

TALLINNA TEHNIKAÜLIKOOL
INSENERITEADUSKOND
Tartu Kolledž

E-KOOLIKOTI SERVERITE EHITAMINE JA
UUENDAMINE

BUILDING AND UPGRADING E-KOOLIKOTT SERVERS

RAKENDUSKÕRGHARIDUSTÖÖ

Üliõpilane: Kristi Ploomipuu

Üliõpilaskood: 178552EDTR

Juhendaja: Sten Aus, taristu büroo juhataja

Kaasjuhendaja: Ago Rootsi, lektor

Tartu 2020

2

 (Tiitellehe pöördel)

AUTORIDEKLARATSIOON

Olen koostanud lõputöö iseseisvalt.

Lõputöö alusel ei ole varem kutse- või teaduskraadi või inseneridiplomit taotletud. Kõik

töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad, kirjandusallikatest

ja mujalt pärinevad andmed on viidatud.

“.......” 202…..

Autor: /allkirjastatud digitaalselt/

Töö vastab bakalaureusetöö/magistritööle esitatud nõuetele

“.......” 202…..

Juhendaja: /allkirjastatud digitaalselt/

Kaitsmisele lubatud

“.......”....................202… .

Kaitsmiskomisjoni esimees ...

 / nimi ja allkiri /

3

Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks

tegemiseks¹

Mina Kristi Ploomipuu (autori nimi) (sünnikuupäev: 15.04.1998)

1. Annan Tallinna Tehnikaülikoolile tasuta loa (lihtlitsentsi) enda loodud teose

E-koolikoti serverite ehitamine ja uuendamine,

 (lõputöö pealkiri)

mille juhendaja on Sten Aus,

 (juhendaja nimi)

1.1 reprodutseerimiseks lõputöö säilitamise ja elektroonse avaldamise eesmärgil, sh

Tallinna Tehnikaülikooli raamatukogu digikogusse lisamise eesmärgil kuni

autoriõiguse kehtivuse tähtaja lõppemiseni;

1.2 üldsusele kättesaadavaks tegemiseks Tallinna Tehnikaülikooli veebikeskkonna

kaudu, sealhulgas Tallinna Tehnikaülikooli raamatukogu digikogu kaudu kuni

autoriõiguse kehtivuse tähtaja lõppemiseni.

2. Olen teadlik, et käesoleva lihtlitsentsi punktis 1 nimetatud õigused jäävad alles ka

autorile.

3. Kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega

isikuandmete kaitse seadusest ning muudest õigusaktidest tulenevaid õigusi.

¹Lihtlitsents ei kehti juurdepääsupiirangu kehtivuse ajal, välja arvatud ülikooli õigus lõputööd

reprodutseerida üksnes säilitamise eesmärgil.

/allkirjastatud digitaalselt/

______________ (kuupäev)

4

 TalTech Tartu Kolledž

LÕPUTÖÖ ÜLESANNE

Üliõpilane: Kristi Ploomipuu, 178552EDTR

Õppekava, peaeriala: EDTR17/17 - Telemaatika ja arukad süsteemid

Juhendajad: Taristu büroo juhataja, Sten Aus

 Haridus- ja Noorteamet, 730 2117, sten.aus@harno.ee

 Lektor, Ago Rootsi

Lõputöö teema:

(eesti keeles) E-koolikoti serverite ehitamine ja uuendamine

(inglise keeles) Building and upgrading E-koolikott servers

Lõputöö põhieesmärgid:

1. Infosüsteemi viimine uuemale operatsioonisüsteemile

2. Parandada serveri hooldusvõimekust

3. Testida läbi infosüsteemi taastamine

4. Varukoopiate tegemise ajakohastamine

Lõputöö etapid ja ajakava:

Nr Ülesande kirjeldus Tähtaeg

1. Uuendusplaani valmistamine, läbirääkimiste lõpetamine 9.07

2. Testkeskkonna ehitamine, uuendamine ja testimine 29.08

3. Toodangukeskkonna ehitamine, uuendamine ja testimine 18.10

Töö keel: eesti keel Lõputöö esitamise tähtaeg: “.....”...........202….a

Üliõpilane: Kristi Ploomipuu /allkirjastatud digitaalselt/ “.....”..............202….a

Juhendaja: Sten Aus /allkirjastatud digitaalselt/ “.....”..............202….a

Kaasuhendaja: Ago Rootsi /allkirjastatud digitaalselt/ “.....”..............202….a

Kinnise kaitsmise ja/või lõputöö avalikustamise piirangu tingimused formuleeritakse pöördel

