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Preface

This volume contains the abstracts of the talks to be given at the 21st International Conference
on Types for Proofs and Programs, TYPES 2015, to take place in Tallinn, Estonia, 18–21 May
2015.

The TYPES meetings are a forum to present new and on-going work in all aspects of type theory
and its applications, especially in formalized and computer assisted reasoning and computer
programming. The meetings from 1990 to 2008 were annual workshops of a sequence of five EU
funded networking projects. Since 2009, TYPES has been run as an independent conference
series. Previous TYPES meetings were held in Antibes (1990), Edinburgh (1991), B̊astad
(1992), Nijmegen (1993), B̊astad (1994), Torino (1995), Aussois (1996), Kloster Irsee (1998),
Lökeberg (1999), Durham (2000), Berg en Dal near Nijmegen (2002), Torino (2003), Jouy-en-
Josas near Paris (2004), Nottingham (2006), Cividale del Friuli (2007), Torino (2008), Aussois
(2009), Warsaw (2010), Bergen (2011), Toulouse (2013), Paris (2014).

The TYPES areas of interest include, but are not limited to: foundations of type theory and
constructive mathematics; applications of type theory; dependently typed programming; indus-
trial uses of type theory technology; meta-theoretic studies of type systems; proof assistants
and proof technology; automation in computer-assisted reasoning; links between type theory
and functional programming; formalizing mathematics using type theory.

The TYPES conferences are of open and informal character. Selection of contributed talks
is based on short abstracts; reporting work in progress and work presented or published else-
where is welcome. A formal post-proceedings volume is prepared after the conference; papers
submitted to that must represent unpublished work and are subjected to a full review process.

The programme of TYPES 2015 includes three invited talks by Gilles Barthe (IMDEA Software
Institute), Andrej Bauer (University of Ljubljana) and Peter Selinger (Dalhousie University)
as well as two tutorials by Joachim Kock (Autonomous University of Barcelona) and Peter
LeFanu Lumsdaine (Stockholm University). The contributed part of the programme consists
of 35 talks.

Similarly to the 2011, 2013, 2014 editions of the conference, the post-proceedings of TYPES
2015 will appear in Dagstuhl’s Leibniz International Proceedings in Informatics (LIPIcs) series.

TYPES 2015 is sponsored by the European Regional Development Fund through the CoE
project EXCS and ICT R&D project Coinduction.

Tarmo Uustalu

Tallinn, 11 May 2015

iii



Organization

Programme Committee

Andrea Asperti (Università di Bologna)
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Computer-Aided Cryptography

Gilles Barthe

IMDEA Software Institute, Spain
gilles.barthe@imdea.es

The goal of computer-aided cryptography is to develop tools that help the rigorous de-
sign and analysis of cryptographic constructions. Over the years, the focus of computer-aided
cryptography has expanded from analysis of cryptographic protocols in the symbolic model to
include new goals. Most notably, these goals include analyzing cryptographic primitives and
protocols in the computational model, and reasoning about implementations. In this talk, I
will illustrate how existing techniques from program verification and program synthesis can be
used for achieving a number of goals in computer-aided cryptography.
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The Troublesome Reflection Rule

Andrej Bauer

Fakulteta za matematiko in fiziko, Univerza v Ljubljani, Slovenia
andrej.bauer@andrej.com

The equality reflection rule states that propositionally equal terms are judgmentally equal.
It is generally frowned upon, as it makes type checking undecidable. Nevertheless, it would be
useful to have a workable implementation of a type theory with equality reflection, for instance
to tackle Voevodsky’s Homotopy Type System. The difficulties created by equality reflection
are numerous. It destroys the structural rules of exchange and strengthening, η-reductions
cannot be performed without explicit typing annotations in the terms, and injectivity of type
constructors becomes an unreasonable expectation. In the talk, I shall discuss the design and
implementation of a type theory with reflection that works around these complications while
still being a useful tool.
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Types for Quantum Computing

Peter Selinger

Department of Mathematics and Statistics, Dalhousie University, Canada
selinger@mathstat.dal.ca

Static type systems are meant to guarantee the absence of certain run-time errors. Quantum
computing comes with new kinds of run-time errors, for example attempted violations of the
no-cloning property of quantum mechanics. Therefore, quantum computing is potentially inter-
esting from a type-theoretic point of view. In this talk, I will talk about the quantum lambda
calculus, a strongly typed functional quantum programming language that has been around for
about a decade, and Quipper, a more practical language that is currently implemented as a
Haskell EDSL. I will outline some of the challenges involved in creating a type-safe version of
Quipper.
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Polynomial Functors: A General Framework

for Induction and Substitution

Joachim Kock

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Spain
kock@mat.uab.cat

The starting point for this tutorial will be the Seely correspondence between (extensional)
dependent type theory and locally cartesian closed categories, such as the category of sets.
Under this correspondence, polynomial functors provide semantics for generic data types, and
their initial algebras provide semantics for W-types (wellfounded trees). While trees in this
approach are defined inductively, it is also possible to define trees combinatorially, directly
as certain multivariate polynomial endofunctors. This leads to an alternative characterisation
of initial algebras, namely as operations for the free monad on a polynomial endofunctor.
The monad itself has important structure not seen at the level of initial algebras, namely the
monad multiplication, which always encodes a notion of substitution. I will finish with some
outlook regarding the role of polynomial monads (which are essentially operads) to encode
and manipulate combinatorial and algebraic structures, and the need for groupoids and higher
groupoids to really unleash the power of this formalism—also in intensional type theory.
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Higher Inductive Types:

What We Understand, What We Don’t

Peter LeFanu Lumsdaine

Matematiska institutionen, Stockholms universitet, Sweden
p.l.lumsdaine@gmail.com

HITs were introduced in 2011, following the Oberwolfach mini-workshop on HoTT, as a
rather speculative array of new type-constructors, essentially generalising inductive definitions
to give (homotopically) higher-dimensional types in the most simple-minded way possible.

Four years later, where do we stand on them? I will survey what we now know about them
(or at least, as much of that as I know).

Well-understood: logical consequences. One aspect has worked out as well as anyone could
have hoped: their logical consequences within the theory. As mostly developed during the IAS
special year, the conjunction of HITs and uxnivalence allows the “synthetic” redevelopment of
much of classical abstract homotopy theory within type theory.

Moderately understood: semantics. The semantics has taken longer to get to grips with,
but a reasonable understanding is now emerging. The rough ideas are clear, but technicalities
related to stability and coherence remain more troublesome than one might expect.

Mike Shulman and I have given models of a restricted range of HITs in a reasonable range
of homotopy-theoretic settings (including simplicial sets), using local universes (Lumsdaine,
Warren 2015) to obtain stability. On the other hand, Thierry Coquand and collaborators
(Bezem, Cohen, Huber, Norsberg) have given models of a wider range of HITs in the cubical
set model; and these models are strictly stable by construction, so that the added overhead of
local universes is not required.

Little-understood: proof theory. The proof-theoretic aspects of HITs, however, are quite
unsatisfactorily understood. Most obviously, we still have no fully general scheme of higher
inductive definitions (in the sense of, say, the general inductive definitions of the Calculus of
Inductive Constructions). Moreover, even for simple higher inductive types, when taken with
judgemental computation rules, we do not understand the effects on proof-theoretic properties
such as normalisation, confluence, decidability of typing.

Interesting progress on these issues has appeared recently in the cubical type theories of
Altenkirch, Brunerie, Coquand, Licata, and others.
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The Next 700 Modal Type Assignment Systems

Andreas Abel

Dept. of Computer Science and Engineering, Gothenburg University, Sweden
abela@chalmers.se

We exhibit a generic modal type system for simply-typed lambda-calculus that subsumes
linear and relevance typing, strictness analysis, variance (positivity) checking, and other modal
typing disciplines. By identifying a common structure in these seemingly unrelated non-
standard type systems, we hope to gain better understanding and a means to combine several
analyses into one. This is work in progress.

Our modal type assignment system is parametrized by a (partially) ordered monoid (P , · ,
1, ≤) with a partial, monotone binary operation + and a default element p0 ∈ P . Types T,U
include at least a greatest type > and function types Q→ T , and form a partial ordering under
subtyping T ≤ T ′ with partial meet T ∧T ′. Modal types Q ::= pT support composition pQ and
partial meet Q ∧Q′ defined by p(qT ) = (pq)T and pT ∧ qT = (p + q)T . Subtyping pT ≤ p′T ′

holds if p ≤ p′ and T ≤ T ′.
For typing contexts Γ,∆, which are total functions from term variables to modal types,

modality composition pΓ, subsumption Γ ≤ ∆, and meet Γ ∧∆ are defined pointwise. Finite
contexts x1 :Q1, . . . , xn :Qn are represented as Γ(xi) = Qi and Γ(y) = p0> for y 6= xi.

Judgements Γ ` t : T and Γ ` t : Q are given by the following (linear) typing rules:

p ≤ 1

x : pT ` x : T
hyp

Γ, x : Q ` t : T

Γ ` λxt : Q→ T
abs

Γ ` t : Q→ T ∆ ` u : Q

Γ ∧∆ ` t u : T
app

Γ ≤ ∆ ∆ ` t : T T ≤ U
Γ ` t : U

sub
Γ ` t : T

pΓ ` t : pT
mod

The default modality p0 controls weakening: We can use the subsumption rule sub with (Γ, x :
pT ) ≤ Γ which holds if p ≤ p0 (as then pT ≤ p0> = Γ(x)). Meaningful instances of our modal
type assignment system abound, here are a few:

1. Simple typing: P = {1} with 1 + 1 = 1 and t well-typed if Γ ` t : T 6= >.

2. Quantitative typing: Take some P ⊆ P(N) closed under p · q = {nm | n ∈ p,m ∈ q}
and define p ≤ q as p ⊇ q and p + q as

⋂
{r ∈ P | r ⊇ {n + m | n ∈ p,m ∈ q}}. If

0 := {0} ∈ P , it is a zero.

The rule mod has an intuitive reading in quantitative typing: If t produces a T from
resources Γ, we can produce p times T from the p-fold resources pΓ. Subsumption sub
may allow us to produce less (or the same) from more (or the same) resources. A modal
function type pU → T requires p-fold U to deliver one T .

Instances of quantitative typing include:

(a) Linear typing: [4] P = {0, 1} with unit 1 = {1} and default p0 = 0 forbidding
weakening with linear variables x : 1T (as 1 6≤ p0). Contraction is also forbidden as
1 + 1 is undefined.

(b) Affine typing: P = {0, 1} with unit 1 = {0, 1}, allowing weakening as 1 ≤ p0 = 0.

(c) Relevant typing: P = {0, 1} with unit 1 = N\0, allowing contraction as 1+1 = 1.

6
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(d) Linear and unrestricted hypotheses: P = {!, 1} with 1 = {1} and p0 = ! = N.
Allows weakening and contraction for x : !T .

(e) Strictness typing: [2] P = {l, s} with lazy p0 = l = N and unit strict s = N \ 0.
We cannot weaken with strict variables. As p + q = s iff p = s or q = s, one strict
occurrence of a variable x suffices to classify a function λxt : sT → T ′ as strict,
whereas a function is lazy only if all occurrences of parameter x are lazy.

3. Variance (positivity): P = {∅,+,−,±} = P{+1,−1} with unit + = {+1} denoting
positive occurrence, − = {−1} negative occurrence, ± = {+1,−1} mixed occurrence, and
p0 = ∅ no occurrence. With p ≤ q iff p ⊇ q and pq = {ij | i ∈ p, j ∈ q} and p+ q = p ∪ q
we obtain variance typing aka positivity checking for type-level lambda calculi [1].

We can go further and give up the distinction between types and modal types, leading to
the types T,U ::= > | U → T | pT | . . . quotiented by p(qT ) = (pq)T . This makes modal types
first class, and we can simplify the hypothesis rule to

x : T ` x : T
hyp.

Thus, we subsume further type systems:

1. Linear typing with exponential: As 2d, but now !T is a valid type.

2. Nakano’s modality for recursion [3]: Basic modalities are later . and always 2 with
2 · p = 2, generating the modalities P = {.n, .n2 | n ∈ N} with unit 1 = .0 and partial
order .k2 ≤ .l2 ≤ .l ≤ .m for k ≤ l ≤ m. Since x : U → T, y : U ` x y : T entails
x : .(U → T ), y : .U ` x y : .T by mod, idiomatic application λxλy.xy : .(U → T ) →
.U → .T is definable.

Acknowledgments. Thanks to the anonymous referees, who helped improving the quality of
this abstract through their feedback. This work was supported by Vetenskapsr̊adet through the
project Termination Certificates for Dependently-Typed Programs and Proofs via Refinement
Types.
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State and Effect Logics for Deterministic,

Non-deterministic, Probabilistic and Quantum

Computation

Robin Adams and Bart Jacobs

Institute for Computing and Information Sciences, Radboud University Nijmegen, The Netherlands
robina@cs.ru.nl, bart@cs.ru.nl

We present a type theory that is suitable for reasoning about computations in four very
different settings: deterministic, non-deterministic, probabilistic, and quantum computation.

This is possible because, in all cases, a computation can be modelled as a state transformer
that transforms the state before the computation into the state after. It can also be modelled as
a predicate transformer that transforms a predicate on the output into the weakest precondition
on the input. There is a remarkable correspondence between this picture and the two pictures
of quantum theory favored by Schrödinger (who described physical processes in terms of states)
and Heisenberg (who used effects) [1].

This correspondence seems to be more than just a coincidence. All four forms of computation
can be modelled using three categories in the following arrangement, which we call a state-and-
effect triangle:

EModop

EMod[−,M ]
,,⊥ Conv

Conv[−,M ]

mm

B
P

ddIIIIIIIIII S

<<xxxxxxxxx

In this structure:

• B is a category whose objects represent types and whose arrows represent computations;

• EMod is the category of effect modules over an effect monoid M , whose elements repre-
sent the scalars (probabilities or truth values);

• Conv is the category of convex sets over the same effect monoid ([3], see also [2]);

• P and S (for ‘predicate’ and ‘state’) are functors which preserve the relevant structure
of B (see below). PA is the effect module of predicates over the type A, and SA is the
convex set of all states of type A.

• There is an adjunction between EModop and Conv formed by ’homming’ into M ([2]).

• a natural transformation |= : S → EMod[P−,M ]. Given a state ω ∈ SA and a predicate
φ ∈ PA, the value ω |= φ is an element of M that represents the probability or truth value
that ω satisfies φ. In the case of deterministic computation, this will be a Boolean; in our
other three examples, it will be a probability in [0, 1].

The four forms of computation are handled by the following four choices of the category B:
The category Set for deterministic computation, where we model a computation as the

function which, given an input

8



State and effect logics Adams and Jacobs

The category Kl(P∗), the Kleisli category of the non-empty powerset monad P∗, for non-
deterministic computation, where we model a computation as the function which maps an input
to the set of possible outputs.

The category Kl(D), the Kleisli category of the distribution monad D, for probabilistic
computation, where we model a computation as the function which maps an input to the
probability distribution of its outputs.

The category CStaropCPU , the opposite of the category of C∗-algebras and completely positive
unital maps, for quantum computation.

Our aim for the future is to give a series of type theories of increasing strength, suitable for
the four forms of computation. The final type theory will have these forms of judgement:

• Γ `M : A, interpreted by the arrows of B;

• Γ `M = N : A, interpreted by equality of arrows in B;

• Γ ` φ eff, which states that φ is an effect (predicate) in the context Γ. This will be
interpreted by the elements of P [[Γ]];

• Γ ` φ ≤ ψ, interpreted by the ordering in P [[Γ]].

In this talk, we describe the first two of these theories, which capture the forms of reasoning
common to all four models.

Affine Type Theory We first present an affine type theory : a type theory in which Contrac-
tion does not hold, but Weakening does. Thus, information may be destroyed, but may
not be duplicated. (The ‘no-cloning theorem’ in quantum theory states that a state of a
quantum system cannot be duplicated.)

The types of the affine type theory are given by: Type A ::= X | I | A⊗A | A+A.

Affine type theory can be interpreted in all and only the affine categories B; i.e. symmetric
monoidal categories in which the tensor unit is final, and which have coproducts which
the tensor distributes over.

Coproduct Logic We extend the system to coproduct logic. Coproduct logic is a type theory
that captures structures (B,Pred) where B is an affine category, and Pred : B→ Posetop

is a functor which assigns, to each object of B, a poset of predicates or effects.

In Set and Kl(P∗), the predicates on a set A are the subsets of A. In Kl(D), the
predicates on A are the ‘fuzzy predicates’ in [0, 1]A. In CStaropCPU , the predicates on A
are the effects on A, i.e. the elements a ∈ A such that 0 ≤ a ≤ 1.

Future Work We shall also discuss how comprehension and quotients may be added to these
logics, and how this may provide a way of handling measurement with side-effects, as is
so important for quantum computation.
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Refinement Types for Algebraic Effects
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We investigate an algebraic treatment of propositional refinement types for languages with
computational effects, and develop a refinement-typed fine-grain call-by-value (FGCBV) [5]
language for such refinements. Our work stems from an insight that describing computational
effects using algebraic theories Teff (following Plotkin and Power [6]) allows us to develop a
single framework to account for seemingly different effect specifications found in the literature.

The refinement type system

In our system, refinement types τ consist of base types b, product types τ1 × τ2 and function
types τ1

ψ
⇀ τ2. Effect refinements ψ are defined as a fragment of the modal µ-calculus:

ψ ::= [ ] | 〈op〉(ψ1, . . . , ψn) | ⊥ |ψ1 ∨ ψn |X |µX.ψ

Effect refinements are intended to represent specifications on computations, in terms of sets of
(equivalence classes of) algebraic terms, e.g., the operation modality 〈op〉(ψ1, . . . , ψn) describes
a set of algebraic terms op(t1, . . . , tn) which first perform the computational effect op and then,
depending on its outcome, continue as a computation ti satisfying the corresponding ψi.

Effect refinements come with a corresponding subtyping relation ψ1 v ψ2, built from rules
familiar from modal logic, e.g., ⊥ is the least element. The relation also includes rules describing
the interaction between ⊥&∨ and 〈op〉, stating that operation modalities are multilinear maps.

We also require the subtyping relation to respect the equations in Teff . Unfortunately,
simply translating the axioms of Teff to axioms between corresponding effect refinements is
not valid in general: problems arise when the axioms of Teff include non-linearity. So instead
we limit ourselves to only include derivable semi-linear equations, i.e., equations satisfying the
conditions in the premise of the rule below. For more discussion about when exactly one can
soundly extend algebraic operations on algebras to operations on powersets of algebras, see [1].

~x ` t = u derivable in Teff t linear in ~x V ars(u) ⊆ V ars(t)

t•[~ψ/~x] v u•[~ψ/~x]

(−)• is a translation induced by sending operations op to a corresponding modalities 〈op〉.
The terms in our system consist of both value terms V and producer terms M , as in FGCBV.

Well-typed terms are given by judgments Γ v̀ V : τ and Γ p̀ M : τ !ψ. Here we only present the
typing rules that make the interplay between effect refinements and producer terms explicit:

Γ v̀ V : τ
Γ p̀ retV : τ ! [ ]

Γ p̀ M1 : τ !ψ1 . . . Γ p̀ Mn : τ !ψn

Γ p̀ op(M1, . . . ,Mn) : τ ! 〈op〉(ψ1, . . . , ψn)

Γ p̀ M1 : τ1 !ψ1 Γ, x : τ1 p̀ M2 : τ2 !ψ2

Γ p̀ M1 tox : τ1 in M2 : τ2 !ψ1[ψ2]

Semantics

We give our system a two-level denotational semantics, based on fibred category theory.
We begin by assuming an adjunction model of FGCBV, i.e., a CCC V (e.g., Set, or ω-Cpo to

also accommodate recursion) and a strong adjunction F a U : Alg(Teff ,V)→ V between V and
the category of Teff -algebras in V. To model refinement types we assume a CCC R and a faithful
functor r : R→ V such that r strictly preserves the CC structure on R, r is a partially-ordered
bifibration, and r has fibre-wise small coproducts that are preserved by reindexing functors.
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To model effect refinements, we construct a separate bifibration U∗(r) : RefAlg→ Alg(Teff ,V),
by applying change of base to r along U . We interpret effect refinements ∆ ` ψ as functors

JψKA : RefAlgA ×
−−−−−→
RefAlgA → RefAlgA, separately for each algebra A from Alg(Teff ,V). For

closed effect refinements ` ψ, the interpretations for different algebras extend to a single endo-
functor JψK : RefAlg→ RefAlg that preserves the underlying algebras, i.e., U∗(r)◦ JψK = U∗(r).

R
r

��

F̂
--

⊥ RefAlg

U∗(r)��
x

Û

ll

V
F --
⊥ Alg(Teff ,V)
U

ll

J` τ : Ref(A)K ∈ ob(R) such that r(JτK) = JAK

JΓ v̀ V : τK : JΓK −→ JτK

JΓ p̀ M : τ !ψK : JΓK −→ (Û ◦ JψK ◦ F̂ )(JτK)

Notice that the interpretation makes use of the adjunction F̂ a Û , induced by the change of
base along U [2, Cor. 3.2.5]. Importantly for us, F̂ a Û sits over F a U in an appropriate sense.

Applications

For example, we can represent effect annotations ε from type-and-effect systems as suitable
fixed point refinements. Following Kammar and Plotkin [3], we can take ε to consist of a
set of algebraic operations (the effects permitted to occur in the program) and define the

corresponding effect refinement as ψε
def
= µX. [ ] ∨

∨
op∈ε〈op〉(X, . . . ,X). In addition, we can

equip our system with a relational semantics and validate effect-dependent optimizations, again
following [3], based on the algebraic properties determined by effect refinements ψ. However, as
our refinements also take the temporal structure of computation into account, we can further
validate more involved optimizations, such as dead-code elimination in stateful computation.

