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Abstract

This thesis investigates the use of statistical machine learning methods and shallow neural

network models to estimate the wave spectrum in coastal regions. Satellite-based synthetic

aperture radar (SAR) imagery has been effectively utilized to estimate ocean wave spectra.

However, the analytical techniques developed for long ocean waves have proven ineffective

for much shorter wind-driven waves that dominate coastal areas.

While several deep learning approaches have been recently adapted for this task, there has

been limited exploration into the potential of simpler statistical machine learning models

and shallow neural networks.

This study evaluates the effectiveness of polynomial regression, regression trees, and

regression forests, as well as their boosted variants, compared to shallow neural network

models, for estimating the wave spectrum in the Baltic Sea using SAR imagery.

The findings of this research clearly indicate that boosted models and basic multilayer

perceptron networks are the most accurate, achieving the lowest mean square error (below

0.5m) and the highest Pearson correlation coefficient (up to 0.8) between the estimated

and observed wave spectra for certain frequencies.

The thesis is written in English and is 25 pages long, including 6 chapters and 10 figures.
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Annotatsioon
Statistilised masinõppe meetodid rannikumere lainespektri

hindamiseks

Käesolev bakalaureusetöö keskendub statistiliste masinõppe meetodite ja madala taseme

närvivõrkude rakendamisele rannikumere lainete spektri hindamiseks. Satelliidipõhine

sünteetilise apertuuri radar (SAR) pildistamine on osutunud tõhusaks ookeaniliste lainete

spektri hindamiseks. Siiski on pika perioodiga ookeanilainetele arendatud analüütilised

meetodid osutunud ebaefektiivseks palju lühemate tuulelainete suhtes, mis domineerivad

rannikumere piirkondades.

Kuigi hiljuti on mitmed sügava õppe meetodid kohandatud selle ülesande jaoks, on lihtsa-

mate statistiliste masinõppe mudelite ja madala taseme närvivõrkude potentsiaali uuritud

vähem.

Käesolev uuring hindab polünoomregressiooni, regressioonipuude ja regressioonimet-

sade, samuti nende võimendatud versioonide tõhusust, võrreldes neid madala taseme

närvivõrkude mudelitega, et hinnata Läänemere lainete spektrit SAR-piltide põhjal.

Uuringu tulemused näitavad selgelt, et võimendatud mudelid ja lihtsad multilayer percep-

tron närvivõrgud on kõige täpsemad, saavutades madalaima ruutkeskmise vea (alla 0.5m)

ja kõrgeima Pearsoni korrelatsioonikordaja (kuni 0.8) hinnatud ja mõõdetud laine spektrite

vahel teatud sagedustel.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 25 leheküljel, 6 peatükki ja 10

joonist.
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List of Abbreviations and Terms

DT Decision Tree

FFT Fast Fourier Transform

GB Gradient Boosting

HS Significant Wave Height

ISP Image Spectra

LR Linear Regression

MLP Multilayer Perceptron

NORA3 Nordic wave hindcast model

PR Polynomial Regression

RF Random Forest

S1 Sentinel-1

SAR Synthetic Aperture Radar

SVM Support Vector Machine

Tm02 Mean Wave Period

VH Vertical transmit, Horizontal receive

VV Vertical transmit, Vertical receive

WAM Wave Model

XGB Extreme Gradient Boosting
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1 Introduction

Understanding wave spectra is essential for various applications in coastal and marine

engineering, such as the design and operation of offshore wind turbines, harbors, and

ensuring maritime navigation safety. Although buoy systems can provide highly accurate

measurements, deploying and maintaining a sufficient number of them is both technologi-

cally challenging and financially burdensome. Additionally, their presence may interfere

with navigation. In contrast, satellite-borne Synthetic Aperture Radar (SAR) offers a

reliable method to capture sea surface data in all weather and lighting conditions, making

it a practical alternative.

