P 159 TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО политехнического института Серия А № 159 1959

0.1 .

А. А. СУМБАК

РАСЧЕТ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ ЦИЛИНДРИЧЕСКИХ ЖЕЛЕЗОБЕТОННЫХ ОБОЛОЧЕК

ТАЛЛИН, 1959

ТАLLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА Серия А № 159 1959

А. А. СУМБАК

РАСЧЕТ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ ЦИЛИНДРИЧЕСКИХ ЖЕЛЕЗОБЕТОННЫХ ОБОЛОЧЕК

ТАЛЛИН, 1959

ВВЕДЕНИЕ

В настоящее время общая линейная теория оболочек основательно и детально изучена; большое значение в этом имеют труды советских ученых — В. З. Власова, А. Л. Гольденвейзера, В. В. Новожилова, А. И. Лурье и др. Также разработаны несколько конкретных инженерных методов расчета (Х. Х. Лауль, А. С. Гильман и др.). Несмотря на то, что в последнее время в строительной технике довольно часто применяются предварительно напряженные железобетонные оболочки, на их расчет всетаки не обращено достаточного внимания. Посколько известно автору, в отечественной технической литературе эта проблема освещается только Х. Х. Лаулем [4]. Также и в иностранной технической литературе вопросы, касающиеся предварительно напряженных железобетонных оболочек разработаны с пробелами, в частности расчетнотеоретическая сторона вопроса.

В данной статье делается попытка изложить практический метод расчета предварительно напряженных железобетонных цилиндрических оболочек, исходя из основ расчета цилиндрических оболочек без предварительного напряжения, изложенных В. В. Новожиловым [1].

1. РАСЧЕТНАЯ СХЕМА

Рассматривается цилиндрическая оболочка с предварительно напряженными бортовыми элементами и торцевыми диафрагмами (рис. 1).

Рис. 1.

Характерные обозначения размеров, усилий и перемещений оболочки даны на рис. 2.

Рис. 2.

В данном обозначении усилия и перемещения цилиндрической оболочки можно выразить формулами, изложенными В. В. Новожиловым [1]:

$$\begin{split} I_{lm} &= -\frac{E\delta\lambda_{m}^{2}}{R_{V_{m}}^{2}} \Big[\mathcal{B}_{lm} e^{-c_{l}m^{\alpha}} COS[d_{lm}a + \beta_{lm} + \frac{\pi}{4}] - \mathcal{B}_{2m} e^{-c_{2}m^{\alpha}} COS[d_{2m}a + \beta_{2m} - \frac{\pi}{4}] \Big] + I_{l,m}^{*} \\ I_{m} &= -\frac{E\delta\lambda_{m}^{\alpha}}{R_{V_{m}}^{2}} \Big[\mathcal{B}_{lm} e^{-c_{lm}a} sin[d_{lm}a + \beta_{lm}] - \mathcal{B}_{2m} e^{-c_{2}m^{\alpha}} sin[d_{2m}a + \beta_{2m}] \Big] + \Gamma_{2m}^{*} \\ S_{m} &= -\frac{E\delta\lambda_{m}^{2}}{R_{V_{m}}^{2}} \Big[\mathcal{B}_{lm} e^{-c_{lm}a} sin[d_{lm}a + \beta_{lm}] - \mathcal{B}_{2m} e^{-c_{2}m^{\alpha}} COS[d_{2m}a + \beta_{2m} + \frac{\pi}{8}] \Big] + S_{m}^{*} \\ S_{m} &= -\frac{E\delta\lambda_{m}^{2}}{R_{V_{m}}^{2}} \Big[\mathcal{B}_{lm} e^{-c_{lm}a} sin[d_{lm}a + \beta_{lm}] - \frac{\pi}{8} \Big] + \mathcal{B}_{2m} e^{-c_{2m}a} COS[d_{2m}a + \beta_{2m} + \frac{\pi}{8}] \Big] + S_{m}^{*} \\ Q_{2m} &= -\frac{E\delta\lambda_{m}^{2}}{4R_{0}^{4}} \Big[\mathcal{B}_{lm} e^{-c_{lm}a} sin[d_{lm}a + \beta_{lm} + \frac{\pi}{8}] - \mathcal{B}_{2m} e^{-c_{2m}a} COS[d_{2m}a + \beta_{2m} - \frac{\pi}{8}] \Big] \\ M_{2m} &= -\frac{E\delta\lambda_{m}^{2}}{4b^{4}} \Big[\mathcal{B}_{lm} e^{-c_{lm}a} cOS[d_{lm}a + \beta_{lm}] - \frac{\pi}{4} \Big] - \mathcal{B}_{2m} e^{-c_{2m}a} COS[d_{2m}a + \beta_{2m} - \frac{\pi}{8}] \Big] \\ M_{2m} &= -\frac{E\delta\lambda_{m}^{2}}{4b^{4}} \Big[\mathcal{B}_{lm} e^{-c_{lm}a} cOS[d_{lm}a + \beta_{lm}] - \mathcal{B}_{2m} e^{-c_{2m}a} cOS[d_{2m}a + \beta_{2m} - \frac{\pi}{8}] \Big] \\ M_{2m} &= -\frac{E\delta\lambda_{m}^{2}}{4b^{4}} \Big[\mathcal{B}_{lm} e^{-c_{lm}a} cOS[d_{lm}a + \beta_{lm}] + \frac{\pi}{4} \Big] - \mathcal{B}_{2m} e^{-c_{2m}a} cOS[d_{2m}a + \beta_{2m} - \frac{\pi}{8}] \Big] \\ V_{m} &= -\frac{1}{V_{m}} \Big[\mathcal{B}_{lm} e^{-c_{lm}a} cOS[d_{lm}a + \beta_{lm}] + \frac{\pi}{8} \Big] - \mathcal{B}_{2m} e^{-c_{2m}a} cOS[d_{2m}a + \beta_{2m} - \frac{\pi}{8}] \Big] + V_{m}^{*} \\ W_{m} &= \mathcal{B}_{lm} e^{-c_{lm}a} cOS[d_{lm}a + \beta_{lm}] + \mathcal{B}_{2m} e^{-c_{2m}a} cOS[d_{2m}a + \beta_{2m} - \frac{\pi}{8}] \Big] + V_{m}^{*} \\ W_{m} &= -\frac{V_{m}}}{R} \Big[\mathcal{B}_{lm} e^{-c_{lm}a} cOS[d_{lm}a + \beta_{lm}] + \mathcal{B}_{2m} e^{-c_{2m}a} cOS[d_{2m}a + \beta_{2m} - \frac{\pi}{8}] \Big] + V_{m}^{*} \\ W_{m} &= -\frac{V_{m}}}{R} \Big[\mathcal{B}_{lm} e^{-c_{lm}a} cOS[d_{lm}a + \beta_{lm}] + \mathcal{B}_{2m} e^{-c_{2m}a} cOS[d_{2m}a + \beta_{2m} + \frac{\pi}{8}] \Big] + V_{m}^{*} \\ \end{array}$$

