
Tallinn 2022

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Triin Viitmaa 192557IVCM

Forensic analysis of Windows Subsystem for

Linux on Windows 11

 Master's thesis

Supervisors: Shaymaa Mamdouh

Khalil

 MSc

Sander Medri

MSc

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Triin Viitmaa 192557IVCM

Windows 11 liidese Windows Subsystem for

Linux kriminalistiline analüüs

Magistritöö

Juhendajad: Shaymaa Mamdouh

Khalil

 Msc

Sander Medri

MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Triin Viitmaa

16.05.2022

4

Abstract

Windows Subsystem for Linux (WSL) is a system designed by Microsoft for running

Linux executables in Windows in a way that is more seamless compared to traditional

virtualization methods. WSL is targeted at software developers and anyone else who

needs to use Windows and Linux operating systems simultaneously.

WSL has evolved rapidly since its introduction in 2016. WSL version 2 (WSL2), which

is currently the newest version, came with a completely updated architecture compared

to the first version and includes support for graphical user interface applications in

Windows 11.

Unfortunately, WSL exposes the host operating system to many new avenues of attack.

Therefore, it is important that specialists such as forensic investigators and incident

responders know where to find information and evidence regarding WSL usage on a

system. The current research and documentation in this area are insufficient to support

fast and thorough examinations of systems leveraging WSL.

This thesis aims to discover what forensic artifacts can be found when WSL is used on

the Windows 11 operating system and where these artifacts appear. The experiments

conducted for this purpose were designed around basic user behaviour such as carrying

out file operations, downloading files from the Internet, and opening applications.

The conducted analysis demonstrates that WSL1 and WSL2 have certain forensic

artifacts in common. However, because of the architectural differences between these

systems, there are also a lot of differences from a forensics perspective. For example, with

WSL1, files that are stored on the Linux file system can be found directly on the Windows

file system. However, in the equivalent situation with WSL2 the files are stored in a

Hyper-V virtual hard disk instead. From the network perspective, WSL2 stands out

clearly whereas WSL1 does not.

This thesis is written in English and is 67 pages long, including 7 chapters, 27 figures and

6 tables.

5

Annotatsioon

Windows 11 liidese Windows Subsystem for Linux

kriminalistiline analüüs

Windows Subsystem for Linux (WSL) on Microsofti arendatud Windowsi alamsüsteem,

kus on võimalik jooksutada Linuxi programme. WSL loodi tarkvaraarendajatele ja

kõigile, kes peavad kasutama Windowsi ja Linuxi operatsioonisüsteeme samaaegselt.

WSL on kiirelat arenenud alates aastast 2016, WSL-i teine versioon muutis täielikult

alamsüsteemi arhitektuuri, alates Windows 11 on toetatud ka graafilised programmid.

WSL ei ole turvameede, vastupidi, see loob palju uusi võimalusi süsteemi ründamiseks,

seega intsidentidele reageerijad peavad olema teadlikud, kust leida tõendeid

alamsüsteemi kasutamise kohta. Praegu olemasolev uurimistöö ja dokumentatsioon on

ebapisiavad, et toetada kiriet ja põhjalikku WSL süsteemi analüüsi.

Lõputöö eesmärk on leida millised digitaalsed tõendid asuvad Windows 11

operatsioonisüsteemis. Eksperiment baseerus põhilisyrl kasutaja tegevustel nagu

operatsioonid failidega, Internetist alla laadimine ja programmide avamine.

Lõputöö demonstreerib, et WSL1 ja WSL2 jagavad mõningaid küberkriminalistilisi

tõendeid, tulenevalt arhitektuurilistest erinevustest versioonide vahel, on paljud

digitaalsed tõndid siiski erinevad. WSL1 failid, mis on salvestatud Linuxi failisüsteemis

on leitavad ka Windowsi failisüsteemist, aga WSL2 failid asuvad Windowsis Hyper-V

virtuaalselt kettal. Võrguliikluse vaatest on WSL2 liiklust võimalik kohalikus masina

omast eristada, WSL1 puhul mitte.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 67 leheküljel, 7 peatükki, 27

joonist, 6 tabelit.

6

List of abbreviations and terms

API

BAM

CLI

CPU

ELF

GUI

HTTP

HVCI

ICMP

IP

KAPE

MFT

NAT

NVMe

PC

PCAP

RAM

SID

SRUM

SSD

TPM

UEFI

USB

VHD

Application Programming Interface

Background Activity Moderator

Command Line Interface

Central Processing Unit

Executable and Linkable Format

Graphical User Interface

Hypertext Transfer Protocol

Hypervisor-Protected Code Integrity

Internet Control Message Protocol

Internet Protocol

Kroll Artifact Parser and Extractor

Master File Table

Network Address Translation

Non-Volatile Memory express

Personal Computer

Packet Capture

Random Access Memory

Security Identifier

System Resource Usage Monitor

Solid State Drive

Trusted Platform Module

Unified Extensible Firmware Interface

Universal Serial Bus

Hyper-V virtual disk

7

VM

WSL1

WSL2

Virtual Machine

Windows Subsystem for Linux version 1

Windows Subsystem for Linux version 2

8

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

Annotatsioon Windows 11 liidese Windows Subsystem for Linux kriminalistiline

analüüs .. 5

List of abbreviations and terms .. 6

Table of contents .. 8

List of figures ... 10

List of tables ... 11

1 Introduction ... 12

2 Background .. 14

2.1 WSL1 .. 14

2.2 WSL2 .. 16

2.3 Comparison of WSL1 and WSL2 ... 17

2.4 Windows 11 .. 17

2.5 Windows Forensics... 18

2.6 Network forensics ... 20

2.7 Memory forensics ... 21

3 Related work .. 22

4 Methodology .. 24

4.1 Tools ... 24

4.2 Experimental setup ... 26

4.3 Disk image acquisition process .. 31

5 Results ... 32

5.1 Evidence of WSL2 installation and usage .. 32

5.1.1 Registry .. 32

5.1.2 Prefetch .. 34

5.1.3 AppCompatCache .. 35

5.1.4 Event logs .. 35

5.2 Evidence of WSL1 installation and usage .. 37

9

5.2.1 Registry .. 37

5.2.2 Prefetch .. 38

5.2.3 AppCompatCache .. 39

5.2.4 Event logs .. 39

5.3 File operations .. 40

5.3.1 File operations in WSL2 .. 40

5.3.2 File operations in WSL1 .. 42

5.4 Network operations... 43

5.4.1 Network operations in WSL2 .. 43

5.4.2 Network operations in WSL1 .. 45

5.5 CLI and GUI applications in WSL2 ... 47

5.6 CLI operations in WSL1... 48

5.7 Magnet Axiom .. 49

6 Analysis summary ... 51

7 Conclusions and Future work .. 54

References .. 55

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 58

Appendix 2 - Firewall bypass ... 59

Appendix 3 - WSL1 IP addresses ... 60

Appendix 4 – Sysmon .. 61

Appendix 5 – Test2.txt ... 63

Appendix 6 – Linux file system 0n Windows file system (v1) 63

Appendix 7 – SRUM.dat .. 64

Appendix 8 – HTTP request ... 64

Appendix 9 – NTUSER.DAT: Software\Microsoft\Windows\CurrentVersion\UFH\SHC

 .. 65

Appendix 10 - windows timeline activity, WSL1 .. 65

Appendi 11 - Registry summary ... 66

10

List of figures

Figure 1. Communication between components of WSL [5] ... 15

Figure 2. WSL2 architecture overview [8] ... 16

Figure 3. How KAPE works [14] ... 25

Figure 4. WSL2 experiment flow ... 29

Figure 5. WSL1 experiment ... 30

Figure 6. Prefetch wsl.exe and wslhost.exe .. 35

Figure 7. Application logs .. 36

Figure 8. Microsoft-Windows-Hyper-V-Worker-Admin.evtx 36

Figure 9. WSL1 Prefetch .. 39

Figure 10. New file “test.txt”.. 40

Figure 11. $MFT .. 41

Figure 12. UsnJrnl .. 41

Figure 13. WSL1 journal .. 43

Figure 14. Ping WSL2 -> 8.8.8.8 ... 43

Figure 15. curl TalTech Library ... 44

Figure 16. Microsoft-Windows-Windows Defender%4Operational.evtx 44

Figure 17. Telnet mapscii.me ... 45

Figure 18. NetworkUsageView SRUDB.dat .. 45

Figure 19. Ping from WSL to Host .. 45

Figure 20. Ping from Host to WSL1 .. 46

Figure 21. File downloaded from TalTech in UsnJrnl ... 46

Figure 22. Microsoft-Windows-Windows Defender%4Operational.evtx 46

Figure 23. Sysmon in prefetch .. 47

Figure 24. Microsoft-Windows-Shell-Core%4Operational.evtx Text Editor entry 48

Figure 25. GUI additional components in $MFT ... 48

Figure 26. Axiom LNK Files output .. 49

Figure 27. Edge-Internet Explorer 10-11 Content .. 49

file:///C:/Users/triin/Documents/Thesis_14.docx%23_Toc103623124
file:///C:/Users/triin/Documents/Thesis_14.docx%23_Toc103623133
file:///C:/Users/triin/Documents/Thesis_14.docx%23_Toc103623136
file:///C:/Users/triin/Documents/Thesis_14.docx%23_Toc103623137
file:///C:/Users/triin/Documents/Thesis_14.docx%23_Toc103623139

11

List of tables

Table 1. Test PC parameters ... 26

Table 2. Indications of WSL2 installation .. 32

Table 3. Distribution information ... 33

Table 4. WSL1 registry evidence ... 37

Table 5. Event Logs .. 52

Table 6. Registry Summary .. 66

12

1 Introduction

In 2016 Microsoft introduced the first version of Windows Subsystem for Linux (WSL).

The second version came out three years later in 2019 and it is now the default option.

Currently, users can install either WSL 1 or WSL 2 on Windows 10 and Windows 11.

According to Microsoft, WSL was mostly designed for developers who need to use Linux

along with Windows and for whom traditional solutions involving virtual machines are

not practical due to compatibility and management issues.

A big problem with this easily accessible subsystem is that it creates a whole new

environment for users and attackers to hide in. For incident responders and computer

crime investigators, it is important to understand what evidence is left behind when WSL

is used in a modern Windows operating system.