1.1 Background

For open ocean waves, established frameworks exist for estimating wave spectra. The

fundamental mathematical description of SAR-based ocean wave imaging was first intro-

duced by Alpers and Rufenach [1]. Following the MARSEN experiment [2], a generalized

model was developed, providing analytical tools to map ocean wave spectra using SAR

data [3]. Subsequent advances incorporated additional processes into inversion algorithms,

often relying on image cross-spectra to determine wave direction [4], [5]. However, these

methods are generally ineffective for the short, steep wind waves that dominate coastal

regions [6].

Recent years have seen growing interest in applying deep learning techniques to estimate

wave spectra. Long Short-Term Memory (LSTM) models [7], for example, have achieved

Pearson correlation coefficients of 0.85 between SAR-estimated and buoy-measured spectra

[8], [9]. Similarly, transformer-based models [10] have demonstrated promising results,

achieving correlation coefficients as high as 0.95 for certain wave ranges [11], [12]. Despite

these successes, deep learning models often involve high computational costs, require

significant resources for training and operation, and lack interpretability.
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1.2 Research Objectives

The complexity and high resource requirements of deep learning methods make it increas-

ingly important to explore alternative approaches that are simpler, more computationally

efficient, and easier to interpret and implement in practice. This research is dedicated to

two main objectives:

1. Evaluating Simpler Models: Assess the applicability of statistical machine learning

methods and shallow neural networks to estimate wave spectra. Determine the levels

of accuracy these models can achieve compared to deep learning approaches.

2. Understanding Spectral Influence: Identify the specific components of the SAR

image spectrum that have the most significant impact on predicting wave spectra.
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2 Formal Problem Statement

The wave spectrum is typically represented as a sequence of numerical values. The

prediction task can be framed as a sequence-to-sequence transformation problem, where

the input sequence (SAR image spectrum) is transformed into the output sequence (in

situ wave spectrum). This formalization opens opportunities for the use of advanced

computational and statistical methods to address the problem efficiently.

2.1 Strategies for Spectrum Prediction

Two primary strategies can be used to address this problem, depending on the requirements

for resolution, computational resources, and the level of interpretability desired.

2.1.1 Unified Model Approach

One approach involves training a single comprehensive model capable of predicting the

entire in situ wave spectrum in a single step. This method is particularly advantageous

for scenarios that require high-resolution spectral predictions or when large-scale datasets

are available. Deep learning models, such as recurrent neural networks (RNNs) or trans-

formers, are well suited for this purpose, because of their ability to handle complex,

high-dimensional data.

2.1.2 Modular Model Approach

Alternatively, a modular approach involves training multiple models, each responsible for

predicting a specific element of the spectrum. This strategy divides the task into smaller,

more manageable units, reducing computational demands and increasing flexibility.

In this research, the in situ spectrum comprises sequences of 43 numerical values. Each

value can be predicted independently using separate models, as illustrated in Figure 1.

Although this method may be less computationally efficient and lacks the holistic approach
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of deep learning, it offers distinct advantages:

■ Smaller models require less computational power.

■ Training models for individual spectral components provides insight into their unique

significance.
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Figure 1. Input and output data example.
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3 Data and Methods

This study combines data from two key sources: SAR imagery from Sentinel-1 and the

NORA3 wave hindcast. SAR provides detailed sea surface observations, while NORA3

provides reliable wave spectra for training and validating machine learning models.

3.1 Data

The ground truth data utilized in this study is derived from the NORA3 wave hindcast,

which is based on the WAM wave model [13], [14]. The model spectra are represented

by 30 frequencies, logarithmically spaced between 0.0345 Hz and 0.5476 Hz, along with

24 directions uniformly distributed over a full circular range. NORA3 data are generated

using atmospheric input from HARMONIE-AROME, ice concentration data from ARC-

MFC, and boundary wave spectra from ERA-5, ensuring high-resolution and reliable wave

hindcasting. The dataset spans from 1964 to the present and is continuously updated with

a delay of 4–5 months.