где

$$\begin{split} \lambda_{m} &= (2m-1) \frac{\pi R}{L} , \quad (m=1; 2; 3; \dots) , \\ 4b^{4} &= 12(1-\mu^{2}) \frac{R^{2}}{\delta^{2}} , \\ \gamma_{m} &= \sqrt[4]{2} \sqrt{b\lambda_{m}} , \qquad (2) \\ C_{t,m} &= d_{2,m} &= \sqrt{\frac{b\lambda_{m}}{2}} \sqrt{\sqrt{2}+1} = \gamma_{m} \cos \frac{\pi}{\delta} , \\ C_{2,m} &= d_{t,m} &= \sqrt{\frac{b\lambda_{m}}{2}} \sqrt{\sqrt{2}-1} = \gamma_{m} \sin \frac{\pi}{\delta} . \end{split}$$

В_{1,m}, В_{2,m}, β_{1,m}, β_{2,m} — постоянные, определяемые из двух систем уравнений, составленных при помощи таблицы 1.

Звездочкой обозначены усилия и перемещения начальной задачи (определены по безмоментной теории).

Таблица 1

	$\mathcal{L}_{m} = 1$ $\mathcal{V}_{m} = 0$ $\mathcal{W}_{m} = 0$ $\mathcal{R}_{\mathcal{V}_{m}} = 0$	$U_m = 0$ $V_m = 1$ $W_m = 0$ $R \Psi_m = 0$	$U_{m} = 0$ $V_{m} = 0$ $W_{m} = 1$ $R \psi_{m} = 0$	$U_m = 0$ $V_m = 0$ $W_m = 0$ $R \Psi_m = 1$	U _m = 0 V _m = 0 W _m = 0 R _{Ym} = 0
B, m cosp, m	0,00	-0,924 Ym	-0,707	$-\frac{0,924}{v_m}$	D _{1,m}
Bimsingim	$-2.41 \frac{v_m^2}{\lambda_m}$	- 4,08 Ym	- 4,12	$-\frac{2,3i}{\gamma_m}$	D _{2.m}
BzmCOSBzm	0,00	0,924 Ym	1, 707	<u>0,924</u> V _m	D _{3, m}
Bzmsinpzm	$\frac{\gamma_m^2}{\lambda_m}$	2,23 Vm	1,707	<u>0,383</u> Y _m	D4.m

Условие непрерывности между криволинейной частью и бортовым элементом оболочки устанавливают при помощи таблиц жесткостей бортового элемента и края оболочки. Таблица жесткости края оболочки (табл. 2), изложенная В. В. Новожиловым, остается неизмененной. В таблице жесткости бортового элемента (табл. 3) в данном случае надо учесть влияние предварительного напряжения; притом по упрощению В. В. Новожилова отбрасывают жесткость кручения и жесткость горизонтального изгиба бортовых элементов.

Таблица 2

	$U_m = 1$ $V_m = 0$ $W_m = 0$ $R\psi_m = 0$	$U_m = 0$ $V_m = 1$ $W_m = 0$ $R \Psi_m = 0$	$U_m = 0$ $V_m = 0$ $W_m = 1$ $R \psi_m = 0$	$U_m = 0$ $V_m = 0$ $W_m = 0$ $R\psi_m = 1$	$U_m = 0$ $V_m = 0$ $W_m = 0$ $R\psi_m = 0$
$\frac{R}{E\delta}S_m$	$0, \frac{\lambda_m^2}{v_m}$	$a_2 \frac{\lambda_m^3}{\nu_m^2}$	$\sigma_{i} \frac{\lambda_{m}^{3}}{\nu_{m}^{3}}$	$\frac{\lambda_m^3}{\gamma_m^4}$	Aţ,m
$\frac{R}{E\delta} T_{2,m}$	$\sigma_2 \frac{\lambda_m^3}{\nu_m^2}$	$U_3 - \frac{\lambda_m^4}{\nu_m^3}$	$G_{a} = \frac{\lambda_{m}^{4}}{v_{m}^{4}}$	$\sigma_{1} \frac{\lambda_{m}^{4}}{v_{m}^{5}}$	A 2, m
$\frac{R}{E\delta}Q_{2,m}$	$O, \frac{\lambda_m^3}{v_m^3}$	$O_4 = \frac{\lambda_m^4}{v_m^4}$.	$O_3 \frac{\lambda_m^4}{v_m^5}$	$\sigma_2 \frac{\lambda_m^4}{\nu_m^6}$	A _{3,m}
$\frac{1}{E\delta}M_{2,m}$	$\frac{\lambda_m^3}{\nu_m^4}$	$O_{1} \frac{\lambda_{m}^{4}}{v_{m}^{5}}$	$\sigma_z \frac{\lambda_m}{v_m^{\delta}}$	$\sigma_{1} \frac{\lambda_{m}^{4}}{v_{m}^{7}}$	A _{4,} ,

В таблице 2

$$\begin{aligned} &a_{1} = \frac{1}{\sin \frac{\pi}{6}} \approx 2,613, \qquad &a_{3} = \frac{1}{(\sqrt{2}-1)\sin \frac{\pi}{6}} \approx 6,308 \\ &a_{2} = \frac{\sqrt{2}}{\sqrt{2}-1} \approx 3,414, \qquad &a_{4} = \frac{\sqrt{2}+1}{\sqrt{2}-1} \approx 5,829. \end{aligned}$$
(3)

Для учета влияния предварительного напряжения бортовой элемент рассматривается как балка (рис. 3) из однородного, следующего закону Гука материала.

Рис. 3.

Так как при предварительно напряженной оболочке обычно отношение высоты бортового элемента к пролету $\frac{h}{L} \leqslant \frac{1}{10}$, то соблюдается гипотеза плоских сечений, и для определения перемещений применимо дифференциальное уравнение упругой линии, известное из сопротивления материалов:

$$\frac{d^4}{dx^4}(EJ_y) = \frac{d^3}{dx^3}(EJ\varphi) = \frac{d^2}{dx^2}M(x) = \frac{d}{dx}Q(x) = Q(x).$$
(4)

Криволинейная арматурная пучка, которая предварительно напряжена силой N₁, расположена по квадратной параболе

$$y = \frac{4f^{x}(L-x)}{L^{2}}.$$
 (5)

Арматура, предварительно напряженная силой \overline{N}_1 — прямая.

