
Constraints Solving Based Hierarchical Test
Generation for Synchronous Sequential Circuits

TAAVI VIILUKAS

P R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C78

Dissertation was accepted for the defence of the degree of Doctor of Philosophy in
Computer and System Engineering on October 16, 2012.

Supervisor:

Opponents:

Defence of the thesis:

Prof. Jaan Raik
Department of Computer Engineering
Tallinn University of Technology, Estonia

Prof. Heinrich Theodor Vierhaus
Brandenburg University of Technology, Germany

Prof. Matteo Sonza Reorda
Politecnico di Torino, Italy

November 30, 2012

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology has not been
submitted for any academic degree.

/Taavi Viilukas/

(publication)
(PDF)

Copyright: Taavi Viilukas, 2012
ISSN 1406-4731
ISBN 978-9949-23-383-0
ISBN 978-9949-23-384-7

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Computer Engineering

INFORMAATIKA JA S TEHNIKA C78ÜSTEEMI

Kitsenduste lahendamisel baseeruv
hierarhiline testigenereerimine

sünkroonsetele järjestikskeemidele

TAAVI VIILUKAS

To my lovely wife Kaja

and to my sweet daughters Ella and Paula

7

Abstract

The developments in nanotechnologies have increased the complexity of
digital circuits. While the area of integrated circuits is reducing, the number of
elements is increasing rapidly. The growing complexity of digital circuits has
made testing one of the most complicated and time-consuming problems in
system design and production. A very small manufacture defect in a wire or in a
transistor element can easily result in a faulty digital system. Therefore, testing
is required to guarantee fault-free products and more efficient testing methods
are needed.

This thesis addresses several hierarchical automated test pattern
generation techniques. The main emphasis is to increase the fault coverage with
reducing the run times with respect to the state-of-the-art.

Firstly, a novel constraint-based approach for hierarchical automated test
pattern generator is presented. Deterministic algorithm first activates test path
constraint at register-transfer level and subsequently applies a constraint solving
package ECLiPSe Prolog assembling the tests. Experimental results show that it
provides increased fault coverage for hard-to-test designs with respect to semi-
formal approaches and this approach offers short run times.

Secondly, a novel approach was presented combining three different fault
models − hierarchical fault model for functional blocks, a functional fault model
for multiplexers and a mixed hierarchical-functional fault model for comparison
operators. The fault models are integrated into the fast hierarchical decision
diagram based automated test pattern generation tool developed in this thesis.
According to experiments, the proposed method significantly outperforms state-
of-the-art test pattern generation tools. The main new contribution of this work is
a formal definition of high-level decision diagram representations and the
combination of the three fault models in order to target high gate-level stuck-at
fault coverage for sequential cores.

Thirdly, based on the same tool, untestable faults identification method is
introduced. The method is based on hierarchical approach where test path
constraints extracted at the RTL are applied to proving untestable faults at the
gate-level. For the first, the concept of test path constraints for testing a module
in the RTL design is presented. Then the procedure of extracting a full set of test
path constraints is shown. Experiments show that it is capable of generating tests
yielding maximum fault efficiency for modules embedded into the RTL.

All mentioned three approaches were included into hierarchical test
generation tool named Decider.

9

Annotatsioon

Nanotehnoloogiline areng on muutnud digitaalskeemid palju keeruli-
semaks. Kuigi ühelt poolt digitaalskeemide pindala väheneb, siis teisalt nendes
sisalduv lülituste ehk transistoride arv suureneb, mistõttu on digitaalskeemide
disainimise ja tootmise juures muutunud nende testimine üheks keerulisemaks ja
aeganõudvamaks etapiks. Piisab vaid ühest defektist toodetud mikrokiibis, mille
tõttu ei pruugi terve digitaalseade töötada korrektselt. Seega on äärmiselt oluline,
et iga digitaalseadet testitakse peale tootmist.

Antud väitekiri käsitleb kolme hierarhilise testigenereerimise meetodit,
mille põhieesmärk on suurendada testigeneraatori veakatet ning vähendada
genereerimiseks kulunud tööaega.

Esiteks esitletakse uudset kitsenduste lahendamisel põhinevat hierarhilist
testigenereerimise meetodit. Selles meetodis kutsutakse kõigepealt välja
deterministlik algoritm, mis kirjutab välja kõik kitsendused, mis on vajalikud, et
aktiveerida tee sisendist kuni testitava moodulini RTL tasemel. Seejärel
kutsutakse välja leitud kitsenduste lahendamiseks ECLiPSe Prolog ning saadud
vastuseid kasutades genereeritakse moodulile madalal tasemel test. Katse-
tulemused näitavad, et selline uudne meetod annab suurema veakatte eelkõige
raskesti testitavatele digitaalskeemidele ning lühendab testigenereerimiseks
kulunud aega.

Teiseks esitletakse uudset meetodit, kus on ühendatud kolm erinevat
rikete mudelit: hierarhiline rikete mudel funktsionaalsetele moodulitele,
funktsionaalne rikete mudel multiplekserite jaoks ja kombineeritud hierarhiline-
funktsionaalne rikete mudel võrdluste moodulitele. Rikete mudelid on integree-
ritud kõrgtaseme otsustusdiagrammidesse. Vastavalt katsetulemustele pakutakse
välja oluliselt efektiivsem uudne meetod kui nüüdisaegsed testigenereerimise
vahendid. Peamine uudsus antud töös on formaalne määratlus nende kolme
rikkemudeli kombinatsioonis kõrgetaseme otsustusdiagrammides.

Kolmandaks esitatakse kitsendustel põhineva mittetestitavate rikete
tuvastamise meetod. Meetod põhineb samuti hierarhilisel testigenereerimise
lähenemisviisil, kus leitakse tee testitava moodulini registersiirde tasemel ning
antud teed kasutatakse mittetestitavate vigade tõestuseks loogikalülituste
tasemel. Esiteks esitatakse registersiirde disainis testitava mooduli tee aktivee-
rimine ning seejärel antud tee kitsenduste väljatoomise algoritm. Katsetulemused

10

näitavad, et antud meetod on võimeline genereerima registersiirde tasemel
maksimaalseid tulemusi integreeritud moodulitele.

Kõik kolm esitletud meetodit integreeriti hierarhilisse testigeneraatorisse
Decider.

11

Acknowledgements

I would like to show appreciation to everybody who helped me with
advice and support during my PhD studies. My special thanks goes to my
supervisor, Professor Jaan Raik, who greatly supported me during my research
and showed a lot of patience during the long process of my PhD studies.

I also would like to acknowledge the organizations that have supported
my PhD studies − Tallinn University of Technology, Estonian IT Foundation
(EITSA), Enterprise Estonia funded ELIKO Development Centre, National
Graduate School for Information and Communication Engineering (IKTDK),
European Commission’s FP6 research project VERTIGO, European
Commission’s FP7 research project DIAMOND and the European Science
Foundation (ESF COST action IC0901).

Finally I would like to warmly thank my family for their patience and
support.

Thank you all!

12

List of Publications

Journals

1. Taavi Viilukas, Anton Karputkin, Jaan Raik, Maksim Jenihhin,
Raimund Ubar and Hideo Fujiwara (2012). Identifying Untestable Faults
in Sequential Circuits Using Test Path Constraints. Journal of Electronic
Testing: Theory and Applications, Springer, Volume 28, Issue 4 (2012),
pp. 511 – 521.

2. Raik, J.; Ubar, R.; Viilukas, T.; Jenihhin, M. (2008). Mixed hierarchical-
functional fault models for targeting sequential cores. Journal of
Systems Architecture, 54(3-4), pp. 465 – 477.

3. Jenihhin, Maksim; Raik, Jaan; Ubar, Raimund; Viilukas, Taavi;
Fujiwara, Hideo (2011). An Approach for Verification Assertions Reuse
in RTL Test Pattern Generation. J. of Shanghai Normal University
(Natural Sciences), Vol. 39(No 5), pp. 441 – 447.

Conferences

4. Drenkhan, Taavi; Tšepurov, Anton; Viilukas, Taavi; Raik, Jaan;
Karputkin, Anton; Jenihhin, Maksim; Ubar, Raimund (2012).
Generating Directed Tests for C Programs using RTL ATPG.
Proceedings of the IEEE 11th Workshop on RTL and High Level Testing
(WRTLT'12), November 22-23, 2012, Niigata, Japan.

5. Raik, J; Rannaste, A; Jenihhin, M; Viilukas, T; Fujiwara, H; Ubar, R
(2011). Constraint-Based Hierarchical Untestability Identification for
Synchronous Sequential Circuits. Proceedings of IEEE European Test
Symposium, (1 - 6). IEEE Computer Society Press

6. Viilukas, Taavi; Jenihhin, Maksim; Raik, Jaan; Ubar, Raimund;
Baranov, Samary (2011). Automated Test Bench Generation for High-
Level Synthesis flow ABELITE. Proceedings of IEEE East-West Design
& Test Symposium 2011 (1 - 6). Sevastopol, Ukraine: IEEE Computer
Society

13

7. Jenihhin, M.; Raik, J.; Fujiwara, H.; Ubar, R.; Viilukas, T. (2011). An
Approach for Verification Assertions Reuse in RTL Test Pattern
Generation. In: Proceedings of the IEEE 11th Workshop on RTL and
High Level Testing (WRTLT'10), Shanghai, China, December 5-6, 2010.

8. Viilukas, Taavi; Raik, Jaan; Jenihhin, Maksim; Ubar, Raimund;
Krivenko, Anna (2010). Constraint-based Test Pattern Generation at the
Register-Transfer Level. In: Proceedings of the 13th IEEE Symposium
on Design and Diagnostics of Electronic Circuits and Systems : April
14–16, 2010 Vienna, Austria: IEEE, 2010, pp. 352 – 357.

9. Chepurov, Anton; Di Guglielmo, Giuseppe; Fummi, Franco; Pravadelli,
Graziano; Raik, Jaan; Ubar, Raimund; Viilukas, Taavi (2008).
Automatic Generation of EFSMs and HLDDs for Functional ATPG.
11th Biennial Baltic Electronics Conference (pp. 143 – 146).IEEE

10. Raik, Jaan; Ubar, Raimund; Viilukas, Taavi (2006). High-Level
Decision Diagram based Fault Models for Targeting FSMs. In:
Proceedings of the 9th IEEE Euromicro Conference on Digital Systems
Design : DSD2006, Cavtat, Aug. 31- Sept. 2, 2006. IEEE Computer
Society Press, 2006, pp. 353 – 358.

Doctoral schools

11. Taavi Viilukas, Jaan Raik, Using Test Pattern Generation Tool Decider

in Hardware Verification, 2nd IKTDK Conference, Viinistu, Estoia
2007.

12. Taavi Viilukas, Jaan Raik, Using constraint solver in Test Pattern
Generation Tool, 3th IKTDK Conference, Voore Resort Center, Estonia,
2008, pp. 14 – 17.

13. Taavi Viilukas, Jaan Raik, Automated Test Pattern Generator with
Constraint Solver, 4th IKTDK Conference, Essu mois, Estonia, 2010, pp.
33 – 36.

14. Taavi Viilukas, Jaan Raik, Raimund Ubar, Anna Rannaste, Maksim
Jenihhin, Hideo Fujiwara, Constraint-Based Hierarchical Untestability
Identification for Syncronous Sequential Circuits, 5th IKTDK
Conference, Nelijärve resort, Estonia, 2011, pp. 139 – 142.

15. Taavi Viilukas, Approaches to improve hierarchical ATPG for
synchronous sequential circuits, 6th IKTDK Conference, Laulasmaa,
Estonia, 2012, pp. 105 – 108.

15

List of Abbreviations

ADD Assignment Decision Diagram

ADN Assignment Decision Node

ATE Automated Test Equipment

ATPG Automated Test Pattern Generation

BDD Binary Decision Diagram

libIC Interval Constraints library

CLP Constraint Logic Programming

CUT Circuit Under Test

DFT Design for Testability

DIFFEQ Differential Equation

FFR Fanout-Free Region

FSM Finite State Machine

FU Functional Unit

GCD Greatest Common Divisor

HLDD High-Level Decision Diagrams

IC Integrated Circuit

MULT8x8 8-Bit Sequential Multiplier

MUT Module Under Test

MOT Multiple Observation Time

PI Primary Input

PO Primary Output

QFBV Quantifier-Free Bitvector

RISC ALU based processor

RT Register-Transfer

RTL Register-Transfer Level

16

SAF Stuck-at-Fault

SOT Single Observation Time

s-a-0 Stuck-at-0

s-a-1 Stuck-at-1

SSA Single Stuck-At

VLSI Very Large Scale Integrated

SDC Synopsys Design Compiler

ELLIPF Elliptic Filter

FUTEG Functional Test Generation

17

Table of Contents

1 Introduction ..21

1.1 Motivation ... 21

1.2 Problem formulation ... 22

1.3 Contributions... 23

1.4 Thesis organization ... 24

2 Fault modelling ...25

2.1 Digital circuits ... 25

2.2 Importance of testing digital circuits .. 27

2.3 Yield and Reject Rate ... 29

2.4 Fault Models ... 31

3 Test of sequential circuits ...37

3.1 Automatic test pattern generation ... 37

3.1.1 ATPG algorithms for synchronous sequential circuit................... 39

3.1.1.1 Simulation-based method ... 40

3.1.1.2 Deterministic method ... 40

3.1.1.3 Hierarchical method ... 42

3.2 Fault simulation .. 42

4 Representing Sequential Digital Circuits using High-Level Decision
Diagrams ...44

4.1 Register-Transfer Level .. 44

4.2 High-Level Decision Diagram Models ... 47

4.2.1 HLDD Representation for RTL Circuits 48

4.3 Assignment Decision Diagram ... 51

4.4 Differences between HLDDs and ADDs .. 55

18

5 Constraint-based Automated Test Pattern Generation for Sequential
Circuits ..57

5.1 Previous work ... 57

5.2 Motivation ... 59

5.3 Hierarchical ATPG algorithm ... 60

5.4 Concept of path activation constraints .. 61

5.4.1 Fault manifestation ... 64

5.4.2 Fault effect propagation .. 65

5.4.3 Constraint justification ... 67

5.4.4 Constraint solving and low-level test ... 69

5.5 Constraint extraction example .. 69

5.6 Constraint logic programming and ECLiPSe 73

5.7 Solving the test path constraints.. 74

5.8 Experimental results .. 75

5.9 Chapter summary .. 76

6 High-Level Decision Diagram based Fault Models77

6.1 Previous work ... 77

6.2 Motivation ... 78

6.3 Mixed functional-hierarchical fault models 79

6.3.1 Hierarchical fault model for functional units 79

6.3.2 Functional fault model for multiplexers 79

6.3.3 Mixed functional-hierarchical fault model for comparison
operators ... 83

6.4 Experimental results .. 85

6.5 Chapter summary .. 87

7 Identifying Untestable Faults in Sequential Circuits
Using Test Path Constraints ...89

7.1 Previous work ... 89

7.2 Motivation ... 90

7.3 Constraint-based untestability proof flow ... 91

19

7.4 Test path constraints extraction at the RTL 92

7.5 Minimization of test path constraints .. 93

7.6 Constraint-driven ATPG for proving untestability 94

7.7 Discussion on the effect of the top-down proof 96

7.8 Limitations and threats to validity .. 97

7.9 Experimental results .. 98

7.10 Chapter summary .. 102

8 Thesis conclusions ..103

Reference ...105

Appendix A ..115

21

1 Introduction

This thesis addresses several hierarchical automated test pattern
generation improvements. The main emphasis is to increase the fault coverage
while reducing the working time.

This chapter presents the motivation behind the presented work, followed
by a more detailed problem formulation. This is followed by a summary of the
main contributions and an overview of the thesis structure.

1.1 Motivation

Digital circuits become more important in everyday life by controlling very
complex systems in which different subsystems intertwine with each other. In such
systems, it is very important that all parts function as expected. A simple error in
subsystem may propagate through the whole system and affect other modules. For
example, in 1997 USS cruiser Yorktown’s main power was shut down for about
three hours, because of an error in the kitchen inventory application. An arithmetic
exception was propagated through the system until it stopped the main power [1].
Or an even more dramatic example from the year 2008 where 154 persons were
killed in a civil airplane crash. Due to a fault in the central computer system, no
alarm was raised over multiple problems on the plane [2].

As known, the complexity of digital circuits has been increasing very
rapidly. It is following the so-called Moore’s law [3], which says that the scale
of Integrated Circuits (IC) has doubled every 18 months. While a
microprocessor in 1989 contained only one million transistors, already in 2005
the number of transistors had raised to more than one billion [4]. Today’s
architecture feature size is 22nm or less compared with 1µm in 1986. It means
the feature size has reduced 45 times! Moreover, the operating frequencies have
been increasing dramatically too – Intel 4004 microprocessor ran at 108 KHz in
1971 [5], while current commercially available microprocessors commonly run
at several gigahertzes.

Increasing complexity of digital circuits has made testing one of the most
complicated and time-consuming problems in system design and production. It

22

is estimated that 70 % of the design cycle for systems is spent on tests and
verification [6]. A very small manufacturing defect, for example, open or bridge,
can easily result in a faulty IC [7]. It takes only one faulty transistor or wire to
make the entire chip function improperly. Defects that were created during the
manufacturing process are unavoidable and a certain number of ICs is expected
to be faulty. Therefore, testing is required to guarantee fault-free products,
regardless of whether the product is a Very Large Scale Integrated (VLSI)
circuit’s device or an electronic system composed of many VLSI devices.

When the time for testing grows rapidly, more efficient testing methods
are needed. Testing means the checking of circuits for manufacturing correctness
for each produced device. There also exists a functional verification to check the
correctness of functionality but this is not considered in this research. The
keyword for testing is how to generate effective test vectors. The goal is getting
a minimum number of test vectors that cover 100 % of faults with a minimum
time. The quality of testing relies on algorithms that generate test vectors. For
combinational circuit, a method that guarantees 100 % fault detection was
approached in 1990s. As a result, Automated Test Pattern Generation (ATPG)
for combinational logic is no longer a problem [7].

Test generation for sequential synchronous designs is still a difficult and
time-consuming task. A state sequence must be traversed so that it is possible to
propagate the fault effect to a primary circuit output. The fault must be observed
and detected. Ideally, testing should be fast and reliable. However, in reality test
generation times are too long for complex circuits and the achieved fault coverage
is unsatisfactory. Several approaches to generating tests for stuck-at faults in
sequential circuits have been proposed over the years. For example, at the gate-
level deterministic methods [8] [9] are not able to efficiently handle sequential
designs with more than a couple of thousands of gates. But simulation-based
approaches [10] [11] [12] do not guarantee detection for hard-to-test random
pattern resistant faults. And functional test [13] [14] generation does not offer full
structural level fault coverage. Still, no satisfactory solution for sequential circuit
test generation has been proposed and the problem still lacks a breakthrough.

1.2 Problem formulation

As mentioned above, a lot of different methods have been implemented to
generate test vectors for sequential circuits, but none of these give a solution to
reach 100 % fault coverage in sequential circuits. In sequential circuits, there are
memory elements and feedback loops and these make test pattern generation
difficult.

In generating tests for synchronous sequential circuits, a state sequence
must be traversed to propagate the fault effect to a primary circuit output and
initialize inputs to activate the test path to the Module Under Test (MUT).

23

During that state traversing, different constraints are created and updated.
Created constraints may be very long and hard to solve. To speed up test
generator time and increase the fault coverage it is important to solve those
constraints quickly and correctly.

Because it is hard to generate tests for real defects, fault models are used.
A fault model is a mathematical description of how a defect alters the design
behaviour. A good fault model must satisfy two criteria – it should accurately
reflect the behaviour of the defect and it should be computationally efficient for
the fault simulation and the test pattern generation. No single fault model
accurately reflects the behaviour of all possible defects that can occur.

When generating tests, two criteria must be satisfied − the fault must be
controllable and observable. If there is a fault and those two criteria cannot be
satisfied, then there is an untestable fault. Untestable fault is a fault for which no
test exists. Identifying untestable faults in sequential synchronous circuits
remains unsolved. ATPG tools spend a lot of effort not only for deriving test
vectors for testable faults but also for proving that there exist no tests for the
untestable faults. Because of the reason mentioned above, the identification of
untestable faults has been an important aspect in speeding up the sequential
ATPG.

This thesis is addressing the challenges mentioned above.

1.3 Contributions

The current thesis introduces several approaches to improve hierarchical
ATPG for synchronous sequential circuit fault coverage and speed. The main
contributions of this thesis are summarised as follows:

 A new deterministic algorithm that extracts constraints for activating test
paths at Register-Transfer Level (RTL) and subsequently applies a
constraint solving package ECLiPSe assembling the tests in hierarchical
ATPG. The current thesis is focused to constraint based ATPG on
Chapter 5.

 A new type of fault model based on High-Level Decision Diagrams
(HLDD) dedicated to the faults in FSMs embedded into RTL
description. The novel contribution of this approach is a formal
definition of high-level decision diagram representations and the
combination of the three fault models in order to provide a high fault
coverage testing of sequential cores. The current thesis Chapter 6 is
focused to new type of fault model.

24

 A new hierarchical untestability identification method for non-scan
sequential circuits containing feedback loops is presented. The method
is based on extracting and minimizing RTL test path activation
constraints that drive a dedicated logic-level deterministic ATPG. The
current thesis is focused to improve hierarchical untestability
identification on Chapter 7.

All three mentioned approaches were included into top-down hierarchical
test generation tool named Decider and are ready for using. Decider is worked
out by Department of Computer Engineering by Tallinn University of
Technology.

1.4 Thesis organization

The presented thesis consists of eight chapters. It is organized as follows.

Chapter two provides background information required for the discussion
of further proposed approaches. Basic definitions and different aspects of digital
circuits and testing are introduced in that chapter.

In chapter three automatic test pattern generation and fault simulation
overview are given.

Chapter four gives an overview of RTL and high-level decision diagram
models. In addition assignment decision diagram is introduced.

In chapter five, constraints based ATPG is presented. It starts with
previous work after which the concept of path activation constraints is shown.
Then fault effect propagation and constraint justification are shown with an
example. Finally, constraints solving methods are presented. The chapter ends
with experimental results and conclusions.

In chapter six, high-level decision diagram based fault models are
presented. This chapter starts with previous work after which a mixed
functional-hierarchical fault model is presented.

In chapter seven, identifying untestable faults in sequential circuits is
presented. This chapter starts with previous work in identifying untestable faults
in sequential circuits where different methods are shown. It continues with the
untestability proof flow. Then, test path constraints extraction and minimization
are presented. Finally, constraint-driven ATPG for proving untestability is
shown. The chapter ends with experimental results and conclusions.

Chapter eight draws conclusions of this thesis.

25

2 Fault modelling

This chapter presents basic background knowledge that is necessary to
understand the related topic of current research. Starting at the very beginning −
what digital circuits are and how to divide them into different classes, should
guarantee that a reader is able to track this thesis. After that, elementary
knowledge about the digital testing and definitions is presented. And finally, the
stuck-at-fault model is introduced.

2.1 Digital circuits

A digital circuits can be defined generally as an interconnection of
Boolean logic elements such as AND (&) gates, OR (V) gates and INVERTERS
and combinations of these elements and it must be able to process a set of
discrete and finite-valued electrical signals. The opposite of the digital circuits is
analog devices where only continuous time voltages and currents are used.
These devices are not considered in this work. Digital circuits may be classified
as combinational or sequential. For example, Figure 1 presents the
combinational circuit (A) and sequential circuit (B).

26

Figure 1. Combinational (A) and sequential (B) circuit example.

In a combinational circuit, the present outputs depend only on present
inputs. In a sequential circuit the present outputs depend not only on present
inputs, but also on past inputs, i.e. the circuit state. This is because a sequential
circuit consists not only of the combinational part, but also of memory elements
like flip-flops and registers holding the circuit state. A sequential circuit also
contains feedback loops.

Those two classes, combinational and sequential circuits, have different
topologies. The first difference between them is, as mentioned earlier, that the
combinational circuit does not contain loops. Because of that combinational
circuits do not have states like sequential circuits have. The second one is from
testing, proposing that a test for a fault in a sequential circuit may consist of
several vectors while a combinational circuit to test a fault is a single vector
need.

When a combinational circuit does not contain redundant logic, the device
may be tested by applying all possible 2n input patterns for stuck-at faults, where
‘n’ is the number of inputs. This testing is called exhaustive testing and it is
suitable only for small circuits. When the number of inputs gets higher, the
exhaustive testing time will grow rapidly. In sequential circuits, it is not possible
to use exhaustive testing because that type of testing does not guarantee that all
possible states will be covered.

Sequential digital circuits may be further classified as asynchronous or
synchronous. A synchronous circuit is a digital circuit in which the parts are
synchronized by a clock signal. In contrast to a synchronous, an asynchronous
circuit is not governed by a clock signal. Instead they often use signals that
indicate the completion of instructions and operations, specified by simple data
transfer protocols. This work addresses only synchronous sequential circuits.

27

2.2 Importance of testing digital circuits

In test generation, the terms ‘defect’, ‘error’ and ‘fault’ are used very
often. A defect in an electronic system is the unintended difference between the
implemented hardware and its intended design. Defects occur either during
manufacture or during the use of devices. A wrong output signal produced by a
defective system is called an error. A fault is a mathematical representation of a
defect reflecting a physical condition that causes a circuit to fail to perform in a
required manner.

When a digital sequential circuit is fabricated, it is not possible to
guarantee that all produced circuits work as expected. This is because of material
defects. Also, some device behaviour may change during the time because of
material changing. To make sure that a fabricated circuit works as the design
specification intends, we need to test it. Testing consists of two different
processes – test generation and test application.

In the test generation process, test patterns are produced for efficient
testing. A test pattern or sequence of input pattern is also called test vectors or
the sequence of test vectors. They produce a different output in a faulty circuit
compared with the fault-free circuit. The goal of the test generation is to find an
efficient set of test vectors that detects all faults considered for that circuit.

Test application is performed by the Automated Test Equipment (ATE).
The purpose of this process is to apply test patterns to the Circuit Under Test
(CUT) and analyse the output responses with known good results. Circuits that
produce correct output responses for all input stimuli pass the test and are
considered to be fault-free. Those circuits that fail to produce a correct response
at any point during the test sequence are assumed to be faulty. Figure 2 depicts a
digital testing process flow.

28

Figure 2. Digital circuits test process flow

Quality and economy are the benefits of testing. It means that digital
circuits are tested within an acceptable time frame with minimum costs while
satisfying the user’s needs. For example, testing all possible stuck-at faults in
sequential circuits with only 32 inputs and 100 flip-flops with 2 gigahertz will
take 86 322 264 566 448 100 000 000 years. It is obvious that this is not a
solution and circuits need to be tested within a reasonable time frame.

All SSA test time, in seconds ൌ
2ሺ୬୳୫ୠୣ୰ ୭ ୧୬୮୳୲ୱሻ ൈ 2ሺ୬୳୫ୠୣ୰ ୭ f୪୧୮ିf୪୭୮ୱሻ

test operating frequence

To measure the quality of a test, fault coverage is used. Fault coverage can
be defined as the following ratio:

Fault coverage ൌ
Number of detected faults

Total number of faults

It may be impossible to obtain fault coverage of 100 % because of the
existence of undetectable faults in sequential circuits. An untestable fault means
there is no test to distinguish the fault-free circuit from a faulty circuit containing
that fault. As a result, the fault coverage can be modified and expressed as the
fault efficiency, also referred to as the effective fault coverage, which is defined
as:

29

Fault efficiency ൌ
Number of detected faults

Total number of faults െ number of untestable faults

In order to calculate the efficiency of fault detection, let alone reach a 100 %
fault coverage, all of the undetectable faults in the circuit must be correctly
identified, which is a difficult task [7].

