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Abstract

In this thesis the author researches a problem of layouting large-
scale graphs in two-dimensional environment. The author explains the
basics of graphs and their real-world applications, defines the problem
being researched, brings focus to major issues and describes some of
the existing related work in this area. The researched problems that
automatic layout algorithms face include algorithm performance and
layout visual aesthetics. In this thesis the author defines large-scale
graph as a graph with over 1000 nodes.

Due to the large amount of applications in the real world using
graph theory, and authors’ wish to keep the research on generic level,
the algorithms researched and a solution implementation are not spe-
cific to one certain domain, but may be applied to several different
domains.

The graph layout algorithms under focus are force-based. Force-
based layout algorithms simulate the graph as a physical system with
forces between the nodes that is being run iteratively until the system
achieves an equilibrium state. There are descriptions of well known
force-based algorithms and author’s implementation of force-based al-
gorithm is based on the principles researched and found appropriate.

The experimental part is done in two phases. The first phase is the
implementation of a generic layout engine applicable to any Java-based
application. Second, the engine integration with CoCoViLa, a visual
model-based software development platform [1] in order to demonstrate
the capability of the implemented layout engine to solve the real world
graph visual layout problems.
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Annotatsioon

Käesolevas töös kirjeldab autor suuremõõtmeliste graafide auto-
maatse paigutusega seotud probleeme kahemõõtmelises keskkonnas,
seletab lahti graafide elementaartõed ning tutvustab graafide kasutus-
valdkondi. Autor toob esile graafide paigutamisel tekkivad suuremad
probleemid ning kirjeldab lühidalt selles valdkonnas eelnevalt tehtud
töid. Selle töö raames on suuremõõtmeline graaf defineeritud graafina,
mis koosneb rohkem kui 1000 tipust.

Kuna graafidel on erinevates valdkondades väga palju rakendusi
ja vastavalt autori soovile hoida vastav uurimus võimalikult abstrakt-
sena, on uuritud algoritmid ja implementatsioon rakendatavad mitmele
valdkonnale.

Graafi paigutamise algoritmid, mida selles töös vaadeldakse, põhi-
nevad graafi simuleerimisel füüsikalise süsteemina. Vastavad algorit-
mid simuleerivad graafi füüsilise süsteemina, mille tipud omavad üksteise
vahel tõukavat või tõmbavat jõudu, ning mida rakendatakse graafile
iteratiivselt kuni piisavalt stabiilne olek on saavutatud. Töös on kirjel-
datud üldtuntud jõududel põhinevaid algoritme ning autori loodud im-
plementatsiooni, mille tööpõhimõte baseerub vastavatel algoritmidel.

Autori loodud eksperimentaalne implementatsioon jagub kaheks os-
aks. Esimene osa on üldine graafi paigutamise mootor, mida saab
rakendada mistahes Java programmeerimiskeelel põhineval rakenduses.
Teiseks, mootori integratsioon CoCoViLa keskkonnaga, mis on visuaalne
mudelipõhine tarkvaraarendusplatform [1], et demonstreerida ja testida
loodud mootori võimekust reaalsete probleemide lahendamisel.
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1 Introduction

Visualising graphs helps humans to better understand the data presented
in the graph form and to easier analyse and detect patterns and anoma-
lies. Unfortunately, the ordinary graph itself never contains the data how
it should be drawn to be visually most pleasing and semantically most ac-
curate in the context the graph was designed for. This creates the graph
drawing problem, often called the graph layout problem [2].

Graphs are used in many different fields and automatic graph layout
algorithms are actively researched, with a lot of sufficient existing solutions
for most of the cases imaginable. The goal of this work is not to exceed
existing implementations, but merely an educational.

Automatic graph layout can be posed as an optimization problem where
a sufficiently good layout is found by searching for a configuration of nodes
and edges that is optimal with respect to various aesthetic criteria [3, p. 1].

The layout problem is generally not mathematically solvable and there
is no right or best layout. The layout fitness is usually dependent on human
perception and the graph domain. The actual algorithm complexity and
outcome depends on the implementation. Compromisses are necessary be-
tween different areas of the algorithm and enhancing or optimizing one part
may affect other parts negatively. For example, minimising edge crossings
may reduce the graph symmetry [3, p. 1]. The balance between the different
areas of the layout algorithm is the key to a visually appealing graph.

The major issue facing the automatic graph layouts is the diversity of
the possible graphs and the areas of use. A certain graph layout algorithm
might produce good results for one domain, but completely wrong, con-
fusing or inapplicable result for another domain. Some application areas,
like electronic circuit boards and VLSI(Very-large-scale integration) require
very specific approach considering the length of edges, grouping, node plac-
ing discipline and, possibly, a total absence of edge crossings, while other
graphs, used for representing relations between persons, may look better
with organic placing and no bending of edges.

In visual modelling environments, such as CoCoViLa [1], schemes speci-
fying domain-specific computational problems can be viewed as graphs with
objects on a scheme as nodes of a graph and connections binding attributes
of objects as edges. The edges between nodes may not be necessarily linear
and could require breakpoint for edge bends to look meaningful and good
to the observer. Nodes in a scheme occupy rectangular spaces and the lo-
cation of the ports, the connection points for the edges, should be taken
into account when placing nodes to minimize crossings, while not placing
the edges over any adjacent nodes or the source nodes themselves. Figure 1
demonstrates a graph in CoCoViLa from the domain of web services.

On a mathematical level, graphs can have unlimited nodes and edges,
while two-dimensional space cannot fit unlimited edges next to each other
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Figure 1: Graph in CoCoViLa

and still look aesthetically correct or trivially meaningful. This thesis does
not investigate such cases, and assumes the graphs can be rendered on two
dimensional plane without looking too cluttered.

