
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Vladimir Potašenkov 123687IAPB

LINNWORKS SYSTEM STATUS

MONITORING

Bachelor’s thesis

Supervisor: Deniss Kumlander

 PhD

Vanemteadur

Tallinn2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Vladimir Potašenkov 123687IAPB

LINNWORKS SÜSTEEMI STAATUSE SEIRE

bakalaureusetöö

Juhendaja: Deniss Kumlander

 PhD

Senior researcher

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references to the

literature and the work of others have been referred to. This thesis has not been presented for

examination anywhere else.

Author: Vladimir Potašenkov

19.05.2018

Annotatsioon

Käesoleva lõputöö eesmärgiks oli leida viis Linnworks informatsioonisüsteemide ja staatuste

kujutamiseks infopaneeli kaudu ja rakendada selle prototüüpi. Rakendus oli loodud LinnSystems

nõudmisel. Antud ettevõte tegeleb oma tarkvara arendamisega, mille eesmärk on lihtsustada

ärimeeste tegevus e-kommertsi valdkonnas.

Antud projekti eesmärgiks oli süsteemiga seotud informatsiooni kogumine ja arusaadaval moel

kujutamine suurel teleekraanil, mis võimaldaks töötajatel jälgida Linnworks rakenduste

seisundit(serverite jälgimine, veadest teadaandmine jne). Informatsioon on esitatud graafikute ja

tabelite kujul sõltuvalt valitud visualisatsiooni tööriistast.

Lõpptulemuseks oli leitud sobilik lahendus ja esitatud infopaneeli prototüüp, mida LinnSystems

oma töös kasutab.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 65 leheküljel, 4 peatükki, 63 joonist, 2

tabelit.

Abstract

The main purpose of this thesis was to find an optimal solution for presenting information about

Linnworks-related systems status on the dashboard and implementing a service for this data

collection. This task was requested by LinnSystems. LinnSystems is a company that offers

software for e-commerce merchants.

The aim of this project was to deliver and show information about the system in appropriate way

on big display so that company’s workers would be able to get the general information about

Linnworks system stability. Information is represented in a form of charts, tables and other

elements available in chosen data vizualization tool.

As a result of this project, an appropriate solution has been found and working prototype has been

presented. Dashboard is currently in use by LinnSystems.

The thesis is in English and contains 65 pages of text, 4 chapters, 63 figures, 2 tables.

6

Glossary of terms and abbreviations

E-commerce is a process of selling and buying products or services over the internet

[1]

Elasticsearch is a free and open source search engine based on Apache Lucene. It

provides a full-text search engine and works with JSON documents. [2]

Logstash is a tool that converts received information to JSON format and saves it

in Elasticsearch cluster [3]

InfluxDB is an open-source database which is specialized on time series data. It is

optimized for fast retrieval of time series data [4]

Kibana is a data visualization plugin for Elasticsearch. It allows to visualize

indexed data which is stored in Elasticsearch cluster [5]

Grafana is an open source software for dashboards creation [6]

Jenkins is an open source tool for building and deploying any project [7]

NoSQL is a nonrelational databases for storage and retrieval of data [8]

Quartz.NET is an open source job scheduling system [9]

WCF service is a framework for creating service-oriented applications [23]

AWS

CloudWatch

is a monitoring tool for applications hosted on Amazon Web Services

[10]

7

Table of images

Figure 1. Kibana dashboard .. 19

Figure 2. Grafana dashboard .. 20
Figure 3. Grafana elements positioning .. 21
Figure 4. General structure ... 22
Figure 5. Data-collecting job workflow ... 23
Figure 6. Get available jobs .. 24

Figure 7. Project structure .. 26

Figure 8. Startup options .. 27

Figure 9. Dashboard 1st prototype ... 28
Figure 10. Dashboard 2nd prototype .. 29
Figure 11. Health boxes .. 30
Figure 12. Feedback colouring ... 31
Figure 13. Dashboard 1 .. 32

Figure 14. Dashboard 2 .. 32

Figure 15. Call of the procedure ... 33
Figure 16. Stored procedure get_total .. 34
Figure 17. AppData class structure .. 35

Figure 18. Service reference ... 35
Figure 19. Define client creation .. 35

Figure 20. GetData method .. 36
Figure 21. Logger types .. 36

Figure 22. Freshchat main dashboard ... 38
Figure 23. Chrome driver settings .. 38

Figure 24. Locate elements on page ... 39
Figure 25. Encode data ... 39
Figure 26. Request information about calls .. 40

Figure 27. Freshdesk response.. 40
Figure 28. Set Tls2 protocol ... 41
Figure 29. Response - tickets count .. 41

Figure 30. CurrentTickets class .. 41
Figure 31. Set failed monitors .. 42

Figure 32. Monitor type conversion ... 43
Figure 33. linnworks.dashboard.webapi structure .. 45

Figure 34 Query .. 45
Figure 35. GetFeedback .. 45
Figure 36. Feedback - stored procedure ... 46

Figure 37. Grafana - required format.. 47
Figure 38. Measurement - current online ... 48

Figure 39. InfluxDB - data structure .. 49
Figure 40. Current calls constructor ... 49
Figure 41. GetFields example ... 50
Figure 42. Datasource interface .. 50

Figure 43. Determine data source ... 50

Figure 44. Exceptions logger .. 51
Figure 45. Grafana variables .. 52

file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615927
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615931
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615935
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615936
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615942
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615945
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615951
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615953
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615957
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615963
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615966
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615967

8

Figure 46. Grafana "Health box" element ... 52
Figure 47. Mixed data source ... 52
Figure 48. Query - Exceptions .. 53
Figure 49. Query - Memory .. 53

Figure 50. Query - CPU .. 53
Figure 51. Query - Drive .. 54
Figure 52. Query - bandwidth .. 54
Figure 53. Query - Availability .. 54
Figure 54. Warning threshold ... 55

Figure 55. Background colouring ... 55
Figure 56. RiseVision control menu ... 56
Figure 57. RiseVision playlist .. 56

Figure 58. Widget settings .. 57
Figure 59. Service installation .. 58
Figure 60. Starting service .. 58
Figure 61. Visual Studio debugger ... 59

Figure 62. Kibana dashboard .. 60
Figure 63. Grafana refresh rate ... 60

file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615970
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615971
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615972
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615973
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615974
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615975
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615976
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615977
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615978
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615979
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615981
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615982
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615983
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615984
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615985
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615986
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615987

9

Table of tables

Table 1. sessions_current structure ... 33

Table 2. Log entity structure .. 47

10

Table of Contents

Author’s declaration of originality ... 3

Introduction .. 12

1. About the company ... 13

2. Requirements .. 14

2.1 Company’s requirements to the software ... 14

2.1.1 Functional requirements .. 15

2.1.2 Nonfunctional requirements .. 16

3. Analysis .. 17

3.1 Possible solutions ... 17

3.1.1 Collecting data ... 17

3.1.2 Storing data .. 17

3.1.3 Visualizing data ... 19

3.2 Development tools .. 21

3.2.1 Programming language .. 21

3.2.2 Third-party libraries ... 21

4. Implementation details ... 22

4.1 Windows service details ... 22

4.1.1 Windows service structure... 25

4.1.2 Scheduling ... 27

4.1.3 Startup configuration ... 27

4.2 Dashboard interface .. 28

4.3 Data collecting .. 32

4.3.1 Current online .. 33

4.3.2 Exceptions ... 36

4.3.3 Chat system for monitoring ... 37

4.3.4 Current calls ... 39

4.3.5 Current tickets ... 40

4.3.6 Monitis monitors ... 41

4.3.7 Customers’ feedback ... 44

11

4.4 Data saving and storing .. 47

4.4.1 Elasticsearch log structure ... 47

4.4.2 InfluxDB data structure ... 48

4.4.3 Determine database.. 50

4.4.4 Monitoring ... 51

4.5 Visualizing data on dashboard .. 51

4.5.1 Grafana templating .. 51

4.5.2 Grafana ‘health boxes’ .. 52

4.6 Service deployment .. 55

4.7 Display dashboard on display ... 55

Each web page widget has an url reference (Figure 58)... 57

4.7.1 Prepare TV ... 57

4.8 Testing .. 57

4.8.1 Scheduling ... 57

4.8.2 Data collecting ... 59

4.8.3 Grafana board .. 60

Summary ... 61

Kokkuvõte .. 62

Table of literature ... 63

Appendix 1 – Result ... 65

12

Introduction

The main purpose of this thesis was to find optimal tools and provide a complete

solution for general system health and status monitoring for LinnSystems company.

