
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Department of Software Science

Sergey Malyshev 153008IAPM

SIMPLIFYING A PROCESS OF BUILDING

COMPONENT-BASED PROGRESSIVE WEB

APPLICATIONS BY DEVELOPING A GUI

TOOLCHAIN FOR VUE.JS MVVM

FRAMEWORK

Master’s thesis

Supervisor: Martin Verrev

 MSE

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Sergei Malõšev 153008IAPM

KOMPONENTIDE PÕHISTE

PROGRESSIIVSETE WEB RAKENDUSTE

EHITAMISE PROTSESSI LIHTSUSTAMINE

ARENDADES GUI TÖÖVAHEND VUE.JS

MVVM RAAMISTIKU JAOKS

Magistritöö

Juhendaja: Martin Verrev

 MSE

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Sergey Malyshev

07.05.2018

4

Abstract

Popularity of web development contributes to active adaption of new standards and

technologies. One of those trending technologies is Progressive Web Apps (PWA) that

look and behave like native applications but are platform independent and portable.

MVVM GUI frameworks allow the creation of reusable components that can significantly

enhance development of said apps.

The aim of this thesis is to describe a workflow and develop tools that can considerably

simplify PWA development. The purpose is to optimize the component development

workflow using Vue.js MVVM framework as regardless of its widespread adoption it

lacks visual tooling.

During this thesis is developed a conceptual solution focusing on simplifying the existing

PWA creation workflow using Vue.js framework. It covers all steps that are required to

produce a complete PWA - component creation, component management, application

building from these components and adding PWA specific parts. The thesis covers both

theoretical background and concrete implementation. The theoretical part focuses on the

process and methodology of PWA creation using the said framework. In the practical part

the conceptual solution is implemented in the form of a prototype consisting of 2 parts –

the component creator and the application builder.

This thesis is written in English and is 106 pages long, including 11 chapters, 17 figures

and 24 tables.

5

Annotatsioon

Komponentide põhiste progressiivsete web rakenduste

ehitamise protsessi lihtsustamine arendades GUI töövahend

Vue.js MVVM raamistiku jaoks

Veebiarenduste populaarsus aitab kaasa uute standardite ja tehnoloogiate aktiivsele

kohandamisele. Üks neist tuntud tehnoloogiatest on Progressiivsed veebirakendused

(Progressive Web App - PWA), mis näevad välja ja käituvad nagu natiivsed rakendused,

kuid on platvormil sõltumatud ja kaasaskantavad. MVVM GUI raamistik võimaldab

korduvkasutatavate komponentide loomist mida saab palju aidata nimetatud rakenduste

arendamisega.

Selle töö eesmärk on kirjeldada töövoogu ja töötada välja vahendid mida saab tunduvalt

lihtsustada PWA arendamist. Eesmärgiks on komponentide põhiste arendamise töövoo

optimeerimine Vue.js MVVM raamistiku kasutades, sest sõltumata tema laialdasest

kasutamisest, temal puuduvad visuaalsed töövahendid.

Selle töö raames töötatakse välja kontseptuaalne lahendus, mis keskendub olemasoleva

PWA loomise töövoo lihtsustamises, kasutades Vue.js raamistikku. Ta katab kõik

sammud mida on vaja PWA tegemiseks - komponentide loomine, komponentide

haldamine, rakenduste ehitamine kasutades komponendid ja PWA spetsiifilised osad. See

töö hõlmab nii teoreetilisi tausta kui ka konkreetset realiseerimist. Teoreetiline osa

keskendub PWA protsessile ja metoodikale. Praktilises osas rakendatakse kontseptuaalset

lahendust prototüübi kujul, mis koosneb kahest osast - komponentide looja (component

creator) ja rakenduse ehitaja (application builder).

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 106 leheküljel, 11 peatükki, 17

joonist, 24 tabelit.

6

List of abbreviations and terms

PWA Progressive Web App: Regular web applications that look like

native applications and have some features of them.

RAIL Response, Animation, Idle, Load: A user-centric performance

model that consists of the listed actions.

DOM Document Object Model: API to manipulate a web page from

JavaScript.

UX User Experience: Person’s emotions and attitudes when he uses

a software.

GUI Graphical User Interface: An interface between a program and a

user where the user interacts with the program using graphical

elements like icons instead of writing text commands.

CSS Cascading Style Sheets: A language used to describe a

presentation of a web page.

HTML Hypertext Markup Language: A language that is used to create

web pages.

MVVM Model-View-ViewModel: A design pattern that facilitates a

separation of the GUI from the application logic.

JSX JavaScript Syntax Extension: An language extension widely

used in React framework.

OOP Object Oriented Programming: A data-centric programming

parading.

ES ECMAScript: A programming language (JavaScript is one of its

realizations).

UML Unified Modelling Language: A general purposed modelling

language widely used to visualize a design of software.

SPA Single Page Application: A web application that uses only one

web page to display all possible content instead of loading

additional pages.

JSON Java Script Object Notation: A text-based data exchange format

that has syntax similar with JavaScript object definition.

URL Universal Resource Locator: An unique identifier that is used to

reference resources in the web.

CASE Computer-Aided Software Engineering: A set of tools and

methods using software to assist with engineering tasks.

7

API Application Programming Interface: A set of rules or protocols

to define interconnection between various software.

CRUD Create, Read, Update, Delete: Acronym frequently used to

define a set of the listed operations.

HTTP(S) Hypertext Transfer Protocol (Secure): An application level

protocol that is used to exchange data in the web. The secure

version additionally uses SSL or TLS for traffic encryption.

8

Table of contents

1 Introduction ... 12

1.1 Locating the research area .. 12

1.2 Existing solutions ... 13

1.3 Problem statement .. 14

1.4 Problem relevance and research contribution ... 15

1.5 Research questions ... 16

1.6 Methodology ... 16

1.7 Thesis structure ... 17

2 Technology and concepts overview .. 19

2.1 Progressive Web App ... 19

2.2 Component-based responsive web design .. 21

2.3 MVVM and data binding .. 23

2.4 Vue.js .. 24

2.5 Definition of simplicity .. 27

3 Simplifying component creation ... 28

3.1 Overall structure ... 28

3.2 Template ... 29

3.3 Functions .. 30

3.4 ViewModel state ... 31

3.5 Two-way data binding .. 33

3.6 Preview ... 33

3.7 Evaluation ... 34

4 Simplifying application building ... 36

4.1 GUI layout .. 36

4.2 Component customization .. 40

4.3 Data exchange with components .. 40

4.4 Accessing from code .. 41

4.5 Global ViewModel of the application .. 41

4.6 Preview ... 42

9

4.7 Evaluation ... 43

5 Simplifying components management .. 46

5.1 Component library .. 46

5.2 Forking.. 47

5.3 Export ... 48

5.4 External files inclusion ... 48

5.5 Evaluation ... 49

6 Simplifying transformation to PWA ... 50

6.1 Service workers .. 50

6.2 Application manifest... 52

6.3 Installation .. 54

6.4 Evaluation ... 55

7 Implementation of the component creator ... 56

7.1 Requirements specification ... 57

7.2 Design ... 59

7.3 Implementation ... 68

8 Implementation of the application builder .. 73

8.1 Requirements specification ... 73

8.2 Design ... 76

8.3 Implementation ... 84

9 Server-side implementation ... 87

9.1 Remote component library ... 87

9.2 Installation .. 88

10 Evaluation and results .. 91

10.1 Analytical evaluation .. 91

10.2 Experimental testing ... 95

10.3 Future improvements .. 97

11 Summary .. 98

References .. 99

Appendix 1 – An code example generated by the component creator 101

Appendix 2 – An code example generated by the application builder 102

Appendix 3 – Source code of the prototype ... 106

10

List of figures

Figure 1. MV* patterns [13] ... 24

Figure 2. Data binding in Vue.js [14] ... 25

Figure 3. A Vue.js component example ... 29

Figure 4. A Vue.js templates example .. 30

Figure 5. A Bootstrap Grid example .. 37

Figure 6. Composition using layers .. 39

Figure 7. A service worker example ... 51

Figure 8. A web application manifest example .. 53

Figure 9. The GUI of the component creator ... 59

Figure 10. The main parts of the component creator .. 60

Figure 11. The component creator class diagram ... 61

Figure 12. The custom property syntax highlighting state machine 69

Figure 13. The GUI of the application builder ... 76

Figure 14. The main parts of the application builder ... 77

Figure 15. The application builder class diagram... 78

Figure 16. The PWA installation sequence diagram .. 90

Figure 17. Lighthouse audit results .. 97

11

List of tables

Table 1. Service workers browser support [9] .. 21

Table 2. Web application manifest support on mobile platforms [9] 21

Table 3. The definition of simplicity .. 27

Table 4. Component creation evaluation .. 35

Table 5. Application builder evaluation ... 45

Table 6. Components management evaluation ... 49

Table 7. Caching policies [21] .. 52

Table 8. Web application manifest fields ... 54

Table 9. PWA producing process evaluation ... 55

Table 10. Component creator requirements ... 58

Table 11. Description of component creator classes .. 68

Table 12. Used regular expressions (component creator) .. 70

Table 13. The local component library IndexedDB schema .. 70

Table 14. Browser storage limits [24] .. 70

Table 15. Application builder requirements ... 75

Table 16. Description of the application builder classes .. 84

Table 17. Used regular expressions (application builder) .. 85

Table 18. RemoteComponentLibrary methods .. 87

Table 19. Remote component library API .. 88

Table 20. Installation API request fields description ... 89

Table 21. Basic evaluation.. 91

Table 22. Conceptual vs real solution evaluation ... 94

Table 23. Simplified syntax examples .. 95

Table 24. An approximate hand written code fraction ... 96

12

1 Introduction

1.1 Locating the research area

When a developer starts his application development, he has to choose what platform to

use. He chooses between a native application or an application targeted to a virtual

platform. In the first case the developer will have full access to full functionality of the

platform directly but the application will work only on the concrete platform. If the

developer needs to use another one, then he must change all platform-dependent code. To

help with this severe portability issue he can use cross-platform libraries. This typically

results in additional code and size and still needs recompilation. In the second case the

application is not targeted to the concrete real platform, but a virtual one and as a result

can work without any changes on all platforms where this virtual platform exists. This

solution greatly increases portability. But when the developer needs to deliver his

application to an end user, the user needs to download it and also install the virtual

platform to run it what complicates a deployment process a little bit. On the other hand,

if you use the web technology, then the user does not have to install anything. Also web

applications are very portable and do not require a user to install anything. To satisfy user

needs browser developers actively add new features. As a result, web applications have

become as powerful as comparable desktop applications in some aspects. One good

example was Chrome OS [1]. Its approach is to run applications in the browser

environment. This gave start to the new type of web applications. These applications can

be used across multiple devices with multiple screens like desktop, tablets or mobile and

may work offline and be installed as native ones. Such applications are called progressive

web apps (PWA). Requirements to look and behave as an application but not as a web

site requires changes to the GUI (Graphical User Interface) design process. Typical GUI

of a web site consists of a number of block and inline elements. But these elements are

too low level, while GUI of an application consists of a standard set of high-level elements

(sometimes called widgets) such as menus, modal windows, toolbars, layout managers,

cards. There is a clear need to extend standard web technologies with possibilities to build

GUI using reusable components.

13

1.2 Existing solutions

There exist numerous frameworks and tools that assist with progressive web apps

building. Service workers, icons and manifest generators help to transform your

application into the progressive web application. There also exist platforms for website

building like WordPress (https://wordpress.com) that support PWAs or special builders

e.g. Appypie (https://www.appypie.com) targeted to PWAs construction. These tools are

meant for general public and not for developers focusing primarily on presentation.

For developers there exist numerous JavaScript frameworks for component-based GUI

development. Currently the most popular are React (https://reactjs.org), AngularJS

(https://angularjs.org) and Vue.js (https://vuejs.org) [2]. React defines components,

presentation and functionality in JavaScript. Running a React applications in a browser

requires transpiling and unlike AngularJS and Vue.js it does not have out of the box data

binding to power its MVVM (Model-View-ViewModel) approach. AngularJS is a

MVVM framework with a two-way data binding, but it has own drawbacks like backward

compatibility problems and complexity. It also uses TypeScript programming language

what is an additional requirement and slows down the learning [3]. And there comes

Vue.js. It is like a lightweight and simpler version of AngularJS. Vue.js can be placed to

the 3-rd place after React and AngularJS. It is also the newest framework out of them. It

was released in 2014 and it was called one of the most developing frameworks while

AngularJS’s popularity continues to fall. For example, AngularJS has about 60000 stars

on GitHub, React has 90000 and Vue.js has more than 80000.

Previously described frameworks do not deal with appearance and responsive web design.

Responsive means that the application has to display its content equally good on different

screens. For these purposes there exist CSS (Cascading Style Sheets) frameworks and the

most popular of them is Bootstrap (https://getbootstrap.com). It provides elegant

responsive layout using grid system powered by the flexbox layout solution. Flexbox by

itself is quite powerful, but Bootstrap’s grid system deals with different screen sizes using

break-points and provides a simpler and more clear solution using the rows and columns

abstraction.

There also exist graphical developing tools for these frameworks. While React being the

most mature and widely adopted has well supported tooling, Vue.js being the newest does

14

not have such tools. There exists a GUI component building tool for React named Structor

(https://github.com/ipselon/structor). It allows to create React components in a semi-

graphical environment using Bootstrap CSS framework. Structor runs as a web

application and is distributed via npm (package manager for node.js). Another example

is React Studio that allows to build React applications in a semi-graphical mode, but it is

accessible only on macOS.

1.3 Problem statement

As was shown before, there exist enough different frameworks for component-based web

applications building. But as a result you have to deal with syntax and concepts of these

frameworks and this requires additional learning and time. For example, you have to

know native web technologies like HTML (Hypertext Markup Language) and CSS and

in addition to them you have to know frameworks like Bootstrap and React. This means

that this approach is complex and can be simplified. On the other hand, high level content

management systems and site builders like WordPress do not provide enough control and

an interactive view model for programmers.

There exist people who want to focus only on the core functionality of their application

without dealing with the GUI part and get an interactive programming model of the

application GUI with minimum efforts. Example of these people can be a student who

wants to make an application for his non-trivial calculations and to use it on his computer

or a phone. Another example is a developer who wants to make a GUI prototype for future

development. These people are experienced in JavaScript, but not in the web GUI.

Nowadays JavaScript is widely used outside the browser thanks to technologies like

node.js [4]. But there still must be someone who deals with the GUI development and

develops components using all functionality provided by browsers and frameworks and

this part also can be simplified to assist these people. Maybe these people want to create

some specific components only to use them somewhere else, but the result of their work

can be shared to greatly assist other developers. Typically, simplification results in

functionality decrease and there is need to find balance between functional possibilities

and simplicity. The best balance can be achieved by responsibility sharing between

developers providing them with different levels of simplicity.

15

Simplification means not only to reduce a number of actions during component creation

and final application building, but it also requires a solution in interconnection between

these two processes. Another words, improvement also can be done in the components

management part to maximally simplify their reusability and provide separation of

component developers from final application developers providing them with different

levels of simplification.

In addition to this, PWAs have special concepts that are uncommon even for standard

website developers. These concepts are related to the requirement to work offline and

imitate native apps. To achieve maximal simplification workaround in this part also has

to be done.

To sum up, there is a need to develop a tool that will allow building component-based

responsive GUIs with minimum efforts but will provide enough programming level

interaction using view model powered by a data binding and an option to get more

customization possibilities at the cost of efforts. This tool must be a simple interface to

component-based GUI frameworks. Excellent candidate as a MVVM and data binding

provider is Vue.js because it is modern but very popular already. It is quite simple and

lightweight compared with other frameworks and it still does not have graphical building

tools for it. This tool requires ready components that must be created using more control.

In the component creation area trade-off between simplicity and functionality must be

done paying more attention to the functionality part. But as was said in the previous

paragraphs, simplification is required not only in the final application and component

building part, but also in the PWA-specific part and in the component-management part.

This means that a single tool is not enough. Problem solution requires development of a

small ecosystem or toolchain which will provide a simplified component and PWA

building approach with centralized management of these components.

1.4 Problem relevance and research contribution

Existence of a simple and fast but still powerful way of building component-based

progressive web apps and web user interfaces in general saves time for development and

decreases learning requirements. This results in development efficiency increasing and

money saving what is very important in the business area.

16

This thesis demonstrates efficiency improvements in the PWA development process

compared to traditional approaches using simplification methods developed in it and

conditions required for their effective use. The results of this thesis can be used in future

researches in the same area for development of new approaches or for improvement of

the existing ones.

1.5 Research questions

There are presented the main question of this master thesis with their direct sub-questions.

In the future these questions will be decomposed to more sub-questions.

Main: How to simplify process of the building component-based progressive web apps?

RQ-1: How to simplify the process of component creation?

RQ-2: How to simplify the process of the final application building?

RQ-3: How to organize components management?

RQ-4: How to get a working PWA with minimum efforts?