The problem of graph layout can be split to two or more smaller sub-
problems, but is not required to, as solving the problem at once may result
in a nicer look, but is more complex to solve, having more types of objects to
depend on each other, requiring more dynamic approach. The subproblems
include placing nodes into appropriate positions and placing breakpoints for
the bends in edges. The research documented in this thesis tackles both
these subproblems as different phases of the graph layout process.

Studies have shown that layouts generated by force based algorithms
are preferred by users over any other layout algorithm implementations and
even over user-generated layouts [3, p. 1]. Considering previous and the
capacity limits of this document, the main algorithm under the focus in this
thesis is force-based.

1.1 Motivation

CoCoViLa allows users to create and manipulate schemes in the visual man-
ner and good placement is required for the graphs to look meaningful and
reflect the data present at visual observation. The fundamental problem of
drawing graphs was something that author of the thesis considered interest-
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ing.
The subject of this work was selected from the list of proposed topics by

the Institute of Cybernetics at Tallinn University of Technology.

1.2 Goal

The goal of the work is to research a problem of automatic layout on large-
scale graphs exceeding 1000 nodes, investigate and implement a convenient
layout algorithm for the purpose to use it in the CoCoViLa environment.

A graph layout problem can be defined as follows [4]:

“A fundamental and classical aesthetic is the minimisation of
crossings between edges. In polyline drawings it is desirable to
avoid bends in edges. In grid drawings, the area of the smallest
rectangle covering the drawing should be minimal. In all graphic
standards, the display of symmetries is desirable. It should be
noted that aesthetics are subjective and may need to be tailored
to suit personal preferences, traditions and culture.”
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1.3 Graphs

1.3.1 Introduction to graphs

A graph is a way of specifying relationships among a collection of items.
A graph G is a pair of two sets, first is a set of objects (V ), called nodes
(vertices), with certain pairs of these objects connected by links called edges
(set E) [5]:

G = (V,E)

Graphs can be divided to directed and undirected graphs, based whether
their relations apply equally to both connected nodes or in case of the di-
rected graph, the relation applies from one node to other, but not from the
second to first node. The actual meaning of the relation is completely sub-
jective to interpretator. The solutions researched, do not consider directed
graphs, having little or no semantic meaning in general context this thesis
is oriented to.

Graphs that allow multiple edges between a pair of nodes are called
multigraphs. These type of graphs sometimes allow edge loops from a node
to itself [6]. All graphs in this thesis are handled as multigraphs.

In exceptional situations it is even necessary to have edges with only
one end, called half-edges, or no ends (loose edges). This thesis does not
consider such cases [6].

Planar graphs are graphs that can be drawn on a plane in such way that
none of its edges cross each other [7].

Real life applications for graphs may require nodes having limited edge
connection points (ports) and in predefined positions relative to the node.
Graphs considered in this thesis all have predefined ports. This property
may cause graphs normally considered planar no longer be drawable on a
plane with no edge crossings.

1.3.2 Applications of graphs

Modern applications of graphs include computer networks, maps, artificial
intelligence, social networks, data mining, electronic circuits, virtual mod-
eling, computer graphics, flow diagrams, class diagrams, use-case diagrams
and many more.

The semantic meaning of the graph is usually domain specific. Some
problems consider only the connection fact itself, leaving aside weights of
the edges and nodes. A sample graph describing human relations can be
found in Figure 2.

Other problems may require graphs having very specific edge weights
and/or node locations, such as the Travelling Salesman Problem [8].

Graphs that have a fixed node locations are naturally not subjects for
the graph drawing problem.
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Figure 2: A graph representing relations between people

1.3.3 Graph drawing

Graph drawing addresses the problem of visualising the data present in
graphs in most meaningful and understandable way to visual observation.
Automatic graph layout algorithms are used to visualize the graphs in two-
dimensional or three-dimensional environment. Different algorithms are
used for different use cases. Layout algorithms are usually computation-
ally expensive and, in most cases, the outcome fitness is subjective to the
observer.

Research on graph drawing algorithms is spread over the broad spectrum
of Computer Science, from VLSI to database design [4].

The edges between nodes may require additional algorithm for break-
points if the use case prohibits diagonal straight lines. In this thesis the
placing of edges is considered a second subproblem after the initial position-
ing of nodes is executed and sufficient node layout is found.

1.3.4 Problem specification

The graphs in this thesis have several properties usually not present in graph
drawing problem. These properties make the algorithms to require addi-
tional time due to the calculations needed to produce better results for
modeling software.

The use case expects the nodes to have rectangular bounds and to have
dimensions, while force-based algorithms usually handle the nodes as singu-
larities. Force-based algorithms use distance between the nodes to calculate
the repulsive force between the nodes. Usually the distance is calculated
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from one node’s center to another node center. In our case, the nodes might
have large dimensions and applying the same kind of force to every node,
might cause larger nodes to overlap. This requires redirection of the force
hooks to prevent overlapping of geometrically massive nodes.

The second disparity with the typical force-based algorithms is due to
the fact that instead of considering edges without bendings, the work in
this thesis expects the edges to have breakpoints for connecting two unlev-
elled nodes, which creates a whole separate problem, independent from the
classical graph drawing problem.

The problem is even harder to solve satisfactorily given that the imple-
mentation should produce aesthetically good looking graphs on many dif-
ferent areas of use, while having no special knowledge about the semantics
of the graph. While it is obviously near impossible to consider all appli-
cation domains and produce perfectly aesthetic layouts for any input, the
force-based approach is the most suitable and likely to achieve good results
without requiring enormous amount of programming and conditions to de-
tect the domain from the graph structure, exceeding the limits of this work.
This is the main reason the present thesis only considers the force-based
algorithms.
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2 Force-based algorithms

2.1 Introduction

Force-based algorithms treat nodes as spring connected objects, hold to-
gether by forces remotely or directly based on Hooke’s Law. Hooke’s law
states: “stress is directly proportional to strain within the proportional
limit” [9]. The algorithm is often extended by adding global forces, like
gravitational force and electrically charged springs to avoid overlapping be-
tween different branches of nodes, which otherwise would not be aware of
each other. Force-directed methods consider the edges to be straight and re-
duce the problem to only placing nodes. The purpose of springs is to position
the nodes of a graph in two-dimensional or three-dimensional space so that
all the edges are of more or less equal length and there are as few crossing
edges as possible. The entire graph is then simulated as if it was a physical
system. The forces are applied to the nodes, pulling them closer together
or pushing them further apart. This is repeated iteratively until the system
comes to an equilibrium state, i.e., their relative positions do not change
anymore from one iteration to the next. The physical interpretation of this
equilibrium state is that all the forces are in mechanical equilibrium [10].
The first force-directed algorithms to produce good layouts for graphs with
over 1000 nodes is the algorithm of Hadany and Harel from 1999 [9].