Therefore, the main research question is what artifacts and where WSL leaves on

computers using a Windows 11 operating system. Similarly, it is important to understand

the characteristics of WSL network traffic. For example, to understand if it is possible to

distinguish the host’s traffic from WSL’s traffic.

The purpose of this work is to discover forensic artifacts created by WSL 1 and WSL 2

on the Windows 11 operating system and to help investigators find WSL-related evidence

in Windows 11.

The design of the experiments was based on basic user behaviour such as creating and

moving files, executing applications, and browsing the Internet. WSL-related network

traffic is collected directly from the test machine and disk images are acquired after the

computer has been shut down. Linux forensics is out of the scope of this thesis.

To the author’s knowledge, this is the first forensic analysis paper examining WSL on

Windows 11. Not a lot of research has been conducted on related topics. The presentations

and research articles that exist focus on one specific theme in one version of WSL and

13

exclusively on Windows 10. None of the previous research includes WSL graphical

interface evidence which is Windows 11 specific but can be essential for investigators

because humans are likely to prefer graphical applications over the command line.

Previously published papers were pointing out that the field needs more adequate research

even in the Windows 10 environment. This thesis not only covers various host-based

forensic artifacts but also examines network artifacts.

Because this research was conducted on Windows 11 there were limitations with

analysing volatile data. Namely, the most popular memory forensics framework Volatility

did not support Windows 11 at the time of writing this thesis. Additionally, network

traffic that was analysed was captured directly on the host. In reality, it would be almost

impossible to have this kind of evidence without remote monitoring and collecting.

14

2 Background

Windows Subsystem for Linux was first announced in 2016 [1], and exited from beta one

year later in 2017 [2]. The purpose of WSL is to provide support for native Linux

applications on a Windows operating system environment. Windows Subsystem for

Linux is not the first time Windows users can have functionality similar to Linux, Cygwin

project was released 1995, it is a collection of GNU and Open-Source tools, but with

Cygwin users cannot run native Linux applications on Windows, custom made apps are

required [3].

2.1 WSL1

WSL1 allows Linux binary executables (ELF) run on Windows without recompilation by

executing unmodified ELF64 binaries on top of the Windows Kernel [4]. Executing Linux

binaries in native speed is possible due WSL1 interface, it translates Linux system calls

into Windows system calls [4].

In 2017, when WSL was out of beta, Windows 10 users got a possibility to directly

execute userland Linux applications, while each executed program was tied with a pico

process [5]. “This allows users to execute ELF binaries without the need for a virtual

machine, source code modification, or an intermediate application” [5]. Pico process and

drivers (lxss.sys and lxcore.sys) are responsible for translating Linux syscalls, unmodified

Linux binaries are placed to Pico process so the Linux calls will be directed into the

Windows kernel [6]. “The lxss.sys and lxcore.sys drivers translate the Linux system calls

into NT APIs and emulate the Linux kernel [6].”

15

Figure 1. Communication between components of WSL [5]

The LXSS Session Manager Service is a broker to the Linux subsystem driver and is the

way wsl.exe invokes Linux binaries, it is also responsible for allowing only one process

at a time around install and uninstall [6]. A user can open the WSL by executing wsl.exe,

bash.exe or <distro>.exe from command line [5]. Each Linux process launched by

particular user will go into specific instance - a data structure responsible for tracking all

LX processes, thread, and runtime state [6]. The first time NT process request launching

a Linux binary a new instance is created, after terminating the NT client, the Linux

instance and every process launched inside of it will be closed [6]. Communication

between components of WSL1 are shown in Figure 1.

One of the motivations of developing Windows subsystem for Linux was to offer users a

possibility to lose management of file sharing between host and a virtual machine and

allowing users to work with their files as they would on native operating system [7]. To

accomplish that WSL provides access to Windows files by emulating full Linux

behaviour for the internal Linux file system [7]. In WSL1, Linux files are stored on the

same drive as Windows [8]. Two main components responsible for that ability are VoIF

and DrvFs. VoIF is the primary file system used by WSL, it stores the Linux system files,

and content of Linux home directory [7]. There are two separate mounts to preserve home

directory with personal files even after WSL is uninstalled [7]. DrvFs file system is used

to facilitate integration with Windows drives and files [7].

16

2.2 WSL2

The second version of Windows Subsystem for Linux was introduced in 2019 and has

different architecture to run ELF64 and ELF32 Linux binaries on Windows with full

system call compatibility and increased file system performance [9].

A real Linux kernel is used inside of lightweight VM utility, virtualization technology is

based on Hyper-V [10]. WSL2 architecture is shown in Figure 2.

WSL2 is not traditional isolated Virtual Machine, VM can be slow to boot up, is resource

and management intensive [11]. The Linux kernel in WSL2 is specially built with size

and performance optimization based on latest stable branch available at kernel.org [11].

To reduce management kernel improvements security fixes are tied to Windows updates

[11].

The speed increase in WSL2 has been achieved by two main reasons, first by storing

Linux files in a virtual hard disk which uses the EXT4 file system [12]. Second reason is

that WSL2 has real Linux kernel with full system call compatibility [11]. Latter is also

the reason why users do not have to wait anymore for WSL team to implement updates,

and Linux applications like Docker can run inside of WSL2 [11].

Figure 2. WSL2 architecture overview [8]

17

WSL2 uses a Network Address Translation (NAT) service for its virtual network [11],

which means WSL2 and host machine are not in the same network, but this can be

resolved by forwarding TCP ports of WSL2 services to the host [13].

Starting from Windows 11 build 22000 is possible to run Linux graphical user interface

applications [14]. WSL2 is now the default version, but WSL1 can be run simultaneously.

Ubuntu is the default distribution while installing WSL without specifying flag, other

distributions can be downloaded from Microsoft Store or within installation process with

flag “-d” and distribution name.

2.3 Comparison of WSL1 and WSL2

Main reasons Microsoft recommends upgrading WSL1 to WSL2 are increased file system

performance and full system call compatibility [11]. Only exception is performance

across OS file system, which is better in WSL1 [11]. WSL1 usage is recommended in

case of project files must be stored in the Windows file system, a project requires cross-

compilation, a project needs access to a serial port or USB, when memory usage is limited

or strict, or bridged network adapter is required [11]. WSL1 do not support 32-bit but

WSL2 does. WSL1 and WSL2 can be run side by side.

2.4 Windows 11

Windows 11 was released in October 2021, it is free to upgrade from Windows 10, but

the host machine has to meet new system requirements. Host must have a compatible

CPU [15], at least 4GB of RAM, at least 64GB of storage, UEFI, Secure Boot, and TPM

2.0 enabled [16]. The latter is the main reason many computers do not meet the

requirements. “Microsoft claims that a combination of their latest security features:

Windows Hello, Device Encryption, virtualization-based security, hypervisor-protected

code integrity (HVCI) and Secure Boot have been shown to reduce malware by 60

percent” [17].

For forensic perspective some artifacts like prefetch, LNK files, Jumplists, Recycle Bin,

Amcache, AppCompatCache, Registry and Event Logs did not change according to Eric

Zimmermann’s Twitter post [18]. In addition to security upgrades, Windows 11 changed

18

the user interface design to simplify the user experience and more [16], but these are not

relevant in this context.

In this work we test Windows 11 unique ability to run Linux graphical user interface

applications via WSL2.

2.5 Windows Forensics

Windows forensics is one part of digital forensic science which is focusing artifacts found

in Windows operating system. This section is about various Windows artifacts relevant

to the experiments and analysis.

The Windows registry is a collection of database files, called hives, that store

configuration information for the system. Standard hives are [19]:

• NTUSER.DAT hive contains the configuration and environment settings for each

user who has used the machine. This hive is located at User’s folder

C:\Users\<username>\NTUSER.DAT. The hive can be used to enumerate most

recently opened files, which files was recently searched for hard drive, last URLs

typed to browser window, last commands executed.

• UsrClass.dat contains additional program execution information and provides the

ability to see which folders a user has opened or closed. The hive is located at

C:\Users\<username>\AppData\Local\Microsft\Windows\UsrClass.dat

• SAM hive is used for user profiling, the hive contains user login information,

group information, and user’s RID (Relative Identifier). It is located at

C:\Windows\System32\config\SAM

• SOFTWARE hive contains information about Microsoft Windows version, OS

version, install dates, and more. It is located at

C:\Windows\System32\config\SOFTWARE

• SYSTEM hive identifies system’s configuration settings, control set, which is

important to control system boot including driver and service information, also

contains information about computer’s name, time zone, network interfaces and

19

types, autoruns, and more. The hive is located at

C:\Windows\System32\config\SYSTEM

Amcache.hve hive is for Windows to run older executables found from older

iterations in current version of Windows. For Forensic perspective it can be used

to track program executions. In this hive Last Modification Time means First Run

Time. The hive is located at C:\Windows\AppCompat\Programs\Amcache.hve

Another registry related artifact is Application Compatibility: ShimCache is used when

a program opens, its purpose is to detect and remediate program compatibility challenges

caused by that a program was built to work on older version of Windows.

AppCompatCache tracks the executable file’s last modification time, file path.

Applications will be “shimmed” again if the file contents are updated or renamed, so it

can be used for detecting that a program was moved, renamed, or timestamps altered.

Located at SYSTEM hive:

SYSTEM\CurrentControlSet\Control\SessionManager\AppCompatCache\AppCompatC

ache

BAM, Background Activity Moderator record the path of the executable and last

execution time. SYSTEM\CurrentControlSet\Services\bam\UserSettings\{SID}

One Windows artifact not related to registry forensics is the Prefetch. It is a process that

makes Windows operating system faster by loading key pieces of data and code from disk

into memory before it is needed. The forensic value of prefetch files is that each prefetch

filename is a combination of the executable file name, followed by a dash and

hexadecimal representation of a hash of the file’s path. Prefetch files indicate program

execution, embedded within total number (up to 8) of times a program has been executed,

original path of execution, and the last time of execution. The execution times may differ

from real execution time up to additional 10 seconds. Location of prefetch files is

C:\Windows\Prefetch this folder holds up to 1024 entries.