Information about the system should be shown in appropriate way on TV screen so that

company’s workers would be able to get the general information about Linnworks,

system stability and customers’ satisfaction.

13

1. About the company

LinnSystems is a company that develops and supports software for e-commerce

merchants who sell on online marketplaces such as Amazon and eBay. Main products

of the company are Linnworks and Linnworks Desktop. They are used to simplify and

automate everyday work of online sellers. Applications have similar functionality with

the only difference is that Linnworks Desktop is an old version of the product and has to

be installed on PC while Linnworks is a newer web-based product which is developed

as a single page application.

LinnSystems has one office in Chichester, UK and one in Tallinn. Tallinn office has a

development team and support representatives team. Support representatives team help

customers to solve problems with software configuration. Communication is performed

over phone calls, chats or tickets. Usually, customers choose a method of

communication depending on the importance of their issue. New phone call, chat or

ticket is automatically assigned to the first available support agent. It is important to

know the actual load on the support team in order to plan their working schedule and

provide qualified service to company’s clients. Also, spikes of complaints may be

caused by a bug in the software. In addition to listed communication forms, customers

have an option to leave a feedback directly from the application interface. Feedback has

a positive or negative type assigned by customer and message. Feedback from

customers plays a significant role in planning further development process.

C# is used as a standard language for all internal development. For product applications

company mainly use SQL databases and MongoDB. For internal needs the company

has instances of Logstash and InfluxDB databases. Various exceptions and system logs

from product applications are stored in ELK (Elasticsearch, Logstash, Kibana) stack. A

very basic chart in Kibana is used to monitor an amount of exceptions. It is often used

by Quality Assurance team after releases to ensure that everything went as planned and

a new patch does not cause any issues.

14

2. Requirements

2.1 Company’s requirements to the software

Company’s main requirement was to create a dashboard that would allow company

workers to check system status and general events connected with Linnworks at any

given time on the display on the wall. Design has to be simple, intuitive and at the same

time should contain enough information about different aspects.

The main goal of this project was to develop the idea, choose appropriate tools, design

and to create dashboard for LinnSystems using data visualization tool that will show

information and statistics about Linnworks system, related processes, and events. Some

solution ways are dictated by the company and others are in the free choice.

Requirements:

 Create a dashboard with different information about the system (below are some

ideas to choose from):

o Status of servers – to show current load or/and status (operational or

failed) of servers where Linnworks and related applications are hosted

o Logs – to show an amount of unhandled exceptions in company’s

applications such as Linnworks.net and Linnworks desktop

o Registration statistics – to show how many users registered in last month

(preferably show estimated location on world map)

o Feedback – to show a few examples of feedback from customers

o Current online – to show an amount of currently active users in

Linnworks and in Linnworks Desktop

o Opened support tickets – to show an amount of support tickets raised by

customers (grouped by their status: opened or resolved)

o Active chats – to show an amount of chats with support representatives

and amount of total available support agents

o Active calls – to show an amount of calls from customers in support

department

15

 Implement a windows service that will be able to regularly request needed for

dashboard information from different database sources, aggregate it and pass to

database which will be connected to the dashboard where information will be

shown in appropriate format according to data type.

 Dashboard elements should be placed in such way that they will fit in big

display

 Displayed information should be refreshed at least once in 5 minutes

 Choose TV that will be capable of displaying dashboards 24/7

 Set up TV to show dashboards in the office

Things to be considered:

 It is desired that during this project we use a combination of tools already in use

by the company but at the same time, author has the freedom to choose other

tools if needed

 Information is being kept in different sources and in different formats - so every

type of data should be requested, handled and saved separately

 Information has to be aggregated, parsed to format required by data

representation tool and passed to appropriate database

2.1.1 Functional requirements

 The panel should be able to present data depending on the nature of data with

help of the following elements: grids, charts, labels, tables

 Dashboard views should refresh data using a predefined interval

 Information for the dashboard should be collected by a service

 It should be possible to specify the time range for data displayed on the

dashboard

16

2.1.2 Nonfunctional requirements

 Dashboard elements should fit on one display

 Elements should be properly allocated on the dashboard, so it should be easy for

workers to understand their meaning

 Dashboard should work on TV

 Service should be compatible with Windows Server

 Dashboard should be available only in company domain group

 Extensibility options should be available

 Service which collects information should execute itself automatically without

interaction with human

 Dashboard should be available 24/7

17

3. Analysis

3.1 Possible solutions

In this paragraph several solution ideas are described and some of the possible

approaches are be reviewed and the most suitable is chosen. Some conditions have been

set by LinnSystems.

3.1.1 Collecting data

The dashboard should represent information which is originally being held in different

formats and in different databases. That information should be collected into one place

by certain tool. Company’s desired option was a windows service as compatibility with

windows server was required and it does not need much effort to support. Because of

that, other options won’t be considered.

3.1.2 Storing data

The main problem of storing data is that there are many different log types from

different sources and they have to be classsified properly so that it would be easy to find

them later.

3.1.2.1 Database choice

Taking into account the fact that data used by dashboard has different nature, originally

it is stored in different types of databases. Modern data visualization tools are capable of

working with multiple data sources. Therefore, the author is not limited to one database

and can use multiple databases in this project.

SQL-based databases do not seem to be the best option for this project because of the

nature of the data. Almost all required for dashboard information has a form of time

series: logs, exceptions, servers’ status metrics, etc. NoSQL databases are more oriented

for such kind of data and there is no need to manually create separate tables for each

type of information. In addition to that, there may appear scaling problems with SQL

18

database over time. Also, some visualization tools such as Kibana cannot be easily

integrated with SQL database.

Among NoSQL databases, MongoDB has been considered as an option as the company

already has MongoDB instance running for one of the applications. MongoDB stores

data in JSON format. This database was not designed for time series data. This is a

document-oriented database and it is not possible to integrate MongoDB directly to data

visualization tools such as Kibana, Grafana, and Graphite. Such disadvantage makes it

pointless to use of this database for this dashboard project.

Various logs from Linnworks and other related applications are already being saved in

Elasticsearch database. This is an established process with the help of ELK stack. In

order not to re-save information about logs from one database to another it would be a

wise decision to use already existing Elasticsearch database for logs storage. Moreover,

it is possible to directly integrate Elasticsearch with some analytics and monitoring

platforms such as Grafana, Graphite, and Kibana.

After further research, it appeared that InfluxDB might be a very good database choice.

InfluxDB is a relatively new open source database with easy setup. It was designed for

time series data, such as logs and statistics. This database is capable of performing fast

real-time analysis on a large volume of data. InfluxDB’s strong side is the speed of

write and read operations. Based on benchmark results [11], InfluxDB has much faster

write speed compared to Elasticsearch and a bit slower read speed. Also, it is said that

InfluxDB has better performance ‘out-of-the-box’. InfluxDB can be integrated with

visualization tools such as Grafana. On DB-Engines ranking [12] InfluxDB is on the 1
st

place.

