detection of faults in
control part of NoCs, while providing a trade-off between fault coverage and the incurred
area overhead.

First, as a background, the concept of concurrent online checkers is provided, along
with the fault model that would be the focus throughout this thesis. The literature review
regarding previously proposed online fault detection techniques for control part of NoCs
area already covered in Chapter 2. Next, the contribution of this chapter is explained in
detail, which is a methodology for devising concurrent online checkers from the control
part of a circuit in a systematic way, with the guarantee of single-cycle fault detection
latency and minimizing checkers in terms of area while satisfying the target fault
coverage. The methodology automates the process of devising two types of checkers, i.e.
structural and functional checkers, which are both elaborated in this chapter. The
proposed methodology has been applied to the control part of three different NoC router
architectures as examples. The details regarding these NoC architectures are already
covered in Chapter 2 as background. Experimental results regarding applying the
framework to the control of a NoC router will show the trade-off between checkers’ area
overhead and fault coverage. Finally, a short summary of the chapter is provided. The
contributions of this chapter of the dissertation have led to publications A, B and D listed
in Chapter 1.

3.2 The Concept of Concurrent Online Checkers

One of the methods used to detect faults online in a circuit is the use of concurrent online
checkers [4]. A checker is defined as a module monitoring the correctness of a design
based on the rules defined for the functionality of that design, taking into account a
specific fault model. In this dissertation, the focus is on NoC routers control part checkers.

Functional

Logic

Checker

Logic

Checker	
Output

Primary
Output(s)

Primary
Input(s) X X

Internal
Signal(s)

Figure 3.1 The concept of concurrent online checking of faults via checkers

32

Figure 3.1 presents a checker attached to a functional logic. As it can be seen, in
addition to the original circuit (functional logic), a set of checkers (checker logic) are
connected to functional inputs/outputs of the circuit. These checkers are derived based
on the methodology that will be explained later in this dissertation. One set of checkers
are in form of functional assertions obtained from relationships between variables
corresponding to inputs and outputs (and possibly internal signals) of the circuit. The
other set of checkers are devised in a systematic way by traversing the RTL of the design.
The checker logic targets the faults at lines at the inputs of each gate within the functional
logic (marked by green circles in Figure 3.1). The lines at the functional outputs
succeeding the checker inputs (marked by a red cross in Figure 3.1) cannot be detected
by the checker. In addition, the checkers are not targeting the faults at functional inputs
preceding checker inputs, since the checker may not detect that the input value has been
altered by a fault (such functional input lines are also marked by a red cross in Figure
3.1).

In this dissertation, both transient and permanent faults are modelled as Single Stuck-
At-Faults (SAFs) occurring in single clock cycle. This information is used when evaluating
checkers for the control part of the NoC router. By means of this fault model, the
checkers cover SEUs (in form of transient faults) [77] and permanent faults. As example,
the proposed methodology has been applied to the control part of three different NoC
router architectures. It is worth noting that in this dissertation, it is already assumed that
the data-path of the NoC router is already protected by an error detection/correction
technique [15], [78].

3.3 Methodology for Devising, Evaluating and Minimizing Concurrent
Online Checkers for Control Part of NoC Routers

This Chapter focuses on the proposed methodology for devising, evaluating and
minimizing concurrent online checkers for the control part of circuits.

Figure 3.2 illustrates the proposed flow of the methodology. The flow starts by
taking into account the control part of the circuit. Next, it is followed by synthesizing the
pseudo-combinational version of the circuit under check and devising the initial set of
checkers from a set of combinational assertions. Additional checkers that also describe
relations on the pseudo primary inputs/outputs may be added to the checker suite in
order to increase the fault coverage. The initial set of checkers includes a set of structural
and a set of functional checkers. Subsequently, the checker evaluation environment is
created during the environment generation step by generating exhaustive valid set of
input stimuli which will serve as the environment for checker evaluation. If there is no
bug in the environment and no bug in the checkers, the fault-free simulation step would
confirm that. The checkers evaluation is performed afterwards, which leads to measuring
the fault detection quality of checkers in terms of metrics, such as CEI (Checkers
Efficiency Index), FC (Fault Coverage) and FPR (False Positive Ratio) and the checkers’
weight information (number of True Detections) and their corresponding area
consumption. The information acquired from this step is used for the minimization
process using a greedy heuristic, which provides a trade-off between the fault coverage
of the checkers and their area overhead. The final results of the methodology would be

33

the minimized set of checkers in terms of area, meeting specified target fault coverage.
In the following sub-sections, each step of the proposed flow is explained in detail.

3.3.1 Devising Pseudo-combinational version of the circuit under check

In order to evaluate the checkers for all possible fault locations and under all possible
valid input stimuli, the methodology shown in Figure 3.2 first needs some preparation
steps. This includes extracting a pseudo-combinational equivalent of the module under
check
The pseudo-combinational circuit is derived by breaking the Flip-Flops and memory
elements (such as registers) and converting them to pseudo-primary inputs and pseudo-
primary outputs, as shown in Figure 3.3. Figure 3.3a illustrates a sequential circuit with
its primary inputs and outputs, while Figure 3.3b demonstrates its pseudo-combinational
equivalent circuit, which has additional pseudo- inputs and outputs. In the pseudo-
combinational circuit, the current state signals are converted to pseudo-primary inputs
and next state signals are converted to pseudo-primary outputs (Figure 3.3b). This would
facilitate the process of evaluating the checkers under all possible valid input stimuli and
making it possible to formally prove the presence or absence of cases of True Detection
and True Misses (which will be explained later in this chapter).

It should be noted that even though this step of the methodology might lead to
creation of additional inputs/outputs, at the end of the proposed flow, the checkers are
integrated in the sequential design, therefore, the final structure of the module under
check is not altered. Once the design to be checked is prepared, the next part of the flow
comes into play, which is devising the concurrent online checkers. It is worth noting that
in this dissertation, the control part of a NoC router is used as an example of the circuit
under check, from which the pseudo-combinational circuit is extracted.

Figure 3.2 Checkers Evaluation and Minimization Flow

34

 (a) (b)

3.3.2 Devising Initial Set of Checkers

The methodology proposed in this work devises two types of checkers: functional and
structural checkers. The functional checkers take into account the functionality of the
module under check. They are not automatically devised and it needs the verification
engineer involved in the devising process. To this end the specification of the module
under check is also taken into account. On the other hand, structural checkers are
devised systematically and in an automated manner by parsing the RTL description of the
design. They check all the different paths through which the RTL code can be executed
and examine whether based on those paths, the generated output(s) is (are) correct and
valid. Examples of devising both types of checkers from the control part a NoC router are
provided in Sub-Section 3.4.1 and Appendices A and B.

The functional checkers might have overlaps in terms of the domain of the circuit they
are checking. In case of structural checkers, they check distinguished non-overlapping
parts of the circuit. It should be noted that after devising both set of functional and
structural checkers using the proposed methodology, one cannot necessarily predict
which type of checkers would outperform the other. As it will be explained later,
considering both checkers when performing the evaluation and minimization heuristics
using the proposed flow, can make the search space exploration more efficient, pruning
checkers with overlap, but keeping the necessary ones to satisfy the area budget, while
still guaranteeing the target fault coverage.

Functional and Structural Checkers

Functional checkers are devised by the verification engineer, from functional assertions.
Such assertions are obtained from relationships observed between variables
corresponding to inputs and outputs (or possibly the internal signals) of the circuit. Such
checkers are not devised by parsing the RTL code of the control circuit. Instead, they are
designed by the verification engineer taking into account the specification of the design.
i.e. checking the rules that must hold in order to confirm that the circuit is working. In
the proposed methodology, each checker is evaluated for all possible fault locations in
the pseudo-combinational version of the circuit and under all possible values for valid
input stimuli.

Structural checkers are extracted from the RTL code of the design. The methodology
for devising structural checkers from the control part of the NoC router traverses through
all different paths in the RTL code in a systematic way, and devises checkers for each

Figure 3.3 a) A sequential circuit and b) its equivalent pseudo-combinational circuit

35

condition in the pseudo-combinational version of the circuit under check, which would
have a relation between an input signal and an internal signal/output signal. It should be
noted that structural checkers, examine very specific behaviour(s) of the circuit and
usually, they do not check the same part of the circuit.

3.3.3 Environment Generation for Checkers’ Evaluation

Before performing any logic simulation or fault simulation for evaluating the checkers,
the environment under which the checkers are going to be evaluated must be generated.
This is handled by the next step of the proposed flow of the methodology, which is the
environment generation section (as shown in Figure 3.2). The checker evaluation
environment is created by generating exhaustive test stimuli for the extracted pseudo-
combinational circuit. These stimuli are fed through a filtering tool that selects only the
stimuli that correspond to functionally valid inputs of the pseudo-combinational circuit.
It is important to note that the checkers will later be evaluated only under the set of valid
input stimuli and not the exhaustive set of all possible input patterns. As a result of this
step, the complete valid set of input stimuli that will serve as the environment for checker
evaluation, is obtained. In Sub-section 3.4examples of applying the methodology to the
control part of a NoC router will be provided, which will show the constraints that guide
the filtering tool to generate the valid set of input stimuli for the modules under check.

3.3.4 Fault-Free Simulation and Debugging Checkers

The obtained environment from the previous step, the pseudo-combinational circuit and
the synthesized checkers (structural and functional checkers) are applied to fault free
simulation. The simulation calculates fault free values for all the circuit lines. Additionally,
if any of the checkers fires during fault-free simulation, it means there is a bug in the
checker or the evaluated environment is incorrect. This facilitates the process of
debugging the checkers. If none of the checkers fire during fault-free simulation, the
checker evaluation step of the proposed methodology flow takes place (as shown in
Figure 3.2).

3.3.5 Fault Simulation of Checkers

The checker evaluation step is performed using a fault simulator developed as an
extension of a freeware test system Turbo Tester [79]. The system applies Structurally
Synthesized Binary Decision Diagram (SSBDD) models [80] for circuit modelling. Turbo
Tester injects faults to all the lines within the circuit one-by-one and this step is repeated
for each input vector. More specifically, faults are considered at the inputs and outputs
of all the fan-out free regions within the circuit. It is worth noting that unlike approaches
such as NoCAlert [23], [24] which treat the module under check as a black box during
high-level evaluation of the checkers, our proposed methodology, along with the fault
simulation tool, considers the internal signals of the design for which the checkers are
devised as well. As a result, the overall fault detection metrics (discussed later in this
chapter) for the set of checkers will be calculated.

What makes this work different from previous approaches regarding online checkers
is that all the experiments for evaluating the checkers are based on fault simulation.
Traditionally, in order to evaluate the fault detection quality of the checkers, fault
injection has been applied (e.g. the approaches in [23], [24], [81]). Fault injection refers
to injecting faults into a circuit at a certain time step and simulating it with the input
stimuli to see whether any functional output of the circuit changes and whether any of

36

the checker outputs fire. Due to the fact that it is generally impossible to inject and
simulate all the faults at each circuit line at each time step, a statistically significant
sample of random faults would normally be injected and simulated.

However, as mentioned earlier, the proposed methodology in this dissertation is
based on automated extraction of a pseudo-combinational circuit out of the original
functional logic. Further, an exhaustive test for the extracted circuit is fed through a
filtering tool in order to derive the complete valid set of input stimuli which will serve as
the environment for checker evaluation. This means that in the proposed flow in this
dissertation, full evaluation of the checkers with all the valid stimuli and faults is obtained
through fault simulation. The advantage of fault simulation over fault injection is that for
considering different fault locations, there is no need for simulating the circuit at all
possible time instances. Only one fault simulation run would be sufficient to analyse the
effect of the faults [80].

Metrics used for Checkers’ Evaluation

After the overall fault simulation step for evaluating the set of checkers, the results of
their fault detection quality should be defined. This is what is performed in the next step
of the flow of the proposed methodology.

Given a fault at a line within the functional logic and a set of input stimuli, four
possible scenarios can occur:

- Case 1: Fault occurs at an internal line and is visible at functional output(s) and checker
logic flags a violation. The term True Detection is used to describe this situation, since a
critical fault is effectively detected by the checker.

- Case 2: Fault occurs at an internal line but is not visible at primary output(s). Checker
catches the fault and flags a violation. The term False Positive is used to describe this
situation. False positive is not harmful because an error is flagged which did not have any
effect. However, it has negative impact on design’s performance because normally it
causes re-execution of the task.

- Case 3: Fault occurs at internal line but is not visible at primary output(s) and the
checker logic does not detect the violation. The term Benign Miss is used to describe this
situation. Benign miss shows correct operation by the checker.

- Case 4: Fault occurs at internal node and is visible at primary output(s). Checker does
not detect violation. The term True Miss is used to describe this situation, which is the
worst possible case. True miss means that the fault propagates to the functional outputs
and onwards to the system. However, the system has no information that a critical fault
has occurred.

Let D be the number of True Detections, X be the number of Benign Misses, W be the
number of True Misses and F be the number of False Positives over all the injection runs.
In the proposed flow, the evaluation of the fault detection quality of the checkers based
is performed using the following metrics: Fault Coverage (FC), Checkers’ Efficiency Index
(CEI) and False Positive Ratio (FPR).

One of the contributions of this thesis (as also stated in [3]) is being able to formally
prove the presence or absence of True Misses, which has not been addressed in the
previous works such as [23], [24].

37

WXD

XD
FC




 (Equation 3.1)

WD

D
CEI


 (Equation 3.2)

XF

F
FPR


 (Equation 3.3)

Here, FC shows the probability of the checkers behaving correctly over all possible fault
cases (in addition to True Detections and True Misses, it also takes Benign Misses into
account), CEI shows the probability of checkers’ ability to detect critical faults (it covers
the cases that the fault is propagated to the output of the circuit, either detected by the
checkers or not), whereas FPR reports the ratio of false positives over all the cases a fault
did not propagate to circuit outputs. It is worth noting that in none of the experiments
of this dissertation, checkers resulted in false positive (FPR was zero). This is based on
our assumption that False Positives do not occur in our experiments and that is why they
are excluded from the formulas for CEI and FC calculation in Equation 3.1 and Equation
3.2. For reference purposes though, the formula used to calculate FPR is also provided,
in Equation 3.3 [82].

3.3.6 Checkers’ Evaluation and Minimization

In this step of the proposed methodology, after the fault simulation, the values for CEI
and FC and FPR when considering all the checkers, are calculated. The goal is to reach
100% coverage for SEUs both for CEI and FC. A 100% CEI would mean that there were no
cases of True Misses during the fault simulation and thus checkers are able to capture all
SEUs at different locations in the design. In addition, each individual checker will be
weighted by summing up the total number of True Detections by the checker. This
information is used for the next step of the flow, which is the optimization and
minimization of checkers in terms of area.

Even though having the full set of checkers, devised for a design, might cover all the
faults due to SEUs, integrating all the checkers in the final design can impose significant
area overhead to the system. This can be mitigated using a methodology that would
analyse each checker one by one finally, choosing only the checkers that are necessary
for obtaining the target fault coverage, while consuming less area compared to the initial
set of checkers. This would save significant area in case some checkers cover other
checkers, i.e. one checker captures the same faults another checker can capture and on
top of that it detects some additional faults.

The weighting information obtained from the evaluation part of the proposed
methodology (the number of True Detections for each checker) will be exploited in
minimizing the number of checkers, eventually allowing to outline a trade-off between
CEI (and FC) and the area overhead due to the introduction of checker logic. The
minimization part of the flow is performed using a greedy heuristic. To this end, the
checkers are sorted based on their weight. i.e. based on the descending values of True
Detections. Then, the checker with the highest weight is chosen and fault simulation is
performed and the process is performed by considering each checker with the next

38

highest weight until the target FC and CEI is reached. In the following sub-sections, some
examples of applying the framework to the control part of three NoC routers will be
provided, which will show the efficiency of the proposed methodology for devising
checkers for the design and the minimizing the checkers in terms of area in order to reach
a trade-off between area overhead and CEI (and FC).

3.4 Application of the Proposed Methodology to the Control Part of a
NoC Router

As mentioned earlier, the proposed methodology for devising, evaluating and minimizing
concurrent online checkers is not limited to the control part of a specific NoC router
architecture. To this end, three examples of applying the methodology to the control part
of NoC router Architecture 1, Architecture 2 and Architecture 3 (previously explained in
Chapter 2), are provided. However, since the underlying procedure for devising the
pseudo-combinational version of the circuit, checkers devising, fault simulation,
checkers’ evaluation and minimization are similar, only one of the examples is explained
in detail in this chapter, i.e. NoC router Architecture 1. The complete set of devised
checkers for the control part of NoC router Architectures 2 and 3 (Bonfire handshaking
and credit-based NoC routers) are listed in Appendices A and B, respectively.

3.4.1 Example: Devising Checkers for the Control Part of NoC Router Architecture 1

In the first example, the proposed methodology is applied to the control part of NoC
router Architecture 1 (explained in Chapter 2). The example consists of three
experiments. In the first experiment, the control part is only limited to the routing logic
(LBDR), more specifically the LBDR of East input port (ELBDR), as shown in Figure 3.4. The
pseudo-combinational version of ELBDR has the flit type, destination address, empty
signal, and the previous values of the output requests as its inputs. The existing output
port signals for ELBDR are N, W, S and L (according to Figure 3.4).

In the first experiment, LBDR connectivity bits and routing bits and the current
address of the router are all hardcoded in the logic, which corresponds to the following
scenario: 2D Mesh topology, XY routing algorithm, U-turns not allowed, focus on router
with ID 5 in a 4x4 2D Mesh network. This scenario allows minimizing the number of circuit

Figure 3.4 The pseudo-combinational circuit for the scenario with LBDR of East port for

NoC Router Architecture 1

39

inputs and previous request values input bits that together form the inputs for the
pseudo-combinational circuit of ELBDR.

When only ELBDR is considered, the amount of inputs is limited to 11 bits:

 2 flit type bits;

 4 destination address bits;

 4 ELBDR previous output values bits;

 1 empty bit (coming from East input buffer (FIFO)).

For the second experiment, the control part is extended to LBDR and the arbitration
logic (arbiter), illustrated in Figure 3.5 [3]. The modules which have the most number of
connected signals are chosen, i.e. ELBDR (LBDR for East input) and SArbiter (Arbiter for
South output). The output request port signals for ELBDR are the same as the first
experiment, and for SArbiter, request and grant signals exist for N, E, W and L (each grant
signal corresponds to a request signal). Similar to the previous experiment, the following
assumptions have been made: 2D Mesh topology, XY routing algorithm, U-turns not
allowed, focus on router with ID 5 in a 4x4 2D Mesh network, and unicast
communication.

With the interconnection of ELBDR to SArbiter in the second experiment, the number
of input bits is increased to 19:

 3 SArbiter request signals bits;

 5 SArbiter previous state bits (iScurrentState) (which are used in the internal
FSM of SArbiter for prioritizing the input requests).

The reason that the above-mentioned scenarios are chosen for the first and second
experiment is that such scenarios provide the case with the most number of connections
signals between LBDR and arbiter logic. The checkers that cover faults for such scenario,
are symmetrical to the other cases (different connections between each LBDR logic to
arbiter logics).

Once the first preparation step for the proposed methodology has taken place and
the pseudo-combinational circuit to be studied is extracted, two sets of checkers are
devised, one from the functional behaviour of the considered circuit, evaluating the
possible implications existing in between input and output signals and the other one the
structural checkers, which are devised by traversing all different possible paths in the RTL

Figure 3.5 The pseudo-combinational circuit for the full scenario of connecting LBDR of

East port to Arbiter of South Output port

40

of the design under check. It should be noted that a priori it may be very difficult to
outline the effectiveness of a single checker or the overlap of different checkers in
detection (in terms of the domain(s) of the circuit they are checking).

Together with the considered pseudo-combinational circuit and its sets of checkers,
a set of input patterns is needed for performing fault simulation. The exhaustive test
would require 2

11
=2,048 and 2

19
=524,288 input stimuli, for the ELBDR and for the ELBDR

+ SArbiter control path experiments, respectively. However, in order to minimize the
number of stimuli, and more important, to avoid checkers being evaluated in non-
realistic conditions, the exhaustive set of stimuli has to be filtered to contain only the
functionally feasible values.

The filtering step of the proposed methodology is based on the implemented routing
algorithm (i.e. allowed destinations from the current router), restrictions in the routing
logic (e.g. no U-turns) and emptiness condition of the input buffer (FIFO) (for the first
experiment), as well as invalid conditions for the state variable of the arbiter logic (i.e.
violation of one-hot encoding) (for the second experiment). The constraints existing for
the inputs of the third experiment are also explained in detail when experiment 3 is
described. It is important to stress the fact that none of the checkers fired in fault free
simulation with any of the considered input stimuli, in neither of the experiments. The
filtering of the exhaustive set of stimuli led to a final set of 1536 vectors and 61440
vectors for the ELBDR and ELBDR+SArbiter scenarios, respectively.

3.4.2 Summary of Experimental Results

Experiment 1: ELBDR Scenario

By applying the proposed methodology to ELBDR of NoC router Architecture 1, the initial
set of functional and structural checkers was devised for its pseudo-combinational
equivalent circuit, as listed in Table 3.1.

Checkers for Routing Logic (LDBR)

1 Valid LBDR output

If there is a request to the routing logic (the
corresponding input buffer is not empty), LBDR has to
compute at least one valid output direction (according
to XY routing).

2 No LBDR output
If no flit arrives (the corresponding input buffer is
empty), all the output port signals of LBDR should
remain zero.

3 Single LBDR output

If the corresponding input buffer is not empty (there is
a request to LBDR), because of using XY routing, at
most only one output port signal of the LBDR logic can
become active.

4 Switch LBDR output
If the corresponding input buffer is not empty (there is
a request to LBDR) and a non-header flit has arrived,
LBDR outputs should remain the same.

5 Local Port output

If the corresponding input buffer is not empty (there is
a request to LBDR) and a header flit has arrived, the
local output should become active only if the packet
has reached its destination.

Table 3.1 Proposed Checkers for LBDR of East Input Port (ELBDR)

41

In order to evaluate the checkers under all possible values of valid input stimuli, the
following situations have been considered in the filtering tool of the proposed
methodology:

 If input buffer’s empty signal is high, any other input bit is meaningless, and
therefore any value is allowed for it.  

 If the incoming flit is a header, the destination address has to  be valid
according to the XY routing and U-turn restrictions.

 If the incoming flit is a body or tail flit, the previous output request values must

be valid, and they must follow a one-hot fashion, according to XY routing.  

Figure 3.6 Weights of devised checkers (number of True Detections) for EBLDR

Figure 3.7 ELBDR scenario FC, CEI and area overhead results

42

Figure 3.6 displays the weight information output of the checkers’ evaluation,
corresponding to the initial set of checkers for the ELBDR. The values basically indicate
the number of True Detections.

These True Detections quantities were evaluated by iterating the fault simulation,
including at each step the next heaviest checker (checker with highest number of True
Detections) still not included in the currently considered set of checkers, initialized only with
the first heaviest checker. By performing the greedy heuristic on the initial set of 6 ELBDR
checkers, it was observed that when the 3 most significant checkers were used (i.e. checkers
err_noLBDRout, err_validLBDRout and err_singleLBDRout in Figure 3.6 [3] with highest
number of True Detections), CEI and FC could reach 100% without encountering any cases of
True Misses using the valid set of input stimuli. The advantage is that the final set of three
checkers impose an area overhead of 78.57%, which is much less than the area overhead of
the initial set of checkers (185.71%) (as shown in Figure 3.7 [3]). It is worth noting that the
results obtained by greedy heuristic is not necessarily the most optimal result always, but, it
is a sub-set of sub-optimal results.