1.6 Methodology

This work consists of 2 parts: In the first part a conceptual solution for the stated problem

will be developed and in the second part this solution will be implemented in the form of

a prototype. The developing prototype is a method itself to solve the stated problems. Its

existence proofs that the stated problems are solved if its requirements were specified

based on the conceptual solution and were fulfilled. This is known as a “proof by

construction” in the Design Science Research [5]. The following part describes a

methodology used in this thesis to achieve the final result.

The first part of the work is fully dedicated to conceptual solution development for the

problems reflected in the research questions: component creation, final application

building, components management and PWA producing. To achieve the result, I shall:

1. Analyse the problem area and find the parts that can be simplified.

2. Attempt to improve them desiring improvement in simplicity.

17

3. Evaluate found solution using analytical methods.

The conceptual solution will be developed in the second step. The corresponding research

question will be decomposed into sub-questions and there will be made an attempt to find

answers to them. Some sub-questions can also be decomposed to smaller ones. Solutions

that will be developed for the parts found on the previous step answer these questions.

The third step analytically evaluates the found solution using the following questions: Is

it makes a development of component based apps simpler and how big is the difference?

What does it exchange for this simplification and how much? What are the optimal

conditions to use this artefact for its optimal performance? As the solution is not

implemented yet, evaluation contains approximate guesses only.

The second part of the work is fully dedicated to the implementation of the conceptual

solution developed in the first part. The conceptual solution will be mapped to the

requirements of the prototype. Based on these requirements will be selected tools for

implementation. Also design of the prototype in the form of UML (Unified Modelling

Language) diagrams will be developed based on them. After that the implementation by

itself will be done to produce a working prototype. The following steps represent

implementation part.:

1. Requirements specification

2. Design

3. Implementation

In the end of the implementation part will be conducted an additional evaluation phase

using experimental testing methods to measure quantitative properties of simplicity such

as amount of hand written code.

1.7 Thesis structure

The rest of the thesis is structured as follows. Chapter 2 provides an overview of the used

technologies. It contains information important to understand the rest of the thesis if a

reader is not familiar with the area of this thesis. Chapters 3, 4, 5 and 6 are related to the

18

conceptual solution development and evaluation. The chapter 3 is dedicated to

simplification in the area of component creation and the chapter 4 is dedicated to

simplification in the area of final application building using these components. The

chapter 5 is dedicated to solution that will connect the both: component creation and final

application building. Also it shows how to make components more usable. The chapter 6

is dedicated to final steps that will make an PWA from the application. Chapters 7, 8 and

9 are related to the implementation of the conceptual solution developed in the previous

chapters. Implementation of the component creation part is described in the chapter 7,

implementation of the final application building is described in the chapter 8. Chapter 9

contains description of the required remote server part. Chapter 10 contains final

evaluation and results description based on the implemented solution.

19

2 Technology and concepts overview

The following chapter contains an introduction into technologies and concepts important

to understand this thesis. It gives a brief introduction to PWAs, component-based design,

MVVM, data binding and Vue.js framework.

2.1 Progressive Web App

Progressive Web Applications or simply PWA is a special type of web applications

introduced by Google in 2015. The web application has to fulfil number of requirements

to be called a PWA [6].

 Reliable - Load instantly and never show the error screen, even in uncertain

network conditions.

 Fast - Respond quickly to user interactions with silky smooth animations and no

janky scrolling.

 Engaging - Feel like a natural application on the device, with an immersive user

experience.

The reliability requirement means that the application has to work even without the

internet. This requirement is fulfilled using service workers. Service workers is a special

type of web workers (scripts that can be run in a separate thread) that can handle network

requests and return the response without using the internet. This is done by caching results

of requests for subsequent access. When internet connection is enabled, then the response

can be fetched from the internet, but when it is disabled, then the response can be fetched

from the cache. This is extremely useful for static assets like stylesheets, html pages,

scripts and multimedia files. In addition to requests handling, service workers can add

such possibilities like push notifications and background synchronization [7].

The requirement to be fast relates to the performance and loading time. Google advises

to measure this using the RAIL (Response, Animation, Idle, Load) model. RAIL is a user-

centric performance model that breaks down the user's experience into 4 key actions [8]:

20

 Response: Complete a transition initiated by user input within 100ms. Users spend

the majority of their time waiting for sites to respond to their input, not waiting

for the sites to load.

 Animation: Produce each frame in an animation in 16ms or less and aim for visual

smoothness.

 Idle: Maximize idle time to increase the odds that the page responds to user input

within 50ms.

 Load: deliver content and become interactive in under 5 seconds.

Engaging means that PWAs are installable and live on the user's home screen, without

the need of the app store (place where users can get new applications). They offer an

immersive full screen experience with help from a web application manifest file and can

even re-engage users with web push notifications. This is done using a web application

manifest. The web application manifest allows developer to control how his application

appears and how it is launched. He can specify home screen icons, the page to load when

the application is launched, screen orientation, system GUI configuration. Installation

process is implemented using an installation banner what is shown when a user visits the

application for the first time. After clicking the banner, the application can be added into

the home screen. In contrast to the previous two requirements, engaging requires support

from the operating system. In early 2018 the best support was on Android. The latest

versions of this system supports a technology called WebAPK. WebAPK is a container

for PWA that provides it with native application behaviour.

PWAs is a quite new concept and this is important to define a degree of their support by

different browsers. The most important part is to support service workers because feature

to work offline is the most noticeable one that is not available for standard web

applications. For mobile devices this is also important to support web application

manifest to make the application look like the native one on mobile devices. The two

tables below show how modern browsers support PWAs (there is minimum version

number in the middle column). Using this info can be said that PWAs are ready for

widespread use.

21

Browser Version Released

Edge 17 No *

Firefox 44 Jan 27, 2016

Chrome 45 Sep 2, 2015

Safari 11.1 No *

Opera 32 Sep 17, 2015

Table 1. Service workers browser support [9]

Browser Version Released

Chrome (Android) 49 Mar 3, 2016

Safari (iOS) 11.1 No *

Table 2. Web application manifest support on mobile platforms [9]

* Stated version was still in development and was not released for production.

2.2 Component-based responsive web design

Today GUI of the majority of web applications is built from reusable components or

modules (sometimes are also called widgets). For example, on web pages you can find

such components nonstandard for the web like breadcrumbs, context menus, modal

windows. Nonstandard means that they do not have their dedicated representation in the

DOM (Document Object Model). A developer has to build these components using

standard DOM elements and write logic for them by himself. Of course writing all from

scratch gives maximal degree of freedom, but freedom and flexibility are not the same

things.

In his article Dennis Kardys says: “Freedom, as it pertains to the process of assembling

web pages, implies the ability to make decisions based on individual judgment. Concept

of freedom never seems to work in the best interests of the site. Freedom breeds design

decisions that are based on particular instances of content and context. On a small

22

sampling of pages, this might not be so bad. But as the number of uniquely art directed

pages increases, or as additional content producers begin to impose their stylistic

discretion, design standardization falls by the wayside. The result is pages that look good

on their own, but lack any sense of cohesion as a whole and end up negatively impacting

the site's user experience (UX).” [10]. Here is a list of problems that can take place if

developer uses the free form design [10]:

 Formatting that’s based on individual discretion rather than content structure leads

to the inconsistent application of styles.

 Style that’s applied to elements within the content, rather than controlled globally,

convolutes your content with inline HTML and CSS code. This can mess up how

content is reused across your site, how it is rendered across different screen sizes,

or how it can be adapted in the future.

 As the number of pages with custom layouts increases, the design appears more

haphazard. This negatively impacts the user’s navigational flow and can create

needless confusion.

“A flexible system, on the other hand, implies that a site has been designed with enough

foresight to handle diverse author needs and content requirements. Unlike tools that

empower content authors to design their own pages and layouts, flexible design systems

work by providing content authors with the ability to structure page content, select

modules from a library of reusable components, and apply metadata which provides

instructions for making dynamic content and template formatting decisions” [10].

Modularity is the key to developing of the flexible design system. To be modular system

must have interchangeable parts, and these parts are called components. In Web terms the

component is just a generic term for any pre-defined object that you intend to use across

multiple pages (this term also has another names like widgets or modules) [10].

Also modern GUI has to perform alternatively good on different devices. Another words

GUI has to adapt to different screens. This is called responsive web design. The main

challenge here is that a desktop computer screen and a mobile screen have a similar

resolution but very different physical sizes. This results in different dpi (dots per inch)

and hence content on mobile browsers looks unacceptably small. To overcome this

23

browsers provide the viewport that is smaller than the native one [11]. This helps with the

size, but on the other hand, after that elements do not fit in the browser window. This

problem is solved using media queries. Media queries specify CSS rules that can be

applied to the specific device types. A set of screens that is a target for a set of CSS rules

is called a breakpoint. Presently developers do not deal with the responsive design by

themselves and use one of the appropriate frameworks like Bootstrap.

2.3 MVVM and data binding

MV* patterns like MVC (Model-View-Controller), MVP (Model-View-Presenter) and

MVVM (Model-View-ViewModel) was created to improve scalability, reliability,

maintainability, code reusability and testability of applications [12]. The main idea of

them is to separate a Model (contains business logic) from a View (defines representation

for a user) using an intermediate component. These patterns are shown in the Figure 1. In

case of MVC the View renders the Model and sends user input events to the Controller

which calls methods of the Model. As a result, the View depends on the Model. In case

of MVP there is the Presenter instead of the Controller. The View renders data provided

by the Presenter and sends user input to it while the Presenter calls methods of the Model

and reads its data. Unlike MVC, in MVP the View and the Model are fully separated.

MVVM is quite similar with MVP. The main difference is that it adds an additional data

binding layer. Like a Presenter in MVP, a ViewModel in MVVM reads Model’s data and

calls its methods. Changes in the ViewModel are reflected in the View due to a data

binding layer. In case of one-way data binding user input events must be handled

manually. In case of two-way data binding changes in the View are reflected also in the

ViewModel without explicit events handling. Existence of a data binding layer decreases

complexity of the ViewModel layer comparing to the Presenter.

24

Figure 1. MV* patterns [13]

Data binding is a very important part of the MVVM pattern. It synchronizes the

ViewModel with the View. Data binding itself is a type of reactivity. Reactivity in

programming means that instead of assignment of static values of expressions to

variables, the variables get a real expression as is. And when components of this

expression are changed, then the value of the variable is also changed. There exist two

types of data binding: one-way and two-way. In case of the one-way data binding,

changes in the bound object are reflected when changes in the main object take place. But

this does not work in an opposite direction. In case of the two-way data binding changes

in both objects can be reflected in the another one.

2.4 Vue.js

Vue.js was chosen as a MVVM and data binding provider in this thesis. Vue.js or simply

Vue (pronounced /vjuː/, like view) is a progressive framework for building user

interfaces. Unlike other monolithic frameworks, Vue.js is designed from the ground up

to be incrementally adoptable. The core library is focused on the view layer only, and is

easy to pick up and integrate with other libraries or existing projects. On the other hand,

Vue.js is also perfectly capable of powering sophisticated Single-Page Applications

(SPAs) [14].

25

To provide MVVM Vue.js uses reactivity type based on the data binding. It uses ability

of the JavaScript to define properties. A property consists of a getter and a setter method.

It provides writing and reading as a variable, but these operations become calling of the

getter in case of reading and calling of the setter in case of writing. For parts of the

ViewModel Vue.js defines getter/setter pairs during the initialization phase. When

changes in the ViewModel take place the framework can be notified of them and it can

update its virtual DOM tree. The virtual DOM stores state of the Vue.js nodes that are not

valid DOM nodes. Synchronization between the DOM and the virtual DOM is

asynchronous relatively to changes in the virtual DOM. The virtual DOM accumulates

changes that can be written to the DOM afterwards. This process is shown in the Figure

2. Vue.js focuses on the one-way data binding, it synchronizes the DOM with the

ViewModel. To provide a reversed synchronization events can be used. An exception is

input field that is provided with the two-way data binding by Vue.js out of the box.

Figure 2. Data binding in Vue.js [14]

Vue.js by itself does not have support for such important PWA concepts like client-side

routing, centralized state management. But it provides official extensions: vue-router for

client-side routing and vuex for centralized state management. Client-side routing is a

core concept for single page applications (PWAs are also SPAs), it means to display

another content or another screen (another page in terms of the convenient routing)

26

without refreshing a browser. Centralized state management becomes important for large

scale applications when multiple pieces of state are scattered across many components

and interaction between them becomes complex [14].

In this paragraph is given a brief comparison with other 2 the most popular frameworks:

React and AngularJS. Both Vue.js and React utilize a virtual DOM, provide reactive and

composable components, maintain focus in the core library, with concerns such as routing

and global state management handled by companion libraries. React has notably larger

ecosystem that Vue.js because it is older and more popular, but Vue.js ecosystem also

continues to grow actively. Performance areas Vue.js can be better because it tracks

dependencies during its rendering process, so the system knows precisely which

components actually need to re-render when state changes. In contrast, in React when a

component’s state changes, it triggers the re-render of the entire component sub-tree,

starting at that component as root. In React, everything is just JavaScript. Not only are

HTML structures expressed via JSX (JavaScript Syntax Extension), a declarative XML-

like syntax that works within JavaScript. The recent trends also tend to put CSS

management inside JavaScript as well. Vue.js embraces classic web technologies and

builds on top of them. In React, all components express their UI within render functions

using JSX. In Vue.js, there are also render functions and even JSX support, however, the

most convenient way is to use templates. React is renowned for its steep learning curve.

Before you can really get started, you need to know about JSX and probably ES2015+

(ECMAScript 6 and higher). You also have to learn about build systems. On the other

hand, in case of Vue.js you only have to include a single script tag and then you can start

writing code. If compare AngularJS and Vue.js, then they have quite similar syntax.

AngularJS was an inspiration for Vue.js developers. When they were creating their

framework, they wanted to make it much simpler in terms of API and design. AngularJS

has strong opinions about how your applications should be structured, while Vue.js is a

more flexible, modular solution. AngularJS uses two-way binding between scopes, while

Vue.js enforces a one-way data flow between components. Vue.js has a clearer separation

between directives and components while in AngularJS directives do everything and

components are just a specific kind of directive. Vue.js has better performance and is

much, much easier to optimize because it doesn’t use dirty checking. Angular 2 (Formerly

known as Angular 2) has fixed some of drawbacks that was in AngularJS. It is deeply

integrated with TypeScript and requires using of it. It has noticeably better performance

27

that his predecessor and can compete with React and Vue.js. Vue.js is much less

opinionated than Angular 2, offering official support for a variety of build systems, with

no restrictions on how you structure your application. Also its learning curve is much

steeper. Both React and AngularJS have larger size than Vue.js [14].

2.5 Definition of simplicity

The main aim of this thesis is to simplify process of component-based PWA building

using Vue.js as a MVVM provider. But what this simplicity means? This word was

already used quite often and also will be used often in next chapters. To continue, it is

very important to define what simplicity means.

In his book John Maeda defines 10 laws of simplicity [15]. Some of them can be used to

define what is simplicity in this thesis. Their application is shown in the table below.

Law Application

Reduce: The simplest way to

achieve simplicity is through

thoughtful reduction.

Remove functionality that is not required often and focus on

functionality that developers require maximally often.

Organize: Organization

makes a system of many

appear fewer.

Help developers with the management of their assets. Allow

them to interact only with things that really affect the final

result hiding all the rest. Also allow them to focus on the

concrete part with possibility to hide all the rest and make

these parts easily accessible.

Time: Savings in time feel

like simplicity.

Increase development speed maximally reducing the number

of required actions. Development speed is inversely

proportional to time. And time depends on amount of

required code. As a result to increate development speed

automatic code generation must be used where it is possible.

Learn: Knowledge makes

everything simpler.

Decrease learning requirements needed to start using the

solution developed in this thesis. Replace some concepts

with more intuitive ones if it is possible.

Differences: Simplicity and

complexity need each other.

Find a compromise between simplicity and functionality.

The user of solution must not feel that he is severely

constrained in functional possibilities. Give a possibility to

achieve more functionality by the cost of simplicity.

Table 3. The definition of simplicity

28

3 Simplifying component creation

In this chapter will be developed a conceptual solution with the aim to the simplify

process of Vue.js components creation. The traditional way will be analysed to find the

parts that can be simplified. After that will be attempted to improve them orienting to the

improvement of simplicity. The developed solution will be evaluated using analytical

methods.

Research questions that will be answered in this chapter:

RQ-1: How to simplify the process of component creation?

RQ-1.1: How to simplify Vue.js concepts?

RQ-1.2: How to map between simplified concepts and the real world?

RQ-1.3: How to test the component?

3.1 Overall structure

Vue.js defines its ViewModel instance in the form of a JavaScript object. A component

itself is a special type of a Vue.js instance that was designed to be reusable. To be

available, the component must be registered globally or locally. The global registration

makes the component available everywhere while the local one makes it available only

within another component. Component has fields that represent its concepts. Example of

these fields are hooks, methods, computed, watch, data, template. Not all fields are

mandatory, but names of the fields are always the same. As a result, developer must write

always the same repetitive code. The amount of repetitive code depends on the

complexity (a number of used fields). Moreover, developer must know names of these

fields and signature of the value. The figure below shows code that illustrates repetitive

parts of the component.