Our other examples include Hoare refinements corresponding to Hoare types from Hoare
Type Theory, and protocol refinements for I/O, similar to session types and trace effects.

Related work

The literature contains a range of work on modeling type-and-effect systems by various forms of
indexed monad-like structures. Our system is closest to that of Katsumata [4] whose parametric
effect monads are indexed by ordered monoids. A fundamental difference with our system is
that, rather than taking an abstract indexed-monad view of effect annotations, we obtain both
as derived constructs within a wider algebraic theory of effects. In particular, the corresponding
parametric effect monad is obtained with the monoid given by closed effect refinements ψ.
Acknowledgments We thank O. Kammar, S. Katsumata, B. Kavanagh, S. Lindley,
J. McKinna, A. Simpson, T. Uustalu, and P. Wadler for many useful discussions.
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Coinductive data types are used in functional programming to represent infinite data struc-
tures. Examples include the ubiquitous data type of streams over a given base type, but also
more sophisticated types.

From a categorical perspective, coinductive types are characterized by a universal property,
which specifies the object with that property uniquely in a suitable sense. More precisely,
a coinductive type is specified as the terminal coalgebra of a suitable endofunctor. In this
category-theoretic viewpoint, coinductive types are dual to inductive types, which are defined
as initial algebras.

Inductive, resp. coinductive, types are usually considered in the principled form of the family
of W-types, resp. M-types, parametrized by a type A and a dependent type family B over A,
that is, a family of types (B(a))a:A. Intuitively, the elements of the coinductive type M(A,B)
are trees with nodes labeled by elements of A such that a node labeled by a : A has B(a)-many
subtrees, given by a map B(a) → M(A,B); see Figure 1 for an example. The inductive type
W(A,B) contains only trees where any path within that tree eventually leads to a leaf, that is,
to a node a : A such that B(a) is empty.

a, b, c : A

B(a) = 0

B(b) = 2

B(c) = 3

...
a ...

...
...