The System Resource Usage Monitor (SRUM) is part of Windows diagnostics and

tracks different system performance elements. SRUM records how the programs run and

user ID responsible for launching the application [20]. SRUM analysis can be extra

20

beneficial in cases of counter-forensic programs are used or a user transferring mass

amount of data from the network to external places [20]. Performance data is initially

collected in the SOFTWARE hive and written to the SRUDB.dat approximately every 60

minutes of system runtime or during proper system shutdown, the database which is

located on C:\Windows\System32\SRU [20].

Windows artifacts could also be found in Event Logs. Windows Event Logs provide a

standard, centralized way for the operating system and associated applications to record

important software and hardware information [20]. Event logs provide historical

information that can help illuminate system and security problems as well as tracking user

actions and system resource usage [20]. What and how much is recorder to the logs is

dependent on the applications involved and the system settings. Event logs are in .evtx

format and default location is %systemroot%\System32\winevt\logs

Sysmon, short for System Monitor is for monitor and log system activity to the Windows

event log [21]. In default configuration it provides information about process creation and

termination, after configuration it is capable of logging various malicious or anomalous

activities in system or network. Events are stored in Applications and Services

Logs/Microsoft/Windows/Sysmon/Operational [21].

Journaling allows to peer back in time to find moment-by-moment changes to files and

folders on the volume [22]. The two files that make up the journaling features of NTFS

are the $LogFile and $UsnJrnl, the purpose of the first one is to provide low-level

transactional data about the changes to the file system, which also provides resiliency to

NTFS, the $UsnJrnl logs higher-level actions that can be used by applications to monitor

for file and directory changes [22]. Each USN record tracks a change file’s or folder’s

name, MFT number, its parent directory’s MFT number, a timestamp of the change, a

reason code. The file size, and its attributes like is it hidden or read-only, etc. [22].

2.6 Network forensics

Network forensics consist of the monitoring, collecting, and analyzing the network traffic

for the purpose of gathering legal evidence, and performing intrusion detection and

response [23]. In contrast to host-based forensics, nearly all network artifacts considered

21

to be volatile [23]. Network forensics provides overview of the events in network level,

which helps to fill in the gaps that regular host based digital forensics may face.

In this work all packets were captured directly from the host with Wireshark to support

the investigation of network-based operations.

2.7 Memory forensics

RAM is the bridge among the CPU, operating system, and getting thigs done [24]. Nearly

everything that has happened on a modern computer has traversed RAM, so analyzing

volatile data can give irreplaceable information.

In case of virtual machine memory acquisition it is recommended to suspend the virtual

machine, and force a copy of a memory to be copied to the host system, or when this

technique is not possible, the fallback plan to consider is to run a memory acquisition tool

within the virtual guest [24], but WSL is not a traditional VM so the acquisition method

should be tested as well. Unfortunately, at the time of writing this thesis Volatility did not

support Windows 11 profile, which means the tool cannot be used in case of Windows

11. Analyzing memory manually is out of scope of this thesis. Investigating memory

should be consider as future work.

22

3 Related work

The articles in this section are describing the architecture of WSL versions and pointing

out the shortcomings in Windows Subsystem for Linux version 1 and 2. There is one

white paper and one conference presentation that cover some aspects of endpoint forensic

analysis related to WSL. All the research mentioned in this chapter are based on Windows

10.

Journal article “Memory forensics and the Windows Subsystem for Linux” points out the

problems in memory forensics tools in case of Pico process and WSL in Windows 10 [5].

The problem about memory forensic frameworks was that these are designed to support

one operating system type per analysis task [5]. The authors also pointed out that WSL

subsystem internals are undocumented. The authors analyzed Volatility framework

capabilities and developed a new plugin, for that they used reverse engineering technique

of the WSL kernel and userland parts [5]. Previous research is based on WSL1 and

focused on two versions (1703 and Fall Creators Update) of Windows.

As stated by P. Kochberger, A. Tauber, and S. Schrittwieser “the identification of the

execution environment plays an important role in the areas of software protection and

malware analysis.” [25]. In this conference paper [25] the authors describe a list of vectors

for an application to identify if it runs inside of Windows Subsystem for Linux, on native

Ubuntu, or inside a VM, they built and implemented a prototype application for the

detection. Depending on how they described WSL working principle, we can say that

they wrote about WSL version 1. The paper contains the empirical list of deviations how

an executable detects is it executed in WSL or in Ubuntu. The identification mechanisms

were divided into three different categories, environmental artifacts, additional features,

and translation discrepancies [25].

In 2021, a SANS Institute researcher Amanda Dreager published a white paper named

“Looking for Linux: WSL Key Evidence”, which focus on WSL1 in Windows 10 [26].

In this paper she pointed out that there is a lack of research and lack of documentation,

and Windows versions have significant differences in WSL. Her research method

includes two virtual machines, one with WSL installed, and one whiteout WSL to

compare the behavior. The author did not use Windows default audit and logging

23

configuration, in case of PowerShell logging, the module logging was set to log all

modules, Sysmon logging, and object access auditing was enabled [26]. The paper

focused more on Event log evidence not to different artifacts that can be found from the

Windows operating system.

In 2017, Checkpoint researchers found a method that allows any known malware to

bypass most common solutions in WSL1 and named it Bashware [27]. The method is

divided into four parts, loading WSL components, enabling developer mode, installing

Linux, and installing Wine [27]. The researchers said that the problem is not in WSL, but

security vendors are falling behind how to monitor processes in hybrid systems.

F-secure researcher Connor Morley published a whitepaper how WSL2 can be used to

bypass security mechanisms [28]. WSL2 can be easily deployed and configured with

minimal input from a user, and when the instance is installed, an attacker can have full

access to the WSL without the user or monitoring systems being aware of the actions

[28]. The paper includes requirements to accomplish a payload weaponization, and an

actual PowerShell script he used in his testing.

Another flaw in WSL2 allows network traffic to bypass the Windows firewall, the leak is

possible even if the “Always require VPN” is enabled [29]. The flaw is in Hyper-V

Virtual Ethernet Adapter, it is built to pass the traffic to and from guest without host’s

firewall inspection, and this applies to all sandboxes that are using Hyper-V for

networking [29]. WSL1 is not affected with this, because it is not using Hyper-V and

network traffic is filtered by Windows Firewall [30]. Good news is that WSL2 supports

Linux firewall implementations like iptables [30], but it expects that user configures it

manually.

At OSDFCon 2020 conference, Asif Matadar from TANIUM cave a presentation

“Investigating WSL Endpoints”, it focused on WSL2’s attack and its evidence [31]. He

highlighted 11 techniques how to attack WSL2, including persistence, execution, lateral

movement, command and control and execution attacks [31]. Every method included

some ways to detect the attack, but only some possible forensic artifacts were covered.

24

4 Methodology

This section describes the setup of the experiment, the disk acquisition process, and the

tools used in analysis. Well known and commonly used free tools were chosen for data

acquisition and subsequent analysis. Some of these tools are recommended and used by

SANS Institute instructors during forensic courses (FOR500 and FOR508). A

commercial tool called Magnet AXIOM was also used for data analysis.

4.1 Tools

Caine or Computer Aided Investigative Environment virtual machine is customized

Ubuntu 18.04 with graphical interface for computer forensics, with many forensic

software tools installed [32]. An important aspect of Caine is that all the drives are

mounted as read-only unless investigator change that. “The new write-blocking method

assures all disks are really preserved from accidentally writing operations” [32].

FTK Imager is a tool for previewing and imaging electronic evidence [33]. In this work

FTK Imager command line version was used to image the test computer’s disk.

Arsenal Image Mounter is an open-source forensically sound tool for mounting the

contents of disk images as complete Windows disk [34]. Can be used for mounting

RAW/DD, E01, and Virtual Machine Disk files [34]. The tool allows the reviewer to

interact with files with their native or associated application, copy files out of the mounted

filesystem.

Registry Explorer, written by Eric Zimmerman, is free open-source GUI-based tool used

to the view contents of offline registry hives. It has ability to load multiple hives at once,

search across all loaded hives using string or regular expressions.

KAPE, or Kroll Artifact Parser and Extractor, is a triage software written by Eric

Zimmerman. KAPE is a multi-function program that allows to collect files and process

collected files with one or more programs [35]. KAPE has two parts, one is Targets which

is for collecting files, folders, and various types of items on a storage device, second is

Modules, which is used for processing files and folders [35], KAPE’s working principle

25

is shown in Figure 3. It is possible to run GUI application, which also displays command

line arguments, that command can be saved and used for even faster collection for

multiple devices.

Figure 3. How KAPE works [14]

Timeline Explorer is a free tool replacing MS Excel. It’s designed for digital forensic

examination, written by Eric Zimmerman. It supports conditional coloring, filtering, and

grouping, and allows to open multiple files simultaneously.

MFTCmd.exe is another tool by Eric Zimmerman, it is a fast command line parser for

MFT.

LogFileParser.exe is a free tool from Joakim Schmicht to analyze $LogFile. The primary

output is designed to give an overview of the data contained in the $LogFile [22].

PECmd.exe is prefetch command line parser, written by Eric Zimmerman. PECmd will

output two files, one file will contain the embedded information such as run count, last

run times, and files referenced for each prefetch file int folder. The second file is a

timeline view of the output, it includes a row for each embedded timestamp.

AppCompatCacheParser.exe can be used to parse SYSTEM hive for Application

Compatibility information to examine file executions, it is written by Eric Zimmerman

[20].

Event Log Explorer is free for personal use event log management software package. It

supports logs from every Windows NT operating system and can read both .evt and .evtx

log formats. It is capable of working with corrupted log files, allows to open many log

files simultaneously, and has robust filtering capability, including access to the text-based

26

Description field. Quick Filters allow options like showing only one events of a specific

type or removing types of events from view [20].

Srum-dump.exe is written by Mark Baggett and it is a free srum-dump tool, for

automatically decode all the files in the SRUM database [20].

NirSoft NetworkUsageView tool allows an investigator to analyze network usage

information stored in the SRUDB.dat database. It is a graphical application that includes

timestamps, App Name, App Description, User, User SID, bytes sent and received [36].

Magnet Axiom is powerful commercial tool for recover, process, and analyze digital

evidence in one case [37].

Wireshark is free open-source multi-platform network packet analyzer. It has many

features, including live capture and offline analysis, deep inspection of protocols, many

export options, and more [38].

4.2 Experimental setup

Information about test PC can be found in Table 1. Sysmon was installed and running to

provide some extra logging during the experiment, it had default configuration, which

means only few events (process creation and termination) were logged.

