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Abstract 
Neural Networks Based Identification and Control of Nonlinear 

Systems: ANARX Model Based Approach 
 
During the last twenty years a lot of advances in control of complex nonlinear 
systems and process have been made. One of the most important reasons for that 
is development of various nonlinear system identification techniques based on 
input-output representation of the model such as training of artificial neural 
networks. While a lot of interesting results are achieved and practical 
applications are made in control system design using classical fully connected 
neural networks, structure of the model plays significant role in model based 
control of complex systems. 
 
This thesis is devoted to neural networks based identification and model based 
control of nonlinear systems. Different structures of artificial neural networks 
are considered as approximation tools for identification of complex nonlinear 
systems and processes. It is shown in the research that proper application 
dependant architecture of the network can significantly improve quality of 
identification which has crucial importance for control system design. Moreover, 
specific structures of a neural network based model makes possible combination 
of classical control algorithms with neural network based identification and 
adaptation. 
 
Additive Nonlinear AutoRegressive eXogenous (ANARX) model is considered  
as a reasonable choice for control-aimed modeling of a wide class of nonlinear 
systems because of its linearizability by dynamic feedback. Neural Network 
based ANARX (NN-ANARX) model is applied to control of nonlinear systems. 
An adaptive controller is designed by combining classical dynamic output 
feedback linearization with neural network based adaptation. 
 
Multiply Input Multiply Output (MIMO) ANARX structure is proposed and 
applied to identification of nonlinear MIMO systems. NN-based Simplified 
ANARX (NN-SANARX) model class is introduced here as an alternative witch 
allows to simplify feedback computation bringing it to a solution of a system of 
linear equations. Linearization based control technique is applied to control of a 
large class of nonlinear MIMO systems by using NN-SANARX model.  
 
NN-SANARX model based control imposes restrictions causing necessity to 
redesign adaptation technique based on training of the neural network 
representing the model. An adaptive controller for nonlinear MIMO systems 
identified by NN-SANARX structure is also designed in the thesis. 
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Kokkuvõte 
Mittelineaarsete süsteemide identifitseerimine ja juhtimine 

tehisnärvivõrkudega: ANARX mudelil põhinev lähenemine 

 
Viimaste aastakümnete vältel on tehisnärvivõrgud leidnud rakendust keerukate 
mittelineaarsete süsteemide juhtimisprobleemide lahendamisel. Üheks oluliseks 
juhtimisprobleemide lahendamise eelduseks on erinevate sisend-väljund 
mudelitel põhinevate mittelineaarsete süsteemide identifitseerimise meetodite 
väljatöötamine ja rakendamine. Vaatamata sellele, et on välja töötatud ja 
mittelineaarsete süsteemide juhtimisprobleemide lahendamisel rakendatud palju 
tehisnärvivõrkudel baseeruvaid meetodeid ei ole mudelite struktuurilisi 
võimalusi veel täiel määral kasutatud. 
  
Käesolev väitekiri käsitleb tehisnärvivõrkudel põhinevat mittelineaarsete 
süsteemide identifitseerimist ja mudelil põhinevat juhtimist. Põhjalikult on 
analüüsitud erinevaid tehisnärvivõrkude arhitektuure keerukate mittelineaarsete 
süsteemide ja protsesside identifitseerimisprobleemide lahendamisel. Töös 
esitatud uuringutes on näidatud, et sobiva rakendusest sõltuva tehisnärvivõrgu 
arhitektuuri valikuga võib oluliselt tõsta identifitseerimise kvaliteeti, millel on 
kriitiline tähtsus süsteemide analüüsil ja juhtimissüsteemide projekteerimisel. 
Enamgi veel, spetsiifilised tehisnärvivõrkudel põhinevad mudeli struktuurid 
võimaldavad kombineerida klassikalisi juhtimisalgoritme tehisnärvivõrkudel 
põhinevate identifitseerimis- ja adapteerimisalgoritmidega. 
 
Suurt tähelepanu on töös pööratud ANARX (Additive Nonlinear 
AutoRegressive eXogenous) mudelitele, mis on mõistlikuks valikuks suure 
mittelineaarsete süsteemide klassi identifitseerimiseks lahendamaks juhtimis-
ülesandeid. Need mudelid on alati lineariseeritavad dünaamilise tagasiside abil. 
Tehisnärvivõrgudel põhinev ANARX (NN-ANARX) mudel on rakendatud 
mittelineaarsete süsteemide juhtimiseks. On väljatöötatud adaptiivne süsteem, 
mis kombineerib klassikalist lineariseerimist tehisnärvivõrkude treenimisel 
baseeruva adapteerimisega. 
 
On väljatöötatud mitme sisendiga ja mitme väljundiga (MIMO) ANARX 
struktuur. See mudel on rakendatud mitmemõõtmeliste mittelineaarsete süstee-
mide identifitseerimisel. Samuti on väljatöötatud lihtsustatud NN-ANARX 
mudelite klass – NN-SANARX (NN-based Simplified ANARX), mis lihtsustab 
oluliselt lineaarse dünaamilise tagasiside arvutamist. Dünaamilisel lineariseeri-
misel baseeruv juhtimisalgoritm on rakendatud mittelineaarsete mitmemõõtme-
liste süsteemide klassi juhtimiseks kasutades NN-SANARX mudelit. NN-
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SANARX mudelil baseeruv juhtimine kehtestab lisatingimusi adapteerimis-
algoritmile. Töös on väljatöötatud adaptiivsüsteem NN-SANARX mudeliga 
identifitseeritavate mitmemõõtmeliste mittelineaarsete süsteemide juhtimiseks. 
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Chapter 1 

 

Introduction 

 
This thesis summarizes research experience and the main results achieved by the 
author in the field of neural networks based system identification and model 
based control of nonlinear SISO and MIMO systems. The work is devoted to 
identification and control of nonlinear systems by means of different structures 
of neural networks based models. The main attention is paid to ANARX 
(Additive Nonlinear AutoRegressive eXogenous) structure of the model. Neural 
Network based Simplified ANARX (SANARX) model is introduced by the 
author for significant simplification and improvement of dynamic output 
feedback linearization based control of nonlinear SISO systems and application 
of this algorithm to control of a wide class of nonlinear MIMO systems. 
 
The thesis considers 
 

• analysis of three neuro models based control algorithms of different 
types, comparing them and defining their advantages and drawbacks; 

• design and application of specific neural network structures improving 
the quality of model based neurocontrollers; 

• application of dynamic output feedback linearization algorithm to 
control of nonlinear SISO and MIMO systems and design of adaptive 
controllers based on this algorithm. 

 
The main original contributions of this thesis is in 
 

• design of Neural Network based Hammerstein model and application of 
this model for significant improvement of model based predictive 
control of systems with static actuator nonlinearities; 

• application of NN-ANARX model based dynamic output feedback 
linearization algorithm to control of nonlinear systems; 

• definition of Neural Network based Simplified ANARX (NN-SANARX) 
model; 
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• development of a control technique based on dynamic output feedback 
linearization on NN-SANARX model and its application to control of 
nonlinear MIMO systems; 

• definition of Neural Network based ANARX model for MIMO systems 
and its application to dynamic output feedback linearization based 
control of MIMO systems by using an additional neural network. 

• design of adaptive controllers based on NN-ANARX and NN-SANARX 
models of controlled nonlinear SISO and MIMO systems. 

 
Author’s contributions are discussed in more detail in the beginning of chapters 
3, 4 and 5. 
 
Significant attention is paid to identification of ANARX models of nonlinear 
systems and ANARX models based control because of their very important 
advantages over classical NARX models. ANARX is a sub-class of NARX 
models with separated time instances. Restrictions imposed by this sub-class 
guarantee linearizability by dynamic output feedback as well as state-space 
reprezentability of the model. These advantages are especially important for 
control applications. That is why this type of the model is a reasonable choice 
for control of a wide class of nonlinear systems. 
 
The work is also inspired by neural networks ability to model the complex 
behavior of nonlinear systems from one side and their ability to reproduce an 
arbitrary structure of the system by choosing proper functions and connections 
between nodes from another side. 
 
This thesis considers artificial neural network as an instrument for identification 
of nonlinear systems for model based control. Because of consisting of simple 
interconnected nodes (artificial neurons), neural network can represent any 
structure of the model corresponding to the requirements of the control 
algorithm. Proper structure of the model can be obtained by choosing 
connections between neurons (connecting them in the right way) and defining 
activation functions of each neuron in the network according to the needs of the 
control system. 
 
1.1 State of the Art 
 
Nonanalytical methods discussed in the thesis consider identified system as a 
“black box” and identify parameters of the model by using a set of data gathered 
from system’s input and output. When these methods are used, the structure of 
the model has to be chosen before starting the identification procedure or turned 
during it by a predefined algorithm. The structure of the model significantly 
depends on its application. For model based control considered in this work, it 
should satisfy the needs of the control algorithm. 
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The history of developing technical systems based on interconnection of nodes 
representing mathematical models of biological neurons takes its start from the 
year 1943 when McCulloch and Pitts proposed a mathematical  model of the 
neurons [1]. This model is called an artificial neuron and is used in the most 
artificial neural networks based applications until nowadays. This model 
proposed almost 65 years ago is also a major basic element in systems discussed 
in this thesis. 
 
Learning machine built by Edmonds and Minsky in 1951 can be considered as 
the first artificial neural network simulator. This neural network learning 
machine, called SNARC (Stochastic Neural-Analog Reinforcement Computer), 
was based on Hebb’s ideas [48] replicating mathematically what happens when 
synaptic transmissions occur in the brain [2]. Nevertheless the real beginning of 
neural networks (NNs) and NN-based learning the invention of a simple neuron-
like learning network by Rosenblatt [49] in 1962. This simplest layered fully 
connected neural network is called perceptron. Today multilayer perceptron is 
still the most popular and the most widespread neural network structure because 
of its very good and proofed [44] approximation capabilities. 
 
It has to be mentioned that very little research was done in the area until about 
the 1980s mainly because of high computational complexity of training the 
networks that are capable of solving difficult problems. However, many of the 
artificial neural networks in use today are still based on the early advances of the 
McCulloch-Pitts neuron and the Rosenblatt perceptron. The majority of practical 
neural network based control applications utilize multilayer perceptron as the 
structure of the network. Numerous examples and research results can be found 
in literature demonstrating very good approximation, identification and 
adaptation abilities of this type of neural networks and their relevance to control 
systems design.  
 
Majority of research is pointed to approximation capabilities of neural networks 
and application of this property in technical systems. At the same time 
significantly lower attention is paid to the structure of the neural network. 
During the last 20 years multilayer perceptron has shown its very good 
approximation capabilities and applicability for solving a lot of complex 
problems from very different fields and therefore it is too general to be the best 
in each particular application. 
 
1.2 Author’s point of view 
 
While there are many ways to classify control algorithms in the framework of 
this thesis model based control algorithms can be divided into two main types: 
structure dependent and structure independent model based control algorithms. 
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Control algorithm is said to be structure independent if a controller is based on a 
model of the controlled system or process, but does not require any certain 
structure/architecture of the model. Any structure of the model can be utilized. 
The model used to estimate or/and predict the behavior of the controlled system 
or process. Model based predictive control algorithm is considered as an 
example of structure independent control algorithms. Inverse model based 
control also belongs to this class because the model (inverse model) is used to 
estimate the controlled process – to estimate the input which caused the known 
reaction. 
Control algorithm is said to be structure dependent if a controller is based on a 
certain predefined structure/architecture of the model of the controlled system or 
process. Dynamic Output Feedback Linearization algorithm based on the model 
represented in the form of ANARX structure is considered as a structure 
dependent control algorithm. 
 
Author’s research has shown that properly chosen structure of the neural 
network based model can significantly improve the quality of control and makes 
possible combination of classical model based control approaches requiring 
certain representation of the model (for example, state-space representation) 
with NN-based identification and adaptation. Neural networks based architecture 
is adaptable in nature. Adaptation could be done by learning. Thus, robustness of 
classical model based control techniques can be significantly improved by 
introducing neural networks based models. 
 
The quality of model based control algorithms significantly depends on the 
accuracy of the model. Besides ability to learn and adapt by learning neural 
networks based models makes possible to obtain a model of the desired structure.  
 
Properly chosen neural network structure may increase identification quality and 
accuracy of the model thus increasing the quality of structure independent 
control algorithms. Varying the structure of the neural network it is possible to 
obtain application-specific models reproducing the structure of the controlled 
system for better identification and control quality as will be demonstrated in 
this thesis on example of model based predictive control of systems with 
actuator nonlinearities. 
 
In case of structure dependent model based control algorithms using artificial 
neural networks for identification gives wonderful ability to choose the structure 
of the model and to obtain the model in the form relevant to the control 
algorithm very easily. By using this approach ANARX models of nonlinear 
systems are obtained by training the network of the corresponding structure and 
dynamic output feedback linearization algorithm based on this model is applied 
to control of nonlinear SISO and MIMO systems by the author of this thesis. 
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Neural networks based models of dynamic systems use external feedback from 
the output(s) of the model with delays or internal recurrent connections through 
delays and therefore these have discrete nature. All neural network based models 
of dynamic systems considered in this work are discrete-time models. Therefore 
only discrete-time control systems will be considered. The notations x(t), u(t) 
and y(t) denote the value of a state, an input and an output at time step t 
correspondingly. 
 
All the experiments discussed in the thesis are performed by simulating systems 
in MATLAB/SIMULINK environment. 
 
1.3 Outline of the thesis 
 
The thesis is organized as follows: chapter 2 gives an overview of mathematical 
tools used in the next parts of the thesis. It presents discrete-time models and 
control algorithms studied in the work, discusses basic principles and concepts 
of artificial neural networks. The main methods and theorems that are important 
for understanding the rest part of the thesis are also considered in the second 
chapter. 
 
The third chapter is devoted to identification of nonlinear dynamic systems by 
artificial neural networks. Models based on recurrent and feedforward neural 
networks are considered. A novel NN-based Hammerstein model and its 
application to control of direct current servo motor with nonlinear driver is 
presented. NN-based ANARX model and its advantages over classical NARX 
model are also discussed and demonstrated on numerical examples. This chapter 
also presents NN-ANARX model for MIMO systems and discusses its 
application to identification of the surgeon’s hand for the motion recognition. 
 
The fourth chapter discusses control algorithms based on models obtained by 
training a neural network. Predictive control, inverse model based control and 
NN-ANARX model based control techniques are considered. They are analyzed 
and demonstrated on several numerical examples. Drawbacks and advantages of 
these methods are drawn in the end of the chapter. 
 
The fifth chapter presents two novel methods for control of nonlinear MIMO 
systems. NN-based Simplified ANARX structure is introduced and a controller 
based on dynamic output feedback linearization of this model is designed. 
NN-ANARX model based control of nonlinear MIMO systems are demonstrated. 
This chapter also studies robustness of the proposed techniques and introduces 
NN-SANARX and NN-ANARX models based adaptive controllers capable of 
robust control of a wide class of nonlinear MIMO systems. 
 
Conclusions summarizing the results of the thesis are drawn in the sixth chapter 
and subjects for further research and development are given in the last chapter. 
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Chapter 2 

 

Overview of Mathematical Tools 

 
An overview of basic instruments used in this thesis is given is this chapter. The 
main tools for nonlinear Single Input Single Output (SISO) systems modeling, 
analysis and control systems design are described here. The main attention is 
paid to artificial neural networks based models and methods as well as classical 
algorithms that can be combined with neural networks based approaches for 
achieving better quality of nonlinear control systems. 
 
2.1 Nonlinear systems 
 
The notion of a system can be defined as in [3]. 
 
A system is a combination of components that act  together to perform a certain 

objective. 

 

A system can be understood as an isolated part of the universe that is of interest 
to us and other parts of the universe that interact  with the system compose the 
system environment , or neighboring system [3]. 
 
The majority of systems surrounding us are nonlinear. It means that the relations 
between these components have nonlinear nature. Using linearized models for 
control system design imposes strong restrictions to the range of set points that 
this system can reach and the range of reference signals that the control system 
can track. That is why control techniques based on nonlinear models that can 
better represent nonlinear relations between components are so important.  
 
All existing systems change in time, and when the rates of change are significant, 
the systems are referred to as dynamic systems [3]. Practically it means that 
current behavior of a system depends on its previous behavior or in other words, 
it depends on the state of a system. The majority of systems are nonlinear 
dynamic systems. 
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2.2 Mathematical models of nonlinear dynamic systems 
 
There exists the majority of techniques for mathematical modeling of nonlinear 
systems. The mathematical model has to describe the main features of the 
system. In case of models considered in the thesis this are features that are 
important for design of control systems. 
 
Model of a system is a form of abstract descriptions of the relationships existing 

among system variables [3]. 
 
When these relationships are mathematically expressed by nonlinear functions 
the model is called nonlinear mathematical model. 
 
There are continuous-time and discrete-time models exist. In case of  
continuous-time models output and inner states depend on time and can be 
calculated at each point of continuous time. In case of discrete-time models 
output and/or inner states can be calculated only in certain time instances. Period 
of time between these instances is called sample time. Mathematically, 
 
Continuous-time models can be expressed as 
 
( ) ( ) ( ) ( )( )tutxtxfty n ,,,ˆ 1 K= ,                                   (2.1) 

where 
t is continuous time; 
( )tŷ  is the output of the model; 

)(tu  is the input of the model; 

)(,),(1 txtx nK  are inner states of the model; 

n is the order of the model and 
f is a nonlinear function. 
 
Unlike continuous signals, in discrete-time systems signals have discrete 
amplitude values at discrete times. The sampling is usually performed 
periodically with sampling time tΛ  [7]. Only discrete-time systems with 
constant sampling time are considered in this thesis. 
 
Discrete-time model: 
 
( ) ( ) ( ) ( )( )kknkk tutxtxfty ,,,ˆ 11 K=+ , K,1,0=k .         (2.2) 

 
Here 
tk is a time instant measured with sample time  

kk ttt −=∆ +1  for K,1,0=k .            (2.3) 

For simplicity equation (2.2) can be rewritten as 
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( ) ( ) ( ) ( )( )kukxkxfky n ,,,1ˆ 1 K=+ , K,1,0=k .         (2.4) 

 
or 
 
( ) ( ) ( ) ( )( )tutxtxfty n ,,,1ˆ 1 K=+ , K,1,0=t .           (2.5) 

 
Sometimes the notation (2.5) is also used in literature and will be used in this 
thesis when we talk only about discrete-time systems that has to be mentioned. 
 
There exist several types of continuous- and discrete-time models. The choice of 
the model type depends on available data and information about the process or 
system that we have to model.  It also depends very much on the application 
where this model will be used as it will be shown in this thesis later. 
 
In the following systems that can be modeled by a finite number of differential 
or difference equations are considered. The most important types of nonlinear 
models used in control applications are input-output and state-space models.  
 
For simplicity lets now consider Single Input Single Output (SISO) systems. 
Multiply Input Multiply Output systems will be considered in the thesis later. 
 
2.2.1 Input-Output Models 
 
In general, the relationships between the input u and the output y signals of a 
system can be represented by an n-th order differential equation 
 

0,,,,,,, =








dt

ud

dt

du
u

dt

yd

dt

dy
yf

mn

KK          (2.6) 

 
where f  is a nonlinear function and nm ≤  
or by an n-th order difference equation 
 

0))(,),(),(,),(( =−− mkukunkykyf KK           (2.7) 
 
where f  is also a nonlinear function and nm ≤ . 
 
Equation (2.6) is called an input-output model of a continuous-time nonlinear 
system and equation (2.7) is called an input-output model of a discrete-time 
nonlinear system [3]-[6]. 
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2.2.2 State-Space Models 

 
Another important class of models are state-space models. A lot of control 
techniques are based on this state-space representation that consists of state 
equations and output equations. [3]-[6] 
 
In case of continuous-time nonlinear state-space model the dynamics of the 
system is modeled by a finite number of coupled first-order ordinary differential 
equations 
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                         (2.8) 

 
where ix&  denotes the derivative of ix  with respect to the time variable t and u is 

the input of the system, nfff ,,, 21 K  are nonlinear functions. Variables 

nxxx ,,, 21 K  are called state variables and n is the order of the model. 

 
Output equation is a static nonlinear function that can be defined as follows 
 

),,,,( 1 uxxthy nK=             (2.9) 

 
Equations (2.8) and (2.9) are called nonlinear continuous-time state-space model. 
 
Discrete-time state-space model also consists of state equations and an output 
equation. Dynamics of the model is represented by a finite number of first-order 
difference equations 
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      (2.10) 

 
and output equation is 
 

))(),(,),(,()( 1 kukxkxkhky nK=         (2.11) 

 
Equations (2.10) and (2.11) are called nonlinear discrete-time state-space model. 
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This thesis is devoted to development, analysis and application of neural 
networks based models and control algorithms based on these models. All 
models based on neural networks are discrete-time models. That is why only 
discrete-time models will be considered further. 
 
2.2.3 NARX models 
 
Nonlinear Autoregressive eXogenous (NARX) models is a sub-class of discrete-
time input-output models (2.7). NARX model is  represented by a high order 
difference equation  
 

))(,),1(),(,),1(()( nkukunkykyfky −−−−= KK ,                 (2.12) 
where n is the order of the model. 
 
This is a very widespread model that can model a very large class of nonlinear 
systems with high degree of accuracy, but it suffers from some serious 
drawbacks. Namely, it is not always realizable in classical state-space form or 
this representation is very complicated. It is also not always linearizable by using 
feedback. [8], [9], [10] The second property is very important for nonlinear 
control system design and will be discussed in more detail in section 2.4.3. 
 
Additive NARX (ANARX) model was proposed in [11] to bridge the gap. 
 

2.2.4 ANARX models 

 
Unlike NARX models, ANARX models have all time instances separated [8], 
[11], [33]. The idea of separating time-instances was proposed in [12]. 
ANARX model is described by the following equation 
 

∑
=

−−=

=−−++−−=
n

i

i

n

ituityf

ntuntyftutyfty

1

1

))(),((       

))(),(())1(),1(()( K

    (2.13) 

 
Here nff ,,1 K  are nonlinear functions and n is the order of the nonlinear model 

(memory length). 
 
One of the main benefits of this model is that it well suites to berepresented by 
artificial neural networks of the structure specified in [10] as it is shown in [13], 
[14]. Neural Networks based model will be described in detail in section 2.5.2 of 
this thesis. 
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Without regard to how ANARX model was obtained, by training a neural 
network or not, it is always directly rewritable in the form of state-space model 
by using equations (2.14) 
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n states 1x  to nx  corresponding to the order of the model have to be introduced. 

State-space representation is very important for design and analysis of control 
systems. State-space concept is extremely useful not only for design of a specific 
optimal control system but also for improving the principle on which the system 
will operate.[15] 
 
Another advantage of this model in means of control systems is that it is always 
linearizable by using dynamic output feedback linearization as it will be shown 
in section 2.4.3. 
 
Model-based control algorithms suppose that the model obtained through the 
identification procedure are accurate. It means that the model describes the 
properties of the system that are important to control it with high enough degree 
of accuracy. The quality of a model-based control system depends very much on 
the quality of the model. The following approach can be used to evaluate the 
accuracy of a model. 
 
2.3 Accuracy of a model 
 
Model is a function that maps an input value u from the set of system inputs U 

into the set of model outputs Ŷ : 
 

yu
el

ˆ
mod

→ , Uu ∈ , Yy ˆˆ ∈           (2.15) 
 

An output value ŷ from the set Ŷ  is put into the correspondence to each input u 

from the set U by the model. In case of SISO systems ℜ⊂YU ˆ,  and in case of 

MIMO systems r
U ℜ⊂  and m

Y ℜ⊂ˆ  where r is the number or of model inputs 
and m is the number of model outputs. 
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At the same time each  input u corresponds to a value y from the set of system 
outputs Y: 
 

yu
system

→ , Uu ∈ , Yy ∈           (2.16) 
  
The relationship between the system and the model is schematically depicted in 
figure 2.1.  
 

 
figure 2.1 Relationship between the system and the model 

 
yy ˆ≠  because of inaccuracy of the model. The distance between the output of 

the system y and the output of the model ŷ  is inaccuracy of the model at point u 
and it is denoted as ε in figure 2.1. 
 

yy ˆ−=ε             (2.17) 
 
Accuracy of the model can be measured on so-called validation set. Validation 
set is a set of known system input and system output pairs. Model outputs 
corresponding to each input value from the validation set are calculated and 
Mean Square Error (MSE) can now be used as the measure of the model 
accuracy. 
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where N is the number of input-output pairs in the validation set. 
 
For MIMO systems MSE can be calculated as 
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where m is the number of system outputs. Number of model outputs equals to 
the number of system outputs. 
2.4 Model-based nonlinear system control techniques 
 
After a nonlinear model of a nonlinear system is obtained, model-based control 
techniques can be applied to control the system. The most popular model-based 
algorithms for nonlinear system control are considered in this section. 
 
2.4.1 Predictive control 

 
Predictive control is one of the most widespread techniques for nonlinear 
systems control. The main advantage of this method is that it does not depend on 
the form of the model. The model of a nonlinear system can be obtained by 
using any type of artificial neural network, by using fuzzy systems, can be 
derived from physical laws and so on. No particular structure of the model is 
required. 
 
Training an artificial neural network is one of nonlinear system identification 
techniques. Predictive control algorithm does not depend on the structure of 
neural network used as a model and can be considered as an algorithm that uses 
the model of the process under control as a “black box” with inputs and outputs. 
 
The predictive control has been shown to exhibit robustness to model order 
uncertainly, variable time delay, and non minimum phase effects [16]. Predictive 
control schemes minimize future output deviations from set point while taking 
into account the control action needed to achieve the objective [17]. Such 
schemes have been proved to be very successful for linear systems [18]-[21] and 
have also been used with nonlinear models [17], [22]-[24]. Neural networks 
ability to learn and model wide range of nonlinearities makes them ideal 
candidates for use with a predictive control scheme. Neural Networks based 
predictive control technique will be discussed later in section  4.2.1. 
 
The model is used to predict the behavior of the system under control. We 
suppose that the input of the system remains the same and calculate some steps 
of model outputs. These model outputs are used as predicted outputs of the 
system. The aim of the control system is to minimize the cost function )(tJ . 
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Here 

)(tv  is the desire output of the system (reference signal) at time step t; 

)(ˆ ty  is the output of the model (predicted output) at time step t; 
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)(tu
∧

 is the input of the system (control signal); 

1N  is the maximum output prediction horizon; 

2N  is the maximum output prediction horizon; 

uN  is the control horizon 

112 +−= NNNu
 

and 
jλ , 

uNj ,,1 K= is the control weighting sequence. 

 
Minimum of the function (2.20) can be calculated by using gradient J∇ . Lets 
divide J into two parts 
 

uy JJJ +=             (2.21) 

 
where 
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Equation (2.25) has to be solved to find the value of argument )(tu  at witch the 
value of the cost function (2.20) is minimal. 
 

0=∇J            (2.25) 
 

where uN
J ℜ∈∇ and 0 is a zero vector of the same dimension. 

 
We assume that the reference  signal )(tv  remains constant during the length of 
prediction. 
 

)()()( 21 tvNtvNtv =+==+ K         (2.26) 
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It means that 
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Now lets multiply the left and the right parts of equation (2.29) by (2.30) 
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Element )(ˆ tu  from vector [ ]TuNtutu )1(ˆ,),(ˆ −+K  is applied as the control 

signal. 
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Equation (2.32) can be significantly simplified in case of non-adaptive predictive 
control algorithm. In this case vector of weight coefficients Q does not change. 
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Elements of vector uN
Q

×ℜ∈ 1  are parameters of predictive controller and the 
quality of control significantly depends on them. Control signal then can be 
calculated as 
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When model is obtained in the form of artificial neural network, this algorithm 
can be improved to adaptive by training the network and adjusting parameters of 
the model as it will be shown later in section 4.2.1. General structure of the 
control system is shown in figure 2.2. 
 

 
 

figure 2.2 Predictive Control technique 
 
Another model based control technique that does not depend on the structure of 
the model and the method how it was obtained is inverse model based control. 
 
2.4.2 Inverse model based control 
 
The idea of inverse model based control technique is in implementing an inverse 
model of the system as the controller. 
 
