
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Software Science

Pavel Lavrešin 083834 IAPB

APPLYING REACTIVE PROGRAMMING APPROACH

IN IOT BASED RELIABLE CROSSROAD TRAFFIC

MONITORING

Bachelor’s thesis

Supervisor: Martin Rebane

MSc

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Pavel Lavrešin 083834 IAPB

REAKTIIVSE PROGRAMMEERIMISE RAKENDAMINE

IOT BAASIL TÖÖKINDLA

RISTMIKUMONITOORINGU EHITAMISEKS

Bakalaureusetöö

Juhendaja: Martin Rebane

MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Pavel Lavrešin

May 21, 2018

4

Abstract

Crossroad traffic monitoring system is highly available and reliable IoT based crossroad

traffic control system that leverages following set of technologies like IoT (Internet of

Things), ML (Machine Learning) for and real-time video stream and time-series stream

of sensors data. All these components and technologies combined together generate

huge number of events, messages and workload for both local and cloud infrastructure

adding also high network throughput.

Author is confident that the main constraint that needs to be addressed in such IoT

based crossroad traffic monitoring is the efficiency of data processing pipeline and

reliability of the mission critical services without having to sacrifice and high

performance in distributed multi-threaded environment.

The aim of this work is to apply Reactive programming paradigms in the IoT based

application, ensuring that built system remains reliable and high-performing.

This paper brings out two implementations based both on Actors and Reactive streams

models as well as sheds some light on inefficiency of traditional OLTP / CRUD -like

approach when it comes to designing an elastic and scalable solutions. Author describes

how Actors and Reactive programming help to overcome limitations of traditional

object-oriented programming models and allow to build concurrent, fault-tolerant and

self-healing systems.

Finally, having implemented both Actors and Streams based solutions, author shares

analysis and collected application metrics, proving that developing applications in a

Reactive way is fully justified and highly recommend when building resilient, elastic

and fault-tolerant systems.

This thesis is written in English and has 40 pages, consisting of 5 chapters with 19

figures and 3 tables.

5

Annotatsioon

Ristmiku liikluse monitooringu rakendus ise ja süsteem tervikuna on loodud eesmärgiga

olla töökindel ja kogu aega saadaval vaatamata suurele töökoormusele. Monitooringu

süsteem sisaldab endas keerulist IoT baasil ehitatud riistvara ning ka töökindlat ja täpset

tarkvara mis ette nähtud video töötlemiseks ja autode tuvastamiseks tänu masinõpe

rakendamisele. Kõik need ülalmainitud komponendid koos genereerivad suurt mahtu

andmetest ja töökormust nii lokaalsetele seadmetele, kuid ka pilveteenustele. Lisaks,

nõuab selline süsteem ülitäpset ja ülikindlat juhtimist ja arendust et jääda

kättesaadavaks ja reageeritavaks olles samuti ka vastupidav.

Autor leiab, et tuleb pöörata tähelepanu just sellele, kuidas on projekteeritud sellise IoT

baasil ristmiku tarkvara ning kas selles tarkvaras on arvestatud ka sellega, mida

pakkuvad modernsed ja jaotatud süsteemid.

Selle töö põhieesmärk on rakendada Reaktiiv programmeerimise põhimõtteid ja eeliseid

IoT baasil olevale ristmiku monitooringule ning veenduda, et süsteem on töökindel ja

kiire.

Selles töös uuritakse kaks erinevat Reaktiivset lahendust – üks on Actor mudeli põhinev

lahendus ning teine on Reaktiiv stream-i lahendus. Lisaks, viitab autor sellele, kuivõrd

ebaefektiivsed ning mitte väga töökindlad on olemasolevad CRUD / OLTP baasil

tehtud lahendused, milleks on enamus veebirakendusi. Autor kirjeldab, kuidas aitab

Actor mudeli ja Reaktiiv stream-i põhjal tehtud lahendus lahendada skaleeruvuse

muresid, olles samas ajal väga võimas ja töökindel suurte andmemahtude korral.

Töö tulemusena leiab autor, et Reaktiiv stream-i põhjal tehtud rakendus võrreldes Actor

mudeliga palju efektiivsem andes rohkem võimalusi juba baaslahendusena ning olles

väga paindlik konfigureerimisel. Lisaks, Reaktiiv stream-i lahendus on tarkvaraarendaja

silmades tunduvalt kergemini hallatav ja toetatav edaspidi ning ei nõua madalal tasemel

koodi kirjutamist nagu Actor mudel. Lisaks, autor analüüsib kogutud süsteemsed

6

mõõdikud, mis olid mõlema rakenduste töökäigust kogutud et tõestada põhieesmärki

saavutamist.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 40 leheküljel, 5 peatükki, 19

joonist ja 3 tabelit.

7

List of abbreviations and terms

ACID ACID (Atomicity, Consistency, Isolation, Durability) of database
transactions intended to guarantee validity even in the event of errors,
power failures, etc. In the context of databases, a sequence of
database operations that satisfies the ACID properties, and thus can
be perceived as a single logical operation on the data, is called a
transaction. [41]

ADT Abstract data type is a mathematical model, where a data type is
defined by its behavior

Akka Akka framework a set of open-source libraries for designing scalable,
resilient systems that span processor cores and networks [32]

API API is a set of functions and procedures that allow the creation of
applications which access the features or data of an operating system,
application, or other service. [42]

Back-pressure Back-pressure is an ability to notify producer (upstream) to slow-
down due to consumer (downstream) being too slow. It allows
components in your system to react resiliently (e.g. not consuming an
unbounded amount of memory) and predictably, all in a non-blocking
manner [40]

CRUD CREATE, READ, UPDATE and DELETE operations (as an acronym
CRUD) are the four basic functions of persistent storage.

CQRS CQRS stands for Command Query Responsibility Segregation. It's a
pattern that I first heard described by Greg Young. At its heart is the
notion that you can use a different model to update information than
the model you use to read information [43]

DDD It is a development approach that deeply values the domain model
and connects it to the implementation. DDD was coined and initially
developed by Eric Evans. [44]

DSL DSLs are small languages, focused on a particular aspect of a
software system. You can't build a whole program with a DSL, but
you often use multiple DSLs in a system mainly written in a general-
purpose language. [45]

8

FP Functional programming is a programming paradigm—a style of
building the structure and elements of computer programs—that
treats computation as the evaluation of mathematical functions and
avoids changing-state and mutable data. [46]

IoT Internet of Things - everyday objects and devices connected to the
web and providing additional data and / or functionality

MQTT Message Queue Telemetry Transport or MQTT is Machine 2
Machine pub sub platform. Publisher can publish anything on some
channel and subscriber can subscribe to channel and listen to
publisher [47]

OOP Object-oriented programming (OOP) is a programming paradigm
based on the concept of "objects", which may contain data, in the
form of fields, often known as attributes; and code, in the form of
procedures, often known as methods. [48]

OLTP OLTP (Online Transaction Processing) is characterized by a large
number of short online transactions (INSERT, UPDATE, DELETE).
The main emphasis for OLTP systems is put on very fast query
processing, maintaining data integrity in multi-access environments
and an effectiveness measured by number of transactions per second
[49]

PaaS Platform as a Service, often simply referred to as PaaS, is a category
of cloud computing that provides a platform and environment to
allow developers to build applications and services over the internet
[50]

REST REST, or Representational State Transfer, is an architectural style for
providing standards between computer systems on the web, making it
easier for systems to communicate with each other [51]

SaaS Software as a service is a software licensing and delivery model in
which software is licensed on a subscription basis and is centrally
hosted [52]

UI User interface of a product, where human and machine interaction
occurs

UX User experience perspective and satisfaction of product

9

Table of content
1 Introduction 13	

1.1 Common approach to software development 14	
1.2 Reactive programming approach 17	

2 Reactive paradigms in IoT 20	
2.1 Crossroad traffic monitoring designed in CRUD way 20	
2.2 Event Sourcing 22	
2.3 Reactive programming paradigms and system design 27	

2.3.1 Reactive manifesto 28	
2.4 Actor model 29	
2.5 Reactive streams 31	

3 Overview of the proposed solution 33	
3.1 Crossroad traffic operation problems 33	
3.2 Proposed reactive solution 37	

4 Implemented solution 39	
4.1 Crossroad IoT devices 39	
4.2 Vehicle recognition from video stream 41	
4.3 Time-series metrics from IoT devices 42	
4.4 Software product implementation 43	

4.4.1 Platform 43	
4.4.2 Programming language 44	
4.4.3 Frameworks 44	
4.4.4 Actor based implementation 45	
4.4.5 Reactive streams-based implementation 47	
4.4.5 Recorded system performance metrics 49	

4.5 Analysis of results 50	
5 Summary 52	
References 54	
Appendix 1 – Reactive-crossroad repository [38] 58	
Appendix 2 - Time-series metrics for vehicle weight measurements 59	
Appendix 3 - Time-series metrics for surface measurements 60	
Appendix 4 - Time-series metrics for weather measurements 61	
Appendix 5 - Defined commands according to DDD / CQRS model 62	
Appendix 6 - Defined events according to DDD / CQRS model 63	
Appendix 7 - Persistent Actor per every Crossroad 64	