Table 1. Test PC parameters

Computer Lenovo T490

Processor Intel® Core™ i7-8665U CPU @ 1.90GHz 2.11 GHz

Installed RAM 24 GB (23.7 GB usable)

System type 64-bit operating system, x64-based processor

Operating system Windows 11 Pro

Version 21H2

OS built 22000.556

The experiments starts with Windows Subsystm for Linux version 2 because it is now the

default and recommended version. The experiment was designed with forensic

27

examiner’s work in mind. Investigators are looking for evidence of what users have done

with files, what they did on network, and which applications they used.

The experiment can be divided into six parts. First, subsystem installation, the purpose of

this part is to produce evidence of WSL installation. First WSL2 with default distribution,

Ubuntu, was installed on Windows 11. To finish the installation process a reboot was

required. After the reboot WSL2 was ready to use. The test computer was shut down and

first disk image was collected, disk image acquisition process is described in chapter 4.3.

The second part was about file operations. Users are likely to engage with files so file

operations like file creation, modification and deltation are essential part of understaning

the subsystem specificity. Files created in WSL can be saved to Linux file system or

directly to Windows’. This part of the experimention was focusing on producing the

senario where files are created and modified in WSL and saved to Linux’ and Windows

file system to analyse how the files differ and which tracks can be detected by using the

computer forensic techniques. The experiment started with creating the file “test.txt”, it

was created in WSL but saved to Windows file system. Next, the file’s writing

permissions were removed using the command “chmod”. Second file “test2.txt” was

created and removed instantly. First file “text.txt” was moved to Ubuntu’s file system.

Then a third file “newtest.txt” was created and saved on Ubuntu’s file system, after it was

moved to Windows Documents folder to test if there are differences between moving files

from one file system to another and does the direction affect the outcome.

Third step was about ICMP echo requests. The ping command was used to understand

the connectivity between the host and the subsystem. Wireshark capture was started to

collect network traffic for analysis. Network capture helps to understand how WSL looks

from network perspective and is it possible to distinguish WSL connections from host.

Command “ip a” in WSL2 shows the IP 172.21.56.123/20. On Windows “ipconfig”

commands shows host IP 192.168.1.132 and Ethernet adapter vEthernet (WSL) IP

172.21.48.1, which can be handled as a gateway between host and WSL2. It was

28

immediately seen that pinging host from WSL2 was unsuccessful, but echoing WSL2

from host got replies, third ping was from WSL2 to Google 8.8.8.8, and it was successful.

Fourth part was about various network connections a potential user may perform from a

command line. Curl command was used to download a file from TalTech library to

Windows file system and to display Tallinn’s weather info in terminal. Second transfer

utility that was used was wget, different utilities were used to see if there are any

differences. Wget command was used to download Eicar test files to Windows and

Ubuntu. It was interesting that on Windows the malware file disappeared but remained in

place in Ubuntu. A telnet connection was established to see world map in terminal, the

maps was interactive which allowed to zoom into different places.

A user usually needs to use some applications; therefore, next part was focusing on

actions related to programs. The test started whit executing a program that resides on

Windows, the first executed application was Sysmon, second one was Notepad which do

not need elevated rights like Sysmon. Opened Notepad was used to save new file named

“123.txt”. The test user also upgraded the WSL to be able to use latest features and

provide extra evidence for examination.

The last part of the experiment was about a graphical user interface which is new feature

introduced in Windows 11. First GUI program installed with apt was Linux text editor

Gedit. Second applications that was installed and opened was the Firefox browser. In

2020, September 30, a firewall bypass flaw was published as described in related work

chapter 3, to test if it is still possible a new rule to block 80, 8080, and 443 was enabled

in Windows firewall. The Firefox browser was opened in Ubuntu and Internet browsing

was possible without any restrictions, meanwhile Edge browser opened in Windows

couldn’t access the same sites. Two browsers can be found in Appendix 2.

The following Figure 4 shows the steps of the WSL2 testing.

29

Figure 4. WSL2 experiment flow

The computer operating system was reinstalled after experiments on WSL2. The

experiment to test WSL1 was similar to version 2 testing. The most significant difference

comes from GUI part, because WSL1 do not support graphical interface. The WSL1

experiment flow is presented in Figure 5.

As described earlier WSL1 and WSL2 have different architecture and therefore the logic

of storing the files is also different, for forensic perspective it is crucial to know where

the files reside, and which evidence are left behind regarding the subsystem version. The

experiment was based on same tests as WSL2 to be able to compare the results. The file

operations part started with creating a new file named “testwsl1.txt”. After the creation

the file has full rights, then the writing permission were removed with “chmod”

command. Second file “test2wsl1.txt” was created and deleted immediately. Third file

30

“newtestwsl1.txt” was created to Ubuntu’s file system and moved to Windows file system

with a name “2newwsl1.txt”.

Figure 5. WSL1 experiment

Like previously the next section was about ICMP echo request to understand WSL1 from

network perspective. Host IP was 192.168.1.132, WSL IP info was interesting because

it showed three different ethernet interfaces and three wifi interfaces, one of those was

the same as the host, WSL1 IP info can be found in Appendix 3. Ping request from Ubuntu

31

to host was successful. Ping request from host to two WSL’s eth interfaces

(169.254.75.17, 169.254.72.126) was unsuccessful.

Following test were same as WSL2, a paper was downloaded from TalTech library, Eicar

file was downloaded to Windows and Ubuntu, weather info was requested with curl and

telnet connection was established to see command line map. After the WSL was updated

with apt. Sysmon and Notepad applications were executed from Ubuntu. Gedit and

Firefox execution did not work because WSL1 do not support graphical interface

applications and displayed error message “no DISPLAY environment specified”.

The Wireshark capture was stopped, and disk image was acquired according to the

procedure described in next section.

4.3 Disk image acquisition process

After the testing the computer was shut down, and the NVMe SSD was removed from the

computer. The disk was inserted to another computer. The analysis machine had USB

with bootable Caine VM connected. After the computer booted from USB, the computer’s

hard drive was mounted as read-only but changed to writable disk, the disk under

investigation remained read-only mode. Command line version of FTK Imager was used

to carve the disk image in E01 format, verification flag was set, to be sure that everything

went right. Fragmentation was set to 2T so the disk will remain in one piece.

32

5 Results

In this section the acquired disk images were investigated. The purpose of the analysis is

to detect as many artifacts locations as possible. It is important to have alternatives for

evidence locations to look for in cases the data is deleted or wiped from system by a user

or anti forensic measures were used.

5.1 Evidence of WSL2 installation and usage

This section presents the forensic evidence that WSL2 left after installation was

completed. The analysis began with Windows registry forensics, followed by

AppCompatCache and Event Logs.

5.1.1 Registry

Windows registry hives contain many values, but some of them are not human readable,

are defective, or just do not add value to an investigation. For example, many date or time

entries are not useful, some contain only zeros, others are overwritten every time the

registry value is used. Information of WSL2 installation can be found on SOFTWARE,

Amcache.hve and UsrClass.dat registry hives. Registry hives, locations, and values that

can be beneficial to forensic examiners are presented in Table 2. The table can help the

examiner to find information of interest precisely essential to the current case.

Table 2. Indications of WSL2 installation

Registry hive Values

Amcache.hve:

Root\InventoryApplicationFile\wsl.exe|88d5e8ee009f35b9

File Name,

Path (..\System32\),

Publisher, Version, Binary

Type, Size

SOFTWARE:

Microsoft\Windows\CurrentVersion\Installer\UserData\S-1-5-

18\Products\E752FE635D127F4448157029A3C864E5\Install

Properties

Local Package (.msi),

Display Version,

Help Link,

Install Source (..\Temp\),

Publisher

SOFTWARE:

Microsoft\Windows\CurrentVersion\Installer\Folder

Path (GUI location on C:\

ProgramData\Microsft\wsl)

33

Registry hive Values

Amcache.hve:

Root\InventoryApplication\00007c914b0dd2764fd645ed6e2c9

620551900000904

GUI info:

Program IDs, Name,

Version, Publisher, Install

Date

Amcache.hve:

Root\InventoryApplicationFile\wslhost.exe|e4351ae5a193337

Program IDs,

Path (..\System32\lxss\),

Name, Publisher, Version,

Binary Type, Size

UsrClass.dat:

Local Settings\Software\Microsoft\Windows\Shell\MuiCache

Friendly name,

Application Company

It is important to follow the IDs very precisely, because in different registry keys they

may represent different thing, for example program IDs in Amcache.hve folders are not

the same.

In some cases, distribution information can be important to a case, fortunately it can be

found in different places. Information about installed distribution can be found in

SYSTEM, SOFTWARE, NETUSER.DAT and UsrClass.dat hives. Distribution info is

present after computer is rebooted. The Table 3 presents registry hives with interesting

values in them.

Table 3. Distribution information

Registry hive Values

SOFTWARE:

Microsoft\Windows\CurrentVersion\AppModel\StagingInfo\Cano

nicalGroupLimited.UbuntuonWindows_2004.2020.424.0_x64__7

9rhkp1fndgsc

DownloadSize

SOFTWARE: Classes\Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppModel

\PackageRepository\Packages\CanonicalGroupLimited.Ubuntuon

Windows_2004.2020.424.0_x64__79rhkp1fndgsc

Path

UsrClass.dat: Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppContai

ner\Mappings\S-1-15-2-202137915-1588483389-988967374-

857029487-3114683470-1999124116-284053513

Display Name,

Moniker

34

Registry hive Values

UsrClass.dat: Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppModel

\Repository\Packages\CanonicalGroupLimited.UbuntuonWindow

s_2004.2020.424.0_x64__79rhkp1fndgsc

Package Root Folder,

Display Name,

Package ID

NTUSER.DAT:

Software\Microsoft\Windows\CurrentVersion\App

Paths\ubuntu.exe

Path

NTUSER.DAT:

Software\Microsoft\Windows\CurrentVersion\Lxss\{17f1eb54-

04fa-48ab-98d6-a654d1f70f47}

State,

Distribution Name,

Base Path, Package

Family Name

SYSTEM: ControlSet001\Services\bam\State\UserSettings\S-1-5-

21-2705457751-833678465-653486118-1001

Path, Data

SYSTEM:

ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy\

RestrictedServices\AppIso\FirewallRules

Firewall rule

The location of WSL2 files is AppData folder, Linux file system files are on a Hyper-V

virtual hard disk (vhdx):

The Path:

C:\Users\Thesis\AppData\Local\Packages\CanonicalGroupLimited.UbuntuonWindows

_79rhkp1fndgsc\LocalState\ext4.vhdx

5.1.2 Prefetch

To parse prefetch files a command line tool PECmd.exe was used and the relevant output

is shown in Figure 6. From Prefetch we can see that WSL.exe was first run at 12:13:57

which is the same time like in Amcache.hve registry hive, and WSLHOST.EXE entry

appeared first time after computer was rebooted and few seconds after Ubuntu.exe was

executed.