Consider an input-output discrete time model as defined in (2.7). The output of 
the model can be calculated as  
 

))(,),(),(,),1(()( mtutunkytyfty −−−= KK        (2.34) 
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The aim of the inverse model is to calculate the input of the system u(t) that 
causes the known output y(t). It can be calculated as 
 

))(,),1(),(,),1(),(()( mtutunkytytyftu im −−−−= KK      (2.35) 
 
when a nonlinear function fim is found. 
 
After that this “known output” is taken as the reference signal v(t) and after 
being given to the input of an inverse model, the inverse model calculates 
control signal u(t) that has to be given to the input of the system in order to 
obtain )()( tvty = . Such a control technique is called direct inverse control. 

 
Direct inverse control utilizes an inverse system model. The inverse model is 
simply cascaded with the controlled system in order that the composed system 
results in an identity mapping between desired response and the controlled 
system output [23]. 
 
Besides the fact that this control technique has been successfully applied in 
robotics [23], it suffers from some serious drawbacks. The main drawback is 
absence of any feedback from real output of the process that makes the control 
strategy very dependant on the quality of the inverse model. We fully rely on it. 
Serious questions arise regarding the robustness of direct inverse control [23]. 
This problem can be overcome to some extend by implementing a neural 
networks based inverse model and using an adaptation technique based on 
training of the network to minimize the difference between the reference signal 
and the output of the system. The parameters of the inverse model can be 
adjusted on-line. Such a technique is shown by the author in [26]. It introduces a 
feedback into the control system and significantly improves its quality  and 
robustness. 
 
When an inverse model is obtained in the form of a NARX structure (2.12) the 
feedback can be introduced by providing previous input and output values for 
the inverse model from the controlled process. The corresponding control 
scheme [25] is illustrated in figure 2.3 
 

 
figure 2.3 Direct inverse control 

Inverse model Controlled 
system 

v(t) 
u(t) y(t) 
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For better robustness, the inverse model can also be used in combined with a 
forward model. In this strategy called Internal Model Control (IMC), the 
difference e between the output of the forward model ŷ  and the output of the 
plant y is used as feedback signal, while the inverse model is placed in the 
forward path.[25] This approach is illustrated in figure 2.4. 
 

 
figure 2.4 Internal model control 

 
If the forward model is perfect, the error signal will be zero and the control 
system will operate as if it was under direct inverse control. 
 
Another important problem is defining the inverse function fim. It has to be 
mentioned that not all continuous functions are invertible. This fact significantly 
restricts the class of systems to which this technique can be applied. If a 
continuous one-valued function defining an inverse model of a nonlinear system 
exists it can be modeled by a neural network because of neural networks ability 
to approximate any continuous nonlinear function. That is why neural networks 
inverse modelling based  versions of this control algorithm became so popular 
and were successfully applied to control of nonlinear systems [26]-[31]. Neural 
networks based approach to inverse model based control will be considered in 
more detail in section 4.2.3. 
 
The next approach to control of nonlinear systems is based on the specific of 
discrete-time model. 
 
2.4.3 Dynamic Output Feedback Linearization 
 
It is proofed in [32] that ANARX structure (2.13) described in the section 2.2.4 
is always linearizable by Dynamic Output Feedback Linearization (2.36)-(2.38). 
Consider n-th order ANARX model. The dynamics of the linearization algorithm 
is defined by the following equations 
 

Inverse model Controlled 
system 

v(t) u(t) y(t) 

Forward model - + 

+ - 
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and control u(t) can be calculated as 
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ttyFtu η−=         (2.37) 
 
where 
 

( ) )()(),( 11 ttutyfF η==           (2.38) 
 
It can be seen from equations (2.36) and (2.38) that 
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or 
 
( ) ( )ntvty −=              (2.40) 

 
when dynamic output linearization algorithm (2.36)-(2-38) is applied to 
ANARX model (2.13). 
 
In order to use this linearization algorithm as a nonlinear system control method. 
The system has to be modeled by the ANARX structure. Such a model can be 
obtained by training a specific neural network. Neural Networks based ARARX 
(NN-ANARX) structure will be introduced in section 3.6 and NN-ANARX 
structure based control technique will be shown in section 4.3. 
 
The main problem in implementation of this technique to control of nonlinear 
systems is of control signal (2.37). Inverse of the function F (2.38) has to be 
calculated. The value of the function F-1 can be calculated numerically by using 
Newton method. [13], [14] 
 

2.4.4 Newton’s method 
 
By using Newton’s method [34] a nonlinear equation (2.41) can be solved. 
 

0)( =xf             (2.41) 
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If 0x  is an initial point (initial approximation of the solution ∗
x ) then the zero 

of the function (2.41) can be numerically calculated by using the following 
iterations 
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where ( )kxf ′  is the derivative of the function ( )⋅f  at point kx . Consequently 

this function has to have derivatives at all points kx . 

 
In case of nonlinear SISO systems modeled by ANARX structure, function (2.38) 
can be rewritten as 
 

( ) 0)()(),( 11 =− ttutyf η          (2.43) 
 

Now it satisfies the condition (2.41) and the zero ( )tu ∗  can be calculated by 

using iterations (2.42) if function ( )⋅1f  is differentiable. After applying p 

iterations approximation ( )tu p  is used as the control. 

 
( ) ( )tutu p=            (2.44) 

 
Previous control signal ( )1−tu  can be used as an initial gas ( )tu0  for numerical 

calculation of the control ( )tu  by Newton’s method as it is usually reasonably 

close to the true zero ( )tu ∗ . 
 

( ) )1(0 −= tutu           (2.45) 

 
When ANARX model is obtained in the form of artificial neural network as will 
be shown in section 3.6, function ( )⋅1f  is differentiable at all points ℜ∈u  and 
therefore Newton’s method can be used for calculation of (2.37) as it is shown 
by the author of the thesis in [13] and [14]. 
 
This thesis is devoted to neural network based modeling and control. The idea of 
artificial neuron and artificial neural networks will be briefly described in the 
next section. 
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2.5 Artificial Neural Networks 
 
Artificial Neural Networks consist of basic nodes – Artificial Neurons. To talk 
about Artificial Neural Networks, the notation of an Artificial Neuron has to be 
defined.  
 
2.5.1 Artificial neurons 
 
In 1909 Cajal [35] found that the brain consists of a large number of a large 
number of highly connected neurons. In 1943, McCulloch and Pitts proposed a 
mathematical model of the neurons and showed how neural-like networks could 
be computed.[24] The simplified mathematical model of the neuron by 
McCulloch and Pitts is usually called Artificial Neuron. This model is used in 
most neural networks based applications and will be used in this thesis. Artificial 
neuron is schematically depicted in figure 2.5. 
 

 
figure 2.5 Artificial Neuron 

 
It can be seen from the picture that artificial neuron consists of two parts. The 
first part is a weighted sum of inputs and the second part is a nonlinear element 
called activation function.[36], [40], [24]. Choice of this function ( )⋅ϕ  
significantly depends on application, learning strategy and algorithm [37]. 
 
Consider an artificial neuron having n inputs as shown in figure 2.5. Artificial 
neuron can mathematically be defined by the following function 
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or in a matrix form 
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where X is a vector of neuron’s inputs and W is a vector of weight coefficients 
also called synaptic weights. 
 
A linear neuron without activation function represented by the equation 
 

XWy ⋅=             (2.48) 
 
is called ADAptive LInear NEuron (here and after ADALINE). 
 
One more parameter θ  of an artificial neuron called bias or threshold that gives 
additional degree of freedom to the network can be introduced in some 
realizations of neural networks, but it is also an additional parameter to be 
adjusted during network’s training. The function of a neuron with a bias takes 
the form (2.49) 
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2.5.2 Activation functions 
 
The most common activation function is a continuous function that varies 
gradually between two asymptotic values, typically 0 and 1, or -1 and 1. These 
functions are called sigmoidal functions [40]. 
 
The definition of sigmoid functions can be given as follows 
 
Def. 2.1 

A C
k
-sigmoid function ℜ→ℜ:σ  is a nonconstant, bounded, and monotone 

increasing function of class C
k
 (continuous differentiable up to order k) 

 
In other words, the sigmoid is a smooth nonlinearity with saturation. The most 
widely used sigmoid activation functions are logistic function and hyperbolic 
tangent represented by equations (2.50) and (2.51). The main advantage of using 
these functions is that they are always differentiable and it is very easy and fast  
(that is very important for control applications) to calculate the derivatives of 
these functions [37] as shown below. 
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Logistic function ( ) [ ]( )1;0∈Iϕ  
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Hyperbolic tangent ( ) [ ]( )1;1−∈Iϕ  
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       (2.51) 

 
It has been estimated that there are more than 100 billion (1011) neurons in a 
human brain [41], [37]. Artificial neural networks have significantly less 
neurons. The largest artificial neural networks in control applications have no 
more than a few hundred neurons. 
 
The neurons are organized as a natural network to receive information from the 
real-world environment, and then provide the corresponding response, e.g. 
decisions or actions. However, from an engineering point of view, a neural 
network can be viewed as a parallel information processing system with some 
human-like intelligent behavior.[37] 
 
An artificial neural network can be defined as 
 
A data processing system consisting of a large of simple, highly interconnected 

processing elements (artificial neurons) in an architecture inspired by the 

structure of the cerebral cortex of the brain  [40]. 
 
These processing elements are usually organized into a sequence of layers. A 
typical neural network is “fully connected”, which means that there is a 
connection between each of the neurons in any given layer with each of the 
neurons in the next layer.[40] 
 
2.5.3 Perceptron 
 
In 1962 Rosenblatt invented a class of simple neuron-like learning networks 
which is called perceptron [42], [24]. The perceptron was actually an entire class 
of architecture which was composed of processing units that transmitted signals 
and adapted their connection weights. Rosenblat’s research was oriented toward 
modeling the brain in an attempt to understand memory, learning and cognitive 
process. Rosenblatt’s works were extended by many scientists and engineers and 
a number of machines were built based on perceptron architectures.[24] 
 
Multi-layer perceptrons have very quickly become the most widely encountered 
artificial neural networks, particularly within the area of systems and 
control [23]. The structure of a two-layer perceptron is depicted in figure 2.6. 
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Figure 2.6 Two-layer perceptron 

 
The first layer (from left to right) is called input layer. Te aim of elements of this 
layer is to receive signals from the environment and divide it between neurons of 
the layer neurons. All the layers that are connected to the network’s environment 
are called hidden layers. The receive signals from previous layer neurons and 
produce signals for the next layer neurons. In the considered example the second 
layer is a hidden layer. Neurons of the last layer produce outputs of the network. 
The percepton shown in the picture is called two-layer perceptron (not three-
layer), because there are no calculations in the first layer (input layer) and it is 
not taken into account when number of layers is calculated. 
 
If r is the number of network inputs, m is the number of network outputs 
(number of output layer neurons) and l is the number of hidden layer neurons 

then rlW ×ℜ∈1  is a rl ×  matrix of synaptic weights between inputs and hidden 

layer neurons and lmW ×ℜ∈2  is a lm×  matrix of synaptic weights between 

hidden layer and output layer. 1
1

×ℜ∈ lθ  and 1
2

×ℜ∈ mθ  are vectors of hidden 
an output layer neurons biases. Now a two-layer perceptron is reprezentable by 
the following mathematical function 
 

( )( )211122 θθ ++⋅⋅= XWfWfY          (2.52) 
 
Where Y is the vector of network outputs, f1 and f2 are activation functions of 
hidden and output layer neurons correspondingly. 
 
It has to be mentioned that not all neural networks (including perceptrons) have 
biases. They give additional parameters and sometimes make training faster, but 
neural networks can represent nonlinearities also without them. In this case the 
function reprezenting a perceptron is 
 

( )( )XWfWfY ⋅⋅= 1122                  (2.53) 
 
According to the Stone-Weierstrass theorem multilayer perceptrons are capable 
of approximating any continuous functions. 
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2.5.4 Stone-Weierstrass Theorem 

 
The original theorem due to Weierstass shows that an arbitrary continuous 
function [ ] ℜ→baf ,:  can be uniformly approximated by a sequence of 

polynomial ( ){ }xpn  to within a desired accuracy. This theorem was analyzed by 

Stone [44], who tried to find the general properties of approximating functions, 
not necessary polynomials [17]. Stone-Weierstrass theorem is relevant for 
approximation of continuous functions by artificial neural networks. To state the 
results of Stone some definitions have to be given. 
 
Def. 2.2 

A set A of functions from 
r

K ℜ⊂  to ℜ  is called an algebra of functions iff 

ℜ∈∀ gf ,  and ℜ∈∀α [17] 
 

(I) Agf ∈+  

(II)  Agf ∈⋅            (2.54) 

(III)  Af ∈⋅α  
 
Def. 2.3 

Let B be the set of all functions which are limits of uniformly convergent 

sequences with terms in A, a set of functions from 
r

K ℜ⊂  to ℜ . Then B is 

called a the uniform closure of A.[17] 
 

Def. 2.4 

A set A of functions from 
r

K ℜ⊂  to ℜ  is said to separate points on K iff 

Kxx ∈∀ 21 ,  Afxx ∈∃⇒≠ 21 , ( ) ( )21 xfxf ≠ .[17] 
 
Def. 2.5 

Let A be a set of functions from 
r

K ℜ⊂  to ℜ . We say that A vanishes at no 

point of K iff Kxx ∈∀ 21 ,  Af ∈∃ , such that ( ) 0≠xf .[17] 
 
The main result of Stone [44] is the following 
 
Theorem 2.1 (Stone-Weierstrass) 

Let A be an algebra of some continuous functions from a compact 
r

K ℜ⊂  to 

ℜ , such that A separates points on K and vanishes at no point of K. Then the 

uniform closure B of A consists of all continuous functions from K to ℜ . 
 
The original formulation of the theorem is for ℜ→ℜ rf :  due to condition (II) 
in (2.54), but the result remains also valid for , because the codomain of a 
vector-valued functions is the cartesian product of its components.[17]  
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Two-layer perceptron is described by equation (2.52) or (2.53). To approximate 
nonlinear functions neurons of the hidden layer should have a nonlinear 
activation function. It means that at least function f1 in (2.52) and (2.53) is a 
nonlinear function. Function f2 is usually a linear function (in this case outputs of 
the network are not bounded). When f1 is a sigmoid function and f2 is an 
ADALINE as defined in (2.48), the function of the network is a linear 
combination of sigmoids. 
 
The set of all linear combinations of sigmoids is a nonvanishing algebra 

separating point on a compact r
K ℜ⊂  [17] and according to theorem 2.1 this 

type of neural networks is suitable for uniform approximation of an arbitrary 
continuous map. It means that any continuous nonlinear function can be 
approximated by a two-layer perceptron with sigmoid activation functions of its 
hidden layer and linear output layer neurons to within a desired accuracy.  
 
There are no feedbacks in the structure of multi-layer perceptron. Such networks 
with no internal feedback between neurons and/or layers are called feedforward 
networks or static networks. Such networks can approximate only static 
functions. In order to model dynamic systems by this type of neural networks, an 
external feedback is needed (see section 3.3). 
 
Recurrent (also called dynamic or feedback) neural networks is an alternative to 
static neural networks. 
 
2.5.5 Recurrent Neural Networks 
 
Neural networks of this type have internal feedbacks from outputs of neurons to 
the inputs of the same (or previous) layer neurons. These networks do not need 
any additional external feedbacks to model a dynamic processes. Number of 
network inputs equals to the number of the process’s inputs. The Elman Network  
[45] will be considered as an example of recurrent networks. Capabilities of this 
network are studied in [46]. 
 
The Elman network commonly is a two-layer network with feedback from the 
first layer output to the first layer input. This recurrent connection allows the 
Elman network to detect and generate time-varying patterns. A two-layer Elman 
network is depicted in figure 2.7. 
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figure 2.7 Recurrent Elman network 

 
The Elman network shown in the network has one hidden layer called recurrent 

layer. The function of the network with one input and one output satisfy the 
following equations 
 





=

−=

))(()(

))(),1(()(

tXhty

tutXftX
                                                    (2.55) 

 
where u(t) is the input of the network, y(t) is the output of the network and X(t) 
is the vector of recurrent layer outputs. It can be seen from equation (2.55) and 
figure 2.7 that the Elman network is a dynamic network. The output values of 
the hidden (recurrent) layer are stored in memory for one tact (delayed for one 
time step) and produce the vector of the network’s states that influences output 
and state-vector of the network at the next time step. 
 
Consider Elman network having r inputs, m outputs and l neurons in its recurrent 
layer. Then the network has the following parameters: rlW ×ℜ∈1  is the matrix 
of synaptic weights between network’s inputs and recurrent layer neurons, 

lmW ×ℜ∈2  is the matrix of synaptic weights between network’s hidden layer 

neurons and output layer neurons, nnW ×ℜ∈2  is the square matrix of synaptic 
weights between hidden layer outputs and inputs of the same layer (weight 
coefficients of the feedback), l×ℜ∈ 1

1θ  is the vector of hidden layer biases and 
m×ℜ∈ 1

2θ  is the vector of output layer biases. When recurrent layer neurons 

have nonlinear sigmoid activation function ( ) ( )⋅=⋅ σf  and output layer neurons 

are linear ( ( )⋅h  is a linear function), the function of the Elman network can be 
defined as (2.56) or (2.57) following from equation (2.55) by introducing 
parameters of the network. 
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tXWty

tXWtUWftX r        (2.56) 

 
When there are no biases in the network (or they equals to zero) this equation 
takes the following form 
 





⋅=

−⋅+⋅=

)()(

))1()(()(

2

1

tXWty

tXWtUWftX r         (2.57) 

 
The Elman network is capable of approximating any continuously differentiable 
dynamic functions as it was proofed by Sontag in [47]. 
 

2.5.6 Sontag Theorem 

 
The main result of [47] is briefly stated here 
 
Theorem  2.2 (Sontag) 

Let a system 

 

( )
( )xhy

x)x(tuxfx

=

== 0
0      ,,&

          (2.58) 

 

be given with 
n

x ℜ∈ , 
p

u ℜ∈ , 
qy ℜ∈  with f and h continuously 

differentiable, such that for all [ ] pTu ℜ→,0:  the solution of (2.57) exists and 

is unique for all [ ]Tt ,0∈  and some compact sets 
nK ℜ⊂1 , 

pK ℜ⊂2 , while 

1Kx ∈ , 2Ku ∈ . Then there exists a recurrent neural network of the form 

 

( )
,

,

χ
χσχ

Cy

BuA

=

+=&
           (2.59) 

 

where 
Nℜ∈χ , nN ≥ , 

qy ℜ∈ , σ  is a vector of sigmoids and A, B are 

matrices such that on 21 KK × , 

 

0>∀ε  [ ]Tt ,0∈∀  ( ) ( )( ) εχ <− tMtx  and ( )( ) ( ) εχ <− tCtxh  

 

where M is a differentiable map.[17] 

 
As equations (2.56) and (2.57) satisfy condition (2.59) it can be concluded that 
the Elman network with sigmoid functions of the recurrent layer and linear 
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output layer neurons is capable of approximating continuously differentiable 
dynamic functions if the number of the recurrent layer neurons is larger than the 
order of the system that identifies the network. 
 
Approximating of a function by a neural network (static or dynamic) means 
calculating (or adjusting) parameters (synaptic weights and biases if any) of the 
network. This process is called network training (or learning). There are 
supervised and unsupervised training algorithms. Supervised training techniques 
need a set of etalon maps to be presented to the network. In case of unsupervised 
learning, a network is capable of adjusting its parameters according to some 
criteria. Only supervised approach will be considered in this work, because it is 
more relevant to modeling and control tasks. 
 

2.6 Training algorithms 
 
The first set of ideas of learning in neural networks was contained in Hebb’s 
book [48]. In 1951, Edmunds and Minsky built  their learning machine using 
Hebb’s idea. Although Minsky was he first person to propose a learning machine, 
the real beginning of a meaningful neuron-like network learning can be traced to 
the work of Rosenblatt [49] in 1962.[24] 
 
Supervised learning considered in this section requires a “teacher” or other 
source of information which directly specifies the to the network the correct 
response to each defined stimulus it will encounter. For example, the teacher 
may be a human or a real process generating examples of the required network 
outputs corresponding to a defined set of inputs.[39] 
 
Learning is the process of adapting the connection weights in an artificial 

neural network to produce the desired output vector in response to a stimulus 

vector presented to the input buffer.[40] 
 
The training is based on a set of input-output data 
 

[ ]{ }NttytuZ N ,,1,)(),( K== ,            (2.60) 

 
Where N is the size of the trainind set. 
 
Although there is a variety of different training techniques exists, two major 
training algorithms are used in this work. First of them is gradient descent error 
backpropagation (BP) training algorithm. Calculation of updates of a network 
parameters on each iteration is fast. It needs less computational resources than 
the second one and can be used for on-line adaptation of the model. 
Levenberg-Marquardt  (LM) has better approximation capabilities, it needs less 
iterations to converge, but each iteration takes a much more time and 
computational resources. It can be used for off-line modeling. 
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In both cases the aim of the training is to minimize a cost function ( )NZF ,Θ , 

where Θ  is the vector of parameters of the network (synaptic weights and some 
applications also biases). Mean square error is usually used as the minimization 
criterion. 
 

( ) ( ) ( )( ) ( )∑∑
==

Θ=−=Θ
N

t

N

t

N te
N

tyty
N

ZF
1

2

1

2 ,
2
1

ˆ
2
1

, .       (2.61) 

 
Here ( )ty  is known output value from the training set (2.60) corresponding to 

the input ( )tu . It is used as the etalon value (“teacher”). ( )tŷ  is the output of the 

network (estimated output) that has to be as close to ( )ty  as possible. 
 
During the training procedures shown in the next two sections  
 

( ) 0, →Θ NZF              (2.62) 

 

2.6.1 Gradient Descent Error Backpropagation 

 
This algorithm is a first-order method. The gradient is defined as 
 

( ) ( ) ( ) ( )Θ
Θ∂
Θ∂

=
Θ∂

Θ∂
=Θ ∑

=

,
,1,

1

te
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nn         (2.63) 

 
When BP algorithm [17] is applied, the vector of network’s parameters is 
updated on each iteration as 
 

( ) ( ) ( ) ( )Θ⋅−Θ=+Θ Gkkk λ1           (2.64) 
 
where ( )kλ  is an adaptive adaptive coefficient called learning coefficient or 
learning rate. 
 
One iteration of a training algorithm is also called epoch or training epoch. 
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2.6.2 Levenberg-Marquardt algorithm 

 
LM algorithm [50], [51] is a blend of Gradient Descent and Gauss-Newton 
iteration. It also provides a solution for the nonlinear least squares minimization 
problem (2.61), (2.62). The Hessian is defined by 
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The update rule in LM method is 
 

( ) ( ) ( )kkk ∆Θ+Θ=+Θ 1           (2.66) 
 
where 
 

( )( )[ ] ( ) ( )( )kGkIkR Θ−=∆Θ+Θ λ .         (2.67) 
 
Here ( )( )kG Θ  is the gradient defined by (2.63), I is the identity matrix and λ  is 
the adaptive learning coefficient. This coefficient balances the behavior of the 
method between a second- and first-order one.[52], [53] 
 
It was studied in detail in [54] that the training speed of this algorithm is much 
higher and a feedforward neural network trained with LM algorithm can better 
model nonlinearities. It is also found in [53] that this algorithm is much more 
efficient than either of the other techniques when the network contains no more 
than a few hundred weights. 
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Chapter 3 

 

Nonlinear Dynamic Systems 

Identification with Artificial Neural 

Networks 

 
From mathematical point of view, identification of nonlinear systems means 
approximation of a nonlinear map (nonlinear function or functions). It was 
proofed by Stone and Sontag (see sections 2.5.4 and 2.5.6) that artificial neural 
networks are capable of approximating any continuous nonlinearity. That is why 
neural networks have become an attractive tool in the construction of models of 
complex nonlinear processes and a large number of identification structures 
based on neural networks have been proposed. 
 
Application of recurrent (dynamic) neural networks and feedforward neural 
networks based structures with external feedback for identification of nonlinear 
dynamic systems will be discussed in this section. Some application-specific 
feedforward network structures will also be shown. Identification of nonlinear 
SISO and MIMO systems will be considered. 
 
3.1 Author’s contribution 
 
Author’s contribution is in comparing different neural network structures, 
developing neural network structures for improvement of identification quality 
of some specific nonlinear systems (systems with static nonlinearities in 
actuators) and application of neural networks based ANARX (NN-ANARX) 
structure to identification of nonlinear systems. 
 

• Inverse models of nonlinear dynamic systems based Dynamic neural 
networks with external and internal feedbacks are studied and compared 
in [26]; 

• A neural network structure for identification of systems with static 
nonlinearities in actuators (neural networks based Hammerstein type 
models) is proposed in [55]; 
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• neural networks based ANARX (NN-ANARX) structure is applied to 
identification of nonlinear systems in [13], [14] and [76]; 

• MIMO NN-ANARX structure is proposed in [56] and applied to 
identification of nonlinear MIMO systems in [56], [57] and [73]; 

• MIMO NN-ANARX structure is successfully used for identification and 
prediction of the surgeon’s hand motion in [73]. 

 
3.2 Recurrent Neural Networks Based Models 
 
Majority of real world systems and processes have dynamic nature and that is 
why a dynamic (recurrent) neural network seems to be a reasonable choice for 
identification of nonlinear dynamic systems. The Elman network described in 
section 2.5.5 is one of the simplest and widespread recurrent fully connected 
network structures satisfying the conditions of Theorem 2.2 (See section 2.5.6 
for Sontag Theorem). 
 
The Elman network shown in figure 2.7 and defined by equations (2.56) and 
(2.57) can model can model a nonlinear system after being trained on a 
corresponding training set consisting of input-output pairs. The set of inputs 
given to the system is defined as 
 

( ) ( ) ( )[ ]tUNtUNtUU N ,,1, K+−−= ,          (3.1) 

 
where ( )tU  is the vector of system’s inputs. The number of the network’s inputs 
equals to the number of inputs of the system r. 
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Inputs have to be measured continuously with a constant sample time as well as 
the corresponding outputs. 
 

( ) ( ) ( )[ ]tYNtYNtYYN ,,1, K+−−= ,           (3.3) 
 
where ( )tY  is the output vector at time step t 
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and m is the number of system outputs. 
 
All the values from are necessary and have to be presented to the network in the 
right order during the training procedure. 
 
First of all parameters of the network are given random values. Iterative training 
algorithm is applied and on each iteration k the output of the network (output of 

the model) ( )kŶ  is calculated by (2.57) and compared to the etalon output NY . 
Mean square error is calculated by (2.61) and the process is repeated until it is 
smaller than a given number ε  (desired accuracy of the model). 
 

( )( )∑∑
= =

<−
⋅

m

i

N

t

ii tyty
mN 1 1

2ˆ)(
2

1
ε           (3.5) 

 
According to Sontag theorem (section 2.5.6) neural network number of hidden 
layer neurons rn >  has to be chosen to obtain a model of a nonlinear dynamic 
system to within any desired accuracy. Practical problems that arise when 
applying this approach are described in [26] and [58]. 
 
Recurrent networks are not as reliable as feedforward networks, because training 
happens using an approximation of the error gradient. The contributions of 
weights and biases to errors via the delayed recurrent connection is ignored. In 
other case training of recurrent networks becomes extremely complicated. 
 
Feedforward network with external feedbacks is s good alternative to recurrent 
networks. 
 
3.3 Feedforward Neural Networks with External Feedback for 

Identification of Dynamic Systems. NN-NARX models  
 
External feedback is sufficient to represent all dynamic systems.[38] 
 
Discrete-time input-output model (2.7) can be realized in the form of a 
feedforward neural network with external feedback and delays. Static function 

( )⋅f  can be approximated by a feedforward network to within any degree of 
accuracy according to Stone-Weierstrass theorem (theorem 2.1, section 2.5.4) 
and dynamic arguments of this function have to be given to the inputs of the 
network. Delayed input and output (from external feedback) values are given to 
the network’s additional inputs. To realize model (2.7) a network has to have 
n+m+1 inputs. An example of a dynamic SISO model realized in a form of a 
feedforward neural network with external feedback is depicted in figure 3.1. 
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figure 3.1 Reprezentation of dynamic model by a feedforward neural network 

 
 
Neural networks with a limited feedback which comes only from the output 
neuron rather from the hidden states are called Nonlinear AutoRegressive 
eXogenous networks or NARX networks [61], [62], [63]. They are formalized by 
 

))(,),1(),(,),1(()( mtutuntytyty −−−−= KKψ          (3.6) 
 
where Ψ  is the mapping performed by a feedforward neural network (for 
example, by a multilayer perceptron), n is the output order and m is the input 
order. 
 