a b

1

000000 2









c

1 2
�������

3

~~~~~~~~~~

c
1

EEEEEEEEE
2

3

xxxxxxxxx

Figure 1: Example of a tree (adapted from [7])

The present work takes place in intensional Martin-Löf type theory extended by Voevodsky’s
Univalence Axiom. We show that, in this type theory, coinductive types in the form of M-types
can be derived from inductive types. (More precisely, only one specific W-type is needed: the
type of natural numbers, which is readily specified as a W-type [4].) Indeed, given a signature
(A,B) specifying a shape of trees as described above, we construct the M-type associated to
that signature and prove its universal property. The construction can be seen as a higher-
categorical analogue of the classical construction of the terminal coalgebra of some endofunctor
as the limit of a chain.

The result presented in this work is not surprising: indeed, the constructibility of coinductive
types from inductive types has been shown in extensional type theory (that is, type theory with

∗The work of Benedikt Ahrens was partially supported by the CIMI (Centre International de Mathmatiques
et d’Informatique) Excellence program ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02
during a postdoctoral fellowship.

12



Non-wellfounded trees in homotopy type theory Ahrens, Capriotti and Spadotti

identity reflection) [7, 1], as well as in type theory satisfying Axiom K [3]. It was conjectured
to work in homotopy type theory, that is, the type theory described in [6], during a discussion
on the HoTT mailing list [5].

We have formalized our results in the proof assistant Agda.
The theorem we prove here is actually more general than described above: instead of plain

M-types as described above, we construct indexed M-types, which can be considered as a form
of “simply-typed” trees, typed over a type of indices I. Plain M-types then correspond to the
mono-typed indexed M-types, that is, to those for which I = 1.

The details of this work are described in an article [2]. The source code and HTML documen-
tation of the Agda formalization can be downloaded from https://hott.github.io/M-types/.
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Abstract

Matthes and Uustalu (TCS 327(1–2):155–174, 2004) presented a categorical description
of substitution systems capable of capturing syntax involving binding which is independent
of whether the syntax is made up from least or greatest fixed points. We extend this work
in two directions: we continue the analysis by creating more categorical structure, in
particular by organizing substitution systems into a category and studying its properties,
and we develop the proofs of the results of the cited paper and our new ones in UniMath,
a recent library of univalent mathematics formalized in the Coq theorem prover.

In previous work, Matthes and Uustalu [6] define a notion of “heterogeneous substitution
system”, the purpose of which is to axiomatize substitution and its desired properties. Such a
substitution system is given by an algebra of a signature functor, equipped with an operation—
which is to be thought of as substitution—that is compatible with the algebra structure map
in a suitable sense. The term “heterogeneous” refers to the fact that the underlying notion
of signature encompasses variable binding constructions and also explicit substitution a. k. a.
flattening. More precisely, the signature is based on a rank-2 functor H (an endofunctor on
a category of endofunctors) for the respective domain-specific signature, to which a monadic
unit is explicitly added. The latter corresponds to the inclusion of variables into the elements
that are considered as terms (in a quite general sense) over their variable supplies. The name
“rank-2 functor” stems from the rank of the type operator that transforms type transformations
into type transformations—hence has kind (Set → Set) → (Set → Set)—which may be seen
as backbone of H in case the base category is Set. In this rank-2 setting, the carrier of the
algebra is an endofunctor, and since a monadic unit is already present, a natural question is if
one obtains a monad. In that paper, it is then shown that for any heterogeneous substitution
system this is indeed the case; multiplication of the monad is derived from the “substitution”
operation which is parameterized by a morphism f of pointed endofunctors and consists in
asking for a unique solution that makes a certain diagram commute. Monad multiplication and
one of the monad laws is obtained from the existence of a solution in the case that f is the
identity, while the other monad laws are derived from uniqueness for two other choices of f .

Furthermore, it is shown there that “substitution is for free” for both initial algebras as
well as—maybe more surprisingly—for (the inverse of) final coalgebras: if the initial algebra,
resp. terminal coalgebra, of a given signature functor exists, then it, resp. its inverse, can be
augmented to a substitution system (for the former case, and in order to easily use generalized
iteration [4], it is assumed that the functor − · Z has a right adjoint for every endofunctor Z).
Indeed, it was one of the design goals of the axiomatic framework of heterogeneous substitution
systems to be applicable to non-wellfounded syntax as well as to wellfounded syntax, whereas
related work (e.g., [5, 2]) frequently only applies to wellfounded syntax.

Examples of substitution systems are thus given by the lambda calculus, with and without
explicit flattening, but also by languages involving typing and infinite terms.

∗The work of Benedikt Ahrens was partially supported by the CIMI (Centre International de Mathématiques
et d’Informatique) Excellence program ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02
during a postdoctoral fellowship.

14



Substitution systems revisited Ahrens and Matthes

The goal of the present work is to extend and to formalize the work by Matthes and Uustalu
[6]; in particular, we introduce a natural notion of morphisms of heterogeneous substitution
systems, thus arranging them into a category. We then show that the construction of a monad
from a heterogeneous substitution system from [6] extends functorially to morphisms.

Moreover, we prove that the substitution system obtained in [6] by equipping the initial
algebra with a substitution operation, is initial in the corresponding category of substitution
systems. This makes use of a general fusion law for generalized iteration [4]. However, we will
show why a similar result cannot be expected for final coalgebras.

As an example of the usefulness of our results, we intend to express the resolution of explicit
flattening of the lambda calculus as a(n initial) morphism of substitution systems.

We are in the process of formalizing our results in univalent foundations, more specifically
basing ourselves on the UniMath library [1]. This basis of our formalization is suitable in that
it provides extensionality (functional and propositional) in a natural way and hereby avoids
the use of setoids that would otherwise be inevitable; indeed, since our results are not about
categories in abstracto but use general categorical concepts in more concrete instances such
as the endofunctor category over a given category or its extension by a “point”, we need
extensionality axioms for the instantiation. Functional extensionality is a consequence of the
univalence axiom that we do not use directly in our formalization. We profit from the existing
category theory library in UniMath. It is well-known that the handling of rank-2 functors
needs universe polymorphism (otherwise, one would need a number of copies of the categorical
concepts in the Coq vernacular, since, e. g., the endofunctor category has a higher universe level
than its base category). In UniMath, this universe polymorphism is provided by switching off
the control of universe levels (setting Type : Type). Still, this is not extensional type theory—
there is a big difference between convertibility and equality. Already for the purpose of type-
checking of statements taken from the paper version, we need to reformulate some laws to fit
into the type-theoretic framework and to slightly reformulate the statements (in concrete in-
stances, the differences would plainly disappear). The culprit here is that convertibility of types
of natural transformations is not preserved under application of an abstract rank-2 functor H.

At the time of writing this abstract, we have not yet finished the formalization; what we
do have is a full formalization of the main result of Matthes and Uustalu [6, Theorem 10]
that yields a monad for every heterogeneous substitution system, and moreover our refinement
stating that this gives rise to a faithful functor into the category of monads. The formalization
can be consulted at [3]. We hope that we will have formalized the other new theoretical results
before presenting this work at the TYPES conference.
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Homotopy Type Theory extends intensional Martin-Löf Type Theory with two new features:
Voevodsky’s Univalence Axiom and higher inductive types (HITs). Both are motivated by inter-
pretations of Type Theory into abstract homotopy theory, where intuitively types are interpreted
as topological spaces, terms are interpreted as points, and the identity type is interpreted as the
space of paths between points. Specific higher inductive types have successfully been deployed,
e.g. for synthetic homotopy theory (e.g. [6, 8]) and computer science applications [4], but a
general theory of higher inductive types is so far lacking, although partial results have been
achieved by Sojakova [10] for the restricted class of W-suspensions. Shulman and Lumsdaine [9]
also consider a semantics for an unspecified collection of HITs in model categories.

Our first goal is to define a general class of HITs, together with their introduction and
elimination rules, in such a way that Shulman and Lumsdaine’s semantics applies. We want our
notion of HITs to include naturally occurring examples such as the following definition of the
torus T2:

data T2 : Type where
b : T2

v : b = b

h : b = b

surf : v · h = h · v

Here, we say that T2 is the least type with a point b, two paths v and h from b to b, and a
2-dimensional path (i.e., a surface) surf from the composite path v · h to the composite path
h · v. Current treatments of HITs, such as W-suspensions, or the treatment in the Agda HoTT
library [7] cannot handle T2 because of the 2-dimensional constructor surf (the hub-and-spoke
construction can reduce HITs with higher-dimensional constructors to HITs with at most
1-dimensional constructors, but this is something we want to prove using our framework, not
assume!). Note also that surf presents an additional difficulty in that its target v · h = h · v is a
path between two expressions constructed from previous constructors.

In general, a constructor ck for a HIT A : Type has type

ck : (x : Fk(A, c0, . . . , ck−1))→ Gk(A, c0, . . . , ck−1, x) (1)

where Fk and Gk are functors (with Gk always returning an iterated path space), and ci
are the previously given constructors. For the torus T2, we have F0(A) = 1, F1(A, c0) = 1,
F2(A, c0, c1) = 1 and F3(A, c0, c1, c2) = 1, and G0(A, x) = A, G1(A, c0, x) = (c0 = c0),
G2(A, c0, c1, x) = (c0 = c0) and G3(A, c0, c1, c2, x) = c1 · c2 =c0=c0 c2 · c1. Thus, we see that
F0 : Type → Type, and Fk+1 : (Fk, Gk)-Alg → Type, where (Fk, Gk)-Alg is the category of
“algebras” (A, ck) with ck as in (1).

For this to give rise to meaningful definitions, we need restrictions on Fk and Gk. Intuitively,
we need Fk to be strictly positive, and Gk to be a path space where the left and right hand
side of the equation is natural in the input. Ordinary endofunctors are strictly positive exactly
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when they can be represented by containers [1]. Since we are dealing with non-endofunctors
Fk, we need to generalise this concept to that of familially representable functors [5]: a functor
H : C → Type is familially representable, or a C-container, if there exists a type S and a
family P : S → |C| such that H(X) ∼= Σ s : S .HomC(P (s), X). Ordinary containers are exactly
Type-containers. By constructing a left adjoint Lk : Type→ (Fk, Gk)-Alg to the forgetful functor
Uk : (Fk, Gk)-Alg→ Type (with L(A) = “the free algebra on A”), we can show that all Gk are
(Fk−1, Gk−1)-Alg-containers if all Fk are. Since C-containers come with a notion of container
morphisms, representing natural transformations between functors, and all functors in sight
are containers, we can thus ask for container morphisms to represent Gk. This guarantees a
meaningful notion of general HITs with arbitrarily complicated constructors.

Making all of these definitions precise, however, is not a trivial task. In fact, the types
involved do not form proper categories in the sense of Ahrens et al. [2]: not even the base
“category” Type. Since we make heavy use of containers and container morphisms, which can
be defined only in terms of objects, it might seem that it should be possible to get away with
a more naive definition of “category” without the restriction that the morphisms form a set.
Unfortunately, this approach is bound to fail, since the number of coherence properties that we
need to impose turns out to equal the number of constructors. That is, even though a simple
definition of “category” including objects, morphisms, composition and associativity is enough
to express inductive specifications with 2 constructors, at step 3 we would not be able to define
algebra morphisms.

One solution we are currently investigating [3] is to modify the type theory by adding a strict
equality type constructor, to get something very similar to Voevodsky’s proposed Homotopy Type
System [11], but without the reflection rule for strict equality. In this system, one can define
strict categories and strict functors, whose laws are expressed using strict equality. With this
definition, Type can be regarded as a strict category, and containers give rise to strict functors.
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When exploring the possibilities of Homotopy Type Theory (HoTT), one quickly realises that
many constructions come with coherence problems. This is already apparent when we try
to define the concept of monoid in full generality: we begin with a type A of elements and
a composition function ◦. Then we add the requirement that ◦ is associative, which can be
expressed using the identity type. However, in many situations, associativity might not be
enough: we need a form of coherence for the equalities produced by it (the “pentagon”). But
these coherence proofs may be required to satisfy their own coherence condition, and this process
continues indefinitely, leading to a tower of “coherence properties” which we currently cannot
capture with a single definition within type theory. A possible solution is to restrict ourselves
to types of some given (small) truncation level, and in the described example, it is justifiable
that A should be a set (in the sense of HoTT). However, there are a number of interesting cases
where either this is not possible or makes no sense. We can think of the following:

1. Defining semi-simplicial types (see e.g. [2]). More generally, representing Reedy fibrant
diagrams [7] internally.

2. Given a powerful enough mutual induction principle for higher inductive types, it is possible
to define the syntax of HoTT in itself. However, any attempts to define an interpretation
function that maps syntactic types to outer types is stymied by the appearance of coherence
problems, when mapping definitional equalities of syntactical elements to propositional
equalities. A discussion can be found in [6].

3. The current formulation of category theory in HoTT assumes 0-truncated hom-sets [1].
This has the problem of excluding the “category” of types and functions, and many other
interesting categorical structures, for which we would need to internalise a notion of
(∞, 1)-category.

4. If we want to construct functions ‖A‖ → B, previous work [4] shows that we have
(depending on the truncation level of B) to provide a tower of coherence conditions. In the
current theory, we can only express finite parts, and we would like to be able to internalise
and formalise the complete result.

All these questions are related and we expect that none of them is solvable in the theory that is
considered in the standard reference [8]. Let us elaborate on the first, which we can express as
follows: given a type expression E, is it possible to define a family of types M : N→ Type such
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that E can be given the type (n : N)→Mn → Type and M satisfies1

M0
∼= 1

M1
∼= E0 × E0

M2
∼= (x0, x1, x2 : E0)× E1(x0, x1)× E1(x0, x2)× E1(x1, x2)

M3
∼= (x0, x1, x2, x3 : E0)× (x01 : E1(x0, x1))× (x02 : E1(x0, x2))× (x03 : E1(x0, x3))

× (x12 : E1(x1, x2))× (x13 : E1(x1, x3))× (x23 : E1(x2, x3))

× E2(x0, x1, x2, x01, x02, x12)× E2(x0, x1, x3, x01, x03, x13)

× E2(x0, x2, x3, x02, x03, x23)× E2(x1, x2, x3, x12, x13, x23)

(1)

and so on? At first sight, it looks as if M should be relatively straightforward to define by
induction on its index. However, a lot of time and effort has already been spent on this (see, for
example, Herbelin’s exposition [2] and Shulman’s discussion [6]), and it seems that none of the
proposed constructions work. It is not easy to pinpoint what goes wrong.

We could try the following: first, we define the category ∆+ in type theory. It has nonempty
finite sets as objects and strictly increasing functions as morphisms.Then, we can attempt to

define a double-indexed family M
(k)
n by induction on k, such that the sequence M

(k)
n stabilises

for k ≥ n, and such that M
(k)
n is a ∆+-functor in n. Our intention is then to take Mn :≡M (n)

n .

We set M
(0)
n :≡ 1. Then, inductively, we define

M (k+1)
n :≡ (x : M (k)

n )× ((σ : ∆+(k, n))→ Ek(σ?x)), (2)

where σ? is the functorial action of M (k) (defined at the same time as M
(k)
n ). Unfortunately,

this does not type-check. If we (manually or by a script) start to write down the sequence
M0,M1,M2, . . ., together with appropriate Ei, following the formula (2), then this does type-
check.2 However, as soon as the indices are variables of type N (instead of fixed numerals),
the construction does not type-check because the functorial action of M (k) is not strict. This
suggests that a judgmental η-law for natural numbers, or some form of equality reflection,
would provide a solution. A similar observation, we believe, motivated Voevodsky to start the
development of HTS.

The problem of constructing “Reedy-fibrant diagrams”, or “infinite Σ-types”, has been
discussed in the community quite frequently (see, for example, Shulman’s blog post and its
discussion [6]), and several people have argued that it would be desirable to formulate a version
of the HoTT theory in which this is possible. Motivations that are similar to ours have led to
the development of Voevodsky’s HTS [9], a 2-level system, and also to Hickey’s very dependent
types [3] that have been suggested in the context of NuPRL (and for which it is unclear whether
they can be made sense of in HoTT).

Attempting to provide an extension of the “standard theory” to perform such constructions,
we suggest a system with two different equalities. This is the same approach that is taken in
the development of HTS. However, we hope to be able to avoid resorting to the reflection rule
for strict equality, which makes typechecking undecidable. Currently, we believe that this is
possible in such a way that we can use Agda to provide a nice implementation of our system.

1We write (a : A)×B(a) for Σ(a : A).B(a) and (later) (a : A)→ B(a) for Π(a : A).B(a).
2An interesting observation is that, if the type theory has η for both Π- and Σ-types (as in Agda, but not in

Coq), ∆+ can be implemented in such a way that all categorical laws hold strictly [5]. This is a requirement for
the claim that M1,M2, . . . type-check. It looks as if this strictness could be useful for the construction in general,
but so far, we are not sure whether it is indeed relevant.
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Abstract

We define a type theory with internal parametricity together with an operational seman-
tics. This is a first step towards the goal of defining cubical type theory where univalence
is an admissible rule.

1 Introduction

Parametricity [6] is the principle that terms respect logical relations. Univalence [5] can be
understood as a principle that terms respect extensional equality.

Two pairs are logically related if they are componentwise related. Two functions are logically
related if they map related inputs to related outputs. Two types are logically related if there
is any relation between them.

Two pairs are equal if they are componentwise equal. Two functions are equal if they map
equal inputs to equal outputs. Two types are equal if there is a relation between them which
is a graph of an equivalence.

The above correspondence suggests that if we have a type theory with internal parametricity,
by replacing the definition of “relatedness” for the universe and adjusting the rest of theory, we
get a theory with univalence. The current formulations of Homotopy Type Theory (eg. [5]) lack
a computational understanding of univalence. Internal parametricity was given computational
meaning by [3] and [2]. Our work can be seen as a reformulation of [3] in an explicit substitution
calculus using dimension names instead of permutations which simplifies the presentation. One
difference from [2] is that we don’t decorate typing judgements with a list of dimensions.

We first extend the syntax of type theory with the metatheoretic proof that every term
is parametric (section 2). However, this is not enough for internal parametricity, since the
function which maps a term to its parametricity proof cannot be typed, because the domain
and codomain live in different contexts. To solve this problem, we introduce a substitution
from a context to the extended context of related elements (section 3). Finally, we discuss how
to extend the theory to use equivalence instead of any relation for “relatedness” (section 4).

2 External parametricity

Parametricity says that logically related interpretations of a term are logically related. More
precisely, given Γ ` t : A, ρ, ρ′ : ∅ ⇒ Γ and a witness that ρ and ρ′ are related in the logical
relation generated by Γ, then t[ρ] and t[ρ′] will be related in the logical relation generated by
A. We formalize this by the following rule:

Γ ` t : A

Γi ` ti : t[0iΓ] ∼Ai t[1iΓ]

Γi contains two copies of Γ (ρ and ρ′ above) and a logical relation between them. ∼Ai is the
logical relation generated by A. It relates the two interpretations of the term t, in the two
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different copies of Γ, which are projected out by the substitutions 0iΓ, 1iΓ. ti is the witness of
this relation.

The context Γi contains two copies of Γ and witnesses that they are pointwise related:

(Γ.x : A)i ≡ Γi.xi0 : A[0iΓ].xi1 : A[1iΓ].xi2 : xi0 ∼Ai xi1).

The operation−i on terms is defined by induction on the term structure, eg. for the universe:

A ∼Ui B ≡ A→ B → U.

3 Internal parametricity

To internally derive that every function of type Π(A : U).A → A is identity, we would need a
term t expressing parametricity for f assuming f :

f : Π(A : U).A→ A ` t : Π(Ai0, Ai1 : U, Ai2 : Ai0 → Ai1 → U) .

Π(xi0 : Ai0, xi1 : Ai1, xi2 : Ai2 xi0 xi1) . Ai2 (f Ai0 xi0) (f Ai1 xi1).

We could choose t to be f i, but that lives in the context (f : Π(A : U).A→ A)i.
This motivates the definition of a substitution that takes us into the−i-d context. We define

this substitution mutually with the term former refli. The typing rules are as follows:

Γ `
RiΓ : Γ⇒ Γi

Γ ` t : A
Γ ` refli t : t ∼Ai[RiΓ] t

Now the above term t can be defined as f i[Ri].
We give an operational semantics for the type theory which has the substitution R.

4 Equivalence

If we replace the definition of Ui by equivalence, i.e. A ∼Ui B ≡ Σ(∼: A → B → U).
(
Π(x :

A).isContr(Σ(y : B).x ∼ y)
)
×

(
Π(y : B).isContr(Σ(x : A).x ∼ y)

)
, we are forced to add Kan

fillers for every type, as in [4]. This is ongoing work [1].
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It is well-known that dependent type theories with fixed type constructors can be interpreted
over certain fibrations, see, for example, [2]. On the other hand, Hagino [1] showed how a
language with constructors for inductive and coinductive types without term dependencies can
be treated uniformly through the use of special dialgebras. However, at least to our knowledge,
these techniques have not been combined, yet. Hence, the goal of the present work is to interpret
dependent inductive and coinductive data types using certain dialgebras in fibrations.

The reason for the choice of dialgebras is that we can interpret data types without having
to require the existence of (co)products separately, see below. An example of such a data type
are vectors, that is, lists combined with their length, which could be declared in Agda by

data Vec (A : Set) : N → Set where
nil : 1→ Vec A 0
cons : (k : N) → A ×Vec A k → Vec A (k + 1)

where 1 is the one-element type and N the natural numbers. The important observation is that
Vec has two constructors, nil and cons, with the following properties

1. nil has no local dependencies, whereas cons introduces locally a fresh variable k : N.

2. nil has a trivial argument of type 1, whereas cons has as argument an element of A and
an element of (VecAn)[k/n] in context k : N.

3. nil constructs an element of (VecAn)[0/n], whereas cons constructs an element of the
type (VecAn)[k + 1/n] in context k : N.

These properties allow us to interpret the constructors as a dialgebra.
The semantics of these constructors can be explained in the category SetN. Given a set

I, the category SetI has set families X = {Xi}i∈I as objects and families {fi : Xi → Yi}i∈I
of functions as morphisms f : X → Y . Moreover, for every function g : I → J there is a
functor g∗ : SetJ → SetI , the reindexing or substitution along g, given by g∗(X) = {Xg(i)}i∈I .

The categories SetI and the reindexing functors can be organised into the families fibration
Fam(Set), see for example [2].

The example of vectors is represented in Fam(Set) as follows. We define the family VecA =
{An}n∈N, which lives in SetN. The constructors, however, live in different categories, namely
nil is given by the singleton family {nil∗ : 1 → VecA 0}∗∈1 in Set1, and the constructor cons
is given by the morphism cons = {consk : A × VecAk → VecA (k + 1)}k∈N in SetN. We can
see these constructors as one morphism (nil, cons) in the product category Set1 × SetN.

To understand the nature of these constructors, we draw on dialgebras, as pioneered by
Hagino [1]. We define two functors F,G : SetN → Set1 × SetN, such that F captures the
domain and G the codomain of the constructors:

F (X) = ({1}, {A×Xk}k∈N) G(X) = ({X0}, {Xk+1}k∈N)
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with the obvious action on morphisms. The constructors for Vec form then an (F,G)-dialgebra,
that is, (nil, cons) : F (VecA)→ G(VecA). In fact, (nil, cons) is an initial (F,G)-dialgebra.

The final step is to note the special shape of G. On the natural numbers, we have the two
maps z : 1 → N and s : N → N given by z(∗) = 0 and s(n) = n + 1, respectively. From these
we get the two reindexing functors z∗ : SetN → Set1 and s∗ : SetN → SetN, which we can
combine, using pairing of functors, into 〈z∗, s∗〉. Looking closely at the definitions, we find that
this is exactly G.

Using this analysis, we can define what (non-nested) data types in Fam(Set) are. We call
a pair of functors (F,G) with F,G : SetI →

∏
i=1,...,n Set

Ji and G = 〈f∗1 , . . . , f∗n〉 a data type
signature. An inductive data type is then an initial (F,G)-dialgebra and a coinductive data
type is a final (G,F )-dialgebra (note the order).