2.3 Yield and Reject Rate

Because it is not possible to produce a 100 % good IC, some percentage
of the manufactured ICs are expected to be faulty due to manufacturing defects.
The yield of a manufacturing process is defined as the percentage of acceptable
parts among all parts that are fabricated:

Yield ൌ
Number of acceptable parts

 Total number of parts fabricated

There are two types of yield loss: catastrophic and parametric.
Catastrophic yield loss is due to random defects, and parametric yield loss is due
to process variations. Parametric variations due to the process fluctuations
become the dominant reason for yield loss.

When ICs are tested, the following two undesirable situations may occur:

1. A faulty device appears to be a good part passing the test
(under-testing).

2. A good device fails the test and appears as faulty
(over-testing).

First outcomes are often due to a poorly designed test or the lack of design for
testability (DFT). Second outcomes may occure when DFT is used.

Poorly designed test is a test that does not detect faults in the
manufactured circuits and affect to the device quality. Moreover, digital circuits
have different phases during its lifetime and in each phase the device should be
tested to ensure its quality. The following phases can be recognized: chip
manufacture, board manufacture, system manufacture, and working phase of a
product. For example if a chip fault is not caught by chip phase testing, then
finding the fault costs 10 times as much at the board level as at the chip phase.
Similarly, if a board fault is not caught by board level testing, then finding the
fault costs 10 times as much at the system level as at the board phase. The
relationship of the test and repair costs during each of these phases can be

30

approximated with the rule-of-ten [15]. Rule of then is illustrated in Table 1. If
the test and repair cost in the component manufacturing phase is R, then in the
board manufacture phase it is 10R, in the system manufacturing phase it is 100R,
and during the working phase it is 1000R. This is due to the increase in the
difficulty level of locating the faulty part, the increase in repair effort and the
larger volume of units involved. [16]

Table 1. Cost of fixing defect at different stages of the product phases

DFT is design techniques for sequential circuits that add controllability
and observability to a hardware design that makes test generation and test
application cost-effective. Controllability reflect how difficult is to set a signal
line to a required logic value from primary inputs and observability reflects, how
difficult is propagate the logic value of the signal line to primary outputs.

There are three main types of DFT approaches for digital circuits:
 ad-hoc techniques
 scan design techniques
 built-in self-test

While DFT techniques are generally used in order to reduce test
generation complexity, they may induce over-testing problems. DFT makes a
large number of untestable faults testable. Overtesting occurs when a defect that
would not be detected under functional operation conditions of a chip, is
detected due to non-functional conditions created during test application. The
over-testing causes yield loss because good circuits in normal operations may be
regarded as faulty ones under the test mode. Moreover, over-testing reduce test
generation time. Furthermore, identification of untestable faults could avoiding
over-testing and reduce yield loss. [17]

If all products pass acceptance test, some faulty devices will still be found
in the manufactured electronic system. The ratio of field-rejected parts to all

x1
x10

x100

x1000

Chip phase Board phase System phase Working phase

C
o
st
 t
o
 f
ix
 p
ro
b
le
m
s

31

parts passing quality assurance testing, is referred to as the reject rate, also called
the defect level:

Reject rate =
Number of faulty parts passing final test

 Total number of parts passing final test

The reject rate provides an indication of the overall quality of the VLSI
testing process [7]. The highest quality refers to the product meeting its
requirements at lowest possible cost. In a manufacturing process, both criteria,
meeting the requirements and reducing cost, determine the quality. Testing
checks conformance to requirements. Therefore, a cost tradeoff is often
necessary. A test that can reduce the number of outgoing faulty parts to an
acceptably small value can be considered as a good test, especially if the test
cost is also acceptable.

Figure 3. Cost of testing

2.4 Fault Models

It is difficult to generate tests for real defects. For this reason, fault models
are used. A fault model could be defined as a mathematical description of how a
defect alters design behaviour. Fault models are necessary for generating and
evaluating a set of test vectors. Generally, a good fault model should satisfy two
criteria:

Cost of testing

Defect rate

HighLow

High

32

1) It should accurately reflect the behaviour of defects.

2) It should be computationally efficient in terms of fault simulation and
test pattern generation.

Many fault models have been proposed [7], but, unfortunately, no single
fault model accurately reflects the behaviour of all possible defects that can
occur. Here, in this thesis, only suck-at faults are considered. Other fault models
such as transistor faults, open and short faults, delay faults and other fault
models are not considered in this work.

The stuck-at fault is a logical fault model that has been used successfully
for decades and it has been the industrial standard since 1959. A stuck-at fault
affects the state of logic signals on lines in a logic circuit, including the Primary
Inputs (PIs), Primary Outputs (POs), internal gate inputs and outputs, fan-out
stems (sources), and fan-out branches. The stuck-at fault model assumes that the
elementary components are fault-free. A stuck-at fault transforms the correct
value on the faulty signal line to appear to be stuck at a constant logic value,
either logic 0 or logic 1, referred to as stuck-at-0 (SA0) or stuck-at-1 (SA1),
respectively. To generate a test for line SA0, we need to find a vector of PIs that
sets signal on that line to 1 so that some primary output differs between the good
circuit and the faulty circuit.

There can be several stuck-at faults simultaneously present in a circuit. A
circuit with n lines can have 3n-1 possible stuck combinations [7]. This is
because each line can be in one of the three states:

1. SA1
2. SA0
3. Fault-free.

The circuit is fault-free only then when all lines are identified as fault-
free. All other combinations mean that the circuit is faulty, because even one
faulty line could cause a catastrophic result on the circuit operation. Already a
small number of n will give an enormously large number of multiple stuck-at
faults. Therefore, it is common practice to model only one single stuck-at (SSA)
fault, so an n-line circuit can have at most 2n SSA faults.

The stuck-at fault model is the most often used fault model in ATPG
systems. In SSA fault model, the following presumption is made − only one
single and permanent fault is considered at the time. There are three properties
that characterize a single stuck-at fault model:

 Only one line is faulty.
 The faulty line is permanently set either logical 1 or logical 0.
 The fault can be assumed at an input or an output of the gate [18]

The stuck-at fault model is a logical fault model because no delay
information is associated with the fault definition. It is also called a permanent
fault model because the faulty effect is assumed to be permanent, in contrast to

33

intermittent faults which occur (seemingly) at random and transient faults which
occur sporadically, perhaps depending on operating conditions (e.g.,
temperature, power supply voltage) or on the data values (high or low voltage
states) on surrounding signal lines.

The number of SSA faults is further reduced by technique called fault
collapsing [18]. Traditionally, this is done by implementing two types of
relations on the set of faults: fault equivalence and fault dominance. Faults f1
and f2 are said to be equivalent if any test that detects f1 detects f2 and vice
versa, any test detecting f2 covers also the fault f1. It is said that fault f1
dominates f2, if any test that detects f2 will also detect f1. Note that the
equivalence relationship is symmetrical while the dominance is not. Equivalence
relations between stuck-at faults for basic Boolean gates are presented in Figure
4A and the dominance is explained in Figure 4B. Typically, fault collapsing
reduces the total number of faults by 50 to 60 % [7] [19].

A. Equivalence relationships of stuck-at faults for basic logic gates

B. Dominance relationships of stuck-at faults for basic logic gates

Figure 4. Fault collapsing for Boolean gates

There are functional and structural tests. In functional testing every entry
in the truth table for the combinational logic circuit is tested to determine
whether it produces the correct response. For example, to test an adder with 129
inputs and 65 outputs it needed 2219 input patterns that produce 2219 output
responses [18]. ATE that operates at 1 GHz would take 2,1580566142x1022
years to apply all of these patterns to the circuit-under-test (CUT). In structural
testing, only selected specific test patterns are used based by circuit structural
information and fault models. The total number of test patterns decreases

34

because the test vectors target specific faults. For testing the above example
adder, only 1728 test patterns will be needed and ATE with working the same
frequency would apply these patterns in 0.000001728 s and it achieves exactly
the same fault coverage as the intractable functional test-pattern set described
above.

In Figure 5, one simple circuit example is shown. There are nine signal
lines representing potential stuck-at faults. They are labelled alphabetically − A,
B, C, D, E, F, G, H and I. For exhaustive testing, eight test vectors will be
needed (2n for all possible input pattern, where n is the number of inputs). Table
2 gives the truth tables for observable stuck-at faults. All the entries where the
faulty circuit produces an output response different from fault-free circuit are
marked as 1 and highlighted in grey in Table 2. Let us look closely at a two
different scenarios generating test on potential stuck-at fault B. First, let us use
vector 000 for testing. If line B is faulty and it is stuck-at-0, the line will be
spread 0 instead of 1. Despite of stuck-at-0 on the point of B the primary output
will get the correct response 0 and the fault will not be discovered. In that
scenario the fault is not observable in the primary output and it is marked as 0 in
the truth table. Secondly, let us use vector 010 for testing. If line B is faulty and
it is stuck-at-0, the primary output will get a faulty response 1 (the correct value
in fault-free circuit should be 0) and the fault will be discovered. As a result, the
input values for the highlighted truth table entries represent valid test vectors to
detect the associated stuck-at faults. The circuit in Figure 5 can be tested with
100 % coverage with four test vectors – 001, 010, 110 and 111.

Figure 5. Potential stuck-at fault locations

35

Table 2. Truth tables for observable stuck-at faults for Figure 5

SAF 000 001 010 011 100 101 110 111

A s‐a‐0 0 0 0 0 0 0 1 0

A s‐a‐1 0 0 1 0 0 0 0 0

B s‐a‐0 0 0 1 0 0 0 0 0

B s‐a‐1 0 0 0 0 0 0 1 0

C s‐a‐0 0 0 1 1 0 0 0 1

C s‐a‐1 1 1 0 0 0 1 0 0

D s‐a‐0 0 0 1 0 0 0 0 0

D s‐a‐1 1 1 0 0 0 0 0 0

E s‐a‐0 0 0 1 0 0 0 0 0

E s‐a‐1 1 1 0 0 1 1 1 0

F s‐a‐0 0 0 0 0 0 0 0 1

F s‐a‐1 0 1 0 0 0 1 0 0

G s‐a‐0 0 0 0 0 0 0 0 1

G s‐a‐1 0 0 0 0 0 0 1 0

H s‐a‐0 0 0 0 0 0 0 0 1

H s‐a‐1 1 1 0 0 1 1 1 0

I s‐a‐0 0 0 1 1 0 0 0 1

I s‐a‐1 1 1 0 0 1 1 1 0

37

3 Test of sequential circuits

This chapter presents automatic test pattern generator methods and
algorithms. Many challenges that exist in this area include reduction of the time
and memory with obtaining high fault coverage. Secondly the task of fault
simulation, which determines how many of the potential faults are detected with
ATPG, is explained.

3.1 Automatic test pattern generation

Testing sequential circuits is more difficult than testing combinational
circuits. For example fault propagation and activation is complicated because of
the presence of memory elements and feedback paths. To detect a fault, a test
sequence is usually required, rather than a single input vector, and the response
of a sequential circuit is a function of its initial state [20].

ATPG for sequential circuits is the application of algorithmic-based
software to generate sequence of input test patterns that can be used for the
purpose of testing a manufactured circuit for defects. [7]. Many challenges
existing in this area include reduction in time and memory required to generate
the tests, reduction in the number of cycles needed to apply the tests to the
circuit, and obtaining high fault coverage. Adding to the complexity of this
problem is that an untestable fault is not necessarily redundant in a sequential
circuit [16].

General form for fault detection in sequential circuits is like follow. Let T
be a test sequence and R(q,T) be the response to T of a sequential circuit N
starting in the initial state q. Now consider the circuit Nf obtained in the presence
of the fault f. Similarly we denote Rf(qf,T) the response of Nf to T starting in the
initial state qf. [20]

Definition 1: A test sequence T strongly detects the fault f if the output
sequences R(q,T) and Rf(qf,T) are different for every possible pair of initial states
q and qf [16] [20].

Definition 2: A test sequence T detect the fault f if, for every possible pair
of initial states q and qf, the output sequences R(q,T) and Rf(qf,T) are different for
some specified vector ti T [16] [20].

38

Two faults f and g are said to be strongly functionally equivalent if the
corresponding sequential circuits Nf and Ng have equivalent state tables [16].

The discovered tests are applied then to the CUT, using the ATE, and the
output responses are compared with expected results. Circuits that produce the
correct output responses for all input stimuli pass the test and are considered to
be fault-free. Those circuits that fail to produce a correct response at any point
during the test sequence are assumed to be faulty. The traditional goal of the
ATPG is to achieve a high fault coverage by producing a small volume of test
patterns [21].

The effectiveness of the ATPG is measured by the amount of detected
faults and the number of generated patterns. High quality is getting more fault
detection in short times with fewer patterns. ATPG efficiency is influenced by
the fault model, the type of circuit, the level of abstraction and the required test
quality.

The ATPG process for a targeted fault consists of two phases: fault
activation and fault propagation. Fault activation establishes a signal value at the
fault model site that is opposite to the value produced by the fault model. Fault
propagation moves the resulting signal value, or fault effect, forwarded by
sensitizing a path from the fault site to a primary output.

The ATPG can fail to find a test for a particular fault in at least two cases.
Firstly, the fault may be intrinsically undetectable, such that no patterns exist
that can detect that particular fault. The classic example of this is a redundant
circuit, designed so that no single fault causes the output to change. In such a
circuit, any single fault will be inherently undetectable. Secondly, it is possible
that patterns exist but the algorithm cannot find them. Since the ATPG problem
is NP-complete there will be cases where patterns exist but the ATPG gives up
since it will take too long time to find them. NP-complete is a complexity class
of decision problems when any given solution to the decision problem can be
verified in polynomial time.

The sequential-circuit ATPG searches for a sequence of vectors to detect a
particular fault through the space of all possible vector sequences. Various
search strategies and heuristics have been devised to find a shorter sequence
and/or to find a sequence faster.

In the past several decades, the most popular fault model used in practice
was the SSA fault model. Even a simple stuck-at fault requires a sequence of
vectors for detection in a sequential circuit. Also, due to the presence of memory
elements, the controllability and observability of the internal signals in a
sequential circuit are in general much more difficult than those in a
combinational logic circuit. These factors make the complexity of the sequential
ATPG much higher than that of the combinational ATPG.

Sequential circuits generally have two modes of operation:
synchronization mode and free mode. In the synchronization mode, the

39

operation always starts with a specified input sequence. If hardware reset is
available as a special input, which is always employed to reset the circuit at the
beginning of operation. Under the free mode of operation, no synchronization is
done, and the sequential circuit starts operating from whatever state it happens to
be in at the time. Two test strategies are known, corresponding to the operation
modes defined above: restricted and unrestricted. Under the restricted test
strategy, all test sequences start with some certain sequence. Under the
unrestricted test strategy, any sequence can be generated as a test sequence.

Both of the test strategies above can be used under one of two test
generation approaches: single observation time (SOT) and multiple observation
time (MOT). Under the single observation time (SOT) approach, a fault f is said
to be detectable if there exists an input sequence I such that for every pair of
initial states S and Sf of the fault-free and faulty circuits, respectively, the
response z(I, S) of the fault-free circuit to I is different from the response zf(I, Sf)
of the faulty circuit at a specific time unit j. Under the multiple observation time
(MOT) approach, a fault f is said to be detectable if there exists an input
sequence I such that for every pair of initial states S and Sf of the fault-free and
faulty circuits, respectively, z(I, S) is different from zf(I, Sf) at some time unit. A
fault is said to be undetectable if it is not detectable under the specified test
approach [16].

Every fault that is detectable under the SOT approach is also detectable
under the MOT approach. In fact, a fault may be undetectable under the SOT
approach, but may be detectable under the MOT approach [16].

3.1.1 ATPG algorithms for synchronous sequential circuit

The first complete ATPG algorithm for combinational circuits was the D-
algorithm. It was published by J. Roth in 1966 [22]. The D-algorithm uses a
logical value to represent both the “good” and the “faulty” circuit values
simultaneously and can generate a test for any stuck-at fault, as long as a test for
that fault exists. The next landmark effort in combinational circuit ATPG was
the PODEM algorithm [23], which searches the circuit’s primary input space
based on simulation to enhance computational efficiency. Since then, ATPG for
combinational circuits has become an important topic for research and
development, many improvements have been proposed, and many commercial
ATPG tools have appeared. For example, FAN [24] and SOCRATES [25] were
remarkable contributions to accelerating the ATPG process.

Test generation for sequential circuits behaves mostly similar to that for
combinational circuits, but it is much more difficult. In sequential ATPG
algorithm different states and memory elements must be taken into account. A
test for a fault in a sequential circuit may consist of several vectors.

40

In the following, different methods and classification of sequential ATPG
are presented.

3.1.1.1 Simulation-based method

The simulation-based test generation approach is as follows. To generate a
test for a fault or set of faults, a candidate test vector or test sequence is
generated. Candidate tests are generated usually by targeting several faults
simultaneously. The fitness of the vector or sequence is evaluated through logic
or fault simulation. The vector or sequence with the highest fitness value, based
on some specified cost function, is selected and the others are discarded. This
process continues until some pre-specified halting condition is met.
Disadvantages of this method are that it cannot identify undetectable faults and it
is difficulty to detect hard-to-test faults. However, methods have been devised to
overcome the last two disadvantages. In simulation-based test generator the
complexity of backtracking values through logic gates is avoided, and
processing occurs in the forward direction only [16] [18] [7].

In simulation-based ATPG genetic algorithms are widely used. Genetic
algorithm starts with a random population of individuals, and a fault simulator is
used to calculate the fitness of each individual. The best test vector evolved in
any generation is selected and added to the test set. Then, the fault set is updated
by removing the detected faults by the added vector(s). The genetic algorithm
process repeats itself until no more faults can be detected. The test sequence
length depends on the sequential depth. Sequential depth is defined as the
minimum number of flip-flops in a path between the primary inputs and the
farthest gate in the combinational logic. For example GATEST is a popular
academic genetic ATPG tool [16] [18] [7].

3.1.1.2 Deterministic method

In the deterministic method time-frame expansion is widely used (Figure
6). For each time frame, the inputs of memory elements from the previous time
frame are often referred to as pseudo primary inputs with respect to that time
frame, and the output signals to feed the flip-flops to the next time frame are
referred to as pseudo primary outputs. When the test generation begins, the first
time frame is referred to as time frame 0. An ATPG search is carried out, where
different decision will be made and when a conflict is encountered a backtrack
will be made. Backtrack is going back to some earlier point and redecide on a
previous decision. Backtrack is illustrated on Figure 7.

41

Figure 6. Time-frame expansion

Figure 7. Backtrack

At the end of the search, a combinational vector is derived, where the
input vector consists of primary inputs and pseudo primary inputs. The fault-
effect for the target fault may be sensitized to either a primary output of the time
frame or a pseudo primary output. If at least one pseudo primary input has been
specified, then the search must attempt to justify the needed flip-flop values in
time frame −1. Similarly, if fault-effects only propagate to pseudo primary
outputs, the ATPG must try to propagate the fault-effects across time frame +1.
Deterministic algorithms are effective in deriving tests for control-dominant
circuits and in identifying untestable faults. For example HITEC is an academic
deterministic algorithm based tool [16] [18] [7].

42

SAT-based ATPG was proposed in the 1990s [26] [27] [28] and does not
work on a structural netlist but on a Boolean formula in Conjunctive Normal
Form (CNF). The algorithm solves Boolean Satisfiability (SAT). Therefore, the
problem must be transformed into CNF. The disadvantage of this method lies in
the fact that during transformation, relevant information about the problem
might get lost and therefore is not available in the solving process.

3.1.1.3 Hierarchical method

Hierarchical method takes advantage of high level information while
generating tests for gate level faults.

In hierarchical RTL test generation approach, top-down and bottom-up
strategies are known. In the bottom-up approach [29], tests generated at the low-
level will be later assembled at the higher abstraction level. Such algorithms
ignore the incompleteness problem: constraints imposed by other modules
and/or the network structure may prevent test vectors from being assembled.
Thus, while being fast, this type of approach is not really applicable for
sequential circuits with difficult to test feedback loops. In the top-down
approach [30], constraints are extracted at the higher level as a goal to be
considered when deriving tests for modules at the lower level. This approach
allows testing modules embedded deep into the RTL structure.

Current work is based on hierarchical top down method.

3.2 Fault simulation

To measure the test patterns’ actual fault coverage at the gate level, the
test patterns have to be fault-simulated. The simulating process is done on the
structural level description and on the whole device. A fault simulator emulates
the target fault in a circuit in order to determine which faults are detected by a
given set of test vectors. Different methods have been developed to accelerate
the fault simulation. Parallel fault simulation uses n-bit parallelism of logical
operations where n-1 faults are simulated simultaneously. Deductive fault
simulation deduces all signal values in each faulty circuit from the fault-free
circuit values and the circuit structure in a single pass of true-value simulation
augmented with the deductive procedure. Concurrent fault simulation is
essentially an event-driven simulation to emulate faults in a circuit in the most
efficient way [18] [7].

Most commonly used sequential test generators and fault simulators are
based on a combinational iterative array model of the sequential circuit where

43

the feedback signals are generated from the copies of the combinational logic of
the sequential circuit in the previous time frames.

Figure 8. Partition of the combinational logic of a sequential circuit [16]

Consider the combinational logic of the sequential circuit. If the fanout
stems of the combinational logic are removed, the logic is partitioned into
fanout-free regions (FFRs), Figure 8. Let FFR(i) denote the FFR whose output is
i. The output of an FFR can be a stem, a primary output or a next state line. In
the combinational logic, if all the paths from a line r to primary outputs and next
state lines go through line q, then line q is said to be the dominator of line r. If
there is no other dominator between a signal and its dominator, the dominator is
said to be an immediate dominator. Stem i is a dominator of all lines within
FFR(i). A stem may or may not have a dominator [16].

The behaviour of a sequential circuit can be simulated by repeating the
simulation of its combinational logic in each time frame. If the effect of fault f
does not propagate to a next state line in a particular time frame, the fault-free
and faulty values of the corresponding present state line are the same in the
following time frame. If the fault-free and faulty values of each present state line
are identical in a time frame, the fault is said to be a single event fault in that
time frame. If there exists at least one present state line that’s fault-free and
faulty values are different, the fault is said to be a multiple event fault. The
propagation of the fault effect for a single event fault as well as a multiple event
fault.

44

4 Representing Sequential Digital Circuits
using High-Level Decision Diagrams

In this chapter Register-Transfer Level (RTL) is introduced. RTL is a
design abstraction for modelling a synchronous digital circuit and it is the most
popular level for ATPG-s with SSA fault models. After that two decision
diagrams are introduced – High-Level Decision Diagrams (HLDDs) and
Assignment Decision Diagram (ADD).

4.1 Register-Transfer Level

Nowadays, the chip density has reached millions of transistors and it is
impossible for a human to process this amount of data directly. Moreover, even
for computers handling this amount of data may be very time-consuming. A
solution to overcome this problem is to describe a system in abstraction – a
simplified model of the systems where only selected features are shown and
associated details are ignored. The purpose of an abstraction is to reduce the
amount of data to a manageable level so that only critical information is
presented. While high-level abstraction contains only the most vital data, low-
level abstraction is more detailed. Figure 9 shows design levels starting from the
behaviour level and moving on to a more detailed level.

45

Figure 9. Design abstractions levels

The architectural level is the highest level where the circuit model
contains only few implementation details. The main goal at the architectural
level is to provide block architecture of the circuits implementing the basic
functional specifications. At this level, a complete simulatable model may be
built in some high-level language. Those models do not implement any timing
information.

Next level, RTL, contains all functional details of the design, together
with accurate cycle-level timing information. Here, clocked storage elements
such as registers become visible. Basically, the RTL model describes the flow of
signals (data) between registers and the logical operations performed on those
signals. Signals are grouped together and interpreted as a special kind of data
type, such as an unsigned integer or system state. This level does not include
detailed timing information such as propagation delays of each block. Here,
design can partition into a control part and a datapath. See, for example, Figure
10. Design at the RTL level is a typical practice in modern digital design where
stuck-at faults are the most popular fault models [18] [31].

Gate level is the level where design is described by using logic gates. All
the interconnections between different elements within the design are thoroughly
detailed. Complex design at this level can be difficult to simulate, because of the
high amount of information that model contains. For example, a 16x16
multiplier contains 2500 gates. This level is still abstract because there is no
information about the actual transistors.

The lowest level, transistor level, represents the design in terms of
transistors and their interconnecting wires. This level is not considered to be an
abstraction level. At this level, only some logic cells are simulated because it is
not practical to simulate the whole design at this level [32].

46

In the RTL, there are two different descriptions – the pure RTL and the
behavioural RTL. The pure RTL targets the desired architecture, while the
behavioural one describes the design in a more natural way for a human. In this
thesis, all contributions rely only on the pure RTL.

Figure 10 presents a structural RTL view of a digital system. The datapath
can be viewed as a network consisting of modules or blocks. These include
registers (flip-flops), multiplexers and FUs (combinational logic for
implementing operations). All the registers and some internal lines of the
datapath can be represented by variables in the RTL model (variables XR and XL,
respectively). Inputs for the datapath are the primary inputs Xi and control
signals XC (e.g., multiplexer addresses and register enable signals). Outputs are
the primary outputs XO as well as conditional signals XN (e.g., from the
comparison operators) leading to the control part FSM. [33]

The control part consists of a Finite State Machine (FSM) with a state
register, next state logic and output logic. The input signals to the FSM are the
primary inputs of the design (variables Xi), conditional signals originating from
the datapath (variables XN) and the current value of the state register (variable
XS). Outputs of the FSM are the primary outputs of the design (variables XO),
control signals (variables XC) and the next value of XS.

Figure 10. RTL view of a digital circuit

47

As it can be seen in Figure 10, the RTL descriptions contain synchronous
loops as there is a feedback loop within the control part FSM as well as a
feedback loop between the control and datapath parts. Furthermore, in general
case, the datapath itself contains synchronous loops.

4.2 High-Level Decision Diagram Models

A HLDD is a graph representation of a discrete function. A discrete
function y = f(x), where y = (y1, …, yn) and x = (x1, …, xm) are vectors is defined
on X = X1×…×Xm with values y א Y = Y1×…×Yn, and both, the domain X and
the range Y are finite sets of values. The values of variables may be Boolean,
Boolean vectors, integers. Figure 11 shows an example of function y=(x1, x1, x2,
x4,) represented in HLDD.

Figure 11. HLDD example for representing function y=f(x1,x2,x3,x4)

Definition 3: A High-Level Decision Diagram is a directed non-cyclic
labelled graph that can be defined as a quadruple G= (M, E, X, D), where M is a
finite set of vertices (referred to as nodes), E is a finite set of edges, X is a
function which defines the variables labelling the nodes and the variable
domains, and D is a function on E.

The function X(mi) returns the variable xk, which is the labelling node mi.
Each node of a HLDD is labelled by a variable. In special cases, nodes can be
labelled by constants or algebraic expressions. An edge eאE of a HLDD is an
ordered pair e=(mpc,msc)אM2, where M2 is the set of all the possible ordered
pairs in set M. Graphical interpretation of e is an edge leading from node mpc to

48

node msc. It is said that mpc is a predecessor node of msc, and msc is a successor
node of the node mpc, respectively. D is a function on E representing the
activating conditions of the edges for the simulating procedures. The value of
D(e) is a subset of the domain Xk of the variable xk, where e=(mi,mj) and
D(mi)=xk. It is required that Pmi ={ D(e) | e = (mi,mj)אE} is a partition of the set
Xk.

Figure 11 presents a HLDD for a discrete function y=f(x1,x2,x3,x4). HLDD
has only one starting node (root node) m0, for which there are no preceding
nodes. The nodes that have no successor nodes are referred to as terminal nodes
Mterm א M (nodes m2, m3 and m4). The design representation by high-level
decision diagrams, in general case, is a system of HLDDs rather than a single
HLDD. During the simulation in HLDD systems, the values of some variables
labelling the nodes of a HLDD are calculated by other HLDDs of the system.