5

SISUKORD

EESSÕNA ... 6

Mõistete ja lühendite loetelu ... 7

SISSEJUHATUS ... 8

1. UUE SÜSTEEMI VAJALIKKUS .. 9

 Üks server üheks eesmärgiks ... 9

 Ajakohastamine .. 10

 Varundus ja taastamine ... 11

2. UUS PLATVORM .. 13

 Serverivabrik .. 13

2.1.1 Operatsioonisüsteem ... 14

2.1.2 Pakkide paigaldamine .. 15

2.1.3 AUR pakkide paigaldamine ... 15

2.1.4 Moodulite paigaldamine .. 16

2.1.5 Tüüpilised konstruktori osad ... 17

2.1.6 Serveri ehitamine .. 20

 Virtuaalmasina käivitamine ja VIPS ... 20

3. UUENDUSE LÄBIVIIMINE ... 23

 Testkeskkonna ehitamine ... 23

3.1.1 Proxy ... 24

3.1.2 Rakendus ... 24

3.1.3 Solr ... 25

3.1.4 Andmebaas .. 26

3.1.5 Üle võrgu jagamine ... 26

 Keskkondade kolimine ... 27

3.2.1 Õnnestumised ja ebaõnnestumised .. 30

KOKKUVÕTE ... 32

SUMMARY ... 33

KASUTATUD KIRJANDUSE LOETELU ... 34

LISAD .. 36

Lisa 1 Rakendusserveri täispikkuses konstruktor ... 37

Lisa 2 Andmebaasiserveri täispikkuses konstruktor .. 39

6

EESSÕNA

Rakenduskõrgharidustöö teema algatajaks on Haridus- ja Noorteameti tehnoloogia

juhtimise osakonna taristu büroo, mis enne 2020. aasta augustit kandis nime Hariduse

Infotehnoloogia Sihtasutuse struktuuriüksus EENet (Eesti Hariduse ja Teaduse

Andmesidevõrk). Rakenduskõrgharidustöö on osa ameti arendus- ja haldustegevustest

ning on koostatud Tartus 2018.-2020. aastal.

Lõputöö koolipoolseks kaasjuhendajaks on Tallinna Tehnikaülikooli Tartu Kolledži lektor

Ago Rootsi ning ettevõttepoolseks juhendajaks tehnoloogia juhtimise osakonna taristu

büroo juhataja Sten Aus.

Töö autor tänab kõiki, kes on olnud töö valmimisel abiks, eelkõige tehnoloogia juhtimise

osakonna taristu büroo nii varasemaid kui ka praeguseid kaastöötajaid eesotsas Sten

Ausiga, kes kõik olid alati valmis aitama nõu ja jõuga ning lektor Ago Rootsit, kes

väsimatult oli nõus abistama ka keskööl ning oma kogemustest rääkides suutis isegi

kõige igavamad teoreetilised probleemid huvitavateks pöörata.

7

Mõistete ja lühendite loetelu

Arenduskeskkond Keskkond (liivakast), mis on EENetis loodud ainult

süsteemiadministraatoritele testimiseks (ingl k development/

dev server või sandbox)

AUR Arch Linux operatsioonisüsteemi pakihalduse repositoorium,

mida haldab ja hooldab kogukond

GIT koodivaramu ehk repositoorium

HTTP hüperteksti edastusprotokoll (ingl k Hypertext Transfer

Protocol)

HTTPS turvaline hüperteksti edastusprotokoll (ingl k Hypertext

Transfer Protocol Secure)

ISKE infosüsteemide kolmeastmeline etalonturbe süsteem [1]

Juurkasutaja süsteemi haldamiseks kõige suuremate õigustega kasutaja

(ingl k root/superuser)

Nimeviit teisele failile või kaustale viitav fail (ingl k symlink/symbolic

link)

Proksi tarkvara, mis vahendab välisliiklust

SSH võimaldab turvalist kaugligipääsu võrku ühendatud seadmega

(ingl k Secure Shell)

Testkeskkond Keskkond, kus testivad süsteemiadministraatorid koos

arendajate ja projektijuhtidega, üldjuhul viiakse muudatused

hiljem otse toodangukeskkonda (ingl k test server)

Tõmmis varundusotstarbeline koopia, mis ei sisalda kogu süsteemi sisu

8

SISSEJUHATUS

Vananenud tarkvara on tänapäeval üheks põhiliseks turvaõnnetuste põhjustajaks ning

sellest tulenevalt on ülimalt oluline hoida nii infosüsteemide tarkvarad kui ka

operatsioonisüsteem alati ajakohastel versioonidel [2]. Paratamatult on suuremate

infosüsteemide serverite ajakohastamine tihti ebameeldiv ja mahukas töö, mida nii

mõnedki ettevõtted meeleldi teha ei soovi. Uuendamine võib tuua kaasa mitmeid

probleeme, eelkõige vanemate funktsioonide kadumise või asendumisega, mis

omakorda võib infosüsteemi tööd häirida või selle üldse peatada, parandamine nõuab

uut arendustööd, mis on aeganõudev ja kulukas. Sellegipoolest aitab halbu üllatusi

vältida eeluurimine, õigeaegne planeerimine ja kindlasti uuendamine, sest uus

arendustöö on küll kulukas, kuid andmeleke kulukam.