10

Appendix 8 - Worker Actor for vehicle recognition stream 65	
Appendix 9 - Worker Actor for Time-series metrics 66	
Appendix 10 - Handling of video recognition results with Akka streams 67	
Appendix 10 (continued) – Handling of video recognition results with Akka streams 68	
Appendix 11 – Actors vs Streams Threads utilization 69	
Appendix 12 – Actors vs Stream Memory / Heap utilization 70	
Appendix 13 – Actors vs Streams GC performance 71	

11

List of figures
Figure 1. High-level overview of OLTP-like application for crossroad monitoring 16	

Figure 2. Simple CRUD implementation [4] ... 16	

Figure 3.Interactions in crossroad monitoring system when built in CRUD way 20	

Figure 4. State model and mutation in event-sourced systems 23	

Figure 5. Crossroad monitoring system in Even Sourcing way 25	

Figure 6. Eventual consistency and CQRS by Greg Young, MSDN, Microsoft [15] 26	

Figure 7. The Reactive Manifesto. https://www.reactivemanifesto.org/ [17] 29	

Figure 8. Actors communication with each other [19] ... 30	

Figure 9. Example of Ask and Tell patterns in Actors ... 31	

Figure 10. Publisher-subscriber like communication for Subscriber-Observable [20] .. 31	

Figure 11. A Bird`s Eye View to proposed IoT setup .. 36	

Figure 12. Proposed implementation based on Event Sourcing, CQRS and DDD 37	

Figure 13. Reactive Crossroad implementation stages ... 39	

Figure 14. Visual Object Detection by YOLO algorithm [28]...................................... 41	

Figure 15. Actors-based implementation design .. 46	

Figure 16. Akka-streams based implementation design ... 47	

Figure 17. Akka streams-based back-pressure explained ... 48	

Figure 18. JVM version .. 49	

Figure 19. Threads utilization for Reactive Streams application 50	

12

List of tables

Table 1. Proposed hardware list for intelligent traffic monitoring 34	

Table 2. Proposed software technologies used for intelligent traffic monitoring 35	

Table 3. Proposed IoT devices for intelligent crossroad ... 40	

13

1 Introduction

The IoT (Internet of Things) industry is relatively new but extremely growing and

evolving industry that is surrounding us every day and transforming the way we do our

routine daily tasks either at home or at work. It is estimated that there will be ca 200

billions of “smart” devices [1] around, connected to the web and capable to exchange

and analyze collected data from various embedded devices and sensors.

Applying the Internet of Things technology in traffic management and regulation

systems is a natural way towards better and more comfortable cities with cleaner urban

environment if we want to make our life in the rapidly developing and growing cities

more smarter and safer.

Unfortunately, putting all hardware like sensors, cameras and computers together won’t

be sufficient to build an intelligent system that we have described above.

Hardware is nothing without good software hence building a good and reliable IoT

based system requires implementing software that can support IoT at large scale and

being both resilient and responsive is rather non-trivial task and requires much more

effort than traditional web-based product development most are familiar with.

Moreover, it assumes that product architecture is designed in such way that it is meant

to be used by millions, handle large volumes and in addition respond to user actions in

few milliseconds.

The main goal of this Thesis is an attempt to apply Reactive programming approach and

core paradigms in order to build a system that can scale, survive failures and remain

coherent and reliable under significant load in the resources constrained environment.

There are multiple paradigms available that make an application reactive compliant

although this thesis work strictly focuses on Actors model [18] and Reactive Streams

[6]. As a foundation for both implementation, Akka framework [32] has been chosen

due to wide range of available components under the hood and out of the box that can

be put together to achieve a system, built in a reactive way.

14

There are few success criteria this Thesis is challenging to meet with a software product

implementation. First of all, being reactive means utilizing common patterns as to be

able to communicate within components in a message-driven way. Secondly,

application should tolerate rapidly increased load and remain resilient and elastic under

load. Lastly, the Reactive Streams based implementation should be most sophisticated

solution available hence providing multiple features such as back-pressure, self-healing

and parallelism literally for free at the same time utilizing system resources most

carefully. The latter one should be justified and proven at least from JVM (Java Virtual

Machine) resources utilization and backed by time-series metrics.

This Thesis provides repository and code excerpts that have been used to build a

baseline for proposed IoT reactive solution as well as ad-hoc simulation. However most

of the work author has carried has been done in the terms of the Proof of Concept and

has not been battle-tested in production, following should be rather easily applicable to

production-ready implementation if provided domain entities and reactive foundation is

used.

Thesis contains of 4 chapters that shed light to existing software engineering issues

encountered by using traditional CRUD / OLTP patterns as well as core Reactive

programming paradigms, especially in the context of IoT devices load and scale. Truly,

one can implement any product and keep optimizing it until the hardware limits are

reached but here author is confident enough that the core values and performance gains

should be taken from the Reactive platform and its paradigms with all the additional

values provided.

1.1 Common approach to software development

Traditionally, there are software engineering patterns and technologies known for

decades already and they still remain popular and widely applied. When one is required

to implement an abstract web application that should solve any of business goals that

requires state management, an engineer would probably opt for having a monolith

server-side application, single relational database and regular REST API (for fetching

persisted data.

15

This approach described above is widely used, accepted and applicable for most web

applications that is highly appreciated, sometimes ever referred as cornerstone of

software engineering. Following approach is often described as CRUD (Create, read,

update, delete), which is common set of verbs used to build a system which is intended

to operate with data at any scale.

Being actually very verbose acronym for describing a set of operations that are being

done with data through different user flows, CRUD is actually much more that a way to

build software - it is a requirement to have a strong consistency between all operations,

which is critical for software to remain truthy and usable. CRUD applications are also

often called as OLTP (Online transaction processing) systems [2].

The typical OLTP system stack has not changed for a while and can be characterized as:

● Single-threaded monolith server-side application, written in Java or

PHP/Python/JS

● Relational data storage provided by popular RDBMS like MySQL and

PostgreSQL, ACID-compliant to support strong consistency, highly normalized

data structures

● Mixed usage of transactions, pessimistic and/or optimistic locking techniques to

provide consistency

The OLTP stack is relatively standardized and well described and by following this

stack prerequisites and best practices it should be quite trivial to build any complex

system from scratch typically very fast. It does solve most business goals for instance in

retail industry and finances however requires significant effort to build a proper

monitoring to prevent any operational data loss that is persisted in RDBMS, because it

is often the single source of truth for most OLTP application. In addition, OLTP

applications are often very good for any kind of reporting and data mining needs.

Combined with OLAP (Online analytical processing) systems, the main data storage is

offloaded in favor of new analytical database that is used for reporting and analysis

hence allowing to retrieve data faster and perform more heavy-weight queries without

affecting primary storage. Considering that it should be relatively straightforward to

design any application according to CRUD best practices, author has decided to model

a high-level overview how could the crossroad monitoring look like when designing it

as an OLTP application.

16

Figure 1. High-level overview of OLTP-like application for crossroad monitoring

OLTP applications are perfectly fine to use when one needs to persist data and perform

lightweight computations in a monolith environment that has a single ACID-compliant

data storage. This allows software engineers to focus on solving business problems

rather that infrastructural issues and it is ensured that consistency is maintained by

database in case of failure. It also works perfectly fine until that moment when

engineers and business do not care much about previous state of application, and

especially how did the application state actually evolve over time [3].

Once there is a demand to scale an existing application due to increased load and

business needs, a common approach is to migrate from monolithic architecture to

microservices / containers-based architecture like shown on the figure below.

Figure 2. Simple CRUD implementation [4]

17

From architectural design perspective, it should be rather trivial to break down into

loosely coupled microservices a proposed crossroad monitoring system however this

will definitely lead to unpredicted failures and need to implement long-lasting

transactions across microservices hence in result it will still be tightly coupled and

database dependent.

The naive implementation of microservices based architecture for OLTP application

might be as follows:

• Incoming data is consumed via blocking REST API

• A transaction is initiated, data fetched, transformed, nested transactions are

made, data is written to database and eventually committed

• Response is returned to caller

• Not responsive, not scalable and not event-driven at all

Another significant flaw that is common to OLTP systems is a usage OOP (Object-

Oriented Programming) paradigm. OOP is a first and foremost choice when it comes to

developing an application these days.

Modelling the world and entities in the code using OOP is relatively easy and

straightforward cause one can define objects as a composition of fields and methods. By

invoking a method belonging to this object you should expect a synchronous response

and hence all the operations in the OOP programming model are blocking by design.

Mainly, OOP paradigm is heavily praised for being understandable, reusable, testable

and extensible but not efficient enough in modern distributed and scalable systems

hence there is a need for a better approach.

1.2 Reactive programming approach

In order to overcome limitations imposed by OOP programming model such as a need

to interact with object and mutate state in blocking synchronous way, we shall have a

look at Reactive Programming - functional event-driven programming model.