An example of a coinductive data type are partial streams, which are streams indexed by
their (potentially infinite) length. These are given by the following pseudo-Agda declaration.

codata PStr (A : Set) : N∞ → Set where
hd : (n : N∞) → PStr A (s∞ n) → A
tl : (n : N∞) → PStr A (s∞ n) → PStr A n

where N∞ is the coinductive type of natural numbers extend by infinity and s∞ : N∞ → N∞
the definable successor. The type PStr has two destructors, which can only be applied to partial
streams that contain at least one element. They are the final (〈s∗∞, s∗∞〉, H)-dialgebra, where

H : SetN
∞
→ SetN

∞
× SetN

∞
is given by H(X) = (w(A), X) and w : Set1 → SetN

∞
is the

weakening functor given by reindexing along !N∞ : N∞ → 1.
It is noteworthy that coinductive data types are perfectly dual to inductive types. They are

also an extension of the syntax for record types in Agda, in the sense that we are allowed to
refine the domain of destructors using substitutions.

Another interesting example are products along arbitrary maps. In our pseudo-Agda nota-
tion, these are given by

codata
∏

(f : I → J) (B : I → Set) : J → Set where
app : ( i : I) →

∏
f B (f i) → B i

It turns out that, when interpreted in Fam(Set),
∏

f is right-adjoint to f∗, which is the usual
definition of the product. Coproducts (Σ-types) can be defined analogously as inductive types.
Note though that the Σx : A.B is usually given in Agda as record-type with projections on A
and B, which gives a strong sum elimination that we do not have in the present setting. We
will discuss this in conjunction with induction.

The talk will consist of the following topics. We will generalise the idea of dependent induc-
tive and coinductive data types, we outlined above, to allow for nested data types. Moreover,
we will see how these data types relate to algebras and coalgebras, and we will discuss in-
duction and coinduction in this setting. Finally, if time permits, and we will investigate a
Beck-Chevalley condition for data types.

This work has been submitted to CALCO 2015.
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The goal of this work is the development of a syntax that treats inductive and coinductive
types with term dependencies on a par. We achieve this by extending Hagino’s idea [2] to
dependent types, in that we interpret data types as dialgebras in fibrations. This follows the
ideas we present in the talk “Dependent Inductive and Coinductive Types Through Dialgebras
in Fibrations”. We note that our syntax for inductive types is similar to GADTs [3], and that
coinductive types are defined by their destructors like in [1].

The context, types and terms of our calculus are introduced using the following judgements.v

• ` ∆ | Γ ctx – The type variable context ∆ and term variable context Γ are well-formed.

• ∆ | Γ ` A : ∗ – The type A is well-formed in the context ∆ | Γ.

• Γ ` t : A – The term t is well-formed and of type A in the context Γ.

• f : Γ1 → Γ2 – The context morphism f is well-formed with type Γ1 → Γ2.

The context judgement is given by the following rules.

` ∅ | ∅ ctx
∅ | Γ ` A : ∗

` ∆ | Γ, x : A ctx

` ∆ | Γ′ ctx ` ∆ | Γ ctx

` ∆, (Γ′ ` X : ∗) | Γ ctx

It is important to note that, whenever a term variable is introduced into a context, its type is
not allowed to use free type variables. This ensures that types are strictly positive.

The notion of substitution, we use, builds on context morphisms that are formed as follows.

` ∆ | Γ ctx

() : Γ→ ∅
f : Γ1 → Γ2 Γ1 ` t : A[f ]

(f, t) : Γ1 → (Γ2, x : A)

Explicitly, if Γ2 = x1 : A1, . . . , xn : An, then a context morphism f : Γ1 → Γ2 is a tuple
f = (f1, . . . , fn) with Γ1 ` fi : Ai[(f1, . . . , fi−1)] for each i = 1, . . . , n.

The judgement for type construction is given, together with the usual contraction, weakening
and exchange rules for type variables, by the following rules.

(TyVar-I)
∆, (Γ′ ` X : ∗) | Γ,Γ′ ` X : Ui

∆ | Γ1 ` A : ∗ g : Γ2 → Γ1
(Subst-Ty)

∆ | Γ2 ` A[g] : ∗

∆, (Γ ` X : ∗) | Γk ` Ak : ∗ fk : Γk → Γ k = 1, . . . , n ρ ∈ {µ, ν}
(FP-Ty)

∆ | Γ ` ρ(X;
#—

f ;
#—

A) : ∗

Note that substitutions with context morphisms are part of the syntax and that type variables
come with a term variable context. These contexts determine the context in which an initial/-
final dialgebra lives. The dialgebras essentially bundle the local context, the domain and the
codomain of their constructors respectively destructors, as we will see.
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This brings us to the rules for term constructions, the last judgement we have to define.
The corresponding rules use substitutions of a type B for a variable X in a type A, denoted
by A{BX}, which is defined as expected. All rules involving initial or final dialgebras have as
side-condition that the corresponding types are well-formed.

∆ | Γ ` A : ∗
(Proj)

∆ | Γ, x : A ` x : A

∆ | Γ1 ` t : A g : Γ2 → Γ1
(Subst)

∆ | Γ2 ` t[g] : A[g]

(Ind-I)
Γk, x : Ak{µ(X;

#—

f ;
#—

A)X} ` αk : µ(X;
#—

f ;
#—

A)[fk]

(Coind-E)
Γk, x : ν(X;

#—

f ;
#—

A)[fk] ` ξk : Ak{ν(X;
#—

f ;
#—

A)X}

Γ ` C : ∗ Γk, y : Ak{CX} ` gk : C[fk]
(Ind-E)

Γ, z : µ(X;
#—

f ;
#—

A) ` rec #—g : C

Γ ` C : ∗ Γk, y : C[fk] ` gk : Ak{CX}
(Coind-I)

Γ, z : C ` corec #—g : ν(X;
#—

f ;
#—

A)

We see that the domain of the constructors αk for µ(X;
#—

f ;
#—

A) is determined by Ak and their
codomain by substituting along fk. Dually, the domain of destructors ξk is given by substituting
fk and their codomain by Ak. Note also that the bound variables in (co)recursions are implicit.

This concludes the definition of our proposed calculus. Note that there are no primitive type
constructors for →-, Π- or Σ-types, all of these are, together with the corresponding (weak)
introductions and eliminations, definable in the above calculus. We will see this in the talk.

As basic example, assuming we have already defined the singleton type 1 and binary prod-
ucts, then we can define vectors Γ ` VecA : ∗ in context Γ = n : N by

VecA = µ(X; (f1, f2); (1, A×X[k]))

Γ1 = ∅ Γ2 = k : N
f1 = (0) : Γ1 → Γ (Γ ` X : ∗) | Γ1 ` 1 : ∗
f2 = (k + 1) : Γ2 → Γ (Γ ` X : ∗) | Γ2 ` A×X[k] : ∗

This yields the constructors x : 1 ` α1 : VecA[0] and k : N, x : A×VecA[k] ` α2 : VecA[k+ 1],
which are usually called nil and cons.

In the talk, we show that the above calculus has indeed the structure we are aiming for, in
the sense that types in context give rise to a split fibration, if we employ the expected equations
on substitutions (A[id] = A, xi[f ] = fi, etc.). This allows us to conveniently define actions of
types on terms, and a reduction relation. For now, we have no proof of type preservation etc.
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We present new results on a constraint satisfaction problem arising from the inference of
resource types.

Linear constraints were introduced by Hofmann and Jost in the context of type-based amor-
tized resource analysis by the potential method [5] where it was applied to functional programs.
The constraint systems appearing in this system and subsequent ones has finitely many vari-
ables and can be reduced to linear programming. Later, Hofmann and Rodriguez extended
type-based amortized resource analysis to object-oriented programs [8],[6] which led to con-
straints involving infinite lists or trees whose entries are numerical variables. Therefore, a
straightforward reduction to linear programming is no longer an option. However, the con-
straint systems exhibit enough regularity that a heuristic procedure developed by Hofmann
and Rodriguez allowed to find solutions in many cases.

In the case of infinite lists the constraint systems can be simply described as follows. One
has finitely many unknowns ranging over infinite lists (sequences) of nonnegative rational num-
bers including ∞. Terms and constraints are built from those by addition (+) and comparison
(≤) understood pointwise, and the tail function (tl) that removes the first element of a se-
quence. Furthermore, constraint systems may contain ordinary linear arithmetic constraints
over the nonnegative rationals including infinity where the head function (hd) maps sequences
to numbers. For example, the following constraint system is solvable and has the (not unique)
solution y a constant list and x an exponentially decreasing list and z a Fibonacci list with an
additional linear summand. We have the (arithmetic and list) constraints

hd(x) = 2, tl(y) ≥ y,
hd(tl(x)) = 5, z + z ≤ tl(z),

hd(y) ≥ 1, tl(tl(x)) ≥ tl(x) + x + tl(y) + tl(y).
hd(z) ≥ 2,

and the solutions

y = 1, 1, ...,

x = 2, 5, 9, 16, 27, 55, .., n− 1, n, n(n− 1) + 2, ...,

z = 2, 1,
1

2
,

1

4
,

1

8
, ...,

1

2n
, ...

In this paper we report progress on the general question of solvability and decidability
of these constraint systems. First, in the case of infinite lists of numerical variables we can in
many cases draw a connection to rational generating functions and in particular see that certain
resource behaviours cannot arise as solutions to type inference problems. A concrete example
is the harmonic series because it has a logarithmic generating function [4].

We also show that the general constraint satisfaction problem as formulated by Hofmann and
Rodriguez admits a reduction from the Skolem-Mahler-Lech problem [7, 2] whose decidability
status is as yet unknown but at least NP-hard. Recall that the Skolem-Mahler-Lech problem
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asks whether a sequence defined by a linear recurrence with integer coefficients (like Fibonacci)
contains zero.

However, we were able to better delineate the image of the translation from type inference
to the constraint satisfaction problem and thus identified a subproblem which—if solved—can
still be used for type-based resource inference but has better algorithmic properties.

More precisely, we can show that the characteristic polynomials of the linear recurrences
corresponding to the identified fragment always have a dominating zero (eigenvalue) which
allows for a decision procedure based on comparison of growth rates. There are still several fine
points to overcome which result from the fact that we are dealing with inequations rather than
equations.

We then also give a heuristic reduction from the case of general trees to infinite lists which
carries type-based amortized resource analysis considerably further than it was previously the
case. In particular, we are able to analyse programs with superpolynomial resource consumption
and also have a more intrinsic characterisation of the limitations of the analysis.

In currently ongoing work, we try to go beyond the question of mere satisfiability of con-
straint systems and to extract minimal solutions and also to treat trees in general not merely
by translating them to lists.
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Abstract

We propose a new type theory with internalized parametricity. Compared to previous
similar proposals, this version comes with a denotational semantics which is a refinement of
the standard presheaf semantics of dependent type theory. Further, this presheaf semantics
is a refinement of the one used to interpret nominal sets with restriction. The present
calculus is a candidate for the core of a proof assistant with internalized parametricity.

Reynolds’s abstraction theorem can be stated in a purely syntactical way: for instance, if
a function f has type (A : ?) → A → A — the type of the polymorphic identity — then the
proposition (A : ?) → (P : A → ?) → (x : A) → P x → P (f Ax) holds. However this result
is not provable internally, i.e., (f : (A : ?) → A → A) → (A : ?) → (P : A → ?) → (x : A) →
P x → P (f Ax) is not provable. Several attempts have been made for designing an extension
of dependent type theory in which such an internal form of parametricity holds. We propose
another such system here. Our technical contributions are as follows:

• We present a type theory which internalizes parametricity and can be seen as a simplifi-
cation and generalization of the systems of [1, 2]

• We provide a denotational semantics, in the form of a presheaf model, for this type theory.
This model is a refinement of the presheaf semantics used to interpret nominal sets with
restrictions [3, 4].

Syntax

We assume a special symbol ‘0’, and a countable infinite set I of other symbols, called colors.
The metasyntactic variables i, j, . . . range over colors, while ϕ range over I ∪ {0}. The main
innovation of the type theory presented here is that terms may depend on (a finite number of)
colors. We add the following constructions to the usual syntax of lambda calculi:

a, p, t, A, P, T := . . . | (a,i p) | (x : A)×i P | A 3i a | a·i

Remark. Here is some intuition for these new constructions:

• Any type is associated with a predicate for every color. The type A 3i a expresses that a
satisfies the parametricity predicate associated with the type A on color i. For each term
a and color i, the term a (i 0) is the erasure of i in a. It is defined by induction on a and
can be understood as a realizer of a.

• The term a·i yields a proof of A 3i a (i 0).

• The forms (a,i p) and (x : A) ×i P allow to locally associate parametricity proofs with a
given realizer.
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We index typing judgements with the set of free colors; our new constructions are typed
and converted as follows:

In-Abs
Γ ` a : A (i 0) Γ ` p : A 3i a

Γ, i : I ` (a,i p) : A

Γ ` A Γ, x : A ` P

Γ, i : I ` (x : A)×i P
In-Pred

Out
Γ, i : I ` A Γ ` a : A (i 0)

Γ ` A 3i a

Γ, i : I ` a : A

Γ ` a·i : A 3i a (i 0)
Color-Elim

(a,i p)·i = p ((x : A)×i P [x]) 3i a = P [a]

t = (t (i 0),i t·i) T = (x : T (i 0))×i (T 3i x)

Unlike previous type theories with internalized parametricity, the types ? 3i A and A→ ? are
not convertible but isomorphic. The same goes for ((x : A) → B[x]) 3i f and (x : A) → (x′ :
A 3i x) → B[(x,i x

′)] 3i (f x). However, in our system one can use parametricity generically
via λA. λa. a · i : (A : ?) → (x : A) → A 3i x. In particular, the proposition given in the
introduction is provable by λf. λA. λP. λa. λp. (f (A×i P ) (a,i p))·i.

Presheaf model

We say that a function f : I → J ∪ {0} is a color map, and note f : I → J , if i1 = i2 for
any i1, i2 ∈ I with f(i1) = f(i2) ∈ J . We consider the category pI of finite color sets and
color maps. We use a refined presheaf on pIop by requiring two further conditions (without
this refinement, it is not clear how to validate the equality ((x : A)×i P [x]) 3i a = P [a]):

1. for any object I, F (I) is a set of I-elements, i.e., of tuples indexed by the subsets of I;

2. for any projection map α : I → Iα, the restriction map F (I) → F (Iα), u 7→ uα is the
projection operation, i.e., uαJ = uJ for any J ⊆ I.

A context Γ ` is interpreted by a (usual) presheaf on pIop.
A type Γ ` A is interpreted by an I-set Aρ for each object I and ρ ∈ Γ(I), together with

restriction maps Aρ → A(ρf), u 7→ uf if f : I → J satisfying u1 = u and (uf)g = u(fg) for
any g : J → K. Furthermore the map Aρ→ A(ρα), u 7→ uα is the projection operation.

A term Γ ` a : A is interpreted by a I-element aρ ∈ Aρ for each object I and ρ ∈ Γ(I), such
that aρf = a(ρf) for any f : I → J .

If Γ ` and Γ ` A we define the interpretation of ∆ = Γ, x : A by taking 〈ρ, x = u〉 ∈ ∆(I)
to mean ρ ∈ Γ(I) and u ∈ Aρ. The restriction map is defined by 〈ρ, x = u〉f = 〈ρf, x = uf〉.

If Γ ` we define the interpretation of ∆ = Γ, i : I by taking [ρ, i = ϕ] ∈ ∆(I) to mean either
ϕ = 0 and ρ ∈ Γ(I), or ϕ = j ∈ I and ρ ∈ Γ(I\{j}).
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Modern implementations of intensional dependent type theories, such as Coq, Agda, and
Idris, have been used successfully for programming and proving in many projects. However
they offer limited support for coinductive types.

For programming, the challenge is to ensure that functions on coinductive types are well-
defined; that is, productive with unique solutions. Syntactic guardedness checks, as used for
example in Coq, ensure productivity by requiring that recursive calls be nested directly under
a constructor, but such checks exclude many valid definitions, particularly in the presence of
higher-order functions.

For proving, the challenge is to reconcile the extensional nature of coinductive types, which
are characterised by observations, with intensional equality. For example, the natural notion of
bisimulation on streams does not coincide with inhabitation of the identity type. Thus one is
forced to introduce a non-standard notion of equality for coinductive types, which will typically
not be a congruence [4]. It would be preferable if one could instead directly use the identity
relation of the type theory.

For the programming challenge, a type-based approach to guarded recursion, more flexible
than syntactic checks, was suggested by Nakano [6]. A new modality ., called ‘later’, allows us
to distinguish between data we have access to now, and data which we have only later. . must
guard self-reference in type definitions, so for example guarded streams of natural numbers are
described by the guarded recursive equation StrgN ' N× . StrgN asserting that stream heads are
available now, but tails only later.

Using . alone, however, enforces a discipline more rigid than productivity. For example,
all stream functions must be causal [3], so elements of the result must not depend on deeper
elements of the argument, ruling out the ‘every other’ function that returns every second element
of a given stream. This limitation motivated the introduction of clock quantifiers by Atkey and
McBride [1], which permit . to be eliminated in a controlled way. In earlier work [2] we recast
these quantifiers as the unary type-former �, called ‘constant’. Moreover such type-formers give
rise to types whose denotation is exactly that of standard coinductive types [5, Theorem 2].
Hence � allows us to program and prove with ‘real’ coinductive types, with guarded recursion
providing the ‘rule format’ for their manipulation. For example, the coinductive type of streams
of natural numbers can be defined simply as StrN , �StrgN .

In previous work [2], we introduced the guarded λ-calculus, gλ, a simply typed lambda
calculus with guarded and coinductive types, and a logic, Lgλ, as a separate layer, to prove
properties of elements. The logic allowed us to prove properties of coinductive types, but not in
the integrated fashion supported by dependent type theories. In this talk we introduce guarded
dependent type theory, gDTT, which supports programming and proving with guarded and
coinductive dependent types.

For the proving challenge, our approach is to use guarded recursion to prove intensional
equality of terms of guarded recursive types. From this we can derive equalities of terms of
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coinductive types, thus circumventing the need for a non-standard equality type for coinductive
types.

One of the key challenges in designing gDTT is coping with elements that are only available
later, i.e., elements of types of form .A. With gλ we had the term formation rules

Γ ` t : A

Γ ` next t : .A

Γ ` f : .(A→ B) Γ ` t : .A

Γ ` f ~ t : .B

The first rule allows us to make later use of data that we have now. The second intuitively
says that if f will later be a function mapping A to B, and we will later have an element t
of A, then, later, we can apply f to t to get an element of B. Let us consider the ~ rule
for dependent types, where function spaces are generalised to Π-types. Supposing that f has
type .(Πx : A.B), what type should f ~ t have? If B depends on x, it does not make sense
to follow the simply-typed approach and use .B. But since t has type .A, and not A, we
cannot substitute t for x. Intuitively, t will eventually reduce to some value nextu, and so the
resulting type should be .B[u/x]. But if t is an open term we may not be able to perform this
reduction, so cannot type our term. To address this issue we introduce a new notion, of delayed
substitution, allowing us to express the resulting type as .[x � t].B. Definitional equality rules
allow us to simplify this type when t is a value, i.e., .[x � nextu].B ' .B[u/x] as expected.

The novel features of gDTT allow us to address both the programming and proving challenges
posed by coinductive types. To illustrate, consider addition of two guarded streams:

plusg ,
fixφ.λ(xs : StrgN)(ys : StrgN).

consg ((hdg xs) + (hdg ys)) (φ~ tlg xs~ tlg ys)
: StrgN → StrgN → StrgN

Here hdg takes the head of a stream, and tlg its tail (recalling that tails of guarded streams
have type . StrgN). This function as whole is defined by guarded recursion, so φ has type
.(StrgN → StrgN → StrgN). The ~-application φ~ tlg xs~ tlg ys has type . StrgN, so the consg(· · · )
sub-expression has type StrgN.

With gDTT we can prove the commutativity of addition on streams. Assuming that c is
a proof term witnessing commutativity of + on natural numbers, and that pη is a proof term
yielding equality of two pairs when given equality proofs of their respective components, we can
construct a proof:

p ,
fixφ.λ (xs, ys : StrgN) .

pη (c (hdg xs) (hdg ys)) (φ~ tlg xs~ tlg ys)
: Π(xs, ys : StrgN).IdStrgN

(plusg xs ys, plusg ys xs).

where Id is the identity type-former. Note that p is again defined by guarded recursion, and that
it is quite simple: it says that to show commutativity of plusg we proceed by using commutativity
of + on the heads, then continuing recursively on the tails. While p itself is simple, showing
that p indeed has the right type makes use of the new features in gDTT. For example, the
subterm φ~ tlg xs~ tlg ys cannot be typed without use of the generalised . carrying a delayed
substitution.

We can lift the function plusg to a function on coinductive streams plus : StrN → StrN → StrN.
Likewise, using the new features of gDTT, we can turn the proof p of commutativity of plusg

into one for plus, i.e., construct a term of type Π(xs, ys : StrN).IdStrN(plusxs ys, plus ys xs).
Thus we can use guarded recursion to program and prove properties on guarded streams,

and then convert these into programs and proofs for coinductive streams.
This abstract is based on a recently submitted paper.
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Guarded recursion [7] is an approach to solving recursive type equations where the type
variable appears guarded by a I (pronounced “later”) modal type operator. In particular
the type variable could appear positively or negatively or both, e.g. the equation D = 1 +
I(D → D) has a unique solution [4]. On the term level the guarded fixed point combinator
fixA : (IA→ A)→ A satisfies the equation f (next (fixAf)) = fixAf for any f : IA→ A. Here
next : A→ IA is an operation that “freezes” an element that we have available now so that it
is only available in the next time step.

One situation where guarded recursive types are useful is when faced with an unsolvable
type equation. These arise for example when modelling advanced programming languages. In
this case a solution to a guarded version of the equation often turns out to suffice, cf. [4].

But guarded recursive versions of polymorphic type equations are also useful in type theory,
even in settings where inductive and coinductive solutions to these equations are assumed to
exist. To see this, consider the coinductive type of streams Str, i.e., the final coalgebra for the
functor S(X) = N × X. The proof assistants Coq and Agda allow programmers to construct
streams using recursive definitions, but to ensure normalisation (and thereby consistency), these
recursive definitions must be productive, i.e., one must be able to compute the n first elements
of a stream in finite time. Coq and Agda inspect recursive definitions for productivity by a
syntactic property that does not interact well with higher-order functions.

Using the type of guarded streams Strg, i.e., the unique type satisfying the equation Strg =
N × IStrg, one can encode productivity in types: a productive recursive stream definition is
exactly a term of type IStrg → Strg. To combine the benefits of coinductive and guarded
recursive types, Atkey and McBride [3] suggested a simply typed calculus with clock variables
κ representing time streams, each with associated Iκ type constructors, and universal quantifi-
cation over clocks ∀κ. If we think of the type τ as being time-indexed along κ, then the type
∀κ.τ contains only elements which are available for all time steps. The relationship between
the two notions of streams can then be captured by the encoding of the coinductive stream
type as Str = ∀κ.Strκg . This encoding works for a general class of coinductive types including
those given by polynomial functors, and these results were since extended to the dependently
typed setting by Møgelberg [6]. In both cases the encodings were proved sound with respect
to a denotational model and no rewrite semantics was given. This work is strongly related to
sized types [2, 1].

Rewrite semantics In this talk we will present our ongoing work on giving computational
meaning to guarded recursion and ∀κ. One of the challenges is to give operational meaning to a
series of type isomorphisms assumed in both Atkey and McBride [3] and Møgelberg [6]. These
type isomorphisms are crucial to prove correctness of the encodings of coinductive types.

One of these isomorphisms is ∀κ.Iκ τ ∼= ∀κ.τ stating that time steps on universally quanti-
fied clocks can be ignored. We suggest a partial eliminator for Iκ which suffices to encode the
isomorphism. Note that an unrestricted eliminator would cause an inconsistency: if we allow a
term of type Iκ τ → τ for all τ , the fixed point of these maps give inhabitants of any type.
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Another type isomorphism is ∀κ.τ ∼= τ , valid whenever κ is not free in τ . This is used in
the encoding of coinductive types to give the head map type Str→ N rather than Str→ ∀κ.N.
There is a natural term λx.Λκ.x of type τ → ∀κ.τ and we want to reflect in the calculus that
this term has an inverse.1 We suggest a new term construct af (apply at fresh) with the typing
rule

∆ | Γ ` t : ∀κ.τ κ 6∈ τ
∆ | Γ ` af t : τ

Here ∆ is a clock context (a finite set of clocks) and Γ is an ordinary context of term variables
whose types only contain clocks in the set ∆. Intuitively, af t should generate a fresh name for
a clock variable and apply t to it. Since fresh name generation is an effect it is non-trivial to
give semantics to it in type theory, see e.g. [9, 5]. In this setting, however, we believe that it
suffices to have a rule af(Λκ.t) 7→ t applicable only when κ is not free in t, along with a family
of “commuting conversions” analogous to those of the ν construct of Nominal System T [8].

We will show that just the two type isomorphisms listed above suffice for constructing the
remaining type isomorphisms listed in [3, 6]. In particular we can show ∀κ commutes over
binary sums, if those sums are encoded using dependent sums, universes and booleans in the
standard way.

Clock synchronisation In the talk we will also address the problem of clock synchronisation,
which was disallowed in previous work. This restriction arose in the elimination rule for ∀κ:

∆ | Γ ` t : ∀κ.τ κ′ ∈ ∆

∆ | Γ ` t[κ′] : τ [κ′/κ] (1)

which in [3, 6] had freshness side conditions on κ′. The reason for such a restriction was that
the models did not support clock substitution, only clock permutation. In this talk we present
a new model that does allow clock substitution, and thus proves the unrestricted version of (1)
sound. This greatly simplifies the language and the rewrite semantics.
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In realizability we associate to each formula a set of programs which behave like a proof
of the formula and that we call its realizers. This allows to give computational content to the
axioms of a theory, and to choose quite freely the programming language, independently from
the logical system. It is even possible to consider untyped programming languages, as was the
