TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Vladimir Potasenkov 1236871APB

LINNWORKS SYSTEM STATUS
MONITORING

Bachelor’s thesis

Supervisor: Deniss Kumlander

PhD
Vanemteadur

Tallinn 2018

TALLINNA TEHNIKAULIKOOL
Infotehnoloogia teaduskond

Vladimir Potasenkov 1236871APB

LINNWORKS SUSTEEMI STAATUSE SEIRE

bakalaureusetdo

Juhendaja: Deniss Kumlander

PhD
Senior researcher

Tallinn2018

Author’s declaration of originality

I hereby certify that | am the sole author of this thesis. All the used materials, references to the
literature and the work of others have been referred to. This thesis has not been presented for

examination anywhere else.
Author: Vladimir Potasenkov

19.05.2018

Annotatsioon

Kéesoleva 16put6é eesmargiks oli leida viis Linnworks informatsioonisiisteemide ja staatuste
kujutamiseks infopaneeli kaudu ja rakendada selle prototiitipi. Rakendus oli loodud LinnSystems
noudmisel. Antud ettevite tegeleb oma tarkvara arendamisega, mille eesmirk on lihtsustada

arimeeste tegevus e-kommertsi valdkonnas.

Antud projekti eesmirgiks oli slisteemiga seotud informatsiooni kogumine ja arusaadaval moel
kujutamine suurel teleekraanil, mis vdimaldaks tootajatel jélgida Linnworks rakenduste
seisundit(serverite jdlgimine, veadest teadaandmine jne). Informatsioon on esitatud graafikute ja

tabelite kujul soltuvalt valitud visualisatsiooni todriistast.

Lopptulemuseks oli leitud sobilik lahendus ja esitatud infopaneeli prototiiiip, mida LinnSystems

oma t00s kasutab.

Loputdd on kirjutatud inglise keeles ning sisaldab teksti 65 lehekiiljel, 4 peatiikki, 63 joonist, 2
tabelit.

Abstract

The main purpose of this thesis was to find an optimal solution for presenting information about
Linnworks-related systems status on the dashboard and implementing a service for this data
collection. This task was requested by LinnSystems. LinnSystems is a company that offers

software for e-commerce merchants.

The aim of this project was to deliver and show information about the system in appropriate way
on big display so that company’s workers would be able to get the general information about
Linnworks system stability. Information is represented in a form of charts, tables and other

elements available in chosen data vizualization tool.

As a result of this project, an appropriate solution has been found and working prototype has been

presented. Dashboard is currently in use by LinnSystems.

The thesis is in English and contains 65 pages of text, 4 chapters, 63 figures, 2 tables.

E-commerce

Elasticsearch

Logstash

InfluxDB

Kibana

Grafana

Jenkins

NoSQL

Quartz.NET

WCEF service

AWS
CloudWatch

Glossary of terms and abbreviations

is a process of selling and buying products or services over the internet

[1]

is a free and open source search engine based on Apache Lucene. It

provides a full-text search engine and works with JSON documents. [2]

Is a tool that converts received information to JSON format and saves it
in Elasticsearch cluster [3]

is an open-source database which is specialized on time series data. It is
optimized for fast retrieval of time series data [4]

is a data visualization plugin for Elasticsearch. It allows to visualize
indexed data which is stored in Elasticsearch cluster [5]

is an open source software for dashboards creation [6]

is an open source tool for building and deploying any project [7]
is a nonrelational databases for storage and retrieval of data [8]
is an open source job scheduling system [9]

is a framework for creating service-oriented applications [23]

is a monitoring tool for applications hosted on Amazon Web Services
[10]

Table of images

Figure 1. Kibana dashboard.............ccccceiiiiiiieie et 19
Figure 2. Grafana dashbDOoard ..o e 20
Figure 3. Grafana elements POSItIONING..........ceiiiieiiieie e 21
FIQUIe 4. GENEral STIUCLUIEeeiieieie ettt sttt sttt sreesne e e s 22
Figure 5. Data-collecting job WOrkflOWccovoiiiiiii e 23
Figure 6. Get available JODS.........c.oiiiii e 24
FIQUIE 7. PrOJECT STFUCTUTE ...ttt sttt e sraene e e nnaenee s 26
FIgure 8. STartUp OPLIONScc.oiuiiiiiiiieiei ettt b et 27
Figure 9. Dashboard 1St PrOtOtYPEccovviiiiieie ettt 28
Figure 10. Dashboard 2nd ProtOtYPEccveiiiieiieiiriisieeiee e 29
Figure 11, HEalth DOXES.......cviiiiiiece ettt sra e 30
Figure 12. Feedback COOUMNGooiiiiiiieeee e 31
Figure 13. DashDOArd 1cooveiiiieiicie ettt sre e e 32
Figure 14. DAshDOArA 2oooiiiiiiiieiee ettt 32
Figure 15. Call of the ProCEAUIE............coii i 33
Figure 16. Stored procedure get_totalcoooieiiiiiiiieec e 34
Figure 17. AppData Class STTUCKUIEocueiieiecie ettt 35
FIQUIe 18. SEIVICE rBTEIBINCEouiiiiiticiieiee ettt 35
Figure 19. Define ClIENt Creationcovoii e 35
Figure 20. GetData MEtNOUcoiiiiieieieiie et 36
FIQUIE 21, LOQQET LY PES .o tieeieitiecteette ettt ettt ettt et e s te et e e ae e sbeesteessesbeebesneesbeesesneenreeneans 36
Figure 22. Freshchat main dashboard.............ccooiiiiiiiii e 38
Figure 23. Chrome drivVer SEILINGSvoiiiieiiece ettt sba e 38
Figure 24. Locate elements ON PAJEc.voveiirierieiieriisieseeee ettt bbb 39
FIgUre 25. ENCOUE TALAccveiviiiieeie ettt ettt ettt sreere e sreeee s 39
Figure 26. Request information about CallS............cooiiiiiiiiiii e 40
Figure 27. Freshdesk reSPONSE.c..ciieiicie ettt sbe e 40
Figure 28. Set TIS2 PrOtOCOIcciiiiiieieieeee e 41
Figure 29. ReSpoNnse - tICKELS COUNL..........eciiiieiicie et 41
Figure 30. CUIrentTICKETS ClaSS........uiiiieieiiierie s 41
Figure 31. Set failed MONITOIScviiiiiicc e 42
Figure 32. MONItOr tYPe CONVEISIONcueiiiiiiieiiestesie sttt se bbb eneas 43
Figure 33. linnworks.dashboard.webapi StrUCLUIe..............covveiiieiie i 45
FIQUIE 34 QUETY ...t bbb bbbt bbbt et et e bbbt beene s 45
FIgure 35. GEtFEEADACK..........c.ueiieeiee et 45
Figure 36. Feedback - Stored ProCeAUNEcoiiiiiiiiiiece e 46
Figure 37. Grafana - required fOrmat...........ccceeiiiiii i 47
Figure 38. Measurement - CUITENt ONTINEoooiiiiiiiiice e 48
Figure 39. INFIUXDB - data SITUCLUIEc.eeiieiiie et 49
Figure 40. Current Calls CONSIIUCTONcoviiiiiirieieri e 49
Figure 41. GetFields eXampPle.........coii i 50
Figure 42, Datasource INTEITACE..........cuiieieieie et 50
Figure 43. Determing data SOUICE........cuiiiuieiieeiee st esiee st stee s te e sbe e sre e abe e e s be e sneeeneesree s 50
Figure 44, EXCEPLIONS IOQUETcciuieieiieiieiesee st eie ettt e te e sra et ste e e s e sraeaesneenseenees 51
Figure 45. Grafana Variablesc.ooeoiiiiiiii e 52

file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615927
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615931
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615935
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615936
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615942
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615945
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615951
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615953
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615957
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615963
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615966
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615967

Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.

Grafana "Health DoX" elemMeNntccccviiiiiiiic 52
MIXEU AALA SOUICTE ...ttt sttt st ere et aneesreeeeenee e 52
QUETY = EXCEPLIONS. ...uviivieiieee sttt ettt te ettt ste e e e b e ae s e nnaenee s 53
QUETY = IMIBIMOIY ..ttt ettt ettt e bt et e et e et e e nnn e 53
QUETY = CPU ..ot b e nbbe e nabe e e naeeas 53
QUETY = DIV .ot 54
QUETY = DANAWITLN ... e 54
Query - AVaHADITITY ..o 54
Warning threSNoId..........couv e 55
Background COIOUINGcooiiiiiiiiee e 55
RISEVISION CONTIOI MEBNU......iiiiiiiiiiiecie s 56
RISEVISION PIAYHIST ... s 56
LAV Lo o T=] A= 1] T 1SS 57
SErVICE INSAHALION ..o 58
SEAMTING SEIVICE ... ueiveeieciie ittt et e et s b e e e sreesreeaesneenraeteas 58
Visual StUAIO AEDUGGET ... 59
Kibana dashboard...........c.ccoiiiiiiiei s 60
Grafana refreSh FaLE.........coiiee e e 60

file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615970
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615971
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615972
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615973
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615974
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615975
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615976
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615977
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615978
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615979
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615981
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615982
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615983
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615984
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615985
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615986
file:///C:/Users/bjiad/Desktop/MyDiplomka/LinnworksKibanaDashboards.docx%23_Toc514615987