In today’ asynchronous world we are getting across each other it is highly critical to

maintain both speed of communication as well as data integrity without sacrificing one

or another.

18

If we observe the constantly changing environment we live, we can spot that all the

entities around us are always in motion. Whether these are stock exchanges, air traffic,

vehicle traffic jams, public commutes or weather - we clearly see that things are

constantly evolving, sometimes that we cannot even spot the current state willing to

press a pause. Often, we are able to influence things happening around us in some

controller manner, however many things just happen asynchronously at the same in the

background forming a stream of events and generating new values in order to update

current state. Such stream of events is grassroots of Reactive programming and

adamantly defines main mantra of this approach: events are data and data are events.

Streams fit very well into the modern distributed and scalable environments. Hardware

has evolved and changed drastically during recent years, where we have reached the

limits of Moore’s Law [5] and hence cannot double the speed of CPU units every other

year. As a result, the free lunch is now over and applications do not improve

automatically once new generation of CPU is released [5]. Instead, hardware makers

keep adding multiple physical and virtual cores requiring engineers to adapt to

completely different environment with multicore, cloud and containers-based

architectures being de-facto top choice for most projects.

IoT essentially expect very high SLA while still having great throughput and

availability which, in my opinion, cannot be achieved with classical OOP paradigm

being fundamentally different.

Therefore, there have been lots of discussions and proposals how to handle increasing

load from IoT devices and stream that data remaining in concurrent way none of these

proposals has been better that Reactive Programming. Reactive programming isn’t

novel paradigm and has existed for decades already although gained popularity just

recently when different reactive frameworks and extensions have appeared:

• Reactive Streams - an initiative, describing a standard way for asynchronous

stream processing with non-blocking back pressure [6]

• ReactiveX - an API for asynchronous programming with observable streams [7]

• Akka Streams - a streaming interface of top of Akka actor systems, following

Reactive Streams initiative [8]

Combined together with FP (functional programming), one can write coherent side-

effect free code and enforces usage of immutable data structures that enable parallelism.

19

Moreover, algorithms used for filtering, persisting and modifying data can be

parallelized as well ensuring great increase in speed while transforming data.

Sadly, engineers designing and implementing application alone with Reactive

Programming in mind will not be successful at solving expected business goals because

it provides mostly abstractions for data structures and operations without any hint how

to build an application itself. Therefore, Reactive Programming has been recently

enhanced with Event-Driven approach and combined together would allow us to build

Reactive and Event-Driven application. Being event-driven means that system should:

• react to events - this is the cornerstone feature of event-driven system

• react to load - focus on overall system scalability rather than single user

experience

• react to failure - being able to recover after inter

Such approach puts at the top of system design not only Reactive Programming

concepts and model but also implies events being an essential foundation for reactive

application. Events are immutable by design and these first of all act as notifications

between various streams and flows, being passed from one to another carrying

necessary payload and getting processed.

20

2 Reactive paradigms in IoT

The IoT based system is a distributed system by nature, which involves interaction of

lots of independent services and devices in order to eventually deliver application

current state to end-user, making it single coherent system. Such system has crucial

expectations to software, expecting it to handle thousands of concurrent connections,

tons of streamed data and provide real-time results to end-user within sub-second

latencies. Designing intelligent crossroad monitoring system in an OLTP / CRUD like

way would be feasible although very complicated in distributed environment, exposing

several risks and likely causing failures. Greg Young, author of CQRS pattern has once

said – “Oftentimes when writing software that will be cloud deployed you need to take

on a whole slew of non-functional requirements that you don't really have...”. [9]

2.1 Crossroad traffic monitoring designed in CRUD way

Figure 3.Interactions in crossroad monitoring system when built in CRUD way

Given the following proposed high-level design of crossroad monitoring system, we can

easily spot several risks and failure points imposed by design and architecture of OLTP

/ CRUD applications. Trying to build and run this application in modern distributed

21

cloud environment, where every service would become a standalone micro-service, we

shall ask ourselves following questions:

• What if something goes wrong among those tens microservices that have been

deployed to cloud?

• What if crossroad API server goes down?

• What if database goes down?

• What if network goes down?

• What if orchestration services go down?

Combined with OLTP application inability to handle suddenly increased load and scale

horizontally efficiently, one cannot expect smooth and reliable operation of such

applications in modern SaaS (Software-as-A-Service) and PaaS (Platform as a Service)

environments forcing software engineers to come up with crunches or workarounds

without utilizing the power of cloud environments. The biggest known root cause for

CRUD applications are failing in distributed environments, are issues with multiple

threads accessing same shared instance and potential database integrity issues, also

usually referred as shared mutable state is the root of all evil [10].

A common solution used to solve these issues mentioned above is an option to use some

sort of locking mechanism - either optimistic or pessimistic locking.

Optimistic locking - is a locking scenario, when there is an assumption that conflicts

due to concurrent reads of data are rare and hence concurrent edits are allowed until

there is potential conflict that needs to be rollbacked or failed [11]. Pessimistic locking -

is a much more stricter approach to maintain data integrity, which implies placing a lock

on the database for small period of time assuming there will be a collision in the

database. A significant drawback of pessimistic locking is a potential deadlock scenario

due to data being locked and hence no other transactions and threads can access the

same data [11]. Software engineers often use locking approach as a silver-bullet in order

to synchronize and serialize access to shared mutable state however forgetting about

these drawbacks:

• Locks can severely limit concurrency as they require to halt threads and resume

those once locks are released.

22

• From UX/UI perspective it looks rather badly and unacceptable when

application is not responding for a while due to locks and prevents UI from

being responsive enough.

• Eventually, the most harmful scenario that locks might badly introduce is a

potential deadlock in application.

To sum up, on one hand we cannot guarantee that data integrity won’t be violated and

our shared mutable state for get corrupted without locks, on the other hand we sacrifice

performance and accept potential deadlocks in favor of integrity. A possible solution to

the problems listed above might be a two-phase commit solution. Two-phase commit is

a solution used to verify that all the involved parties that are part of a single transaction

have completed their work and hence it is safe to either commit or rollback in case of a

failure [12]. Unfortunately, two-phase commit comes at very high costs and eventually

it just postpones that very moment when a failure may happen by reducing a window

for a failure to cause a problem. Having that said, it seems that despite being so

powerful and efficient, distributed systems cannot solve all the problems that OLTP

system architecture actually introduces and hence applications crafted on top of this

architecture are also renown for being unreliable and requiring lots of a consensus and

locking mechanisms to remain consistent and reliable. A proposed solution would have

been to build application using best of reactive programming, so that it could work in

multi-threaded environment performing parallel computation in reactive and functional

way.

Regretfully, the reactive programming itself cannot solve scalability and consistency

problems although being very powerful programming paradigm. It requires that

application foundation is built keeping immutability and parallel computations in mind,

avoiding side-effects and performing state mutation in a clean and reliable way.

These fundamentals are Event Sourcing and Domain-Driven-Design.

2.2 Event Sourcing

In general, event sourcing has been known and available for wide usage for decades

already but unfortunately has not gained that much acknowledgement as well as

23

widespread usage among engineers and companies although being a great way to

atomically update state and perform side-effects once events are persisted.

Figure 4. State model and mutation in event-sourced systems

Event sourcing intrinsic fundamentals are both simple and clever. The rule of thumb is

to avoid storing current state while persisting all already occurred events in past tense to

event store. Once these events are persisted, it shall be possible to compose current

application state from events along with performing necessary side-effects [13]. Hence

current state is a sum of the events applied. There are following rules that every event

sourcing like application must obey:

• Persist into store.

• Append new events straight after existing ones.

• Never delete or rewrite these persisted events.

The grassroots of every event sourcing application are receiving set of commands,

which conform to the intention of application user or caller. Commands do not imply

yet any persistence though these can fail and be rejected by the system. The successful

outcome of each command is either single or multiple events that shall be persisted,

these are so-called immutable facts that have happened during application life cycle

hence should be present in the store [13]. The store that is used in Event Sourcing is

guaranteed to be the only source of truth. The latter one is insured by the following

policy when reconstructing a state from the events store:

• We need to read all events sequentially starting from the very first event to

reconstruct State.

• We have to persist events before continuing with effects.

24

• We might have to save snapshots to avoid replaying events from the beginning

and have an option to recover from certain state.

• We enforce consistency in case of concurrent access to mutable state.

Additional value of event sourcing architecture includes following:

• Accurate audit logging - cause each state update is caused by single or multiple

events, there is no other chance that state could be somehow updated or

corrupted externally hence we can rely on event sourcing when there is a need to

have 100% accurate audit logging. Following is rarely possible within

traditional OLTP applications and requires additional overhead imposing several

risks and performance implications.

• Simple historical queries and previous state replay - thanks to events persisted in

strict order each having its own sequence number, it is relatively cheap and

straightforward to rewind state back to past one and perform historical queries of

business entities.

• Production system troubleshooting - it is known that chasing an error in

production systems might be exhausting and tricky but thanks to events

persisted in Event Store, one can easily replay those events up to that moment

when error occurred to observe what actually went wrong.