Autori valis lõputöö eesmärgiks E-koolikoti serverite ehitamise ja uuendamise, kuna

tegemist oli vananenud ülesehitusega serveritega ning seetõttu oli projekt asutuse jaoks

küllaltki prioriteetne. Lisaks vastse praktikandina oli eeldatav maht piisavalt pikk, et

võimaldada tudengil omandada iseseisvalt Unixilaadsete süsteemide baasteadmised

saades kogemusi nii erinevate operatsioonisüsteemide kui ka tarkvarade tööpõhimõtete

kohta.

Lõputöö põhieesmärkidest kõige olulisemaks on uuendada operatsioonisüsteem ning

tarkvara, mis tagab turvaaukude paikamise. Ainult uuendamise asemel ehitatakse

täielikult uued serverid, mis võimaldab infosüsteemi puhastada ebavajalikest

tarkvaradest ja failidest, tagades parema jõudluse ning hallatavuse. Viimaseks oluliseks

eesmärgiks on teostada taastetestimine ning seeläbi tagada vajalikud juhendid juhuks,

kui server või virtuaalserver(id) peaksid mingil juhul hävima.

Lõputöö koosneb kolmest põhiosast. Esimene põhiosa annab lühikese ülevaate vanade

serverite ajaloost, ülesehitusest ning põhikomponentidest. Lisaks selgitatakse uue

ülesehituse põhieesmärke. Teises peatükis tutvustatakse EENetis kasutusel olevat

platvormi serverite poolautomaatseks ehitamiseks ning kolmandas peatükis on kokku

võetud E-koolikoti infosüsteemi keskkondade ehitamine ning seadistamine, uuenduse

planeerimine ja läbiviimine, mille käigus kolitakse nii test- kui ka toodangukeskkond

uuetele virtuaalserveritele.

9

1. UUE SÜSTEEMI VAJALIKKUS

E-koolikott on digitaalse õppevara portaal (enne 2018. aastat kandis nime e-Koolikott

või Koolielu Waramu/õppevara), mis koosneb kahest virtuaalmasinast, millest üks

kuulub testkeskkonnale ja teine toodangukeskkonnale [3]. Mõlemad serverid töötavad

Debian 8 operatsioonisüsteemil, mille tugi lõppeb 30. juunil 2020. Kasutusel olevad

virtuaalmasinad omavad nelja põhilist süsteemikomponenti – proksi, rakendus,

andmebaas ja indekseerija.

Serverite algne tellija ja haldaja oli Haridus- ja Teadusministeerium, EENeti teenuste

osakond võttis infosüsteemi haldamise üle 2017. aastal, millele järgnes serverite

majutuse ületoomine virtualiseerimisklastrisse [3]. Serverites kasutatav tarkvara ja

operatsioonisüsteem on jõudmas oma eluea lõppu. Käesolev peatükk keskendub

serverite uuendamise eesmärkidele.

 Üks server üheks eesmärgiks

Algses olukorras on kõik süsteemi komponendid paigaldatud ühte serverisse, millest

tulenevalt peavad komponendid jagama virtuaalmasina ressursse üksteisega. Selline

lähenemine omab positiivseid ja negatiivseid külgi. Süsteemi haldav

süsteemiadministraator peab tegelema ainult ühe serveri ülalhoidmisega ning kõik

serveri komponendid on ligipääsetavad, kuid kõikide osade hoidmine ühes kohas

suurendab turvariske. Ebaturvaline on hoida andmebaasi serveris, mis on ühendatud

avaliku internetiga. EENetis on tavaks saanud jagada teenused serveritesse eesmärgi

alusel, millest tulenevalt soovituslikuks (olenevalt siiski infosüsteemi funktsioonist)

ülesehituseks oleks hoida nii proksi, rakendus kui ka andmebaas täiesti eraldiseisvates

masinates. Eraldiseisvus tagab parema süsteemi komponentide jälgitavuse, selge

ülevaate serveri eesmärgist, turvalisuse hoides süsteemide komponente eraldi ning

parema ressursside kasutamise.

Iga infosüsteemi ehitamisel tuleb läheneda serveri ülesehitusele individuaalselt. Kui

süsteem on ainult asutusesiseseks kasutuseks, siis üldjuhul jäetakse komponendid ühte

serverisse, kuna koormus on tavapäraselt kuni 100 töötajat korraga ning ligipääs on

piiratud, kuid kuna E-koolikott on välist kasutust saav infosüsteem, siis sellest tulenevalt

peab arvestama parima jõudluse saavutamisega. Turvalisuse eesmärkidel paigaldatakse

10

E-koolikoti andmebaas eraldiseisvasse virtuaalmasinasse, mis ei ole ühendatud avaliku

internetiga. Lisaks tagab baasi eraldi hoidmine parema jõudluse ja jälgitavuse.