Table 1. sessions_current structure
Table 2. Log entity structure

Table of tables

Table of Contents

Author’s declaration of OriINAIILYccveviiiiiiiii s 3
L 00 [V od o] o ISR 12
1. ADOUL thE COMPANYcoiiieiiiieiie ettt et e e e st e e e e s re e beaneesreeteeneesraeneeas 13
2. REQUITEIMENTS ...ttt ettt e et e st e s te et e et e e be e st e saeesteenneeseesteensesneenrs 14
2.1 Company’s requirements to the SOftWareccoocveiiiiiiiiiiiic e 14
2.1.1 FUNCLIONAl FEQUITEMENES .. .ottt reenre e 15
2.1.2 Nonfunctional reqUITEMENTScoiiiiiiiiieeee et 16

R N T 1Y £ S PS 17
3.1 POSSIDIE SOIULIONS ...ttt sttt enreeneeenee e 17
B0 R O [=Tot 1T To o - - TSSO 17

3. 1.2 SEOFING GALA. ...ttt bbbttt r e bbb sbeene s 17
3.1.3 ViSUAHIZING UALAecueeieiecie et 19

3.2 DEVEIOPMENT TOO0IS......ceiiiiiiiieieie et 21
3.2.1 Programming lanQUAGEcueuiiiiriiiiiiii ettt 21
3.2.2 Third-party lDrari€S.........cciviieiieieece et 21

4. IMpPlementation DEtAIScouiiiiiiee s 22
4.1 WINAOWS SEIVICE QELAIISveiiceiii ittt 22
4.1.1 WINCAOWS SEIVICE SIUCTUIE......eiueeiieieeitiesieeiesiee e ee e sie et e e nee e nneeneesneesneenee e 25
I Tod 1 <o [0 o OSSPSR 27
4.1.3 Startup CoONfIQUIAtIONccviiiiie e 27

4.2 Dashboard INTEITACEooei e 28
4.3 Data CONBCTINGveiiieiieieiee ettt e et bbb eneas 32
4.3.1 CUIMENT ONHINE ..ot 33
4,32 EXCEPLIONS ..veiieteiteite sttt ettt b bbbt b ettt et e bbb bbb nne s 36
4.3.3 Chat System fOr MONITOIINGooeiiriiiiiiiiieeee e 37
4.3.4 CUIMENE CAIIS......oeieiee et 39
o O U =] 1 A [0 G £ 40
4.3.6 MONILIS MONITOIS ...vvcvieciieieee ettt e e e teeneesneesneenee e 41
4.3.7 Customers’ fEeADACKuuiiiiiiiiiii it 44

4.4 Data SAVING AN SEOTING ..c.viviiiiiieiieiieieie ettt nb b eneas 47

4.4.1 ElasticSearch 10g SIIUCIUIEcoiveie e 47
4.4.2 INFIUXDB data STIUCTUIEeevveieieiiieie sttt 48
4.4.3 Determing dataDaSe..........cueieieiirieii i 50
Y o T (o]] T PSS 51

4.5 Visualizing data on dashbOard............cccocveiiiiiii i 51
4.5.1 Grafana temMPIatingccooiii e 51
4.5.2 Grafana ‘health DOXES™ccoiiiiiiiiiiie e e e 52

4.6 Service deplOYMENTcviiieie et ae s 55
4.7 Display dashboard on display..........ccccciiiiiiiii i 55
Each web page widget has an url reference (Figure 58).........ccccccvveviiieieiveiiicse e 57
O I (=T o UL Y PP SPRUPRPPRPPRN 57

N =11 1] T USSR PRRPOTPSN 57
0 T =0 [0 o ST 57
4.8.2 Data COHBCLINGccivieie ettt ae e sre e 59
4.8.3 Grafana DOAITccoviiiiiiee et 60
SUMMIATY .ttt ettt st e e st e e R et e ekt e e e b e e e e R b e e e eR b e e e nnb e e e nn b e e e nnbe e e bt e e e nre s 61
KOKKUVOLE ..ottt e s e e e e e e e e s e e bbb a e e e e e e e e s saatbbeeeeeeeessesnararenesaeens 62
B L0 L0 1 0=] = (0 SR 63
APPENTIX L — RESUIL ...t sreesre e 65

11

Introduction

The main purpose of this thesis was to find optimal tools and provide a complete
solution for general system health and status monitoring for LinnSystems company.
Information about the system should be shown in appropriate way on TV screen so that
company’s workers would be able to get the general information about Linnworks,

system stability and customers’ satisfaction.

12

1. About the company

LinnSystems is a company that develops and supports software for e-commerce
merchants who sell on online marketplaces such as Amazon and eBay. Main products
of the company are Linnworks and Linnworks Desktop. They are used to simplify and
automate everyday work of online sellers. Applications have similar functionality with
the only difference is that Linnworks Desktop is an old version of the product and has to
be installed on PC while Linnworks is a newer web-based product which is developed

as a single page application.

LinnSystems has one office in Chichester, UK and one in Tallinn. Tallinn office has a
development team and support representatives team. Support representatives team help
customers to solve problems with software configuration. Communication is performed
over phone calls, chats or tickets. Usually, customers choose a method of
communication depending on the importance of their issue. New phone call, chat or
ticket is automatically assigned to the first available support agent. It is important to
know the actual load on the support team in order to plan their working schedule and
provide qualified service to company’s clients. Also, spikes of complaints may be
caused by a bug in the software. In addition to listed communication forms, customers
have an option to leave a feedback directly from the application interface. Feedback has
a positive or negative type assigned by customer and message. Feedback from

customers plays a significant role in planning further development process.

C# is used as a standard language for all internal development. For product applications
company mainly use SQL databases and MongoDB. For internal needs the company
has instances of Logstash and InfluxDB databases. Various exceptions and system logs
from product applications are stored in ELK (Elasticsearch, Logstash, Kibana) stack. A
very basic chart in Kibana is used to monitor an amount of exceptions. It is often used
by Quality Assurance team after releases to ensure that everything went as planned and

a new patch does not cause any issues.

13

2. Requirements

2.1 Company’s requirements to the software

Company’s main requirement was to create a dashboard that would allow company

workers to check system status and general events connected with Linnworks at any

given time on the display on the wall. Design has to be simple, intuitive and at the same

time should contain enough information about different aspects.

The main goal of this project was to develop the idea, choose appropriate tools, design

and to create dashboard for LinnSystems using data visualization tool that will show

information and statistics about Linnworks system, related processes, and events. Some

solution ways are dictated by the company and others are in the free choice.

Requirements:

o Create a dashboard with different information about the system (below are some

ideas to choose from):

O

Status of servers — to show current load or/and status (operational or
failed) of servers where Linnworks and related applications are hosted
Logs — to show an amount of unhandled exceptions in company’s
applications such as Linnworks.net and Linnworks desktop

Registration statistics — to show how many users registered in last month
(preferably show estimated location on world map)

Feedback — to show a few examples of feedback from customers
Current online — to show an amount of currently active users in
Linnworks and in Linnworks Desktop

Opened support tickets — to show an amount of support tickets raised by
customers (grouped by their status: opened or resolved)

Active chats — to show an amount of chats with support representatives
and amount of total available support agents

Active calls — to show an amount of calls from customers in support

department

14

Implement a windows service that will be able to regularly request needed for
dashboard information from different database sources, aggregate it and pass to
database which will be connected to the dashboard where information will be
shown in appropriate format according to data type.

Dashboard elements should be placed in such way that they will fit in big
display

Displayed information should be refreshed at least once in 5 minutes

Choose TV that will be capable of displaying dashboards 24/7

Set up TV to show dashboards in the office

Things to be considered:

It is desired that during this project we use a combination of tools already in use
by the company but at the same time, author has the freedom to choose other

tools if needed

Information is being kept in different sources and in different formats - so every

type of data should be requested, handled and saved separately

Information has to be aggregated, parsed to format required by data

representation tool and passed to appropriate database

2.1.1 Functional requirements

The panel should be able to present data depending on the nature of data with
help of the following elements: grids, charts, labels, tables

Dashboard views should refresh data using a predefined interval

Information for the dashboard should be collected by a service

It should be possible to specify the time range for data displayed on the
dashboard

15

2.1.2 Nonfunctional requirements

Dashboard elements should fit on one display

Elements should be properly allocated on the dashboard, so it should be easy for
workers to understand their meaning

Dashboard should work on TV

Service should be compatible with Windows Server

Dashboard should be available only in company domain group

Extensibility options should be available

Service which collects information should execute itself automatically without
interaction with human

Dashboard should be available 24/7

16

3. Analysis

3.1 Possible solutions

In this paragraph several solution ideas are described and some of the possible
approaches are be reviewed and the most suitable is chosen. Some conditions have been

set by LinnSystems.

3.1.1 Collecting data

The dashboard should represent information which is originally being held in different
formats and in different databases. That information should be collected into one place
by certain tool. Company’s desired option was a windows service as compatibility with
windows server was required and it does not need much effort to support. Because of

that, other options won’t be considered.

3.1.2 Storing data

The main problem of storing data is that there are many different log types from
different sources and they have to be classsified properly so that it would be easy to find

them later.

3.1.2.1 Database choice
Taking into account the fact that data used by dashboard has different nature, originally
it is stored in different types of databases. Modern data visualization tools are capable of
working with multiple data sources. Therefore, the author is not limited to one database
and can use multiple databases in this project.

SQL-based databases do not seem to be the best option for this project because of the
nature of the data. Almost all required for dashboard information has a form of time
series: logs, exceptions, servers’ status metrics, etc. NoSQL databases are more oriented
for such kind of data and there is no need to manually create separate tables for each

type of information. In addition to that, there may appear scaling problems with SQL

17

database over time. Also, some visualization tools such as Kibana cannot be easily
integrated with SQL database.