Experiment 2: ELBDR and SArbiter Scenario

In this scenario, the LBDR of East input port of the NoC router Architecture 1 is connected to
the arbiter of the South output port (ELBDR is connected to SArbiter), according to Figure 3.5.
Using the same methodology for devising the initial set of functional and structural checkers,
for the scenario of ELBDR and SArbiter, an initial set of 28 checkers was devised only for
the SArbiter logic. However, as it will be shown later, for the ELBDR + SArbiter scenario, when
evaluating the checkers for both units together, only the 3 checkers for ELBDR chosen
previously by the minimization flow (not the total initial set of 6 checkers for ELBDR) are
considered along with the 28 checkers of SArbiter. The checkers devised for SArbiter are
grouped and listed in Table 3.2 [3].

Checkers for the Arbiter logic

6 Valid Grant output

If there is a request from LBDR, arbiter has to assert at least

one of the grant signals for the corresponding output

direction.

7 No Grant output
If there is no request to the arbiter, it should not assert any of

the grant signals for any direction.

8 Invalid Grant output

Whenever there is a request to the arbiter, the grant signals

should go active corresponding to that specific requested

direction and invalid direction should not be chosen.

9
Invalid arbiter output

state

Output state variable (oScurrentState – which represents the

grant signals) in arbiter’s pseudo-combinational circuit can not

possess invalid values due to the one-hot coding.

10
Invalid IDLE state for

arbiter input state

If the input previous state variable (iScurrentstate) is in IDLE

state and there is a request for arbitration from LBDR,

oScurrentstate should not remain in IDLE state i.e. a grant

signal should be asserted.

11 Priority Grant

In case there is one or multiple request(s) to the arbiter, it

should follow the correct prioritization (Local, North, East and

then West) according to the input previous state variable

(iScurrentstate).

Table 3.2 Proposed Checkers for the Arbiter Logic of South Output Port (SArbiter)

43

In this scenario, in order to evaluate the checkers under valid input stimuli, the
considered filtering scheme is an extension of the one used for the ELBDR experiment.
In addition to the previous constraints, the new set of input patterns include adding the
one-hot encoding constraint to the 5 previous state value bits (iScurrentstate) of the
SArbiter’s pseudo-combinational unit.

First, the evaluation tool was run considering the whole set of checkers for the
SArbiter (28 checkers), altogether with only the minimized set of 3 checkers for the
ELBDR, which led to a total set of 31 checkers. Similar to the previous experiment, the
weights of the checkers (number of True Detections) are provided using the fault
simulation part of the proposed methodology and listed in Figure 3.8 [3] in descending
order. Focusing on the Sarbiter, it is observed that the two checkers monitoring different
aspects of the one-hot encoding condition for the arbiter's state variable, have the
highest weights.

Applying the greedy heuristic to the initial set of 31 checkers (3 for ELBDR and 28 for
SArbiter) led to the final minimized set of 3 checkers for ELBDR and 2 checkers for
SArbiter. With this final set of 5 checkers, it is still possible to reach 100% CEI and FC for
single stuck-at faults for the ELBDR and SArbiter scenario. In case of SArbiter, the area
overhead of the final minimized set of 2 checkers (56.82%) is much less compared to
using the whole initial set of 28 checkers which would impose an area overhead of
170.45%. One of the observations that was also has been made during the experiments
is that the two set of checkers for the ELBDR and the SArbiter are independent, i.e. they
cover faults for different and separate parts of the circuit, without any overlap. This
observation will be explained later in this sub-section.

It is interesting to note that the minimized set of 5 checkers for the ELBDR and
SArbiter scenario corresponds to one-third of the whole 31 checkers set area. Figure 3.9
[3] shows the CEI, FC and area overhead results for the experiment in which the checkers
for only the SArbiter module are evaluated. As it can be noticed in Figure 3.9 [3], with

0

100

200

300

400

500

600

700

800

900

1000

S
e
rr_

v
a
lid

g
ra

n
t

S
e
rr_

in
v
a
lid

s
ta

te

E
e
rr_

n
o
L
B

D
R

o
u
t

S
e
rr_

s
w

itc
h
g
ra

n
tW

S
e
rr_

s
w

itc
h
g
ra

n
tN

S
e
rr_

s
w

itc
h
g
ra

n
tL

S
e
rr_

p
rio

rity
N

S
e
rr_

p
rio

rity
E

1

S
e
rr_

p
rio

rity
W

S
e
rr_

p
rio

rity
L

S
e
rr_

p
rio

rity
ID

L
E

S
e
rr_

n
o
g
ra

n
t

E
e
rr_

v
a
lid

L
B

D
R

o
u
t

S
e
rr_

p
rio

rity
N

2

S
e
rr_

p
rio

rity
E

2

S
e
rr_

id
le

s
ta

te
5

S
e
rr_

p
rio

rity
W

1

S
e
rr_

p
rio

rity
L
1

E
e
rr_

s
in

g
le

L
B

D
R

o
u
t

S
e
rr_

p
rio

rity
ID

L
E

1

S
e
rr_

p
rio

rity
N

3

S
e
rr_

p
rio

rity
E

3

S
e
rr_

p
rio

rity
L
3

S
e
rr_

p
rio

rity
ID

L
E

3

S
e
rr_

p
rio

rity
W

2

S
e
rr_

p
rio

rity
E

S
e
rr_

s
w

itc
h
g
ra

n
tE

S
e
rr_

p
rio

rity
N

1

S
e
rr_

p
rio

rity
L
2

S
e
rr_

p
rio

rity
ID

L
E

2

S
e
rr_

p
rio

rity
W

3
C

h
e
c
k
e
rs

 W
e
ig

h
t

(x
1
0

3
)

Figure 3.8 Weights of checkers proposed for the EBLDR and SArbiter scenario

44

Checker Name
Weight

(No. of True Detections)

Serr_validgrant 871552

Serr_invalidstate 600512

Eerr_noLBDRout 243840

Eerr_validLBDRout 57600

Eerr_singleLBDRout 47680

only 2 SArbiter checkers (out of 28 checkers) which have the highest number of True
Detection, it is possible to reach 100% CEI and FC, while imposing less than 60% area
overhead.

The final minimized set of 5 checkers along with their corresponding weights are
listed in Table 3.3 [3].

Impact of clustering the faults for ELBDR and SArbiter scenario: One of the
observations that was also made during the first and second experiment was that the
two set of checkers for the ELBDR and the SArbiter are independent, i.e. they cover faults
for different and separate parts of the circuit, without any overlap. Therefore, for the
ELBDR and SArbiter scenario, even though the control part consists of a path from ELBDR
to SArbiter, 100% fault coverage for SArbiter does not necessarily mean that they have
also covered all the faults occurring in ELBDR. For this reason, the minimized set of ELBDR
checkers is used, and the previously introduced weight-based greedy minimization
heuristic is applied to the SArbiter checkers set for the ELBDR + SArbiter scenario.

Assuming that there was no information of the overlap of faults detected by the
checkers for ELBDR and SArbiter, the weight-based greedy heuristic, starting from the
heaviest checker, would add at each step the next heaviest checker (from the whole set
of 31 checkers) still not considered in the current set of checkers, based on the weight
information displayed in Figure 3.8 [3].

Figure 3.9 SArbiter scenario FC, CEI and area overhead results

Table 3.3 Weights for minimized set of checkers

45

Figure 3.10 [3] shows the inefficiency of the heuristic approach caused by the lack of
the clustering information. The number of steps in the greedy procedure is heavily
increased, and only after 19 steps, when the Eerr_singleLBDRout checker for ELBDR is
considered, the 100% upper bound for CEI and FC is reached with large area overhead.

However, when partitioning the fault set to clusters is taken into account and
minimization is performed on the clusters separately, then total of 5 checkers are
needed. Table 3.3 [3] illustrates the importance of considering the clustering
information. As it can be observed in the table, the weights of the ELBDR checkers are
far less than those of the SArbiter, but they are still needed to achieve full coverage for
the considered design.

Experiment 3: FIFO Control Part Scenario

Fault Injection Experiments for the FIFO: Using the methodology proposed in this
dissertation, the experiments were extended to the full control part of the router
Architecture 1, adding control part of FIFO to the circuits under check (this experiment
is included in publication B [82] mentioned in Chapter 2, included to this thesis).

For the FIFO’s control part, an initial set of 8 checkers (functional and structural) were
devised from the verification assertions. These checkers are grouped and listed in Table
3.4 [82]. As mentioned in [82], it should be noted that additional checkers are devised
from temporal assertions for modules that do not achieve 100% fault detection. For
these checkers the formal qualification step described in the proposed flow of
methodology in this dissertation was not possible at the moment of writing the paper
and thus, traditional fault injection experiments were carried out by a sequential fault
simulation tool included to the methodology flow.

However, in experiments 1 and 2 and also in the experiments for the control part of
Bonfire NoC router Architecture 2 (included in Appendix A and also published in
publication D), the checkers’ evaluation process is carried out using fault simulation.

For evaluating the FIFO control part checkers in Experiment 3, a set of input stimuli
for the FIFO was devised, aiming to cover all the possible situations for the control logic.

Figure 3.10 CEI and FC results without considering independent clusters

46

Checkers for FIFO control part

1 Reset checker
Whenever reset goes high, at the next clock cycle empty
flag should be high (reading and writing pointer are reset
to the same value).

2 Flags checkers
Empty and full flags should never be high at the same
time. Whenever the defining condition occurs, the
corresponding flag should go high at the next clock cycle.

3 One-hot pointers checkers
Reading and writing pointers have to respect one-hot
encoding.

4
Registers enable DMR
checker

Duplication and comparison for the logic enabling the
writing operation in data registers.

5
Reading pointer update
checker 1

Whenever read enable is high and the FIFO is not empty,
at the next clock cycle the reading pointer should be
updated.

6
Reading pointer update
checker 2

If either read enable is low or the FIFO is empty, at the
next clock cycle the reading pointer should preserve its
value.

7
Writing pointer update
checker 1

Whenever write enable is high and the fifo is not full, at
the next clock cycle the writing pointer should be
updated.

8
Writing pointer update
checker 2

If either write enable is low or the fifo is full, at the next
clock cycle the writing pointer should preserve its value.

Control Part Infrastructure Checkers

1
FIFOs read enable DMR
checker

Logic producing read enable signals for the FIFOs (5 OR
gates) is duplicated, then real and duplicated outputs are
compared.

2
Output registers enable
DMR checker

Logic producing enable signals for the output registers (5
OR gates) is duplicated, then real and duplicated outputs
are compared.

3 Flit type LBDR error Flit type field of a flit has to respect one-hot encoding.

The following conditions were considered in the pattern generation procedure:

 Reset condition;  
 Filling the FIFO, followed by reading from it until it becomes empty;  
 Smooth traffic condition, i.e. concurrent writing and reading operations, but

avoiding the FIFO to get full;  
 Idle condition, i.e. write and read enable signals low, during reading and writing

operations, in different conditions of fulfilment of the FIFO.  

Using fault injection experiments with the checkers listed in Table 3.4 [82], 100% FC and
CEI is obtained for the control part of the FIFO, considering the patterns derived from the
previously listed conditions. Similar to previous experiments, no false positives were
encountered in this experiment.

However, as mentioned earlier, achieving 100% FC and CEI became possible with the addition
of new checkers obtained from the fault injection experiments for the

Table 3.4 Proposed Checkers for control part of FIFO

Table 3.5 Proposed Checkers for FIFO’s Control Part Infrastructure

47

control part of FIFO. This was performed in order to identify uncovered faults in the
interconnections of control part modules (as stated in [82]). The 3 additional checkers
proposed for the infrastructure of FIFO’s control part are listed and grouped in Table 3.5 [82].
Full details regarding the third experiment and also the impact of the router’s data-width on
the checker’s area overhead are reported in publication B (mentioned in the list of
publications in Chapter 1).

3.5 Applicability of the Proposed Methodology to Control Part of Any NoC
Router Architecture

One of the targets of the first contribution of this thesis is to keep the proposed methodology
as generic as possible. Of course, if the router architecture under check changes, depending
on the structure of the control part modules and their RTL code and the specification, the
checkers devised for that router would change. However, the principles and the basis of the
methodology would still remain the same, which includes identifying the control part
modules, extracting the pseudo-combinational version of the module under check and
providing the appropriate environment as inputs and devising the two sets of structural and
functional checkers, and finally evaluating the checkers in terms of CEI and FC and minimize
in terms of area, in an automated manner.

The complexity of the design can indeed affect the process of minimization when
performing the greedy heuristic. As some further examples of providing proof of applicability
of the proposed methodology to control part of routers, two other architectures are studied.
To this end, the methodology is applied to the control part of Bonfire handshaking and credit-
based router architectures, explained earlier in Chapter 2. However, for the sake of repetition,
the set of checkers for Architectures 2 and 3 are listed in Appendices A and B, devised using
the same methodology proposed in this dissertation.

3.6 Chapter Summary

In this chapter, the first contribution of this dissertation was proposed and explained in detail,
which was a methodology for devising concurrent online checkers for the control part of a
NoC router (regardless of its architecture). The proposed methodology has been applied to
the control part of three different NoC routers. The proposed methodology is able to reach
100% coverage for online detection of faults caused by SEUs and single stuck-at faults in the
control part of the NoC router for all three considered examples.

Moreover, the two sets of checkers devised for the circuit, i.e. functional and structural
checkers, guarantee single cycle fault detection latency, along with formal proof of True
Misses. In addition, the automated minimization part of the proposed methodology uses
greedy heuristics, providing the opportunity to reach a trade-off between area overhead of
the checkers and the target fault coverage with the minimized set of checkers. The
methodology proposed in this chapter has led to publications A and B [3], [82]. Also, the
same methodology was applied to the control part of Bonfire handshaking NoC router, which
led to publication D [83].

As a conclusion, the final area overhead of the minimized set of checkers conforms to the
statement mentioned in [4]: “In practice, a method of concurrent checking is of interest if the
necessary area is considerably smaller than the 220–250% of the area of the functional
circuit needed for duplication and comparison, and if the probability of detecting errors
due to single stuck-at faults is about 90%+x.”

49

4 FAULT LOCALIZATION AND ABSTRACTION IN NETWORK-
ON-CHIPS

4.1 Introduction

In addition to the online detection of faults in control part of NoCs, the localization of
faults and also abstracting the fault information is of high value and must be performed
with lowest possible latency. Especially, in case of NoC routers, such abstraction can be
utilized in order to model faulty components of the routers or model fault in turns, which
can be further used for re-configuration of the system. The system fault manager is in
charge of this re-configuration, which has a holistic view of the healthy/faulty turns in
the network.

This chapter covers the second contribution of this dissertation, which makes use of
the information provided by the concurrent online checkers in the control part of a NoC
router for fault localization and abstraction. The literature review regarding fault
localization approaches in the control part of NoCs has already been covered in
Chapter 2. In this chapter, first, it is explained how the information acquired from online
checkers is interpreted and abstracted to meaningful data for higher levels in the system,
such as the application layer. To this end, the checker outputs (acquired using the
proposed methodology in Chapter 3) are fed to a fault localization module (developed
by the author of this dissertation) in the Bonfire router Architecture 3, making it possible
to find the location of faults in the control part of the router at different granularity
levels, i.e. router-level, component-level and input/output port level (which is used for
modelling turn faults). Especially, the third level of granularity will be explained in detail,
which is the contribution of this thesis and used by the system fault manager. However,
it is worth noting that the implementation details of the system fault manager is not in the
scope of this dissertation and the focus of this chapter is on the fault localization module
and compression of fault information via abstraction. The contribution of this chapter has
led to publication E [67].

4.2 Fault Localization and Fault Information Abstraction for Control
Part of NoC Routers

Two of the main aspects of fault diagnosis in NoCs are fault detection and fault
localization [7]. In this thesis, the former is performed via the concurrent online checkers,
integrated at each control part module of a NoC router, whereas the latter is performed
via a fully combinational logic integrated in the router to compress the fault information
acquired from checkers and model turn faults in routers (introduced in this chapter).

The accuracy and granularity level of fault localization in NoC routers is important.
Depending on the level of abstraction required by the system fault manager, the fault
localization granularity can be adapted. It should be noted that this dissertation covers
localization of faults and providing compressed information from the checker outputs,
which would be transmitted to the system fault manager. However, the implementation
details of the fault manager and how this information is transmitted, is out of the scope
of this work.

As an example, all of the proposed mechanisms in this chapter are implemented in
the Bonfire NoC router Architecture 3 (introduced in Chapter 2). The fault localization

50

and abstraction module has been developed and integrated within the router design by
the author of this thesis.

The highest level of abstraction supported is router-level fault localization (Figure
4.1). This is achieved by ORing all the checker outputs for the control part components
of the router. In such a case, regardless of the fault location in the control part of the
router, the signal resulting from ORing all the checker outputs, indicates that the router
is faulty. However, this level of coarse granularity suffers from low fault localization
accuracy, since a fault in a single component results in the whole router rendered as
faulty, whereas some intact parts of the router could have been usable.

The next level of fault localization granularity is router control part module-level fault
localization (Figure 4.2). To this end, for each control part module (FIFO control part,
routing computation unit and arbitration unit), the corresponding checker outputs for
each module are ORed together and they form an error signal. This would help
distinguish faults occurring in different modules, for instance, if the control part of FIFO
for the North input port of a router becomes faulty, only the checkers corresponding to
that module which are ORed together, will fire. The advantage of this level of fault
localization granularity is that, for instance, by using resource-sharing based techniques
(such as [84]), the faulty component can be isolated and the router can still function with
remaining intact components, but at the price of gracefully degraded performance.

The third level of abstraction considered for localization of faults in the Bonfire NoC
router Architecture 3 takes into account the control part checker outputs in order to
model turn faults (Figure 4.3), which is the contribution and focus of this chapter. NoC
router Architecture 3 has been chosen due to its higher performance compared to
Architecture 2 , because of using credit-based flow control (which is already explained in
Chapter 2).

Figure 4.1 Router-level fault localization for control part of NoC router by means of

concurrent online checker outputs.

51

A turn fault is specified as a fault present in a path from an input port to an output
port. For instance, in a 2D Mesh-based NoC router, a West to North turn fault (shown as
W2S turn fault) denotes the existence of a fault in either of the following modules:
control part of FIFO of West input port, routing computation unit of West input port, or
the arbitration logic related to West input and North output port. Of course, the fault can
also be in a combination of these locations or in all of them.

In either case, the faulty scenario is interpreted as a West to North (W2N) turn fault.
Such level of abstraction of checkers' fault information facilitates the process of
reconfiguring the routing algorithm by the system fault manager. Especially, if LBDR is
used to implement the routing logic (which is the case in all router architectures
discussed in this dissertation), the set of allowed and disallowed turns shown in form of
the routing bits can be re-configured by the system fault manager, using the information
acquired from the turn faults at each router.

Figure 4.2 Component-level fault localization for control part of NoC router by means of

concurrent online checker outputs.

52

In addition to the 8 turns that denote a 90 degree change of direction in the router
(i.e. N2E, N2W, E2N, E2S, W2N, W2S, S2E and S2W), there are 4 straight paths (i.e. N2S,
S2N, E2W and W2E), and 8 paths/turns related to the local (L) port of the router (4
starting from the local port to the other output ports and 4 starting from the other ports
and leading to local port) (i.e. L2N, L2E, L2W, L2S, N2L, E2L, W2L and S2L), thus making
in total 20 different turns in a router. Therefore, the fault localization module proposed
in this dissertation, generates the values of these 20 turn faults based on the information
acquired from the checkers.

Example: In order to clarify how a turn fault is modelled using the proposed fault
localization module, the logic generating the West to North (W2N) turn fault in is
explained in details. This example corresponds to the control part of Bonfire credit-based
router. Recalling from Table B. 1 in Appendix B, which shows all the concurrent online
checkers devised for the control part Bonfire credit-based router, in order to model the
W2N turn fault, the following checkers from each control module are taken into account
in the fault localization unit (which is fully combinational):

 All checker outputs for the control part of FIFO for the West input port -
(Checkers 1-110 from the table in Appendix B for W FIFO)- are ORed together,
since the FIFO of West input port contributes to all turns deriving from the West
input (including W2N turn).

 The next component that contributes to any turn stemmed from the West input
would be the LBDR (routing computation unit) for the West input. However,
for the case of West LBDR, only the checkers that check part of the logic related
to North output request generation are considered and ORed together. The rest
of the checkers are excluded from the logic for W2N as they do not contribute

Figure 4.3 Combining concurrent online checker outputs and generating the abstracted

Turn Fault (West-to-North (W2N) turn fault shown as an example).

53

to it (Checkers 1-7, 8, 9, 18-20, 21, 25-29, 145-154, 155-161 from the table in
Appendix B for W LBDR are included).

 Finally, as the last control part module, the Allocator (arbitration) unit of the
router is taken into account. The Allocator is composed of an internal logic
which handles the credit counters and the flow control signals, plus 5 Arbiter_in
modules for handling requests from inputs to multiple output directions (in case
of using an adaptive routing algorithm), and 5 Arbiter_out modules which
handle the arbitration for multiple requests for the same output port, giving
grant to only one of the requests (as explained in Chapter 2). Since the focus is
on W2N turn fault, thus, the fault localization unit should only consider the
Arbiter_in for West input checkers and Arbiter_out module for North output
checkers for modelling such turn fault. In addition, all the Allocator internal
logic checkers that contribute to the W2N turn fault are also considered. Finally,
all the considered checker outputs are ORed together (Checkers 5, 6, 51, 52, 61,
62-67 for Allocator internal logic and credit counter handling logic, Checkers 1,
2-5, 24, 25, 34, 35, 44, 45, 54, 55, 62-64, 65 for West Arbiter_in, and Checkers
1, 9-11, 20, 24, 25, 35, 40, 42-45, 46, 51 for North Arbiter_out, from the table in
Appendix B).

 As the last step, all the checkers ORed from the previous steps are ORed
together to create the final West to North (W2N) turn fault signal, which is one
of the 20 turn faults information generated by the fault localization module.
Similar deductions can be inferred to form the logic for localizing the remaining
19 turn faults in the router.

It is worth noting that in the implementation of the fault localization module in the
Bonfire credit-based router, the third level of abstraction (modelling turn faults) has been
chosen, however, the architecture supports all three above-mentioned levels of
granularity for fault localization. The growing number of checkers for a complex design
would make the fault detection information generated by the checkers quite large (in
terms of the number of bits). This can, in turn, make it infeasible to transmit all fault
information from the checkers to the system fault manager, which keeps a holistic view
of the health status of the components of the network. This is one of the motivations
behind introduction of the fault localization module in this dissertation, which would
help reduce the total of more than 1000 control part checker outputs (more than 1000
bits) for Bonfire credit-based router to a final set of only 20 bits (representing 20 the turn
faults).