Предварительно напряженная, уложенная по параболе арматура создает в бортовом элементе снизу вверх воздействующую, равномерно распределенную нагрузку

$$Q_{o,v} = \frac{\vartheta N_l f^2}{L^2}.$$
 (6)

7

Поэтому можно нагрузку, созданную предварительным напряжением, рассматривать как состоящую из трех компонентов N_1 , \overline{N}_1 , и $q_{0,v}$ (рис. 4).

Рис. 4.

Разложив нагрузку, возникшую предварительным напряжением, в ряд Фурье, можно последнюю при помощи уравнения (4) разложить на вертикальную, равномерно распределенную нагрузку q_v и на центральное нормальное усилие Z:

$$Q_{r} = \sum_{m=1}^{\infty} \frac{4(-1)^{m+i}}{\pi(2m-i)} \left[N_{i} \left(\frac{8f}{L^{2}} - \frac{\lambda_{m}^{2}}{R^{2}} \sigma_{i} \cos \alpha \right) + \overline{N}_{i} \frac{\lambda_{m}^{2}}{R^{2}} \overline{\sigma}_{i} \right] \sin \lambda_{m} \xi , \qquad (7)$$

$$Z = -\sum_{m=1}^{\infty} \frac{4(-i)^{m+i}}{\pi(2m-i)} (N_i \operatorname{cssa} + \overline{N_i}) \sin\lambda_m \xi.$$
(8)

Из формулы (7) определим вертикальное перемещение верхней грани бортового элемента

$$w\cos\varphi_{0} - v\sin\varphi_{0} = \frac{1}{EJ} \iiint q_{v} d\xi = \sum_{m=1}^{\infty} \frac{4(-1)^{m+1}}{\pi(2m-1)} \frac{R^{2}}{EJ\lambda_{m}^{2}}.$$
(9)

$$\left[N_{i}\left(\frac{\delta f}{\pi^{2}}-a_{i}\cos\alpha\right)+\bar{N}_{i}\bar{a}_{i}\right]\sin\lambda_{m}\xi.$$

Из формул (7) и (8) получим перемещение и верхней грани бортового элемента

$$u = -\frac{h}{2EJ} \iiint q_{\nu} d\xi + \frac{1}{E\Omega} \int Z d\xi = -\sum_{m=1}^{\infty} \frac{4(-i)^{m+1}}{\pi (2m-i)} \frac{Rh}{2EJ\lambda_m}.$$

$$(10)$$

$$(10)$$

Из формул (9) и (10) определим перемещения верхней

грани бортового элемента, возникающие предварительным напряжением (для каждого отдельного члена ряда)

$$\begin{split} u_m &= -\frac{4(-t)^{m+t}}{\pi(2m-t)} \frac{Rh}{2EJ\lambda_m} \Big\{ N_t \Big[\frac{\delta f}{\pi^2} - (a_t + \frac{h}{\delta})\cos\alpha \Big] + \bar{N}_t (\bar{a}_t - \frac{h}{\delta}) \Big], \\ V_m &= -\frac{4(-t)^{m+t}}{\pi(2m-t)} \frac{R^2}{EJ\lambda_m^2} \Big[N_t \Big(\frac{\delta f}{\pi^2} - a_t\cos\alpha \Big) + \bar{N}_t \bar{a}_t \Big] \sin\varphi_0, \quad (11) \\ W_m &= -\frac{4(-t)^{m+t}}{\pi(2m-t)} \frac{R^2}{EJ\lambda_m^2} \Big[N_t \Big(\frac{\delta f}{\pi^2} - a_t\cos\alpha \Big) + \bar{N}_t \bar{a}_t \Big] \cos\varphi_0. \end{split}$$

$$\frac{R}{E\delta}S_{m} = -\frac{4(-i)^{m+i}}{\pi(2m-i)}\frac{\lambda_{m}}{E\delta}(N_{t}\cos\alpha + \bar{N}_{t}),$$

$$\frac{R}{E\delta}T_{2m} = \frac{4(-i)^{m+i}}{\pi(2m-i)}\frac{\lambda_{m}^{2}}{2ER\delta}\left\{N_{t}\left[\frac{16f}{\pi^{2}}+(h-2a_{t})\cos\alpha\right]+\bar{N}_{t}(h+2\bar{a}_{t})\right\}\sin\varphi_{o},$$

$$\frac{R}{E\delta}Q_{2,m} = -\frac{4(-i)^{m+i}}{\pi(2m-i)}\frac{\lambda_{m}^{2}}{2ER\delta}\left\{N_{t}\left[\frac{16f}{\pi^{2}}+(h-2a_{t})\cos\alpha\right]+\bar{N}_{t}(h+2\bar{a}_{t})\right\}\cos\varphi_{o},$$

$$\frac{1}{E\delta}M_{2,m} = 0.$$
(12)

При расположении предварительно напряженной криволинейной арматуры по нескольким кривым (рис. 5),

 $\frac{4(-1)^{m+i}}{\pi(2m-i)} \frac{\lambda_1^m}{2ER\delta} \left(\sum_{n=i}^i N_n \kappa_n + \sum_{n=i}^j \widetilde{N}_n \widetilde{\kappa}_n\right) \cos \varphi_0$ $u_m = 0, \quad v_m = 0, \quad w_m = 0, \quad R\psi_m = 0$ $\frac{4(-i)^{m+i}}{\pi(2m-i)} \frac{\lambda_m^2}{2ER\delta} \left(\sum_{n=i}^{i} N_n \kappa_n + \sum_{n=i}^{i} \overline{N_n} \overline{\kappa_n} \right) \sin \varphi_0$ $-\frac{4(-i)^{m+i}}{\pi(2m-i)}\frac{\lambda_m}{E\delta}(\sum_{n=i}^{L}N_nCOS\alpha_n+\sum_{n=i}^{L}\overline{N}_n,$ $\frac{4(-i)^{m+i}}{\pi(2m-i)} \frac{Rq_o}{E\delta} \cos \varphi_o -$ 0 $\frac{4(-i)^{m+i}}{\pi(2m-i)} \frac{RQ_o}{E\delta} \sin \varphi_o +$ Um = 0Vm = 0Wm = 0 $RY_m = 1$ 0 0 0 0 $-\frac{\lambda_m^3 h R}{2 R^2 \delta} \sin \varphi_0 \left| \frac{\lambda_m^4 h^2 R}{3 R^3 \delta} \sin^2 \varphi_0 \right| - \frac{t}{\delta} \frac{\lambda_m^4 h^2 R}{R^3 \delta} \sin^2 \varphi_0$ $-\frac{\chi_m^{2} n_{S}}{2 R^2 \delta} \sin \varphi_{S} \frac{\lambda_m^{2} n_{S}}{2 R^2 \delta} \cos \varphi_{S}$ $\frac{R}{E\delta}Q_{2m} = \frac{\lambda_m^a h \Omega}{2R^2 \delta} c_0 s \varphi_0 = \frac{i}{\delta} \frac{\lambda_m^a h^2 \Omega}{R^3 \delta} s_{in} 2\varphi_0 = \frac{i}{2} \frac{\lambda_m^a h^2 \Omega}{R^3 \delta} c_0 s^2 \varphi_0$ 0 0 0 Um = Vm = Wm = R#n = 0 0 1 = mn 0 $\frac{\Omega}{R\delta}\lambda_m^2$ $V_m = 0$ $W_m = 0$ $R_{\mu m} = 0$ n = 0 E Tz,m E Sm $\frac{1}{E\delta}M_{2,m}$