The Sentinel-1 (S1) Interferometric Wide (IW) swath Single Look Complex (SLC) subim-

ages underwent calibration and noise filtering while preserving their radar projection to

avoid data loss. The image spectra (ISP ) were calculated using the fast Fourier transform

(FFT) [15], [16] from two polarization configurations: vertically transmitted and received

(V V ), and vertically transmitted but horizontally received (V H). Additional metadata,

such as satellite heading (PASS), incidence angle (IA), water depth, and image texture,

were also preserved for subsequent analysis. The SAR data, which span from early 2015

to the end of 2021, were matched with the model spectra from the corresponding locations.

Figure 2 illustrates the distribution of HS in the mean wave propagation direction used in

this study.

For input to the models, the division of the polarization spectra was applied. This data

handling approach is supported by two primary considerations. First, it ensures consistency

with the methodologies established in previous studies, such as [8]. Second, certain
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statistical learning methods employed in this research are not inherently designed to

process multidimensional input, necessitating such pre-processing.

Figure 2. Distribution of significant wave height (HS) and mean wave propagation direction
for train and test dataset.

3.2 Methods and Their Application

The selection of models for evaluation was guided by their popularity and availability

within the scikit-learn library [17]. This process resulted in the inclusion of several models:

linear regression, polynomial regression, decision tree regression, random forest regression,

gradient boosting regression, support vector regression and XGBoost regression. Most

of these techniques are well documented in [18] and [19], while XGBoost, a more recent

development, is specifically detailed in [20].

In addition, shallow neural network models were incorporated into the study. These models

were constrained to a maximum of three layers and up to 150 neurons per layer. Unlike

deep learning models, the architecture and functionality of these layers remained consistent

throughout. It is also worth noting that combinations of different types of machine learning

models were not explored in this study. Instead, a single type of model was trained and

evaluated for each value in the wave spectra sequence, resulting in n independent models

of the same type (e.g., linear regression).
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3.3 Models Training Process Details

To ensure a fair comparison among different models, all algorithms were trained and

evaluated using a consistent train/test split of 70% for training and 30% for testing. Hyper-

parameter optimization was performed using grid search or randomized search methods,

depending on the computational feasibility of each model. An important note here is

that the hyperparameter grids were defined at the model type level. This means that all

n individual models of the same type (one for each element of the wave spectrum) were

tuned using the same parameter grid.

3.3.1 Linear Regression

For linear regression, recursive feature elimination (RFE) was used for feature selection.

The number of features to select was varied as follows:

■ n_features_to_select: [5, 10, 15, 20] - How many features to keep for

training.

3.3.2 Polynomial Regression

Similarly, polynomial regression employed RFE with the same range for feature selection.

Additionally, the degree of polynomial was varied:

■ n_features_to_select: [5, 10, 15, 20] - Number of features selected.

■ degree: [2, 3, 5] - Degree of the polynomial.

3.3.3 Decision Tree Regression

For the decision tree regressor, a grid search was conducted on the following parameter

grid:

■ max_depth: [3, 5, 8, 11, 14, 17, 20] - How deep the tree can grow.

■ max_features: [5, 10, 15, 20, 25, 30, 35, 40] - Maximum number of features to

use for splits.
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3.3.4 Random Forest Regression

The random forest regression model was tuned using randomized search over the following

parameter distributions:

■ n_estimators: [100, 200, 300, 400, 500] - Number of trees in the forest.

■ max_depth: [None, 5, 10, 20, 30, 40, 50] - Maximum depth of each tree.

■ min_samples_split: [2, 5, 10] - Minimum samples required to split a node.

■ min_samples_leaf: [1, 2, 4] - Minimum samples required at a leaf.

■ max_features: [’sqrt’, ’log2’, None] - Number of features to consider for splits.

3.3.5 Support Vector Machine

The support vector regressor was tuned using grid search over the following parameters:

■ C: [0.1, 1, 10] - Controls how flexible the model is. Higher values mean less

regularization.