It is proofed in [64] that the NARX networks with finite number of parameters 
are computationally as strong as fully connected recurrent networks and thus 
Turing machines. 
 
Models of nonlinear systems based on these networks are called neural networks 

based NARX models or NN-NARX models. It is also shown in [64] that in theory 
one can use the NARX models, rather than conventional recurrent networks 
without any computational loss even though their feedback is limited. 
 
When a two-layer perceptron with nonlinear activation functions of the hidden 
layer neurons and llinrear output is used as a feedforward network in this model, 
it can be expressed by the following equation 
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( ) [ ]( ))(,),1(),(ˆ,),1(ˆˆ mtutuntytyWCty −−−−⋅⋅= KKϕ ,        (3.7) 
 
where ( )tŷ  is the output of the network (estimated output) calculated by the 

model at time step t; ( )⋅ϕ  is a nonlinear activation function of the hidden layer 
neurons; C is the vector of synaptic weights of the linear output neuron and W is 
the matrix of synaptic weights of the hidden layer neurons. 
 
When the network has l neurons in the hidden layer, ( )mnl

W
+×ℜ∈  and 

l
C

×ℜ∈ 1 . It means that ( ) ( )1++⋅=++⋅ mnllmnl  parameters have to be 
adjusted by a training algorithm to model the dynamic system. 
 
If a MIMO system with r inputs and k outputs is modeled by a two-layer 

perceptron with external feedback, then ( )mrnkl
W

⋅+⋅×ℜ∈ , lk
C

×ℜ∈  and already 
( ) ( )( )mrnkllkmrnkl ⋅++⋅⋅=⋅+⋅+⋅⋅ 1  synaptic weights have to be 

adjusted. 
 
Unlike identification by recurrent neural networks discussed in the previous 
section, permutations in the training set are allowed during the training when a 
feedforward network is used. Permutations between input vectors (not between 
elements in each vector) are possible, because all the information about the 
dynamics of the process is presented in each input pattern. 
 
By using this approach a neural network based model of a nonlinear dynamic 
system can very easily be obtained by training a feedforward network. Consider 
the following example. 
 
3.3.1 Numerical example 3.1 
 
A nonlinear system [59], [60] that  is to be identified is represented by the 
following discrete-time input-output equation  
 

( ) ( ) ( )
( ) ( )

( ) ( )( )( )

( ) ( )teyu

tyty
tyty

tyty
ty

+−+

+−+−+
−+−+

−−
=

12.1          

215.0cos3.0
211

215.1
22           (3.8) 

 
where the system input ( )tu  is a uniform distributed signal in the range [ ]1  ,1− , 

and the noise sequence ( ) ( )21.0  ,0~ Nte . A data sequence of 1000 input 

( )tu and output ( )ty  samples was generated and the training set (3.9), (3.10) 

consisting of input vectors tU  and corresponding outputs tY  was produced.  
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( ) ( ) ( )[ ]39991000 yyyYt K= .         (3.10) 

 
This data set { }tt YU ,  was used to train the two-layer perceptron with three 

inputs and one output. The best accuracy of the model was achieved when the 
hidden layer consisted of 15 neurons. So, 60 synaptic weights and 16 biases 
(taken together 76 parameters) were adjusted by BP training algorithm (see 
section 2.6.1). After training the model is obtained in the following form 
 
( ) [ ]( ))1(),2(ˆ),1(ˆˆ −−−⋅⋅= tutytyWCty ϕ         (3.11) 

 
where ( )⋅ϕ  is the hyperbolic tangent (2.51) activation function of the hidden 
layer neurons. 
 
Another data set { }vv YU ,  was generated to validate the model. The network was 

simulated with inputs vU  and outputs calculated by the network ŷ  were 

compared with the corresponding outputs from the validation set vY . Sinusoidal 

input signal ( ) ( )ttuv ⋅= 2.0sin  was used for model validation. The comparison 

of the system’s output with the output of the model (neural network) is shown in 
figure 3.2. 
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figure 3.2 System output vs. Model output 
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The system is simulated without noise in this experiment and it can be seen that 
the outputs coincide even when the model does not get any information from the 
real system. The mean square error of the model (2.18) is as low as 

4101 −⋅≈MSE . So, two-layer perceptron with external dynamics (feedback and 
delays) is capable of representing this nonlinear system with very high degree of 
accuracy. It is also capable of removing noise from the date set. That is why 
neural networks based models became so popular in nonlinear system 
identification and accurate enough to be used in model based control structures. 
Although NARX models based on multilayer perceptrons have very good 
approximation capabilities, practice shows that more specific structures 
depending on particular applications can also be of great value. When 
constructing a neural network one has freedom in choosing activation functions 
of neurons and in defining connections between neurons. For better 
identification quality of some specific nonlinear systems, a neural network with 
the structure that better represents the structure of the system can be used. 
Structure of a network can also depend on the needs of the control algorithm. 
Examples of such network structures will be considered in the following parts of 
this chapter. 
 
A specific neural network structure for identification of nonlinear systems with 
actuator nonlinearities is proposed by the author of this thesis in [55]. 
 
3.4 Neural-network based Hammerstein model 
 
One of the most common classes of models are Hammerstein models [65], [66] 
presented in figure 3.3.  
 

 
figure 3.3 Hammerstein model 

 
Models of linear dynamic systems with static actuator nonlinearities belong to 
the class of Hammerstein models. Static actuator nonlinearities influence 
significantly the performance of adaptive and learning control systems. In many 
cases, systems under control can be approximated by linear dynamic functions 
with high precision and model-based control can be very easily implemented. 
Never the less, actuators make these systems nonlinear, because of inaccuracy of 
mechanical components and nature of physical laws. So, actuators introduce 
nonlinearity into system when it is considered as consisting of two parts: device 
that we have to control and an actuator. Static actuator nonlinearities such as 
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saturation and rate limits degrade performance of control systems, especially 
model based control systems, when the control demand is high.[67] 
 
While actuator nonlinearity is often present, most control design methods ignore 
them. This is particularly problematic in an adaptive control.[68] Actuator 
nonlinearities can not be canceled or compensated using feedback linearization 
techniques because they do not appear in the feedback path.[69] This is the main 
point why these nonlinearities can not be approximated using standard 
techniques. The accuracy of the models obtained by training standard single 
neural network is also poor. Dead zone and saturation are called hard 

nonlinearities.[69] This makes difficult to implement model-based control 
algorithms to systems with actuator nonlinearities. This problem was solved by 
the author of this thesis by introducing a special type of neural networks  for 
identification of this type of nonlinearities in [55]. 
 
Systems having linear dynamic behavior with actuator devices having a static 
nonlinearities are considered. Another important fact that makes identification of 
such systems difficult is that the output of the actuator is not measurable. This is 
why the actuator and the system can not be identified separately. 
 
In the above defined case, we have measurable actuator input and output of the 
system. The system between them consists of two parts: static nonlinear part and 
dynamic linear part. (see figure 3.4) Input nonlinearity is static and does not 
appear in the feedback. So, while the identification procedure it is important to 
separate these two parts. 
 

 
figure 3.4 System with static actuator nonlinearity 

 
A neural network structure consisting of two sub-networks is proposed for 
identification of systems having this type of nonlinearities. The structure of the 
network is shown in figure 3.5. The network consists of two sub-networks. The 
first sub-network is a static feedforward network. It has one input and one output, 
but it has to approximate nonlinear function of actuator and therefore has 
nonlinear activation functions of the neurons in its hidden layer. According to 
Stone-Weirstrasse theorem (Theorem 2.1, section 2.5.4) it is capable of 
approximation any continuous nonlinearity of the actuator. The output of the 
first sub-network serves as the input of the second sub-network. The second sub-
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network is dynamic. It has external feedback from its output as well as past input 
and output values on its additional inputs as it is shown in figure 3.4. Number of 
additional inputs (memory length) depends on the order of the model. Second 
sub-network is used to identify linear dynamic part and therefore has linear 
activation functions of all of its neurons. It is capable of approximating any 
linear dynamic system. This network can be considered as the system consisting 
of two perceptrons that have to be trained together in order to separate linear 
dynamics and nonlinear static for better quality of identification of 
Hammerstein-type systems. 
 

 
figure 3.5 Structure of neural network based Hammerstein model 

 
The neural network based model shown in figure 3.5 belongs to the class of 
Hammerstein models. It can be formalized by  
 

( ) ( )))(,,)1(),(,),1(()( 112 mtutuntytyty −−−−= ψψψ KK       (3.12) 
 
where 1Ψ  is the mapping performed by the nonlinear sub-network and 1Ψ  is 
the mapping performed by the linear sub-network. When two-layer perceptrons 
are used to perform these mappings, the model (3.12) is expressed by the 
following  equation 
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where W1 is the vector of synaptic weights of the hidden layer of the first 
(nonlinear) sub-network, C1 is the vector of synaptic weights of the output layer 
of the first sub-network, W2 is the matrix of synaptic weights of the hidden layer 
of the second (linear) sub-network, C2 is the vector of synaptic weights of the 
output layer of the second sub-network and ϕ  is a nonlinear activation function 
of the hidden layer neurons of the first sub-network. 
 
Identification capabilities of this structure are demonstrated on the following 
examples. 
 
3.4.1 Numerical example 3.2 

 
Consider the following discrete-time linear plant [7] 
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A linear discrete-time system (3.14) with nonsymmetrical saturation and dead 
zone nonlinearities (3.15) on its input was used as a test system in [55]. 
 
Dead zone and saturation nonlinearities are defined by the following equations 
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The parameters of  the input nonlinearity (3.15) used in the experiment are 

1.1max =s , 8.0min −=s , 3.0min_ −=dzu , 2.0max_ =dzu , 1.0=d  and 1=K . 
 
This system consisting of linear plant and nonlinear actuator was simulated with 
a uniform distributed signal in the range [ ]5.1  ,5.1−  and a data sequence of 1000 

input-output samples { })(),( tytu was generated to produce a training set. 
 
First of all the model of the system (3.14), (3.15) was obtained by training a 
conventional two-layer perceptron based NARX network (3.11). The best 
accuracy of the model was obtained when the hidden layer consisted of 20 
neurons with hyperbolic tangent (2.51) activation functions. Since the model is 
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the second order SISO model (the order of the input is 2 and the order of  the 
output is 2) NARX model has one external feedback from the output and the 
feedforward neural network has 4 inputs. It means that 10020204 =+×  
synaptic weights had to be adjusted by a training algorithm. Because of big 
number of parameters to be turned, the network was trained by gradient descent 
error backpropagation algorithm (see section 2.6.1). 
 
After training the network the model was tested on a data set consisting of 500 
elements that was not used for training. Linearly growing in the range [ ]3  ,3−  

input signal ( ) ttuv 012.03 +−= , 500,,1,0 K=t  was used for generating the 

validation set { })(),( tytu vv . The result of model validation is shown in 
figure 3.6. 
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figure 3.6 Identification with single two-layer perceptron 

 
Mean square error on the validation set in this experiment is 749.1≈MSE . 
 
After that the model was obtained by training the network (3.13) consisting of 
nonlinear static and linear dynamic sub-networks proposed in [55] and depicted 
in figure 3.5. The same training algorithm was applied.  
 
The best accuracy was achieved by training the network with 6 nonlinear 
neurons in the hidden layer of the first sub-network and 3 neurons in the hidden 
layer of the second sub-network. Thus, the number of synaptic weights of the 
network is 2733466 =+×++  that is almost 4 times less than in the previous 
experiment. The obtained model was validated on the same data set as the 
previous one. The validation result is depicted in figure 3.7. In case of using the 
proposed network structure for identification of this system 013.0≈MSE . 
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figure 3.7 Identification with the network separating nonlinear static and  

linear dynamic parts 
 
Significant improvement in quality of identification can be seen by comparing 
mean square errors and figures 3.6 and 3.7. Much more precise model was 
obtained by training a neural network structure with almost 4 times smaller 
number of synaptic weights. This improvement can be explained by separating a 
complex model into two simple parts. So, there is no nonlinearities in the 
dynamic part and there is no dynamics in the nonlinear part. The proposed 
network structure can be of a great value for identification and model based 
control of systems with linear dynamic behavior and static nonlinearities in an 
actuator. In the next section implementation of this network structure for 
identification of a servo motor with nonlinear driver is shown. 

 
3.4.2  Numerical example 3.3 – Application of neural-network based 

Hammerstein model to identification of direct current (DC) servo 

motor with nonlinear driver 

 
The servo motor position control problem was formulated in [70]. The motor has 
bidirectional driver with nonlinear input/output characteristic having dead-zone 
and saturation 
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Here Vi  is the input of the driver (control signal) and Vo is the output of the 
driver (input voltage of the motor). The driver has the following parameters: 

25.0=
dz

V , 5.0max =V , 40=gain , VVcc 10= . DC motor has linear dynamics 

[71] and when the influence of the torque of the mechanical load is not 
considered it can be represented by the following second order state-space 
continuous-time model. 
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Two inner states are the armature current ia and the rotation velocity aω , one 

input is the voltage Va and one output is the rotation velocity aω  (second inner 

state). The parameters of this motor are as follows 
 

Ω= 75.1aR  is the resistance of the motor armature; 

HLa

31083.2 −⋅=  is the inductance of the motor armature; 

radVvk sec/093.0=  is the velocity constant; 

ANmkt /0924.0=  is the torque constant; 
25103 kgmJ

−⋅=  is the inertia seen by the motor. It includes the inertia of the 
load; 

NmsB 3105 −⋅=  is the mechanical damping coefficient associated with rotation. 
 
The model of the motor with nonlinear actuator (3.16), (3.17) was simulated. 
The work of this continuous-time system during 2 seconds was modelled. Since 
neural networks based models are discrete-time models, the data was sampled 
with 1ms intervals and the set of sampled input-output data was used for training  
the network of the proposed structure (3.13). As in the previous example the 
network was trained with 6 nonlinear neurons in the hidden layer of the first sub-
network and 3 linear neurons in the hidden layer of the second sub-network. The 
obtained model was validated on the validation set consisting of input-output 
pairs { })(),( tytu vv , where ( )tuv  is a linearly growing in the range [ ]5.1  ,5.1−  

input signal ( ) ttuv 605.1 +−= , mst 50,,1,0 K=  or in terms of discrete-time 

system with sample time 1ms ( ) kkuv 06.05.1 +−= , where 50,,1,0 K=k . The 
validation of the model is depicted in figure 3.8. 
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It can be seen from the figure that the output of the motor and the output of the 
proposed architecture based discrete-time model virtually coincide. The mean 
absolute error of this model is about 0.56rad/sec that is about 1% of the maximal 
velocity of the motor. 
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figure 3.8 Identification of the system consisting of the DC motor and nonlinear 

bidirectional driver by two sub-networks 
 
Applying the proposed neural network structure instead of conventional 
multi-layer perceptron based NARX models to identification of systems with 
static input nonlinearities and linear dynamics can significantly improve the 
quality of model based control schemes. It is especially important when the 
control demand is high. 
 
Here one of possibilities for improving the quality of models used in model 
based control is shown for one class of nonlinear systems. Implementation of 
these models in model based control schemes will be section 4.2.2 of this thesis. 
In the next section of this chapter a neural network structure constructed 
according to the requirements of the control algorithm will be shown. 
 
3.5 Neural Networks based ANARX models 
 
It is proofed in [32] that ANARX model (2.13) is linearizable by using dynamic 
output feedback linearization algorithm (2.36)-(2.38). It is also shown in [8], [9] 
that ANARX model is always realizable in a state-space form. A neural 
networks based structure for representing the ANARX model was shown in  [8], 
[10], [11] and used for identification and control of nonlinear systems in [13] 
and [14]. This model is called Neural Networks Based Additive NARX Model (or 
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NN-ANARX). The structure of the network for ANARX model representation is 
depicted in figure 3.9. 
 

  
figure 3.9 Additive NARX model represented by a neural network 

 
This network consists of output layer with ADALINE (Adaptive Linear Neuron) 
type neurons in it and a hidden layer consisting of n  parallel sub-layers 
corresponding to the n-th order of the model. Each i-th sub-layer approximates 
function if  from (2.13). This neural network based model can be formalized by 
using the following equation 
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where [ ]TtutytZ )(),()( = , ( )⋅iϕ is an activation function of i-th sub-layer neurons, 

iC  is the matrix of i-th sub-layer output synaptic weights, 
iW  is the matrix of 

i-th sub-layer input synaptic weights. 
 
This neural network has restricted connectivity. Thus if i-th sub-layer of the 
hidden layer consists of il  neurons then the number of parameters to be adjusted 
by a training algorithm is 
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that is much smaller than in case of a fully connected multilayer perceptron with 

nll ++K1  neurons in the hidden layer. For example, if a two-layer perceptron 
with 9 neurons in the hidden layer is used for identification of a 3-rd order model 
( 3=n ), it has 6 inputs ( ) ( ) ( ) ( ) ( ) ( )[ ]3,3,2,2,1,1 −−−−−− tutytutytuty  and 
thus 60996 =+×  synaptic weights has to be adjusted. When NN-ANARX 
model (3.18) with 3 neurons in each of 3 sub-layers is used for identification of 
the same system then according to equation (3.19) only 2793 =×  synaptic 
weights has to be adjusted. This fact makes possible to use more precise second 
order algorithms for training of the network. For example, Levenberg-Marquardt 
training algorithm can be used instead of Gradient Descent Error 
Backpropagation as it was shown in [13], [14]. 
 
3.5.1 State-Space Realization by using NN-ANARX 
 
ANARX structure is always realizable in the classical state-space form (2.14). 
When the model is obtained in the form of a neural network (3.18) by training 
the network of the structure shown in figure 3.9, the state-space realization can 
be formulated by using matrices of synaptic weights of the network [8] as 
 

( )( )
( )( )

( )( )
( )( )T

nnnn

T

nnnnn

T

T

tutxWCtx

tutxWCtxtx

tutxWCtxtx

tutxWCtxtx

)(),()1(

)(),()()1(

)(),()()1(

)(),()()1(

1

11111

122232

111121

ϕ

ϕ

ϕ

ϕ

=+

+=+

+=+

+=+

−−−−

M           (3.20) 

 
where iW  and iC  are matrices of input and output synaptic weights of each sub-

layer obtained by a training algorithm and ( )⋅iϕ  are nonlinear activation 
functions. State-space model of n-th is corresponding to each n-th order 
ANARX and NN-ANARX model. 
 
In the following three numerical examples identification and state-space 
realization of nonlinear SISO systems by training neural networks of the 
corresponding structure will be shown. 
 
3.5.2 Numerical example 3.4 

 
The model of a liquid level system of interconnected tanks [72] is represented by 
the following input-output equation 
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Identification of this system by training NN-ANARX structure is demonstrated 
by the author of this thesis in [14]. 
 
Equation (3.21) was used as an unknown nonlinear plant which is modeled by 
the NN-based ANARX structure 
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To obtain input-output data, the plant (3.21) was simulated with sinusoidal input 
signal ( ) ( ) ( )tettu 05.005.0sin += , where noise ( )te  is normally distributed with 

mean 0 and variance 12 =σ : ( ) ( )21  ,0~ Nte . Neural network with three sub-
layers (the order of the model 3=n ) and with three neurons on each sub-layer 
of the hidden layer ( 3321 === lll ) with logistic sigmoid activation functions 
(2.50) was trained. 
 
The LM training algorithm (see section 2.6.2) was chosen to perform off-line 
training since it is much more efficient compared to other techniques when the 
network contains no more than a few hundred weights [53], and in our case 
according to equation (3.19) the neural network has just 27 synaptic weights. 
Also the training speed of LM algorithm is much higher and the feed forward 
neural network trained with it can better model the nonlinearity [54]. Training 
took about 600 iterations (epochs) to converge. Identified parameters of the 
model (3.22) have the following values 
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[ ]0981.345011.47605.241 −−=C ,  

[ ]2547.274052.262364.02 −−=C  

[ ]4851.646573.716433.13 −=C  
 
For validation of the model data set { })(),( tytu vv  was generated by using an 

input signal with two times higher frequency: ( ) ( ) ( )tettuv 05.01.0cos += . The 
corresponding outputs of system (3.21) and model (3.22) with parameters (3.23) 
are depicted in figure 3.10. 
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figure 3.10 Validation of the NN-ANARX structure based model of the system of 

interconnected tanks 
 
Model validation shows nearly excellent overlap of the model and the plant 

outputs. Mean square error on the validation set was as low as 3104 −⋅≈MSE . It 
can be seen that this system can be represented by NN-ANARX model with high 
degree of accuracy. 
 
In the next example will be shown identification and state-space representation 
of the system which input-output model does not have an ANARX structure. It 
can be done by training a neural network having ANARX architecture shown in 
figure 3.9. 
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3.5.3 Numerical example 3.5 

 
The second order discrete time model of a jacketed Continuous Stirred Tank 
Reactor (CSTR) [74], [75], [13], [14] is represented by the following input-
output equation. 
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     (3.24) 

 
Note that, because of the last term in (3.24), the model does not have an 
ANARX structure. To obtain input-output data from the ”unknown” plant, 
equation (3.24) was simulated with sinusoidal input signal 

( ) ( ) ( )tettu 05.005.0sin += , where ( ) ( )21  ,0~ Nte . This input signal and 
corresponding output signal were used as a training set for identification by 
training a neural network based ANARX structure (3.18). This plant was 
modeled by NN-ANARX model with two sub-layers corresponding to the 
second order of the model (n = 2) and three neurons with logistic sigmoid 
activation functions (2.50) on each sub-layer of the hidden layer ( 321 == ll ). 
Thus 18 parameters were adjusted by LM training algorithm that took about 600 
epochs to converge and the model having the following equation  
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was obtained. The parameters of the model (3.25) have the following values 
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[ ]8712.130166.09678.311 −=C , [ ]9744.258288.190128.02 −−−=C  
 
For validation of the model data set { })(),( tytu vv  was generated by using an 

input signal with two times higher frequency: ( ) ( ) ( )tettuv 05.01.0cos += . The 
corresponding outputs of system (3.24) and model (3.25) with parameters (3.26) 
are depicted in figure 3.11. 
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figure 3.11 Validation of the NN-ANARX structure based model of the jacketed CSTR 

 
Model validation (see figure 3.11) shows that, in spite of the restrictions 
imposed by NN-ANARX structure, the identified model explains input-output 
data with high degree of  accuracy. It can be seen from the figure that system 
and model outputs virtually coincide. The mean square error was as low as 

3105.3 −⋅≈MSE . 
 
While the structural restriction imposed by NN-ANARX on connectivity matrix 
structure could seem too strong, training results [13], [14], [76] show that in 
many cases NN-based ANARX model is able to represent original model with 
high degree of accuracy and does not cause serious drawbacks in quality of 
identification.  
 
According to (3.20), input-output model (3.24) can now be represented in the 
form of state-space model. The state-space model can be formally written down 
as 
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where 1W , 2W , 1C and 2C  are parameters (3.26) of the network (3.25) 

representing the system in the form of NN-ANARX model; 1ϕ  and 2ϕ  are 
logistic sigmoid activation functions (2.50) of the corresponding sub-layers of 
the hidden layer. 
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3.6 NN-ANARX based Hammerstein model 
 
In section 3.4 of this thesis a neural network structure consisting of two fully 
connected multilayer perceptrons is proposed for representation of 
Hammerstein-type systems – systems having linear dynamics and nonlinear 
static input nonlinearity (see figure 3.3). The proposed network (3.12) depicted 
in figure 3.5 is capable of separating static nonlinearity and linear dynamics. The 
same approach can be used for developing a neural network based Hammerstein 
model that belongs to the class of ANARX models. 
 
A neural network (3.18) of the structure shown in figure 3.9 with all linear 
neurons is used for identification of linear dynamic part of the model. 
ADALINEs has to be used instead of nonlinear neurons in the dynamic part. A 
static neural network with one input and one output and nonlinear activation 
functions of the hidden layer nonlinearity is used for identification of input 
nonlinearity. The output of this network is then passed to the sub-layers of the 
linear ANARX network with corresponding delays. The structure of the network 
is presented in figure 3.12. 
 

 
figure 3.12 NN-ANARX based Hammerstein model 

 
The model proposed here can be formalized as 
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=
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n
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T
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1

,)( ψ ,         (3.28) 
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where ( )( )tuψ  is the function of the first nonlinear static neural network 
 

( )( ) ( ))(00 tuWCtu ⋅= ϕψ .          (3.29) 
 
Here ( )⋅ϕ  is a nonlinear activation function of the hidden layer neurons of the 

static sub-network, 1
0

0×ℜ∈ l
W  and 01

0
l

C
×ℜ∈  are vectors of synaptic weights of 

the static sub-network, 2×ℜ∈ il
iW  and il

iC
×ℜ∈ 1  where ni ,,1 K=  are matrices 

and vectors of the linear dynamic sub-network. il , ni ,,0 K=  are the numbers 
of neurons in the corresponding sub-layers. Thus from equations (3.28) and 
(3.29) we get 
 

( ) ( )[ ]( )∑
=

−⋅−⋅=
n

i

T

ii ituWCityWCty
1

00 )(,)( ϕ .        (3.30) 

 

As il
iC

×ℜ∈ 1  and 2×ℜ∈ il
iW , vectors of two coefficients [ ]21 iii ggG =  can be 

defined for each sub-layer of the linear dynamic ANARX sub-network as 
 

[ ] iiiii WCggG ⋅== 21 , ni ,,1K=∀ .         (3.31) 
 
By using these coefficients NN-ANARX based Hammerstein model can now be 
formalized as 
 

( ) ( )∑
=

−⋅⋅⋅+−⋅=
n

i

ii ituWCgitygty
1

0021 )()( ϕ .        (3.32) 

 
This model belongs to the both classes: to the class of neural networks based 
ANARX models (3.18) as it has all time instances separated and to the class of 
Hammerstein models (see figure 3.3) as it has linear dynamics and nonlinear 
static input. This model is capable of representing systems with static input 
nonlinearities (for example, with nonlinear actuators) with high degree of 
accuracy. Because of training neural networks based model it is capable of 
modeling systems with unknown static input nonlinearities by automatically 
separating linear dynamics and nonlinear static during the training procedure. 
Because of properties of ANARX models (2.14), the n-th order model (3.32) can 
be very easily represented in the classical state-space form suitable for the 
variety of control algorithms as 
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In order to compare different approaches of neural networks based modeling of 
Hammerstein-type systems consider the following example. 
 
3.6.1 Numerical example 3.6 
 
In [11] NN-ANARX based Hammerstein model (3.32) was used for 
identification of direct current (DC) servo motor with nonlinear driver 
(3.16)-(3.17) and was compared to the approach proposed in [51] which is based 
on training of two perceptrons (3.12)-(3.13) discussed in section 3.4 of this 
thesis. 
 
A neural network with linear dynamic sub-network having two sub-layers of its 
hidden layer ( 2=n , 321 == ll ) corresponding to the second order of the model 
was trained. Six nonlinear hidden layer neurons were used in the static part of 
the model ( 60 =l ). Thus only 302332266 =⋅+⋅⋅++  synaptic weights had to 
be adjusted by a training algorithm. 
 
Both NN-NARX based Hammerstein model shown in numerical example 3.4 
and NN-ANARX based model discussed in this section were trained on the same 
data set and validated on the input signal growing linearly from -1.5 to +1.5. The 
corresponding outputs of the system and corresponding ANARX model are 
depicted in figure 3.13. 
 
