

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Siim Salonen, 221912IASM

 FROM 8-BIT TO HDMI: ENHANCING A
Z80-BASED COMPUTER USING FPGA

TECHNOLOGY

Master's Thesis

Supervisor: Tara Ghasempouri, PhD

Co-Supervisor: Veiko Rütter

Tallinn 2025

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Siim Salonen, 221912IASM

 8-BITIST HDMI-NI: Z80-PÕHISE ARVUTI

TÄIUSTAMINE FPGA TEHNOLOOGIA

ABIL

Magistritöö

Juhendaja: Tara Ghasempouri, PhD

Kaasjuhendaja: jVeiko Rütter

Tallinn 2025

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Siim Salonen

16.03.2025

3

Abstract

This thesis focuses on restoring and enhancing a vintage Z80-based computer,

specifically a Soviet clone of the Sinclair ZX Spectrum 48K (Leningrad model). The

goal is to develop an FPGA-based add-on that integrates modern features while

maintaining compatibility with the original system.

The main enhancement is the addition of HDMI output, as contemporary displays lack

the analog inputs required by the original hardware. The FPGA captures video memory

data directly from the Z80’s memory bus and generates an HDMI signal with optional

pixel-scaling algorithms, such as hq2x and Super2xSaI, to improve the visual output.

Another key feature is the emulation of the Yamaha AY-3-8912 sound chip, enabling

improved audio output via HDMI.

Additionally, the project explores memory expansion beyond the ZX Spectrum 128K

model, implementing a memory paging system to support configurations up to 512KB.

This is achieved by integrating SRAM controlled via the FPGA, ensuring compatibility

with existing software. Further improvements include an SD card interface for loading

software snapshots and potential LAN connectivity for debugging and remote file

transfers.

The thesis covers the entire development process, including the restoration of the

original hardware, schematic and PCB design of the FPGA-based expansion board, and

software development for the FPGA. The project demonstrates how retrocomputing can

be enhanced using modern digital design techniques, balancing preservation with

innovation.

The results of this work will contribute to both hardware preservation efforts and the

broader retrocomputing community, showcasing how FPGA technology can extend the

lifespan and usability of vintage computing platforms.

4

Annotatsioon

Antud magistritöö keskendub Z80-põhise arvuti taastamisele ja täiustamisele, eelkõige

Sinclair ZX Spectrum 48K klooni ajakohastamisele. Projekti eesmärk on arendada

FPGA-põhine laiendusmoodul, mis lisab tänapäevaseid funktsioone, säilitades samal

ajal ühilduvuse algse süsteemiga.

Peamine täiustus on HDMI-väljundi lisamine, kuna tänapäevased ekraanid ei toeta

enam analoogühendusi. FPGA loeb videomälu andmeid otse Z80 andmesiinilt ja

genereerib HDMI-signaali, kasutades kvaliteedi tõstmiseks skaleerimisalgoritme, nagu

hq2x ja Super2xSaI, et parandada pildi kvaliteeti. Teine oluline täiendus on Yamaha

AY-3-8912 helikiibi emuleerimine, võimaldades paremat heli edastamist HDMI kaudu.

Lisaks uuritakse mälu laiendamise võimalusi algsest 48kB’st 512kB’ni. Selle

saavutamiseks kasutatakse FPGA kaudu juhitavat SRAM-i, tagades ühilduvuse

olemasoleva tarkvaraga. Edasised parandused hõlmavad SD-kaardi tuge tarkvara

laadimiseks ning võimalikku LAN-ühendust.

Töös käsitletakse kogu arendusprotsessi, sealhulgas algse riistvara taastamist,

FPGA-laiendusplaadi skeemi ja PCB disaini ning FPGA tarkvaraarendust. Projekt

demonstreerib, kuidas retroarvuteid saab täiustada tänapäevaste digitaaltehnoloogiatega,

ühendades säilitamise ja innovatsiooni.

Selle töö tulemused aitavad kaasa nii riistvara säilitamisele kui ka laiemale retroarvutite

kogukonnale, näidates, kuidas FPGA-tehnoloogia saab pikendada vanade arvutite eluiga

ja kasutatavust.

5

List of abbreviations and terms

DFF D-type Flip Flop

DRAM Dynamic Random-Access Memory

DVI Digital Visual Interface

EBR Embedded Block RAM

EDID Extended Display Identification Data

EoL End-of-Life

FFC Flexible Flat Cable

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HDMI High-Definition Multimedia Interface

IC Integrated Circuit

IO Input-Output

I2S Inter-Integrated Circuit Sound

LC Logic Cell

LDO Low Dropout

LSB Least Significant Bit

LUT Look-up Table

LVCMOS Low-Voltage Complementary Metal Oxide Semiconductor

LVDS Low-Voltage Differential Signaling

MMC MultiMediaCard

MSB Most Significant Bit

NMI Non-Maskable Interrupt

PC Program Counter

PCB Printer Circuit Board

6

PCM Pulse Code Modulation

PLB Programmable Logic Blocks

PLL Phase Locked Loops

PSG Programmable Sound Generator

RGB R = red, G = green, B = blue

SD Secure Digital

SOT Small Outline Transistor

SP Stack Pointer

SPI Serial Peripheral Interface

S/PDIF Sony/Philips Digital Interface

TERC4 TMDS Error Reduction Coding – 4 bits

TMDS Transition-Minimized Differential Signaling

TTL Transistor–transistor Logic

ULA Uncommitted Logic Array

YCbCr Y = luminance, Cb = Chroma component blue, Cr = Chroma
component red

7

Contents

1 Introduction.. 12
1.1 Objectives.. 13
1.2 Research Challenges..14
1.3 Overview of Existing Video‑Output Add‑Ons.. 14

2 Sinclair ZX Spectrum Architecture.. 16
2.1 Core Architecture of the Sinclair ZX Spectrum.. 16
2.2 Leningrad ZX Spectrum Clone Architecture...17
2.3 TR-DOS and the 5.25-Inch Floppy Interface.. 18
2.4 Comparison: Original ZX Spectrum vs. Leningrad Clone.................................. 20

3 Hardware Design.. 22
3.1 Power Supply...23

3.1.1 3V Supply... 23
3.1.2 1.2V Supply.. 23

3.2 FPGA... 23
3.3 Level Shifting.. 24
3.4 HDMI Output.. 25
3.5 SD-Card Interface and Protection..25
3.6 Memory Expansion..25

4 HDMI Output Implementation and Image Processing... 27
4.1 Signal Composition... 27
4.2 TMDS Algorithm.. 30

4.2.1 Transition Minimization... 30
4.2.2 DC Balancing... 31

4.3 HDMI Chip Selection..32
4.3.1 Clocking Scheme..38
4.3.2 Integration with ZX Spectrum Core... 39

5 Pixel scaling..42
5.1 Basic Interpolation Methods..42
5.2 Pixel-Art Specific Algorithms... 43
5.3 Rationale for Algorithm Selection in this Project... 45
5.4 The hq2x Algorithm.. 47

5.4.1 Core Logic: Neighborhood Analysis and Pattern Matching...................... 48
5.4.2 Edge Handling and Smoothing...49
5.4.3 Color Comparison Implementation Detail (YUV vs. Simplified)..............49

5.5 Hardware Platform and Constraints: Lattice iCE40 HX4K................................ 50
5.5.1 Implications for Memory-Intensive Algorithms...50

5.6 hq2x Implementation and Optimization on iCE40 HX4K.................................. 51
5.6.1 Baseline fpganes hq2x Verilog Implementation...51

8

5.6.2 Design changes and synthesis results... 53
5.6.3 Future Work: Optimizing Resource Usage via Line‑Buffer Migration...... 54

6 SD Card Access.. 57
6.1 FPGA Routing of Z80 I/O to SPI Signals... 57
6.2 SD Card Boot ROM and FAT Filesystem..57
6.3 Snapshot Loading.. 59
6.4 Summary..59

7 AY-3-8912/YM2149 Sound Synthesis... 60
7.1 AY-3-8912 / YM2149 Programmable Sound Generator Architecture................ 60

7.1.1 Functional Blocks... 60
7.1.2 Register Interface..61
7.1.3 Sound Synthesis Methods...62

7.2 YM2149 FPGA Core Implementation.. 62
7.3 I2S Protocol... 63
7.4 Audio Processing Pipeline: From Sound Sources to HDMI............................... 64
7.5 Future Improvements in Audio Quality...65

8 Conclusions and Future Work.. 66
9 References.. 68
Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation
thesis.. 73
Appendix 2 – Circuit diagram... 74
Appendix 3 – PCB layout..77
Appendix 3 – 3D render of ZX Spectrum Add-On... 78

9

List of Figures

Figure 1. Sinclair 48K ZX Spectrum

Figure 2. Sinclair ZX Spectrum 48K motherboard, issue 3B

Figure 3. Leningrad 48K motherboard

Figure 4. Add-on with floppy drive connected

Figure 5. : TMDS periods in 640x480p video frame

Figure 6. Guard Bands fixed pattern

Figure 7. TMDS system

Figure 8. TMDS Video Data Encode Algorithm

Figure 9. Minimal AC-coupled LVDS schematics for iCE40HX-8K Breakout Board

Figure 10. AC-coupling vs DC-coupling

Figure 11. HDMI core module interconnection diagram

Figure 12. nearest neighbour 2x vs hq2x

Figure 13. Comparison of pixel scaling algorithms

Figure 14. Fragment of visual representation of hq2x

Figure 15. SD/MMC initialization flow

Figure 16. Audio pipeline

10

List of Tables

Table 1. Comparison of ZX Spectrum Modern Video Output Solutions

Table 2. Discrete Logic vs. ULA

Table 3. Comparison of HDMI Transmitter ICs

Table 4. Comparison of pixel scaling algorithms

Table 5. Line buffer sizes

11

1 Introduction

Retrocomputing has gained significant popularity in recent years, with enthusiasts

restoring and upgrading vintage computers to preserve digital history and explore the

evolution of computing technology. Among these, the Sinclair ZX Spectrum, as shown

in Figure 1 [1], holds a special place as one of the most iconic 8-bit computers of the

1980s. Various official and unofficial clones of this machine were developed worldwide,

including in the Soviet Union, where the Leningrad model emerged as a most

well-known version.

Figure 1. Sinclair 48K ZX Spectrum

During the late 1980s, Western personal computers were largely unavailable in the

Soviet Union and other Eastern Bloc due to import restrictions and high costs. As a

result, enthusiasts and engineers reverse-engineered the ZX Spectrum, leading to

numerous unofficial clones. More than 120 distinct variants have been documented

globally, with over 50 originating in the former Soviet Union alone [2] [3]. These

machines were built using readily available Soviet or Eastern Bloc components,

including Z80 microprocessor clones like the T34VM1 or the East German U880,

which sometimes led to subtle timing differences compared to the original Sinclair

hardware.
12

https://en.wikipedia.org/wiki/File:ZXSpectrum48k.jpg
https://en.wikipedia.org/wiki/List_of_ZX_Spectrum_clones
http://users.atw.hu/zxspectrum

One of the most successful was the Leningrad series, named after the city where it was

developed (now St. Petersburg), evolving through multiple revisions (Leningrad‑1,

Leningrad‑2, etc.). Unlike the original ZX Spectrum, which relied on a custom ULA

(Uncommitted Logic Array) chip, the Leningrad clone replaced this with discrete logic

chips, making it easier to build with locally available components. The design was

widely distributed in magazines and technical manuals, leading to home-assembled

versions across the Soviet Union. Many Soviet clones introduced enhancements over

the original Spectrum, including discrete‑logic video generators, TR‑DOS floppy‑disk

interfaces, and expanded RAM.

This project stems from a personal discovery: an author's first computer, Leningrad-2

ZX Spectrum clone with 5¼-inch floppy drive running TR-DOS, found in the attic in a

non-working condition. The goal is not only to restore it to full functionality but also to

enhance its capabilities using modern FPGA technology. The limitations of original

hardware, such as analog video output, inaccurate video timing signals, low RAM

capacity and lack of modern storage solutions, make it challenging to use with

contemporary displays and peripherals. This motivates the development of an

FPGA-based expansion board, which will bring new features while maintaining the

authenticity of the system.

1.1 Objectives

The primary objective of this thesis is to design and implement an FPGA‑based

expansion module that plugs into the Spectrum’s original floppy‑drive connector -

requiring minimal, if any, modifications to the host computer - while preserving full

compatibility with its unaltered hardware. This enhances the original Leningrad ZX

Spectrum clone by adding:

● HDMI output with optional pixel-scaling algorithms to ensure compatibility

with modern displays.

● Expanded memory, supporting configurations beyond the original 128K model,

up to 512KB.

● Yamaha AY-3-8912 sound chip emulation, enabling improved audio output via

HDMI.

13

● SD card support for loading software snapshots.

● LAN capabilities for debugging and potential file transfer.

By achieving these enhancements, the project aims to demonstrate how FPGA

technology can modernize legacy computing systems while preserving their original

architecture.

1.2 Research Challenges

The project presents several technical challenges, including:

● Repairing the Leningrad ZX Spectrum clone to working state.

● Generating an HDMI signal from a system that originally used composite video,

while maintaining low-latency output.

● Memory paging and expansion, ensuring compatibility with existing ZX

Spectrum software.

● Efficient FPGA resource management, as the selected Lattice iCE40 FPGA has

limited hardware capacity.

● Developing a stable interface between the FPGA and the Z80-based system

without interfering with normal operation.

1.3 Overview of Existing Video‑Output Add‑Ons

A number of hardware projects have been developed to provide modern video outputs

for the Sinclair ZX Spectrum. These solutions vary significantly in their technological

approach, output capabilities, and features. Most published add‑on boards for the

Sinclair ZX Spectrum target the original 48‑pin edge connector. In contrast, this work

employs a custom MPN‑44 connector. Table 1 summarizes the most notable solutions

and highlights their key limitations relative to a pure FPGA‑based HDMI add‑on. Price

information in this table is omitted: some projects are purely open‑source hobby

designs, while others are produced in such small volumes that their retail cost often

bears little relation to the actual bill of materials.

14

Table 1. Comparison of ZX Spectrum Modern Video Output Solutions

Solution Form Factor
Output
Interf. Hardware Scaling

Sound
over

HDMI
Memory

Expansion
SD

Card Video Generation

ZX‑VGA‑Joy [4] Add‑on module VGA
CPLD? + joystick
interface - No No No Bus Snooping / Shadow FB

ZX-VGA [5] Add‑on module VGA Xilinx XC95144XL - No No No Bus Snooping / Shadow FB

ZX‑PiE [6] Add‑on module HDMI
Raspberry Pi Zero,
Altera MAX II CPLD x2 No No Yes Bus Snooping / Shadow FB

ZX-HD [7] Add‑on module HDMI
Raspberry Pi Zero,
Xilinx XC9572XL x2 No No Yes Bus Snooping / Shadow FB

ZX‑Uno [8]
Full‑board
replacement VGA

Xilinx Spartan
XC6SLX9-2TQG144C - No 512 kB Yes Full Reimplementation

MiSTer Spectrum
Core [9]

Full‑board
replacement

HDMI /
VGA Altera Cyclone V SoC x2, hq2x, etc. Yes configurable Yes Full Reimplementation

ZX Spectrum Next
[10]

Full‑board
replacement

HDMI /
VGA

Xilinx Artix-7
XC7A15T x2 Yes 1 MB Yes Full Reimplementation

Current work Add‑on module HDMI
Lattice iCE40
HX4K-TQ144 x2, hq2x Yes 512 kB Yes Bus Snooping / Shadow FB

15

https://web.archive.org/web/20240713051918/https://zx-vga-joy.com/
https://velesoft.speccy.cz/zx/zx-vga/
https://github.com/goloskokovic/ZX-Pie
https://www.bytedelight.com/?page_id=1800
https://zxuno.speccy.org/index_e.shtml
https://github.com/MiSTer-devel/ZX-Spectrum_MISTer
https://www.specnext.com/

2 Sinclair ZX Spectrum Architecture

The Sinclair ZX Spectrum's architecture represents a unique balance of cost-effective

design and technical innovation, with key engineering decisions that influenced both its

capabilities and limitations. Understanding these elements is crucial when examining

compatibility challenges in clones like the Leningrad, which replaced the Spectrum's

custom ULA chip with discrete logic components.