That being said, author would like to propose a simplified design of Event Sourcing

based system for crossroad monitoring in comparison to CRUD applications. Following

is a proposed system design according to above mentioned pattern:

25

Figure 5. Crossroad monitoring system in Even Sourcing way

There are few things that have been added or changed in comparison to previous CRUD

application design. Relational database as a single source of truth has been changed to

Event Store [30], a database conceptually different when it comes to persistence as it is

mostly meant for append only operations for persisting events that are in highly

denormalized form hence the performance of Event Store storage is greatly improved.

Every component that is collecting and providing crossroad related data is publishing

events as a separate stream that is later persisted into Event Store hence thus processed

concurrently without any data integrity or mutable state violation as it might have

happened using traditional normalized model. Eventually, persisted data is available for

end-user in an aggregated form thanks to materialized view, which is basically a result

of subscription to different events streams and their composition to get eventual

crossroad state at that moment of time. This is finally possible thanks to CQRS

(Command / Query Responsibility Segregation Pattern) which is often used along with

Event Sourcing due to multiple reasons [14].

Thanks to event sourcing we have scalable and append-only solution with all events

persisted in a single store. Badly, all these events that are persisted as a result of

processed commands are just small entities that don’t form a high-level overview of the

application, meaning that we cannot yet really on these entities persisted as they are just

26

literally small pieces of glass that needs to be glued together. In order to improve

understanding of systems built with Event Sourcing in mind, there is a proposal to apply

following architecture like Command Query Responsibility Segregation, which is a

complementary addition to Event Sourcing.

Figure 6. Eventual consistency and CQRS by Greg Young, MSDN, Microsoft [15]

CQRS stands for:

• Separation of models, meaning having different data structures and ADTs for

reading and writing data.

• Command models meant for command processing, so called write side.

• Query models meant for data presentation, so called read side.

As with any other technology there are known disadvantages that engineers need either

to accept or find workaround for. These are:

• Eventual consistency - the Event Sourcing pattern does neither propagate nor

require usage of transactions for immutable data store, moreover with read and

write sides being separated as shown in CQRS model.

27

• Increased complexity - the amount of work while designing a system using

Event Sourcing architecture is huge and requires completely different approach

and lots of supporting code to facilitate command and event handling.

• Duplicated messages - being message-driven architecture Event Sourcing does

not guarantee that message won’t be delivered multiple times in a row hence

requiring engineers to implement deduplication logic or implement guarantee of

at least once delivery solution.

• Events versioning - system may evolve over time, sometimes even changing

dramatically hence there is a chance to experience backward compatibility

issues and redundant or excessive events. As Event Sourcing enforces

immutability from day one, one cannot simply remove excessive events and

rebuild the application state, therefore requiring to implement logic to handle

these old events [15].

Still, despite flaws described above author is confident that benefits heavily surpass

those and the system will gain a lot from main benefit, which is handling high

performance and streaming nature of crossroad traffic monitoring application.

Application domain itself is also a great fit for CQRS application as it can be

represented with the amount of commands and events that shall mutate overall

crossroad state and comply with CQRS read and writes sides. Thus, it will not help

alone to design coherent, reliable and maintainable reactive systems as it is challenging

task that throughout understanding of best practices available.

2.3 Reactive programming paradigms and system design

Relying on extensive experience gained while developing CRUD-like applications,

many engineers tend to think and design systems in imperative and stateful transactional

way. Paradigms of Reactive programming require completely different mindset, forcing

engineers to think in asynchronous and reactive way while working with data.

The Reactive Programming implies two fundamental paradigms – the data must be

streamed in asynchronous way and be immutable. Once one has designed a system

following reactive system principles it is natural to expect that system is resilient both

for long failures as well as for the shorter ones. Hence always design for failure and

never assume that components won’t fail [16]. This Reactive System is supposed to

28

handle variety of failures such as short-term period of network traffic congestion, load

on the storage node or loss of cluster member resulting in a loss of quorum. Reactive

systems are generally better in terms of leveraging maintenance works hence there is a

reduced risk of services unavailability. This essentially helps to develop and rapidly

deliver any services updates to production having an option to rollback in case of any

issue.

2.3.1 Reactive manifesto

Taking a look at current developments in Software Engineering industry, one can spot a

rising trend of reactive and asynchronous API-s developed in both enterprise, mobile or

IoT fields. It is becoming more and more popular to design internal of mission critical

software in reactive way, therefore it been quite natural to collect best practices and

definitions what actually does coherent software mean. The Reactive Manifesto is an

initiative lead by community and backed by initial authors of Reactive Streams

specifications. Being a living document capable to evolve and change with the times, it

has been the same for quite a long period of time and is ultimately supported by

following four pillars [17]:

• Being responsive - is about consistent responsive times, which is a pillar for

great usability and utility from customers and integration perspectives. The

system shall respond to requests in timely concise manner whenever it is

possible delivering a reliable quality of service and making system eventually

pleasant for end-user.

• Staying resilient - means that application shall embrace most failures and treat

those as a common part of life cycle. Application should remain responsive in

any case of severe failure and hence highly available for customers. Ideally,

assuming that things might fail it is natural to implement a sort of self-healing

machinery into the application itself, allowing either to recover from failure or

isolate failing component.

• Rely on message-driven pass-through - means being foremost event-driven and

passing messages asynchronously between components to achieve loosely

coupling, isolation and location transparency. This is often called also as

`ubiquitous` language with semantics that fits into distributed cluster behavior.

Fundamentally, message-driven systems have great load management, elasticity

and application flow control thanks to internal mailbox / queue like component

29

and by an ability to opt for back-pressure when needed. An asynchronous nature

of such systems allows to consume incoming messages while being active and

leads to great resources utilization without significant overheads.

• Retain being elastic - means being scalable on one hand by expanding according

to system usage and utilizing resources as efficiently as possible but on the other

hand it is crucial to stay responsive under load. Essentially it implies that system

can and must scale without locks, contention points and bottleneck by sharding

or replicating its internal components and distributing varying workload

between those. Having that said, being elastic means also being cost-effective in

the context of software and hardware utilization.

Figure 7. The Reactive Manifesto. https://www.reactivemanifesto.org/ [17]

2.4 Actor model

Actors model has been available around for engineering since seventies and has been

invented by Carl Hewitt [18] while being first of all successfully implemented in Erlang

programming language. Foremost, an initial idea behind actor model was to provide a

way how to handle efficiently parallel processing in a high-performance network in an

30

environment that might not be available all the time. A single actor can be described

according to Carl Hewitt as a “fundamental unit of computation embodying processing,

storage and communications” where “everything is an actor” and “one actor is no actor,

they come in systems” [18]. Essentially, actors define loosely coupled senders and

receivers built naturally for asynchronous communication.

However, current development of hardware, infrastructure and engineering competence

has exceeded state of systems that used to be in place in seventies when actors first

introduced, there are still challenges that cannot be solved now with frequently used

(OOP) object-oriented programing approach and for sure cannot gain benefits from the

actor model. Furthermore, actors-based systems being run in current modern multi-

threaded and multi-CPU environments significantly outperform their counterparties and

are recognized as highly efficient solutions for demanding architectures.

Figure 8. Actors communication with each other [19]

Unfortunately, Actors model is considered to be very low-level in terms of

implementation and therefore comes with few caveats that one shall be aware of. These

caveats are:

● High risk of running into out of memory issues and loss of critical data where

producer’s event stream is too fast for consumer, exceeding its capabilities. A

solution is to implement back-pressure.

● Weak Type safety - actors are supposed to handle `Any` message and require

lots of testing and caution during implementation.

31

● Code complexity - actors are low-level units and is becomes rather hard to

maintain their internal state and mutations requiring a lot of effort and

boilerplate code for debugging.

● Rather high learning curve and increased risk of mistakes in production systems

due to lack of experience.

For what it is worth, the Actor model and intercommunication between actors reminds

the interaction that between humans and the way we behave when we talk with each

other, either we are asking or telling some valuable information, which is exactly

corresponds to actors ask and tell patterns:

Figure 9. Example of Ask and Tell patterns in Actors

2.5 Reactive streams

A fundamental part of reactive world is a stream - often unbounded flow of events and

values. An abstract stream does not enforce any strict rules neither on the data that is

being emitted nor on the specifics of upstream and downstream flow, such as a number

of subscribers for instance.

Figure 10. Publisher-subscriber like communication for Subscriber-Observable [20]

32

A regular stream implementation must have following methods defined in order to

comply with generic stream definition:

● onNext - this shall transfer further every single item emitted by stream

● onComplete - this shall notify of an end of the stream, meaning that no further

`onNext` methods will be called.

● onError - this shall propagate an exception further to the observer that might

have happened in the stream.

The reactive streams itself cannot handle all the use-cases engineers might come up

with hence there are couple of useful streams that complement default stream

implementation.