Simulation on decision diagrams takes place as follows. Consider a
situation where all the node variables are fixed to some value. For each non-
terminal node mi ב Mterm according to the value vk of the variable xk=Z(mi) a
certain output edge e = (mi,mj), vkאD(e) will be chosen, which enters into its
corresponding successor node mj. Let us call such connections activated edges
under the given values and denote them by bold arrows. Succeeding each other,
activated edges form activated paths. For each combination of values of all the
node variables, there always exists a corresponding activated path from the root
node to some terminal node. This path is referred to as the main activated path.
The simulated value of the variable represented by the HLDD will be the value
of the variable labelling the terminal node of the main activated path.

Figure 11 presents a simulation on the high-level decision diagram.
Assuming that variable x2 is equal to 2, a path (marked by bold arrows) is
activated from node m0 (the root node) to a terminal node m3 labelled by x1. Let
the value of variable x1 be 4, thus, y=x1=4. Note that this type of simulation is
event-driven since it has to simulate only those nodes that are traversed by the
main activated path.

When representing systems by decision diagram models, in general case, a
network of HLDDs are required. During the simulation in HLDD systems, the
values of some variables labelling the nodes of a HLDD are calculated by other
HLDDs of the system.

4.2.1 HLDD Representation for RTL Circuits

In HLDDs, representing the datapath, the non-terminal nodes correspond
to control signals. The terminal nodes represent operations (FUs). Register
transfers and constant assignments are treated as special cases of operations.
Figure 12 shows a simple example of a HLDD representation for the given
datapath fragment [34].

49

Figure 12. Datapath representing in HLDD and partitioning types

Usually, a datapath is represented by a system of HLDDs. Here, different
partitioning strategies are possible. The most commonly used partitioning is the
one in which to each primary output, fan-out signal and register a HLDD
corresponds. In addition, multiplexers that are connected to inputs of a FU are
represented by a separate HLDD. Figure 12B shows this type of HLDD system
partitioning for the datapath given in Figure 12A. However, it is possible to use
alternative partitioning. For example, Figure 12C shows an approach where
exactly one decision diagram corresponds to each register of the datapath. This
type of partitioning is sometimes referred to as the register-oriented HLDD.

50

Other types of HLDD partitioning can be used depending on the target model
application [34].

A simple RTL design control part is usually represented by a single
HLDD, however, in the case of complex or multiple FSMs different partitioning
are possible here as well. The control part HLDD calculates the values for a
vector consisting of the state variable and control signals. In the HLDD, the non-
terminal nodes correspond to the current state (labelled by variable XS) and
conditional signals originating from the datapath (variables XN). Terminal nodes
hold vectors with the values of next state and control signals XC [34].

Figure 13 shows a FSM state table and its corresponding HLDD
representation. In the HLDD, state denotes the next state and state denotes the
current state value. Variables A_enable, B_enable, mux_12 and mux_34 are
FSM outputs and belong to the control signals XC. Variables RESET, LT and
NEQ are FSM inputs and belong to XN. The dashed circles and arrows in Figure
13 depict setting up of the edges and the terminal node corresponding to the
fourth row of the state table [34].

RESET LT NEQ STATE NEXT STATEA_ENABLEB_ENABLE MUX12 MUX_34

1 X X X s0 1 1 X X

0 X 1 s0 s1 0 0 X X

0 X 0 s0 s0 0 0 X X

0 1 X s1 s2 0 0 X X

0 0 X s1 s3 0 0 X X

0 X X s2 s0 0 1 1 1

0 X X s3 s0 1 0 1 0

Figure 13. Converting FSM state table into HLDD

51

There exist other word-level decision diagrams such as multiterminal
decision diagrams [20], K*BMDs [21] and ADDs [13]. However, in MTDDs the
nonterminal nodes hold Boolean variables only. K*BMDs, where additive and
multiplicative weights label the edges are useful for compact canonical
representation of functions on integers (especially wide integers). The main goal
of HLDD representations described in this work is not canonicity but simulation
and implications. In HLDD the nodes are divided into nonterminal (control) and
terminal (data) ones In HLDDs, the selection of a node activates a path through
the diagram, which derives the needed value assignments for variables.

The principal difference between HLDDs and Assignment decision
diagram (ADD) [35] lies in the fact that ADDs edges are not labelled by
activating values. They are rather used as connecting signals to represent
structure. ADD will be explained in the following subsection.

4.3 Assignment Decision Diagram

Assignment decision diagram (ADD) is an acyclic graph that consists of a
set of nodes that can be categorized into four types: read node, write node,
operation node and assignment decision node (ADN), and a set of edges which
contain the connectivity information between two nodes (Figure 14). A read
node represents a primary input port, a storage unit or a constant while a write
node represents a primary output port or a storage unit. An operation node
expresses an arithmetic operation unit or a logic operation unit while an ADN
selects a value from a set of values that are provided to it based on the conditions
computed by the logic operation units. If one of the condition inputs becomes
true, the value of the corresponding data input will be selected

52

Figure 14. Assignment Decision Diagram (ADD)

When a node N is under test, the testability of the node is guaranteed if:

a) any value can propagate from a read node corresponding to a primary
input port to the input of N, and

b) the value at the output of N can propagate to a write node
corresponding to a primary output port.

The paths which allow (a) and (b) to occur are called justification path and

propagation path, respectively. Justification and propagation can be done
through symbolic processing that utilizes nine valued algebra. The series of
symbols obtained from the symbolic processing that activates justification and
propagation paths is known as the test environment for the node under test. For a
given node under test, its test sequence is generated by first extracting a test
pattern from the test set library and by substituting the test pattern for the test
environment. The test set library is obtained beforehand by first simply taking a
logic-level circuit of the node under test, then generating the test patterns for all
faults in the circuit using a combinational ATPG algorithm. In the case where
the node is synthesized into a circuit which is different, fault simulation must be
performed to check the fault efficiency of the test patterns.

The symbols of Ghosh’s nine-valued algebra [10], each of which can be
assigned true or false, are as follows:

• Cg(v): variable v can be set to any value.
• C0(v): variable v can be set to 0.
• C1(v): variable v can be set to 1.
• Ca1(v): all bits of variable v can be set to 1’s.
• Cq(v): variable v can be set to a constant.
• Cz(v): variable v can be set to high impedance Z.
• Cs(v): state variable v can be set to a specific state.

53

• O(v): any fault effect at variable v can be observed.
• O’(v): fault effect of D’ can be observed for a single bit variable v.

To generate a test environment, first an objective has to be set. In order to

achieve the test environment objective, the test sequence for each ADD can be
generated through the following two phases using justification/propagation rules
[36]:

Phase 1: Generate the test environment of the node under test.
Phase 2: Generate the test sequence of the node under test by substituting

the test patterns of the logic-level circuit corresponding to the node under test for
the test environment.

Without going into details of the symbol propagating rules, consider

Figure 15 presenting backward propagation (justification) of two symbols Cq
and Cg that converge in a fanout read node. In the strict interpretation of the
propagation rules of [36] the two symbols when converging in the fanout result
in a conflict. In the weak interpretation the symbols will resolve in assigning Cg
to the read node.

Figure 15. Handling of fanouts during justification

Thus, the strict interpretation of Ghosh’s algebra [36] lead to overly

pessimistic results because tests for some Modules Under Test (MUTs) are
aborted due to justification conflicts. On the other hand, the weak interpretation
is too optimistic and can also lead to loss of fault coverage because some of the
test patterns that are expected to cover faults in the MUT do not propagate.

Cq Cg

?

conflict in the strict
interpretation

a)

Cq Cg

Cg

54

Figure 16. Test environment generation example. An unrolled view.

Consider as an example, a simplification of the ADD for the Greatest

Common Division (GCD) benchmark presented in Figure 16. Without loss of
generality in this ADD the control state information and the data registers have
been removed and the circuit has been unrolled by applying time-frame
expansion in order to improve the readability of the diagram. (Note, that the
original GCD benchmark still contains a data dependent loop, which has been
unrolled in Figure).

Assume that our task is generating a test environment for the subtraction
module (MUT) in Figure 16. The output value of MUT will be propagated to the
primary output OUT only if the first value input of the corresponding
assignment decision is 1. Therefore we set the corresponding condition input of
the ADN to C1. When we justify this particular condition input and the symbols
at the MUT inputs according to the propagation rules presented in [36], then the
strict interpretation of these rules would lead into a contradiction (See Figure
15a). However, the weak interpretation (also used in [37]) would still allow the
following test environment: IN1=Cg and IN2=Cg. Note, that in current situation
the weak rules are preferable since they at least allow testing part of the MUT
while the strict rules would not generate any test environment at all.

However, as it will be shown in Chapter 7 the weak interpretation is

overly optimistic and results in tests where the achieved fault coverage is 8-14 %
lower than maximum achievable fault coverage. To overcome this restriction a
top-down method is proposed in this Thesis.

55

4.4 Differences between HLDDs and ADDs

Figure 17 presents the RTL description of a Greatest Common Division
benchmark and its corresponding HLDD and Assignment Decision Diagram
(ADD) representations. Apart from the fact that HLDD description contains
fewer nodes, there are the following fundamental differences:

1. ADDs structure closely matches the RTL design. Edges of ADD
correspond to connecting nets in datapath. ADD for FSM is
equivalent to its gate-level implementation. In contrast, HLDDs do
not strictly follow the circuit structure. Here, a synthesis to extract
data and control relationships from the circuit functionality has been
carried out.

2. ADD model includes four types of nodes (read, write, operator,
assignment decision). In the HLDD, the nodes are treated uniformly
and can be divided into nonterminal nodes (control) and terminal
nodes (data).

3. While ADDs do not support decision-making implicitly in the model,
in the HLDDs, the selection of a node activates a path through the
diagram which derives the needed value assignments for variables.
Note that the edges in ADD model have no labels. This is the most
significant difference between the two models.

56

RESET LT

NE

Q

pres,

state

next

state A
_e
na

B
_e
na

m
ux
_1
2

m
ux
_3
4

1 X X X s0 1 1 0 X

0 X 1 s0 s1 0 0 X X

0 X 0 s0 s0 0 0 X X

0 1 X s1 s2 0 0 X X

0 0 X s1 s3 0 0 X X

0 X X s2 s0 0 1 1 1

0 X X s3 s0 1 0 1 0

Figure 17. RTL circuit (top left), its HLDD (top right) and ADD (bottom).

57

5 Constraint-based Automated Test Pattern
Generation for Sequential Circuits

This chapter presents a novel constraint-based approach for the
hierarchical ATPG [38] [39] where the deterministic algorithm first activates the
test path constraint at the RTL and subsequently applies a constraint-solving
package ECLiPSe Prolog [40] for assembling the tests. The results of
experiments indicate that the proposed deterministic method provides increased
fault coverage for hard-to-test designs with respect to semi-formal approaches.
In addition, this approach offers short run times.

5.1 Previous work

At present, satisfactory methods for testing sequential circuits are missing
and this has led the community to replace the hard test pattern generation task by
theoretically much simpler approach that relies on scan paths together with the
combinational ATPG. However, the scan-path method has its shortcomings,
including increased area, delay and consumed power. It also causes targeting of
non-functional failure modes which results in over-testing and yield loss [41].

Several approaches to generating tests for structural faults in sequential
cores have been proposed over the years. Despite all the efforts the problem still
lacks a breakthrough. At the gate-level, a number of deterministic test generation
tools, both academic [8] [9] and commercial, have been implemented. None of
these methods can efficiently handle sequential designs of even a couple of
thousands of gates. With the further growth of the circuit size fault coverage
tends to drop while the run times increase rapidly.

Better performance has been obtained with simulation-based approaches.
Here, genetic algorithm-based methods have been widely used [10] [11] [12].
Relatively efficient results have been obtained by spectral methods [42].
However, the simulation-based methods are fast for smaller circuits only and
become ineffective when the number of primary inputs and the sequential depth
of the circuit increase. Moreover, these methods do not guarantee the detection
of hard-to-test random pattern-resistant faults.

Many works on Functional Test Generation (FUTEG) have been published in
the past [13] [14]. In this field, an efficient technique based on the Binary

58

Decision Diagram (BDD) manipulation of data domain partitions has been
proposed [43]. However, the fundamental shortcoming of the approaches that
rely on functional fault models is that they do not offer full structural level fault
coverage.

Hierarchical and RTL test pattern generation has been proposed as a
promising alternative to tackle complex sequential circuits. Here, top-down and
bottom-up strategies are known. In the bottom-up approach [29], tests generated
at the lower level will be later assembled at a higher abstraction level. Such
algorithms ignore the incompleteness problem: constraints imposed by other
modules and/or the network structure may prevent test vectors from being
assembled. In the top-down approach [30], where constraints are extracted at a
higher level with the goal to be considered when deriving tests for modules at a
lower level. This approach allows testing modules embedded deep into the RTL
structure. However, as modules are often tested through highly complex
constraints, their fault coverage may be compromised.

The top-down hierarchical ATPG have been developed by some authors
[38] [39]. Here, the ATPG operates on the RTL HLDD model of the circuit and
as generates test patterns as an output. The output patterns do not offer precise
information about the achieved fault coverage. In order to measure the actual
gate-level fault coverage of the generated tests, the test patterns have to be fault
simulated on the structural level description of the whole device.

A number of works have been published on implementing assignment
decision diagram models [35] combined with SAT methods to address register
transfer level test pattern generation [44] [36] [37]. All of these are bottom-up
methods based on a multivalued algebra for establishing transparent test paths.
Therefore they suffer from the incompleteness issue described above.

At the Tallinn University of Technology, the hierarchical ATPG has been
developed by Professor Jaan Raik. The hierarchical ATPG operates on the RTL
HLDD model of the circuit and generates test patterns as an output. The output
patterns do not offer precise information about the achieved fault coverage. In
order to measure the actual gate-level fault coverage of the generated tests, the
test patterns have to be fault-simulated on the structural level description of the
whole device. Because the HLDD themselves are not contributions of this thesis,
only a brief description will be presented. The HLDD model description
provided in this subsection is mostly based on the description provided in [19]
and [45].

59

5.2 Motivation

In the previous top-down test pattern generation algorithms by the authors
[38] [39], random constraint solving was applied. For random constraint solving
it is hard task to generate solution for complicated operators like “equal to” or
value between some short intervals. Therefore, the ATPG spends a lot of
valuable time on trying to generate suitable solutions for those constraints until
the solution limit is reached and the module could remain without suitable test
patterns. The goal is to improve the hierarchical ATPG fault coverage and short
run times by applying a constraint solver to solve the test path constraints.

In the following part of this thesis, the deterministic path activation
method and constraints extraction is introduced.

60

5.3 Hierarchical ATPG algorithm

START

End

Exist untried DD
in the model

Take another node from the DD

Take another node from the DD

Perform fault manifestation for the node

Propagate fault effect to a primary output

Perform constaint justification

Generate low‐level test for the module
corresponding to the node under test

Exist untested nodes
in the DD

NO

NO

YES

YES

Figure 18. The general flow of the hierarchical test generation

In Figure 18, a general overview of the top-down hierarchical test
generation algorithm is presented. It starts at a higher level with the decision-
making, which considers whether the nodes in this test scheme, is untested. If
untested nodes exist, then go to generate the test run, otherwise exit from the
algorithm. In a test run, six different operations will be visited. Firstly, the fault
manifestation is followed by the fault effect propagation. During the propagation
stage, we move forward in time (clock cycles), the fault effect is propagated
towards the primary outputs and path activation constraints are created whenever
conditions in the control part HLDD are traversed. Propagation is completed
when the fault effect pointer points to variable x corresponding to a primary
output of the circuit. Subsequent to the propagation, the constraint justification

61

starts. Justification moves backwards in time, starting from the clock cycle in
which the propagation ended. During this process, the existing constraints are
updated and additional path activation constraints are created. Finally, tests are
generated at a low level for the node under test.

For each datapath MUT, we extract the control part FSM state sequences
in order to propagate fault effects from the output of the MUT to primary
outputs and to propagate the values from the primary inputs to the inputs of the
MUT. Such state sequences constitute test paths for accessing the MUT. We
represent the test paths by sets of constraints. All test paths within a certain cycle
limit are activated and the corresponding constraints extracted by the proposed
algorithm. In order to extract the RTL test path constraints in this work, a test
path activation tool [46] is applied.

5.4 Concept of path activation constraints

The concept of the constraints for a single test path for a datapath MUT is
visualized in Figure 19. The test path constraints are divided into three
categories. These are the set of path activation constraints CA, the transformation
constraints CJ and the propagation constraint CP, respectively. Path activation
constraints correspond to the conditions in the FSM state transitions that have to
be satisfied in order to perform propagation and value justification through the
circuit. Transformation constraints, in turn, reflect the value changes along the
paths from the inputs of the high-level MUT to the primary inputs of the whole
circuit. These constraints are needed in order to derive the local test patterns for
the MUT. The propagation constraints show how the value propagated from the
output of the MUT to a primary output depends on the values of the primary
inputs. The main idea here is to check whether the fault effect will be masked
when propagated to a primary output. All the above categories of constraints are
represented by common data structures and manipulated by common procedures
for creation, update, modelling and simulation. In the following part of this
thesis, the data structure and update operations of test path constraints are
defined.

62

Figure 19. An unrolled RTL circuit with test generation
constraints for a test path for a MUT

Definition 4: A condition c that is d = g(X’), where d is a bitvector or
Boolean constant or a variable xX, and g(X’) is a logic, arithmetic or
comparison expression on a subset of variables X’X, is referred to as a
test path constraint. From this point on, we refer to test path constraints as
constraints.

Definition 5: Constraint c: d = g(X’) is said to be justified if X’ XI ,
where XI is the set of primary inputs of the system. Otherwise, c is said to
be an unjustified constraint.

Definition 6: If a constraint c: d = g(X’) is unjustified then all the
variables in the set X’ that are not input variables XI are said to be
unjustified variables of the constraint. The input variables belonging to
the constraint are called justified variables.

Definition 7: Let X’ be the set of justified variables and X″ be the set of
unjustified variables of a constraint c: d = g(X’, X″). The process, where
each variable x″i X″ is substituted by an expression hi(X′′′i) on model
variables X′′′i X, is referred to as updating the constraint c.

cA,p

cA,1

cJ,1

cJ,2

xi,1(t)

xI,1(t–m)

...

x O,1 (t + n)

xO,2(t+ n)

xO,j (t+n)

x O, l(t+ n)

Module
Under
Test

fi

Propagation
path

PIs: POs:

Path activation
constraints

Transformation constraints

Conditions in FSM
(status bits XN)

...

...

xi(t)

xS(t–m)→ ... → xS(t–1)→xS(t)→ xS(t+1)→... → xS(t+n)

FSM state
sequence:

Propagation constraint

xi,2(t)

xI,k(t–m)

cP

63

Consider the general case of test path constraints for a MUT presented in
Figure 19. Such constraints are extracted as follows. First, the value from the
output variable xi of the MUT fi is propagated to a primary output xO,j by
activating a state sequence xS(t)→ xS(t+1)→... → xS(t+n) in the control part.
Here, by x(t) we denote the value of variable x at the clock cycle t. Thus, the
propagation state sequence starts at a time step t, which is referred to as the
manifestation step, and it ends at a clock cycle t+n. During propagation, path
activation constraints cA,pCA are created at time steps where the next state value
of xS is depending on the status bits XN. When the fault effect value propagates
from xi to xO,j at the time step t+n then the propagation constraint cP is created.

Subsequent to the propagation, the constraint justification process begins.
Starting from the time step t+n, we move backward in time until the
manifestation step t is reached. At each time step we update the propagation
constraint cP and those path activation constraints cA,p whose creation time step is
later than current time step. During the update, the unjustified variables X″ XR of
the constraint expressions g(X’, X″) for all the constraints are substituted by
expressions hi(X′′′i) on model variables X′′′i XR XI , where hi(X′′′i) are the
expressions implemented by functional units FU selected according to the values
of control signal variables XC at the current time step.

At the manifestation time step t, we create the transformation constraints
for each input of the MUT. Without loss of generality, Figure 19 shows a MUT
with two inputs xi,1 and xi,2. Thus, in current case the transformation constraints
cJ,1CJ and cJ,2CJ are created, respectively. We continue moving backwards in
time until at some time step t–m all the variables in the constraints are primary
inputs XI. During this process we update all the created constraints and create
new path activation constraints cA,p at time steps where the previous state value
of xS is depending on the status bits XN.

Note that the extracted constraints contain expressions g(X) on primary
inputs XI and constants. (In the case of the propagation constraint cP the
expression also depends on the MUT output xi). The expressions are determined
by the functions implemented by functional units FU and, in the case of path
activation constraints cA,p, also by comparison operations FN. The exponential
size complexity of the constraints expression g(X) is avoided by uniting multiple
occurrences of the same variable (i.e., the literals) in the constraints at each time
step into one single fan-out variable. Because of this, the size requirements for
the constraints are linear with respect to justification time-frames and they
represent a subset of the expanded time-frame model of the circuit.

Finally, consistency of test paths cA,p is verified. After one consistent set
of test path constraints are extracted by Decider, the fault coverage is measured.
If MUT is not tested with 100 %, a backtrack occurs and the tool attempts to use
alternative propagation and justification paths. The process ends when all the
consistent test paths within a certain time-step limit are activated and respective
test path constraints are extracted.

64

The high-level symbolic path activation is a complete algorithm. If
transparent paths for fault effect propagation and value justification exist, they
will be activated. The algorithm has been implemented as a systematic search
and therefore an inconsistency in any stage causes a backtrack and a return to the
last decision. However, due to the NP-complete nature of the problem, in some
cases, the search must be terminated after a certain maximal number of solutions
have been tried. For the sake of simplicity and speed, only three types of
symbolic values are used during the path activation:

D - Line with the fault effect,

X - Line with unassigned value,

V - Line with an assigned value.

5.4.1 Fault manifestation

In first step, which is fault manifestation step, (Figure 20) appropriate
tests for the corresponding nodes of the RTL HLDD model have to be set up.
The two types of tests are referred to as scanning test and conformity test,
respectively. Scanning tests are applied to terminal nodes and their aim is to test
the Functional Units (FU), registers and constants of the datapath. Conformity
tests are set up for non-terminal nodes and they target the decoding logic of the
multiplexers of the datapath as well as the output logic of the control part. The
goal here is to set the fault effect to the output of the RTL MUT and determine
the current FSM state.

Fault manifestation phase sub-division:

1. Activate the full path to the node under test. (A=1, B=1);
2. Create transformation constraints (D1=J and D2=K);
3. FSM state to create manifestation (Q =2);
4. Create path activation constraints (M<N);
5. Fault effect pointer is set to the variable (pDY).

65

Figure 20. Fault manifestation for node J + K

5.4.2 Fault effect propagation

 The purpose of the propagation procedure is to activate a state sequence
that propagates the fault effect from the output of the MUT to one of the primary
outputs of the design. According to the current approach, propagation along
single path is implemented. In order to keep track of the fault effect propagation,
a dedicated fault effect pointer is used. During the propagation, high-level test
path activation constraints are created. Figure 21 presents the algorithm for fault
effect propagation.

In the algorithm descriptions, the term ‘consistent FSM control vector’ is
frequently used. By this term we mean a control vector (row) in the control
part’s FSM state table whose control signal values are consistent with value
assignments made for control signals while propagating (activating) paths in the
datapath.

66

Figure 21. Fault effect propagation algorithm

The goal of the second step, the fault effect propagation (Figure 22), is to
calculate a state sequence required to propagate this fault effect from the MUT
to a primary output of the device. During this process, path activation constraints
are created of the conditions traversed in the control part DD. The fault effect
propagation ends when a fault effect corresponds to the circuit’s primary output.

Fault effect phase sub-division:

1. Select a graph with a node m, where pDx(m);
2. Activate the full path to the node labelled by the fault effect (A=1,

B=0);
3. Select the next FSM state. (q= 4);
4. Create path activation constraints (M=N);
5. Fault effect pointer is set to the variable calculated by the current

DD(pDY).

67

Figure 22. Fault effect propagation

5.4.3 Constraint justification

 Subsequent to the propagation, a constraint justification starts.
Justification moves backward in time, starting from the clock cycle, where
propagation ended. During this process existing constraints are updated and
additional path activation constraints are created. Nodes of the circuit, which
correspond to primary inputs or constants, are called justified nodes. All other
nodes are said to be unjustified. Constraints containing unjustified nodes are
referred to as unjustified constraints.

Basically, updating a constraint can be regarded as superposition of the
unjustified nodes of the constraint by new datapath nodes determined by paths
activated in the datapath by current control vector.

At each justification step, a current justification objective is chosen. In the
proposed algorithm implementation, the justification objective is to justify the
first unjustified node from the first unjustified constraint. The algorithm for
constraint justification is presented in Figure 23.

68

Figure 23. Constraint justification algorithm.

In the third step, the constraint justification (Figure 24) traverses
backwards the state sequence calculated by the propagation phase until the clock
cycle of fault manifestation is reached. During this process, constraints
previously created by the propagation are updated. Starting from the clock cycle
of the manifestation phase, a reverse state sequence is calculated, the existing
constraints are updated and additional constraints are created of the conditions in
the FSM that have to be satisfied. Note that at each clock cycle, from all the
created constraints only those are considered during justification that were
created in a later clock cycle than the current one.

Constraints justification sub-division:

1. Determining current justification objective;
2. Activate the full path to a terminal node (A = 1; B = 1);
3. Select present FSM state (q = 1);
4. Create path activation constraints (M > N);
5. Update the constraints.

69

Figure 24. Constraint justification

5.4.4 Constraint solving and low-level test

In the fourth step, the constraint solving and low-level test, the goal is to
satisfy the extracted constraints and test the datapath module corresponding to
the current node under test at a low level. The extracted constraints are not
always satisfiable, because they can also be inconsistent or too complex for the
constraint satisfaction algorithm to solve. In these cases, a backtrack occurs and
the high-level test generation algorithm attempts to activate an alternative test
path. In general case, a single activated path is not enough to reach a 100 per
cent fault efficiency for a functional unit, i.e., the test set for a FU can consist of
vectors generated during different activated paths and therefore different calls to
the low-level part. Thus, a record is kept about the faults detected by the low-
level tests during previous activated paths.

5.5 Constraint extraction example

In the following, the test path activation algorithm and constraint
extraction is explained basing on the example of the Greatest Common Divisor
(GCD). Consider the GCD algorithm described at the behavioural level in a
pseudo hardware description language in Figure 25.

70

A := IN1;

B := IN2;

while (A ≠ B)

if (A < B) then

B := B – A;

else

A := A – B;

end if;

end while;

OUT := A;

Figure 25. GCD algorithm

Figure 26. RT-level architecture of the GCD circuit

71

Table 3. FSM table of the GCD circuit

RESET LT NEQ STATE NEXT STATE A_ENABLE B_ENABLE MUX12 MUX_34

1 X X X s0 1 1 X X
0 X 1 s0 s1 0 0 X X
0 X 0 s0 s0 0 0 X X
0 1 X s1 s2 0 0 X X
0 0 X s1 s3 0 0 X X
0 X X s2 s0 0 1 1 1
0 X X s3 s0 1 0 1 0

Let us assume that subsequent to applying a high level synthesis to the
algorithm description we obtain the RTL architecture presented in Figure 26.
This architecture consists of a datapath of 3 FU, 2 registers and 4 multiplexers
and a control part FSM of four states. The control part is given as a state table in
Table 3. For simplicity, only for module SUBTR generating test paths will be
explained.

Fault manifestation.

Set all the variables to ‘don’t care’ values. Create transformation
constraints D0=mux3, D1=mux4. Set the fault effect pointer to variable SUBTR,
i.e., yD := SUBTR.

Fault effect propagation.