Often the problem of drawing graphs is optimized by using heuristical
approach, called multilevel or multiscale technique. This approach groups
certain sets of adjacent nodes and simulates these as subsets, then recur-
sion is used to move higher in the hierarchy, placing larger groups of nodes
the same way. The resulting layout is described to have more global qual-
ity. Multilevel approach was first suggested by Reingold & Fruchterman in
1991 [2].

Experience shows that force-based algorithms produce good results with
well known graphs in Graph Theory, such as the skeletons of the Platonic
solids. They often produce highly symmetric results [11].

2.2 The advantages of force-based algorithms

Force-based algorithm works best on medium sized (50-100 nodes) graphs,
being intuitive, flexible and simple. Algorithms developed for large graphs
are also often force-based, because these algorithms adapt very well to un-
predictable situations, but tend to get stuck in local minima. Force-based
algorithms, being physical simulations, usually require no special knowledge
about graph theory such as planarity. The resulting graphs have good qual-
ity and organic look. The force-based algorithms are well studied and have
strong theoretical foundations [10].
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2.3 The disadvantages of force-based algorithms

There are two limiting factors for standard force-directed algorithms in draw-
ing large-scale graphs. Physical models often have many local minimums and
for a large graph it is likely that the algorithm will settle for one first en-
countered. This may be improved to a limited extent by introducing slower
cooling rate for the system, but for very large graphs it is near impossible
to find a good solution using a force-based algorithm [12]. The found local
minimum can be, in many cases, considerably worse than a global minimum,
which translates into a low-quality drawing [10].

The second limiting factor is computational expense. In the algorithm
of Fruchterman and Reingold [13], for any given node, repulsive force must
be calculated for every other vertex per every iteration. The typical force-
directed algorithms are in general considered to have a O(n3) running time [10],
where n is the number of nodes of the input graph [12]. A limited optimiza-
tion is possible by computing the repulsive force for only nearby nodes,
but this approach still needs the detection of nearby nodes, which may be
computationally as expensive as the full iteration over all nodes.

2.4 Application areas

The force-based layout style presents a multi-purpose layout for undirected
graphs. It produces clear representations of complex networks and is espe-
cially suitable for application areas such as [14]:

• Bioinformatics

• Enterprise networking

• Knowledge representation

• System management

• WWW visualization

• Mesh visualization

2.5 Force-based algorithm suitability for CoCoVila

With additional properties of graphs stated above, the force-based algorithm
should produce sufficient layouts for most cases in CoCoViLa.

In the case of a planar graph or a nearly planar graph, the force-based
algorithm will provide a high quality layout, further improved by appropriate
edge placing algorithm. The number of overlapping edges will be minimised,
depending on the locations of ports on the nodes.
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3 Implementation

3.1 Introduction

CoCoViLa allows users to automatically synthesize programs from declara-
tive visual specifications (schemes), which are, in essence, multigraphs. Such
domain-specific schemes consist of visual objects that need to be placed man-
ually by the user for aesthetic look. Visual objects have predefined shape
and dimension and contain ports for connecting with other objects. Con-
nections (edges) may optionally have bendings (breakpoints).

The implemented solution discussed in the present section was done
keeping in mind that the layout algorithm could be used on many differ-
ent domains, thus any special information about the graph is not revealed
to the layout. The information accessible by the algorithm is the size of
nodes, the location of ports on a specific node and the connections between
nodes without any specific limitations or predefined information about the
domain. For some domains that require precise placing of nodes and edges
the generic approach might not be suitable, but the practice has shown that
for automatically generated graphs a generic layout is still a good starting
point for further manual adjustments.

The interface providing the algorithm functionality is designed to be
easily extendable, and considering any future work in this area, additional
algorithms for specific domains may be easily added for improvement later.

3.1.1 Geometrical properties of nodes

The main geometrical property of a node that needs to be taken into ac-
count for layout algorithm is node’s dimension, which defines its the bounds.
The size is a rectangle shaped area defined by width and height. Figure6
depicts node’s bounds with outermost rectangle. The algorithm drawing
graphs faces the problem of considering the size of the nodes while placing
them. Nodes, which have one dimension exceeding the other dimension a
number of times create a problem of centered uniformly distributed force,
leaving out the farther edge parts or making the force there significantly
lower (Figure 3.A). The other extremum is creating too much force, which
produces unnecessary hole in the layout for theoretically extra long nodes
(Figure 3.B). From the Figure 3 it is possible to determine that there is no
right amount of uniformly distributed force, which could solve this problem.
By increasing or decreasing the force one of the stated problems is always
magnified.

The solution this thesis proposes is to redirect the force vector for nodes
to the nearest edge of the node, which can be seen in Figure 4. The imaginary
line from the center of one node to the center of the other node creates a
cutting point with the two edges of the nodes, and the force strength is
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Figure 3: A) Node having too small forcefield, creating possible overlapping.
B) Node having too big forcefield, creating excessive force on sides.

Figure 4: Redirecting force vectors

calculated from the length and direction of the resulting segment between
the nodes.