The mean absolute error of this NN-ANARX based Hammerstein model of the 
DC motor and nonlinear bidirectional driver is about 0.8 rad/sec which is about 
less than 2% of the maximal velocity of the motor in the framework of present 
experiment. As quality of identification depends in a sense on the particular 
training experiment (depends on random initial values of the synaptic weights) it 
can be said that the accuracy of this model is about the same as in case of neural 
networks based NARX Hammerstein model discussed in section 3.4. 
 
It can also be seen by comparing figures 3.13 and 3.8 that both models are 
capable of representing this system with nonlinear actuator with high degree of 
accuracy and restrictions imposed by the ANARX structure on the topology of 
the network do not cause serious decrease in the quality of identification. 
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figure 3.13 Identification of the system consisting of the DC motor and nonlinear 

bidirectional driver by NN-ANARX model 
 
At the same time when application specific neural network structures (3.12)-
(3.13) or (3.16)-(3.17) are used for modeling of systems with static input 
nonlinearities, the quality of identification is much higher when compared with 
identification by training a single multilayer perceptron. So, in spite of the fact 
that according to the Stone-Weierstrass theorem (see section 2.5.4 of this thesis) 
two-layer perceptrons are capable of approximating any continuous 
nonlinearities and by adding an external feedback can be used for identification 
of nonlinear dynamic systems, practically implementation of application specific 
neural network structures proposed by the author of this thesis in [11] and [51] 
gives significant improvement in the quality of identification of dynamic 
systems with static input (actuator) nonlinearities. 
 
Both NN-NARX and NN-ANARX Hammerstein models give about the same 
good quality of identification. The main advantage of using NN-NARX based 
Hammerstein models is in more simple structure of the model, but on the other 
hand NN-ANARX based Hammerstein models with the same number of neurons 
as NN-NARX network has smaller number of synaptic weights because of 
constrained connectivity. This fact makes training faster, allows using more 
complicated training algorithms and possible fast adapting of the model in real 
time adaptive schemes. One more advantage of NN-ANARX based 
Hammerstein models is that they are linearizable by dynamic output feedback 
(2.36)-(2.38) and are reprezentable in the classical state-space form (3.33) that 
makes them suitable for a wider range of model based control algorithms. 
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3.7 Models of Nonlinear MIMO Systems 
 
Artificial neural networks is also a very convenient tool for identification of 
Multiply Input – Multiply Output (MIMO) systems. Both neural networks based 
NARX and ANARX models of nonlinear MIMO systems will be considered in 
this section. 
 
3.7.1 MIMO NARX and MIMO NN-NARX models 
 
It is known from literature (e.g. [77]) that a wide class of nonlinear MIMO 
systems can be represented by the nonlinear discrete model in input-output 
description known in literature as NARX models, as series-parallel-model, or as 
one-step ahead predictor.  
 

Let ( ) ( ) ( )[ ] r
r tututU ℜ∈= ,,1 K is a vector of system inputs and 

( ) ( ) ( )[ ] m
m tytytY ℜ∈= ,,1 K  is a vector of system outputs at time step t, r is the 

number of inputs and m is the number of outputs of the model. Then MIMO 
NARX model can be defined as  
 

))(,),1(),(,),1(()( uy ntUtUntYtYftY −−−−= KK ,       (3.34) 

 
where un  and yn  are the input and output order and ( )⋅f  is a nonlinear function 

of yu nn +  arguments. 

 
It is very convenient to obtain model (3.34) by training a multilayer perceptron 
approximating nonlinear function ( )⋅f . In order to obtain a of a dynamic MIMO 

system, external feedbacks from each output of the model ( ) ( )tyty m,,1 K  are 

needed as well as delayed values of all inputs ( ) ( )tutu r,,1 K . The structure of 
the corresponding neural networks based MIMO NARX model is depicted in 
figure 3.14. 
 
According to Stone-Weierstrass theorem (theorem 2.1, section 2.5.4) any 
continuous nonlinear function ( )⋅f  can be approximated by a two-layer 
perceptron. So, a two-layer perceptron with external feedbacks and delays can 
also be used for identification of nonlinear MIMO systems. Models based on this 
structure are called neural network based NARX model or NN-NARX models. 
 
MIMO NARX model obtained by training a two-layer perceptron has two 
matrixes of synaptic weights as its parameters. The first one is an input matrix of 

synaptic weights
( ) lnmnr yuW

×⋅+⋅ℜ∈ , where l is the number of neurons in the 

hidden layer, and the second one is an output matrix lm
C

×ℜ∈ . 
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figure 3.14 Neural network based representation of MIMO NARX model 
 
When the network is trained and optimal values of its synaptic weights are 
obtained, the vector of one-step ahead predictors ( )tY  can be calculated by using 
the following equation: 
 

( ) ( ) ( ) ( ) ( )[ ]( )T

uy ntUtUntYtYWCtY −−−−⋅⋅= ,,1,,,1 KKϕ       (3.35) 

 
In case of this model, the number of parameters that we have to calculate during 
the training of the network grows dramatically by increasing the number of 
outputs and/or inputs and/or the order of the model. It makes practical 
identification very slow or even impossible. Experiments show that in some 
cases training algorithms may not converge because of a huge number of 
adjustable parameters (synaptic weights). For example, when two-layer 
perceptron with 9 neurons in its hidden layer is used for obtaining a third order 
model of MIMO system having 2 inputs and 2 outputs, values of 126 synaptic 
weights have to be calculated by a selected training algorithm. 
 
To bridge the gap, a MIMO NN-ANARX model was proposed by the author 
in [56]. 
 
3.7.2 MIMO ANARX and MIMO NN-ANARX models 
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ANARX model is a subclass of NARX models having all time instances 
separated. For MIMO systems ANARX model can be defined as 
 

( ) ( ) ( )( )∑
=

−−=
n

i

i itUitYftY
1

, ,          (3.36) 

 
where n is the order of the model and ( ) ( )⋅⋅ nff ,,1 K  are nonlinear functions. 
 
Neural Networks based ANARX model for MIMO systems is defined in [56] as  
 

( ) ( ) ( )[ ]( )∑
=

−−⋅⋅=
n

i

T

iii itUitYWCtY
1

,ϕ   ,       (3.37) 

 
where ( ) ( )⋅⋅ nϕϕ ,,1 K , nWW ,,1 K , nCC ,,1 K  are nonlinear activation functions 
and matrixes of synaptic weights of the sub-layers of the network structure 
shown in figure 3.15. 
 

 
figure 3.15 Structure of neural network representing ANARX model for MIMO system 
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Matrixes of synaptic weights of this model have the following dimensions: 
( )rml

i
iW

+×ℜ∈  and ilm
iC

×ℜ∈ , where il  is the number of neurons in the i-th sub-
layer ( ni ,,1 K= ). 
 
To compare this structure with NN-NARX models discussed in the previous 
section, lets also consider a third order ( 3=n ) MIMO system having 2 inputs 
and two outputs ( 2== rm ) obtained by training a neural network with 9 

neurons in its hidden layer ( 9
3

1

=∑
=i

il ). In case of neural network based MIMO 

ANARX model (3.37), structure of the corresponding neural network shown in 
figure 3.15 should consist of 3 sub-layers. 3 neurons may be used in each sub-
layer for 9 neurons in the hidden layer ( 3321 === lll ). So, by training this 
structure only 54 synaptic weights have to be calculated. It is more than 2 times 
less comparing to MIMO NN-NARX structure with the same number of inputs, 
outputs and neurons. 
 
Experiments have shown that strong restrictions in the connectivity of the 
network’s structure do not cause drawbacks in quality of identification. Even 
more, it gives some improvement, because the number of connections does not 
become too large. Smaller number of parameters makes training faster and 
allows implementing wider range of training algorithms. For example, second 
order training algorithms like LM-algorithm (see section 2.6.2). 
 
Problems concerning MIMO NN-ANARX structure based control of nonlinear 
MIMO systems will be considered in detail in Chapter 5 of this thesis. 
 
For better precision of the model in case of identification of complex 
multidimensional processes, a MIMO model can be replaced by a set of r MISO 
models, where r is the number of outputs of the process or by several MIMO 
systems where outputs are divided between several separate models. This 
approach was implemented by the author of the thesis for modeling of the 
surgeon’s hand. This project will be discussed in the following example. 
 
3.7.3 Numerical example 3.7 – NN-based ANARX model of the surgeon’s 

hand for the motion recognition and movement prediction 

 
The main goal of the project is executing the learning and adapting capabilities 
of the scrub nurse robot to be able to anticipate surgeon’s requests during 
surgical operation and to react them with proper assisting action. One of very 
important parts of the robot’s “brain” is the model of the surgeon’s hand which 
is necessary for predicting coordinates of the surgeon’s wrist and determining 
type of motion. A set of MIMO NN-ANARX structures was used to obtain the 
model. This results are published in [73]. The structure of the data flow of the 
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scrub nurse robot is depicted in figure 3.16 and the project made by the author of 
this thesis is shown in the scheme by the dashed oval. 
 

First of all, let me give a short overview of this project [73]. One of the recent 
trends in development of the medical robots can be seen as close interaction with 
humans. Such close interaction causes the necessity to detect human actions and 

 
figure 3.16 Control data flow of the scrub nurse robot [73] 

 
model human behavior.[78] In [79] main attention was made in building entire 
model of a scrub nurse which includes extended timed automata to model 
cooperative actions of all the surgical staff and dynamic models describing 
physical motion of the surgical staff. 
 
The main aim of scrub nurse robot (SNR) is to recognize Surgeon’s intentions 
and to provide the assistance he expects from SNR for that. The assistance may 
be just holding a surgical instrument but in more complicated cases it is a 
sequence of actions including, e.g., gasping an instrument from the tray, waiting, 
passing it to the Surgeon, receiving another instrument and putting it back on the 
tray, etc. Human adoption of the SNR means here not only right positioning of 
instruments and right timing of motions but also adjusting acceleration and 
trajectory of motions to the personal liking of a Surgeon. The only practical way 
of achieving human adoption in given sense is learning from a skilful scrub 
nurses and imitating their behavior in similar situations. Still, right behavior of a 
scrub nurse depends also on contextual knowledge not observable directly: how 
to behave in emergency situations, what is the agreed scenario of the surgical 
procedure, in what order the instruments are placed on the surgical tray etc. 
When the SNR is learning from the passive observation of surgical procedures 
some of the background knowledge should be already there to put the 
observation data into right context. Thus, a ”model of world” should be a central 
knowledge unit of SNR. In fact, the ”model of world” is a set of models partially 
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hard-coded during design, partially created and instantiated by on-line learning. 
Currently we accumulate five types of knowledge in the robot world model: 
surgery scenario, scrub nurse’s and surgeon’s reactive behavior, as well as the 
(continuous) motion models of both. When the first three are encoded as 
extended timed automata models [80], the last two are neural network models 
discussed in more details below in this section of the thesis. For making control 
decisions the robot ”world model” is exploited together with on-line observation 
data. To implement the SNR features referred above, the robot control 
architecture with data flow depicted in Figure 3.16 is proposed. According to the 
given architecture the control loop includes video monitoring and signal 
processing, recognition of Surgeon’s current motion, choosing the SNR’s 
appropriate reaction, and forwarding the control command with necessary 
parameters to manipulator control unit. 
 
Author’s contribution is devoted to the modeling of the surgeon’s hand 
movement by Neural Networks based ANARX model. Two main problems 
concerning the dynamics of the surgical staff movements that can be solved by 
using this model are 
 

1. to detect current surgeon’s motion (detect his current action) 
2. to predict the coordinates of the point where instrument exchange should 

take place 
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figure 3.17 Schematic diagram of the operating room [73] 

 
Obtaining a model of  the surgeon’s movement means constructing an 
input-output model where the input is the vector of observed coordinates of the 
surgeon’s chest, elbow and wrist and the output is the three dimensional vector 
which elements are prediction of the chest, elbow and wrist coordinates in 
certain number of time-steps. 
 
In order to obtain experimental data from the real surgical operation the 
operating room was equipped with two cameras. Positions of medical staff 
during the surgical operation and placement of the cameras depicted in 
figure 3.17. In order to simplify monitoring process colour markers were placed 
on the surgeon’s chest, elbow and wrist. See figure 3.18. 
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figure 3.18 Operating room [73] 

 
The cameras were set to film the operation at 30 frames per second. Later on the 
basis of recorded operation information about the coordinates of chest, elbow 
and wrist was extracted. The sampling rate of gathered data is 0.033 sec. 
Measured data was then stored in MS Excel file for training the models. A short 
example of the data sequence (2 sec) used for training is shown in figure 3.19. 
 

 
figure 3.19 Measured training data 

NN-ANARX structure based models of chest, elbow and wrist were trained. X, 
Y and Z coordinates of the surgeon’s chest, elbow and wrist at 3 different time 
steps corresponding to the third order of the model were used as inputs of the 
models. 3 different neural networks of the structure shown in figure 3.15 having 
three output were trained to obtain models of movement of X, Y and Z 
coordinates of the surgeon’s chest, elbow and wrist. Thus, each of 3 NN-
ANARX MIMO models had 27 inputs (X, Y and Z coordinates of chest, elbow 
and wrist at 3 time instances). 
 
Real measurements with sample time 0.033 sec were used for identification. 
Data set consisting of 1227 measurements of each coordinate was used as 
training set. MIMO NN-ANARX model with three sub-layers of the hidden 
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layer corresponding to the third order of the model ( 3=n ) were trained. The 
following three models were obtained as follows. 
 
Model of the surgeon’s chest: 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]( )∑
=

−−−⋅=
3

1

,,,,
i

Ti
c

i
c

i
c

T

ccc itZitYitXWCtztytx ϕ ,     (3.38) 

 
where  

( ) ( ) ( )tztytx ccc ,,  are corresponding coordinates of the marker placed on the 
surgeon’s chest;  

i
cC , i

cW , 3,,1 K=i  are matrixes of synaptic weight of MIMO NN-ANARX 
based model of the surgeon’s chest; 

( )⋅i
cϕ , 3,,1 K=i  are nonlinear activation functions of the corresponding sub-

layers of the hidden layer neurons of this model; 
( ) ( ) ( )tZtYtX ,,  are the vectors of corresponding coordinates of chest, elbow and 

wrist: 
 

( ) ( ) ( ) ( )[ ]txtxtxtX wec ,,= ,         (3.39) 
( ) ( ) ( ) ( )[ ]tytytytY wec ,,= ,        (3.40) 
( ) ( ) ( ) ( )[ ]tztztztZ wec ,,= .         (3.41) 

 
Analogously to the model of the surgeon’s chest, the model of the surgeon’s 
elbow is 
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and the model of the surgeon’s wrist is 
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Note that input ( ) ( ) ( )[ ]TitZitYitX −−− ,,  is the same for all three models (3.38), 
(3.42) and (3.43). 
 
Levenberg-Marquardt algorithm was chosen to perform training of the network. 
After training the network different data sets (obtained from another surgical 
operation) were used for validation of the model. Figures 3.20-3.22 represent the 
results of prediction simulation for 5 time steps. 
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figure 3.20 Prediction of surgeon chest coordinates for 5 time-steps 
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figure 3.21 Prediction of surgeon elbow coordinates for 5 time-steps 
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figure 3.22 Prediction of surgeon wrist coordinates for 5 time-steps 

 
It can be seen from the figures that the model is capable of predicting chest, 
elbow and wrist coordinates up to 5 time-steps with high degree of accuracy. For 
the validation experiment shown in these figures, the mean absolute errors of 
prediction of the surgeon’s chest X, Y and Z coordinates, elbow X, Y and Z 
coordinates and  wrist X, Y and Z coordinates are 7.3mm, 2.6mm, 2.5mm, 
1.68cm, 8.8mm, 8.4mm, 2.3cm,1.5cm, 3.4cm correspondingly. It is a very good 
accuracy, especially, if we take into account the fact that measurement errors of 
the image processing system persist in the validation set as well as in the training 
set. Coordinates were obtained by an image processing system tracking positions 
of 3 color markers that are about 3cm in diameter. Thus, prediction errors are not 
grater than diameters of the markers. It can also be mentioned that when training 
a neural network we filter random noise which present in the training set as it 
was demonstrated in numerical example 3.1 (see section 3.3.1). So, we assume 
that measurement errors are filtered during the identification procedure. 
Comparing model output with filtered measurement errors to a noisy validation 
data set also causes certain validation errors. 
 
These predicted coordinates were successfully used for detecting current motion 
of the surgeon as described in [73]. 5 time-steps (0.166sec) prediction is enough 
for motion detection and image processing algorithms. It is also a very good 
prediction when we take into account that some actions during a real surgical 
operation, like passing or extracting an instrument take no more than 1 or at 
most 2 seconds. 
 
The model was trained on the data obtained for a particular surgeon. The model 
may differ a little bit for another surgeon having another length of his/her hand 
and so on. So, it is very important that the model is obtained in the form of a 
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neural network and therefore can be very easily adapted for another surgeon, a 
slight changes in positions of observing cameras and so on. It can be made 
during the working stage which lasts at least 10 or more seconds in the 
beginning of the operation. 
 
This example demonstrates that NN-based MIMO ANARX structure having 
constrained connectivity because of separating different time instances can be 
very successfully used for obtaining quite complicated models, when using 
classical NN-based NARX structures is practically impossible because of great 
number of connections and therefore parameters that have to be calculated by a 
training algorithm. In some cases the need to separate time instances is also very 
obvious because of the nature of the modeled process. 
 
3.8 Conclusions 
 
Identification of nonlinear dynamic systems by recurrent and feedforward neural 
networks was discussed in this section and demonstrated on numerical examples. 
Two types of feedforward (static) neural networks based model of dynamic 
processes were considered. Both of them use external feedback and delays. First 
of them is classical NN-based NARX model and the second one NN-based 
Additive NARX model having constrained connectivity of its neurons. 
 
Author’s contribution is in implementing NN-based Additive NARX structure 
for identification of nonlinear dynamic systems [13], [14] and in developing 
NARX [55] and ANARX [13] based neural network structures representing 
Hammerstein models for identification of systems with static input nonlinearities. 
For example, systems with nonlinear actuators. 
 
Identification of nonlinear multiply input – multiply output (MIMO) systems by  
ANARX structure is also shown in this section. NN-based MIMO ANARX 
model is proposed by the author [56] and successfully implemented for 
modeling of the surgeon’s hand [73]. 
 
Feedforward neural networks based dynamic models have better identification 
capabilities than models based on neural networks with internal feedbacks, 
where the model becomes extremely complicated to be trained successfully. 
 
It can be concluded by comparing two types of models based on feedforward 
neural networks with external feedbacks (NN-based NARX and NN-based 
ANARX models) that despite the fact that the first one has simpler structure, the 
second one has several significant advantages over classical NARX structure. 
Namely,  it has much smaller number of parameters (synaptic weights) and as 
experiments have shown this fact does not cause any drawbacks in quality of 
identification but makes possible implementing wider range of training 
algorithms, for example second order training algorithms can be used instead of 
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classical first order gradient descent error backpropagation. 
Levenberg-Marquardt algorithm with NN-ANARX can be used for obtaining 
even very complicated models like the model of the surgeon’s hand movement. 
Especially in case of MIMO models, where number of connections and therefore 
parameters of the network grows dramatically, NN-ANARX models are 
preferable. 
 
It can also be mentioned that NN-ANARX structure is always reprezentable in a 
classical state-space form and is always linearizable by dynamic output feedback. 
The last property is very essential for model based neurocontrol, which will be 
discussed in the next chapter. 
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Chapter 4 

 

Model Based Neurocontrol 

  
Advanced process control case studies by the Warren Center [81] provide strong 
evidence that economic benefits of up to 6% of plant operating cost can result 
from the application of advanced forms of process control. Examples of process 
features addressed by this level of control are nonlinearities, time-varying 
characteristics of parameters, multivariable inputs and outputs, unstable states 
and transport delays.[39] Artificial neural networks have shown grate 
capabilities of modeling these features. This stems from the theoretical ability of 
neural networks of various types to approximate arbitrary well continuous 
nonlinear mappings.[17] 
 
Intelligent control and neural networks based control as a type of intelligent 
control is now a common tool in many engineering and industrial applications. 
[83], [84], [24] Intelligent control has the ability to comprehend and learn about 
plants, disturbances, environment, and operating conditions and artificial neural 
networks, with their self-organizing and learning conditions, are used as 
promising tool for such purposes.[85], [24] 
 
By applying neural networks to control (neurocontrol) we treat them as a 
candidate for a genetic, parametric, nonlinear model of a broad class of 
nonlinear plants.[17], [82] This approach can be called Model Based 
Neurocontrol. Neurocontrol is a dynamic research field that has attracted 
considerable attention from the scientific and control engineering community. 
[38] Research on neural-network-based control systems has received a 
considerable attention over the past two decades.[87] 
 
Because of neural network’s ability to learn and approximate nonlinear functions 
arbitrarily well, a large number of identification and control structures based on 
neural networks have been proposed (see, for example, [11], [61], [62], [86], 
[88], [89], [90]). Numerous successful practical applications of different model 
based neurocontrol techniques have also been shown in literature in the last 
years (e.g. in [91], [92], [93], [94]), but there is also a lot of space for further 
research, development, analysis and improvements in this field. 
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Model based neurocontrol techniques can be divided into two types considered 
in this chapter. The first one let’s call model structure independent control 
techniques, because the techniques belonging to this class of do not require any 
particular structure of the model. The model is considered as a “black box”. 
Control quality depends on the quality of the model. The better model accuracy 
is, the better is control quality. Implementing better (more specific) model 
structures can improve the quality of identification of a nonlinear system and 
thus significantly increase control quality. The most popular model based 
predictive neurocontrol and inverse model based control will be considered as 
classical representatives of this type of model based neurocontrol techniques. 
 
The second type of model based neurocontrol techniques can be characterized as 
model structure dependent control techniques, because control algorithms 
belonging to this class require particular structure (particular representation) of 
the model. NN-ANARX structure based dynamic output linearization will be 
considered as a control technique based on certain structure of the model. This 
algorithm requires ANARX-type model of the controlled system or process. 
 
4.1 Author’s contribution 
 
Author’s contribution is in comparing different nonlinear model based 
neurocontrol techniques and implementation of different neural network 
structures for model based control of nonlinear dynamic systems. 
 

• Neural Networks based Hammerstein model of DC servo motor with 
nonlinear driver discussed in section 3.4.2 is applied to predictive 
control of the motor [55]; 

• An adaptive inverse model based control algorithm is proposed in [55]; 
• Dynamic output feedback linearization algorithm is applied to control of 

nonlinear systems by using neural networks based ANARX models of 
the systems [13], [14], [76]; 

• Adaptive control technique based on dynamic output feedback 
linearization of NN-ANARX model with History-Stack Adaptation is 
proposed in [14]; 

• Considered control techniques are compared. Their advantages and 
drawbacks are discussed. 

 
4.2 Structure Independent Control Algorithms 
 
Control algorithms based on forward and inverse models of controlled plant will 
be discussed in this section.. The techniques considered here are model based, 
but any structure of the model can be used. Even not necessarily neural networks 
based structure. Never the less, choosing proper structure of the model will 
increase the accuracy of the model and thus improve the quality of the control 
algorithms. Also, neural networks based models give additional advantages 
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because of network’s natural ability to learn and very good approximation 
capabilities demonstrated in the previous chapter of the thesis. 
 
Nonlinear predictive control via neural network based models will be considered 
as classical and the simplest forward model based neurocontrol technique. 
 
4.2.1 Neural network based predictive control 
 
Neuro predictive control algorithm is one of the most popular (if not the most 
popular) neurocontrol techniques. The predictive control algorithm is simple and 
easy to implement.[90] Neural networks have very often been used in various 
predictive control algorithms that utilize nonlinear process models as a modeling 
tool.[90], [95], [96], [97] The resulting controller would prove to be more robust 
in practical situations where the nature of the non-linearity in the process is 
unknown.[17] Numerous practical modern time control applications use 
predictive controllers with neural network based predictive models (see, for 
example, [91], [98], [99]). 
 
Among various modifications of the predictive control algorithm, simple 
technique defined by equation (2.33) and discussed in section 2.4.1 was chosen 
as a control algorithm for calculation of control signals. The corresponding 
structure of the closed loop system is depicted in figure 2.2. 
 
Neural Networks can be used as a predictive model to calculate predictions 

)(ˆ,),(ˆ 21 NtyNty ++ K  used by equation (2.33). Quality of the control 
significantly depends on the quality (accuracy) of these predictions.[100] 
Choosing proper structure of the model can help significantly improve the 
accuracy of the predictive model.  
 
It is shown in [16] that the determination of the structure is essential, because the 
model can easily become overparameterized by simple increasing the number of 
backward time shifts of the input and output signals or the degree of nonlinearity. 
In general, this procedure will result in an excessively complex model and 
possibly numerical ill-conditioning. However, determining the model structure 
of nonlinear systems is more complicated than determining the model structure 
of linear single-input single-output systems, where only the model order has to 
be detected. 
 
Structural properties of a particular nonlinear modeled system or process can  
often be very easily taken into account when developing a neural network based 
model for being used by a predictive control algorithm. Because of consisting of 
single interconnected neurons, neural networks have natural ability to form 
almost any necessary structure. Application specific structures of the model can 
significantly improve the quality of the predictive control algorithm where they 
are used as predictive models. 
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Neural Networks based Hammerstein model proposed by the author in [55] was 
successfully implemented to identification of systems with nonlinear actuators as 
it was shown in section 3.4 of this thesis. Simulation of predictive control of DC 
servo motor with nonlinear driver based on this model will be demonstrated in 
the next example. 
 
4.2.2 Numerical example 4.1 – predictive neurocontrol of DC servo motor 

with nonlinear driver 
 
Identification of DC servo motor with nonlinear driver (3.16)-(3.17) by neural 
network based Hammerstein model (3.13) depicted in figure 3.5 was shown in 
section 3.4 of this thesis. Predictive control technique based on this model was 
proposed by the author in [55]. 
 
The aim of the control system is to reach the desired motor position (angle) with 
minimal possible regulation time and steady-state error. In [70] a multilayer 
perceptron was trained to perform as a nonlinear neurocontroller for this system. 
The control algorithm was tested with the set point 4rad and zero initial state. 
Regulation time was about 0.15sec and steady-state error was -0.06397rad. 
 
Predictive control algorithm (2.33) corresponding to the structure of control 
system depicted in figure 2.2 was proposed by the author to control this system 
in [55]. DC motor has linear dynamics (or dynamics very close linear) and static 
nonlinear driver as an actuator. So, it is natural to separate linear dynamics and 
static input nonlinearity in the model. It was done automatically by training 
neural network based Hammerstein model (3.13). This model was used as to 
calculate predictions )(ˆ,),(ˆ 21 NtyNty ++ K  where prediction horizons were 

chosen as 11 =N  and  32 =N . Thus, the control is based on 3 time-steps 

prediction of the system’s output )3(ˆ ),2(ˆ ),1(ˆ +++ tytyty . 
 
The output of the model is the predicted rotation velocity of the motor. As we 
have to control the position, it should be integrated. So, the model inside the 
controller consists of two sub-networks connected into the structure shown in 
figure 3.5 and one discrete time integrator. Controller has two set points: 
0rad/sec for the rotation speed and 4rad for the position. The control simulation 
results are presented in figures 4.1 and 4.2. Figure 4.1 shows the velocity of the 
motor reaching the set point and figure 4.3 represents shaft position (angle) of 
the motor. It can be seen from the figures that the regulation time is less than 0.1 
seconds when the technique proposed in [55] is used. Steady-state error is 
0.00224rad. It is a very good result especially for an indirect control where the 
quality of the control system significantly depends on the accuracy of the model. 
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figure 4.1 DC motor velocity control 
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figure 4.2 Control of DC motor shaft position  

 
It can be concluded that combining two sub-networks (one for static 
nonlinearities and second for linear dynamics) in one structure gives significant 
improvement in modeling of linear dynamic systems with static input 
nonlinearities. Because of high accuracy of the obtained models it is possible to 
implement indirect control algorithms to a class of dynamic systems with 
nonlinear actuators. Computer simulations show that by using the models 
proposed in [55] and discussed in sections 3.4 and 3.6 of this thesis can 
significantly improve the quality of predictive control of the systems with 
actuator nonlinearities, which are also called hard nonlinearities. Because of 
neural network’s natural ability to learn and adjust their parameters, adaptive 
controllers based on this models will have strong robustness. Controllers can be 
turned to work in different environmental conditions. Control algorithms based 
on these models ban be especially useful in case of unknown or changing 
actuator nonlinearities. 
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4.2.3 Inverse modeling based control 

 
This control technique is also based on modelling of the controlled system, but 
in this case an inverse model has to be obtained. Inverse model should be 
capable of calculating estimations of the system’s input values ( )tû . This 
estimations are used as control signals. In general, inverse control techniques 
were discussed in  section 2.4.2. Here the main attention is paid to inverse 
control based on neuro-models. 
 