case in the first realizability model from Kleene [7], in which a realizer may be any recursive
function. It is however still possible to consider a typed language, as did Kreisel in his modified
realizability model [8]. Both models from Kleene and Kreisel gave computational interpretation
to Heyting arithmetic, the intuitionistic variant of Peano arithmetic.

Gödel’s negative translation [4] allowed for the so-called indirect interpretations of classical
logic through intuitionistic interpretations of negatively translated classical proofs. This allowed
to interpret full Peano arithmetic using the realizability models of Kleene and Kreisel. Much
later, Griffin’s discovery [6] that the call/cc control operator could be typed with the law of
Peirce opened the possibility for a direct interpretation of classical logic, using programming
languages with control features. Following this path, Parigot defined the λµ-calculus [12], a
language for Gentzen’s classical sequent calculus for which Selinger axiomatized the universal
categorical model [13]. On another side, Krivine considered untyped λ-calculus extended with
the call/cc operator to give a realizability interpretation to classical second-order Zermelo-
Frænkel set theory [9], later extended to handle the axiom of dependent choice [10, 11].

In this talk I will present a direct realizability interpretation for first-order classical logic
which, contrary to Krivine’s and similarly to Kreisel’s (but for classical logic), uses typed pro-
grams as realizers. The classical proofs are interpreted in a categorical model of the language
µPCF, which is a combination of the functional Turing-complete language PCF with the control
features of call-by-name λµ-calculus. A careful analysis of relativization motivates the distinc-
tion between negative and positive formulas, the former having both a truth value and a falsity
value which are orthogonal to each other as in Krivine’s work, but the latter having only a truth
value, which is not closed by double-orthogonality. A suitable and non-restrictive requirement
on the classical proofs (right structural rules are forbidden for positive formulas) allows to prove
the soundness of the interpretation. The model is validated by proving that the usual terms of
Gödel’s system T realize the axioms of Peano arithmetic. Concerning extraction of programs
from proofs, Friedman’s trick is implemented through the use of an external µ-variable rather
than through the replacement of the ⊥ formula by an existential statement, which allows for
a simpler and more effective interpretation in some models (typically the models based upon
game semantics). The choice of having a free µ-variable κ in the realizers may be seen as a
way to avoid Friedman’s A-translation. Indeed, in Friedman’s original work, the translation is
obtained by replacing each basic predicate P with the disjunction P ∨ A. In classical sequent
calculus, the right-hand context is meant to be interpreted as a disjunction, so adding a fixed
µ-variable to this context corresponds to applying Friedman’s translation on programs instead
of proofs. This variable is also used to define the orthogonality relation between our truth and
falsity values.
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Interpreting the axiom of dependent choice in a classical setting is much more complicated
than interpreting arithmetic. To interpret it, Spector defined the bar recursor [14] and used it in
Gödel’s Dialectica interpretation [5] (a computational interpretation similar to realizability). A
more uniform version was then used to give an indirect realizability interpretation of countable
choice [1], and a version with an implicit termination condition was later defined and used
to interpret, still in an indirect realizability setting, the double-negation shift principle and
therefore the axiom of dependent choice [2].

In the direct interpretation described in the talk and under some assumptions on the model
of µPCF, the bar recursion operator [2] realizes the axiom of dependent choice, similarly to what
was done in a previous work [3]. The particular implementation of Friedman’s trick then allows
to obtain an extraction result on Π0

2 formulas provable in classical analysis (Peano arithmetic
+ the axiom of dependent choice).

This work has been submitted recently as a journal paper.
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The delay datatype was introduced by Capretta [2] as a means to incorporate general re-
cursion to Martin-Löf type theory and it is useful in this setting for modeling non-terminating
behaviours. This datatype is a (strong) monad and constitutes a constructive alternative to
the maybe monad. For a given set X, each element of DX is a possibly infinite computation
that returns a value of X, if it terminates. We define DX as a coinductive type by the rules

now x : DX

c : DX

later c : DX

Weak bisimilarity is defined in terms of convergence. This binary relation between DX and
X relates a terminating computation to its value and is inductively defined by the rules

now x ↓ x
c ↓ x

later c ↓ x

Two computations are weakly R-bisimilar if they differ by a finite number of application of the
constructor later, i.e., they either converge to R-related values or diverge. Weak R-bisimilarity
is defined coinductively by the rules

c ↓ x xRx′ c′ ↓ x′

c ≈R c′
c ≈R c′

later c ≈R later c′

Just as D, one would expect D̂ defined by D̂X = DX/≈X (by writing ≈X we mean ≈≡X
) to

also be a (strong) monad. Morally, this ought to be the case, but there are issues with defining
the multiplication, having to do with quotients in type theory.

One possible approach to quotients is to avoid them altogether as first-class entities, by
working with setoids. This is unproblematic, we can define D̂ as a functor on Setoid by
D̂ (X,R) = (DX,≈R) and it is then also a (strong) monad. This route was taken by Capretta [2]
and the same was done also by Benton et al. [1].

If we want to use quotients as sets, then we need to add them to type theory. We follow
the approach of Hofmann [3]. We postulate, for any set X and equivalence relation R on X
the existence of the following data: a set X/R, a constructor abs : X → X/R with a proof
sound : Πx, x′ : X.Πp : xRx′. absx ≡ abs x′, for any predicate P on X/R, a dependent
eliminator lift : Πf : Πx : X.P (absx). compat f → Πq : X/R.P q where compat f = Πx, x′ : X.
Πp : xRx′. substP (sound p)(f x) ≡ f x′ and a proof of the beta-rule liftβ : lift f p (absx) ≡ f x.
A special case of quotients are so-called squash types, which are quotients by the total relation.
We write ‖X‖ for X/>. We call a set X a proposition, if Πx, x′ : X.x ≡ x′. Squash types are
propositions.

For D̂ as a functor on Set to be a monad, we have to have a multiplication µX : D̂ (D̂X)→
D̂X. For this, a crucial element needed is a function ψ : D (DX/≈X) → D (DX)/D≈X .
This seems difficult, but there is a canonical function θ = lift (Dabs) (. . .) : D (DX)/D≈X →
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D (DX/≈X) in the opposite direction. We say that a function f : X → Y between two sets X
and Y is surjective, if Πx : X. ‖Σy : Y. f x ≡ y‖. The function θ is generally not surjective. But
it can be proven surjective assuming countable choice: for all sets Y and relations P between
N and Y , we assume Πn : N. ‖Σy : Y. P n y‖ → ‖Σf : N → Y.Πn : N. P n (f n)‖. To actually
have an inverse ψ for θ we need more. In addition to countable choice, we need the quotient
X/R to be weakly effective in the sense that Πx, x′ : X. absx ≡ absx′ → ‖xRx′‖. This can be
proved by additionally assuming that equivalent propositions are equal: if two sets X, Y are
propositions, then X ↔ Y → X ≡ Y .

Assuming countable choice and equality of equivalent propositions (in addition to the as-
sumptions of equality of extensionally equal functions and equality of (strongly) bisimilar coin-

ductive data), multiplication µX : D̂ (D̂X) → D̂X can be defined and satisfies the monad
laws.

One should be careful to not assume too much, as it is easy to arrive at provability of non-
constructive principles such as excluded middle. For example, assuming effectiveness for all
quotients together with equality of equivalent propositions gives excluded middle. Also, it may
be tempting to postulate surjectivity of the canonical function (X → Y )/(X → R)→ X → Y/R
which is there for all X, Y and R. But this is logically equivalent to weak existence of a section
for abs for all quotients: for all X and R, we have ‖Σf : X/R → X.Π q : X/R. abs (f q) ≡ q‖.
And that in turn is logically equivalent to the full axiom of choice: for all sets X, Y and relations
P between X and Y , it holds that Πx : X. ‖Σy : Y. P x y‖ → ‖Σf : X → Y.Πx : X.P x (f x)‖.

A yet different approach is not to quotient objects DX by the relations ≈X and aim at D̂
being a strong monad, but instead quotient homsets Kl(D)(X,Y ), i.e., function spaces X →
DY , by the pointwise extension X → ≈Y . This gives an arrow on Set in the sense of Hughes.

We have formalized our development in Agda.
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Abstract
One of the main problems in real algebraic geometry is root counting. Given a poly-

nomial, we want to count the number of roots that satisfies constraints expressed as poly-
nomial inequalities. A naive way is to compute an exponential number of time consuming
quantities, called Tarski Queries. In this paper, we formalize an algorithm which allows
to compute a linear number of them. We formally build a linear system, and we prove in
Coq that the system is of small size. The proof that the solutions of this system are the
numbers of roots satisfying the constraints is still ongoing.

Introduction
One of the main algorithms in real algebraic geometry is the cylindrical algebraic decomposi-
tion [4]. The purpose of such an algorithm is to give a precise representation of a partitioning
of the space described by polynomial equations.

Many algorithms that are connected to the task of finding such a decomposition are described
in a book by Basu, Pollack and Roy [1], which we use as a reference on algorithms in real
algebraic geometry. In this talk we focus on the formalization one of the sign determination
algorithms described in this book. The purpose of this algorithm is to count the number of roots
of a given polynomial, that satisfy polynomial constraints. The standard way to compute such
quantities is by linear combinations of Tarski Queries. The Tarski Query of two polynomials
is an integer that can be computed using the coefficients of the numerator and denominator of
the fraction.

Tarski queries and counting roots
Given a polynomial P we consider the roots of, and a polynomial Q which expresses sign
constraints on the roots of P , the Tarski Query can be defined as follows:

TaQ(P,Q) =
∑

x∈roots(P )

sign(Q(x)).

Although there is an algorithmic way to compute this quantity using the coefficients of P
and Q, we do not explain this here for the sake of readability. One can find detailed explanation
on how to do so in [1, 3, 2].

The number of roots of P such that Q has sign σ ∈ {−1, 0,+1} can be expressed as:

cnt(P,Q, σ) =
∑

x∈roots(P )
sign(Q(x))=σ

1.
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Hence, one can express Tarski Queries in terms of the number of roots in the following way:

(
TaQ(P, 1) TaQ(P,Q) TaQ(P,Q2)

)
=
(
cnt(P,Q, 0) cnt(P,Q,+1) cnt(P,Q,−1)

)
·

1 0 0
1 1 1
1 −1 1


More generally, given a familyQ of n polynomialsQ1, . . . , Qn, and a family of sign constrains

σ ∈ {−1, 0, 1}n one can express the Tarski Query TaQ(P,Qα), in terms of cnt(P,Q, σ) using a
linear transformation, where α ∈ {0, 1, 2}n,

Qα =
∏
i

Qαi
i ,

and
cnt(P,Q, σ) =

∑
x∈roots(P )

∀i,sign(Qi(x))=σi

1.

We formalize the linear transformation as a matrix in Coq/SSReflect and we prove that
the size of this matrix has the required bounds. The proof that this matrix is invertible is still
in progress, but we influenced the writing of the paper proof in the process of writing the formal
proof.

The formalization we describe here is intended as a replacement for a piece of code used in
a previous work of the first author [3, 2]. Indeed, in this previous work, we use a naive sign
determination algorithm were we have to invert a 3n square matrix and compute 3n Tarski
Queries, where n is the number of polynomials. In fact we know in advance that at most r
quantities of the form cnt(P,Q, σ) will be nonzero, since P has at most r roots, and we can
build a square matrix of size r and compute at most 3n Tarski Queries.

The use of a proof assistant such as Coq in the formalization of these algorithms led us to
write algorithms and conduct our proofs in a slightly different way than the one described in our
reference [1]. The authors of the book then adopted some of our reformulations to modify their
book, in order to make the description more precise or concise and to provide more detailed
justifications.
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Sorting networks are hardware-oriented algorithms to sort a fixed number of inputs using
a predetermined sequence of comparisons between them. They are built from a primitive
operator—the comparator—, which reads the values on two channels, and interchanges them if
necessary to guarantee that the smallest one is always on a predetermined channel. Comparisons
between independent pairs of values can be performed in parallel, and the two main optimization
problems one wants to address are: how many comparators do we need to sort n inputs (the
optimal size problem); and how many computation steps do we need to sort n inputs (the
optimal depth problem).

So far, most results on these two problems were obtained by special-purpose computer
programs that performed exhaustive analysis of huge space states, using only a handful of
mathematical results. In particular, in previous work [1] we proposed a generate-and-prune
algorithm to show size optimality of sorting networks, and used it to confirm all known bounds
for up to 8 inputs and to establish the previously unknown optimality of 25-comparator sorting
networks on 9 inputs.

Our program includes a pruning step that takes two sequences of comparators and decides
whether one of them can be ignored, by searching among all 9! permutations of 9 elements
for one with a particular property. This expensive step, which often fails, has to be repeated
billions of times throughout the whole run; therefore, the total execution required more than
10 years of computational time, or around one month on a state-of-the-art parallel cluster able
to run 288 threads simultaneously. However, during execution we recorded the comparator
sequences and permutations that allowed successful pruning steps, so that the whole run could
later be independently validated in just a few hours of sequential computation by shortcutting
the expensive search process. In this work we go one step further, and use this information to
produce a formal proof of these results. Our proof is divided in three parts: (1) a formalization
of the theory of size-optimal sorting networks, closely following the classical reference on the
topic [4]; (2) a formalization of the generate-and-prune algorithm from [1], further optimized
for performance, taking advantage of the information previously recorded; and (3) an extracted
program, correct by design, that successfully replicated the previous executions of generate-
and-prune.

The formalization of the theory. The formalization closely follows the presentation of
sorting networks in [4], in particular when defining the concept of optimal size. It presents a
number of problems regarding the handling of finite sets and combinatorial arguments involving
permutations and cardinality, which we attempt to solve in a systematic way. As key results,
we obtain operational characterizations of sorting networks.

However, it is not feasible to verify that a sequence of comparators on 9 inputs is a sorting
network (the Coq process eventually crashes after a few hours of computation), which makes the
execution of any generate-and-test algorithm in Coq unrealistic. This motivates the approach
of using program extraction to confirm the optimality results we aim for.

∗The authors were supported by the Danish Council for Independent Research, Natural Sciences. Computa-
tional resources were provided by the Danish Center for Scientific Computing.
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The formalization of the checker. The original formalization of the checker closely followed
the pseudo-code for generate-and-prune presented in [1], with one main difference: the expensive
search step at the core of the pruning phase was replaced by information obtained from an oracle
(a parameter in the formalization). This oracle is untrusted, so any data it provides is checked
before it is used, and we formally prove soundness theorems stating that applying k steps of
generate-and-prune on n channels will either: return a sorting network of the smallest possible
size, if this is smaller than or equal to k; or return a negative answer, guaranteeing that no
sorting network of size k or smaller exists.

However, the resulting extracted program had unfeasible execution times on 9 inputs, due
to the huge size of the search space. Therefore, we optimized the underlying algorithm taking
advantage of the fact that the oracle is offline: the data is freely available for preprocessing.
That allowed us to reformulate the pruning step in linear, rather than quadratic, time (in
the size of the search space). Simultaneously, we improved the data structures used by the
checker in order to obtain performance gains in steps that are performed in constant time.
After reproving the soundness properties, we were able to extract a program that ran in under
a week on a modest processor.

The extracted program. The formalization uses an oracle as a parameter, which had to be
implemented outside of Coq. This was achieved by means of a simple program that reads the
(suitably preprocessed) files generated by the original proof and feeds them as arguments to the
extracted checker. Since the checker does not trust the oracle, this information is verified, so
we do not have to worry about showing that the implementation of the oracle is itself correct.

The major bottleneck in executing the checker was memory consumption, and we were
forced to extract natural numbers into native types in order to bring the requirements down to
a manageable level. However, as natural numbers are used only as identifiers for channels in
comparator networks, this does not raise any issues regarding the correctness-by-design of the
extracted program.

Results and future work. Running the extracted program, we formally confirmed all the
values for size-optimal sorting networks up to 9 inputs, as described in [2, 3]. The formalization
is available at http://imada.sdu.dk/~petersk/sn/. During this process, we identified a few
minor mistakes in previously published proofs, the fixing of which required adjusting some def-
initions. We would like to extend this work with the theory of depth-optimal sorting networks,
which is substantially different from the one currently formalized, as well as with a formal proof
of a theoretical result regarding size-optimality [5].
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We define a typed λ-calculus λ2µIt where data-types are represented as Scott data types (as
opposed to the more well-known Church data-types), and where computation is done via con-
tinuations. Scott data types don’t have any recursion built in, so we add iteration schemes to
define functions by well-founded structural recursion. We have two separate schemes: one for
call-by-value iteration and one for call-by-name iteration. The advantage is that we can control
the computation behavior of functions via their definition, and not via the evaluation relation
we choose: evaluation is done via weak head reduction. We show that our calculus is strongly
normalizing and we define a notion of model for the calculus. Our calculus has polymorphism
and recursive types, so the strong normalization proof is somewhat like the one of Mendler [3].
However, we have some additional features, like iterators over Scott data types, so we cannot
just reuse the proof of Mendler. We first define a saturated-sets model, in the style of Kriv-
ine [2], and then show that the SN proof is almost an instance of it. We also show how we can
switch between call-by-value to call-by-name, via a kind of double negation translation and we
show how to define storage operators (in the sense of Krivine).

We now focus on the natural numbers to explain and motivate our system λ2µIt, polymorphic
lambda calculus with positive recursive types and CBN and CBV iterators. The Scott numerals
are defined as follows: 0 := λx f.x, 1 := λx f.f 0, 2 := λx f.f 1 and in general p+ 1 := λx f.f p
with the successor function defined by S := λn.λx f.f n. The Scott numerals have case as a
basis: the numerals are case distinctors: n q t = q if n = 0 and n q t = tm if n = m + 1. An
advantage is that the predecessor can immediately be defined: pred := λn.n 0 (λx.x). On the
other hand, one has to get “recursion” from somewhere else (e.g. in the untyped λ-calculus by
using a fixed point-combinator). We also have the more well-known Church numerals, which
are iterators: nx f iterates the function f on x, for n-times.

To type Scott numerals we need N = A → (N → A) → A. In λ2, we cannot do this, unless
we extend it with (positive) recursive types [1]. Then one still does not get any well-founded
recursion “for free”, so we still have to add iterators. In λ2µIt, we can define the type of
natural number as follows: N = ∀X.X → (N → X) → X. The constructors for N are (with
explicit type information in the λ-abstractions for clarity): zero := λz : X.λs : N → X.z : N,
suc := λn : N.λz : X.λs : N→ X.s n : N→ N.

Let B be some data type and let A be a type. ¬AB denotes B → A and similarly, ¬A¬AB
denotes (B→ A)→ A. The call-by-value iteration scheme for N is

(It-CBV)
f1 : ¬A¬AB f2 : B→ ¬A¬AB c : ¬AB n : N

Itcbv f1 f2 c n : A

With reduction rule

Itcbv f1 f2 c n →v n (f1 c) (λx : N.Itcbv f1 f2 (λy : B.f2 y c)x)
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We define addition in call-by-value style, AddCBV : ∀X.N→ N→ ¬X¬XN, as follows,

AddCBV := λx y : N.λc : ¬XN.Itcbv ŷ ŝuc c x

with ŷ := λc.c y, ŝuc := λn c.c(sucn). Then we have the nice property:

AddCBV nmc −�wh c n+m.

For call-by-name, we let B be a data type with

B = ∀X.(Φ1(B)→ X)→ . . .→ (Φm(B)→ X)→ X.

The call-by-name iterator for N is (for A an arbitrary type):

(It-CBN)
f1 : B f2 : B→ B c1 : Φ1(B)→ A . . . cm : Φm(B)→ A n : N

Itcbn f1 f2 n c1 . . . cm : A

With reduction rule:

Itcbn f1 f2 n c →n n (f1 c) (λx : N.f2 (λz.Itcbn f1 f2 x z)c)

We now define addition in call-by-name style, AddCBN : N→ N→ N, as follows.

AddCBN := λx y : N.λc1 : X.λc2 : N→ X.Itcbn y suc x c1 c2

Then AddCBNnm and n+m are observationally equal: AddCBNn y =βηvn sucn(y).

Storage operators have been introduced by Krivine to mimic call-by-value using call-by-name
evaluation. In λ2µIt, a storage operator for data type D is a term Stor : D → ∀X.¬X¬XD
satisfying, for all M with M =βvn d,

StorM f −�wh f d.

As the property also holds for a variable f and the evaluation →wh is deterministic, a storage
operator must first compute M to a normal form and then pass it to f (for any f). Define the
two terms StorN : N→ ∀X.¬X¬XN and UnstorN : (∀X.¬X¬XN)→ N as follows.

StorN := λnλf.Itcbv ẑero (λmb.b(sucm)) f n

UnstorN := λf.λz s.f (λn.n z s)

with ẑero := λc.c zero. Then the term StorN is a storage operator for N and UnstorN(StorN n) =βvn

n for all n ∈ N.

Scott numerals have recently been studied intensively in the Implicit Computational Complexity
setting, e.g. by Baillot, Brunel and Terui, It is future work to compare our approach with this
line of research.
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Relational parametricity is a fundamental concept within theoretical computer science and the
foundations of programming languages, introduced by John Reynolds [6]. His fundamental
insight was that types can be interpreted not just as functors on the category of sets, but
also as equality preserving functors on the category of relations. This gives rise to a model
where polymorphic functions are uniform in a suitable sense; this can be used to establish e.g.
representation independence, equivalences between programs, or deriving useful theorems about
programs from their type alone [7].

The relations Reynolds considered were proof-irrelevant, which from a type theoretic perspec-
tive is a little limited. As a result, one might like to extend his work to deal with proof-relevant,
i.e. set-valued relations. However naive attempts to do this fail: the fundamental property of
equality preservation cannot be established. Our insight is that just as one uses parametricity
to restrict definable elements of a type, one can use parametricity to restrict definable proofs to
ensure equality preservation in the proof-relevant setting.

Proof-relevant logical relations also appear in Benton, Hofmann and Nigam’s recent work [1],
but for unary relations, and in a setting without ∀-types. Hence they do not need to consider
equality preservation. In our work, we consider proof-relevant binary relations. A proof-relevant
relation R over two sets A and B consists of a map R : A × B → Set which, for every two
elements (a, b) ∈ A×B, associates a set of proofs that they are related. On top of this, we have
a new proof-irrelevant layer: a 2-dimensional relation Q is defined over four sets and four binary
proof-relevant relations. It can be thought of as over a square, where the vertices are sets and
the edges are the binary proof-relevant relations:

A

Q

OO

R2

��

oo R1 // BOO

R4

��
C oo

R3

// D.

The 2-dimensional relation Q is defined to be a proof-irrelevant relation over proofs agreeing on the
vertices: Q(a, b, c, d) ⊂ R1(a, b)×R2(a, c)×R3(c, d)×R4(b, d), where (a, b, c, d) ∈ A×B×C×D.

Equality preservation, i.e. the Identity Extension Property, is fundamental for parametricity.
The equality relation on a set gives a functor Eq from sets to relations, where Eq(a, b) = {∗|a = b}.
Clearly, there is no unique way to define an corresponding map from binary relations to 2-
dimensional relations. In the relational interpretation of ∀-types we instead use three different
“equality” maps, represented by the following squares:

AOO

��
Eq1

AOO

��

A oo //

Eq2

B A oo //
OO

��
Γ1

B

B B A oo // B B B.

Note that the structure involved is highly symmetric. In fact, Eq2 arises from Eq1 by reflection
along the diagonal. Similarly, the same reflection along the diagonal applied to Γ1 gives another
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notion of “equality”. We can easily define a group action on squares and binary proof-relevant
relations, and it looks like the interpretation of types are invariant under this action, although
we are in the middle of the proof. If this holds, it would simplify the presentation of the
interpretation of ∀-types and make it easier to work with them.

So far we proved that each layer of sets, proof-relevant relations and 2-dimensional relations
is fibred over the layer below. This structure gives a parametric 2-dimensional proof-relevant
model for system F , where types are interpreted as equality-preserving lifted functors and terms
as lifted natural transformations. In this interpretation, the Identity Extension Lemma and the
Abstraction Theorem hold. In particular we need to generalize the statement of the Identity
Extension Lemma, since we now have more kinds of “equalities”. The (bi)fibrational structure
of the model can be used to derive the standard consequences of parametricity [5]. For this, we
need to generalize also the Graph Lemma, which is fundamental in the proofs of existence of
initial algebras and terminal coalgebras. We are checking the details of the latter proofs, and
the proof that parametricity implies (di)naturality.