OpenTSDB database has been considered as a pretender. OpenTSDB is a time series

database which main purpose is to be used for dashboard visualizations. But based on

benchmarks [13] it is not outperforming InfluxDB in any way. Author of this thesis has

not found any major advantages of other NoSQL databases over InfluxDB and as

company was able to quickly provide instance of this database, it was decided to choose

InfluxDB. In addition to that, manager had a desire to hold on to already used software

rather than jumping to something completely new and unknown if there is no justified

reason for that.

19

As a result, Elasticsearch and InfluxDB databases will be used to store data required for

dashboard. Elasticsearch will be used to fetch information about unhandled exceptions

and InfluxDB will be used to store other information (specific information for

dashboard project).

3.1.3 Visualizing data

A third-party tool will be used for data visualization. The main pretenders are: Kibana

(Figure 1), Zoomdata and Grafana (Figure 2). Zoomdata is not free so author decided to

look into sKibana and Grafana.

Figure 1. Kibana dashboard

20

Figure 2. Grafana dashboard

Although the very first prototype of dashboard has been made with Kibana visualization

tools because it has already been used by company and there was a manager’s desire to

have a standard solution, after some investigations it was decided to use Grafana. It

appeared to be the best option, because Kibana is more specialized on logs, while

Grafana has better support for other design elements like displaying current status

(On/Off), amount of something etc. Also Grafana has more attractive design which is

quite important, as dashboard will be displayed on SmartTV in the office.

In addition to that, Grafana can be integrated with Elasticsearch, InfluxDB, with

Amazon CloudWatch [10] (company has plans to use AWS CloudWatch for server

monitoring, so possibility to integrate it with Grafana is a big advantage) and other

sources.

Recently there was a release of Grafana 5 and that latest version is used in the project as

it has advanced settings for positioning elements on dashboard (Figure 3) which is also

an advantage over Kibana which has limited possibilities for elements positioning.

21

3.2 Development tools

3.2.1 Programming language

Almost all software in Linn Systems is written in C# using ASP.NET framework. One

of the requirements was to use C# for this project so that it will be easier for developers

to maintain it in the future.

3.2.2 Third-party libraries

Some of the third-party libraries are used in data-collecting service to simplify

development process.

NewtonsoftJSON - Popular high-performance JSON framework for .NET. [14] It is

used to convert data into JSON format. This library is used in other company’s projects

and in order to adhere to the standard it was decided not to use other JSON libraries.

Selenium WebDriver and Chrome driver - Selenium is a suite of tools designed for

automating web browsers [15]. This tool is already used for automated tests in

LinnSystems. This tool completely meets our needs in the scope of this project and

there is no need to search for a better option.

Ninject - Open source dependency injector for .NET [16]. This is a standard library in

LinnSystems company.

Quartz.NET - is a pure .NET library written in C# and is a port of very popular open

source Java job scheduling framework, Quartz [17]. It is used to schedule recurring

tasks in windows service.

InfluxDB.NET – library for InfluxDB database.

Figure 3. Grafana elements positioning

22

4. Implementation details

The whole project consists of three main parts:

 Windows Service – The purpose of the service is to collect data, convert and

send it to database

 Dashboard – Displays data in a form of visual elements (tables, graphs, charts,

etc)

 Int_ws_utils – Internal LinnSystem’s services that have permission to get

information from SQL database. It is used by Windows Service to get

information about customers’ feedback and Linnworks online.

More detailed information is shown on Figure 4.

Figure 4. General structure

4.1 Windows service details

For collecting statistics, system logs, feedback and other information types it is planned

to create a windows service that will regularly request information, handle it and

23

forward to database. It is easy to set up windows service on windows server (one of the

requirements) and it should not cause additional problems with installation.

The main purpose of the windows service is to collect information from different

sources and save it. As information is taken from differrent databases and is presented

in different formats, it should be aggregated and converted to format which is

apporpriate for saving. In order to achieve that, service consists of different job types.

System is designed to run only one job simultaneously. Purpose of each job is to send

request to only one specific data source, individually and correctly handle response,

convert received information to appropriate format and pass it to InfluxDB database.

General data-collecting windows service’s process is as follows (Figure 5):

Figure 5. Data-collecting job workflow

24

Main purposes of the service:

 Collect data from different sources (from SQL and NoSQL databases, freshdesk,

Jira using API, etc.)

 Aggregate data from received format to appropriate for storing

 Send data to database that will be connected with dashboard

 Execute itself on a regular basis

In order to get all available jobs, adapter searches for all classes inherited from

BaseDataSource and then executes GetData() method on them (Figure 6).

public static void Run(DateTime startTime)
{

var assembly = Assembly.GetExecutingAssembly();
var baseType = typeof(BaseDataSource);
var types = assembly.GetTypes().Where(t =>

baseType.IsAssignableFrom(t) && t != baseType);

using (var kernel = new
StandardKernel(SolutionWideNinjectBindings.GetBindings()))

{
var settings = kernel.Get<AppSettings>();

var connectionInfo = new

BaseConnectionInfo(settings.LinnStatsDatabaseServer,
settings.LinnStatsDatabaseName, settings.LinnStatsUserId,
settings.LinnStatsPassword);

foreach (var type in types)
{

var dataSource = kernel.Get(type) as BaseDataSource;

// influxdb
var influxDb = dataSource as IInfluxDbDataSource;
if (influxDb != null)
{

try
{

var data = influxDb.GetData(startTime);

Figure 6. Get available jobs

25

4.1.1 Windows service structure

Windows service solution consists of two main projects (Figure 7):

 linnworks.dashboard.logic

 linnworks.dashboard.service

And some code is being held in LinnSystems internal projects such as:

 linnworks.influxdb

 linnworks.logger

 linnworks.services

linnworks.dashboard.logic – all logic for jobs is being kept in separate subfolders in

DataSource folder. Also Adapter is located in this project, which controls job execution

process: collects available jobs, executes them and saves received data to appropriate

database.

linnworks.dashboard.service – contains logic related to scheduling process and service

startup configurations.

linnworks.influxdb – is an internal project that keeps settings and configurations to

work with InfluxDB and contains data structure for logs. This project has been created

by LinnSystems database administrator and has been updated by the author of this

thesis.

linnworks.logger – is an internal project that is used to save logs and exceptions among

all LinnSystems’ products and applications. This project has been updated by the author

of this thesis in order to work with new logs structure.

linnworks.services – is an internal LinnSystems’ project that is used to provide clients

for internal WCF services. This project has been updated by the author of this thesis in

order to work with Dashboard service.

26

Figure 7. Project structure

27

4.1.2 Scheduling

A scheduling has to be implemented to set up service execution on a regular basis. It

this project Quartz.NET [17] library was used. Quartz is a jobs scheduling library that is

used to easily setup scheduling for different jobs. Although this tool does not have

advanced settings for unusual tasks, nor any job history, alerts or error handling, this

tool fully meets our requirements, therefore other options won’t be reviewed. Windows

service is configured using Quartz.NET to run scheduled tasks every predefined interval

of time. When execution begins, adapter collects all available job types and starts to

iterate through them one by one. When all jobs finish execution, process completes until

next scheduled run.