Таблица

3

формулы (12) могут быть представлены в следующем виде:

$$\frac{R}{E\delta}S_{m}^{i} = -\frac{4(-i)^{m+i}}{\pi(2m-i)}\frac{\lambda_{m}}{E\delta}\left(\sum_{n=i}^{i}N_{n}\cos\alpha_{n}+\sum_{n=i}^{j}\overline{N}_{n}\right),$$

$$\frac{R}{E\delta}T_{2,m} = \frac{4(-i)^{m+i}}{\pi(2m-i)}\frac{\lambda_{m}^{2}}{2ER\delta}\left(\sum_{n=i}^{i}N_{n}\kappa_{n}+\sum_{n=i}^{j}\overline{N}_{n}\overline{\kappa}_{n}\right)\sin\gamma_{b},$$

$$\frac{R}{E\delta}Q_{2,m} = -\frac{4(-i)^{m+i}}{\pi(2m-i)}\frac{\lambda_{m}^{2}}{2ER\delta}\left(\sum_{n=i}^{i}N_{n}\kappa_{n}+\sum_{n=i}^{j}\overline{N}_{n}\overline{\kappa}_{n}\right)\cos\gamma_{b},$$

$$\frac{1}{E\delta}M_{2,0} = 0,$$
(13)

где

- N_n внутренняя сила предварительно напряженной криволинейной арматуры (индекс *n* обозначает номер пучка арматуры);
- \overline{N}_n то же при прямолинейной арматуре;
 - *i* количество пучков (каналов) криволинейной предварительно напряженной арматуры;
 - j то же при прямой арматуре;

$$\kappa_n = \frac{16f_n}{\pi^2} \star (h - 2a_n) \cos \alpha_n ; \qquad (14)$$

$$\bar{\kappa}_n = h + 2\sigma_n \,. \tag{15}$$

Примечания:

- Если усилие криволинейной предварительно напряженной арматуры N_n приложено ниже центра тяжести бортового элемента, то в-формуле (14) знак перед a_n изменяется.
- Если предварительно напряженная прямая арматура расположена выше центра тяжести бортового элемента, то в формуле (15) изменится знак перед an.
- 3) Формулами (13), а также таблицей жесткости бортовых элементов (табл. 3) можно пользоваться и в тех случаях, когда криволинейная предварительно напряженная арматура расположена не по квадратной параболе, а по иной кривой. В таком случае изменится только первый член 16f_n/(π²) в формуле (14), который получен от вертикальной нагрузки (6)

криволинейной предварительно напряженной арматуры и, в зависимости от кривизны арматуры, довольно просто вычисляемый.

Как видно из метода расчета, не учитывается влияние изменения нагрузки на величину предварительного напряжения, так как это влияние очень мало. Легко убедиться, что, например, при проценте армирования бортового элемента 0,5%, при изменении величины нагрузки на 100% усилия в предварительно напряженной арматуре изменются только на 5%. Вообще в практике это изменение еще меньше, так как основной нагрузкой является собственный вес конструкции. Обычно процент армирования ниже вышеуказанного; поэтому изменение величин усилий предварительно напряженной арматуры еще менее значительное и отказ от учета последнего вполне обоснован.

2. Численный пример

Рассматривается цилиндрическая оболочка (рис. 1, 2 и 4) с предварительно напряженной арматурой со следующими характерными размерами и нагрузками:

L = 25,00 м,	$\Omega = h \delta_0 = 0,36 \text{ m}^2,$	$a_1 = \overline{a_1} = 0,85$ M,
R = 9,3343 м,	$N_1 = 65,0$ T,	$q = 0,325 \text{ T/m}^2,$
δ = 0,07 м,	$\overline{N}_1 = 35,0$ T,	q ₀ = 0,865 т/м,
δ ₀ == 0,20 м,	f = 1,70 м,	
<i>h</i> == 1,80 м,	$\alpha_1 = 16^{\circ}42'$,	(16)

Учитывая в расчете три первых члена ряда Фурье, вычислим по формулам 2:

$\lambda_1 =$	1,173,	$v_1 = 5,021,$			
$\lambda_2 =$	3,519,	$v_2 = 8,698,$	в	=	15,20.
$\lambda_3 =$	5,865,	$v_3 = 11,228,$			(17)

Усилия и перемещения начальной задачи определены по безмоментной теории;

$$T_{1,m}^{*} = -2Rq_{m} \frac{i}{\lambda_{m}^{*}} \cos\varphi, \qquad u_{m}^{*} = \frac{2Rq_{m}}{E\delta\lambda_{m}^{*}} \cos\varphi,$$

$$T_{2,m}^{*} = -Rq_{m}\cos\varphi, \qquad v_{m}^{*} = \frac{4R^{2}q_{m}}{E\delta\lambda_{m}^{2}} (1 + \frac{i}{2\lambda_{m}^{2}})\sin\varphi, \qquad (18)$$

$$S_{m}^{*} = 2Rq_{m}\frac{i}{\lambda_{m}}\sin\varphi, \qquad w_{m}^{*} = -\frac{R^{2}q_{m}}{E\delta} \left[1 + \frac{4}{\lambda_{m}^{2}} (1 + \frac{i}{2\lambda_{m}^{2}})\right]\cos\varphi,$$

$$Q_{2,m}^{*} = M_{2,m}^{*} = 0, \qquad \psi_{m}^{*} = -\frac{Rq_{m}}{E\delta}\sin\varphi,$$

$$Re$$

$$q_{\mu} = \sum_{m \neq i} q_{\mu} \sin \lambda_{m} \xi, \qquad (19)$$

$$q_{m} = \frac{4}{\pi} \frac{(-i)^{m+i}}{2m-i} q_{\mu}, \qquad (m = 1; 2; 3; 4; ...)$$