29

Figure 3. A Vue.js component example

An obvious solution is to generate a skeleton of the component with component

registration code. Then the developer has to fill the gaps of the skeleton with his code.

There exist numerous code generators for Vue.js components like vue-generator

(https://github.com/hjeti/vue-generator). As this thesis is targeted to simplification this

leads to the question: What interface provide to the developer that will hide all

unimportant parts and will assure enough flexibility. Also it has to minimize the number

of actions to achieve the result.

The solution is to provide only labelled input fields where the developer will write his

code. These fields must be comfortable for writing programming or mark-up code

depending on the filed type. These fields must have basic properties of code editors like

syntax highlighting. For example, template field must provide syntax highlighting

suitable for HTML code while hook field must provide JavaScript syntax highlighting.

3.2 Template

A template defines appearance of Vue.js components and relates to the View part. After

processing it becomes a DOM node that will be shown to the user. The template supports

special Vue.js directives that are not part of the HTML and are ignored by browsers.

These directives are used for such things as list rendering, condition rendering, data

https://github.com/hjeti/vue-generator

30

bindings and code embedding. The template must have a root node, otherwise it cannot

be processed. These aspects require some knowledge from the developer and can become

the pitfalls for the new coming ones. The template can be styled with CSS, but as they

are embedded into the body of the document, the only one way to style them is to use

inline CSS. Inline CSS has some disadvantages like a requirement to apply it to every

element that must be styled and impossibility of styling pseudo-elements [16]. Vue.js also

introduces the concept of slots. This is a template that can be provided by a parent of the

component. Slots can have names and default values defined by the component. The

figure below shows the template code that illustrates some Vue.js directives and the child-

parent interaction using slots.

Figure 4. A Vue.js templates example

Template and slots both are pure code and it is very hard to simplify something there

without severe flexibility loss. But there are some things that still can be done here. Some

hints for Vue.js directives can be provided in the template’s editing field to help new

developers. Requirement to have a root component can be omitted by providing a default

one (more info in the next chapter). Also slots can be extracted from the template and

shown to the developer without a need to open the template editing field. The problem of

lack of inline CSS can be solved using a separate code field for it with an appropriate

code highlighting mode. This will also result in a better separation of concerns [17].

3.3 Functions

Vue.js uses functions for the following concepts: hooks, methods, computed properties

(computed field). Figure 3 has an example of these functions with an empty body. Hooks

31

are functions that are called by the framework during component’s lifetime. There are 4

of them: created, mounted, updated, destroyed. The number of methods and computed

properties can vary. Methods are very similar with computed properties. The difference

is that computed properties cache the result they return. All of 3 function types can emit

custom events to parent. Events are not declared explicitly and can be fired using the

$emit method of the component.

As in the case with templates hooks, methods and computed properties are pure code and

simplification will result in notable flexibility loss. As slots can be extracted from

templates, events can be extracted from hooks, methods and computed properties. This

will help developer to have a full idea about events that his component emits. Both

methods and computed properties can be created and removed. To assist these processes

and degrease amount of code editing they can be grouped into lists with the “add” and

“delete” buttons.

Another idea was to transform the concept of hooks into the concept of

constructor/destructor similar with the C++ OOP using the “created” hook as a

constructor and the “destroyed” hook as a destructor. This would be familiar for the

developers that know C++. But the number of those is not so big [18]. Moreover, this

requires to drop support of 2 hooks that could affect functional capabilities in some cases

like a possibility to react to virtual DOM changes. Based on these arguments this idea

was rejected.

Another rejected idea is to exclude computed properties as they can fully be replaced by

functions. Of course this will result in lack of caching possibilities, but functionality will

not be affected. A decision to reject this idea was made based on the requirement to

separate the concept of methods that change state of the component and the concept of

computed properties that produces non-trivial value based on the current state. Lack of

computed properties that behave like normal properties would affect readability.

3.4 ViewModel state

A source of data in the ViewModel of Vue.js are properties (the term of Vue.js) and data

fields. Both are serviced by the data binding provided by the framework. The difference

is that the property value comes from the parent component, while data represents inner

32

state of the component. As shows in the Figure 3, the data field is a function that returns

the real data object. This is not intuitive and can be another pitfall for unexperienced

developers. Properties allow type and default value specification, but do this in a clumsy

way. Vue.js also allows to define watchers for component data. They are functions that

are called when the data is changed.

Ultimate workaround here is to fully omit the data field and generate it automatically. But

how to decide what to put into it? The answer can be found in the ES6 (ECMAScript 6)

and Python class constructors. Class fields in these languages are not defined as a part of

class, but assigned inside a constructor. Using this approach, all methods, hooks and

computed properties can be searched for similar assignment syntax. After that the found

names can be used to generate a data field with initially undefined values. Using this

approach will free developer from knowing anything about the data field. It will have

reactive data using the familiar way.

As each data entry can have only one watcher, then a list of watchers can be created

automatically. This also solves the problem of visual data representation. There is no need

to create a separate list like in the case of events, all data entries will be displayed in the

list of watchers. As signatures of all watcher methods are the same, then they can be

generated automatically.

Another significant improvement can be done in the case of properties. In typed languages

like Java variables are defined as a type-name-value triplet. This approach can be used to

simplify definition of properties. A special input field with own highlighting mode can

be provided to specify properties in the type-name-value style that will be transformed

into native property syntax. The type and the value parts are not mandatory. The value

part is a default value of the property.

But can properties and data be merged together as they both represent a data source? This

would lead to more simplification. But this is impossible because the data field was

designed to represent the inner state of the component and to be changed by it, while

properties was designed to pass data from the parent component to his child and those

concepts cannot be mixed.

33

3.5 Two-way data binding

Vue.js provides only a one-way data binding out of the box. Only one exception from this

rule is the v-model directive that enables two-way data binding for input HTML nodes.

For arbitrary components this directive can also be used, but an event with appropriate

signature also must be fired when component state is changed. This approach handles

changes in the entire component state. This means that if only one variable in the

component state is changed, then the parameter of the event handler contains entirely new

component state anyway.

As was described before, properties are defined separately and must not be changed by

component itself. But in case of two-way data binding component wants to change them

and this would be intuitive. This can be done by analysing code for property assignments

and replacing these entries with event emitting. Instead of property assignment, a

temporary variable can be created and the result of the expression can be assigned to it.

After that an event can be emitted that contains the value of this temporary variable. In

contrast to v-bind directive this approach allows to bind parts of the component state

separately. To use this approach, the application builder that uses the component must

also support additional functionality that will be described in the next chapter.

3.6 Preview

In the traditional approach when there is need to test the component, a HTML page must

be created with an included Vue.js library, a simple body layout and the component itself.

Then this page must be opened in a browser. After making changes in its code, the page

must be refreshed to apply these changes.

These actions can be skipped if development and execution environments are the same.

As Vue.js is a JavaScript front-end framework then development must also take place in

the browser for the best result. When some parts of the component were changed then

processing of the changed parts can be triggered. The processing is different for different

parts. For example, changes in the template will result in update of the slot list, while

changes in methods will not. But how to decide when to trigger the update process? It is

obvious that to update preview after each code change is too expensive. But if editing

fields can be opened and closed, then the system will know when the developer has

34

finished editing and the preview can be updated. If there was an error in the code, then an

exception can be handled and the source of the error can be displayed in the preview

frame. Handlers can be added for both: Vue.js runtime errors and JavaScript syntax errors.

3.7 Evaluation

The next table contains the analytical evaluation of the developed conceptual solution for

the component creation simplification. The result column contains pros of the solution. It

can also contain cons. In this case the optimal conditions are given.

Solution Result

Generate component skeleton code

providing editing fields only for

required parts that define the View

and the ViewModel of the

component.

Pros: Amount of handwritten code decreases. The

developer focuses only on the required parts. Frees

developer from knowing the automatically generated

parts that reduces learning requirements and error

probability.

Cons: Some special features of the Vue.js like custom

directives become inaccessible.

Optimal conditions: The developer wants to focus

only on the component’s View and ViewModel using

only standard features of Vue.js.

Generate a root node of the template. Pros: Eliminates the mandatory requirement to have a

root node. Possibility to automatically adapt the root

node to use with a concrete layout solution.

Cons: Needs manual code editing in case of the intent

to use the generated component somewhere else.

Optimal conditions: Use the component creator in

tandem with the application builder developed in this

thesis.

Separate the style from the template. Pros: Possibility to use pseudo-elements. Better

separation of concerns and organization. Visually

more readable and easier to follow.

Provide a list of slots and events. Pros: Gives developer a clear idea what slots and

events component has without searching them inside

the code.

Group methods and computed

properties into list with

add/remove/edit possibilities.

Pros: Reduces amount of code editing actions that

must be taken to create or delete a function. Lists help

with organization.

35

Provide custom brief syntax for

property definition.

Pros: Provides a clearer and brief way to define

properties, as a result error probability and amount of

code decreases.

Cons: Cannot use custom validating functions

Optimal condition: There is no strict requirement to

filter parent input besides type control.

Generate the data field automatically

by analysing code of the component

for traditional class fields

initialization syntax.

Pros: Eliminates a mandatory requirement to

explicitly define the data field that reduces amount of

handwritten code, learning requirements, error

probability and pitfalls.

Automatically generate an editable

list of watchers for data entries.

Pros: Automatically synchronizes the list of watchers

with the data. No need to define watchers manually.

Generates watcher’s signature that reduces amount of

handwritten code and error probability.

Generate events in place where the

component changes its properties.

Pros: Allows to use two-way data binding without

writing events explicitly. This allows more brief,

intuitive and clear syntax.

Provide an automatically updating

preview with possibilities to show

errors and exceptions.

Pros: No need to write a html page and refresh the

browser after editing manually. Shows errors and

exceptions inside the preview without need to open

the console window.

Table 4. Component creation evaluation

36

4 Simplifying application building

In this chapter will be developed a conceptual solution with the aim to simplify the

process of final application building. The traditional way will be analysed to figure out

how to improve this process orienting to the improvement of simplicity. The developed

solution will be evaluated using analytical methods.

Research questions that will be answered in this chapter:

RQ-2: How to simplify the process of the final application building?

RQ-2.1: How to simplify a GUI layout?

RQ-2.2: How to provide different SPA screens?

RQ-2.3: How to make a GUI responsive with minimum efforts?

RQ-2.4: How to simplify interaction between the application and its components?

RQ-2.5: How to customize components?

RQ-2.6: How to simplify the ViewModel of the application?

RQ-2.7: How to test the application?

4.1 GUI layout

Web browsers provide reach possibilities to a define layout of GUI elements. Typically,

it is not enough to define layout using HTML only and additionally requires application

of CSS styles. But these reach possibilities typically result in frustration for new

developers as there exist different ways to achieve same results. One example is the

display property that changes standard behaviour of the styled element and can make

inline elements from block and vice versa. There exist GUI frameworks that use own

abstraction to provide one understandable way to handle GUI layout of the application.

The most popular and considered as the best [19] of those frameworks is Bootstrap. It

uses rows and columns abstraction by applying appropriate CSS classes. Developer uses

a top level container where it puts rows. The row uses entire parent’s width. The row can

contain up to 12 columns. Columns has discrete size (in 1/12 of parent width) and contain

37

content or other rows. This system is named Bootstrap Grid. In addition to this, Bootstrap

grid allows such features as alignment, column offsets and custom column order. Another

benefit of using Bootstrap Grid is that it has multiple variants of each class for different

breakpoints to make layout responsive. The Figure 5 shows a layout example using

Bootstrap Grid with 3 rows and columns targeted for different breakpoints. But still the

developer has to edit HTML code manually as Bootstrap Grid provides only a set of CSS

classes. Also styling with classes is not as intuitive as styling with properties. Another

problem is that Bootstrap Grid deals only with “flat” GUI layouts. This means that it

works inside one screen (in SPA terms) and does not deal with a stack of these screens

what is important if a HTML page contains multiple screens of the same application (what

SPAs typically are).

Figure 5. A Bootstrap Grid example

The figure above demonstrates that Bootstrap Grid can be easily visualized using

rectangles that represent column content. This visualization is also very clear and easy to

understand. Then it is excellent starting point to make GUI layout builder. This

visualization can be made interactive by adding possibilities to add, edit or remove

content. Another words, GUI layout building can be organized entirely in the graphical

way.

As Vue.js components have a root element, then this element can be used to make the

component compatible with the previously described Bootstrap Grid system. To do so,

this root element must have classes that will make a Bootstrap Grid column from it. It has

to have properties that define its width and offset in columns, order and alignment. These

properties define layout of the application and do not have to be reactive. To correspond

38

Bootstrap Grid framework these properties must be converted into appropriate classes

using code generation.

To deal with the responsive layout requirement there is need to provide multiple sets of

the previously described layout properties. Bootstrap Grid has 5 breakpoints that can be

a little overheating. We typically talk about desktop and mobile apps. This requires to use

only 2 breakpoints that is entirely suits for this thesis as it focuses on simplification. But

then what maximum screen width (actually viewport width) the device has to have to be

treated as a mobile one? Things are quite clear for smartphones and desktop screens, but

tricky for tablets [20]. Instead of forcing developer to use predefined value this can be

provided by himself. But on the other hand he obviously wants to support all devices and

do not know this answer also. The simplest decision is to use the same breakpoints as

Bootstrap uses.

Requirement to embed rows inside another rows means that rows must have similar layout

parameters as components. Another words, they also have to be a type of Bootstrap Grid

column by themselves and can be treated as a predefined type of Vue.js component. A

top level Bootstrap Grid element is a container. Container contains rows and rows contain

columns. Container cannot contain columns directly. Bootstrap Grid has 2 types of

containers. The standard container has discrete and constrained width while the fluid one

expands smoothly and uses all available width. The fluid container better suits for web

applications as it uses available width more effectively.

By far was described a layout that was called a “flat” one. But what to do if there is need

to make a modal window or provide a fixed menu? Another example is multiple screens

of SPA where only one of them has to be shown to a user. These examples need a set of

containers with different display properties. Modals and fixed menu must be displayed as

fixed while screens must allow to scroll their content. To deal with this requirement can

be used the layer abstraction. This abstraction is quite familiar from graphical editors like

Gimp and Photoshop. The main idea is to provide another custom abstraction term called

layer to the existing row and column terms. The layer is a container for Bootstrap Grid

system that makes it a holder for entire Bootstrap Grid layout. Layer can be fixed (position

is relative to the viewport) or absolute (position is relative to the document). The figure

below demonstrates GUI composed from 3 layers: fixed menu, content and modal

window.

39

Figure 6. Composition using layers

Possibility to enable/disable layers is very important for SPAs. Each screen of the SPA

can be putted to a separate layer and routing can be made via showing/hiding these layers.

Alternative possibility is also important for rows and components to show/hide parts of

the GUI. This can be made using conditional rendering provided by Vue.js. This requires

that layers locate inside Vue.js scope. A reactive display property can be provided to the

developer that will be transformed into the Vue.js conditional rendering under the hood.

To sum up, the entire process of the final application building can be done in the following

way: The developer adds layers by clicking “add” button and giving them a name. Then

it can select a layer and add some rows to it also by clicking “add” button and giving a

name for future referencing from the code. Similarly, components or other rows can be

added into the selected row. Selected elements (layers, rows, components) can be

removed by clicking “delete” button or selected for editing. This building process creates

component hierarchy that can be processed by code generators to create the resulting

application.

40

4.2 Component customization

The only one traditional way to customize a component in Vue.js is to use slots. They

allow parent to define part of the component’s template. If parent does not specify slot

content, then a default one will be used that was defined inside the child. The developer

has to know the name of the slot and its syntax to effectively use it. He also cannot use

CSS style to customize the component as Vue.js template supports only inline styling as

was shown in the previous chapter.

A style problem can be solved by providing the developer with a style editing input field

with CSS-oriented syntax highlighting. By default, it loads style provided by the

component developer. But style in these fields uses class selectors that makes impossible

to apply unique style to the concrete component instance. This can be solved using code

generation by providing CSS id for each component instance and use compound id-class

CSS selectors.

The slot workaround is to provide a list of all declared slots to free a developer from

explicitly knowing them. The developer can simply click a needed one and edit it in a

HTML-oriented editing field. Similar with styles, this field loads the slot content provided

by the component developer as a starting point for future customization by default.

4.3 Data exchange with components

The main way to pass the data into the component is to use properties. This binds parent’s

ViewModel with the component forcing it dynamically display parent’s ViewModel

changes. Events are the main way to get the data from the component. They are the key

for two-way data binding. In traditional way, to bind the data to the property or to bind

the event handler (function) to the event, the developer needs to use appropriate vue.js

directives as a component’s attribute. This requires the knowledge of all methods and

events that the component has.

The solution that was developed in the previous chapter allows to define property types.

To assist the developer, he can be provided with the list of all properties with their types.

As only the data field can be bound, then there is no need to additionally define something.

The developer can simply select from a drop-down list what data of the parent

ViewModel bind to it.

41

In the case of two-way data bound properties that was described in the previous chapter

an event handler can be generated to react to their changes. This event handler simply

assigns the value that is given by its argument to the appropriate data field.