4.1.3 Startup configuration

Startup configurations are located in linnworks.dashboard.service project. For example,

in Service.cs class there is logic which determines if application runs locally or on

windows server as a windows service. Based on startup option is chosen: to start as a

service or as a console application. [18] In order to make decision the author relies on

Environment.UserInteractive value as Windows Service by default is not allowed to be

interactive (Figure 8).

static void Main()
{

var service = new dashboard.service.Service();
if (Environment.UserInteractive)
{

service.RunAsConsole(null);
}
else

 {
ServiceBase[] ServicesToRun;
ServicesToRun = new ServiceBase[]

 {
new Service()

};

ServiceBase.Run(ServicesToRun);
}

}

Figure 8. Startup options

28

4.2 Dashboard interface

Dashboard interface elements’ style mainly depends on type of information that should

be presented. First prototype (Figure 9) has been discussed with manager and some of

the team members. Initially it was hard to understand what do we need to achieve and

how it should look like. As the author and the manager did not have a clear vision, some

most interesting elements have been chosen without justification and development

started.

Figure 9. Dashboard 1st prototype

For visualizing exceptions level LineChart diagram would be the best choice as it

allows us to track growth or decrease an amount of unhandled exceptions over time.

Exceptions level will greatly help to notice problems in the system after weekly releases

or after hotfixes.

In order to track pressure on the support team, it would be useful to show current

amount of opened tickets, calls and chats from customers. If amount of them greatly

increases in a short period of time, it may mean that there is a problem in the software.

29

World map element may represent amount of registered customers by their country. It is

easier to perceive such type of information from world map rather than from table.

Customers feedback (positive and negative) about Linnworks product could be

represented in pie chart with a randomly selected message that change periodically to

provide more interactive feedback because there is not enough space to show all

feedback at once. Amount of opened and closed JIRA cards might be shown in numbers

or in a line chart in order to stimulate developers to increase quality of their work. There

is also a line chart displaying amount of active users over time.

In the beginning this prototype has been accepted by team members and displayed

information seemed useful. However, when development started and the first semi-

working copy has been launched, it appeared that dashboard is not giving the team

desired information. After further discussion with the team and manager, author came to

a decision that a dashboard should mostly contain information related to system status

rather than displaying customers’ feedback, opened Jira cards and registration locations.

Based on received from colleagues feedback about the dashboard new prototype has

been presented to the workgroup (Figure 10):

Figure 10. Dashboard 2nd prototype

30

In the second prototype it was decided to allocate more space for information that is

more important to control in real time: amount of active users, amount of unhandled

exceptions and load measurement on support department. After some time of

development, author presented second working copy to team members and the manager.

It was displayed on TV on the office wall. For a few days we liked new dashboard but

then team members started to notice that there is information only about exceptions and

not enough information regarding other aspects of the system. Often it is not enough to

rely only on the amount of exceptions. Moreover, dashboard consists of many similar

elements and it is hard to focus on information, hard to understand if amount of

exceptions is high or everything is in its normal state. The idea of the dashboard was to

allow workers in the company to check if system has problems or not by taking a quick

look at the monitor when bypassing it.

After reviewing new feedback from team members and the manager, the next idea that

the author came up with was to remove linear graphs and exception numbers when

everything is running smoothly in order to get rid of unimportant information. Each

project or important part of a system which requires monitoring will have its own

“health box” (Figure 11). When everything is in normal condition, graph will have

green background and no information displayed on it. Elements will have its own

threshold values for ‘Warning’ and ‘Critical’ conditions. Those values are set based on

average numbers of exceptions during a few weeks and they are separate for each

“health box”. When some metric reaches its ‘Warning’ or ‘Critical’ condition, graph

will be marked in yellow or red color and critical metric name with value will be

displayed on the graph. Color system makes it easy for eyes to focus only on important

elements and small part of displayed information makes it easy to read and get snapshot

of system status in a few seconds.

Figure 11. Health boxes

31

Initially it was planned to display only amount of exceptions on these boxes but after

further discussion with colleagues, more interesting idea was born – the idea to monitor

complex metrics. In order to implement this idea it was decided to collect monitoring

logs from Monitis API. Monitis [19] is a tool that allows monitoring of web

infrastructure. Monitis monitors include Memory, CPU and Drive load, bandwidth and

availability metrics. As a result, each “health box” has been connected with 6 metrics:

 Exceptions

 Memory

 CPU

 Drive

 Bandwidth

 Availability

Monitoring of different metrics allows to control health status of different part of the

system and if somewhere appears to be a problem it is easy to identify which projects or

parts of the system are affected and what exactly is failing. This does not mean that

previous version of dashboard was completely useless. Some elements have been taken

from it and moved to a separate dashboard contaning only charts with exceptions. This

page will be shown on TV display during slides rotation configured in RiseVision.

Feedback, which has been added on the final stage of development, is displayed as a

table. Table has one column with text message. Element will change colour depending

on type of feedback – green for positive and orange for negative (Figure 12).

At the time of writing this project there are two working dashboards rotating on TV

screen in LinnSystems office (Figure 13 and Figure 14):

Figure 12. Feedback colouring

32

Figure 13. Dashboard 1

Figure 14. Dashboard 2

4.3 Data collecting

There are described data collecting jobs. They have different logic and different

approaches for requesting data. All jobs have one common base class BaseDataSource

which contains data source name and appSettings with authorization keys and

connection strings. The main purpose of this class is to unite classes so that Adapter can

collect all derived classes in order to get all jobs for execution. This idea allows us to

33

easily add new jobs in the future – we only have to inherit BaseDataSource class and

job collector will be able to execute them.

4.3.1 Current online

Amount of currently active users among LinnSystems’ products is stored in SQL

database with restricted access. Company’s internal int_ws_utils service will be used to

get this data. A new method has been added to this service as a part or this project in

order to receive structured information about online users. New stored procedure and

table have been added to SQL database. Code will be described in details below as most

logic for retrieving amount of online users is located in internal projects and therefore is

not included in archive with project’s code. Information about active sessions is being

kept in online.sessions_current table (Table 1).

Column name Column type Description

UserDatabase Nvarchar(255) User’s database name

Time Datetime Time of activity

ServiceName Nvarchar(255) Name of application

Username Varchar (255) Customer’s username

Table 1. sessions_current structure

Method GetAppData (Figure 15) was added to int_ws_utils project in Dashboard.svc.

This method executes [online].[get_total] (Figure 16) stored procedure and converts

received information to List<AppData>.

public static List<AppData> GetAppData() {
var result = new List<AppData>();

using (var conn = new SqlConnection(
Helpers.SettingHelper.linn_logs_connectionString)) {

 conn.Open();

using (var cmd = new SqlCommand(@"online.get_total",
conn)) {

cmd.Parameters.Add(

new SqlParameter("@time",

DateTime.UtcNow.AddMinutes(-7)));

Figure 15. Call of the procedure

34

Procedure online.get_total (Figure 16) is executed with parameter @time set as current

time minus 7 minutes in order to get an amount of active sessions and databases for the

last 7 minutes.

IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[online].[get_total]') AND type in (N'P', N'PC'))
BEGIN
EXEC dbo.sp_executesql @statement = N'CREATE PROCEDURE
[online].[get_total] AS RAISERROR(''[online].[get_total] is not yet
defined'', 16, 1);
 '
END
GO
ALTER PROCEDURE [online].[get_total]
 @time datetime
AS
BEGIN

/* online sessions */
 SELECT
 ServiceName,
 COUNT(*) as SessionsCount
 FROM [linn_logs].[online].[sessions_current]
 WHERE [Time] > @time AND Username IS NOT NULL
 GROUP BY ServiceName

 /* online databases */
 SELECT
 ServiceName,
 Count(*) as DatabasesCount
 FROM
 (
 SELECT
 ServiceName,
 UserDatabase,
 COUNT(*) as OnlineCount
 FROM [linn_logs].[online].[sessions_current]
 WHERE [Time] > @time AND Username IS NOT NULL
 GROUP BY ServiceName, UserDatabase
) AS t
 GROUP BY t.ServiceName
END
GO

Figure 16. Stored procedure get_total

35

Received information is being converted to list of AppData classes (Figure 17):

public class AppData
{

public string AppName;

public int DatabasesOnline;
public int SessionsOnline;

}

Figure 17. AppData class structure

Class contains application name and amount of active users. On windows service side

linnworks.services project is used to communicate with WCF service, as one of the

manager’s desires was to follow company’s standards. This is an already existing

project implemented by LinnSystems which contains service references to different

internal services and has a service factory which provides service clients with correct

urls and keys. New service reference has been added to linnworks.services project

(Figure 18).