В соответствии с формулами (18) и (19) получаем усилия и перемещения на контактной линии (φ = φ₀) начальной задачи:

$$\frac{R}{E\delta} S_{1}^{*} = 564,38^{1}/E, \qquad \frac{R}{E\delta} T_{2,1}^{*} = -394,47^{1}/E,
\frac{R}{E\delta} S_{2}^{*} = -62,65^{1}/E, \qquad \frac{R}{E\delta} T_{2,2}^{*} = 131,39^{1}/E,
\frac{R}{E\delta} S_{3}^{*} = 22,63^{1}/E, \qquad \frac{R}{E\delta} T_{2,3}^{*} = -79,03^{1}/E,
u_{1}^{*} = 488,81^{1}/E, \qquad w_{1}^{*} = -1957,77^{1}/E,
u_{2}^{*} = -6,01^{1}/E, \qquad w_{2}^{*} = 175,53^{1}/E,
u_{3}^{*} = 0,79^{1}/E, \qquad w_{3}^{*} = -88,34^{1}/E,
v_{1}^{*} = 1311,90^{1}/E, \qquad w_{1}^{*} = -35,46^{1}/E,
v_{2}^{*} = -7,04^{1}/E, \qquad w_{3}^{*} = -7,10^{1}/E,$$
(20)

Далее можем заполнить таблицу 1. Величины последнего столбца таблицы $D_{1,m}$, $D_{2,m}$, $D_{3,m}$ и $D_{4,m}$, которые соответствуют абсолютно жесткой заделке криволинейной части загруженной оболочки, вычисляем следующим образом:

$$D_{1,m} = 0,924 \, \gamma_m \, \gamma_m^* + 0,707 \, w_m^* + \frac{0,924}{\gamma_m} R \, \psi_m^*,$$

$$D_{2,m} = 2,41 \, \frac{\gamma_m^2}{\lambda_m} u_m^* + 4,08 \, \gamma_m \, \gamma_m^* + 4,12 \, w_m^* + \frac{2.32}{\gamma_m} R \, \psi_m^*,$$

$$D_{3,m} = -0.924 \, \gamma_m \, v_m^* - 1,707 \, w_m^* - \frac{0.924}{\gamma_m} R \, \psi_m^*,$$

$$D_{4,m} = -\frac{\gamma_m^2}{\lambda_m} u_m^* - 2,23 \, \gamma_m \, v_m^* - 1,707 \, w_m^* - \frac{0,383}{\gamma_m} R \, \psi_m^*.$$
(21)

Результаты вычисления даны в таблице 4.

Таблица 4.

	m	$u_{\rm m} = 1$ $v_{\rm m} = 0$ $w_{\rm m} = 0$ $R\psi_{\rm m} = 0$	$u_{\rm m} = 0$ $v_{\rm m} = 1$ $w_{\rm m} = 0$ $R\psi_{\rm m} = 0$	$u_{\rm m} = 0$ $v_{\rm m} = 0$ $w_{\rm m} = 1$ $R\psi_{\rm m} = 0$	$u_{m} = 0$ $v_{m} = 0$ $w_{m} = 0$ $R\psi_{m} = 1$	$u_{\rm m} = 0$ $v_{\rm m} = 0$ $w_{\rm m} = 0$ $R\psi_{\rm m} = 0$
5	1	0	-4,639	0,707	0,184	5205,84 ¹ /E
$B_{1,m}\cos\beta_{1,m}$	2	0	-8,037	-0,707	-0,106	-224,58 ¹ /E
	3	0	-10,375	0,707	0,0823	35,93 ¹ /E
	1		-20,486	-4,120	-0,462	43585,26 ¹ /E
$B_{1,m}\sin\beta_{1,m}$	2	-51,795	-35,488	-4,120	-0,267	$-741,71^{1}/E$
	3	—51,795	-45,810	-4,120	0,207	-57,31 ¹ /E
and a start of	1	0	4,639	1,707	0,184	-2683,41 ¹ /E
$B_{2,m} \cos \beta_{2,m}$	2	0	8,037	1,707	0,106	$-13,61 \ ^{1}/E$
	3	0	10,375	1,707	0,0823	75,06 ¹ /E
	1	21.492	11.197	1,707	0.0763	-21830,27 ¹ /E
$B_{2,m}\sin\beta_{2,m}$	2	21,492	19,397	1,707	0,0440	543,16 ¹ /E
2,	3	21,492	25,038	1,707	0,0341	-59,87 ¹ /E

Также заполнена таблица жесткостей края оболочки (табл. 2). Здесь величины последнего столбца определены по формулам (22):

 $\frac{R}{E\delta}S_m = -u_m^* a_i \frac{\lambda_m^2}{v_m} - v_m^* a_2 \frac{\lambda_m^3}{V_m^*} - w_m^* a_i \frac{\lambda_m^*}{v_m^*} - R \psi_m^* \frac{\lambda_m^3}{v_m^*} + \frac{R}{E\delta}S_m^* = A_{i,m},$ $\frac{R}{F\delta}T_{2,m} - U_m^* \sigma_2 \frac{\lambda_m^3}{\sqrt{2}} - v_m^* \sigma_3 \frac{\lambda_m^4}{\sqrt{2}} - w_m^* \sigma_2 \frac{\lambda_m^4}{\sqrt{2}} - R \psi_m^* \sigma_1 \frac{\lambda_m^4}{\sqrt{2}} + \frac{R}{F\delta} T_{2,m}^* = A_{2,m},$ (22) $\frac{R}{F \hbar} Q_{2m^*} - U_m^* G_1 \frac{\lambda_m^*}{\gamma_{2}^*} - V_m^* G_4 \frac{\lambda_m^*}{\gamma_{2}^*} - w_m^* G_3 \frac{\lambda_m^4}{\gamma_{m}^*} - R \, \psi_m^* G_2 \frac{\lambda_m^*}{\gamma_{m}^*} = A_{3,m} \, ,$ $\frac{1}{E\delta}M_{2m} = -U_m^* \frac{\lambda_m^3}{v_m^4} - v_m^* \mathcal{O}_1 \frac{\lambda_m^4}{v_s^5} - w_m^* \mathcal{O}_2 \frac{\lambda_m^4}{v_s^6} - \mathcal{R} \psi_m^* \mathcal{O}_1 \frac{\lambda_m^*}{v_m^*} = A_{a,m},$

Результаты приведены в таблице 5.