The situation with events can be handled analogically. The developer can be provided

with a list of events. Then he can simply select which method to use as the event handler

for concrete event. But this can be simplified even more. Event handlers can be provided

with correct syntax beforehand and the only one thing the developer has to do is to fill

the event handler with his code.

4.4 Accessing from code

Sometimes the component must be accessed from code. Example of this situation is when

there is need to use its functions such as methods or computed properties. And again, to

use them effectively the developer must know them. Moreover, Vue.js does not provide

simple children access from the parent. It provides the $refs property that allows to access

children by the name explicitly specified as a special component attribute. This can be

quite unintuitive and uncomfortable for new developers.

There was discussed the requirement to have an id to use dedicated style for the concrete

component instance. This requires to give the names for all component instances. This

name can be used as a name in the $refs property. Moreover, accessing to the children

components can be organized by creating appropriate fields in the ViewModel. The

names of these fields can be the same as the names in the $refs property. This can be done

by dynamically assigning values from the $refs property to the ViewModel during

component creation. This will allow accessing children without dealing with the $refs

stuff.

4.5 Global ViewModel of the application

Vue.js can provide a ViewModel for the component or simply for the arbitrary HTML

node. There is no much difference between these two cases. The only one difference is

that in the case of the root ViewModel there is no need to communicate with the parent.

This reduces number of Vue.js concepts that can be affected in this case. Also template

is generated automatically and as a result only function-like concepts are left.

42

To get maximum from the Vue.js data binding, the root HTML node must be the node

that contains all other components. This is a parent node for all layers and the

corresponding ViewModel relates to the whole application. This global ViewModel is a

single source of data for all components of the entire application. The global ViewModel

can have only function-like concepts such as hooks, methods, computed and watchers.

They can be simplified exactly the same way as in the case with single component

described in the previous chapter. These simplifications include: skeleton code

generation; data field generation; assisting with grouping, functions creation and deletion.

4.6 Preview

In the traditional approach, the final application is tested in the browser. After making

changes the browser must be refreshed to display these changes. Also browser shows only

the final app, without simplified and clear layout view where location of all elements is

very clear.

As was shown in the previous chapter, if development and execution environments are

the same then this gives additional capabilities. As Vue.js is a JavaScript front-end

framework, then development must also take place in the browser for the best result. So

far there was described the simplified view of the application layout that shows what

layers, rows and components the application has. This view can be made more

demonstrative if it will use Bootstrap Grid by itself to correctly match layout properties.

Instead of the real components it can show only the names of them. As a result, it can

correctly show width, offset, alignment and order properties. As a height placeholder a

configurable fixed value can be used. Layers can be displayed as tabs. By clicking this

tab, the layer can be selected and the content of the tab view can be updated to show the

content of the selected layer.

The previously described simplified view does not need code generation and can be used

after each layout change. But it does nod display the final application as is. To display the

final result, iframe can be used as an additional preview to render this result. But this

requires heavy processing and hence cannot be used after each change. It can be triggered

by simply pressing a “refresh” button. Additional iframe can be used to represent a mobile

screen.

43

4.7 Evaluation

The next table contains the analytical evaluation of the developed conceptual solution for

application building simplification. The result column contains pros of the solution. It can

also contain cons. In this case the optimal conditions are given.

Solution Result

Provide an interactive layout view

consisting of tabs (layers) , rows and

columns (other rows or components)

with possibilities to add/delete rows

and add/delete components.

Pros: Easy and intuitive Bootstrap Grid layout

composition without code writing

Cons: Layout possibilities are limited by the

Bootstrap Grid layout system.

Optimal conditions: There is no requirement to use a

complex and highly configurable layout.

Provide layout properties such as

width, offset, order and align for

rows and components.

Pros: Configure Bootstrap Grid layout system using

only dropdowns without code writing.

Cons: Layout possibilities are limited by the

Bootstrap Grid layout system.

Optimal conditions: There is no requirement to use a

complex and highly configurable layout.

Use 2 sets of layout properties: for

the desktop and for the mobile.

Pros: Possibility to use one layout for the desktop and

another one for the mobile using only grid layout

parameters without creating another view hierarchy.

No need to write code.

Cons: Only 2 breakpoints.

Optimal conditions: Application does not have

special layout requirements for intermediate devices

such as tablets.

Extend the standard grid with the

layers abstraction.

Pros: Uses very straightforward concept of layers.

Layers abstraction allows using widgets with fixed

positions like fixed menus and modal windows. It

also allows using multiple SPA screens what is

important for client side routing. They can be used

entirely in the graphical mode without code writing.

Cons: Very simple concept, can only be used as a

direct layout layer under a root (rows cannot contain

layers).

Optimal conditions: There is no requirement to use

complex and highly configurable layout.

44

Provide layers, rows and

components with the reactive display

property.

Pros: Developer can dynamically control visibility of

any layer, row or component without explicit

definition of this functionality. Frees developer from

alternative code writing.

Cons: Cannot use animation.

Optimal conditions: No special animation

requirements.

Provide a separate style editing field. Pros: Possibility to use pseudo-elements. Better

separation of concerns. Visually more readable and

easier to follow. Can style every component instance

without explicit id.

Provide a list of slots with the

possibility to edit them.

Pros: The developer has a clear picture about

component slots and their default content. He can use

the default content as a starting point for

customization and focus on it without dealing with

the enclosing slot syntax.

Show properties with additional info

such as type. Bind data by simply

selecting it from a drop down list.

Pros: Provides the developer with more info about

properties and frees him entirely from code writing.

Allows two-way data binding.

Automatically generate empty event

handlers and show a list of them.

Pros: The developer has a clear picture about

component events and focuses only on the handler

body. This reduces amount of hand-written code and

error probability.

Cons: Cannot use the same handler for different

events without code duplication.

Optimal conditions: All events require dedicated

event handlers.

Inject children components directly

into the parent’s ViewModel using

the name of the component instance

as a field name.

Pros: More convenient and intuitive way to access

components without dealing with the specific Vue.js

syntax. As a result, error probability also decreases.

Show a list of component’s methods

and computed properties.

Pros: Gives the developer a clear picture about what

component’s methods and computed properties he

can use in his code.

Use a global application ViewModel

with hooks, methods, computed and

watchers. Handle these concepts as

was described in the previous

chapter.

Pros: The global ViewModel acts like a centralized

data store for the whole application. Hooks, methods,

computed and watchers were discussed in the

previous chapter and hence related result can be

found in the Table 4.

45

Use double preview mode: The

automatically updating interactive

layout preview and the manually

updating final preview.

Pros: The developer has a clear idea about his

application layout without additional actions. If he

wants to see the final result the only one action he

needs is to press the “update” button.

Table 5. Application builder evaluation

46

5 Simplifying components management

In this chapter will be developed a conceptual solution with the aim to simplify the

process of components management. Components management connects the processes of

component creation and the final application building and its existence is required for

proper functionality of them. Also the traditional way will be analysed to figure out how

to organize this process orienting to simplicity. The developed solution will be evaluated

using analytical methods.

Research questions that will be answered in this chapter:

RQ-3: How to organize components management?

RQ-3.1: How to make components reusable?

RQ-3.2: How to reduce redundancy in case of similar components?

RQ-3.3: How to make components usable in the another environment?

5.1 Component library

In the standard approach, Vue.js components are objects defined in JavaScript files. Using

bundlers like Webpack (https://webpack.js.org/) with appropriate loaders help to store

style and template separately in the same file. This simply a text file and it can be edited

in every text editor. To share work with other developers, standard tools like version

control systems or package managers can be used. Integrated development runtimes assist

with these actions. As was said before, the best results can be achieved when the

development environment and the execution environment are the same. But browsers do

not allow to access the file system. Also the simplified approach described in the previous

chapters needs storing additional metadata that is not a part of standard Vue.js

components.

A browser application does not have access to the file system, but they still can save

information to the non-volatile memory. During the component creation described in the

chapter 3 the developer produces numerous text entities that are processed to extract

additional information that helps with the development process. Example of this

47

information is the list of events. During component editing changes in code are tracked

to keep this list in the actual state. The same metadata is also needed during the application

building phase. One option is to save component without this additional information by

keeping content of the text fields and reprocessing it again during component loading.

Another option is to save with this information. The first option requires a little bit more

computation while the second requires a little bit more space. This can be done locally or

remotely. Storing locally do not require the internet connection while storing remotely

allows accessing from multiple devices and as a result it allows multiple developers to

cooperate. But a more flexible option is to use a hybrid approach with the possibility to

choose between the local storage or the remote one.

The loading/storing process can be done in following way. After editing the developer

clicks the “save” button, enters the component’s name and selects where to save it (locally

or remotely). The system uses the entered name as an identifier. To load the component,

the developer clicks the “open” button and selects the component from a list. The list can

allow searching and grouping local and remote components for better usability. During

the application building phase the developer selects components to use from the same list.

This approach can be named as the component library

5.2 Forking

Sometimes the developer wants to create a component based on another component.

Similar concepts are called inheritance in OOP or forking in the UNIX world. Maybe the

developer wants to change the component template and some methods only. One option

is to make a copy of the component and edit its needed parts only. Another option is to

use the concept of Vue.js called mixins. Mixins allow to specify components that will be

used as parent components. The framework simply copies fields from these component

into the current one. Mixins help with code redundancy and readability in case of standard

approach but require knowledge of additional syntax.

The graphical approach with possibility to hide unneeded parts that was described before

helps with readability and in addition to this gives more info about component parts such

as methods and computed properties. Inheritance or forking can be done by simply

opening and saving with another name. But this requires developer to invent a naming

convention for child components and additional actions. Instead of this, the component

48

can be opened in the forked mode. This mode makes a copy of the component and

memorizes the original one. After that the developer can make its changes without

changing the original component and inheritance chain will be tracked.

5.3 Export

Using the traditional approach developers create component directly for the browser or

for the concrete building system like Webpack. In the first case the created component

can be used directly in the browser. In the second case the component file has more

comfortable structure but has to be processed by the building system. Syntax of files in

these cases is different and requires changes to transform one to another.

Saving and loading that was described before work with the special component structure.

But what if the developer wants to use created component outside the developing building

tool? This requires to generate standard Vue.js component code and allow the developer

to download this code. Different exporters can be created to provide different results for

different targets. For example, code can be generated for standard ES6 module syntax (.js

file extension) to use in browsers, or for Webpack’s Vue.js loader (.vue file extension).

5.4 External files inclusion

Very often developers use side libraries in their project instead of writing own

implementations. These libraries can also include CSS styles. In the standard approach to

include an external JavaScript file the developer has to specify a script tag. To include a

CSS file he has to specify a link tag.

The solution developed in this thesis allows to write both CSS styles and JavaScript

scripts but for now it does not allow to include external assets. An example of these assets

can be the Model part of the application that was already developed by other developers.

To maximally reduce amount of hand written code the developer can be provided with an

input field where it can write a list of URLs of needed assets. But how to distinguish

different asset types? This can be done by analysing file extension of the URL. But if the

URL does not contain a file extension then a request can be made to analyse the mime

type of the response.

49

5.5 Evaluation

The next table contains the analytical evaluation of the developed conceptual solution for

components management simplification. The result column contains pros of the solution.

It can also contain cons. In this case the optimal conditions are given.

Solution Result

Provide the developer with the

component library where he can

save his components and open them

for editing or using in future.

Pros: The developer always has an easy-accessible

list of components and can use/open/save them “in

one click”.

Provide a checkbox for storing the

component remotely on the server.

Display a list of remote components

along with the local component

library.

Pros: Allows multiple developers to share their

component libraries. This makes components

accessible from multiple devices and helps with

responsibility sharing among developers. This

simplifies work of the single developer as he can

focus only on his part.

Cons: All shared components are accessible to

everyone.

Optimal conditions: All users of the remote

component library are trusted.

Possibility to fork (extend or inherit)

components.

Pros: Components can be developed based on other

components what decreases redundancy. Mixins

functionality of Vue.js without writing additional

lines of code.

Cons: Cannot use multiple inheritance (when the

component has more than one direct parent).

Optimal conditions: Child component is never based

on more than one parent component.

Possibility to export into text files in

different formats.

Pros: The created component can be used outside the

developing ecosystem that increases the application

area.

Possibility to include external assets

by specifying URLs only.

Pros: Allows to use already written assets without

writing HTML tags explicitly.

Table 6. Components management evaluation

50

6 Simplifying transformation to PWA

In this chapter will be developed a conceptual solution with the aim to simplify the final

step of the PWA building. This chapter focuses on parts specific for PWAs. The

traditional way will be analysed to figure out how to improve this process orienting to the

improvement of simplicity. The developed solution will be evaluated using analytical

methods.

Research questions that will be answered in this chapter:

RQ-4: How to get a working PWA with minimum efforts?

RQ-4.1: How to satisfy requirements to work offline with minimum efforts?

RQ-4.2: How to configure the application with minimum efforts?

RQ-4.3: How to install the application?

6.1 Service workers

The key to work offline are service workers. They are JavaScript files where the developer

uses cache API to store assets that need to be accessible offline. He also specifies how to

handle requests: load a response from the cache or send a request to the internet using

fetch API. It can also cache server responses. Both fetch API and cache API actively use

the ES6 asynchronous programming concept called Promises that allows chain handlers

instead of nesting them one into another. The Figure 7 shows an example of service

worker where 4 assets are cached during its initialization that takes place during the first

application execution. The “activate” event is fired when the service worker is updating.

In this handler the developer can clear old caches. The “fetch” event is fired when the

application makes a server request. In the Figure 7 the browser tries to find a response in

the cache first, then it makes a request to the server if there is no cached response. When

the server returns the response, then the browser caches it. Promise syntax can be quite

tricky for unexperienced developers. In addition to its definition that must be in separate

file, a service worker must be included in the HTML page and explicitly registered in

JavaScript. If the developer simply wants to make some assets available offline then

manually writing a service worker can result in too much additional work.

51

Figure 7. A service worker example

The main purpose of Service Workers is to allow the application to work offline by

caching network responses. The main candidates for caching are static assets. The

solution that is described in this thesis allows to define required assets like JavaScript

libraries and CSS styles. This means that potential content of the cache is already known

and does not require additional actions from the developer at all. Service workers and

initialization code can be generated entirely. The only one question is what caching policy

to use. The table below shows a list with possible caching policies.

Policy Description

Cache only. Searches only in the cache without using the network,

good for static assets like scripts and stylesheets.

52

Network only. Does not use the cache, good for dynamic data

provided by the server.

Cache falling back to the network. Searches first in the cache. If the result is found then

returns it, else makes a network request.

Cache falling back to the network

with cache update.

Like previous, but also caches the result of the sent

network request.

Network falling back to the cache. Makes a network request first. If there is no internet

connection, then searches in the cache.

Table 7. Caching policies [21]

We want to cache all static assets, then the “network only” policy does not suit. “Cache

only policy” also does not suit because it makes impossible to communicate with the

server that makes impossible to develop online applications. Both “cache falling back to

the network” and “network falling back to the cache” policies suit because they allow to

provide responses online and offline. But we know what assets are static and must be

retrieved from the cache, then the “cache falling back to the network” is more preferable.

6.2 Application manifest

The web application manifest is a simple JavaScript file in JSON (Java Script Object

Notation) format. Unlike service workers that must be enabled in JavaScript, manifest

must be enabled in HTML link tag. Example of a web application manifest is given in the

Figure 8. It defines such properties like basic application appearance, application name

and description, icons. In case of common web site similar items like page name, base

URL (Universal Resource Locator) and icons are defined using HTML. But on the other

hand, such parameters as display mode and background are unique for PWAs.

53

Figure 8. A web application manifest example

As was said before, the application manifest is just a configuration file in the JSON

format. The configuration process can be simplified by using a GUI configuration form

instead of writing code by hands. After that a proper manifest file can be generated.

To reduce number of actions, some fields can be generated entirely automatically. The

table below contains a list of fields that the generated manifest file can contain. Display

property defines what parts of system UI show to user. The standalone mode is the most

preferable because in this case application looks like a native one (no browser UI, only

system UI). Also a good application must work in any orientations, then there is no need

to prohibit some orientations. The table below shows usable manifest fields with their

creation mode.

Field Creation mode

Name Mandatory, Entered by user the using text field.

Short name Same as the previous field.

Start URL Generated automatically.

54

Description Not mandatory, Entered by the user using a text field.

Display. Generated automatically as standalone.

Background color Selected using a colour picker, not mandatory.

Theme color Selected using a colour picker, not mandatory.

Orientation Generated automatically as any.

Icons Selected using a file open dialog.

Table 8. Web application manifest fields

6.3 Installation

To be installable the PWA must satisfy some requirements. It has to have a proper

manifest (has a name and a short name, has a 192px square icon, has a start URL), has to

have a service worker, has to serve over HTTPS (Hypertext Transfer Protocol Secure)

[22]. These requirements are controlled by the browser. If they are satisfied, then it shows

an installation banner (prompts the user to install the application).