Then in ServicesFactory creation of client is defined (Figure 19).

public IDashboardClient GetDashboardClient()
{

var client = new int_ws_utils_dashboard.DashboardClient();
client.Endpoint.Address = new

System.ServiceModel.EndpointAddress(
settings.int_ws_utils_dashboard_url);

 var binding = new System.ServiceModel.BasicHttpBinding();
 binding.Security.Mode =
System.ServiceModel.BasicHttpSecurityMode.Transport;
 client.Endpoint.Binding = binding;

 return client;
}

Figure 19. Define client creation

Figure 18. Service reference

36

Then data is requested and received information is returned in appropriate format

(Figure 20).

public List<InfluxDB.Net.Base.BaseDataStructure> GetData(DateTime
time)
{

var list = new List<InfluxDB.Net.Base.BaseDataStructure>();
var appData = new services.int_ws_utils_dashboard.AppData[] { };
using (var client = servicesFactory.GetDashboardClient())
{

appData = client.GetAppData();
}
foreach (var app in appData)
{

list.Add(new
InfluxDB.Net.DataStructure.CurrentOnline(time, app.AppName,
app.DatabasesOnline, app.SessionsOnline));
}

return list;

}

Figure 20. GetData method

4.3.2 Exceptions

In windows service there is no need to create a separate job for collecting exceptions as

they are already saved in Elasticsearch database. Grafana supports direct integration

with Elasticsearch. Queries for displaying exceptions will be described in Visualizing

section.

Almost all of the company’s applications and related services (linnworks.net, linnworks

desktop, event despatcher, shipping gateway, int_ws_utils, int_ws_channels and others)

have global exceptions handler that passes all occurred exceptions using

linnworks.logger directly to Elasticsearch. Elasticsearch is used as a source for

exceptions on Grafana dashboard. Logger separately handles different exception and log

types (Figure 21).

Figure 21. Logger types

37

ExceptionsLogger is used for unhandled exceptions. Exception message and stack trace

are passed to Elasticsearch over TCP.

4.3.3 Chat system for monitoring

When customers experience problems in their everyday use of Linnworks they may

address their issues to support department using support chat system. Company uses

Freshchat as a chat system. It would be useful to show on the dashboard amount of

available support representatives, assigned chats and unassigned (queued) chats. This

information may reflect problems with software if amount of opened chats greatly

increase in a short period of time. Unfortunately, Freshchat’s service has a very poor

API possibilities at the moment and it is impossible to get all needed information using

this method.

Freshdesk support team provided some examples. It is possible to send requests to this

endpoint:

https://web.freshchat.com/app/dashboard/basic/conversation

using X-HL-AUTH-TOKEN and response in the following format will be received:

{"conversationUnassigned":[{"time":2,"count":23}],"conversationNotReplied":[{"time

":2,"count":1}],"activeAgent":[42994679111689,43009522368512,42993793548289,4

3009643958279,42994502606856,43011007320064]}

The problem is that this endpoint expects not more than 1 request every 5 minutes.

Moreover, response does not contain amount of assigned chats. It only contains amount

of available agents and unassigned or not replied chats. For this project it is important to

see how many chats are already assigned as it reflects actual load on support

department.

As a solution, author decided to use Selenium WebDriver and Chrome WebDriver

libraries. They are often used by LinnSystems testing team to write automated UI-tests.

In this project those tools will be used to login into freshchat from browser using

username and password, locate needed elements on web page and fetch values from

them.

https://web.freshchat.com/app/dashboard/basic/conversation

38

On picture (Figure 22) there is displayed a part of Freschat page with displayed

information about current conversations and amount of available support agents in chat

system. This information is taken from page and is saved into database.

Figure 22. Freshchat main dashboard

To get information from web page we will use Chrome driver (Figure 23).

//Options
ChromeOptions options = new ChromeOptions();
options.AddArguments("--disable-extensions");
options.AddArguments("--start-maximized");
options.ToCapabilities();

ChromeDriverService service =
ChromeDriverService.CreateDefaultService(appSettings.ChromeDriverResou
rcesPath);

IWebDriver driver = new ChromeDriver(service, options);

Figure 23. Chrome driver settings

ChromeDriver is placed in /resources folder. When deployed, this path will be different

so has to be replaced by Jenkins during deployment. Search of elements will be

performed on the page by element ids, class names or by text (Figure 24).

39

var ele = driver.FindElement(By.ClassName("select2-input"));
var js = (IJavaScriptExecutor)driver;

js.ExecuteScript("arguments[0].click();", ele);
driver.FindElements(By.ClassName("select2-result-label")).

FirstOrDefault(x => x.Text.Equals("tech support",
StringComparison.InvariantCultureIgnoreCase)).Click();

Figure 24. Locate elements on page

In the end we get the following information about chats:

 Amount of active agents

 Amount of assigned chats

 Amount of unassigned chats

4.3.4 Current calls

Freshcaller system is used for calls management in support department. Requests to web

page are performed to retrieve information about current calls. First call will be used for

authorization only. We will call https://help.linnworks.com/support/login and provide

data with authorization keys in the following format:

utf8=%E2%9C%93&authenticity_token={0}&user_session%5Bemail%5D={1}&user

_session%5Bpassword%5D={2}

Request will be encoded (Figure 25).

var data = Encoding.ASCII.GetBytes(postData);

Figure 25. Encode data

Authorization token is taken from the response header:

response.Headers["Set-Cookie"]

This token is used in the next request to /phone/dashboard/dashboard_stats (Figure 26).

https://help.linnworks.com/support/login
https://help.linnworks.com/support/login

40

private DashboardStatsResponse GetDashboardStats(string cookie) {
var request = (HttpWebRequest)WebRequest.

Create("https://help.linnworks.com/phone/dashboard/dashboard_sta
ts");

request.Method = "GET";
request.ContentType = "application/json";

request.Headers[HttpRequestHeader.Cookie] = cookie;

var response = (HttpWebResponse)request.GetResponse();

var responseString = new

StreamReader(response.GetResponseStream()).ReadToEnd();

return
JsonConvert.DeserializeObject<DashboardStatsResponse>(responseString);
}

Figure 26. Request information about calls

Response will be in the following format (Figure 27):

SecurityProtocolType.Tls2 should be used for both requests.

4.3.5 Current tickets

Freshdesk is used as a ticket system by support department. In order to get information

about tickets, API calls to ‘..helpdesk/tickets/summary.xml?view_name=open’ will be

made. Basic authorization in request header has the following format: „apiKey:X“.

Endpoint has a limit of 1000 calls per hour what is more than enough for our purpose.

Service will make approximately 30 requests per hour. Security protocol has to be set to

Tls1.2 to successfully perform requests. That setting is placed in service’s OnStart

method (Figure 28).