Choose a datapath register that reads from the FU SUBTR. There are two
possible choices: reg_A and reg_B, respectively. Let us select the first choice.
Subsequently, we activate the path from SUBTR to reg_A, which results in the
following variable assignments: A_enable := 1, mux_1 := 1. Next, we have to
choose a consistent FSM control vector. The only vector consistent with
previous variable assignments is the one corresponding to row 7 in the FSM
state table (labelled by vector 0, X, X, S3, S0, 1, 0, 1, 0). Based on this vector we
obtain the following assignments: reset:=0, B_enable := 0, mux_34 := 0,
state := S3 (in the current clock cycle), state := S0 (in the next clock cycle). We
move to the next clock cycle and set the fault effect pointer yD to reg_A (i.e.,
OUT).

We detect that the fault effect pointer points to a variable corresponding to
a primary output and thus we have successfully completed the fault propagation
process.

72

Constraint justification

As there was no path activation constraints created during the
manifestation and propagation stages, we move backwards in terms of clock
cycles until the clock cycle of manifestation phase is reached. We select the
justification objective from the unjustified variables of the transformation
constraints (D0=mux3, D1=mux4). Let the current objective be to justify variable
mux3. Due to the fact that we have already assigned mux_34 := 0 at current
clock cycle during the propagation process, then we have no choice but
backtracking mux3 to reg_A. We update the constraints, obtaining D0= reg_A,
D1= reg_B and move to the preceding clock cycle.

 Without focusing on further details, we continue executing the
constraint justification algorithm until the path presented in Figure 27 is
activated as one of possible high-level path solutions. In the Figure we have
denoted the manifestation clock cycle by t, the i-th cycle following t is denoted
by t+i and i-th cycle preceding t is denoted by t-i, respectively. Below the clock
cycle information, the activated state sequence is provided. Then we present
graphically the processes of fault propagation and extraction of transformation
constraints. Decisions in the high-level path activation are marked by stars (*) in
the Figure. Extraction of path activation constraints is depicted below the striped
line. Here, t corresponds to Boolean value ‘true’ and f corresponds to ‘false’. As
shown in Figure, we have to apply the constraint satisfaction process to the
following set of constraints: in1 < in2 is false, in1 ≠ in2 is true.

f=(REG_1<REG_B)

t=REG_A≠ REG_B t=(IN1≠IN2)

f=(IN1<IN2)

D2=IN2

D1=IN1

D2=REG_B

OUT SUBTR D1=REG_B

t t‐1 t‐2 t‐3t+1
X

reset=1
S3S0 S0S1

* *

Figure 27. Constraint satisfaction process for GCD circuit

 Subsequent to testing the node with the first path, backtrack occurs and
the high-level path activation algorithm tries to find alternative path solutions.

73

5.6 Constraint logic programming and ECLiPSe

The concept of logic programming [47] was first developed in the 1970s,
while the first Constraint Logic Programming (CLP) language was Prolog II
[48], which was designed by Colmerauer in the early 1980s. The CLP over finite
domains was first implemented in the late 1989 by Pascal Van Hentenryck [49]
within the language CHIP [50].

The CLP is not a single programming language but a programming
paradigm, which is parametric with respect to the class of constraints used in the
language. Working with a particular CLP language means choosing a specific
class of constraints, for example − finite domains, linear, or arithmetic, and a
suitable constraint solver for that class. For example, a CLP over finite domain
constraints uses a constraint solver which is able to perform consistency checks
and projection over this kind of constraints.

ECLiPSe is a Prolog-based software system for the development and
deployment of CLP applications. It includes constraint programming,
mathematical programming, local search and various combinations of the above.
It has some advantage compared with other CLP tools –

 embed ECLiPSe code to C, C++ or Java environments,
 open source project.

Embedding ECLiPSe means that you do not have to run a constraint solver
program separately from your main application. For example the definition
“#include <eclipse.h>” should be added into the directive part in C++ code.
After that you may start calling ECLiPSe from you C++ application. Eclipse.so
library need to link with application during the compile process. At runtime,
application must be able to locate libeclipse.so.

ECLiPSe was born in 1991. At the beginning, the constraint programming
features were initially based on the CHIP. The first released interface to an
external state-of-the-art linear and mixed integer programming package was in
1997. The integration of the finite domain solver came in 2001 and the Interval
Constraints (libIC) library was released in 2001. In 2006 ECLiPSe released as
open source software [51].

ECLiPSe contains several constraint solver libraries, a high-level
modelling and control language. For constraint solver only IC library is used in
that work. LibIC supports Boolean constraint, arithmetic constraints, variable
declarations (numeric ranges and numeric type declarations).

74

5.7 Solving the test path constraints

After the first test generation phase where module propagation and
justification is performed and constraints for the test path were extracted, the
constraints solver phase came. Here, the mission is to satisfy the constraints by
using a constraint solver. Constraints that were built by the hierarchical ATPG
are in string type. It means that the ATPG builds one and complete constraint
string and gives it to the solver instead of sending constraint sub-blocks and the
constraint solver itself creates a CLP. For example, a simple constraint string is
given in the following:

lib(ic), L is (0), R is (2^3)‐1, X1 :: L..R, X2 :: L..R, X1 #> X2, X2 #> 4, X2 #< 6, 2 #= X1 / 3,

indomain(X1, random), indomain(X2, random)

Figure 28. An example of a constraint string

This constraint string consists of five different groups:

1. used library declaration lib(ic)

2. lower and upper domain boundaries definition L is (0), R is (2^3)‐1

3. variables boundaries definition X1 :: L..R, X2 :: L..R

4. constraints X1 #> X2, X2 #> 4, X2 #< 6, 2 #= X1 / 3

5. search criteria for each variable indomain(X1, random), indomain(X2,
random)

Each group is separated from each other with a comma. Variables or
constraints are also allocated by a comma inside a group. Note that search
criteria are not a mandatory declaration. For example, in Figure 28, a constraint
is given that must satisfy the following conditions − variables X1 and X2 must
exist, both of them in the range between 0 and 7, where X1 is greater than X2,

75

X2 is greater than 4 and X1 divided by 3 should be equal with 2. The constraint
will be satisfied, if X1 = 6 and X2 = 5.

When the conditions are inconsistent and the constraint is not satisfiable,
random constraint solving is applied. As experiments presented in the next
chapter show, the deterministic constraint solving has definite advantages over
the pseudo-random method.

5.8 Experimental results

In order to evaluate the impact of the deterministic constraint solving,
experiments on ITC99 and HLSynth92/95 benchmarks were carried out. By this
moment the following three circuits are included in the analysis: b00, 604 and
GCD because these circuits contain “equal to” comparison operators which are
hard to test by pseudo-random constraint solving. In this experiment, the
ECLiPSe constraint solver version 5.10_41 was used.

Table 4 shows the comparison of the semi-formal approach presented in
[38] and the proposed fully deterministic approach. Comparison has been
obtained by fault-simulating the test sets generated by both generators by a
stuck-at fault simulator for sequential circuits. The row ‘# faults’ of the Table
shows the number of stuck-at faults in the circuit. The row ‘# tested’ presents the
number of tested faults by [38] and the proposed approach. The row ‘cover., %’
lists the achieved stuck-at fault coverage. ‘time, s’ stands for the ATPG run
times in seconds. Finally, the number of generated test vectors is reported in the
row ‘# vect.’

It can be seen that the fault coverage improvement obtained by the
deterministic constraint solving setup ranges from 3 to 34 % for the tested
examples. Note that while the fault coverage for the circuits is low, this is a
usual case for the sequential ATPG because of the large number of untestable
faults.

Table 4. Comparison of semi-formal [38] and the proposed deterministic ATPG methods

 B00 B04 GCD

semi‐
formal current

semi‐
formal current

semi‐
formal current

 faults 1328 1328 1488 1488 1658 1658
tested 251 714 899 943 1443 1519
cover, % 18,9 53,33 60,42 63,37 87,03 91,62
time, s 0,0053 0,0044 0,002 0,011 2,72 0,02
vectors 534 874 574 572 4471 4756

76

5.9 Chapter summary

In this chapter, a novel constraint-based hierarchical ATPG for RTL
designs was introduced.

The tool combines the test path constraint activation with a constraint
solver. First, a deterministic algorithm that extracts constraints for activating test
paths at RTL is applied. Subsequently, a constraint solving package ECLiPSe is
used for assembling the tests. Experiments on ITC99 and HLSynth92/95
benchmarks show that the proposed deterministic method offers very short run
times. In particular, it provides increased fault coverage which ranges from 3 to
34 % for the tested examples with respect to earlier, semi-formal, approaches.

77

6 High-Level Decision Diagram based Fault
Models

This chapter presents a set of fault models allowing a high coverage for
sequential cores in Systems-on-a-Chip. A novel approach is presented
combining three different fault models – a hierarchical fault model for functional
blocks, a functional fault model for multiplexers and a mixed hierarchical-
functional fault model for comparison operators. The fault models are integrated
into a fast high-level decision diagram based test path activation tool. According
to the experiments, the proposed method significantly outperforms state-of-the-
art test pattern generation tools. The main new contribution of this approach is a
formal definition of high-level decision diagram representations and the
combination of the three fault models in order to target high gate-level stuck-at
fault coverage for sequential cores.

6.1 Previous work

At present, efficient methods for testing sequential cores inside the
Systems-on-a-Chip (SoC) are missing. The hard test pattern generation task is
usually replaced by a theoretically much simpler approach relying on scan paths
and the combinational ATPG. However, the scan-path method has its obvious
shortcomings, including increased area and delay, and it also causes coverage of
non-functional failure modes which results in over-testing and yield loss [41].

Several approaches to generating tests for structural faults in sequential
cores have been proposed over the years. Despite of all the efforts the problem
still lacks a breakthrough. At the gate level, a number of deterministic test
generation tools, both academic [8] [9] and commercial, have been implemented.
None of these methods can efficiently handle sequential designs of even a
couple of thousands of gates. With the further growth of the circuit size fault
coverage tend to drop while run times increase rapidly.

Better performance has been obtained with simulation-based approaches.
Here, genetic algorithm based methods have been widely used [10] [11] [12].
Relatively efficient results have been obtained by spectral methods [42].
However, the simulation-based methods are fast for smaller circuits only and
become ineffective when the number of primary inputs and the sequential depth
of the circuit increase. Moreover, these methods do not guarantee detection for
hard-to-test random pattern resistant faults.

78

Many works on FUTEG have been published in the past [13] [14]. In this
field, an efficient technique based on BDD manipulation of data domain
partitions has been proposed [43]. However, the fundamental shortcoming of the
approaches that rely on functional fault models only is that they do not achieve
satisfactory structural level fault coverage. Hierarchical and RTL test pattern
generation has been proposed as a promising alternative to tackle complex
sequential circuits.

Recently, a number of works have been published on implementing
assignment decision diagram models [35] combined with SAT methods to
address the RTL test pattern generation [44] [36]. An efficient RTL path
activation has been previously proposed in [38] and complemented with
precision fault models for multiplexers in [52]. The common shortcoming for all
the former decision diagram based approaches is that they are targeting modules
in the datapath of the circuit.

6.2 Motivation

As mentioned before, a common shortcoming of all the former decision
diagram based approaches is that they are targeting modules only in the
datapath. But in addition to datapath, there is a control unit. In order to overcome
this problem, the goal is to combine three different fault models and integrate
them into a fast high-level decision diagram based test path activation tool.
Those three fault models are as follows:

1. Hierarchical fault model for functional units;
2. A functional fault model for multiplexers;
3. And a mixed hierarchical-functional fault model for comparison

operators.

In the HLDD, both the control unit and the datapath are handled in a
uniform manner. Previous research has shown that while deterministic test
pattern generation algorithms are in general less powerful for larger circuits,
they are still capable of testing a number of faults from the FSM part that the
RTL and hierarchical methods are unable to cover. A new type of fault model is
proposed based on the HLDD dedicated to faults in FSMs embedded into the
RTL descriptions.

79

6.3 Mixed functional-hierarchical fault models

Next we will explain the fault models implemented in current approach
where a combination of three fault models is used. These include a hierarchical
fault model for the FU, a functional model for multiplexers and a combined
hierarchical-functional model for conditional operations. We will describe each
of the above models in more detail.

6.3.1 Hierarchical fault model for functional units

In order to target FU, a traditional top-down hierarchical fault model is
implemented. At the high level, the state sequence necessary to propagate the
local test data from primary inputs to inputs of the FU under test, and to
propagate test responses from the outputs of the FU to the primary outputs is
activated. In addition, test path constraints are extracted which need to be
satisfied in order to allow the value propagation to take place. Subsequently, the
local test pattern values are applied to fault simulation of the MUT at the gate
level. In general, a single activated path is not enough to reach 100 % fault
efficiency for a functional unit, i.e., a test set for a FU can consist of vectors
generated during different high-level paths. Thus, a record is kept about the
faults detected by the low-level tests during previous test paths.

6.3.2 Functional fault model for multiplexers

Next we introduce a functional fault model for targeting all the SSA faults
in the multiplexers of hierarchical designs. In this thesis, only AND/OR
multiplexers are considered but functional models for other multiplexer types
can be derived in a similar way. The new functional model is based on
distinguishing values at the data inputs of the MUX. For multiplexers having
more than two data inputs we have chosen to implement pair-wise distinguishing
of data inputs, as opposed to distinguishing all the inputs simultaneously. The
main motivation for that is that high-level path justification from all the inputs in
parallel may be difficult to achieve, or even inconsistent, in complex sequential
architectures. Thus it would result in loss of solutions.

Makar et al. [52] presented the groundwork for deriving minimal tests for
AND/OR, OR/AND and nMOS implementations of multiplexers. The functional
fault model proposed in this approach is similar to [52] but it extends it with the
ability to cover multiple stuck-at faults at the address select inputs of the MUX

80

under test. This, in turn, provides for better coverage of faults in the output logic
of the control part FSM.

Figure 29. An n-input m-bit AND/OR multiplexer

Let us consider Figure 29 where the general structure of an n-input m-bit
AND/OR multiplexer is presented. Inputs of the multiplexer are the data inputs
Di = di1,…,dim, i = 1 … n, and the address select inputs A = a1, …, a[log2n]. In
addition, enabling lines E = {eij}, which are (inverted or non-inverted) fan-out’s
of address select inputs aj are shown in the Figure.

The sub-circuit of the multiplexer starting with signals Di and E and
ending with outputs forms a fan-out-free cone. Thus, it is sufficient to test the
stuck-at faults at the inputs of this cone to cover all the SSA faults in the cone.
However, there is no need to explicitly test the data signals Di in the hierarchical
ATPG framework. This is due to the fact that all the SSA faults at these lines
will be covered by the tests set up for the FU and signal busses connected to the
respective multiplexer data inputs. In order to test the entire multiplexer it is
necessary to additionally target the address select inputs aj. Let us take a look at
functional models for targeting faults in the signals aj and E.

In order to test address select signals A={aj}, a functional fault model
based on distinguishing of values of data signals Di is implemented. In this
approach, the distinguishing is carried out on a HLDD as shown in Figure 30.
This Figure presents an example of a datapath HLDD for REG2 that contains a
multiplexer address signal MUX1_ADDR, which is tested with address value
Vk = 1. The constraint to make the behaviour of REG2 sensitive of faults in

81

MUX1_ADDR is that values at variables labelling the successors of node m
must differ and a path to m must be activated (i.e., REG2_ena must have value 1).

Figure 30. Functional fault model using HLDD node distinguishing

The functional fault model sets up the following constraints that, when
satisfied, guarantee a 100 per cent SSA coverage for the corresponding
multiplexers:

Constraint 1. For covering all the SSA faults in signals A={aj} it is
sufficient that with selecting each address select value Vk we distinguish
the value of data signal Dk selected by A=Vk and all the data signal values,
which are selected by address values, whose Hamming distance from
Vk is 1.

The proof is straightforward. It is easy to see that a SSA fault at bus A
would lead to a situation where another data input is selected. It is obvious that
any SSA at A fault would change the value of A to a faulty value whose
Hamming distance from the fault free value is 1. By distinguishing the data
signals at corresponding inputs the effect of the SSA fault at A would be made
observable at the output of the multiplexer. Performing such distinguishing for
each value of A is sufficient to test all the SSA faults at A since both values
(zero and one) would be covered at each bit positions by data signal
distinguishing.

Let us discuss testing the SSA faults at the enabling lines E={eij}, which
are the inverted and non-inverted fan-outs of the address select bus (See Figure
31). It is important to note that these signals are in fact m-bit buses and thus
testing the address select bus A does not necessarily cover all the faults in {eij}.

82

Figure 31. Functional test setup algorithm

Note that stuck-at zero faults at these lines are already covered by the
hierarchical test of the modules (FUs) connected to the data inputs of the
multiplexer. Since we are considering functional fault model as a supplement to
the hierarchical one, these faults do not have to be explicitly targeted.

Constraint 2. In order to test the SSA 1 faults at {eij}, the following
constraints apply. With all the values VL of A, for all the values Vk whose
Hamming distance form VL is 1. Signal A has to be assigned value Vk and
the values of data signals (denoted by Dk and DL) selected by the
respective values A=Vk and A=VL have to be distinguished. Since {eij} are
m-bit busses and the fault sensitizing values at each bit of DL is required,
it follows that over the set of distinguished Dk and DL one values have to
be distinguished at each bit position of DL.

83

So far we have listed the constraints required for testing all the signals in
the multiplexer. In Figure 31, an algorithm for test manifestation for a
multiplexer in a hierarchical ATPG framework is derived based on the above
constraints. In the algorithm description, Di and Dk denote the values of the data
inputs selected by address values Vi and Vk, respectively. SSA1_mask and
new_mask are m-bit bit vectors. Characters , &, | correspond to bitwise XOR,
AND and OR operations, respectively.

The algorithm shows how to set up functional tests that can be applied in
the test manifestation stage in the HLDD-based path activation approach.
Subsequently, propagation and justification procedures have to be executed to
the test setups generated by this algorithm.

Note that the functional algorithm presented in Figure 31 distinguishes not
only the data signal values selected by values, whose Hamming distance is one.
This is done in order to extend the functional model to target the multiplexers to
the logic in the control part, which is used for decoding the FSM states to control
signals. While we have not developed a fault model to functionally cover the
control part, it is possible to target a part of it by this functional fault model.

Note that treating MUXs by a hierarchical fault model similar to the one
used for FUs would not have allowed targeting faults in the control part.
Furthermore, a slow, three-valued fault simulator would have been needed for
evaluating the fault coverage achieved at the low level in the multiplexers,
because some of the module inputs would remain unspecified.

6.3.3 Mixed functional-hierarchical fault model for comparison
operators

As experimental results presented in Chapter 6.5 show, the traditional
hierarchical test approach targeting fault coverage at FU only is not efficient. In
the previous subsection we introduced a functional fault model for multiplexers.
However, this subsection proposes mixed functional-hierarchical fault models
that have to be addressed in the HLDDs in order to set up tests for the
conditional operations. According to experiments, this fault model improves the
efficiency of the RTL test generation significantly.

The main challenges with testing comparison operators lies in the fact that
these modules do not have a path to a primary output that could be activated
through the datapath. Comparison operators provide inputs, called status bits, to
the control part FSM. Thus, a functional fault model going via the FSM is
needed in order to manage fault effect propagation. In addition, a hierarchical

84

fault model is necessary for targeting the structural faults in the comparison
operations themselves.

The functional fault model is based on distinguishing the terminal nodes
of the FSM HLDD that are successors to the node labelled by the tested status
bit. There are two special cases, which are listed in the following:

1. Distinguishing the registers addressed by a pair of control words (i.e.
FSM HLDD terminal nodes).

2. Distinguishing the mux inputs controlled by a pair of control words.

In a case where all the control signals in the two distinguished FSM
terminal nodes are equal, we will perform the test setup in the respective next
states.

In the case a wrong datapath register is addressed because of a fault in the
next state logic, this will be revealed by distinguishing the values in the registers
and performing propagation and justification through the circuit. Or,
alternatively, if the two control words address the same set of registers, there can
be a difference in some multiplexer address signals. In the latter case, the
registers connected to inputs of the mux have to be distinguished.

Figure 32 shows an example of the test for comparison operators. Let the
current MUT be a conditional operation whose output is connected to the status
bit ‘status’. Let us consider the test setup for the module with the output value
being one (i.e., status = 1). (Note that separate tests for the MUT have to be set up
for output values 0 and 1, respectively.) As a first step, we try to identify possible
setup states for the fault manifestation stage. In order to do that we select a
nonterminal node in the FSM HLDD labelled by a variable signal. We activate
the path to this node obtaining the following value assignments: reset := 0,
state := Sj.

85

Figure 32. Test setup for conditional operations

The next step is to select the datapath register for fault effect activation.
The register is determined by comparing the vectors at the two terminal nodes of
FSM HLDD, which lie at the end of the faulty and fault-free paths, respectively.
Registers which are selected by the fault free terminal node and deselected by
the faulty one are considered to be suitable for fault activation. (In our example,
register Ri matched the requirements and was chosen.) Subsequently, the
propagation, justification and constraint extraction procedures are performed as
explained in the previous section.

6.4 Experimental results

Table 5 presents the characteristics of the example circuits used in test
pattern generation experiments in this approach. The following benchmarks
were included to the test experiment: a GCD, an 8-bit sequential multiplier
(MULT8x8), an Elliptic Filter (ELLIPF), an ALU based processor´(RISC) and a
Differential Equation (DIFFEQ). The VHDL versions of GCD and DIFFEQ
were obtained from high-level synthesis benchmark suites [53] [54] and the
designs of MULT8x8 and RISC from FUTEG benchmarks [55]. The second
column “# faults” shows the number of single stuck-at faults in the circuits, the
third column “# FSM states” shows the number of states in the control part
FSM, and the columns “PI bits” and “PO bits” present the number of primary

86

input and primary output bits, respectively. Finally, the 6th, 7th and 8th columns
show the number of registers, multiplexers and FU respectively. All the
experiments were run on a 366 MHz SUN UltraSPARC 60 server with 512 MB
RAM under SOLARIS 2.8 operating system.

Table 5. Characteristics of the benchmark circuits

circuit # faults
FSM
states PI bits

PO
bits # of reg. # of mux # of FU

gcd16 1754 8 33 16 3 4 3

mult8x8 2036 8 17 16 7 4 9

ellipf 5388 28 130 113 17 7 3

risc 6434 4 26 16 8 4 4

diffeq 10008 6 81 48 7 9 5

In Table 6, a comparison of test generation results of four ATPG tools on
the hierarchical benchmark designs is presented. Here, five sequential ATPG
tools are compared. These are a gate-level deterministic ATPG HITEC [9] and a
genetic algorithm based GATEST [10], hierarchical ATPG covering only
datapath FUs (column “FU only”), hierarchical test pattern generation for FUs
and multiplexers (column “FU only”), and finally, the approach proposed in
current approach (column “current method”). Columns “F.C., %” give the single
stuck-at fault coverage of the test patterns generated measured by the fault
simulator from TURBO TESTER system [56], created at the Tallinn University
of Technology. Columns “time, s” stand for test generation run-times achieved
on a 366 MHz SUN UltraSPARC 60 server with 512 MB RAM under
SOLARIS 2.8 operating system.

Table 6. Comparison of sequential circuit test generation tools

circuit

HITEC GATEST
FU

only FU+MUX current method
F.C,
%

time,
s

F.C,
%

time,
s

F.C,
%

F.C,
% time, s

F.C,
% time, s

gcd16 59,11 365 86,13 190,7 62,55 85,71 497,4 90,95 677,4
mult8x8 65,9 1243 69,2 821,6 69,4 74,2 76,9 74,7 93,7

ellipf 87,9 2090 94,7 6229 86,7 95,04 1258,9 95,04 1258,9
risc 52,8 49020 96 2459 83,9 96,5 150,5 96,5 150,5

diffeq 96,2 13320 96,4 3000 96,44 96,52 441,7 97,09 453,7
average F.C: 72,4 88,4 79,8 89,6 90,9

The results show that the proposed method is very efficient for testing
sequential designs. It achieves on the average 2.5 % higher fault coverage than
the genetic tool GATEST on the given benchmark set. For the sake of

87

comparison, an experiment with complete tests for datapath FU was performed.
This resulted in a poor overall coverage of the design, thus, showing the need for
FSM and multiplexer testing in the RTL ATPG. Note that the mixed fault model
did not improve fault coverage for circuits ELLIPF and RISC. This was due to
the fact that these circuits do not contain any comparison operators. One of the
main reasons for consistently low fault coverage in case of all the five
approaches for MULT8X8 was mainly due to a large number of sequentially
untestable faults. This issue was revealed by the deterministic ATPG HITEC
that was able to prove a large number of faults to be untestable. A redesign for
testability of this circuit would have increased the fault coverage for all the tools.

6.5 Chapter summary

In the chapter we defined the HLDD as an efficient model for RTL test
pattern generation for sequential cores. The HLDD model was compared to
currently popular assignment decision diagrams. It was pointed out the core
benefits of the former and presented the HLDD based test path activation
algorithm. The main novel contribution of this approach is the combination of
the three HLDD-based fault models in order to provide for efficient and fast
testing of sequential designs. Experiments show that these fault models allow
reaching higher stuck-at fault coverage when compared to other approaches. In
addition, our experimental results prove quite clearly that RTL test methods
targeting datapath FU only cannot guarantee a high fault coverage for the overall
design.

89

7 Identifying Untestable Faults in Sequential
Circuits Using Test Path Constraints

In this chapter a constraint based untestable faults identification method is
introduced. The method is based on the hierarchical approach where test path
constraints extracted at the RTL are applied to prove untestable faults at the gate
level. First, the concept of test path constraints for testing a module in the RTL
design is presented. Then the procedure of extracting test path constraint by
algorithm is shown.

7.1 Previous work

A number of works have been proposed in order to tackle the problem of
identifying sequentially untestable faults. The first methods [57] were fault-
oriented and based on applying the combinational ATPG to the expanded time-
frame model of the sequential circuit. However, such an approach does not scale
because of the size-explosion of the unrolled sequential models. Thus, a fault-
independent method was introduced by Iyer et al. in [58]. The new algorithm
was called FIRES and it implemented illegal state information to complement
redundancy analysis. This was followed by a number of fault independent
methods including MUST [59], FUNI [60], FILL [60] and others. Liang [61]
proposed a simulation-based approach for sequential untestable fault
identification. However, it was shown in [60] that this method may result in
‘false positives’, i.e., a fault may be declared untestable when there actually is a
test for it. The common limitation of the above methods is that they operate at
the logic-level representation of the design. Thus, a considerable amount of
effort is put on the implication process carried out at the level of logic netlists.

In their previous work [62], the authors introduced a specific subclass of
sequentially untestable faults, called register enable stuck-on faults and a method
for proving them untestable using a model checker.

Early hierarchical methods on bottom-up RTL testing relied on the
assembly of module tests and were applicable of the simplest systems only [29].
A more solid basis for the bottom-up paradigm was laid by Ghosh et al. in [44].
In their work, test environments are generated for each functional module of a

90

given functional RTL circuit described in an ADD [35] using symbolic
justification/propagation rules using a nine-valued algebra. In this method, a test
sequence is then formed by substituting the corresponding test patterns in the
test environment. However, the proposed nine-valued algebra cannot guarantee
the generation of a test environment, even if it exists. To overcome this
drawback, Zhang et al. upgraded the nine-valued algebra to a ten-valued algebra
by taking the variable line value range into consideration. This algebra is able to
generate much more test environments [36]. In [37], Zhang’s approach has been
further improved by introducing additional propagation rules.

Lee and Patel introduced a top-down constraint-based test pattern
generation for microprocessors in [30]. Several constraint-based top-down
approaches followed, including [63] [64]. [65] proposed a bottom-up approach
based on a HLDD engine and on applying a commercial constraint solver
SICStus. As experiments show, the tool achieves a lower fault coverage in
comparison to a commercial logic-level ATPG. In [46], a top-down approach
including a constraint solving package ECLiPSe [40] has been proposed.