2 of 3 specified requirements are satisfied by solutions developed before. The only one

requirement left is the HTTPS requirement. This means that to be installed the application

must be served using a web server. After it was installed, there is no need to serve this

application anymore. The entire installation process can be described using the following

steps:

1. After clicking the “install” button the building tool sends the generated content to

the server

2. The web server stores it and returns an URL where it can be accessed

3. The web server periodically cleans applications that was not accessed during

specified period of time. Identification can be done by the name of the application.

55

6.4 Evaluation

The table below contains the analytical evaluation of the developed conceptual solution

for the PWA producing process. The result column contains pros of the solution. It can

also contain cons. In this case the optimal conditions are given.

Solution Result

Generate service workers entirely

automatically using predefined

cache policy.

Pros: No need to deal with service workers manually

anymore that excludes coding errors and speeds up

developing process.

Cons: Only one caching policy.

Optimal conditions: All caching assets are known at

the building time. No requirement to cache something

dynamically during execution time.

Configure the application using a

GUI input form and generate its web

application manifest using the

entered data .

Pros: Configuration in the intuitive way. No need to

deal with code that excludes errors and speeds up

development. Colour selecting instead of writing raw

hexadecimal code.

Cons: Some manifest fields like related applications

cannot be edited.

Optimal conditions: Basic configuration

requirements.

Possibility to install the application. Pros: The developer gets his fully working

application “in one click”. The application exists

entirely separately from the ecosystem developed in

this thesis.

Table 9. PWA producing process evaluation

56

7 Implementation of the component creator

As was shown in previous chapters, the conceptual solution for the problem of this thesis

consists of 4 parts that are reflected in the research questions:

1. Component creation

2. Final application building

3. Components management

4. PWA transformation

PWA transformation can be treated as a final step of application building. Components

management connects processes of application building and component creation. Another

words, the implemented solution can consist of these 2 parts:

1. An environment for component creation

2. An environment for final application building.

This chapter is dedicated to component creator implementation. It covers the following

parts of the conceptual solution:

 Component creation

 Components management

Implementation requirements will be formulated based on the conceptual solution

described in the previous chapters. Based on these requirements design of the application

will be developed in the form of UML diagrams using IBM Rational Rose CASE

(Computer-Aided Software Engineering) tool. After that developed design can be

implemented using programming tools. Vue.js is a web frontend framework and the

easiest way to integrate it with the development environment is to use the same

environment where Vue.js works. Another words the solution must be implemented in

the form of a web application. This decision allows the solution to run on multiple

platforms. And to make it connection-independent and installable, it can be implemented

in the form of a PWA by itself.

57

7.1 Requirements specification

Here is shown a list of requirements that are specified based on the conceptual solution

evaluation part of the chapters related to component creation and components

management. A single user for all these requirements is the developer.

Component creation:

When the user finishes with code editing, changed parts are processed depending on their

type. Resulting code is pasted into component’s wireframe (or code template) of the preview

page. After that the resulting page is shown using a preview iframe.

The user can watch generated code of the component instead of the component preview.

If there an exception occurs, then display its information in the preview iframe such as used

Vue.js version, the type of exception and its text, source of exception (a line number with the

nearest code lines).

The user can open a template editing field by clicking an appropriate button. The template

editing field has a HTML syntax highlight. When the user closes this field, slot definition

entries are searched in edited code and a list of slots is updated. After that the preview must

be updated.

The user can open a properties editing field by clicking an appropriate button. Properties

have syntax “[type] name [default value]” where brackets mean optional parts. Properties

have own highlight mode. When the user closes this field properties are transformed into

Vue.js syntax and the preview must be updated.

The user can open a style editing field by clicking an appropriate button. The style editing

field has a CSS syntax highlight. When the user closes this field the preview must be

updated.

The user has a list of fixed hooks (created, mounted, updated, destroyed). He can open a code

editing field by clicking one of them.

The user has editable lists of methods and computed properties. He can add a new method or

computed property by clicking the “add” button. After that he can enter a name of the created

method or computed property. When he has done this, a code editing field is opened

immediately and a generated empty function is created. He can delete the previously created

method or computed property by clicking the “delete” button next to its name in the list.

Code editing fields that are used for hooks, methods, watchers and computed properties has

JavaScript syntax highlight. When these fields are closed, the following processing is applied

to them: event emitting entries are searched in code, data initialization entries are searched in

code. After that watchers and events are updated followed by the preview update.

58

Found data initialization entries are used to generate the data field. These entries are

displayed in a list of watchers. The user can edit watcher by clicking its name in the list. This

opens the previously described code editing field.

Show a lists of defined events and slots to the user

Possibility to collapse lists. Group template, properties, style and include into a separate list

(unlike other editable items that have JavaScript code type, they have other code type).

Components management:

By clicking the “download’ button the user can download generated code of the created

component in a specified format. Generation works similar with the preview code generation.

The difference is that another code wireframe is used.

By clicking the “save” button the user can save his component into the component library.

The component creator will ask for the component’s name. If it was opened, then the name

field will contain its name that can be edited. Components are identified by their names and

providing the name of the existing component will result in its overwriting.

By clicking the “open” button the user can open a list of components stored in the component

library. He can load a needed component by selecting it from this list.

Provide an input field where the user can specify outer assets that his component uses. When

the user closes this field appropriate HTML tags are generated to include these assets.

Other:

Implement the solution in the form of a PWA by providing a service worker, an icon and an

application manifest file

Add a configuration dialog where the user can select API and library URLs; configure

preview.

Table 10. Component creator requirements

59

7.2 Design

The overall GUI of the component creator must be simple, without complex details. It

must contain a preview iframe, a lists of component parts like methods and hooks with

the collapse possibility, a toolbar with buttons for component management. The figure

below shows the overall GUI of the component creator.

Figure 9. The GUI of the component creator

The component creator consists of 3 parts according to the MVP pattern: The Model part

is independent from other parts and provides such functionality as required component

processing, interaction with component library and code generation. The Presenter part

handles input events and calls methods of the Model part or uses its properties. It also

uses the View part to render the Model. The View part is presented with the DOM and

not displayed on the figure below. The Figure 10 shows main parts of the component

creator that will be implemented using OOP classes. CRUD means here Create Read

Update and Delete operations.

60

Figure 10. The main parts of the component creator

Component has function-type fields that need special processing like computed

properties, watchers, hooks and methods. This requires to make separate collection-like

class to work with them. There are 2 types of component libraries: the local one and the

remote one. This requires to make 2 separate classes for each of them. Also there is need

to generate different code for preview and for download. This requires 2 separate classes

for text exporting. The figure below shows resulting class diagram with fields, methods

and properties (contain names only). Also quantitative relationship is shown.

Presentation ComponentLibrary

Component

PreviewController TextExporter

requests update

requests HTML content

requests generated code of the component

requests data

CRUD component parts

CRUD components

requests data

61

Figure 11. The component creator class diagram

62

The following table contains detailed description of the class members that was shown in

the figure above. Member definitions uses possibilities that ES6 has like properties,

introspection, Maps and Sets. To make picture more clear these definitions are written

with their expected type specified (ES is a dynamically typed language). This table has

signatures of class fields in the left column and a description in the right column.

Presentation

constructor() Initializes the View and the Model by calling their

constructors. Registers event handlers for View events.

Creates a list of predefined hooks (created, mounted,

updated, destroyed) using newHook(). Initializes the

configuration dialog by calling configure().

View DOM Represents all View elements.

void newHook(string name) Creates a new hooks with passed name for the

component and updates a list of hooks in the View.

void newMethod(string name) Creates a new method with the passed name for the

component and updates the View using

updateMethods(). Opens the code editor for created

method using openCode().

void deleteMethod(string name) Deletes a component method by the passed name using

Functions.delete() and updates the View using

updateMethods(), updateWatchers(), updateList().

void newComputed(string name) Creates a new computed property with the passed name

for the component and updates the View using

updateComputed(). Opens a code editor for created

computed property using openCode().

void deleteComputed(string

name)

Deletes a component computed property by the passed

name using Functions.delete() and updates the View

using updateComputed(), updateWatchers(),

updateList().

void openCode(string type, string

name)

Opens the function code editor (for function-type fields

like watchers, methods, computed and hooks) and loads

code specified by type and name from the component.

Sets a handler for the close editor event which uses

closeCode().

63

void closeCode(string type, string

name)

Saves code specified by the passed type and name and

edited in the function code editor into the component.

Updates the View using updateList() and

updateWatchers(). Updates the preview using

PreviewController.

void openName(View inputField,

function callback)

Opens the name input field and sets the specified

function as a close editing field event handler.

void openEditor(View editor,

string type)

Opens the code editor (for non-function-type like

template, style, properties and include) specified by the

first argument and loads code specified by type from the

component.

void closeEditor(string type) Saves code specified by type into the component and

edited in the code editor. Updates the View using

updateList() for slots in case of template. Updates a

preview using PreviewController.

void updateList(View list,

Functions items)

Updates the list (View part) specified by the passed list

using the passed items object.

void updateMethods() Updates the list of methods (View part).

void updateComputed() Updates the list of computed (View part).

void updateWatchers() Updates the list of watcher (View part). Synchronizes

watchers with the data: creates watchers for new data

fields and deletes watchers for deleted data fields.

void download() Converts the component into the .vue format using

VueExporter and downloads the resulting file.

void openLibrary() Loads a list of components using ComponentLibrary and

calls refreshLibrary().

void openComponent(string

name, boolean isRemote)

Loads the component specified by the name using

ComponentLibrary into the creator, updates the View

using updateMethod(), updateComputed(),

updateWatchers(), updateList() and updates a preview

using PreviewController.

void saveComponent(string

name)

Saves the currently opened component with the specified

name using ComponentLibrary.

void deleteComponent(string

name, boolean isRemote)

Deletes the component specified by the name using

appropriate ComponentLibrary depending on the second

argument then calls refreshLibrary().

64

void refreshLibrary(string[]

names, boolean isRemote)

Refreshed library View using passed component names

and isRemote flag.

void reset() Resets state of the current component; updates the View

using updateMethod(), updateComputed(),

updateWatchers(); updates a preview using

PreviewController.

void configure(boolean

configure)

Uses the configuration View to change some parameters

of the preview and the component library like Bootstrap

grid URL and remote component library API URL.

Updates the preview using PreviewController. If

configure=true, then applies changes, else loads

configuration data into the configuration View.

Component

constructor() Resets its state using reset().

string name The name of the component.

string parent The name of the component that was used for forking.

string style Contains entered CSS style.

string props Contains the generated Vue.js props field.

string head Contains the generated html for external assets

inclusion.

Set<string> slots The set of extracted slots.

string _template Contains entered template definition.

string _properties Contains entered properties definition.

string _include Contains entered external assets definition.

string property template Get: returns _template.

Set: assigns a new value to _template, extracts slots.

string property properties Get: returns _properties.

Set: assigns a new value to _properties. Generates Vue.js

properties and stores them in the props using

makeType() and stripComments().

string property include Get: returns _include.

65

Set: assigns a new value to _include. Generates HTML

asset inclusion tags and stores them into head using

stripComments().

readonly Set<string> property

events

Get: returns united event names using unionAll() for

events.

readonly string property data Get: returns the generated Vue.js data field using

unionAll() for data.

Set union(Set set1, Set set2) Adds set2 to set1 and returns set1.

Set<string> unionAll(string

dataType)

Returns united data of all Functions instances (watchers,

methods, computed, hooks) specified by datatype

argument using union().

string makeType(string word) Returns a type-like word by casting passed word to

lowercase and capitalizing a first letter.

string[] stripComments(string

lines[])

Removes comments from passed strings and returns the

resulting array also removing empty strings.

Object serialize() Returns an object that contains minimal number of fields

to restore this component using unserialize().

void unserialize(Object image) Resets the state with reset() and restores component state

using passed object previously created with serialize().

void reset() Resets to the initial state clearing all data.

Functions (extends built-in Map<string,string>)

constructor(boolean changeable) Initializes fields.

void init(string name, string

…args)

Generates empty function code using the passed name

and arguments then saves it.

void set(string name, string code) Updates passed function code identified by name.

Extracts and stores data fields and events using

extractData() and extractEvents(). If changeable, the

function name is extracted from code and used as a key.

Else function name cannot be changed and will be

equalized with the key value.

void delete(string key) Removes a function using the passed key. Also removes

it from events and data.

66

String toString() Returns generated code of the function-type Vue.js

component field based on functions stored in this

Functions instance.

Set<string> extractData(string

code)

Extracts and returns data fields from passed code.

Set<string> extractEvents(string

code)

Extracts and returns events from passed code.

Map<string,Set> events Contains a set of events extracted from each function.

Map<string,Set> data Contains a set of data fields extracted from each

function.

boolean changeable Are functions stored in this object can change their

names.

VueExporter (TextExporter implementation)

constructor(Component source) Stores the passed component to use it as a data source

for code generation.

string export() Returns generated code of the component in the .vue file

format.

PreviewExporter (TextExporter implementation)

constructor(Component source) Stores the passed component to use it as a data source

for code generation.

string export() Returns generated page that has registration of the

component and generated preview HTML layout based

on the configuration. The generated page also posts error

message to the parent window.

string vueURL The URL to download Vue.js framework.

string bsGridURL The URL to download Bootstrap Grid.

string bgURL The URL of the preview background.

string border Component preview bounding border style.

int width Component preview bounds width (in Bootstrap Grid

units).

PreviewController

67

constructor(View preview,

PreviewExporter previewSource,

View codePreview, VueExporter

codeSource)

Stores passed code exporters to use them as code source

in future. Stores passed Views to use them for result

displaying. Registers error handler to display errors in

the passed preview iframe.

void update() Updates the content of the preview iframe using code

provided by PreviewExporter or content of code preview

using VueExporter.

View preview The preview iframe to display a preview result.

View previewCode The read-only code area to display generated code.

LocalComponentLibrary (ComponentLibrary implementation)

constructor() Initializes fields.

Object get(string name) Returns a serialized representation of the component

specified by the passed name from the local component

database.

void set(Object component) Inserts a component into the local component database

using its serialized representation.

void delete(string name) Deletes a component from the local component database

specified by passed name.

string[] all() Return all component names that are stored in the local

component database.

void defineSchema(Event event) Defines a schema of the used local component database.

const string databaseName The local database name.

const string databaseVersion The local database version.

const string storeName The local store name.

RemoteComponentLibrary (ComponentLibrary implementation)

constructor() Initializes fields.

Object get(string name) Returns a serialized representation of the component

specified by the passed name using the remote

component library API.

void set(Object serialized) Inserts a specified serialized component using the

remote component library API.

68

void delete(string name) Deletes a component by name using the remote

component library API.

string[] all() Returns all component names that are stored in the

remote component library using its API.

string apiURL The API URL that serves the remote component library

Table 11. Description of component creator classes

7.3 Implementation

The following section contains remarks and nuances of the implementation process. The

component creator prototype was made in the form of a web application. It uses

JavaScript (ES6) as its programming language, HTML and CSS for the View definition.

To interact with the View from the Presenter jQuery library was used (http://jquery.com/).

To assist with the requirement of responsive design Bootstrap framework was used.

As a code editor was used CodeMirror (https://codemirror.net/). It has modes with syntax

highlight for HTML, CSS and JavaScript. Its mode/simple add-on allows custom modes

to be specified using a relatively simple declarative format. This format is not as powerful

as writing code directly against the mode interface, but is a lot easier to get started with,

and sufficiently expressive for many simple language modes. This mode uses a concept

of a state machine. Each state has a regular expression that match a part of code and a

token that defines what to do with this part. If the regular expression matches, then

specified token is applied to matched part and the next state can be selected [23]. The

figure below shows a state diagram that represents a syntax highlight for custom property

syntax. The processing is ended when the end of string is reached.

http://jquery.com/
https://codemirror.net/

69

Figure 12. The custom property syntax highlighting state machine

Regular expressions were also used for code processing to extract data for example. The

table below contains a list of used regular expressions (in the JavaScript format) with a

use case description. They were used alongside with common imperative programming

where their application was not enough.

Regular expression Description

/(string|number|boolean|function|object|array|symbol)(\s+)/i Highlight: type

/#.*$/ Highlight: comment

/[a-z0-9_$]+(?=[=]*$)/i Highlight: property name only

/[a-z0-9_$]+(?=[=]*)/i Highlight: property name

/[^#]*/i Highlight: rest of string

(expects value)

/<slot.*name=['"]\w+['"]/ig

/name=['"]\w+['"]/i

Extract: a slot definition and

then a slot name

/\S+/g Split a custom property string

/\.css$/i

/\.js$/i

Get format of assets in include

field by extension

/this\.[a-zA-Z0-9_$]+[=\s;}]/g Extract: data

/this\.\$emit\(["']\w+["']/g Extract: events

comment

type name only name

rest

not match

match

not match

matchend

end

end

end

not match

match

end

70

/[\$_a-z0-9]*(?= \s* \()/i Extract: function name

Table 12. Used regular expressions (component creator)

As a local storage for component library was used IndexedDB. It was chosen, because it

allows to store JavaScript objects (called documents), use indexes and has quite huge

limit. Other candidates are: LocalStorage, ApplicationCache and WebSQL. It was chosen

over WebSQL because the second technology is considered as its predecessor. The Table

14 shows limits of these technologies [24]. IndexedDB is a transactional database system

like SQL-based RDBMSs (Relational Data Base Management Systems). However, unlike

SQL-based RDBMSes, which use fixed-column tables, IndexedDB is a JavaScript-based

object-oriented database. IndexedDB lets you store and retrieve objects that are indexed

with a key. Any objects supported by the structured clone algorithm can be stored. You

need to specify the database schema, open a connection to your database, and then retrieve

and update data within a series of transactions [25]. IndexedDB uses an asynchronous

approach via callbacks. To make it synchronous these callbacks can be wrapped into

Promises and used with the ES6 asynchronous programming possibilities (like async and

await). The table below shows the schema (structure of the documents) that was used for

the local component library.