Rakendus ja proksi paigaldatakse ühte virtuaalmasinasse, kuna proksi on antud juhul

väikese ressursitarbega ning tihedalt seotud rakendusega.

 Ajakohastamine

Tulenevalt operatsioonisüsteemi vanusest tuleb valida sobiv lähenemine serveri

ajakohastamisele, kõige kiirem lahendus on uuendada Debian 8 operatsioonisüsteem

uuele versioonile, kuid puhtaim lähenemine on liigutada kõik süsteemi komponendid

täiesti uude serverisse. See võimaldab süsteemist sorteerida välja ebavajalikud failid ja

komponendid, mis võivad olla serverisse jäänud vana omaniku haldusajast või

vananenud versioonidest. Lisaks on EENet ajakohastamisele lähenenud kui Debiani ja

teistest sarnastest operatsioonisüsteemidest vabanemisega, kuna nimetatud

operatsioonisüsteemid omavad tihti eelpaigaldatud komponente, mis ei ole ilmtingimata

vajalikud süsteemi tööks ja hõivavad seeläbi virtuaalmasina ressursse [4]. Debiani

pakirepositooriumitest paigaldatavad programmid omavad tihti küllaltki aegunud

versioone ning operatsioonisüsteemi piirangute tõttu ei ole alati võimalik ametlikust

repositooriumist paigaldada uuemaid saadaolevaid tarkvaraversioone, vananenud

pakkide paigaldamine võib endaga kaasa tuua turvaprobleeme [5].

Debiani väljavahetamise kaalumine uue operatsioonisüsteemi vastu võimaldab

survestada arendusmeeskonda ja projektijuhti mõtlema asjaolule, et uue

operatsioonisüsteemi valimine võib võimaldada süsteemile paremat ressursikasutust,

uuemaid tarkvaraversioone. Süsteemiadministraatorid annavad oma ideed üle ning

projektijuht koostöös peaarendajaga saab otsustada pakutud ideede poolt või vastu.

Alati survestamine ei toimi, kuna projektis on näiteks käsil tähtsamate funktsioonide

väljaarendamine, sest projektijuhi eesmärgiks on tagada infosüsteemi kasutajate

maksimaalne meeleha, kuid samal ajal peab olema tähelepanelik turvalisusega, et

turvaaukude tõttu ei toimuks süsteemist infoleket. Lisamõjutajateks on

arendusmeeskonna suurus, sest uue tarkvara/operatsioonisüsteemi testimisprotsess on

üldjuhul küllaltki aeganõudev ja ka kulukas. Meeskond peab olema piisavalt suur, et

tagada põhjalik testimine ja vajadusel parandamine/täiustamine. Seetõttu võib

11

takistavaks teguriks jääda rahalise ressursi puudumine ning seetõttu kolimine võib

viibida või ära jääda.

Arch Linux (edaspidi ka Arch) on EENetis eelistatud operatsioonisüsteem, sest süsteem

võtab andmeladestuspinnal vähe ruumi. Operatsioonisüsteem on mugandatud

sobivamaks ja vaikepaigaldusest on välja võetud mitmed ebavajalikud tarkvarad

(süsteemiadministraatorite poolt optimeeritud Arch võtab ruumi 567 MB, Debiani

miinimumpaigaldus üldjuhul ~2 GB) [4]. Arch Linuxi pakihaldusel on positiivsed ja

negatiivsed küljed, positiivsest küljest operatsioonisüsteem paigaldab alati kõige uuema

versiooni tarkvarast ning enamasti on see paar versiooni uuem kui teistel

operatsioonisüsteemidel [6]. See tagab tavaliselt parema töövõime ning turvalisuse

vaatest on paigatud turvaaugud, mis võisid esineda vanematel versioonidel.

Negatiivseks küljeks on asjaolu, et ametlikus pakihalduses on küllaltki vähe väga

spetsiifilisi pakke, mille tõttu peab pöörduma teise pakihalduse (AUR, Arch Linux User

Repository) poole, mis paraku ei oma otsest pakihalduspaigaldust.

 Varundus ja taastamine

Infosüsteemidel, mis omavad andmekogusid (näiteks EHIS, mis sisaldab

haridusandmeid või EIS, mis sisaldab lõpueksamite hindeid ja tunnistusi), peavad

läbima ISKE (infosüsteemide kolmeastmeline etalonturbe süsteem) auditi, mille põhjal

määratakse süsteemile üks kolmest turvaastmest – kõrge, keskmine või madal [1].