3.1.2 Central node

An invisible central node is added to the graph, which is treated like it is
connected to every other node. It acts like a real node, and moves itself
according to the forces as every other node. Its purpose is to keep uncon-
nected graph parts together, which would otherwise be pushed farther and
farther away from each other. It also enables to keep satellite groups from
being pushed too far from the main group. See Figure 18 on page 36 for an
example of satellite groups.

3.1.3 Ports

Abstract graphs in mathematical sense connect edges to nodes, with no
predefined location for the connecting point, there is just the connection
fact.
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Figure 5: Example of ports and edges

Figure 6: Edges directed from ports to nearest edge of the area

The present work deals with nodes that have shapes and zero or more
ports, which handle the connections to other ports, either owned by the
same or foreign node. Example of ports can be seen in Figure 5. Edges are
connected to a port in node. Port have predefined locations and one port
connects to another with an edge or is unconnected. The locations of the
ports can be anywhere within the area of a node.

In most cases it would look aesthetic to draw the edge from the port
to nearest bound of the node area to keep it from drawing over the node
graphic, and due to the unforeseen cases possibly arising in real life situa-
tions, this is the strict policy chosen throughout the work examined in this
thesis. An explanatory scheme can be seen on Figure 6.

16



3.2 Breakpoints

3.2.1 Introduction to breakpoints

To connect two unaligned nodes with a non-diagonal edge, that is, the edge
with only horisontal and vertical segments, there is a need for one or more
breakpoints to connect the different segments of the edge. Breakpoints act
as invisible nodes connecting two edges for a bend.

Positioning breakpoints creates a similarly difficult problem of position-
ing nodes. The obvious restriction is that the two breakpoints connected by
edges, should be positioned on the same vertical or horizontal level, if the
aesthetic criteria defines that the edges should not be diagonal.

The other restriction is that edges should never cross a node. It would
also make sense to avoid previously placed breakpoints, because the result
of edges intersecting at corners may create visually complex drawing, where
several edges connect. In the current implementation, the former is not im-
plemented and edges often join graphically. This restriction is excluded from
implementation because graphs in CoCoViLa often allow multiple edges to
connect to a single port and it would create unnecessary complications and
a confusingly looking result.

3.2.2 Preparation stage

Internally, the layout engine holds nodes of a graph in the memory as a
linked list of node objects, which have predefined dimensions and location
on absolute scale. When the algorithm places breakpoints, it needs to search
for clear paths so it would not place edges over any nodes.

Detecting if a certain coordinate is vacant using linked list is computa-
tionally costly and requires iterating over every node and calculating if the
coordinate is a part of any known node area. Doing this routine for every
coordinate, which could be considered a part of a potential edge, requires a
lot of computing power.

The algorithm accounts this by precomputing a two-dimensional boolean
array, what is called a local map (Figure 7), surrounding two nodes connected
by an edge. The map is computed with a reasonable buffer zone around both
nodes, such that the potential edge has a possible path around both of the
nodes, if the port placement requires it. The map includes every node that
intersects the observed area. Also the bounds of nodes placed on the map
are slightly expanded, so there would not be the edges placed too close to
the side of the node later on. Two-dimensional array has a very fast access,
which allows the breakpoint placing algorithms to make more attempts to
place the edge successfully later on, without having a large performance
overhead on the algorithm.
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Figure 7: A computed local map of two selected nodes shown as red.

3.2.3 Placing breakpoints

The strategy of placing breakpoints consists of searching for vacant “L-
shaped” routes. It starts with two coordinates that are the coordinates
calculated by directing the edges out of the source node area to nearest
vacant area.

First, the algorithm tries to detect if the coordinates are aligned and
have a vacant route between them. If these conditions are met, then no
breakpoints are needed, and the operation is successfully terminated for
this edge.

Second, it tries to detect, if the two coordinates can be connected with
an “L-shaped” edge. For this the algorithm checks if one of the two possible
routes is free from one coordinate to other. If there is a free route, then a
breakpoint is placed in the calculated corner, and operation is successfully
terminated.

Third, the absolute middle point for the two coordinates is computed.
Then, the algorithm tries to reapply the second routine to both coordinates
again, but using the middle point as the goal this time, which might result
in two “L-shaped” edges connected to each other. The three breakpoints
are applied only if the free route was found.

If all previous steps failed to find a free route, the algorithm tries to
apply the third routine in a nested loop, this time placing the middle point
to all over the local map area, with small gaps between placing it. This is
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the last attempt and is very likely to succeed in the most cases.
In rare cases, when the route couldn’t be found, the edge is left without

any breakpoints, resulting in a diagonal line, indicating that the route would
probably look better if the user placed it manually. Sometimes when the
graph is complex and the layout algorithm has generated a tightly packed
result, a single diagonal line over several nodes might even give a clearer
image to the observer than the one with many breakpoints.

Final option would be to apply a kind of the path searching algorithm
to the edge, which couldn’t be placed otherwise. This step is left as a future
work on the project as it would not give any reasonable advantage for the
current implementation.

3.3 Layout Engine architecture

In this section two class diagrams are shown and elaborated. Class diagrams
represent the structure and relations between different parts of the algorithm
used in the implementation.

3.3.1 Nodes layout module

First, a class diagram of nodes and algorithms involved placing them is
shown in Figure 8.

• Node class contains information about the Node basic information like
dimension, location, and list of ports.

• PhysicalNode is a wrapper class for Node class, and contains some
additional information specific to force-layout, like velocity and mass
of the node.

• Port class is referencing its owner node and the port it is connected
to or null if port is not connected to any other port. It also contains
a list of breakpoints for this connection between the two ports.

• Force class is a simple class containing two doubles for force direc-
tions on a plane and a utility method, which allows to calculate force
absolute value.

• Graph class is a container for the collection of nodes.

• Layout interface is designed to allow generic interaction with the lay-
out objects, which is necessary if more layouts are to be added in the
future.