None of the previous methods apply RTL constraints in order to prove
logic-level untestable faults. Thus, the fault efficiency reported by the
approaches [30] − [46] is often low, which decreases the test engineer’s
confidence in the test. Here, by fault efficiency we mean the ratio of the number
of tested faults to the number of testable faults.

7.2 Motivation

Test generation for sequential synchronous circuits is a time-consuming
task. ATPG tools spend a lot of effort not only on deriving test vectors for
testable faults but also on proving that there exist no tests for the untestable
faults. Because of this reason, the identification of untestable faults has been an
important aspect in speeding up the sequential ATPG.

The percentage of untestable faults in sequential circuits tends to be
considerably higher than in the combinational ones. For combinational circuits,
untestable faults occur due to the redundant logic in the circuit, while for
sequential circuits untestable faults may also result due to unreachable states or
due to impossible state transitions.

The main goal of this work is to process the set of constraints in order to
derive conditions for a dedicated logic-level ATPG in proving untestability. The
new method allows detecting sequential untestability in combinational modules
(functional units, multiplexers) embedded into a hierarchical circuit and is based
on path activation constraints extracted by a RTL ATPG.

91

7.3 Constraint-based untestability proof flow

Figure 33. Constraint-based untestability proof flow

Figure 33 presents the corresponding top-down test flow for targeting a
MUT in a hierarchical RTL design. The flow contains three main phases that are
marked with grey. During the first phase, RTL test path activation, the full set of
constraints for setting up a test path to test an RTL module is extracted on the
RTL design representation. We apply the RTL hierarchical ATPG [46] in order
to extract the constraints for accessing the MUT. Hierarchical ATPG activates as
many sets of constraints as there are test paths for that module in a bounded limit
of clock cycles. In [46], test constraints were utilized to propagate test patterns to
and from the MUT.

During the second phase this set of constraints is minimized as presented
in Section 6.5 resulting in a compact test environment for accessing the MUT.
The test environment is translated into VHDL and synthesized to logic-level
using Synopsys Design Compiler (SDC).

The third phase generates deterministic tests to the logic-level module
taking into account the minimized path constraints. Here, the constraint-driven
logic-level ATPG is run on the logic-level description of the MUT instantiated
into the synthesized test environment. As a result we obtain the list of

Decider:
RTL test path

activation
Synopsys DC:
Logic synthesis

RTL
network
(VHDL)

Modules
library

(VHDL)

Test path
constraints Test

environm.
(EDIF)

Constraint-driven
deterministic ATPG

Test
patterns

Fault
coverage

Untestable
faults

Minimized
constraints (VHDL)

Constraint
minimization

92

sequentially untestable faults in the MUT as well as test patterns for the entire
design.

7.4 Test path constraints extraction at the RTL

For each datapath MUT, we extract control part FSM state sequences in
order to propagate fault effects from the output of the MUT to primary outputs
and to propagate the values from the primary inputs to the inputs of the MUT.
Such state sequences constitute test paths for accessing MUT. We represent the
test paths by sets of constraints. All test paths within a certain cycle limit are
activated and the corresponding constraints extracted by the proposed algorithm.
This cycle limit is first set to 1 and then gradually incremented until the obtained
constraints will be non-empty after the minimization. In order to extract the RTL
test path constraints in this approach, a test path activation tool DECIDER [46]
is applied.

Consider the general case of test path constraints for a MUT presented in
Figure 19 in Section 5.4. Such constraints are extracted as follows. First, the
value from the output variable xi of the MUT fi is propagated to a primary output
xO,j by activating a state sequence xS(t)→ xS(t+1)→... → xS(t+n) in the control
part. Here, by x(t) we denote the value of variable x at the clock cycle t. Thus,
the propagation state sequence starts at a time step t, which is referred to as the
manifestation step, and it ends at a clock cycle t+n. During the propagation, path
activation constraints cA,pCA are created at time steps where the next state value
of xS depends on the status bits XN. When the fault effect value propagates from
xi to xO,j at the time step t+n then the propagation constraint cP is created.

 Subsequent to the propagation, the constraint justification process
begins. Starting from the time step t+n, we move backwards in time until the
manifestation step t is reached. At each time step we update the propagation
constraint cP and those path activation constraints cA,p whose creation time step
is later than current time step. During the update, the unjustified variables X″
XR of the constraint expressions g(X’, X″) for all the constraints are substituted
by expressions hi(X′′′i) on model variables X′′′i XR XI , where hi(X′′′i) are the
expressions implemented by functional units FU selected according to the values
of control signal variables XC at the current time step.

 At the manifestation time step t, we create the transformation constraints
for each input of the MUT. Without loss of generality, Figure 19 shows a MUT
with two inputs xi,1 and xi,2. Thus, in current case the transformation constraints
cJ,1CJ and cJ,2CJ are created, respectively. We continue moving backwards in
time until at some time step t–m all the variables in the constraints are primary
inputs XI. During this process we update all the created constraints and create

93

new path activation constraints cA,p at time steps where the previous state value
of xS is depending on the status bits XN.

 Note that the extracted constraints contain expressions g(X) on primary
inputs XI and constants. (In the case of the propagation constraint cP the
expression also depends on the MUT output xi). The expressions are determined
by the functions implemented by functional units FU and, in the case of path
activation constraints cA,p, also by comparison operations FN. The exponential
size complexity of the constraints expression g(X) is avoided by uniting multiple
occurrences of the same variable (i.e., the literals) in the constraints at each time
step into one single fan-out variable. Because of this, the size requirements for
the constraints are linear with respect to justification time frames and they
represent a subset of the expanded time-frame model of the circuit.

 After one consistent set of test path constraints are extracted by Decider,
a backtrack occurs and the tool attempts to use alternative propagation and
justification paths. The process ends when all the consistent test paths within a
certain time step limit are activated and respective test path constraints are
extracted.

7.5 Minimization of test path constraints

The minimization step is required due to the fact that the full set of test
path constraints may become large considering their representation in the VHDL
and performing logic synthesis on them. The latter is needed to handle the
constraints by the gate level ATPG in order to prove untestable faults.

Every test path piP, with P being the set of all the test paths for a MUT
within a given time frame, may be represented as a triple ‹ cP,i, CJ,i, CA,i ›, where
cP,i is the propagation constraint, CJ,i is the set of justification constraints and CA,i
is the set of path activation constraints extracted for the test path pi, respectively.
We can represent the full set of test paths P by a DNF formula Φ, where terms
correspond to the test paths pi and literals are the constraints ci,j belonging to the
test paths and represented as quantifier-free bitvector (QFBV) predicates. The
three groups of constraints cP,i, CJ,i and CA,i are each minimized separately.

Minimization of the DNF formula Φ takes place as follows. First of all,
we minimize the propositional skeleton of the formula (a Boolean expression
where all predicates are replaced by propositional variables) using a state-of-
the-art algorithm ESPRESSO [66].

Second, some constraints in the test paths can be redundant. In order to
remove such redundancies we apply a method presented in [66] and briefly
described here. Consider a first-order logic formula Φ given in a negation
normal form. First, we build a tree where intermediate nodes represent either ש
or ר operations and leafs represent QFBV predicates. The idea is to test each

94

leaf L against a special formula αL , called the critical constraint. If αL ֜ L
then L can be replaced by true, and if αL ֜ ¬L then L can be replaced by
false. Assume, for example, that Φ is presented in DNF:

ߔ ൌ ڀ ٿ ܮ

ୀଵ

ୀଵ

 Then, for a leaf Lkl , 1 ≤ k ≤ n, 1 ≤ l ≤ mk,

ೖߙ
ൌ ቆڀ ٿ ܮ

ୀଵ

ୀଵ
ஷ

ቇ ר ቆٿ ܮ
ೖ
ୀଵ
ஷ

ቇ

To test whether αL implies L or ¬L we use an SMT solver Z3 [67].

7.6 Constraint-driven ATPG for proving untestability

We use the assignment decision diagram ADD [35] data structures in
order to illustrate the test path constraints.

Consider Figure 34, which gives the ADD for the full set of constraints P
extracted for the GCD example. In other words, the MUT can only be tested
using one of the two test paths presented in Figure 34A and 34B. The two test
paths contain only path activation constraints and the paths are identical except
for the fact that the primary inputs IN1, IN2 are swapped in them.

95

Figure 34. A full set of test path constraints for the MUT

Note that from the point of view of accessing the MUT these two
environments are equivalent. It is irrelevant which primary input is used in
applying the test patterns when representing the constraint-based test
environment for proving untestability. Therefore, we denote the value justified
from the k-th input of the MUT by xk and the value propagated from the MUT
output by y.

The test paths p1 and p2 both consist of two path activation constraints
cA1,1

, cA1,2
 and cA2,1

, cA2,2
, respectively. cA1,1

 (which is equivalent to cA2,1
) states

that x1 must not be equal to x2. cA1,2
 (equivalent to cA2,2

) states that x1 must be

greater than x2. Since all the path activation constraints ci,j within a test path
should hold simultaneously they are combined using the conjunction operator. In
turn, all the test paths pi are combined using the disjunction operation because
any one of them may be applied for accessing the MUT. Therefore, we can
combine the constraints into a DNF as follows:

 Subsequent to combining the test path constraints, the constraint
minimization is performed. Using the method presented in previous Section we
obtain for the example in Figure 34:

.)()()()(2121212121 xxxxxxxxxx

MUT:

OUT

>

IN2 IN1

=

 !

&

x1 x2

y

p2:

–
MUT:

OUT

>

IN1 IN2

=

 !

&

x1 x2

y

p1:

cA1,1: 1,2: 2,1: 2,2:

–

c
A c

A

A) B)

cA

., ji
ji

c

96

Figure 35 shows the ADD for the minimized test environment resulting
for testing the MUT of the example presented in Figure 34. The constraint shows
that the MUT (a subtractor) may only be accessed when the first input of it, i.e.,
x1 is greater than the second one, x2.

Figure 35. Constraint-based test environment for MUT

The obtained test environment, excluding the MUT, is automatically
translated into the VHDL and synthesized to a logic level using SDC. The MUT
is linked by instantiating its logic level description into the VHDL of the test
environment. Subsequently, the constraint-driven logic-level ATPG is run. As a
result we obtain the list of sequentially untestable faults in the MUT as well as
test patterns for testing the MUT.

7.7 Discussion on the effect of the top-down proof

 As a side effect, the test environment allows us to evaluate the accuracy
of bottom-up hierarchical ATPG. In particular, the strict interpretation of
Ghosh’s algebra [8] leads to overly pessimistic results because tests for some
MUTs are aborted due to justification conflicts. On the other hand, the weak
interpretation is too optimistic and can also lead to loss of fault coverage because
some of the test patterns that are expected to cover faults in the MUT do not
propagate.

97

Consider the case where in a bottom-up scenario we have a deterministic
test Tq generated for the MUT in a stand-alone mode reaching the maximum
fault coverage Wq for the MUT. Then, we generate the test environment for the
module and substitute Tq into this test environment. Due to the test path
constraints the actual fault coverage that can be achieved for the MUT
embedded inside the network is Wa, which is generally lower than the stand-
alone fault coverage Wq. However, when we fault simulate Tq substituted into
the test environment we obtain a fault coverage Wr, where Wr ≤ Wa≤ Wq.

In other words, the bottom-up approach may lose some fault coverage
with respect to the top-down one because the set of the tests to choose from is
restricted to Tq. If the bottom-up test generation algorithm for the MUT had had
some knowledge about the test path constraints it would have generated a
different test Ta whose fault coverage would have been equal to Wa. Thus, a
deterministic ATPG taking into account the test path constraints is necessary in
order to achieve maximum fault coverage and also to prove untestability within
sequential circuits. Experiments with the constraint-driven deterministic ATPG
presented in Section 6.9 show that the difference between the coverage Wr and
Wa may be even as high as 8-14 per cent of stuck-at coverage.

7.8 Limitations and threats to validity

One of the main limitations of the current implementation of the
hierarchical untestability identification tool is the fact that the RTL circuits
considered are strictly divided into a control and datapath parts. Vast majority of
real-world RTL designs are not restricted to the single control part concept.
However, this limitation is related to the path activation engine applied [46] and
it is not a principal one for the presented method. For example the steps of
minimization of constraints and the constraint-driven gate-level ATPG are
completely independent of this restriction. Furthermore, it is possible to extend
[46] into an RTL path activation tool that would support a network of control
part FSMs as opposed to a single one.

Another limitation is the requirement that the modules selected for
untestability analysis from the RTL design must be combinational. The method
could be easily extended to support pipelined modules. In addition, there exists
an efficient top-down method for proving untestable faults in register modules
based on bounded model-checking [62]. However, the method cannot be
currently applied to arbitrary sequential modules.

Finally, the complexity of the DNF of the constraints in the minimization
step of the method grows exponentially with the increase of the cycle limit k of
the path activation. Table 7 shows the dependency between the numbers of
leaves in the constraints DNF as a function of the cycle limit k. Three modules
have been included to the analysis: a subtraction function from the GCD

98

benchmark and two additional modules from the b04 circuit from the ITC99
benchmark family [68]. Figure 36 visualizes that dependency on a logarithmic
scale. The benchmarks GCD and b04 were selected to analyse the complexity
because the curve cannot be explored on DIFFEQ and MULT8X8 examples
tested in the experimental results section. This is due to the fact that for both the
DNF is empty until a certain cycle limit is reached.

Table 7. Number of leaves in the DNF as a function of the cycle limit k

Figure 36. Number of leaves in the DNF as a function of the cycle limit k.

7.9 Experimental results

 In order to evaluate the hierarchical untestability identification and test
generation method, experiments on HLSynth92 [53] and HLSynth95 [54]
benchmarks were run. In addition, to compare the solution with the traditional

b04 (AVERAGE1) b04 (AVERAGE2) gcd (SUBTR)

1 0 0 0

2 20 10 2

3 1216 610 14

4 50867 25408 54

8 N/A N/A 444

k
Number of leaves in the DNF

1

10

100

1000

10000

100000

2 4 8

b04 (AVERAGE1)

b04 (AVERAGE2)

gcd (SUBTR)

cycle limit, k

99

bottom-up approach (e.g., [36]) and assess its fault efficiency, a comparative
study was carried out.

 Table 8 presents the characteristics of the example circuits used in test
pattern generation experiments in this approach. The following benchmarks
were included to the test experiment: a GCD, MULT8X8, and a DIFFEQ. In the
Table, the number of single stuck-at faults, the number of primary input and
primary output bits, and the number of registers FR, multiplexers FM and
functional units FU in the RTL code are reported, respectively. The final column
presents the upper limit for control part FSM cycles (i.e., the maximum times the
same control state is traversed) as a time-step bound for the untestability proof.
This bound is dependent on the design functionality and can be set by the test
engineer.

Table 8. Benchmark characteristics

circuit #faults
PI
bits

PO
bits

reg.
(|FR|)

Mux
(|FM|)

FU
(|FU|)

time
limit

gcd 472 33 16 3 4 3 5
mult8x8 2356 17 16 7 4 9 8
diffeq 10326 81 48 7 9 5 7

Table 9 shows experiments reporting the time spent by different stages
of the constraint-driven untestability identification flow. Note that not all the
modules (multiplexers FM and functional units FU) in the RTL designs are
affected by sequential untestability. Our method identified one module from
GCD, three modules from MULT8X8 and two modules from DIFFEQ whose
minimized constraints were a non-empty set. Thus, only the above-mentioned
six modules were considered in the hierarchical untestability proof by the
constraint-driven logic-level ATPG. As it can be seen from the Table 8, the
extraction of test path constraints required up to one minute of run time. As
discussed in Section 6.5 the constraint minimization step is very much
dependent on the time-step bound. In the case of ADD2 the time-step bound k is
7 and the time for minimizing the constraints is accordingly more than 4000
seconds. The test environment synthesis from VHDL to logic-level using SDC
remained almost constant and was around 5 to 10 seconds per module while the
deterministic constraint-based ATPG spent less than 0.02 seconds per MUT.

 Constraint extraction was performed on a 2.5 GHz, Intel Core2 Duo
T9300 PC with 4 GB of RAM, constraint minimization on a 2 GHz, Intel Core 2
Duo P7350, 3GB RAM on Windows 7 Pro OS and the synthesis and test
experiments were carried out on a Sun-Fire-V250 station with 1.28 GHz sparcv9
processor on Solaris 2.9 OS.

100

Table 9. Constraint-driven top-down ATPG versus bottom-up ATPG

circuit gcd mult8x8 diffeq

module SUBTR ADD2 ADD3 SUBTR MUX3 MUX4

constraint
extraction, s

2,9 47,86 9,18

constraint
minimization, s

0,05 4710 < 0,01 52 14 82

synthesis, s 5,38 5,33 9,52 5,25 5,1 5,1

ATPG, s 0,01 0,01 < 0,01 0,02 < 0,01 < 0,01

The experiments in Table 10 present comparison of the proposed
method to the bottom-up paradigm [36]. For creating the test library for the
bottom-up approach, the modules were first tested by the ATPG in a stand-alone
mode. As a result, a test sequence Tq yielding 100 % stuck-at fault coverage Wq
was obtained. The proposed top-down constraint-driven ATPG reached fault
coverage Wa which was less than Wq because of the constraints when accessing
the MUT that was embedded into the network. However, the fault efficiency of
the proposed approach was always 100 % for all the modules.

 When test Tq was substituted to the test environment in a bottom-up
manner then fault coverage Wr was reached, which was always lower than Wa
because some of the tests were invalidated by sequential dependencies. In fact,
Wr was considerably lower (by 8-14 %) for all the four modules analysed. Thus,
the proposed top-down method was capable of reaching maximum fault
coverage for the analysed modules with respect to the test path constraints and
proving all of the sequentially untestable faults in them.

Table 10. Constraint-driven top-down ATPG versus bottom-up ATPG results for circuit
modules

circuit gcd mult8x8 diffeq
module SUBTR ADD2 ADD3 SUBTR2 MUX3 MUX4
Wq, % 100 100 100 100 100 100
Wa, % 95,74 86,64 55,88 85,33 75 75
Wr, % 85,11 72,49 47,06 74,07 64,71 64,71

Table 11 presents detailed statistics of the circuits analysed. The table lists
the total number of stuck-at faults in the whole circuit, the number of tested
faults, number of unobservable/uncontrollable faults, untestable register faults
from [62], the number of faults proven sequentially untestable by the proposed

101

constraint-based approach and finally the number of all the remaining faults. The
experiments show the efficiency of the constraint-driven engine in untestability
identification. Though the method quickly classifies untestable faults caused by
sequential untestability in the considered modules with 100 % efficiency, there
remain a number of faults in other modules, including in the control part, which
are still neither tested nor proven untestable. Some of these remaining faults can
be tested or proven untestable by ATPG approaches at the logic-level.

Table 11. Breakdown of faults

 gcd mult8x8 diffeq
total faults 472 2356 10326
tested faults [46] 439 1737 9867
unobs./uncontr. faults 28 195 252
untestable register faults [62] 0 130 130
sequentially untestable faults 4 156 68
remaining faults 1 138 9

In order to evaluate the fault efficiency (i.e., the ratio of the number of
tested faults to the number of testable faults) of the proposed approach it was
compared with a commercial ATPG from a major CAD vendor. The commercial
ATPG is based on a deterministic gate-level algorithm. The results of the
experiments are shown in Table 12. As it can be seen, the gate-level tool
obtained comparable fault efficiency only in the case of the MULT8X8 example.
In the case of GCD and DIFFEQ benchmarks there was a large percentage of
faults aborted by the tool.

Table 12. Comparison of fault efficiency

Circuit

Fault efficiency, %

Commercial ATPG
Constraint-based +

register untestability
gcd 76,55 99,79
mult8x8 89,06 89,90
difeq 97,25 99,91

102

7.10 Chapter summary

 A new method for hierarchical untestable stuck-at fault analysis of non-
scan sequential circuits is presented. The method is based on extracting and
minimizing RTL test path activation constraints that drive a dedicated logic-
level deterministic ATPG. Experiments show that it is capable of generating
tests yielding maximum fault efficiency for modules embedded into the RTL.

 In addition, our study shows that traditional test generation at RTL
based on symbolic test environment generation is too optimistic due to the fact
that constraints in accessing the modules under test have been ignored.
Experiments showed that bottom-up strategies caused a decrease of stuck-at
fault coverage up to the range of 8−14 % in the modules tested when compared
to the proposed approach. This short-coming is overcome by the proposed top-
down constraint-based method which obtains 100 per cent stuck-at fault
efficiency with respect to the sequential testability constraints for all the modules
considered.

103

8 Thesis conclusions

This thesis concentrates on the hierarchical ATPG for synchronous
sequential circuit that has been proposed as a promising alternative to tackle
complex sequential circuits.

To summarize the main contributions of the thesis are:

- A novel deterministic constraint-based method for hierarchical
ATPG for RTL.

The method combines test path constraint activation with a constraint
solver where a deterministic algorithm that extracts constraints for activating test
paths at RTL is applied. Subsequently, a constraint solving package ECLiPSe is
used for assembling the tests. Experiments show that the proposed deterministic
method offers very short run time. In particular, it provides increased fault
coverage which ranges from 3 to 34 % for tested examples with respect to
earlier, semi-formal, approaches.

- A novel fault model combined together with hierarchical fault
model, functional fault model and a mixed hierarchical-functional
fault model.

The main novel contribution of this approach is the combination of the
three HLDD-based fault models in order to provide for efficient and fast testing
of sequential designs. The method defined the HLDD as an efficient model for
RTL test pattern generation for sequential cores. The HLDD model was
compared to currently popular assignment decision diagrams. Experiments show
that these fault models allow reaching higher stuck-at fault coverage when
compared to other approaches for testing sequential. It achieves on the average
2.5 % higher fault coverage than the genetic tool GATEST on the given
benchmark set.

- A novel method for identifying untestable faults in sequential
circuits.

The method is based on extracting and minimizing RTL test path
activation constraints that drive a dedicated logic-level deterministic ATPG.
Experiments show that the tool is capable of generating tests yielding maximum
fault efficiency for the embedded modules under test. To the best of the authors
knowledge this is the first method that can prove sequential untestability starting
from the RTL. In addition, our study shows that traditional test generation at
RTL based on symbolic test environment generation is too optimistic due to the
fact that constraints in accessing the modules under test have been ignored.

104

Experiments presented in this work showed that bottom-up strategies caused a
decrease of stuck-at fault coverage up to the range of 8-14 % in the modules
tested when compared to the proposed approach. This short-coming is now
overcome by the proposed constraint-based method which obtains 100 per cent
stuck-at fault efficiency for all the modules considered.

All three approaches were included into hierarchical test generation tool
named Decider. The feasibility of all proposed methods was proven by the
presented experimental results by ITC, HLSynth92 and HLSynth95 benchmarks.

105

Reference

[1] Sunk by Windows NT. WIRED. [Online] 24 07 1998.

[2] Leyden, John. Malware implicated in fatal Spanair plane crash.
TechNewsDaily. [Online] 20 08 2010.
http://www.msnbc.msn.com/id/38790670/ns/technology_and_science-security/.

[3] G. Moore. Cramming more components onto integrated circuit. Electronics,
38(8), 114–117, 1965.

[4] Peter Clarke. Intel enters billion-transistor processor era. EE Times, 14
October 2005.

[5] /microprocessor_timeline.pdf. [Online]
http://www.intel.com/pressroom/kits/core2duo/pdf/microprocessor_timeline.pdf.

[6] R.Klein, T.Piekarz. Accelerating Functional Simulation for Processor
Based Designs. Mentor Graphics Corporation, 2005.

[7] Laung-Terng Wang. Cheng-Wen Wu, Xiaoqing Wen. VLSI Test
Principles and Architectures: Design for Testability. Morgan Kaufmann
Publishers is an imprint of Elsevier, 2006.

[8] H.-K.T Ma, S. Devadas, A.R. Newton, A. Sangiovanni-Vincentelli. Test
Generation for Sequential Circuits. IEEE Trans. on CAD, Vol. 7, No. 10 pp.
1081-1093, Oct. 1988.

[9] T. M. Niermann, J. H. Patel. HITEC: A test generation package for
sequential circuits. Proc. European Conf. Design Automation (EDAC), pp.214-
218, 1991.

[10] Elizabeth M. Rudnick, Janak H. Patel, Gary S. Greenstein, Thomas M.
Niermann. Sequential circuit test generation in a genetic algorithm framework.
Proc. DAC, pp. 698-704, 1994.

[11] F. Corno, P. Prinetto, et al. GATTO: A genetic algorithm for automatic
test pattern generation for large synchronous sequential circuits. IEEE Trans.
CAD, pp.991-1000, Aug. 1996.

106

[12] M. S. Hiao, E. M. Rudnick, J. H. Patel. Sequential circuit test generation
using dynamic state traversal. Proc. European Design and Test Conf., pp. 22-28,
1997.

[13] D. Brahme, J. A. Abraham. Functional Testing of Micro-processors.
IEEE Trans. Comput., vol. C-33, 1984.

[14] A. Gupta, J. R. Armstrong. Functional fault modeling. 30th ACM/IEEE
DAC, pp. 720-726, 1985.

[15] Davis, B. The Economics of Automatic Testing. London, United Kingdom,
McGraw-Hill, 1982.

[16] Niraj Jha, Sandeep Gupta. Testing of Digital Systems. Cambridge
University Press, 2003.

[17] Pomeranz, Irith. To Overtest Or Not To Overtest - More Questions Than
Answers. Test Symposium. ATS '06. 15th Asian, 2006.

[18] Michael L. Bushnell, Vishwani D. Agrawal. Essentials Of Electronic
Testing For Digital, Memory And Mixed-Signal Vlsi Circuits. Kluwer Academic
Publishers, 2000.

[19] Raik, Jaan. Hierarchical Test Generation for Digital Circuits Represented
by Decision Diagrams. Tallinn: Tallinn University of Technology Press, 2001.

[20] Miron Abramovici, Melvin A.Breuer, Arthur D. Friedman. Digital
Systems testing and Testable Design. IEEE Press, 1990.

[21] Kruus, Helena. Optimization of Built-in Self-Test in Digital Systems.
Tallinn: Tallinn University of Technology Press, 2011.

[22] Roth, J. Diagnosis of automata failures: A calculus and a method. IBM J.
Res. Develop., 10(4), 278–291, 1966.

[23] Goel, P. An implicit enumeration algorithm to generate tests for
combinational. IEEE Trans. Comput., C-30(3), 215–222,1981.

[24] Shimono, H. Fujiwara and T. On the acceleration of test generation
algorithms. IEEE Trans. Comput., C-32(12), 1137–1144, 1983.

[25] M. H. Schulz, E. Trischler, and T. M. Serfert. SOCRATES: A highly
efficient automatic test pattern generation system. IEEE Trans. Computer-Aided
Design, CAD-7(1)1988.

[26] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Combinational test generation using satis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 15(9):1167 -1176, 1996.

[27] Larrabee, T. Test pattern generation using Boolean satisfability. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems,11(1):4-15., 1992.

107

[28] Sakallah, J. P. Marques-Silva and K. A. Robust search algorithms for
test pattern generation. In International Symposium on Fault-Tolerant
Computing, pp. 152-157, 1997.

[29] B. T. Murray, J. P. Hayes. Hierarchical test generation using
precomputed tests for modules. Proc. ITC, pp. 221- 229, 1988.

[30] J. Lee, J.H. Patel. Architectural level test generation for microprocessors.
IEEE Trans. CAD, pp. 1288-1300, Oct. 1994.

[31] Register-transfer level - Wikipedia, the free encyclopedia. Wikipedia.
[Online] http://en.wikipedia.org/wiki/Register-transfer_level.

[32] Dhiraj K. Pradhan, Ian G. Harris. Practical Design Verification.
Cambridge University Press, 2009.

[33] Chu, Pong P. RTL Hardware Design. John Wiley & Sons, Inc.,2006.