2.1 Core Architecture of the Sinclair ZX Spectrum

The original ZX Spectrum 48K motherboard is shown in Figure 2 [11]. It features:

● CPU: Zilog Z80A at 3.5 MHz

● RAM: 48 KB, split between lower and upper sections

● ROM: 16 KB, containing Sinclair BASIC and core routines

● ULA: A custom IC (designed by Richard Altwasser) integrated critical functions

into a single chip:

○ Memory management: The ULA shared RAM access between the CPU

(Z80) and video display, dynamically halting the CPU during screen

refresh cycles to avoid contention [12]. This created "contended

memory" timing quirks that software had to accommodate.

○ Video Signal Generation: Producing composite video (and RF-modulated

output) with a 256×192 pixel, organized into 32×24 character blocks.

Each 8×8 block used 1 byte for foreground/background colors (3 bits

each), brightness (1 bit), and flash (1 bit). This caused "color clash,"

where pixels in a block couldn’t have independent hues [13].

○ I/O Handling: Managing keyboard scanning and tape operations

○ Sound: Driving a simple 1-bit beeper

16

https://en.wikipedia.org/wiki/File:ZXspectrum_mb.jpg
https://worldofspectrum.net/pub/sinclair/technical-docs/ZXSpectrum48K_ServiceManual.pdf

Figure 2. Sinclair ZX Spectrum 48K motherboard, issue 3B

2.2 Leningrad ZX Spectrum Clone Architecture

The Leningrad clone follows the overall design of the ZX Spectrum 48K but replaces

the ULA with a combination of standard TTL logic chips. Key differences include:

● Video Generation: Instead of a ULA, the Leningrad clone utilizes a combination

of 74HC298N and 74HC257N input multiplexers, 74HC86N NOR gates and

74HC74N D-type flip-flops to generate the video timing and composite signal

[14].

● Memory Contention and Timing: In the original Spectrum, the ULA enforces

precise memory contention, pausing the CPU during video fetches. In the

Leningrad clone, discrete logic circuits based on 74HC138 (3-to-8 line decoders)

and 74HC161 (synchronous binary counters) manage timing.

● In the original Spectrum, the ULA enforces precise memory contention, pausing

the CPU during video fetches. In the Leningrad clone, discrete logic circuits

based on 74HC138N and 74HC4520N synchronous binary counters, 74HC74N

D-type flip-flops and 74HC series logic gates manage timing. These
17

https://www.cxemateka.ru/v1/leningrad_sch.pdf

components, while functionally similar, introduce slight variations in timing,

leading to potential issues with software that relies on the ULA’s exact behavior.

● I/O and Keyboard Scanning: The original ULA also handled keyboard matrix

scanning. In the Leningrad clone, this is implemented using 74HC257N input

multiplexers, which can result in minor differences in key recognition and

debounce behavior.

The circuit boards feature an empty breadboard area, which is seen in upper-right of

Figure 3, that can be used for future enhancements or modifications like adding extra

memory, Yamaha AY-3-8912 sound chip or custom I/O interfaces. This area allows

hobbyists or engineers to add custom features without major redesigns.

Figure 3. Leningrad 48K motherboard

2.3 TR-DOS and the 5.25-Inch Floppy Interface

A specific ZX Spectrum was later modified to allow the attachment of a 5.25-inch

floppy drive. For this, an МРН44-1 socket was added to the side of the case and

bodge-wired to the Z80 CPU's pins and ROM was moved to the floppy drive unit.

Additionally RDROM and IOREQ lines were cut and both ends wired to the side

connector.

18

The floppy drive unit utilizes the КР1818ВГ93, a soviet clone of the Western Digital

WD1793 floppy disk controller, and operates under TR-DOS (Technology Research

Disk Operating System). TR-DOS was originally developed by Technology Research

Ltd. in the UK to work in conjunction with the Beta Disk Interface. This interface

became widely adopted throughout Eastern Europe and the Soviet Union, particularly

among various Spectrum clones, where it served as the de facto standard for disk-based

software.

TR-DOS allows structured file access on floppy disks using both machine-code routines

and extended BASIC commands. It supports common operations such as loading and

saving programs, managing disk files, and launching software directly from disk.

Compatibility with TR-DOS ensures access to a vast library of historical ZX Spectrum

software distributed on floppy disks.

To enter TR-DOS, a special command is used: RANDOMIZE USR 15616. This

attempts to execute machine code from address 0x3D00, which in the built-in ROM

normally contains font data. However, when a read occurs in the range

0x3D00–0x3DFF and both the /RD and /M1 signals are low (which happens during

instruction fetch cycle), a special signal called ROMCS is generated. This signal

disables the built-in ROM and enables the external TR-DOS bootstrap ROM in its

place. While ROMCS is active, the following I/O ports can be used to communicate

with the floppy drive: #1F, #3F, #5F, #7F, and #FF [15].

Understanding the architecture and behavior of the Beta Disk interface and TR-DOS is

critical for ensuring compatibility with existing disk-based software and hardware

configurations. Since these systems rely on specific memory addresses and I/O ports,

the new expansion module must avoid conflicting with TR-DOS-reserved ports and

must be capable of launching and coexisting with TR-DOS. Additionally, the ROM

must properly handle the ROMCS mechanism to correctly trigger TR-DOS booting

when requested. By replicating the original boot and access behavior, the FPGA-based

system can ensure seamless coexistence with TR-DOS, allowing users to load and run

disk-based software exactly as on the original hardware.

19

2.4 Comparison: Original ZX Spectrum vs. Leningrad Clone

The ULA in the original ZX Spectrum tightly controlled video timing to generate

composite video (later modulated into RF for TV use). On CRT monitors and

televisions—which were the norm in the 1980s—minor timing variations were largely

imperceptible, as these displays were designed to work with the analog nature of the

composite signal. The Spectrum’s video was typically in YUV format (via a UHF

modulator), which could suffer from color bleeding and lower sharpness.

The Leningrad clone, using discrete logic chips, reproduced video timing through

circuits that sometimes resulted in slight imperfections. While these differences had

little impact on CRT displays due to their forgiving analog nature, they can cause

noticeable problems when interfacing with modern digital hardware that demands

precise timing. However, the Leningrad clone offers a key advantage: it produces an

RGB signal directly. This results in better picture quality, with improved sharpness and

color fidelity compared to the Spectrum’s YUV output. Table 2 lists key differences of

ULA vs discrete TTL logic.

Table 2. Discrete Logic vs. ULA

Feature ZX Spectrum (ULA) Leningrad (TTL)

Memory
Contention

CPU halted only during
ULA screen fetches [12]

Delays added to all M1 cycles,
altering instruction timing [14]

Floating Bus
Behavior

Present (used for raster
effects in games) [16]

Absent, breaking titles like Arkanoid
[17]

Interrupt
Timing

Frame interrupt 64 lines
before visible screen

Interrupt at first line after visible
screen [17]

Overall
Compatibility

Optimized for exact
hardware behavior

High compatibility with occasional
edge-case differences

Impact on software compatibility:

20

https://worldofspectrum.net/pub/sinclair/technical-docs/ZXSpectrum48K_ServiceManual.pdf
https://www.cxemateka.ru/v1/leningrad_sch.pdf
https://sinclair.wiki.zxnet.co.uk/wiki/Floating_bus

● Timing-sensitive code: Multicolor demos and cycle-exact routines fail due to

altered memory access patterns. 8x1 graphics engines like Bifrost, Nirvana and

ZXodus fail to display multicolor [18].

● Raster effects: Games relying on the floating bus (e.g., Cobra, Arkanoid 1)

freeze or glitch [17].

● Sprite rendering: Programs using "beam racing" techniques exhibit flickering

due to shifted interrupt timing.

Discrete logic chips are generally easier to diagnose, replace, and repair compared to a

custom ULA chip. This modularity simplifies maintenance and upgrades, making the

system more accessible for restoration projects and experimental modifications.

21

https://spectrumcomputing.co.uk/zxdb/sinclair/entries/0027405/BIFROSTENGINEV1.2.txt

3 Hardware Design

This chapter describes the hardware design of the enhanced ZX Spectrum system,

detailing the core components, their interconnections, and the rationale behind the

selection of parts.

The hardware design integrates legacy ZX Spectrum signals with modern digital

processing. The system is built around a Lattice HX4K FPGA - selected for its

compatibility with open-source tools (Yosys, nextpnr-ice40 [19]) and its TQFP package,

which simplifies assembly and debugging. Critical functions include HDMI signal

generation (handled via PTN3366), power supply regulation to generate 3.3V and 1.2V

rails, level shifting of 5V signals, memory expansion using high-speed SRAM, and an

SD-card interface for loading spectrum image files.

The final device connects directly to the computer via the original floppy drive slot,

effectively replacing the internal floppy controller. On the opposite side, a female

connector allows the original floppy drive to be reconnected, forming a bridge between

the ZX Spectrum and its floppy drive. Since the male connector is PCB-mounted and

the female connector is edge-mounted, a second small PCB is used to raise the female

connector to the correct height. The two PCBs are linked via a flat flexible cable (FFC).

The complete assembly is shown in Figure 4.

Figure 4. Add-on with floppy drive connected

22

https://yosyshq.net

3.1 Power Supply

A stable power supply is essential for ensuring reliable operation of the FPGA and other

high-speed digital components. The legacy ZX Spectrum provides a 5V input, which

must be converted for modern circuitry. A stable power supply minimizes the risk of

digital errors, which is especially important in applications where high-speed signal

integrity is essential.

3.1.1 3V Supply

The 3.3V rail is generated using the XC6210B332MR, a low dropout regulator chosen

for its excellent transient response, low noise, and high efficiency - qualities essential

for powering high-speed FPGAs and digital ICs [20]. It provides an output voltage with

an accuracy of ±2% and has a typical quiescent current (Iq) of 35μA. With a standard

1μF ceramic capacitor at its output, the regulator delivers a stable and low-noise 3.3V

supply that is crucial for the proper operation of the FPGA and other digital circuits.

Additionally, the XC6210B332MR is available in a standard SOT23-5 package, making

it easy to handle and integrate into the compact PCB layout required by the design. This

regulator is also low cost and it was readily available from local suppliers.

3.1.2 1.2V Supply

The 1.2V supply for the HX4K FPGA core is derived from the previously regulated

3.3V rail using the TLV75512PDBV [21]. This regulator converts 3.3V to a stable 1.2V

output with high precision, offering an output accuracy of ±1%. It has a low quiescent

current of 25μA, ensuring minimal power loss and efficient operation. The

TLV75512PDBV is designed for optimal performance even in compact applications,

making it an excellent choice for powering the FPGA’s core logic reliably. The regulator

also comes in a standard SOT23-5 and is also cheap and widely available.

3.2 FPGA

The Lattice HX4K FPGA was chosen because it is cost effective, available in a TQFP

package (simplifying assembly compared to BGA devices), and benefits from

open-source tool support. The HX4K-TQ144 variant was selected over HX8K models

23

https://product.torexsemi.com/system/files/series/xc6210.pdf
https://www.ti.com/lit/ds/symlink/tlv755p.pdf

because it offers a higher number of EBR and pins in a TQFP package, whereas HX8K

devices are only available in BGA packages and are significantly more expensive.

The specific resources available on the iCE40 HX4K variant are key constraints for this

project:

● Logic Cells (LCs): According to the datasheet the HX4K provides 3520 LCs.

Each LC is the fundamental building block for logic implementation and

typically consists of a 4-input Look-Up Table (LUT4), a D-style Flip-Flop

(DFF), and dedicated carry logic for arithmetic operations. The LUT4 can

implement any arbitrary 4-input combinational logic function or act as a small

16x1 ROM.

● Embedded Block RAM (EBR): The device contains a total of 80kb of EBR.

This memory is physically organized into 20 independent 4Kbit blocks (referred

to as RAM4K blocks). Each 4Kbit block is highly configurable and can be

arranged in various aspect ratios (depth x width), such as 256x16, 512x8,

1024x4, or 2048x2. These EBR blocks support dual-port operation, allowing

simultaneous access (one read and one write) from two independent ports.

● Other Resources: The HX4K includes 2 PLLs for frequency synthesis and clock

phase/duty cycle adjustment. The number of available general-purpose I/O pins

is 95 plus dedicated pins.

During the routing process using nextpnr-ice40, the tool reported 7680 LCs and 32

blocks of EBR. This initially led to the assumption that there was a bug in

nextpnr-ice40. However, a community post clarified that the iCE40 HX4K device

actually contains 7680 LUTs, as it shares the same die as the HX8K. Lattice disables

half of these resources in their proprietary programming software, but the full capacity

can be unlocked using the IceStorm open-source toolchain [22].

3.3 Level Shifting

All inputs and outputs between the legacy ZX Spectrum (operating at 5V) and the

modern FPGA (operating at 3.3V) are interfaced using SN74LXC8T245 [23] and

74AXP4T245BQ [24] level shifters. A total of five such devices are deployed to ensure

24

https://anycpu.org/forum/viewtopic.php?f=13&t=569#p4074
https://www.ti.com/lit/ds/symlink/sn74lxc8t245.pdf
https://www.mouser.ee/datasheet/2/916/74AXP4T245-2937302.pdf

proper voltage matching, which is crucial for robust signal transmission and to protect

the FPGA from overvoltage conditions.

3.4 HDMI Output

The PTN3366 integrated circuit is utilized to convert AC-biased signals to DC-biased

TMDS signals for HDMI output. The rationale for selecting this component, as well as

the implementation details, are discussed in Section 4.

3.5 SD-Card Interface and Protection

The SD-card socket is connected to the FPGA through an IP4251 filtering and

protection IC. The IP4251 [25] provides effective filtering, transient voltage

suppression, and surge protection between the SD card and the FPGA, ensuring reliable

data transfer and safeguarding sensitive circuitry from electrical disturbances. The SD

card is used to load ZX Spectrum snapshots in .sna and .z80 formats, which represent

complete memory dumps, including both system memory contents and CPU register

states, into the computer's memory.

3.6 Memory Expansion

To upgrade the ZX Spectrum clone’s limited memory, a 512 kB IS65WV5128EBLL

SRAM was included in the design [26]. This expansion effectively takes the system to

the performance level of a ZX Spectrum 128K model, while still leaving room for even

larger configurations as seen in other variants (e.g., models with 256 kB or 512 kB of

RAM).

The selected SRAM has an access time of approximately 45 µs. In typical operation, it

takes about one clock cycle from the FPGA to establish the address and start a read

cycle; then, after the address is established, the inherent access time of the SRAM

(45µs) determines the delay before the good data appears on the bus. All together, the

complete read cycle - address latching, waiting for the 45µs access time, and reading the

data - can be accomplished within two pixel clock cycles after optimization using

pipelined or asynchronous interfacing techniques.

25

https://assets.nexperia.com/documents/data-sheet/IP4251_52_53_54-TTL.pdf
https://www.mouser.ee/datasheet/2/198/62-65WV5128EALL-BLL-737464.pdf

This performance is necessary for the seamless integration of expanded memory into the

vintage computing environment, enabling fast data retrieval and efficient memory

paging. Additionally, the relatively moderate access time of the IS65WV5128EBLL

enables more complex applications and higher performance software, which were not

possible on the original low-memory 48K ZX Spectrum.

Overall, the memory expansion not only brings the system nearly to the level of a ZX

Spectrum 128K mark and also provides a platform for further upgrades in RAM

capacity, in line with the numerous ZX Spectrum variants with much more than 128kB

of memory.

26

4 HDMI Output Implementation and Image Processing

HDMI is widely used to transmit uncompressed digital video and audio. At its core,

HDMI uses TMDS for data transmission, which ensures high-quality signal integrity

over relatively long cable runs. To encode pixel information with a low error rate, the

overall signal is organized across four channels: three TMDS data channels (for red,

green, and blue pixel data) and one TMDS clock channel. For a 640×480 at 60Hz video

mode (commonly referred to as DMT0659 [27]), the pixel clock is approximately

25.175MHz while the TMDS clock operates at about 251.75MHz (10× the pixel clock)

[28] and horizontal frequency is 31.469kHz [29] ensuring that each frame and line

adheres to precise horizontal and vertical synchronization intervals. These timings are

critical, especially when interfacing with digital displays that expect tightly regulated

video signals.

Although HDMI and DVI both utilize TMDS signaling, HDMI offers several

enhancements, including the encapsulation of I2S audio within data islands. Given that

DVI is much easier to implement but lacks native audio support, this work will target

HDMI to meet audio transmission requirements.