35

Figure 6. Prefetch wsl.exe and wslhost.exe

5.1.3 AppCompatCache

AppCompatCacheParser.exe output shows that first time wslhost.exe was “shimmed”,

was right after WSL installation began. So AppCompatCache has earlier evidence than

Prefetch that WSL exists in system.

5.1.4 Event logs

The test computer had Sysmon installed. Sysmon event 1 expresses Process creation, and

event code 5 Process termination. The first entry of WSL process creation was few

milliseconds earlier than in Amcache.hve, the event description included cmd.exe

command line “wsl –install”, SHA256, ID, and folders, some events show command line

“wsl –install -d ubuntu” although the distribution information was not typed manually,

the Sysmon event is shown in Appendix 4. Same command execution is logged in

Microsoft-Windows-Shell-Core%4Operational with event id-s 9707 (command

execution started) and 9708 (command execution finished), but this log entry was written

after the computer was rebooted. The Microsoft-Windows-VHDMP-Operational log file

is a source for virtual disk information, first entry has a user SID info, and the description

field contains “Handle for the file backing virtual disk

'C:\ProgramData\Microsoft\WSL\system.vhd' created successfully. “, the entry it is

present after the computer was rebooted.

Application logs provide an overview of WSL installation, it includes related user SID,

and informative descriptions. User SID is important information, it allows actions to be

associated with the user. AS shown on Figure 7, graphical user interface is included in

default WSL installation package. Information about distribution installation process,

including time spent on installation and associated user SID, can be found in

AppXDeploymentServer%4Operational log file.

36

Figure 7. Application logs

Evidence of WSL2 installation can also be found in Microsoft-Windows-Hyper-V-

VmSwitch-Operational log file, it contains information how WSL is connected to Hyper-

V VmSwitch, including ports and network adapters, user SID is also present, but this is

different than previous one.

Microsoft-Windows-Hyper-V-Worker-Admin.evtx log is shown in Figure 8, the log file is

a source for following virtual machine session, every session gets unique ID and user

SID, and every virtual machine associated got another unique ID. It is possible to track

one VM session by ID. Events 12148 and 18500 are indicating that Virtual Machine

started successfully and event id 18508 was written to logs when the VM was shut down

by the guest operating system. Between start and stop there were logs about PCI device

operations.

Figure 8. Microsoft-Windows-Hyper-V-Worker-Admin.evtx

Virtual machine IDs in Hyper-V-Worker-Admin logs are the same as in Hyper-V-

Compute-Operational logs.

Amanda Draeger claimed in her white paper that Windows Security logs can be used for

detecting process creation and object access (event id 4688 and 4656), but in this work

security logs had information about audit policy change (event id 4907). This may be

caused by that she enabled extra logging and this work used default settings or because

Windows versions are different.

37

5.2 Evidence of WSL1 installation and usage

This section presents the forensic evidence that WSL1 left after installation was

completed. The analysis began with Windows registry forensics, followed by

AppCompatCache and Event Logs.

5.2.1 Registry

WSL1 Windows registry entries that can be useful for forensic investigation are presented

in Table 4.

Table 4. WSL1 registry evidence

Registry hive Values

SOFTWARE: Classes\Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppModel\

PackageRepository\Packages\CanonicalGroupLimited.Ubuntu_200

4.4.2.0_neutral_~_79rhkp1fndgsc

Path

UsrClass.dat: Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppContain

er\Mappings\S-1-15-2-3731972660-2291479297-3906359699-

410282953-842910066-2550138301-2406496836

DisplayName,

Moniker,

UsrClass.dat: Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppModel\

Repository\Packages\CanonicalGroupLimited.Ubuntu_2004.4.2.0_

x64__79rhkp1fndgsc

DisplayName,

PackageID,

PackageRootFolder,

PackageSid

NTUSER.DAT: Software\Microsoft\Windows\CurrentVersion\App

Paths\ubuntu.exe

Path

\SYSTEM: ControlSet001\Services\bam\State\UserSettings\S-1-5-

21-1154849975-3556662000-2890839169-

1001\CanonicalGroupLimited.Ubuntu_79rhkp1fndgsc

SOFTWARE: Classes\Directory\(background)\shell\WSL

SOFTWARE:

Microsoft\Windows\CurrentVersion\Explorer\IdListAliasTranslatio

ns\WSL

source - \\wsl.localhost

SOFTWARE: Classes\CLSID\{615a13be-241d-48b1-89b0-

8e1d40ffd287}

Data: WslClient

C:\Windows\System32

\lxss\wslclient.dll

38

Registry hive Values

SOFTWARE: Classes\CLSID\{B2B4A4D1-2754-4140-A2EB-

9A76D9D7CDC6}\Instance\InitPropertyBag

Provider,

ResName,

SOFTWARE: Classes\Directory [or \Drive\]\shell\WSL\command Data : wsl.exe --cd

"%V"

SYSTEM: ControlSet001\Control\Session

Manager\AppCompatCache

Wslhost.exe location

SYSTEM:

ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy\R

estrictedServices\AppIso\FirewallRules

Firewall rule

NTUSER.DAT:

Software\Microsoft\Windows\CurrentVersion\Lxss\{4c42a344-

8010-42b7-8aa7-d2595c169358}

BasePath,

DistributionName,

PackageFamily,Name

Amcache.hve:

Root\InventoryApplicationFile\ubuntu.exe|264b49043e869df6

AppxPackageFullNam

e, BinaryType, Path,

Name, ProgramId,

Size, Usn

Amcache.hve:

Root\InventoryApplicationFile\wsl.exe|88d5e8ee009f35b9 and

wslhost.exe|e4351ae5a193337

BinaryType,

BinFileVersion, Path,

Name, ProductName,

ProductVersion,

ProgramID, Publisher,

Size, Usn, Version

Amcache.hve:

Root\InventoryApplication\0000b4e521368d49ea531c16c262f06c6

07800000908

ManifestPath, Name,

ProgramID,

ProgramInterfaceId,

Publisher,

RootDirPath, Source,

StoreAppType,

UesrSID, Version

5.2.2 Prefetch

Prefetch analysis shows the programs executed during the experiment nearly in correct

order is shown in Figure 9. Dismhost.exe (dism.exe) was ran with powershell.exe, the

reason powershell.exe creation time is later is that prefetch timestamps have up to 10

seconds delay since the actual start time, so applications executed closely can be in shift.

39

Figure 9. WSL1 Prefetch

In the second PECmd.exe output file (PECmd_Output_Timeline.csv), powershell.exe

source created timestamp is earlier than dism.exe’s.

5.2.3 AppCompatCache

AppCompatCache information is the same in WSL2 and WSL1,

AppCompatCacheParser.exe output shows that first time wslhost.exe was “shimmed”,

was right after WSL installation began. So AppCompatCache has earlier evidence than

Prefetch that WSL exists in system.

5.2.4 Event logs

Sysmon Operational logs provided process creation information and SHA256 hash for

dism.exe, dishost.exe, ubuntu.exe, and wsl.exe. Sysmon also logged the command

“wsl.exe –set-default-version 1” which was ran to set default version from WSL2 to

WSL1. From Sysmon entry we can see which distribution was executed and where are

the files stored in Windows file system. The Sysmon log entry is shown in Appendix 4.

In Microsoft-Windows-AppXDeployment-Server log file we can find information about

WSL deployment, including paths, user SID, time, and packages. First deployment had

user SID S-1-5-18, which is referring to System, later the process got unique user SID

40

with domain identifier. The Microsoft-Windows-AppModel-Runtime has user SID, and

AppContainer information. The System event log contains information about Ubuntu’s

update start and finish. Microsoft Windows Store%4Operational log file has detailed

information about actions related to Microsoft Store and Install Agent.

5.3 File operations

This section covers the analysis of the file operations described in experimental setup

section.

5.3.1 File operations in WSL2

The Figure 10 shows the creation of the first file named “test.txt”, the file got full

permissions (777) in Windows file system. The file was moved to Linux file system and

it inherited permission set from Windows.

Figure 10. New file “test.txt”

The file named “newtest.txt” was saved to Ubuntu file system and by default got 644

permissions (owner can read and write, group and others can only read), but after moving

the file to Windows Documents folder with new name “2new.txt”, the file did not inherit

permissions from Ubuntu, instead it got full permissions.

To analyze MFT a KAPE triage image with targets $MFT, $J and $LogFile was created

and MFTCmd.exe was used to parse the KAPE VHDX image. The output file shows no

evidence of files “test.txt” and “test2.txt”, first file was removed to Ubuntu and second

was just removed. File “2new.txt” created in Ubuntu and moved to Windows is present

in $MFT. As shown in Figure 11 the file’s creation time is later than modification time,

that indicates that the file is created somewhere else and creation time shows the time

created in current file system.

41

MFTECmd.exe was used to parse Journal file “$J”. UsnJrnl file has detailed information

about the file “test.txt” shown on Figure 12, it was created at 19:14 and file permissions

were changed at 19:16, so journaling technique can be used to track modifications made

from WSL to a Windows file. The $MFT output files shows that file was deleted at 19:25

but the files moved to Ubuntu, for Windows it equals to deletion. Swp file extension is

an indicator that file is created in Linux OS, “SWP files are created immediately when a

Vi text editing session is started. They are saved to the same directory as their original

file. If a Vi session terminates due to a program kill or crash, the SWP file remains. [39]”..

Searching for swp files we can detect screen-oriented text editors for Unix operating

system. Another interesting column in journal output is parent entry number. Filtering

this entry number, we can see all file actions related to WSL.

Figure 12. UsnJrnl

Figure 11. $MFT

42

File “test2.txt” has similar information, only BasicInfoChange rows are missing, and this

file was really deleted, the UsnJrnl output is presented in Appendix 5.