● Flowable - with back-pressure

● Observable - no back-pressure

Remarkable advantage of Reactive Streams is a variety of building blocks consisting of

streams themselves and different handy stream operators like map, flatMap, filter etc.

that should satisfy any developer needs that may appear. In a few cases, I am strongly

convinced that Reactive Streams could have been called even a Software 2.0 paradigm

meaning a fundamental shift from OOP development model to a reactive-functional one

[20]. Comparing to classical software stack most of us are familiar with, Reactive

Streams allows engineer to grasp streams and their operators and eventually glue

together, requiring a minimal amount of code to be written for various side-effects.

A traditional OOP-driven development would have required developer to describe most

of behavior and instructions manually and perform tons of performance and acceptance

testing to prove the implementation being correct. In a contrast with actors, Reactive

Streams do not require to develop that much of low-level machinery to support

concurrency and back pressure from upstream to downstream making streams much

more verbose and explicit from readability perspective. Regretfully, there are own

disadvantages that one has to live with. For instance, although the high-level DSL that

streams have is pretty verbose, it might take some time in order to find a bug in the code

and sometimes streams might fail in cumbersome and non-intuitive way, or worse even

just silently fail. Still, let's have a look at crossroad traffic monitoring being solved in a

reactive way.

33

3 Overview of the proposed solution

A typical crossroad is an essential city transport artery, connecting multiple roads and

intersection and remaining useful for both vehicles and pedestrians. A modern crossroad

can be compared to a human heart, which is full of processing pipelines and arteries

(roads) that have to be reliable and efficient. Hence comparing crossroad monitoring

reliability to human’s heart, we would expect it not to work at fixed timing, not to suffer

from traffic congestions and reduce risk of mistakes and faulty decisions in case of any.

Having in mind that the amount of vehicles traffic is rather growing by the order of

magnitude, crossroads have to adapt with increasing traffic flow and its fluctuation in

real-time or near real-time manner under all possible scenarios.

3.1 Crossroad traffic operation problems

Traffic congestion is the main issue that is affecting highways, inner roads and what is

most important crossroad as well. Current crossroad traffic management solutions are

most fixed timing based and perhaps are adjusted only according to historical data of

the traffic flow in one or another direction. Apparently, distributing crossroad traffic at

fixed timing isn’t scalable both in short-term and long-term perspective. Firstly,

consider holidays and vacation period of time, when there is significantly lower amount

of traffic due to parents and their children being away on holiday. Secondly, one more

major issue that cannot be solved with fixed timing are traffic jams at the crossroad

intersections due to cars being lined up along the lane in one direction and much less in

other lanes. Finally, it is worth to mention quite likely occurrence of traffic accidents at

the crossroad intersections caused by drivers ignoring blinking yellow or red light or

just choosing a wrong speed to cross the crossroad.

Fortunately, thanks to latest development in the ICT (Information and Communication

Technologies) field we have wide range both of hardware and software solutions

combined that can be applied to improve current state of crossroad traffic monitoring

34

and eventually address most of the issues described above making our cities crossroads

environment friendly and responsive.

Given the wide range of various IoT devices that have been tightly integrated into

people every day’s life helping to automate daily routine tasks and taking care of home

automation, it is quite natural to blend IoT into the crossroad monitoring as well.

These days an intelligent crossroad monitoring built from scratch would definitely

benefit from following hardware:

Device type Applied usage Expected Outcome

Video camera Real-time image processing,
lane queue analysis,
accidents analysis

Vehicle count in the lanes,
density monitoring

Sensors Number of vehicles crossing
intersection per / min,
average speed of vehicles
crossing

Total number of vehicles
crossing, traffic density and
average speed, real-time
telemetry

Built-in road surface weight
sensors

Vehicle types distribution
(regular car, bus, truck)

Density of heavy-weight
vehicles that may cause
traffic delays and increase
road wear

Weather sensors (external)
and built-in surface sensors

Road temperature and upper
layer condition analysis

Detailed report of road
temperature which is highly
vital during winter time

Table 1. Proposed hardware list for intelligent traffic monitoring

Usage of any of above mentioned hardware can make crossroad monitoring much more

smart and intelligent though it is not that useful yet without proper software that can

receive, process and make immediate decisions based on that data to make the

monitoring system work and be successfully applied. Especially complicated is the fact

that data and all available telemetry is being streamed from different sources hence

requiring system to remain reliable even in case of any of sources is temporary

suspended. Hence it is extremely important to implement reliable and performant

software to handle loads of workload produced by IoT devices.

35

For instance, it would be essential to consider at least following emerging software

technologies:

Technology Applied usage Expected outcome

Artificial Intelligence,
Machine Learning, Deep
Learning (YOLO object
detection pipeline based on
neural network [21])

Image or video stream real-
time object detection with
classifiers (car, bus, truck,
bike)

Evaluation of real-time
motion happening at
crossroad with expected
classifiers

Time-series database Collection of telemetry
streamed from crossroad
sensors, various metrics

Telemetry raw data persisted
in time-series db for further
analysis and fast query

Real-time analytics and
persisted data analytics

Decision-making evaluation,
immediate feedback
proposal, traffic accidents
detection

Available in back-office for
both manual and automatic
decision making regarding
crossroad state

Table 2. Proposed software technologies used for intelligent traffic monitoring

Additional prerequisites for expected crossroad traffic monitoring system would be an

option to handle risk of traffic accidents and emergency situations which is a rather

edge case for any monitoring system highly likely such behavior cannot be built up

based on any amount of historical data. In many cases the easiest way would be to

require manual intervention and hand-over of control to back-office operator to reduce

risks of automatic control faults however there might however situation may change

with further development of Neural Networks, especially convolutional neural networks

[21]. Overall, there is one more interesting proposal unfortunately left out of scope from

this paper, which expects shipping vehicles with RFID tags installed. This would

essentially allow recognize certain types of vehicles such as mission critical ones –

ambulances, police and fire-extinguishers and help to switch control system to

exceptional state that would guarantee pass-through crossroad within minimal amount

of time. Unfortunately, such proposal requires effort both from car manufacturing

industry and sensors suppliers and is comparably much more expensive that deployment

of recognition-like software.

36

This paper mostly considers software part of smart crossroad monitoring system

implementation and the hardware part is intentionally omitted here, assuming there is an

agreed contract of time-series metrics being streamed to API’s and additionally there is

trained recognition model and pipeline for object detection in the video stream that is

provided as is. Eventually, the proposed setup is described below.

Figure 11. A Bird`s Eye View to proposed IoT setup

Author would like to opt for the simplest possible solution that has both efficiency and

lowest possible overhead. This does not pretend to be the only valid setup though but

ideally it should minimal number of components needed to process both video stream,

objection detection and time-series metrics from various sensors.

37

3.2 Proposed reactive solution

Given the crossroad traffic problems described above, in this Thesis author would like

to try to propose following architecture inspired by Event Sourcing approach combined

with CQRS and DDD core features and ideas.

Figure 12. Proposed implementation based on Event Sourcing, CQRS and DDD

The domain model is intentionally simplified in the scope of Proof of Concept

implementation during this Thesis work but should give a comprehensive view of the

core ideas behind Domain Driven Design [22]. Therefore, Appendix 5 contains

implemented commands that correspond to all the actions and requests coming from

Crossroad IoT devices, whether this is video recognition pipeline or sensors streamed

data. Every command defined in Appendix 5 represents an intention that has to be

validated against current crossroad state and in case of success should produce single or

multiple events depending on the expected result of command.

Appendix 6 contains system supported events that define are applicable to crossroad

state for further state mutation as well as streamed to third party consumers if any.

These events should carry all necessary payload to rebuild state from scratch or

subscribe to updated regarding particular crossroad, the latter one could be a good task

for Dashboard monitoring UI.

38

The implementation phase follows the proposed architecture and is described in the 4.3

- Software product implementation, which is deliberately split into two parts - Actors

based implementation and Reactive streams-based implementation. The main goal is to

provide two different implementations that follow Reactive programming paradigms

and Reactive system prerequisites in a timely and efficient manner. To be more specific,

chosen implementations should prove that application will be:

● Responsive - handle tons of requests and streamed data by IoT devices

● Resilient - remain available in case of failures, rely on persistence backed by

Event Store

● Elastic - utilize given bounded system resources in an efficient manner

● Message-driven - communicate in a form of commands and events, utilize pub-

sub principles in a distributed and decentralized environment like modern cloud

/ microservices architecture is

which should eventually result in a high-performing and fault-tolerant software for IoT

based systems [24].

39

4 Implemented solution

Despite a range of available frameworks, programming languages and best practices,

there is no carved in stone technology-wise choice that would fulfill all the

requirements. This particular Thesis is an attempt to play around different available

approaches described above and determine which one of them is a good fit to achieve

coherent, reliable and fault-tolerant system for the crossroad traffic monitoring based on

video streams and available sensors. During the work on this Thesis, different

implementation stages have been proposed and analyzed but author has decided to

proceed with Actors and Reactive streams-based implementation and eventually craft a

dashboard for real-time monitoring as well.