• ForceLayout class is an implementation of layout interface and con-
tains the force based algorithm implementation described in this thesis.
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Figure 8: Class Diagram: Placing nodes using Force Layout
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• LayoutConfiguration Class allows to view and modify the parame-
ters used by the layout algorithm.

• ForceLayoutConfiguration class is a control object for the
ForceLayout, which allows to modify the values used by the
ForceLayout.

• NodeTask class is a reusable Runnable object used by the ForceLayout
and generated one per node, to calculate the forces for the node. This is
required for multithreaded execution, which means several NodeTasks
can be executed simultaneously on multiple processor cores.

• UpdateListener interface allows to add custom code to ForceLayout

which method ‘update’ is intended to be invoked after every iteration.
The related methods are also available in the super class, Layout, but
the actual moment, when the listener is notified, is dependent on the
specific implementation.

3.3.2 Breakpoints placement module

Figure 9 describes the classes and their relations involved in breakpoint
placing.

• BreakpointManager class is the access provider to the breakpoint
placement functionality.

• BreakpointPlacer interface contains a method that takes a port as
an argument and the implementation of this class should place the
breakpoints to the connection if needed.

• PathCalculator interface has a single method, calculatePath, and its
properties are inherited from its factory, based on the specific argu-
ments passed for that specific port, to which breakpoints are going to
be calculated.

• CollisionMap class creates a two-dimensional boolean array from the
provided Port and Graph object, by creating a local map of the area,
from where free path is searched by the PathCalculator.

• StandardPlacer class is an implementation of BreakpointPlacer. It
leads the connection out of the node area by placing two breakpoints
to calculated positions. Then it creates a CollisionMap and uses
the provided PathCalculatorFactory to generate a PathCalculator

implementation, which will place the breakpoints between the two
nodes, using the generated CollisionMap
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Figure 9: Class Diagram: Placing breakpoints to edges
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• PathCalculatorFactory interface is used to generate specific
PathCalculator objects, which are used for calculating breakpoint
locations between two ports.

• CornerPathCalculator class is an implementation of PathCalculator
which uses L-shaped search for free paths and places the breakpoint
when free route is found. It is not guaranteed that the route is found
even if it exists.

• FutureBreakpoint is a placeholder breakpoint used by the
CornerPathCalculator. FutureBreakpoint is not immediately ap-
plied, but only when the algorithm has been fully executed and a path
has been found. This helps to avoid situations when half of the path
is found and other half could not be found, because of the dead end.

3.4 Pseudocode

The compact simplified pseudocode of the force based algorithm, excluding
multithreading code and supporting methods and classes, could be repre-
sented as follows:

do while ’run’

for each node1 in ’nodes’

create new force

for each node2 in ’nodes’

Calculate force hook location for node1 as a

Calculate force hook location for node2 as b

define xdifference as a.x - b.x

define ydifference as a.y - b.y

define sqrdifference as xdifference * xdifference +

ydifference * ydifference

define massmultiplier as node1.mass * node2.mass *

massconstant

force.x add massmultiplier * coulombconstant *

(xdiff / sqrdistance)

force.y add massmultiplier * coulombconstant *

(ydiff / sqrdistance)

for each connected node

Calculate force hook location for node1 as a

Calculate force hook location for node2 as b

define xdifference as a.x - b.x

define ydifference as a.y - b.y

force.x add xdiff * hookeconstant
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force.y add ydiff * hookeconstant

if center force is enabled

add attraction force between node and center

node.velocity().x add netForce.x,

result reduced by dampingconstant

node.velocity().y add netForce.y,

result reduced by dampingconstant

for each node in nodes

calculate and set new position based on forces and offset

sleep predefined time before starting next iteration

calculate offset for next iteration

notify updatelisteners

3.5 Integration with CoCoViLa

A dialog was added to CoCoViLa (Figure 10) that enabled to configure some
of the constants used by the ForceLayout. The dialog allows to start the
layout algorithm and keep control the constants during runtime, which are
redefined before the next iteration if user decides to apply those. A special
hook was added to ForceLayout algorithm which forces the main iterating
thread to execute tasks before the next iteration. CoCoViLa uses that hook
to apply new configuration settings between the iterations safely.

After every iteration the ForceLayout notifies its listeners about the
total velocity of the nodes. CoCoViLa adds a listener and uses the provided
data to redraw the graph at the right time, if drawing in real time is enabled,
and shows the progress of the layout algorithm on the corresponding progress
bar.

The main difference between the two hooks between the iterations is that
the first hook, Runnable, gets executed once and is removed after, while the
second hook, UpdateListener, is executed every iteration with the new data
about the total velocity of the nodes.

To translate the CoCoViLa graph to the graph usable by the ForceLayout
an adapter was needed, which takes CoCoViLa ObjectList and
ConnectionList as the arguments and composes the corresponding graph,
which the layout can use. After every iteration, if the graph drawing is
enabled, the graph uses previously composed maps to place the CoCoV-
iLa objects according to the placed graph. If graph drawing is switched
off, the graph is only translated back after the algorithm is stopped, saving
computation time.
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Figure 10: Layout control dialog in CoCoViLa

The breakpoints are translated similarly, but due to the absence of it-
erative properties, the breakpoints get placed, translated and drawn in Co-
CoViLa sequentially and as a single command to the user.

3.5.1 CoCoViLa integration architecture

The class diagram in Figure 11 describes the algorithm’s integration for
CoCoViLa.

• LayoutManager class is the entry point from CoCoViLa to the Layout

implementation. It takes CoCoViLa graphs and is able to apply any
provided layout to those graphs. It also manages the breakpoint place-
ment and translates them as necessary.

• GraphAdapter class is used for converting CoCoViLa Node and
Connection objects to a Graph, that is usable by the ForceLayout.

• DialogManager class manages the relations between CoCoViLa canvas
and LayoutManager.

• LayoutDialog is a dialog which is used to control the layout algorithm
in CoCoViLa. It connects to the ForceLayoutConfiguration.