Documents that are opened at least once can be found in NTUSER.DAT:

Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs\.txt. This registry

hives stores up to 50 recent documents if the default value not changed.

5.3.2 File operations in WSL1

In $MFT output we can see only two files “testwsl1.txt” and “2newwsl1.txt” saved to

Windows file system, deleted, or saved to Ubuntu are not present.

The ffirst file “testwsl1.txt” was saved to Windows and got full set of permissions by

default, but, writing permissions were removed with “chmod” command. The file

“newtestwsl1.txt” was saved to Ubuntu’s file system and showed only reading rights but

the test showed that the file was also writable. The last file was moved to Windows and

by that it got full permissions (777) in Windows file system, which is unexpected, because

moving a file from Windows to Ubuntu did not change permissions, this could present a

threat to the system.

UsnJrnl analysis shows all file creations, modifications, and deletions. Unlike WSL2, the

file saved to Ubuntu is also present in journal output. Parent entry value changes when

file saved to Windows or Ubuntu. File “newtestwsl1.txt” was saved to Ubuntu and in

journal output it has parent entry value 173873, same file was moved and renamed to

Windows and the new file “2newwsl1.txt” has parent file entry value 98251, which is the

same as file created earlier. In Figure 13 are all four text files created, .swp fails also exist

like in WSL2.

43

Figure 13. WSL1 journal

5.4 Network operations

This section analyzes network traffic to see if WSL is distinguishable from network

traffic. The experiment included ping command, downloading from Internet, and

establishing a telnet connection.

5.4.1 Network operations in WSL2

Ping.exe execution can be found only when run directly on Windows. Sysmon logged

ping.exe when host echoed WSL2’s IP, same goes for Prefetch. When Ubuntu is used, it

is possible to detect ping only from network logs. We can see from Wireshark pcap that

pingig 8.8.8.8 has also host IP but this doesn’t affect ping.exe execution information on

Windows system.

In Figure 14 is ping request from WSL2 to Google, we can see there are two requests

from different IPs, one is WSL’s and second is host’s IP. The reason there are two IPs is

that WSL2 uses NAT. It is possible to detect request made by WSL by User-Agent, which

is Debian APT-HTTP/1.3 (2.02)

Figure 14. Ping WSL2 -> 8.8.8.8

44

Curl command with two source IPs is in Figure 15.

Eicar malware test file was downloaded to Windows and Ubuntu. On Windows the file

disappeared, and information why can be found in Microsoft-Windows-Windows

Defender%4Operational log file. The Figure 16 shows that Real-Time Protection

detected a virus but based on this log we cannot say this file is related to WSL.

Figure 16. Microsoft-Windows-Windows Defender%4Operational.evtx

Telnet connection to command line map mapscii.me is shown in Figure 17. Because

Telnet is not encrypted the data can be read. In this case we can see which location were

viewed on the map. In this case coordinates -20,323 57,685 refer to Indian ocean island

Mauritius.

Figure 15. curl TalTech Library

45

In case network monitoring is not set up, SRUM analysis shows that there was network

traffic but information what app caused it is missing. The Figure 18 shows that most of

the important information is missing.

Figure 18. NetworkUsageView SRUDB.dat

5.4.2 Network operations in WSL1

Ping request from WSL1 to host was successful and seen in Figure 19. Wireshark capture

shows that the ping source and destination IPs were same. As mentioned in experimental

setup section, WSL1 had six IPs in total, and one was same as host IP.

Figure 19. Ping from WSL to Host

Echoing WSL ethernet interfaces was unsuccessful, the packet list pane in Wireshark

shows again destination IP same as source IP, but typed IP was different from that, it was

169.254.75.17, and it is displayed in the packet details pane in Figure 20.

Figure 17. Telnet mapscii.me

46

Figure 20. Ping from Host to WSL1

Downloading a file and asking for weather info with curl command also shows the same

IP as host, the same goes for telnet connection. The reason for that is that WSL is in the

same network as host, not like WSL2 which uses NAT. The file downloaded from

TalTech library can be found in UsnJrnl and shown in Figure 21.

Figure 21. File downloaded from TalTech in UsnJrnl

The Eicar malware test file was downloaded to both file systems, this time Windows

Defender detects it in both systems, the log entry can be found in Figure 22 where

Microsoft-Windows-Windows Defender%4Operational.evtx. output is displayed.

Figure 22. Microsoft-Windows-Windows Defender%4Operational.evtx

47

The log description shows where WSL files are stored in Windows system:

C:\Users\Thesis\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu18.04onWin

dows_79rhkp1fndgsc\LocalState\rootfs\home\thesiswsl\test\eicar.com.txt Browsing to

this rootfs location we can see a regular Ubuntu’s root direction, shown in Appendix 6.

The Eicar file is present in journal with one parent entry number 98251 even the file was

saved to both file systems.

SRUM network usage analysis in WSL1 unlike WSL2, shows bytes sent, bytes received,

user SID, and app name which is the file system location […]\rootfs\usr\bin\curl, the

output is shown in Appendix 7.

5.5 CLI and GUI applications in WSL2

Executing Sysmon from bash displays program information and that administrator

privileges are required. Notepad was also executed and a new file “123.txt” was saved to

Windows Documents folder. Both file executions exist in Prefetch and are shown on

Figure 23.

Figure 23. Sysmon in prefetch

The first graphical application installed with apt command was a text editor Gedit, second

was Firefox browser. Appendix 8 shows how Gedit download look from Network

perspective. From Wireshark pcap we can see the User-Agent Debian APT-HTTP/1.3

(2.02). In Figure 25 in Microsoft-Windows-Shell-Core%4Operational event log we can

see a log entry that describes that a shortcut for application Text Editor (Ubuntu) and

Firefox Web Browser (Ubuntu) are added to app resolver cache.

48

Figure 24. Microsoft-Windows-Shell-Core%4Operational.evtx Text Editor entry

NTUSER.DAT registry hive Software\Microsoft\Windows\CurrentVersion\UFH\SHC

contains data about graphical applications, not just these that were installed by a user, but

also additional components like language support, ibus-setup, advanced network

configuration (nm-connection-editor), printers (system.config-printer), these components

were installed automatically. The output is presented in Appendix 9.

Both installed GUI applications are represented in MFT. Figure 26 displays the search of

the parent entry number (171330), the output shows all previously mentioned additional

components.

Figure 25. GUI additional components in $MFT

Searching for the same parent entry number in UsnJrnl we can see both installed GUI

programs. Gedit and Firefox are not present in Prefetch.

5.6 CLI operations in WSL1

Prefetch has evidence of Sysmon and Notepad executions, but it does not have

information about Gedit nor Firefox installation attempts. Prefetch files information is

also present in $MFT output.

The Notepad.exe execution in journal in expressed with update reason “FileCreate”

because it is a prefetch file, what was written to disk. The file “12345.txt” created in

Notepad, is present in journal with the same parent entry number 98251 as other files

49

saved to Windows, which is an indicator that WSL was used for creating this file not just

Windows application. Sysmon execution is also present in journal output, both

Sysmon.exe and prefetch file entries. Gedit and Firefox installation attempts are also

represented in journal, but it is impossible to say if the installation was a success or not.

5.7 Magnet Axiom

In this section a commercia tool Magnet Axiom was used to find additional evidence that

was not found before. Axiom was used to search some keywords and the results were

exported.

Windows Timeline Activity showed the time spent on WSL and Ubuntu, when was the

application opened and closed, the output is shown in Appendix 10. Magnet Axiom

parsed automatically all the LNK files from Windows operating system, the output is

presented in Figure 26, and it displays the WSL2 graphical interface wslg.exe timestamps

and command typed by user or system.

Figure 26. Axiom LNK Files output

One evidence of WSL2 download can be found by examining Edge-Internet Explorer

content, the content is displayed in Figure 27 and shows the websites connected in

installation process. During the installation the user did not open the Edge browser.

Figure 27. Edge-Internet Explorer 10-11 Content

50

In Windows Firewall event log entries, we can find a description of new rule that has

been added to exception list at the time of Ubuntu installation.

Exported Windows Defender Log output referred to a file “MPLog-20220315-

090500.log”. Investigation of that file shows that is a text file which contains more

detailed logs from Windows Defender. The MPLog contains historical evidence of

process execution, threats detected, scan results and actions taken, signature update

versions, and file existence [40] but the latter do not apply for all files, all the text files

created in this experiment are not represented in this log file. This alternative location

(ProgramData\Microsoft\Windows Defender\Support\) is important because one of the

easiest anti forensic methods is to delete event logs folder when it is in default location

(C:\Windows\System32\winevt\Logs).

51

6 Analysis summary

Previous chapters provided detailed overview and understanding about Windows

Subsystem for Linux both versions and the forensics on Windows 11. This section is for

pointing out the most important findings.

Registry hives are providing great evidence for WSL investigation. SOFTWARE,

SYSTEM, NTUSER.DAT, UsrClass.dat, and Amcache.hve hives provided some

information about WSL usage, starting from installation to some file operations. The

comparison of WSL1 and WSL2 registry locations are presented in Appendix 10, the

table shows which registry entry can be found in either version. The table can help the

investigator to find information fast and appropriate to the case.

In some cases, it is important to know the first time the activity occurred. The Application

Combability or AppCompatCache is a source to look for the earliest timestamps for WSL

installation. Prefetch is a place to look for program executions, programs that were present

and executed from Windows file system are listed in Prefetch folder, the real execution

time may be up to 10 seconds earlier.

Windows event logs are providing various entries about WSL’s actions. To have even

better overview of the system, the test computer had Sysmon installed. Sysmon log entry

had the full installation command even if it was not typed in by user. It is also a source

for installed distribution, SHA256 hash, IDs, and location where the files are stored in

Windows files system. WSL2 uses Hyper-V, different Hyper-V log files are providing

information about network adapters, ports, virtual machine IDs, VM start and shutdown

events, IDs and SIDs are the same throughout the Hyper-V logs, but different from other

event logs. Like Sysmon the Microsoft-Windows-Shell-Core%4Operational log includes

full command line, and command execution and finish events. The Microsoft-Windows-

VHDMP-Operational is a place for virtual disk information. The

AppXDeploymentServer%4Operational and Application logs have installation process

overview, times, and SIDs. In Table 5 are event logs that can be used in either WSL1 or

WSL2 investigation. Windows Defender log in WSL2 is considered as optional, because

it cannot tie to WSL2, it detected malware from Windows file system without a sign of

Ubuntu. Windows Defender can detect at least some malware from WSL1, but not from

52

WSL2. The Eicar test file was removed from Windows and WSL1 but remained in place

in WSL2.