 Baseline Router
Fault Localization

Module
Fault-Tolerant

Router

Area (m2) 92800 5314 193568

Area Overhead (%) --- --- 107.3 %

Critical Path Delay (ns) 7.69 2.42 7.82

Critical Path Delay
Overhead (%)

--- --- 1.69 %

Table 4.1 Area Overhead Analysis of the proposed Fault Localization Unit for modelling

turn faults

54

The 20-bit turn faults obtained by the fault localization module could also be further
classified based on their frequency of occurrence, as transient, intermittent and
permanent, for instance using the approach proposed in [85]. This would also, in turn,
help the system fault manager make decisions about which resources to use or not use
when monitoring the health status of the system. In addition, how the classified fault
information is propagated to the fault manager is of utmost importance, for instance,
the main NoC can be used for this purpose (e.g. [67]), or a dual network could be used
(e.g. [86]). The latter imposes more area overhead though. The author would like to
emphasize that the details of both topics of fault classification and propagation of
classified fault information to the system fault manager are out of the scope of this
dissertation.

4.3 Hardware Overhead Analysis of Fault Localization Module for
Modelling Turn Faults

As mentioned earlier, the proposed fault localization module with the capability of
modelling turn faults is integrated in the Bonfire credit-based flow control NoC router.
Of course, beforehand, using the proposed methodology in this dissertation, the full set
of structural and functional checkers were devised for the control part of the router
(comprised of FIFO control part, LBDR and Allocator). The checker outputs are fed to the
fault localization module, integrated in the router. It is worth noting that similar to [24],
only one fault localization module exists per router and takes into account the checker
outputs from the current router and does not depend on the neighbour(s) (unlike [28]).

Table 4.1 has summarized the area overhead of the fault localization module with
respect to the whole router. The area results are synthesized using AMS 0.18 μm CMOS
technology library [87] and by means of Synopsys Design Compiler [88]. As it can be seen,
the fault-tolerant router (Bonfire NoC router Architecture 3) with all the checkers, fault
localization module and all fault-tolerance mechanism integrated, incurs 107.3% area
overhead compared to the baseline non-fault-tolerant router. However, the fault-
localization module only takes 2.76% of the area of the fault-tolerant router. This is less
than the amount reported for the fault localization unit proposed for NoCAlert [24] (4.4%
when considering the input/output port granularity level for localization with assertion
vector compaction), while the proposed approach in this thesis not only covers faults in
the control part modules related to input and output ports with single cycle latency, but
it also performs the compression of the fault information and models the turn faults, that
has not been addressed in the previous works. As mentioned earlier, such information
can further be used by the system fault manager, in charge of computing a new routing
algorithm to handle the faulty topology.

It is also worth noting that according to Table 4.1, the critical path delay of the fault
localization module is 2.42 ns (with a constraint of clock period set as 3 ns in the Synthesis
tool). The fault-tolerant router with all the fault detection and localization mechanisms
incurs a critical path delay of about 1.69% compared to the baseline router (without any
checkers and fault-tolerance mechanism).

55

4.4 Chapter Summary

This chapter covered the second contribution of this dissertation, which is proposing
a fault localization module that takes into account the checker outputs and provides
abstract and compressed fault information to be used by higher levels of abstraction (e.g.
the application layer). The proposed mechanism has also been integrated into the
Bonfire credit-based NoC router. Using the proposed fully combinational fault
localization module, it was possible to compress more than 1000 checker outputs per
router to a final meaningful set of only 20 bits, representing different turn faults in the
router. The modelling of turn faults facilitates the process of routing re-configuration
when a system fault manager deals with the faulty topology, taking into account the
fault/health status of the routers. Synthesis results showed that the fault localization
module only takes 2.76% of the fault-tolerant router with all the fault detection and
localization mechanism integrated, which is still a lower amount compared to the state-
of-the-art. The fault localization and abstraction approach proposed in this chapter as
the second contribution of this dissertation has led to publication E [67].

57

5 LOGIC-BASED MECHANISM FOR IMPLEMENTATION OF
FAULT-TOLERANT ROUTING IN 3D NETWORK-ON-CHIPS

5.1 Introduction

In an on-chip network, processing cores communicate with each other on one layer and
they might also need access to their memory blocks at the same time, therefore one
approach can be placing the memory blocks on an adjacent layer in a 3D NoC
architecture. Different research works have focused on the topic of 3D integration of
NoCs by using stacked layers [89]. As the number of vertical links is reduced in a 3D NoC
- thus, transforming them into vertically partially connected 3D NoCs [51], [59] - the
utilization of the remaining vertical links increases, therefore creating a communication
bottleneck. These missing vertical links can be either the result of faults, such as wear-
out, or they can be related to saving area due to the on-chip area constraints. Therefore,
in order to run an application on such NoCs, a mechanism for implementing routing
algorithms which would be both fault-tolerant and adaptive, would help mitigate the
issue by uniformly distributing packets on the communication links and bypassing the
faulty links, while being re-configurable at the same time. This has been the focus of the
third contribution of this dissertation, explained in this chapter.

This chapter proposes a mechanism for implementing fault-tolerant routing
algorithms in 3D Mesh-based Network-on-Chips with partially connected vertical links.
The proposed mechanism removes the need for routing tables at routers, thus, making
it a scalable solution for large network sizes. In addition, it does not rely on the location
and number of faulty vertical links. Moreover, it does not augment the packets with any
additional information overhead when transmitting them across the layers of the 3D
NoC.

The literature review regarding the previously proposed fault-tolerant routing
algorithms and mechanisms for 3D NoCs and also the background covering the pre-
requisites for the baseline mechanism which the proposal of this chapter is based on, are
all provided in Chapter 2. Therefore, the chapter starts with the description of the
mechanism, named Logic-Based Distributed Routing for 3D NoCs (LBDR3D), which is an
extension to LBDR, and follows with an example scenario to show how the mechanism
handles routing in a 3D NoC with faulty vertical links. Afterwards, a summary of the
experimental results is provided, emphasizing the scalability of the proposed approach.
Finally, the chapter is concluded and a summary is provided, remarking the theoretical
novelties. The contribution of this chapter led to publication C [90], included in the list
of publications in Chapter 1.

5.2 LBDR3D Mechanism

One approach to address implementation of routing algorithms in Network-on-Chips
(NoCs) is by means of routing tables. They make it possible to implement any routing
algorithm for any type of topology [65]. However, they tend to grow with the increasing
size of the network (number of nodes), thus, facing the challenge of scalability. On the
contrary, implementing routing algorithms using a logical circuit distributed at each
router in the network, can overcome this scalability issue. To this end, in [65], a logic-
based approach named as LBDR was proposed which made it possible to implement any
dead-lock free routing algorithm for NoCs with 2D Mesh topology and topologies derived

58

from the 2D Mesh. The mechanism basically describes the topology and routing
algorithm using two fixed sets of configuration bits, called connectivity and routing bits.
This brings the advantage of keeping the mechanism scalable, as it does not depend on
the size of the network. Moreover, it provides the possibility of re-configuration - for
instance, to address adaptation of the network to a situation with faulty links - by only
modifying a few set of bits at each router.

LBDR3D is an extension to the previously introduced LBDR mechanism. The
mechanism is inspired by the idea that for 3D NoCs with faulty vertical links, whenever a
cross-layer communication is going needed, data should be transmitted one step closer
to nodes with vertical links to eventually reach the corresponding destination layer and
destination node. In contrast to previous approaches such as Elevator-first [51], LBDR3D
does not need each router to store the location address of the nodes with vertical links,
making it a more scalable solution. Instead, it utilizes a new set of bits, called the vertical
bits (explained later in this chapter), which only indicate the existence of a node with
vertical link. Moreover, in LBDR3D, the packet information is not augmented with any
additional overhead, when transmitting data across the layers of the 3D NoC. More
importantly, unlike approaches such as [59]–[61], [91], LBDR3D does not depend on the
number and location of the faulty vertical links, and does not depend on the existence of
any pillars in the network. With regards to faults on the horizontal links in each layer,
LBDR3D supports the same number of faults as the baseline LBDR does (which is 2D Mesh
topology in each layer and topologies derived from the 2D Mesh, as stated in [65]).

5.2.1 The Foundations for LBDR3D logic

The terminology “the Foundations” for the LBDR mechanism has been introduced in
[92], which includes the configuration bits based on which LBDR would be able to
implement the routing algorithm. The configuration bits include: routing bits and
connectivity bits for the baseline LBDR mechanism. In the proposed LBDR3D mechanism,
a new set of vertical bits is also added, which will be explained shortly.

As stated earlier, LBDR3D is an extension to LBDR [65]. In order to add support for 3D
NoCs, the connectivity bits (Cx) of the logic are extended to cover Up and Down directions
in the 3D domain, in addition to the existing directions for 4 cardinal 2D directions (North,
East, West and South), therefore, leading to six connectivity bits per router, as follows:

Cx : Cn , Ce , Cw , Cs , Cu , Cd

LBDR3D uses the same number of routing bits (Rxy) as LBDR for implementing the
routing algorithm in each layer, as follows:

Rxy : Rne , Rnw , Ren , Res , Rwn , Rws , Rse , Rsw

One of the new additions to the mechanism is a new set consisting of 8 bits per router,
named as vertical bits, based on which the logic can determine whether there is at least
one node with up and/or down vertical link(s) in the corresponding direction or not (4
bits for up and 4 bits for down links). This reduces the area overhead compared to
approaches such as Elevator-First [51], because the location address of the nodes with
vertical links does not need to be stored at every router and only a fixed set of bits
indicates the existence of at least one such node in a specific direction or quadrant with
respect to each router. The vertical bits for LBDR3D are defined as follows:

Nu , Eu , Wu , Su , Nd , Ed , Wd , Sd

59

The bits ending with u indicate that there is at least one vertical node with up link in
the corresponding direction. The same applies to the bits ending with d, but for down
links. In order to cover the situations in which the vertical node is located on a quadrant
with respect to the current node, both the corresponding bits are set. For instance, if a
router has a node on the North-East quadrant with the up vertical link, both Nu and Eu
bits at the current router are set.

One important issue is the approach taken to compute the values of the vertical bits
at each router, which is addressed in the sub-section 5.2.3 of this chapter. This is
performed via the proposed offline algorithm that calculates the vertical bits at each
router at the same time when connectivity and routing bits are initialized. The re-
configuration process of these bits is performed using the OSR-Lite framework [8] in a
transparent way, without imposing significant run-time latency and affecting normal
operation of the network. Details regarding the re-configuration process are however,
out of the scope of this dissertation.

5.2.2 LBDR3D Logic Description

The logic of LBDR3D is proposed based on the principle that packets should be steered
towards a node with vertical link when having cross-layer traffic, making the packet
getting closer to its destination eventually, but it should not wander between different
nodes with vertical links in one layer, since in that case, it can lead to live-lock and affect
performance. Also, the underlying routing algorithm in each layer of the 3D NoC must be
deadlock-free for the mechanism to guarantee deadlock freeness. The complete logic of

Figure 5.1 Proposed logic of LBDR3D mechanism

60

LBDR3D mechanism is shown in Figure 5.1 [90] (publication C).

In the first phase, the direction signals are computed by comparing the current
address of the packet (stored in the current router) and the destination address of the
packet (extracted from the header flit of the packet), i.e. signals N’, E’, W’, S’, U’ and D’
are computed. Also, in this phase, first the quadrants or directions that the packet cannot
traverse are filtered out temporarily for the packet.

In order to prevent a packet from fluctuating between two vertical nodes (which
guarantees live-lock freeness), four additional signals have been introduced and utilized
which are fed from the 2D input ports, as follows:

ipX : ipN, ipE, ipW, ipS

7For instance, if a packet comes from the North input port, ipN signal is set to one. As
the packet should not go back to the North direction again (avoiding U-turns), it must not
be possible for the packet to be steered towards North (N) direction in search of a vertical
link.

Next, the directions that the packet may take, are computed, that means the packet
is transmitted on the plane using any kind of deadlock-free turn model routing algorithm
that can already be implemented using LBDR on a 2D NoC. In order to explain the logic
of LBDR3D, the focus is on one output port, for instance the North (N) output port logic.

For the North port to be selected for forwarding the packet, one of the following
conditions must hold: (1) The packet’s destination is located on the same layer as the
current node and it is located towards the North direction (the term N’. U’. D’ in Figure
5.1), or (2) The current node is not a vertical node, but there exists at least one up/down
vertical node on the same layer as the current node towards the North direction (i.e. on
North direction or on North-East or North-West quadrant) (the term U’. (Nu’ + NEu’ +
NWu’) + D’. (Nd’ + NEd’ +NWd’) in Figure 5.1 [90]).

In the second phase of the logic, for instance, in case of the North output logic, if one
of the above-mentioned conditions hold, the North output port can be selected if either
(1) the destination is located on the same column as the current node in the North
direction or (2) it is located on the North-East (NE) or (3) North-West (NW) quadrant and
the turn at the next router along North direction allows the packet to take the North to
East (Rne = 1) or North to West turn (Rnw = 1), respectively. Finally, for the North port (N)
to be considered as the output port for transmitting the packet, the corresponding
connectivity bit of North port (Cn) should also be set to one. Therefore, in the end, the
packet will be forwarded to the North output port (if North is also chosen by the
arbitration unit) and it will either reach its final destination (if destination is on the same
layer as current node) or it will reach the nearest node with up/down vertical link,
depending on whether it needs to go upwards or downwards (when destination is not
on the same layer as current node).

Similar logic can be deduced for the E, W and S output ports. The output port signals
that have slightly different logics are U (Up) and D (Down) and the L (Local) output port
signals. If a packet reaches a vertical node and has to be steered upwards or downwards,
only U or D output port can become active, respectively, and other output port signals
are automatically set to zero (based on the logic’s behaviour and because the offline
algorithm will compute all the corresponding vertical bits as zero for a node with vertical
link, as will be explained later in this chapter). It should be noted that depending on the

61

topology, and based on the nearest vertical node, the vertical bits for a node might
change during the life-time of the system, if re-configuration would be necessary.

Also, regarding the Local output port (L), it is activated only when the packet has
reached its destination (all the direction signals N’, E’, W’, S’, U’

and D’

are zero). In such

case, since the current address of the router is the same as the destination address of
the packet, the flits of the packet are forwarded to the Processing Element (PE)
connected to the router’s Local port.

It is worth noting that in order to avoid the occurrence of deadlock when cross-layer
traffic transmission is performed by LBDR3D, two Virtual Channels (VCs) are used per
router, which separate the traffic going upwards from the one going downwards. The VC
of a packet is chosen at the source node, based on either the destination is on a higher
or lower layer. If the destination is on the same layer as the source, one of the VCs is
chosen randomly. It is worth noting that once a packet is injected into the network, it can
never change its VC, as otherwise, it would introduce possibility of deadlock.

5.2.3 Offline Algorithm for Computation of Vertical Bits

The next contribution of this chapter is the offline algorithm introduced for calculation
of vertical bits (shown in Algorithm 5.1 [90]) based on which LBDR3D performs routing
decisions, including cross-layer transmission of packets in the 3D NoC.

For each router (node), first, it is checked whether it is a vertical node itself (lines 5-6
and 14-15 of Algorithm 5.1). In that case, all the corresponding vertical bits are set to
zero (if the node is an up vertical node, all the 4 up vertical bits are set to zero, and
similarly the same approach is done for down vertical nodes). If the node is not a vertical
node, the node in the same layer with the shortest Manhattan distance to the current
node (explained in Algorithm 5.1) that has a vertical link is searched and based on the
location of that node, the corresponding vertical bits are set in the current node. If two
nodes exist with the same Manhattan distance from the current node, one is chosen
randomly to break the tie. The procedure is once performed for calculation of up vertical
bits (lines 8-13 of Algorithm 5.1 [90]) and the other time for the calculate of down vertical
bits (lines 17-22 of Algorithm 5.1 [90]). The outputs of the algorithm are the final set of
vertical bits for all routers of the network, which would serve as part of “the Foundations”
for LBDR3D and they are fed in a transparent manner via the OSR-Lite [86], [93], [94]
reconfiguration mechanism to the LBDR3D logic at system start-up. The mechanism
guarantees negligible re-configuration latency and deadlock freeness for the system, when
changing from routing algorithm to another.

Moreover, as proven in [90], as long as the routing algorithm in each layer of the 3D
NoC is dead-lock free and also faults do not disconnect the network nodes completely
from each other, LBDR3D guarantees deadlock-freeness, live-lock freeness and
connectivity. Details regarding proof of deadlock and live-lock freeness and connectivity
of LBDR3D are published in publication C [90].

Example: To further clarify the computation of the set of vertical bits for LBDR3D
using the offline algorithm, an example scenario with a 4×4×4 3D Mesh-based NoC with
88% faulty vertical links (as shown in Figure 5.2 [90]) is explained in the following.

62

In the scenario shown in Figure 5.2 [90], if node 53 wants to send a packet to node
37, it has 3 choices for choosing a node on the current layer as an up vertical node (nodes
51, 60 and 63). A vertical node is defined as a node with vertical link. As it can be seen in
Figure 5.2, it cannot be necessarily guaranteed that the total path the packet takes to
reach its destination will be the

5.1:

63

minimal path. Instead of trying to take the minimal possible path from source to
destination, the offline algorithm calculates the values of vertical bits at each router
based on its Manhattan distance to a vertical node (as shown in
Algorithm 5.1). According to Figure 5.2, two nodes with shortest Manhattan distance of
3 with respect to node 53 can be chosen as candidates as up vertical nodes (i.e. nodes 51
and 60). In this case, the tie is broken by randomly choosing one of the possible
candidates, for instance, node 60 is chosen. Therefore, since node 60 is located on the
South-West quadrant of node 53, the values of up vertical bits at node 53 will be set as
follows by the offline algorithm:

Nu = 0 , Eu = 0 , Wu = 1 , Su = 1

Also, since node 53 is located at the bottom-most layer of the 3D NoC of Figure 5.2,
all the down vertical bits for this node are set to zero, as follows:

Nu = 0 , Eu = 0 , Wu = 0 , Su = 0

The configuration bits of LBDR3D are calculated offline and fed to the logic at system
start-up. Thereafter, the algorithm for computation of vertical bits will only be executed
if a new fault occurs in the network and there is a need for re-configuration of the vertical bits.

5.2.4 Example Scenario of Fault-Tolerant Routing Using LBDR3D

The functionality of LBDR3D logic is shown with an example scenario, demonstrated in
Figure 5.3.

The source of the communication is node 35 and the destination is
node 2. In such scenario, the destination node is on a different layer than the source
node, therefore, the part of LBDR3D logic in charge of transmitting the packet to the
node with vertical links and the values of pre-computed vertical bits also plays an
important role in routing. The routing algorithm in each layer is considered to be the
North-Last deadlock-free turn model [95] (as shown in Figure 5.3), which provides partial
adaptivity. It is assumed that the offline algorithm has already been applied to the faulty

0

63

37

53

51

60

Figure 5.2 A 4×4×4 3D Mesh-based NoC with 88% faulty vertical links

64

topology of Figure 5.3 and the values of the vertical bits are sets at all nodes. Therefore,
at the source node (node 35) the vertical bits would be as follows:

Nu = 0, Eu = 0, Wu = 0, Su = 1

Nd = 0, Ed = 0, Wd = 0, Sd = 0

This would mean that the up vertical node with the shortest possible Manhattan
distance with respect to node 35 is located on the South direction of it. Since node 35 is
a down vertical node itself, all the corresponding vertical bits related to the down
direction are set to zero at this node. However, since the flit must be sent upwards to
reach its destination, the down vertical bits do not play a role in this routing procedure.
According to the logic of LBDR3D, at this step, the flit is forwarded to node 39 on the
South direction of node 35. Node 39 is an up vertical node itself, therefore, all the
corresponding up vertical bits are set to zero at that node and LBDR3D gives the priority
to up direction. Thus, the flit is forwarded to node 23 in the upper layer. At node 23, the
values of the up vertical bits are set as follows:

Nu = 0, Eu = 0, Wu = 1, Su = 1

This indicates that there exists at least one node with up vertical link on the South-
West quadrant of node 23. According to the North-Last turn model, both West and South
output ports can be taken. It is assumed that the routing logic gives the priority to the
West output. Thus, the flit is forwarded to node 22 (as shown in Figure 5.3 with the path
shown by red arrows).

At node 22, the value of Su vertical bit is set to 1 and the other vertical bits for up
direction are set to zero. Even though there exists both nodes 28 on South-West
quadrant and node 26 on South direction of node 22 for sending the flit upwards, the
priority is given to node 26 by the offline algorithm. The reason is that the Manhattan
Distance of node 26 with respect to node 22 is shorter. Thus, the flit is forwarded to the
South direction, reaching node 26. Node 26 is an up vertical node, which would forward
the flit directly upwards to node 10. Currently, the flit is in its destination layer.

0

63

37

53

51

60

35

2322

26

10

6

2

39

Figure 5.3 An example scenario of packet routing using a fault-tolerant routing algorithm

implemented with LBDR3D

65

It should also be noted that since in this scenario the packet is going only upwards to
reach its destination, it is assigned to one of the VCs and therefore, it can never change
its VC. The existence of two VCs per each input port would guarantee that cross-layer
traffic transmission would not lead to deadlock during routing packets by LBDR.

The rest of the routing path would be the same as the way LBDR mechanism would
make decisions for routing in 2D NoCs. Since the destination node (node 2) is on the same
column as node 10, the flit is forwarded to North output port to node 6 and finally to
node 2 and it reaches its destination (as shown in Figure 5.3 with the red arrows). As this
example shows, LBDR3D is able to route the flit to its destination despite the faulty
topology with 88% faulty vertical links. As long as faults do not disconnect the network,
LBDR3D guarantees the connectivity between all source-destination pairs (more detailed
information is provided in publication C [90]).

5.3 Summary of Experimental Results

This sub-section is dedicated to the experimental results, first comparing the proposed
LBDR3D mechanism with state-of-the-art (the approaches [51], [59], [61] from the ones
reviewed in Chapter 2) in terms of performance (average packet latency). Afterwards,
the area consumption of LBDR3D are compared with the other fault-tolerant
mechanisms for 3D NoCs, showing the scalability of the proposed mechanism.

5.3.1 Performance Analysis

In [90], LBDR3D is compared with other state-of-the-art approaches proposed for fault-
tolerant routing in 3D NoCs with partially faulty vertical links. However, as LBDR3D does
not rely on the existence of a pillar in the network and does not rely on the number and

Figure 5.4 Different considered scenarios: with (a) 20%, (b) 40%, (c) 84% faulty vertical
links, and (d) 88% faulty vertical links with some faulty horizontal links

66

location of faulty vertical links, experimental results are only considered for LBDR3D and
Elevator-First [51]. The other two mechanisms, named NETZ [61] and ETW [59] depend
on existence of a pillar in the network and for instance, they do not support some of the
topologies shown in Figure 5.4, thus, they are only considered in the area overhead
comparison experiments.

The scenarios in which adaptive routing algorithms have been implemented using
LBDR3D mechanism and compared against Elevator-First, are shown in Figure 5.4 [90],
covering from scenarios with 20% (Figure 5.4a), 40% (Figure 5.4b), and 84% (Figure 5.4c)
faulty vertical links and a scenario with 88% (Figure 5.4d) faulty vertical links and some
faulty horizontal links. It should be noted that in Figure 5.4a and Figure 5.4b, the red
vertical links are the faulty and the vertical links that are not shown are the healthy ones.
Whereas, in figure Figure 5.4c and Figure 5.4d, only the healthy vertical links are shown
for the sake of figure’s simplicity and the faulty ones are not shown.

As reported in [90], the experiments have been performed by an extension of the
open-source NoC simulator, Noxim [96], [97] with 3D NoC support. The parameters used
in the experiments and the traffic scenarios considered (synthetic traffic patterns) for
simulations are summarized in Table 5.1 [90].