Figure 27. Freshdesk response

41

protected override void OnStart(string[] args) {
System.Net.ServicePointManager.SecurityProtocol =

System.Net.SecurityProtocolType.Tls12;
 Quartz.Register(120);
}

Figure 28. Set Tls2 protocol

Tickets with the following statuses will be requested:

 Opened

 New

 Overdue

Each call requests tickets only for requested type one by one. In total three calls are be

performed. Response will be in the following format (Figure 29):

When tickets from all three categories are collected, they are transformed to

CurrentTickets class (Figure 30) before being forwarded to database.

var openCount = int.Parse(GetSummary(OPEN_COUNT_URL).Count.Text);
var newCount = int.Parse(GetSummary(NEW_COUNT_URL).Count.Text);
var overdueCount =
int.Parse(GetSummary(OVERDUE_COUNT_URL).Count.Text);

list.Add(

new InfluxDB.Net.DataStructure.CurrentTickets(time, openCount,

newCount, overdueCount)

);

Figure 30. CurrentTickets class

4.3.6 Monitis monitors

Monitis is a tool for website and servers performance monitoring. It is capable of

monitoring server’s load on CPU, RAM, drive, website availability etc. Monitis is

already configured to monitor LinnSystems servers’ infrastructure. Monitis API is used

[20] to get information about monitors. The problem is that when requesting data about

Figure 29. Response - tickets count

42

monitors we do not get the information about current state and it is impossible to

determine if the monitor is failed or is working flawlessly. Failed monitors should be

retrieved using a separate call.

First of all, failed monitors among all groups are requested. Then total amount of

monitors is requested for each type:

 Internal monitors

 External monitors

 Other monitors

 Transaction monitors

In total there are 799 monitors. Each monitor belongs to one or many groups or has a

tag, which determines which application this monitor is related to. For example, one

drive may have two groups if two applications are located on the same drive. At the

moment of writing this project, there are the following monitor groups in Monitis:

admservice, adm_client, adm_worker, autosync, backup_service, docstore,

event_despatcher, event_despatcher_status, fruugo_feed, infrastructure, int_ws, linnlive,

lw_net, lw_net_main, lw_net_ext, lw_net_push, meanrepricer, old_acc,

old_desktop_webservice, printing_service, pub_ws, shipping_gateway, shipstation, sql,

virtual_printer_server, web.

When all monitors are recived, iteration through all failed monitors is performed where

status of matching monitor in the list of all monitors is set (Figure 31).

allMonitors.ForEach((monitor) =>
{

if (failedMonitors.Any(failedMonitor => failedMonitor.Id
== monitor.Id))

{
monitor.Status = MonitorStatus.Failed;

}
});

Figure 31. Set failed monitors

Total amount of monitors and amount of failed monitors grouped by application they

belong to and by type will be saved to database. Type field may contain one of the

following values:

43

 Drive

 CPU

 Memory

 Bandwidth,

 Availability

Originally there are more types in monitis but in order to group them somehow for

dashboard, they will be converted to listed types (Figure 32).

private MonitorType ConvertMonitorType(MonitorTypeMonitis
monitisMonitorType)
{

switch (monitisMonitorType)
{

case MonitorTypeMonitis.Drive:
 case MonitorTypeMonitis.DiskIO:
 return MonitorType.Drive;

 case MonitorTypeMonitis.CPU:
 return MonitorType.CPU;

case MonitorTypeMonitis.Memory:
 return MonitorType.Memory;

case MonitorTypeMonitis.Bandwidth:
return MonitorType.Bandwidth;

case MonitorTypeMonitis.HTPPHTTPS:

 case MonitorTypeMonitis.Uptime:
 case MonitorTypeMonitis.TCP:
 case MonitorTypeMonitis.Transaction:
 case MonitorTypeMonitis.Tomcat:
 case MonitorTypeMonitis.NodeJS:
 case MonitorTypeMonitis.Oracle:
 case MonitorTypeMonitis.FullPageLoad:

case MonitorTypeMonitis.WindowsService:
 case MonitorTypeMonitis.RUM:
 case MonitorTypeMonitis.PING:
 case MonitorTypeMonitis.AdvancedPing:

case MonitorTypeMonitis.Process:
return MonitorType.Availability;

default:

return MonitorType.Availability;
}

}

Figure 32. Monitor type conversion

44

4.3.7 Customers’ feedback

Initially we had three graphs showing amount of active users in Linnworks.net,

Linnworks desktop and LinnLive applications. However, as LinnLive product will be

closed in near future, the manager suggested to remove that graph from dahboard and

use that free space for something else. As all highly required by team infomation is

already presented, after some discussion with the team it was decided to display a table

with customers feedback which may be a good replacement. Although customers

feedback does not give us any information about current system condition, it would be

interesting for the team members to read it. This information will point weak places of

Linnworks and at the same time reading feedback may be entertaining. The problem is

that we can’t easily show feedback directly from database as Grafana is unable to show

unindexed text fields such as feedback message. Fortunately, it is possible to use

information in JSON format and display it as a table. However, there appears another

problem: we have to transform information taken from SQL database to JSON format

and pass it to Grafana. In order to pass JSON to Grafana a datasource plugin called

SimpleJSON has been installed on Grafana instance. It allows integration with JSON

datasources. Then a web page with api has been created to provide feedback in a JSON

format for Grafana. Its purpose is to get feedback from SQL database between requested

dates which have been selected in Grafana UI.Project called linnworks.dasboard.webapi

has been created (Figure 33).

45

DatasourcesController has three methods:

 Index() – method returns dummy data and is used by Grafana test method during

datasource integration to ensure that datasource is valid

 Search() – method returns possible metrics to be selected in Grafana. In our case

we do not need metrics and this method returns empty string

 Query() – main method which requests JSON data for the requested time period

When request is received, we take start time and end time from the query

 (Figure 34) convert it into datetime format and pass it to int_ws_utils_dashboard

service.

HttpContext.Current.Request.UrlReferrer.Query

Figure 34 Query

Dashboard.svc service has already been created for collecting amount of active users,

therefore just a new method will be added to an existing service. Method GetFeedback

(Figure 35) which uses following procedure to fetch data from database (Figure 36) has

been added to the service.

List<Feedback> GetFeedback(DateTime startTime, DateTime endTime)

Figure 35. GetFeedback

Figure 33. linnworks.dashboard.webapi structure

46

IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[feedback].[customer_feedback_register_get]') AND type in
(N'P', N'PC'))
BEGIN
EXEC dbo.sp_executesql @statement = N'CREATE PROCEDURE
[feedback].[customer_feedback_register_get] AS
RAISERROR(''[feedback].[customer_feedback_register_get] is not yet
defined'', 16, 1); '
END
GO
ALTER PROCEDURE [feedback].[customer_feedback_register_get] (
 @startTime DATETIME,
 @endTime DATETIME
) as
BEGIN
 SELECT
 cfr.[Time],
 cfrt.[pkFeedbackTypeId],
 cfrt.[Name],
 cfr.[Username],
 cfr.[Message]
 FROM [feedback].[customer_feedback_register] as cfr
 INNER JOIN feedback.customer_feedback_register_type as cfrt on
cfrt.pkFeedbackTypeId = crf.fkFeedbackTypeId
 WHERE [Time] BETWEEN @startTime AND @endTime
END
GO

 Figure 36. Feedback - stored procedure

Recived from the service data is converted to appropriate for dashboard format (Figure

37) and returned to Grafana where it is displayed in a table element.

47

response:Array[1]

0:Object

 columns:Array[5]

 0:Object

 text:"Time"

 type:"time"

 1:Object

 text:"Type"

 type:"string"

 2:Object

 text:"TypeId"

 type:"number"

 3:Object

 text:"UserName"

 type:"string"

 4:Object

 text:"Message"

 type:"string"

type:"table"

rows:Array[1]

 0:Array[5]

 0:"16/05/2018 10:33:25"

 1:"FEEDBACK"

 2:"2"

 3:"test @linnsystems.com"

 4:"Feedback message – example”

Figure 37. Grafana - required format

4.4 Data saving and storing

Company is already using Elasticsearch and InfluxDB database to store different types

of information. As there are many new objects with different data structures that have to

be stored as a part of this dashboard project, structure of saved entities should be

reworked.