Table 5. Event Logs

Event Log WSL2 WSL1

Sysmon x x

Application x

Security x x

Microsoft-Windows-VHDMP-Operational x

Microsoft-Windows-Shell-Core%4Operational x

AppXDeploymentServer%4Operational x x

Microsoft-Windows-Hyper-V-VmSwitch-Operational x

Microsoft-Windows-Hyper-V-Worker-Admin x

Hyper-V-Compute-Operational x

Microsoft-Windows-Store%4Operational x x

Microsoft-Windows-AppModel-Runtime x x

Microsoft-Windows-Windows Defender%4Operational (x) x

In Windows file system, the WSL1 files are in AppData folder in

C:\Users\<user>\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu18.04onWin

dows_79rhkp1fndgsc\LocalState\rootfs\, where rootfs corresponds to root folder in native

Linux. In case of WSL2 the LocalState folder has a virtual hard disk file ext4.vhdx file.

Unfortunately, not all commands typed by user are logged to Windows by default, only

some commands can be found from Sysmon and Microsoft-Windows-Shell-

Core%4Operational event logs. It is possible that enabling some extra logging may

improve this shortcoming. Conducting Linux forensic may also give the command history

but this was not in scope.

A File created in WSL2 and saved to Windows file system will have full permission. The

File created in WSL2 and saved to Ubuntu file system will have only read permission. It

is notable that when the file created to Linux file system is moved to Windows, it will

have full permissions, it needs further investigation because it may present a threat to the

system. The other way the file will inherit the permission set from Windows. When the

file is first saved to Windows then moved to Ubuntu and again back to Windows, it will

have the same set of permissions it had first time, not full permissions if it did not have

them before so Windows do not see the file as a new file. MFT analysis shows only the

53

files that are present in Windows, no deleted files, nor Ubuntu’s files. When the file was

moved from WSL2 to Windows its creation time in MFT was later than modification

time, which is an indication that the file was created somewhere else. In case of WSL1

the creation time is the same as modification time.

Journal analysis provide very detailed overview what happened in a system. It logs also

the swp files, which can be indication that the file was created in Linux screen oriented

VI application which can be used as a evidence that a file is created in WSL.

WSL2 in Windows 11 allows users to use GUI applications, in Windows 10 or in WSL1

it is not supported. GUI applications leave evidence to Windows Event logs, MFT,

UsnJrnl, and NTUSER.DAT registry hive, but not to Windows Prefetch.

From network perspective WSL1 and WSL2 are different. WSL1 uses the same subnet

as the host, but WSL2 uses NAT. In case network monitoring is possible, WSL1 looks

like regular traffic from host machine, WSL2 has second IP and HTTP user agent is

distribution specific, in this case it was Debian APT-HTTP/1.3 (2.02). In conclusion

WSL2 traffic can be distinguished from host traffic but WSL1 traffic is indistinguishable.

SRUM analysis can be used to detect WSL1 network operations. WSL2 GUI browser can

be used to bypass Windows Firewall network rules. In this work we showed that blocking

port 80, and 443 affect host’s web browsers but WSL2’s browser was able to continue

Internet browsing.

Commercial tools are fast and easy to use, the Magnet Axiom provided all evidence at

once in one place. In this work Axiom was used to catch some extra evidence overlooked

by manual analysis. It helped to detect Edge content, which included web pages that

installation process used. A not very common or known forensic artifact MPLog came

out investigating Axiom’s Windows Defender log output. In some cases, it could contain

historical evidence of process execution, threats detected, scan results and actions taken,

signature update versions, and file existence [40]. It can be very useful in cases of some

anti forensic techniques are in use because the artifact is not well known and is not located

in the same folder as other Windows event logs and therefore may remain in place.

54

7 Conclusions and Future work

Windows Subsystem for Linux has evolved rapidly from 2016 and continues to evolve.

WSL2 introduced a introduced new architecture and on Windows 11 the support for GUI

applications.

WSL is meant for developers and other specialist who need to use Windows and Linux

operating systems simultaneously without the traditional virtual machine environment.

WSL is definitely not a security measure, quite the opposite, it brings many new ways to

attack the system, and incident responders need to know how to find evidence of WSL

use.

In this thesis, we investigated WSL 1 and WSL 2 on Windows 11 version 21H2. The goal

was to be comprehensive and find as much forensic evidence as possible since sometimes

some artifacts can be overlooked by investigators, or anti-forensic measures can be used

to hide evidence.

The experiment was based on a basic user behaviour, like file operations, downloading

from Internet, and opening applications, advanced actions were not included.

There are many forensic artifacts left of the WSL existence, but not all the actions can be

easily bind to WSL. Forensic examiner must look for different artifacts to understand

where the files were created or what caused the network traffic. WSL1 files are visible

from Windows file explorer, in the equivalent situation with WSL2 the files are stored in

a Hyper-V virtual hard disk instead. From the network perspective, WSL2 stands out

whereas WSL1 does not, unexpectedly analysing the SRUM database’s network

information it is possible to get more information about WSL1 than WSL2.

Regarding the future work, memory forensics was not covered in this thesis however it is

something that could potentially provide valuable evidence. Another aspect for future

research involves logging. Windows does not log everything by default, therefore

enabling features that enhance logging could also be a way to continue the research.

55

References

[1] K. Öteyo, „Running Linux GUI applications on Windows Subsystem for Linux

(WSL),“ Computing for Geeks, 28 02 2022. [Võrgumaterjal]. Available:

https://computingforgeeks.com/running-linux-gui-applications-on-windows-

subsystem-for-linux/. [Kasutatud 25 03 2022].

[2] R. Turner, „Windows Subsystem for Linux out of Beta!,“ Microsoft, 28 07 2017.

[Võrgumaterjal]. Available:

https://devblogs.microsoft.com/commandline/windows-subsystem-for-linux-out-

of-beta/. [Kasutatud 25 03 2022].

[3] „This is the home of the Cygwin project,“ Cygwin , 09 02 2022. [Võrgumaterjal].

Available: https://cygwin.com/index.html. [Kasutatud 25 03 2022].

[4] „WSL,“ Ubuntu, 10 02 2021. [Võrgumaterjal]. Available:

https://wiki.ubuntu.com/WSL. [Kasutatud 25 03 2022].

[5] N. Lewis, A. Case, A. Ali-Gombe ja G. G. Richard, „Memory forensics and the

Windows Subsystem for Linux,“ Digital Investigation, kd. 26, nr DFRWS 2018

USA, 2018.

[6] D. Thomas, „Windows Subsystem for Linux Overview,“ Microsoft, 22 04 2016.

[Võrgumaterjal]. Available: https://docs.microsoft.com/en-

us/archive/blogs/wsl/windows-subsystem-for-linux-overview. [Kasutatud 25 03

2022].

[7] „WSL File System Support,“ Microsoft, 15 06 2016. [Võrgumaterjal]. Available:

https://docs.microsoft.com/en-us/archive/blogs/wsl/wsl-file-system-support.

[Kasutatud 02 04 2022].

[8] C. Loewen, „A Deep Dive Into How WSL Allows Windows to Access Linux

Files,“ Micrososft, 30 05 2019. [Võrgumaterjal]. Available:

https://devblogs.microsoft.com/commandline/a-deep-dive-into-how-wsl-allows-

windows-to-access-linux-files/. [Kasutatud 02 04 2022].

[9] „What is the Windows Subsystem for Linux?,“ Microsoft, 29 12 2021.

[Võrgumaterjal]. Available: https://docs.microsoft.com/en-us/windows/wsl/about.

[Kasutatud 26 03 2022].

[10] T. Maurer, „Install WSL 2 on Windows 10,“ Thomas Maurer, 13 06 2019.

[Võrgumaterjal]. Available: https://www.thomasmaurer.ch/2019/06/install-wsl-2-

on-windows-10/. [Kasutatud 26 03 2022].

[11] „Comparing WSL 1 and WSL 2,“ Microsoft, 29 12 2021. [Võrgumaterjal].

Available: https://docs.microsoft.com/en-us/windows/wsl/compare-versions.

[Kasutatud 26 03 2022].

[12] C. Loewen, „A Deep Dive Into How WSL Allows Windows to Access Linux

Files,“ Microsoft, 30 05 2019. [Võrgumaterjal]. Available:

https://devblogs.microsoft.com/commandline/a-deep-dive-into-how-wsl-allows-

windows-to-access-linux-files/. [Kasutatud 26 03 2022].

56

[13] J. Kasten ja E. Chiwona, „[WSL 2] NIC Bridge mode 🖧 (Has TCP

Workaround),“ Microsoft, 16 06 2019. [Võrgumaterjal]. Available:

https://github.com/microsoft/WSL/issues/4150. [Kasutatud 02 04 2022].

[14] „Run Linux GUI apps on the Windows Subsystem for Linux (preview),“

Microsoft, 12 02 2022. [Võrgumaterjal]. Available: https://docs.microsoft.com/en-

us/windows/wsl/tutorials/gui-apps. [Kasutatud 02 04 2022].

[15] „Windows Processor Requirements,“ Microsoft, 22 03 2022. [Võrgumaterjal].

Available: https://docs.microsoft.com/en-gb/windows-

hardware/design/minimum/windows-processor-requirements. [Kasutatud 02 04

2022].

[16] Z. Bowden, „Windows 11 review: The start of a new era,“ Windows Central, 22

02 2022. [Võrgumaterjal]. Available: https://www.windowscentral.com/windows-

11. [Kasutatud 02 04 2022].

[17] B. Gale, „Understanding Windows 11 TPM Support Requirements,“ Schnider

Downs, 15 07 2021. [Võrgumaterjal]. Available:

https://www.schneiderdowns.com/our-thoughts-on/windows-11-tpm-

requirements. [Kasutatud 02 04 2022].

[18] E. Zimmerman, „Windows 11 testing. Did any artifacts change?,“ Twitter, 15 06

2021. [Võrgumaterjal]. Available:

https://twitter.com/ericrzimmerman/status/1404859472275779584. [Kasutatud 02

04 2022].