Таблица 5

The second second second	and here in				of the second division	
		$u_{\rm m} = 1$	$u_{\rm m} = 0$	$u_{\rm m}=0$	$u_{\rm m}=0$	$u_{\rm m}=0$
	m	$v_{\rm m} = 0$	$v_{\rm m} = 1$	$v_{\rm m}=0$	$v_{\rm m}=0$	$v_{\rm m} = 0$
	110	$w_{\rm m}=0$	$w_{\rm m}=0$	$w_{\rm m} = 1$	$w_{\rm m}=0$	$w_{\rm m}=0$
HAR TO BE		$R\psi_{\rm m}=0$	$R\psi_{\rm m}=0$	$R\psi_{\rm m}=0$	$R\psi_{\rm m} = 1$	$R\psi_{\rm m}=0$
D	1	0,716	0,219	0,0333	0,00254	$-6,89^{1}/E$
$\frac{R}{F\delta}S_{\rm m}$	2	3,720	1,966	0,173	0,00761	1,32 ¹ /E
20 -	3	8,005	5,463	0,372	0,0127	7,25 ¹ /E
D	1	0,219	0,0943	0,0174	0,00155	$-590,72^{1}/E$
$\frac{R}{E\delta}T_{2m}$	2	1,966	1,470	0,156	0,00805	169,40 ¹ /E
Lt	3	5,463	5,273	0,434	0,0173	
D	1	0,0333	0.0174	0.00374	0.000403	
$R = Q_{2m}$	2	0,173	0,156	0,0194	0,00121	$3,28^{1}/E$
E0 · 2,m	3	0,372	0,434	0,0418	0,00202	0,14 ¹ /E
	1	0.00254	0.00155	0.000403	0.0000615	-2 47 1/E
$\frac{1}{1}M_{0}$	2	0.00761	0.00805	0.00121	0.000106	$0.12^{1/E}$
E02,m	3	0,0127	0,0173	0,00202	0,000137	0,04 ¹ /E
	1	and the second sec	and the second se	and the second se		and the second se

Таблица 5 симметрична относительно нисходящей диагонали, что значительно уменьшает объем высчислений.

Вставляя в таблицу 3 геометрические размеры и нагрузки, получим таблицу жесткости бортовых элементов (табл. 6). Для получения значений в последнем столбце таблицы предварительно вычисляем по формулам (14) и (15):

$$\frac{k_1}{k_1} = 2,852,$$
(23)
$$\frac{k_1}{k_1} = 3,500.$$

Для того, чтобы таблицу 6 можно было использовать для расчета оболочки без предварительного напряжения, в таблице приводятся отдельно величины от собственного веса бортового элемента и предварительного напряжения (соответственно предпоследний и последний столбцы). Облегчается, вследствие ее симметричности, также и заполнение таблицы жесткостей бортовых элементов.

На контактной линии оболочки и бортового элемента должны быть соблюдены условия непрерывности:

$$U_{m,\kappa} = U_{m,t}, \quad \forall m,\kappa = V_{m,t}, \quad w_{m,\kappa} = w_{m,t}, \quad \psi_{m,\kappa} = \psi_{m,t}, \\ S_{m,\kappa} = -S_{m,t}, \quad T_{2,m,\kappa} = -T_{2,m,t}, \quad Q_{2,m,\kappa} = -Q_{2,m,t}, \quad M_{2,m,\kappa} = -M_{2,m,t}, \quad (24)$$

где индексом k обозначается оболочка, индексом t — бортовой элемент.

Из формул (24) следует, что при сложении соответствующих величин таблиц 5 и 6 получаем системы уравнений, определяющие перемещения контактной линии.

Полученные системы уравнений даны в таблице 7.

Системы уравнений также симметричны относительно главной диагонали (см. табл. 7). Вследствие предварительного напряжения изменяются только свободные члены систем уравнений. Заменяя в таблице 7 свободные, соответствующие предварительно напряженной оболочке члены, (последний столбец) членами оболочки без предварительного напряжения (предпоследний столбец), получаем системы уравнений для определения перемещений контактной линии без предварительного напряжения.

Решая в таблице 7 изложенные системы уравнений, получаем перемещения контактной линии предварительно напряженной оболочки:

Таблица 6

= 0 = 0 = 0 = 0 M = 65 m	$\frac{N_1 = 00 \text{ T}}{\overline{N}_1 = 35 \text{ T}};$	-2075,08 ¹ / <i>E</i> 2075,08 ¹ / <i>E</i> -2075,08 ¹ / <i>E</i>	253,56 ¹ /E 760,65 ¹ /E 1267,58 ¹ /E	-302,18 ¹ / <i>E</i> 906,50 ¹ / <i>E</i> -1510,64 ¹ / <i>E</i>	0 0 0
um vm wm Rwm	q ₀ = 0,865 т/м	000	-94,38 ¹ / <i>E</i> 31,46 ¹ / <i>E</i> -18,88 ¹ / <i>E</i>	112,47 ¹ / <i>E</i> 37,49 ¹ / <i>E</i> 22,49 ¹ / <i>E</i>	0 0 0
$u_{\rm m} = 0$ $v_{\rm m} = 0$ $w_{\rm m} = 0$	$R\psi_{\rm m} = 1$	0	0 0 0	0.0	0 0 0
$u_{\mathbf{m}} = 0$ $v_{\mathbf{m}} = 0$ $w_{\mathbf{m}} = 1$	$R\psi_{\rm m}=0$	0,0657 1,773 8,209	-0,00630 -0,510 -3,938	0,000751 0,608 4,693	000
$u_{\rm m} = 0$ $v_{\rm m} = 1$ $w_{\rm m} = 0$	$R\psi_{\rm m}=0$	0,0551 1,488 6,889	0,00528 0,428 3,302	-0,00630 -0,510 -3,938	000
$u_{\rm m} = 1$ $v_{\rm m} = 0$ $w_{\rm m} = 0$	$R\psi_{\rm m}=0$	0,758 6,822 18,950	0,0551 1,488 6,889	0,0657 1,773 8,209	0
w		1 23	3.5	3 2	3 2 -
		$\frac{R}{E\delta}S_{\rm m}$	$rac{R}{E\delta}T_{2,\mathrm{m}}$	$rac{R}{E\delta}Q_{2,\mathrm{m}}$	$\frac{1}{E\delta}M_{2,m}$

Таблица 7

m	u _m	U _m	w _m	$R\psi_{ m m}$	q ₀ =0,865т/м	q ₀ ==0,865 т/м №1==65т №1=35т
1	1,474	0,164	0,0990	0,00254	6,89 ¹ /E	2081,97 ¹ /E
	0,164	0,0996	0,0111	0,00155	685,10 ¹ /E	431,54 ¹ /E
	0,0990	0,0111	0,0113	0,000403	80,83 ¹ /E	221,36 ¹ /E
	0,00254	0,00155	0,000403	0,0000615	2,47 ¹ /E	2,47 ¹ /E
2	10,542	0,478	1,946	0,00761	1,32 ¹ /E	2073,76 ¹ /E
	0,478	1,898	0,354	0,00805	200,85 ¹ /E	559,79 ¹ /E
	1.946	0,354	0,627	0,00121	34,21 ¹ /E	872,29 ¹ /E
	0,00761	0,00805	0,00121	0,000106	0,12 ¹ /E	0,12 ¹ /E
3	26,955	.—1,426	8,581	0,0127	7,25 ¹ /E	2067,83 ^T /E
	1,426	8,575	3,504	0,0173	104,01 ¹ /E	—1163,57 ¹ /E
	8,581	—3,504	4,735	0,00202	22,63 ¹ /E	1488,01 ¹ /E
	0,0127	0,0173	0,00202	0,000137	0,04 ¹ /E	—0,04 ¹ /E