■ kernel: [’linear’, ’rbf’] - Type of kernel used.

3.3.6 Gradient Boosting

The gradient boosting regressor was optimized using randomized search with the following

parameter distributions:

■ n_estimators: [50, 100, 200, 300] - Number of boosting stages (trees).

■ max_depth: [3, 4, 5, 6, None] - Maximum depth of each tree.

■ min_samples_split: [2, 5, 10] - Minimum samples required to split a node.

■ learning_rate: [0.01, 0.05, 0.1, 0.2] - Step size for updates.

■ subsample: [0.6, 0.8, 1.0] - Fraction of samples used for training.

■ max_features: [’sqrt’, ’log2’, None] - Number of features to consider for splits.
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3.3.7 XGBoost

The hyperparameters of the XGBoost regressor were optimized by a randomized search

with these parameter distributions:

■ n_estimators: [100, 200, 300, 400, 500] - Number of trees.

■ max_depth: [3, 5, 7, 9, 12] - Maximum depth of trees.

■ learning_rate: [0.01, 0.05, 0.1, 0.2] - How much each tree contributes to the

prediction.

3.3.8 Multilayer Perceptron

The MLP regressor was tuned using grid search on a comprehensive parameter grid:

■ hidden_layer_sizes: Configurations like (3,) or (150, 125, 100) - Number of

neurons in each layer.

■ activation: [’tanh’, ’relu’] - Function used to calculate neuron output.

■ solver: [’adam’] - Optimization algorithm.

■ alpha: [0.0001, 0.001] - Regularization term to avoid overfitting.

■ learning_rate: [’constant’] - How quickly the model updates weights.

■ learning_rate_init: [0.001] - Initial learning rate value.

■ max_iter: [1000, 2000] - Maximum number of training iterations.

■ batch_size: [’auto’, 64] - Number of samples processed at once.
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4 Main Results

To comprehensively assess the performance of the models, four evaluation methods were

applied. First, each frequency was individually analyzed to calculate n comparable metrics,

including MSE loss and correlation coefficients between predicted and actual values, as

illustrated in Figure 3. Second, the predictions from all models of the same type were

concatenated to form complete wave spectrum predictions. These predictions were then

evaluated using predefined metrics at the spectrum level to better reflect the practical and

realistic performance of the models, as shown in Figures 4 and 5. Third, the integrated

wave parameters, such as the significant wave height (Hs) and the wave period (Tm02),

were analyzed, providing a higher-level understanding of the effectiveness of the models.

Fourth, the data set was divided into two subsets based on wave height (Hs ≤ 1 m and

Hs > 1 m) to evaluate the performance of the model in different wave height ranges,

addressing the distinct characteristics of smaller and larger waves.

The metrics used to evaluate model performance at the spectrum level include:

■ Correlation coefficient between actual and predicted spectra.

■ Difference between actual and predicted peak values of the spectra.

■ Difference between actual and predicted peak locations of the spectra.

To summarize these metrics numerically, absolute values were used for metrics 2 and 3,

ensuring that errors in either direction contributed to the final evaluation score.

Additionally, the influence of individual SAR image spectrum components on wave

spectrum predictions was analyzed. This assessment highlighted which input features

most significantly impact the accuracy of the models, particularly for different frequency

ranges and wavelength groups. These insights help to clarify the relationships between

SAR spectral features and model performance.
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4.1 Frequency-Level Evaluation

In Figure 3, it is evident that all models, except the SVM, exhibit similar behavior: Higher

frequencies are associated with higher correlation coefficients and lower MSE values. This

trend could be due to more complex nonlinear relationships in the wave spectra data and

smaller variation at lower frequencies, which make accurate predictions more challenging

for the models.

Figure 3. Models’ performances across frequency domain. Upper plot shows mean squared
error and bottom plot shows correlation.