Among NoSQL databases, MongoDB has been considered as an option as the company
already has MongoDB instance running for one of the applications. MongoDB stores
data in JSON format. This database was not designed for time series data. This is a
document-oriented database and it is not possible to integrate MongoDB directly to data
visualization tools such as Kibana, Grafana, and Graphite. Such disadvantage makes it

pointless to use of this database for this dashboard project.

Various logs from Linnworks and other related applications are already being saved in
Elasticsearch database. This is an established process with the help of ELK stack. In
order not to re-save information about logs from one database to another it would be a
wise decision to use already existing Elasticsearch database for logs storage. Moreover,
it is possible to directly integrate Elasticsearch with some analytics and monitoring
platforms such as Grafana, Graphite, and Kibana.

After further research, it appeared that InfluxDB might be a very good database choice.
InfluxDB is a relatively new open source database with easy setup. It was designed for
time series data, such as logs and statistics. This database is capable of performing fast
real-time analysis on a large volume of data. InfluxDB’s strong side is the speed of
write and read operations. Based on benchmark results [11], InfluxDB has much faster
write speed compared to Elasticsearch and a bit slower read speed. Also, it is said that
InfluxDB has better performance ‘out-of-the-box’. InfluxDB can be integrated with
visualization tools such as Grafana. On DB-Engines ranking [12] InfluxDB is on the 1
place.

OpenTSDB database has been considered as a pretender. OpenTSDB is a time series
database which main purpose is to be used for dashboard visualizations. But based on
benchmarks [13] it is not outperforming InfluxDB in any way. Author of this thesis has
not found any major advantages of other NoSQL databases over InfluxDB and as
company was able to quickly provide instance of this database, it was decided to choose
InfluxDB. In addition to that, manager had a desire to hold on to already used software
rather than jumping to something completely new and unknown if there is no justified
reason for that.

18

As a result, Elasticsearch and InfluxDB databases will be used to store data required for
dashboard. Elasticsearch will be used to fetch information about unhandled exceptions
and InfluxDB will be used to store other information (specific information for

dashboard project).

3.1.3 Visualizing data

A third-party tool will be used for data visualization. The main pretenders are: Kibana
(Figure 1), Zoomdata and Grafana (Figure 2). Zoomdata is not free so author decided to

look into sKibana and Grafana.

Dashboard / Test Execution Status Copy Fullscreen Share Clone Edit <€ @ lLast1
‘ klbana Search... (e.g. status:200 AND extension:PHP) Uses lucene query
(@ Discover Add a filter +
Visualize Test Execution - Platform total tests executed

Dashboard @ ANDROID
“ @105

Timelion

Dev Tools

g " 3 0
S / \ ‘ I ?
0 | A
Management U /\ \
¢ . LT [
/ \ i f
//\L’ Vol N\ Count
201 2 2 3 2018-01-14
JENKINS_RUN_NAME per day
ests Executed Daily Test Status
® ANDROID “ [
@05 FAIL
300 SKIP
€ €
3 5 20
3 3
S S
il Li |||I|I| il II
SEELE | B || B - Al
180 g 017-12-03 712417 741 1 (114
JENKINS_RUN_NAME per day JENKINS_RUN_NAME per day

Figure 1. Kibana dashboard

19

R

. 025
g A At A g LA e bt

Figure 2. Grafana dashboard

Although the very first prototype of dashboard has been made with Kibana visualization
tools because it has already been used by company and there was a manager’s desire to
have a standard solution, after some investigations it was decided to use Grafana. It
appeared to be the best option, because Kibana is more specialized on logs, while
Grafana has better support for other design elements like displaying current status
(On/Off), amount of something etc. Also Grafana has more attractive design which is
quite important, as dashboard will be displayed on SmartTV in the office.

In addition to that, Grafana can be integrated with Elasticsearch, InfluxDB, with
Amazon CloudWatch [10] (company has plans to use AWS CloudWatch for server
monitoring, so possibility to integrate it with Grafana is a big advantage) and other
sources.

Recently there was a release of Grafana 5 and that latest version is used in the project as
it has advanced settings for positioning elements on dashboard (Figure 3) which is also

an advantage over Kibana which has limited possibilities for elements positioning.

20

shipping_gateway

0

Figure 3. Grafana elements positioning

3.2 Development tools

3.2.1 Programming language

Almost all software in Linn Systems is written in C# using ASP.NET framework. One
of the requirements was to use C# for this project so that it will be easier for developers

to maintain it in the future.

3.2.2 Third-party libraries

Some of the third-party libraries are used in data-collecting service to simplify

development process.

NewtonsoftJSON - Popular high-performance JSON framework for .NET. [14] It is
used to convert data into JSON format. This library is used in other company’s projects
and in order to adhere to the standard it was decided not to use other JSON libraries.
Selenium WebDriver and Chrome driver - Selenium is a suite of tools designed for
automating web browsers [15]. This tool is already used for automated tests in
LinnSystems. This tool completely meets our needs in the scope of this project and
there is no need to search for a better option.

Ninject - Open source dependency injector for .NET [16]. This is a standard library in
LinnSystems company.

Quartz.NET - is a pure .NET library written in C# and is a port of very popular open
source Java job scheduling framework, Quartz [17]. It is used to schedule recurring
tasks in windows service.

InfluxDB.NET - library for InfluxDB database.

21

4. Implementation details

The whole project consists of three main parts:

e Windows Service — The purpose of the service is to collect data, convert and
send it to database

e Dashboard — Displays data in a form of visual elements (tables, graphs, charts,
etc)

e Int_ws_utils — Internal LinnSystem’s services that have permission to get
information from SQL database. It is used by Windows Service to get
information about customers’ feedback and Linnworks online.

More detailed information is shown on Figure 4.

() Linnworks-related
¢ Freshcaller J—oH [Kibana 1 applications and
l - J services
A r N
Freshchat p——
linnworks.dashboard.service @
—> Windows service Elasticsearch [<#—Exceptions
Freshdesk
——
Monitis — ‘ InfluxDB 1 % Grafana
’ T dashboard
int_ws_utils | | . . . | SimpleJSON \
internal WCE service linnworks.dashboard.webapi > plugin

linn_logs
SQL Database

Figure 4. General structure

4.1 Windows service details

For collecting statistics, system logs, feedback and other information types it is planned

to create a windows service that will regularly request information, handle it and

22

forward to database. It is easy to set up windows service on windows server (one of the

requirements) and it should not cause additional problems with installation.

The main purpose of the windows service is to collect information from different
sources and save it. As information is taken from differrent databases and is presented
in different formats, it should be aggregated and converted to format which is
apporpriate for saving. In order to achieve that, service consists of different job types.
System is designed to run only one job simultaneously. Purpose of each job is to send
request to only one specific data source, individually and correctly handle response,
convert received information to appropriate format and pass it to InfluxDB database.

General data-collecting windows service’s process is as follows (Figure 5):

. Job started

[Iterate through all }

data-collecting jobs

/\ Execute job's data
No w Yes collecting method

Request data from
appropriate source

Finish execution

Convert received
data into
appropriate for
saving format

Save data to
InfluxDB

Figure 5. Data-collecting job workflow

23

Main purposes of the service:
o Collect data from different sources (from SQL and NoSQL databases, freshdesk,
Jira using API, etc.)
« Aggregate data from received format to appropriate for storing
« Send data to database that will be connected with dashboard

« Execute itself on a regular basis

In order to get all available jobs, adapter searches for all classes inherited from

BaseDataSource and then executes GetData() method on them (Figure 6).

public static void Run(DateTime startTime)

{

var assembly = Assembly.GetExecutingAssembly();

var baseType = typeof(BaseDataSource);

var types = assembly.GetTypes().Where(t =>
baseType.IsAssignableFrom(t) & & t != baseType);

using (var kernel = new
StandardKernel(SolutionWideNinjectBindings.GetBindings()))

{
var settings = kernel.Get<AppSettings>();

var connectionInfo = new
BaseConnectionInfo(settings.LinnStatsDatabaseServer,
settings.LinnStatsDatabaseName, settings.LinnStatsUserld,
settings.LinnStatsPassword);

foreach (var type in types)
{

var dataSource = kernel.Get(type) as BaseDataSource;

// influxdb
var influxDb = dataSource as IInfluxDbDataSource;
if (influxDb != null)

{
try
{
var data = influxDb.GetData(startTime);

Figure 6. Get available jobs

24

4.1.1 Windows service structure

Windows service solution consists of two main projects (Figure 7):
e linnworks.dashboard.logic

e linnworks.dashboard.service

And some code is being held in LinnSystems internal projects such as:
e linnworks.influxdb
e linnworks.logger

e linnworks.services

linnworks.dashboard.logic — all logic for jobs is being kept in separate subfolders in
DataSource folder. Also Adapter is located in this project, which controls job execution
process: collects available jobs, executes them and saves received data to appropriate

database.

linnworks.dashboard.service — contains logic related to scheduling process and service

startup configurations.

linnworks.influxdb — is an internal project that keeps settings and configurations to
work with InfluxDB and contains data structure for logs. This project has been created
by LinnSystems database administrator and has been updated by the author of this

thesis.

linnworks.logger — is an internal project that is used to save logs and exceptions among
all LinnSystems’ products and applications. This project has been updated by the author

of this thesis in order to work with new logs structure.

linnworks.services — is an internal LinnSystems’ project that is used to provide clients
for internal WCF services. This project has been updated by the author of this thesis in

order to work with Dashboard service.
25

@ Solution 'linmworks.dashboard.service' (6 projects)