Kuna E-koolikott sisaldab ainult õppematerjale, siis süsteemi enda jaoks ei ole ISKE

auditi läbimine kohustuslik, kuid kuna EENeti seadmeruum vastab andmekeskuste

keskmisele turvaastmele, siis süsteemiadministraatorid töötavad selle nimel, et tagada

sama tase kõikidele võimalikele infosüsteemidele.

Suur osa talituspidevuse tegevuskavast on taastetestimine, mis on dokumenteeritud

meetod, mille abil testitakse infosüsteemi taastamist katkestuse/hävingu puhul. Kõrge

turbeastmega infosüsteeme on tarvis üle vaadata ning testida iga-aastaselt, kuid

auditile mittekuuluvaid süsteeme testitakse läbi kord kolme aasta jooksul ning

dokumentide ülevaatamine toimub peale igat suuremat versiooniuuendust [7].

Kuna E-koolikott jõudis EENeti haldusesse 2017. aastal, siis polnud süsteemil täielikku

taasteplaani, kuid oli olemas esialgne paigaldusjuhend. E-koolikoti täielik uuendamine

12

võimaldas viia läbi samaaegselt kõik vajalikud tarkvarauuendused, taastetestimise ja

dokumentatsiooni korrastamise ning täiendamise. Uus taasteplaan omas vastavalt ISKE

talituspidevuse poliitikale: uut süsteemi konfiguratsiooni, riistvara andmeid,

varukoopiate asukohta, taastetestija andmeid ja märkuseid ning taastamise detailset

protseduuride dokumentatsiooni koos tavapäraste uuendusjuhenditega [7].

E-koolikoti virtuaalservereid on praeguses olukorras raske varundada, kuna puudub

kontroll kuhu server talletab vajaminevaid andmeid. Näiteks EENetis kasutusel oleva

lahenduse puhul talletab server kõik oma failid /srv kaustapuule, tavapärase Debiani

puhul on failid laiali /srv, /etc või /var kaustapuudel, kusjuures iga uuendusega võivad

asukohad uuesti muutuda.

13

2. UUS PLATVORM

EENetis on tavaks vanad süsteemid võimalusel ja vajadusel (näiteks süsteeme, mis on

plaanitud lähiajal sulgeda ei oleks ajakulu mõttes tark uuendama hakata, kui just ei

avastata turvaprobleeme) likvideerida ja tõsta Arch Linux operatsioonisüsteemile. Arch

on EENetis üles seatud ainult lugemisõigustesse, millest tulenevalt virtuaalmasin võtab

endale opsüsteemi külge üle võrgu. Ainult lugemisõiguste kasutamine tagab suurema

turvalisuse, kuna süsteemi tööfaile ei saa serverist muuta. Kuigi operatsioonisüsteem

on ainult lugemisõigustes, siis sellegipoolest tuleb seda varundada nagu kõiki teisi

süsteemi osasid. Kui peaksid tekkima probleemid serveris, kus ladustatakse

operatsioonisüsteemi, siis ei oleks võimalik sooritada mitte ühegi serveri taastamist.

Lisaks tagab opsüsteemi varundamine tagavaraplaani juhuks, kui

süsteemiadministraator peaks tegema muudatuse, mis päädib probleemidega süsteemi

töös. Varunduse olemasolu tagab sellistel juhtudel kiire ülemineku eelnevale

ülesehitusele süsteemi töö taastamiseks.

 Serverivabrik

Operatsioonisüsteemi ehitamiseks on EENetis kasutusel Serverivabrik, mis on BASH ja

Ruby skriptide kogum võimaldades kettale paigaldada eelseadistatud

operatsioonisüsteeme, omades nii Preseedi kui konfiguratsioonihaldustööristade

(näiteks Puppet) funktsionaalsusi. Seda kasutatakse virtuaalmasinate

operatsioonisüsteemide loomiseks ja versioonihalduseks. Serverivabrikut hoitakse

EENeti gitiserveris, tagades töötajatele ligipääsu loodud serverite seadistusele.

Serverivabrik võimaldab uue virtuaalmasina laadimiseks vajalikke ressursse

(operatsioonisüsteemi tuumasid, pakke, konstruktoreid ja spetsiifilisi

konfiguratsioonifaile) hoida ühes asukohas, kasutades efektiivselt andmemahtu ja

lihtsustades virtuaalmasinate loomist ning haldust. Serverivabriku peamisteks eelisteks

on kiire ehitamine, põhjalik süsteemiadministraatorite enda poolt loodud

dokumentatsioon, versioonitud ülesehitud (ehk võimalus varasemale versioonile tagasi

minna), turvaline keskkond ning võimalus vähese vaevaga ehitada nii toodangu-, test-

kui ka liivakasti keskkondasid [8]1.

* Märkus 1. Tegemist on kollektiivselt loodud KKK rubriigi tekstiga, lõputöö autor on üks

teksti loojatest.