Any neural network structure can be used to obtain an inverse model, but it was 
studied by the author in [26] that feedforward neural networks with external 
feedback can better approximate inverse functions of nonlinear dynamic systems 
than recurrent neural networks with internal feedbacks. Direct inverse control 
relies heavily on the fidelity of the inverse model used as the controller, but 
serious questions arise regarding the robustness of direct inverse control, 
because of absence of feedback.[23] This problem can be overcome by using 
neural network based models capable of on-line learning [23] and/or by 
implementing inverse models belonging to the class of NARX models (see 
section 2.2.3) with the control scheme [25] depicted in figure 2.3. NARX models 
can be obtained by training a feedforward neural network as it was shown in 
section 3.3 of his thesis. When a two-layer perceptron is used, the inverse 
NARX model can be formalized by the following equation. 
 

[ ] ))(,),1(),(,),1(),(()(ˆ T
mtutunkytytyWCtu −−−−⋅⋅= KKϕ ,       (4.1) 

 
where C and W are matrixes of output and input weight coefficients, ( )⋅ϕ  is a 
nonlinear activation function of the hidden layer neurons, n and m are output and 
input order of the model. 
 
This equation can be used for calculation of estimations of the controlled 
system’s inputs. This inputs are used as control signals. It was demonstrated in 
[101] that it is very easy to apply inverse model based controllers to complicated 
systems. Neural network based inverse models have become a very popular tool 
in practical control applications (for example, see [102], [103], [104], [105], etc). 

 
The parameters of the inverse model can be adjusted on-line by using on-line 
learning and thus the robustness of the inverse model based controller can be 
increased.[23] An adaptive inverse model based neurocontrol technique was 
used by the author in [26] to control of nonlinear system (3.8) considered in 
numerical example 3.1 (see section 3.3.1 of this thesis). Consider the following 
example. 
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4.2.4 Numerical example 4.2 

 
Inverse identification and adaptive inverse neurocontrol of system (3.8) was 
shown by the author of this thesis in [26]. A two-layer perceptron was trained to 
perform as inverse model of nonlinear system (3.8) having NARX structure. 
System (3.8) is a second order system represented by a difference equation 
 
( ) ( ) ( ) ( )( )1,2,1 −−−= tutytyfty .           (4.2) 

 
Inverse model of this system has to approximate the following function 
 
( ) ( ) ( )( )2,1),(1ˆ 1 −−=− −

tytytyftu .           (4.3) 
 
Estimation ( )1ˆ −tu  is then used as the control signal at time step t+1 
 
( ) ( )1ˆ1 −=+ tutu .             (4.4) 

 
Two-layer perceptron was trained to approximate function (4.3). Matrixes of 
input and output synaptic weights W and C were obtained by BP training 
algorithm (see section 2.6.1). Inputs gathered from the input of the system were 
used as etalon values for outputs of the network representing the inverse model. 
After being trained on the training set consisting of 1000 input-output pairs the 
inverse model was tested on sinusoidal validation signal. Output of the system 
was given to the input of the inverse model and the output of the trained neural 
network was compared to the input of the system. Validation result of the 
two-layer perceptron based inverse model of system (3.8) is depicted in 
figure 4.3. 
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figure 4.3 NN-NARX structure based inverse model validation 
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It can be seen from the figure the output of the neural network based inverse 
model follows the input of the system with high degree of accuracy and exactly 
1 time step delay. This is because of estimation of system’s input ( )1ˆ −tu  (NB! 

not ( )tû ) as it was shown in equation (4.3) following from equation (4.2). Mean 
Square Error on the validation set was as low as about 0.00010. 
 
Control signals can now be calculated by this NN-NARX based inverse 
model as 
 
( ) ( ) ( )[ ]( )T

tytytyWCtu 2,1),(1 −−⋅⋅=+ ϕ ,          (4.5) 
 
where sigmoid-type hyperbolic tangent function (2.51) was used as nonlinear 
activation function of 20 hidden layer neurons ( )⋅ϕ . 
 
Schematic representation of the closed loop adaptive control system is depicted 
in figure 4.4. 

 
 

figure 4.4 Structure of inverse model based neurocontroller 
 
The aim of the control system is to calculate such a control signal u(t) the 
system’s output y(t) follows the desired reference signal v(t). In other words, a 
neural network trained as an inverse model of the controlled system is used to 
calculate such an output (input of the plant) u(t) that 
 
( ) ( )tvty →               (4.6) 

 
Control error e(t) can be defined as 
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( ) ( ) ( )tytvte −=             (4.7) 
 
We assume that this error is caused only by inaccuracy of the inverse model and 
use it as a training signal (teacher) to adjust the model. Such an approach, where 
instead of receiving the correct responses from a teacher, learning information is 
derived from a scalar reinforcement or performance feedback signal indicating 
how well the network is performing its assigned task, is called Reinforcement 
Learning (RL).[39] 
 
 

 
figure 4.5 Strategy for inverse model based neurocontrol 
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It has to be mentioned that by using RL with the structure depicted in figure 4.4, 
neural network can also be directly trained to perform as a controller without 
previous identification of the inverse model, but it was shown in [27] that the 
neural network controllers with model information give better results than 
without any model information. Another advantage of preliminary inverse 
modeling is in possibility to restore initial parameters of the controller when 
parameters begin significantly and unpredictably change during the adaptation 
(on-line training) in case of large short-time disturbances. This significantly 
increases the robustness of the control system. The following adaptation strategy 
for inverse model based neurocontrol was proposed by the author in [26]. 
 
If the error e(t) becomes more than ε, a number  defining the desired accuracy, 
neural network can be trained on-line to minimize it. Our experiments have 
shown that one training epoch of BP training algorithm before each computation 
of the control signal is enough to modify the controller’s behavior in response to 
changes in the dynamics of the process and the character of the disturbances. 
Such adjustment of the network’s parameters makes this controller adaptive [42]. 
The diagram representing the proposed algorithm is depicted in figure 4.5. Here 
W(t) is the matrix of network parameters (synaptic weights) at time step t. 
 
As an example, consider application of the considered technique for adaptive 
control of system (3.8). The results of the control system simulation are depicted 
in figure 4.6.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.6 Simulation of adaptive inverse model based neurocontrol 
 
Figure 4.6a shows system’s input and output disturbances and figure 4.6b 
presents the output of the system with the reference signal (the desired output). It 
can be seen from the figures that this control system is capable of tracking the 
desired trajectory and compensating comparatively large input and output 
disturbances by adjusting the inverse model on-line. 
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Another approach for adjustment of the model is using measured in real time 
inputs and outputs of the controlled system as training data. In model based 
neurocontrol schemes, both reinforcement learning and training with teacher can 
be used for adaptation by adjusting inverse or/and forward neural networks 
based models. Such techniques have also been successfully implemented for 
neural networks based predictive control (e.g. see [106]), where forward model 
is adjusted online in response to disturbances, changing environmental 
conditions and so on. In case of inverse model based neurocontrol, RL provides 
additional negative feedback and thus increases the robustness of the control 
system. An alternative approach to adaptive model based neurocontrol will be 
discussed in section 4.4. 
 
In the next section, a neurocontrol technique based on dynamic linearization of 
the model of the corresponding structure will be considered. 
 
4.3 NN-ANARX structure based control 
 
It was discussed in section 2.4.3 and proofed in [32] that ANARX structure 
(2.13) is always linearizable by Dynamic Output Feedback Linearization 
(2.36)-(2.38). Model of a nonlinear system can be obtained in the form of 
ANARX structure by training a neural network of the structure shown in 
figure 3.9. NN-ANARX model (3.18) belongs to the class of ANARX models 
(2.13) and also can always be linearized.[11] By using parameters of Neural 
Network based ANARX model (3.18), Dynamic Output Feedback Linearization 
algorithm (2.36)-(2.38) can be presented as follows. 
 

( ) ( )[ ]( ) ( )ttutyWCF
T

1111 , ηϕ =⋅=              (4.8) 
 

( ) ( ) ( ) ( )[ ]( )

( ) ( ) ( ) ( )[ ]( )
( ) ( ) ( ) ( )[ ]( )T

nnnn

T

nnnnn

T

tutyWCtvt

tutyWCtt

tutyWCtt

,1

,1

,1

1

11112

22221

⋅−=+

⋅−=+

⋅−=+

−

−−−−−

ϕη

ϕηη

ϕηη

M
,        (4.9) 

 
where  n is the order of the model (number of sub-layers in the corresponding 
neural network);  

iC , iW  for ni ,,1 K=  are matrixes of synaptic weights of the network (3.18); 

( )⋅iϕ  for ni ,,1 K=  are nonlinear activation functions of neurons in the 
corresponding sub-layer of the hidden layer of the model (3.18) depicted in 
figure 3.9. 
 
Control signal u has to be found by solving equation (4.8): 
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( ) ( ) ( )( )ttyFtu 1
1 ,η−= .           (4.10) 

 
Numerical calculation can be used for calculation of (4.10). The structure of the 
corresponding control system is depicted in figure 4.7. 

 
figure 4.7 Structure of neurocontrol system based on dynamic output feedback 

linearization of NN-ANARX model 
 
The above described control technique was applied to control of nonlinear SISO 
and SIMO systems in [13], [14] and [76]. Numerical Newton’s Method (see 
section 2.4.4) was used for solving equation (4.8) and finding control signals u(t) 
on each time step. Our experiments [13], [14] have shown that 3 iterations will 
guarantee convergence of the Newton’s Method with sufficient precision. 
Consider the following numerical examples. 
 
4.3.1 Numerical example 4.3 

 
This example is a continuation of numerical example 3.5 (see section 3.5.3). 
 
The model of a jacketed Continuous Stirred Tank Reactor (CSTR) [74], [75], 
[13], [14] is represented by second order  input-output equation (3.24). 
Identification of this system by neural network based ANARX model is shown 
in [13], [14] and discussed in detail in section 3.5.3 of this thesis (numerical 
example 3.5). 
 
Because of the last term in (3.24), the model does not have an ANARX structure. 
Never the less, it was considered as a ”black box” and neural network having 
ANARX structure (see figure 3.9) was trained. Validation results have shown 
that in spite of the restrictions imposed by NN-ANARX structure on 
connectivity matrixes, the identified model explains input-output data with high 
degree of  accuracy. [13], [14] 
 
NN-ANARX model based Dynamic Output Feedback Linearization algorithm 
(4.8)-(4.10) was used for control of jacketed CSTR system (3.24) by using 
parameters (3.26) of neural network representing ANARX model of this system. 
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For the second order model (3.25), control strategy NN-ANARX model based 
control strategy can be represented by the following equations. 
 

( ) ( ) ( ) ( )[ ]( )T
tutyWCtvt ,1 2221 ⋅−=+ ϕη          (4.11) 

 
( ) ( )[ ]( ) ( )ttutyWCF

T

1111 , ηϕ =⋅=         (4.12) 
 
( ) ( ) ( )( )ttyFtu 1

1 ,η−=            (4.13) 
 
Thus, by using parameters (3.26) of the model, controls u(t) for jacketed CSTR 
system (3.24) were calculated by numerical solving of equation 
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Control strategy (4.14)-(4.15) was applied to control of system (3.24). The result 
of the control system simulation with the piece-constant reference signal v(t) is 
depicted in figure 4.8. 
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figure 4.8 Control of jacketed CSTR by NN-ANARX based dynamic output linearization 
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It can be easily seen from the figure that the output of the system closely follows 
the reference signal. Dynamic output feedback linearization can be successfully 
used for control of jacketed CSTR system by using synaptic weights of neural 
network trained off-line to perform as ANARX model of this system. 
 
4.3.2 Numerical example 4.4 –  Backing up control of a truck-trailer 
 
Existing solutions of a truck-trailer backing up problem are mainly based on 
employing neural networks based, fuzzy or neuro-fuzzy controllers [107], [108], 
[109], [110] and practically no solutions available where more classical control 
methods are used. On one side such disproportion can be explained by the fact 
that fuzzy and neural controllers very well suited for such tasks. On the other 
side in many cases models of the truck-trailer are developed from the physical 
point of view and usually are unsuitable for application of such methods like 
feedback linearization. Of course one can linearize the model around a number 
of operating points, but as it was mentioned in [110] such approach can be 
computationally complicated and requires considerable design effort. 
 
Neural networks based modeling and such a classical technique like dynamic 
output feedback linearization were combined in [76] with a purpose to backing 
up control of a truck-trailer. Backward motion of a truck-trailer is modeled by 
NN-based ANARX model and then linearization (4.8)-(4.10) is applied as 
control technique according to the structure of the control system depicted in 
figure 4.7. 
 
Consider the problem of backing up control of a truck-trailer. The problem is to 
control steering angle in order to track the desired trajectory (y coordinate) of the 
truck-trailer from any initial position. Following equations were proposed by 
[107] to model the dynamics of the truck-trailer. 
 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ),

2/1coscos1

2/1coscos1

sin/1

tan/1
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22544

22533

522
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txtxtx

txtxtxvtxtx

txtxtxvtxtx

txLvtxtx

tuvtxtx

−=

++⋅⋅⋅+=+
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⋅⋅+=+

⋅⋅+=+

τ

τ

τ

λτ

      (4.16) 

 
where ( )tx1  is the angle of truck, ( )tx2  is the angle of trailer, ( ) ( )( )txtx 34 ,  is 

horizontal and vertical positions of the rear end of trailer, respectively, ( )tx5  is 

the angle between truck and trailer, ( )tu  is the steering angle, l is the length of 
the truck, Lis the length of the trailer, τ  is the sampling time and v is the 
constant speed of backing up. Figure 4.9 shows the model of the truck-trailer. 
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figure 4.9 Truck-trailer and main parameters of its model 

 
The following parameters of the truck-trailer were used: 
 

• ml  8.2=  
• s 0.1=τ  
• mL  5.5=  
• smv / 0.1−=  

 
Note that allowed only backing up. 
 
While system (4.16) describes the behavior of a truck trailer with high level of 
precision it is not linearizable by dynamic output feedback [111] and 
consequently could not be used directly for feedback design. Thus, necessity to 
use another model is obvious. NN-based ANARX structure was chosen to model 
the truck-trailer. 
 
In order to obtain input-output data for identification, plant (4.16) was simulated 
with Uniform Random Number signal ( ) [ ]4/;4/ ππ−∈tu . Steering angle was 
used as the input of the model and  vertical positions of the rear end of the trailer 

( )tx3  was considered as the output of the model. After that NN-ANARX 
structure (see figure 3.9) with three sub-layers of the hidden layer corresponding 
to the third order of the model was trained. Three neurons were used in each 
sub-layer. After 5000 epochs of training by LM training algorithm (2.65)-(2.67) 
the Mean Square Error on the validation set (not used in the training set) was as 
low as about 0.001. The model was obtained in the following form 
 

( ) ( )[ ]( )∑
=

⋅=
3

1

,)(
i

T

iii tutyWCty ϕ ,          (4.17) 
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where iC  and iW  are matrixes of synaptic weights (parameters of the model) 
and 
 
( ) ( )txty 3= .            (4.18) 

 
After the system (4.16) was identified by NN-ANARX model (17) the 
linearization algorithm (4.8)-(4.10) was applied as 
 

( ) ( )[ ]( ) ( )ttutyWCF
T

1111 , ηϕ =⋅=         (4.19) 
 

( ) ( ) ( ) ( )[ ]( )
( ) ( ) ( ) ( )[ ]( )T

T

tutyWCtvt

tutyWCtt

,1

,1

3332

22221

⋅−=+

⋅−=+

ϕη

ϕηη
        (4.20) 

 
Newton’s method (2.42)-(2.45) was used for numerical calculation of control 
signal ( )tu  from (4.19). 
 
A number of experiments of constructed system have been made to see the 
results of truck-trailer's behavior. Different initial ( ) ( )00 3xy = , ( )01x , ( )02x  and 

desired ( )tv  positions of the truck-trailer have been chosen. Table 4.1 describes 
the   experiments. 
 
Table 4.1 Initial and desired positions of the truck-trailer 
 Initial position Desired position v(t) 

( ( ) ( )tvty → ) 

 x1(0) x2(0) y(0)=x3(0)  
Experiment 1 10˚ -20˚ 10 m 0 m 
Experiment 2 0˚ 0˚ 0 m -10 m 
Experiment 3 -20˚ 45˚ 0 m 5 m 
Experiment 4 -180˚ -180˚ 0 m 55 m 
Experiment 5 0˚ 0˚ 0 m ( )x03.0sin20  m 

 
Experiments 1-4 show the movement of truck-trailer to desired line. Experiment 
5 is harder, in this case truck-trailer's desired trajectory is described by 
sinusoidal signal. Next Figures 4.10-4.14 show simulation results for 5 
experiments with different initial positions of the truck-trailer. 
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figure 4.10 Simulation of the control 
system: experiment 1 

0 20 40 60 80 100 120
-20

0

20

X position (m)

Y
 p

o
s
it
io

n
 (

m
)

figure 4.11 Simulation of the control 
system: experiment 2 
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figure 4.12 Simulation of the control 
system: experiment 3 
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figure 4.13 Simulation of the control 
system: experiment 4 
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figure 4.14 Simulation of the control system: experiment 5 

 
The presented approach is a combination of classical dynamic output feedback 
linearization with neural networks based modeling. This algorithm does not 
utilize the whole model, but uses parameters of the model for calculation of the 
dynamics of the controller providing high robustness and stability of the control 
system. 
 
It is proofed in [32] that ANARX structure is always linearizable by dynamic 
output feedback linearization (2.36)-(2.38). NN-ANARX structure as a sub-class 
of ANARX structures is also always linearizable as shown by (4.8)-(4.10). 
Experimental results have shown that because of neural network’s good 
approximating capabilities, NN-based ANARX structure is capable of modeling 
a wide class of nonlinear systems with high degree of accuracy. It means that 
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NN-ANARX model based dynamic output feedback linearization algorithm 
(4.8)-(4.10) can be for control of these systems. 
 
Because of neural network’s natural ability to learn and adjust it’s parameters in 
response to unpredictable disturbances, changes in environmental conditions 
and/or changes in parameters of the controlled system, the dynamic output 
feedback linearization technique can be combined with neural networks based 
adaptation. An adaptive control algorithm based on output feedback linearization 
of NN-ANARX models was presented in [14] and will be discussed in the next 
section. 
 
4.4 Adaptive NN-ANARX based control 
 
The aim of the adaptive controller is to modify its behavior in response to 
changes in the dynamics of the process and disturbances. A real-time estimator 
is a central part in most adaptive controllers. Parameters of the controller has to 
be adjusted following the negative gradient of square error 2

E  of the control 
system. There are many alternative ways to make real-time estimation [42], [43]. 
 
In case of model based neurocontrollers, parameters of neural network based 
model have to be adjusted. Since in case of neural network based dynamic 
output feedback linearization algorithm (4.8)-(4.10), the network was previously 
trained off-line and there is only a need to adjust the weights, it is suggested 
in [14] to implement in adaptive control scheme the gradient descent training 
algorithm (see section 2.6.1 of this thesis). The main advantage of latter is that it 
consists of a higher number of shorter iterations. On each iteration updated 
weights can be calculated very fast that is critical in some real-time 
applications[14]. Thus, classical dynamic output linearization can be combined 
with neural networks based adaptation by using neural networks for modeling of 
the controlled system. 
 
The information contained in a single pattern can not be assimilated completely 
in a single presentation. So, more patterns representing the required mapping 
should be presented to the learning method at each time-step. The requirement to 
learn from incidents or samples from the environment has parallels with human 
learning and memory. There are two types of memories: short-term memory and 
long-term memory. The theory says that all new information to be memorized 
must first be processed through the short-term memory [39]. 
 
4.4.1 History-Stack Adaptation (HSA) 
 
History-stack adaptation (HSA) algorithm [39] retains a short history of process 
patterns (short-time memory) that can represent an approximation to the 
nonlinear process dynamics. This information containing in the History Stack 
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(HS) is then transferred into the long-time memory by means of training 
algorithm. 
 
The control system consists of unknown nonlinear plant preceded by the 
linearizing feedback. Unknown plant is modeled by the NN-ANARX structure 
(3.18). Dynamics of the feedback is defined by the NN-ANARX structure which 
is used to model the nonlinear plant and the desired linear dynamics. At each 
time-step the plant model is adjusted by HSA algorithm. The HS operates as a 
First-In-First-Out (FIFO) stack containing np patterns. At each time-step k HS 

accepts (memorizes) a net pattern ( ) ( ) ( )[ ]TtutytZ ,=  from the process and 

discards (forgets) the oldest pattern ( )pntZ − . These elements 

( ) ( ) ( )1,,1, +−− pntZtZtZ K  constitute the training set and are used in nc cycles 

to update the weights [39], [112]. To achieve a good process performance the 
proper choice of the parameters np and nc is essential [112]. The closed loop 
structure for the proposed control technique based on dynamic output feedback 
linearization of NN-ANARX model is depicted in figure 4.15. 
 

 
figure 4.15 Structure of adaptive control system based on dynamic output feedback 

linearization of NN-ANARX model with history-stack adaptation 
 
This control system was successfully applied to adaptive control of nonlinear 
systems [14]. Consider the following numerical examples. 
 
4.4.2 Numerical example 4.5 

 
This example is a continuation of numerical example 3.4 (see section 3.5.2). 
 
Identification of a liquid level system of interconnected tanks [72], [14] 
represented by input-output equation (3.21) by training a neural network based 
ANARX structure (3.22) was discussed in detail in section 3.5.2 (numerical 
example 3.4) of this thesis. After parameters (3.23) of NN-ANARX model of 
this system were obtained by off-line training of the corresponding neural 
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network (the structure of this network is depicted in figure 3.9), dynamic 
feedback linearization algorithm (4.8)-(4.10) was used as the control technique 
for this system. This model was included into the adaptive closed-loop system 
depicted in figure 4.15. 
 
History-Stack Adaptation (HSA) technique was used to adapt the control system 
by adjusting parameters (synaptic weights) of NN-based ANARX model of the 
controlled system. The stack length of HSA was set to 200 patterns (np = 200) 
and 20 cycles were used to update the weights on each time-step (nc = 20). For 
the first eight hundred time-steps system was simulated without disturbances, 
starting at time-step 800 the output disturbance was added followed by the input 
disturbance starting at time-step 1600, repeating sequence of set points was used 
as reference signal v(t). Simulation results of on-line training in closed-loop with 
dynamic output linearizing feedback are shown in Figure 4.16. 

figure 4.16 Control of  the liquid level system of interconnected tanks by dynamic output 
feedback linearization of NN-ANARX model with history-stack adaptation 

 
It is easy to see that even with input and output disturbances NN-ANARX based 
adaptive control technique provides desired performance and the control system 
is capable of fast compensating these disturbances because of neural network’s 
ability to learn. 
 
4.4.3 Numerical example 4.6 
 
This example is a continuation of numerical examples 3.5 section 3.5.3) and 4.3 
(section 4.3.1). 
 
We have also  followed the same procedure as in the previous example for 
adaptive control of a jacketed Continuous Stirred Tank Reactor (CSTR) [74], 
[75], [13], [14] represented by equation input-output (3.24). 
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Identification of this system by second order NN-ANARX model (3.25) was 
shown in section 3.5.3 (numerical example 3.5) of this thesis. Parameters (3.26) 
of this model were used for nonadaptive control of this system by ANARX 
model based dynamic output feedback linearization as shown in section 4.3.1 
(numerical example 4.3). 
 
To make this system adaptive to changes in environmental conditions and/or 
parameters of the system itself, HAS was introduced into the closed loop as 
shown in figure 4.15 for on-line adjustment of parameters of the model. 
Parameters of the controller are also adjusted by the same HAS algorithm, 
because parameters of the model are then used as parameters of the controller. 
 
The closed-loop system (see figure 4.15) was simulated for 1500 time steps with 
repeating sequence of set points as reference signal v(t). During the first 350 
time-steps there was no disturbance at all, then the output disturbance was added 
followed by the input disturbance at time-step 935. Simulation results of on-line 
training in closed- loop with dynamic output linearizing feedback are shown in 
Figure 4.17. 
 

figure 4.17 Control of  the jacketed CSTR by dynamic output feedback linearization of 
NN-ANARX model with history-stack adaptation 

 
The figure shows that in case of adaptive feedback the system output closely 
follows the reference signal and the control system is capable of compensating 
the negative influence of input and output disturbances by including them into 
the neural network based model. 
 
It can be concluded that the proposed adaptive feedback controller for nonlinear 
system modeled by NN-ANARX structure is capable of modifying its behavior 
in response to changes in the dynamics of the process and disturbances. Thus, 
the proposed control technique satisfies the requirements of adaptive controllers 
[42], [43]. 

0 500 1000 1500
-0.4

-0.2

0

0.2

Time Steps

D
is

tu
rb

a
n

c
e

 l
e

v
e

l

Input Disturbance

Output Disturbance

0 500 1000 1500

0

0.2

0.4

0.6

Time Steps

O
u

tp
u

t

Reference Signal

System Output



 100

4.5 Drawbacks and advantages of considered control techniques 
 
The main advantages and disadvantages of the considered control techniques 
determined by the author will be given in the following to compare the methods. 
First of all lets consider predictive control algorithm described in 2.4.1 and 4.2.1. 
 
The main advantage of predictive control technique is that it can use any type of 
direct (not inverse) model of the process. This algorithm is also very robust 
especially when a neural network based model is used. This algorithm cam very 
easily adapt by adjusting the model. For example, by training the neural network. 
 
The main drawback of this algorithm is that it needs a very accurate model that 
is capable of working not only in a closed loop but also independently of the 
system to predict the behavior of the plant. 
 
Consider an input-output discrete time model as defined in (2.7). Output of the 
model serves as predicted output of the system )1(ˆ +ty  and can be calculated as 
 

))1(,),(),1(,)1(),(()1(ˆ +−+−−=+ mtutuntytytyfty m KK     (4.21) 

 
where fm is a nonlinear static function of n+m arguments representing the model. 

)1(,),(),1(,),1(),( +−+−− mtutuntytyty KK  are known previous 
system output and input values. As we need more predictions, the next 
predicted output can be calculated as 
 

))2(,),(),(),2(,)(),1(ˆ()2(ˆ +−+−+=+ mtututuntytytyfty m KK    (4.22) 

 
and so on. 
 
Output of the system )1( +ty  can not be used, because it is unknown. Previous 

prediction )1(ˆ +ty  has to be used instead of it and so on N2 times where N2  is 
the prediction horizon as defined in (2.20). It was explained in section 2.3 that 
there is some small mistake (inaccuracy) in calculation each prediction. In case 
of some models it accumulates very fast. This problem is especially important 
with nonlinear systems. Some nonlinearities have such nature that previous state 
of the system has to be known. 
 
We also suppose that control signal (input of the system) remains the same 
during the prediction u(t) is used instead of u(t+1) when )2(ˆ +ty  is calculated. 
It is not so, because in the next time step this control signal will be recalculated. 
Change in u(t) will not be very serious because minimizing function (2.3), but it 
can seriously influence the prediction in case of high nonlinearities. 
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All of the above mentioned reasons can result in a very inaccurate prediction 
)(ˆ 2Nty +  in case of some nonlinear systems and it leads to possible 

deterioration of control. 
 
Now let’s consider model based control described in detail in sections 2.4.2 and 
4.2.3. 
 
The main advantage of this approach is simplicity of the control system. It is 
very easy to implement this technique to nonlinear system control and it is one 
of the most natural and obvious approaches from a human point of view.  An 
adaptive control system can be very easily designed especially when a neural 
networks based model is used as it is shown in [26].  
 