This chapter outlines the design and implementation of an HDMI output module,

focusing on timing synchronization, signal encoding, and image enhancement

algorithms tailored to the FPGA add-on architecture.

4.1 Signal Composition

The HDMI signal is composed of three main periods: the Active Video Period, the

Control Period, and the Data Islands. An example of each period placement in a

640x480p video frame is shown in Figure 5 [30].

27

https://www.drhdmi.eu/dictionary/edid.html
https://connectedmag.com.au/clarifying-hdmi-bandwidth/
https://tomverbeure.github.io/video_timings_calculator
https://ez.analog.com/cfs-file/__key/telligent-evolution-components-attachments/00-317-00-00-00-05-21-37/HDMISpecification13a.pdf

Figure 5. : TMDS periods in 640x480p video frame

The Active Video Period carries the visible image data, transmitting pixel values in

RGB or YCbCr format. This phase aligns with the display resolution and refresh rate,

delivering data line by line and frame by frame without compression. Each pixel is

encoded using an 8b/10b scheme, where every 8-bit video data byte is mapped to a

corresponding 10-bit TMDS symbol. This encoding minimizes signal transitions and

ensures DC balance. In Figure 6 is shown a 10-bit fixed-pattern guard band, inserted

between horizontal lines to mark the boundary between video and non-video intervals

and to prevent false synchronization [31].

28

https://cdrdv2.intel.com/v1/dl/getContent/793150?fileName=ug_hdmi-683798-793150.pdf

Figure 6. Guard Bands fixed pattern

The Control period is used when no video, audio, or auxiliary data needs to be

transmitted. A Control Period is required between any two periods that are not Control

Periods [30]. The Control Period occurs during the blanking intervals and carries

synchronization signals including vsync, hsync, and two control bits (C0 and C1). These

are encoded using a specialized Control Period Coding scheme, where the 2-bit control

signal is translated into a predefined 10-bit TMDS word. This period also includes a

preamble for line and frame synchronization. The limited number of control values

allows for simple and reliable decoding on the receiver side.

Data Islands are used to transmit non-video auxiliary data such as audio samples,

InfoFrames, and metadata. The data payload is encoded using TERC4 coding, which

converts 4-bit nibbles into 10-bit symbols. This 4-to-10 bit mapping is to ensure high

transition density for reliable clock recovery. A fixed 10-bit guard band is also inserted

before and after each data island to separate it from the surrounding control or video

data. TERC4 encoding is defined by a lookup table where each 4-bit input has a unique

10-bit output, designed to maintain transition properties and simplify decoding.

Figure 7 shows how different periods are distributed between TMDS channels [32].

29

https://ez.analog.com/cfs-file/__key/telligent-evolution-components-attachments/00-317-00-00-00-05-21-37/HDMISpecification13a.pdf
https://www.ti.com/lit/an/slla263/slla263.pdf

Figure 7. TMDS system

4.2 TMDS Algorithm

TMDS converts the original data into 10-bit symbols that are optimized for reliable

transmission over differential pairs. This encoding achieves two essential objectives:

minimizing signal transitions and maintaining DC balance. To achieve these, the TMDS

algorithm performs two sequential steps:Transition Minimization to reduce the number

of bit transitions in the encoded signal, which helps minimize electromagnetic

interference (EMI) and DC Balancing to ensure an equal distribution of ones and zeros

over time to prevent baseline wander and allow for accurate clock recovery.

4.2.1 Transition Minimization

Given an 8-bit input, the algorithm generates a 9-bit intermediate value by using a

conditional XOR or XNOR operation across the bits. The process starts by copying the

first bit as-is (q[0] = d[0]). For subsequent bits (i = 1 to 7), the algorithm compares the

number of 1s and 0s already accumulated and applies either XOR or XNOR depending

on which will result in fewer transitions [33] :

● If the number of 1’s in the original byte is greater than 4 (more than half),

XNOR is used: q[i] = q[i-1] XNOR d[i]

● Otherwise, XOR is used: q[i] = q[i-1] XOR d[i]

30

https://www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/EI2/FPGA-RD-02139-1-6-HDMI-DVI-Video-Interface-Reference-Design.ashx?document_id=38351

This decision is based on the statistical properties of the data sequence, ensuring that the

resulting encoded stream contains fewer transitions compared to the original bit

sequence. The additional ninth bit acts as a flag that indicates which encoding method

(XOR vs. XNOR) was chosen for that particular data block.

4.2.2 DC Balancing

The second stage in the TMDS process is DC balancing. Even though transition

minimization reduces high-frequency components, the encoded data stream can still

exhibit an imbalance in the number of ones and zeros over time. DC balancing is

applied to maintain a near-zero DC bias in the transmitted signal, which is essential for

preserving signal integrity over differential pairs in high-speed interfaces.

After the 9-bit transition-minimized word is computed, a 10th bit is added to signal

whether the output should be inverted to preserve balance. The encoder keeps a running

disparity counter, tracking whether more 1’s or 0’s have been transmitted.

● If the running disparity becomes positive, the encoder may invert the current

code to introduce more 0’s.

● If negative, it may introduce more 1’s.

● The 10th bit (q[9]) indicates whether inversion occurred.

This process ensures that the long-term average of the transmitted signal stays centered,

avoiding any low-frequency voltage offsets.

The full TMDS video data encoding algorithm, including the control logic for both

transition minimization and DC balancing, is illustrated in Figure 8 [30]. This flowchart

provides a step-by-step visualization of the encoder’s decision-making process for

generating the final 10-bit symbol.

31

https://ez.analog.com/cfs-file/__key/telligent-evolution-components-attachments/00-317-00-00-00-05-21-37/HDMISpecification13a.pdf

Figure 8. TMDS Video Data Encode Algorithm

4.3 HDMI Chip Selection

When designing an HDMI output module for retro systems, signal integrity, ease of

integration, cost, footprint, and full audio support are key concerns. In this project, two

approaches were evaluated for generating the HDMI signal:

1. AC-Coupled LVDS Approach

32

In the first version, the HDMI port was connected to the FPGA output via a

network of capacitors and resistors configured for AC-coupled LVDS as seen in

Figure 9. This method relies on discrete external components to convert the

FPGA’s LVDS output to an HDMI-compatible signal. Although this approach

can be very cost-effective (since it uses generic passive components) and has a

very small footprint, it typically requires careful PCB layout to avoid signal

degradation [34]. In practical implementation, the AC-coupled LVDS solution

showed stable operation on all tested devices with HDMI input interfaces.

Figure 9. Minimal AC-coupled LVDS schematics for iCE40HX-8K Breakout Board

2. Dedicated HDMI Transmitter Chip – PTN3366

In the alternate approach, a dedicated HDMI transmitter chip, the PTN3366, was

used. PTN3363 is a low power, high-speed level shifter device which converts

four lanes of low-swing AC-coupled differential input signals to DVI v1.0 and

HDMI v1.4b compliant differential output signals. The difference between

AC-coupled and DC-coupled signals is illustrated in Figure 10 [35]. Each of

these lanes provides a level-shifting differential active buffer, with built-in

Equalization, to translate from low-swing AC-coupled differential signaling on

the source side, to TMDS-type DC-coupled differential current-mode signaling

terminated into 50Ω to 3.3V on the sink side [36].

33

https://www.ti.com/lit/ab/slaa840/slaa840.pdf
https://community.sw.siemens.com/s/article/ac-and-dc-coupling-what-s-the-difference
https://www.nxp.com/docs/en/data-sheet/PTN3363.pdf

Figure 10. AC-coupling vs DC-coupling

Both implementations required a TMDS clock of 251.75 MHz for data lines. Since this

frequency exceeds the Lattice HX40’s direct capabilities, DDR mode was utilized to

effectively double the 125.798 MHz main clock. Because Lattice HX series FPGAs lack

dedicated differential pair outputs as mandated by the HDMI standard, the AC-coupled

LVDS design used two SB_LVCMOS primitives [37], while the PTN3366 solution

required only one SB_LVCMOS primitive per channel.

For HDMI output testing, two TV sets (Samsung UE43NU7100 and Sharp

49PUS6482), a Dell U2719DC monitor, and a budget HDMI tester from AliExpress

[38] were used. Output was evaluated with a 3.2 mm thin, 20 cm long HDMI cable, as

well as with an inexpensive 1.5 m cable. Both implementations showed stable

performance at 640×480p at 60 Hz on all tested HDMI receiver devices. However, the

PTN3366 was ultimately selected because it requires fewer FPGA pins, eliminates the

risk of back-powering the FPGA via the TMDS lines and provides built-in equalization

and pre-emphasis for improved signal integrity.

Table 3 lists alternative chips that were considered. In the “Price” column, the lowest

available price is provided - sourced from Mouser [39] when available, or from the

Octopart [40] search engine otherwise. Availability is “Good” when multiple vendors

have part in stock and in large quantities. In the “Minimum FPGA Pin Count” column,

34

http://www.latticesemi.com/~/media/LatticeSemi/Documents/ApplicationNotes/UZ/UsingDifferentialIOLVDSSubLVDSiniCE40Devices.pdf
https://vi.aliexpress.com/item/1005007046594345.html
https://www.mouser.ee
https://octopart.com/

the required pin count in dual-edge or dual-rate mode is indicated in brackets. For

devices with a clock rate requirement of 27 MHz, it is also possible to achieve

1080p@25fps using a pixel clock of 74.25 MHz.

It is evident that with additional spare FPGA I/O pins, some HDMI transmitter ICs

could be used to support resolutions up to 1080p@25. Such implementations would

require extra pins dedicated to data, audio, and control - typically a total of 17 pins

when using dual-rate or dual-edge modes. An alternative to further reduce pin usage is

to implement YCbCr 4:2:2 mode with the SiI9022, which employs an 8-bit wide data

bus with embedded sync signals.

Currently, only one FPGA pin is completely unconnected, with two additional pins

available as spares. If the Ethernet port were removed, up to 9 pins could be freed;

omitting the SRAM interface could conserve 30 pins. These constraints illustrate that

although higher resolution outputs are feasible with certain HDMI transmitter ICs and

increased FPGA resources, the present design’s limited spare I/O availability restricts

this capability.

35

Table 3. Comparison of HDMI Transmitter ICs

Method / Chip Cost Availability
min. FPGA
Pin Count

Clock Rate
for 480p Footprint Audio

Configuration
Interface Comments

AC-Coupled
LVDS

- - RGB: 8 251.75 MHz N/A - -
Lowest cost; very compact per component. Highly
sensitive to PCB layout

PTN3366 [36] 1.50€ Moderate RGB: 4 251.75 MHz HVQFN-32 - I²C, pin-strap
AC-Coupled to TMDS level shifter redriver.
pin-configurable equalization.

TDP158 [41] 4.01€ Good RGB: 4 251.75 MHz WQFN-40 - I²C
AC-Coupled to TMDS level shifter redriver. 6Gbps.
pin-configurable equalization, pre-emphasis, swing and
slew rate

SN75DP129 [42] 2.82€ Good RGB: 4 251.75 MHz VQFN-32 - I²C, pin-strap AC-Coupled to TMDS level shifter redriver.

SiI9022 [43] 5.22€ Low
RGB: 28 (16)
I2S 3
I2C: 2

27MHz QFN-72
I2S,
S/PDIF

I²C
HDMI Transmitter. Single clock dual edge and Dual
clock single edge modes

TDA19988 [44] 10€ Bad / EoL
RGB: 28 (16)
I2S 3
I2C: 2

27MHz HVQFN-64
I2S,
S/PDIF

I²C
Automotive-grade HDMI transmitter; higher cost.
Single clock dual edge and Dual clock single edge
modes

TFP410 [45] 7.12€ Good RGB: 28 (16) 27MHz HTQFP-64 - I²C, pin-strap
DVI Transmitter. Single clock dual edge and Dual clock
single edge modes. DVI only. Pin-configurable.

SiI164 [46] 5€ Low / EoL RGB: 28 27MHz TQFP-64 Yes I²C, pin-strap similar or same as TFP410

ADV7513 [47] 4€ Low RGB: 28 27MHz LQFP-64
I2S,
S/PDIF

I²C HDMI Transmitter.

36

https://www.nxp.com/docs/en/data-sheet/PTN3363.pdf
https://www.ti.com/lit/ds/symlink/tdp158.pdf
https://www.ti.com/lit/ds/symlink/sn75dp129.pdf
https://media.digikey.com/pdf/Data%20Sheets/Lattice%20PDFs/SiI9022A,24A_Aug-2016.pdf
https://www.mouser.com/datasheet/2/302/NXP_TDA19988-1189083.pdf
https://www.ti.com/lit/ds/symlink/tfp410.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/799/SiI_164_PanelLink_Trans_Jun2005.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADV7513.pdf

4.4 HDMI Implementation in the FPGA

The realization of an HDMI source (transmitter) on an FPGA involves several key

stages:

1. Video Data Input: Receiving pixel data (RGB) and timing signals (Horizontal

Sync - HSYNC, Vertical Sync - VSYNC, Data Enable - DE) corresponding to

the desired output resolution and refresh rate.

2. TMDS Encoding: Encoding the 8-bit R, G, and B data channels into 10-bit

symbols according to the TMDS specification. This encoding minimizes signal

transitions and maintains DC balance. Control signals are also encoded during

blanking periods.

3. Serialization: Serializing the 10-bit TMDS symbols onto the high-speed

differential output pins. For standard HDMI (like 640x480p@60Hz), the bit rate

on each data channel is 10 times the pixel clock frequency.

4. Audio Data Input & Packetizing: Receiving audio samples (typically PCM),

buffering them, and formatting them into HDMI audio sample packets. Timing

information is conveyed using Audio Clock Regeneration packets.

5. Data Island Transmission: Inserting audio and auxiliary data packets into the

HDMI stream during video blanking intervals (Data Island periods).

6. Clock Generation and Distribution: Generating and distributing the necessary

clocks: the pixel clock, the high-speed serialization clock (TMDS clock), and the

audio sample clock.

To accelerate development, the open-source HDMI encoder core [48] was chosen as a

foundation. This core provides a modular implementation of a DVI/HDMI video source,

including TMDS encoding and basic packet insertion capabilities.

The Lattice iCE40 family, known for its low power consumption and small footprint

also have limited logic resources (LUTs, registers) and EBR compared to mainstream

FPGAs. This presents specific challenges and requires slight modifications to the

original core like rewriting it from SystemVerilog to Verilog, limiting color depth and

reducing count of wires.

37

https://github.com/hdl-util/hdmi

The core expects pixel and TMDS clocks, parallel RGB pixel data and optionally audio

samples. It handles the 8b/10b encoding, DC-balancing and serialization required for

the TMDS data channels. Figure 11 shows the data flow within the HDMI core. Video

and control signals from the main HDMI module are sent directly to three TMDS

channels. Concurrently, audio and timing signals are processed by a ‘Packet Picker’ and

‘Packet Assembler’ to create data island packets. These packets, along with the video

and control signals, are handled by the TMDS channels and then combined by a

‘Serializer’ to generate the final TMDS output signal and clock.

Figure 11. HDMI core module interconnection diagram

4.3.1 Clocking Scheme

A robust clocking strategy is essential for HDMI generation. The implementation

utilizes three primary clock domains:

1. Pixel Clock (fpixel): This clock runs at 25.16MHz. It dictates the rate at which

pixel data is processed and corresponds to the standard pixel clock for a

640x480p @ 60Hz VGA timing, often used as a base for simple HDMI

38

implementations. This clock governs the video data path logic before

serialization, including interfacing with the ZX Spectrum video generation logic

and fetching pixel data. It is derived from a main system clock dividing the

fTMDS_serial clock by 5 (251.596MHz / 5 = 25.16MHz).

2. TMDS Serialization Clock (fTMDS_serial): This clock drives the final output

serializers. It runs at 125.798 MHz. Crucially, this implementation uses DDR

output, meaning data is output on both the rising and falling edges of this clock.

The effective serialization rate is therefore 2×125.798MHz = 251.596MHz. This

matches the required 10×fpixel (10×25.16MHz = 251.6MHz) bit rate per TMDS

data channel needed for 8b/10b encoding. This fTMDS_serial clock is generated by a

PLLfrom a main system clock. The slight discrepancy between 125.8 and

125.798 might be due to PLL generation constraints or slight variations in the

base reference clock, but is generally within acceptable tolerances for HDMI

synchronization. This high-frequency clock requires careful routing on the

FPGA.