Interestingly, these 2-dimensional relations have clear higher dimensional analogues where
(n+1)-relations are fibred over a n-cube of n-relations [4]. Thus the story of proof relevant logical
relations quickly expands into one of higher dimensional structures similar to the cubical sets
which arises in Homotopy Type Theory [3]. Of course, there are also connections to Bernardy
and Moulin’s work on internal parametricity [2].
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2 University of Lyon, École Normal Supérieure de Lyon, France

3 Dipartimento di Informatica, Università di Torino, Italy
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The notion of resource awareness and control has gained an important role both in theoretical
and practical domains: in logic and lambda calculus as well as in programming languages and
compiler design. The idea to control the use of formulae is present in Gentzen’s sequent calculus’
structural rules ([6]), whereas the idea to control the use of variables can be traced back to
Church’s λI-calculus ([5]). The augmented ability to control the number and order of uses
of operations and objects has a wide range of applications ([9]) which enables, among others,
compiler optimisations and memory management .

In this paper, we investigate the control of resources in the λ-calculus. We propose the λr-
calculus, a λ-calculus enriched with resource control operators. The explicit control of resources
is enabled by the presence of erasure and duplication operators, which correspond to thinning
and contraction rules in the type assignment system. Erasure is the operation that indicates
that a variable is not present in the term anymore, whereas duplication indicates that a variable
will have two occurrences in the term which receive specific names to preserve the “linearity”
of the term. Indeed, in order to control all resources, in the spirit of the λI-calculus, void
lambda abstractions are not acceptable, so in order to have λx.M well-formed the variable x
has to occur in M . But if x is not used in the term M , one must perform an erasure by using
the expression x�M . In this way, the term M does not contain the variable x, but the term
x�M does. Similarly, a variable should not occur twice. If nevertheless, we want to have two
positions for the same variable, we have to duplicate it explicitly, using fresh names. This is
done by using the operator x <x1

x2
M , called duplication which creates two fresh variables x1

and x2.

Resource control calculus We first introduce the syntax and reduction rules of the λr-
calculus. Explicit control of erasure and duplication leads to decomposition of reduction steps
into more atomic steps. Since erasing and duplicating of (sub)terms essentially changes the
structure of a program, it is important to see how this mechanism really works and to be able
to control this part of computation. We chose a direct approach to term calculi rather than
taking a more common path through linear logic [1, 3].

Although the design of our calculus has been motivated by theoretical considerations, it
may have practical implications as well. Indeed, in the description of compilers by rules with
binders in [8], the implementation of substitutions of linear variables by inlining is simple and
efficient when substitution of duplicated variables requires the cumbersome and time consuming
mechanism of pointers and it is therefore important to tightly control duplication. On the other
hand, a precise control of erasing does not require a garbage collector and prevents memory
leaking.

Intersection types and strong normalisation Intersection types were introduced to over-
come the limitations of the simple type discipline (e.g. [2]), and they became a powerful tool for
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characterising strong normalisation in different term calculi. Intersection types in the presence
of resource control operators were first introduced in [7], where two systems with idempotent
intersection were proposed. Later, non-idempotent intersection types for contraction and weak-
ening are treated in [4]. In this paper, we treat a general form of intersection without any
assumptions about idempotence. As a consequence, our intersection type system can be con-
sidered both as idempotent or as non-idempotent, both options having their benefits depending
on the motivation.

We propose an intersection type assignment system λr∩ that integrates intersection into
logical rules, thus preserving syntax-directedness of the system. We assign a restricted form of
intersection types to terms, namely strict types. Intersection types fit naturally with resource
control. Indeed, the control allows us to consider three roles of variables: variables as place-
holders, variables to be duplicated and variables to be erased. For each kind of a variable, there
is a kind of type associated to it, namely a strict type for a placeholder, an intersection type
for a variable to-be-duplicated, and a specific type constant > for an erased variable.

By the means of the introduced intersection type assignment system λr∩, we manage to
completely characterise strong normalisation in λr, i.e. we prove that terms in the λr-calculus
enjoy strong normalisation if and only if they are typeable in λr∩. First, we prove that all
strongly normalising terms are typeable in the λr-calculus by using typeability of normal forms
and redex subject expansion. We then prove that terms typeable in λr-calculus are strongly
normalising by adapting the reducibility method for explicit resource control operators.

The presented work is significantly improved in comparison with [7], and it has been under
revision for publication.
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The model-checking problem for higher-order recursive programs, expressed as higher-order
recursion schemes (HORS), and where properties are specified in monadic second-order logic
(MSO) has received much attention since it was proven decidable by Ong ten years ago. Every
HORS may be understood as a simply-typed λ-term G with fixpoint operators Y whose free
variables a, b, c . . . ∈ Σ are of order at most one. Following the principles of a Church encoding,
these variables provide the tree constructors of a ranked alphabet Σ, so that the normalization
of the recursion scheme G produces a typically infinite value tree 〈G〉 over this ranked alphabet.

In order to check whether a given MSO formula ϕ holds at the root of such a value tree 〈G〉,
a convenient and traditional approach is to run an equivalent automaton Aϕ over it. In the
specific case of MSO logic, the corresponding notion of automaton is provided by alternating
parity tree automata (APT), a kind of non-deterministic top-down tree automaton enriched with
alternation and coloring. Every run of such an automaton may be understood as a syntactic
proof-search of the validity of the formula ϕ over the value tree 〈G〉. A typical transition over
a binary symbol a ∈ Σ is of the following shape:

δ(q0, a) = (2, q2) ∨ ((1, q1) ∧ (1, q2) ∧ (2, q0))

When reading the symbol a in the state q0, the automaton Aϕ can either (1) drop the left
subtree of a, and explore the right subtree with state q2, or (2) explore twice the left subtree
of a in parallel, once with state q1 and the other time with state q2, and explore the right subtree
of a with state q0. Kobayashi observed that the transitions of an alternating tree automaton A
can be reflected by giving to the symbol a the following refined intersection type:

a : (∅ → q2 → q0) ∧ ((q1 ∧ q2)→ q0 → q0) (1)

Using intersection types in this way, Kobayashi constructs a type system where a higher-order
recursion scheme G is typed by a state q0 of the automaton A iff its value tree 〈G〉 is recognized
from that state q0. In order to recover the full expressive power of MSO logic, one needs to
adapt this correspondence theorem to alternating parity automata (APT), and thus to integrate
colors in the intersection type system. Recall that every state q of such an APT is assigned a
color Ω(q) ∈ N. This additional information is devised so that a run-tree of the APT Aϕ over
the value tree 〈G〉 proves the validity of the associated MSO formula ϕ iff, for every infinite
branch of the run-tree, the greatest color encountered infinitely often is even. Kobayashi and
Ong extended the original intersection type system in order to integrate this extra coloring
information.

In a series of recent papers [6, 7], we establish a tight and somewhat unexpected connection
between higher-order model-checking and linear logic, starting from a modal reformulation of
Kobayashi and Ong’s work. In particular, we show that their original type system can be
slightly altered (and in fact improved) in order to disclose the modal nature of colors, and
its connection to the exponential modality of linear logic. In our modal reformulation, the
refinement type (1) associated to the transition of an APT may be colored (or modalised) in
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the following way:

a : (∅ → �c2 q2 → q0) ∧ ((�c1 q1 ∧�c2 q2)→ �c0 q0 → q0) (2)

where �c describes a family of modal operators, indexed by colors c ∈ N. The connection of
intersection types with linear logic comes from the linear decomposition of the intuitionistic
arrow

A⇒ B = !A ( B

which regards a program of type A ⇒ B as a program of type !A ( B which thus uses its
input !A only once in order to compute its output B ; but where the exponential modality
“ ! ” enables at the same time the program to discard or to duplicate this single input !A. In
the relational semantics of linear logic, the exponential modality ! is interpreted as a finite
multiset construction, so that the model keeps track of the number of times an argument is
called by the function. The relational semantics is called quantitative for that reason. We
translate in [5] the intersection type system originally devised by Kobayashi (restricted to the
simply-typed λ-calculus) into an equivalent intersection type system where intersection is non-
idempotent. Adapting a correspondence developped by Bucciarelli and Ehrhard [1, 2] between
indexed linear logic and the relational semantics of linear logic, we establish that the resulting
intersection type system computes the relational semantics of simply-typed λ-terms. At this
stage, there remains to extend the correspondence to the simply-typed λ-calculus with a fixpoint
operator Y . One conceptual difficulty is that the traditional interpretation of !A in the relational
semantics of linear logic is biased towards an inductive (rather than coinductive) interpretation
of the fixpoint operator Y . Technically speaking, this comes from the fact that the multisets
in !A are finite. For that reason, we develop an alternative relational semantics of linear logic
where the exponential modality noted A 7→  A is interpreted as the set M≤ω(A) of finite-
or-countable multisets of elements of A, see [6] for details. This alternative and “infinitary”
relational interpretation of linear logic enables us to establish a clean correspondence between
(1) the coinductive intersection type system originally constructed by Kobayashi (2) the run-
trees of an alternating tree automaton with coinductive acceptance condition (3) our “infinitary”
variant of the traditional relational semantics of linear logic. Put all together, these results
provide a semantic account of higher-order model-checking where the acceptance condition of
the underlying alternating tree automaton A is restricted however to the purely coinductive
case.

At this stage, there thus remained to capture the full power of the MSO logic. To that
purpose, we incorporated the family �c of modal operators mentioned earlier to our infinitary
relational semantics of linear logic. The key idea is that this extra coloring information living at
the level of the intersection type system reduces once reformulated at the level of the relational
semantics into a very simple and elementary comonad, defined as follows:

� A = Col ×A = &c∈Col A

where Col ⊆ N typically denotes the finite set of colors appearing in the alternating parity
tree automaton Aϕ associated to the MSO-formula ϕ. The existence of a distributive law
λ :  ◦2 ⇒ 2 ◦  enables us to compose the comonad 2 with the exponential modality  in
the original relational semantics, in order to obtain a new and “colored” exponential modality
A 7→  2A. In the resulting infinitary and colored relational model, the colored intersection
typing (2) has the following interpretation [[a]] of the symbol a ∈ Σ as semantic counterpart:

[[a]] = { ([], ([(c2, q2)], q0)) , ([(c1, q1), (c2, q2)], ([(c0, q0)], q0)) } (3)

Note that the interpretation of the symbol a of the alternating parity tree automaton Aϕ is a
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subset of the interpretation of o → o → o, where o is interpreted as the set Q in our colored
relational semantics:

[[a]] ⊆  2 o⊗  2 o( o = (M≤ω(Col ×Q))
2 ×Q

We then defined an inductive-coinductive fixpoint operator Y , based on the principles of alter-
nating parity tree automata: the fixpoint operator iterates finitely in the scope of an odd color,
and infinitely when the color is even, see [6] for details. This interpretation of the fixpoint oper-
ator Y based on parity may be also formulated at the level of intersection types: it corresponds
in that setting to the introduction of a fixpoint rule, together with an appropriate notion of
winning derivation tree formulated by the authors in [7]. Finally, we prove that a recursion
scheme G produces a tree accepted from q by Aϕ if and only if its colored relational semantics
contains q – or alternatively, if and only if there is a winning derivation typing G with q.

This connection with linear logic leads us to a new proof of the decidability of the “selection
problem” established by Carayol and Serre [3]. Our semantic proof of decidability [4] is based
on the construction of a finitary and colored semantics of linear logic, adapted this time from
the traditional qualitative semantics of linear logic based on prime-algebraic lattices and Scott-
continuous functions between them — rather than from its alternative quantitative relational
semantics. Interestingly, this qualitative semantics of linear logic corresponds to an intersection
type system with subtyping, formulated in particular in the work by Terui [9]. It should be
noted that the decidability of the “selection problem” implies in particular the decidability
result for MSO formulas established by Ong [8] ten years ago. This decidability result gives a
strong evidence of the conceptual as well as technical relevance of the connection which we have
established and developed [4, 5, 6, 7] between higher-order model-checking and linear logic1.
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A critical issue concerning programming languages and proof assistants based on dependent
type theory is the efficient implementation of reduction on open terms, where meta-variables can
appear: this question is important not only for the execution of dependently typed programs,
but already in the typechecker implementing the validation of such programs, through the use of
the conversion rule. Following the Curry-Howard tradition, we are currently investigating the
relation between the internal language of Agda [8] and a focused sequent calculus presentation
of intuitionistic logic, the sequent calculus being naturally well-suited for typing open terms.

1 Internal Languages using Dependent Types

Different approaches can be used to implement a dependently typed language. For example, the
proof terms used in the Coq proof assistant are really based on the natural deduction presentation
of a higher-order intuitionistic logic, where matching is performed through a dedicated construct.
However, in the Agda language, matching is part of an equational style of programming where
the left-hand side of a definition can have a complex shape. As a result, the internal language
used in Agda is not exactly a dependently typed pure λ-calculus, but a calculus containing the
case-splitting tree of a definition involving matching.

A close look at the internal language of Agda reveals that it is much related to a presentation
of intuitionistic logic in the sequent calculus. In particular, one can see the use of a definition as
applying the cut rule, where one premise corresponds to the definition and the other to its use
inside another term. Then, whenever the typechecker needs to compare two terms, it needs to
reduce them by unfolding the definitions, which corresponds to a cut elimination process — note
that all cuts cannot be eliminated, because of recursive definitions. At this point, it is important
to observe that cut elimination in the sequent calculus, although equivalent to β-reduction in
the standard λ-calculus, can be performed in many different ways [9, 3]. Moreover, important
insights on cut elimination have been obtained through the analysis of linear logic [4] and its
intuitionistic variant [2]. Based on the idea that more control can be gained over normalisation
of terms in the sequent calculus, compared to natural deduction and the associated β rule, we
propose an analysis of reduction in Agda using the tools of the sequent calculus to improve the
efficiency of reduction, and therefore also the efficiency of typechecking.

2 Term Assignments for Focused Sequent Calculi

Although it offers a fine-grained representation of proofs, the sequent calculus LJ for intuitionistic
logic is not well-suited for computation, in its basic, unrestricted form. Indeed, it lacks a canonical
structure as found in natural deduction, that can guide the reduction process, but a well-behaved
form can be recovered through the focusing technique [1, 7]. This strong structure is also
important to compare proof terms, which is essential in a proof assistant — in the setting of
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natural deduction, βη-normal forms are considered, while in the sequent calculus one should
consider cut-free focused proofs. Moreover, focusing allows to consider only the fragment of
proofs isomorphic to the standard λ-calculus, or to allow for proofs containing more sharing.

The internal language of Agda uses an application to list of arguments called spines, and
is best compared to the λ-calculus of Herbelin [5], the computational interpretation of LJT, a
particular focused system related to call-by-name reduction in the λ-calculus. There are other
possible choices in the design of a focused system, for example following a call-by-value approach,
but LJT is an excellent starting point — in particular, because it is the basis for a system
developped to handle dependent types in the sequent calculus [6]. Our claim is that the versatile
structure of the sequent calculus, associated with the strong structure provided by focusing,
makes it an ideal framework to study, from a proof-theoretical perspective, the implementation
of dependently typed languages.

As an example, consider a focused system where ` denotes the inversion phase and � denotes
the focusing phase. One can handle case-splitting on natural numbers using the following rules:

Γ � t : C
−−−−−−−−−−−−−
Γ ` 7→ t : C

Γ,Γ′{zero/x} ` T : C{zero/x} Γ, n : N,Γ′{sucn/x} ` T ′ : C{sucn/x}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, x : N,Γ′ ` split (x, T, n.T ′) : C

and this yields the following interpretation of an equational definition of addition, as it would
be written in Agda:

add zero n = n

add (suc m’) n = suc (add m’ n)

⇒ m : N, n : N ` split (m, 7→ n,m′ 7→ suc (add (m′ :: n :: ε) :: ε))

From the basis of a sequent system adding dependent types to λ, we can start the investigation
of more complex focused systems, as obtained for example when considering the full LJF calculus
of [7], of which the usual LJT and LJQ calculi are fragment. The goal of this move from the
standard setting of natural deduction to the sequent calculus is to exploit the ability of the
sequent calculus to capture different evaluation strategies, such as call-by-name and call-by-value,
in a single, unifying framework, and therefore allowing to improve the efficiency of reduction.
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As revealed by T. Griffin [3], classical reasoning is related to control operators. Classical
reasoning can be simulated within intuitionistic logic via a negative translation, the same way
programming with control can be simulated in pure λ-calculus by reasoning within a continua-
tion monad. Under this view, classical logic is “direct style” for proving intuitionistically within
the target of a negative translation.

We shall consider a monotonic memory update effect and connect it to Kripke’s forcing,
seen as a dependent variant of the reader monad. We shall then interpret reasoning within
the target of Kripke’s forcing as indirect style for reasoning with a monotonic memory update
effect (by monotonic update is meant that the memory can be updated only with a value which
refines the previous value according to a given refinement order).

As an application, let us consider logical completeness of classical logic with respect to two-
valued models and logical completeness of intuitionistic logic with respect to Kripke models
and see the former as a direct-style formulation of the latter using monotonic memory update.

The core of the completeness proof proves (�M A) ↔ (Γ ` A) for the two-valued model
defined on atoms by �M P , (Γ ` P ), where Γ is a mutable variable denoting a context and
updatable according to the context extension order.

It is formulated in an intuitionistic second-order arithmetic with delimited side-effects val-
idating a specific principle characterising monotonic memory update. This arithmetic is intu-
itionistic in the sense that the disjunction and witness existence properties are retained.

The proof instructions for delimited monotonic update are set and update where T ranges
hereditarily positive formulas, i.e. over ∀-→-free formulas. The updatable variable is denoted
by an ordinary term variable x.

Γ, [b : x ≥ t] ` q : T (x) Γ ` r : refl ≥ Γ ` s : trans ≥ x fresh in Γ and T (t)

Γ ` setx := t as b/(r,s) in q : T (t)
seteff

Γ, [b : x ≥ t(x′)] ` q : T (x) Γ ` r : t(x′) ≥ x′ [x ≥ u] ∈ Γ for some u x′ fresh in Γ

Γ ` updatex := t(x) ofx′ as b by r in q : T (t(x))
update

The core of the completeness proof is defined for the negative fragment of classical logic by
mutual induction using the “reify” ↓ and “reflect” ↑ functions used in the context of semantic
normalisation (starting with [1]) and type-directed partial evaluation (e.g. [2]).
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The core of the completeness proof is:

↑A Γ ` A −→ �M A

↑P (~t) g , g

↑A→̇B g , m 7→ ↑B ˙App
Γ,A,B
→ (g, ↓A m)

↑∀̇xA g , t 7→ ↑A[t/x]
˙App

Γ,x,A
∀ (g, t)

↓A �M A −→ Γ ` A
↓P (~t) m , m

↓A→̇B m , ˙Abs
Γ,A
→ (updateΓ := (Γ, A) ofΓ1 as bA by rA in ↓B (m (↑A Ȧx

Γ1,A,,Γ
(bA))))

↓∀̇xA m , ˙Abs
Γ,x,A
∀ (ẏ, ↓A[z/x] (mẏ))

where ˙Abs→, ˙App→, ˙Abs∀, ˙App∀ and Ȧx are the constructors of the logic while rX proves Γ ⊂
(Γ, X) and ẏ is taken fresh in Γ.

Let Classic(M) , ∀A (�M ¬̇¬̇A −→ �M A). The next step is to show that the model is
classical:

classic : Classic(M)

classic , A 7→ m 7→↑A (Ḋn(↓¬̇¬̇A m))

with Ḋn standing for double negation elimination.
The final statement is then:

complA : ∀M∀σ (Classic(M) → �M A) −→ ` A
complA , ψ 7→ setΓ := ∅ as b/(r,s) in ↓A (ψM id classic)

where id is the empty substitution, ∅ is the empty context and r and s are proofs of reflexivity
and transitivity of the inclusion ⊂ of contexts.

The resulting proof of completeness does not require any enumeration of formulas. In our
computational meta-language, it produces normal proofs of ` A by replicating the structure of
the initial proof of � A, thus suitable for semantic normalisation.

The contents of the talk is covered by a work-in-progress paper.
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In this note, we discuss how to introduce dependent types into the Lambek calculus [7] (or,
in general, an ordered calculus [17] and extensions such as those found in the studies of cate-
gorial grammars [12, 13]). One of the motivations to introduce dependent types in syntactical
analysis is to facilitate a closer correspondence between syntax and semantics, especially when
modern type theories are used in formal semantics [14, 9, 10, 2]. We then hope to establish a
uniform basis for NL analysis: from automated syntactical analysis to logical reasoning in proof
assistants based on type theories and formal semantics.

Dependent types have been used in various contexts in computational linguistics (see, for
example, [14, 3, 11] among others). In [15] that formalises the Lambek calculus in (a proof
assistant that implements) Martin-Löf’s type theory, Ranta discussed the idea of introducing
type dependency into directed types and gave an inspiring example to represent directed types
of quantifiers, although the paper did not study a formal treatment of such an extension. De
Groote et al [4] studied how to extend the underlying type system for ACGs by (intuitionistic)
dependent product types so that type families can be used to represent syntactic categories
indexed by linguistic features.

Combining resource sensitive types (such as those in linear logic [5]) with dependent types
has been an interesting but difficult research topic and many researchers have worked on this,
mainly with motivations to apply such calculi to programming and verification problems in
computer science (see early work such as [1] and recent developments such as [6, 16]). However,
how such a combination should be done is still widely open, on the one hand, and very much
depends on the motivations in their applications, on the other.

We present a Lambek calculus with dependent types. Besides the type constructors in the
Lambek calculus [7], we shall introduce directed types for dependent products (Πr and Πl)
and dependent sums (Σ∼ and Σ◦). Also considered is how to introduce type universes into
the calculus. These are some of the type constructors in a modern type theory found useful in
formal semantics and, therefore, their introduction at the syntactic level helps to facilitate a
closer syntax-semantics tie as mentioned above. A focus of the current note is to formulate the
rules for these types in ordered contexts so that their meanings are correctly captured.

1 The Lambek Calculus

Introducing dependent types into a Lambek calculus, we consider a calculus with contexts
having two parts:

Γ; ∆

where Γ is an intuitionistic context (whose variables can be used for any times in a term) and ∆
is a Lambek context (or ordered context). Types may only depend on ordinary variables in Γ,
but not on Lambek variables in ∆.1 Since we are going to introduce dependent types in which

∗Partially supported by grants from Royal Academy of Engineering and CAS/SAFEA International Partner-
ship Program.

1This is a design choice of the current notes; it follows all the existing work (so far) on introducing dependent
types into resource sensitive calculi.
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(/-F)
Γ; ∗ ` A type Γ; ∗ ` B type

Γ; ∗ ` B/A type
(/-I)

Γ; (∆, x:A) ` b : B Γ; ∗ ` B/A type

Γ; ∆ ` /x:A.b : B/A

(/-E)
Γ; ∆1 ` f : B/A Γ; ∆2 ` a : A

Γ; (∆1,∆2) ` f a : B
(/-C)

Γ; (∆1, x:A) ` b : B Γ; ∆2 ` a : A

Γ; (∆1,∆2) ` (/x:A.b) a = [a/x]b : B

Figure 1: Rules for directed Lambek types B/A.

(Πr-F)
Γ; ∗ ` A type Γ, x:A; ∗ ` B type

Γ; ∗ ` Πrx:A.B type
(Πr-I)

Γ, x:A; ∆ ` b : B Γ; ∗ ` Πrx:A.B type

Γ; ∆ ` λrx:A.b : Πrx:A.B

(Πr-E)
Γ; ∆ ` f : Πrx:A.B Γ; ∗ ` a : A

Γ; ∆ ` appr(f, a) : [a/x]B
(Πr-C)

Γ, x:A; ∆ ` b : B Γ; ∗ ` a : A

Γ; ∗ ` Πrx:A.B type

Γ; ∆ ` appr(λrx:A.b, a) = [a/x]b : [a/x]B

Figure 2: Directed Πr-types.

objects may occur, we need the following equality typing rule which says that computationally
equal types have the same objects:

Γ; ∆ ` a : A Γ; ∗ ` A = B

Γ; ∆ ` a : B