It can also be observed that the MSE error distributions across different frequencies are

quite similar among the models. However, the distributions of the correlation coefficients

reveal notable differences. As anticipated, simpler regression models, such as linear regres-

sion, decision trees, and polynomial regression, demonstrate lower predictive performance.

This is reflected in the green, blue, and red lines that represent these models. The similarity

between polynomial regression and linear regression can be explained by the fact that

the best-fitting polynomial for the data, determined through an exhaustive search, was of

degree 2. The slightly better performance of the decision tree is probably due to its ability

to capture more complex nonlinear patterns in the data.

Ensemble methods, including random forest, gradient boosting, and XGBoost, deliver
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significantly better performance compared to simpler models, with higher correlation coef-

ficients and lower MSE values. These methods benefit from the combination of multiple

weak learners, which improves predictive accuracy. Among these, XGBoost stands out as

the statistical model that performs best, achieving the best correlation coefficients and the

lowest MSE values in most frequencies. Gradient boosting ranks slightly below XGBoost,

followed by random forest, which still performs competitively, but falls behind in terms of

accuracy.

The best overall performance is achieved by XGBoost, closely followed by multilayer

perceptron (MLP) networks. MLPs outperform other models in many cases, but fall

slightly behind XGBoost in terms of correlation coefficients. This is expected as MLPs

are highly complex and parameter-intensive models. Gradient boosting and random forest

follow in the third and fourth place, respectively, offering a balance between performance

and computational efficiency. Considering the marginal performance difference and the

computational cost of training MLPs, XGBoost emerges as the most practical and effective

solution for this problem.

4.2 Spectra-Level Performance

Moving to a more practical evaluation of models within the spectra domain, the results

become less straightforward. Figures 4 and 5 illustrate the distributions of performance

metrics for spectral estimation. These figures also show the values of the 25th percentile

(Q1), 50th percentile (Q2 or median), and 75th percentile (Q3). In Figure 4, simpler

statistical models are compared, revealing that linear regression consistently performs

the worst across all metrics, as expected due to its purely linear nature. Polynomial

regression of degree 2 performs slightly better, benefiting from its limited ability to model

non-linearity. The decision tree demonstrates a substantial improvement in all metrics,

particularly in the correlation distribution and the peak value location error. Although the

SVM model shows high correlation coefficient quartiles, its reliability is questionable,

which aligns with the earlier observation that the SVM often predicts constant values

across multiple frequencies.

For the more advanced models, including ensemble methods and neural networks, the
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ensemble methods exhibit very similar performance, with XGBoost slightly outperforming

the others in all metrics. The close results reflect the shared principles behind these

methods, although minor differences arise due to their distinct underlying algorithms.

The MLP, being the largest and most complex model, produces mixed results. It is not

the best model in terms of the correlation distribution or the quartile values. However, in

particular, it achieves the lowest mean peak-value error, indicating its strength in accurately

capturing peak magnitudes. However, it has one of the highest peak-value location errors,

suggesting that the model can replicate the overall shape of the spectrum, but with a

potential shift. This behavior also contributes to its relatively lower correlation coefficient

distribution.
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Figure 4. Correlation and error distribution across the test set for linear regression, polyno-
mial regression, decision tree regression and SVM regression models.
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Figure 5. Correlation and error distribution across the test set for XGB regression, GB,
Random forest regression and MLP models.
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4.3 Integrated Parameters Comparison

Another practical comparison involves analyzing the integrated wave parameters, specifi-

cally the significant wave height (Hs) and wave period (Tm02). Figures 6 and 7 display

scatter plots comparing predicted values to actual values for all models, with the y = x

line representing perfect alignment.