Field Description

Name (indexed) Component’s name (used as a key)

component Stores a serialized component representation

Table 13. The local component library IndexedDB schema

Technology Chrome (40+) Firefox(34+) Safari(8) IE(10,11)

IndexedDB 100+MB (quota) 100+MB 100+MB 100+MB

LocalStorage 10MB 10MB 5MB 10MB

WebSQL 100+MB (quota) 100+MB 100+MB Not supported

ApplicationCache 100+MB (quota) 100+MB 100+MB 100+MB

Table 14. Browser storage limits [24]

71

The Table 11 displays general structure of the component creator. During the

implementation phase there was also added additional inline callbacks (that also locate in

HTML). JavaScript does not allow type definition, but this table shows what type of data

is expected to store in the specified variables. The View type represents a part of the MVP

pattern’s View. Views are DOM nodes that are queried using jQuery. jQuery queries

using CSS selector and in the implementation Views are passed by CSS selectors

(strings). In case of web applications View part is defined using HTML and styled using

CSS. Editors are represented by CodeMirror instances.

Asynchronous IndexedDB callbacks was made synchronous using ES6 Promises and the

await keyword. An asynchronous function wraps its functionality into the Promise

instance and immediately returns it while continues execution in the separate thread. The

Promise will be fulfilled when asynchronous code will call its callback with the execution

result. The await keyword wait stops execution until its Promise will be fulfilled.

For the preview an iframe was used. Iframe represents a child browser window that is

located inside parent’s page. PreviewExporter class generates required HTML page with

additional error handlers. These handlers send message to the parent window (where the

component creator works). The component creator intercepts them and displays errors

generating another HTML page that is displayed in the same iframe. HTML pages are set

using data: URL that allow to define content directly in the URL. To overcame browser

caching a random number was generated as a comment string in the beginning of the

HTML page.

There is no Presenter class in the implementation. JavaScript does not require to put all

code inside classes. Presenter was implemented using a set of functions and variables that

locate in the global scope (as fields of the browser’s window object instance).

The standard workflow of the component code generation can be illustrated using these

steps (from making changes to auto preview update):

1. The user clicks required field, for example created hook. Browser calls an inline

HTML callback that calls openCode(“hook”, “created”). (for non-code fields

openEditor() is called).

72

2. openCode() loads field content from the component instance using get() method

of the hooks property, readies the “onclose” callback where it calls closeCode()

with appropriate arguments and shows code editing field in the modal window.

(closeEditor() is used by openEditor())

3. When the user has finished with code editing and has closed the editing modal,

the “onclose” event is fired and closeCode(“hook”,”created”) is called.

(closeEditor() uses an appropriate getter of the component).

4. closeCode() saves the edited code to the component instance using set() method

of the hooks property. (closeEditor() uses an appropriate setter of the component).

5. The hooks property is Functions instance. Its set() method uses extracting method

like extractEvents() and extractData() for the entered code processing.

(Component setters that are called by closeEditor() have appropriate processing

that suit for their type).

6. closeCode() calls updateList() to update the list of events, updateWatcher(),

updateMethods(), updateComputed(). This synchronizes the View with the

previously made changes. (closeEditor() calls only updateList() to update the list

of slots).

7. closeCode() uses update() method of the PreviewController instance. (closeEditor

calls it also).

8. update() method of the PreviewController uses appropriate TextExporter

(PreviewExporter or VueExporter) depending on the currently selected preview

mode and calls its export() method to get generated code and update the iframe

content.

9. export() method of the appropriate TextExporter uses the Component instance to

retrieve required data. Component by itself deals with code generation and text

exporter assembles the resulting code using the code provided by the component

and skeleton code that depends on the exporter type. This is done using ES6 string

template syntax.

73

8 Implementation of the application builder

This chapter is dedicated to the application builder implementation. It covers the

following parts of the conceptual solution:

 Application building

 Components management

 PWA transformation

Implementation requirements will be formulated based on the conceptual solution

described in the previous chapters. Based on these requirements design of the application

will be developed in forms of UML diagrams using IBM Rational Rose CASE tool. After

that developed design can be implemented using programming tools. Application builder

will be developed in the form of a web application as previously developed application

creator.

8.1 Requirements specification

Here is shown a list of requirements that are specified based on the conceptual solution

evaluation part of chapters related to the final application building, component

management and PWA producing. The single user for all these requirements is a

developer.

Application building:

The user builds his application layout using such concepts as layers, rows and columns (can

be component or row) in the automatically updating layout preview. The layout preview

displays correct width, offset, align and paddings for columns. Columns are displayed using

fixed height. Components display their names. Layers display their position (fixed-top, fixed-

bottom, fixed-center, absolute, static).

The user can add a new layer by clicking the “add layer” button Then he can select this layer

in the layout preview to edit its properties such as position. He can delete the selected layer

by clicking the “delete” button.

The user can add a new row by clicking the “add row button” when a row or a layer is

selected. Then he can edit row layout properties such as width, offset, align, padding. He can

delete the selected layer by clicking the “delete” button.

74

The user can add a new component by clicking the “add component button” when a row is

selected. Then he can edit component layout properties that are similar with row layout

properties. He can delete the selected layer by clicking the “delete” button.

The user can change the order of children inside selected element by clicking the “up” and

“down” buttons.

The user can edit 2 separate sets of layout properties: one for mobile and another for desktop.

All elements (layers, rows, components) have reactive display property that uses conditional

rendering of Vue.js.

The user can click the “style” button and edit component style in a code editing field with

CSS syntax highlight.

The user can select a required component slot from a list and edit it in a code editing field

with HTML syntax highlight.

Allow user to bind his ViewModel with the component ViewModel by selecting property

values from a dropdown list (contains application ViewModel variables). Show property

type if it was defined in the component.

Provide the user with a list of predefined empty event handlers for all events that component

emits. The user can select required handler from the list and edit its code in a code editing

field with JavaScript syntax highlight.

Provide the user with a lists of all component methods (with arguments) and computed

properties.

Provide the user with the functionality analogical with component creator to work with the

application ViewModel. Unlike component creator, it contains only hooks, methods,

computed properties and watchers lists and appropriate JavaScript editing fields.

The user can press “refresh” button that will trigger the application building process. When

the application will be built, the user can test it in the preview window that has 2 views:

desktop and mobile.

When the user adds a new component, he can specify a component name. He can reference

the component from the code using this name as an application ViewModel variable.

Analyse component code to find scoped slots and use their attributes to prepend variables

used inside the slot.

Analyse component code to find scoped property modification and replace with event

emitting (provides two-way data binding).

If there an exception occurs, then display exception information in the preview window

(analogically with the component creator).

75

Component management

When the user clicks the “add component” button, the component library is shown and the

user can select the required component from there. After that component is loaded into the

application builder.

Provide a field where the user can specify his outer scripts and assets like CSS (analogically

with the component creator).

Transformation to PWA

The user can open the configuration window where he can specify manifest fields.

Appropriate input methods must be used for different fields as was shown in the Table 8.

By clicking the “install” button application will be sent to server where the manifest and

service worker will be added to it. After that the returned link will be used to navigate to the

application.

Other

Implement the solution in the form of a PWA by providing a service worker, icon and an

application manifest file.

Extend the configuration dialog where the user can also select API and library URLs.

By clicking the “save” button the user can save his application giving it a name for future

access or sharing with other people.

By clicking the “open” button the user can open previously saved application to continue

editing. This shows a list of all applications where the user can select the required one.

Table 15. Application builder requirements

76

8.2 Design

The application builder has similar GUI requirements as the component creator. The

figure below shows overall GUI of the application builder.

Figure 13. The GUI of the application builder

The application builder has MVP design pattern analogically with the component creator.

The figure below shows the main parts of the application builder that will be implemented

using OOP classes.

77

Figure 14. The main parts of the application builder

The App part from the previous figure consists of layers, layers consist of rows and rows

consist of columns. A row can be nested to another row. This means that it must be a

column itself. Leaf columns of this hierarchy contain components. This can be designed

using the Composite GoF (Gang of Four) design pattern that describes a group of objects

that is treated the same way as a single instance of the same type of object. [26]. The

application library like the component library can be implemented locally (using one of

the browser storage API) and remotely (using web API and server implementation).

Moreover, it shares analogical structure with the component library classes and can

extend them. Also some methods from the component creator’s presentation can be used

in the application builder. The solution requires additional CSS styles that must be used

by both: the application builder and a building application. This requires additional text

exporter that generates CSS code. The figure below shows a resulting class diagram with

fields, methods and properties (contain names only). Also quantitative relationship is

shown. Some classes were defined in the component creator and can be reused in the

component builder. These classes are not described here (but are shown on the figure

below without fields).

PreviewController

TextExporterrequests HTML content

Presentation

requests update

AppLibrary

CRUD apps

App

requests data

CRUD app parts

requests data

ComponentLibraryrequests components

Component

app's VM and static component data

78

Figure 15. The application builder class diagram

79

The following table contains detailed description of the class members that was shown in

the figure above. Member definitions uses possibilities that ES6 has like properties,

introspection, Maps and Sets. To make picture more clear these definitions are written

with their type specified. This table has a signature of the class fields in the left column

and a description in the right column.

Presentation (implements Serializable)

constructor() Initializes the View and the Model by calling their

constructors. Registers event handlers for View events.

Creates a list of predefined hooks for application

ViewModel (created, mounted, updated, destroyed).

Generates required styles using CSS Exporter. Calls

configure().

string layerName The currently selected layer name.

void newLayer() Creates a new Layer with a generated name using

genName(), adds it to the application tree and selects it

using selectLayer().

void selectLayer(string name) Sets layerName, and calls openSelection(),

updateLayout().

void newRow() Creates a new Row with a generated name using

genName(), adds it to the currently selected node and

selects it using selectNode().

void selectNode(string name) Calls openSelection() and updateLayout().

void deleteNode() Removes currently selected node from its parent and

calls selectNode() or selectLayer() depending on its

type.

void swapNodes(boolean inv) Swaps with the next node or the previous node (if inv),

calls updateLayout().

void openSelection(string name) Sets currently selected node using the passed name.

Shows or hides builder parts depending on the type of

the selected node and synchronizes it with the node

state. Calls openSelectionComponent() if current node is

a Col instance.

80

void updateSelection(boolean

isLayer)

Synchronizes the currently selected node state with the

View, calls updateLayout(). Uses another View parts in

case of layer.

void openSelectionComponent() Synchronizes the View with the currently selected node

state (component specific).

void openComponentEditor(View

modal, string type, string name)

Opens specified code editing modal and loads specified

data. Sets a handler that updates the data after the modal

is closed. (like openCode(), but for component used in

the builder)

void updateLayout() Refreshes the layout preview based on the currently

selected component and layer using childrenHTML().

string childrenHTML(Node

parent,Node, boolean l1)

Returns a HTML code for layout preview for single

node. Root call has l1=true. If the node has children then

continues recursion.

string genName() Generates and returns an unique name.

void openComponentSelection() Shows the list of available components using the

LocalComponentLibrary and

RemoteComponentLibrary.

void openComponent(string

name, boolean isRemote)

Loads a component by the passed name using

appropriate component library depending on the last

argument. Then creates a new Col based on the loaded

component and selects it using selectNode().

void updatePreview() Uses PreviewController to update the preview.

void openApps() Opens app library window and refreshes it using

refreshApps().

void openApp(string name) Loads specified app by name using app library. Then

updates the builder by calling updateMethods(),

updateComputed(), updateWatchers(), selectLayer(),

selectNode().

void saveApp() Saves the app using the app library.

void deleteApp(string name) Deletes the app by name using the app library and calls

refreshApps().

void refreshApps(string names[]) Updates the app library window using the passed app

names.

81

void configure(boolean

configure)

Uses configuration View to change some parameters of

the application builder. If configure=true, then applies

changes, else loads them into the configuration View.

void install() Triggers the installation procedure.

App (extends built in Map<string,Layer>; implements Serializable)

String name The name of the application

constructor(Component vm,

string name)

Stores passed data (uses vm as the application

ViewModel), initializes fields.

Map findParent(string name) Returns the parent for the requested by name children

node using _findParent()

Map _findParent(string name,

Map node)

A recursion step that controls if the node has a child with

the specified name. If it has then returns this child, else

continues recursion.

Object serialize() Returns a serialized representation that can be used to

restore this object.

void unserialize(Object image) Uses the passed serialized representation to restore this

object.

Layer (extends built in Map<string,Row>; implements Serializable)

String name The layer name.

Object desktop Stores layout properties for desktop.

Object mobile Stores layout properties for mobile.

Map<string,string> properties Stores chosen reactive property values.

Map<string,string> propTypes Stores reactive property types.

constructor(string name) Stores the passed name, initializes fields.

Object serialize() Returns a serialized representation that can be used to

restore this object.

void unserialize(Object image) Uses the passed serialized representation to restore this

object.

RowCol

String name Stores the row or layer name.

82

Object desktop Stores layout properties for desktop.

Object mobile Stores layout properties for mobile.

Map<string,string> properties Stores chosen reactive property values.

Map<string,string> propTypes Stores reactive property types.

Row (extends built in Map<string,RowCol>, RowCol; implements Serializable)

constructor(string name) Stores the passed name, Initializes fields.

Object serialize() Returns a serialized representation that can be used to

restore this object.

void unserialize(Object image) Uses the passed serialized representation to restore this

object.

Col (extends RowCol, implements Serializable)

Map<string,string> events Stores changeable component event handlers.

string style Stores changeable component style.

Map<string,string> slots Stores changeable component slots.

constructor(Component vm,

string name)

Stores passed name and component, initializes fields.

Extracts properties and style from the component,

generates empty event handlers, and calls extractSlots(),

bind2way().

void extractSlots() Extracts slot from component template.

bind2way(String properties[],

Functions, functions)

Replaces property assignment with event emitting in

functions.

Object serialize() Returns serialized representation that can be used to

restore this object.

void unserialize(Object image) Uses passed serialized representation to restore this

object.

AppExporter (implements TextExporter)

vueURL The URL to download Vue.js framework.

bsGridURL The URL to download Bootstrap Grid.

string styles[] Stores styles of used components

83

string code[] Stores code of used components

string methods[] Stores application methods and event handlers for used

components

string heads[] Stores generated include fields of the application and

used components.

string names[] Stores component names

constructor(App app,

CSSExporter exporter)

Stores the app and the exporter, initializes fields

string export() Returns generated application code using

generate(),string templates, regular expressions,

cssExporter and functionality provided by the

Component class.

string generate() Traverses application tree recursively using _generate()

to process layers with their children.

string _generate(Node parent,

boolean l1)

Recursion step that generates and returns html for the

parent node. Populates heads, names arrays and uses

genStyle(), genCode(), genHandlers(), genSlots() for

additional processing ir parentNode is a Col instance. A

root call has l1=true.

void genStyle(Col node) Populates the styles array by generating style for the

passed node.

void genCode(Col node) Populates the code array by generating component code

for the passed node..

void genHandlers(Col node) Adds event handlers stored in the passed node to the

methods array.

string genSlots(Col node) Processes and returns slot code of the passed node.

CSSExporter (implements TextExporter)

int desktopMinWidth Value that is used in media query for generated desktop

classes. Represents minimal width screen must have to

apply these classes.

constructor() Initializes fields.

string export() Returns generated CSS.

LocalAppLibrary (extends LocalComponentLibrary)

84

Object get(string name) Unlike get in the LocalComponentLibrary does not deal

with forking.

void set(Object serialized) Unlike set in the LocalComponentLibrary does not deal

with forking.

RemoteAppLibrary (extends RemoteAppLibrary)

Object get(string name) Unlike get in the RemoteComponentLibrary does not

deal with forking.

void set(Object serialized) Unlike set in the RemoteComponentLibrary does not

deal with forking.

AppInstaller

string apiURL URL of the installation API.

string bsGridURL URL to download (and cache by a service worker)

Bootstrap Grid.

string vueURL URL to download (and cache by service worker) Vue.js

framework.

constructor(AppExporter

exporter)

Saves passed exporter to use it for code generation,

initializes fields.

Void install(App app) Uses passed app to perform installation procedure. Uses

findInclude() to find all static dependencies that must be

cached.

Void findInclude(Node node,

string include[])

Recursively finds include fields in the passed node and

its children and populates the include array.

Table 16. Description of the application builder classes

8.3 Implementation

The following section contains remarks and nuances of the implementation process. The

application builder uses exactly the same technologies as the component creator.