3. Audio Clock (faudio): A standard 48kHz sampling clock is used for audio

processing. This clock governs the sampling of the ZX Spectrum's audio output

(Beeper and potentially AY-3-8912 sound chip) and the feeding of these samples

into the HDMI audio packetizer module. As this clock is asynchronous to the

pixel and TMDS clocks, proper Clock Domain Crossing (CDC) techniques (e.g.,

using asynchronous FIFOs) are essential when passing audio data or control

signals between the audio clock domain and the HDMI core's clock domain fpixel.

The HDMI standard uses Audio Clock Regeneration packets based on the

TMDS clock to allow the receiver to accurately reconstruct the original 48 kHz

audio sampling rate.

4.3.2 Integration with ZX Spectrum Core

The HDMI module interfaces with the main ZX Spectrum logic implemented on the

FPGA.

The source of the video image is the simulated ZX Spectrum's dedicated screen memory

area. To decouple the asynchronous memory accesses of the simulated Z80 CPU from

39

the synchronous pixel generation required by HDMI, a shadowing approach using

FPGA EBR is employed.

● Screen Memory Shadowing: A bus monitoring module continuously observes

the simulated ZX Spectrum's address bus (zx_a[15:0]) and data bus

(zx_d[7:0]). Whenever a memory write or read operation occurs targeting the

Spectrum's screen memory region – identified by the address lines zx_a[15:13]

being equal to 3'b010 (corresponding to addresses 0x4000 - 0x5FFF) – the data

present on zx_d along with its address is captured. This captured data is

immediately written into a dual-port EBR within the FPGA, effectively creating

a real-time shadow copy of the Spectrum's video RAM (both the 6144 bytes of

pixel bitmap data and the 768 bytes of attribute data). This write operation is

synchronized to the Spectrum's CPU clock domain.

● Pixel Generation for HDMI: The HDMI timing generator, operating

synchronously with the pixel clock (fpixel = 25.16 MHz), dictates the pixel stream

sent to the HDMI encoder. For each pixel clock cycle corresponding to the

active display area, the generator calculates the current pixel's coordinates on the

screen (cx, cy). These coordinates are translated into read addresses for the

second port of the dual-port EBR framebuffer.

● Spectrum Data Retrieval: Based on the calculated EBR address derived from cx

and cy, the corresponding pixel bitmap byte (containing data for 8 horizontal

pixels) and the relevant attribute byte (defining foreground/background colors,

brightness, and flash status for an 8x8 character cell) are read from the EBR.

This read operation occurs four times slower than the HDMI pixel clock because

every output pixel is doubled.

● Color Conversion: A dedicated combinatorial logic block, implemented as a

Look-Up Table (LUT), takes the fetched bitmap bit (for the specific cx position

within the 8-pixel byte) and the attribute byte. It interprets the Spectrum's 3-bit

foreground/background color, 1-bit brightness modifier, and 1-bit flash attribute

to generate the final color. This logic translates the Spectrum's specific color

representation into a standard 24-bit RGB value (rgb[23:0], providing 8 bits per

color channel). The flashing effect is also handled here by alternating between

foreground and background colors.

40

● Optional HQ2x Scaling/Filtering: Before being sent to the final output stage, the

rgb[23:0] pixel data is passed through an intermediate processing core. This core

implements an optional HQ2x scaling and filtering algorithm. Based on a

runtime selection (determining if HQ2x enhancement is active), this core

performs one of two operations: if HQ2x is disabled, it can perform simple pixel

doubling (nearest neighbor scaling) to increase the image size; if HQ2x is

enabled, it applies the HQ2x algorithm itself, which provides edge smoothing

and interpolation during scaling. The output pixel data, still in rgb[23:0] format,

represents the potentially scaled image data. The specifics of this HQ2x core and

other implemented upscaling techniques will be detailed in Chapter 5: Pixel

scaling.

● Output to HDMI Core: The final 24-bit RGB pixel value is registered and output

to the main HDMI encoder module, synchronized precisely with the fpixel clock

and the accompanying timing signals (HSYNC, VSYNC, DE) which define the

640x480 frame structure. The actual Spectrum display area is centered within

this larger frame.

The audio output from the Spectrum's sound sources (Beeper logic, AY chip simulation)

are sampled at 48 kHz. This might involve simple digital sampling of a simulated output

or processing of audio samples generated by an AY core. These PCM samples are then

passed to the audio input stage of the HDMI core, likely via an asynchronous FIFO to

handle the clock domain crossing from faudio to fpixel.

41

5 Pixel scaling

The display of graphics generated by vintage computer systems, such as the ZX

Spectrum with its native resolution of 256x192 pixels, on modern high-resolution

monitors presents a significant challenge. Directly displaying the original

low-resolution image results in an impractically small picture area. Consequently, image

scaling is required to enlarge the image to occupy a reasonable portion of the

contemporary display.

Retro graphics, particularly from the 8-bit and 16-bit eras, often rely heavily on the

precise placement of individual pixels and constrained color palettes to define shapes,

textures, and artistic style [49]. Simple scaling algorithms, especially those based on

traditional interpolation methods developed for continuous-tone images like

photographs, tend to disregard this deliberate pixel-level design. Methods like bilinear

or bicubic interpolation can cause excessive blurring, soften sharp edges, and introduce

intermediate colors not present in the original limited palette, thereby compromising the

distinct visual identity of the source material [50]. The goal when scaling such graphics

is typically integer magnification (e.g., 2x, 3x) while enhancing, or at least preserving,

the perceived visual quality and respecting the original artistic intent encoded in the

pixel data.

Pixel scaling algorithms can be broadly categorized into basic interpolation methods

and algorithms specifically designed for pixel art.

5.1 Basic Interpolation Methods

These methods treat the image as a continuous signal sampled at discrete points and

attempt to reconstruct the signal at a higher sampling rate (resolution).

● Nearest Neighbor (NN): This is the simplest scaling technique. Each pixel in the

source image is simply replicated into a block of pixels in the destination image

[50]. For 2x scaling, each source pixel becomes a 2x2 block of the same color.

NN interpolation is computationally trivial and has the property of preserving

the original color palette exactly. However, it introduces severe blockiness,

42

https://datagubbe.se/crt/
http://datagenetics.com/blog/december32013/index.html
http://datagenetics.com/blog/december32013/index.html

particularly visible as jagged edges ("jaggies") on diagonal lines and curves [51].

While often considered aesthetically poor for general viewing, its preservation

of sharp pixel boundaries can sometimes be preferred in specific retro contexts

where maintaining the original blocky look is desired.

● Bilinear Interpolation: This method calculates the value of each output pixel by

performing a linear interpolation based on the four nearest neighboring pixels (a

2x2 area) in the source image. It produces smoother results than NN, reducing

blockiness, but at the cost of significant blurring and softening of edges [50].

Furthermore, the averaging process can introduce new colors not present in the

original palette. Its tendency to blur sharp details makes it generally unsuitable

for pixel art.

● Bicubic Interpolation: Bicubic interpolation extends the concept of bilinear

interpolation by considering a larger neighborhood of 16 pixels (4x4) from the

source image and fitting a cubic spline function to determine the output pixel

value. This generally yields smoother gradients and less noticeable interpolation

artifacts compared to bilinear interpolation for photographic images [50].

However, it introduces even more blurring than bilinear interpolation and can

sometimes produce "ringing" artifacts (overshoot/undershoot near sharp edges).

Its strong smoothing effect is detrimental to the sharp, stylized appearance

typical of pixel art.

The fundamental issue with applying basic interpolation methods to pixel art is their

inherent averaging nature. Pixel art often relies on sharp transitions between distinct

colors and the deliberate placement of individual pixels to convey detail. Interpolation

algorithms, designed for continuous-tone images, work by averaging or fitting curves

through neighboring pixel values. This process inevitably blurs the sharp transitions and

obscures the individual pixel details that define the pixel art style, making these

methods generally inappropriate unless a deliberately softened effect is sought [52].

43

https://pixinsight.com/doc/docs/InterpolationAlgorithms/InterpolationAlgorithms.html
http://datagenetics.com/blog/december32013/index.html
http://datagenetics.com/blog/december32013/index.html
https://api.semanticscholar.org/CorpusID:64363397

5.2 Pixel-Art Specific Algorithms

Recognizing the shortcomings of traditional interpolation for retro graphics, a class of

algorithms has been developed specifically to scale low-resolution, low-color-count

images while attempting to preserve sharpness and intelligently smooth jagged lines.

These algorithms operate by analyzing local pixel patterns to infer the intended

geometric features (lines, curves, corners) and rendering them smoothly at the target

resolution.

● ScaleNx Family (e.g., Scale2x, EPX): Algorithms like EPX (Eric's Pixel

Expansion) and its derivatives (Scale2x, AdvMAME2x) analyze the immediate

3x3 neighborhood of a pixel [53]. They detect edges based on color differences

between the central pixel and its direct neighbors (up, down, left, right). The

central pixel is then expanded (e.g., into a 2x2 block for Scale2x) conditionally,

using the colors of the neighbors to smooth detected edges. These algorithms

typically follow simple rules, are relatively computationally inexpensive, and

often preserve the original color palette.

● HQx Family (e.g., hq2x, hq3x, hq4x): Developed by Maxim Stepin, these

algorithms (High Quality Scale) also analyze the 3x3 neighborhood but employ

a more sophisticated pattern matching approach. The configuration of colors in

the neighborhood is compared against a large set of 256 pre-computed patterns

stored in a lookup table (LUT). Each LUT entry contains a pre-rendered,

smoothed representation (e.g., 2x2 pixels for hq2x) corresponding to that

specific neighborhood pattern [54]. Hqx algorithms are known for producing

high-quality smoothing, particularly on diagonal lines and curves, significantly

reducing jaggies compared to NN, though they might introduce slight blurring.

● xBR Family (e.g., xBR, xBRZ): The xBR ("scale by rules") family, initiated by

Hyllian, also uses pattern recognition on the pixel neighborhood but combines it

with a set of explicit interpolation rules rather than relying solely on a LUT [53].

These algorithms are designed to support more complex features, such as

anti-aliased lines and fine details, potentially preserving the sharpness of the

original image better than hqx in some cases. xBR variants are often praised for

producing very smooth results, although this can sometimes lead to more

noticeable alterations in the original shapes compared to other algorithms [55].

44

https://en.wikipedia.org/wiki/Pixel-art_scaling_algorithms
https://en.wikipedia.org/wiki/Hqx_(algorithm)
https://en.wikipedia.org/wiki/Pixel-art_scaling_algorithms
https://en.wikipedia.org/wiki/Comparison_gallery_of_image_scaling_algorithms

● Other Methods: More advanced techniques exist, including various forms of

Edge-Directed Interpolation (EDI) like NEDI and EEDI, vectorization (image

tracing) which converts the bitmap to a vector representation before rendering at

the target size, and recent approaches using deep convolutional neural networks

[52] [53]. However, these methods are generally significantly more

computationally complex and memory-intensive, making them unsuitable for

implementation on resource-constrained FPGAs like the iCE40 HX4K.

Pixel-art specific algorithms represent a fundamentally different approach compared to

basic interpolation. Instead of merely calculating weighted averages of pixel values,

they attempt to interpret the intent behind the arrangement of pixels within a local

neighborhood. By recognizing patterns that correspond to features like edges, corners,

or curves, they apply transformations (conditional pixel expansion, LUT-based

replacement or rule-based interpolation) specifically designed to render these inferred

features smoothly at the higher target resolution [50]. This context-sensitive analysis

allows them to achieve results that are often perceived as superior for preserving the

characteristic look and feel of pixel art.

5.3 Rationale for Algorithm Selection in this Project

The primary requirement for this project is to implement 2x integer scaling suitable for

enhancing the visual presentation of ZX Spectrum-like graphics (256x192 resolution,

limited color palette) on a modern display, using a Lattice iCE40 HX4K FPGA.

Given this context, two algorithms were selected for implementation:

1. Pixel Doubling (Nearest Neighbor 2x): This serves as a baseline

implementation. It requires minimal hardware resources (essentially just

adjusted address calculation) and provides a direct reference point for the visual

output of the original, unscaled pixels presented at a larger size. It is included as

a user-selectable option via a hardware switch.

2. HQ2x: This algorithm was chosen as the primary enhancement technique based

on subjective visual preference compared to the blockiness of NN as seen in

figure 12 [56].

45

https://api.semanticscholar.org/CorpusID:64363397
https://en.wikipedia.org/wiki/Pixel-art_scaling_algorithms
http://datagenetics.com/blog/december32013/index.html
https://web.archive.org/web/20131029012017/http://www.hiend3d.com/hq2x.html

Figure 12. nearest neighbour 2x vs hq2x

HQ2x also potentially offers a better balance of visual improvement versus

implementation complexity compared to alternatives like xBR. While xBR

might offer better detail preservation in some cases, its rule-based nature can

translate to more complex logic. The LUT-based approach of hq2x, while

requiring storage for the LUT, potentially maps more straightforwardly to

hardware logic or memory blocks, assuming the LUT itself is manageable [54].

Higher-order variants like hq3x/hq4x were not considered due to their

significantly increased computational and memory requirements. Table 4

provides a comparative summary of the discussed algorithms, as illustrated in

Figure 13 [57], highlighting the trade-offs underlying this selection.

Table 4. Comparison of pixel scaling algorithms

Algorithm Core Logic

Visual Output
(Sharpness,
Smoothness,
Artifacts)

Color
Preservation

Relative
Cost

Suitability
for Pixel Art

Nearest
Neighbor
(NN) Pixel Replication

Very Sharp, Blocky
(Jagged Edges) Perfect

Very
Low

Low
(Preserves
pixels)

Bilinear
Interpol.

Linear Average
(2x2
Neighborhood)

Blurred, Soft Edges,
Smooth

Poor (New
Colors) Low

Very Low
(Blurring)

Bicubic
Interpol.

Cubic Spline
Average (4x4
Neighborhood)

Very Blurred,
Smoother, Ringing
Artifacts

Poor (New
Colors) Medium

Very Low
(Blurring)

Scale2x
(EPX)

Edge Detection
(3x3), Conditional
Expansion

Sharp Edges, Smooth
Diagonals, Simple
Patterns Good

Low -
Medium Medium

46

https://en.wikipedia.org/wiki/Hqx_(algorithm)
https://commons.wikimedia.org/wiki/File:Pixel-Art_Scaling_Comparison.png

hq2x

Pattern Matching
(3x3), LUT
Interpolation

Sharp but Smoothed
Edges/Curves,
Reduced Jaggies

Good
(Original)

Medium
- High High

xBR

Pattern
Recognition (3x3),
Rule-Based
Interpol.

Very Smooth
Edges/Curves, Detail
Preservation
(Variable) Good High High

Figure 13. Comparison of pixel scaling algorithms

5.4 The hq2x Algorithm

The hq2x algorithm operates by examining the local neighborhood around each pixel in

the source image and using a pattern-matching approach to determine the corresponding

2x2 block of pixels in the scaled output image [58].

47

https://github.com/brunexgeek/hqx

5.4.1 Core Logic: Neighborhood Analysis and Pattern Matching

The algorithm iterates through the source image, processing one pixel at a time. For

each source pixel, designated as P, it considers the 3x3 square of pixels centered on P,

which includes P itself and its eight immediate neighbors.

A key step is determining the similarity between the color of the central pixel P and

each of its eight neighbors. The original hqx algorithm specification employs the YUV

color space for this comparison. RGB color values are first converted to YUV. The

difference between the neighbor's color and P's color is then calculated, typically using

a weighted distance formula that gives more significance to the difference in luminance

(Y component) than chrominance (U and V components). This weighting is intended to

better align the notion of color similarity with human visual perception. If the calculated

color difference falls below a predefined threshold, the neighbor is considered "similar"

to P; otherwise, it is considered "dissimilar".

The binary outcome (similar/dissimilar) for each of the eight neighbors effectively

creates an 8-bit pattern index, ranging from 0 to 255. This index represents the specific

configuration of color similarities and differences within the 3x3 neighborhood.

This 8-bit index is then used to query a pre-computed lookup table (LUT). This LUT is

the core component of the hq2x algorithm. It contains 256 entries, one for each possible

neighborhood pattern. Each entry stores the specific interpolation pattern required to

generate the 2x2 block of output pixels that corresponds to the single input pixel P given

its neighborhood context. The LUT entry essentially dictates how the colors of P and its

relevant neighbors (those determined to be part of the pattern) should be selected or

blended to produce the four output pixels. This process effectively replaces the single

pixel P with a 2x2 representation that is smoothed according to the detected local

pattern [58] [54]. A visual representation of these neighborhood patterns and their

interpolated results is partially illustrated in Figure 14 [59].