For Hs, simpler models such as linear regression and polynomial regression perform the

weakest due to their limited ability to model nonlinear relationships in the data. The

decision tree shows a noticeable improvement, while the SVM demonstrates competitive

results among the simpler models. This is an interesting contrast to the weaker performance

of the SVM at higher frequencies when evaluating the full-wave spectrum. A possible

explanation is that errors at higher frequencies contribute less to overall performance for

Hs, allowing SVM to achieve better results. The ensemble methods, including random

forest, gradient boosting, and XGBoost, perform consistently well, with XGBoost standing

out as the best ensemble method. The MLP model achieves the best overall performance

for Hs, effectively capturing nonlinear dependencies in the data.

For Tm02, the performance varies more significantly across the models. Linear and

polynomial regression again rank among the weakest, while the decision tree provides

moderate improvements. The SVM achieves the strongest correlation and the lowest errors

among the models. Ensemble methods, including XGBoost, gradient boosting, and random

forest, deliver reliable performance but lag slightly behind the SVM. The MLP performs

comparably to the SVM in terms of correlation but shows slightly higher errors, suggesting

some difficulty in capturing extreme cases for Tm02.

In general, the results highlight the strengths and limitations of different modeling ap-

proaches. The MLP model is highly effective for Hs, while the SVM demonstrates its

strength for Tm02.
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Figure 6. Scatter plot of predicted vs. test significant wave height (Hs) for all models.
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Figure 7. Scatter plot of predicted vs. test wave period (Tm02) for all models.

27



4.4 Performance Comparison Based on Wave Height Ranges

Furthermore, to evaluate the effectiveness of the models, the data set was divided into two

subsets based on wave height: waves with a significant wave height (Hs) ≤ 1 m and waves

with Hs > 1 m. This segmentation was motivated by the observation that the distribution

of wave characteristics differs significantly between smaller and larger waves.

4.4.1 Waves Lower Than or Equal to One Meter

For waves with Hs ≤ 1 m, all models demonstrated reduced performance compared to

the results in the entire data set (Figure 8). The correlation coefficients peaked at 0.58,

indicating a noticeable decline in predictive accuracy across the board. This decline can

likely be attributed to the narrower variability in wave spectra within this range, which

limits the ability of models to distinguish key patterns effectively.

Figure 8. Models’ performance across frequency domain for waves less than or equal to 1
meter. Upper plot shows mean squared error and bottom plot shows correlation.

Despite the overall reduction in performance, the relative ranking of the models remained

consistent. Ensemble methods, such as random forest and XGBoost, and the multilayer

perceptron continued to outperform simpler models like linear regression and polynomial

regression. XGB and MLP once again shared the top positions, achieving the highest
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correlation coefficients and the lowest mean squared errors among all evaluated models.

4.4.2 Waves Higher Than One Meter

For waves with Hs > 1 m, predictive performance improved compared to the range Hs ≤ 1

m, with correlation coefficients that reach 0.7 (Figure 9). However, the results were still

slightly worse than those obtained when all waves were included in the data set.

Figure 9. Models’ performance across frequency domain for waves greater than 1 meter.
Upper plot shows mean squared error and bottom plot shows correlation.

The ensemble methods continued to outperform simpler approaches. XGB retained its

position as the model with the highest correlation coefficients and the lowest mean squared

errors.

4.5 Analysis of Spectrum Components

Analysis of the importance values of the input features (SAR image spectra values)

highlights key patterns of model performance in estimating the wave spectra (Figure 10).
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Figure 10. Feature importance distributions for XGBoost and Random Forest models.

For short wavelengths (20− 40 meters) and long wavelengths (> 150 meters), the impor-

tance distributions for higher frequencies (approximately above 0.2) are more scattered.