14

Iga serveri jaoks on Buildfile (e.k. konstruktor), milles defineeritakse sellele omistatavad

väärtused. Konstruktor käivitatakse läbi skripti, mis loob Ehitaja kettale serveri nimelise

kausta kuupäevaga, pakib sellesse lahti operatsioonisüsteemi põhja ja konstruktori

alusel teeb konfiguratsioonimuudatused, paigaldab pakid, loob vajalikud sümbolnimed.

KVM virtualiseerimist kasutav VM sooritab alglaadimise, kasutades PXEd ja saab TFTP

protokolliga Linuxi tuuma. Seejärel haagitakse konstruktoriga tekitatud

operatsioonisüsteemi juurfailisüsteem NFS jaona külge. Käivitamiseks vajalikud seaded

saab VM PXELinux konfiguratsioonifailist, mis on VMi virtuaalse võrguseadme MAC

aadressi nimeline. Fail sisaldab lisaks Kerneli versioonile ka parameetreid nagu

külgehaagitavad kettad ja IP aadressid. VM on alglaadimise sooritanud, võimaldades

külgehaagitud ketaste initsialiseerimist, näiteks selle partitsioneerimist, failisüsteemi

loomist ja failide kopeerimist [8]1.

2.1.1 Operatsioonisüsteem

Arch Linuxi üheks eeliseks on operatsioonisüsteemi eelnev kokkuehitamise võimalus

ilma virtuaalmasina töölepanekuta, mida näiteks Debiani või Ubuntuga on raske

saavutada, kuna nimetatud opsüsteemid ehitavad süsteemi osasid alles bootimise ehk

käivitamise käigus. Lisaks aitab Arch Linux kaasa serverite ajakohasena püsimisel, kuna

iga serveri operatsioonisüsteemi taasehitamisega paigaldatakse kõige uuemad pakid.

Kohati kõige uuemate pakkide paigaldamine võib kaasa tuua ka probleeme, näiteks

olukordades, kus soovitud programmi versioon on uuem kui infosüsteemis toetatud

versioon, sellistes olukordades tuleb kasutusele võtta kõrvaline pakkide haldus AUR.

Arch Linux on ainuke operatsioonisüsteem, mida on võimalik valida Serverivabrikus

serveri ehitamisel. Kõrvalharuna on proovitud arendada valikuvõimalustesse Alpine

Linuxi (edaspidi Alpine) rakendamist. Alpine on sarnaselt Archiga väga väikese mahuga,

mis on üheks põhiliseks teguriks EENetis operatsioonisüsteemi valikul [9]. OSi

arendusmeeskonna üheks eesmärgiks oli varem mahutada kogu operatsioonisüsteem

diskett andmekandjale. Tulenevalt oma suurusest on Alpine sama hea kanditaat nagu

Arch, kuid vähese kasutuse tõttu EENetis ei ole ajaliselt mõistlik hakata rakendama uut

operatsioonisüsteemi, kuna näidiseid sarnasest süsteemist on vähe ning ajakulu

kujuneks ebamõistlikult suureks toomata seejuures suurt kasu.

15

2.1.2 Pakkide paigaldamine

Loodavas serveris on vaja infosüsteemi töötamiseks mitmeid erinevaid tarkvarasid. Kõik

tarkvarad paigaldatakse pakkidest, mis pärinevad Archi pakihaldusest ja paigaldatakse

Serverivabriku automatiseeritud ülesehituse abil, tänu millele ei pea

süsteemiadministraator käsitsi pakke alla laadima ning paigaldama.

Konstruktori faili algul määratud operatsioonisüsteemi väärtuse põhjal teab

Serverivabrik, millise pakihalduse repositooriumi poole pöörduda (koodilõik 2.1),

asukohad on eelnevat käsitsi seadistatud vabriku tarkvaras. Paki paigaldamise

esilekutsumiseks peab sisestama koodilõigus 2.2 toodud näite põhjal sf_install_pkg

käsu. sf_install_pkg käsu teiseks väärtuseks on soovitud tarkvara nimi. Vajaliku

tarkvara otsimine käib repositooriumis nime põhjal ning kõige kindlam on leida õige nimi

Archi ametlikul lehel otsingumootori abil.

OS: arch

BUILD_VER: 3

Koodilõik 2.1. Operatsioonisüsteemi defineerimine

sf_install_pkg <soovitud tarkvara nimi>

Koodilõik 1.2. Tarkvara paigalduse esilekutsumine

2.1.3 AUR pakkide paigaldamine

AUR on kogukonna poolt hooldatav repositoorium, kuhu kasutajad ise arendavad

tarkvarasid, mis on ametlikus Arch Linuxi repositooriumis puudu või põhinevad vanemal

versioonil. AURi puhul ei ole Arch Linuxi „tuge“ või „kinnitust“, et tarkvara on

kontrollitud, mis tähendab, et iga sealt laetud pakk on tehniliselt mitteametlik ning alla

tuleks neid laadida ainult siis, kui ollakse pakkide turvalisuses veendunud.