4.4.1 Elasticsearch log structure

Elasticsearch is used to store exceptions and various system logs from Linnworks

application. In order to prepare data related to exceptions and current online for

database, already existing linnworks.logger project will be used. However, it has to be

modified and improved to handle requirements of this project. Each type of log or

entity, except ‘stats’ should correspond to this template and contain the following fields

(Table 2):

Field name Possible value (example)

app lw_net / lw_net_push / ..

type exception / IIS / user_logs / system / stats / ...

severity error / info / warning / ..

Table 2. Log entity structure

48

For dashboard project ‘exceptions’ type is used. It is not planned to use other types in

the scope of this project. Structure has been changed in order to come to one standard

solution of separation logs by their type.

4.4.2 InfluxDB data structure

In InfluxDB information entities are separated by Measurements. Measurement can be

compared to a table in SQL-based database. It this project every job saves information

under its own measurement. For example, measurement for amount of active users

shown on Figure 38.

public class CurrentOnline : BaseDataStructure
{

public override string Measurement
{

get
{

return "current_online";
 }
 }

Figure 38. Measurement - current online

An adapter which works with InfluxDB already exists in linn_foundation solution. It

has been added and modified to work with our database instance by LinnSystems’

database administrator. Author of this thesis added the following classes to

linnworks.influxdb project which represents structure of measurements for different

types of information (Figure 39):

 CurrentCalls

 CurrentChats

 CurrentMonitors

49

 CurrentOnline

 CurrentTickets

Each structure class contains constructor with parameters which have to be saved to one

document (Figure 40).

public CurrentCalls(DateTime time, int activeCallsCount, int
queuedCallsCount, int availableAgentsCount, int busyAgentsCount) :
 base(time)
{

this.ActiveCallsCount = activeCallsCount;
this.QueuedCallsCount = queuedCallsCount;
this.AvailableAgentsCount = availableAgentsCount;
this.BusyAgentsCount = busyAgentsCount;

}

Figure 40. Current calls constructor

Also class has method GetFeilds() or/and GetTags(). These methods create dictionaries

with property name and value (Figure 41).

Figure 39. InfluxDB - data structure

50

public override Dictionary<string, object> GetFields()
{

var fields = base.GetFields();

fields.Add("active_calls", ActiveCallsCount);
fields.Add("queued_calls", QueuedCallsCount);
fields.Add("available_agents", AvailableAgentsCount);
fields.Add("busy_agents", BusyAgentsCount);

return fields;

}

Figure 41. GetFields example

Then this data is being saved to InfluxDB. Saving process has been implemented by

another person, it will not be described in this thesis.

4.4.3 Determine database

Service’s adapter has been designed in such way that it has ability to determine where

data provided by job has to be saved: to Elasticsearch or to InfluxDB. It depends on

inherited interface (Figure 42):

In adapter we check if current job is supposed to use KibanaDataSource or

InfluxDbDataSource (Figure 43).

However, it the scope of this project our service will save data only to InfluxDB.

Elasticsearch data source has been added as an option for the future in case there

appears a need to save something to Elasticsearch.

Figure 42. Datasource interface

Figure 43. Determine data source

51

4.4.4 Monitoring

In order to keep track of unhandled exceptions occurred in windows service, they will

be saved to Elasticsearch and will be available in Kibana. To achieve that, jobs

execution code part will be covered by try-catch and common logger will be used

(Figure 44). This will help the author and team members to identify problems with

service.

} catch (Exception ex) {
var logger =
new linnworks.logger.ExceptionsLogger(
linnworks.logger.BaseLogger.AppName.dashboard_service);

 logger.SaveLog(DateTime.UtcNow, ex);

}

Figure 44. Exceptions logger

4.5 Visualizing data on dashboard

For vizualizing we will use Grafana 5. In order to display information from databases

on visual elements we have to write queries. Queries will vary depending on datasource

selected for the element. For example, for InfluxDB we have to write Lucene queries or

compose queries in the UI. Almost all diagrams contain time axis, as it is important for

the team to monitor system status over time.

4.5.1 Grafana templating

Grafana supports creating variables so there is no need to hardcode application types.

Moreover, ’templating’ option allows us to easily manage many elements at the same

time. In other words, when we edit one element, changes are applied to all elements

related to variable (Figure 45).

52

Figure 45. Grafana variables

4.5.2 Grafana ‘health boxes’

Below we will look closer at the ‘health boxes’ elements. Let’s see how one element in

this combination of multiple boxes (Figure 46) is configured to display data.

Source type has to be set as ‘Mixed’ (Figure 47) as these ‘health boxes’ require data

both from Kibana and from InfluxDB.

For each metric there is a separate query. They are listed below.

Figure 46. Grafana "Health box" element

Figure 47. Mixed data source

53

 Exceptions (Figure 48):

Query that gets all records for the last 5 minutes with type ‘exceptions’ for $app_name

(for example, “lw_net”) from Elasticsearch database is used.

All information described in section below will be taken from InfluxDB called

linn_stats.

 Memory (Figure 49):

Information from InfluxDB with measurement ‘current_monitors’ where type is

‘Memory’ and app is $app_name is requested in order to get information about

memory. Field ‘failed’ is selected. Results are grouped by time interval. Option

‘fill(previous)’ will take last value.

 CPU (Figure 50):

Figure 48. Query - Exceptions

Figure 50. Query - CPU
Figure 49. Query - Memory

54

 Drive (Figure 51):

 Bandwidth (Figure 52):

 Availability (Figure 53):

When any of these metrics reach ‘Warning’ or ‘Critical’ condition (Figure 54), metric

name and value will be visible on dashboard. This is configured by option ‘Display

alias’ set to ‘Warning/Critical’.

Figure 51. Query - Drive

Figure 53. Query - Availability

Figure 52. Query - bandwidth

55

When everything is in its normal state, all information will be hidden and box will have

green background (Figure 55).

4.6 Service deployment

Deployment is performed using Jenkins [7]. Jenkins is configured to replace

authorization keys and connection strings for security purposes. Jenkins greatly helps to

deploy new versions of application as there is no need to manually interact with the

server.

Deployment has 3 stages:

1. Preparation – loads last stable branch from repository and builds it

2. Deployment – deploys code on server in a separate new folder

3. Switch version – switches working service to work from the new folder

4.7 Display dashboard on display

There is a need to somehow show dashboard on a TV screen. RiseVision [21] will be

used to manage dashboard on the screen. Once display is connected to RiseVision

account, it is possible to easily edit dashboard without manipulations with TV where

dashboard is installed.

Figure 54. Warning threshold

Figure 55. Background colouring

56

Maintenance and configuration of displayed information is performed from website

https://apps.risevision.com. There is no need to install additional software. (Figure 56).

Figure 56. RiseVision control menu

As we have two dashboards (main board and one only with exceptions), RiseVision has

been configured to rotate two images every 15 seconds. To achieve that, two pages have

been added to the playlist (Figure 57).

Figure 57. RiseVision playlist

https://apps.risevision.com/
https://apps.risevision.com/

57

Each web page widget has an url reference (Figure 58).

4.7.1 Prepare TV

Intel Compute Stick – small computer for media applications is used to launch

RiseVision on TV. Intel stick with installed windows 10 has been connected to TV

using HDMI port. Rise Player software is needed to show presentation from RiseVision

on TV display. After installation, the key generated on RiseVision website has to be

entered in order to connect that TV with our main account. After that, the presentation

which will be shown on TV should be selected. As a result, we can control our

dashboard from any other computer by changing presentation settings.