The performance (average packet latency) results for different simulation scenarios
are detailed in [90]. One of the observations that has been made in different fault
scenarios (ranging from 20% to 88% faulty vertical links), LBDR3D performs similar or
slightly better than Elevator-First when programmed to XY routing and also turn-model
based adaptive routing. Even thought, performance results might be similar, the
advantages of LBDR3D over Elevator-First are two-fold: (1) no extra information is added
to the packet when transmitting data from one layer to another through a node with
vertical link, and (2) There is no need to store the location address of the node(s) with
vertical link (up and/or down) at any node, and instead only the fixed set of 8 vertical bits
are set (calculated using the offline algorithm proposed in this dissertation) per each
router, making LBDR3D scalable, especially in large network sizes (beyond 25×25×25).
Moreover, in [51], the routing algorithm in each layer of the 3D NoCs has only been
considered as the deterministic XY (X-First as stated in [51]) routing. Whereas, in this
dissertation and in [90], an adaptive routing algorithm is used (such as the well-known
West-First and North-Last [95] turn models).

In addition, a scenario with 88% faulty vertical links and some horizontal faulty links
is considered (as shown in Figure 5.4d), which is still supported by LBDR3D when using
West-First turn-model routing in each layer of the 3D NoC.

Routing Algorithm
LBDR3D XY, Elevator-First X-First (XY), LBDR3D West-First, LBDR3D
North-Last

Network Topology
4×4×4 3D Mesh with 20%,40%, 84% faulty vertical links and 88% faulty
vertical links with some faulty horizontal links

Number of VCs 2 (per each router input port)

VC depth 4 flits

Network Frequency 1 GHz

Simulation Time 10000 cycles (1 cycle = 1ns)

Warm-up time
Warm-up time
1000 cycles (1 cycle = 1ns)

Traffic patterns Random Uniform, Bit-Reversal and Transpose

Table 5.1 Considered Scenarios and simulation parameters

67

5.3.2 Area Consumption and scalability Analysis

In the experiments, the area consumption of LBDR3D has been compared with other
fault-tolerant routing mechanisms for partially vertically connected 3D NoCs, i.e.
Elevator- First, NETZ and ETW. To this end, the RTL logic of LBDR3D for a 4×4×4 and
10×10×10 3D Mesh, along with the logic of ZXY routing (which is a non-fault-tolerant
mechanism), Elevator- First, NETZ and ETW are described in Verilog, and synthesized
using Synopsys Design Compiler3 [88]. The results showed 34.6% increase in area for a
4×4×4 3D Mesh and 11.7% increment in area for a 10×10×10 3D Mesh, when comparing
LBDR3D logic to Elevator-First using XY routing. The decrease in the area overhead can
be a proof of the scalability of LBDR3D as it does not store the location of nodes with
vertical links in each layer. In addition, when comparing LBDR3D programmed to XY
routing (LBDR3D XY) with NETZ and ETW for the case of a 4 × 4 × 4 3D Mesh network, the
area overhead was only around 5.02% and 5.1%, respectively. Another explanation for
the area overhead of LBDR3D compared to ZXY, LBDR, Elevator-First, NETZ and ETW
would be the additional set of vertical bits and the new logic for supporting 3D NoC
topologies, but at the same time it brings the advantage of providing flexibility and not
relying on existence of any pillars in the topology.

Figure 5.5 and Figure 5.6 [90] summarize the area consumption results for the
compared mechanisms both for a 4×4×4 and a 10×10×10 3D Mesh-based NoC. In
addition, the area of LBDR3D has been compared with ZXY routing, which is the one of
the simplest non-fault-tolerant routing algorithm for 3D NoCs and also with its 2D

3 Synopsys Design Compiler: http://www.synopsys.com

Figure 5.5 Area consumption (in μm2) for different compared routing mechanisms for

showing scalability of LBDR3D over Elevator-First.

Figure 5.6 Area consumption (in μm2) for different compared routing mechanisms for

comparison of LBDR3D to ZXY, original LBDR, NETZ and ETW.

68

counterpart, the original LBDR mechanism. The area results are obtained using NanGate
Open Cell 45 nm Library4 [98] and synthesis of the RTL of the designs is performed using
Synopsys Design Compiler [88].

5.4 Chapter Summary

This chapter covered the third contribution of this dissertation, focusing on
implementation of fault-tolerant routing in 3D Mesh-based NoCs with partially faulty
vertical links. The proposed mechanism is a logic-based technique that makes it possible
to implement any deadlock-free turn model based routing algorithm in such topologies.
The mechanism is scalable and depends only on a fixed number of configuration bits, i.e.
connectivity, routing and vertical bits. The vertical bits are used to define the existence
of at least one node with a vertical link in a specific direction for each router, thus
removing the need for storing the location address of the node with vertical link at every
router. Moreover, using only two Virtual Channels (VC), the proposed approach
guarantees deadlock freeness for cross-layer communication. It also guarantees live-lock
freeness and connectivity, as long as faults do not disconnect the network.

What also makes LBDR3D different from the previous works is that it does not rely on
the existence of a pillar in the network and does not rely on the location and number of
faulty vertical links. Moreover, it does not augment packets with additional information
when being sent across layers of the 3D NoC. Performance and area overhead results
showed the advantages of the proposed mechanism, reaching similar or better average
packet latency compared to state-of-the-art, and being scalable for large network sizes.
The proposed mechanism in this chapter as the third contribution of this dissertation has
led to publication C [90], included in the list of publications in Chapter 1.

4 NanGate 45nm Open Cell Library: http://www.nangate.com/?page id=2325

69

CONCLUSIONS

The trend in moving from computation-centric to communication-centric systems and
the integration of more processing elements on the same chip, has increased the value
of Network-on-Chips (NoCs) as a scalable interconnection paradigm. However, the
miniaturization of semi-conductor technologies beyond the sub-micron domain
jeopardizes the reliability of on-chip components, including NoC routers. Transient and
permanent faults can cause serious problems such as mis-routing of packets, corruption
of data and eventually deadlock and breakdown of the whole system. This dissertation
focused on (1) online detection of faults in control part of NoCs, while providing a trade-
off between fault coverage and area overhead, (2) localization of faults in NoC routers
and abstraction of fault information, and (3) a generic scalable approach for
implementing fault-tolerant routing algorithms in NoCs.

The first contribution of this dissertation was proposing a methodology for devising
concurrent online checkers for online detection of faults in control part of a circuit. As an
example, the proposed methodology was applied to the control part of a NoC router. The
proposed methodology allows extracting two sets of checkers, i.e. structural and
functional. Moreover, the methodology provides automated evaluation of the checkers
and minimization in terms of area overhead, while meeting the target fault coverage.
The checkers guarantee single cycle fault detection latency for Single Event Upsets (SEUs)
in the control part of NoC routers. Moreover, the proposed methodology is capable of
formally proving the existence or absence of True Misses when evaluating the checkers
under the exhaustive set of valid input stimuli. The additional area for the checkers
imposed to the circuit under check comes with the advantage of providing fault
localization capability, as opposed to approaches such as Duplication With Comparison
(DMR) and TMR.

In general, the number of functional checkers might be less than structural ones, but
they can still cover a larger part of the circuit. However, they cannot always guarantee
reaching 100% coverage for SEUs. On the other hand, structural checkers will always
guarantee reaching 100% coverage of SEUs, but at the price of duplicating every part of
the circuit, as each part of the RTL code is checked for the occurrence of SEUs. The
advantage of structural checkers compared to functional ones would be remarkable
when high fault localization accuracy is of utmost importance, as they can pinpoint in
which part of the logic the fault has occurred, whereas the functional checkers are more
abstract. The minimization part of the proposed methodology provides a final trade-off
between reaching the target coverage while still meeting the area budget provided by
the user. However, in case the highest level of fault localization accuracy is required, it
would be recommended to consider the full set of structural checkers, whereas where
area constraints are stringent and fault localization accuracy is not a major issue, having
the final minimized set of checkers (including a combination of structural and functional
checkers) would also be acceptable, provided by the proposed methodology. Therefore,
at a first glance, no specific final decision can be made whether only structural or
functional checkers are sufficient and depending on the verification engineer’s goals and
available area budget, they can be chosen accordingly.

The second contribution of this dissertation was addressing the problem of big data
acquired by the checker outputs when the design is complex. To this end, a fault
localization and abstraction module was introduced. This unit allows abstracting fault

70

information, which compresses and translates the fault data to meaningful information
(i.e. turn faults) for higher layers of abstraction (such as application layer). As an example
of integrating the fault localization module in the control part of Bonfire router, a final
set of more than 1000 checkers were compressed to a fixed set of 20 bits, denoting 20
turn faults in the router. Such compact information can be further used by the global
fault manager in the system in charge of keeping a holistic view of the health status of
the components, also facilitating the routing algorithm re-configuration process.

The fault localization latency is also as important as fault detection latency. As
opposed to the state-of-the-art which captures 97% of the stuck-at faults during the first
cycle, the proposed checkers and fault localization module in this thesis are able to detect
and localize 100% of the SEUs in maximum one clock cycle of their occurrence. Thus, the
abstracted turn faults (in form of the compressed 20 bits) are also provided in the same
clock cycle as fault localization, which can be further utilized by the system fault manager
to take actions upon re-configuration of the system. As the fault localization module is
fully combinational, it can contribute to the increase of the critical path delay of the
circuit, and one might argue that one solution to this would be to store all the checker
outputs in a set of Flip-Flops. However, this would impose a significant area overhead to
the system, as storing more than 1000 checker outputs in Flip-Flops would translate into
memory elements when synthesized. Therefore, in this dissertation, it has been chosen
to keep the fault localization and abstraction module fully combinational, and not storing
any of the checker outputs in a memory-based element. With regards to the information
provided by the abstraction of checker outputs to a final set of 20 turn faults, one step
that can be taken as future research would be to classify the occurrence of these turn
faults in terms of their frequency (as transient, intermittent or permanent). However,
the approach used to implement the classification logic must be designed with care, as,
for example, using counter-threshold based approaches can introduce additional area
overheads to the system.

The third contribution of this thesis addresses the problem of implementing fault-
tolerant routing algorithms in NoCs. As a solution, a scalable and re-configurable
mechanism (LBDR3D) was proposed. The mechanism allows implementation of any
dead-lock free turn model-based routing algorithm in 3D NoCs with faulty vertical links.
The proposed mechanism removes the need of routing tables at all in the routers. Also,
it guarantees live-lock and deadlock freeness and connectivity both in case of intra- and
inter-layer traffic, while it also does not depend on the location and number of faulty
vertical links. In order to codify the topology, routing algorithm and location of nodes
with vertical links, a fixed set of configuration bits are implemented. This would
guarantee scalability of the mechanism for larger network sizes, and also remove the
need to store any location address of nodes with vertical link at every router, and also
avoids incurring overhead to the transmitted packet information.

The motivation behind LBDR3D was to provide a scalable and flexible solution for
implementing different routing algorithms, however, this might not necessarily mean
that the performance of LBDR3D is always better than all other approaches proposed in
the literature for partially vertically connected 3D NoCs. For instance, performance-wise
(in terms of average packet latency), ETW performs better than LBDR3D (programmed
to turn model-based routing) under most traffic patterns. Despite this, the remarkable
feature of LBDR3D becomes noticeable when the focus is on generality of the
mechanism, i.e. not being dependent on the location of faulty vertical links. For ETW and

71

NETZ, they depend on existence of vertical links in some locations in the network or
require the existence of a pillar, respectively. However, in reality, faults can occur on any
of the links in the network. Both Elevator-First and LBDR3D take this into account and
regardless of the location of the faulty link, as long as faults do not disconnect the
network layers completely, they both provide a valid path for every source-destination
pair. With regards to area overhead, LBDR3D would be more compact than Elevator-First,
as it does not need to store the location address of nodes with vertical links at each router
in the network. This has been codified instead (in LBDR3D) by just a few sets of bits,
showing the existence of such nodes (with vertical link). The same advantage exists for
LBDR3D when transmitting packets between layers, as there is no need to store the
address of intermediate nodes with vertical link in the header, whereas Elevator-First
imposes such packet information overhead.

As future work, the following works can be pursued:

 With regards to the first and second contributions of this thesis, the re-action to
the faults and how the system could recover based on the detected faults and
their location can be further explored, for instance augmenting the checkers with
correction capability as well. Also, taking into account the classification of faults
based on the frequency of this occurrence would be important. Furthermore,
considering the security aspects in addition to fault detection when devising
checkers for the digital circuit would be of research value.

 Regarding the third contribution of this dissertation, extending the mechanism
to support any possible combination of faults on the horizontal links in each layer
of the 3D NoC (in addition to the faults in the vertical links) would be important.
Also, adding support for irregular topologies derived from 3D Mesh-based NoCs
is a feature that can be further explored and added to the proposed mechanism
for implementing routing algorithms in such topologies.

72

Abbreviations

BICST Built-In Concurrent Self-Test

BIST Built-In Self-Test

CEI Checkers’ Efficiency Index

CMP Chip Multi-Processor

CTS Clear To Send

DCTS Detect Clear To Send

DQP Dynamic Quadrant Partitioning

DRTS Detect Request To Send

DWC Duplication With Comparison

EM Electro-Migration

ETW East-Then-West

FC Fault Coverage

FIFO First In First Out

FIFO First-In-First-Out

FPR False Positive Ratio

FSM Finite State Machine

HBH Hop-By-Hop

IIR Inherent Information Redundancy

LBDR Logic-Based Distributed Routing

NETZ North-East To Z

NI Network Interface

NoC Network-on-Chip

PE Processing Element

ROWR Reduced Observation Width Replication

RR Round-Robin

RTL Register Transfer Level

RTS Request To Send

SEU Single Event Upset

SMC Secure Model Checker

SoC System-on-Chip

SR Segment-based Routing

SSBDD Structurally Synthesized Binary Decision Diagram

73

TMR Triple Modular Redundancy

TSV Through-Silicon Via

VC Virtual Channel

VCT Virtual Cut-Through

74

List of Figures

Figure 2.1 A Round-Robin (RR) arbiter for a 5 port of a 2D NoC router. 25
Figure 2.2 High-level overview of NoC router Architecture 1 .. 26
Figure 2.3 Logic-based Distributed Routing (LBDR) logic for the East input port 26
Figure 2.4 High-level overview of Bonfire NoC router with credit-based flow control .. 27
Figure 2.5 High-level overview of Bonfire NoC router with credit-based flow control .. 28
Figure 2.6 Logic of LBDR mechanism (first phase computes the location of destination,

and the second phase computes the candidate output port(s). 29
Figure 3.1 The concept of concurrent online checking of faults via checkers 31
Figure 3.2 Checkers Evaluation and Minimization Flow ... 33
Figure 3.3 a) A sequential circuit and b) its equivalent pseudo-combinational circuit ... 34
Figure 3.4 The pseudo-combinational circuit for the scenario with LBDR of East port for

NoC Router Architecture 1 .. 38
Figure 3.5 The pseudo-combinational circuit for the full scenario of connecting LBDR of

East port to Arbiter of South Output port ... 39
Figure 3.6 Weights of devised checkers (number of True Detections) for EBLDR 41
Figure 3.7 ELBDR scenario FC, CEI and area overhead results .. 41
Figure 3.8 Weights of checkers proposed for the EBLDR and SArbiter scenario 43
Figure 3.9 SArbiter scenario FC, CEI and area overhead results 44
Figure 3.10 CEI and FC results without considering independent clusters 45
Figure 4.1 Router-level fault localization for control part of NoC router by means of

concurrent online checker outputs. .. 50
Figure 4.2 Component-level fault localization for control part of NoC router by means of

concurrent online checker outputs. .. 51
Figure 4.3 Combining concurrent online checker outputs and generating the abstracted

Turn Fault (West-to-North (W2N) turn fault shown as an example). 52
Figure 5.1 Proposed logic of LBDR3D mechanism .. 59
Figure 5.2 A 4×4×4 3D Mesh-based NoC with 88% faulty vertical links 63
Figure 5.3 An example scenario of packet routing using a fault-tolerant routing algorithm

implemented with LBDR3D ... 64
Figure 5.4 Different considered scenarios: with (a) 20%, (b) 40%, (c) 84% faulty vertical

links, and (d) 88% faulty vertical links with some faulty horizontal links 65
Figure 5.5 Area consumption (in μm2) for different compared routing mechanisms for

showing scalability of LBDR3D over Elevator-First. 67
Figure 5.6 Area consumption (in μm2) for different compared routing mechanisms for

comparison of LBDR3D to ZXY, original LBDR, NETZ and ETW. 67

75

List of Tables

Table 3.1 Proposed Checkers for LBDR of East Input Port (ELBDR) 40
Table 3.2 Proposed Checkers for the Arbiter Logic of South Output Port (SArbiter)...... 42
Table 3.3 Weights for minimized set of checkers ... 44
Table 3.4 Proposed Checkers for control part of FIFO .. 46
Table 3.5 Proposed Checkers for FIFO’s Control Part Infrastructure 46
Table 4.1 Area Overhead Analysis of the proposed Fault Localization Unit for modelling

turn faults .. 53
Table 5.1 Considered Scenarios and simulation parameters .. 66

76

References

[1] W. Dally and B. Towles, Principles and Practices of Interconnection Networks. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[2] L. Benini and G. De Micheli, ‘Networks on Chips: A New SoC Paradigm’, Computer
(Long. Beach. Calif)., vol. 35, no. 1, pp. 70–78, Jan. 2002.

[3] P. Saltarelli, B. Niazmand, R. Hariharan, J. Raik, G. Jervan, and T. Hollstein,
‘Automated minimization of concurrent online checkers for Network-on-Chips’,
in 2015 10th International Symposium on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2015, pp. 1–8.

[4] M. Gössel, New methods of concurrent checking, vol. 42. Dordrecht: Springer
Netherlands, 2008.

[5] L. Benini and D. Bertozzi, ‘Network-on-chip architectures and design methods’,
IEE Proc. - Comput. Digit. Tech., vol. 152, no. 2, p. 261, 2005.

[6] G. De Micheli and L. Benini, ‘Networks on Chips: 15 Years Later’, Computer (Long.
Beach. Calif)., vol. 50, no. 5, pp. 10–11, 2017.

[7] A. Dalirsani, ‘Self-diagnosis in Network-on-Chips’, Jan. 2015.
[8] M. Gössel, V. Ocheretny, E. Sogomonyan, and D. Marienfeld, New methods of

concurrent checking, vol. 42. Dordrecht: Springer Netherlands, 2008.
[9] S. Werner, J. Navaridas, and M. Luján, ‘A Survey on Design Approaches to

Circumvent Permanent Faults in Networks-on-Chip’, ACM Comput. Surv., vol. 48,
no. 4, pp. 1–36, 2016.

[10] E. Dubrova, Fault-Tolerant Design. Springer Publishing Company, Incorporated,
2013.

[11] P. K. Samudrala, J. Ramos, and S. Katkoori, ‘Selective triple Modular redundancy
(STMR) based single-event upset (SEU) tolerant synthesis for FPGAs’, IEEE Trans.
Nucl. Sci., vol. 51, no. 5, pp. 2957–2969, Oct. 2004.

[12] J. M. Berger, ‘A note on error detection codes for asymmetric channels’, Inf.
Control, vol. 4, no. 1, pp. 68–73, 1961.

[13] D. Das and N. A. Touba, ‘Synthesis of Circuits with Low-Cost Concurrent Error
Detection Based on Bose-Lin Codes’, J. Electron. Test., vol. 15, no. 1, pp. 145–155,
1999.

[14] K. Mohanram, E. S. Sogomonyan, M. Gossel, and N. A. Touba, ‘Synthesis of low-
cost parity-based partially self-checking circuits’, in 9th IEEE On-Line Testing
Symposium, 2003. IOLTS 2003., 2003, pp. 35–40.

[15] S. Ghosh, S. Basu, and N. A. Touba, ‘Synthesis of Low Power CED Circuits Based
on Parity Codes’, in 23rd IEEE VLSI Test Symposium (VTS’05), 2005, pp. 315–320.

[16] R. Sharma and K. K. Saluja, ‘An implementation and analysis of a concurrent built-
in self-test technique’, in [1988] The Eighteenth International Symposium on
Fault-Tolerant Computing. Digest of Papers, 1988, pp. 164–169.

[17] P. Drineas and Y. Makris, ‘Concurrent fault detection in random combinational
logic’, in Fourth International Symposium on Quality Electronic Design, 2003.
Proceedings., 2003, pp. 425–430.

[18] K. Nepal, N. Alves, J. Dworak, and R. I. Bahar, ‘Using Implications for Online Error
Detection’, 2008 IEEE International Test Conference. pp. 1–10, 2008.

[19] N. Alves, Y. Shi, J. Dworak, R. I. Bahar, and K. Nepal, ‘Enhancing online error
detection through area-efficient multi-site implications’, 29th VLSI Test
Symposium. pp. 241–246, 2011.

77

[20] M. Boule, J. S. Chenard, and Z. Zilic, ‘Assertion Checkers in Verification, Silicon
Debug and In-Field Diagnosis’, 8th International Symposium on Quality Electronic
Design (ISQED’07). pp. 613–620, 2007.

[21] C. Grecu, A. Ivanov, R. Saleh, E. S. Sogomonyan, and P. P. Pande, ‘On-line Fault
Detection and Location for NoC Interconnects’, in 12th IEEE International On-Line
Testing Symposium (IOLTS’06), 2006, pp. 145–150.

[22] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das, ‘Exploring fault-
tolerant network-on-chip architectures’, in Proceedings of the International
Conference on Dependable Systems and Networks, 2006, vol. 2006, pp. 93–104.

[23] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, ‘NoCAlert: An On-Line
and Real-Time Fault Detection Mechanism for Network-on-Chip Architectures’,
2012 45th Annual IEEE/ACM International Symposium on Microarchitecture. pp.
60–71, 2012.

[24] K. Chrysanthou et al., ‘An Online and Real-Time Fault Detection and Localization
Mechanism for Network-on-Chip Architectures’, ACM Trans. Archit. Code Optim.,
vol. 13, no. 2, pp. 1–26, Jun. 2016.

[25] R. Parikh and V. Bertacco, ‘ForEVeR: A Complementary Formal and Runtime
Verification Approach to Correct NoC Functionality’, ACM Trans. Embed. Comput.
Syst., vol. 13, no. 3s, p. 104:1--104:30, Mar. 2014.

[26] Q. Yu, M. Zhang, and P. Ampadu, ‘Exploiting inherent information redundancy to
manage transient errors in NoC routing arbitration’, Proceedings of the Fifth
ACM/IEEE International Symposium. pp. 105–112, 2011.

[27] Q. Yu, J. Cano, J. Flich, and P. Ampadu, ‘Transient and Permanent Error Control
for High-End Multiprocessor Systems-on-Chip’, 2012 IEEE/ACM Sixth
International Symposium on Networks-on-Chip. pp. 169–176, 2012.

[28] L. Huang, X. Zhang, M. Ebrahimi, and G. Li, ‘Tolerating transient illegal turn faults
in NoCs’, Microprocess. Microsyst., vol. 43, pp. 104–115, Jun. 2016.

[29] R. Abdel-Khalek, R. Parikh, A. DeOrio, and V. Bertacco, ‘Functional correctness
for CMP interconnects’, 2011 IEEE 29th International Conference on Computer
Design (ICCD). pp. 352–359, 2011.

[30] B. Niazmand, R. Hariharan, V. Govind, G. Jervan, T. Hollstein, and J. Raik,
‘Extended checkers for Logic-Based Distributed Routing in Network-on-Chips’,
2014 14th Biennial Baltic Electronic Conference (BEC). pp. 77–80, 2014.