4 linn_foundation_dll
[+ linnworks.influxdb
I+ linnworks.logger
[+ linnworks.services
4 linnworks.dashboard.logic
b Properties
[=B References
Service References

[Classes
F DataSource
[Base
[Freshcaller
F Freshchat
[Classes

P c# CurrentChatsDataSource.cs
4 Freshdesk

[Classes

P # CurrentTicketsDataSource.cs
F Menitors

[Classes

P o CurrentMonitorsDataSource.cs
4 Online
B o CurrentOnlineDataSource.cs
P o Adapter.cs
¥ app.config
P ©* AppSettings.cs
P o MinjectDependencies.cs
¥ packages.config
4 linnworks.dashboard.service
b Properties
P =B References
¥ app.config
¥ packages.config
c#* Program.cs
43 Projectinstaller.cs
o Quartz.cs
I Service.cs

v v v v

Figure 7. Project structure

26

4.1.2 Scheduling

A scheduling has to be implemented to set up service execution on a regular basis. It
this project Quartz.NET [17] library was used. Quartz is a jobs scheduling library that is
used to easily setup scheduling for different jobs. Although this tool does not have
advanced settings for unusual tasks, nor any job history, alerts or error handling, this
tool fully meets our requirements, therefore other options won’t be reviewed. Windows
service is configured using Quartz.NET to run scheduled tasks every predefined interval
of time. When execution begins, adapter collects all available job types and starts to
iterate through them one by one. When all jobs finish execution, process completes until

next scheduled run.

4.1.3 Startup configuration

Startup configurations are located in linnworks.dashboard.service project. For example,
in Service.cs class there is logic which determines if application runs locally or on
windows server as a windows service. Based on startup option is chosen: to start as a
service or as a console application. [18] In order to make decision the author relies on
Environment.UserInteractive Value as Windows Service by default is not allowed to be
interactive (Figure 8).

static void Main()

{

var service = new dashboard.service.Service();
if (Environment.UserInteractive)

{
service.RunAsConsole(null);
}
else
{
ServiceBase[] ServicesToRun;
ServicesToRun = new ServiceBase[]
{
new Service()
¥
ServiceBase.Run(ServicesToRun);
}
}

Figure 8. Startup options

27

4.2 Dashboard interface

Dashboard interface elements’ style mainly depends on type of information that should
be presented. First prototype (Figure 9) has been discussed with manager and some of
the team members. Initially it was hard to understand what do we need to achieve and
how it should look like. As the author and the manager did not have a clear vision, some
most interesting elements have been chosen without justification and development

started.

Dashboard

e 9 e £ (https:/idashboards.linnworks.com)

Registrations by countries
Exceptions

/\/ OOO

Users online

14

recscomn | M|

Chats count 20

opened JIRA cards count 123
Ne
Example of randem recent feedback message

Feedback from customers

Figure 9. Dashboard 1st prototype

For visualizing exceptions level LineChart diagram would be the best choice as it
allows us to track growth or decrease an amount of unhandled exceptions over time.
Exceptions level will greatly help to notice problems in the system after weekly releases

or after hotfixes.

In order to track pressure on the support team, it would be useful to show current
amount of opened tickets, calls and chats from customers. If amount of them greatly

increases in a short period of time, it may mean that there is a problem in the software.

28

World map element may represent amount of registered customers by their country. It is
easier to perceive such type of information from world map rather than from table.

Customers feedback (positive and negative) about Linnworks product could be
represented in pie chart with a randomly selected message that change periodically to
provide more interactive feedback because there is not enough space to show all
feedback at once. Amount of opened and closed JIRA cards might be shown in numbers
or in a line chart in order to stimulate developers to increase quality of their work. There

is also a line chart displaying amount of active users over time.

In the beginning this prototype has been accepted by team members and displayed
information seemed useful. However, when development started and the first semi-
working copy has been launched, it appeared that dashboard is not giving the team
desired information. After further discussion with the team and manager, author came to
a decision that a dashboard should mostly contain information related to system status
rather than displaying customers’ feedback, opened Jira cards and registration locations.
Based on received from colleagues feedback about the dashboard new prototype has

been presented to the workgroup (Figure 10):

Dashboard
e + e ﬁ [https://dashboards linnworks.com]
Users online: Linnworks.net Users online: LinnLive Users online: Linnworks desktop
Current chats Current tickets Current calls
Exceptions Linnworks.net: Exceptions LinnLive: Exceptions Linnworks desktop:

Exceptions Event Despatcher:

20

Exceptions int_ws_utils:

20

Exceptions shipping gateway:

20

Figure 10. Dashboard 2nd prototype

29

In the second prototype it was decided to allocate more space for information that is
more important to control in real time: amount of active users, amount of unhandled
exceptions and load measurement on support department. After some time of
development, author presented second working copy to team members and the manager.
It was displayed on TV on the office wall. For a few days we liked new dashboard but
then team members started to notice that there is information only about exceptions and
not enough information regarding other aspects of the system. Often it is not enough to
rely only on the amount of exceptions. Moreover, dashboard consists of many similar
elements and it is hard to focus on information, hard to understand if amount of
exceptions is high or everything is in its normal state. The idea of the dashboard was to
allow workers in the company to check if system has problems or not by taking a quick
look at the monitor when bypassing it.

After reviewing new feedback from team members and the manager, the next idea that
the author came up with was to remove linear graphs and exception numbers when
everything is running smoothly in order to get rid of unimportant information. Each
project or important part of a system which requires monitoring will have its own
“health box” (Figure 11). When everything is in normal condition, graph will have
green background and no information displayed on it. Elements will have its own
threshold values for ‘Warning’ and ‘Critical’ conditions. Those values are set based on
average numbers of exceptions during a few weeks and they are separate for each
“health box”. When some metric reaches its “Warning’ or ‘Critical’ condition, graph
will be marked in yellow or red color and critical metric name with value will be
displayed on the graph. Color system makes it easy for eyes to focus only on important
elements and small part of displayed information makes it easy to read and get snapshot

of system status in a few seconds.

Iw_net_worker

memory_failed - 1

Figure 11. Health boxes

30

Initially it was planned to display only amount of exceptions on these boxes but after
further discussion with colleagues, more interesting idea was born — the idea to monitor
complex metrics. In order to implement this idea it was decided to collect monitoring
logs from Monitis APIl. Monitis [19] is a tool that allows monitoring of web
infrastructure. Monitis monitors include Memory, CPU and Drive load, bandwidth and

availability metrics. As a result, each “health box” has been connected with 6 metrics:

e Exceptions

e Memory

e CPU

e Drive

e Bandwidth
e Availability

Monitoring of different metrics allows to control health status of different part of the
system and if somewhere appears to be a problem it is easy to identify which projects or
parts of the system are affected and what exactly is failing. This does not mean that
previous version of dashboard was completely useless. Some elements have been taken
from it and moved to a separate dashboard contaning only charts with exceptions. This

page will be shown on TV display during slides rotation configured in RiseVision.

Feedback, which has been added on the final stage of development, is displayed as a
table. Table has one column with text message. Element will change colour depending

on type of feedback — green for positive and orange for negative (Figure 12).

Feedback

<script>alert('Security Team!’)</script>

Figure 12. Feedback colouring

At the time of writing this project there are two working dashboards rotating on TV

screen in LinnSystems office (Figure 13 and Figure 14):

31

event despatcher_status

[h.””" LA e |
| LRI R

adm_service

<seriptzalert{Security Teamf}</seripts

Figure 14. Dashboard 2

4.3 Data collecting

There are described data collecting jobs. They have different logic and different
approaches for requesting data. All jobs have one common base class BaseDataSource
which contains data source name and appSettings with authorization keys and
connection strings. The main purpose of this class is to unite classes so that Adapter can
collect all derived classes in order to get all jobs for execution. This idea allows us to

32

easily add new jobs in the future — we only have to inherit BaseDataSource class and
job collector will be able to execute them.

4.3.1 Current online

Amount of currently active users among LinnSystems’ products is stored in SQL
database with restricted access. Company’s internal int ws_utils service will be used to
get this data. A new method has been added to this service as a part or this project in
order to receive structured information about online users. New stored procedure and
table have been added to SQL database. Code will be described in details below as most
logic for retrieving amount of online users is located in internal projects and therefore is
not included in archive with project’s code. Information about active sessions is being

kept in online.sessions_current table (Table 1).

Column name Column type Description
UserDatabase Nvarchar(255) User’s database name
Time Datetime Time of activity
ServiceName Nvarchar(255) Name of application
Username Varchar (255) Customer’s username

Table 1. sessions_current structure

Method GetAppData (Figure 15) was added to int_ws_utils project in Dashboard.svc.
This method executes [online].[get _total] (Figure 16) stored procedure and converts

received information to List<AppData>.

public static List<AppData> GetAppData() {
var result = new List<AppData>();

using (var conn = new SqlConnection(
Helpers.SettingHelper.linn_logs_connectionString)) {
conn.Open();

using (var cmd = new SglCommand(@"online.get_total",

conn)) {

cmd.Parameters.Add(
new SqlParameter("@time",

DateTime.UtcNow.AddMinutes(-7)));

Figure 15. Call of the procedure
33

Procedure online.get_total (Figure 16) is executed with parameter @time set as current
time minus 7 minutes in order to get an amount of active sessions and databases for the

last 7 minutes.

IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[online].[get total]"') AND type in (N'P', N'PC"))
BEGIN
EXEC dbo.sp_executesql @statement = N'CREATE PROCEDURE
[online].[get total] AS RAISERROR(''[online].[get_total] is not yet
defined'', 16, 1);
END
GO
ALTER PROCEDURE [online].[get_total]

@time datetime

AS
BEGIN
/* online sessions */
SELECT
ServiceName,
COUNT(*) as SessionsCount
FROM [linn_logs].[online].[sessions_current]
WHERE [Time] > @time AND Username IS NOT NULL
GROUP BY ServiceName
/* online databases */
SELECT
ServiceName,
Count(*) as DatabasesCount
FROM
(
SELECT
ServiceName,
UserDatabase,
COUNT(*) as OnlineCount
FROM [1linn_logs].[online].[sessions_current]
WHERE [Time] > @time AND Username IS NOT NULL
GROUP BY ServiceName, UserDatabase
) AS t
GROUP BY t.ServiceName
END
GO

Figure 16. Stored procedure get_total

34

Received information is being converted to list of AppData classes (Figure 17):

public class AppData

{
public string AppName;
public int DatabasesOnline;
public int SessionsOnline;
}

Figure 17. AppData class structure

Class contains application name and amount of active users. On windows service side
linnworks.services project is used to communicate with WCF service, as one of the
manager’s desires was to follow company’s standards. This is an already existing
project implemented by LinnSystems which contains service references to different
internal services and has a service factory which provides service clients with correct
urls and keys. New service reference has been added to linnworks.services project
(Figure 18).

4 linnwaorks.services
b Properties
[+ =B References
4 Service References
g2" int_ws_utils_dashboard

Figure 18. Service reference

Then in ServicesFactory creation of client is defined (Figure 19).

public IDashboardClient GetDashboardClient()
{
var client = new int_ws_utils_dashboard.DashboardClient();
client.Endpoint.Address = new
System.ServiceModel.EndpointAddress(
settings.int_ws_utils_dashboard_url);
var binding = new System.ServiceModel.BasicHttpBinding();
binding.Security.Mode =
System.ServiceModel.BasicHttpSecurityMode.Transport;
client.Endpoint.Binding = binding;

return client;

Figure 19. Define client creation

35

Then data is requested and received information is returned in appropriate format
(Figure 20).

public List<InfluxDB.Net.Base.BaseDataStructure> GetData(DateTime
time)
{
var list = new List<InfluxDB.Net.Base.BaseDataStructure>();
var appData = new services.int_ws_utils_dashboard.AppData[] { };
using (var client = servicesFactory.GetDashboardClient())

{
appData = client.GetAppData();
}
foreach (var app in appData)
{

list.Add(new
InfluxDB.Net.DataStructure.CurrentOnline(time, app.AppName,
app.DatabasesOnline, app.SessionsOnline));

}

return list;

Figure 20. GetData method
4.3.2 Exceptions

In windows service there is no need to create a separate job for collecting exceptions as
they are already saved in Elasticsearch database. Grafana supports direct integration
with Elasticsearch. Queries for displaying exceptions will be described in Visualizing

section.

Almost all of the company’s applications and related services (linnworks.net, linnworks
desktop, event despatcher, shipping gateway, int_ws_utils, int_ws_channels and others)
have global exceptions handler that passes all occurred exceptions using
linnworks.logger directly to Elasticsearch. Elasticsearch is used as a source for
exceptions on Grafana dashboard. Logger separately handles different exception and log

types (Figure 21).

4 Logger

c* Applogger.cs

c# Basel ogger.cs

c# Basellserlogger.cs
c# ExceptionsLogger.cs
c# Statslogger.cs

A

c# UserLogger.cs

Figure 21. Logger types

ExceptionsLogger is used for unhandled exceptions. Exception message and stack trace

are passed to Elasticsearch over TCP.

4.3.3 Chat system for monitoring

When customers experience problems in their everyday use of Linnworks they may
address their issues to support department using support chat system. Company uses
Freshchat as a chat system. It would be useful to show on the dashboard amount of
available support representatives, assigned chats and unassigned (queued) chats. This
information may reflect problems with software if amount of opened chats greatly
increase in a short period of time. Unfortunately, Freshchat’s service has a very poor
API possibilities at the moment and it is impossible to get all needed information using
this method.

Freshdesk support team provided some examples. It is possible to send requests to this
endpoint:

https://web.freshchat.com/app/dashboard/basic/conversation

using X-HL-AUTH-TOKEN and response in the following format will be received:

{"conversationUnassigned":[{"time":2,"count":23}],"conversationNotReplied":[{"time
":2,"count™":1}],"activeAgent":[42994679111689,43009522368512,42993793548289,4
3009643958279,42994502606856,43011007320064]}

The problem is that this endpoint expects not more than 1 request every 5 minutes.
Moreover, response does not contain amount of assigned chats. It only contains amount
of available agents and unassigned or not replied chats. For this project it is important to
see how many chats are already assigned as it reflects actual load on support
department.

As a solution, author decided to use Selenium WebDriver and Chrome WebDriver
libraries. They are often used by LinnSystems testing team to write automated Ul-tests.
In this project those tools will be used to login into freshchat from browser using
username and password, locate needed elements on web page and fetch values from

them.

37

https://web.freshchat.com/app/dashboard/basic/conversation

On picture (Figure 22) there is displayed a part of Freschat page with displayed
information about current conversations and amount of available support agents in chat

system. This information is taken from page and is saved into database.

8@ Secure | https://web.freshchat.com/dashboard/app

. Dashboard

Q8 APP & TEAM MEMBERS

TEAM MEMEBERS CONVERSATIONS

Figure 22. Freshchat main dashboard

To get information from web page we will use Chrome driver (Figure 23).

//Options

ChromeOptions options = new ChromeOptions();
options.AddArguments("--disable-extensions");
options.AddArguments("--start-maximized");
options.ToCapabilities();

ChromeDriverService service =
ChromeDriverService.CreateDefaultService(appSettings.ChromeDriverResou
rcesPath);

IWebDriver driver = new ChromeDriver(service, options);

Figure 23. Chrome driver settings

ChromeDriver is placed in /resources folder. When deployed, this path will be different
so has to be replaced by Jenkins during deployment. Search of elements will be

performed on the page by element ids, class names or by text (Figure 24).

38

var ele = driver.FindElement(By.ClassName("select2-input"));
var js = (IJavaScriptExecutor)driver;

js.ExecuteScript("arguments[@].click();", ele);

driver.FindElements(By.ClassName("select2-result-label")).
FirstOrDefault(x => x.Text.Equals("tech support”,
StringComparison.InvariantCultureIgnoreCase)).Click();

Figure 24. Locate elements on page

In the end we get the following information about chats:
e Amount of active agents
e Amount of assigned chats

e Amount of unassigned chats

4.3.4 Current calls

Freshcaller system is used for calls management in support department. Requests to web

page are performed to retrieve information about current calls. First call will be used for

authorization only. We will call https://help.linnworks.com/support/login and provide

data with authorization keys in the following format:

utf8=%E2%9C%93&authenticity_token={0}&user_session%5Bemail%5D={1}&user

_session%5Bpasswords5D={2}
Request will be encoded (Figure 25).
var data = Encoding.ASCII.GetBytes(postData);

Figure 25. Encode data

Authorization token is taken from the response header:

response.Headers["Set-Cookie"]

This token is used in the next request to /phone/dashboard/dashboard_stats (Figure 26).

39

https://help.linnworks.com/support/login
https://help.linnworks.com/support/login

private DashboardStatsResponse GetDashboardStats(string cookie) {
var request = (HttpWebRequest)WebRequest.

Create("https://help.linnworks.com/phone/dashboard/dashboard_sta
ts");

request.Method = "GET";
request.ContentType = "application/json";

request.Headers[HttpRequestHeader.Cookie] = cookie;
var response = (HttpWebResponse)request.GetResponse();

var responseString = new
StreamReader(response.GetResponseStream()).ReadToEnd();

return
JsonConvert.DeserializeObject<DashboardStatsResponse>(responseString);

}

Figure 26. Request information about calls

Response will be in the following format (Figure 27):

{"available_agents™:7,"busy_agents":2,"active_calls_count":1,"queved_calls_count™:2}

Figure 27. Freshdesk response

SecurityProtocol Type.Tls2 should be used for both requests.

4.3.5 Current tickets

Freshdesk is used as a ticket system by support department. In order to get information
about tickets, API calls to ‘..helpdesk/tickets/summary.xml?view name=open’ will be
made. Basic authorization in request header has the following format: ,apiKey:X*.
Endpoint has a limit of 1000 calls per hour what is more than enough for our purpose.
Service will make approximately 30 requests per hour. Security protocol has to be set to
TIs1.2 to successfully perform requests. That setting is placed in service’s OnStart
method (Figure 28).

40

protected override void OnStart(string[] args) {
System.Net.ServicePointManager.SecurityProtocol =
System.Net.SecurityProtocolType.T1ls12;
Quartz.Register(120);

Figure 28. Set TIs2 protocol

Tickets with the following statuses will be requested:

e Opened
e New
e Overdue

Each call requests tickets only for requested type one by one. In total three calls are be

performed. Response will be in the following format (Figure 29):

This XML file does not appear to have any style information associated with 1t. The document tree 1s shown below.