Figure 14. Fragment of visual representation of hq2x

48

https://github.com/brunexgeek/hqx
https://en.wikipedia.org/wiki/Hqx_(algorithm)
https://blog.pkh.me/p/19-butchering-hqx-scaling-filters.html

5.4.2 Edge Handling and Smoothing

Edge detection in hq2x is not performed using explicit gradient operators [60]. Instead,

it is an implicit result of the pattern matching process. Specific configurations of similar

and dissimilar neighbors in the 8-bit pattern index naturally correspond to different

types of local features, such as horizontal, vertical, or diagonal edges, as well as corners

and areas of uniform color.

The interpolation patterns stored within the 256-entry LUT are carefully designed,

pre-rendered versions of these features at the target 2x resolution. According to the

algorithm's author, these patterns are generated by determining the "most probable

vector representation" for each neighborhood configuration, rasterizing this vector

representation at a higher resolution using anti-aliasing, and storing the resulting 2x2

pixel pattern in the LUT. The design constraints ensure that continuity of lines is

preserved across adjacent pixel expansions, and the resulting output is optimized for

smoothness. For instance, if the 3x3 neighborhood pattern indicates a diagonal line

passing through P, the corresponding LUT entry will contain a 2x2 pixel pattern that

renders a segment of that diagonal line smoothly [54].

5.4.3 Color Comparison Implementation Detail (YUV vs. Simplified)

While the original hqx algorithm specifies color difference calculation in the YUV color

space, implementing this directly in hardware, especially on a resource-constrained

FPGA, presents significant challenges. The conversion from RGB to YUV involves

matrix multiplications or complex lookups and the subsequent weighted difference

calculation adds further arithmetic complexity. This would consume a non-trivial

amount of logic resources (LUTs, potentially DSP blocks if available) and likely

increase the clock cycles required for processing each pixel [54].

Given the target platform (iCE40 HX4K) and the origin of the reference verilog code

(fpganes, optimized for FPGA implementation), the implemented version deviates from

the original algorithm by using a simplified color comparison method and removal of

the YUV calculations. Hardware optimizations include using a simpler metric in the

RGB space, such as the sum of absolute differences between the R, G, and B

components and a direct equality check, performed on reduced bit-depth color values.

49

https://roboflow.com/blog/edge-detection
https://en.wikipedia.org/wiki/Hqx_(algorithm)
https://en.wikipedia.org/wiki/Hqx_(algorithm)

This represents a practical trade-off, sacrificing the potentially higher perceptual

accuracy of the YUV comparison for a significant reduction in hardware complexity

and improved performance, which is often necessary to meet the timing and resource

constraints of real-time FPGA applications [61].

5.5 Hardware Platform and Constraints: Lattice iCE40 HX4K

The target hardware for this implementation is the Lattice iCE40 HX4K FPGA.

Understanding its architecture and resource limitations is crucial for evaluating the

feasibility of the hq2x algorithm and guiding the necessary optimizations.

5.5.1 Implications for Memory-Intensive Algorithms

The resource profile of the iCE40 HX4K presents specific challenges for implementing

memory-intensive algorithms like hq2x, particularly when combined with other system

components that also require memory.

● EBR Capacity: A total of 16KB of on-chip EBR is relatively modest for image

processing applications, which often benefit from buffering multiple image lines

or even entire frames to facilitate neighborhood operations or random access

patterns. The primary video buffer for the ZX Spectrum display (storing pixel

and attribute data) already consumes approximately 6.75 KB (6144 bytes pixels

+ 768 bytes attributes). This pre-allocation significantly reduces the EBR

available for other modules.

● EBR Granularity: While having 20 independent 4Kbit blocks provides

flexibility, it can also lead to inefficient utilization if the memory structures

required by the design do not align well with the 4Kbit (512 Byte) block size.

For instance, a memory need slightly exceeding a single EBR block may require

allocation of an additional block, leading to fragmentation. In the case of a

6912-byte memory requirement, addressing this space necessitates a 13-bit wide

address bus, effectively reserving 8192 bytes. As a result, 16 EBR blocks are

consumed, despite the actual demand being lower.

● LCs vs. EBR Trade-off: A critical aspect of FPGA design is how memory

structures described in HDL are mapped during synthesis. The synthesis tools

50

https://fpganes.blogspot.com/2013/02/the-worlds-most-compact-hq2x-in-verilog.html

attempt to infer whether such structures should be implemented using the

dedicated EBR blocks or using the general-purpose logic cells (LCs) configured

as distributed RAM. Implementing memory using LCs is significantly less

efficient in terms of resource usage; it consumes a large number of LUTs (for

storage and addressing logic) and flip-flops (for registered outputs), and places

heavy demands on the routing resources, often leading to slower performance

and longer synthesis times.

The combination of these factors - limited total EBR, the specific 32x4K block

structure, and the significant EBR usage by the main video buffer - creates a critical

resource constraint for the hq2x implementation. This scarcity strongly suggests that the

synthesis tool may struggle to map the relatively large line buffers required by hq2x

entirely into the remaining EBR. This explains the extremely high LC utilization

reported in the synthesis results (Section 5.6.2), even after color depth reduction, despite

the algorithm's memory footprint seemingly fitting within the total available EBR

capacity. The dedicated EBR blocks are likely being prioritized for the main video

buffer, forcing the hq2x line buffers onto the general-purpose logic fabric.

5.6 hq2x Implementation and Optimization on iCE40 HX4K

The implementation of the hq2x algorithm on the iCE40 HX4K required significant

adaptation from the reference fpganes code due to the hardware resource constraints

outlined previously.

5.6.1 Baseline fpganes hq2x Verilog Implementation

The starting point for this work was the hq2x Verilog module developed by Ludvig

Strigeus for the fpganes NES emulator project [62].

The original implementation utilizes register arrays to buffer input and output pixel

data, facilitating access to the required pixel neighborhood for the hq2x calculations.

● Input Buffer (inbuf): Defined as reg [14:0] inbuf[0:511];. This array

stores pixel data for two lines of the source image in RGB 5:5:5 format. The

memory required for inbuf is 512 words * 15 bits/word = 7680 bits.

51

https://github.com/strigeus/fpganes/blob/master/src/hq2x.v

● Output Buffer (outbuf): Defined as reg [14:0] outbuf[0:2047];. This

array stores pixel data for four lines of the 2x scaled output image. For a source

width of 256, the output width is 512 pixels. Thus, this buffer holds 4 lines * 512

pixels/line = 2048 entries. As color depth is 15 bits, the memory required for

outbuf is 2048 words * 15 bits/word = 30720 bits.

● 256 element LUT (hqTable): Defined as reg [5:0] hqTable[256];. This

array is used to quickly determine whether two pixels are similar or different,

based on quantized color indices, which in turn informs edge detection and the

upscale pattern selection. Memory required for hqTable is 256 words * 6

bits/word = 1536 bits.

Total Memory Requirement (Original): The combined memory footprint of these two

buffers in the original 15-bit implementation is 7680 bits + 30720 bits + 1536 = 39936

bits, which is approximately 4.88 KB. Attempting to synthesize 39936 bits of memory

using LC will fail, because it exceeds 7680, the total LC count available on the HX4K

as each bit stored in a register requires at least one flip-flop (FF). Additionally,

implementing the read and write access logic for such large arrays using LUTs would

require extensive multiplexing structures.

In practice, the synthesis results were inconsistent. In some cases, the synthesis tool

mapped the outbuf to EBR, despite the memory pattern not conforming to the

supported EBR configurations [63]. This occasionally produced a working bitstream.

However, in other instances, the tool attempted to map all buffer structures to logic

cells, which exceeded the available logic resources (e.g., 114% utilization reported by

nextpnr-ice40) and ultimately caused the place-and-route stage to fail. The following is

an excerpt from the nextpnr-ice40 tool, demonstrating a successful placement and

routing process in which the router allocated the outbuf (occupying 8 blocks) and

hqTable (1 block) registers to embedded block RAM (EBR):
Info: ICESTORM_LC: 7268/ 7680 94%

Info: ICESTORM_RAM: 25/ 32 78%

Info: SB_IO: 43/ 256 16%

Info: SB_GB: 8/ 8 100%

Info: ICESTORM_PLL: 1/ 2 50%

Info: SB_WARMBOOT: 0/ 1 0%

52

https://yosyshq.readthedocs.io/projects/yosys/en/0.33/CHAPTER_Memorymap.html#simple-dual-port-sdp-memory-patterns

Table 5 shows a comparison of the memory requirements of the line buffers for the

original and modified versions.

Table 5. Line buffer sizes

 inbuf outbuf

Version dimensions size (kB) dimensions size (kB) Total KB

Original 15-bit 512 * 15 0.94 2048 * 15 3.75 4.69

6-bit 512 * 6 0.38 2048 * 6 1.5 1.88

4-bit 512 * 4 0.25 2048 * 4 1 1.25

5.6.2 Design changes and synthesis results

To make the hq2x algorithm fit within the iCE40 HX4K's resource constraints, the

primary strategy employed was to reduce the color depth, thereby drastically decreasing

the memory footprint of the line buffers.

● Modification 1: 6-bit Color Depth: The first modification reduced the color

representation from 15 bits per pixel to 6 bits. This corresponds to 2 bits for each

of the Red, Green, and Blue channels (RGB 2:2:2). This represents a significant

reduction (60%) in memory requirements compared to the 15-bit original, while

still providing enough resolution to match the original color palette of the ZX

Spectrum.

Synthesis using the Yosys tool yielded the following resource utilization:
Info: ICESTORM_LC: 8774/ 7680 114%

Info: ICESTORM_RAM: 20/ 32 62%

Info: SB_IO: 43/ 256 16%

Info: SB_GB: 8/ 8 100%

Info: ICESTORM_PLL: 1/ 2 50%

Although memory usage was significantly reduced and the nextpnr-ice40 router

successfully mapped the outbuf structure to EBR, the bitstream generation

failed due to excessive utilization of logic cells (114%), exceeding the available

7680 logic elements on the target FPGA.
53

● Modification 2: 4-bit Color Depth: To further reduce resource usage, the color

depth was decreased again, this time to 4 bits per pixel. This specific 4-bit

scheme was tailored to the target application (ZX Spectrum graphics),

representing 1 bit each for Red, Green, and Blue, plus 1 bit for a 'Highlight' or

'Bright' attribute, mimicking the Spectrum's native color attribute system. This

reduced the memory requirement by another 33% compared to the 6-bit version.

The synthesis results for the 4-bit version were:
Info: ICESTORM_LC: 3160/ 7680 80%

Info: ICESTORM_RAM: 19/ 32 59%

Info: SB_IO: 43/ 256 16%

Info: SB_GB: 8/ 8 100%

Info: ICESTORM_PLL: 1/ 2 50%

Info: SB_WARMBOOT: 0/ 1 0%

This modification resulted in a significant drop in LC usage. The 80% LC

utilization, while high, represents a workable design that fits within the FPGA's

resources, although with limited headroom. Again, the outbuf and hqTable

structures were successfully mapped to EBR, occupying two and one blocks,

respectively.

5.6.3 Future Work: Optimizing Resource Usage via Line‑Buffer Migration

Synthesis results for the 4-bit hq2x implementation indicate high resource utilization on

the target FPGA. Although the design meets timing and functional requirements within

the device capacity, it consumes 80% of the available Logic Cells (LCs). Furthermore,

the current implementation relies on the synthesis tool's ability to opportunistically map

some large register structures into EBR resources.

Analysis of the post-synthesis resource report confirms that the primary contributor to

the high LC count is the implementation of the input line buffer (inbuf, requiring

storage for two lines of pixel data) and the output line buffer (outbuf, requiring storage

for four lines) using general-purpose logic fabric, specifically LCs configured as

registers and multiplexers. This approach is inefficient compared to utilizing dedicated

on-chip memory resources. Therefore, optimizing the implementation of these line

54

buffers presents the most significant opportunity for substantially reducing overall LC

utilization [64].

Several strategies are proposed to address this limitation:

1. Direct Memory Access from Video Buffer. This strategy involves eliminating

the intermediate inbuf and outbuf line buffers entirely. This could be

achieved by designing the hq2x core to fetch pixel data directly from a main

video frame buffer. To get pixel RGB values, we need to make two memory

calls. One is to get eight pixels and another query to get attributes for the 8x8

box. To calculate the four output pixels corresponding to a single source pixel P,

the hq2x algorithm requires access to the 3x3 neighborhood surrounding P. This

means that for each calculation cycle (occurring every 4 pixel clocks), the logic

must potentially read up to 9 pixel values from the main BRAM. As the pixel

clock is only 25MHz, a five times faster main clock could feasibly accommodate

the necessary read operations per calculation cycle without becoming a

performance bottleneck.

2. EBR-Based Line Buffer Implementation: An simpler approach involves

explicitly instantiating the inbuf and outbuf line buffers using dedicated EBR

blocks instead of synthesizing them from general logic. While initial device

assessments based on datasheet summaries suggested a limit of 20 EBR blocks

for the iCE40 HX4K, practical experience using the open-source IceStorm

synthesis toolchain reveal that 32 EBR blocks are, in fact, addressable and

usable within the fabric. This revised understanding confirms the feasibility of

allocating the necessary EBR blocks (1 for inbuf and 2 for outbuf) for

efficient line buffer implementation.

3. External SRAM-Based Line Buffer Implementation: Furthermore, the utilization

of external SRAM is another option for buffer implementation, should on-chip

EBR resources prove insufficient or be required for other critical functions.

Although external SRAM have higher access latency around 45ns compared to

the EBR (capable of operation synchronous to system clocks, e.g. 8ns cycle time

at 125 MHz), it could serve as a viable alternative.

55

https://stitt-hub.com/optimizing-hardware-for-fpgas

This way there will be substantial reduction in Logic Cell utilization. By eliminating the

large inbuf and outbuf register arrays currently consuming thousands of LCs, this

optimization could potentially free up a large fraction of the FPGA's logic resources,

bringing the total LC usage down from 80% to a much more comfortable level.

Successfully implementing such an optimization would shift the design complexity

from large storage structures in logic to more sophisticated control logic, ultimately

leading to a more efficient utilization of the FPGA's resources and providing valuable

headroom for future development.

56

6 SD Card Access

To provide modern mass storage functionality for the ZX Spectrum, an SD card

interface is implemented using the Serial Peripheral Interface (SPI) protocol. SPI is a

synchronous serial communication protocol widely supported by SD cards, especially in

embedded and low-resource environments. In this project, the SPI master is

implemented by the Z80 processor itself, with all low-level communication performed

through I/O port reads and writes. The FPGA acts as a transparent intermediary, routing

these I/O operations to the SD card lines.

The SD card is operated in SPI mode, which simplifies signal handling and allows

direct bit-banged communication from the Z80 CPU. This approach is lightweight and

avoids the need for complex DMA or bus mastering logic in the FPGA.

6.1 FPGA Routing of Z80 I/O to SPI Signals

The FPGA continuously monitors Z80 I/O activity and maps specific port interactions

to SPI signal lines. When the Z80 writes to I/O port #03, the FPGA captures individual

bits from the data bus and maps them to MOSI, SCK, and CS lines connected to the SD

card. Reading from I/O port #01 returns the state of the MISO line, allowing the CPU to

receive serial data from the SD card.

Although all SD card lines are currently routed to the FPGA, DAT1 and DAT2 are

unused in SPI mode. These can be excluded in future hardware revisions to reclaim two

FPGA I/O pins.

6.2 SD Card Boot ROM and FAT Filesystem

At power-on, the FPGA disables the built-in ROM and loads a custom boot ROM from

internal BRAM. This ROM contains a Z80 program compiled using the SDCC compiler

and implements a menu-based loader for .sna snapshot files.

The ROM firmware uses Petit FatFs [65], a lightweight FAT16/32 filesystem library, to

access files on the SD card. All file access routines (disk_readp, disk_writep) are

57

https://elm-chan.org/fsw/ff/00index_p.html

backed by low-level SPI functions that manipulate the SPI lines using the

above-mentioned Z80 I/O operations. This allows reliable sector reads, directory

traversal, and file parsing directly from SD storage. SD/MMC card initialization flow

for SPI mode is shown in Figure 15 [66].