[34] Jenihhin, Maksim. Simulation-Based Hardware Verification with High-
Level Decision Diagrams. Tallinn: Tallinn University of Technology Press,
2008.

[35] V. Chayakul, D. D. Gajski, L. Ramachandran. High-Level
Transformations for Minimizing Syntactic Variances. DAC, pp. 413-418, 1993.

[36] L. Zhang, I. Ghosh, M. Hsiao. Efficient Sequential ATPG for Functional
RTL Circuits. Int. Test Conf., pp.290-298, 2003.

[37] H. Fujiwara, C. Y. Ooi, Y Shimizu. Enhancement of Test Environment
Generation for Assignment Decision Diagrams. 9th IEEE Workshop on RTL
and High Level Testing, Nov. 27-28, 2008.

[38] J. Raik, R. Ubar. Fast Test Pattern Generation for Sequential Circuits
Using Decision Diagram Representations. JETTA, Kluwer, Vol. 16, No. 3, pp.
213-226, June, 2000.

[39] Guglielmo, G., et al. On the Combined Use of HLDD and EFSMs for
Functional ATPG. East-West Design and Test Symposium, IEEE Computer
Society, pp. 503 - 508, 2007.

[40] System, The ECLiPSe Constraint Programming. http://eclipse-clp.org/.
[Online]

[41] Maxwell, P., Hartanto, I. ja Bentz, L. Comparing functional and
structural tests. Proceedings. International Test Conference ,3-5 Oct. 2000, pp.
400 – 407.

[42] A. Giani, et al. Efficient Spectral Techniques for Sequential ATPG. Proc.
IEEE DATE Conf., March 2001, pp. 204-208.

[43] F. Ferrandi, F. Fummi, D. Sciuto. Implicit Test Generation for Behavioral
VHDL Models. Int. Test Conf., pp. 587- 596, 1998.

108

[44] I. Ghosh, M. Fujita. Automatic Test Pattern Generation for Functional
RTL Circuits Using Assignment Decision Diagrams. Proc. of ACM/IEEE DAC,
pp. 43-48, 2000.

[45] Jenihhin, Maksim. Simulation-Based Hardware Verification with High-
Level Decision Diagrams. Tallinn: Tallinn University of Technology Press,
2008.

[46] T. Viilukas, J. Raik, M. Jenihhin, R. Ubar, A. Krivenko. Constraint-
based test pattern generation at the register-transfer level. 13th IEEE DDECS
Symposium, 2010, pp. 352-357.

[47] Lloyd, J. W. Foundations of Logic Programming. Springer Verlag, 1993.

[48] Colmerauer, A. Prolog II reference manual and theoretical model.
Technical report, Universit´e Aix-Mareseille, 1982.

[49] Hentenryck, P. Van. Constraint Satisfaction in Logic Programming. MIT
Press, 1989.

[50] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F.
Berthier. The constraint logic programming language CHIP. In Proc.
International Conference on Fifth Generation Computer Systems, Tokyo, Japan,
1988.

[51] Krzysztof R. Apt, Mark Wallace. Constraint Logic Programming using
ECLiPSe. Cambridge University Press, 2007.

[52] S.R.Makar, E.J.McCluskey. On the testing of multiplexers. Proc. ITC, pp.
669-679, 1988.

[53] benchmarks, HLSynth92. Index of /benchmarks/HLSynth92. [Online]
http://www.cbl.ncsu.edu:16080/benchmarks/HLSynth92/.

[54] benchmarks, HLSynth95. Index of /pub/hlsynth/HLSynth95. [Online]
http://ftp.ics.uci.edu/pub/hlsynth/HLSynth95/.

[55] E. Gramatova, M. Gulbins, M. Marzouki, A. Pataricza, R.
Sheinauskas, R. Ubar. FUTEG Benchmarks. Tech. Report FUTEG-1/1997.

[56] Turbo Tester. TTU. [Online] http://www.pld.ttu.ee/tt.

[57] V. D. Agrawal and S. T. Chakradhar. Combinational ATPG theorems for
identifying untestable faults in sequential circuits. IEEE Trans Comput.-Aided
Des., vol. 14, no. 9, pp. 1155–1160, Sep. 1995.

[58] M. A. Iyer, D. E. Long, and M. Abramovici. Identifying sequential
redundancies without search. Proc. 33rd Annu. Conf. DAC, LasVegas, NV, Jun.
1996, pp. 457–462.

[59] Q. Peng, M. Abramovici, and J. Savir,. MUST:Multiple stem analysis for
identifying sequential untestable faults. Proc. Int. Test Conf., 2000, pp. 839–846.

109

[60] D. E. Long, M. A. Iyer, M. Abramovici. FILL and FUNI: Algorithms to
identify illegal states and sequentially untestable faults. ACM Trans. Des.
Automat. Electron. Syst., vol. 5, no. 3, pp. 631–657, Jul. 2000.

[61] H.-C. Liang, C. L. Lee, and E. J. Chen. Identifying untestable faults in
sequential circuits. IEEE Des. Test. Comput., vol. 12, no. 3, pp. 14–23, Sep.
1995.

[62] J. Raik, H. Fujiwara, R. Ubar, A. Krivenko. Untestable fault
identification in sequential circuits using model-checking. ATS, pp. 667-672,
2008.

[63] J. Raik, R. Ubar. Sequential Circuit Test Generation Using Decision
Diagram Models. Proceedings of the DATE Conference, pp. 736-740, 1999.

[64] V. Vedula, J. Abraham. FACTOR: A Hierarchical Methodology for
Functional Test Generation and Testability Analysis. IEEE Computer Society
Washington, pp. 730 - 734, 2002.

[65] G.Jervan. High-Level and Hierarchical Test Sequence Generation. IEEE
HLDVT, Cannes, 2002.

[66] Brayton, R. K., Hachtel, G. D., McMullen, C. T., Sangiovanni-
Vincentelli, A. L. Logic Minimization Algorithms for VLSI Synthesis. Kluwer
Academic Publishers, 1984.

[67] De Moura, L., Bjørner, N. Z3: An Efficient SMT Solver. TACAS, 2008,
pp. 337-340.

[68] ITC benchmarks. [Online] http://www.cerc.utexas.edu/itc99-
benchmarks/bench.html.

110

Curriculum Vitae

Personal Data

Name Taavi Viilukas

Date of birth 16.01.1981

Place of birth Estonia

Citizenship Estonian

Contact Data

Address Raja 15, Tallinn, 12618

Phone +372 56156788

E-mail taavi@viilukas.ee

Education

 2006–… Ph.D. studies in Information and Communication

 Technology, Tallinn University of Technology (TUT)

 2004–2006 M.Sc. in Computer and Systems Engineering, TUT

 1999–2004 Diploma in Computer and Systems Engineering, TUT

 1996–1999 Secondary Education from Tallinna Laagna
Gümnaasiun

Carrier

 2008–… CEO, Termnet Eesti OÜ

 2004–2008 Systems Administrator, Aero Airlines AS

 2001–2004 Systems Administrator, Estonian Academy of Security
Sciences

 2001–2004 Teacher, Estonian Academy of Security Sciences

111

Academic Degree

Master of Science in Engineering, Computer and Systems Engineering,
TUT, “Development and Analysis of the Fault Propagation Method in a
Hierarchical Test Generator”

Diploma, Computer and Systems Engineering, TUT, „Develop Fault
Propagation in Hierarchical Test Generation“

Awards

2008–2009 Scholarship of Estonian Information Technology Foundation
(EITSA)

Research topics

 Digital testing, automated test pattern generators

112

Elulookirjeldus

Isikuandmed

Ees- ja perenimi Taavi Viilukas

Sünniaeg 16.01.1981

Sünnikoht Eesti

Kodakondsus Eesti

Kontaktandmed

Aadress Raja 15, Tallinn, 12618

Telefon +372 56156788

E-post taavi@viilukas.ee

Hariduskäik

 2006–… Doktorantuur, Info- ja kommunikatsioonitehnoloogia
Tallinna Tehnikaülikool

 2004–2006 Tehnikateaduste magister, Tallinna Tehnikaülikool

 1999–2004 Diplom, Tallinna Tehnikaülikool

 1996–1999 Keskharidus, Tallinna Laagna Gümnaasium, Tallinn

Teenistuskäik

 2008–… Tegevjuht, Termnet Eesti OÜ

 2004–2008 Süsteemiadministraator, Aero Airlines AS

 2001–2004 Süsteemiadministraator, Sisekaitseakadeemia

 2003–2004 Õpetaja, Sisekaitseakadeemia

113

Kaitstud lõputööd

2006 – magistritöö „Rikete levitamise meetodi analüüs ja arendus hierarhi-
lisel testigenereerimisel“, TTU. Juh. J. Raik

2004 – diplomitöö „Andmestruktuuride väljatöötamine ja realiseerimine
rikete levitamiseks hierarhilisel testigenereerimisel“, TTU. Juh. J. Raik

Teaduspreemiad ja -tunnustused

 EITSA „Tiigriülikooli“ stipendium, 2008

Teadustöö põhisuunad

 Digitaalsüsteemide test, automaatsed testide genereerijad

115

Appendix A

PAPER I

Viilukas, Taavi; Raik, Jaan; Jenihhin, Maksim; Ubar, Raimund; Krivenko, Anna
(2010). Constraint-based Test Pattern Generation at the Register-Transfer Level.
In: Proceedings of the 13th IEEE Symposium on Design and Diagnostics of
Electronic Circuits and Systems : April 14–16, 2010 Vienna, Austria: IEEE,
2010, pp. 352 – 357.

Constraint-based Test Pattern Generation at

the Register-Transfer Level

Taavi Viilukas, Jaan Raik, Maksim Jenihhin, Raimund Ubar, Anna Krivenko

Tallinn University of Technology

Raja 15, 12618 Tallinn, Estonia

E-mail: jaan@pld.ttu.ee

Abstract— The paper introduces a novel

constraint-based automated test pattern

generator for Register-Transfer Level

(RTL) designs. The tool combines test path

constraint activation with a constraint

solver. First, a deterministic algorithm that

extracts constraints for activating test paths

at RTL is applied. Subsequently, a

constraint solving package ECLiPSe is used

for assembling the tests. Experiments on

ITC99 and HLSynth92/95 benchmarks

show that the proposed deterministic

method offers short run times. In

particular, it provides increased fault

coverage for hard-to-test designs with

respect to earlier, semi-formal, approaches.

Keywords-Register-transfer level;

automated test pattern generation; constraint

satisfaction problems; decision diagrams

I. INTRODUCTION

At present, satisfactory methods for
testing sequential circuits are missing and
this has led the community to replace the
hard test pattern generation task by
theoretically much simpler approach
relying on scan paths together with
combinational Automated Test Pattern
Generation (ATPG). However, the scan-
path method has its shortcomings
including increased area, delay and
consumed power. It also causes targeting
of non-functional failure modes, which
results in over-testing and yield loss [1].

Several approaches to generating tests
for structural faults in sequential cores
have been proposed over the years.
Despite of all the efforts the problem still
lacks a breakthrough. At the gate-level, a
number of deterministic test generation

tools, both academic [2, 3] and
commercial, have been implemented.
None of these methods can efficiently
handle sequential designs of even a couple
of thousands of gates. With the further
growth of the circuit size fault coverages
tend to drop while run times increase
rapidly.

Better performance has been obtained
with simulation-based approaches. Here,
genetic algorithm based methods have
been widely used [4, 5, 6]. Relatively
efficient results have been obtained by
spectral methods [7]. However, the
simulation-based methods are fast for
smaller circuits only and become
ineffective when the number of primary
inputs and the sequential depth of the
circuit increase. Moreover, these methods
do not guarantee detection for hard-to-test
random pattern resistant faults.

Many works on functional test
generation have been published in the past
[8, 9]. In this field, an efficient technique
based on BDD manipulation of data
domain partitions has been proposed [10].
However, the fundamental shortcoming of
the approaches that rely on functional fault
models is that they do not offer full
structural level fault coverage.

Hierarchical and RTL test pattern
generation has been proposed as a
promising alternative to tackle complex
sequential circuits. Here, top-down and
bottom-up strategies are known. In the
bottom-up approach [11], tests generated
at the lower level will be later assembled
at the higher abstraction level. Such
algorithms ignore the incompleteness

mailto:jaan@pld.ttu.ee

problem: constraints imposed by other
modules and/or the network structure may
prevent test vectors from being assembled.
In the top-down approach [12], where
constraints are extracted at the higher level
with the goal to be considered when
deriving tests for modules at the lower
level.

A number of works have been
published on implementing assignment
decision diagram models [13] combined
with SAT methods to address register-
transfer level test pattern generation [14,
15, 16]. All of these are bottom-up
methods based on a multi-valued algebra
for establishing transparent test paths.
Therefore they suffer from the
incompleteness issue described above.

In current paper, we propose a new
algorithm for constraint-based ATPG on
High-Level Decision Diagram (HLDD)
models. [17] proposed a bottom-up
approach based on an HLDD engine and a
commercial SICStus constraint solver. As
experiments show, the tool achieves lower
fault coverage in comparison to a
commercial gate-level ATPG. In [18], a
top-down approach DECIDER was
introduced, which relied on random
constraint solving. The method was
recently combined with Extended Finite
State Machine (EFSM)-based engine
LAERTE++ from the University of
Verona, which resulted in a semi-formal
setup [19].

Current paper introduces a
deterministic algorithm that extracts
constraints for activating test paths at RTL
and subsequently applies a constraint
solving package ECLiPSe [20] assembling
the tests. Experiments on ITC99 and
HLSynth92/95 benchmarks show that the
proposed deterministic method offers
short run times. In particular, it provides
increased fault coverage for hard-to-test
designs with respect to earlier, semi-
formal, approaches listed above.

The paper is organized as follows. In
Section 2 we introduce the concept of test
generation constraints. Section 3 presents
the high-level path activation algorithm. In

Section 4, the algorithm and constraint
extraction is explained on an example.
Section 5 introduces the constraint solving
setup. Finally, experimental results and
conclusions are presented.

II. CONCEPT OF PATH ACTIVATION

CONSTRAINTS

 The test generation approach proposed

in current paper contains two main

phases. During the first phase, high-level

test path activation, an untested module is

selected and for this module propagation

and justification is performed as

explained in Section 3. In addition,

constraints for the test path are extracted.

The goal of the second phase is to satisfy

the constraints by using a constraint

solver and to compile the test patterns by

assigning the values obtained by the

constraint solver to the primary input

signals (See Section 4).

 The high-level test generation

constraints considered in current paper

are divided into three categories. These

are path activation constraints,

transformation constraints and

propagation constraints. Path activation

constraints correspond to the logic

conditions in the control flow graph that

have to be satisfied in order to perform

propagation and value justification

through the circuit. Transformation

constraints, in turn, reflect the value

changes along the paths from the inputs

of the high-level Module Under Test

(MUT) to the primary inputs of the whole

circuit. These constraints are needed in

order to derive the local test patterns for

the module under test. Propagation

constraints show how the value

propagated from the output of the MUT

to a primary output is depending on the

values of the signals in the system. The

main idea here is to guarantee that fault

signals will not be masked when

propagated.

 All the above categories of constraints

are represented by common data

structures and manipulated by common

procedures for creation, update, modeling

and simulation.

 Let us explain the role of these

constraints in test generation on an

example test path activation for a circuit

module shown in Figure 1. In the Figure

there are two path activation constraints:

true = f1(x1,x2) and false = f2(x2,x3). The

first one is necessary to propagate the

value from the output of the module to the

primary output y3 of the circuit. The latter

is required for justification of the first

input (D1) of the module under test. Both

these constraints are extracted from the

conditional nodes traversed in the control

flow graph of the circuit during high-level

path activation. The Figure also presents

two transformation constraints. These

constraints are applied for computing the

value of the corresponding module input

depending on the values of primary inputs

of the circuit. Finally, there is a

propagation constraint, which states that

the value propagated from the module to

the primary output y3 is dependent on the

primary input x6. Thus, in order to avoid

fault masking the value of x6 must be

chosen such that the fault free and faulty

values of Dout would differ. Note, that the

subsets of the primary input variables

included into the different types of

constraints may overlap.

Module

Under

Test

Circuit

Propagation

path

PIs POs
Path activation constraints

Transformation constraints

Conditions in
algorithm

graph
false = f (x 2 ,x 3)

true = f (x 1 ,x 2)

D 1 = f (x 3 ,x 4)

D 2 = f (x 4 ,x 5)

D 1

D 2

x 1

x 2

x 3

x 4

x 5

y 1

y 2

y 3

y 4

x 6
Propagation constraints:

 f5(Dout,x6) f5(Dout_faulty,x6)

D
out

1

2

3

4

Figure 1. An example of test generation
constraints

 In the following, the data structure and

update operations of high-level test

generation constraints are defined.

Definition 1: A condition C = g(x), where

C is an integer, Boolean or symbolic

value, and g(x) is an expression on a

subset of variables of the model

representing the system under test, is

refered to as constraint.

In current approach, symbolic values

that can be used for C in a constraint C =

g(x) are Di and Dout which correspond to

the values of the i-th input and the output

of the current Module Under Test (MUT),

respectively (See Figure 1).

Definition 2: Constraint C = g(x) is said to

be justified if x xI, where xI is the set of

primary inputs of the system. Otherwise,

C = g(x) is an unjustified constraint.

If a constraint C = g(x) is unjustified

then all the variables in the set x
U
 x that

are not input variables xI are said to be

unjustified variables of the constraint.

Definition 3: Let x
J
 be the set of justified

variables and x
U
 be the set of unjustified

variables of a constraint C = g(x
J
, x

U
).

The process, where each variable x
U

i

is substituted by expressions on model

variables x’i x, is refered to as updating

the constraint C = g(x
J
, x

U
) and it creates

a new constraint C’ = g’(x
J
, x’), where g’

can be regarded as a superposition of

functions on a set of variables in the

system model representation. Section 4

presents an example of constraint update

in test path activation.

Note, that justified constraints consist

of operations on primary inputs xI and

constants xC. Furthermore, the

exponential size complexity of the

constraints g(x) is avoided by uniting

multiple occurrences of the same variable

(i.e. the literals) in the constraints at each

time step into one single fanout variable.

Because of this, the size requirements for

the constraints are linear with respect to

justification time-frames and they

represent a small subset of the expanded

time-frame model of the circuit. Thus, the

high-level test constraint extraction

procedure is scalable.

III. DETERMINISTIC TEST PATH

ACTIVATION

 The high-level symbolic path

activation, proposed in current paper is a

complete algorithm, i.e. if transparent

paths for fault effect propagation and

value justification exist, they will be

activated. The algorithm has been

implemented as a systematic search and

therefore an inconsistency in any stage

causes a backtrack and a return to the last

decision. However, due to the NP-

complete nature of the problem, in some

cases, the search must be terminated after

a certain maximal number of solutions

have been tried. For the sake of simplicity

and speed, only three types of symbolic

values are used during the path activation:

D - line with the fault effect,

X - line with unassigned

value,

V - line with an assigned

value.

 In the following the propagation and

justification principles of the proposed

RT level ATPG are presented.

3.1 Fault effect propagation

 The purpose of the propagation

procedure is to activate a state sequence

that propagates the fault effect from the

output of the module under test to one of

the primary outputs of the design. In

current approach, propagation along

single path is implemented. In order to

keep track of the fault effect propagation

a dedicated fault effect pointer is used.

During propagation, high-level test path

activation constraints are created. Fig. 2,

presents the algorithm for fault effect

propagation.

 In the algorithm descriptions the term

consistent FSM control vector is

frequently used. By this term we mean a

control vector (row) in the control part’s

FSM state table whose control signal

values are consistent with value

assignments made for control signals

while propagating (activating) paths in

the datapath.

 /* Fault manifestation for module M */

Create constraints from all the module inputs inputi(M)
Set fault effect pointer to node output(M)

/* Fault effect propagation */
While fault pointer is not propagated to a primary output
Let a be the node pointed by fault effect pointer

Choose the most observable fanout branch of a
 Set control signals required to transport fault effect from the

fanout branch to the next fanout stem or register node b
 /* always only one such path exists! */
Set fault effect pointer to b

If exists a consistent FSM control vector then

 Choose the most observable consistent control vector

 Create constraints of corresponding FSM input vector
 If b is a register then
 move to the next time-frame

 Endif

Else

 Backtrack
Endif

Endwhile

Figure 2. Fault effect propagation algorithm.

3.2 Constraint justification

 Subsequent to propagation, constraint

justification starts. Justification moves

backward in time, starting from the clock-

cycle, where propagation ended. During

this process existing constraints are

updated and additional path activation

constraints are created. Finally,

constraints solving procedure is applied to

the extracted constraints and module

under test is fault simulated by constraint-

driven, local test data.

Nodes of the circuit, which

correspond to primary inputs or constants

are called justified nodes. All other nodes

are said to be unjustified. Constraints

containing unjustified nodes are refered to

as unjustified constraints.

Updating the test generation

constraints is defined in Section 2 and

shown in more detail on an example

presented in Section 4. Basically,

updating a constraint can be regarded as

superposition of the unjustified nodes of

the constraint by new datapath nodes

determined by paths activated in the

datapath by current control vector.

At each justification step, current

justification objective is chosen. In the

proposed algorithm implementation the

justification objective is to justify the first

unjustified node from the first unjustified

constraint. The algorithm for constraint

justification is presented in Fig 3.

 /* Constraint justification */
While exist unjustified constraints
If current time-frame is earlier than manifestation then

 Let current objective be to justify node b
 Choose the most controllable fanout, F.U. or register node a,

 which directly precedes b
 Set control signals activating path from a to b
 /* always only one such path exists! */

 If exists a consistent FSM control vector then

 Choose the most controllable consistent control vector

 Create constraints of corresponding FSM input vector
 If a is a register then
 move to the previous time-frame

 Endif

 Else

 Backtrack
Endif

Else

 Move to the previous time-frame
Endif

Update all active constraints
Endwhile

/* Solve constraints (See Section 5!) */

Figure 3. Constraint justification algorithm.

IV. CONSTRAINT EXTRACTION

EXAMPLE

In the following, the test path
activation algorithm and constraint
extraction is explained basing on the
example of the Greatest Common Divisor
(GCD). Consider the GCD algorithm
described at behavioral level in a pseudo
hardware description language:

 A := IN1;

 B := IN2;

 while (A B)

 if (A < B) then

 B := B – A;

 else

 A := A – B;

 end if;

 end while;

 OUT := A;

Let us assume that subsequent to

applying high-level synthesis to the
algorithm description we obtain the RTL

architecture presented in Figure 4. This
architecture consists of a datapath of 3
Functional Units (FU), 2 registers and 4
multiplexers and a control part Finite State
Machine (FSM) of four states. The
datapath architecture is depicted in Figure
4a and the control part is given as a state
table in Figure 4b, respectively.

We further explain the test generation
algorithm described in Section 3 by the
example of generating test paths for the
module SUBTR.

Fault manifestation. Set all the variables

to ‘don’t care’ values. Create

transformation constraints D0=mux3,

D1=mux4. Set the fault effect pointer to

variable SUBTR, i.e. yD := SUBTR.

Fault effect propagation. Choose a

datapath register that reads from the FU

SUBTR. There are two possible choices:

reg_A and reg_B, respectively. Let us

select the first choice. Subsequently, we

activate the path from SUBTR to reg_A,

which results in the following variable

assignments: A_enable := 1, mux_12 :=

1. Next, we have to choose a consistent

FSM control vector. The only vector

consistent with previous variable

assignments is the one corresponding to

row 7 in the FSM state table (labeled by

vector 0, X, X, S3, S0, 1, 0, 1, 0). Based

on this vector we obtain the following

assignments: reset:=0, B_enable := 0,

mux_34 := 0, state := S3 (in current clock

cycle), state := S0 (in the next clock

cycle). We move to the next clock cycle

and set the fault effect pointer yD to

reg_A (i.e. OUT).

 We detect that the fault effect pointer

points to a variable corresponding to a

primary output and thus have successfully

completed the fault propagation process.

Constraints justification. As there were

no path activation constraints created

during manifestation and propagation

stages, we move backwards in terms of

clock-cycles until the clock-cycle of

manifestation phase is reached. We select

 A := IN1;

 B := IN2;

 while (A B)

 if (A < B) then

 B := B – A;

 else

 A := A – B;

 end if;

 end while;

 OUT := A;

the justification objective from the

unjustified variables of the transformation

constraints (D0=mux3, D1=mux4). Let

current objective be to justify variable

mux3. Due to the fact that we have

already assigned mux_34 := 0 at current

clock-cycle during the propagation

process, then we have no choice but

backtracing mux3 to reg_A. We update

the constraints, obtaining D0= reg_A, D1=

reg_B and move to the preceding clock

cycle.

 Without focusing on further details,

we continue executing the constraint

justification algorithm until the path

presented in Figure 9 is activated as one

of possible high-level path solutions. In

the Figure we have denoted the

manifestation clock cycle by t, the i-th

cycle following t is denoted by t+i and i-

th cycle preceding t is denoted by t-i,

respectively. Below the clock-cycle

information, the activated state sequence

is provided. Then we present graphically

the processes of fault propagation and

extraction of transformation constraints.

Decisions in the high-level path activation

are marked by stars (*) in the Figure.

Extraction of path activation constraints is

depicted below the striped line. Here, t

corresponds to Boolean value ‘true’ and f

corresponds to ‘false’. As shown in

Figure 5, we have to apply the constraint

satisfaction process to the following set of

constraints: in1 < in2 is false, in1 ≠ in2 is

true.

 Subsequent to testing the node with

the first path, backtrack occurs and the

high-level path activation algorithm tries

to find alternative path solutions.

V. SOLVING THE TEST PATH

CONSTRAINTS

 In the previous top-down test pattern

generation algorithms by the authors [18,

19], random constraint solving was

applied. In this paper we have selected the

open source ECLiPSe constraint solver

(ECLiPSe5.10_41) to solve the test path

constraints. ECLiPSe supports most of the

common techniques used in solving

constraint problems. It includes constraint

programming, mathematical

programming, local search and various

combinations of the above. We have

embedded the solver into the C++ code of

the ATPG and use the string-based

approach.

 An example of a constraint string is

given in the following:

lib(ic),L is (0),R is(8^2)-1,

X_41::L..R, (7 >> 1 #= X_41),

indomain(X_41,random)

 This constraint string is divided into 5

groups. First you have to define the

library. In our case it is the finite domains

library ic. In the second group you will

define domain boundaries, then variables

and domain is defined. The constraints

and finally search criteria are given.

(Search criteria are not mandatory).

 As experiments presented in the

following Section show the deterministic

constraint solving has definite advantages

over the pseudo-random method.

reg.
M
U
X

reg.
M
U
X

<

_

M
U
X

M
U
X

IN1

IN2

reg_A

reg_B
mux_12

mux_12 mux_34

mux_34

OUT

LT

NEQ

SUBTR

mux4

mux3

a)

b)

Figure 4. RT-level architecture of the GCD

circuit.

Figure 5. RT-level architecture of the GCD

circuit.

VI. EXPERIMENTAL RESULTS

In order to evaluate the impact of the

deterministic constraint solving

experiments on ITC99 and HLSynth92/95

benchmarks were carried out. By this

moment we have included the following

three circuits into the analysis: b00, 604

and gcd because these circuits contain

“equal to” comparison operators which

are hard to test by pseudorandom

constraint solving.

Table 1 shows the comparison of the

semi-formal approach DECIDER

presented in [18] and the proposed top-

down tool. Comparison has been obtained

by fault simulating the test sets generated

by both generators by a stuck-at fault

simulator for sequential circuits. The row

‘# faults’ of the Table shows the number

of stuck-at faults in the circuit. The row

‘# tested’ presents the number of tested

faults by [18] and the proposed approach.

The row ‘cover., %’ lists the achieved

stuck-at fault coverages. ‘time, s’ stands

for the ATPG run times in seconds.

Finally, the number of generated test

vectors is reported in the row ‘# vect.’