[31] A. Alaghi, N. Karimi, M. Sedghi, and Z. Navabi, ‘Online NoC Switch Fault Detection
and Diagnosis Using a High Level Fault Model’, 22nd IEEE International
Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007). pp. 21–29,
2007.

[32] T. Boraten, D. DiTomaso, and A. K. Kodi, ‘Secure Model Checkers for Network-
on-Chip (NoC) Architectures’, Proc. 26th Ed. Gt. Lakes Symp. VLSI - GLSVLSI ’16,
pp. 45–50, 2016.

[33] G. Dimitrakopoulos and E. Kalligeros, ‘Low-cost fault-tolerant switch allocator for
network-on-chip routers’, in Proceedings of the 2012 Interconnection Network
Architecture on On-Chip, Multi-Chip Workshop - INA-OCMC ’12, 2012, pp. 25–28.

[34] A. Strano, C. Gómez, D. Ludovici, M. Favalli, M. E. Gómez, and D. Bertozzi,
‘Exploiting Network-on-Chip structural redundancy for a cooperative and
scalable built-in self-test architecture’, in 2011 Design, Automation & Test in
Europe, 2011, pp. 1–6.

[35] K. Petersén and J. Öberg, ‘Utilizing NoC Switches as BIST Structures in 2D-Mesh

78

Network-on-Chips’, 2006.
[36] K. Petersen and J. Oberg, ‘Toward a Scalable Test Methodology for 2D-mesh

Network-on-Chips’, in 2007 Design, Automation & Test in Europe Conference &
Exhibition, 2007, pp. 1–6.

[37] M. Hosseinabady, A. Dalirsani, and Z. Navabi, ‘Using the inter- and intra-switch
regularity in NoC switch testing’, in Proceedings -Design, Automation and Test in
Europe, DATE, 2007, pp. 361–366.

[38] A. Pellegrini and V. Bertacco, ‘Cardio: CMP Adaptation for Reliability Through
Dynamic Introspective Operation’, IEEE Trans. Comput. Des. Integr. Circuits Syst.,
vol. 33, no. 2, pp. 265–278, Feb. 2014.

[39] G. Schley, A. Dalirsani, M. Eggenberger, N. Hatami, H.-J. J. Wunderlich, and M.
Radetzki, ‘Multi-Layer Diagnosis for Fault-Tolerant Networks-on-Chip’, IEEE
Trans. Comput., vol. 66, no. 5, pp. 848–861, May 2017.

[40] Y. Jojima and M. Fukushi, ‘A fault-tolerant routing method for 2D-mesh Network-
on-Chips based on components of a router’, in 2016 IEEE 5th Global Conference
on Consumer Electronics, 2016, pp. 1–2.

[41] B. Aghaei, A. Khademzadeh, M. Reshadi, and K. Badie, ‘Link Testing: a Survey of
Current Trends in Network on Chip’, J. Electron. Test., vol. 33, no. 2, pp. 209–225,
Apr. 2017.

[42] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, ‘Methods for fault tolerance in
networks-on-chip’, ACM Comput. Surv., vol. 46, no. 1, pp. 1–38, 2013.

[43] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester, ‘Vicis: A reliable
network for unreliable silicon’, 2009 46th ACM/IEEE Design Automation
Conference. pp. 812–817, 2009.

[44] M. R. Kakoee, V. Bertacco, and L. Benini, ‘A distributed and topology-agnostic
approach for on-line NoC testing’, in Proceedings of the Fifth ACM/IEEE
International Symposium on Networks-on-Chip - NOCS ’11, 2011, p. 113.

[45] M. R. Kakoee, V. Bertacco, and L. Benini, ‘At-Speed Distributed Functional Testing
to Detect Logic and Delay Faults in NoCs’, IEEE Trans. Comput., vol. 63, no. 3, pp.
703–717, Mar. 2014.

[46] E. A. Rambo, C. Seitz, S. Saidi, and R. Ernst, ‘Designing Networks-on-Chip for High
Assurance Real-Time Systems’, 2017 IEEE 22nd Pacific Rim Int. Symp. Dependable
Comput., pp. 185–194, Jan. 2017.

[47] P. Bahrebar, A. Jalalvand, and D. Stroobandt, ‘Dynamically Reconfigurable
Architecture for Fault-Tolerant 2D Networks-on-Chip’, in 2017 26th International
Conference on Computer Communication and Networks (ICCCN), 2017, pp. 1–7.

[48] M. Ebrahimi, M. Daneshtalab, J. Plosila, and H. Tenhunen, ‘Minimal-path fault-
tolerant approach using connection-retaining structure in networks-on-chip’, in
2013 7th IEEE/ACM International Symposium on Networks-on-Chip, NoCS 2013,
2013, pp. 1–8.

[49] A. Ghofrani, R. Parikh, S. Shamshiri, A. DeOrio, K.-T. Cheng, and V. Bertacco,
‘Comprehensive online defect diagnosis in on-chip networks’, in 2012 IEEE 30th
VLSI Test Symposium (VTS), 2012, pp. 44–49.

[50] C. Killian, C. Tanougast, F. Monteiro, and A. Dandache, ‘Smart reliable network-
on-chip’, IEEE Trans. Very Large Scale Integr. Syst., vol. 22, no. 2, pp. 242–255,
Feb. 2014.

[51] F. Dubois, A. Sheibanyrad, F. Petrot, and M. Bahmani, ‘Elevator-First: A Deadlock-
Free Distributed Routing Algorithm for Vertically Partially Connected 3D-NoCs’,

79

IEEE Trans. Comput., vol. 62, no. 3, pp. 609–615, Mar. 2013.
[52] S. Pasricha and Y. Zou, ‘A low overhead fault tolerant routing scheme for 3D

Networks-on-Chip’, in 2011 12th International Symposium on Quality Electronic
Design, 2011, pp. 1–8.

[53] C. Feng, M. Zhang, J. Li, J. Jiang, Z. Lu, and A. Jantsch, ‘A Low-Overhead Fault-
Aware Deflection Routing Algorithm for 3D Network-on-Chip’, in 2011 IEEE
Computer Society Annual Symposium on VLSI, 2011, pp. 19–24.

[54] S. Akbari, A. Shafiee, M. Fathy, and R. Berangi, ‘AFRA: A low cost high
performance reliable routing for 3D mesh NoCs’, in 2012 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2012, pp. 332–337.

[55] M. Ebrahimi, M. Daneshtalab, and J. Plosila, ‘Fault-tolerant routing algorithm for
3D NoC using hamiltonian path strategy’, 2013 Design, Automation & Test in
Europe Conference & Exhibition (DATE). pp. 1601–1604, 2013.

[56] X. Jiang and T. Watanabe, ‘A novel fully adaptive fault-tolerant routing algorithm
for 3D Network-on-Chip’, in 2013 IEEE International Conference of IEEE Region
10 (TENCON 2013), 2013, pp. 1–4.

[57] J. Zhou, H. Li, Y. Fang, T. Wang, Y. Cheng, and X. Li, ‘HARS: A High-Performance
Reliable Routing Scheme for 3D NoCs’, in 2014 IEEE Computer Society Annual
Symposium on VLSI, 2014, pp. 392–397.

[58] P. Mitra, ‘TARAS: A topology agnostic routing algorithm using segmentation
strategy for 3D NoC’, in Proceeding - IEEE International Conference on
Computing, Communication and Automation, ICCCA 2016, 2017, pp. 1606–1611.

[59] R. Salamat, M. Ebrahimi, and N. Bagherzadeh, ‘An Adaptive, Low Restrictive and
Fault Resilient Routing Algorithm for 3D Network-on-Chip’, in 2015 23rd
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, 2015, pp. 392–395.

[60] R. Salamat, M. Khayambashi, M. Ebrahimi, and N. Bagherzadeh, ‘A Resilient
Routing Algorithm with Formal Reliability Analysis for Partially Connected 3D-
NoCs’, IEEE Transactions on Computers, vol. 65, no. 11. pp. 3265–3279, 2016.

[61] H. Ying, K. Hofmann, and T. Hollstein, ‘Dynamic quadrant partitioning adaptive
routing algorithm for irregular reduced vertical link density topology 3-
Dimensional Network-on-Chips’, in 2014 International Conference on High
Performance Computing & Simulation (HPCS), 2014, pp. 516–522.

[62] E. Taheri, M. Isakov, A. Patooghy, and M. A. Kinsy, ‘Advertiser elevator: A fault
tolerant routing algorithm for partially connected 3D Network-on-Chips’, in 2017
IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS),
2017, pp. 136–139.

[63] P. Mitra, ‘LBDR3D: Fault tolerant routing scheme for 3D NoCs’, in 2015 Annual
IEEE India Conference (INDICON), 2015, pp. 1–6.

[64] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, ‘NoCAlert: An On-Line
and Real-Time Fault Detection Mechanism for Network-on-Chip Architectures’,
2012 45th Annu. IEEE/ACM Int. Symp. Microarchitecture, vol. 13, no. 2, pp. 60–
71, 2012.

[65] S. Rodrigo, S. Medardoni, J. Flich, D. Bertozzi, and J. Duato, ‘Efficient
implementation of distributed routing algorithms for NoCs’, IET Comput. Digit.
Tech., vol. 3, no. 5, p. 460, 2009.

[66] ‘Project Bonfire Network-on-Chip’. 2015.
[67] S. P. Azad, B. Niazmand, K. Janson, N. George, A. S. Oyeniran, T. Putkaradze, A.

80

Kaur, J. Raik, G. Jervan, R. Ubar, and T. Hollstein, ‘From online fault detection to
fault management in Network-on-Chips: A ground-up approach’, in 2017 IEEE
20th International Symposium on Design and Diagnostics of Electronic Circuits &
Systems (DDECS), 2017, pp. 48–53.

[68] S. Rodrigo, J. Flich, J. Duatc, and M. Hummel, ‘Efficient unicast and multicast
support for cmps’, in Proceedings of the Annual International Symposium on
Microarchitecture, MICRO, 2008, no. 2008 PROCEEDINGS, pp. 364–375.

[69] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection Networks: An Engineering
Approach. Morgan Kaufmann, 2003.

[70] S. Rodrigo et al., ‘Addressing manufacturing challenges with cost-efficient fault
tolerant routing’, in NOCS 2010 - The 4th ACM/IEEE International Symposium on
Networks-on-Chip, 2010, pp. 25–32.

[71] S. Rodrigo et al., ‘Cost-efficient on-chip routing implementations for CMP and
MPSoC systems’, in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2011, vol. 30, no. 4, pp. 534–547.

[72] R. Bishnoi, V. Laxmi, M. S. Gaur, and J. Flich, ‘d2-LBDR: Distance-driven routing to
handle permanent failures in 2D mesh NoCs’, 2015 Design, Automation & Test in
Europe Conference & Exhibition (DATE). pp. 800–805, 2015.

[73] J. Cano, J. Flich, A. Roca, J. Duato, M. Coppola, and R. Locatelli, ‘Efficient routing
in heterogeneous SoC designs with small implementation overhead’, IEEE Trans.
Comput., vol. 63, no. 3, pp. 557–569, Mar. 2014.

[74] B. Niazmand, R. Hariharan, V. Govind, G. Jervan, T. Hollstein, and J. Raik,
‘Extended checkers for Logic-Based Distributed Routing in Network-on-Chips’, in
Proceedings of the Biennial Baltic Electronics Conference, BEC, 2014, vol. 2015–
Novem.

[75] N. Gupta, M. Kumar, V. Laxmi, M. S. Gaur, and M. Zwolinski, ‘σLBDR: Congestion-
aware logic based distributed routing for 2D NoC’, in 2015 19th International
Symposium on VLSI Design and Test, 2015, pp. 1–6.

[76] N. Gupta, A. Sharma, V. Laxmi, M. S. Gaur, M. Zwolinski, and R. Bishnoi, ‘σnLBDR:
generic congestion handling routing implementation for two-dimensional mesh
network-on-chip’, IET Computers & Digital Techniques, vol. 10, no. 5. pp. 226–
232, 2016.

[77] E. A. Rambo, C. Seitz, S. Saidi, and R. Ernst, ‘Bridging the Gap between Resilient
Networks-on-Chip and Real-Time Systems’, IEEE Trans. Emerg. Top. Comput., vol.
VV, no. SEPTEMBER, 2017.

[78] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu, ‘Self-adaptive
system for addressing permanent errors in on-chip interconnects’, IEEE Trans.
Very Large Scale Integr. Syst., vol. 18, no. 4, pp. 527–540, Apr. 2010.

[79] A. I. Jutman et al., ‘Turbo Tester - Diagnostic Package for Research and Training’,
Tallinn Univ. Technol. Dep. Comput. Eng. Raja 15, Tallinn, Est. Turbo Tester, vol.
3, pp. 69–73.

[80] R. Ubar, S. Devadze, J. Raik, and A. Jutman, ‘Ultra fast parallel fault analysis on
structurally synthesized BDDs’, in Proceedings - 12th IEEE European Test
Symposium, ETS 2007, 2007, pp. 131–136.

[81] C. Draft et al., ‘A Comprehensive Reliability Assessment of Fault-Resilient
Network-on-Chip Using Analytical Model’, IEEE Trans. Very Large Scale Integr.
Syst., vol. PP, no. 99, pp. 1–14, 2017.

[82] P. Saltarelli et al., ‘A framework for combining concurrent checking and on-line

81

embedded test for low-latency fault detection in NoC routers’, in Proceedings -
2015 9th IEEE/ACM International Symposium on Networks-on-Chip, NOCS 2015,
2015.

[83] S. P. S. P. Azad, B. Niazmand, A. K. A. K. Sandhu, J. Raik, G. Jervan, and T. Hollstein,
‘Automated area and coverage optimization of minimal latency checkers’, in
2017 22nd IEEE European Test Symposium (ETS), 2017, pp. 1–2.

[84] T. Putkaradze, S. P. Azad, B. Niazmand, J. Raik, and G. Jervan, ‘Fault-resilient NoC
router with transparent resource allocation’, in 12th International Symposium on
Reconfigurable Communication-Centric Systems-on-Chip, ReCoSoC 2017 -
Proceedings, 2017, pp. 1–8.

[85] J. Silveira, C. C. C. Marcon, P. Cortez, G. Barroso, J. M. J. M. Ferreira, and R. Mota,
‘Scenario preprocessing approach for the reconfiguration of fault-tolerant NoC-
based MPSoCs’, Microprocess. Microsyst., vol. 40, pp. 137–153, Feb. 2016.

[86] A. Strano, D. Bertozzi, F. Trivino, J. L. Sanchez, F. J. Alfaro, and J. Flich, ‘OSR-Lite:
Fast and deadlock-free NoC reconfiguration framework’, in 2012 International
Conference on Embedded Computer Systems (SAMOS), 2012, pp. 86–95.

[87] ‘AMS 0.18um CMOS process’. 2016.
[88] ‘Synopsys Design Compiler’. 2015.
[89] J. Flich and D. Bertozzi, Designing network on-chip architectures in the nanoscale

era. Chapman and Hall/CRC, 2011.
[90] B. Niazmand, S. P. Azad, J. Flich, J. Raik, G. Jervan, and T. Hollstein, ‘Logic-based

implementation of fault-tolerant routing in 3D network-on-chips’, in 2016 10th
IEEE/ACM International Symposium on Networks-on-Chip, NOCS 2016, 2016.

[91] A. Charif, N.-E. Zergainoh, A. Coelho, and M. Nicolaidis, ‘Rout3D: A lightweight
adaptive routing algorithm for tolerating faulty vertical links in 3D-NoCs’, in 2017
22nd IEEE European Test Symposium (ETS), 2017, pp. 1–6.

[92] S. R. Mocholi, ‘Cost Effective Routing Implementations for On-Chip Networks’,
Universidad Politécnica de Valencia, 2010.

[93] M. Balboni, J. Flich, and D. Bertozzi, ‘Synergistic use of multiple on-chip networks
for ultra-low latency and scalable distributed routing reconfiguration’, Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2015. IEEE
Conference Publications, New Jersey, pp. 806–811, 2015.

[94] M. Balboni and F. Trivi, ‘Optimizing the Overhead for Network-on-Chip Routing
Reconfiguration in Parallel Multi-Core Platforms’, 2013 Int. Symp. Syst. Chip, pp.
1–6, Oct. 2013.

[95] C. J. Glass and L. M. Ni, ‘The Turn Model for Adaptive Routing’, in [1992]
Proceedings the 19th Annual International Symposium on Computer Architecture,
1992, vol. pages, no. 7, pp. 278–287.

[96] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, ‘Cycle-Accurate
Network on Chip Simulation with Noxim’, ACM Trans. Model. Comput. Simul., vol.
27, no. 1, pp. 1–25, 2016.

[97] ‘Noxim with LBDR3D support’. .
[98] ‘NanGate, Inc. NanGate 45nm Open Cell Library’. .

82

Acknowledgements

Firstly, I would like to express my gratitude to my supervisor Professor Gert Jervan and
my co-supervisor Professor Jaan Raik, for their tremendous support regarding my PhD
studies, research, publications and motivation for the work we invested to focus on
during the last 4 years. Without their guidance and enlightening the research path,
writing this dissertation and the publications would not be possible. Working with my
supervisor and co-supervisor has also taught me the lesson that during PhD studies, one
cannot always have prejudice on one topic or specific field to work on, but better to
actually have a wider and more open-minded view on solving problems and thinking of
solutions to a problem with different angles.

I would also like to thank the thesis reviewing committee at Tallinn University of
Technology for their constructive and informative feedback and comments on the
dissertation. Moreover, I would like to appreciate the pursuing of Ms. Katri Kadakas and
Ms. Anu Johannes for pursing all the administrative and paperwork during my PhD
studies, related to Dean’s office and initial registration at university.

I would see it necessary to appreciate Prof. José Flich, who was a co-author of one of
the publications which is part of the contribution to this dissertation. His guidance and
help with this research path has also given me clear ideas regarding future works in the
fields relevant to this dissertation.

Also, I would like to thank my colleagues and friends, whom without their help, many
of the publications and collaborative works we had would not be possible, especially
Siavoosh Payandeh Azad, Karl Janson, Hannes Kinks, Pietro Saltarelli and Ranganathan
Hariharan. Also, I would like to especially thank my other friends and relatives who
encouraged me to pursue my studies at PhD level and kept me motivated constantly.

Last but not certainly least, I would like to express my deep gratitude to my family,
my mother and my aunt who have been there for me since the first day I started my
education. Their constant support during the years made it possible for me to make
progress in my education and be able to seek the path I was very motivated in, i.e.
Computer Engineering.

Finally, I would also like to give my acknowledgment to Tallinn University of
Technology for accepting me as a PhD student and providing the facilities and
environment to experience collaborative research, work with academic tools and
software. I would also like to acknowledge that my research work would have not been
possible without the financial supports from (1) EU's H2020 RIA IMMORTAL, (2) Estonian
institutional research grant IUT 19-1, (3) the Estonian Center of Excellence in IT EXCITE
funded by the European Regional Development Fund, (4) Estonian IT Academy program
and EU's Twinning Action TUTORIAL project.

83

Lühikokkuvõte
Töökindluse parandamine kiipvõrkudel põhinevatel
süsteemides

Pooljuhttehnoloogia mõõtmete vähenedes integreeritakse ühele kiibile üha rohkem
arvutustuumasid, mistõttu muutub kiipsüsteemide jõudluse kitsaskohaks
tuumadevaheline ühendustaristu. Harilikud, siinipõhised ühendused ei suuda tuumade
arvu kasvades piisavat jõudlust pakkuda. Nende puuduste lahendamiseks on
alternatiivse kiipsüsteemi ühendustaristuna välja pakutud kiipvõrgud.

Paraku mõjutab praegune suundumus kahandada transistoride mõõtmeid
pooljuhttehnoloogial põhinevate seadmete, kaasaarvatud kiipvõrkude töökindlust. Kuigi
püsivad rikked on tihtipeale võimalik avastada tehases toote testimise käigus, tuleb
ikkagi tegeleda normaalse kulumise ja vananemise tulemusena tekkinud rikete ja
süsteemi eluajal esinevate mööduvate vigadega. Seetõttu on vaja lähenemist, mis
suudaks ilma tööd katkestamata vigu tuvastada ja vajadusel neile võimalikult kiiresti
reageerida. Üks kirjanduses välja pakutud lahendusest kiipsüsteemimarsruuterite
juhtosas tööajal avalduvate vigade tuvastamiseks on süsteemiga paralleelselt töötavad
rikkemonitorid. Juhul, kui sellised rikkemonitorid ei ole piisavalt hästi disainitud, on
nende peamine puudus suur pindala kiibil. See omakorda tekitab vajaduse luua
metoodika, mida saaks kasutada kiipsüsteemide juhtosale selliste rikkemonitoride
loomiseks, mis suudaks võimalikult väikese kiibipindala juures tagada soovitud
veakatvusprotsendi. Selle väitekirja esimene panus ongi sellise metoodika
väljatöötamine. Rikkemonitoride hindamiseks ja minimeerimismetoodika analüüsiks
korraldatud eksperimentide tulemuste analüüs näitab, et minimeeritud komplekt
väljatöötatud kiipsüsteemimarsruuteri juhtosa rikkemonitoridest garanteerib
sajaprotsendilise üksikute konstantsete rikete katvuse, tagades samal ajal peaaegu
kohest vigade tuvastamist. Rikkemonitoride arvelt disainile lisanduv kiibipindala ei ületa
pindala, mis oleks vaja kolmekordse liiasuse (TMR) saavutamiseks.

Disaini keerukuse kasvades suureneb rikkemonitoride arv märgatavalt, mistõttu
kasvab süsteemi rikkehaldurile saadetav andmete kogus liiga suureks. Süsteemi
rikkehaldur on eraldi moodul, mis võib olla implementeeritud nii tarkvaras, riistvaras kui
ka kombinatsioonina neist kahest. Veahaldur omab informatsiooni kiipvõrgu
komponentide nagu marsruuterite, nende vaheliste ühenduste ja ka marsruuterites
paiknevate pöörete veaoleku kohta. Rikkehaldur saab seda informatsiooni kasutada
rikkehaldusmehanismide tarbeks, näiteks marsruutimisalgoritmi ümberseadistamiseks
komponendi- või pöördevea tuvastamise korral. Selleks et rikke tuvastamiseks
kasutatava teabe üldistustase vastaks veahalduris kasutatava teabe üldistustasemele, on
vaja tehnikat rikkemonitoridelt saadava informatsiooni üldistamiseks ja tihendamiseks.
Lisaks vea tuvastamisele on oluline ka vea asukoha kindlaks määramine, sest see
võimaldab tagada süsteemi töö rikete korral, kasutades vaid töötavaid komponente ja
minnes mööda rikkis komponentidest. Seetõttu ongi selle väitekirja teiseks panuseks
rikete lokaliseerimiseks ja veainformatsiooni üldistamiseks kasutatava mehanismi
väljatöötamine. Väljatöötatud rikete lokaliseerimis- ja veainformatsiooni
üldistamismooduli sünteesitulemused näitavad, et võrreldes teiste moodsate
lahendustega, kasutab väljatöötatud moodul vähem kiibiala, garanteerides samas
madala hilistumise.