On the other hand, serious questions arise regarding the robustness and stability 
of direct inverse model based control [23]. This problem can be overcome to 
some extend by using inverse models belonging to the class of NARX models 
(2.12) with feedback from the input and output of the controlled system. When 
neural network is used as an inverse model, the robustness of the control system 
can also be improved by using an adaptation technique based on reinforcement 
learning minimizing the difference between the reference signal and the output 
of the system as it was shown by the author in [26] and section 4.2.4 of this 
thesis. 
 
Despite the fact that this simple tool have become a very popular in practical 
control applications especially in robotics [23], the necessity to obtain this 
inverse of a nonlinear dynamic function is one of the main drawbacks of this 
technique. It is not always an easy task (if it is possible) to obtain an accurate 
enough inverse model of a nonlinear dynamic system. This fact significantly 
restricts the class of systems to which this control technique can be applied. 
 
NN-ANARX model based Dynamic Output Feedback Linearization discussed in 
sections 4.3 and 4.4 is a control technique combining advantages of classical 
output linearization and neurocontrol. It is proofed in [32] that ANARX model 
(2.13) is always linearizable by dynamic output feedback (2.36)-(2.38) providing 
( ) ( )ntvty −= , where ( )tv  is a reference signal (desired output), ( )ty  is the 

output of the controlled system and n is the order of ANARX model. Because of 
neural network’s good approximation capabilities, ANARX can be very easily 
obtained by training a neural network (3.18) representing ANARX structure and 
depicted in figure 3.9. Experiments [13], [14], [57], [76] have shown that 
restricted connectivity of the neural network representing ANARX model does 
not cause serious drawbacks in quality of identification and precise NN-ANARX  
models can be obtained for a wide class of nonlinear systems. Thus, after the 
NN-ANARX model is obtained, its parameters are used to construct the dynamic 
output feedback linearization. This dynamic linearizing is used as a controller 
for the nonlinear system. 
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This approach allows to overcome some of disadvantages of predictive and 
inverse model based control techniques mentioned above. There is no necessity 
to obtain an inverse model of a dynamic system. The method is based on direct 
model of the controlled system. The model is used only in closed loop. It does 
not have to work separately of the modeled system as it is in case of predictive 
control (for calculation of predictions). Control algorithm (4.8)-(4.10) used in 
NN-ANARX model linearization based control system depicted in figure 4.7 
utilizes only current inputs u(t)and outputs y(t) from the controlled system. No 
external delays as in case of NN-NARX model based control is needed. All the 
necessary delays are provided by the dynamics of the controller.  
 
Sub-layers of NN-ANARX model are used to provided the dynamics of the 
controller as shown by equation (4.9). Thus, one more advantage of the proposed 
technique is that the order of NN-ANARX model and consequently the order of 
the controller based on it can be very easily changed. When neural network 
based ANARX model (3.18) shown in figure 3.9 is used, additional sub-layer  
 

[ ]( ) [ ]( )T

nnn

T

n tutyWCtutyf )(),()(),( 1111 ⋅= ++++ ϕ         (4.23) 
 
Can be added to the network without need to make any changes in the structure 
of previous already trained network. It is also not necessary to retrain the already 
trained sub-layers. After adding a new sub-layer (4.23), the model of the order 
n+1 is expressed by the following equation 
 

[ ]( )∑
+

=

⋅=
1

1

)(),()(
n

i

T

iii tutyWCty ϕ .         (4.24) 

 
Parameters nn CCWW ,,,,, 11 KK remain the same and parameters 1+nW  and 

1+nC  are added. After that the training may continue from the same point. 
 
When the order of the model is changed, the order of the controller can also be 
changed very easily. In case of considered NN-ANARX model linearization 
based control, the order of the controller can be increased by simple changing 
the last term 
 

( ) ( ) ( ) ( )[ ]( )T

nnnnn tutyWCtt ,11 ⋅−=+− ϕηη        (4.25) 
 
and adding the following terms  
 

( ) ( ) ( ) ( )[ ]( )T

nnnn tutyWCtvt ,1 111 ⋅−=+ +++ ϕη         (4.26) 
 
to the system of equations (4.9) representing the dynamics of the controller. The 
first layer  
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[ ]( )T
tutyWC )(),(111 ⋅ϕ            (4.27) 

 
used for calculation of control signals by (4.10) remains the same and synaptic 
weights of this sub-layer do not change abruptly even when online adaptation 
(training) is used and therefore the order of the model and control system can be 
adjusted even online giving additional possibilities for NN-ANARX model 
based adaptive control of nonlinear systems. 
 
Thus, NN-ANARX model dynamic output feedback linearization based control 
technique can be a reasonable choice to control of a wide class of nonlinear 
systems [13], [14], [56], [57], [76]. The only problem is complexity of 
calculation of the control signal u(t) by (4.8), (4.10) from the dynamics of the 
controller (4.9). Newton’s method (see section 2.4.4) was used in [13], [14], [76] 
for numerical solving of equation (4.8) and calculation of control signal. The 
problem is that this method can be successfully applied to only nonlinear SISO 
systems and our experiments [13], [14] have shown that on each time step it 
needs about 3 iterations converge making the response of the controller slower 
(longer minimal allowed sample time). In case of MIMO systems numerical 
optimization becomes extremely complex. This problem was solved by the 
author of this thesis as will be shown in the next chapter. Two techniques 
making this making this control algorithm faster and applicable to a wide class 
of nonlinear systems are proposed in [56] and [57]. 
 
4.6 Conclusions 
 
Three neurocontrol techniques are considered in this section. This techniques are 
based on models obtained by training a neural network or a system of neural 
networks.  
 
Model based predictive neurocontrol and inverse model based neurocontrol are 
the most popular neural networks based control techniques. They have found 
their applications in variety of modern time practical control applications. 
References to the corresponding examples are provided in the beginning of this 
chapter. 
 
These control techniques can utilize any structure of the model. It was shown 
that the proper choice of the structure can  significantly improve the quality of 
the control system by better describing the controlled system. Neural networks 
give as the great possibility to choose the structure of the model corresponding 
to the structure of the system by varying the connections between neurons in the 
network. Neural Networks based Hammerstein model is applied to control of 
DC servo motor with nonlinear driver [13]. 
 
The quality of inverse model based control significantly depends on the quality 
of inverse model of controlled dynamic system. Neural network based inverse 
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model can be obtained by training any structure of neural network which is 
capable of representing an inverse dynamics of the system. Robustness of 
inverse model based neurocontrol can be improved by introducing an adaptation 
based on on-line training of the neural network representing the inverse model of 
the controlled system and used as the controller for this system [26]. 
 
NN-ANARX model based Dynamic Output Feedback Linearization is a 
combination of classical output linearization and neural network based control. 
This neurocontrol algorithm is based on the model, which has to have ANARX 
structure. It means that this method requires particular structure of neural 
network based model depicted in figure 3.9.  
 
Experimental results have shown that this control technique is less dependant on 
the quality of the model. Structural restrictions imposed by ANARX structure on 
connectivity matrixes of the network do not cause any drawbacks in quality of 
the control system [13], [14]. ANARX model is always reprezentable in classical 
state-space form which makes analysis of the control system much simpler 
compared to control systems based on other structures. The order of the model 
and the corresponding control system can be changed very easily. This control 
technique has strong robustness and can be applied to a wide class of nonlinear 
system [13], [14], [56], [57], [76]. 
 
Because of neural networks ability to learn, History-Stack Adaptation technique 
can be applied to adjust parameters of NN-ANARX model in response to 
disturbances, changing  environmental conditions and/or changes in parameters 
of the controlled system. Thus, dynamic output feedback linearization technique 
can be combined with neural networks based adaptation [14]. Because of 
restricted connectivity, neural network based ANARX model has much smaller 
number of parameters (synaptic weights) than a conventional neural network 
based model and there fore better suites for adaptive control. Adaptation is faster 
because of smaller number of parameters to be adjusted on-line. 
 
Control system based on dynamic output feedback linearization of neural 
network based ANARX model combines advantages of classical dynamic output 
linearization and neural network based approach. It can be a reasonable choice 
for control of a wide class of nonlinear systems. The only problem is complexity 
of calculation of control signals. Two methods for solving this problem and 
applying this technique to control of nonlinear MIMO systems are proposed by 
the author in [56] and [57] and will be discussed in detail in the next chapter of 
the thesis. 
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Chapter 5 

 

NN-ANARX model based control of 

nonlinear MIMO systems 
 
It was shown in the previous chapter that NN-ANARX model based dynamic 
output feedback linearization technique is a reasonable choice for control of a 
wide class of nonlinear systems. It has several advantages over others control 
techniques considered in the previous chapter, but at the same time it suffers 
from one serious drawback. Namely, it is not always an easy task to calculate 
exact values of control signals from the dynamics (4.9) of the controller. An 
inverse of a nonlinear function (4.8) has to be calculated. 
 
Newton’s method can be used for numerical calculation of control signal u(t) by 
numerical solving of equation (4.8) in a current working point (for each current 
state of the control system). This approach proposed in [13] and [14]can be 
applied to only SISO models and on each time step it needs about 3 iterations to 
converge. 
 
For modeling of nonlinear MIMO systems, MIMO NN-ANARX model (3.37) 
shown in figure 3.15 was proposed in [56] and [57]. This model belongs to the 
class of Additive NARX models, where inputs and outputs are vectors. By using 
these models, dynamic output feedback linearization technique can be applied to 
control of nonlinear MIMO systems, but practical application of this control 
method is complicated by calculation of a vector of control signals. In case of 
nonlinear MIMO systems numerical solving of equation (4.8) becomes 
extremely complex and practice has shown that classical numerical nonlinear 
optimization algorithms may not converge. Two alternative methods were 
proposed by the author to solve this problem and to apply dynamic output 
feedback linearization technique  to control of nonlinear systems in [56] and 
[57].[58]  
 
Neural network based Simplified ANARX (NN-SANARX) structure is proposed 
[56]. By using this sub-class of ANARX models, calculation of a control signal 
or a vector of control signals becomes very simple and come to solving of a 
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linear equation or a system of linear equations. Linear independence of these 
equations can be controlled after training the network. 
 
The second method proposed in [57] is based on introducing an additional static 
neural network for calculation of control signals by approximating function 
(4.10). In this case not simplified NN-ANARX structure can be used for 
identification of controlled system, which makes this control technique 
applicable to a wider range of nonlinear systems. 
 
Both proposed methods will be discussed in detail in this section. The 
effectiveness of these approaches will be demonstrated on numerical examples. 
 
5.1 Author’s contribution  
 
All the topics discussed in this chapter belong to the contribution of the author of 
this thesis. 
 

• Simplified NN-based ANARX structure is proposed in [56]; 
• Capabilities of this structure for identification of nonlinear SISO and 

MIMO systems is demonstrated [56]; 
• By using NN-SANARX structure of the model, dynamic output 

feedback linearization algorithm is applied to control of nonlinear 
MIMO systems [55][56]; 

• Additional static neural network based approach is proposed in [57] for 
significant simplification of practical application of NN-ANARX model 
linearization based control technique; 

• The proposed control scheme consisting of NN-ANARX model based 
linearizing output feedback and additional static neural network is 
applied to control of nonlinear MIMO systems [57]; 

• The effectiveness of the proposed techniques is demonstrated on 
examples. 

 

5.2 Problem statement 
 
The main problem regarding practical application of dynamic output feedback 
linearization algorithm (4.8)-(4.10) is in calculation of control signals u(t) from 
equation (4.10) or by solving equation (4.8). As nonlinear sigmoid activation 
function ( )⋅1ϕ  is used as activation function in the first sub-layer 

[ ]( )T
tutyWC )(),(111 ⋅ϕ  of neural network (3.18) representing ANARX model 

depicted in figure 3.8, equation (4.8) can not be solved analytically or the 
solution is dramatically complex. Thus, control signals have to be calculated 
numerically. Most numerical algorithms are iterative and need some time to 
converge. It delays the response of the controller and may significantly reduce 
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the speed of the control system by increasing the minimal possible sample time 
of the discrete time control system. 
 
It was shown in [13] and [14] that in case of nonlinear SISO systems, the value 
of the function 1−

F  in (4.10) can be numerically calculated by Newton’s method 
and 3 iterations guarantee sufficient precision. When we have to calculate 
numerous controls this task becomes extremely complex. Inverse of the function 
of several arguments can not be calculated numerically fast enough to satisfy the 
needs of the control system. Practically it means that in many cases numerical 
nonlinear optimization algorithms do not converge or the result is not precise 
and can not be used as a control signal. Because of the problem described above 
the algorithm can not be applied to systems with multiply inputs. 
 
Neural network based ANARX structure for modeling of nonlinear MIMO 
systems is proposed in [56]and [57]. It is depicted in figure 3.15 and can be 
formalized by the following equation 
 

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]( )∑
=

−−−−⋅⋅=
n

i

T

rmiii

T

m ituituityityWCtyty
1

111 ,,,,,,, KKK ϕ  ,

      (5.1) 
 
where m and r is the number of outputs and inputs of the model, Wi and Ci are 
matrixes of synaptic weights, ( )⋅iϕ  is nonlinear activation of neurons in the 
corresponding sub-layer of the hidden layer and n is the order of the model. 
 
When dynamic output feedback linearization algorithm (4.8)-(4.10) is applied to 
control of nonlinear MIMO systems by using MIMO NN-ANARX model (5.1), 
the vector of control signals has to be calculated by solving the following system 
of equations. 
 

( ) ( ) ( ) ( )[ ]( ) ( )ttututytyWCF
T

rm 111111 ,,,,, ηϕ =⋅= KK         (5.2) 
 

where ( ) ( ) ( )[ ]Tmiii ttt ,1, ,, ηηη K=  1,,1 −= ni K  are vectors of inner states of 

controller (4.9) at time step t. The size of this vector corresponds to the size of 
the output vector, because output feedback is used. 
 
Thus, 
 

( ) ( )[ ] ( ) ( ) ( ) ( )( )tttytyFtutu mm

T

r ,11,11
1

1 ,,,,,,, ηη KKK −=         (5.3) 

 
The aim of the researches discussed in this chapter is to solve these problem by 
simplification of practical application of the control algorithm providing 
methods for fast calculation of controls (4.10), (5.3) and to apply ANARX 
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structure based dynamic output feedback linearization algorithm to control of 
nonlinear MIMO systems. 
 
5.3 NN-based Simplified ANARX structure 
 
The problem of calculating the inverse of function F in (4.8) and (5.2) stated 
above can be solved by imposing one more restriction on NN-ANARX structure 
and introducing a new subclass of ANARX models, where the first sub-layer in 
neural network representing ANARX model (see figure 3.8) is linear. It means 
that function ( )⋅1ϕ  in (3.18) and (5.1) is a linear function corresponding to 
ADALINE neurons of the first sub-layer of the corresponding ANARX-type 
neural network: 
 

( )( ) ( )11 111 −⋅=−⋅ tZWtZWϕ ,           (5.4) 
 
where 
 

( ) ( ) ( )[ ]TtutytZ ,=              (5.5) 
 
in case of SISO models and 
   

( ) ( ) ( ) ( ) ( )[ ]Trm tututytytZ ,,,,, 11 KK=                (5.6) 
 
for MIMO models having r inputs and m outputs. 
 
This type of models (sub-class of NN-ANARX models) called Simplified NN-
ANARX models (or NN-SANARX models) was proposed by the author in [56] 
for simplification of calculation of control signals by control algorithm (4.8)-
(4.10) based on this model. If follows from (3.18 and (5.4) that NN-SANARX 
model can be formalized by the following equation 
  

( )∑
=

−⋅+−⋅⋅=
n

i

iii itZWCtZWCty
2

11 )()1()( ϕ          (5.7) 

 
Such a restriction can guarantee that control u(t) can be easily calculated from 
(4.8) or (5.2). It is obvious from (5.7) that we have to have at least second or 
higher order of the model for identification of nonlinear systems ( 2≥n ). It was 
also shown in [55] that dividing linear and nonlinear parts of neural network 
based model does not cause drawbacks in the quality of identification and may 
give advantages in some control applications. 
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5.3.1 NN-SANARX structure for control of nonlinear systems 
 
NN-SANARX models belong to the class of ANARX models. It means that 
ANARX based Dynamic Output Feedback Linearization (see section 2.4.3) can 
be applied to control of nonlinear systems identified by NN-SANARX structure. 
 
As follows from equations (4.9) and (5.7), NN-SANARX model based Dynamic 
Output Feedback Linearization algorithm can be represented by the following 
equations 
 

( ) ( )[ ] ( )ttutyWCF
T

111 , η=⋅⋅=                 (5.8) 
 

( ) ( ) ( ) ( )[ ]( )

( ) ( ) ( ) ( )[ ]( )
( ) ( ) ( ) ( )[ ]( )T

nnnn

T

nnnnn

T

tutyWCtvt

tutyWCtt

tutyWCtt

,1

,1

,1

1

11112

22221

⋅−=+

⋅−=+

⋅−=+

−

−−−−−

ϕη

ϕηη

ϕηη

M
,        (5.9) 

 
where n is the order of the model (number of sub-layers), number of nonlinear 
sub-layers is n-1, v(t) is the reference (desired output). 
 
When linearizing feedback (5.8)-(5.9) is applied to corresponding NN-SANARX 
model (5.7), ( ) ( )ntvty −=  if exact control u(t) is calculated from (5.8). It is 
much easier than calculation of u(t) from (4.8) as it is in case of systems 
identified by NN-ANARX models. 
 
Let’s now define matrix 
 

11 WCT ⋅=            (5.10) 
 
Matrix T can be divided into two parts [ ]21 TTT =  so that 
 

( ) ( )11)1()1( 2111 −⋅+−⋅=−⋅=−⋅⋅ tuTtyTtZTtZWC .       (5.11) 
 
Function (5.8) can now be represented as 
   

( ) ( ) )(121 ttuTtyTF η=⋅+⋅=          (5.12) 
 
and control signal u(t) in (4.10) can be calculated by the following equation 
  

( ) ( )( )tyTtTtu ⋅−= −
11

1
2 )(η          (5.13) 
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if 2T  is a nonsingular square matrix. 
 

It has to be mentioned that in case of SISO systems 2ℜ∈T  is a 12× vector and 
ℜ∈2T  is a real number. So, the proposed control technique can be applied if 

after training the neural network 02 ≠T . It means that input ( )1−tu  has nonzero 

influence on the output of NN-SANARX model ( )tŷ . 
 
Before applying the proposed technique to control of nonlinear MIMO systems, 
consider the following numerical example of NN-SANARX model based 
identification and control of a nonlinear SISO system. To compare with the 
previous results. 
 
5.3.2 Numerical example 5.1 
 
The model of a liquid level system of interconnected tanks [72], [14] is 
represented by discrete time input-output equation (3.21). This system was 
identified by NN-ANARX structure (3.22) with 3 sub-layers of the neural 
network representing this structure (see figure 3.9) corresponding to the third 
order of the model. Identification of system of interconnected tanks (3.21) by 
Neural Network based ANARX model was discussed in section 3.5.2 of this 
thesis and in [14]. Control of this system by ANARX model based dynamic 
output feedback linearization was demonstrated in section 4.4.2 of this thesis and 
in [14]. Here, Neural Network based Simplified ANARX model (5.7) will be 
used for identification of system (3.21) and control of this system by dynamic 
output feedback linearization of obtained NN-SANARX model will be shown. 
 
To obtain parameters of the model (5.7) the network was trained with 
Levenberg-Marquardt algorithm (see section 2.6.2) as neural networks 
representing both ANARX and Simplified ANARX models are restricted 
connectivity networks and LM training algorithm is much more efficient 
compared to other techniques when the network contains a small number of 
synaptic weights [53]. 
 
Neural network with three sub-layers corresponding to the third order model 
(n=3) and with tree neurons on each sub-layer of the hidden layer (l=3) was 
trained. Activation functions of the second and third sub-layer neurons ( ( )⋅2φ  

and ( )⋅3φ ) were smooth logistic sigmoid functions (2.50). Thus, system (3.21) 
was identified by a third order Neural Network based Simplified ANARX model 
represented by the following equation 
 

( )[ ] ( )[ ]( )∑
=

−−⋅+−−⋅⋅=
3

2
11 )(,)1(,1)(

i

T

iii

T
ituityWCtutyWCty ϕ      (5.14) 
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Identified parameters of model (5.14) have the following values: 
 

















=

0.7844-0.8592-

0.21850.9025

0.20040.9195

1W ,  

















=

0.01920.3225

0.19340.0371

0.21840.6558

2W ,  

















=

7.0306-1.0043

0.08590.0298

1.03120.8405

3W           (5.15) 

[ ]0.7288-  0.2042    0.6197  1 =C  

[ ]28.8544-33.7707-19.41872 =C  

[ ]0.2213-  49.0729  5.6447-3 =C  
 
Model validation on the different data set (validation set) shows nearly excellent 
overlap of the model and plant outputs (see Figure 5.1). 
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Figure 5.1 Identification results: output of plant (3.21) vs. output calculated by its 

NN-SANARX model 
 

Mean Square Error on this validation set as low as about 3103 −⋅ . 
 
It can be concluded that strong restrictions imposed by linearity of the first 
sub-layer in NN-SANARX structure (5.14) does not cause any drawbacks in 
quality of identification of a liquid level system of interconnected tanks (3.21). 
The same validation set was used for validation of the model of this system 
represented by NN-ANARX structure (3.22). See section 3.5.2, numerical 
example 3.4. It can be seen by comparing these results that MSE on the 
validation set is about the same and utilizing Simplified ANARX structure may 
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even result in a little bit better quality of the model ( 3103 −⋅  vs. 3104 −⋅ ), but, of 
course, the difference is very small and also depends on random choice of initial 
values of synaptic weights. 
 
NN-SANARX model based Dynamic Output Feedback Linearization algorithm 
(5.8)-(5.9) was used for control of this system. It follows from (5.10) and (5.15) 
that 
 

[ ] [ ]0.74051.3803

0.7844-0.8592-

0.21850.9025

0.20040.9195

0.7288-0.20420.6197 =

















⋅=T      (5.16) 

 
and according to equation (5.11) 
 

1.38031 =T , 0.74052 =T .         (5.17) 
 

02 ≠T  and thus, according to (5.13) control signal u(t) can be calculated as 
 
( ) ( )( )tyttu ⋅−⋅= 11 3803.1)(3504.1 η ,         (5.18) 

 
where y(t) is the current output of the controlled system and )(1 tη  comes from 
the dynamics (5.9) of the controller represented for model (5.14)-(5.15) by the 
following equations 
 

( ) ( ) [ ] ( )
( )

( ) ( ) [ ] ( )
( ) 
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⋅−=+

tu
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tvt

tu
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7.0306-1.0043

0.08590.0298

1.03120.8405

0.2213-49.07295.6447-1

0.01920.3225

0.19340.0371

0.21840.6558

28.8544-33.7707-19.41871

32

221

ϕη

ϕηη

(5.19) 
 
Control algorithm (5.18)-(5.19) was applied to control of this plant by closed 
loop control system corresponding to the scheme depicted in figure 4.7. The 
control system was simulated with piece-constant reference signal v(t). 
Simulation result is depicted in figure 5.2. 
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figure 5.2 Control of a liquid level system of interconnected tanks by NN-SANARX 

based dynamic output linearization 
 

and the corresponding control signal calculated by (5.18) is presented in 
figure 5.3. 
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figure 5.3 Control of a liquid level system of interconnected tanks: control signal 

 
It can be seen from the figure that the output of the system closely follows the 
reference signal. This control system shows the same good performance as NN-
ANARX based control discussed in sections 4.3 and 4.4, but practical 
application is much simpler and more convenient when NN-SANARX model is 
used. Since inverse function can be computed analytically no numerical 
calculation is necessary. Control signal can be computed by solving linear 
equation (5.12). Computation of control signal is fast and does not require any 
time for convergence. Moreover, there is a certain criterion for defining 
applicability of each particular model for dynamic output feedback linearization: 

02 ≠T  or 2T  is a nonsingular matrix. 
 
In the next section an application of the discussed technique to control of 
nonlinear MIMO systems will be shown. 
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5.4 NN-SANARX structure based control of nonlinear MIMO 

systems 
 
Structure of Neural Network representing  Additive Nonlinear AutoRegressive 
eXogenous model for Multiply Input – Multiply Output systems having r inputs 
and m outputs was proposed in [56], [57] and presented in figure 3.15 (See 
section 3.7.2). MIMO NN-ANARX model is represented by expression (5.1). 
 
Neural Network based Simplified ANARX structure proposed by the author in 
[56] has linear activation functions of neurons of the first sub-layer 
 

( ) ( ) ( ) ( )[ ]( ) ( ) ( ) ( ) ( )[ ]Trm

T

rm tututytyWtututytyW ,,,,,,,,,, 1111111 KKKK ⋅=⋅ϕ   
(5.20) 

 
and is a sub-class of ANARX models. MIMO NN-SANARX model can be 
formalized by the following equation 
 

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]( )∑
=

−−−−⋅⋅+

+−−−−⋅⋅=
n

i

T

rmiii

T

rm

T

m

ituituityityWC

tututytyWCtyty

2
11

11111

,,,,,                             

1,,1,1,,1,,

KK

KKK

ϕ
  

(5.21) 
 
After identification of parameters of model (5.21), control algorithm (5.8)-(5.9) 
with vectors  
 
( ) ( ) ( )[ ]tututu r,,1 K=           (5.22) 

( ) ( ) ( )[ ]tytyty m,,1 K=            (5.23) 

( ) ( ) ( )[ ]ttt miii ,1, ,, ηηη K= , for 1,,1 −= ni K         (5.24) 

( ) ( ) ( )[ ]tvtvtv m,,1 K=           (5.25) 
 
can be applied to control of nonlinear MIMO system identified by this model. 
 
Matrixes of synaptic weights of model (5.21) have the following dimensions:  

( )rml
i

iW
+×ℜ∈  and ilm

iC
×ℜ= , where il  is the number of neurons in the 

corresponding i-th sub-layer of the restricted connectivity network depicted in 
figure 3.15. 
 
According to (5.10), ( )rmm

T
+×ℜ∈  and when divided into two parts as shown in 

(5.11), mm
T

×ℜ∈1  is always a square matrix and rm
T

×ℜ∈2 . To calculate vector 
of control signals (5.22), system of linear equations (5.12) has to be solved. It 
can be represented as 
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( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]Tm

T

m

T

r tytyTtttutuT ,,,,,, 11,11,112 KKK ⋅−=⋅ ηη ,     (5.26) 

 

where ( ) ( )[ ]Tm tt ,11,1 ,, ηη K  is the vector of the controller’s first inner state 

obtained from the dynamics of the controller (5.9) in each time step of the 
discrete time control system. 
 
It can be seen that system of linear equations (5.26) has a solution if and only if 

mTrank ≥)( 2 . It does not depend on the values of vector of the controller’s 
inner states (5.24) changing in time and can be very easily checked after training 
the network and obtaining parameters of model (5.21). Matrix 2T  is a constant 
and depends only on parameters of the first sub-layer of the model. It means that 
after training the network, parameters of its first sub-layer should not be changed 
and can not be adjusted on-line during the control process. It imposes additional 
restrictions on NN-SANARX model based adaptive control. 
 
In this research, systems with equal sizes of input and output vectors are 
considered. If mr = , 2T  is a square matrix mm

T
×ℜ∈2  and the criteria for 

applicability of dynamic output feedback linearization to control of nonlinear 
MIMO system represented by NN-SANARX model is nonsingularity of 
matrix 2T . In this case vector of controls can always be calculated as 
 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]( )T

m

T

m

T

r tytyTttTtutu ,,,,,, 11,11,1
1

21 KKK ⋅−= − ηη      (5.27) 

 
and algorithm (5.9), (5.27) can be applied to control of nonlinear MIMO systems 
identified by Neural Network based Simplified ANARX model (5.21). The aim 
of this control system is to track the vector of reference signals (5.25). The 
structure of the corresponding closed loop discrete time control system is 
depicted in figure 5.4 
 

 

u(t) y(t)

Vector of 

desired 

outputs v(t) 

Parameters (W1, …, Wn, C1, …, Cn) 

Nonlinear 
MIMO system 

NN-based 
SANARX model 

Dynamic Output 
Feedback Linearization 

Algorithm 
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figure 5.4 NN-SANARX model based control system 
Consider the following numerical examples of MIMO NN-SANARX structure 
based identification and control of three discrete and continuous time nonlinear 
MIMO systems. These experimental results were shown by the author in [56]. 
 