<counts
<view-count type="integer™:»285</view-count:>
</count

Figure 29. Response - tickets count

When tickets from all three categories are collected, they are transformed to

CurrentTickets class (Figure 30) before being forwarded to database.

var openCount = int.Parse(GetSummary(OPEN_COUNT URL).Count.Text);
var newCount = int.Parse(GetSummary(NEW_COUNT_URL).Count.Text);
var overdueCount =

int.Parse(GetSummary(OVERDUE_COUNT URL).Count.Text);

list.Add(
new InfluxDB.Net.DataStructure.CurrentTickets(time, openCount,

newCount, overdueCount)
)s
Figure 30. CurrentTickets class

4.3.6 Monitis monitors

Monitis is a tool for website and servers performance monitoring. It is capable of
monitoring server’s load on CPU, RAM, drive, website availability etc. Monitis is
already configured to monitor LinnSystems servers’ infrastructure. Monitis API is used

[20] to get information about monitors. The problem is that when requesting data about
41

monitors we do not get the information about current state and it is impossible to
determine if the monitor is failed or is working flawlessly. Failed monitors should be

retrieved using a separate call.

First of all, failed monitors among all groups are requested. Then total amount of

monitors is requested for each type:

e Internal monitors

e External monitors

e Other monitors

e Transaction monitors
In total there are 799 monitors. Each monitor belongs to one or many groups or has a
tag, which determines which application this monitor is related to. For example, one
drive may have two groups if two applications are located on the same drive. At the
moment of writing this project, there are the following monitor groups in Monitis:
admservice, adm_client, adm_worker, autosync, backup_service, docstore,
event_despatcher, event_despatcher_status, fruugo_feed, infrastructure, int_ws, linnlive,
Iw_net, Iw_net_ main, Iw_net ext, Iw_net push, meanrepricer, old_acc,
old_desktop_webservice, printing_service, pub_ws, shipping_gateway, shipstation, sql,

virtual_printer_server, web.

When all monitors are recived, iteration through all failed monitors is performed where

status of matching monitor in the list of all monitors is set (Figure 31).

allMonitors.ForEach((monitor) =>

{
if (failedMonitors.Any(failedMonitor => failedMonitor.Id
== monitor.Id))
{
monitor.Status = MonitorStatus.Failed;
}
})s

Figure 31. Set failed monitors

Total amount of monitors and amount of failed monitors grouped by application they
belong to and by type will be saved to database. Type field may contain one of the

following values:

42

e Drive

e CPU

e Memory

e Bandwidth,
e Availability

Originally there are more types in monitis but in order to group them somehow for

dashboard, they will be converted to listed types (Figure 32).

private MonitorType ConvertMonitorType(MonitorTypeMonitis
monitisMonitorType)

{

switch (monitisMonitorType)

{

case
case

case

case

case

case
case
case
case
case
case
case
case
case
case
case
case
case

MonitorTypeMonitis.Drive:

MonitorTypeMonitis.

DiskIO:

return MonitorType.Drive;

MonitorTypeMonitis.

CPU:

return MonitorType.CPU;

MonitorTypeMonitis.Memory:
return MonitorType.Memory;

MonitorTypeMonitis.

Bandwidth:

return MonitorType.Bandwidth;

MonitorTypeMonitis
MonitorTypeMonitis
MonitorTypeMonitis

MonitorTypeMonitis.
MonitorTypeMonitis.
MonitorTypeMonitis.
.Oracle:

MonitorTypeMonitis

MonitorTypeMonitis.
.WindowsService:

MonitorTypeMonitis

MonitorTypeMonitis.
MonitorTypeMonitis.
.AdvancedPing:

MonitorTypeMonitis

MonitorTypeMonitis.

.HTPPHTTPS:
.Uptime:
.TCP:

Transaction:
Tomcat:
NodelS:
FullPageload:

RUM:
PING:

Process:

return MonitorType.Availability;

default:
return MonitorType.Availability;

Figure 32. Monitor type conversion

43

4.3.7 Customers’ feedback

Initially we had three graphs showing amount of active users in Linnworks.net,
Linnworks desktop and LinnLive applications. However, as LinnLive product will be
closed in near future, the manager suggested to remove that graph from dahboard and
use that free space for something else. As all highly required by team infomation is
already presented, after some discussion with the team it was decided to display a table
with customers feedback which may be a good replacement. Although customers
feedback does not give us any information about current system condition, it would be
interesting for the team members to read it. This information will point weak places of
Linnworks and at the same time reading feedback may be entertaining. The problem is
that we can’t easily show feedback directly from database as Grafana is unable to show
unindexed text fields such as feedback message. Fortunately, it is possible to use
information in JSON format and display it as a table. However, there appears another
problem: we have to transform information taken from SQL database to JSON format
and pass it to Grafana. In order to pass JSON to Grafana a datasource plugin called
SimpleJSON has been installed on Grafana instance. It allows integration with JSON
datasources. Then a web page with api has been created to provide feedback in a JSON
format for Grafana. Its purpose is to get feedback from SQL database between requested
dates which have been selected in Grafana Ul.Project called linnworks.dasboard.webapi

has been created (Figure 33).

44

4] linnworks.dashboard.webapi
b J Properties
[=B References
4 Service References
g2 int_ws_utils_dashboard
4 App_Start
¢ NinjectWebCommon.cs
o WebApiConfig.cs
F Classes
P Feedback.cs
c# FeedbackManager.cs
c# FeedbackResponse.cs
F Controllers
o DatasourcesController.cs
4 Helpers
P o FeedbackHelper.cs
b &1 Global.asax
v packages.config
b 41 Web.config

Figure 33. linnworks.dashboard.webapi structure

DatasourcesController has three methods:

e Index() — method returns dummy data and is used by Grafana test method during
datasource integration to ensure that datasource is valid

e Search() — method returns possible metrics to be selected in Grafana. In our case
we do not need metrics and this method returns empty string

e Query() — main method which requests JSON data for the requested time period

When request is received, we take start time and end time from the query
(Figure 34) convert it into datetime format and pass it to int_ws_utils_dashboard

service.

HttpContext.Current.Request.UrlReferrer.Query

Figure 34 Query

Dashboard.svc service has already been created for collecting amount of active users,
therefore just a new method will be added to an existing service. Method GetFeedback
(Figure 35) which uses following procedure to fetch data from database (Figure 36) has
been added to the service.

List<Feedback> GetFeedback(DateTime startTime, DateTime endTime)

Figure 35. GetFeedback
45

IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[feedback].[customer_ feedback register get]') AND type in
(N'P", N'PC"))
BEGIN
EXEC dbo.sp_executesql @statement = N'CREATE PROCEDURE
[feedback].[customer_feedback _register_get] AS
RAISERROR(' '[feedback].[customer_feedback register_get] is not yet
defined'', 16, 1); '
END
GO
ALTER PROCEDURE [feedback].[customer_feedback_register_get] (
@startTime DATETIME,
@endTime DATETIME
) as
BEGIN
SELECT
cfr.[Time],
cfrt.[pkFeedbackTypeld],
cfrt.[Name],
cfr.[Username],
cfr.[Message]
FROM [feedback].[customer_feedback register] as cfr
INNER JOIN feedback.customer_feedback_ register_type as cfrt on
cfrt.pkFeedbackTypeld = crf.fkFeedbackTypeld
WHERE [Time] BETWEEN @startTime AND @endTime
END
GO

Figure 36. Feedback - stored procedure

Recived from the service data is converted to appropriate for dashboard format (Figure
37) and returned to Grafana where it is displayed in a table element.

46

"number"

"UserName"
"string"

"Me
"table"

Array[1]
Array[5]

"Feedback mes: e - example”

Figure 37. Grafana - required format

4.4 Data saving and storing

Company is already using Elasticsearch and InfluxDB database to store different types
of information. As there are many new objects with different data structures that have to
be stored as a part of this dashboard project, structure of saved entities should be

reworked.

4.4.1 Elasticsearch log structure

Elasticsearch is used to store exceptions and various system logs from Linnworks
application. In order to prepare data related to exceptions and current online for
database, already existing linnworks.logger project will be used. However, it has to be
modified and improved to handle requirements of this project. Each type of log or
entity, except ‘stats’ should correspond to this template and contain the following fields
(Table 2):

Field name Possible value (example)

app Iw_net /Iw_net_push/ ..

type exception / 11S / user_logs / system / stats / ...
severity error / info / warning / ..

Table 2. Log entity structure

47

For dashboard project ‘exceptions’ type is used. It is not planned to use other types in
the scope of this project. Structure has been changed in order to come to one standard

solution of separation logs by their type.

4.4.2 InfluxDB data structure

In InfluxDB information entities are separated by Measurements. Measurement can be
compared to a table in SQL-based database. It this project every job saves information
under its own measurement. For example, measurement for amount of active users

shown on Figure 38.

public class CurrentOnline : BaseDataStructure

{

public override string Measurement

{
get
{

return "current_online";
}
}

Figure 38. Measurement - current online

An adapter which works with InfluxDB already exists in linn_foundation solution. It
has been added and modified to work with our database instance by LinnSystems’
database administrator. Author of this thesis added the following classes to
linnworks.influxdb project which represents structure of measurements for different
types of information (Figure 39):

e CurrentCalls

e CurrentChats

e CurrentMonitors

48

e CurrentOnline

e CurrentTickets

4 linn_foundation_dll
i linnwarks.influxdb

b & Properties
[=B References
[Baze
b Client
[Constants
[Contracts

c# CurrentCalls.cs

c* CurrentChats.cs

c# CurrentCorporateCost.cs

c# CurrentDatabases.cs

c# CurrentMonitors.cs

c* CurrentOnline.cs

c# CurrentServerCost.cs

c#* CurrentTickets.cs

Enums

R A A A A

Helpers
Infrastructure
Models

v app.config

c* |nfluxDb.cs

P o InfluxDbLogger.cs

Ll = -

=

¥] packages.config

Figure 39. InfluxDB - data structure

Each structure class contains constructor with parameters which have to be saved to one

document (Figure 40).

public CurrentCalls(DateTime time, int activeCallsCount, int
queuedCallsCount, int availableAgentsCount, int busyAgentsCount) :

base(time)
{
this.ActiveCallsCount = activeCallsCount;
this.QueuedCallsCount = queuedCallsCount;
this.AvailableAgentsCount = availableAgentsCount;
this.BusyAgentsCount = busyAgentsCount;
}

Figure 40. Current calls constructor

Also class has method GetFeilds() or/and GetTags(). These methods create dictionaries

with property name and value (Figure 41).