 $\begin{array}{ll} u_1 = -1100,66\ ^{1}/\text{E}, & u_2 = 241,41\ ^{1}/\text{E}, & u_3 = -90,61\ ^{1}/\text{E}, \\ v_1 = 7398,77\ ^{1}/\text{E}, & v_2 = -280,94\ ^{1}/\text{E}, & v_3 = 107,42\ ^{1}/\text{E}, \\ w_1 = 33356,69\ ^{1}/\text{E}, & w_2 = -2429,23\ ^{1}/\text{E}, & w_3 = 563,83\ ^{1}/\text{E}, \\ R\psi_1 = -319431,59\ ^{1}/\text{E}, & R\psi_2 = 38194,13\ ^{1}/\text{E}, & R\psi_3 = -13771,17\ ^{1}/\text{E}, \\ \end{array}$

и для оболочки без предварительного напряжения:

$u_1 = -282,23 \ ^{1/E},$	$u_2 = 42,19 \ ^{1}/\mathrm{E},$	$u_3 = -9,31 \ ^{1}/E,$
$v_1 = 10905,58^{-1}/E,$	$v_2 = -227,23 \ ^{1/E},$	$v_3 = 37,11 \ ^{1/E},$
$w_1 = -9704,07^{1/E},$	$w_2 = -235, 12^{1/E},$	$w_3 = 41,58 \ ^{1/E},$
$R\psi_1 = -159415,37^{-1}/E,$	$R\psi_2 = 15778,60^{1}/E,$	$R\psi_3 = -4727,39$ ¹ /E,
		(26)

При помощи таблицы 4 и перемещений (25) или (26), получаем две системы уравнений (для каждого значения m), из которых определимы коэффициенты интегрирования $B_{1,m}$, $B_{2,m}$, $\beta_{1,m}$ и $\beta_{2,m}$ для оболочек, предварительно напряженных или без предварительного напряжения. Так, например, получены для предварительно напряженной оболочки (при m = 1):
$$\begin{split} B_{1,1} \cos \beta_{1,1} &= (0 - 34323 - 23583 + 58775 + 5206)^{1/E} \\ &= 6075^{1/E}, \\ B_{1,1} \sin \beta_{1,1} &= (57009 - 151571 - 137430 + 147577 + \\ &+ 43585)^{1/E} &= -40830^{1/E}, \\ B_{2,1} \cos \beta_{2,1} &= (0 + 34323 + 56940 - 58775 - 2683)^{1/E} \\ &= 29805^{1/E}, \\ B_{2,1} \sin \beta_{2,1} &= (-23656 + 82844 + 56940 - 24373 - \\ &- 21830)^{-1/E} &= 69925^{-1/E}. \end{split}$$

(27)

Аналогично составляем системы уравнений для других значений *m* и для оболочек без предварительного напряжения.

Решая уравнения, получаем для предварительно напряженной оболочки следующие коэффициенты:

$B_{1,1} = 41280$ ¹ /E,	$B_{1,2} = 515$ ¹ /E,	$B_{1,3} = 446 \ ^{1/\text{E}},$
$B_{2,1} = 76010$ ¹ /E,	$B_{2,2} = -5204^{-1}/\mathrm{E},$	$B_{2,3} = 1527$ ¹ /E,
$\beta_{1,1} = 278^{\circ}28',$	$\beta_{1,2} = 11^{\circ}18',$	$\beta_{1,3} = 123^{\circ}00',$
$\beta_{2,1} = 66^{\circ}54'$	$\beta_{2,2} = 52^{\circ}24'$	$\beta_{2,3} = 48^{\circ}12',$
2/1		(28)

и для оболочки без предварительного напряжения:

$B_{1,1} = -52400 \ ^{1/E},$	$B_{1,2} = 1913 \ ^{1}/\mathrm{E},$	$B_{1,3} = 467 \ ^{1}/\text{E},$
$B_{2,1} = 65520$ ¹ /E,	$B_{2,2} = -2729$ ¹ /E,	$B_{2,3} = 596$ ¹ /E,
$\beta_{1,1} = 79^{\circ}54',$	$\beta_{1,2} = 87^{\circ}12',$	$\beta_{1,3} = 270^{\circ}00',$
$\beta_{2,1} = 88^{\circ}12',$	$\beta_{2,2} = 77^{\circ}36',$	$\beta_{2,3} = 76^{\circ}18'.$
	- Elen alter and -	(29)

Зная коэффициенты (28) и (29) и определяя по формулам (2) коэффициенты

$\begin{array}{c} C_{1,1} \coloneqq d_{2,1} \equiv c \\ C_{2,1} \coloneqq d_{1,1} \equiv c \end{array}$	4,639, 1,922,	$\begin{array}{c} C_{1,2} = d_{2,2} = \\ C_{2,2} = d_{1,2} \end{array}$	= 8,036, = 3,329,	$\begin{array}{c} C_{1,3} = d_{2,3} = \\ C_{2,3} = d_{1,3} = \end{array}$	10,374, 4,297,
			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		(30)

формулами (1) определим усилия и перемещения оболочек с предварительным напряжением и без предварительного напряжения. Для упрощения и наглядности расчета вычисления производим в табулированном виде; при этом предварительно вычисляем величины $e^{-c_{1,m}\alpha}$ и $e^{-c_{2,m}\alpha}$ для каждой рассматриваемой точки.

В таблице 8 приведено примером вычисление первого приближения поперечных моментов $M_{2,1}$ предварительно Таблица 8