5.4.1 Numerical example 5.2 
 
A nonlinear MIMO discrete-time system [113], [114], [56], [57] is represented 
by the following first order input-output equations 
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       (5.28) 

 
This system was simulated and a set of input-output data obtained. This training 
data set was used to train the following NN-SANARX structure 
 

 
( ) ( )[ ] ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]( )T

TT

tututytyWC

tututytyWCtyty

2,2,2,2                       

1,1,1,1,

2121222

21211121

−−−−⋅⋅+

+−−−−⋅⋅=

ϕ
     (5.29) 

 
corresponding to the second order of the model ( 2=n ). As it was mentioned in 
section 5.3, minimal order of NN-SANARX model representing a nonlinear 
dynamic system is 2, because of linearity of the first sub-layer. 
 
The first layer consisted of 2 linear neurons ( 21 =l ) and the second layer 

consisted of 5 nonlinear neurons ( 52 =l ) with hyperbolic tangent sigmoid (2.51) 

activation functions ( )⋅2ϕ . Identified parameters of model (5.29) have the 
following values 
 










−−−−

−−
=

6805.07675.02253.02669.1

7308.03075.02909.19239.0
1W , 























−−−

−−−

−−−

=

1096.0   0513.0  1615.0    2699.0

1054.0   0501.0  1549.0    2637.0

0373.00094.00167.0  0259.0

0473.00553.02258.0  1837.0

0424.00046.00214.0  0358.0

2W ,       (5.30) 










−−

−
=

5827.07948.0

8987.01414.0
  1C  
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−−

−−−
=

9052.258546.271403.226542.19867.1

8476.63793.79394.1071466.06868.84
2C  

 
Two sinusoidal input signals were used for generating validation set 

( ) ( ){ }100,,1,0  , K=ttytu vv , where 

 
( ) ( ) ( )( )T

vvv tututu 21 ,= ,           (5.31) 

( ) ( ) 1.02.0sin4.01 +⋅= ttuv           (5.32) 

( ) ( )ttuv ⋅= 1.0sin8.01           (5.33) 
 
and ( ) ( ) ( )( )T

vvv tytyty 21 ,=  is the matrix of corresponding outputs of system 
(5.28). Validation of model (5.29),(5.30) is shown in figure 5.5. 
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figure 5.5 Identification of nonlinear MIMO system (2.57) by second order 

NN-SANARX model (5.28),(5.29): model validation 
 
Model validation shows nearly excellent overlap of the system’s outputs ( )tyv  

and outputs of the model ( )tyv
ˆ . Mean square error on this validation calculated 

by (2.19) was as low as about 41036.1 −⋅ . System (5.28) was represented by 
second order Neural Network based Simplified ANARX structure (5.29) with 
high accuracy and this model can be used for control system design if matrix 2T  
is not singular. 
 
According to (5.10) and (5.30) 
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=

9773.02028.01573.10039.0

5061.07341.00161.02720.1
T          (5.34) 

 
As the system has two inputs and two outputs, it follows from (5.11) that 
 









=

1573.10039.0

0161.02720.1
1T  and 








=

9773.02028.0

5061.07341.0
2T .      (5.35) 

 

2T  is a nonsingular square matrix and 
 










−

−
=−

1940.13299.0

8231.05896.11
2T           (5.36) 

 
It means that NN-SANARX model based dynamic output feedback linearization 
algorithm (5.9),(5.27) can be applied to control of this system as 
 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]( )
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ϕηη

ηη
(5.37) 

 
Using parameters of the model (5.30) and calculated matrixes (5.35), (5.36), 
vector of control signals ( ) ( )[ ]tutu 21 ,  for tracking the references ( ) ( )[ ]tvtv 21 ,  
by nonlinear MIMO system (5.28) can be calculated from the following 
differential equation representing discrete time controller for this system. 
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This control system corresponding to the structure depicted in figure 5.4 with 
dynamic output feedback linearizing controller represented by differential input-
output equation (5.38) was simulated with sinusoidal tracking reference signals 
v1(t) and v2(t). Closed loop simulation results are presented in the next figure. 
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figure 5.6 Closed loop simulation with sinusoidal reference signals 

 
The corresponding control signals u1(t) and u2(t) calculated by (5.28) are 
depicted in figure 5.7. 
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figure 5.7 Control signals for control shown in figure 5.6 

 
The control system was also simulated with piece-constant reference signals. 
The result of this simulation is depicted in figure 5.8. 
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figure 5.8 Closed loop simulation with piece-constant reference signals 
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It can be seen from figures 5.6 and 5.8 that outputs of the control system y1(t) 
and y2(t) are capable of simultaneous tracking the desired reference signals v1(t) 
and v2(t) correspondingly and the proposed NN-SANARX model based control 
technique can be successfully applied to control of nonlinear MIMO 
system (5.28). 
 
5.4.2 Numerical example 5.3 
 
Nonlinear discrete-time system [115], [56] represented by the following input-
output equations was also chosen to evaluate the effectiveness of the proposed 
control algorithm 
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−−
=

tututu
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tututu
tyty

tyty
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   (5.39) 

 
Experiments have shown that the best accuracy of Neural Network based MIMO 
Simplified ANARX model (5.21) of system (5.39) can be obtained training 
network structure corresponding to the third order of the model. It means that 
neural network of the structure depicted in figure 3.15 has to be trained with 3 
sub-layers (first of them is linear and the others are nonlinear). 
 
Unlike system (5.28) shown in the previous example and system to be shown in 
the next example, this system (5.39) was identified by training third order 
MIMO NN-SANARX structure (n=3) represented by the following equation 
 

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
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     (5.40) 

 
Two neurons were used in the linear sub-layer ( 21 =l ) and 7 neurons having 
sigmoid Hyperbolic tangent activation function (2.51) in each nonlinear 
sub-layer ( 732 == ll ) of model (4.50). Matrixes of synaptic weights of the 

model 42
1

×ℜ∈W , 47
32 , ×ℜ∈WW , 22

1
×ℜ∈C , 72

32 , ×ℜ∈CC  were obtained by 
training the corresponding neural network representing MIMO ANARX 
Structure (see figure 3.15). Because of restricted connectivity of the network and 
comparatively small number of parameters to be adjusted, Levenberg-Marquardt 
training algorithm was used to the network. As the modeled dynamic system 
(5.39) and the corresponding model (5.40) have two inputs and two outputs, 

42×ℜ∈T  calculated by (5.10) can be divided into two 22×  matrixes 1T  and 2T  
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as defined in (5.11), where 2T  is a nonsingular matrix. Thus, according to (5.9) 
and (5.27), the following second order discrete-time system (5.41)-(5.42) can be 
used to control nonlinear MIMO system (5.39) by means of parameters of  third 
order MIMO NN-SANARX model (5.40). 
 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]( )TTT
tytyTttTtutu 2112,11,1

1
221 ,,, ⋅−= − ηη        (5.41) 

 

( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]( )
( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]( )TTT

TTT

tututytyWCtvtvtt

tututytyWCtttt

2121333212,21,2

21212222,21,22,11,1

,,,,1,1

,,,,1,1

⋅−=++

⋅−=++

ϕηη

ϕηηηη
  

  (5.42) 
 
Control system corresponding to the structure of the closed loop system depicted 
in figure 5.4 was applied to control of system (5.39). The results of the control 
system simulation with sinusoidal reference signals are shown in the next figure. 
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figure 5.9 Control result: output trajectories vs. reference signals 
 
Simulation presented in the figure shows that by using the proposed control 
technique (5.41)-(5.42), both outputs of system (5.39) are capable of tracking the 
desired trajectories. 
 
5.4.3 Numerical example 5.4 

 
The third test system (5.43) is a nonlinear third order continuous time MIMO 
system, which was used as a test system for control algorithms in [116], [117], 
[118], [119], [56], [57]. The system is represented by the following system of 
differential equations. 
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The considered control system is a discrete-time system and is based on a neural 
network based discrete time model. This system was simulated and input-output 
data was sampled with sample time 0.05sec proposed in [119]. This data set was 
used to obtain a discrete-time MIMO NN-SANARX model (5.21). Neural 
network having structure shown in figure 3.15 with two sub-layers (n=2) of the 
hidden layer corresponding to the second order of discrete-time model (5.29) 
was trained by LM training algorithm. Parameters W1, W2, C1 and C2 of model 
(5.29) were obtained. Matrix T was calculated by (5.10). As system (5.43) has 

two inputs and two outputs 22
21 , ×ℜ∈TT . Nonsingularity of matrix T2 was 

checked and control algorithm (5.38) was applied to the system. The structure of 
the corresponding control system is depicted in figure 5.4. 
 
The following reference signals (5.44) were proposed in [117], [118] and [119] 
for testing of control methods applied to system (5.43). 
 

( )
( )ttv

ttv

sin)(

5.05.0sin2)(

2

1

=

+=
           (5.44) 

 
The same references are also used is this experiment and the result of closed 
loop system (see figure 5.4) simulation is depicted in the next figure. 

0 5 10 15 20 25
-8

-6

-4

-2

0

2

4

Time, sec

O
u
tp

u
ts

reference signal for the first output

reference signal for the second output

first output of the system

second output of the system

 
figure 5.10 Control of nonlinear MIMO continuous time system (5.43): output 

trajectories vs. reference signals 
 
It can be seen from the figure that the control system is capable of tracking both 
reference signals v1(t) and v2(t) when the proposed control algorithm is applied. 
 



 123

Neural Network based Simplified ANARX structure (5.7) introduced here can 
help to overcome some limitations of ANARX structure based control. Namely, 
calculation of control signals by dynamic output feedback algorithm becomes 
much simpler and faster. It does not require any numerical calculation, which 
takes several iterations to converge and comes to solving a linear equation or 
system of linear equations (5.12) instead of numerical calculation of inverse 
function of nonlinear function (5.3). The condition for applicability of the 
considered control technique is nonlsingularity of matrix T2 defined in (5.11) 
and computed from parameters W1, C1 of the first sub-layer of NN-SANARX 
model , which can be very easily checked after training the model. 
 
By using NN-based Simplified ANARX model (5.21), dynamic output feedback 
linearization algorithm (2.36)-(2.38) was successfully applied to control of 
nonlinear MIMO systems. 
 
The effectiveness of the proposed control technique was demonstrated on 
numerical examples 5.1-5.4. 
 
The main drawback of the proposed NN-SANARX model based control 
technique is restriction imposed on the model by linearity of the first sub-layer 
of the corresponding neural network representing ANARX structure. In spite of 
the fact that this control method can be successfully applied to a wide class of 
nonlinear systems as demonstrated by numerical examples, restrictions imposed 
by simplification of ANARX model can lead to some constriction of the class of 
nonlinear system to which this control algorithm can be used.  
 
An alternative approach for simplification of practical application of ANARX 
model based dynamic output feedback linearization to control of nonlinear 
systems was proposed by the author in [57]. The proposed technique also makes 
possible to apply ANARX model linearization algorithm to control of nonlinear 
MIMO systems without imposing additional restrictions on structure and/or 
functionality of NN-based ANARX model. It is based on introducing an 
additional static neural network into the control system for calculation of 
approximated control signals u(t) from parameters of ANARX model and 
dynamics of the controller. This approach will be discussed in the next section. 
 
5.5 Additional neural network based approach for practical 

application of ANARX model based Dynamic Output Feedback 

Linearization algorithm to control of nonlinear systems 
 
In the previous two sections control technique based on dynamic output 
feedback linearization of Neural Network based  Simplified ANARX model of 
the controlled system was considered. In this case exact values of control signals 
can be very easily analytically calculated by solving system of linear equations 
(5.12) if the corresponding condition ( mTrank ≥)( 2 ) is satisfied, but this 
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approach imposes additional restrictions on NN-ANARX model (linearity of the 
first sub-layer). This approach is based on dynamic output feedback linearization 
of ANARX model (5.1) without any additional restrictions. Additional static 
neural network has to be trained for calculation of control signals. Approximated 
values of vector of control signals u(t) is used, but this technique can be applied 
to a wider class of nonlinear systems. It can be used for control of all nonlinear 
systems identified by ANARX models. 
 
In order to use the dynamic output feedback linearization algorithm for control 
of nonlinear systems, function (2.37) has to be calculated to produce control 
signals. It means that inverse function of (2.38) has to be found. Function 

( ))(),(1 tutyf  is the first element of sum (2.13) representing ANARX model of a 
nonlinear system. When ANARX model is represented in the form of neural 
network (3.18) shown in figure 3.9, function (2.38) takes the form (4.8) and is 
corresponding to the function of the first sub-layer of NN-ANARX model (3.18).  
 
Because of well known neural networks approximation capabilities, a neural 
network can be trained to approximate function (2.37) or (4.10) and to find an 
inverse of function (2.38) or (4.8). These functions ( ) ( ))(),(11 tutyft =η  and 

( ) [ ]( )T
tutyWCt )(),(1111 ϕη =  are static functions of arguments u(t) and y(t) 

producing an output value ( )t1η . When ANARX model is obtained, this 
function can be considered as a separate system and simulated with random 
inputs to produce a set of input-output data which can be used as a training set 
for approximation of function 
 

))(),(()( 1 ttytu ηψ= ,           (5.45) 
 
where ( )⋅ψ  is a nonlinear map performed by a feedforward neural network. 
According to Stone-Weirstrass theorem [44], [17], a two-layer perceptron with 
nonlinear sigmoid activation functions of its hidden layer neurons is capable of 
approximating any arbitrary continuous map to within a desired accuracy. It 
means that function (5.45) can be obtained by training a two-layer perceptron 
 

( ) ( ) ( )[ ]( )T
ttyWCtu 1000 ,ηϕ= ,          (5.46) 

 
where W0 is the matrix of synaptic weights between input vector and the hidden 
layer neurons, C0 is the vector of output layer synaptic weights and ( )⋅0ϕ  is a 
nonlinear sigmoid-type activation function of the hidden layer neurons. 
 
It was demonstrated in [13] and [14] that for a wide class of nonlinear systems, 
Neural Network based ANARX model is capable of representing original model 
with high degree of accuracy. Here ANARX models of nonlinear systems 
represented by a neural network of the corresponding structure will be 
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considered.  When NN-ANARX model is used to identify a nonlinear system, the 
first sub-layer 
 

( ) ( ) ( )[ ]( )T
tutyWCt ,1111 ⋅= ϕη         (5.47) 

 
can be considered as a system for generating a data set for training neural 
network (5.46). 
 
NN-ANARX model based dynamic output feedback linearization control 
algorithm can now be represented as follows. 
 

[ ] ))(),(()( 1000
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ttyWCtu ηϕ=          (5.48) 
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and the structure of the corresponding control system is presented in figure 5.11. 

 
figure 5.11 NN-ANARX model based control with additional neural network 

 
For convenience of comparing with the previously discussed technique, this 
control system was simulate on the same test systems. Consider the following 
example of a nonlinear SISO system control by dynamic output feedback 
linearization of NN-ANARX model with additional neural network. 
 
5.5.1 Numerical example 5.5 
 
The model of a liquid level system of interconnected tanks [72] is represented by 
the input-output equation (3.21). Identification of this system by NN-based 
ANARX model was demonstrated in [14] and discussed in detail in section 3.5.2 
(numerical example 3.4) of this thesis. Third order NN-ANARX model (3.22) 
with parameters (3.23) was obtained. Identified parameters of the second and the 
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third sub-layer of the network 2W , 3W , 2C , 3C  were used for constructing the 
dynamics of the second order controller according to (5.49) as 
 

[ ]( )
[ ]( )T

T

tutyWCtvt

tutyWCtt

)(),()()1(

)(),()()1(

3332

22221

⋅−=+

⋅−=+

ϕη

ϕηη
         (5.50) 

 
and by using parameters of the first sub-layer 1W , 1C , it was simulated as a 
separate system (5.47) to generate training data set for approximation of function 
(2.37) by (5.46). It was simulated with random u(t) and y(t) values. The 
sequence of corresponding values ( )t1η  was calculated. Vectors ( ) ( ){ }tty 1,η  
were used as inputs and vector u(t) was used as the etalon values for training of 
network (5.46). Parameters W0 and C0 of this additional network were calculated 
by the LM training algorithm on the training set consisting of 1000 data patterns. 
logistic sigmoid activation function (2.50) was used as activation function ( )⋅0ϕ  
of neurons of the hidden layer of network (5.46). This network was validated on 
the different data set consisting of 500 random input and corresponding output 
values. The mean square error on the validation data set was as low as 

about 5107.5 −⋅ . This network was used with dynamic output feedback 
linearization (5.50) for calculation of control signals according to 
equation (5.46). 
 
Algorithm (5.46), (5.50) was applied to control of nonlinear system (3.21). 
Figure 5.12 shows that the output of the system closely follows the reference 
signal. 
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figure 5.12 Control of the liquid level system of interconnected tanks 

 
The corresponding control signal calculated by (5.46) is depicted in figure 5.13. 
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figure 5.12 Control signal for the liquid level system of interconnected tanks 

 
The result can be compared to the technique based on calculation of control 
signal by the Newton’s method proposed in [14] and discussed in section 4.4.2 
(numerical example 4.5) of this thesis and also to the control based on NN-
SANARX model presented in [56] and discussed in detail in sections 5.3.1-5.3.2 
(numerical example 5.1) of this thesis. By comparing these approaches it can be 
concluded that the proposed control technique has better performance. Control 
of liquid level system of interconnected tanks (3.21) by the method based on 
additional neural network has no overshoots (see figure 5.11) and smaller 
regulation time. 
 
There is no need to compute an inverse model of a dynamic system only inverse 
of static function (5.47) has to be approximated by training a static neural 
network (two-layer perceptron). After additional network is trained, control 
signals can be calculated very fast by function (5.48). No numerical computation 
requiring several iterations to converge is needed. 
 
Additional network (5.48) can also be trained for MIMO ANARX model (5.11) 
shown in figure 3.15 and thus the considered control technique can also be 
applied to control of nonlinear MIMO systems as will be demonstrated in the 
next section. 
 
5.6 NN-ANARX structure based control of nonlinear MIMO systems 
 
In case of MIMO systems u(t) and y(t) are vectors of system’s inputs and outputs. 

( ) 1×ℜ∈ r
tu  and ( ) 1×ℜ∈ m

ty  as defined in (5.22) and (5.23). Neural network 
representing ANARX structure is depicted in figure 3.15 (see section 3.7.2) and 
can be formalized by difference equation (5.1). System of first order difference 
equations representing the dynamics for output linearization remains the same as 
in case of linearization of Simplified ANARX structure and is defined by (5.9). 
Because of nonlinearity of the first sub-layer, (5.2) has to be solved. It can be 
done by approximation of (5.3) by training an additional static neural network 
representing an inverse of (5.2). 
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First sub-layer of the network (5.1) representing ANARX structure for MIMO 
systems 
 

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]( )T

rm

T

m tututytyWCtt ,,,,,,, 11111,11,1 KKK ⋅= ϕηη       (5.51) 

 
can be simulated as a separate system to generate training input-output data set 
for training neural network performing map (5.52) 
 

( )[ ] ( )[ ] ))(,),(,),((),( 1110001
T

mmm

T

r tttytyWCtutu ηηϕ KKK = .     (5.52) 
 

Here ml
W

2
0

×ℜ∈  and lr
C

×ℜ∈0  are matrices of synaptic weights of the hidden 

and the output layers, ( )⋅0ϕ  is an activation function of the neurons of the hidden 
layer and l is the number of hidden layer neurons. This network can be used for 
calculation of control signals by dynamic output feedback linearization 
algorithm (5.8)-(5.9) for control of  nonlinear MIMO systems. 
 
Consider the following examples demonstrating the effectiveness of the 
proposed approach. This control method was also simulated on the same 
nonlinear MIMO systems as the previous one for convenience of comparison 
between them. 
 
5.6.1 Numerical example 5.6 
 
A nonlinear MIMO discrete-time system [113], [114], [56], [57] with two inputs 
and two outputs represented by input-output equations (5.28) was simulated and 
the obtained  set of input-output data was used for training of MIMO NN-based 
ANARX structure (5.1) depicted in figure 3.15 with two sub-layers 
corresponding to the second order of model (5.53). 
 

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]( )∑
=

−−−−⋅⋅=
2

1
212121 ,,,,

i

T

iii

T
ituituityityWCtyty ϕ .     (5.53) 

 
The first layer consisted of 2 neurons ( 21 =l ) and the second layer consisted of 

5 neurons ( 52 =l ). Both sub-layers used hyperbolic tangent sigmoid (2.51) 
activation functions of their neurons. Identified parameters of trained model 
(5.53) have the following values: 
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−−
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6664.1671208.168

0755.1006799.112
1C , 










−−

−−
=

7634.00401.2422107.07769.08741.99

9161.06156.4880253.04724.10781.196
2C . 

 
Model (5.53) with identified parameters (5.54) was validated on sinusoidal input 
signals (5.32)-(5.33). The result of the model validation is depicted in the next 
figure. 
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figure 5.13 Identification of nonlinear MIMO system (5.28) by second order NN-based 

ANARX model (5.53)-(5.54): model validation 
 
It can be seen from the figure that this second order MIMO NN-based ANARX 
model represent nonlinear MIMO system (5.28) with high accuracy. Both 
outputs of the model closely repeats the outputs of the system. Mean Square 

Error on this validation set is about 41032.1 −⋅ , that is about the same good as in 
case of identifying this system by NN-based Simplified ANARX structure 
shown in numerical example 5.2 (see section 5.4.2). 
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After training the model, its first sub-layer was simulated as a separate system 
with four inputs ( ) ( ) ( ) ( )tututyty 2121 ,,,  and two outputs 1211 ,ηη  represented by 
function (5.55). 
 

[ ] [ ] 




 ⋅= TT

tututytyWCtt )(),(),(),()(),( 21211111211 ϕηη .         (5.55) 

 
Static function (5.55) was simulated with random inputs and the obtained data 
set was used to train a two-layer perceptron approximating an inverse of this 
function as 
 

[ ] [ ]( )TT
tttytyWCtutu )(),(),(),()(),( 12112100021 ηηϕ ⋅= ,       (5.56) 

 
where ( )⋅0ϕ  is a nonlinear sigmoid activation function (2.51) of the hidden layer 
neurons. Experiments have shown that 4 neurons in the hidden layer is enough 
to approximate function (5.3) with accuracy satisfying the requirements of the 
control system. Identified parameters of additional neural network (5.56) are as 
follows: 
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−−−

−−
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8438.117998.511436.1289163.57

8034.434722.323111.753913.55
0C  

 
After second order ANARX model (5.53) of system (5.53) is identified, first 
order dynamics of the controller can be obtained from the dynamic output 
feedback linearization algorithm (5.9) by using model’s parameters (5.52) as 
 

[ ] ( ) ( )[ ] [ ]( )TTT
tututytyWCtvtvtt )(),(),(),(,)1(),1( 2121222211211 ⋅−=++ ϕηη  

(5.58) 
 
and the vector of control signals can be very easily and fast computed by static 
neural network (5.56). It follows from these equations that the controller for this 
nonlinear MIMO system can be represented by the following first order 
difference equation. 
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System (5.59) with identified parameters W0, W2, C0 and C2 from (5.54), (5.57) 
was used to control of nonlinear MIMO system (5.28). The control system 
corresponding to the closed loop system depicted in figure 5.11 was simulated 
with sinusoidal reference signals v1(t) and v2(t) - see figure 5.14. 
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figure 5.14 MIMO NN-ANARX model based control: closed loop simulation with 

sinusoidal reference signals 
 
The corresponding control signals u1(t) and u2(t) calculated by (5.59) are 
depicted in figure 5.15. 
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figure 5.15 MIMO NN-ANARX model based control: control signals 
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Control system based on dynamic output feedback linearization of ANARX 
model was also simulated with piece-constant reference signals. The results of 
this simulation are depicted in figure 5.16. 
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figure 5.16 MIMO NN-ANARX model based control: closed loop simulation with 

piece-constant reference signals 
 
It can be seen from figures 5.14 and 5.16 that outputs of the control system y1(t) 
and y2(t) are capable of simultaneous tracking the desired reference signals v1(t) 
and v2(t) correspondingly when the proposed control technique is applied. 
 
It can also be concluded by comparing these results with the results obtained by 
using NN-based Simplified ANARX model discussed in section 5.4.1 
(numerical example 5.2), that both proposed technique lead to about the same 
good accuracy of tracking the reference signals by dynamic output feedback 
linearization algorithm.  
 
5.6.2 Numerical example 5.7 

 
Nonlinear discrete-time system [115], [56] represented by input-output equations 
(5.39) was also used to evaluate the effectiveness of the proposed control 
algorithm. This system was identified by MIMO NN-ANARX structure with 
two sub-layers (5.53) corresponding to the second order of the model. 
 
Unlike in numerical example 5.3 (see section 5.4.2), when NN-based MIMO 
NN-ANARX structure with all nonlinear layers is used, this system can be 
successfully identified by the model of th second order. Smaller order of the 
model in this case decreases the order of the controller making control system 
simpler and faster without reducing the quality of the control. 
 
After parameters of the model W1, W2, C1 and C2 were identified, the first sub-
layer (5.55) was simulated with random inputs to produce a training data set for 
training neural network (5.56) approximating function 5.3. 
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Additional neural network (5.56) was trained and parameters W0, C0 of the 
inverse function of (5.55) were identified. After that, ANARX mode based 
dynamic output feedback linearization algorithm (4.8)-(4.9) can be applied to 
control of nonlinear MIMO system (5.39). The dynamic system (5.59) represents 
the controller for this nonlinear system. The control system was simulated with 
sinusoidal reference signals v1(t) and v2(t) as in example 5.3. The result of the 
control system simulation is presented in figure 5.17. 
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figure 5.17 Control system simulation: output trajectories vs. reference signals 

 
It can be seen from the figure that by using additional neural network, dynamic 
output feedback linearization algorithm based on MIMO NN-ANARX model 
can be applied to control of nonlinear MIMO system (5.39). The control system 
is capable of simultaneous tracking of both reference signals. By comparing this 
result with dynamic output feedback linearization based on Simplified ANARX 
model presented in figure 5.9 (see section 5.4.2) it can be mention that by using 
NN-ANARX model with all nonlinear sub-layers, the order of the control 
system can be reduced without significant loss in quality of control. Second 
order MIMO NN-ANARX model can be used instead of third order MIMO 
NN-SANARX model for identification of second order nonlinear discrete time 
system (5.39). 
 
The control technique based on dynamic output feedback linearization of 
ANARX model with additional neural network for calculation of control signals 
was also applied to control of a nonlinear MIMO continuous time system. 
Consider the following example. 
 
5.6.3 Numerical example 5.8 

 
Nonlinear continuous time MIMO system (5.43), which was used as a test 
system for control algorithms in [116], [117], [118], [119], [56], [57] was 
identified by discrete time second order MIMO NN-ANARX model (5.53) with 
sample time 0.05sec proposed in [119]. 
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Control technique (5.59) based on calculation of inverse function (5.52) of the 
first sub-layer (5.51) of the network representing ANARX model (5.53) of this 
system was applied to control of this system. Closed loop system corresponding 
to the scheme shown in figure 5.11 was simulated with reference signals (5.44) 
were proposed in [117], [118] and [119]. These reference signals were also used 
in example 5.4 for evaluation of control system based on NN-SANARX model. 
The result of this is presented in the following figure. 
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figure 5.18 Control of nonlinear continuous time MIMO system (5.43): output 

trajectories vs. reference signals 
 
It can be seen from the figure that by using the proposed approach the system is 
capable of tracking the desired trajectories. By comparing this result with the 
results discussed in section 5.4.3 (numerical example 5.4) and shown in 
figure 5.10 it can be seen that using Simplified ANARX structure and analytical 
approach to calculation of controls from the dynamics of the controller results in 
nonoscillating   output trajectories with higher overshooting when in case of 
nonanalytical approach with fully nonlinear NN-based ANARX model. 
 