Contexts of the above form obey the following validity rules where, in the last two rules,
x 6∈ FV (Γ,∆):

∗; ∗ valid
Γ; ∆ valid Γ; ∗ ` A type

(Γ, x:A); ∆ valid

Γ; ∆ valid Γ; ∗ ` A type

Γ; (∆, x:A) valid

For variables, we have
Γ, x:A,Γ′; ∗ valid

Γ, x:A,Γ′; ∗ ` x : A

Γ; y:A valid

Γ; y:A ` y : A

We can now present the directed types in the Lambek calculus. The rules for the directed
types B/A are given in Figure 1. The rules for A \ B are symmetric with term constructors
such as \x:A.b and are omitted (so are the rules for ordered conjunctions).

2 Dependent Lambek Types

Directed Dependent Products. Dependent product types (Π-types) are split into directed
dependent products (Πr and Πl). The rules for Πr-types are given in Figure 2. The rules for
Πl-types, omitted here, are symmetric with term constructors λlx:A.b and appl(a, f).

Type Universes. In type theory, a type universe is a type whose objects are (names of)
types. For instance, common nouns can be considered to correspond to types (rather than
predicates), as in formal semantics in modern type theories [14, 8]. In a similar fashion, we may
introduce a universe CN of common nouns:

∗; ∗ ` CN type

Γ; ∗ ` A : CN

Γ; ∗ ` TCN (A) type
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(Σ∼-F)
Γ; ∗ ` A type Γ, x:A; ∗ ` B type

Γ; ∗ ` Σ∼x:A.B type

(Σ∼-I)
Γ; ∗ ` a : A Γ; ∆ ` b : [a/x]B

Γ; ∆ ` pair(a, b) : Σ∼x:A.B

(Σ∼-E)
Γ; ∆ ` p : Σ∼x:A.B Γ, x:A; ∆′, y:B ` e : C Γ; ∗ ` C type

Γ; (∆,∆′) ` let pair(x, y) = p in e : C

(Σ∼-C)
Γ; ∗ ` a : A Γ; ∆ ` b : [a/x]B Γ, x:A; ∆′, y:B ` e : C Γ; ∗ ` C type

Γ; (∆,∆′) ` let pair(x, y) = pair(a, b) in e = [a/x, b/y]e : C

Figure 3: Rules for Σ∼-types.

where TCN maps any common noun to a type (we often omit TCN and just write A for TCN (A)).
(CN is closed under several type constructors including the directed dependent sum types
below.)

Example 2.1. Here is a simple example in syntactic analysis (as in categorial grammar).
Consider the following sentence (1):

(1) Every student works.

The words in the sentence can be given the following types:

(2) every : ΠrX:CN. S/(X \ S)

(3) student : CN

(4) works : human \ S

where S is the type of sentences and student is a subtype of human (and, hence by contravari-
ance, human \ S is a subtype of student \ S). It is then straightforward to derive that

appr(every, student) works : S

In other words, (1) is a sentence.

Directed Dependent Sums Dependent sum types (Σ-types) are split into reverse dependent
sums (Σ∼) and concatenation dependent sums (Σ◦). The rules for Σ∼-types are given in
Figure 3, while the rules for Σ◦-types are symmetric and omitted. We remark that the universe
CN is closed under Σ∼ and Σ◦. For example, directed dependent sum types may be used to
analyse modified common nouns when the modifying adjectives are intersective or subsective.
To illustrate this with an example, assuming that B : A \ S, let’s use Σ∼(A,B) to abbreviate
Σ∼x:A.(x B) and Σ◦(A,B) to abbreviate Σ◦x:A.(x B). Now, with diligent : human \ S,
we can use Σ∼(student, diligent) to describe the modified common noun diligent student, and
Σ◦(student, diligent) to analyse student who is diligent.
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Abstract

The idea of Universal Grammar (UG) as the hypothetical linguistic structure shared
by all human languages harkens back at least to the 13th century. The best known mod-
ern elaborations of the idea are due to Chomsky. Following a devastating critique from
theoretical, typological and field linguistics, these elaborations, the idea of UG itself and
the more general idea of language universals stand untenable and are largely abandoned.
The presentation shows how to tackle the hypothetical structure of UG in a framework
very different from the Chomskyan ones, using dependent and polymorphic type theory.
The expected outcome of this work in progress is a versatile logic for expressing natural
language morphosyntax and compositional semantics.

1 Universal Grammar

Type theory, in its modern form (i.e. as dependent and/or polymorphic type theory), is the
most expressive logical system (as compared to the nonlogical ones such as set and category
theory). As [6, 2, 3, 1] have shown, complex type theories outshine simpler ones in accounting
for natural language (NL) phenomena like anaphora, selectional restrictions, etc. Second, as
the notion of type is inherently semantic (type := class of semantic values), it is by definition
suited for analyzing universal phenomena in NL, the semantics of which is largely universal (as
witnessed by the possibility of translation from any human language to another).

The talk introduces a notationally simple system (L) matching NL morphosyntax as closely
as possible. The purpose of L is to express the universal core of NL morphosyntax in a formally
and linguistically precise, yet parsimonious way. L is furnished with elementary and complex
morphosyntactic types, some of which are universal, others nonuniversal or possibly universal.
The system is based on dependent and polymorphic type theory, with Martin-Löf’s type theory
(MLTT; [5]) as the main type-theoretical reference point. L is a relational logic in prefix nota-
tion, with formulas like RUN(THE(Y(man))), (Y(LOVE))(mary,john), etc. (0th order relations
(1st order arguments) in small letters, all other relations in capitals; Y a tense/person/number
(etc.) marker). Elementary relation symbols represent constant types inhabited by language-
particular (proof) objects (e.g. the type ’man’ has objects man, homme, etc.). Both elementary
and complex formulas of L are morphosyntactic types that have semantics (by the definition
of type and by their alignment with morphosyntactic categories that have semantics (also by
definition)). By a wff of L we mean one that is wf both syntactically and semantically, i.e. wf
and well-typed. In L’s universe U , all formulas are morphosyntactic types and all types are
morphosyntactic formulas (by Curry-Howard isomorphism).

L is capable of analyzing anaphoric devices (pronouns, agreement, complementizers), lin-
guistic quantifiers (straightforwardly, since quantifiers are higher-order relations), selectional
restrictions (in par with [2, 1], but more directly, with formulas like READI,S(x, y), where cap-
ital subscript letters impose type restrictions on relations argument(s) (READI,S(x, y) means
that x is restricted to type I and y to type S)), etc. The centerpiece of L are typing rules,
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some simple examples of which are o(N, PN, PRO, X/*, GER) : X; this, that, those, these... :
DEM; a, the, other... : DET; o(DET, DEM) : D (o(x ) := all terms of type(s) x (x a sequence
of types)). Largely because of L’s metalanguage operators |, *, [], /, etc., only 30-50 rules are
required for a (possibly) complete specification of UG.

2 Type theory

Two main kinds of polymorphism in NL are term underspecification (“data type polymorphism”
in computer science) and argument ambiguity (e.g., “subtype polymorphism” in computer
science). The latter is handled with function o (Sec. 1), since a judgement o(A1, ..., An) : C is
a polymorphic binary relation of type (X ∈ A1, ..., An, C). MLTT handles polymorphism with
universes, so in MLTT one would fix a universe U = A1, ..., An and the relation’s type would
be written (

∑
X ∈ U)C or

∑
(U,C).

We give an example of casting L’s formulas to MLTT. Posit universes Rel and Arg (for
morphosyntactic relation and argument, resp.). Write an L formula A(B) (A : Rel, B : Arg).
Since arguments depend on relations, we need dependent types, i.e. a modern type theory such
as MLTT. Per MLTT’s notation, A(B) gets the preliminary form (A,B). The main dependent
type constructors in MLTT are

∑
and

∏
. With (A,B),

∏
would reverse the natural order by

taking Rel for the domain and Arg for codomain, so we will use
∑

instead. Thus the formula
map from L to MLTT is A(B) 7→

∑
(A,B).

Term underspecification is resolved by /-types (cf. [4]). An underspecified term b will be
typed with a /-separated string of symbols of all types over which b’s type is polymorphic. A
/-type is defined wrt. at least two other types C1, . . . , Cn between which no subtyping relation
holds.

The description of UG (and more generally, NL grammar) with dependent and polymorphic
types is very different from the traditional Chomskyan approximation of UG with rewrite
rules and/or syntax trees. The main differences from existing type-theoretical approaches (e.g.
[6, 2, 3, 1]) are a focus on UG, an integrated treatment of morphosyntax and sentential/phrasal
semantics, and an employment of polymorphic and dependent types.
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Abstract

In Homotopy Type Theory (HoTT), the ‘encode-decode’ method makes heavy use of ex-
plicit recursion over higher inductive types to construct, and prove properties of, homotopy
equivalences. We argue for the classical separation between specification and implementa-
tion, and hence for using relations to track the graphs of encode/decode functions. Our
aim is to isolate the technicalities of their definitions, arising from higher path construc-
tors, from their properties. We describe our technique in the calculation of π1(S1), and
comment on its applicability in the current Agda implementation of HoTT.

Introduction Burstall’s seminal analysis [2] of how to prove properties of fold (defined by
structural recursion on lists) proceeds by first deriving a proof principle for fold by structural
induction, and then applying it. This avoids relying on the definition of fold to achieve coinci-
dences in proof by list induction, by encapsulating the recursive call structure once and for all.
This achieves separation of concerns between a concrete implementation and its abstract spec-
ification in terms of the induction principle for its graph. This insight has been rediscovered,
applied, and engineered many times over; in type theory most recently in the Function [1] and
Program [8] extensions to Coq, and in the design and implementation of views in Epigram [6].

The encode-decode method, pioneered by Licata and Shulman in their proof of π1(S1) ' Z
[4], heavily exploits definition by structural recursion and proof by induction on the newly-
introduced Higher Inductive Types (HITs) of Homotopy Type Theory (HoTT [9]), where in-
ductive types introduce not only new term constructors, but also those of (higher) paths. Below
we explore Burstall’s technique in this context, and its implementation in systems such as Agda.

Graphs of (recursively-defined) functions A function f : Πx:AB(x) gives rise to a graph
relation F : Πx:AΠy:B(x)Type trivially via Fxy ≡ y = f(x). But if f is defined recursively,
then F may be given inductively, with base cases of the definition of f corresponding to axioms
in that of F , and step cases to inference rules, with recursive calls of f tracked by inductive
premises involving F . Such an F then yields an induction principle for f , and proofs that F is
sound, sndf (F ) : Πx:AΠy:BxFxy → y = f(x), and complete, cmpf (F ) : Πx:AFx(f(x)), for the
graph relation. Turning this around, any choice of (inductive) family G satisfying sndf (G) and
cmpf (G) constitutes an adequate representation of the graph of f , and may be used in proofs
about f , by virtue of establishing that F and G are extensionally equivalent (⇔) as relations.

The encode-decode equivalence, revisited The circle S1 is given as a HIT with 0-
constructor base : S1 and 1-constructor loop : base = base. Its covering space C(x) is defined by
higher recursion on x : S1, by C(base) ≡ Z and a path Z=Z obtained via the Univalence Axiom
from the automorphism of Z induced by succ : Z → Z. Then the path space P (x) ≡ base = x
over x : S1 is shown homotopy equivalent to C(x) via functions encode : Πx:S1Πp:P (x)C(x) (given
by the action p?(0) ≡ transportC( )p(0) of paths p on 0 : Z) and decode : Πx:S1Πc:C(x)P (x), de-

fined by higher induction on S1: the function decodebase maps z : Z to the iterated path loopz,
and one has to show this definition respects the action loop? of loop.
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Our approach requires the choice of two relations, Encodex p c and Decodex p c, which we
show sound and complete for encodex and decodex, together with a proof of the homotopy
equivalence, which amounts to proving: Πx:S1Πp:P (x)Πc:C(x)Encodex p c⇔ Decodex c p (†). For
Encodex p c we take simply the graph of encodex, while for Decodebase z p we take the inductively
defined graph of z 7→ loopz. The main subtlety lies in proving cmpdecodex(Decodex). As above,
one must show that Decodebase respects the loop? action in an appropriate sense. We then have
that decodex and encodex are inverse: by cmpencodex(Encodex), we have Encodex p (encodex(p)),
hence Decodex (encodex(p)) p by (†), and finally decodex(encodex(p)) = p by snddecodex(Decodex).
The other direction is similar.

Now, the argument may be further streamlined: since we choose relations Encodex and
Decodex , subject to the equivalence (†), we might as well take Encodex p c ≡ Decodex c p, and
thus must show Decodex c p sound and complete for encodex, or else Decodex c p ≡ Encodex p c,
and show that Encodebase is closed under loop?, and Encodex sound and complete for decodex.

Work in progress! Towards validating the above approach, and making comparisons with
Licata-Shulman, we have made some progress on an Agda formalisation [7], subject to some
wrinkles: firstly, inductive families such as those considered above appear not well-tolerated by
Agda, and in particular, its pattern-matching algorithm; instead, one must give equivalent for-
mulations, where the conclusions are explicitly described by equational premises [5]. Secondly,
the proofs of soundness and completeness are made far heavier by the explicit appeal to higher
induction on S1, in particular when showing closure of Encodebase, Decodebase under loop?.

Conclusions and future work We have only had time (and space!) to explore one of the
simplest instances of the encode-decode method. We hope to extend our approach to examples
such as Brunerie’s Flattening Lemma [9, Lemmas 8.1.12, 6.12.2], the Freudenthal suspension
theorem [ibid., Theorem 8.6.4], or Cavallo’s analysis of the Mayer-Vietoris sequence [3], and to
consider how systems such as Agda might better support the methods described here.

Acknowledgments We are grateful for feedback from the TYPES referees and the recent
Strathclyde HoTT workshop, as well as EPSRC support (EP/K020218/1 and EP/K023837/1).
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The dependent sum type of Martin-Löf’s type theory provides a strong existential elimina-
tion, which allows to prove the full axiom of choice. The proof is simple and constructive:

ACA := λH.(λx. wit(Hx), λx. prf(Hx))
: ∀xA∃yBP (x, y)→ ∃fA→B∀xAP (x, f(x))

where wit and prf are the first and second projections of a strong existential quantifier.
We present here a continuation of Herbelin’s works [5], who proposed a way of scaling up

Martin-Löf proof to classical logic. The first idea is to restrict the dependent sum type to
a fragment of our system we call N-elimination-free, making it computationally compatible
with classical logic. The second idea is to represent a countable universal quantification as
an infinite conjunction. This allows to internalize into a formal system (called dPAω) the
realizability approach [2, 4] as a direct proof-as-programs interpretation.

Informally, let us imagine that given H : ∀xA∃yBP (x, y), we have the ability of creating an
infinite term H∞ = (H0, H1, . . . ,Hn, . . .) and select its nth-element with some function nth.
Then one might wish that

λH.(λn. wit(nth n H∞), λn. prf(nth n H∞))

could stand for a proof for ACN. However, even if we were effectively able to build such a
term, H∞ might contain some classical proof. Therefore two copies of Hn might end up being
different according to their context in which they are executed, and then return two different
witnesses. This problem could be fixed by using a shared version of H∞, say

λH. let a = H∞ in (λn. wit(nth n a), λn. prf(nth n a) .

It only remains to formalize the intuition of H∞. We do this by a stream cofix0fn(Hn, f(S(n)))
iterated on f with parameter n, starting with 0 :

ACN := λH. let a = cofix0fn (Hn, f(S(n)) in(λn. wit(nth n a), λn. prf(nth n a) .

Whereas the stream is, at level of formulæ, an inhabitant of a coinductive defined infinite con-
junction ν0Xn(∃P (0, y)∧X(n+1)), we cannot afford to pre-evaluate each of its components, and
then have to use a lazy call-by-value evaluation discipline. However, it still might be responsible
for some non-terminating reductions. Our approach to prove a normalization property would
be to interpret it in HAω through a negative translation. However, the sharing forces us to
have a state-passing-style translation, whose small-step behaviour is quite far from the sharing
strategy we have in natural deduction.

In a recent paper, Ariola et al. presented a way to construct a CPS-translation for a call-by-
need version of the λ̄µµ̃-calculus [1], which allows some sharing facilities. Yet, this translation
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does not enjoy any typing property, and then does not give us a way of proving normaliza-
tion. Moreover, the λ̄µµ̃-calculus is typed with sequent calculus [3], which does not allow to
manipulate dependent types immediately.

We propose to deal with both problems while proving the normalization of our system in
two steps. First, we translate our calculus to an adequate version of the λ̄µµ̃-calculus that
allows to manipulate dependent types on the N-elimination-free fragment. Then we will try to
adapt the CPS-translation for call-by-need to our case, while adding it a type.

This work is currently in progress. For now, we managed to tackle the first problem, that is
to construct a sequent calculus version of the initial language dPAω, During this talk, we intend
to focus on this point, which turns out to be tricky, mainly because of the desynchronization of
the dependency at the level of type in call-by-value. Let us look at the β-rule to get an insight
of what happens. If we define the →L and →R rule as expected (where A⊥⊥ is the type of a
refutation of A):

Γ, a : A ` p : B

Γ ` λa.p : [a : A]→ B
→L

Γ ` q : A Γ ` e : B[q/a]⊥⊥ q /∈ Nef→ a /∈ A
Γ ` q · e : ([a : A]→ B)⊥⊥

→R

and consider such a proof λa.p : [a : A] → B and a context q · e : [a : A] → B, it reduces as
follows: 〈λa.p | q · e〉 〈q | µ̃a.〈p | e〉〉
On the right side, we see that p, whose type is B[a], is now cut with e of type B[q]. The idea
is that in the full command a has been linked to q at a previous level of the typing judgement.
We fixed this problem by making explicit a dependency list in the typing rules, which allows
this typing derivation:

Γ ` q : A

Γ, a : A ` p : B[a] Γ, a : A ` e : B[q]; {a|q}
〈p | e〉 : Γ, a : A; {a|q}

cut

Γ ` µ̃a.〈p | e〉 : A⊥⊥; {.|q}
µ̃

〈q | µ̃a.〈p | e〉〉 : Γ; {·|·}
cut

By using this dependency list, we managed to fully translate the dPAω of [5] into a sequent
calculus framework, that is a λ̄µµ̃-calculus with treatment of induction, cofix and equality. The
translation is fully correct with respect to types.

The resulting calculus is given with a head-reduction, following a call-by-need evaluation
strategy, and makes explicit the shared environment. This makes it a lot more closer to a
small-step abstract machine than the original calculus, and it is our hope that as in [1] this
would make the construction of a correct CPS-translation easier.
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Computer hardware has experienced a steady exponential increase in complexity in the last
decades. There is an increased demand for application-specific integrated circuits that avoid the
proverbial von Neumann bottleneck [1], and ever more algorithms enjoy hardware acceleration
(such as 3D/2D renderers, video/audio codecs, cryptographic primitives and network protocols).

This demand puts pressure on the industry to make hardware design quicker and more
efficient. At the same time, hardware design also requires very strong correctness guarantees.
These strong correctness requirements are commonly met using (exhaustive) testing and model
checking, making the design-verify-fix loop slower and more costly than in the software world.

There is a long tradition [4, 6] of modeling hardware using functional programming to pursue
higher productivity and stronger correctness assurance. A particular trend is to use functional
programming languages as hosts for Embedded Domain-Specific Languages (EDSLs) aimed at
hardware description, of which Lava [2] is a popular example. Some of the limitations of these
hardware EDSLs are due to the host’s type system, which lacks the power to express some
desirable properties of circuit models.

We believe that the advantages brought to hardware design by FP-inspired techniques can
be even greater if we use dependent types. We define a Hardware Description Language (HDL)
called Π-Ware, which is embedded in the dependently-typed general-purpose programming lan-
guage Agda. Circuits described in Π-Ware can be simulated, transformed in several ways,
proven correct, and synthesized (work in progress).

The existence of several different semantics for circuit models is due to Π-Ware’s deep
embedding : There is an inductive datatype of circuits (called C), and semantics (simulation,
synthesis, gate count, etc.) are just functions with C as domain. More specifically, the circuit
datatype is indexed by two natural numbers representing, respectively, the sizes of the circuit’s
input and output. The arithmetic fine tuning of these indices, along with other features of
dependent types, allow us to “ban” certain classes of design mistakes by construction, for
example:

• Our circuit constructors guarantee that all circuits are well-sized, i.e., there are never
“floating” or “dangling” wires.

• Connections between circuits are guaranteed to never cause short-circuits (two or more
sources connected to the same load).

In addition to this structural correctness by construction, we can also interactively prove
properties of circuits, which provides some advantages over the fully-automated verification ap-
proach used widely in industry. First of all, we can inductively prove properties over whole cir-
cuit families. Furthermore, proofs written in Agda are modular, in contrast to fully-automated
verification. This means that, when proving laws concerning a certain circuit (family), we reuse
previously proven facts about its constituent subcircuits.

In particular, we can write proofs of functional correctness. Our simulation semantics (even
for sequential circuits) are executable (in contrast to other EDSLs [3] with a relational seman-
tics). This means that the simulation semantics simply converts each circuit into a function,
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which can then be applied to input vectors, producing output vectors. We can then formulate
the statement of whether a circuit (family) implements the behaviour of a given specification
function, and proofs of correctness can be written by induction on circuit inputs.

As a first step in exploring the possibilities that our approach offers, we conducted a case
study, aiming to formalize a class of circuits known as parallel-prefix sums [5] in Π-Ware.
Parallel-prefix circuit combinators have been defined in terms of Π-Ware primitives, and we
are proving several properties of this class of circuits which had previously only been postulated
or proven on paper.

The case study has led us to establish suitable equivalence relations between circuits. We
have defined a relation of equality up to simulation, which identifies any two circuits with
the same simulation behaviour (taking equal inputs to equal outputs). Reasoning about this
equivalence relation, without postulating function extensionality, presents several challenges, for
which we believe to have found satisfactory solutions. Finally, we show how to define algebraic
laws involving circuit constructors and combinators. These may be used to construct provably
safe circuit transformations.

All in all, we claim there are several benefits to be gained from using dependent types to
describe hardware circuits. These techniques are more widely applicable to other domains and,
therefore, we believe them to be of interest to the wider TYPES community.
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Type-based termination is a mechanism for ensuring termination and productivity of
(co)recursive definitions [4]. Its main feature is the use of sized types (i.e. types annotated
with size information) to track the size of arguments in (co)recursive calls. Termination of
recursive function (and productivity of corecursive functions) is ensured by restricting recursive
calls to smaller arguments (as evidenced by their types). Type-based approaches to termina-
tion and productivity have several advantages over the syntactic-based approaches currently
implemented in Coq and Agda [5, 1, 2]. In particular, they are more expressive and easier to
understand.

In previous work [6, 5], we studied the metatheory of extensions of the Calculus of
(Co)Inductive Constructions (CIC) with a simple notion of sized types. While these systems
are more expressive than the guard predicates of Coq, there have two main shortcomings in the
case of coinductive types. First, corecursive definitions that use tail are not expressible, e.g.:
corec zeroes := cons(0, cons(0, tail zeroes)).

Second, Subject Reduction (SR) does not hold (a well-known problem in Coq that was
observed by Gimnez [3]). While in practice, the lack of SR does not seem to be a major issue,
it is theoretically unsatisfying.

In this work, we consider an extension of CIC with a notion of well-founded sized types,
inspired by Fcop

ω [2], that solves both issues. As in previous work, (co)inductive types are
annotated with size expressions taken from the size algebra given by s ::= ı | s+ 1 | ∞, where
ı is a size variable. In this approach, the (simplified) typing rule for streams looks like:

f : [ < ı] streamA ` t : streamıA ı fresh

` (corec f := t) : ∀ı.streamıA

The type streamsA is the type of streams (whose elements have type A) where at least s
elements can be produced. The definition above ensures that t can only make (co)recursive
calls on smaller (i.e. already produced) streams. Since  < ı we ensure that at least one more
element is produced by t. We require that each corecursive call to f be explicitly applied to a
size s satisfying the constraint s < ı.

The type of the stream constructor, cons, is (informally) the following:

cons : (∀ < s.A× streamA)→ streamsA

To construct an element of type streamsA we need to provide the head of type A and the tail
of type stream for an arbitrary  < s. To destruct cons above, we must apply it to a size r
satisfying r < s.

∗This publication was made possible by a JSREP grant (JSREP 4-004-1-001) from the Qatar National
Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility
of the author.
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Let us see how well-founded sized types overcome the first limitation of our previous ap-
proach mentioned above. Consider the following definition of the stream of Fibonacci numbers:

FIB ≡ corec fib := cons(. 0, cons(κ. 1, sum[κ] fib[κ] (tail[κ] fib[])))

where, given t : streamsA, tail[r](t) : streamr A for any r < s, and sum : ∀ı.streamı nat →
streamı nat→ streamı nat computes the point-wise addition of two streams of natural numbers.

This definition is well typed. The size variables introduced ( and κ) satisfy κ <  and  < ı.
The recursive call fib[] has type stream nat, and tail[κ] fib[] has type streamκ nat.

Let us consider the second issue mentioned above: lack of SR. In CIC (and Coq), unfolding
of (co)recursive definitions is restricted in order to have a strongly normalizing evaluation. In
the case of Coq, unfolding of corecursive definitions is only allowed within case analysis (which