84

Kuna võrgusõlmedevaheliste ühenduste rikked kiipvõrkudes võivad mõjutada kogu
võrgu jõudlust, on oluline käsitleda ka marsruutimisalgoritmi mõjutavaid
võrgukihirikkeid. Lisaks peab veakindla marsruutimisalgoritmi implementeerimiseks
kasutatav mehhanism olema skaleeritav ja taasseadistatav. Samuti peab see olema
paindlik, et rikkehalduril oleks võimalik marsruutimisalgoritmi vajadusel muuta.
Eelmainitud mehhanism ei tohi sõltuda vigaste võrgusõlmede asukohast ega arvust.
Selleks on selle väitekirja kolmanda panusena välja töötatud loogikapõhine jaotatud
marsruutimismehhanism, mis on võrreldes marsruutimistabelitega palju skaleeritavam,
kuna selle pindala kiibil ei sõltu kiipvõrgu sõlmede arvust. Selle mehhanismi töö sõltub
ainult fikseeritud seadistusbittidest (mille väärtused arvutatakse selles väitekirjas toodud
algoritmiga süsteemi töö väliselt), omades samas nii kahe- kui ka kolmemõõtmeliste
kiipvõrkude tuge ning garanteerides tupikude ja nõiaringide puudumise kiipvõrgus.
Väljapakutud mehhanismiga tehtud katsete tulemused tõestavad selle
skaleerimisvõimekust võrreldes teiste tänapäevaste alternatiividega, mõjutamata
tuntavalt kiipvõrkude jõudlust. Seetõttu on see mehhanism suurte kiipvõrkude puhul
soositud lahendus.

85

Abstract
Dependability Improvements of NoC-based Systems

The trend in shrinking size of semiconductor technology beyond the sub-micron domain,
and the need for integrating more Processing Elements (PEs) on the same chip would
render the underlying interconnection infrastructure as a bottle-neck. For instance, the
traditional shared-medium bus-based architecture cannot catch up with the growing
number of Intellectual Property (IP) cores, due to performance and scalability limitations.
Network-on-Chip (NoC) has emerged as an interconnection infrastructure paradigm to
address the parallelism and performance limitation of conventional bus-based
architectures [5], and handle communication-centric Systems-on-Chips (SoCs) with large
number of communicating PEs.

Unfortunately, the current trend in miniaturization of transistors, affects the
reliability of devices based on semiconductor technology, including NoCs. Even if
permanent faults are captured using manufacturing testing, the circuits being susceptible
to run-time faults (caused by phenomena such as wear-out and aging) and transient
faults during system’s lifetime must still be addressed. There is a need for an online
approach, which would instantaneously detect faults at run-time, concurrent with the
system operation and would react rapidly to them. Concurrent online checkers have
been one of the approaches introduced in the literature for handling run-time faults
online in control part of NoCs. However, the area overhead of the fault detection circuitry
would become a concern if not envisioned properly. This necessitates a methodology for
devising checkers for the control part of NoCs, while addressing both, fault detection
quality of the checkers and minimization of checkers in terms of area, while guaranteeing
the target fault coverage. Proposing such methodology has been the focus of the first
contribution of this dissertation. Experimental results for checkers’ evaluation and
minimization methodology show that the minimized set of the devised structural and
functional checkers guarantee 100% single stuck-at fault coverage in the control part
modules of a NoC router, while providing near-instantaneous (single-cycle) fault
detection latency and formal proof of presence/absence of True Misses, and in worst
case, an area overhead between duplication and triplication-based approaches, such as
Duplication With Comparison (DWC) and Triple Modular Redundancy (TMR).

As the designs become more complex, the number of concurrent online checkers
tends to grow significantly, therefore, when transmitting the fault information to the
system fault manager, it would generate excessive amount of data. The system fault
manager is a module in the system, which can be a separate block implemented in
hardware or software or combination of both, having information of fault/health status
of network components (including routers, links and turns in the routers). The system
fault manager can make use of the detected fault information in order to re-configure
the routing algorithm, for instance in case of a fault in a component or a turn fault. In
order to match the abstraction of fault detection information to the information used by
the system fault manager, a technique would be needed to make such information
compact and compressed. Moreover, in addition to detection of faults, finding the
location of the fault is important, for instance, in order to make use of the healthy parts
of the device, while bypassing the faulty component(s). Therefore, to achieve the best of
both worlds, a fault localization and abstraction mechanism would be required, which is
the focus of the second contribution of this dissertation. Synthesis results for the fault

86

localization and abstraction module, proposed in this thesis show that compared to the
state-of-the-art, lower area overhead is achieved, while performing its operation in a
single clock cycle.

As the faults on the NoC links can affect the network performance, it is crucial to
handle network-layer faults affecting the routing algorithm. Moreover, the mechanism
used for implementation of the fault-tolerant routing algorithm must be scalable and re-
configurable. The mechanism must also be flexible, so that it would allow changing the
routing algorithm from one regime to another by the system fault manager.
Furthermore, the mechanism must not depend on the location and number of faulty links
in the network. This has been the focus of the third contribution of this dissertation. To
this end, a logic-based distributed routing mechanism is developed, which is scalable
solution compared to routing tables, thus not growing in size with the increasing number
of network nodes. The mechanism relies only on a fixed set of configuration bits
(computed offline via an algorithm proposed in this dissertation), while having support
both for 2D and 3D NoCs and allows deadlock and live-lock-free implementation of turn
model-based routing algorithms in such networks. Experimental results for the proposed
mechanism for implementing fault-tolerant routing algorithms confirms the scalability of
the proposed mechanism compared to the state-of-the-art, making it a viable solution
for large network sizes, while not affecting the performance (average packet latency)
significantly compared to other approaches.

87

Appendix A

89

This Appendix includes the second example in which the proposed methodology for
devising and evaluating and minimizing concurrent online checkers is applied to the full
control part of the Bonfire handshaking router. This can serve as supplementary
information for checkers’ experiments, related to Chapter 3 of this dissertation. The
Appendix covers how functional and structural checkers are devised for Bonfire
handshaking router using the proposed methodology in this dissertation, a published in
publication D [83]. It is worth noting that in this example, similar to the first one, single
stuck-at fault has been considered as the fault model. Moreover, the data-path is
assumed to be already protected using an Error Detection/Correction Coding technique.

Functional Checkers for Control Part of Bonfire Handshaking Router

For better clarification regarding how functional checkers are devised, the control part
of the Bonfire handshaking NoC router (Architecture 2) [66] has been chosen as the
second example. Functional checkers are devised for FIFO control part, routing logic
(LBDR [65]) and arbitration logic (arbiter), as explained in the following.

Bonfire handshaking NoC router FIFO control part functional checkers: Based on the
rules existing for the control part of FIFO implemented in Bonfire handshaking flow
control router, which is a circular buffer, the following properties must always hold:

 The FIFO cannot be full and empty at the same time.

 According to the design of Bonfire’s FIFO, the read pointer and write pointer
must always follow the one-hot fashion (since in the router design the read and
write pointer are encoded as one-hot). The choice of one-hot encoding is for
providing better fault detection capability regarding SEUs and single stuck-at
faults.

 It is not possible to read from an empty FIFO or write to a full FIFO.

Bonfire handshaking NoC router routing logic (LBDR) functional checkers: Based on
the rules existing for the routing logic, implemented using LBDR, the following properties
must always hold:

 When LBDR is configured to the deterministic XY routing algorithm, during the
processing of header flit, the output request signals must always follow the one-
hot fashion.

 Since the baseline LBDR supports only minimal paths, during routing
computation, opposite direction output requests cannot become active at the
same time (e.g. the request for East and West output cannot be active
simultaneously).

 If there is an approved request to LBDR for routing, the output request signals
cannot be all zero.

 If the tail flit of the packet is processed by LBDR, all the output request signals
must become zero.

For the case of LBDR module in the Bonfire handshaking NoC router (Architecture
2), by taking into account the properties shown in the flowchart of Figure A. 1, the
following higher level (functional) checkers are devised:

90

 If the flit type is header and the corresponding input FIFO is not empty:
o The output requests must follow the one-hot fashion (when LBDR is

configured to the deterministic XY routing algorithm).
o If the destination is on the North side of the current node (on the same

column), then the output request for North port (Req_N_in) must be
set to 1 and the other requests must be set to 0. Similar deduction can
be inferred for the output requests for other directions (i.e. East, West
and South).

These checkers are still more abstract than the structural checkers, which will be
explained later in this chapter.

Bonfire handshaking NoC router arbitration logic (arbiter) functional checkers:
Based on the rules existing for the arbitration logic of Bonfire handshaking router, which
is implemented as an FSM-based Round-Robin (RR) prioritization logic, the following
properties must always hold:

 The arbiter states must always follow the one-hot fashion (both current and
previous values of arbiter states). This is considered in the specification in order
to increase the fault detection capability of arbiter against single stuck-at faults
and SEUs.

 It would not be possible for arbiter to give grant to a request that is not active.
Thus, if a request is zero, its corresponding grant signal must also be zero.

 Since by specification, the Bonfire router only supports unicast communication,
it is not possible to send data from an input port to multiple output ports at the
same time. Therefore, no matter how many requests from the routing modules
(LBDR modules) come to the arbiter of an output port, arbiter must always
generate the grant signals following the one-hot fashion, or in case no request

Figure A. 1 Functional checkers devised for the routing logic (LBDR) of Bonfire

handshaking NoC router using the proposed.

91

Figure A. 3 Flowchart of applying the proposed methodology for devising checkers from
arbiter of Bonfire handshaking router (checkers for arbiter’s handshaking signals, grant
signals and crossbar select lines)

Figure A. 2 Flowchart of applying the proposed methodology for devising checkers from

arbiter of Bonfire handshaking flow control router (checkers for arbiter’s FSM)

92

is granted, all grant signals must remain zero (grant signals can only be one-hot
or all zero).

 Since arbiter is also in charge of selecting the crossbar to allow the flits be
forwarded to the granted output, the select lines of crossbar switch are handled
by arbiter. In Bonfire handshaking router, the select lines of crossbar switches
are encoded as one-hot, for higher fault detection capability in case of SEUs and
single stuck-at faults.

The yellow rectangles in Figure A. 2 and Figure A. 3 demonstrate the higher level
(functional) checkers devised for the arbiter logic of Bonfire handshaking router.

Structural Checkers for Control Part of Bonfire Handshaking Router

For the example of Bonfire handshaking NoC router, in addition to high-level (functional)
checkers, the methodology for devising structural checkers is also applied to the pseudo-
combinational version of each control part module. The flowcharts representing the
devised structural checkers for FIFO’s control part, routing logic (LBDR) and arbiter
Bonfire handshaking router are explained in the following.

Structural checkers for the routing logic (LBDR) of Bonfire handshaking NoC router:
As it can be seen in the flowchart of Figure A. 4, the following cases are possible to occur
in the RTL code of routing logic (LBDR) of Bonfire handshaking router:

 If the flit type is header and the corresponding input FIFO is empty, then all
request must keep their previous value.

 If the flit type is body (or invalid), then all requests must keep their previous
values.

 If the flit type is tail, then all requests must be zero.

 8 checkers can be devised that check the properties of N1, E1, W1 and S1
(shown with green and red arrows in Figure A. 4). These signals show the
direction or quadrant on which the destination node is located with respect to
the current node:

o If the destination node is located on the North side with respect to the
current node, then N1 must be 1.

o If the destination node is not located on the North side with respect to
the current node, then N1 must be 0.

o If the destination node is located on the East side with respect to the
current node, then E1 must be 1.

o If the destination node is not located on the East side with respect to
the current node, then E1 must be 0.

o If the destination node is located on the West side with respect to the
current node, then W1 must be 1.

o If the destination node is not located on the West side with respect to
the current node, then W1 must be 0.

o If the destination node is located on the South side with respect to the
current node, then S1 must be 1.

o If the destination node is not located on the South side with respect to
the current node, then S1 must be 0.

93

 If the flit type is header and the corresponding FIFO connected to the routing
logic is not empty, then output request for North port (Req_N_in) must be
correctly set according to the logic of LBDR (the routing algorithm is assumed to
be XY routing).

 If the flit type is header and the corresponding FIFO connected to the routing
logic is not empty, then output request for East port (Req_E_in) must be
correctly set according to the logic of LBDR (the routing algorithm is assumed to
be XY routing).

 If the flit type is header and the corresponding FIFO connected to the routing
logic is not empty, then output request for West port (Req_W_in) must be
correctly set according to the logic of LBDR (the routing algorithm is assumed to
be XY routing).

 If the flit type is header and the corresponding FIFO connected to the routing
logic is not empty, then output request for South port (Req_S_in) must be
correctly set according to the logic of LBDR (the routing algorithm is assumed to
be XY routing).

 If the flit type is header and the corresponding FIFO connected to the routing
logic is not empty, then output request for Local port (Req_L_in) must be
correctly set according to the logic of LBDR. This case would occur when the
current node is the destination node and therefore, all the N1, E1, W1 and S1
signals are zero.

Structural checkers for the arbitration logic (arbiter) of Bonfire handshaking NoC
router: The flowcharts in Figure A. 2 and Figure A. 3 demonstrate the different possible
paths in the RTL code of the Round-Robin (RR) arbiter for the Bonfire handshaking router.
The arbiter has an internal Finite State Machine (FSM) with five different states, encoded

Figure A. 4 Flowchart of applying the proposed methodology for devising structural

checkers from LBDR (routing) logic of Bonfire handshking flow control router

94

as one-hot: IDLE, North, East, West, South and Local. Each state denotes that the arbiter
is serving the corresponding input port. For the case of IDLE, it means there is no request
for arbitration from the inputs. The order in which the arbiter in Bonfire handshaking
router serves the requests from inputs (LBDR logics) is from highest to lowest: North,
East, West, South, Local and again North and so on (in a circular manner). Based on this
prioritization, as it can be seen in Figure A. 2, For example, when the current state of the
arbiter is IDLE (no requests to arbitrate), first the request from Local input (Req_L) is
checked and if there is such a request, the state variable of the FSM changes to Local at
the next clock cycle (meaning that it will be serving Local input).

The same applies to other states in the order of L, N, E, W and S. Thus, the structural
checkers devised for checking the correct order of state variable of the arbiter can be
extracted using the proposed methodology from the RTL code the pseudo-combinational
version of the FSM of the arbiter.

Similar approach has been followed, parsing the other sections of the Bonfire
handshaking arbiter’s RTL code, including the code sections in charge of the computation
of the handshaking signals, i.e. RTS and DCTS (as shown in Figure A. 3). RTS is in charge
of generating request from current router to the next router or Network Interface, if the
data on the corresponding output port is valid. DCTS is used for receiving the signal from
the next router or Network Interface that there are enough free buffer slots in the
downstream side to receive data from the current router.

In addition, as shown in Figure A. 3, part of the structural checkers is checking the
values generated for the grant signals based on the current state of arbiter. Each grant
signal corresponds to a request from an input direction. Finally, since arbiter is also in
charge of activating the correct path from an input to the granted output and selecting
the correct crossbar switch, the final set of checkers check the logic used to generate
select signals (which are also encoded as one-hot in the arbiter of Bonfire handshaking
router). The values of the select lines are checked by taking into account the current state
of the arbiter’s FSM (as dictated by its RTL code and demonstrated in Figure A. 3).

Bonfire handshaking NoC router FIFO control part structural checkers: As it can be
seen in Figure A. 5, based on the RTL code of the FIFO of Bonfire handshaking router, the
control part consists of a write pointer and read pointer which are both encoded as one-
hot for improving the fault detection capability. The first two parts of Figure A. 5, parse
the part of the code related to the values of read and write pointers. The write pointer
only gets updated when there is a request for writing to a FIFO slot. Similarly, the read
pointer gets updated only when there is a request for reading from a FIFO slot and the
corresponding input buffer is not empty.

In addition to arbiter, FIFO is also charge of handling part of the handshaking signals,
i.e. generating CTS and interpreting DRTS (both connected to the previous router or
Network Interface (NI)). CTS informs the previous router or Network Interface that the
FIFO of the current router has at least one free slot and therefore, it is not full. DRTS
examines the RTS signal from the previous router or Network Interface, which denotes
when the input data on the links are valid for the current router to read. The checkers
related to DRTS and CTS are shown in Figure A. 5, which are also connected to a compact
FSM consisting of two states in the FIFO’s control part, i.e. IDLE and READ_DATA states.
The FIFO’s control part will only go to the READ_DATA state if CTS has been zero in the
previous cycle and there is an active input request from the

95

previous router/Network Interface (DRTS is one), and also the buffer of the current
router is not full. The structural checkers related to this part of logic, which are devised
from the RTL code of the control part of the FIFO using the proposed methodology, are
shown in Figure A. 5.

Finally, since the full and empty signals of the FIFO get their values based on the
positions where the read and write pointers point to in the buffer, their correct values
must also be checked. This is done by taking into account the RTL code of FIFO’s control
part in charge of generating the full and empty signals.

It is worth noting that none of the devised structural checkers are inferred by the
functionality of the FIFO’s control part, but they are all rather devised by traversing all
possible paths in the RTL code of the pseudo-combinational version of FIFO’s control
part, checking each condition and the corresponding outputs of that condition (which
would be a relation between an input signal and an internal signal/output signal). That is
one reason why it is mentioned earlier in this thesis that as opposed to the functional
checkers, the structural checkers examine different specific parts of the same circuit
which do not have any overlaps.

Figure A. 5 Flowchart of applying the proposed methodology for devising structural

checkers from control part of FIFO in Bonfire handshaking flow control router

96

Full Set of Devised Checkers for Control Part of Bonfire Handshaking
Router

Table A. 1 lists the initial set of checkers for control part modules of Bonfire handshaking
router, devised using the methodology proposed in this dissertation.

It is worth noting that the each of the control part modules with all the checkers
integrated (without any minimization) impose area overhead to the control part module
as follows: LBDR, Arbiter and FIFO control part with full set of checkers incur an overhead
of 159%, 193% and 96%, respectively to their corresponding non-fault-tolerant circuits
(without any checkers).

FIFO Control Part Logic Checkers

Checker
Number(s)

Checker(s) description

1, 2
Depending on the value of the write enable signal, the write pointer of FIFO's
control part must update accordingly (one-hot).

3, 4
The value of empty signal should be set based on the values of read pointer
and write pointer.

5, 6
The value of full signal should be set based on the values of read pointer and
write pointer.

7, 8
Depending on the value of the read enable and empty signals, the read
pointer of FIFO's control part must update accordingly (one-hot).

9-12
Depending on the previous value the handshaking signals and also the full
signal, the current value of handshaking signals and write enable signals of
FIFO's control part must have the correct values.

13
If FIFO is not empty and at least one of the read enable signals is active, the
read enable signal generated inside FIFO's control part must be set to one.

Routing Logic (LBDR) Checkers

1
If the flit type is header and input FIFO is not empty, current values of output
requests of LBDR must be one-hot.

2, 4
If the flit type is header or body and input FIFO is empty, the output requests
of LBDR must preserve their previous values.

3
If the flit type is tail, the current values of LBDR output requests must be all
zero (there should be no request generated).

5, 6, 7, 8, 9, 10,
11, 12

Based on the location of the destination node with respect to the current
node, the correct corresponding internal signal of LBDR, related to each
cardinal direction (North, East, West or South) should get activated.

13, 14

If the flit type is header and the input FIFO is not empty, when all the internal
signals of LBDR corresponding to the cardinal directions are zero, only the
request for Local (L) output port can be activated. Also, when the destination
address of the header flit is not the same as the current address of the router
(node), the Local (L) output request of LBDR must not go high.

15, 16, 17, 18

If the flit type is header (routing computation must be performed on it) and
the input FIFO is not empty, the output requests of LBDR for the cardinal
directions (North, East, West and South) must go active according to
calculated internal signals in one-hot fashion (due to XY routing).

Table A. 1 The complete list of devised functional and structural checkers for the

control part of Bonfire handshaking NoC router

97

Arbitration Logic (Arbiter) Checkers

1, 2
If the FSM of Arbiter is in IDLE state, the select lines for XBAR (Crossbar
Switch) must correspond to it. Also, if it is not in IDLE state, the XBAR select
lines must always follow the one-hot encoding.

3
If Arbiter's FSM is in IDLE state, the current value of RTS handshaking signal
must be zero.

4-6
If Arbiter is not in IDLE state then corresponding handshaking signals must
have correct value.

7, 8, 9
Depending on the values of the handshaking signals, the previous and
current values for Arbiter's FSM state variable must be set accordingly.

10-14
Depending on the values of the handshaking signals and state of Arbiter's
FSM, the output grant signals of Arbiter must have the correct value and a
one-hot grant should be issued.

15-44

Depending on the previous state of Arbiter's FSM and the request signals
from LBDR modules, the correct order of prioritization must always be
followed in Arbiter's FSM in a circular way (Local, North, East, West and then
South and then back to Local) and also the state of the FSM must be updated
accordingly.

45, 46
The current and next values of Arbiter's FSM state variable must always
follow the one-hot encoding.

47-51
If the handshaking signals are high, depending on the state variable of the
Arbiter's FSM, the grant signal should also be generated correctly.

52-56
The value of the XBAR select lines must correspond to the state that Arbiter's
FSM is in it.

99

APPENDIX B

101

This Appendix is dedicated to the third example for applying the proposed methodology
for devising, evaluating and minimizing checkers to the control part of the Bonfire credit-
based router.

Example Three: Devising checkers for the Control Part of Bonfire Credit-
based NoC Router

In the third example, since the fault detection information of all checkers was necessary
for the fault localization module in order to model turn faults and compress the big data
obtained from the checkers (explained in Chapter 4 of this dissertation), minimization
part of the proposed methodology is not used and all the devised set of checkers are
maintained for maximum fault localization accuracy.

The final set of checkers, along with the fault localization module for modelling turn
faults have been integrated in the Bonfire credit-based router. As it was already
explained in more detail in Chapter 4, the fault localization and abstraction module
compresses the checker outputs to a final set of only 20 bits, representing 20 turn faults
in the router.

Table B. 1 lists the full set of devised checkers for the control part of Bonfire credit-
based router. The checkers are grouped based on the property and/or part of the module
they are checking. Also, for each checker it is marked whether it is structural (marked
as S in the table) or functional (marked as F in the table).

FIFO Control Part Logic Checkers

Checker
Number(s)

Checker
Type Checker(s) description

F S

1  FIFO cannot be empty and full at the same time.

2  Reading from an empty FIFO is not possible.

3  Writing to a full FIFO is not possible.

4 
The states of the packet dropping FSM of FIFO must always be one-
hot.

5  Read pointer of FIFO must follow the one-hot fashion.

6  Write pointer of FIFO must follow the one-hot fashion.

7, 8 
Checkers related to the logic of FIFO write pointer value update: Write
pointer must get updated according to the one-hot encoding, when
there is a request for writing to the FIFO (the FIFO is circular).

9, 10 
Checkers related to the logic of empty signal in FIFO: Only when read
pointer and write pointer are pointing to the same location, the empty
signal should go high (the FIFO is circular).

11, 12 

Checkers related to the logic of full signal in FIFO: Only when read
pointer is pointing to the immediate location after where write
pointer is pointing to, the full signal should go high (the FIFO is
circular).

13, 14 
Checkers related to the logic of FIFO read pointer value update: Read
pointer must get updated according to the one-hot encoding, when
there is a request for reading from the FIFO (the FIFO is circular).

Table B. 1 Full set of devised functional and structural checkers for Bonfire credit-based

NoC router

102

15-18 
Checkers contributing to the logic of write enable signal, which is used
for flagging a write request to FIFO.