Figure 15. SD/MMC initialization flow

58

https://elm-chan.org/docs/mmc/mmc_e.html

6.3 Snapshot Loading

Upon booting, the ROM displays a menu listing available .sna snapshot files on the SD

card. When the user selects a snapshot, the loader parses the file, copies memory

contents to appropriate RAM pages and sets registers and interrupt mode. The snapshot

format includes the CPU stack pointer, which is restored as the last step. Execution is

started via a RETN (Return from Non-Maskable Interrupt) instruction, booting into the

loaded program image as if it had been cold-started. This works because the process of

creating an .sna snapshot involves triggering a NMI; the NMI routine pushes the current

Program Counter (PC) onto the stack before the registers and memory are saved. The

Stack Pointer (SP) value saved in the .sna header thus points to this saved PC on the

stack [67].

6.4 Summary

This architecture avoids the need for a dedicated SD controller in the FPGA by

exploiting the flexibility of the Z80's I/O ports and minimal SPI protocol requirements.

Despite the simplicity, it enables reliable loading of full program snapshots with

filesystem support and a user-friendly interface, all controlled entirely from the host

CPU.

59

https://worldofspectrum.net/zx-modules/fileformats/snaformat.html

7 AY-3-8912/YM2149 Sound Synthesis

Sinclair ZX Spectrum initial audio capabilities were limited to a single-channel internal

beeper, controlled directly by the CPU. This chapter details integration of a popular

Programmable Sound Generator (PSG) from the 8-bit era into a ZX Spectrum clone,

enabling digital audio output via the HDMI interface.

The PSG chosen for this implementation is based on the General Instrument

AY-3-8910/8912 family and its licensed derivative, the Yamaha YM2149. These chips

were ubiquitous in the 1980s, providing the characteristic sound for machines such as

the later ZX Spectrum 128K, the Amstrad CPC, MSX computers, and the Atari ST.

They are known for their three independent square wave tone channels, a flexible noise

generator, and hardware envelope control, enabling the creation of complex musical

scores and sound effects far beyond the capabilities of the original Spectrum beeper.

Yamaha often referred to their YM2149 variant as a Software-controlled Sound

Generator (SSG).

7.1 AY-3-8912 / YM2149 Programmable Sound Generator Architecture

7.1.1 Functional Blocks

● Functional Blocks: The core sound generation capability resides in three

independent tone generators. Each produces a square wave output. The

frequency of each channel is determined by a 12-bit Tone Period (TP) value,

loaded across two 8-bit registers which allows precise frequency control over a

wide range, typically spanning 8 octaves [68].

● Noise Generator: A single noise generator produces pseudo-random digital

noise, often used for percussion sounds or effects like explosions.

● Mixer: The Mixer block determines which sound sources (Tone A, Tone B, Tone

C, Noise) are enabled for each of the three output channels (Channel A, Channel

B, Channel C).

● Amplitude Control / Level Control (Channels A, B, C): Each output channel has

independent amplitude control and each register offers mixed or variable level

mode.

60

https://www.ym2149.com/ym2149.pdf

● Envelope Generator: A single, shared Envelope Generator provides amplitude

modulation capabilities. Its behavior is defined by three registers: RB, RC and

RD which select predefined shapes such as single-shot decays, attacks, or

repeating triangular or sawtooth patterns.

● Digital-to-Analog Converters (DACs): After mixing and amplitude modulation,

the digital signals for each of the three channels are converted to analog voltage

levels by internal DACs before being output on the analog channel A, B, and C

pins. A notable difference exists here between the AY and YM chips: the

YM2149 employs a 5-bit internal DAC mechanism, providing 32 distinct levels

for smoother volume transitions, particularly when using the envelope generator.

The AY-3-891x series effectively has a 4-bit resolution, resulting in 16 coarser

steps [69].

● I/O Ports (A and B): The 40-pin versions (AY-3-8910, YM2149F) include two

general-purpose 8-bit parallel I/O ports (Port A, Port B). These were often used

for reading joysticks, keyboards, or controlling other peripherals. The FPGA

implementation in this project omits these ports as they are not required for the

functionality [70].

7.1.2 Register Interface

Interaction with the AY/YM chip is mediated through its 16 internal 8-bit registers,

accessible via an 8-bit bidirectional data bus (DA0-DA7) and several control lines.

The standard procedure for accessing a register involves two distinct bus cycles:

1. Address Latch Cycle: The CPU places the desired register address (0 to 15, i.e.,

0x0 to 0xF) onto the lower bits of the data bus (typically DA3-DA0) and

activates the appropriate control signals to instruct the chip to latch this address

internally.

2. Data Read/Write Cycle: The CPU then performs a subsequent bus cycle to either

write data to the selected register or read data from it, again using specific

control signal combinations.

The primary control signals governing these bus cycles on the original chips are:

61

https://maidavale.org/blog/ay-ym-differences
https://aym-js.emaxilde.net/about

● BC1 (Bus Control 1): This input, derived from CPU address lines, select the

operational mode.

● BDIR (Bus Direction): This input signal, also derived from the CPU's read/write

line, indicates whether the CPU intends to read from (BDIR=0) or write to

(BDIR=1) the chip.

7.1.3 Sound Synthesis Methods

The programmability of the registers allows for the synthesis of a wide variety of

sounds:

● Tone Generation: The fundamental frequency of each channel's square wave is

determined by . The 12-bit TP value allows for 𝑓
𝑀𝑎𝑠𝑡𝑒𝑟𝐶𝑙𝑜𝑐𝑘

 / (16𝑥𝑇𝑃)

 distinct period settings per channel, providing fine control over 212 = 4096

pitch across the audible spectrum and beyond.

● Noise Generation: The noise source is typically implemented using an LFSR.

Lower values result in faster clocking and higher-frequency ("whiter") noise,

while higher values produce lower-frequency ("rumbling") noise characteristics.

The noise output can be mixed into any combination of the three main channels

via register R7.

● Envelope Generation: The envelope generator provides dynamic amplitude

control. The 16-bit Envelope Period (RB, RC) sets the fundamental frequency of

the envelope cycle. The 4-bit Shape control (RD) determines the contour within

each cycle [68].

7.2 YM2149 FPGA Core Implementation

The open-source YM2149 core from the ZX_Spectrum-128K_MIST project was chosen

because it uses half as many logic cells as other cycle-exact cores [71] [72]. The core

outputs three independent, parallel buses, each carrying an 8 bit unsigned integer

representing the instantaneous amplitude of the corresponding channel (A, B, or C)

which are mixed into 12 bit left and right channels according to ABC scheme. This

means that A is mixed to right, B to left and right, and C to left.

62

https://www.ym2149.com/ym2149.pdf
https://github.com/sorgelig/ZX_Spectrum-128K_MIST/blob/master/ym2149.sv
https://github.com/jotego/jt49

In the ZX Spectrum 128K, the YM2149 is mapped into the Z80’s I/O space at two fixed

ports: 0xFFFD (register‐select port) and 0xBFFD (data port). This minimal two-port

scheme allows access to all sixteen PSG registers (three tone generators, noise,

envelope, and two 8-bit I/O ports) using only simple address decoding and the two

BDIR/BC signals per bus cycle.

Communication is synchronized over two successive bus cycles using the PSG’s BDIR

and BC control inputs. To write a register, the CPU first asserts /IORQ + /WR with

BDIR = 1 and BC = 0 while addressing 0xFFFD, thereby latching the 4-bit register

index into the PSG. In the immediately following cycle, /IORQ + /WR are again

asserted with BDIR = 1 and BC = 1 while addressing 0xBFFD, which transfers the 8-bit

data into the previously selected register. To read back a register, /IORQ + /RD are

asserted with BDIR = 0 and BC = 1 on 0xBFFD, causing the PSG to drive the data bus

with the contents of the selected register [73].

7.3 I2S Protocol

I2S, first specified by Philips Semiconductor in 1986, is a widely adopted serial bus

standard designed explicitly for transferring digital audio data, typically PCM, between

integrated circuits within electronic devices. Its primary advantage lies in its

synchronous nature, using separate lines for clock and data signals [74].

Generating the I2S clock signals (SCK and WS) requires careful design within the

FPGA. The WS frequency must match the target audio sample rate (48 kHz). The SCK

frequency must be derived correctly based on the sample rate, bit depth, and channel

count (for 48kHz/16-bit/Stereo). 𝑓
𝑆𝐶𝐾

= 1. 546𝑀𝐻𝑧

The I2S bus operates in a Master/Slave configuration. The Master device is responsible

for generating and distributing the SCK and WS clock signals. The Slave device

synchronizes its data transmission or reception to these incoming clocks. In the context

of this project, the FPGA logic generating the audio stream for the HDMI core acts as

the I2S Master [75].

63

https://web.archive.org/web/20241216035717/http://www.armory.com/~rstevew/Public/SoundSynth/Novelty/AY3-8910/start.html
https://blog.mbedded.ninja/electronics/communication-protocols/i2s-communication-protocol/
https://docs.nordicsemi.com/bundle/ps_nrf5340/page/i2s.html

7.4 Audio Processing Pipeline: From Sound Sources to HDMI

The generation of the final HDMI audio output involves several processing stages

within the FPGA, transforming the raw digital outputs from the YM2149 core and the

beeper emulation into a correctly formatted and timed audio stream suitable for HDMI

encapsulation. A conceptual block diagram illustrating this pipeline is presented in

Figure 16.

Figure 16. Audio pipeline

1. ZX-Spectrum audio out. Sound path is determined by output port address.

0xFFFD or 0xBFFD writes to YM2431 registers and 0xXXFE bit 4 toggles

beeper.

2. Digital Mixing Stage combines the 1 bit beeper and audio generated by the three

8 bit individual channels of the YM2149 core to 16 bit left and right PCM data.

3. Serializer serializes 16-bit left/right PCM samples into the I2S bitstream. It

outputs bit clock (i2s_bclk, 1.536 MHz), word-select clock (i2s_lrclk, 48 kHz)

and serial data (i2s_data). On each 48 kHz sampling clock it shifts out 16 bits

per channel.

4. HDMI core takes the prepared audio data and embeds it into the HDMI data

stream alongside the video signal.
64

7.5 Future Improvements in Audio Quality

To further refine the quality of the audio stream, digital filtering techniques such as

Infinite Impulse Response (IIR) or Finite Impulse Response (FIR) filters may be

implemented within the FPGA. These filters can smooth out harsh frequency transitions

or remove undesirable high-frequency artifacts, particularly useful when mixing

multiple sources (e.g., AY-3-8912 and beeper). A basic low-pass IIR filter, can be

implemented using minimal logic and can effectively reduce aliasing from the

square-wave-based sound generators.

Since the audio generation and output are handled entirely in the digital domain before

I2S encoding, these improvements can be developed and integrated incrementally

without altering the physical design. This opens the possibility of real-time

configuration changes, such as enabling filters or adjusting stereo mapping via

FPGA-controlled registers.

65

8 Conclusions and Future Work

This thesis has presented the design and implementation of a custom FPGA-based

expansion module for a specific ZX Spectrum Leningrad computer clone. The solution

integrates a wide array of modern functionality, including HDMI video output with

pixel enhancement algorithms, SD card-based mass storage, digital audio transport via

HDMI using I2S, and support for the AY-3-8912 sound chip.

The work demonstrates that it is possible to modernize a soviet-era 8-bit computer with

minimal intrusion. A key technical achievement of the project is the full-featured HDMI

output, implemented entirely within a Lattice iCE40 FPGA, including support for

digital audio over I2S and HQ2x pixel scaling. This makes the solution stand out among

existing video-output add-ons for the ZX Spectrum platform.

Another important feature planned for future software development is LAN (Ethernet)

connectivity using the W5500 network controller. On the current hardware revision,

both the SD card and LAN interfaces are already fully wired to the FPGA using

separate SPI buses. While this approach provides maximum flexibility during

development and testing, it also increases FPGA pin usage.

In future revisions, the SPI lines for the SD card and W5500 can be tied together to save

pins. This is feasible since both peripherals use the standard SPI protocol and can be

selected individually via their dedicated chip select (CS) signals. Such a change would

simplify the design and make the expansion module more compact and adaptable to

other systems.

To enable LAN functionality, the remaining task is to implement a W5500 SPI driver in

the Z80 ROM firmware. This would allow support for useful features such as remote

serial debugging, loading .sna snapshots over the network, and potentially more

advanced networking applications. The groundwork for this functionality is already laid

out in the current hardware, and the author plans to continue this development as a next

step in the project.

66

Additionally, the current prototype lacks a finalized enclosure. An improved,

custom-designed housing will be created to provide durability, usability, and aesthetics

appropriate for a consumer-facing product.

Although the current hardware was tailored to a specific single-copy Leningrad variant

with its custom МРН-44 connector, the concept can be extended. With a moderate

redesign of the interface logic and connector layout, the same FPGA module can be

adapted to support other ZX Spectrum clones, including officially produced 48K and

128K models. In many cases, even simpler connector adapters could enable

compatibility, allowing the core FPGA board and firmware to remain unchanged.

In conclusion, this work has demonstrated the technical feasibility and historical

relevance of bridging retro computing with modern embedded design. The FPGA-based

platform offers both a practical enhancement for users and a flexible development

environment for further educational and hobbyist projects. The foundation built here

will serve as the basis for continued development and future extensions of the system.

67

9 References

[1] B. Bertram, “Sinclair 48K ZX Spectrum.” [Online]. Available:
https://en.wikipedia.org/wiki/File:ZXSpectrum48k.jpg. [Accessed: 28-Mar-2025]

[2] “List of ZX Spectrum clones.” [Online]. Available:
https://en.wikipedia.org/wiki/List_of_ZX_Spectrum_clones. [Accessed: 23-Apr-2025]

[3] T. Gabor, “History of ZX Spectrum cloning.” [Online]. Available:
http://users.atw.hu/zxspectrum. [Accessed: 23-Apr-2025]

[4] G. Radan, “ZX-VGA-JOY – ZX Spectrum VGA and Joystick interface.” [Online].
Available: https://web.archive.org/web/20240713051918/https://zx-vga-joy.com/.
[Accessed: 22-Apr-2025]

[5] G. Velesoft, “ZX-VGA (SCANDOUBLER).” [Online]. Available:
https://velesoft.speccy.cz/zx/zx-vga/. [Accessed: 22-Apr-2025]

[6] V. Trucco, “TK-Pie (a.k.a. ZX-Pie).” [Online]. Available:
https://github.com/goloskokovic/ZX-Pie. [Accessed: 22-Apr-2025]

[7] B. Versteeg, “ZX-HD HDMI interface.” [Online]. Available:
https://www.bytedelight.com/?page_id=1800. [Accessed: 22-Apr-2025]

[8] “ZX-Uno.” [Online]. Available: https://zxuno.speccy.org/index_e.shtml. [Accessed:
22-Apr-2025]

[9] “ZX Spectrum for MiSTer Platform.” [Online]. Available:
https://github.com/MiSTer-devel/ZX-Spectrum_MISTer. [Accessed: 22-Apr-2025]

[10] “ZX Spectrum Next.” [Online]. Available: https://www.specnext.com/. [Accessed:
22-Apr-2025]

[11] B. Bertram, “A Sinclair ZX Spectrum 48K motherboard, issue 3B” [Online]. Available:
https://en.wikipedia.org/wiki/File:ZXspectrum_mb.jpg. [Accessed: 28-Mar-2025]

[12] Sinclair Research Ltd., “Sinclair ZX Spectrum Servicing Manual,” Mar. 1984 [Online].
Available:
https://worldofspectrum.net/pub/sinclair/technical-docs/ZXSpectrum48K_ServiceManual
.pdf. [Accessed: 27-Mar-2025]

[13] D. Stephenson, “Colour Clash: The Engineering Miracle of the Sinclair ZX Spectrum,”
Paleotronic, pp. 47–48, 2018.

[14] S. Bagan, “Leningrad-48 schematics” [Online]. Available:
https://www.cxemateka.ru/v1/leningrad_sch.pdf. [Accessed: 28-Mar-2025]

[15] N. Rodionov and A. Larchenko, ZX-Spectrum & TR-DOS для пользователей и
программистов. 1994, p. 201.

[16] “Floating bus.” [Online]. Available: https://sinclair.wiki.zxnet.co.uk/wiki/Floating_bus.
[Accessed: 28-Mar-2025]

[17] K. Gromov, “System - an article about compatibility and modification issues of
domestic ZX Spectrum clones,” Spectrofon, 1995.