 It can be seen that the fault coverage

improvement obtained by the

deterministic constraint solving setup

ranges from 3 to 34 % for the tested

examples. Note, that while the fault

coverages for the circuits are low, this is a

usual case for the sequential ATPG

because of the large number of untestable

faults.

TABLE I. COMPARISON OF SEMI-FORMAL [18]

AND THE PROPOSED DETERMINISTIC ATPG

METHODS

VII. CONCLUSIONS AND FUTURE WORK

 The paper introduces a novel

constraint-based automated test pattern

generator for Register-Transfer Level

(RTL) designs. The tool combines test

path constraint activation with a

constraint solver. First, a deterministic

algorithm that extracts constraints for

activating test paths at RTL is applied.

R
E

S
E

T

L
T

N
E

Q

pre

s.

stat

e

nex

t

stat

e

A
_

en
ab

le

B
_

en
ab

le

m
u

x
_

1
2

m
u

x
_

3
4

1 X X X S0 1 1 0 X

0 X 1 S0 S1 0 0 X X

0 X 0 S0 S0 0 0 X X

0 1 X S1 S2 0 0 X X

0 0 X S1 S3 0 0 X X

0 X X S2 S0 0 1 1 1

0 X X S3 S0 1 0 1 0

t+1 t t - 1 t - 2 t - 3

S
0

S
3

S
1

S
0 X

out subtr

D =reg_b
2

D =
1

in1

D =
2

in2

f=(in1<in2)

t=(reg_a reg_b) t=(in1 in2)

(reset=1)

* *D =reg_a
1

Subsequently, a constraint solving

package ECLiPSe is used for assembling

the tests. Experiments on ITC99 and

HLSynth92/95 benchmarks show that the

proposed deterministic method offers

very short run times. In particular, it

provides increased fault coverage which

ranges from 3 to 34 % for the tested

examples with respect to earlier, semi-

formal, approaches.

Note, that while the fault coverages

for the circuits are low, this is a usual case

for the sequential ATPG because of the

large number of untestable faults. As a

future work we plan to integrate

untestable fault analysis for sequential

circuits (e.g. [21]) into the constraint-

based ATPG to improve fault efficiency

estimation.

ACKNOWLEDGEMENTS

 The work has been supported by

European Commission Framework

Program 7 projects FP7-2009-IST-4-

248613 DIAMOND and FP7-REGPOT-

2008-1 CREDES, by European Union

through the European Regional

Development Fund, and by Estonian

Science Foundation through grants 8478,

7068 and 7483.

REFERENCES

[1] Maxwell, P. Et al., Comparing functional and

structural tests, ITC 2000. 3-5 Oct. 2000

Page(s):400 – 407.

[2] H.-K.T. Ma, S. Devadas, A.R. Newton, A.
Sangiovanni-Vincentelli, “Test generation for

sequential circuits”, IEEE Trans. on CAD,

7(10), pp. 1081-1093, Oct. 1988.

[3] T. M. Niermann, J. H. Patel, "HITEC: A test

generation package for sequential circuits",

Proc. European Conf. Design Automation
(EDAC), pp.214-218, 1991.

[4] E. M. Rudnick, et al. "Sequential circuit test

generation in a genetic algorithm framework",
DAC, 1994.

[5] F. Corno, P. Prinetto, et al., "GATTO: A genetic

algorithm for automatic test pattern generation
for large synchronous sequential circuits", IEEE

Trans. CAD, pp.991-1000, Aug. 1996.

[6] M. S. Hiao, E. M. Rudnick, J. H. Patel,
"Sequential circuit test generation using

dynamic state traversal", Proc. European

Design and Test Conf., pp. 22-28, 1997.

[7] A. Giani, et al., “Efficient Spectral Techniques

for Sequential ATPG,” Proc. IEEE DATE

Conf., March 2001, pp. 204-208.

[8] D. Brahme, J. A. Abraham, "Functional Testing

of Micro-processors", IEEE Trans. Comput.,

vol. C-33, 1984.

[9] A. Gupta, J. R. Armstrong, "Functional fault

modeling", 30th ACM/IEEE DAC, pp. 720-726,

1985.

[10] F. Ferrandi, F. Fummi, D. Sciuto, “Implicit Test

Generation for Behavioral VHDL Models,” Int.
Test Conf., pp. 587-596, 1998.

[11] B. T. Murray, J. P. Hayes, "Hierarchical test

generation using precomputed tests for
modules", Proc. ITC, pp.221-229, 1988.

[12] J. Lee, J.H. Patel, "Architectural level test

generation for microprocessors", IEEE Trans.
CAD, pp.1288-1300, Oct. 1994.

[13] V. Chayakul, D. D. Gajski, L. Ramachandran,

“High-Level Transformations for Minimizing
Syntactic Variances”, DAC, pp. 413-418, June

1993.

[14] I. Ghosh, M. Fujita, “Automatic Test Pattern
Generation for Functional RTL Circuits Using

Assignment Decision Diagrams”, DAC, pp. 43-

48, 2000.

[15] L. Zhang, I. Ghosh, M. Hsiao, “Efficient

Sequential ATPG for Functional RTL Circuits”,

Int. Test Conf., pp.290-298, 2003.

[16] H. Fujiwara, C. Y. Ooi, Y. Shimizu,

"Enhancement of Test Environment Generation

for Assignment Decision Diagrams", WRTLT,
2008.

[17] G. Jervan et al., "High-Level and Hierarchical

Test Sequence Generation", IEEE HLDVT,
Cannes, 2002.

[18] J. Raik, R. Ubar, "Fast test pattern generation

for sequential circuits using decision diagram

representations", JETTA, Kluwer, 16(3), 2000.

[19] G. Di Guglielmo et al., "On the Combined Use

of HLDDs and EFSMs for Functional ATPG",
East-West Design & Test Symposium, Yerevan,

2007.

[20] The ECLiPSe Constraint Programming System
http://eclipse-clp.org/

[21] Jaan Raik, Hideo Fujiwara, Raimund Ubar,

Anna Krivenko. Untestable Fault Identification
in Sequential Circuits Using Model-Checking.

The 17th Asian Test Symposium (ATS 2008),

IEEE, pp. 667-672, November 24-27, 2008,
Sapporo, Japan.

125

PAPER II

Raik, Jaan; Ubar, Raimund; Viilukas, Taavi (2006). High-Level Decision
Diagram based Fault Models for Targeting FSMs. In: Proceedings of the 9th
IEEE Euromicro Conference on Digital Systems Design : DSD2006, Cavtat,
Aug. 31 – Sept. 2, 2006. IEEE Computer Society Press, 2006, pp. 353 – 358.

High-Level Decision Diagram based Fault

Models for Targeting FSMs

Tallinn University of Technology, Department of Computer Engineering

jaan@pld.ttu.ee

Abstract— Recently, a number of works

have been published on implementing

assignment decision diagram models

combined with SAT methods to address

register-transfer level test pattern

generation. Those methods have proven

efficient. However, all of them target

modules inside the datapath of the circuit.

In this paper, we show by experiments that

the fault coverage achieved by full datapath

tests is often lower than what can be

achieved if faults in the control part FSM

were additionally considered. We also

propose a new type of fault model for

targeting faults in FSMs embedded to RTL

descriptions. In addition, we present an

alternative for traditional assignment

decision diagrams, which provides for a

more general representation of RTL

circuits. We show that our model, called

high-level decision diagrams, allows

efficient high-level test path activation.

According to experiments the proposed

approach outperforms state-ofthe- art test

pattern generation tools..

I. INTRODUCTION

Several approaches to generating tests
for structural faults in sequential circuits
have been proposed over the years.
However, the problem still lacks a
breakthrough. At the gate-level, a number
of deterministic test generation tools, both
academic [1, 2] and commercial, have
been implemented. None of these methods
can efficiently handle sequential designs
of even a couple of thousands of gates.
With the further growth of the circuit size
fault coverages tend to drop while run
times increase rapidly.

Better performance has been obtained
with simulationbased approaches. Here,
genetic algorithm based methods have
been widely used [3, 4, 5]. Recently,

efficient results have been obtained by
spectral methods [6]. The approaches
belonging to this class are fast for smaller
circuits only but become ineffective when
number of primary inputs and the
sequential depth of the circuit increase.

Many works on functional test
generation have been published in the past
[7, 8]. In this field, an efficient technique
based on BDD manipulation of data
domain partitions has been proposed [9].
However, the main principal shortcoming
of the approaches that rely on functional
fault models only is that they cannot
guarantee satisfactory structural level fault
coverage.

Hierarchical and RTL test pattern
generation has been a promising
alternative to tackle complex sequential
circuits. Here, top-down and bottom-up
strategies are known. In the bottom-up
approach [10], tests generated at the lower
level will be later assembled at the higher
abstraction level. Such algorithms ignore
the incompleteness problem: constraints
imposed by other modules and/or the
network structure may prevent test vectors
from being assembled. In the top-down
approach [11], where constraints are
extracted at the higher level with the goal
to be considered when deriving tests for
modules at the lower level.

Recently, a number of works have
been published on implementing
assignment decision diagram models [12]
combined with SAT methods to address
register-transfer level test pattern
generation [13, 14]. The authors of this
paper have been relying on a different
kind of representation, called high-level
decision diagrams [15, 16], where, both,
control unit and datapath are handled in a

uniform manner. An efficient RTL path
activation has been previously proposed in
[17] and complemented with precision
fault models for multiplexers in [18].

The common shortcoming for all the
former decision diagram based approaches
is that they are targeting modules in the
datapath of the circuit. Our previous
research has shown that while
deterministic test pattern generation
algorithms are in general less powerful for
larger circuits, they are still capable of
testing a number of faults from the FSM
part that the RTL and hierarchical
methods are unable to cover.

In this paper, we propose a new type
of fault model based on high-level
decision diagrams dedicated to faults in
FSMs embedded into RTL descriptions.
The paper is organized as follows. In
Section 2 we introduce the circuit model
of high-level decision diagrams. Section 3
gives a short overview of the high-level
path activation process. Section 4 defines
the new fault models used in current
approach. Finally, experimental results
and conclusions are presented..

II. HIGH-LEVEL DECISION DIAGRAMS

 This Section defines the

concept of high-level decision diagrams

(HLDD) and compares the model to

commonly used assignment decision

diagram (ADD) approach. We will point

out the main differences between the two

models and show how HLDDs can be

used in efficient RTL test path activation.

The following Sections will explain in

detail the HLDD based path activation

method and fault models for embedded

FSMs.

2.1 Basic definitions

Decision diagrams are graph

representation of discrete functions. A

discrete function y=f(x), where

y=(y1,…yn) and x=(x1,…xm) are vectors

is defined on X=X1x…xXm with values

y ∈ Y = Y1x…xYn, and both, the domain

X and the range Y are finite sets of

values. The values of variables may be

Boolean, Boolean vectors, integers.

For representing the functions y=f(x) we

use decision diagrams Gy. A Decision

Diagram (DD) is a directed noncyclic

labeled graph that can be defined as a

quadruple G=(M,E,X,D), where M is a

finite set of vertices (referred to as nodes),

E is a finite set of edges, X is a function

which defines the variables labeling the

nodes and the variable domains, and D is

a function on E.

The function X(mi) returns a pair (xi,Xi),

where xi is the variable letter which is

labeling node mi and Xi is the domain of

xi. Each node of a DD is labeled by a

variable. A single variable can label

multiple nodes. In special cases of DDs,

nodes are labelled by constants,

arithmetic expressions or vectors.

An edge e∈E of a DD is an ordered pair

e=(m1,m2) ∈E2, where E2 is the set of all

the possible ordered pairs in set E.

Graphical interpretation of e is an edge

leading from node m1 to node m2. It is

said that m1 is a predecessor node of m2,

and m2 is a successor node of the node

v1, respectively.

D is a function on E representing the

activating conditions of the edges for the

simulating procedures. The value of D(e)

is a subset of Xi, where e=(mi,mj) and

X(mi)=(xi,Xi). It is required that

Pmi={D(e) | e=(mi,mj) ∈E } is a partition

of the set Xi. In other words, the subsets

of the set Xi labeled on the edges starting

from a node mi must not overlap and their

union must be equal to Xi.

DD has only one starting node (root

node) m0, for which there are no

preceding nodes. The nodes, for which

successor nodes are missing are referred

to as terminal nodes MT. Simulation on

decision diagrams takes place as follows.

Consider a situation, where all the node

variables are fixed to some value.

According to these values, for each non-

terminal node a certain output edge will

be chosen which enters into its

corresponding successor node. Let us call

such connections activated edges under

the given values. Succeeding each other,

activated edges form in turn activated

paths. For each combination of values of

all the node variables there exists always

a corresponding activated path from the

root node to some terminal node. We

refer to this path as the main activated

path. The simulated value of variable

represented by the DD will be the value

of the variable labeling the terminal node

of the main activated path.

When representing systems by decision

diagram models, in general case, a

network of DDs rather than a single DD is

required. During the simulation in DD

systems, the values of some variables

labeling the nodes of a DD are calculated

by other DDs of the system.

Figure 1. RTL circuit (top left), its HLDD (top right) and ADD (bottom).

2.2 HLDD representation for RTL

circuits

Datapath can be viewed as a network

consisting of modules or blocks. These

include registers, multiplexers and

Functional Units (FUs). Inputs for the

datapath are the primary inputs xI and

control signals xC (e.g. multiplexer

addresses and register enable signals).

Outputs are the primary outputs xO as

well as status bits xN (primarily from

comparison operators) leading to the

control part FSM.

In HLDD models representing the

datapath, the nonterminal nodes

correspond to control signals (labeled by

variables xC). The terminal nodes

represent operations (functional units).

Register transfers and constant

assignments are treated as special cases of

operations.

At the RT-level, datapath is represented

by a system of DDs. In this paper we use

partitioning, where for each primary

output, fanout signal and register a DD

corresponds. In addition, multiplexers that

are connected to FU inputsare also

represented by a separate DD.

Similar to the datapath, the control part of

an RTL design can be represented by a

HLDD. This DD calculates the values for

a vector consisting of the state variable

and control signals. In the DD, the non-

terminal nodes correspond to current state

(labeled by variable xS) and status bits

originating from the datapath (variables

xN). Terminal nodes hold vectors with

the values of next state and control

signals xC.

2.3 Differences between HLDDs
and ADDs

Figure 1 presents the RTL description of a

Greatest Common Division benchmark

and its corresponding HLDD and

Assignment Decision Diagram (ADD)

representations. Apart from the fact that

HLDD description contains less nodes,

there are the following fundamental

differences:

1.ADDs structure closely matches the

RTL design. Edges of ADD correpond to

connecting nets in datapath. ADD for

FSM is equivalent to its gate-level

implementation. In contrast, HLDDs do

not strictly follow the circuit structure.

Here, a synthesis to extract data and

control relationships from the circuit

functionality has been carried out.

2.ADD model includes four types of

nodes (read, write, operator, assignment

decision). In HLDD the nodes are treated

uniformly and can be divided into

nonterminal nodes (control) and terminal

nodes (data).

3.While ADDs do not support decision-

making implicitly in the model, in

HLDDs, the selection of a node activates

a path through the diagram, which derives

the needed value assignments for

variables. Note, that the edges in ADD

model have no labels. This is the most

significant difference between the two

models.

III. RTL TEST PATH ACTIVATION USING

HLDDS

This Section presents the top-down

hierarchical test generation framework

used as a basis in the paper. The concept

of hierarchical test generation constraints

is explained and different stages of the

test pattern generation algorithm on

HLDD models are explained.

3.1 Constraint-based hierarchical
test generation

The hierarchical test generation
constraints considered in current paper can
be divided into two categories: path

activation constraints and transformation
constraints. Path activation constraints
correspond to the logic conditions in the
control flow graph that have to be satisfied
in order to perform propagation and value
justification through the circuit.

Transformation constraints, in turn,
reflect the value changes along the paths
from the inputs of the high-level module
under test to the primary inputs of the
whole circuit. These constraints are
needed in order to derive the local test
patterns for the module under test. Both
types of constraints can be represented by
common data structures and manipulated
by common procedures for creation,
update, modeling and simulation.

Figure 2 explains the role of these
constraints in test generation for a circuit
module. In the Figure there are two path
activation constraints: true = f(x1,x2) and
false = g(x2,x3). The first one is necessary
to propagate the value from the output of
the module to the primary output y3 of the
circuit. The latter is required for
justification of the first input (D1) of the
module under test. Both these constraints
are extracted from the conditional nodes
traversed in the control flow graph of the
circuit during high-level path activation.

In addition, the Figure presents two
transformation constraints. These
constraints represent the function for
computing what will be the value of the
corresponding module input depending on
the values of primary inputs of the circuit.

Fig. 2. Hierarchical test generation
constraints

Fig. 3. RTL path activation on HLDDs

3.2 Test path activation and
constraint extraction

Test generation for a circuit Module
Under Test (MUT) starts with the fault
manifestation procedure. During the fault
manifestation phase, fault effect is set to
the MUT output. In addition, symbolic
transformation constraints are created in
form of Di = xi, i = 1,...,n, where n is the
number of inputs of current MUT. Di are
symbolic values representing local test
patterns applied to corresponding inputs of
MUT and xi are the lines in the model
representing these inputs.

Fault manifestation is followed by
fault effect propagation. During the
propagation stage we move forward in
time (clock-cycles), fault effect is
propagated towards primary outputs and
path activation constraints are created
whenever conditions in the control flow
graph are traversed. Propagation is
completed when we have obtained a state
sequence transfering the fault effect to a
primary output of the circuit.

Subsequent to propagation, constraint
justification begins. Justification moves
backwards in time, starting from the
clock-cycle, where propagation ended.
During this process existing constraints
are updated and additional path activation
constraints are created. The process will
be terminated when all the variables in all
the constraints are primary inputs. Finally,
constraints solving procedure is applied to

the extracted constraints and MUT is fault
simulated by constraint-driven, randomly
generated local test data.

Fig. 3 explains the steps of
propagation, justification and constraint
update on HLDD models. Fig. 3a shows
the implications we can perform on the
model when propagating the fault effect
from a datapath register reg_i2 to register
reg_o. As a first step, we have to activate
a path from the root node to the node
labeled by reg_i2. From this path we
obtain assignments enable := 1 and mux1
:= 0. Then, we select the terminal node
from the FSM HLDD, which is consistent
with the above assignments. This node is
marked with grey. We activate the path
from the FSM root node to the chosen
terminal node. This results to assignment:
next state := s2. Since the activated path
traverses a node with condition R1<R2 it
has to be added to the set of path
activation constraints. Similarly,
assignments are derived during
justification and constraint update steps.

IV. HLDD FAULT MODELS FOR FSM

As it was mentioned above the previous

RTL ATPG test generation approaches

focus on the datapath part of a circuit.

The functional fault model for

multiplexers proposed in [16] covers also

the output logic of the FSM. However,

fault models for targeting next state logic

in a hierarchical test pattern generation

context are missing. We propose two

types of fault models that have to be

addressed in HLDDs in order to set up

tests for the next state logic. The cases are

listed in the following: 1. Distinguishing

the registers addressed by a pair of

control words (i.e. FSM HLDD terminal

nodes). 2. Distinguishing the mux inputs

controlled by a pair of control words.

 In the case, a wrong datapath register is

addressed because of a fault in the next

state logic, this will be revealed by

distinguishing the values in the registers

and performing propagation and

justification through the circuit. Or,

alternatively, if the two control words

address the same set of registers, there

can be a difference in some multiplexer

address signals. In the latter case, the

registers connected to inputs of the mux

have to be distinguished.

 There is another issue raising from

conditional operations, whose outputs are

connected to the FSM as status bits. There

exists no path from these modules

through the datapath to primary outputs.

However, the internal structure of the

comparison operation should be

exhaustively covered by the fault model.

In current approach, a functional fault

model is selected to activate the fault

effect at the status bit and a hierarchical

fault model is implemented to test the

module at the low-level. Figure 4 shows

an example of the test for comparison

operators.

 Let current MUT be the conditional

operation, whose output is connected to

status bit ‘status’. Let us consider the test

setup for the module with the output

value being one (i.e. status = 1). (Note,

that separate tests for the MUT have to be

set up for output values 0 and 1,

respectively). As a first step, we try to

identify possible setup states for the fault

manifestation stage. In order to do that we

select a nonterminal node in the FSM DD

labeled by variable ‘signal’. We activate

the path to this node obtaining the

following value assignments: reset := 0,

state := Sj.

 The next step is to select the datapath

register for fault effect activation. The

register is determined by comparing the

vectors at the two terminal nodes of FSM

DD, which lie at the end of the faulty and

fault-free paths, respectively. Registers,

which are selected by the faultfree

terminal node and deselected by the faulty

one are considered to be suitable for fault

activation. (In our example, register Ri

matched the requirements and was

chosen). Subsequently, propagation,

justification and constraint extraction

procedures are performed as explained in

the previous section.

Fig. 4. FSM test covering conditional

operations

V. EXPERIMENTAL RESULTS

 In Table 1, comparison of test

generation results of four ATPG tools on

five hierarchical designs are presented.

The benchmarks are mainly from

HLSynth92 and HLSynth95 families. All

the experiments were run on a 366 MHz

SUN UltraSPARC 60 server with 512

MB RAM under SOLARIS 2.8 operating

system. Five sequential ATPG tools were

compared in the experiments. These were

a gate-level deterministic ATPG HITEC

[2] and a genetic algorithm based

GATEST [3], hierarchical ATPG

covering only datapath FUs, hierarcical

test pattern generation for FUs and

multiplexers, and finally, the approach

proposed in current paper.

 The results show that the proposed

method is very efficient for testing

sequential designs. It achieves in average

2.5 % higher fault coverage than the

genetic tool GATEST on the given

benchmark set. For the sake of

comparison, an experiment with complete

tests for datapath functional units (FU)

was performed. This resulted in a poor

overall coverage of the design, thus,

showing the need for FSM and

multiplexer testing in RTL ATPG.

Table 1. Comparison of sequential
circuit test generation tools

VI. CONCLUSIONS

In the paper we defined high-level

decision diagrams (HLDD) as an efficient

model for RTL test pattern generation.

For the first time, this model is compared

to currently popular assignment decision

diagrams. We point out the main benefits

of the former and present a small example

of main test path activation tasks.

The main novel contribution of the paper

lies in introduction of new FSM fault

models on HLDD representations. We

show by experiments that these fault

models allow us to reach higher fault

coverages when compared to other

approaches. In fact, our experimental

results prove quite clearly that RTL test

methods targeting datapath functional

units only can not guarantee high fault

coverages for the overall design.

ACKNOWLEDGEMENTS

 The research has been supported by

ETF grants G5637, G5910 and G5649

and by Enterprise Estonia funded ELIKO

technology development center.

REFERENCES

[1] H.-K.T Ma, S. Devadas, A.R. Newton, A.

Sangiovanni- Vincentelli, “Test generation for
sequential circuits”, IEEE Trans. on CAD,Vol.

7, No. 10 pp. 1081-1093, Oct. 1988.

[2] T. M. Niermann, J. H. Patel, "HITEC: A test
generation package for sequential circuits",

Proc. European Conf. Design Automation

(EDAC), pp.214-218, 1991.

[3] E. M. Rudnick, et al. "Sequential circuit test

generation in a genetic algorithm framework",

Proc. DAC, pp. 698-704, 1994.

[4] F. Corno, P. Prinetto, et al., "GATTO: A genetic

algorithm for automatic test pattern generation

for large synchronous sequential circuits", IEEE
Trans. CAD, pp.991-1000, Aug. 1996.

[5] M. S. Hiao, E. M. Rudnick, J. H. Patel,

"Sequential circuit test generation using
dynamic state traversal", Proc. European Design

and Test Conf., pp. 22-28, 1997.

[6] A. Giani, et al., “Efficient Spectral Techniques
for Sequential ATPG,” Proc. IEEE DATE

Conf., March 2001, pp. 204-208.

[7] D. Brahme, J. A. Abraham, "Functional Testing
of Microprocessors", IEEE Trans. Comput., vol.

C-33, 1984.

[8] A. Gupta, J. R. Armstrong, "Functional fault
modeling", 30th ACM/IEEE DAC, pp. 720-726,

1985.

[9] F. Ferrandi, F. Fummi, D. Sciuto, “Implicit Test

Generation for Behavioral VHDL Models,” Int.

Test Conf., pp. 587-596, 1998.

[10] B. T. Murray, J. P. Hayes, "Hierarchical test

generation using precomputed tests for

modules", Proc. ITC, pp.221-229, 1988.

[11] J. Lee, J.H. Patel, "Architectural level test

generation for microprocessors", IEEE Trans.

CAD, pp.1288-1300, Oct. 1994.

[12] V. Chayakul, D. D. Gajski, L. Ramachandran,

“High-Level Transformations for Minimizing

Syntactic Variances”, Proc. Of ACM/IEEE
DAC, pp. 413-418, June 1993.

[13] I. Ghosh, M. Fujita, “Automatic Test Pattern

Generation for Functional RTL Circuits Using
Assignment Decision Diagrams”, Proc. of

ACM/IEEE DAC, pp. 43-48, 2000.

[14] L. Zhang, I. Ghosh, M. Hsiao, “Efficient
Sequential ATPG for Functional RTL Circuits”,

Int. Test Conf., pp.290-298, 2003.

[15] J. Raik, R. Ubar, "Fast Test Pattern Generation
for Sequential Circuits Using Decision Diagram

Representations.", JETTA, Kluwer, Vol. 16,

No. 3, pp. 213-226, June, 2000.

[16] J.Raik, R.Ubar, “Enhancing Hierarchical ATPG

with a Functional Fault Model for

Multiplexers”, Proc. IEEE DDECS, pp.219-222,

April 2004.

[17] J.Raik, R.Ubar. “High-Level Path Activation

Technique to Speed Up Sequential Circuit Test
Generation”, Proc. of the ETW, pp. 84-89,

Konstanz, May 25-28, 1999.

[18] R. Ubar, “Test Generation for Digital Systems
on the Vector Alternative Graph Model”, Proc.

of the 13th Annual Int. Symp. on Fault Tolerant

Computing, Milano, Italy, 1983, pp.374-377.

[19] R. Ubar, "Test Synthesis with Alternative

Graphs", IEEE Design & Test of Computers,

pp. 48-57, Spring 1996.

135

PAPER III

Raik, J; Rannaste, A; Jenihhin, M; Viilukas, T; Fujiwara, H; Ubar, R (2011).
Constraint-Based Hierarchical Untestability Identification for Synchronous
Sequential Circuits. Proceedings of IEEE European Test Symposium, (1 - 6).
IEEE Computer Society Press.

Constraint-Based Hierarchical Untestability

Identification for Synchronous Sequential

Circuits

Jaan Raik, Anna Rannaste, Maksim

Jenihhin, Taavi Viilukas, Raimund

Ubar

Department of Computer Engineering

Tallinn University of Technology,

Estonia

E–mail: jaan@pld.ttu.ee

Hideo Fujiwara

Graduate School of Information

Science, Nara Institute of Science and

Technology

Kansai Science City, 630–0192, Japan

E–mail: fujiwara@is.naist.jp

Abstract— The paper proposes a new

hierarchical untestable stuck-at fault

identification method for non-scan

sequential circuits containing feedback

loops. The method is based on deriving,

minimizing and solving test path activation

constraints for modules embedded into

Register-Transfer Level (RTL) designs.

First, an RTL test pattern generator is

applied in order to extract the set of all

possible test path activation constraints for

a module under test. Then, the constraints

are minimized and a constraint-driven

deterministic test pattern generator is run

providing hierarchical test generation and

untestability proof in sequential circuits.

We show by experiments that the tool is

capable of quickly proving a large number

of untestable faults obtaining high fault

efficiency. As a side effect, our study shows

that traditional bottom-up test generation

based on symbolic test environment

generation at RTL is too optimistic due to

the fact that propagation constraints are

ignored.