4.8 Testing

Elements of solution have been tested manually using smoke testing. Code inspection

has been performed by team members. There is no need to perform performance testing

because requirements do not have strict limitation for job execution time.

4.8.1 Scheduling

Scheduling has been tested on early development stages when running service in debug

mode in Visual Studio 2015.

Figure 58. Widget settings

58

On final development stage, windows service has been installed on local machine and

started as a service [22]. Developer Command prompt for VS2015 was used to install a

service using the following command (Figure 59):

\linn_dashboard\linn_dashboard\linnworks.dashboard.service\bin\Release> installutil

linnworks.dashboard.service.exe

After installation is complete, service may be started from Services management

window (Figure 60):

Figure 59. Service installation

Figure 60. Starting service

59

Then Visual Studio debugger can be attached to a running process (Figure 61) and

appropriate breakpoints could be set to ensure that service executes itself as intended.

However, this process of attaching debugger to a process is too complicated. There is

an easier way to debug running service – we just have to add

System.Diagnostics.Debugger.Launch(); in the code we want to debug.

4.8.2 Data collecting

Results returned by data-collecting jobs have been manually verified by comparing

them to the results in the sources. For example, amount of chats and tickets has been

checked on the freshdesk website. Exceptions have been compared to ones in Kibana

(Figure 62).

Figure 61. Visual Studio debugger

60

4.8.3 Grafana board

Dashboard’s user interface does not need special testing as it is build using existing

Grafana set of tools. Graphs are updated over defined period of time as intended (Figure

63).

Figure 62. Kibana dashboard

Figure 63. Grafana refresh rate

61

Summary

The aim of this thesis was to provide a complete solution for monitoring system status

for LinnSystems. It involved choice of different dashboard tools, databases and their

internal structure, design of dashboard elements, configuration of TV display and

implementation of service including related development.

During the project development, author has proposed several prototypes which have

been tested and discussed. After launching first versions on production new

requirements for dashboard have been made based on team members’ feedback.

As a result of this thesis, two of the presented prototypes has been chosen and are used

in the company allowing company workers to easily get information about overall

system condition. Current dashboard meets the requirements set by team members,

manager and satisfies their needs. System has been set up in such way that it is easy to

develop and deploy improvements for this project in the future.

The following tools and technologies have been used in this project: Windows Service,

task scheduling, NoSQL databases, dashboard visualization tools, RiseVision, Selenium

and much more.

As this software is being evolved, in final version of the dashboard some elements or

information might be slightly different from the one described in this document.

62

Kokkuvõte

Käesoleva lõputöö eesmärgiks oli välja töötada rakendus, mis teostaks Linnsystems

süsteemi staatuste seiret. Rakenduse väljatöötamine koosnes järgnevatest etappidest:

sobiva infopaneeli, andmebaasi ja selle struktuuri valikust, teenuse loomisest,

infopaneeli elementide disainist ja TV ekraani konfigureerimisest.

Töö käigus lõputöö autor esitas mitu prototüüpi, mis olid testitud ja arutletud koos

LinnSystems meeskonnaga. Prototüüpide kasutusajal meeskond pakkus välja uued

nõuded infopaneelile.

Antud lõputöö tulemuseks sai kaks prototüüpi, mis on praegu kasutusel ettevõttes.

Infopaneelide abil töötajad saavad informatsiooni süsteemi seisundi kohta. Rakendus

vastab püstitatud nõuetele ja oli disainitud nii, et tulevikus oleks lihtne seda projekti

edasi arendada ja täiustada.

Lõputöös kasutati järgmiseid tehnoloogiad: Window Service, NoSQL andmebaasid,

erinevad infopaneeli tööristad, RiseVision, Selenium ning palju muud.

Rakendus on veel arenemisel, mistõttu mõned dokumendis esitatud infopaneeli

elemendid võivad erineda.

63

Table of literature

[1] “E-commerce,” [Online]. Available: https://en.wikipedia.org/wiki/E-commerce.

[Accessed 02 04 2018].

[2] “Elasticsearch,” [Online]. Available: https://en.wikipedia.org/wiki/Elasticsearch.

[Accessed 28 03 2018].

[3] “Logstash,” [Online]. Available: https://wikitech.wikimedia.org/wiki/Logstash.

[Accessed 02 04 2018].

[4] “InfluxDB,” [Online]. Available: https://en.wikipedia.org/wiki/InfluxDB.

[Accessed 25 03 2018].

[5] “Kibana,” [Online]. Available: https://en.wikipedia.org/wiki/Kibana. [Accessed

15 01 2018].

[6] “Grafana,” [Online]. Available: https://grafana.com/. [Accessed 02 04 2018].

[7] “Jenkins,” [Online]. Available: https://jenkins.io. [Accessed 07 05 2018].

[8] “nosql,” [Online]. Available:

https://www.infoworld.com/article/3240644/nosql/what-is-nosql-nosql-databases-

explained.html. [Accessed 07 05 2018].

[9] “quartzNet,” [Online]. Available: https://www.quartz-scheduler.net/. [Accessed

07 05 2018].

[10] “AWS CloudWatch,” [Online]. Available:

https://aws.amazon.com/cloudwatch/?nc1=h_ls. [Accessed 19 05 2018].

[11] “Benchmark. InfluxDb - Elasticsearch,” [Online]. Available:

https://www.influxdata.com/blog/influxdb-markedly-elasticsearch-in-time-series-

data-metrics-benchmark/. [Accessed 16 05 2018].

[12] “DB-Engines ranking,” [Online]. Available: https://db-

engines.com/en/ranking/time+series+dbms. [Accessed 16 05 2018].

[13] “Benchmark. Influx - OpenTSDB,” [Online]. Available:

https://www.influxdata.com/blog/influxdb-markedly-outperforms-opentsdb-in-

time-series-data-metrics-benchmark/. [Accessed 16 05 2018].

[14] “NewtonsoftJSON,” [Online]. Available: https://www.newtonsoft.com/json.

[Accessed 02 04 2018].

[15] “Selenium,” [Online]. Available: https://www.seleniumhq.org/about/. [Accessed

24 03 2018].

[16] “Ninject,” [Online]. Available: http://www.ninject.org/. [Accessed 29 03 2018].

[17] “Quartz.NET,” [Online]. Available: https://www.quartz-scheduler.net/. [Accessed

24 01 2018].

[18] “Windows service as a console app,” [Online]. Available:

https://alastaircrabtree.com/how-to-run-a-dotnet-windows-service-as-a-console-

app/. [Accessed 16 05 2018].

[19] “monitis,” [Online]. Available:

https://www.pcmag.com/business/directory/application-performance-

64

management/1770-monitis. [Accessed 08 05 2018].

[20] “Monitis API,” [Online]. Available:

http://www.monitis.com/docs/apiActions.html. [Accessed 16 05 2018].

[21] “RiseVision,” [Online]. Available: https://help.risevision.com/hc/en-

us/articles/115002868706-The-overview-how-does-this-work-. [Accessed 13 05

2018].

[22] “Install Windows service,” [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/framework/windows-services/how-to-install-and-uninstall-services.

[Accessed 16 05 2018].

[23] “WCFservice,” [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/framework/wcf/whats-wcf. [Accessed 06 05 2018].

[24] “Ninject to web form,” [Online]. Available:

https://stackoverflow.com/questions/25046162/how-to-inject-dependencies-

using-ninject-in-asp-net-

webform?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=

google_rich_qa. [Accessed 27 05 2018].

65

Appendix 1 – Result

Photos below show that dashboard created during this project is in actual use by

LinnSystems.