19, 20 
Checkers contributing to the logic of read enable signal, which is used
for flagging a read request from FIFO.

21-25 
Checkers related to the fake credit counter update logic in FIFO. This
is used in the packet dropping process to manipulate the previous
router or NI by generating a fake credit out.

26-28 
Checkers contributing to the logic of credit out signal, which is used
to signal the previous router or Network Interface (NI) that the
current router has enough free FIFO slots for storing a flit.

29-110  Checkers related to the packet dropping FSM logic of FIFO.

Routing Logic (LBDR) Checkers

1-4 
Checkers related to the generated Requests by LBDR (Requests are
generated based on the routing algorithm and the destination
address of the packet).

5 

Checker related to the grants signal received from the allocator
corresponding to different output directions. If there is at least one
grant signal from one of the output directions, the grants signal
cannot be zero.

6 
Checker related to the grants signal received from the allocator
corresponding to different output directions. If there are no active
grant signals, the grants signal cannot go high.

7 

Checkers related to the generated Requests by LBDR (Requests are
generated based on the routing algorithm and the destination
address of the packet). These checkers check the previous and current
values of the Requests generated by LBDR logic.

8, 9 

Checkers contributing to the first phase of LBDR logic, which
generates the signals indicating that the destination node is towards
to the North direction or a quadrant related to North direction (North-
East or North-West quadrant).

10, 11 

Checkers contributing to the first phase of LBDR logic, which
generates the signals indicating that the destination node is towards
to the East direction or a quadrant related to East direction (North-
East or South-East quadrant).

12, 13 

Checkers contributing to the first phase of LBDR logic, which
generates the signals indicating that the destination node is towards
to the West direction or a quadrant related to West direction (North-
West or South-West quadrant).

14, 15 

Checkers contributing to the first phase of LBDR logic, which
generates the signals indicating that the destination node is towards
to the South direction or a quadrant related to South direction (South-
East or South-West).

16, 17 

Checkers contributing to the logic for generating Local output request.
If the packet has reached its destination, the Local output request
must go high Also, if the packet has not reached its destination, the
Local output request cannot go active.

18, 19 

Checkers contributing to the packet dropping request generated by
LBDR module in case of detection of a faulty flit of a packet. This is
used for packet dropping in case a flit's contents get damaged after
read from FIFO and entered the LBDR logic.

103

20 
Checker related to the generated Requests by LBDR (Requests are
generated based on the routing algorithm and the destination
address of the packet).

21 
Checker contributing to the second phase of LBDR logic, generating
the request for North output port.

22 
Checker contributing to the second phase of LBDR logic, generating
the request for East output port.

23 
Checker contributing to the second phase of LBDR logic, generating
the request for West output port.

24 
Checker contributing to the second phase of LBDR logic, generating
the request for South output port.

25-29 

Checkers contributing to the packet dropping request generated by
LBDR module in case of detection of a faulty flit of a packet. This is
used for packet dropping in case a flit's contents get damaged after
read from FIFO and entered the LBDR logic.

30-39 
Checkers contributing to the reconfiguration of the connectivity bits
(4 bits per router).

40-46 
Checkers contributing to the reconfiguration of the routing bits (8 bits
per router).

Arbitration Logic (Allocator) Checkers

Allocator Internal Logic and Credit Counter Logic Checkers

1-10 
Checkers related to the logic generating internal grant signals for
North output port based on requests from different input ports.

11-20 
Checkers related to the logic generating internal grant signals for East
output port based on requests from different input ports.

21-30 
Checkers related to the logic generating internal grant signals for
West output port based on requests from different input ports.

31-40 
Checkers related to the logic generating internal grant signals for
South output port based on requests from different input ports.

41-50 
Checkers related to the logic generating internal grant signals for Local
output port based on requests from different input ports.

51, 52 
Checkers contributing to final grant signal related to North output
port.

53, 54  Checkers contributing to final grant signal related to East output port.

55, 56
 Checkers contributing to final grant signal related to West output

port.

57, 58
 Checkers contributing to final grant signal related to South output

port.

59, 60
 Checkers contributing to final grant signal related to Local output

port.

61 

This checker makes sure the valid out signal generated by the
Allocator matches the grant signal generated (each valid out signal for
a specific output direction corresponds to the grant signal for that
direction).

62-67 
Checkers contributing to the credit counters related to North output
port.

68-73 
Checkers contributing to the credit counters related to East output
port.

74-79 
Checkers contributing to the credit counters related to West output
port.

104

80-85 
Checkers contributing to the credit counters related to South output
port.

86-91 
Checkers contributing to the credit counters related to Local output
port.

Allocator Arbiter_in Checkers
 (5 Arbiter_in modules per Allocator)

1 
If there are no requests from the LBDR modules to Arbiter_in of North
input port, the FSM state variable of the arbiter must keep its previous
value.

2-61 

Checkers contributing to checking the prioritizing algorithm of the
Round-Robin arbiter. The priority of the requests from inputs from
highest to lowest are as follows: North, East, West, South, Local and
then again North, and so on (in circular manner).

62 
The FSM state variable of Arbiter_in must follow the one-hot
encoding.

63 
If there are no requests from the LBDR modules to Arbiter_in of North
input port, all grant signals must remain low.

64 
If there is at least one requests from the LBDR modules to Arbiter_in
of North input port, the grant signals cannot be all zero.

65-69 
A grant for North input port to an output port cannot be generated if
there is no request generated for it by LBDR.

Allocator Arbiter_out Checkers
 (5 Arbiter_out modules per Allocator)

1 
If there are no requests from the LBDR modules to Arbiter_in of North
input port, the FSM state variable of the Arbiter_out must stay in IDLE
state.

20-41 

Checkers contributing to checking the prioritizing algorithm of the
Round-Robin arbiter. The priority of the requests from inputs from
highest to lowest are as follows: North, East, West, South, Local and
then again North, and so on (in circular manner).

42 
The FSM state variable of Arbiter_out must follow the one-hot
encoding.

43 
If there are no requests from the Arbiter_in modules to Arbiter_out
of a specific output port, all grant signals must remain low.

44 
If there is at least one requests from the Arbiter_in modules to
Arbiter_out of a specific output port port, the state variable of
Arbiter_out cannot be IDLE.

45 
If the Arbiter_out FSM is in IDLE state, there must be a generated
grant and grants cannot be all zero.

46-50 

Checkers that make sure the generated grant corresponds to the state
that Arbiter_out FSM is currently in. For example, it would be
impossible that Arbiter_out FSM is in North state, but the grant signal
for another direction except North output goes high.

51 

Arbiter_out follows the one-hot fashion for the grants, therefore,
since the router does not support multi-casting or broadcasting of
packets, grant signals must always be one-hot or all zeros, no other
possible combination for them is allowed.

105

Total No. of

checkers
No. of Functional

checkers
No. of Structural

checkers

FIFO Control Part 110 4 104

LBDR 46 0 46

Allocator
(Arbiter_in)

345 15 330

Allocator
(Arbiter_out)

255 15 240

Allocator 691 30 661

A summary of the number of functional and structural checkers for each control part
module of Bonfire credit-based router is provided in Table B. 2.

It is worth noting that the each of the control part modules of Bonfire router
Architecture 3 with all the checkers integrated (without any minimization) imposes area
overhead to the control part module as follows: LBDR, Allocator and FIFO control part
with full set of checkers incur an overhead of 324.33%, 196.47% and 36.17%, respectively
to their corresponding non-fault-tolerant circuits (without any checkers).

Table B. 2 Total number of functional and structural checkers for Bonfire credit-based

NoC router

107

APPENDIX C

P. Saltarelli, B. Niazmand, R. Hariharan, J. Raik, G. Jervan and
T. Hollstein, “Automated Minimization of Concurrent Online Checkers for Network-on-
Chips”, 10th International Symposium on Re-configurable Communication-centric
Systems-on-Chip (ReCoSoC 2015), June 29- July 1, 2015, Bremen, Germany.

���������	
�����
�����	��	����������	������	��������	���	����������������	������	��������������	 �����	���
������	!��"�������	#����������	$���	!�����	%���	$��&����	'�����	#���������	�'������	(��&�����)	��	'�������")�	*������	�(��&�����+	��"��	�����	��	,�������	-���)		./01234567162077/8519:0;149;/<04/1	=>;/6?@6;:A	B66;A	26;C6A	C021A	1D3@65E861/4119400	FGHIJKLIM	NOP	QRQPS	TUVSWXYZP[RYVW\RVPX	\TUT\T]RVTWU	Ŵ	R	[PV	Ŵ	ZWUZYSSPUV	WU_TUP	ZOPZ̀PS[̂WS	aPVbWS̀cWUcdOTQ[eaWd[f	YUXPS	gThPU	̂RY_V	XPVPZVTWU	iYR_TVj	ZWU[VSRTUV[k	NOP	QSWQW[PX	ŜR\PbWS̀	R__Wb[RZZYSRVP	RUX	ZW\Q_PVP	PhR_YRVTWU	Ŵ	VOP	̂RY_V	XPVPZVTWU	ZRQRlT_TVTP[Ŵ	ZOPZ̀PS[m	bOTZO	TU	VYSU	PURl_P[̂TUXTUg	[PR_P[[VSRXPcŴ̂[lPVbPPU	VOP	WhPSOPRX	RSPR	Ŵ	VOP	ZOPZ̀PS[RUX	VOP	̂RY_V	XPVPZVTWU	iYR_TVjk	NOP	̂PRVYSP[Ŵ	VOP	RYVW\RVPX	\TUT\T]RVTWU	RQQSWRZO	TUZ_YXP	̂WS\R_	QSWŴ	̂WS	VOP	Rl[PUZP	WS	QSP[PUZP	Ŵ	VSYP	\T[[P[TU	ZOPZ̀PS[RUX	R	\TUT\R_	̂RY_V	XPVPZVTWU	_RVPUZjk	NOP	\TUT\T]RVTWU	VPZOUTiYP	T[lR[PX	WU	R	XThTXPcRUXcZWUiYPS	RQQSWRZO	Ŵ	QRSVTVTWUTUg	VOP	ZOPZ̀PS[n	̂RY_V	VRl_P	TUVW	TUXPQPUXPUV	Z_Y[VPS[k	NOP	ZOPZ̀PS[bTVOTU	VOP	Z_Y[VPS	RSP	bPTgOVPX	RUX	VOP	[PV	Ŵ	ZOPZ̀PS[T[\TUT\T]PX	lR[PX	WU	R	OPYST[VTZ	\PVOWXk	opQPST\PUV[WU	VOP	ZWUVSW_	QRSV	eSWYVTUg	RUX	RSlTVSRVTWUf	Ŵ	RU	aWd	SWYVPS	[OWb	VORV	qrrs	̂RY_V	ZWhPSRgP	bTVO	hPSj	_Wb	WhPSOPRX	RSPR	bT__	lP	RZOTPhPX	lj	VOP	QSWQW[PX	\TUT\T]RVTWU	RQQSWRZOk	tuvwxJyHz{uIwxJ|}x~}�����	 Jx�I�~�	 �x��L�	 KJG�IJKI�x~�	Lx~L�JJu~I	x~��~u	L�uL|�~��	-�	-�'!��(�'-��	���������������	�����	���	����	����������	��	�	��������	��	�&������	���	����������)	���	�����������	�����������	��	���&����	�������	�������������	�������������	����	��	���������	���������	���	��	���	�������"��	��	���	����"�	��	���	�������	��	����	��	����	�����	"��	����"�����	��	���	����	���	���	���������	��������"���	"��	��������)	������	�����	���	����������)	��	&�����������)	��	���	����������	��	��������	���	��&����������	�������	����������	'����	���	�������	��������"	�����"	���	����	����	��	���	�)����	���	������	��	��������	���	�)	������������"	������"�	'����	����������	������	�����	��������	�����	�D0��025�	���	��������"	������	�����"	���������	����	����	���	�������	'����	��������	�����	������	������	������	�������	���	�����	�����	�������"�������	��	���	������"	���������������	-�	����	������	��	���������	��	���������	����	����	���	��������"	�	������
��	����	��	��������	���	�������"	�������	�������������	��������������	'��	����	��	�����	��	���������	���������	�&��������	��	����������	������	���������	'��	���������")	��������	�����������	��	���	��������	��	���	����	��	&�����������	����������	���	�����	��	�������"	������������	��������	��	�	�������������������	&������	��	���	�������	�����	����	���	������)��"	���	��&��������	��	�����	��	&����	�����	�������	���	���	�����������)�	���	���	��	���	�����	���������	���������������	���	���	���������	��"�����	����	���	�������	���	���	�������	���	�������	��	��������	�&���������	��	�	�������	���"���	���	����&�����	��������	�����"��"	��	���	���	���	���������		

,�����)�	���	������	��	��������	������	���	���	����	��	������
���	'��	������
�����	���������	��	�����	��	�	��&���������������	��������	��	�����������"	���	���������	�����	�����	����	�����������	���������	,�������	���"��	�����������	��	���	��������	������	���	�������	��	�������	��	�	���������	������
�����	�������	'��	��������	������	����	��	�	�������	���������	��	��������	��	�����&�	�	���"��	�����	��&���"�	��&���		'��	������)��"	��������	��	���������	����	��	������	���&��"	���	�������	��	��������	��	����	������	�)	���	���������	-�	���������	��	���&����	�������	�����	���������	������)	���	��	���	����	����	���	�������	��	�����������	����	�	��������������������	���	���	���������	���)	��������	����	�	���"��	�����	�)���	������)	���	�����������	*����������	��	���	�������	����	�������"	���	������������	��	�	���������������	�����	������	����	����	����	�����	��&���"�	����	&��)	���	�&������	����	����	��	�����&��	�)	���	��������	������
�����	���������	'��	�����	��	��"���
��	��	��������	�������	�	���&����	��	�&��&���	��	�������	�����	��	����������	������	������"�	�������	�	��������	���	����������	������	�������"	��������	-�	�������	��	���	���������	����	����	���	���	������������"	���������")	���	���������	������
�����	���	����������	�������	�	��������	���	���"��	������������	��	���	�������	����	��	��	���	�������	�������	�	���������	�����������	��	���	�������	�&��������	���	������
�����	���������	��	���	���	!�����	����"��	�������	�	���&����	���	���������	�&��������	���	������
�����	������������	,�����)�	�������	�	���������	���	������	--�	!*��'*�	��!��	������	���������	��	������	��	��"��	��	�	������"��)	�������	��������	�����	'����������	'������
������	!��������)	�'
!�	���	�����������	�����	����������	���	���	�����)	��	�����	��	�������)��"	���	����	���	������������"�)	���	�����	������������	��	���������&�	��	������
�	����	�&������	��	���	�������&�	'
!	����	����������	���"��	*&���	(����	��*(�	�������&�	������������	����	���	��	��	���������	����	-�	���������	�����	������	�	&�����)	��	���������	�����	��	�����"	����������	����	��	 ��"��	���	��	 �������	���	������	-�	���)	�����	���	�����"	����������	���	��������	����	�)�������	������	'��	����������	������	����	��"��������	����	�&������	��	����	��	�������	����������	��	���	���"����	�������	��	�����	��	"�������	���	������	����������	�������	��������	���������	����������	����	��	 �����-�	����������	�����'���	� -��'�	���	���	!������	�����&�����	�����	!����������	�!��!�	���	���&���	��"�	�����	��&���"�	��	���	����	�&������	���	���)	��������	�	�������	������	��	����

117

APPENDIX D

P. Saltarelli, B. Niazmand, J. Raik, R. Hariharan, V. Govind, T. Hollstein and G. Jervan,
“A framework for combining concurrent checking and on-line embedded test for low-
latency fault detection in NoC routers”, 9th International Symposium on Networks-on-
Chip (NOCS) 2015, September 28-30, 2015, Vancouver, Canada.

��������	�
��	���	��
�
����	�������������

�������	���
������������������	���	����������������������
	��
���	���	���������
���	����������
�������������
� �������!����"�

���"�����������#��
��������$
������%	&
�����'�	����#	�����
����%����!��&�����'���
���(�
&���
���	��'����	�	����)��	�
���(�
&���
�*�����
�����
��
�+��������,�������-./012304�567�89:;<�98�=67�>?>7@�A<�B7=7:=A9C�98�8?;D=<�AC�E9F�@9;=7@<�GH�:9IGACACJ�:9C:;@@7C=�:67:K7@<�LA=6�7IG7BB7B�9CMDAC7�=7<=�=9�7C?GD7�:9<=M7887:=AN7�=@?B7M988<�G7=L77C�?@7?M9N7@67?B�?CB�=7<=�:9N7@?J7O�PA@<=Q�L7�>@9>9<7�?�8@?I7L9@K�98�=99D<�89@�89@I?DDH�7N?D;?=ACJ�=67�R;?DA=H�98�=67�:67:K7@<�?CB�89@�9>=AIASACJ�=67�9N7@67?B�?@7?�LA=6�JAN7C�8?;D=�:9N7@?J7�:9C<=@?AC=<O�567�<=@7<<�A<�AC�>?@=A:;D?@�9C�=67�IACAIAS?=A9C�98�=67�7@@9@�B7=7:=A9C�D?=7C:HQ�L6A:6�A<�?�:@;:A?D�?<>7:=�AC�9@B7@�=9�7DAIAC?=7�T9@�DAIA=U�7@@9@�>@9>?J?=A9CO�V7:9CBQ�=67�:9C:;@@7C=�:67:K7@<�LADD�G7�:9I>D7I7C=7B�GH�7IG7BB7B�9CMDAC7�=7<=�>?:K7=<�L6A:6�?@7�=9�G7�?>>DA7B�?<�?�>7@A9BA:�@9;=AC7�B;@ACJ�=67�ABD7�>7@A9B<�AC�@9;=7@�9>7@?=A9CO�567�8@?I7L9@K�=9J7=67@�LA=6�=67�:9@@7<>9CBACJ�I7=69B9D9JH�6?<�G77C�<;::7<<8;DDH�?>>DA7B�=9�?�@7?DA<=A:�:?<7M<=;BH�98�?�8?;D=�=9D7@?C=�E9F�@9;=7@�B7<AJCO�567�:?<7�<=;BH�<69L<�=6?=�:9IGACACJ�:9C:;@@7C=�@9;=7@<�LA=6�7IG7BB7B�=7<=�?DD9L<�@7B;:ACJ�=67�?@7?�9N7@67?B�98�=67�:67:K7@<�8@9I�WXMWYZ�B9LC�=9�XOYMX[Z�LA=69;=�<?:@A8A:ACJ�=67�8?;D=�:9N7@?J7O�\]̂_̀1a/bc]0_̀1dèce3fghi�j2kl0�0̀l]12c0�1̀k0]1�a]/gmci�3̀c3k11]c0�̀clgc]�3f]3dgcmi�]n.]aa]a�0]/0i�0]/0�h23d]0/o�� ,p��,�'"qr(�',q���q���	��������
����������������������	��������
���	������	�
�	����
s�t�	�u��	������
�������v�������	�������
���	���	����������	�	�
��������
�������������s�	���
�
���	�������	�s	�������	������	�����������������
��&�������
�
����	��������&
�	���������������p�'���������s���	�����	�����
������
��������
����
���	���������������������	��������������	����������������
�������
��p�'������	������
�
����������
�����	��������
�������������
���������w���
����
�������������p�'�����������
������	��������������	����
��
���	��������������������	��
�����
	��	�������	��
�������	�
�
��	������	�
�	���������s�	���������s�	&
��������������������
	���	������������p�,����
��s�s�������s�	s	����	��
�
����	�������������
�����
������������	���
��������s��
����
��	������	����
�&�������������	���������
&��������
	��	���������
���	���	��
���
�������������p��"�����
���������&��	s�����	��	���
�������
��������
���	�����������������	�
�����������	�	�	����
������������	��������&���	�����	���
	����������	&�������������
	����������������������
�
����p�'�������	�	�	����	��
����	���	�����
�����s�p�'����
�������s�	����������	�	�	���
��xyz{|}�~��~��z���|}�x�~|��y����
���
��������
����
�
���
	��	���	���	��
�����
&��s�����	�������	���������
����������	�&���
���������	�s����	��	��
���
	�����	�����s������s��s����
	��	������

����
�����������
 �����	��&��
�
���
	��������
	��������s��
��
���������&
�	������
��������	��&��
��
�s�����
���
��	������s����	��	��
���
	�����
���
�p��
��
&
���������
����
����������������p�����	���������������	������
�����
��
�����������
�������
�
�
 �������ss��
�������~��~��z�y���{��|��y�����sp�����������
���s	
���
������������������
	�����������
��
����	�������
��
&
���������
�����������������
����
�����
��������	���
�
�	������p�+��������������
��
���
�
�
 ��
	������	��
���ss�
���������
���
�����
�
����������
	��	������
�����	����
�&������������������	&��������&��p�'����
�
�
 ��
	�������
����
��������	�����
&
��������	�������ss�	����	��s���
�
	�
�����������
���w�������������
��	�
���s���������������p�'�
���ss�	����
��&����������
&�������������
������&
�����	���
���������	�������	��������	��	����&��	&����ss
�������������p��'�
��������	s�
	��������s�	����������	�	�	���
����������&
�
������
�
	��������
������	�����s	����������
	����	���	������������	��	�����
�&�������������������
	�p�+	������������
���������	���������
�
���
	�����s������
������	&��
���	��s	��
������������
�
	����x|�}������~��y���vs��
��������������
���	���������������
����������
�����
	���		��
���������	�����������	�
p�+
���������������
�����	�������	���	��s����	�������	����������	�����	�s���������������������	���
��������s��
������
��������	�����ss�
��������s��
	�
���	��
������
�������
����s��
	���
���	�����	s����
	����p�p�����
��
���������
��������
��p�'���������	�
��	��������
��������	����s	��
�������	�	�	��������������������������ss�
����	�������
��
�������������	�����������	��������	���	��������
��p�'����������������	���������	��
�
����	�������������
�����
�����������������s��
�������	��������
������������	&�������	����������
������	����������	����	��p���������s���
���	�������	������
��
������
��	�������
�
�
��������������	&�����p�'���s�s���
��	����
 �������	��	��p�����
	����s�	&
�������	&��&
���	�����������	�
��
���	���������	��
�������
����������������������	���	���	�����p�����
	�����vs��
��������	���������	��
�������

����	���s�p�����
	�����
���������ss�
���
	��	����������������s��
���p�,������
	������������	������������	�
����������	����s	��
�������	�	�	����	������
���w��
�
�
 ��
	���	��
�����
�������������������������s��������p�����
	�����
���������ss�
���
	��	������������	�
����������������
�������	�	�	����	������	���	��������
��p�����
	����s�	&
���������vs��
�����p�+
�����������
	�����	������������s�s��p�

127

APPENDIX E

B. Niazmand, S. P. Azad, J. Flich, J. Raik, G. Jervan and T. Hollstein, “Logic-based
implementation of fault-tolerant routing in 3D network-on- chips,” 2016 Tenth IEEE/ACM
International Symposium on Networks- on-Chip (NOCS), Nara, Japan, 2016, pp. 1-8.