Figure 13. Reactive Crossroad implementation stages

4.1 Crossroad IoT devices

In this Thesis scope the actual implementation and setup has been intentionally omitted

in favor of readymade solutions that are available on market. In addition, main focus of

this work is to provide justify the reactive way of implementing software side to support

the vast amount of data that is being collected by IoT devices through various protocols

and APIs and prove the proposed architecture to be reliable and efficient. Though,

author finds it useful to advice what could be the possible setup for IoT devices for

given problem statement using affordable devices available on the market and also

describe briefly their features, protocols and inputs / outputs.

40

Device Features Protocol

CCD camera, one of Imprex
products

Wide range of operating
temperatures, High resolution
and low noise

CameraLink interface, high
speed interface for real-time
video

Raspberry PI 3 [27] 64bit quad-core processor,
Bluetooth protocol support,
wireless LAN, core of local
crossroad monitoring setup

Wide range of protocols for
I/O

Surface sensors Road condition (dry, wet, ice,
snow etc.), water film height,
relative humidity, surface
temperature

Bluetooth or CAN-Bus if
connected to Raspberry PI
module.
MQTT if direct pub-sub
streaming to server

Table 3. Proposed IoT devices for intelligent crossroad

The proposed list of hardware should be sufficient for Proof of Concept stage of

intelligent crossroad traffic monitoring system, considering there is a wide range of

inputs and outputs that can be used by the controlling software. Given this setup, the

main role of collecting and transforming the data is assigned to Raspberry PI. Namely,

Raspberry PI software should do the following:

● Collect raw metrics data from installed sensors and transform those to human

readable metrics format, which will be proposed later. The sensors raw data

should be captured through Bluetooth and / or CAN-Bus

● Capture and process video / images stream in order to extract significant events

from provided video such as vehicle collisions or incidents, lane queues and

slowdowns as well as vehicle count / pass through crossroad.

Transforming captured raw data to human and / or machine-readable format requires

not only non-trivial resources but also a custom optimized software, that could do the

work considering bounded resources constraint enforced by Raspberry PI. Hence,

author would like to expand these topics and describe what kind of available software

and algorithms can be used for gathering time-series metrics and performing video

recognition from stream.

41

4.2 Vehicle recognition from video stream

The suggested proof of concept setup of live video stream from IoT devices consists of

following options:

● Live stream is from IoT devices is streamed via RTSP (Real Time Streaming

Protocol) network protocol mostly for debugging purposes, having a backup

options to persist video streams to local disk for next 72h in case there is a need

to playback those or rewind to some particular moment

● In addition, live stream data is processed for visual object detection locally, to be

more specific machine learning algorithms are involved to categorize certain

details extracted from captured data and classify those further according to level

of interest. Further, the sensor data that has passed ML stage is transmitted to the

cloud subsequently fast and efficiently. In a long-term future it should be

possible to rely only on extracted data from sensors once ML algorithms are

improved, leaving the raw video available on-demand only from IoT

Figure 14. Visual Object Detection by YOLO algorithm [28]

When it is mostly no overhead or additional implementation required to provide live

stream via RTSP protocol further to crossroad controlling system, though there is a

significant amount of work that is required to perform video detection using Visual

Object Detection [28] techniques in order to recognize, identify, localize and classify

42

objects detected in the video stream. To be more specific, an abstract video recognition

pipeline has to perform following tasks.

● Classification - is an attempt to analyze an image and predict the object in this

image.

● Localization - bounded location of a given classified object within an image

● Object Detection - combined location of an object plus classified object itself

● Image segmentation - precise location of a classified object in a segment

The following tasks simulate the human way to recognize objects from images and

these four tasks are grassroots of Visual Object Detection model called YOLO (You

Only Look Once) [21], which has great speed, accuracy and recognition speed being

also very popular and simple for end-user. The main constraint here is the Raspberry PI

limited resources as the intention is to perform recognition locally while streaming only

detected and classified events and object further to the cloud hence the expectation is to

get YOLO model running on the in the resources bounded IoT devices.

Author would like to outline that implementation of Video Object Detection pipeline

wasn't considered as a goal of this Thesis work though author has made a background

research and identified that YOLO neural network algorithm is a perfect match for

robust and high-performing recognition pipeline in resources constrained environments,

in addition being accurate enough as well. Thus, author assumes that all the video

recognition related work is done by one of YOLO implementation, for instance this one

published in GitHub under GPL V3.0 license [36] by Junsheng Fu [37].

Author assumes that any video recognition pipeline should be comprehensive enough to

provide event-driven stream of raw data which is eventually streamed through near real-

time API to server.

4.3 Time-series metrics from IoT devices

Being low-level devices, most sensors provide only proprietary APIs which are not

suitable for proposed IoT devices setup. Fortunately, there is a wide range of sensors

available on the market that either support MQTT (Message Queue Telemetry

Transport) protocol which has been standardized a while ago or can be connected to

Raspberry PI module through Bluetooth / Can-Bus. The latter one will allow to use any

43

TCP based transport such as HTTP (Hypertext Transport Protocol) or preferably

WebSocket to meet near real-time communication requirements. In addition, it is

essential to pack metrics into compact payload such as ProtoBuf or JSON to reduce the

amount of data transmitted through network and increase the throughput as well.

Author has chosen to define payload for three types of metrics that are being collected

by IoT devices and streamed to server. Firstly, surface measurements are provided by

built-in road sensors and proposed payload is described in Appendix 3 with conforming

implementation of domain entity. Secondly, weight measurements are provided by

built-in road sensors and proposed payload is described in Appendix 2 with conforming

implementation of domain entity. Last but not least, there are weather related sensors

installed both in road surface and externally, proposed payload is described in Appendix

4 with conforming implementation of domain entity.

4.4 Software product implementation

Martin Fowler [29] has made crisp definition of software architecture – “Software

architecture is those decision which are both important and hard to change. The

importance of software architecture impacts either success or failure, the latter one

might be unnecessarily expensive”. Following Martin Fowler [29] proposal, the

software product architecture should be designed keeping in mind fundamental

requirements that are being put by IoT based intelligent traffic monitoring and Reactive

System definition hence proposed implementation should satisfy following needs:

• Be resilient

• Be responsive

• Be fault-tolerant

• Be message-driven

4.4.1 Platform

Reactive platform implemented according to Event Sourcing and CQRS patterns has the

following components:

• Event Store - the primary and only single source of truth that has been praised

for immutability and performance. Author has chosen to rely on Open-source

and functional database EventStore [30]

44

• Time-series data - is streamed to open-source time-series database InfluxDB

which is coupled together with great open-source analytical platform - Grafana

[31]

• Data ingestion / Streaming - IoT metrics and data are streamed through

WebSocket to server in JSON payload

4.4.2 Programming language

Primary language used to implement the solution defined in this thesis work is Scala

[55], a hybrid object-functional programming language. Scala is strongly typed,

immutable-first and JVM [56] based language which perfectly fits into coherent

distributed applications architecture. Under the hood of reactive crossroad

implementation there is a lot of concurrent connection handling and amount of data,

being streamed from producers to consumers, which is akin to most Internet of Things

solutions. Furthermore, it is rather crucial to be able to handle with real-time results

within relatively low latencies and that is exactly the case where vast majority of

frameworks and solutions built on top of Scala might outperform other JVM

counterparts and definitely all other event-loop single-threaded languages like

JavaScript etc.

4.4.3 Frameworks

The choice of frameworks is implied by the chosen Scala programming language.

Obviously, it is clear that just relying on the core Scala language features it would have

taken ages to get this solution ready and therefore it is a good idea to choose suitable

frameworks to adhere requirements of the reactive crossroad and constraints we have

set in the problem statement. A modern yet reliable choice to build a resilient, reliable

and message driven system is Akka. Akka is a comprehensive toolkit for building

distributed and resilient message driven applications on JVM. The framework initially

served a goal to implement the Actor Model on top of the JVM and eventually became a

`de-facto` option for elastic and decentralized applications. Being resilient by the

design, Akka allows us to build such systems that are able to self-heal and recover from

failure, while still being responsive in the meantime [24]. It is a vital property of

reactive systems that is considered to be essential for the IoT solution of reactive

crossroad monitoring. The IoT domain which is the scope of this Thesis work is a great

use case for Akka framework in general and Actors system in particular thanks to built-

45

in solutions like routing, sharding, pub-sub and cluster support. Having all that said,

Akka remains very high performing even on a single machine offering an asynchronous

non-blocking stream processing with back pressure out of the box.

In order to support statements proving that Akka is the best toolkit for building highly

concurrent, distributed and resilient applications, the Akka team has conducted

performance testing claiming that it can handle up to 50 million msg /sec on a single

machine. Besides great performance, Akka does not require any significant amount of

memory for operation as Actors are very lightweight units and it is rather inexpensive to

create actors in the application. Akka team claims that one can have up to 2.5 million

actors in the system for just 1GB of heap memory making Akka far beyond other

frameworks in terms of efficiency and performance [32]. Therefore, first of all author

would like to start with Actors based implementation.