3.5.2 Source code

The source code for Layout Engine and CoCoViLa integration is available at:
https://bitbucket.org/jvali/graphs-engine

https://github.com/JoonasVali/CoCoViLa/tree/layout
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Figure 11: Class Diagram: CoCoViLa Integration
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4 Related work

4.1 The Spring Embedder Method - Eades algorithm

The Spring-Embedder method is the earliest viable method for drawing
general graphs. The algorithm is often described as a physical system of
steel rings connected by electrical springs. The original Eades algorithm did
not follow the Hooke’s law, but invented his own logarithmic force formula
for the edges between the nodes, because the Hooke’s law resulted in too
strong force between the more distant nodes [13]. F1 = c1 ∗ log(d/c2), where
d is the length of the edge, and c1, c2 are constants. Every vertice has a
repulsive force towards any other vertice. F2 = c3/d

2. The method proved
to be successful up to 50 nodes [15].

4.2 Fruchterman and Reingold algorithm

The Fruchterman-Reingold Algorithm [13] fits for visualising large undi-
rected graphs. It is based on Eades, which in turn evolved from VLSI
technique called a force-based placement.

The authors describe the algorithm based on two principles:

1. nodes connected by an edge should be drawn to each other

2. nodes should not be drawn too close to each other

Although, additional factors are present, inspired by atom nuclei, be-
ing the repulsive force and temperature, making the system lose energy by
cooling down.

Three steps are ran for every iteration: calculate attractive forces for
every connected pair, calculate the forces of repulsive forces, and, finally,
limit the displacement by the temperature.

4.3 Kamanda and Kawai method

Kamanda and Kawai method [15] is based on Hooke’s law. It can also be
considered as a system of springs. The output quality is similar to the Spring
Embedder method, but the advantage of the method is that it takes into
account the weights of the nodes.

4.4 Multi-Scale Algorithm - Hadany and Harel algorithm

Hadany and Harel [15] focused on drawing larger graphs. It simplifies the
structure of the graphs by introducing coarse graphs. The energy minimisa-
tion is localised to small neighbourhoods, resulting in relatively fast solution,
compared to algorithms simulating full physical systems.
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4.5 Harel and Koren

Harel and Koren’s [15] extremely fast algorithm is motivated by Hadany
and Harel algorithm and built around Kamanda-Kawai method. It was de-
signed as a fast algorithm for undirected straight edged graphs. The authors
state the algorithm could significally improve the speed of any force-directed
method. The algorithm uses approximation, where closely positioned nodes
are collapsed into a single vertex. It produces fewer edge crossings than
Kamanda-Kawai algorithm and supports drawing graphs containing over
15000 nodes.

4.6 Davidson and Harel algorithm

Davidson and Harel [13] used system energy reduction method. They adapted
a method from VLSI, simulated annealing, which is computationally costly.
The method restates the graph placing problem as an optimization problem
by turning it into energy minimization problem.

Simulated annealing requires energy function. Davidson and Harel com-
bined it from vertex distribution, distance from edge and edge-crossings.

4.7 The method of Walshaw

Walshaw’s multilevel force-directed algorithm [2] is an extension of Fruchter-
man and Reingold algorithm, which can deal with huge graphs, over 100 000
nodes, in relatively short time [15].

It places nodes initially randomly, and uses multilevel approach. The
idea is to cluster the nodes and simulate the subset of graphs by one level at
the time, then by higher hierarchical level, it can consider the previous level
graphs and apply the same logic on a level down. The layout isn’t applied
concurrently on different levels, but rather the graph is refined at each level
and the result is extended to the level down.

4.8 Quigley and Eades method

The algorithm is an improvement to the original Spring-embedder algorithm,
it features clustering to a quad-tree structure. The forces of distant nodes
are approximated and clustered into a single force significally reducing the
total amount of forces computed [15].

4.9 Comparison to the implemented force-based algorithm

The implemented force-based algorithm base, like all force-based algorithms,
is similar to original Spring-Embedder method, having edges as springs
pulling the nodes closer and otherwise pushing the surrounding nodes away.
It is remotely influenced by Kamanda-Kawai method, including weights for
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nodes. The algorithm is also using similar approach to the method of Wal-
shaw, by optionally making the node initial placement random. The al-
gorithm is not multileveled, which could be implemented in the future, to
make significant performance improvements, but unlikely to have better vi-
sual results.
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5 Analysis

5.1 Analysis methods

In this section the produced layouts and breakpoint placements are dis-
cussed. The algorithm is applied on several CoCoVila packages, which use
different sets of nodes to see how the algorithm manages to place break-
points in unforeseen situations. Due to the fact that the layout fitness is
completely subjective and dependent on the observer, our conclusions are
also subjective and the results can not be absolutely or precisely evaluated.

The evaluation of the force layout algorithm performance is complicated
for two reasons. First, the properties we have added to the graph compared
to the graphs used by many authors who have researched the same prob-
lem previously, make the algorithm complex and there are many possible
optimizations that can be introduced on algorithmic level or by using some
sort of caching for repetitive calculations. The following optimizations were
added to the implementation: concurrency and caching of reusable compo-
nents. Such optimizations are not final and more can be added later, which
might make the algorithm perform faster.

Second, the algorithm does not have a “ready” condition, and user ac-
tion is required to stop the algorithm, due to its iterative properties. The
performance evaluation will require a precise moment when the algorithm
has finished its job. Very often the algorithm can be terminated before the
whole system has stabilised and still have a decent result. The forces are
biggest in the first iteration and smallest in the last iteration, thus waiting
for the algorithm to “end” would be almost worthless waiting for smaller
and smaller changes to happen. Despite that, the end condition for the al-
gorithm could be calculated by measuring average node velocity during one
iteration and comparing it to few next iterations to see if progress is big
enough to keep the algorithm going or to conclude that the algorithm has
finished. In other words, the latter approach requires a subjective view on
how small change is small enough to be considered final. Also there might
be a certain kind of stagnation or even increasing velocity at certain stages
at the beginning of the placing operation, particularly when the graph is in
very unstable condition from the force-based layout’s point of view and an
“explosion” occurs, when the algorithm is launched.