It also uses regular expressions for code processing. The table below contains a list of

used regular expressions. It does not contain regular expressions that was described in the

component creator and also are used in the application builder.

85

Regular expression Description

/<slot.*name=['"]\w+['"](.|\n)*?<\/slot>/ig Extract slots from the template.

/name=['"]\w+['"]/i Extract the name attribute of the slot.

/>(.|\n)*<\/slot>/ig Extract the inner content of the slot.

/<slot.*>/

/:[a-z0-9_$]+/ig

Extract names of the slot’s bound attributes.

/this\.(property1|property2)\s*=\s*(.+?)(;|\n)/g Find property assignment. And replace with

'this.$emit(\'update:$1\',$2);' (event

emitting)

/(this\.)(component1|component2)(?=[\W]|$)/g Finds component instance name identifiers

and replaces with `this.$refs['$2']` (Vue.js

special syntax)

/(\.[a-z0-9_$#\.\-]+)/ig Finds CSS classes and replaces with

'#'+node.name+' $1' (appends the

component instance name as an id)

/(\W|^) (attribute1|attribute2) (\W|$)/ig Finds slot attributes in the template and

replace with '$1slotProps.$2$3' (referencing

via specially created context)

Table 17. Used regular expressions (application builder)

By default, HTML elements handle mouse events and do not propagate them to the

elements that locate below them. This behaviour is unwanted in case of layers, because

top layers make impossible to handle mouse events by bottom layers. To overcome this,

both layers and rows use pointer-events:none CSS property. This makes them transparent

for mouse (pointer) events and components that locate below them can handle mouse

events normally.

The workflow of the application code generation can be illustrated using these steps (this

process takes place entirely inside the AppExporter’s export() method that uses the App

instance as a data source. export() can be called by PreviewController or AppInstaller):

1. export() method creates empty arrays to store generated component data like

styles, code, methods, include, names. Then it calls export() method to generate

HTML and populate these arrays.

86

2. generate() is the entry point to traverse application tree recursively. It generates

HTML code for layers and calls _generate(layer,true) to generate inner HTML.

3. _generate() method represents recursion step and if its second argument is true,

then it generates additional enclosing row HTML (for the direct content of

layers). If it is not, then it generates suitable HTML (uses layout parameters) for

the node passed as the first argument that can be Row or Col instance. If the node

is a Row instance then it calls _generate(node,false) to generate its inner HTML.

If it is a Col instance, then it generates its HTML with slots using genSlots(col)

and reactive component attributes. It also calls genCode(), genStyle(),

genHandlers() to populate arrays, pushes value of the head property and the name

property of the component into appropriate arrays.

4. genSlots() processes content of slots by putting it into a generated template tag

with s specified slot-scope attribute. The content of slot is processed by

prepending all ViewModel entries used by this slot (extracted during component

loading in the Col class and putted into slotArgs map) with the value of the slot-

scope attribute. This is required to transform the simplified syntax allowed by the

application builder into the Vue.js scoped slots syntax.

5. genCode() generates component code using capabilities provided by Component

with code that registers these components.

6. genStyle() prepends CSS classes with unique ids (component names are used) to

differentiate between styles related to different instances of the some component.

7. genHandlers() populates array of functions using a event name prepended with a

node name as the resulting handler name.

8. After generate() has finished its work, export() uses all data collected by the

generate() to assemble the final HTML page using ES6 string template syntax. It

generates application (root) ViewModel (Vue.js instance) using Component’s

generation capabilities. If generate() was called with the service worker argument

(was called by AppInstaller), then it generates additional code required for PWA

installation. It also searches for used component names in the code to replace them

with the Vue.js $refs syntax.

87

9 Server-side implementation

The previous 2 chapters described implementation of the component creator and the

application builder. But they were dedicated for the client side only. But the solution

includes remote component library functionality and installation possibility. Both

processes require a remote server. This chapter is dedicated to implementation of these

processes.

9.1 Remote component library

The component library must allow CRUD operations with components. The

RemoteComponentLibrary class has the following methods:

Object get(string name) Returns a serialized representation of the component.

void set(Object serialized) Inserts a serialized component.

void delete(string name) Deletes a component by his name.

string[] all() Returns all component names.

Table 18. RemoteComponentLibrary methods

Like the local component library, the remote one stores serialized component

representations without any knowledge of their inner structure. The minimal

implementation must allow to work with key-value pairs. This can be done using a file

system, a document-oriented database like MongoDB, or a SQL database like MySQL

This requires quite a little server side logic and can be implemented using different

technologies. For example, implementation from the prototype developed in this thesis

uses PHP with MySQL.

More important is to define a web API of the remote component library. This will allow

to connect to different component library implementations that implement this API. The

simplest way is to use the JSON format to transfer a serialized component. For other data

and arguments, the similar JSON format can be used. Transferring JSON data requires

the POST HTTP method and allowing requests from other servers (origins) requires the

88

Access-Control-Allow-Origin CORS (Cross-origin Resource Sharing) HTTP header to

be set.

The API request is always POST HTTP method. Its body contains a JSON object with

the method field that defines a concrete action. Other fields contain method arguments.

The response is also in the JSON format. The following table contains the remote

component library API description.

Request POST body Response body Actions

{“method”:”set”,

”name”:”<component name>”,

“component”:<serialized

representation>}

None. Save the passed component using its

name. If the component with this

name already exists, then replace it.

{“method”:”get”,

”name”:”<component name>”}

Serialized

representation

Find a component with the passed

name and return it or an empty

object if there is no component with

this name.

{“method”:”delete”,

”name”:”<component name>”}

None Delete a component with the passed

name. If there is no component with

this name then do nothing.

{“method”:”all”} An array of

component names..

Find all component names currently

stored in the component library and

return an array of them.

Table 19. Remote component library API

The implementation that was discussed in the previous chapter also has a

RemoteAppLibrary class that allows CRUD operations with apps. This class uses the API

exactly similar with the API previously described. The only one difference is that instead

of serialized component representations this API uses serialized application

representations.

9.2 Installation

To be installed a PWA require service workers to be transferred via HTTPS. The

certificates that are used during HTTPS session cannot be self-signed, they must be signed

by the 3-rd party (certificate authority). This is another reason to use a remote server. The

89

install() method of the AppInstaller class that was created for installation purposes uses

web API for PWA installation. Like the remote component library API, the installation

API uses HTTPS POST method and stores all data and arguments inside a request body

in the JSON format. There is no a response body. The table below describes fields of the

request POST body.

Field Type Description

name string The name of the application

app string Generated application code

cache array of strings URLs of static assets used by the

application and its components

manifest object like

{“name”:”app”,…}

Contains a configurable manifest

part.

Table 20. Installation API request fields description

The installation process consists of the following actions: The application builder makes

a request to the server using the previously described APIs. It uses the AppExporter class

to generate code with additional PWA specific headers and service worker registration

code. The server takes data from the request and creates a folder with the name as was

specified in the name field. Then it writes the application code into the file named

“index.html”. It uses the cache field to generate a service worker with the “cache falling

back to the network” policy and the manifest field to generate a manifest. It uses a random

version to force application cache to be updated when the new service worker is uploaded.

Then it saves both files into the previously created folder with the name “sw.js” and

“manifest.json” respectively. It also copies an icon to this folder with the name

“icon192.png”. Of course another names can be used, but the application builder must be

aware about them. Then the application builder opens the created “index.html” in the new

window. The application builder uses a random URL argument to overcome browser

cache when it requests the page, the manifest and the service worker. This allows to get

the actual version of the application. The next actions are controlled by the browser. It

controls PWA requirements and shows an installation banner to the user. The following

sequence diagram shows the previously described installation process.

90

Figure 16. The PWA installation sequence diagram

Browser:

application builder

Browser:

application builder

Server: installation

script

Server: installation

script
Server: filesServer: files

1: POST installation data

2: create app's folder (app_name)

4: put service worker (sw.js)

5: put manifest (manifest.json)

6: put icon (icon192.png)

3: put application (index.html)

7: empty response

8: GET app_name

9: index.html

10: GET files specified in index.html (sw.js,manifes.json, icon192.png)

11: requested files

91

10 Evaluation and results

The aim of this chapter is to evaluate the solution that was implemented during this thesis.

Firstly, it defines criterions that can be used to evaluate the solution. They are made based

on the problem statement: Simplicity in the component-based PWA creation using Vue.js

MVVM framework. The conceptual solution chapters already have analytical evaluation

and expected results, but existence of the real prototype allows to conduct more deep and

“close to the real life” evaluation in some aspects. In addition to this, the implemented

prototype allows to use test methods to receive concrete quantitative results in some

aspect like size of hand written code or number of actions.

10.1 Analytical evaluation

As the title says, the aim of this master thesis is to simplify process of the component-

based PWA development using Vue.js MVVM framework. This title can be disassembled

into keywords: simplification, Vue.js, component-based, PWA development. Firstly, it is

important to control that the developed solution relates to these keywords and as a result

relates to the problem statement. The table below shows this.

Keyword Solution

Component based Vue.js is designed to develop reusable GUI components.

The component creator was specially developed to assist

with Vue.js components creation.

Vue.js The component creator produces Vue.js components and

allows to use its concepts during development. Application

builder uses Vue.js as the application’s view model

provider. It also uses Vue.js components and allows their

customization using Vue.js concepts.

PWA development Additional functionality was specially added to transform

developed application into PWA. Application install banner

appearance shows that the browser recognizes the web

application as a PWA.

Simplification When the component creator and the application builder

were developed, the rules of simplicity from the Table 3

were used.

Table 21. Basic evaluation

92

The table above shows that the solution relates to the gap defined in the problem

statement. The solution was specially targeted to the Vue.js component based framework

and additional functionality was added to fulfil PWA requirements. These facts do not

need future discussion.

But the most important part of the solution is the simplicity requirement. This requirement

affects the whole process: component creation, component management, application

building and PWA producing. This is how the developed solution differs from other

solutions. Chapters 3-6 end with evaluation of the conceptual solution that was developed

during these chapters. This evaluation was based only on theory and another words can

be treated as an expected result. Existence of the real prototype allows to control how it

works in the real world. Some parts of the conceptual solution work as expected, but some

other parts are not as good in the real life as in the theory. The following table shows parts

of the solution that met some problems or obstacles to achieve the expected result. Cons

that are shown there was discovered only after prototype implementation and was not

obvious during conceptual solution development. Parts of the conceptual solution that are

not shown in this table work as expected and do not require additional remarks.

Solution Result (conceptual) Result (real)

Generate a component

skeleton code providing

editing fields only for the

required parts that define a

View and a ViewModel of

the component.

Amount of handwritten code

decreases. A developer

focuses only on the required

parts. Frees the developer

from knowing the

automatically generated

parts

Developers are used to use text

editors for their programming

purposes. Some of them prefer

to see and edit source code

entirely, not only the gaps that

are really matter. And this

approach is unfamiliar for

them.

Group methods and

computed properties into

lists with add/remove/edit

possibilities.

Reduces amount of code

editing actions that must be

taken to create or delete a

function.

As was said before, developers

are used to use text editors for

their programming purposes.

This approach is unfamiliar for

programmers.

Component creator:

Provide an automatically

updating preview with

possibilities to show errors

and exceptions.

No need to write a html page

and refresh the browser after

editing manually. Shows

errors and exceptions inside

the preview without need to

open a console window.

For mobile browsers that do not

have console, this is the only

one way to show errors. But

desktop browsers that have dev

tools have better possibilities

for debugging.

93

Provide an interactive

layout view consisting of

tabs (layers) , rows and

columns (other rows or

components) with

possibilities to add/delete

rows and add/delete

components.

Easy and intuitive Bootstrap

Grid layout composition

without code writing

Some users want to have more

advanced layout builder. Like

interacting with layout directly

(like drag resizing and moving),

drag and drop functionality.

Instead of selecting and editing

properties.

Use 2 sets of layout

properties: for the desktop

and for the mobile.

Possibility to use one layout

for the desktop and another

one for the mobile using

only grid layout parameters

without creating another

view hierarchy.

Only 2 breakpoints do not

allow to use all screen space

effectively on wide screens.

Automatically generate

empty event handlers and

show a list of them.

The developer has a clear

picture about component

events and focuses only on

the event handler body.

There is no way to know

exactly arguments of the event

handler (JavaScript can call any

function with any arguments).

This can be frustrating when

generated handler has a wrong

signature.

Inject children components

directly into the parent’s

ViewModel using the name

of the component instance

as a field name.

More convenient and

intuitive way to access

components without dealing

with the specific Vue.js

syntax.

The name of the component

instance must be valid

JavaScript identifier that is

additional requirement.

Provide a separate style

editing field.

Possibility to use pseudo-

elements. Better separation

of concerns. Visually more

readable and easier to

follow. Can style every

component instance without

explicit id.

To differentiate between

component instances, the name

of the component instance must

be a valid CSS id that is

additional requirement.

Application builder: Use

double preview mode: The

automatically updating

interactive layout preview

and the manually updating

final preview.

The developer has a clear

idea about his application

layout without additional

actions. If he wants to see

the final result the only one

action he needs is to press

the “update” button.

Component height is not known

during layout preview. This

makes it not so clear as

expected. No way to see

desktop preview on mobile

screen without rotation.

Desktop browsers have device

screen emulators that have

more possibilities to test

94

application in the mobile

viewport.

Provide the developer with

the component library

where he can save his

components and open them

for editing or using in

future.

The developer always has

easy-accessible list of

components and can

use/open/save them in one

click.

Requires additional

functionality like grouping,

filtering, sorting as number of

components grows.

Possibility to install the

application.

Developer gets his fully

working application in one

click. The application exists

entirely separately from the

ecosystem developed in this

thesis.

The browsers show the

installation banner only for the

first time, then disables it for

the period of time. To install

the application the user must

select an appropriate option

from the browser menu.

Inject children components

directly into the parent’s

ViewModel using the name

of the component instance

as a field name.

More convenient and

intuitive way to access

components without dealing

with the specific Vue.js

syntax. As a result, error

probability also decreases.

When the component is hidden

using conditional rendering, it

also is missing from the Vue.js

$refs property and cannot be

accessed at all. Conditional

rendering results in the

component destruction.

Table 22. Conceptual vs real solution evaluation

Also, when the component builder was made in the form of the PWA, it was discovered

that PWAs cannot trigger the installation process for other PWAs and the prototype was

made in the form of a web application but not a PWA.

The chapters related to the conceptual solution have textual description of the syntax that

can be used to make development more simple. The table below contains concrete

examples of its application. It has a task example in the first column, then this task is

expressed using simplified syntax in the second column and generated Vue.js syntax (that

is used in the traditional approach) in the third column.

95

Task Simplified syntax Vue.js syntax

Property definition String name ‘something’ name:{

 type:String,

 default:’something’

}

ViewModel variables

definition

this.variableName function(){

 return {variableName:undefined};

}

two-way data binding this.propName=’value’ this.$emit(‘update:propName’,’value’);

Using ViewModel

variables inside a slot

{{variableName}} <template slot-scope=”slotProps”>

 {{slotProps.variableName}}

</template>

Use children

components

this.child this.$refs(‘child’);

Table 23. Simplified syntax examples

10.2 Experimental testing

This is very hard to measure simplicity. The majority of the parts that form simplicity

cannot be measured rigorously using concrete numbers. One cause of this is that

simplicity perception is quite subjective. It can be measured roughly using qualitative

methods. This was made in the previous part of this chapter: expected outcomes of the

conceptual solution was controlled using implemented prototype.

But there still exists very important criterion that can be measured using quantitative

methods. This is the number of actions that the developer must perform to get his final

application. This affects the following parts of the simplicity definition: time saving and

a learning curve. The learning curve is affected because reducing the number of actions

also reduces amount of information that must be learned to effectively use the tool.

The number of action will be evaluated using the created prototype in action. As the

number of actions the amount of hand written code is implied. As a testing task will be

created a small image gallery that contains NASA missions with their description. When

the user selects a mission, content of the gallery is updated (contains thumbnails). When

96

he clicks the thumbnail, application shows a big version of the picture with description

that can be closed by clicking it. The developing application also requires creation of 2

components: a simple navigation bar that will display mission names and a gallery that

will display pictures with additional information.

The appendix 1 shows code examples of the generated navigation bar and the gallery

components. These code examples show that the developer really focuses only on the

code that really matter (his own code) and amount of side code is minimized. When

components are ready, the application can be built from them in graphical mode and

amount of the additional hand written code is very small. The appendix 2 shows code

examples of generated assets that are required to form a PWA: index.html, sw.js and

manifest.json.

The NASA gallery test application does not use all possibilities of the developed

prototype, but gives a clear picture about hand written code reduction. It shows that the

biggest amount of hand-written code locates inside components. When components are

created, their using does not require much additional code (moreover, the code fraction is

very small). But on the other hand, the application developer can customize components

using styles and slots that supports the last rule of simplicity (simplicity and complexity

need each other). The service worker and the application manifest also consist of the

generated code almost entirely.

Different applications require different amount of code. Complex application has greater

fraction of the hand written code, but the small applications benefit more. The table below

contains an approximate hand written code fraction based on the testing application.