��������	
��
��

������������������
����������������
�������������	�
��������
��� !"��#��	�$�%���
�&��� !'�	(
�����)!'������� !*
��'
�#�� !���
�	+���	�
�� , �
����

������
���
�-����

����!�������.��#
�	��%���
�������%!�������!-	�����)�
����

������
���
�-����

����!.��#
�	����$����/
������
0��/
����!0��
����!"����,�����
����������
��
����		
�	�����
�!���������.��#
�	��%��&����
�"��
��
	!���������!*
�
��%12����
���!	��#��	�!3���!�
��43
�#��!���
�	56���4���4

!37���6��	��4��#4
	!����	�
��6�284������	4�
9:;<=>?<@ABCDEDFCGHIJIKIHLMNMOPFBIGFMQQEOIFRHIMOKIOSDROTMOPFBIGUMEHCUDHMNREKHDBRDVEITCTHBCUCDCRUFBHMWRUTDNMFEDIOVMONREKHPHMKCUROFCRDGCFHDMNXYROTZY[CHWMUSPMOP\BIGD][M\D̂_̀OHBIDGRGCUaWCGUMGMDCbMVIFPcRDCTYIDHUIJEHCTdMEHIOVNMUZY[M\D]bcYdZŶaRDFRKRJKCaUCPFMOeVEURJKCROTNREKHPHMKCUROHQCFBROIDQaWBIFBEHIKIfCDMOKLHWMgIUHERKFBROOCKDNMUIQGKCQCOHIOVROLTCRTKMFSPNUCCHEUOQMTCKUMEHIOVRKVMUIHBQIOGRUHIRKKLgCUHIFRKKLFMOOCFHCTZY[M\D_hEFBOCHWMUSDQIVBHCQCUVCCIHBCUTECHMHBCKIQIHRHIMOMNMOPFBIGRUCRNMUgCUHIFRKKIOSDMUTECHMMFFEUUCOFCMNNREKHJCFREDCMNWCRUPMEH_bcYdZYVERUROHCCDKIgCPKMFSNUCCOCDDRDWCKKRDFMOOCFHIgIHLUCVRUTKCDDMNHBCKMFRHIMOROTOEQJCUMNgCUHIFRKKIOSDRDKMOVRDNREKHDTMOMHTIDFMOOCFHHBCOCHWMUS_iEUQCHBMTUCKICDMORKIQIHCTDCHMNJIHDWBIFBTCDFUIJCHBCHMGMKMVLROTUMEHIOVRKVMUIHBQaEGTRHCTEDIOVROMNjIOCRKVMUIHBQ_iEUklGCUIQCOHRKUCDEKHDDBMWHBCFMQGRUIDMOMNbcYdZYWIHBHBUCCGUCgIMEDKLGUMGMDCTNREKHPHMKCUROHQCFBROIDQDakKCgRHMUPmIUDHa[MUHBPkRDHAMn][kAn̂ROTkRDHPABCOPoCDH]kAo _̂\MQGRUCTHMkKCgRHMUPmIUDHaMEUGUMGMDCTQCFBROIDQ IDQMUCjClIJKCROTIOHCUQDMNGRFSCHKRHCOFLaIHGCUNMUQDJCHHCUMUCpERKEOTCUCgCOClHUCQCNREKHDFCORUIMDNMUgCUHIFRKKIOSD_mEUHBCUQMUCaRDKMOVRDHBCHMGMKMVLIDDEGGMUHCTJLHBCUMEHIOVRKVMUIHBQabcYdZYFROHMKCURHCNREKHDMOBMUIfMOHRKKIOSDIOCRFBKRLCU_̀OFMOHURDHHM[kAnROTkAoabcYdZYTMCDOMHUCKLMOHBCKMFRHIMOMNgCUHIFRKKIOSDRDKMOVRDHBCOCHWMUSIDFMOOCFHCT_qrstu=v;@w>xy<z<uyr=>{?r|=ux<}{~>y~u=}<��|=r?u{�~x=>:}yz}<s|=ry}>:}y}<s|�r<tu=�zu{z��}���4 ������.��������

���

�	������������
��������	��
����
	�������	������	����
�
�

���
�
�
���%�����
������
#���
��
���
�����
�����
�
��%2%	�����������#
	��������%
�	���4����
���
�����!�
�������������������	��
����
��
��	������	2

����	��
�
����
	
���������
����#
���

��
��

���������2����
�
������
#���	������
����
		����		���
�2�	�8����!2%���#�����	����2����%!7
��2����%!����	���
��%���
��������%4������������
�����!����
		������
	��

������
����
������
�����
��%
������
%
������	��

����
		����
��

��%2����	����
	�

��

!��
�
���
��
�����������2
���������

��%2����	������3��
����%
���������������
����
4����
�
���
	
��������	��#
����	
�����
������������
������������	2%�	���	����
���%
�	���4&	��
��
2
���#
����������	�	�
���
�������������	!����	���
�����

����#
�������%��������%����
��
������	���������
���������������
�

������#
����������	����
�	
	!��
�
���
��
��������

���������2����
�
��4

��
	

�		���#
����������	���2

���
���
�
	����������	!	����	�
������!����
%���2
�
���
���	�#�����
���
����
���������
����	������	4��
�
���
!�����
���������������������	������	!��������

�����	
�����	2������������
�������������#
!������
����
������
��
�		�
2%������
�%��	���2���������
�	����
��

�������������	���2%��		�����
�����%����	!����
2
����
���������2�
����
	�

��

4& 	����2�
������2�	
���	���2��
��������

�����	
!��

�����!	�������������
��
�������#
����������������
	!��	2

������	
���������8����	!���
#
�!��
����
�����
��	�	�����
��	
�������	������������%#
�������%����
��
�����	4�����	���
�!�

��
����
�������������	�������������������
	!����
��

��������4��

�����	
�	���

��
���������������������������2��	!�4
4�
�����
���#��%2��	���	�������������������
	�����
�	
���2��	����
��	#
������2��	4��
�����	
�

�����	
�		����2�
���	
�	
����!�����
	�

��
#���	����	�
4�4����!����
�	������
����
��	���
��
������������
		�����
	����#
����������	��
�����%
�4����������!��
����������
	�������������������#
��
��������
�	��
�	�

������

����		��
��%
�	��������4��������#
	��
����
	��������%����
#
����������	����
�
	���������������
��	�������
	�

��%
��		����
!���	!	�

����������
�
��
	����
����#
����������!���

�
�4��
�
��
	����
�	��������
��	�������7��
��������
��
	���2
����
���"
��������4������
�������
���������

�����	
2%	
�������
	�����
�#
������2��	�	�����
����������������

�������4����	
��
�
	���������	����
	�

��%
��	��
	����
!��%�
���������

������#
����
�
�
���	�������
��
����������������
����
��%	�������
�2%�����������2
�
��

��
��	���������4�%�	������%���0�����������
�	�0�	�������������������
�	�������
��
��0�!��

�����	
	
�����
	����
�	�����������	�����������	��	
�����
0��	�	
����
������
������!���	�������

����
��������

�
		������		���%
�������7��	4����������!��

�����	

�	��
	��#
�������

�
		�	���	�����	���
��
���������	��
	���2
���"
��������4��!����������

	����
���#��%�	�����	�����	�������	����
����
�
�����!��
�
���!

���������		�2�
�����
���
	�
�����	����
���

�����%#
����������	��������%��������������	��	�����	����	������	��
�������%��
�����%
��4��
�
	�����
���
��	�������
��	������	�"
��������
#�
�	��
��
#���	����	����
�
�������������
�������������������
	��������	4"
���������	�
�����
���

137

APPENDIX F

S. P. Azad, B. Niazmand, A. K. Sandhu, J. Raik, G. Jervan and T. Hollstein, “Automated
area and coverage optimization of minimal latency checkers,” 2017 22nd IEEE European
Test Symposium (ETS), Limassol, 2017, pp. 1-2.

����������	���
�����	�
������������
����
��������
��������	�������������
������������	�� �����
�����
���!��	��
�����"��
#�����$�	�"�	��
��%�����&�������
�'(���	���
����������)

�
��	�

�%����

*
���	������%���
���
��'+	�
���	�*
���	�����������������
���)����,-���������.
�����
������	�/��
0	����
�	�0/�	��
�������12���0���0��34567896:;<=>=>?@ABC<DEFG@<C<AFD=?A>DFCFEHI?HFDJ=>?@KILM<ANFDJFMB<DO=>?PNFIBI<C<=HFG=>?@H@=?MI?<DE?QPF@?J=FJ<GG?N?D=@FKNA?@FGGBKC=@<DAN?B@?@RSBD<G?@=B=<FDFGD?TJ?G?A=@JKN<DE@H@=?MU@NKDL=<M?OD?A?@@<=B=?@=>?D??JGFNBM?A>BD<@MPNFV<J<DEAF@=L?GG?A=<V?FDC<D?GBKC=J?=?A=<FDT><A>P?NGFNM@AFDAKNN?D=CHT<=>=>?A<NAK<=U@DFNMBCFP?NB=<FDBDJ>B@CFTBN?BFV?N>?BJBDJ><E>GBKC=AFV?NBE?RW@P?A<BCCHANKA<BC<@=>?GBKC=J?=?A=<FDCB=?DAHOB@=>?@H@=?MU@BI<C<=H=F<@FCB=?GBKC=@BDJN?AFV?NGNFM=>?M<@><E>CHJ?P?DJ?D=FD=>?J?=?A=<FD=<M?RX><@PBP?NPNFPF@?@=TF>?KN<@=<A@YINBDA>LBDJLIFKDJBDJEN??JHZGFNM<D<M<[B=<FDFGAFDAKNN?D=FDC<D?A>?A\?N@R]F=>BCEFN<=>M@K@?=>?AFDA?P=FGJFM<DBD=A>?A\?N@OPNFPF@?J<D=><@TFN\RX>?M?=>FJBCCFT@E?D?NB=<DEM<D<MBCBN?BA>?A\?N@@B=<@GH<DEB=BNE?=GBKC=AFV?NBE?T<=>=>?@>FN=?@=PF@@<IC?GBKC=J?=?A=<FDCB=?DAHRWQP?N<M?D=BCN?@KC=@J?MFD@=NB=?=>?BN?B?ĜA<?DAHFG=>?BPPNFBA>AFMPBN?J=FF=>?NM?=>FJ@R_0_ %#�(*�%_� ��
����	������
��
�
�̀�����	�
������
���
��
�	�����������
�	�.������������
�
����a�	��a��	̀����
��
��	�
̀��
����������0%������
��		�
��
��
�������	���	�������

��������	�

��	����b�����̀�����	�������
����	
	����.���������0_
��������	�a��	������
���	������	���������
�
���
��������
����
��		�
��
��
�������	����

�a������	�
����	������,.	�
��̀�
�̀.��
���
�
	����0$	�������	�����������a���a������
	�a�

��.�	��������	�a����.	�
��̀�
�̀.��
��	�������
�c����������
0������
�	�����������������
������defghihjklmknmop��	�������
����a�	���
�	��	���������������	������0%������������a�
�
�	���

��
�����	��������	���������

���	
�����������	�
�a���������	���������.���������������
����
��0__0�� �*##) %� �_)�&)�!)#��� �)�%_
����a�	�������
��������
��		�
��
��
�������	���
�	�������
qrs����.��
����������
���

�������̀���������������.��
����0t��
������

������������
�����������������	�����
��	���������	�����	�
���
�����
��������	�a�����	�
������%	��(�������
�%	�������+�������������
���
�

����0������	�b)�u���
�_
��cv�)_wqxs���.��
����������	����	��������

���������	���	��
��������
���	������0___0�&)�!)#�)y��*�%_� � (�_ _�_z�%_� +��t%���	������{�a��	���������
�
���
��������
�����������	�������
��	�����
+�
0r0(������������	���a�	�b�{�a���	����.��
�c����
���
qxs0�
����	��
���	�������	���a�	�������
���������	�������������	�v.��	���

̀���a�������������������
����.�����wa��������

r||}�)_0

~����������������������
�����������������������

���������������������
����������������������

�������������������������������������
���

�� ¡������������������¢����������������£�� ¤� �������������������

���������¢������������������¥����������������¦���������������������������§�������� ¡����������¡�����§�� ����������~���̈�©��~ª���������¢��������������+�
0r,������	�)��������
�
���
��������
+	���a�	�+��a���	�_
����a�	�������
��������
��	������{�a���«������a����a�
�a���	��������	�
��̀�
�̀���
��
�$	����0_���a�	��
���

��������a�	���������
���.�
����
��������	���	kehjoe¬­eogmhjmd��	�����0#�
�	��

�������̀������������������.���	�����	�������.��
�		�	�����̀���
®��		�����
����
�«��0���
�c������
��	�c��	���
���a��������������
�	����	���� ��	����	�������	�����
��	�����0&�a���	����������������	���
�����������������u���
�	��̀�	��
�����	�����
�����
.�����������
��	.��	�	��
�0_y0�&)�!)#�b�_ _�_z�%_� &)*#_�%_��_
����a�	���a����	�������	�������	�����
��������
�
������������
��	������{�a,
	�����
�.	�
��̀�
�̀.��
�0$	������
�	���� ����������	�b)�u���
��_
��cv�)_w��	��	��

���������	��
����
�	��������

�����	�� ����������������
������������)_�
���������	����	�������.�����������������
0�����������+�	�����	��v(+�w�������
�����
��̄oihkl­ihd­̄e°hd��
�	����a���������
�����	������	��
��������
0������������������	�������
v��.�����
�	.��

�����	���w��
�����)_�
��	���������������������	��	����������0������������������������
����.̀�	��.���a��������
�����
�����������va����������)_��������	����
�

������	�a��������
����	�

����	����
��	��
�w0�	�
��̀�
�̀.��
���
�	�����	�������c����������
��	�
������������	�0_
��	�c��	���
����a�����
�«����	����������	������	�����«������,

141

APPENDIX G

S. P. Azad, B. Niazmand, K. Janson, N. George, A. S. Oyeniran, T. Putkaradze, A. Kaur, J.
Raik, G. Jervan, R. Ubar, T. Hollstein, “From Online Fault Detection to Fault
Management in Network-on- Chips: A Ground-Up Approach”, 2017 The IEEE
International Symposium on Design and Diagnostics of Electronic Circuits and Systems
(DDECS), Apr 19-21 2017, Dresden, Germany.

���������	�
���
	�	��������
����
�
�	�	�����	������������������������������
����
�����
!
��	��"
�#$%	��
���
"�
��#$&
��'
����#$�	����	���	#$��	(�!	��	��	��!	���
�#$)����	 ���
�
�"	#$���		�&
��#$'

�*
��#$�	��'	��
�#$*
������(
�#$)���
�+�����	��#,
	�
���	���-������	��!��	��#)
���������	����!�-)	�������!$,��
��-�������	����!�-�����	����	��	�	�
���.��
�����$(��
"�
��$�
��/0
����$�	���$��	��$�����	$
�
��$0

�/�
��$�	��/0	��
�$�
��($����
�12
��/���/		34567896:;<=>?>@=?AB?CABDCACE><FCGE>C?A?HICJCK?A>=K@LA?J?BMN=M?AO>@=I<NLDCKF?AO?DECAEAO>@=>F=AO?HCA>=LBFE>CAB=P=FD?F=K?DQ?A=A>I?AEICABJ=K@CQR>@=S=>T?FUL?ALV@CQWS?VXQEFEOCBD@EI=D=FB=O>?EOOF=II>@=IKEJENCJC>MEAOQ=FH?FDEAK=I@?F>K?DCABI?HN<ILNEI=OCA>=FK?AA=K>IYZI>@=H=E><F=ICG=I@FCAUIR>@=IMI>=DB=>ID<K@D?F=I<IK=Q>CNJ=>?HE<J>IKE<I=ONMT=EFL?<>EAO=APCF?AD=A>EJ=HH=K>IY[@<IRCA?FO=F>?CAKF=EI=>@=F=JCENCJC>MRKF=E>=I>@=A==OH?F@EPCABD=K@EACIDI=DN=OO=OCA>?I<K@EIMI>=D>@E>K?<JOO=>=K>EAODEAEB=>@=HE<J>ICAF<AL>CD=Y\A>@CIQEQ=FREBF?<AOL<QEQQF?EK@HF?D HE<J>O=>=K>C?A>?HE<J>DEAEB=D=A>H?FI<K@ES?VLNEI=OIMI>=D ?AK@CQCIQF?Q?I=O>@E><>CJCG=IN?>@J?KEJHE<J>DEAEB=D=A>H?FHEI>F=EK>C?A>?HE<J>IEAOEBJ?NEJHE<J>DEAEB=D=A>D=K@EACIDIH?F>FCBB=FCABEJEFB=LIKEJ=F=K?A]B<FE>C?A?H>@=S?VYZJI?RO=>ECJ=OO=IKFCQ>C?A?HI>FE>=BC=IH?FHE<J>O=>=K>C?ARJ?KEJCGE>C?ARKJEIIC]KE>C?AEAOQF?QEBE>C?A>?EBJ?NEJHE<J>DEAEB=D=A><AC>EF=QF?PCO=OEAOD=>@?OIH?FJ?KEJHE<J>DEAEB=D=A>EF==JEN?FE>=OY_̂̀ab7c5:dE<J> ;=>=K>C?AR V@=KU=FIR dE<J> VJEIIC]KEL>C?ARdE<J>e?KEJCGE>C?ARdE<J>DEAEB=D=A>Rf=K?A]B<FE>C?ARS=>T?FUL?ALV@CQY g/g�)*�
��)g���	�������������h���i�
�	�	��	�
�
�
�
���� ��
���	����	��
�
(����!
���	�-���
��	�������������-��
�������
�(���(
�	�
�����	����	�jkl$jml/)�	��	���-�
�����
�		�	���������������������"	$�
�	���	����	����	���(�	���	
�����
��	�������	��
�	--	���/)����	�	����
�	���	�	�	�����
���
�
�	�	���--
�������������
���	�������	�-��	�!��	�$�����	���������	����	��	��
(����!/)�������
���	��	�
�	��
(�	���-�
�	����$��������
���
��	�
�
���	�������	���0	���
�	�%��n�	jol/g�������	��������-��-
����	�	�����
�����
��"
����$���
�-
����
�
�	�	��$���
�-
�����
���n�
����$
��-
�����-���
��������
�
������
���(
��!��	� �	
�����������������/g�
����(
�	��!��	���������$����	��
�	�	������(�	-����
����������
�
(��		���	 ���	�����p�	�	���h p�i/g��	�������������$
����	���������	��-
�
�
��
��
��
��������
��/)�	�
��	��
�	��
������	���
��	�
�
��
��$����	��	��������
�����	�����	q���-�
�

����	�
����	�
�
�������
�	��	�(�����
������	�(��		�����	��/)���$(���-����	�
�
��
��
����	��������
��$-
������	��
��	���-������������
��	-��
�	��
(�	��������
����/�����	�
�
��
��$	�����	�	�����
��r��	��������	������	����s�	�h����
������	�
���!
��+
�����	�������jtli�
�(��	�/+��	�	�$��	����	
�	
��	��	
��-	��������	������	����s�	�����
�+
�����$��	-�����-�����������������	(���
���!-����	�	�	������--
��������	�
�
��
��h���	������	������
���
�
��
��������	����-��	����	��i/

����	���	��
��$-
��������	��������
���-�������	��������(�
���	�/��	�
!�����	�	����	���
�������	�������	��	��	��h-������
��	��
��	
����
��	�������	���jul$jvli��	����	�����-
����	�	������
�	��!/)�	�	
�	
������	��	���������
�%�����g���	�-�)	��h%g�)ijwl/+��	�	�$��	!���	�������	����
���	�
�����-��	�!��	�-���	���������
-
���������	��	/)���$����	����	�-��������$�	-�������������	�������	�	�	������--
����-����	��������
���-����	��/g���������
�������	��
���	��	��	��������
���-
�����
�	-
������
��"
����jxl$�������������	�	-	����	�
������	�������/��������
��!$����	�
(���
���	���������
�(�
�	(
�	�����	�$����
�	y���	��	�-�	-	�����������
����	�h
�
��-���
������������
�����������i/������-���
�����
�(��	�-���	���n���
�����-��	�������
�����������	��
������-��	�
���(!���������
��	�-
�����
�����
�����
�����	������/z��������
�j{l�
�	
���	��	��������
!	�-
�����
������
�����(�������	��	��
���--	�	���	�	���-
(���
�����$���	�	�$��	!�����	�����
�	��!/�����	����	$��	!�
�	���
���	��	�
�!�	��
����-����
���n�
�����--
����
��-
����
�
�	�	��$�����
�	������	�	����������/g���������
���������
����
��-���-
����	�	��������
�
�	�	��-������(
�	��!��	������������������	�/���
�	��	�-��-
����	�	�����$���
��"
����$��
���n�
����
������
�
������
���(
�-
����
�
�	�	������
�	�	����(�/�����	����	$�����	���������	��	�	
��������	��-
����$�	�����-�����
�-
����
�
�	�	��
�		�
(��
�	�/)�	�	���-�����
�	������
��"	�
�-����������	�����gg��	(
�����-��	%��n�	-�
�	����$�����������	���
������	�
�����	����	
�	�������	�/�	�����ggg�	����(���	-
������	���	�����������
����	�	�����--
�����0	���������	�����/g��	�����g|��--	�	��-
����	�	������	��
�����-���������
���
�
�
���-��	����	��
�	�������	�/�	�����|�	����(��	������--
������
��"
����/�	������|g�	����(��	��	����	���--
�����
���n�
����
���	�����|gg������	��	������-�
������-
���!�
��	��
���	����	��	�	�/�	�����|ggg�	�
���-
�����-���
��������
�
�������!��	��	
�����������������
��n�
��!$�	�����}�������	���	�
�	�/gg/%���g*p�*��pz�*&~����������~�����������)�	
���-��	%��n�	���0	��������	
�	
-
�������	�
��-�
�	����-���	������	�	��
(����!�	��
�������
����(
�	��!��	���������h���i/)�	�
��	�	�����������
m
�	���������!��	�		
�����	�-��	�	��������������-
�������	�������������	�	s����	�����-
������	�
��	

149

Curriculum vitae

Personal data

Name: Behrad Niazmand
Date of birth: 03/12/1986
Place of birth: Tehran
Citizenship: Iran

Contact data
E-mail: bniazmand@ati.ttu.ee , bniazmand@gmail.com

Education
2014– 2018 Tallinn University of Technology—PhD
2010– 2012 MSC, Science and Research Branch, Azad University
2005– 2009 BSC, South-Tehran Branch, Azad University
2001– 2005 Roshd High school and Pre-University

Language competence
Persian Fluent (Mother Tongue)
English Fluent (B2)
Estonian Basic (A1)
German Basic (A2)

Professional employment
2014– Present Early Stage Researcher, Tallinn University of Technology

mailto:bniazmand@ati.ttu.ee
mailto:bniazmand@gmail.com

150

Elulookirjeldus

Isikuandmed
Nimi: Behrad Niazmand
Sünniaeg: 03.12.1986
Sünnikoht: Teheran
Kodakondsus: Iraan

Kontaktandmed
E-post: bniazmand@ati.ttu.ee, bniazmand@gmail.com

Hariduskäik
2014–2018 Tallinna Tehnikaülikool – doktorikraad
2010–2012 Azadi ülikool – tehnikateaduse magister
2005–2009 Azadi ülikool – tehnikateaduse bakalaureus
2001–2005 Roshdi keskkool ja kõrgkool – keskharidus

Keelteoskus
Pärsia keel – kõrgtase (emakeel)
Inglise keel – kõrgtase (B2)
Eesti keel – algtase (A1)
Saksa keel – algtase (A2)

Teenistuskäik
2014 – praegune nooremteadur, arvutisüsteemide instituut, Tallinna Tehnikaülikool

mailto:bniazmand@ati.ttu.ee
mailto:bniazmand@gmail.com

	Blank Page
	Blank Page