5.2 Performance

For performance testing following computer specification was used:

OS: Windows 7 64-bit

Processor: Intel Core i5 2500 Quad Core 4 Threads 3.30 Ghz

RAM: 4x2GB DDR3 1333 DIMM
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For testing we measure elapsed time in different equilibrium states of
the graph: 50%, 75%, 90%, 95% and 97% of maximum recorded. The
percentage is calculated from maximum velocity compared to the current
velocity of nodes in the graph subtracted from total of 100%, and for that
reason is subjective to the initial placement of the graph. The greater the
total velocity of the initial placement, the easier it is to reach the goals. In
tests the nodes in graphs were initialised in random positions in dynamically
calculated area. Also the drawing and translating of the calculated graph
to CoCoViLa per iteration is turned off during the performance measuring.

Pull constant: 0.01

Push constant: 100.0

Cooldown rate: 0.65

All times are shown in milliseconds.

--- | 888 nodes | 1120 nodes | 2160 nodes |

--- | 1508 edges | 3519 edges | 5959 edges |

50% | 1 986 | 265 | 12 407 |

75% | 4 050 | 5 240 | 19 931 |

90% | 18 032 | 20 326 | 43 470 |

95% | 45 418 | 77 168 | 130 718 |

97% | 70 642 | 138 771 | 492 395 |

It is important to notice that the performance results gathered are highly
subjective to the graph structure and its initial node positions. Also the
completion percentage, at when the times are measured are dependent on
the maximum velocity of the nodes in graphs, which is, in turn, dependent
on the initial positioning. The results should not be interpreted as absolute,
but rather as relative to each other, showing the total computation time
growing exponentially as the number of nodes grows. The performance
results can be seen as a line chart in Figure 12.

While equilibrium is a sign that a good layout has been found, there
is no guarantee, that 95% placed graph is any better than the 50% placed
graph. The good layout in reality might not necessarily need such symmetry
and mathematical equilibrium to look good and very often does not.

5.3 Visual analysis

5.3.1 Scheme with many ports

When layout is applied to a scheme with many ports and connections on
nodes, we get results as seen on Figure 13, page 33. Due to the factor
that the ports are located in orderly fashion and are aligned, the resulting
breakpoints are often placed on the same line, creating a kind of minimised
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Figure 12: Performance Testing (888, 1120 and 2160 nodes)

layout with connection “highways”, where a lot of connections are placed
on top of each other, if they share at least one node.

The result might look visually good, but the shortcoming is that just by
looking, it might be hard to tell which port connects to which port. Once
clicked on, CoCoViLa highlights the connection, enabling to see the actual
connections. CoCoViLa allows to connect one port to several other ports,
so “reserving” paths for only one connection really does not seem to be
an option in this case and it looks like the algorithm solves this problem
satisfactorily.

Similar large graph with 1120 nodes can be seen on Figure 15, page 34.
It shows some signs of grouping. From the closer view on Figure 14, page
33, we can see that the graph has small density of unplaced edges, which
generally does not make the graph less comprehensible, if there are not too
many of those.

5.3.2 Scheme with few ports and many connections

In other case, we have a large graph with lots of connections and a few ports
on nodes (Figure 16, page 35). The resulting layout is somewhat confusing,
but not less confusing than the result of placing the nodes manually. The
main reason this particular graph looks confusing when placed is that it is
very far from being planar and there are very many connections per port.
As a result the neighbouring nodes are often torn apart across the canvas.

The same graph, when examined from parts not in the center, where
most connections go through, has some meaningful and visually pleasant
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Figure 13: Close view of the placed graph with breakpoints applied (Trun-
cated)

Figure 14: Close view of a large graph with 1120 nodes
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Figure 15: Distant view of a large graph with 1120 nodes
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Figure 16: Close view of the placed graph with breakpoints applied (Trun-
cated)

group of nodes placed on the side areas (Figure 17 , page 36).

5.3.3 Satellite groups

From Figure 18 we can see that large graphs create a problem with loosely
connected groups. The nodes located in the main part of the graph generate
a lot of force towards the small groups and single strings fail to pull those
groups back to the main group, pushing the graph too wide and forming
satellite groups far from center. The issue can be countered by using the
central node, mentioned in section 3.1.2.

Figure 19, page 37, shows an example of a graph with central node. With
rest of the parameters the same, it looks more compact, with no satellite
groups. A sample close up from the same graph can be seen on Figure 20,
page 38

35



Figure 17: Close view of the placed graph with breakpoints applied (Trun-
cated)

Figure 18: Distant view of satellite groups (Truncated)
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Figure 19: Distant view of a large graph with center node enabled
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Figure 20: Close view of a large graph with center node enabled
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6 Conclusions

The force based layout algorithm produces a convenient layout style for
unpredictably composed graphs. The layout is able to adapt to any new
situation, programmer never might have foreseen. The layout works best
for small and medium sized graphs. For large graphs some user help is
needed to find the equilibrium of the forces in the graph.

On large-scaled graphs the algorithm works well, if the graph is nearly or
completely planar. Non-planar graphs may sometimes force the neighbour-
ing nodes far away from each other, creating problems with placing edges
later, which tend to look crowded if this situation is present throughout the
graph.

The layout algorithm can be used with different domains, optionally with
a little configuration assistance from the user. In case there are many edges
per ports, the algorithm manages to overlap some of the edges, and making
the graph look less crowded to the observer. This comes with a cost with
the graph being more confusing if single edges are intended to be visually
distinct.

Graphs with a lot of nodes tend to divide into several groups if it is
possible. Grouping in the layout happens when two or more groups of nodes
are connected by relatively few edges to each other. The forces between the
two groups then force the nodes to float apart, while the single or few edges
try to pull those together.