I. INTRODUCTION

 Test generation for sequential

synchronous designs is a time-consuming

task. Automated Test Pattern Generation

(ATPG) tools spend a lot of effort not

only for deriving test vectors for testable

faults but also for proving that there exist

no tests for the untestable faults. Because

of this reason, the identification of

untestable faults has been an important

aspect in speeding up the sequential

ATPG.

 For combinational circuits, untestable

faults occur due to the redundant logic in

the circuit, while for sequential circuits,

untestable faults (i.e. sequentially

untestable faults) may also result due to

unreachable states or due to impossible

state transitions. A number of works have

been proposed in order to tackle the

problem of identifying sequentially

untestable faults. The first methods [1]

were fault-oriented and based on applying

combinational ATPG to the expanded

time-frame model of the sequential

circuit. However, such approach does not

scale because of the size-explosion of the

unrolled sequential models. Thus, the

fault independent method was introduced

by Iyer et al. in [2]. The new algorithm

was called FIRES and it implemented

illegal state information to complement

redundancy analysis. This was followed

by a number of fault independent methods

including MUST [3], FUNI [4], FILL [4]

and others. Liang [5] proposed a

simulation based approach for sequential

untestable fault identification. However, it

was shown in [4] that this method may

result in ‘false positives’, i.e. a fault may

be declared untestable when there

actually exists a test for it. The common

mailto:fujiwara@is.naist.jp

limitation of the above methods is that

they operate at the logic-level

representation of the design. Thus a

considerable amount of effort is put on

the implication process carried out at the

level of logic netlists.

 In their previous work [6], the authors

introduced a specific subclass of

sequentially untestable faults, called

register enable stuck-on faults and a

method for proving them untestable using

a model checker. In this paper we propose

a hierarchical untestability identification

method. The new method allows

detecting sequential untestability in

combinational modules (functional units,

multiplexers) embedded into a

hierarchical circuit and is based on path

activation constraints extracted by a

Register-Transfer Level (RTL) ATPG.

 In hierarchical RTL test generation,

top-down and bottom-up strategies are

known. In the bottom-up approach, tests

generated at the low-level will be later

assembled at the higher abstraction level.

Such algorithms yield short run-times but

ignore the incompleteness problem:

constraints imposed by other modules

and/or the network structure may prevent

test vectors from being assembled. In the

top-down approach, constraints are

extracted at the higher level as a goal to

be considered when deriving tests for

modules at the lower level. This approach

allows testing modules embedded deep

into the RTL structure. However, as

modules are often tested through highly

complex constraints, their fault coverage

may be compromised.

 Early methods on bottom-up RTL

testing relied on the assembly of module

tests and were applicable of the simplest

systems only [7]. A more solid basis for

the bottom-up paradigm was laid by

Ghosh et al. in [8]. In their work, test

environments are generated for each

functional module of a given functional

RTL circuit described in an Assignment

Decision Diagram (ADD) [9] using

symbolic justification/propagation rules

using a nine-valued algebra. In this

method, a test sequence is then formed by

substituting the corresponding test

patterns into the test environment.

However, regardless of the existence of

some test environments, the proposed

nine-valued algebra cannot always

generate the test environments. To

overcome this drawback, Zhang et al.

upgraded the nine-valued algebra to a ten-

valued algebra by taking the signal line

value range into consideration. This

algebra is able to generate much more test

environments [10]. In [11], Zhang’s

approach has been further improved by

introducing additional propagation rules.

 Lee and Patel introduced top-down

constraint-based test pattern generation

for microprocessors in [12]. Several

constraint-based top-down approaches

followed, including [13, 14]. [15]

proposed a bottom-up approach based on

a High-Level Decision Diagram (HLDD)

engine and a commercial SICStus

constraint solver. As experiments show,

the tool achieves lower fault coverage in

comparison to a commercial logic-level

Automated Test Pattern Generator

(ATPG). In [16], a top-down approach

including a constraint solving package

ECLiPSe [17] has been proposed.

 None of the previous methods apply

RTL constraints in order to prove logic-

level untestable faults. Thus, the fault

efficiency reported by the approaches

[12-16] is often low, which decreases the

test engineer’s confidence in the test.

(Fault efficiency refers to the ratio of the

number of tested faults to the number of

testable faults). In addition, as we will

show in this paper, in many cases, fault

coverage obtained for the modules in

RTL test generation may considerably

decrease if path activation constraints are

being ignored.

In this paper we propose a new

hierarchical untestability identification

method for non-scan sequential circuits

containing feedback loops. To the best of

our knowledge this is the first method that

can prove sequentially untestable stuck-at

faults starting from the RTL. The method

is based on deriving, minimizing and

solving test path constraints for modules

embedded into RTL designs. First, an

RTL test pattern generator is applied in

order to extract the set of all possible test

path activation constraints for a module

under test within a certain clock cycle

limit. Then, the constraints are minimized

and a constraint-driven deterministic test

pattern generator is run providing a time-

limit-bounded hierarchical test generation

and untestability proof for sequential

circuits. We show by experiments that the

tool is capable of quickly proving a large

number of untestable faults obtaining

high fault efficiency. As a side effect, our

study shows that traditional bottom-up

test generation based on symbolic test

environment generation at RTL is too

optimistic due to the fact that propagation

constraints are ignored.

 The paper is organized as follows.

Section 2 presents the definition of ADD

models, which is used as the basis of

presenting the untestability identification

method. In Section 3, the new

untestability indentification setup is

presented and a motivating example

showing the limitations of existing

bottom-up approaches is presented.

Section 4 explains the process of

obtaining the set of RTL constraints for

proving sequential untestability. Section 5

discusses the core benefits of the

proposed method. Section 6 provides

experimental results. The paper ends with

Conclusions.

II. TEST ENVIRONMENT GENERATION

WITH ADDS

Assignment decision diagram (ADD)
[9] is an acyclic graph that consists of a
set of nodes that can be categorized into
four types: read node, write node,
operation node and assignment decision
node (ADN), and a set of edges which

contain the connectivity information
between two nodes (Figure 1). A read
node represents a primary input port, a
storage unit or a constant while a write
node represents a primary output port or a
storage unit. An operation node expresses
an arithmetic operation unit or a logic
operation unit while an ADN selects a
value from a set of values that are
provided to it based on the conditions
computed by the logic operation units. If
one of the condition inputs becomes true,
the value of the corresponding data input
will be selected.

Figure 1. Assignment Decision Diagram (ADD)

When a node N is under test, the

testability of the node is guaranteed if (a)

any value can propagate from a read node

corresponding to a primary input port to

the input of N, and (b) the value at the

output of N can propagate to a write node

corresponding to a primary output port.

The paths which allow (a) and (b) to

occur are called justification path and

propagation path, respectively.

Justification and propagation can be done

through symbolic processing that utilizes

nine-valued algebra. The series of

symbols obtained from the symbolic

processing that activates justification and

propagation paths is known as the test

environment for the node under test.

For a given node under test, its test

sequence is generated by first extracting a

test pattern from the test set library and

by substituting the test pattern for the test

environment. The test set library is

obtained beforehand by first simply

taking a logic-level circuit of the node

under test, then generating the test

patterns for all faults in the circuit using a

combinational ATPG algorithm. In the

case where the node is synthesized into a

circuit which is different, fault simulation

must be performed to check the fault

efficiency of the test patterns.

The symbols of Ghosh’s nine-valued

algebra [10], each of which can be

assigned true or false, are as follows:

• Cg(v): variable v can be set to any value.

• C0(v): variable v can be set to 0.

• C1(v): variable v can be set to 1.

• Ca1(v): all bits of variable v can be set

to 1’s.

• Cq(v): variable v can be set to a

constant.

• Cz(v): variable v can be set to high

impedance Z.

• Cs(v): state variable v can be set to a

specific state.

• O(v): any fault effect at variable v can

be observed.

• O’(v): fault effect of D’ can be observed

for a single bit variable v.

To generate a test environment, first

an objective has to be set. In order to

achieve the test environment objective,

the test sequence for each ADD can be

generated through the following two

phases using justification/propagation

rules [10]:

Phase 1: Generate the test environment of

the node under test.

Phase 2: Generate the test sequence of the

node under test by substituting the test

patterns of the logic-level circuit

corresponding to the node under test for

the test environment.

 Without going into details of the

symbol propagating rules, consider Figure

2 presenting backward propagation

(justification) of two symbols Cq and Cg

that converge in a fanout read node. In the

strict interpretation of the propagation

rules of [10] the two symbols when

converging in the fanout result in a

conflict. In the weak interpretation the

symbols will resolve in assigning Cg to

the read node.

a) b)

Figure 2. Handling of fanouts during justification

Thus, the strict interpretation of

Ghosh’s algebra [10] lead to overly

pessimistic results because tests for some

Modules Under Test (MUTs) are aborted

due to justification conflicts. On the other

hand, the weak interpretation is too

optimistic and can also lead to loss of

fault coverage because some of the test

patterns that are expected to cover faults

in the MUT do not propagate.

Experiments in this paper show that this

loss may be as high as 8-14 percent of the

stuck-at fault coverage.

Figure 3. Test environment generation example. An
unrolled view.

Consider as an example, a
simplification of the ADD for the Greatest
Common Division (GCD) benchmark
presented in Figure 3. Without loss of
generality in this ADD the control state

Cq
Cq

─
 MU

T

:

OU

T

=

>

IN1=

Cg

 IN2=C

g

O

O

 !

 !

C

1

C

0

C

g
 C

g

C

1

C

1

C

g
C

g

Cq Cq

Cq Cg

?

conflict in the strict

interpretation

Cq Cg

Cg

resolves in the weak

interpretation

information and the data registers have
been removed and the circuit has been
unrolled by applying time-frame
expansion in order to improve the
readability of the diagram. (Note, that the
original GCD benchmark still contains a
data dependent loop, which has been
unrolled in Figure 3).

 Assume that our task is generating a

test environment for the subtraction

module (MUT) in Figure 3. The output

value of MUT will be propagated to the

primary output OUT only if the first value

input of the corresponding assignment

decision is 1. Therefore we set the

corresponding condition input of the

ADN to C1. When we justify this

particular condition input and the symbols

at the MUT inputs according to the

propagation rules presented in [10], then

the strict interpretation of these rules

would lead into a contradiction (See

Figure 2a). However, the weak

interpretation (also used in [11]) would

still allow the following test environment:

IN1=Cg and IN2=Cg. Note, that in

current situation the weak rules are

preferable since they at least allow testing

part of the MUT while the strict rules

would not generate any test environment

at all.

III. CONSTRAINT-BASED UNTESTABILITY

PROOF FLOW

As opposed to the bottom-up test

environment generation presented in

Section 2, the constraint-driven

deterministic untestability identification

method proposed in current paper is based

on the top-down approach. The method

contains three main phases. During the

first phase, the full set of constraints for

setting up a test path to test an RTL

module are extracted at the high-level.

During the second phase this set of

constraints is minimized. The third phase

generates deterministic tests to the low-

level module taking into account the path

constraints.

Decider:
RTL test path

activation

Synopsys DC:

Logic synthesis

RTL

network

(VHDL)

Modules

library

(VHDL)

Test path

constraints Test

environm.

(EDIF)

Constraint-driven

deterministic ATPG

Test

patterns

Fault

coverage

Untestable

faults

Minimized

constraints (VHDL)

Constraint

minimization

Figure 4. Constraint-based untestability proof flow

Figure 4 presents the corresponding
test flow. We apply RTL ATPG Decider
[16] in order to extract the constraints for
accessing the MUT. Decider activates as
many sets of constraints as there are test
paths for that module in a bounded limit of
clock-cycles. In [16], test constraints were
utilized to propagate test patterns to and
from the MUT. However, in this paper the
purpose is to process the set of constraints
in order to derive conditions for a
dedicated logic-level ATPG in proving
untestability. The constraints are
minimized as shown in the next Section,
translated into VHDL and synthesized to
logic-level using Synopsys Design
Compiler. Subsequently, the constraint-
driven logic-level ATPG is run. As a
result we obtain the list of sequentially
untestable faults in the MUT as well as
test patterns for the entire design.

IV. CONSTRAINT-BASED TEST

ENVIRONMENT

In this Section we explain

minimization of the test path constraints

for a MUT. We show how to compute the

constraint-based test environment from

the set of test constraints. For the sake of

completeness we briefly summarize the

concept of test generation constraints

below.

In order to extract the RTL constraints

for a MUT, an RTL ATPG tool Decider

[16] is applied. The high-level test

generation constraints considered by

Decider are divided into three categories.

These are path activation constraints,

transformation constraints and

propagation constraints. Path activation

constraints correspond to the logic

conditions in the control flow graph that

have to be satisfied in order to perform

propagation and value justification

through the circuit. Transformation

constraints, in turn, reflect the value

changes along the paths from the inputs

of the high-level MUT to the primary

inputs of the whole circuit. These

constraints are needed in order to derive

the local test patterns for the module

under test. Propagation constraints show

how the value propagated from the output

of the MUT to a primary output is

depending on the values of the signals in

the system. The main idea here is to

guarantee that fault effect will not be

masked when propagated.

 All the above categories of constraints

are represented by common data

structures and manipulated by common

procedures for creation, update, modeling

and simulation.

Note, that the extracted constraints

consist of operations on primary inputs

and constants. Furthermore, the

exponential size complexity of the

constraints is avoided by uniting multiple

occurrences of the same variable (i.e. the

literals) in the constraints at each time

step into one single fanout variable. The

size requirements for the constraints are

linear with respect to justification time-

frames and they represent a subset of the

expanded time-frame model of the circuit.

Consider Figure 5, which gives the
ADD of the full set of constraints for the
MUT from the example of Figure 3. In
other words, the MUT can only be tested
using one of the two test paths presented
in Figure 5a and 5b. The two paths are

identical except for the fact that the
primary inputs IN1, IN2 are swapped in
them.

−

MUT:

OUT

>

IN2 IN1

=

 !

&

x1 x2

y

C2:

−

MUT:

OUT

>

IN1 IN2

=

 !

&

x1 x2

y

C1:

C1,1: C1,2: C2,1: C2,2:

a) b)

Figure 5. Full set of test path constraints for MUT

 Note, that from the point of view of

accessing the MUT these two

environments are equivalent. It is

irrelevant which primary input is used in

applying the test patterns when

representing the constraint-based test

environment for proving untestability.

Therefore, we denote the value justified

from the i-th input of the MUT by xk and

the value propagated from the MUT

output by y.

 The constraints C1 and C2 both consist

of two sub-constraints C1,1, C1,2 and C2,1,

C2,2, respectively. C1,1 (which is

equivalent to C2,1) states that x1 must not

be equal to x2. C1,2 (equivalent to C2,2)

states that x1 must be greater than x2.

Since all the sub-constraints within a

constraint should hold simultaneously

they be combined using the conjunction

operator. In turn, all the constraints are

combined using the disjunction operation

because any one of the test paths may be

used for accessing the MUT. In general

case for constraints Ci each consisting of

sub-constraints Ci,j the constraint-

environment for proving sequential

untestability is calculated using the

following formula:

 (1)

., ji
ji

C

Subsequent to combining the test path

constraints constraint minimization is

performed. For the example in Figure 5

we obtain:

.)()()()(2121212121 xxxxxxxxxx

 Figure 6 shows the ADD for the

minimized constraint-based environment

resulting for testing the MUT of the

example presented in Figure 3. The

constraint shows that the MUT (a

subtractor) may only be accessed when

the first input of it, i.e. x1 is greater than

the second one, x2.

Figure 6. Constraint-based test environment for MUT

V. DISCUSSION ON THE EFFECT OF THE

TOP-DOWN PROOF

Existing high-level ATPG methods do

not allow proof of sequentially untestable

stuck-at faults. An exception is a previous

work by the authors where a specific class

of untestable register control faults were

proven untestable by applying model-

checking at the RTL [6]. The current

work considers the general case of

sequentially untestable stuck-at faults

within RTL modules.

As a side-effect of our study, we show

that the top-down test environment

generation is more accurate than the

bottom-up one. In particular, the strict

interpretation of Ghosh’s algebra leads to

overly pessimistic results because tests

for some MUTs are aborted due to

justification conflicts. On the other hand,

the weak interpretation is too optimistic

and can also lead to loss of fault coverage

because some of the test patterns that are

expected to cover faults in the MUT do

not propagate.

 Consider the case where in a bottom-

up scenario we have a deterministic test

Tq generated for the MUT reaching the

maximum fault coverage Wq for the

module. Then, we generate the test

environment for the module and

substitute Tq into the test environment.

Due to the test path constraints the actual

fault coverage that can be achieved for

the MUT inside the network is Wa, which

is generally lower than the fault coverage

Wq. However, when we fault simulate Tq

substituted into the test environment we

obtain a fault coverage Wr, where Wr ≤

Wa≤ Wq.

In other words, the bottom-up

approach may lose some fault coverage

with respect to the top-down one because

the set of the tests to choose from is

restricted to Tq. If the local test generation

algorithm for the MUT had had

knowledge about the test path constraints

it would have generated a different test

Ta, whose fault coverage would have been

equal to Wa. Furthermore, the remaining

faults inside the MUT would have been

proven untestable. Thus, a deterministic

ATPG taking into account the test path

constraints is necessary in order to

achieve maximum fault coverage and also

to prove untestability within sequential

circuits. Experiments with the constraint-

driven deterministic ATPG presented in

Section 6 show that the difference

between the coverages Wr and Wa may be

even as high as 8-14 per cent of stuck-at

coverage.

VI. EXPERIMENTAL RESULTS

In order to evaluate the hierarchical

untestability identification and test

generation method, experiments on

HLSynth92 and HLSynth95 benchmarks

were run. In addition, to compare the

solution with the traditional bottom-up

approach (e.g. [10]) and assess its fault

efficiency, a detailed case-study was

carried out.

−
MU

T

 y

>

 x1 x2

Constraint

Table 1 presents the characteristics of

the example circuits used in test pattern

generation experiments in this paper. The

following benchmarks were included to

the test experiment: a Greatest Common

Divisor (GCD), an 8-bit sequential

multiplier (MULT8x8), and a Differential

Equation (DIFFEQ). In the Table, the

number of single stuck-at faults, the

number of primary input and primary

output bits, and the number of registers,

multiplexers and functional units in the

RTL code are reported, respectively.

TABLE I. BENCHMARK CHARACTERISTICS

circuit # faults PI bits PO bits # reg. # mux # FU

gcd

mult8x8

diffeq

472

2356

10326

33

17

81

16

16

48

3

7

7

4

4

9

3

9

5

In Table 2, comparison of test

generation results of three ATPG tools on

the hierarchical benchmark designs are

presented. This comparison was carried

out in order to show the time needed for

extracting the constraint-based

environment as explained in Section 4.

The tools include a logic-level

deterministic ATPG Hitec [18], a genetic

algorithm based Gatest [19], hierarchical

ATPG Decider applied in current paper.

Columns ‘F.C., %’ give the single stuck-

at fault coverages of the test patterns

generated. Columns ‘time, s’ stand for

test generation run-times in seconds. As it

can be seen the three sequential designs

analyzed introduce a serious challenge to

the deterministic and genetic algorithm-

based ATPG tools. For the former, the

search space becomes too large and many

faults have to be dropped after a time-out

value has been encountered. For the latter,

the genetically engineered vectors are

unable to create tests for faults that

require specific sequences for activation

and propagation.

TABLE II. COMPARISON OF SEQUENTIAL

ATPG

circuit HITEC GATEST Decider

 F.C., % time, s F.C., % time, s F.C., % time, s

gcd 59.11 365 86.13 190.7 90.95 677.4

mult8x8 65.9 1243 69.2 821.6 74.7 93.7

diffeq 96.2 13,320 96.40 3000 97.09 453.7

Table 3 shows experiments of the

constraint-driven ATPG developed in this

paper. The experiments present

comparison of the proposed method to the

bottom-up paradigm [10]. For creating the

test library for the bottom-up approach,

the modules were first tested by the

ATPG in a stand-alone mode. As a result

a test sequence Tq yielding 100 % stuck-

at fault coverage Wq was obtained. The

proposed top-down constraint-driven

ATPG reached fault coverage Wa which

was less than Wq because of the

constraints when accessing the module

under test that was embedded into the

network. However, the fault efficiency of

the proposed approach was always 100 %

for all the modules.

When test Tq was substituted to the

test environment in a bottom-up manner

then fault coverage Wr was reached,

which was always lower than Wa because

some of the tests were invalidated by

sequential dependencies. In fact, Wr was

considerably lower (by 8-14 %) for all the

four modules analyzed. Thus, the

proposed top-down method was capable

of reaching maximum fault coverage for

the analyzed module and proving all of

the sequentially untestable faults in them.

The test environment synthesis from

VHDL to logic-level using Synopsys

Design Compiler remained almost

constant and was around 5 to 10 s per

module while the deterministic constraint-

based ATPG spent less than 0.02 s per

module under test. The synthesis and test

experiments were carried out on a Sun-

Fire-V250 station with 1.28 GHz sparcv9

processor under Solaris 2.9 OS.

TABLE III. CONSTRAINT-DRIVEN TOP-DOWN

ATPG VERSUS BOTTOM-UP ATPG RESULTS FOR

CIRCUIT MODULES

circuit: gcd mult8x8 diffeq

module: SUB ADD2 ADD3 SUB2 MUX3 MUX4

Wq, % 100 100 100 100 100 100

Wa, % 95.74 86.64 55.88 85.33 75.00 75.00

Wr, % 85.11 72.49 47.06 74.07 64.71 64.71

ATPG, s 0.01 0.01 < 0.01 0.02 < 0.01 < 0.01

synthesis, s 5.38 5.33 9.52 5.25 5.10 5.10

 Table 4 presents detailed statistics of

the circuits analyzed. The Table lists the

total number of stuck-at faults in the

whole circuit, the number of tested faults,

number of unobservable/uncontrollable

faults, the number of faults proven

sequentially untestable by the proposed

constraint-based approach and finally the

number of all the remaining faults. The

experiments show the efficiency of the

constraint-driven engine in untestability

identification. Though the method quickly

classifies untestable faults caused by

sequential untestability in the considered

modules with 100 % fault efficiency,

there remains a number of faults which

are still neither tested nor proven

untestable. Some of these remaining

faults can be tested or proven untestable

by traditional approaches at the logic-

level.

TABLE IV. DISTRIBUTION OF FAULTS

 gcd mult8x8 diffeq

total faults 472 2356 10326

tested faults 439 1737 9867

unobs./uncontr.

28 195 252

sequentially

untestable

faults

4 156 68

remaining

faults

1 268 139

VII. CONCLUSIONS

The paper introduces a new method and

tool for hierarchical untestable stuck-at

fault analysis of non-scan sequential

circuits. The method is based on

extracting and minimizing RTL test path

activation constraints that drive a

dedicated logic-level deterministic ATPG.

Experiments show that the tool is capable

of generating tests yielding maximum

fault efficiency for the embedded

modules under test. To the best of the

authors’ knowledge this is the first

method that can prove sequential

untestability starting from the RTL.

In addition, our study shows that

traditional test generation at RTL based

on symbolic test environment generation

is too optimistic due to the fact that

constraints in accessing the modules

under test have been ignored.

Experiments presented in this paper

showed that bottom-up strategies caused a

decrease of stuck-at fault coverage up to

the range of 8-14 % in the modules tested

when compared to the proposed approach.

This short-coming is now overcome by

the proposed constraint-based method

which obtains 100 per cent stuck-at fault

efficiency for all the modules considered.

ACKNOWLEDGMENTS

The work has been supported by

European Commission Framework

Program 7 project FP7-ICT-2009-4-

248613 DIAMOND, by Research Centre

CEBE funded by European Union

through the European Structural Funds

and by Estonian Science Foundation

grants 7068 and 7483.

REFERENCES

[1] V. D. Agrawal and S. T. Chakradhar,
“Combinational ATPG theorems for
identifying untestable faults in sequential
circuits,” IEEE Trans Comput.-Aided Des.,
vol. 14, no. 9, pp. 1155–1160, Sep. 1995.

[2] M. A. Iyer, D. E. Long, and M. Abramovici,
“Identifying sequential redundancies without
search,” in Proc. 33rd Annu. Conf. DAC,
LasVegas, NV, Jun. 1996, pp. 457–462.

[3] Q. Peng, M. Abramovici, and J. Savir,
“MUST:Multiple stem analysis for identifying
sequential untestable faults,” in Proc. Int. Test

Conf., Atlantic City, NJ, Oct. 2000, pp. 839–
846.

[4] D. E. Long, M. A. Iyer, M. Abramovici, “FILL
and FUNI: Algorithms to identify illegal states
and sequentially untestable faults,” ACM
Trans. Des. Automat. Electron. Syst., vol. 5,
no. 3, pp. 631–657, Jul. 2000.

[5] H.-C. Liang, C. L. Lee, and E. J. Chen,
“Identifying untestable faults in sequential
circuits,” IEEE Des. Test. Comput., vol. 12,
no. 3, pp. 14–23, Sep. 1995.

[6] J. Raik, H. Fujiwara, R. Ubar, A. Krivenko.
“Untestable fault identification in sequential
circuits using model-checking”. ATS, pp. 667-
672, 2008.

[7] B. T. Murray, J. P. Hayes, "Hierarchical test
generation using precomputed tests for
modules", Proc. ITC, pp.221-229, 1988.

[8] I. Ghosh, M. Fujita, “Automatic test pattern
generation for functional RTL circuits using
assignment decision diagrams”, Proc. DAC,
pp. 43-48, 2000.

[9] V. Chayakul, D. D. Gajski, L. Ramachandran,
“High-Level Transformations for Minimizing
Syntactic Variances”, DAC, pp. 413-418,
1993.

[10] L. Zhang, I. Ghosh, M. Hsiao, “Efficient
Sequential ATPG for Functional RTL
Circuits”, Int. Test Conf., pp.290-298, 2003.

[11] H. Fujiwara, C. Y. Ooi, Y Shimizu,
“Enhancement of Test Environment
Generation for Assignment Decision
Diagrams”, 9th IEEE Workshop on RTL and
High Level Testing, Nov. 27-28, 2008.

[12] J. Lee, J.H. Patel, "Architectural level test
generation for microprocessors", IEEE Trans.
CAD, pp. 1288-1300, Oct. 1994.

[13] J. Raik, R. Ubar. Sequential Circuit Test
Generation Using Decision Diagram Models,
Proceedings of the DATE Conference, pp. 736-
740, 1999.

[14] V. Vedula, J. Abraham, "FACTOR: A
Hierarchical Methodology for Functional Test
Generation and Testability Analysis," DATE
Conf., 2002.

[15] G. Jervan et al., "High-Level and Hierarchical
Test Sequence Generation", IEEE HLDVT,
Cannes, 2002.

[16] T. Viilukas, J. Raik, M. Jenihhin, R. Ubar, A.
Krivenko, "Constraint-based test pattern
generation at the register-transfer level", 13th
IEEE DDECS Symposium, 2010, pp. 352-357.

[17] The ECLiPSe Constraint Programming System
http://eclipse-clp.org/

[18] T. M. Niermann, J. H. Patel, "HITEC: A test
generation package for sequential circuits",
Proc. EDAC, pp. 214-218, 1991.

[19] E. M. Rudnick, et al. "Sequential circuit test
generation in a genetic algorithm framework",
Proc. DAC, pp. 698-704, 1994.

147

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON
INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops:
Behavioral Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with
Relational Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of
Digital Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

148

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to
Semiconductor Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-
Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.
2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum
Clique Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой
фазы эпитаксиальных структур арсенида галлия с высоковольтным p-n
переходом и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management
Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac
Bioimpedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired
Underwater Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis
and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

149

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering: A
Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear
Information Processing Methods: Case Studies of Estonian Islands
Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and
Synthesis for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User
Interfaces. 2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.
2010.

150

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber
Militia.2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-
Silicon Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting
Algorithms Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
IdentiVcation for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web
Users‘ Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