Part Fraction

Component ~70%

Application <10%

Service worker 0% (requires to specify values only)

Manifest 0% (requires to specify values only)

Table 24. An approximate hand written code fraction

97

In additional to this, generated application was tested using Lighthouse audit. It is

designed to test PWAs and can be used from Chrome DevTools. The figure below shows

its results for the test application described above. HTTP to HTTPS redirection must be

done on the server side. The solution developed in this thesis deals with the client side

only. Splash screen issue can be fixed using large (512+px) icons. As developed solution

is only the prototype this is not very important. Other criterions were fulfilled, and the

test application can be treated as a PWA.

Figure 17. Lighthouse audit results

10.3 Future improvements

The implemented solution is only a prototype. But it shows that the conceptual solution

can be released and it positively affects simplicity in general. But the Table 22 shows that

this solution has some drawbacks. To effectively apply the developed solution in practice,

majority of these drawbacks must be fixed. This can be done in the future iterations when

the conceptual solution can be updated using experience collected from the prototype

implemented during this thesis. Then the another prototype can be built based on the

conceptual solution and evaluation can be repeated. After two or more these iterations a

finished result can be achieved. The future iterations can also improve the existing parts

like using more flexible regular expressions. And after adding additional non-functional

requirements a ready to wide use final product can be released.

98

11 Summary

The aim of this thesis was to simplify a process of building PWAs using Vue.js MVVM

framework. The thesis shows that an effective problem solution requires development of

an integrated solution in the form of a toolchain or an ecosystem. This solution covers

Vue.js component creation, application building using these components, components

management and transformation the resulting application into a PWA.

The solution consists of 2 parts: a theoretical conceptual solution and its practical

implementation. During the theoretical part, the standard way was analysed to find parts

that can be improved orienting to the stated definition of simplicity. This part allows to

conduct theoretical evaluation only. To achieve real results, the conceptual solution was

implemented in the form of a prototype. The prototype was made in the form of a web

application to share the execution environment with applications it helps to create. The

prototype existence allows to conduct evaluation more precisely. It helped to find

drawbacks of the conceptual solution that was not obvious during its evaluation phase.

Additionally, it allows to apply experimental testing methods using concrete test

examples to measure quantitative properties of simplicity.

The evaluation shows that the developed solution helps to achieve stated results in

general. The solution helps with simplification of the PWA development process. But the

evaluation also shows that the implemented prototype has some drawbacks that

negatively affect simplicity. These drawbacks can be fixed during the future

development.

99

References

[1] "Chrome OS - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Chrome_OS. [Accessed 15 March 2018].

[2] "5 Best JavaScript Frameworks in 2017," [Online]. Available:

https://hackernoon.com/5-best-javascript-frameworks-in-2017-7a63b3870282.

[Accessed 7 March 2018].

[3] "The Good and the Bad of Angular Development," [Online]. Available:

https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-angular-

development/. [Accessed 15 March 2018].

[4] "node.js - Google Trends," [Online]. Available:

https://trends.google.com/trends/explore?date=2010-09-17%202017-09-

17&q=node%20js. [Accessed 15 March 2018].

[5] A. Hevner, S. March, J. Park and S. Ram, "Design Science in Information

Systems Research," MIS Quarterly, vol. 28, pp. 75-105, 2004.

[6] "Progresseve Web Apps," [Online]. Available:

https://developers.google.com/web/progressive-web-apps. [Accessed 17 February

2018].

[7] "Service Workers: an Introduction," [Online]. Available:

https://developers.google.com/web/fundamentals/primers/service-workers/.

[Accessed 17 February 2018].

[8] "Measure Performance with the RAIL Model," [Online]. Available:

https://developers.google.com/web/fundamentals/performance/rail#goals-and-

guidelines. [Accessed 17 February 2018].

[9] "Can I use?," [Online]. Available: https://caniuse.com/. [Accessed 17 February

2018].

[10] D. Kardys, "Modular Web Design: Designing With Components," [Online].

Available: https://blog.wsol.com/modular-web-design-designing-with-

components. [Accessed 25 February 2018].

[11] K. J., Introducing Bootstrap 4, Apress, 2016.

[12] M. Moskala, "MVC vs MVP vs MVVM vs MVI," [Online]. Available:

https://academy.realm.io/posts/mvc-vs-mvp-vs-mvvm-vs-mvi-mobilization-

moskala/. [Accessed 3 March 2018].

[13] "JavaScript + jQuery Design Pattern Framework," [Online]. Available:

http://www.dofactory.com/products/javascript-jquery-design-pattern-framework.

[Accessed 3 March 2018].

[14] "Vue.js Guide," [Online]. Available: https://vuejs.org/v2/guide/index.html.

[Accessed 3 March 2018].

[15] J. Maeda, The Laws of Simplicity, The MIT Press, 2006.

100

[16] V. Gupta, "INLINE VS INTERNAL VS EXTERNAL CSS," [Online]. Available:

https://vineetgupta22.wordpress.com/2011/07/09/inline-vs-internal-vs-external-

css/. [Accessed 4 March 2018].

[17] "Single File Components," [Online]. Available: https://vuejs.org/v2/guide/single-

file-components.html. [Accessed 4 March 2018].

[18] "TIOBE Index for February 2018," [Online]. Available:

https://www.tiobe.com/tiobe-index/. [Accessed 4 March 2018].

[19] "Top 5 Most Popular CSS Frameworks that You Should Pay Attention to in

2017," [Online]. Available: https://hackernoon.com/top-5-most-popular-css-

frameworks-that-you-should-pay-attention-to-in-2017-344a8b67fba1. [Accessed

11 March 2018].

[20] "Viewport Sizes," [Online]. Available: http://viewportsizes.com/. [Accessed 15

March 2018].

[21] "Caching Files with Service Worker," [Online]. Available:

https://developers.google.com/web/ilt/pwa/caching-files-with-service-worker.

[Accessed 20 March 2018].

[22] "Web App Install Banners," [Online]. Available:

https://developers.google.com/web/fundamentals/app-install-banners/. [Accessed

24 March 2018].

[23] "Code Mirror: Simple Mode Demo," [Online]. Available:

https://codemirror.net/demo/simplemode.html. [Accessed 5 April 2018].

[24] E. Kitamura, "Working with quota on mobile browsers," [Online]. Available:

https://www.html5rocks.com/en/tutorials/offline/quota-research/. [Accessed 19

March 2018].

[25] "IndexedDB API - Web APIs | MDN," [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API. [Accessed 5

April 2018].

[26] "Composite pattern - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Composite_pattern. [Accessed 16 April 2018].

101

Appendix 1 – An code example generated by the component

creator

The blue colour indicates generated code and the red one indicates hand-written code.

The code of the navigation bar component:

<template><div>

<div class="bar" style="display:flex; flex-wrap:wrap">

<div v-for="item in items" class="item" @click="onclick(item)">

<slot name="item" :item="item">{{item}}</slot>

</div></div>

</div></template>

<style>

 .bar{background:#222222;padding:12px;}

 .item{color:lightgray;cursor:default;

 font-size:24px;margin:0 10px 0 10px;

 text-align:center;}

 .item:hover{color:white;}

</style>

<script>

export default{

props:{

 items:{type:Array,default:[]}

},

methods:{

onclick(entry){this.$emit('click_item',entry)}

},

}

</script>

The code of the gallery component:

<template><div>

<div style="display:flex; flex-wrap:wrap">

<div class="image-container" v-for="item in items" @click="onclick(item)">

<slot name="image" :item="item">

102

<div class="image-title">{{item.title}}</div>

<div class="image-description"></div>

</slot></div></div>

</div></template>

<style>

.image-img{width:180px;height:150px;object-fit: cover;}

 .image-title{color: gray;font-size: 16px;font-weight:500;}

 .image-description{color: gray;font-size: 14px;}

 .image-container{background: white;

 margin:2px;border:1px solid gray;

 border-radius: 5px;padding: 5px;}

</style>

<script>

export default{

props:{

 items:{type:Array,default:[]}

},

methods:{

 onclick(item){this.$emit('click_item',item);}

 },

}

</script>

Appendix 2 – An code example generated by the application

builder

The blue colour indicates generated code and the red one indicates hand-written code.

Yellow indicates the Model part of the MVVM pattern that is not a responsibility of this

thesis.

The code of the generated index.html:

<html><head>

<link rel="manifest" href="manifest.json?0.9745235701368631">

 <meta name="mobile-web-app-capable" content="yes">

 <meta name="apple-mobile-web-app-capable" content="yes">

 <meta name="application-name" content="NasaGallery">

 <meta name="apple-mobile-web-app-title" content="NasaGallery">

103

 <meta name="msapplication-starturl" content="index.html">

 <link rel="icon" href="icon192.png">

 <link rel="apple-touch-icon" href="icon192.png">

 <title>NasaGallery</title>

<script>

if ('serviceWorker' in navigator)

 navigator.serviceWorker.register('sw.js');

function showError(at, err, line) {

 parent.postMessage({version:Vue.version,at,err,line},"*");

}</script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js"></script>

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-

bootstrap/4.0.0/css/bootstrap-grid.min.css">

<meta name="viewport" content="width=device-width, initial-scale=1">

<style>

.position-absolute {position: absolute !important;}

.position-fixed {position: fixed !important;}

.m0 {margin-left:0;margin-right:0;}

.p0 {padding-left:0;padding-right:0;}

.h100 {height:100%;}

.e0 {pointer-events:none;}

.e1 {pointer-events:auto;}

body {margin:0px;}.pl0{padding-left:0rem}

#thumbnails .image-img{width:180px;height:150px;object-fit: cover;}

#thumbnails .image-title{color: gray;font-size: 16px;font-weight:500;}

#thumbnails .image-description{color: gray;font-size: 14px;}

#thumbnails .image-container{background: white;margin:2px;border:1px solid gray;

border-radius: 5px;padding: 5px}

#navigation .bar{background:#222222;padding:12px;}

#navigation .item{color:lightgray;cursor:default;font-size:24px;margin:0 10px 0

10px;text-align:center;}

#navigation .item:hover{color:white;}

#mission .image-img{width:100%;object-fit: cover;}

#mission .image-title{color: gray;font-size: 16px;font-weight:500;}

#mission .image-description{color: gray;font-size: 14px;}

#mission .image-container{background: white;margin:2px;border:1px solid gray;

border-radius: 5px;padding: 5px;max-height:100vh;overflow:auto;}

</style></head>

<body style="background:#ffffff">

<div id="app" class="e0"><div class="container-fluid p0 position-absolute" ><div

class="row m0"><div class="col-sm-12 col-12 offset-sm-0 offset-0 align-self-sm-start

align-self-start pl0 pt20 pr0 pb0 plsm0 ptsm20 prsm0 pbsm0" ><div class="row

m0"><gallery class="col-sm-12 col-12 offset-sm-0 offset-0 align-self-sm-start align-

self-start pl0 pt0 pr0 pb0 plsm0 ptsm0 prsm0 pbsm0 e1" id="thumbnails"

104

@click_item="thumbnailsclick_item" :items.sync="images" ref="thumbnails"><template

slot="image" slot-scope="slotProps">

<div class="image-title"> {{slotProps.item.data.date_created}} </div>

<div class="image-description"></div></template></gallery>

</div></div></div></div><div class="container-fluid p0 h100 position-fixed" ><div

class="row h100 m0"><div class="col-12 p0 align-self-start"><div class="row m0"><div

class="col-sm-12 col-12 offset-sm-0 offset-0 align-self-sm-start align-self-start pl0

pt0 pr0 pb0 plsm0 ptsm0 prsm0 pbsm0" ><div class="row m0"><navbar class="col-sm-12

col-12 offset-sm-0 offset-0 align-self-sm-start align-self-start pl0 pt0 pr0 pb0

plsm0 ptsm0 prsm0 pbsm0 e1" id="navigation" @click_item="navigationclick_item"

:items.sync="missions" ref="navigation"><template slot="item" slot-scope="slotProps">

{{slotProps.item}} </template></navbar></div></div></div></div></div></div><div

class="container-fluid p0 h100 position-fixed" ><div class="row h100 m0"><div

class="col-12 p0 align-self-center"><div class="row m0"><div class="col-sm-12 col-12

offset-sm-0 offset-0 align-self-sm-start align-self-start pl0 pt0 pr0 pb0 plsm0 ptsm0

prsm0 pbsm0" ><div class="row m0"><gallery class="col-sm-8 col-12 offset-sm-2 offset-

0 align-self-sm-start align-self-start pl0 pt0 pr0 pb0 plsm0 ptsm0 prsm0 pbsm0 e1"

id="mission" @click_item="missionclick_item" :items.sync="currentMission" v-

if="missionShown" ref="mission"> <template slot="image" slot-scope="slotProps"> <img

:src="slotProps.item.src" class="image-img">

<div class="image-title"> {{slotProps.item.data.title}} </div>

<div class="imagedescription"> {{slotProps.item.data.description}} </div> </template>

</gallery></div></div></div></div></div></div>

<script>

app=new Vue({el: '#app',

data: function(){return {

missions:undefined,

missionShown:undefined,

currentMission:undefined,

images:undefined

}},

created(){

 this.loadData('apollo');

 this.missions=['apollo','aqua','barrel','dawn'];

 this.missionShown=false;

 this.currentMission=[];

},

methods:{

loadData(query,n=20){

 fetch(`https://images-

api.nasa.gov/search?q=${query}&media_type=image`).then((response)=>{

 response.json().then((data)=>{

this.images=data.collection.items.map(d=>{return

{src:d.links[0].href,data:d.data[0]}}).slice(0,n);

105

})});},

thumbnailsclick_item:function(item){this.currentMission=[item];

 this.missionShown=true;},

navigationclick_item:function(item){this.loadData(item);},

missionclick_item:function(){this.missionShown=false;}

}});</script></body></html>

The code of the generated sw.js:

VERSION='v1591801207';

this.addEventListener('install', function(event) {

 event.waitUntil(

 caches.open(VERSION).then(function(cache) {

 return cache.addAll(['manifest.json','icon192.png',

'index.html',

'https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js',

'https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/4.0.0/css/bootstrap-

grid.min.css',

https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js,

]);}));});

this.addEventListener('activate', function(event) {

 event.waitUntil(caches.keys().then(function(keyList) {

 return Promise.all(keyList.map(function(key) {

 if (key!=VERSION) {

 return caches.delete(key);

 }}));}));});

this.addEventListener('fetch', function(event) {

 event.respondWith(caches.match(event.request).then(

 function(response) {

 return response || fetch(event.request);

 }));});

The code of the generated manifest.json:

{"name": "NasaGallery",

"short_name": "NasaGallery",

"description": "This is a test app!",

"background_color": "#61e9db",

"theme_color": "#ffffff",

"start_url": "index.html",

"display": "standalone",

"orientation": "any",

"icons": [{

106

 "src": "icon192.png",

 "sizes": "192x192",

 "type": "image/png"

 }]}

Appendix 3 – Source code of the prototype

Git repository:

https://gitlab.cs.ttu.ee/Sergei.Malosev1/master-thesis

SSH clone URL:

git@gitlab.cs.ttu.ee:Sergei.Malosev1/master-thesis.git

https://gitlab.cs.ttu.ee/Sergei.Malosev1/master-thesis

	Author’s declaration of originality
	Abstract
	Annotatsioon Komponentide põhiste progressiivsete web rakenduste ehitamise protsessi lihtsustamine arendades GUI töövahend Vue.js MVVM raamistiku jaoks
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Locating the research area
	1.2 Existing solutions
	1.3 Problem statement
	1.4 Problem relevance and research contribution
	1.5 Research questions
	1.6 Methodology
	1.7 Thesis structure

	2 Technology and concepts overview
	2.1 Progressive Web App
	2.2 Component-based responsive web design
	2.3 MVVM and data binding
	2.4 Vue.js
	2.5 Definition of simplicity

	3 Simplifying component creation
	3.1 Overall structure
	3.2 Template
	3.3 Functions
	3.4 ViewModel state
	3.5 Two-way data binding
	3.6 Preview
	3.7 Evaluation

	4 Simplifying application building
	4.1 GUI layout
	4.2 Component customization
	4.3 Data exchange with components
	4.4 Accessing from code
	4.5 Global ViewModel of the application
	4.6 Preview
	4.7 Evaluation

	5 Simplifying components management
	5.1 Component library
	5.2 Forking
	5.3 Export
	5.4 External files inclusion
	5.5 Evaluation

	6 Simplifying transformation to PWA
	6.1 Service workers
	6.2 Application manifest
	6.3 Installation
	6.4 Evaluation

	7 Implementation of the component creator
	7.1 Requirements specification
	7.2 Design
	7.3 Implementation

	8 Implementation of the application builder
	8.1 Requirements specification
	8.2 Design
	8.3 Implementation

	9 Server-side implementation
	9.1 Remote component library
	9.2 Installation

	10 Evaluation and results
	10.1 Analytical evaluation
	10.2 Experimental testing
	10.3 Future improvements

	11 Summary
	References
	Appendix 1 – An code example generated by the component creator
	Appendix 2 – An code example generated by the application builder
	Appendix 3 – Source code of the prototype