Optional central node helps to keep unconnected parts of graphs and
groups together and forces the satellite groups back to the main graph.
The central node might make the graph look more crowded, which can be
balanced by introducing bigger coulomb force.

In most cases the simple L-shaped pattern for placing breakpoints to
edges is sufficient, but in case the graph is more crowded, the algorithm
fails more often to find a way. User may counter this, by configuring the
algorithm so that there would be left more room between the nodes.

Due to the fact that the every node is required to iterate over every other
node, when calculating forces, the complexity of a single iteration for the
force-based algorithm can be roughly evaluated to O(n2). The performance
analysis done confirms that multiplying the number of nodes is exponentially
reflected in the time of achieving equilibrium in the graph.

For some domains, the force-based layout and the accompanying break-
point placement fits better than for the others. The domains that have very
few ports for nodes with many connections tend to look more confusing than
the ones with many ports and many connections.

In conclusion, the implemented force-based layout in CoCoViLa can
be used with a limited success on large graphs, and some configuration is
needed. The produced layout is comprehensible in most cases, and usually
configuring the layout to have smaller pulling forces between edges, con-
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stituting better results in cases where too many edges are otherwise left
without breakpoints and nodes are too close to each other.

6.1 Future work

The engine has been designed to be easily extendable and in the future it
is possible to add additional layouts and edge positioning algorithms. In
CoCoViLa, a valuable extension could be the possibility to equip visual
language packages with custom layout managers and layout configurations
specific to domains of packages. This would save unexperienced users from
manual effort to choose and setup the layout.
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7 Summary

Graph drawing helps humans to understand the data presented in the graph
form better to detect anomalies and patterns.

CoCoViLa allows users to create and manipulate schemes in the visual
manner and good placement is required for the graphs to look meaningful
and reflect the data present at visual observation.

The goal of the work was to research a problem of automatic layout on
large-scale graphs exceeding 1000 nodes, investigate and implement and to
implement a convenient layout algorithm for the purpose to use it in the
CoCoViLa environment.

In Section 2, Force-based algorithms, force-based layouts were described
with their application areas. Force-based algorithms treat nodes as spring
connected objects, hold together by forces remotely or directly based on
Hooke’s Law. The purpose of springs is to position the nodes of a graph
in two-dimensional or three-dimensional space so that all the edges are of
more or less equal length and there are as few crossing edges as possible.
The entire graph is then simulated as if it were a physical system. force-
directed algorithms are in general considered to have a O(n3) running time.
In case of a planar graph or a nearly planar graph, a force-based algorithm
will provide a high quality layout, further improved by appropriate edge
placing algorithm. There are no or very few overlapping edges, depending
on the locations of gates on the nodes.

In Section 3, Implementation, the details of the implemented algorithm
and related work done previously on this area were described. The imple-
mentation was written kept in mind the algorithms could be used on many
different domains, and thus any special information about the graph is not
revealed to the layout. The information revealed is the size of the node,
the location of the ports on specific node, and the connections between the
nodes without any specific limitations or predefined information.

To solve a problem of uniformly distributed force around a node, which
might not necessarily be square shaped, force vectors were redirected to the
edge of the node, as seen on Figure 4, page 15.

An invisible central node was introduced, which connects to every other
node, to keep unconnected parts of the graphs together and the graph com-
pact, described more in detail on page 15.

To connect two unaligned nodes with non-diagonal edges, there is a need
for a breakpoint to connect the different parts of the edge. Breakpoints act
as invisible nodes connecting two edges for a turn.

A map of local elements was created between two selected nodes, to
compute the locations of breakpoints more efficiently. The map can be seen
on Figure 7, page 18

An simple yet effective algorithm was developed to place the breakpoints,
by detecting L-shaped vacant routes on the computed local map. The al-
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gorithm is based on trial and error method and the calculated breakpoints
are often a result of combination of two L-shaped paths. The algorithm can
be improved further to calculate unlimited amount of combinations for the
breakpoints iteratively, always succeeding, if path exists.

To integrate the developed force-based layout to CoCoViLa, several code
hooks were introduced for injecting custom code to the graph placing pro-
cess, described more in detail on page 24. A dialog was designed to control
the layout configuration constants and the layout running process, as seen
on Figure 10, page 25.

Related work details in this area were described in Related work, page 27.
In Section 5, Analysis, relative performance test results of the layout

algorithm were published, which were done by measuring the time of graph
achieving certain percentage of equilibrium, which was detected by com-
paring maximum velocity of the nodes to the current velocity. The results
indicated that the time which was needed to achieve a specified level of equi-
librium in the graph, grew exponentially when number of nodes was nearly
doubled. It was also noted, that equilibrium does not necessarily equal to
the visually good looking layout.

Due to the fact that the every node is required to iterate over every other
node, when calculating forces, the complexity of a single iteration for the
force-based algorithm can be roughly evaluated to O(n2). The performance
analysis done confirms that multiplying the number of nodes is exponentially
reflected in the time of achieving equilibrium in the graph.

A visual examination of the graphs showed that certain problems arise
placing large-scaled graphs and often calibration is needed by the user, to
produce the visually good looking results. Some domains were not placed as
successfully as others, because the nodes had large amount of edges per port,
and as large amount of neighbouring nodes, which create difficult looking
layouts, if the node is not actually placed anywhere near the neighbouring
node.

It was concluded that on large-scaled graphs the algorithm works well, if
the graph is nearly or completely planar. Non-planar graphs may sometimes
force the neighbouring nodes far away from each other, creating problems
with placing edges later, which tend to look crowded if this situation is
present throughout the graph.

The implemented force-based layout in CoCoViLa can be used with a
limited success on large graphs, and some configuration is needed. The
produced layout is comprehensible in most cases, and usually configuring
the layout to have smaller pulling forces between edges, gives better results
in cases where too many edges are otherwise left without breakpoints and
nodes are too close to each other.
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