This scattering likely correlates with improved accuracy in value estimation, suggesting

that higher wave frequencies are better predicted as a result of the variability in feature

significance across these wavelength ranges. However, a notable observation is the low

importance assigned to medium wavelengths (40− 150 meters).
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The higher wave frequencies appear to depend on both the head and tail of the SAR image

spectrum. For lower wave frequencies, the importance values are distributed relatively

evenly across wavelengths. Despite this uniform distribution, these components do not

significantly improve the value estimation.
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5 Discussion

The overall performance of the models aligns well with expectations, apart from some

exceptions, such as the unusual behavior of the support vector regression at specific fre-

quencies. Although the SVM model demonstrates high performance across all metrics,

its reliability is questionable due to an earlier observation that it predicts constant values

across multiple frequencies, requiring further investigation. The linear regression model

appears too simplistic to fully capture the underlying relationships in the data. For polyno-

mial regression, further tuning of hyperparameters might improve performance, but the

authors intentionally avoided aggressive adjustments to preserve the "vanilla" nature of

the model. The relatively small performance gap between neural network-based models

and boosted ensemble models highlights the complexity of the relationship between SAR

imagery spectra and in situ wave spectra.

The difficulty in accurately estimating values at low frequencies (Fig. 3) remains somewhat

unclear. Previous studies suggest that SAR should theoretically perform better for lower

frequencies, corresponding to longer wavelengths. However, in the Baltic Sea, long-period

waves are rare, leading to minimal representation in the data set [21], [22], [23], [24].

Furthermore, the wave model used may not accurately estimate these low frequencies,

as it is primarily tuned for open ocean conditions [13]. Even when such waves are

present, their low energy levels make them difficult to estimate accurately. Moreover, SAR

imaging of wind waves can introduce noise or clutter in the imagery, potentially obscuring

low-frequency signals.

Interestingly, the predicted average HS (Fig. 6) aligns closely with the line y = x around

the typical average wave height in the Baltic Sea. This suggests that the models perform

well in estimating the mean wave height. However, a significant underestimation is

observed for values of HS greater than approximately 2.5 m, probably due to the scarcity

of such data in the training set.

For the estimation of the wave period (Fig. 7), there is a significant overestimation for
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shorter periods. Although the MLP model performs better in estimating these low periods

and occasionally aligns closely with the minimum values of the dataset, it still falls short

of the precision achieved by deep learning approaches, as shown in previous studies [9].

Notably, shorter wavelengths in the SAR image spectrum capture finer surface roughness

and rapid changes in the wave field, which are sensitive to local wind conditions and

other high-frequency phenomena. However, the mid-range wavelength band may fail to

capture large- or small-scale dynamics effectively, making the information from this range

potentially redundant for the output.

In many natural spectra, the energy distribution at extreme regions often exhibits clearer

and more stable relationships with specific physical variables (e.g., wave height). Midrange

wavelengths, however, may represent a "mixed zone" where the spectral energy density

does not correlate well with the output, thus providing less predictive utility.

Exploring new strategies for model development could address some of these limitations.

One potential avenue for future research is the combination of different machine learning

models. Although this study focused on evaluating single models for each value in the

wave spectra sequence, ensemble approaches that integrate the strengths of various models

could potentially improve predictive accuracy.
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6 Summary

In addressing the two research questions, it can be concluded that, in addition to the support

vector regression - whose performance, though promising, is inconsistent - and linear

regression - the remaining models demonstrate satisfactory performance for frequencies

above 0.14.

The analysis of spectrum components revealed that short and long wavelengths contribute

significantly to the accuracy of the model, especially for higher frequencies (above 0.2),

due to their scattered importance distributions. In contrast, medium wavelengths exhibit

low importance, suggesting limited predictive utility in this range.

However, both polynomial regression and decision tree regression are likely to require

more extensive hyperparameter tuning or additional data preprocessing to achieve better

results. These models show potential, but currently fall short in comparison to more robust

methods.

XGBoost stands out as the model that performs the best, closely followed by multilayer

perceptron and other boosting algorithms, with the random forest ranking slightly lower.

This performance hierarchy confirms that the research objectives have been successfully

met.

The poor performance of all models for frequencies below 0.14 remains an open question.

This issue highlights a key challenge to be addressed in future studies, in particular to

better understand and overcome the limitations in this frequency range.

The preliminary results of this study have been submitted for review at a scientific confer-

ence [25].
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