[18] E. Saukas, “XBifrost* engine - release 1.2,” Jul. 2012 [Online]. Available:
https://spectrumcomputing.co.uk/zxdb/sinclair/entries/0027405/BIFROSTENGINEV1.2.t
xt. [Accessed: 28-Mar-2025]

[19] YosysHQ GmbH, “Yosys Open SYnthesis Suite.” [Online]. Available:
https://yosyshq.net. [Accessed: 15-Apr-2025]

[20] Torex Semiconductor Ltd, “XC6210 Series Data Sheet,” no. ETR0317_007 [Online].
Available: https://product.torexsemi.com/system/files/series/xc6210.pdf. [Accessed:

68

https://en.wikipedia.org/wiki/File:ZXSpectrum48k.jpg
https://en.wikipedia.org/wiki/File:ZXSpectrum48k.jpg
https://en.wikipedia.org/wiki/List_of_ZX_Spectrum_clones
https://en.wikipedia.org/wiki/List_of_ZX_Spectrum_clones
http://users.atw.hu/zxspectrum
http://users.atw.hu/zxspectrum
https://web.archive.org/web/20240713051918/https://zx-vga-joy.com/
https://web.archive.org/web/20240713051918/https://zx-vga-joy.com/
https://web.archive.org/web/20240713051918/https://zx-vga-joy.com/
https://velesoft.speccy.cz/zx/zx-vga/
https://velesoft.speccy.cz/zx/zx-vga/
https://github.com/goloskokovic/ZX-Pie
https://github.com/goloskokovic/ZX-Pie
https://www.bytedelight.com/?page_id=1800
https://www.bytedelight.com/?page_id=1800
https://zxuno.speccy.org/index_e.shtml
https://zxuno.speccy.org/index_e.shtml
https://github.com/MiSTer-devel/ZX-Spectrum_MISTer
https://github.com/MiSTer-devel/ZX-Spectrum_MISTer
https://www.specnext.com/
https://www.specnext.com/
https://en.wikipedia.org/wiki/File:ZXspectrum_mb.jpg
https://en.wikipedia.org/wiki/File:ZXspectrum_mb.jpg
https://worldofspectrum.net/pub/sinclair/technical-docs/ZXSpectrum48K_ServiceManual.pdf
https://worldofspectrum.net/pub/sinclair/technical-docs/ZXSpectrum48K_ServiceManual.pdf
https://worldofspectrum.net/pub/sinclair/technical-docs/ZXSpectrum48K_ServiceManual.pdf
https://worldofspectrum.net/pub/sinclair/technical-docs/ZXSpectrum48K_ServiceManual.pdf
https://www.cxemateka.ru/v1/leningrad_sch.pdf
https://www.cxemateka.ru/v1/leningrad_sch.pdf
https://sinclair.wiki.zxnet.co.uk/wiki/Floating_bus
https://sinclair.wiki.zxnet.co.uk/wiki/Floating_bus
https://spectrumcomputing.co.uk/zxdb/sinclair/entries/0027405/BIFROSTENGINEV1.2.txt
https://spectrumcomputing.co.uk/zxdb/sinclair/entries/0027405/BIFROSTENGINEV1.2.txt
https://spectrumcomputing.co.uk/zxdb/sinclair/entries/0027405/BIFROSTENGINEV1.2.txt
https://yosyshq.net
https://yosyshq.net
https://product.torexsemi.com/system/files/series/xc6210.pdf
https://product.torexsemi.com/system/files/series/xc6210.pdf

15-Apr-2025]
[21] Texas Instruments, “TLV755P 500mA, Low-IQ, LDO Regulator,” no. SBVS320D, Sep.

2024 [Online]. Available: https://www.ti.com/lit/ds/symlink/tlv755p.pdf. [Accessed:
16-Apr-2025]

[22] Monsonite, “Lattice HX4K resources clarification.” [Online]. Available:
https://anycpu.org/forum/viewtopic.php?f=13&t=569#p4074. [Accessed: 21-Apr-2025]

[23] Texas Instruments, “SN74LXC8T245 8-bit Dual-Supply Bus Transceiver Data Sheet,”
no. SCES916A, Mar. 2023 [Online]. Available:
https://www.ti.com/lit/ds/symlink/sn74lxc8t245.pdf. [Accessed: 16-Apr-2025]

[24] Nexperia B.V., “74AXP4T245 4-bit dual supply translating transceiver Product data
sheet,” Feb. 2020 [Online]. Available:
https://www.mouser.ee/datasheet/2/916/74AXP4T245-2937302.pdf. [Accessed:
16-Apr-2025]

[25] Nexperia B.V., “IP4251/52/53/54-TTL Product data sheet,” May 2011 [Online].
Available: https://assets.nexperia.com/documents/data-sheet/IP4251_52_53_54-TTL.pdf.
[Accessed: 16-Apr-2025]

[26] Integrated Silicon Solution, Inc., “512Kx8 LOW VOLTAGE,ULTRA LOW POWER
CMOS STATIC RAM,” Apr. 2017 [Online]. Available:
https://www.mouser.ee/datasheet/2/198/62-65WV5128EALL-BLL-737464.pdf.
[Accessed: 16-Apr-2025]

[27] CD-R Nederland, “EDID (Extended display identification data).” [Online]. Available:
https://www.drhdmi.eu/dictionary/edid.html. [Accessed: 12-Apr-2025]

[28] D. Mayer, “Clarifying HDMI bandwidth,” 12-Aug-2014. [Online]. Available:
https://connectedmag.com.au/clarifying-hdmi-bandwidth/. [Accessed: 14-Apr-2025]

[29] T. Verbeure, “Video Timings Calculator.” [Online]. Available:
https://tomverbeure.github.io/video_timings_calculator. [Accessed: 12-Apr-2025]

[30] “HDMI Specification Version 1.3a,” 2006 [Online]. Available:
https://ez.analog.com/cfs-file/__key/telligent-evolution-components-attachments/00-317-
00-00-00-05-21-37/HDMISpecification13a.pdf. [Accessed: 01-Apr-2025]

[31] Altera, “HDMI Intel® FPGA IP User Guide,” p. 11, Mar. 2025 [Online]. Available:
https://cdrdv2.intel.com/v1/dl/getContent/793150?fileName=ug_hdmi-683798-793150.p
df. [Accessed: 13-Apr-2025]

[32] T. Kugelstadt, “Support HDMI 1.3 12-Bit Deep Color With the TMDS341A,” no.
SLLA263, p. 1, May 2007 [Online]. Available:
https://www.ti.com/lit/an/slla263/slla263.pdf. [Accessed: 12-Apr-2025]

[33] Lattice Semiconductor, “LatticeECP3 HDMI/DVI Interface Reference Design,” no.
FPGA-RD-02139-1.6, Jan. 2020 [Online]. Available:
https://www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/EI2/FP
GA-RD-02139-1-6-HDMI-DVI-Video-Interface-Reference-Design.ashx?document_id=3
8351. [Accessed: 13-Apr-2025]

[34] Y. Ibrahim, “How to Terminate LVDS Connections,” no. SLAA840, May 2018 [Online].
Available: https://www.ti.com/lit/ab/slaa840/slaa840.pdf. [Accessed: 13-Apr-2025]

[35] C. Rice, “AC versus DC Coupling - What’s the difference?,” 29-Aug-2019. [Online].
Available:
https://community.sw.siemens.com/s/article/ac-and-dc-coupling-what-s-the-difference.
[Accessed: 17-Apr-2025]

[36] NXP Semiconductors, “PTN3363 Product data sheet,” Aug. 2014 [Online]. Available:

69

https://product.torexsemi.com/system/files/series/xc6210.pdf
https://www.ti.com/lit/ds/symlink/tlv755p.pdf
https://www.ti.com/lit/ds/symlink/tlv755p.pdf
https://www.ti.com/lit/ds/symlink/tlv755p.pdf
https://anycpu.org/forum/viewtopic.php?f=13&t=569#p4074
https://anycpu.org/forum/viewtopic.php?f=13&t=569#p4074
https://www.ti.com/lit/ds/symlink/sn74lxc8t245.pdf
https://www.ti.com/lit/ds/symlink/sn74lxc8t245.pdf
https://www.ti.com/lit/ds/symlink/sn74lxc8t245.pdf
https://www.mouser.ee/datasheet/2/916/74AXP4T245-2937302.pdf
https://www.mouser.ee/datasheet/2/916/74AXP4T245-2937302.pdf
https://www.mouser.ee/datasheet/2/916/74AXP4T245-2937302.pdf
https://www.mouser.ee/datasheet/2/916/74AXP4T245-2937302.pdf
https://assets.nexperia.com/documents/data-sheet/IP4251_52_53_54-TTL.pdf
https://assets.nexperia.com/documents/data-sheet/IP4251_52_53_54-TTL.pdf
https://assets.nexperia.com/documents/data-sheet/IP4251_52_53_54-TTL.pdf
https://www.mouser.ee/datasheet/2/198/62-65WV5128EALL-BLL-737464.pdf
https://www.mouser.ee/datasheet/2/198/62-65WV5128EALL-BLL-737464.pdf
https://www.mouser.ee/datasheet/2/198/62-65WV5128EALL-BLL-737464.pdf
https://www.mouser.ee/datasheet/2/198/62-65WV5128EALL-BLL-737464.pdf
https://www.drhdmi.eu/dictionary/edid.html
https://www.drhdmi.eu/dictionary/edid.html
https://connectedmag.com.au/clarifying-hdmi-bandwidth/
https://connectedmag.com.au/clarifying-hdmi-bandwidth/
https://tomverbeure.github.io/video_timings_calculator
https://tomverbeure.github.io/video_timings_calculator
https://ez.analog.com/cfs-file/__key/telligent-evolution-components-attachments/00-317-00-00-00-05-21-37/HDMISpecification13a.pdf
https://ez.analog.com/cfs-file/__key/telligent-evolution-components-attachments/00-317-00-00-00-05-21-37/HDMISpecification13a.pdf
https://ez.analog.com/cfs-file/__key/telligent-evolution-components-attachments/00-317-00-00-00-05-21-37/HDMISpecification13a.pdf
https://cdrdv2.intel.com/v1/dl/getContent/793150?fileName=ug_hdmi-683798-793150.pdf
https://cdrdv2.intel.com/v1/dl/getContent/793150?fileName=ug_hdmi-683798-793150.pdf
https://cdrdv2.intel.com/v1/dl/getContent/793150?fileName=ug_hdmi-683798-793150.pdf
https://www.ti.com/lit/an/slla263/slla263.pdf
https://www.ti.com/lit/an/slla263/slla263.pdf
https://www.ti.com/lit/an/slla263/slla263.pdf
https://www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/EI2/FPGA-RD-02139-1-6-HDMI-DVI-Video-Interface-Reference-Design.ashx?document_id=38351
https://www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/EI2/FPGA-RD-02139-1-6-HDMI-DVI-Video-Interface-Reference-Design.ashx?document_id=38351
https://www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/EI2/FPGA-RD-02139-1-6-HDMI-DVI-Video-Interface-Reference-Design.ashx?document_id=38351
https://www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/EI2/FPGA-RD-02139-1-6-HDMI-DVI-Video-Interface-Reference-Design.ashx?document_id=38351
https://www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/EI2/FPGA-RD-02139-1-6-HDMI-DVI-Video-Interface-Reference-Design.ashx?document_id=38351
https://www.ti.com/lit/ab/slaa840/slaa840.pdf
https://www.ti.com/lit/ab/slaa840/slaa840.pdf
https://community.sw.siemens.com/s/article/ac-and-dc-coupling-what-s-the-difference
https://community.sw.siemens.com/s/article/ac-and-dc-coupling-what-s-the-difference
https://community.sw.siemens.com/s/article/ac-and-dc-coupling-what-s-the-difference
https://community.sw.siemens.com/s/article/ac-and-dc-coupling-what-s-the-difference
https://www.nxp.com/docs/en/data-sheet/PTN3363.pdf

https://www.nxp.com/docs/en/data-sheet/PTN3363.pdf. [Accessed: 14-Apr-2025]
[37] Lattice Semiconductor, “Using Differential I/O(LVDS, Sub-LVDS)in iCE40 LP/HX

Devices,” no. TN1253, Jan. 2015 [Online]. Available:
http://www.latticesemi.com/~/media/LatticeSemi/Documents/ApplicationNotes/UZ/Usin
gDifferentialIOLVDSSubLVDSiniCE40Devices.pdf. [Accessed: 14-Apr-2025]

[38] “CCTV Tester with HDMI and VGA Input.” [Online]. Available:
https://vi.aliexpress.com/item/1005007046594345.html. [Accessed: 14-Apr-2025]

[39] “ Mouser Electronics.” [Online]. Available: https://www.mouser.ee. [Accessed:
15-Apr-2025]

[40] Altium LLC, “The electronic part search engine.” [Online]. Available:
https://octopart.com/. [Accessed: 15-Apr-2025]

[41] Texas Instruments, “TDP158 6Gbps, AC-Coupled to TMDS Level Shifter Redriver,” no.
SLLSEX2F, Apr. 2024 [Online]. Available: https://www.ti.com/lit/ds/symlink/tdp158.pdf.
[Accessed: 15-Apr-2025]

[42] Texas Instruments, “SN75DP129 Data Sheet,” no. SLAS583A, Mar. 2008 [Online].
Available: https://www.ti.com/lit/ds/symlink/sn75dp129.pdf. [Accessed: 15-Apr-2025]

[43] “SiI9022A/SiI9024A HDMI Transmitter,” Lattice Semiconductor, no. SiI-DS-1076-E.01,
Aug. 2016 [Online]. Available:
https://media.digikey.com/pdf/Data%20Sheets/Lattice%20PDFs/SiI9022A,24A_Aug-201
6.pdf. [Accessed: 14-Apr-2025]

[44] NXP B.V, “TDA19988 Product data sheet,” Jul. 2011 [Online]. Available:
https://www.mouser.com/datasheet/2/302/NXP_TDA19988-1189083.pdf. [Accessed:
14-Apr-2025]

[45] Texas Instruments, “TFP410 TI PanelBusTM Digital Transmitter,” no. SLDS145D, Feb.
2024 [Online]. Available: https://www.ti.com/lit/ds/symlink/tfp410.pdf. [Accessed:
18-Apr-2025]

[46] Silicon Image. Inc., “SiI164 PanelLink Transmitter Data Sheet,” no. SiI-DS-0021-E, Jun.
2005 [Online]. Available:
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/799/SiI_164_PanelLin
k_Trans_Jun2005.pdf. [Accessed: 14-Apr-2025]

[47] Analog Devices, Inc., “ADV7513 Data Sheet,” Nov. 2011 [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/ADV7513.pdf.
[Accessed: 15-Apr-2025]

[48] S. Puri, “Send video/audio over HDMI on an FPGA.” [Online]. Available:
https://github.com/hdl-util/hdmi. [Accessed: 18-Apr-2025]

[49] C. Svensson, “The Effect of CRTs on Pixel Art,” 2024. [Online]. Available:
https://datagubbe.se/crt/. [Accessed: 20-Apr-2025]

[50] N. Berry, “Pixel Scalers,” Dec-2013. [Online]. Available:
http://datagenetics.com/blog/december32013/index.html. [Accessed: 20-Apr-2025]

[51] J. Conejero, “Interpolation Algorithms in PixInsight.” [Online]. Available:
https://pixinsight.com/doc/docs/InterpolationAlgorithms/InterpolationAlgorithms.html.
[Accessed: 20-Apr-2025]

[52] Z. Asghar, R. Naeem, and N. K. Jarral, “Correlative analysis of different image scaling
algorithms in graphics,” Int. J. Adv. Res. Comput. Sci. Electron, vol. 6, pp. 6–10, 2017
[Online]. Available: https://api.semanticscholar.org/CorpusID:64363397. [Accessed:
20-Apr-2025]

[53] “Pixel-art scaling algorithms.” [Online]. Available:

70

https://www.nxp.com/docs/en/data-sheet/PTN3363.pdf
http://www.latticesemi.com/~/media/LatticeSemi/Documents/ApplicationNotes/UZ/UsingDifferentialIOLVDSSubLVDSiniCE40Devices.pdf
http://www.latticesemi.com/~/media/LatticeSemi/Documents/ApplicationNotes/UZ/UsingDifferentialIOLVDSSubLVDSiniCE40Devices.pdf
http://www.latticesemi.com/~/media/LatticeSemi/Documents/ApplicationNotes/UZ/UsingDifferentialIOLVDSSubLVDSiniCE40Devices.pdf
http://www.latticesemi.com/~/media/LatticeSemi/Documents/ApplicationNotes/UZ/UsingDifferentialIOLVDSSubLVDSiniCE40Devices.pdf
https://vi.aliexpress.com/item/1005007046594345.html
https://vi.aliexpress.com/item/1005007046594345.html
https://www.mouser.ee
https://www.mouser.ee
https://octopart.com/
https://octopart.com/
https://www.ti.com/lit/ds/symlink/tdp158.pdf
https://www.ti.com/lit/ds/symlink/tdp158.pdf
https://www.ti.com/lit/ds/symlink/tdp158.pdf
https://www.ti.com/lit/ds/symlink/sn75dp129.pdf
https://www.ti.com/lit/ds/symlink/sn75dp129.pdf
https://media.digikey.com/pdf/Data%20Sheets/Lattice%20PDFs/SiI9022A,24A_Aug-2016.pdf
https://media.digikey.com/pdf/Data%20Sheets/Lattice%20PDFs/SiI9022A,24A_Aug-2016.pdf
https://media.digikey.com/pdf/Data%20Sheets/Lattice%20PDFs/SiI9022A,24A_Aug-2016.pdf
https://media.digikey.com/pdf/Data%20Sheets/Lattice%20PDFs/SiI9022A,24A_Aug-2016.pdf
https://www.mouser.com/datasheet/2/302/NXP_TDA19988-1189083.pdf
https://www.mouser.com/datasheet/2/302/NXP_TDA19988-1189083.pdf
https://www.mouser.com/datasheet/2/302/NXP_TDA19988-1189083.pdf
https://www.ti.com/lit/ds/symlink/tfp410.pdf
https://www.ti.com/lit/ds/symlink/tfp410.pdf
https://www.ti.com/lit/ds/symlink/tfp410.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/799/SiI_164_PanelLink_Trans_Jun2005.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/799/SiI_164_PanelLink_Trans_Jun2005.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/799/SiI_164_PanelLink_Trans_Jun2005.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/799/SiI_164_PanelLink_Trans_Jun2005.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADV7513.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADV7513.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADV7513.pdf
https://github.com/hdl-util/hdmi
https://github.com/hdl-util/hdmi
https://datagubbe.se/crt/
https://datagubbe.se/crt/
http://datagenetics.com/blog/december32013/index.html
http://datagenetics.com/blog/december32013/index.html
https://pixinsight.com/doc/docs/InterpolationAlgorithms/InterpolationAlgorithms.html
https://pixinsight.com/doc/docs/InterpolationAlgorithms/InterpolationAlgorithms.html
https://pixinsight.com/doc/docs/InterpolationAlgorithms/InterpolationAlgorithms.html
https://api.semanticscholar.org/CorpusID:64363397
https://api.semanticscholar.org/CorpusID:64363397
https://api.semanticscholar.org/CorpusID:64363397
https://api.semanticscholar.org/CorpusID:64363397
https://en.wikipedia.org/wiki/Pixel-art_scaling_algorithms

https://en.wikipedia.org/wiki/Pixel-art_scaling_algorithms. [Accessed: 20-Apr-2025]
[54] “hqx (algorithm).” [Online]. Available: https://en.wikipedia.org/wiki/Hqx_(algorithm).

[Accessed: 20-Apr-2025]
[55] “Comparison gallery of image scaling algorithms.” [Online]. Available:

https://en.wikipedia.org/wiki/Comparison_gallery_of_image_scaling_algorithms.
[Accessed: 20-Apr-2025]

[56] M. Stepin, “hq2x Magnification Filter.” [Online]. Available:
https://web.archive.org/web/20131029012017/http://www.hiend3d.com/hq2x.html.
[Accessed: 22-Apr-2025]

[57] Drummyfish, Pixel-Art Scaling Comparison. 2018 [Online]. Available:
https://commons.wikimedia.org/wiki/File:Pixel-Art_Scaling_Comparison.png.
[Accessed: 22-Apr-2025]

[58] B. Costa, “hqx algorithms implementation.” [Online]. Available:
https://github.com/brunexgeek/hqx. [Accessed: 20-Apr-2025]

[59] C. Bœsch, “Butchering HQX scaling filters,” 21-Jun-2014. [Online]. Available:
https://blog.pkh.me/p/19-butchering-hqx-scaling-filters.html. [Accessed: 22-Apr-2025]

[60] T. Malche, “Edge Detection in Image Processing: An Introduction,” Roboflow Blog, Jun.
2024 [Online]. Available: https://roboflow.com/blog/edge-detection. [Accessed:
20-Apr-2025]

[61] L. Strigeus, “The world’s most compact HQ2X in Verilog?,” 01-Feb-2013. [Online].
Available:
https://fpganes.blogspot.com/2013/02/the-worlds-most-compact-hq2x-in-verilog.html.
[Accessed: 20-Apr-2025]

[62] L. Strigeus, “FPGA NES.” [Online]. Available:
https://github.com/strigeus/fpganes/blob/master/src/hq2x.v. [Accessed: 20-Apr-2025]

[63] YosysHQ GmbH, “Memory mapping.” [Online]. Available:
https://yosyshq.readthedocs.io/projects/yosys/en/0.33/CHAPTER_Memorymap.html#sim
ple-dual-port-sdp-memory-patterns. [Accessed: 21-Apr-2025]

[64] G. Stitt, “Optimizing Hardware For FPGAs,” 15-Aug-2024. [Online]. Available:
https://stitt-hub.com/optimizing-hardware-for-fpgas. [Accessed: 21-Apr-2025]

[65] E. Chan, “Petit FAT File System Module,” 2013. [Online]. Available:
https://elm-chan.org/fsw/ff/00index_p.html. [Accessed: 10-May-2025]

[66] E. Chan, “How to Use MMC/SDC,” 26-Dec-2019. [Online]. Available:
https://elm-chan.org/docs/mmc/mmc_e.html. [Accessed: 10-May-2025]

[67] “SNA snapshot format.” [Online]. Available:
https://worldofspectrum.net/zx-modules/fileformats/snaformat.html. [Accessed:
10-May-2025]

[68] Yamaha Corporation, “YM2149 SSG Data Sheet,” 1987. [Online]. Available:
https://www.ym2149.com/ym2149.pdf. [Accessed: 29-Apr-2025]

[69] E. Brindley, “AY vs YM sound IC differences,” 05-Apr-2018. [Online]. Available:
https://maidavale.org/blog/ay-ym-differences. [Accessed: 29-Apr-2025]

[70] O. Poncet, “About the AY-3-8910 and the YM2149,” 21-Sep-2023. [Online]. Available:
https://aym-js.emaxilde.net/about. [Accessed: 29-Apr-2025]

[71] MikeJ and A. Melnikov, “YM2149 verilog core,” 2005. [Online]. Available:
https://github.com/sorgelig/ZX_Spectrum-128K_MIST/blob/master/ym2149.sv.
[Accessed: 29-Apr-2025]

[72] J. Tejada, “JT49 FPGA Clone of YM2149.” [Online]. Available:

71

https://en.wikipedia.org/wiki/Pixel-art_scaling_algorithms
https://en.wikipedia.org/wiki/Hqx_(algorithm)
https://en.wikipedia.org/wiki/Hqx_(algorithm)
https://en.wikipedia.org/wiki/Comparison_gallery_of_image_scaling_algorithms
https://en.wikipedia.org/wiki/Comparison_gallery_of_image_scaling_algorithms
https://en.wikipedia.org/wiki/Comparison_gallery_of_image_scaling_algorithms
https://web.archive.org/web/20131029012017/http://www.hiend3d.com/hq2x.html
https://web.archive.org/web/20131029012017/http://www.hiend3d.com/hq2x.html
https://web.archive.org/web/20131029012017/http://www.hiend3d.com/hq2x.html
https://commons.wikimedia.org/wiki/File:Pixel-Art_Scaling_Comparison.png
https://commons.wikimedia.org/wiki/File:Pixel-Art_Scaling_Comparison.png
https://commons.wikimedia.org/wiki/File:Pixel-Art_Scaling_Comparison.png
https://github.com/brunexgeek/hqx
https://github.com/brunexgeek/hqx
https://blog.pkh.me/p/19-butchering-hqx-scaling-filters.html
https://blog.pkh.me/p/19-butchering-hqx-scaling-filters.html
https://roboflow.com/blog/edge-detection
https://roboflow.com/blog/edge-detection
https://roboflow.com/blog/edge-detection
https://fpganes.blogspot.com/2013/02/the-worlds-most-compact-hq2x-in-verilog.html
https://fpganes.blogspot.com/2013/02/the-worlds-most-compact-hq2x-in-verilog.html
https://fpganes.blogspot.com/2013/02/the-worlds-most-compact-hq2x-in-verilog.html
https://fpganes.blogspot.com/2013/02/the-worlds-most-compact-hq2x-in-verilog.html
https://github.com/strigeus/fpganes/blob/master/src/hq2x.v
https://github.com/strigeus/fpganes/blob/master/src/hq2x.v
https://yosyshq.readthedocs.io/projects/yosys/en/0.33/CHAPTER_Memorymap.html#simple-dual-port-sdp-memory-patterns
https://yosyshq.readthedocs.io/projects/yosys/en/0.33/CHAPTER_Memorymap.html#simple-dual-port-sdp-memory-patterns
https://yosyshq.readthedocs.io/projects/yosys/en/0.33/CHAPTER_Memorymap.html#simple-dual-port-sdp-memory-patterns
https://stitt-hub.com/optimizing-hardware-for-fpgas
https://stitt-hub.com/optimizing-hardware-for-fpgas
https://elm-chan.org/fsw/ff/00index_p.html
https://elm-chan.org/fsw/ff/00index_p.html
https://elm-chan.org/docs/mmc/mmc_e.html
https://elm-chan.org/docs/mmc/mmc_e.html
https://worldofspectrum.net/zx-modules/fileformats/snaformat.html
https://worldofspectrum.net/zx-modules/fileformats/snaformat.html
https://worldofspectrum.net/zx-modules/fileformats/snaformat.html
https://www.ym2149.com/ym2149.pdf
https://www.ym2149.com/ym2149.pdf
https://maidavale.org/blog/ay-ym-differences
https://maidavale.org/blog/ay-ym-differences
https://aym-js.emaxilde.net/about
https://aym-js.emaxilde.net/about
https://github.com/sorgelig/ZX_Spectrum-128K_MIST/blob/master/ym2149.sv
https://github.com/sorgelig/ZX_Spectrum-128K_MIST/blob/master/ym2149.sv
https://github.com/sorgelig/ZX_Spectrum-128K_MIST/blob/master/ym2149.sv
https://github.com/jotego/jt49

https://github.com/jotego/jt49. [Accessed: 29-Apr-2025]
[73] R. S. Walz, “AY-3-8912,” 1995. [Online]. Available:

https://web.archive.org/web/20241216035717/http://www.armory.com/~rstevew/Public/S
oundSynth/Novelty/AY3-8910/start.html. [Accessed: 29-Apr-2025]

[74] G. Hunter, “I2S Communication Protocol,” 05-Sep-2024. [Online]. Available:
https://blog.mbedded.ninja/electronics/communication-protocols/i2s-communication-prot
ocol/. [Accessed: 29-Apr-2025]

[75] Nordic Semiconductor ASA, “I2S — Inter-IC sound interface,” 12-Feb-2025. [Online].
Available: https://docs.nordicsemi.com/bundle/ps_nrf5340/page/i2s.html. [Accessed:
29-Apr-2025]

72

https://github.com/jotego/jt49
https://web.archive.org/web/20241216035717/http://www.armory.com/~rstevew/Public/SoundSynth/Novelty/AY3-8910/start.html
https://web.archive.org/web/20241216035717/http://www.armory.com/~rstevew/Public/SoundSynth/Novelty/AY3-8910/start.html
https://web.archive.org/web/20241216035717/http://www.armory.com/~rstevew/Public/SoundSynth/Novelty/AY3-8910/start.html
https://blog.mbedded.ninja/electronics/communication-protocols/i2s-communication-protocol/
https://blog.mbedded.ninja/electronics/communication-protocols/i2s-communication-protocol/
https://blog.mbedded.ninja/electronics/communication-protocols/i2s-communication-protocol/
https://docs.nordicsemi.com/bundle/ps_nrf5340/page/i2s.html
https://docs.nordicsemi.com/bundle/ps_nrf5340/page/i2s.html
https://docs.nordicsemi.com/bundle/ps_nrf5340/page/i2s.html

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Siim Salonen

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for

my thesis “From 8-Bit To Hdmi: Enhancing A Z80-Based Computer Using Fpga

Technology”, supervised by Tara Ghasempouri

1.1 to be reproduced for the purposes of preservation and electronic publication of the

graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

11.05.2025

1 The non-exclusive licence is not valid during the validity of access restriction indicated in
the student's application for restriction on access to the graduation thesis that has been
signed by the school's dean, except in case of the university's right to reproduce the thesis
for preservation purposes only. If a graduation thesis is based on the joint creative activity of
two or more persons and the co-author(s) has/have not granted, by the set deadline, the
student defending his/her graduation thesis consent to reproduce and publish the graduation
thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

73

Appendix 2 – Circuit diagram

74

75

76

Appendix 3 – PCB layout

77

Appendix 4 – 3D render of ZX Spectrum Add-On

78

	Author’s declaration of originality
	Abstract
	Annotatsioon
	List of abbreviations and terms
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Objectives
	1.2 Research Challenges
	1.3 Overview of Existing Video‑Output Add‑Ons

	2 Sinclair ZX Spectrum Architecture
	2.1 Core Architecture of the Sinclair ZX Spectrum
	2.2 Leningrad ZX Spectrum Clone Architecture
	2.3 TR-DOS and the 5.25-Inch Floppy Interface
	2.4 Comparison: Original ZX Spectrum vs. Leningrad Clone

	3 Hardware Design
	3.1 Power Supply
	3.1.1 3V Supply
	3.1.2 1.2V Supply

	3.2 FPGA
	3.3 Level Shifting
	3.4 HDMI Output
	3.5 SD-Card Interface and Protection
	3.6 Memory Expansion

	4 HDMI Output Implementation and Image Processing
	4.1 Signal Composition
	4.2 TMDS Algorithm
	4.2.1 Transition Minimization
	4.2.2 DC Balancing

	4.3 HDMI Chip Selection
	4.3.1 Clocking Scheme
	4.3.2 Integration with ZX Spectrum Core

	5 Pixel scaling
	5.1 Basic Interpolation Methods
	5.2 Pixel-Art Specific Algorithms
	5.3 Rationale for Algorithm Selection in this Project
	5.4 The hq2x Algorithm
	5.4.1 Core Logic: Neighborhood Analysis and Pattern Matching
	5.4.2 Edge Handling and Smoothing
	5.4.3 Color Comparison Implementation Detail (YUV vs. Simplified)

	5.5 Hardware Platform and Constraints: Lattice iCE40 HX4K
	5.5.1 Implications for Memory-Intensive Algorithms

	5.6 hq2x Implementation and Optimization on iCE40 HX4K
	5.6.1 Baseline fpganes hq2x Verilog Implementation
	5.6.2 Design changes and synthesis results
	5.6.3 Future Work: Optimizing Resource Usage via Line‑Buffer Migration

	6 SD Card Access
	6.1 FPGA Routing of Z80 I/O to SPI Signals
	6.2 SD Card Boot ROM and FAT Filesystem
	6.3 Snapshot Loading
	6.4 Summary

	7 AY-3-8912/YM2149 Sound Synthesis
	7.1 AY-3-8912 / YM2149 Programmable Sound Generator Architecture
	7.1.1 Functional Blocks
	7.1.2 Register Interface
	7.1.3 Sound Synthesis Methods

	7.2 YM2149 FPGA Core Implementation
	7.3 I2S Protocol
	7.4 Audio Processing Pipeline: From Sound Sources to HDMI
	7.5 Future Improvements in Audio Quality

	8 Conclusions and Future Work
	9 References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis1
	Appendix 2 – Circuit diagram
	Appendix 3 – PCB layout
	Appendix 4 – 3D render of ZX Spectrum Add-On