M2,1	12	-0,0552 -0,2523537 -0,32587 -0,32547 +0,1047 +0,1340 +0,1340
$\left(\frac{\dagger q \dagger p}{g \frac{1}{2} a} - \right) \left(\mathcal{B} - \mathcal{V} \right)$	11	$\begin{array}{c} -0.0314\\ -0.0314\\ -0.3724\\ -0.3724\\ -0.363\\ -0.3654\\ -0.1912\\ -0.1912\\ -0.040\\ +0.0040\\ +0.00700\\ +0.0049\\ +0.00700\\ +0.0024\\ -0.0023\\ -0.0024\\ -0.00$
A - B	10	+3799 + $+35031$ + $+45031$ + $+45031$ + $+443031$ + $+443031$ + -481 - -481 - -481 - -13019 - -13019 - -13019 - -13019 + -12152 + -13019 + -13019 - -13019 + -13019 + -13019 - -13019 + -2382
$B_{2,1}e^{-c_{2,1}\alpha} \times$	6	$\begin{array}{c} -28352\\ -56494\\ -564949\\ -564949\\ -564949\\ -45949\\ -35501\\ -22029\\ -1720\\ +1720\\ +1720\\ +12940\\ +11920\\ +11920\\ +11920\\ +11920\\ -1045\\ -1045\\ -1045\end{array}$
$B_{2,1}e^{-c_{2,1}\alpha}$	8	76010 64346 54346 54346 54346 54346 33856 33856 33856 32859 27789 27789 16798 17789 17778
cos y2	7	-0,3730 -0,3730 -0,9291 -0,9997 -0,9985 -0,9985 -0,5732 0,0732 0,0732 0,0732 0,0732 0,0732 0,09603 0,9925 0,9925 0,925 0,925 0,2317 -0,1702 0,2317 -0,5446
$+\frac{\pi}{4} = \gamma_2 + \beta_{2,1} + \frac{\pi}{4} = \gamma_2$	• 6	111°54 135°06 158°18 155°16 158°18 181°30 204°42 251°06 274°12 251°06 343°48 343°48 330°24 7°00 7°00 7°00 123°24 76°36 99°48
$B_{1,1}e^{-c_{1,1}x} \times \cos \gamma = A$	5	$\begin{array}{c} -24553\\ -124553\\ -15453\\ -5463\\ -5463\\ -16403\\ +1087\\ +1087\\ +1087\\ +1087\\ +1087\\ +1087\\ +1087\\ +11036\\ +11036\\ +148\\ +118\\ +$
$B_{1,1}e^{-c_{1,1}\alpha}$	4	41280 27538 18370 18256 8173 5453 5453 5453 3637 2427 1618 1081 722 479 322 322 322 322 322 322 154 168 168 168 168 168 168 168 168 168 168
cos y1	3	$\begin{array}{c} -0.5948 \\ -0.5948 \\ -0.1340 \\ 0.2974 \\ -0.1340 \\ 0.0350 \\ 0.1994 \\ 0.1994 \\ 0.7660 \\ 0.9348 \\ 0.9996 \\ 0.9999 \\ 0.9999 \\ 0.9999 \\ 0.9999 \\ 0.9999 \\ 0.9999 \\ 0.9814 \\ 0.9894 \\ 0.9994 \\ 0$
$\frac{d_{1,1}\alpha +}{+\beta_{1,1}-}$ $-\frac{\pi}{4} = \gamma_1$	2	233°28' 252°42' 252°42' 252°42' 252°42' 252°42' 251°54' 291°54' 291°18' 300°42' 310°18' 329°36' 320°36' 30°36
a	-	80 75 55 55 55 75 76 66 67 77

напряженной оболочки. Все остальные усилия и перемещения вычисляем аналогично.

Некоторые результаты вычислений представлены на рисунках 6—11.

Рис. 6.

Рис. 7.

Рис. 8.

Рис. 9.

ЗАКЛЮЧЕНИЕ

Из рисунков 6—9 следует, что используемый ряд при расчете в данном случае сходится довольно быстро. Для практического расчета длинных оболочек и оболочек средней длины достаточно только первого члена (m=1); при этом допущена незначительная ошибка в пользу прочности конструкции. Последнее обстоятельство объясняется тем, что при апроксимации нагрузки только первым членом ряда Фурье происходит некоторое перераспределение нагрузки, причем рост натрузки по середине пролета вызывает увеличение усилий и перемещений.

Из сравнения оболочек с предварительным напряжением и без предварительного напряжения следует, что предварительное напряжение вызывает явное изменение усилий и перемещений. Большие изменения возникают в продольных усилиях T_1 (рис. 10); при этом влияние предварительного напряжения у нижней грани бортового элемента наибольшее, так как там силы предварительного напряжения приложены непосредственно.

Рис. 10.

Предварительное напряжение вызывает перемещение нейтральной оси по направлению к коньку оболочки. Предварительное напряжение также оказывает значительное влияние на углы поворота ф (рис. 11), причем созданные предварительным напряжением отрицательные углы поторота имеют максимальные величины на краю оболочки и уменьшаются приблизительно линеарно к коньку оболочки.

Рис. 11.

Поперечному изгибающему моменту М₂ прибавляется от предварительного напряжения положительный момент, величина которого приблизительно постоянная по всему сечению (рис. 11). На касательные усилия влияние предварительного напряжения гораздо меньше, имея значение только у края оболочки и в бортовом элементе (рис. 10). Из рис. 10 следует, что предварительным напряжением в железобетоне создаются благоприятные условия напряжений (ликвидирована значительная зона растяжения). Также выясняется, что в данном случае достаточно значительно меньшего предварительного напряжения. Имея в виду, что величина предварительного напряжения пропорциональна созданным ею усилиям и перемещениям, можно изменить выбранную в начале расчета величину предварительного напряжения, исходя, например, из благоприятного распределения продольных усилий Т₁.

Понятно также, что выбор какого-либо нового предварительного напряжения не заставит произвести весь расчет снова, а понадобится лишь соответственно уменьшить или увеличить усилия и перемещения, вызванные предварительным напряжением в бетоне (на рис. 10 и 11 эпюры 3). Соответственно изменяется при этом и площадь поперечного сечения предварительно напряженной арматуры.

Из примера вычисления вместе с тем видим, что объем расчета (по изложенному методу) предварительно напряженных оболочек по сравнению с расчетом оболочек без предварительного напряжения практически не увеличится.

ЛИТЕРАТУРА

- 1. Новожилов В. В. Теория тонких оболочек, 1951.
- 2. Власов В. З. Общая теория оболочек, 1949.
- 3. Гольденвей зер А. Л. Теория упругих тонких оболочек, 1953.
- Лаул Х. Х. Цилиндрические железобетонные оболочки с предварительно напряженной арматурой. Труды ТПИ № 45, 1953.
- 5. Rabich, R. Die Statik der Schalenträger. Bauplanung-Bautechnik, Januar 1956.
- 6. Rühle, H. Die Rationalisierung des Entwurfs und der Ausführung von Schalenbauten. Bauplanung-Bautechnik. März, 1956.
- Kirkland, C. W. The Design and Construction of a Large-Span Prestressed Concrete Shell Roof. The Structural Engineer, April, 1951.

А. А. Сумбак

РАСЧЕТ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ ЦИЛИНДРИЧЕСКИХ ЖЕЛЕЗОБЕТОННЫХ ОБОЛОЧЕК

Таллинский Политехнический Институт

Редактор Х. Лауль Технический редактор А. Тамм Корректор М. Каска

Сдано в набор 22. 05. 1959. Подписано к печати 17. 06. 59. Бумага 54×84 ^г/₁₆. Печатных листов 1,75. По формату 60×92 печатных листов 1,43. Учетно-издательских листов 0,93. Тираж 500. МВ-06241. Заказ № 3411.

Типография «Коммунист», Таллин, ул. Пикк, 2.

Цена. 65 кон.