4.4.4 Actor based implementation

In this Thesis author has used two types of Actors provided by the Akka framework -

common stateful Actors [33], which have state persisted in-memory tied to life cycle of

JVM and persistent Actors [33] capable to persist internal state to external journal and

eventually recover once JVM has been restarted. Following Akka architecture

principles, every crossroad needs to be an actor with own unique persistence id allowing

to maintain its own internal state that can be changed only by persisted event. The

simplified version of persistent actor is available in the Appendix 7 -

CrossroadPersistenActor.scala [38]. The main workload however is done by the worker

actors, described in the Appendix 8. These small units are initial entry points for every

type of requests that are received by application and in order to scale these better are

distinguished by type of requests - a separate worker for video recognition results -

Appendix 8 and another one for time-series metrics - Appendix 9.

46

Figure 15. Actors-based implementation design

Given the goals defined in a Problem statement that need to be solved with Reactive

solution, an actors-based implementation does address most of the given prerequisites.

To be more specific, a fault-tolerant requirement is fulfilled by usage of persistent

actor implementation. Responsiveness and elasticity is backed by worker actors that

keep receiving streamed data and basically do single-responsibility tasks such as either

persisting metrics or transforming raw request data to persistent actor commands hence

these worker actors serve as gatekeepers to offload the persistent actors. Finally,

message-driven throughput is supported by the intrinsic property of actors to

communicate via publisher-subscriber pattern and publish any side-effects requiring

actions through the EventStream. [25, 26]

Having implemented first solution, author finds that despite application being able to

match expected reactive system requirements there are few crucial flaws that may lead

to unexpected issues in production. These are unpredictable resources handling in case

of increased load from IoT devices, which will result in application running out of

memory due to missing back-pressure in actors and also there is significant risk of

sending unhandled commands and requests to actors due to their weak type-safety.

Author also finds that a requirement to implement that much of verbose and low-level

47

code for getting Actors implementation done is a serious and time-consuming issue that

needs to be address.

4.4.5 Reactive streams-based implementation

Luckily, the proposed Reactive Streams implementation should be able to solve most (if

not even all) the above-mentioned issues. Following is proposed design of streams

based implementation, which when compared to has retained crucial components like

Event Store [30] and Persistent Actor [33] per every crossroad id.

Figure 16. Akka-streams based implementation design

Due to author`s choice to use Akka streams implementation of reactive streams, which

is slightly different from baseline implementation, there is a need to explain what Akka

streams equivalents for such streams core concepts like Observable [34] and Operators

[35]. Source is the Akka streams way of consuming streamed data with exactly one

output. Flow is the Akka streams way to allow data to flow through a function, possible

map-reduce function or any other equivalent. Flow has exactly one input and one

output, making it possible to apply transformations. Sink is the final stage of a stream in

terms of Akka streams terminology, it might do any I/O operation and complete the

stream [26]. Dealing with flaws introduced in the actors-based implementation, the first

top priority thing to solve is the back-pressure issue of an IoT streaming application that

48

might lead the whole system to crash and fail expectations to meet reliable and resilient

system. Schematically, the implementation of a stream with back-pressure is shown on

figure:

Figure 17. Akka streams-based back-pressure explained

 Author has implemented Video recognition results handling with Akka streams in the

Appendix 10, which is basically one single class written in Scala which does the

following [38]:

● Subscribes indefinitely to incoming requests from video stream recognition

pipeline (note `def videoRecognitionPipelineStarted` function) which is basically

a single Source of data. This source is also limited to 100 elements in buffer and

once this threshold is reached, back-pressure will be applied.

● Performs time-series metrics persistence per every incoming request (note usage

of `val persistMetrics`) via Flow that does not apply any transformations yet.

● Transforms every incoming request received into valid persistent Actor

command (note usage of `val transformToCommands`) via Flow

● Dispatches transformed collection of commands to persistent Actor

asynchronously (note usage of `val dispatchCommands`) via Sink

● In case of non-fatal failure during stream processing such as sensor malfunction,

Reactive Streams offer great control over recovery procedures known as

Streams Error Handling [54]. Streams offer wide range of recovery options and

Akka will take care of recovery, restart with retry attempt and resume with back

off hence supporting Reactive Manifesto core principle like being fault-

tolerant.

Thanks to this implementation and Akka streams framework, author was able to solve

processing of IoT data in a reactive way with minimal amount of code in a timely and

49

an efficient manner comparing to Actors based implementation. Moreover, a flow-

control or back-pressure comes literally for free without any additional low-level

machinery. Finally, it is very convenient and easy to process all the received data

applying transformations and performing non-blocking side-effects which will not

hinder progress of the application [24].

4.4.5 Recorded system performance metrics

Author has come up with following simulation setup for both implementation that was

later conducted and all the JVM (Java Virtual Machine) performance metrics were

recorded. The test environment was configured on a regular MacBook Pro Mid 2015

laptop with following JVM version and settings.

Figure 18. JVM version

Having the wide range of data sources that could be streamed to servers from IoT

devices, author has decided the scope of simulation with just a reasonable amount of

payload with video recognition results that could be turned to commands and events in

CQRS context, described in Appendix 1 provided Gitlab repository. The simulation

scenario contained of following steps:

• Define maximum number of 200 000 unique crossroads for simulation purposes

• Create every crossroad by sending ‘C.Create’ command to every crossroad with

default configuration of sensors, lanes etc.

• Start sending CQRS compliant commands and produce events for persistence in

Event Store [30]

• Collect metrics in Graphite [53], especially JVM metrics for further analysis.

A sample report is added below with recorded threads activity for Reactive Streams

based application.

50

Figure 19. Threads utilization for Reactive Streams application

The following graph above has Y-axis with thread counts numbers for running, blocked

and news threads in the context of JVM where application is being run now. One can

note that thread-pool size is capped at 40 threads. The X-axis has just a timeframe,

when particular measurements were collected, total timeframe in the scope is just 5

minutes. One can notice the spike right just after fall on the graph which is a

consequence of Java GC (Garbage Collector) work. Author has attached a comparison

for both implementation in the Appendix 11. Additionally, Appendix 12 has

comparison of memory utilization for both applications where-as Appendix 13 contains

comparison of GC stress.

4.5 Analysis of results

Given the results of the performed simulation, Actors based implementation has proven

throughout the application and simulation lifecycle that actors are very efficient for

managing and encapsulating mutable state of single crossroad, arranging fault-tolerance

and distributing workload when it comes to a cluster setup. Unfortunately, designing

actors-based application required essentially to become familiar with low-level API

Akka actors are built on top of and hence much more effort from the engineering

perspective. Moreover, actors do not provide back-pressure support out of the box

making it possible to run out of allocated resources in resources constrained

environments.

51

Reactive streams implementation based on Akka streams turned out to be great and

much more convenient from engineering perspective. To be more specific, reactive

streams API is built with high-level semantics and flexibility in mind comparing to

actors’ API. In addition, streams are utilizing bounded system resources constraints

much more carefully and have built-in asynchronous back pressure out of the box.

The overall performance of Reactive streams-based application has impressed author

due to it smooth and predictable resources usages, which results in less CPU context

switches, reduced memory heap usage and less stress to Java Garbage Collector.

Comparing all the effort required to craft both implementations and pros and cons

analyzed above, one can treat reactive streams approach as scalable, reliable and robust

toolkit that fits extremely well into modern powerful and distributed systems. [25, 26]

52

5 Summary

The goal of this thesis was to investigate whether Reactive programming is applicable

to the crossroad traffic monitoring solution based on IoT devices both that imposes

system resources constraints and offers challenges such as handling tons of data and

hundreds of events streams in durable and distributed environments. Whether all this

done in Reactive way would have performed better and efficiently with a fault-tolerant

behavior than traditional pattern of developing systems using CRUD / OLTP models

characterized by large number of short-living transactions and backed up by relational

ACID-compliant databases. Author has claimed that common methods and practices

described above come with a peculiar trade-off such as either having a relatively fast

processing speed and suffering from data integrity or having a strong consistency and

data normalization while operating at very low processing speed.

As a result, author has designed the crossroad monitoring solution in a proof of concept,

applying Reactive programming. This has required to define all domain entities in DDD

(Domain Driven Design) form, thus also defining all the commands and events that

need to support CQRS pattern and message-driven nature of application. Following has

allowed to support core Reactive manifesto principle as to build message and event-

driven system. Further, the most significant Reactive programming paradigms such as

being reliable and resilient was proven by the implementation of two different solutions

– one Actors based and another one Reactive streams based on top of Akka [32]

foundation. Additionally, author has justified precedence of Reactive streams based

implementation in terms of system resource utilization, lack of low-level machinery and

infrastructural code and benefits of elasticity that was provided out of the box, such as

back-pressure and parallelism hence it is valid to claim that Reactive streams were

found to be a great fit and outperformed competitors.

It is worth to mention that Reactive Streams learning curve exists and requires some

time to get it up and running. It has also taken some time to understand what actually

happens under the hood, required to learn particular building blocks and DSL and

53

eventually author had to analyze few culprits in the implementation in the application

runtime when it started to fail silently.