49

public override Dictionary<string, object> GetFields()

{
var fields = base.GetFields();

fields.Add("active calls", ActiveCallsCount);
fields.Add("queued calls", QueuedCallsCount);
fields.Add("available agents", AvailableAgentsCount);
fields.Add("busy agents", BusyAgentsCount);

return fields;

Figure 41. GetFields example

Then this data is being saved to InfluxDB. Saving process has been implemented by

another person, it will not be described in this thesis.

4.4.3 Determine database

Service’s adapter has been designed in such way that it has ability to determine where
data provided by job has to be saved: to Elasticsearch or to InfluxDB. It depends on

inherited interface (Figure 42):

public class CurrentOnlineDataSource : BaseDataSource, IInfluxDbDataSource

{
Figure 42. Datasource interface

In adapter we check 1t current job 1s supposed to use KibanaDataSource or
InfluxDbDataSource (Figure 43).

// influxdb
var influxDb = dataSource as IInfluxDbDataSource;
if (influxDb != null)

{

Figure 43. Determine data source

However, it the scope of this project our service will save data only to InfluxDB.
Elasticsearch data source has been added as an option for the future in case there
appears a need to save something to Elasticsearch.

50

4.4.4 Monitoring

In order to keep track of unhandled exceptions occurred in windows service, they will
be saved to Elasticsearch and will be available in Kibana. To achieve that, jobs
execution code part will be covered by try-catch and common logger will be used
(Figure 44). This will help the author and team members to identify problems with

service.

} catch (Exception ex) {
var logger =
new linnworks.logger.ExceptionslLogger(
linnworks.logger.BaselLogger.AppName.dashboard_service);

logger.SavelLog(DateTime.UtcNow, ex);

Figure 44. Exceptions logger

4.5 Visualizing data on dashboard

For vizualizing we will use Grafana 5. In order to display information from databases
on visual elements we have to write queries. Queries will vary depending on datasource
selected for the element. For example, for InfluxDB we have to write Lucene queries or
compose queries in the Ul. Almost all diagrams contain time axis, as it is important for

the team to monitor system status over time.

4.5.1 Grafana templating

Grafana supports creating variables so there is no need to hardcode application types.
Moreover, ’templating’ option allows us to easily manage many elements at the same
time. In other words, when we edit one element, changes are applied to all elements

related to variable (Figure 45).

51

Variables > Edit

= Cene
== General Er =il

0 Annotations Name app_exception Custom

{x} Variables 2bat Variable

&2 Links
‘D Versions Custom Options
& Permissions Values separated by comma Iw_net, Iw_net_push, event_despatcher, event_despatcher_si , shipping_gateway, printing_service, virtual_printer_server, virtual_....
{1} View JSON
Selection Options
- Multi-value

Include All option
£ Save As...

Custom all value
@ Delete

Preview of values (shows max 20)

Al Iw_net Iw_net_push event_despatcher event_despatcher_status shipping_gateway printing_service virtual_printer_server virtual_printer_client int_ws

pub_ws shipstation Iw_desktop

Figure 45. Grafana variables
4.5.2 Grafana ‘health boxes’

Below we will look closer at the ‘health boxes’ elements. Let’s see how one element in

this combination of multiple boxes (Figure 46) is configured to display data.

availability_failed - 3
exceptions - 78

virtual_printer_client

Figure 46. Grafana "Health box" element

Source type has to be set as ‘Mixed’ (Figure 47) as these ‘health boxes’ require data

both from Kibana and from InfluxDB.

= Data Source — Mixed— ~

Figure 47. Mixed data source

For each metric there is a separate query. They are listed below.

52

e Exceptions (Figure 48):
Query that gets all records for the last 5 minutes with type ‘exceptions’ for $app_name

(for example, “lw_net”) from Elasticsearch database is used.

type:"exceptions” AND app: Sapp_name

Count

Date Histogram @timestamp ¥ Interval: 5m

Figure 48. Query - Exceptions
All information described in section below will be taken from InfluxDB called
linn_stats.

e Memory (Figure 49):

Information from InfluxDB with measurement ‘current monitors’ where type is
‘Memory’ and app is $app name is requested in order to get information about
memory. Field ‘failed’ is selected. Results are grouped by time interval. Option

“fill(previous)” will take last value.

default current_monitors WHERE = ™5app_name$/ ANLC type

field (failed) mean() <+

time ($__interval) fill (previous) +
Time series

memory_failed

Figure 49. Query - Memory

e CPU (Figure 50):

default current_monitors WHERE = [*Sapp_nameS/
field (failed) mean()
time (S_interval) fill (previous)

Time series

cpu_failed

53

e Drive (Figure 51):

default current_monitors

field (failed) mean() +

time (S__interval) fill (previous)

Time series ~

drive_failed

Figure 51. Query - Drive

e Bandwidth (Figure 52):

default current_monitors
field (failed) mean() <
time ($_interval) fill (previous) =

Time series

bandwidth_failed
Figure 52. Query - bandwidth

¢ Availability (Figure 53):

default current_monitors WHER Availability 4+
field (failed) mean() <+
time ($_interval) fill (previous) <

Time series -

availability_failed

Figure 53. Query - Availability

When any of these metrics reach ‘Warning’ or ‘Critical’ condition (Figure 54), metric
name and value will be visible on dashboard. This is configured by option ‘Display

alias’ set to “Warning/Critical’.

54

Threshold

Waming 10

Critical 150
Display Alias Warning / Critical -

Display Value When Alias Displayed ~

Figure 54. Warning threshold
When everything is in its normal state, all information will be hidden and box will have

green background (Figure 55).

Threshold Preferences

Font Format Regular

Coloring Panel

Colors B

Figure 55. Background colouring

4.6 Service deployment

Deployment is performed using Jenkins [7]. Jenkins is configured to replace
authorization keys and connection strings for security purposes. Jenkins greatly helps to
deploy new versions of application as there is no need to manually interact with the
server.

Deployment has 3 stages:

1. Preparation — loads last stable branch from repository and builds it

2. Deployment — deploys code on server in a separate new folder

3. Switch version — switches working service to work from the new folder

4.7 Display dashboard on display

There is a need to somehow show dashboard on a TV screen. RiseVision [21] will be
used to manage dashboard on the screen. Once display is connected to RiseVision
account, it is possible to easily edit dashboard without manipulations with TV where

dashboard is installed.

55

Maintenance and configuration of displayed information is performed from website
https://apps.risevision.com. There is no need to install additional software. (Figure 56).

Presentations Add Presentation + Schedules Add Schedule + ﬂ Displays Add Display +

Copy of Presentation 1 All Displays - 24/7 Display1

Copy of Presentation 1 EE Office 1

Presentation 1

Figure 56. RiseVision control menu

As we have two dashboards (main board and one only with exceptions), RiseVision has

been configured to rotate two images every 15 seconds. To achieve that, two pages have

been added to the playlist (Figure 57).

< Back Edit Placeholder

Playlist Properties

oc

= a0
Image Video Text Widgets
X © 15s

BE Web Page Widget =T

X © 158
B5 Web Page Widget (1) @ @

Figure 57. RiseVision playlist

56

https://apps.risevision.com/
https://apps.risevision.com/

Each web page widget has an url reference (Figure 58).

Web Page Settings

URL

https:/igrafana.linnworks.com/d/000000001/system-health-dont-change-anything-there ?refresh=5s&orgld="1&from=now-12h&to=now

Refresh Interval

Never Refresh

Unload Web Page when not visible in Presentation (recommended)

Region
Show Entire Page
® Show a Region

Horizontal Scroll

0 px

Vertical Scroll

RR ny

Figure 58. Widget settings

4.7.1 Prepare TV

Intel Compute Stick — small computer for media applications is used to launch
RiseVision on TV. Intel stick with installed windows 10 has been connected to TV
using HDMI port. Rise Player software is needed to show presentation from RiseVision
on TV display. After installation, the key generated on RiseVision website has to be
entered in order to connect that TV with our main account. After that, the presentation
which will be shown on TV should be selected. As a result, we can control our

dashboard from any other computer by changing presentation settings.

4.8 Testing

Elements of solution have been tested manually using smoke testing. Code inspection
has been performed by team members. There is no need to perform performance testing
because requirements do not have strict limitation for job execution time.

4.8.1 Scheduling

Scheduling has been tested on early development stages when running service in debug
mode in Visual Studio 2015.