It can be seen from numerical examples 5.2-5.4 and 5.6-5.8 that dynamic output 
feedback linearization algorithm (4.8)-(4.9) can be successfully applied to 
control of a wide class of nonlinear MIMO systems. The problem of practical 
calculation of a vector of control signals from the dynamics of the output 
linearization based controller is solved by introducing two approaches. By 
introducing NN-based Simplified ANARX structure, the vector of controls can 
be analytically very easily computed by solving system of linear equations 
(5.12). When fully nonlinear NN-based ANARX structure has to be used to 
model a nonlinear MIMO system, nonanalytical additional neural network based 
approach is proposed for calculation of control signals. Results of simulations 
show that both techniques result in about the same good quality of control. It 
was also shown by simulations that these approaches give several advantages in 
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control of nonlinear SISO systems. From the view point of these algorithms, 
SISO systems can be considered as a sub-class of MIMO systems. 
 
Because of neural networks’ well known ability to learn and to change their 
behavior in response to changes in environmental conditions, dynamics of the 
process and disturbances, an adaptive controller can be easily designed when an 
artificial neural network is used to model the process under control. Adaptive 
output feedback control based on NN-ANARX models with history-stack 
adaptation for nonlinear SISO systems was presented in [14] and discussed in 
detail in section 4.4 of this thesis. Experimental results shown in numerical 
examples 4.5 and 4.6 demonstrate the effectiveness of this approach. 
 
Both of the techniques proposed in this chapter and applied to control of 
nonlinear MIMO systems by output feedback impose some restriction to the 
adaptation technique. That is why adaptive control of nonlinear MIMO systems 
by output linearization of NN-ANAARX and NN-SANARX models needs to be 
considered separately in the next section. 
 
5.7 NN-ANARX and NN-SANARX model based adaptive control of 

nonlinear MIMO systems 
 
Adaptive control of nonlinear SISO systems by dynamic output feedback 
linearization (4.8)-(4.9) with history-stack adaptation of NN-based ANARX 
model was demonstrated in [14] and discussed in detail in section 4.4 of this 
thesis. The same control algorithm was also applied to control of nonlinear 
MIMO systems [56], [57] by using two methods shown above in this chapter.  
 
The first approach [56] (see sections 5.3-5.4) is based on introducing a neural 
network based Simplified ANARX structure (5.21) having linear first sub-layer. 
Parameters W1 and C1 of this sub-layer are used for analytical calculation of 
vector of control signals (5.22) linearizing NN-SANARX model by solving 
system of linear equations (5.26). The criteria of applicability of this technique is 
nonsingularity of matrix T2 calculated. It can be seen from (5.10) and (5.11) that 
T2 depends on parameters of the first sub-layer of the corresponding neural 
network representing SANARX structure. This criteria can be very easily 
checked after identifying the model by training the network. 
 
When neural network is adjusted on-line by an adaptation algorithm, it can not 
be somehow guaranteed that matrix T2 will not become singular or close to 
singular at any time instance. Thus, this sub-layer with synaptic weights W1 and 
C1 should not be changed by the adaptation algorithm. 
 
The second approach [57] (see sections 5.5-5.6) is based on introducing an 
additional static neural network (5.52) into the control system (see figure 5.11) 
approximating function (5.3). This nonlinear function (5.52) represents an 
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inverse of  function (5.51) corresponding to the first sub-layer of neural network 
(5.1) representing fully nonlinear ANARX models of MIMO systems. This 
additional neural network has to be trained before running the control system. To 
train this network, the first sub-layer of NN-based ANARX model (5.1) has to 
be simulated with random inputs. This gathered training data set is used to 
identify parameters W0 and C0 of additional static network (5.52). 
 
It is obvious that if an adaptation algorithm adjusting parameters of the model is 
applied, changing synaptic weights W1 and C1 of the first sub-layer of MIMO 
NN-ANARX model leads to necessity of adjusting parameters W0 and C0 of 
additional network as well by simulating the first sub-layer, gathering additional 
training set and adjusting parameters of this network after adjusting the model. 
Evidently, these actions can not be practically performed on-line when fast 
response from the controller is needed. It means that the first sub-layer of MIMO 
NN-ANARX model (5.1) should not be included in the adaptation procedure. 
 
In case of both methods making possible practical application of NN-ANARX 
model based output feedback control technique to control of nonlinear MIMO 
systems, first sub-layer of the corresponding network representing the model in a 
suitable form, has to be excluded from the network during the adaptation 
procedure. The corresponding changes have been introduced into the model 
adaptation algorithm as will be shown below. 
 
From the viewpoint of the control algorithm, both MIMO NN-ANARX (5.1) and 
MIMO NN-SANARX (5.21) models can be represented as follows 
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(5.60) 
 

where from one side (from the model’s viewpoint), vector ( ) ( )[ ]Tm tt ,11,1 ,, ηη K  is 

the vector outputs of the first sub-network.  
 
Here a sub-network is a sub-layer multiplied by the corresponding output matrix 
of synaptic weights of neural network having structure depicted in figure 3.9 or 
3.15. 
 
For MIMO NN-SANARX models 
 

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]Trm

T

m tututytyWCtt 1,,1,1,,1,, 1111,11,1 −−−−⋅⋅= KKK ηη  (5.61) 
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and for MIMO NN-ANARX models 
 

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]( )T

rm

T

m tututytyWCtt 1,,1,1,,1,, 11111,11,1 −−−−⋅⋅= KKK ϕηη .  

    (5.62) 
 
From another side, vector ( ) ( )[ ]Tm tt ,11,1 ,, ηη K  comes at each time step from the 

dynamics (5.9), (5.48) of the controller. Parameters of the next n-1 sub-networks 
are used to derive this dynamics and weighted sum of outputs of these sub-layers 
produce an adaptive neural network – adaptive part of the model. It can be 
represented by the following equation. 
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   (5.63) 
 

where, ( ) ( )[ ]Ta
m

a
tyty ,,1 K  is the vector of outputs of neural network representing 

adaptive part of model (5.60). From the other side, 
 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]1,,1,,,, ,11,111 −−−= tttytytyty mm
a
m

a ηη KKK .      (5.64) 

 
Equation (5.64) can be used to produce a training data set for adaptation of the 
model when vector ( ) ( )[ ]tyty m,,1 K  is obtained from the output of the controlled 

system and vector ( ) ( )[ ]tt m,11,1 ,, ηη K  is computed by the dynamic feedback 

controller. 
 
History-stack adaptation technique discussed in section 4.4.1 was used for 

adaptation of (5.63). Set of vectors ( ) ( )[ ] ( ){ }p

aT
niityituity ,,1,,, K=−−−  is 

used as the training set for model adaptation by on-line training of (5.63). Here 
 

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]tututytytuty rm ,,,,,, 11 KK= ,        (5.65) 
 

vector ( )ty
a  is defined by (5.64) and np is the number of patterns in the stack 

(size of the history-stack). 
 
The gradient descent training algorithm (see section 2.6.1 of this thesis) was 
chosen to perform on-line adaptation because of shorter iterations and 
consequently faster calculation of changes nn CCWW ∆∆∆∆ KK ,,, 22 of 
parameters of model (5.60) at each time step. 
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The structures of control schemes for adaptive control of nonlinear MIMO 
systems based on dynamic output feedback linearization of NN-ANARX and 
NN-SANARX models with history-stack adaptation are presented in figures 
5.19 and 5.20. SISO systems can be considered as a special case of MIMO 
systems and the same approach to control system adaptation should be 
implemented when the system is being controlled by dynamic output feedback 
based on NN-SANARX model or NN-ANARX model with additional neural 
network. 
 
When NN-based Simplified model (5.21) is used for identification of a nonlinear 
MIMO system under control, the corresponding adaptive control system has the 
structure depicted in the following figure. 

 
figure 5.19 Adaptive control of nonlinear MIMO systems: Structure of closed loop 

system with dynamic output feedback linearization of NN-SANARX model and 
history-stack adaptation 

 
It can be seen from the scheme that the adaptation algorithm (HSA) utilizes 
current inputs and outputs from the output of the controlled system together with 
the vector of inner states of the controller. Thus, adaptation is based on the 
following vectors 
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and adaptation is applied to only a part of the model - to adaptive 
sub-networks (5.63). 
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When a nonlinear MIMO system is identified by a fully nonlinear NN-based 
ANARX structure (5.1), the corresponding adaptive control system can be 
represented by the structure depicted in figure 5.20. 

 
figure 5.20 Adaptive control of nonlinear MIMO systems: Structure of closed loop 

system with dynamic output feedback linearization of NN-ANARX model,  
additional neural network and history-stack adaptation 

 
Adaptive control of a nonlinear MIMO system was simulated by using both of 
these approaches and is considered in the next section. By simulating both 
MIMO NN-ANARX and MIMO NN-SANARX models based control schemes 
(see figures 5.19 and 5.20) with input/output disturbances and flowing 
parameters, the robustness of both control systems is also studied and compared 
in the following numerical example. 
 
5.7.1 Numerical example 5.9 

 
A nonlinear MIMO discrete-time system [113], [114], [56], [57] represented by 
the input-output equations (5.28) was identified by NN-based Simplified 
ANARX model (5.29) with two sub-layers corresponding to the second order of 
NN-SNARX model as shown in section 5.4.1 (numerical example 5.2). Synaptic 
weights (5.30) were obtained by training the neural network representing the 
model. After that, algorithm (5.37)-(5.38) based on dynamic output feedback 
linearization of this model was successfully applied to control of system (5.28). 
The structure of the corresponding nonadaptive control system is presented in 
figure 5.4. 
 
The same system (5.28) was also identified by second order MIMO NN-based 
ANARX model (5.53). Identification of this system by NN-ANARX model and 
control based on this model with additional neural network (5.56) was 
demonstrated in section 5.6.1 of this thesis (numerical example 5.6). Identified 
parameters (5.54) of the model and synaptic weights (5.57) of the additional 
neural network were used for control of this system by algorithm (5.59) based on 
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dynamic output feedback linearization of NN-ANARX model according to 
closed loop control system depicted in figure 5.11. 
 
Both control technique give about the same good result when the systems are 
simulated without disturbances and with constant parameters of the controlled 
system represented by equations (5.28). At the same time, the aim of the 
adaptive controller is to modify its behavior in response to changes in the 
dynamics of the process and disturbances [42], [43]. That is why both control 
systems were simulated with input and output disturbances as well as with time-
varying parameters of (5.28). 
 
First of all, both NN-SANARX (see figure 5.4) and NN-ANARX (see 
figure 5.11) models based control systems were simulated with input and output 
disturbances without adaptation. The following disturbances were added to 
inputs and outputs of system (5.28). 
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where ( )td
i
j  is the disturbance level added to the j-th input of the system at time 

step t; ( )td
o
j  is the disturbance added to the j-th output at time step t and ( )n1111  is 

the Heaviside step function: 
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The results of simulation of both control systems (5.38) and (5.59) with input 
and output disturbances (5.67) are depicted in figures 5.21 and 5.22. Control was 
simulated for 1000,,1,0 K=t  and adaptation was not applied. It means that 
parameters (5.30) and (5.54) of the models and consequently parameters  of the 
controllers remained the same during all the simulation time. In this case the 
influence of disturbances to the outputs of the closed loop control systems can be 
easily seen from the following figures and used for comparison of the robustness 
of the proposed approaches. 
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figure 5.21 Simulation of NN-based Simplified ANARX model based nonadaptive 

control system with input and output disturbances 
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figure 5.22 Simulation of NN-based ANARX model based nonadaptive control system 

with input and output disturbances 
 
Next, an influence of changes in the dynamics of the controlled process can be 
studied. In order to do it, four random parameters of equations (5.28) 
representing the dynamics of the controlled nonlinear MIMO system were 
chosen to change in time. In this case equations (5.28) take the following form. 
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where 
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For (5.70)-(5.73), [ ]3000 ;0∈t . 
 
Changes of these parameters are also illustrated by figure 5.23 correspondingly 
to (5.70)-(5.73). 
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figure 5.23 changes of parameters of the controlled system in time 

 
It can be seen from figure 5.23 and equations (5.69)-(5.73) that parameters of 
system (5.28) are changing during the control simulation up to 100% of their 
initial values. 
 
To show the influence of the parameters’ variations to outputs of the control 
systems, the same control systems as in numerical examples 5.2 and 5.6 were 
simulates with system (5.69) having time-varying parameters (5.70)-(5.70). The 
results of simulation of these control systems corresponding to two techniques 
for dynamic output feedback linearization based control of nonlinear MIMO 
systems proposed in the thesis are depicted in figures 5.24 and 5.25. In this 
experiment, the control systems were simulated without adaptation. 
 
First, consider the control of system (5.69)-(5.73) by method (5.37)-(5.38) based 
on MIMO NN-SANARX model (5.29)-(5.30). 
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figure 5.24 Simulation of NN-SANARX model based nonadaptive control with flowing 

parameters of the controlled system 
 
Now, consider the control of the same system by method (5.59) based on MIMO 
NN-ANARX model (5.53)-(5.54) and additional neural network (5.56)-(5.57). 
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figure 5.25 Simulation of NN-ANARX model and additional neural network based 

nonadaptive control with flowing parameters of the controlled system 
 
An important conclusion regarding robustness of the proposed algorithms can be 
made from these figures. It can be easily seen by comparing figure 5.21 with 
figure 5.22 and figure 5.24 with figure 5.25 that, if no model adaptation is used, 
control technique based on linearization of NN-SANARX model of a nonlinear 
MIMO system has much higher robustness than control technique based on 
linearization of fully nonlinear NN-ANARX model by using additional neural 
network. 
 
To improve the robustness of these algorithms, especially the second one, an 
adaptation proposed in section 5.7 was added to both of the control techniques. 
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In both cases a part of the model (5.63) is adjusted on-line by using history-stack 
adaptation. 
 
For second order NN-ANARX (5.29) and NN-SANARX (5.53) models of 
nonlinear system (5.28) having two inputs and two outputs, the adaptive part of 
the model corresponding to the second sub-layer of the corresponding neural 
network (the structure of the network is depicted in figure 3.15) is represented 
by the following equation 
 

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]( )TTaa
tututytyWCtyty 2,2,2,2, 212122221 −−−−⋅⋅= ϕ      (5.74) 

 
and the vectors of targets for training the model can be calculated according to 
(5.64) as 
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where for MIMO NN-based Simplified ANARX model 
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and for MIMO NN-based ANARX models 
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Thus, for each time step pnt ≥  history-stack is formed as 
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and for each time step pnt <  the size of the stack equals t. 

 
In the adaptive control experiments shown in this example below, the maximal 
size of the history-stack was chosen as 200=pn .  

 
Adaptive control of nonlinear MIMO system (5.28) with input and output 
disturbances (5.67) by dynamic output feedback linearization of NN-based 
Simplified ANARX model according to the structure of the control system 
depicted in figure 5.19 was simulated. The results of this simulation are shown 
in the following figure. 
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figure 5.26 Simulation of NN-SANARX model based adaptive control of nonlinear 

MIMO system with input and output disturbances 
 
After that, the same adaptive control technique was also applied to the same 
system, but with flowing parameters (5.69)-(5.73). See figure 5.27. 
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figure 5.27 Simulation of NN- SANARX model based adaptive control of nonlinear 

MIMO system with flowing parameters 
 

It can be seen from the figures, that this adaptive control system presented in 
figure 5.19 is capable of tracking the desired reference signals compensating 
undesirable influence of disturbances and changes in the dynamics of the process. 
By comparing figure 5.26 with figure 5.21 and figure 5.27 with figure 5.24, a 
significant improvement in quality of control in case of disturbances and 
changing parameters can be seen when the proposed adaptation technique is 
used. 
 
In the next figures the results of simulation of the adaptive control based on 
NN-ANARX model with additional neural network and history stack adaptation 
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is presented. The corresponding structure of the closed loop control system is 
depicted in figure 5.20. This control strategy was also applied to nonlinear 
MIMO system (5.28) with input-output disturbances (5.67) and flowing 
parameters (5.69)-(5.73). Consider figures 5.28 and 5.29. 
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figure 5.28 Simulation of adaptive control of nonlinear MIMO system with input and 

output disturbances based on NN-ANARX model with additional neural network 
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figure 5.29 Simulation of adaptive control of nonlinear MIMO system with flowing 

parameters based on NN-ANARX model with additional neural network 
 
A dramatic improvement in quality of control can also be seen when the propose 
adaptation technique is used with NN-ANARX model based control by 
comparing figure 5.28 with figure 5.22 and figure 5.29 with figure 5.25. The 
proposed control system of the structure depicted in figure 5.20 is capable of 
tracking the desired reference signals with high accuracy compensating 
undesirable influence of disturbances and changes in the dynamics of the process. 
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It can be concluded by analyzing the results of the experiments discussed in this 
example that the adaptation technique proposed in section 5.7 significantly 
improves the robustness of both considered techniques proposed by the author 
for dynamic output feedback model linearization based control of nonlinear 
MIMO systems. Both adaptive controllers presented in section 5.7 (see figures 
5.19 and 5.20) are capable of tracking the desired reference signals by modifying 
their behavior in response to changes in the dynamics of the process and 
disturbances and can be successfully applied to adaptive control of a wide class 
of nonlinear MIMO systems. 
 
Nevertheless, the robustness of the controller based on dynamic output feedback 
linearization of NN-based Simplified ANARX structure and analytical 
calculation of control signals (presented in sections 5.3 and 5.4) is much higher 
than the robustness of the controller based on dynamic output feedback 
linearization of fully nonlinear NN-based ANARX structure  and additional 
neural network for calculation of control signals (presented in sections 5.5 and 
5.6). The robustness of the first one is higher even when the adaptation 
technique proposed in section 5.7 is added into both control systems. This 
adaptation technique especially dramatically increases the robustness of NN-
ANARX model based control technique, but it still remains lower than the 
robustness of  NN-SANARX model based control with adaptation. 
 
Thus, NN-SANARX model based dynamic output linearization technique is 
more preferable for control of a nonlinear MIMO system if the controlled system 
can be identified SANARX model and functional restrictions (linearity of the 
first sub-layer) imposed by Simplified ANARX structure do not cause serious 
drawbacks in quality of identification. In case, when a system can not be 
identified by NN-based Simplified ANARX structure with the accuracy 
satisfying the needs of the model based control algorithm, a fully nonlinear NN-
based ANARX structure can be used for identification of the system and control 
algorithm based on this model can be applied. 
 
5.8 Conclusions 
 
In this chapter dynamic output feedback linearization algorithm (2.36)-(2.38) is 
applied to control of nonlinear MIMO systems. This algorithm is based on the 
model of the controlled system. This model has to have an ANARX structure 
and can be easily obtained by training a neural network of the corresponding 
structure depicted in figure 3.15. 
 
The main problem regarding practical application of this control algorithm 
proposed in [30] is in calculation of control signals by solving equation (2.38). 
As it was shown in the previous chapter, a solution can be found numerically for 
SISO systems, but for nonlinear MIMO systems this approach can not be used 
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because the problem becomes much more complex. Two methods were 
proposed by the author to overcome this problem. 
 
The first method is based on introducing a Simplified ANARX model. A neural 
network based model (5.21) having ANARX structure and linear activation 
function of neurons (ADALINEs) of the first sub-layer  was proposed by the 
author and called NN-based Simplified ANARX model (or NN-SANARX). It 
was proofed in [30] that the dynamic output feedback linearization algorithm can 
be applied to models having ANARX structure. The propose NN-SANARX 
model is a sub-class of ANARX models and therefore can be linearized by the 
output feedback. This algorithm can be used for control of nonlinear MIMO 
systems identified by NN-SANARX model. In this case calculation of the vector 
of control signals comes to solving system of linear equations (5.26). 
 
If functional restrictions imposed by Simplified ANARX structure on the model 
are too strong for some nonlinear system, it can be identified by a MIMO NN-
ANARX structure (5.1) with all sub-layers having neurons with nonlinear 
activation functions. In this case, an alternative approach for application of the 
dynamic output feedback linearization algorithm to control of nonlinear MIMO 
systems is proposed by the author. This approach is based on simulation of the 
first sub-network of the neural network based ANARX model and training an 
additional simple static nonlinear neural network approximating function (2.37). 
This network is used to estimate the victor of controls. 
 
The structure of the closed loop control systems corresponding to the proposed 
methods are presented in figures ..The effectiveness of the proposed techniques 
is demonstrated on numerical examples. In both cases control systems are 
capable of tracking the desire reference signals with high accuracy. 
 
The robustness of the proposed approaches was also checked on a numerical 
example. Control of a nonlinear system was simulated by using both proposed 
approaches with input-output disturbances and flowing parameters of the 
controlled nonlinear system. The first control algorithm based on output 
linearization of NN-based Simplified ANARX model has shown much higher 
robustness than the second one based on fully nonlinear NN-ANARX model. 
This control system is capable of good compensation of undesirable influence of  
input-output disturbances and flowing parameters (up to 100%) of the controlled 
system even with no model adaptation. 
 
Adaptive controllers based on both control techniques with history-stack 
adaptation of the model were also developed. Proposed control techniques 
impose restrictions on model adaptation. The first sub-layer of NN-ANARX and 
NN-SANARX can not by trained on-line. So, the model is divided into adaptive 
and non-adaptive parts and the corresponding corrections are introduced into the 
adaptation algorithm. Adaptation significantly increases the robustness of both 
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control systems, especially the robustness of NN-ANARX model and additional 
neural network based control.  
 
The proposed adaptive control systems are capable of tracking the desired 
reference signals with high accuracy modifying their behavior in response to 
changes in the dynamics of the process and disturbances by on-line training of 
the model. Controllers based on the proposed techniques can be successfully 
used for control of  a wide class of nonlinear dynamic MIMO systems. 
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Chapter 6 

 

Conclusions 

 
Problems of nonlinear systems identification by artificial neural networks with 
different structures and applicability of these models for model based control 
algorithms are considered in this thesis. This chapter summarizes what has been 
studied and what are the main results achieved in this thesis. 
 
While it is well known that double-layer perceptron is capable of approximating 
any continuous nonlinearity which means that most nonlinear dynamic systems 
can be identified by training a multilayer perceptron with external feedback on a 
set of input-output data, results of present research demonstrate importance of 
the structure choice. The structure of the neural network based model has to be 
chosen in accordance to the requirements of the particular control algorithm 
or/and corresponding to the structural features of the controlled system. 
Artificial neural network consisting of simple nodes (artificial neurons) 
interconnected in a way, which may be chosen according to our needs, is a very 
good if not the best tool for obtaining a model of a predefined structure. 
 
First, choosing proper structure of the model repeating the structure of the  
physical system can significantly improve the quality of the model thus resulting 
in increased quality of a model based control algorithm. In this thesis it has been 
demonstrated on identification and control of Hammerstein-type nonlinear 
systems. The corresponding neural network structure representing Hammerstein 
model is proposed and applied for model based control of nonlinear systems 
belonging to this class. First of all these are systems with static actuator 
nonlinearities. 
 
Second, variation of the structure of the network extends the number of 
algorithms that can be combined with neural networks based modeling and 
training based adaptation. In this thesis parameters of Additive NARX models 
for different nonlinear systems were identified by training a neural network of 
the corresponding structure (NN-ANARX model) making possible combination 
of neural network based identification and adaptation with dynamic output 
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feedback linearization and application of this combined control technique to 
control of a wide class of nonlinear systems. 
 
Model based control algorithms can be divided into algorithms not requiring any 
particular structure of the model (model independent algorithms) and algorithms 
requiring certain structure of the model (model dependant algorithms). 
 
Quality of model independent algorithms can be improved by improving the 
accuracy of the model. It is shown in the thesis that proposed neural networks 
based Hammerstein model significantly quality of model based predictive 
control of systems with static actuator nonlinearities. 
 
Predictive control, inverse model based control and NN-ANARX model based 
dynamic output feedback linearization control techniques are studied and 
compared in this thesis. Their advantages and drawbacks are derived by the 
author from the experimental results. Control technique based on dynamic 
output feedback linearization of NN-ANARX model may help to overcome 
several disadvantages of others techniques. This method is based only on direct 
dynamic model of the controlled system. The model has to work only in closed 
loop. No predictions calculated by stand alone model simulation are needed. So, 
model errors do not accumulate. In the same time, restrictions imposed by 
ANARX structure on the connectivity matrixes of neural network representing 
this model do not cause any serious drawback in quality of identification and 
gives significant advantages in control applications. That is why significant 
attention in this research is paid to identification of nonlinear systems by NN-
based ANARX models and their control by dynamic output feedback 
linearization of this model. 
 
The only problem regarding practical application of this technique is complexity 
of calculation of the control signal from the dynamics of the controller. This 
control algorithm was successfully applied to control of nonlinear SISO systems 
by using Newton’s method for numerical calculation of the control signal, but 
this approach has two disadvantages. Firstly, numerical calculation takes several 
iterations to converge and, secondly, it can not be used for calculation of a 
vector of control signals. 
 
NN-based ANARX structures for identification of MIMO systems was proposed. 
Two methods are also developed for NN-ANARX model based dynamic output 
feedback linearization of nonlinear MIMO systems. 
 
NN-based Simplified ANARX (NN-SANARX) model was proposed by the 
author in for identification of nonlinear SISO and MIMO systems. This structure 
having one linear sub-layer of the hidden layer makes calculation of exact values 
of control signals (not estimated by a numerical method) for dynamic feedback 
linearization of this model much simpler. It comes to solution of a linear 
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equation (in case of SISO systems) or a system of linear equations (in case of 
MIMO systems). NN-SANARX model was successfully applied to control of 
dynamic output feedback linearization based control of nonlinear MIMO 
systems with equal number of inputs and outputs. The criteria of applicability of 
a particular MIMO NN-SANARX model for dynamic linearization based control 
is also given. 
 
An alternative approach which makes it possible to apply NN-ANARX model 
based dynamic output feedback linearization to control of nonlinear MIMO 
systems is presented and discussed in the thesis. This method utilizes additional 
static neural network for approximation of the function calculating control 
vectors. 
 
The second approach is based on fully nonlinear not simplified (with no linear 
sub-layers) NN-ANARX model of a nonlinear MIMO system and that’s why 
this method can be used for control of a wider class of nonlinear systems. At the 
same time it is demonstrated in the thesis that the first control technique has 
higher robustness. Both methods impose several restrictions on on-line model 
adaptation. Synaptic weights have to be fixed. The corresponding corrections 
have been introduced into history-stack adaptation and adaptive controllers for 
nonlinear MIMO systems were designed. It was shown that these controllers are 
capable of simultaneous tracking of several desired reference signals 
compensating undesirable influence of input and output disturbances as well as 
changes in the parameters of the controlled system. 
 
The effectiveness of the proposed techniques is demonstrated on numerous 
numerical examples. 
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Chapter 7 

 

Future work 

 
Results achieved in the framework of present thesis leads variety  of interesting 
research directions. 
 

Science never solves a problem without creating ten more. 
George Bernard Shaw 

 
Some of these directions are 
 
Application of NN-ANARX model based dynamic output feedback linearization 
to control of a wider class of nonlinear MIMO systems: systems with unequal 
numbers of inputs and outputs. 
 
Development of an algebraic algorithm for calculation of control signals or 
vectors of control signals from NN-ANARX model without its simplification. 
 
ANARX model has all time instances separated and is represented by a sum of 
nonlinear functions. Neural network based structure representing ANARX 
model consists of n sub-networks corresponding to the n-th order of the model. 
The order of the model can be very easily changed by adding or removing a 
corresponding sub-network without any need to retrain the remaining network. 
Based on this property development of ANARX model adaptation technique 
capable of adjusting the order of the model may make a subject of further 
research. 
 
Identifiability of different classes of nonlinear systems by training  NN-based 
ANARX and SANARX structures needs to be studied in detail. 
 
Analogous restricted connectivity artificial neural network structures may also 
give advantages over classical structures in image recognition by separating 
different features of the image. This will also make a subject of further research. 
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Future research will also be pointed towards application of the techniques 
discussed in the thesis to modeling and contextual analysis of human motions. 
 
These are only the main research directions. Undoubtedly, they are not limited 
by the above-mentioned. 
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