Nevertheless, opting for a reactive system built either on top of either actors or reactive

streams or actors and streams combined has been confirmed to be more natural choice

for crossroad traffic monitoring. Whenever there is a requirement to build a coherent,

consistent and highly available system one should consider actors and reactive streams

before making an eventual decision. Author is confident that the modern crossroad real-

time monitoring system combined with Reactive Programming model is a key to

success in reducing traffic congestion, increased reliability and reduced fuel

consumption.

54

References

[1] Intel.com, “A guide to the Internet of Things”, 2017, [Online], Available:
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html

[2] Microsoft.com, “Online Transaction Processing (OLTP) – Technical Reference Guide”,

[Online]. Available: https://technet.microsoft.com/en-us/library/hh393556(v=sql.110).aspx

[3] MSDN Microsoft, “Cutting edge – Rewrite a CRUD system with events and CQRS”. 2016.

[Online]. Available: https://msdn.microsoft.com/en-us/magazine/mt790196.aspx

[4] Microsoft.com, “Creating a simple data-driven CRUD microservice”. 2017. [Online].

Available: https://docs.microsoft.com/en-us/dotnet/standard/microservices-
architecture/multi-container-microservice-net-applications/data-driven-crud-microservice

[5] G.E. Moore, „Moore’s Law”, 1970. [Online]. Available: http://www.mooreslaw.org/

[6] Reactive-streams.org, “Reactive Streams”, [Online]. Available: http://www.reactive-

streams.org/

[7] Reactivex.io, “ReactiveX”, [Online]. Available: http://reactivex.io/

[8] Akka.io, “Akka streams”, [Online]. Available:

https://doc.akka.io/docs/akka/2.5/stream/index.html

[9] Greg Young, “CQRS Advisors Mail List”, 2014. [Online]. Available:

https://msdn.microsoft.com/en-us/library/jj591577.aspx

[10] H. Eichenhard, “Why shared mutable state is the root of all evil”, 2013. [Online].

Available: http://henrikeichenhardt.blogspot.com.ee/2013/06/why-shared-mutable-state-is-
root-of-all.html

[11] D. Pinto, “Optimistic or pessimistic locking – Which one should you pick”, 2014. [Online].

Available: https://blog.couchbase.com/optimistic-or-pessimistic-locking-which-one-
should-you-pick/

[12] MSDN Microsoft, “Two-Phase Commit”, [Online]. Available:

https://msdn.microsoft.com/en-us/library/aa754091(v=bts.10).aspx

[13] Microsoft.com, “A CQRS and ES Deep Dive”, 2014. [Online]. Available:

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj591577(v=pandp.10)

[14] Microsoft.com, “Command and Query Responsibility Segregation (CQRS) pattern”, 2017.

[Online]. Available: https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs

55

[15] G. Young, “CQRS Journey”, 2014. [Online]. Available: https://docs.microsoft.com/en-
us/previous-versions/msp-n-p/jj554200(v=pandp.10)

[16] J. Boner, V. Klang, “Reactive programming versus Reactive Systems”. [Online].

Available: https://www.lightbend.com/reactive-programming-versus-reactive-systems

[17] J. Boner, D. Farley, R. Kuhn, M. Thompson, “The Reactive Manifesto”, 2014. [Online].

Available: http://www.reactivemanifesto.org/

[18] Wikipedia, “The Actor Model”, 1973. [Online]. Available:

https://en.wikipedia.org/wiki/Actor_model

[19] Akka.io, “How the Actor Model meets the needs of modern, distributed systems”. [Online].

Available: https://doc.akka.io/docs/akka/2.5.5/scala/guide/actors-intro.html

[20] RxJava, “RxJava Anatomy: What is RxJava, how it is designed and how it works”, 2017.

[Online]. Available; https://blog.mindorks.com/rxjava-anatomy-what-is-rxjava-how-
rxjava-is-designed-and-how-rxjava-works-d357b3aca586

[21] YOLO, “Real-time object Detection”, [Online]. Available:

https://pjreddie.com/darknet/yolo/

[22] M. Fowler, "CQRS. Command Query Responsibility Segregation”, 2011. [Online].

Available: http://martinfowler

[23] H. McKee, O. White, “How Akka works: Akka A to Z, An illustrated White Paper”, 2018.

[Online]. Available: https://www.lightbend.com/blog/how-akka-works-akka-a-to-z-
illustrated-white-paper

[24] D. Gosh, “Functional and Reactive domain modelling”, 2017.

[25] V. Vernon, “Reactive Message Patterns with the Actor Model”, 2016.

[26] H. McKee, “Designing Reactive Systems”, 2016.

[27] RaspberryPI, “Documentation”. [Online]. Available: https://www.raspberrypi.org/

[28] CV-tricks, “Zero to Hero: Guide to object detection using Deep Learning”, [Online].

Available: http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/

[29] M. Fowler, “Making Architecture Matter”, 2015. [Online]. Available:

https://www.youtube.com/watch?v=DngAZyWMGR0

[30] EvenStore, “Open-source functional database”. [Online]. Available: https://eventstore.org/

[31] InfluxDB, “The modern engine for Metrics and Events”. [Online]. Available:

https://www.influxdata.com/

[32] Akka.io, “The Main Page”. [Online]. Available: https://akka.io/

56

[33] Akka.io, “Actors”. [Online]. Available: https://doc.akka.io/docs/akka/2.5/actors.html

[34] Observable, “Observable”. [Online]. Available:

http://reactivex.io/documentation/observable.html

[35] Operators, “Operators”. [Online]. Available:

http://reactivex.io/documentation/operators.html

[36] GPL V3, “License”. [Online]. Available: https://www.gnu.org/licenses/gpl-3.0.en.html

[37] J. Fu, “Vehicle Detection Pipeline based on YOLO neural network algorithm”, 2017.

[Online]. Available: https://github.com/JunshengFu/vehicle-detection

[38] Reactive-crossroad, Repository, 2018 [Online]. Available:

https://gitlab.com/plavreshin/reactive-crossroad/tree/master

[40] S. Kapadia, “Akka streams Backpressure”, 2016. [Online]. Available:

https://chariotsolutions.com/blog/post/simply-explained-akka-streams-backpressure/

[41] Wikipedia, “ACID”, [Online]. Available: https://en.wikipedia.org/wiki/ACID

[42] Wikipedia, “API”, [Online]. Available:
https://en.wikipedia.org/wiki/Application_programming_interface

[43] MSDN Microsoft, “CQRS Journey”, [Online]. Available: https://docs.microsoft.com/en-

us/previous-versions/msp-n-p/jj554200(v=pandp.10)

[44] M. Fowler, “DDD”, 2006. [Online]. Available:
https://martinfowler.com/bliki/UbiquitousLanguage.html

[45] Wikipedia, “DSL”, [Online]. Available: https://en.wikipedia.org/wiki/Domain-

specific_language

[46] Wikipedia, “FP”, [Online]. Available:

https://en.wikipedia.org/wiki/Functional_programming

[47] Wikipedia, “MQTT”, [Online]. Available: https://en.wikipedia.org/wiki/MQTT

[48] Wikipedia, “OOP”, [Online]. Available: https://en.wikipedia.org/wiki/Object-

oriented_programming

[49] Wikipedia, “OLTP”, [Online]. Available:
https://en.wikipedia.org/wiki/Online_transaction_processing

[50] Wikipedia, “PaaS”, [Online]. Available:
https://en.wikipedia.org/wiki/Platform_as_a_service

57

[51] Wikipedia, “REST”, [Online]. Available:
https://en.wikipedia.org/wiki/Representational_state_transfer

[52] Wikipedia, “SaaS”, [Online]. Available:
https://en.wikipedia.org/wiki/Software_as_a_service

[53] Graphite, “Graphite”, [Online]. Available: https://graphiteapp.org/

[54] Akka.io docs, “Error Handling”. [Online]. Available:
https://doc.akka.io/docs/akka/2.5/stream/stream-error.html

[55] Scala, “Programming Language”. [Online]. Available: https://www.scala-lang.org/

[56] JVM, “JVM”. [Online]. Available: https://en.wikipedia.org/wiki/Java_virtual_machine

58

Appendix 1 – Reactive-crossroad repository [38]

59

Appendix 2 - Time-series metrics for vehicle weight
measurements

60

Appendix 3 - Time-series metrics for surface measurements

61

Appendix 4 - Time-series metrics for weather measurements

62

Appendix 5 - Defined commands according to DDD / CQRS
model

63

Appendix 6 - Defined events according to DDD / CQRS model

64

Appendix 7 - Persistent Actor per every Crossroad

65

Appendix 8 - Worker Actor for vehicle recognition stream

66

Appendix 9 - Worker Actor for Time-series metrics

67

Appendix 10 - Handling of video recognition results with
Akka streams

68

Appendix 10 (continued) – Handling of video recognition
results with Akka streams

69

Appendix 11 – Actors vs Streams Threads utilization

70

Appendix 12 – Actors vs Stream Memory / Heap utilization

71

Appendix 13 – Actors vs Streams GC performance