57

On final development stage, windows service has been installed on local machine and
started as a service [22]. Developer Command prompt for VS2015 was used to install a
service using the following command (Figure 59):
\linn_dashboard\linn_dashboard\linnworks.dashboard.service\bin\Release> installutil

linnworks.dashboard.service.exe

innworks.dashboard

shboard.s

ashboard

dashboard.serv

inning. I

Figure 59. Service installation

After installation is complete, service may be started from Services management

window (Figure 60):

Services had - O X
File Action View Help
e |@DEcz BHmEl »anmw
Services (Local) " Services (Local)
LinnDashboardService MName - Status Description Startup Type Log On As ‘1
£ Link-Layer Topology Discovery Mapper Createsa M... Manual Local Service
o thererics LinnDashboardService Manual Local System
Local Profile Assistant Service This service ... Manual (Trig... Local Service
& Local Session Manager Running Core Windo.. Automatic Local System
£ MessagingService_2d6a0dd Service sup... Manual (Trig... Local System
£ Microsoft (R) Diagnostics Hub Standar... Diagnostics .. Manual Local System
£ Microsoft Account Sign-in Assistant Enables use... Manual (Trig... Local System
& Microsoft App-V Client Manages A... Disabled Local System
£ Microsoft iSCSI Initiator Service Manages In... Manual Local System
& Microsoft Passport Provides pr.. Manual (Trig... Local System
£ Microsoft Passport Container Manages lo... Manual (Trig... Local Service
& Microsoft Software Shadow Copy Provi.., Manages se... Manual Local System
S Microsoft Storage Spaces SMP Host service.. Manual Metwork Servic
& Microsoft Windows SMS Router Service. Routes mes.. Manual (Trig... Local System
S Matural Authentication Signal aggr... Manual (Trig... Local System
£ MNet.Tep Port Sharing Service Provides abi... Disabled Local Service
k Metlonon Runninn Maintains a .. Automatic Incal Sustem

Figure 60. Starting service

58

Then Visual Studio debugger can be attached to a running process (Figure 61) and

appropriate breakpoints could be set to ensure that service executes itself as intended.

Attach to Process

Transport: Default

Qualifier: WS-DEVDD1

hd Find...

Transport Information

The default transport lets you select processes on this computer or a remote computer running the Visual Studic Remote Debugger

{MSVSMOMN.EXE).

Attach to: Managed (v3.5, v3.0, v2.0) code Select...
Available Processes
Process D Title Type User Mame
linnworks.dashboard.service. vshost.exe C\Work\linn_dashboard\linn_dashboard\linnw... Managed (v4.... LINN\vlpo
LockApp.exe 10236 Windows Default Lock Screen ubd LINNYwlpo [low-right
lsass.exe 588 ufid
Memory Compression 2240 ubd
Microseft.Alm.Shared.Remoting.Rem... 17272 Managed (vd... LINMwlpo
Microseft.Alm.Shared.Remoting.Rem... 8204 Managed (vd.... LINNwlpo
Microseft.VsHub.Server HttpHost.exe 17636 Managed (vd.... LINNwlpo
mme.exe 18828 Services b4 LINMNvvlpo [administ
MSASCuil.exe 10100 x54 LINNWwlpo
MASR il ava 31724 Manana A el 1IN i
£ >

Figure 61. Visual Studio debugger

However, this process of attaching debugger to a process is too complicated. There is

an easier way to debug running service — we just have to add

System.Diagnostics.Debugger.Launch(); in the code we want to debug.

4.8.2 Data collecting

Results returned by data-collecting jobs have been manually verified by comparing

them to the results in the sources. For example, amount of chats and tickets has been

checked on the freshdesk website. Exceptions have been compared to ones in Kibana

(Figure 62).

59

@timestamp per minute

Figure 62. Kibana dashboard

4.8.3 Grafana board

Dashboard’s user interface does not need special testing as it is build using existing
Grafana set of tools. Graphs are updated over defined period of time as intended (Figure
63).

linnlive

Figure 63. Grafana refresh rate

60

Summary

The aim of this thesis was to provide a complete solution for monitoring system status
for LinnSystems. It involved choice of different dashboard tools, databases and their
internal structure, design of dashboard elements, configuration of TV display and

implementation of service including related development.

During the project development, author has proposed several prototypes which have
been tested and discussed. After launching first versions on production new

requirements for dashboard have been made based on team members’ feedback.

As a result of this thesis, two of the presented prototypes has been chosen and are used
in the company allowing company workers to easily get information about overall
system condition. Current dashboard meets the requirements set by team members,
manager and satisfies their needs. System has been set up in such way that it is easy to

develop and deploy improvements for this project in the future.

The following tools and technologies have been used in this project: Windows Service,
task scheduling, NoSQL databases, dashboard visualization tools, RiseVision, Selenium

and much more.

As this software is being evolved, in final version of the dashboard some elements or
information might be slightly different from the one described in this document.

61

Kokkuvote

Kéesoleva 16put6od eesmérgiks oli vilja tootada rakendus, mis teostaks Linnsystems
siisteemi staatuste seiret. Rakenduse viljatdotamine koosnes jidrgnevatest etappidest:
sobiva infopaneeli, andmebaasi ja selle struktuuri valikust, teenuse loomisest,

infopaneeli elementide disainist ja TV ekraani konfigureerimisest.

To66 kdigus 10putdd autor esitas mitu prototiitipi, mis olid testitud ja arutletud koos
LinnSystems meeskonnaga. Prototiiiipide kasutusajal meeskond pakkus vélja uued

nduded infopaneelile.

Antud 16put6d tulemuseks sai kaks prototiitipi, mis on praegu kasutusel ettevottes.
Infopaneelide abil tdotajad saavad informatsiooni siisteemi seisundi kohta. Rakendus
vastab piistitatud nouetele ja oli disainitud nii, et tulevikus oleks lihtne seda projekti

edasi arendada ja tdiustada.

Loputdos kasutati jargmiseid tehnoloogiad: Window Service, NoSQL andmebaasid,

erinevad infopaneeli tooristad, RiseVision, Selenium ning palju muud.

Rakendus on veel arenemisel, mistdttu moned dokumendis esitatud infopaneeli

elemendid vodivad erineda.

62

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]
[17]

[18]

[19]

Table of literature

“E-commerce,” [Online]. Available: https://en.wikipedia.org/wiki/E-commerce.
[Accessed 02 04 2018].

“Elasticsearch,” [Online]. Available: https://en.wikipedia.org/wiki/Elasticsearch.
[Accessed 28 03 2018].

“Logstash,” [Online]. Available: https://wikitech.wikimedia.org/wiki/Logstash.
[Accessed 02 04 2018].

“InfluxDB,” [Online]. Available: https://en.wikipedia.org/wiki/InfluxDB.
[Accessed 25 03 2018].

“Kibana,” [Online]. Available: https://en.wikipedia.org/wiki/Kibana. [Accessed
15 01 2018].

“Grafana,” [Online]. Available: https://grafana.com/. [Accessed 02 04 2018].
“Jenkins,” [Online]. Available: https://jenkins.io. [Accessed 07 05 2018].
“nosql,” [Online]. Available:

https://www.infoworld.com/article/3240644/nosgl/what-is-nosql-nosql-databases-
explained.html. [Accessed 07 05 2018].

“quartzNet,” [Online]. Available: https://www.quartz-scheduler.net/. [Accessed
07 05 2018].

“AWS CloudWatch,” [Online]. Available:
https://aws.amazon.com/cloudwatch/?ncl=h_ls. [Accessed 19 05 2018].

“Benchmark. InfluxDb - Elasticsearch,” [Online]. Available:
https://www.influxdata.com/blog/influxdb-markedly-elasticsearch-in-time-series-
data-metrics-benchmark/. [Accessed 16 05 2018].

“DB-Engines ranking,” [Online]. Available: https://db-
engines.com/en/ranking/time+series+dbms. [Accessed 16 05 2018].
“Benchmark. Influx - OpenTSDB,” [Online]. Available:
https://www.influxdata.com/blog/influxdb-markedly-outperforms-opentsdb-in-
time-series-data-metrics-benchmark/. [Accessed 16 05 2018].

“NewtonsoftJ]SON,” [Online]. Available: https://www.newtonsoft.com/json.
[Accessed 02 04 2018].

“Selenium,” [Online]. Available: https://www.seleniumhg.org/about/. [Accessed
24 03 2018].

“Ninject,” [Online]. Available: http://www.ninject.org/. [Accessed 29 03 2018].

“Quartz.NET,” [Online]. Available: https://www.quartz-scheduler.net/. [Accessed
24 01 2018].

“Windows service as a console app,” [Online]. Available:
https://alastaircrabtree.com/how-to-run-a-dotnet-windows-service-as-a-console-
app/. [Accessed 16 05 2018].

“monitis,” [Online]. Available:
https://www.pcmag.com/business/directory/application-performance-

63

[20]

[21]

[22]

[23]

[24]

management/1770-monitis. [Accessed 08 05 2018].

“Monitis APL” [Online]. Available:
http://www.monitis.com/docs/apiActions.html. [Accessed 16 05 2018].

“RiseVision,” [Online]. Available: https://help.risevision.com/hc/en-
us/articles/115002868706-The-overview-how-does-this-work-. [Accessed 13 05
2018].

“Install Windows service,” [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/framework/windows-services/how-to-install-and-uninstall-services.
[Accessed 16 05 2018].

“WCFservice,” [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/framework/wcf/whats-wcf. [Accessed 06 05 2018].

“Ninject to web form,” [Online]. Available:
https://stackoverflow.com/questions/25046162/how-to-inject-dependencies-
using-ninject-in-asp-net-
webform?utm_medium=organic&utm_source=google_rich_ga&utm_campaign=
google_rich_ga. [Accessed 27 05 2018].

64

Appendix 1 — Result

Photos below show that dashboard created during this project is in actual use by

LinnSystems.

ol /Mjwm

= ——

ol il
e | el
oj +MM #

0

0
0

65