leads to the loss of SR).

With well-founded sized types, we use the size annotations to restrict unfolding. Corecursive
functions have types of the form ∀ı.streamıA (in general, ∀ı.Π∆.streamıA). Like corecursive
calls, we require that corecursive functions be applied to a size annotation (size application is
denoted t[s]). We restrict unfolding to the case where the size annotation is ∞:

(corec f := t)[s]→ t[f/corec f := t] if s =∞

This reduction strategy satisfies SR (the proof is standard) [7]. Furthermore, we have proved
that this reduction relation is strongly normalizing. For instance, it prevents infinite unfolding
of tail FIB:

tail[∞] FIB[∞] → tail[∞] (cons(. 0, cons(κ. 1, sum[κ] fib[κ] (tail[κ] fib[]))))
→ cons(κ. 1, sum[κ] fib[κ] (tail[κ] fib[∞]))
→ cons(κ. 1, sum[κ] fib[κ] (cons(κ′. 1, sum[κ′] fib[κ′](tail[κ′] fib[κ]))))

Unfolding cannot proceed until the stream is further observed (e.g. by applying tail again).
This work is still in progress; the current version is available at [7]. We have proved most

of the metatheory, including strong normalization. We have also proved that size-inference is
decidable, i.e. size annotation can be inferred from minimal user-provided annotations, and we
implemented a small prototype (available at [7]). Our prototype already performs size inference;
however, the algorithm used is very inefficient. We are currently investigating more efficient
alternatives.
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Introduction Indexed W-types model inductive families, just as ordinary W-types model
inductive types. In the context of extensional type theory, indexed W-types were shown con-
structible from ordinary ones by Gambino and Hyland in a past TYPES post-proceedings [3]
using equivalent categorical terms: they construct initial algebras for dependent polynomial
functors from non-dependent ones in a locally cartesian closed category. In intensional type
theory with function extensionality1, an analogous result should hold when considering the
corresponding homotopified notion [1] of (indexed) W-types.2

Though tedious, this is provable using ad-hoc term-level manipulations following essen-
tially the idea from the extensional case. Instead, we want to highlight a conceptually clean
alternative. By illuminating a deeper categorical nature of the extensional construction [3],
we make it amendable to higher categorical generalization in terms of locally cartesian closed
quasi-categories.

Recent work, partially in progress, by Szumi lo [5] and Kapulkin exhibits the syntax of
intensional type theory with function extensionality as a locally cartesian closed quasi-category.
After verifying that quasi-categorical notions like initial objects in algebra quasi-categories agree
with their counterparts defined in the internal language of type theory, this should prove the
desired result.

It is noteworthy this approach lets us leave the realm of type-theoretic syntax by working
in the semantic domain of quasi-categories. It does not seem possible to formalize internally
the infinite tower of coherence e.g. of the notion of algebra morphisms with their compositional
structure. Nor is it needed: as realized early on in homotopy type theory, contractibility is
internally expressible, letting us define notions like homotopy initial algebra by referencing only
the first few levels [1]. Hence, only finitely many levels of coherence will be needed at any point.

However, several steps in a type-theoretic proof would each require explicating an addi-
tional layer of coherence to start with, making a manual translation to an internal proof rather
infeasable and unreadable (and of little conceptual value).3 This is due to a deficiency of cur-
rent syntax for homotopy type theory to adequately capture higher-dimensional categorical
coherence in a way that is comparable to how the identity type captures higher-dimensional
groupoidal coherence.

Work in progress.

Sketch: the extensional case Since our main contribution is introducing abstraction to
a previously concrete argument [3], the use of categorical language in the following sketch is
unavoidable. However, we only want to give some intuition for the underlying ideas. We have
retricted us to the extensional setting, and the reader is invited to take from it whatever they
want.

1That is: homotopy type theory without requiring a universe.
2Computation and uniqueness laws are formulated using coherent propositional equality, making them ho-

motopy initial algebras.
3We conjecture that an effective proof term is generatable from the quasi-categorical proof.
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Let C be a locally cartesian closed. Given f : B → A and s : B → I and t : A → I, the
associated dependent polynomial endofunctor Jfs,tK : C/I → C/I is composed of base change
along s, dependent product along f , and dependent sum along t:

C/I ∆s // C/B
Πf

// C/A Σt // C/I

The non-dependent version arises as the special case I = 1, in which case we will omit s and t.
The basic idea of [3] for constructing the initial algebra µF = µ Jfs,tK is to carve it out of

µ JfK, which we regard as the type of well-founded trees possibly ill-typed with respect to the
I-indexing. This is done by taking the equalizer of the diagram µ JfK ⇒ µ JI × fK where the two
maps copy to each node the index expected from “below” and given by “above”, respectively;
taking the equalizer corresponds to type-checking the indexing information. The construction
of these maps is very much hands-on via explicit recursive definitions, with a lack of symmetry
between the two maps and an ad-hoc choice for the index value at the root of the “below” map.
This suggests that conceptually we ought to be working in a different slice.

Abbreviate F = Jfs,tK and write JfK ∼= ΣIF∆I and JI × fK ∼= ΣI∆IΣIF∆I using 2-
functoriality and Beck-Chevalley conditions. Abbreviating T = ∆IΣI , the rolling rule [2] allows
to derive initial algebras µ(TF ) from µ JfK and µ(T 2F ) from µ JI × fK. Note T is a cartesian
monad (T, η, θ). Having “rolled around” ∆I , the two maps above are now given functorially: we
define the candidate carrier X for µF simply by the following (coreflexive) equalizer diagram:4

X // µ(TF )
µ(TηF )

//

µ(ηTF )
// µ(T 2F )µ(θF )oo

Observe that this is in complete analogy to the (coreflexive) equalizer diagram

F
ηF

// TF
TηF

//

ηTF
// T 2FθFoo

induced by T since it is cartesian. The algebra structure h : F (X)→ X is induced by coreflex-
ive equalizers being cosifted limits together with preservation properties making the bifunctor
(H,Y ) 7→ H(Y ) preserve coreflexive equalizers jointly. Initiality of (X,h) can then be seen to
transfer from initiality of µ(TF ) using an abstract fibrational argument.
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How should we teach axiomatic set theory to students familiar with type theory and proof
assistants? Following one of the many textbooks introducing axiomatic set theory does not
make sense. In contrast to students of mathematics, our students are familiar with automatic
proof checking and an expressive higher-order language for studying axiomatizations. There is
no need to talk about the foundations of mathematics. We can just write down the axioms and
start proving interesting consequences.

We assume a type theory with excluded middle and an impredicative universe of proposi-
tions. We are using the proof assistant Coq. We profit much from Coq’s support for inductive
definitions und inductive proofs. Given that our inductive definitions concern only predicates,
they could be replaced with impredicative definitions.

Let us state the axioms for sets. We assume a type S and call the members of S sets. A
class is a predicate S → Prop. The letters x, y, and z will range overs sets, and p and q will
range over classes. Inclusion p ⊆ q and equivalence p ≡ q of classes are defined as one would
expect. A class is unique if it contains at most one set.

We assume a predicate ∈ : S → S → Prop for set membership. Notationally, we identify a
set x with the class λz.z ∈ x. This way notations like x ⊆ y, x ⊆ p, and p ≡ x are available. A
class p is realizable if there exists a set x such that p ≡ x. It is straightforward to see that the
class λx.x /∈ x is unrealizable. We assume extensionality of sets:

x = y ↔ x ≡ y

We assume constants ∅, {x, y},
⋃
x, Px, and R@x to account for the empty set, unordered

pairs, unions, power sets, and replacements. The meaning of the constants is given by the
following universally quantified axioms:

z ∈ ∅ ↔ ⊥
z ∈ {x, y} ↔ z = x ∨ z = y

z ∈
⋃
x ↔ ∃ y ∈ x. z ∈ y

z ∈Px ↔ z ⊆ x
z ∈ R@x ↔ ∃ y ∈ x. Ryz ∧Ry unique

The axioms are known from the set theory ZF. The axiom for replacement R@x is higher-
order since it quantifies over a relation R : S → S → Prop. In first-order logic, replacement
can only be expressed with a scheme describing infinitely many axioms. Our formulation of
the replacement axiom is equivalent to a more conventional formulation requiring R to be
functional.

For the results we claim in this abstract we do not need the axioms for infinity, choice, and
regularity. For the axioms given one can construct a model in type theory based on Ackermann’s
encoding [1] of hereditarily finite sets. Thus the axioms given for sets do not affect consistency.
For the general case with infinity and choice, consistency has been studied by Aczel [3] and
Werner [4].

Singletons and binary unions of sets can be expressed as one would expect: {x} := {x, x}
and x∪y :=

⋃
{x, y}. Operators for separation x∩p and description ppq (obtaining the element

of a singleton class) can be expressed with replacement.
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We define the class W of well-founded sets inductively with a single rule:

x ⊆ W

x ∈ W

This kind of definition is familiar in type theory but unknown in first-order presentations of set
theory. Note that W defines well-founded sets as sets allowing for epsilon induction (a notion
known in first-order set theory).

The regularity axiom says that every set is well-founded. While it is easy to express the
regularity axiom as a first-order formula, expressing well-foundedness of a single set is difficult;
it seems that the infinity axiom is needed so that transitive closure of sets can be expressed.
The limitations of first-order logic may be the reason that ZF comes with the regularity axiom
disallowing non-well-founded sets. There is agreement that the regularity axiom is not needed
mathematically. There is also Aczel’s non-well-founded set theory [2] that has as an axiom
postulating the existence of non-well-founded sets.

Next we define that class Z of cumulative sets inductively by means of two rules:

x ⊆ Z⋃
x ∈ Z

x ∈ Z

Px ∈ Z

The class Z is known as cumulative hierarchy or as Zermelo hierarchy or as von Neumann
hierarchy in the literature. In the literature, Z is defined by transfinite recursion on ordinals.
We have not seen a definition of Z not making use of the ordinals. Here are the main results
we have shown for W and Z :

1. W and Z are unrealizable.

2. W ≡
⋃

Z .

3. Z is well-ordered by set inclusion.

4. For every well-ordered set x there exists a unique cumulative set z such that x and the
set { y ∈ Z | y ⊂ z } are order isomorphic ({ y ∈ Z | y ⊂ z } is ordered by set inclusion).

Result (4) says that the cumulative sets can serve as unique set representations of the isomor-
phism classes of well-ordered sets. In the literature, von Neumann ordinals are introduced for
this purpose.

The theory of well-orderings and transfinite recursion should be developed generally in pure
type theory. It can then be applied to the axiomatized system of sets. For the results mentioned
in this abstract neither transfinite recursion nor ordinals are needed.

The Coq development accompanying this abstract has been carried out by Dominik Kirst.
Together with a full paper it can be found at https://www.ps.uni-saarland.de/extras/types15.
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Abstract

Coquand’s cubical set model for homotopy type theory provides the basis for a com-
putational interpretation of the univalence axiom and some higher inductive types, as
implemented in the cubical proof assistant. We show that the underlying cube category is
the opposite of the Lawvere theory of De Morgan algebras. The topos of cubical sets itself
classifies the theory of ‘free De Morgan algebras’. This provides us with a topos with an
internal ‘interval’. Using this interval we construct a model of type theory following van
den Berg and Garner. We are currently investigating the precise relation with Coquand’s.
We do not exclude that the interval can also be used to construct other models.

The topos of cubical sets

Simplicial sets from a standard framework for homotopy theory. The topos of simplicial sets is
the classifying topos of the theory of strict linear orders with endpoints. Cubical sets turn out to
be more amenable to a constructive treatment of homotopy type theory. Grandis and Mauri [4]
describe the classifying theories for several cubical sets without diagonals. We consider the most
recent cubical set model [2]. This consists of symmetric cubical sets with connections (∧,∨),
reversions (¬) and diagonals. Let F be the category of finite sets with all maps. Consider the
monad DM on F which assigns to each finite set F the finite free DM-algebra (=De Morgan-
algebra) on F . That this set is finite can be seen using the disjunctive normal form. The cube
category in [2] is the Kleisli category for the monad DM .

Lawvere theory Recall that for each algebraic (=finite product) theory T , the Lawvere
theory Cfp[T ] is the opposite of the category of free finitely generated models. This is the
classifying category for T : models of T in any finite product category category E correspond
to product-preserving functors Cfp[T ] → E. The Kleisli category KLDM is precisely the
opposite of the Lawvere theory for DM-algebras: maps I → DM(J) are equivalent to DM-
maps DM(I)→ DM(J) since each such DM-map is completely determined by its behavior on
the atoms, as DM(I) is free.

Classifying topos To obtain the classifying topos for an algebraic theory, we first need to
complete with finite limits, i.e. to consider the category Cfl as the opposite of finitely presented
DM-algebras. Then Cop

fl → Set, i.e. functors on finitely presented T -algebras, is the classifying
topos. This topos contains a generic T -algebra M . T -algebras in any topos F correspond to
left exact left adjoint functors from the classifying topos to F .

Let FG be the category of free finitely generated DM-algebras and let FP the category of
finitely presented ones. We have a fully faithful functor f : FG→ FP . This gives a geometric
morphism φ between the functor toposes. Since f is fully faithful, φ is an embedding.

∗I gratefully acknowledge the support of the Air Force Office of Scientific Research through MURI grant
FA9550-15-1-0053. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the AFOSR.
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The subtopos SetFG of the classifying topos for DM-algebras is given by a quotient theory,
the theory of the model φ∗M . This model is given by pullback and thus is equivalent to the
canonical DM-algebra I(m) := m for each m ∈ FG. So cubical sets are the classifying topos
for ‘free DM-algebras’. Each finitely generated DM-algebra has the disjunction property and
is strict, 0 6= 1. These properties are geometric and hence also hold for I. This disjunction
property is important in the implementation [2, 3.1].

This result can be generalized to related algebraic structures, e.g. Kleene algebras. A Kleene
algebra is a DM-algebra with the property for all x, y, x ∧ ¬x ≤ y ∨ ¬y. With Coquand we
checked that free finitely generated Kleene algebras also have the disjunction property.

Model of type theory

Coquand’s presentation of the cubical model does not build on a general categorical framework
for constructing models of type theory. Docherty [3] presents a model on cubical sets with
connections using the general theory of path object categories [5]. The precise relation with
the model in [1] is left open. We present a slightly different construction using similar tools,
but combined with internal reasoning. We use I as an ‘interval’. To obtain a model of type
theory on a category C it suffices to provide an involutive ‘Moore path’ category object on C
with certain properties. Now, category objects on cubical sets are categories in that topos. The
Moore path category MX consists of lists of composable paths I → X with the zero-length
paths ex as left and right identity. To obtain a nice path object category, we quotient by the
relation which identifies constant paths of any length. The reversion ¬ on I allows us to reverse
paths of length 1. This reversion extends to paths of any length. We obtain an involutive
category: Moore paths provide strictly associative composition, but non-strict inverses.

A path contraction is a map MX → MMX which maps a path p to a path from p to
the constant path on tp (t for target). Like Docherty, we use connections to first define the
map from XI to XI×I by λp.λij.p(i ∨ j) and then extended this to a contraction. All these
constructions are algebraic and hence work functorially. We obtain a nice path object category.

We have obtained a model of type theory [5, 3] starting from I in the cubical model. We plan
to compare this more carefully with the one in [2]. Like Voevodsky [6], we define intensional
identity types inside the extensional type theory of a topos.

Acknowledgements I would like to thank Steve Awodey and Thierry Coquand for discus-
sions on the topic of this paper. Independently, Awodey showed that Cartesian cubical sets
(without connections or reversions) classify strictly bipointed objects.
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The standard way to ensure the totality of recursive definitions in systems like Coq or Agda
relies on syntactic checks that mainly ensure that the recursive calls are made on structurally
smaller arguments. However, such syntactic checks get in the way of code reuse and compo-
sitionality. This is especially the case when using higher-order combinators, because they can
appear between a recursive call and the actual data it will process. The following definition of
a map function for rose trees is an example of this.

data RoseTree A = Node A (List (RoseTree A))

mapRT : (A → B) → RoseTree A → RoseTree B
mapRT f (Node a ts) = Node (f a) (map (λ t → mapRT f t) ts)

The definition of mapRT is not accepted because syntactically t has no relation to Node a ts:
we need to pay attention to the semantics of map to accept this definition as terminating. In fact
a common workaround is to essentially inline the code for map1. Such a system then actively
fights abstraction, and offers few recourses other than sticking to some specific syntactic forms
for (co)recursive definitions.

Recently there has been a fair amount of research into moving the information about how
functions consume and produce data to the type level, so that totality checking can be more
modular [3, 5, 1]. In particular, the previous work on Guarded Recursion [3, 5] has handled the
case of ensuring totality for corecursion, i.e. manipulating infinite data. The issue of ensuring
totality in a modular way for recursion, over well-founded data, was however left open. We
address that problem by presenting a calculus that supports both corecursion and recursion
with a single guarded fixed point combinator.

Γ , i : Time ` A(i) : Type Γ ` f : ∀ i . (∀ j < i . A(j )) → A(i)

Γ ` fix f : ∀ i . A(i)

The guarded fixpoint fix is presented here as well-founded recursion on the abstract type Time.
Our bounded quantification ∀ j < i takes the role of the delay modality of previous works.
The name Time comes from thinking of such values as representing the amount of time left to
perform our computation.

Taking a fixed point on an universe U we can define both guarded and standard coinductive
streams.

gStream A = fix (λ i . λ (X : ∀ j < i . U ) . A × (∀ j < i . X j ))
Stream A = ∀ i . gStream A i

The induction hypothesis only provides an element of U when given a smaller Time, however
we want to guard recursive occurrences with ∀ j < i , so we have the smaller time j available.

1If the definition of map is available, Coq will attempt this automatically.
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The type ∀ i . gStream A i then corresponds to the standard coinductive stream type, since we
can choose an i big enough to inspect the stream as deeply as we need.

The above technique reproduces previous results [3, 5], however in our language we also
obtain inductive types, by making use of the existential rather than universal quantification
over Time.

gNat = fix (λ i (X : ∀ j < i . U ) . > + (∃ j < i . X j ))
Nat = ∃ i . gNat i

An element of gNat i is a Peano natural bounded in height by i . An element of Nat is then an
arbitrary natural number since we can pick a large enough bound.

It is however not enough to quantify over the time to get the right type, for example we
risk having too many representations of 0 if we can tell the difference between (i , inl tt) and
(j , inl tt) for two different times i and j .

The key idea is that values of type ∃ i . A must keep abstract the specific time they were
built with, exactly like weak sums in System F. Intuitively Nat will not be the initial algebra
of (> +) unless Nat ∼= > + Nat holds, so Nat must be able to support both an interface and
an equational theory where times play no role.

We characterize this invariance by a suitable interpretation of Time and the time quantifiers
in the relational parametric model of type theory of [2]2. In particular while ∀ i is just a Π type,
the existential quantification is not simply a Σ type but requires an interpretation analogous
to the one of the existential types of the polymorphic lambda calculus [4]. In the calculus we
provisionally internalize this invariance as type isomorphisms. In the specific case of Nat , both
(i , inl tt) and (j , inl tt) get sent to inl tt by the isomorphism, so we can conclude they are equal.

An example that highlights the expressivity of the resulting system is the ability to give a
safe type to the unfold combinator for lists:

unfold : (∀ i . S i → > + (A × ∃ j < i . S j )) → ∀ i . S i → List A
unfold f = fix λ i unfold ′ s . case f i s of

inl → [ ]
inr (a, (j , s ′)) → a :: unfold ′ j s ′
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operator.

78



Balanced Polymorphism

and Linear Lambda Calculus

Noam Zeilberger

Microsoft Research – INRIA Joint Centre, France
noam.zeilberger@gmail.com

Abstract

A “pearl theorem” of lambda calculus says that every linear lambda term is simply
typable, and moreover that its βη-normal form is uniquely determined by its principal
type. Mints (1977) gave a proof-theoretic demonstration of this result, by showing that 1)
every linear lambda term has a balanced principal typing sequent (where a sequent Γ → A
is said to be balanced if each atomic formula occurring in it has exactly two occurrences,
once in positive position and once in negative position), and 2) any balanced sequent is
inhabited by at most one βη-normal form. We give a new more conceptual proof of Mints’
pearl theorem, describing it first as a simple bijection between string diagrams for linear
normal forms and provable balanced sequents, and second as a simple bidirectional type
inference algorithm for linear lambda terms (that is exactly dual to standard bidirectional
type checking).

Linear lambda calculus represents an extremal case of parametricity, in the sense that every
linear lambda term is typable, and its normal form is uniquely identified by its principal type.
For example, the normal forms on the left are uniquely identified by the types on the right, and
vice versa:

λx.x(λy.y) : ((α( α) ( β) ( β
λx.λy.xy : (α( β) ( (α( β)

λx.λy.y(x(λz.z)) : ((α( α) ( β) ( ((β ( γ) ( γ)

One consequence of this observation is that type inference is essentially equivalent to normal-
ization, and it is in that context that I first saw this property asserted as a “pearl theorem”
by Mairson [1]. The result should probably be attributed to Mints [2], who proved a version of
it in the context of the so-called coherence problem for monoidal closed categories (also stud-
ied notably by Lambek, and by Kelly and Mac Lane). Mints’ proof can be divided into the
following pair of observations:

1. The principal type of a linear lambda term is balanced, in the sense that every type variable
occurring in it occurs exactly twice, once positively and once negatively. For example,
here I have colored in red and blue the positive and negative occurrences of the three type
variables in the principal type of λx.λy.y(x(λz.z)): ((α( α) ( β) ( (β ( γ) ( γ

2. Any balanced type (and more generally, any balanced typing sequent) has at most one
inhabitant up to βη-equivalence.

Both (1) and (2) are established by relatively straightforward proof-theoretic arguments (ap-
plying an induction on the length of terms).

Although the proof in [2] is not very complicated, a pearl theorem deserves a pearl proof.1

Our starting point will be a simple string diagram representation of normal linear lambda terms

1There are other reasons why I think that the “balanced polymorphism” exhibited in linear lambda calculus
is worth being studied on its own terms. For example, it corresponds closely to the notion of “end” in category
theory.
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that was introduced in [4] as a refinement of so-called lambda-graphs, and which is derived from
the refinement type signature [3] encoding the well-known characterization of normal lambda
terms in mutual induction with “neutral” terms. In this representation, normal and neutral
terms correspond to certain diagrams constructed using three basic combinators which we call
a-, s-, and `-nodes (standing for application, the switch from neutral to normal, and `ambda
abstraction) on colored, oriented wires:

These components may be annotated like so (note that blue wires carry neutral terms and red
wires carry normal terms):

x t

λx.t

t

ut(u)

t

t

From the string diagram of a normal lambda term, you obtain a balanced typing sequent by
the following procedure:

1. reverse the orientation of blue (neutral) wires

2. turn each a-node into a negative-polarity implication (i.e., an implication occurring in
negative position), and each `-node into a positive-polarity implication

3. replace each s-node by a distinct type variable (with two outgoing wires, standing for its
positive and negative occurrences)

4. read off a balanced principal typing sequent for the original term by starting at the type
variables and pushing information along the direction of the wires

For example, here is the transformation applied on the diagram of the closed normal term
λx.λy.y(x(λz.z)) (with its outermost λx removed to view it as a term with one free variable):

λy.y(x(λz.z))

x
z

λz.z

x(λz.z)

y

y(x(λz.z))

↔

�

γ

( β

( �

α

(α� α)( β

(β( γ)� γ

α� α

β( γ

Moreover, this transformation is clearly reversible (since the choice of type variable names is
irrelevant). Finally, we can turn this into a traditional type inference algorithm (much simpler
than Hindley-Milner inference on this very special case), described in the following rules:

x : α⇐ x⇐ α
Γ ⇐ t⇐ A( B ∆ ⇐ u⇒ A

Γ,∆ ⇐ t(u) ⇐ B
Γ ⇐ t⇐ α α fresh

Γ ⇐ t⇒ α

x : A,Γ ⇐ t⇒ B

Γ ⇐ λx.t⇒ A( B
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Here the two judgment forms are Γ ⇐ t ⇐ A (“checking against A, t synthesizes context Γ”)
and Γ ⇐ t ⇒ A (“t synthesizes context Γ and type A”). The reader familiar with standard
bidirectional type checking (where neutral terms synthesize and normal terms check) will remark
that this system is exactly dual (suggesting that we might call it “bidirectional type inference”).
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