[19] R. Lee, „FOR500 Windows Forensics,“ %1 Windows FOrensics Analysis II:

Windows Registry Forensics and Analysis, SANS Institute, 2020, p. 186.

[20] R. Lee, „FOR500 WIndows Forensics,“ %1 FOR 508.4: Windows Forensics

Analysis IV: Email, Key Additional Artifacts, and Event Logs, SANS Institute,

2020, p. 202.

[21] M. Russinovich ja T. Garnier, „Sysmon v13.33,“ Microsoft, 16 02 2022.

[Võrgumaterjal]. Available: https://docs.microsoft.com/en-

us/sysinternals/downloads/sysmon. [Kasutatud 05 04 2022].

[22] R. Lee, C. Tilbury ja M. Pilkington, „FOR508 Advanced incident response, threat

hunting, and digital forensics,“ %1 Advanced Adversary and Anti-Forensics

Detection, SANS Insitute, 2021, p. 117.

[23] Digital Forensics, U.S.Army, 2021.

[24] R. Lee, C. Tilbury ja M. Pilkington, „FOR508: Advanced Incident Response,

Threat Hunting, and Digital Forensics,“ %1 FOR508.3: Memory FOrensics in

Incident Response and Threat Hunting, SANS Institute, 2021, p. 205.

[25] P. Kochberger, S. Schrittwieser ja A. Tauber, „Assessment of the Transparency of

theWindows Subsystem for Linux (WSL),“ %1 2019 International Conference on

Software Security and Assurance (ICSSA), St. Pölten, 2019.

[26] A. Draeger, „Looking for Linux: WSL Key Evidence,“ 2021. [Võrgumaterjal].

Available: https://sansorg.egnyte.com/dl/qWyxoYdVIs. [Kasutatud 23 04 2022].

[27] G. Elbaz ja D. Atias, „Beware of the Bashware: A New Method for Any Malware

to Bypass Security Solutions,“ Checkpoint, 11 09 2017. [Võrgumaterjal].

Available: https://research.checkpoint.com/2017/beware-bashware-new-method-

malware-bypass-security-solutions/. [Kasutatud 06 04 2022].

57

[28] C. Morley, „Docplayer,“ 2020. [Võrgumaterjal]. Available:

https://docplayer.net/190109889-Wsl-2-research-into-badness-f-secure-

whitepaper-by-connor-morley.html. [Kasutatud 10 04 2022].

[29] „Linux under WSL2 can be leaking,“ Mullvad VPN, 30 09 2020. [Võrgumaterjal].

Available: https://mullvad.net/en/blog/2020/9/30/linux-under-wsl2-can-be-

leaking/. [Kasutatud 10 04 2022].

[30] L. Abrams, „Windows Subsystem for Linux 2 bypasses the Windows 10

Firewall,“ BleepingComputer, 01 10 2020. [Võrgumaterjal]. Available:

https://www.bleepingcomputer.com/news/microsoft/windows-subsystem-for-

linux-2-bypasses-the-windows-10-firewall/. [Kasutatud 10 04 2022].

[31] A. Matadar, „Investigating WSL Endpoints,“ %1 The 11th Annual Open Source

Digital Forensics Conference (OSDFCon), Virtual Event, 2020.

[32] „Caine,“ Caine Project, [Võrgumaterjal]. Available: https://www.caine-

live.net/page8/page8.html. [Kasutatud 03 04 2022].

[33] „FTK® Imager,“ exterro, 25 02 2022. [Võrgumaterjal]. Available:

https://www.exterro.com/ftk-imager. [Kasutatud 05 04 2022].

[34] „Arsenal Image Mounter,“ Arsenal Recon, [Võrgumaterjal]. Available:

https://arsenalrecon.com/faq/#AIMFAQ. [Kasutatud 23 03 2022].

[35] „Kroll Artifact Parser And Extractor (KAPE),“ KROLL, [Võrgumaterjal].

Available: https://www.kroll.com/en/services/cyber-risk/incident-response-

litigation-support/kroll-artifact-parser-extractor-kape. [Kasutatud 23 03 2022].

[36] „NetworkUsageView v1.26 - Displays network usage information stored in the

SRUDB.dat database of Windows 10/8.,“ NirSoft, [Võrgumaterjal]. Available:

https://www.nirsoft.net/utils/network_usage_view.html. [Kasutatud 23 04 2022].

[37] „Magnet Axiom,“ Magnet Forensics, 29 03 2022. [Võrgumaterjal]. Available:

https://www.magnetforensics.com/products/magnet-axiom/. [Kasutatud 03 04

2022].

[38] „About Wireshark,“ Wireshark, 12 03 2022. [Võrgumaterjal]. Available:

https://www.wireshark.org/. [Kasutatud 23 03 2022].

[39] „.SWP File Extension,“ FileInfo.com, 31 08 2021. [Võrgumaterjal]. Available:

https://fileinfo.com/extension/swp. [Kasutatud 04 04 2022].

[40] J. Lovato, „Mind the MPLog: Leveraging Microsoft Protection Logging for

Forensic Investigations,“ Crowdstrike, 20 01 2022. [Võrgumaterjal]. Available:

https://www.crowdstrike.com/blog/how-to-use-microsoft-protection-logging-for-

forensic-investigations/. [Kasutatud 11 04 2022].

[41] L. S. Sterling, The Art of Agent-Oriented Modeling, London: The MIT Press,

2009.

58

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Triin Viitmaa

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Forensic analysis of Windows Subsystem for Linux on Windows 11”,

supervised by Shaymaa Mamdouh Khalil and Sander Medri.

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

16.05.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

59

Appendix 2 - Firewall bypass

One the left is Edge broser opened from Windows operating side, on the right is Firefox

browser, which was opened from Ubuntu. The Firewall rule did not affect Internet

browsing from WSL.

60

Appendix 3 - WSL1 IP addresses

IP information realated to WSL version 1.

61

Appendix 4 – Sysmon

Sysmon event id 1 (Process creation). The event provides information about process

creation with full command line, SHA256 hash, process GUID.

62

63

Appendix 5 – Test2.txt

Journaling information about the second file “test2.txt”, the file was deleted after creation.

Appendix 6 – Linux file system 0n Windows file system (v1)

WSL1 files are stored directly on Windows. WSL2 files are stored on virtual disk.

64

Appendix 7 – SRUM.dat

WSL1 SRUM analysis contains more information than WSL2 SRUM. We can see that

app name that was used for network operations is refers to WSL, in case of WSL2 the

app name line was empty.

Appendix 8 – HTTP request

How downloading the Gedit text editor look like from network perspective.

65

Appendix 9 – NTUSER.DAT:

Software\Microsoft\Windows\CurrentVersion\UFH\SHC

NTUSER.DAT registry hive Software\Microsoft\Windows\CurrentVersion\UFH\SHC

contains data about graphical applications, not just these that were installed by a user, but

also additional components like language support, ibus-setup, advanced network

configuration (nm-connection-editor), printers (system.config-printer), these components

were installed automatically.

Appendix 10 - windows timeline activity, WSL1

Windows Timeline Activity showed the time spent on WSL and Ubuntu, when was the

application opened and closed.

66

Appendi 11 - Registry summary

All registry entries that were found in examination.

Table 6. Registry Summary

Registry WSL2 WSL1

Amcache.hve:

Root\InventoryApplicationFile\wsl.exe|88d5e8ee009f35b9

x x

SOFTWARE:

Microsoft\Windows\CurrentVersion\Installer\UserData\S-1-5-

18\Products\E752FE635D127F4448157029A3C864E5\InstallPropertie

s

x -

SOFTWARE\Microsoft\Windows\CurrentVersion\Installer\Folder x -

Amcache.hve:
Root\InventoryApplication\00007c914b0dd2764fd645ed6e2c962055
1900000904

x x

Amcache.hve:
Root\InventoryApplicationFile\wslhost.exe|e4351ae5a193337

x x

UsrClass.dat\Local

Settings\Software\Microsoft\Windows\Shell\MuiCache

x -

SOFTWARE:

Microsoft\Windows\CurrentVersion\AppModel\StagingInfo\Canonical

GroupLimited.UbuntuonWindows_2004.2020.424.0_x64__79rhkp1fn

dgsc

x -

SOFTWARE: Classes\Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppModel\Pac

kageRepository\Packages\CanonicalGroupLimited.UbuntuonWindows

_2004.2020.424.0_x64__79rhkp1fndgsc

x x

UsrClass.dat: Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppContainer\

Mappings\S-1-15-2-202137915-1588483389-988967374-857029487-

3114683470-1999124116-284053513

x x

UsrClass.dat: Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppModel\Rep

ository\Packages\CanonicalGroupLimited.UbuntuonWindows_2004.2

020.424.0_x64__79rhkp1fndgsc

x x

NTUSER.DAT: Software\Microsoft\Windows\CurrentVersion\App

Paths\ubuntu.exe

x x

NTUSER.DAT:

Software\Microsoft\Windows\CurrentVersion\Lxss\{17f1eb54-04fa-

48ab-98d6-a654d1f70f47}

x x

67

Registry WSL2 WSL1

SYSTEM: ControlSet001\Services\bam\State\UserSettings\S-1-5-21-

2705457751-833678465-653486118-1001

x x

SYSTEM:

ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy\Rest

rictedServices\AppIso\FirewallRules

x x

NTUSER.DAT:

Software\Microsoft\Windows\CurrentVersion\UFH\SHC

x -

SOFTWARE: Classes\Directory\(background)\shell\WSL x

SOFTWARE:

Microsoft\Windows\CurrentVersion\Explorer\IdListAliasTranslations\

WSL

 x

SOFTWARE: Classes\CLSID\{615a13be-241d-48b1-89b0-

8e1d40ffd287}

 x

SOFTWARE: Classes\CLSID\{B2B4A4D1-2754-4140-A2EB-

9A76D9D7CDC6}\Instance\InitPropertyBag

 x

SOFTWARE: Classes\Directory [or \Drive\]\shell\WSL\command x

SYSTEM: ControlSet001\Control\Session Manager\AppCompatCache x

NTUSER.DAT:

Software\Microsoft\Windows\CurrentVersion\Lxss\{4c42a344-8010-

42b7-8aa7-d2595c169358}

 x