Sarnaselt ametlikust repositooriumist saadud pakkide paigaldamiseks on AURi pakkide

paigaldamiseks eraldi sf käsk (koodilõik 2.3). AURi pakkide puhul on tarkvarade

jõudmine operatsioonisüsteemi keerulisem ja ajakulukam. Vabrik on võimeline sf käsku

täitma, kuid eelnevalt peab süsteemiadministraator vastava tarkvara paki käsitsi kokku

ehitama.

16

sf_arch_install_aur_pkg <soovitud tarkvara nimi>

Koodilõik 2.3. AURist pärineva tarkvara esilekutsumine

Serverivabrikus on eraldi operatsioonisüsteem AURi pakkide ehitamiseks ning peale

esmakordset käsitsi kokku ehitamist suudab vabrik pakki automaatpaigaldusena

operatsioonisüsteemi initsialiseerida. Enne paki ehitamist on vaja soovitud tarkvara

leida AURi repositooriumist ning laadida alla kokku pakitud versioon wget käsuga. Peale

allalaadimise sooritamist tuleb pakk lahti pakkida ning konsoolis edasi liikuda tarkvara

kausta. Järgmiseks sammuks on paki ehitamine makepkg käsuga – tegu on skriptiga,

mis automatiseerib pakkide ehitamist (koodilõik 2.4). Peale paki ehitusprotsessi lõppu

on tarkvara valmis paigaldamiseks. Viimaseks tegevuseks jääb tarkvara liigutamine

ettenähtud kaustapuusse ning omandi muutmine.

wget https://aur.archlinux.org/cgit/aur.git/snapshot/solr6.tar.gz

tar -zxf solr6.tar.gz

cd solr6

makepkg

Koodilõik 2.4. AURist pärit tarkvara paki ehitamine

2.1.4 Moodulite paigaldamine

Tarkvarad, mis leiavad tihti kasutust, on korjatud kokku ning lisatud eraldi moodulisse

(inglise k partial). Moodul on standardiseeritud kogum kindlaksmääratud tegevustest,

mida on vaja mitmel serveril/teenusel taaskasutada ja millele on võimalik rakendada

standardkonfiguratsiooni (näiteks veebiserver, varundus või monitooring) [10]. Moodul

on ülesehituselt sarnane tarkvara paigaldamisele, kuid omab enamasti rohkem

lisasamme.

Tarkvara paigaldamine lugemisõigustes olevasse operatsioonisüsteemi ei ole alati kõige

kergem, kuna paigalduse käigus pakitakse lahti failid, kuid programm loob tavaliselt

käivitudes uusi faile. Töötamise käigus loodud failid tuleb suunata ladustusseadmele,

mis on eraldi kaustapuus võrreldes operatsioonisüsteemi kaustadega. Tihti rakenduse

17

failide suunamine kõvakettale tuleb teha operatsioonisüsteemi seadistamise hetkel

kasutades nimeviiteid ehk sümboolseid viiteid.

Põhilisteks liigutusteks on algseadistuse kõrvale tõstmine ning selle asendamine

optimeeritud seadistusega, mis on mooduli kaustas või nimeviidete tegemine.

Sümboolsed viited võimaldavad operatsioonisüsteemi paigaldatud tarkvara jätta

samaks vihjates kausta või faili asukohale sümboolselt. Lõppasukohas on enamasti /srv

kaustapuu, mille aluseks on virtuaalmasina kaustapuu.

Kõikide tarkvarade puhul ei ole vaja rakendada mooduli ülesehitust, kuna kõik

programmid ei vaja lisaseadistamist lugemisõigustes oleva operatsioonisüsteemi tõttu.

Kui rakendus on kasutuses ainult ühes serveris siis on süsteemiadministraatoril õigus

langetada isiklik otsus, kas liigutada tarkvara paigaldamine moodulisse või mitte. Nagu

tarkvarade puhul, kasutatakse moodulite paigaldamisel samuti sf käsku, kuid

teistsuguse ülesehitusega – lisaks tavapärasele sf_build ning tarkvara osadele tuleb ette

lisada moodulite kaustale vihjav partial (koodlõik 2.5).

sf_build partial/apache

Koodilõik 2.5. Mooduli paigaldamine

2.1.5 Tüüpilised konstruktori osad

Iga serveri tegevuskavas on alati administraatoritele kasutajate loomine, et tagada

ligipääs administraatoritele ka serveri esialgse ehitaja haigestumise või töölt lahkumise

puhul. Vaikeseadistusena paigaldatakse serverisse ainult süsteemiadministraatorite

võtmed ning erandjuhtude korral on võimalik manuaalselt lisada juurde kolmandaid

osapooli, näiteks arendajad või projektijuhid (koodilõik 2.6 ja koodilõik 2.8). Kasutajate

ligipääs serveritesse on ainult läbi SSH võtme, mitte kontodega seotud paroolidega.

Serverites seadistatakse parool ainult juurkasutajale (mille kasutamine peale kasutajate

loomist keelatakse vaikeseadena), sest selline käitumine tagab turvalisuse, et serveri

kasutajate paroolid ei lekiks tahtmatult avalikku internetti – paraku on laialdaseks veaks

sama salasõna kasutamine mitmetes, kui mitte kõikides masinates ja ka igapäevaselt

kasutatavatel veebilehtedel [11].

18

Administrators

sf_build partial/admins

Koodilõik 2.6. Süsteemiadministraatorite paki paigaldamine

Kõik serverid, mis ei ole süsteemiadministraatorite arenduskeskkonnad on kohustuslik

seadistada varundama (koodilõik 2.7). Virtuaalmasinaid varundatakse iga öö ning

vastavalt süsteemi ülesehitusele tehakse vajadusel mitu varundust, kui süsteemis on

andmebaas, siis tehakse sellest tõmmis ning kogu kirjutatava ketta sisust tehakse lisaks

veel eraldiseisev koopia.

Backup

sf_build partial/borg

Koodilõik 2.7. Varunduspaki paigaldamine

Kõik serverid, mis omavad avalikku liidest vajavad tulemüüri (EENetis on kasutusel

FireHOL tarkvara), et hoida ära turvaintsidente ja rünnakuid. Tulemüüri paigaldamisega

piirtakse ära kõik tegevused avalikul liidesel, kuid sisene liides jääb avatuks. Tulemüüri

rakendamisega lubatakse avaliku liidese pihta (SSH) ainult kontorivõrgu vahemik. Kõige

põhilisemad pordid, mis infosüsteemidel avalikul liidesel avame on 80 ja 443 ehk HTTP

ja HTTPS, mis on vajalikud veebiliikluseks. Vahel harva lisatakse avalikule liidesele

arendaja või mõne kolmanda osapoole ligipääs pordile 22 ehk SSH võimalus (näiteks e-

Koolikoti puhul) või mõni muu vajalik port infosüsteemi ja/või rakenduse jaoks

(koodilõik 2.8). Kolmandatele osapooltele ligipääsu jagamiseks luuakse lisafail FireHOL

kausta, kuhu lisatakse nende IP-aadressid või nende vahemikud ning Serverivabrik

kopeerib faili(d) operatsioonisüsteemi. Samuti on väljuvad ühendused piiratud vaid

vajalike portidega.

Firehol setup and allow ssh access for tunnel, for developers only

sf_build partial/firehol

cp -v $BD/ssh.conf /etc/firehol/public/

cp -v $BD/koolitaja.conf /etc/firehol/public/

Koodilõik 2.8. Tulemüüri paki paigaldamine ja ligipääs arendajatele

19

Veebiserveri proksina on e-Koolikotis kasutusel Apache, mis suunab liikluse Java

rakendusele. Apache on seadistatud tegema SSL offload’i ehk sertifikaatide edastamist,

kontrolli ja liikluse edasisuunamist Java rakenduse suunas HTTP kujul selleks, et

rakendus saaks ülesandeid kiiremini hallata ja ei peaks tegelema päringute lahti

krüpteerimisega.

Java rakendus käitab serveris eraldisesva kasutaja halduses, et maandada turvariske,

tagada parem hallatavus ning vajaduse korral kergendada vigade otsimist (koodilõik

2.9). Kuna rakenduse kasutaja piiratud õigustega saab see kirjutada ainult etteantud

kaustadesse ning kontoga ei ole seotud SSH privaatvõtit, st puudub võimalus identiteeti

kasutades teistesse serveritesse edasi liikuda.

kott user

useradd -c Kott -d /srv/kott -U -o -u 501 -s /bin/bash kott

kott.service

cp -v $BD/kott.service /etc/systemd/system/

systemctl enable kott.service

Koodilõik 2.9. Kott kasutaja ja teenuse seadistamine

Rakenduse serveris asub Solr, mis on kasutusel kui otsingumoor Java rakenduses. Java

rakenduse käitamiseks on tarvis paigaldada Java Runtime Environment ning rakenduse

komponentide allalaadimiseks Giti pakk. Rakenduse seadistusfailid ja Java programm

on internetis avalikult üleval Giti koodirepositooriumis (koodilõik 2.10).

Solr

sf_install_pkg solr

ln -vs /srv/solr/dop /usr/share/solr/server/solr/dop

chmod +x /usr/share/solr/bin/solr

systemctl enable solr

JDK

sf_install_pkg jre8-openjdk

Git

sf_install_pkg git

Koodilõik 2.10. Vajalikud süsteemi lisad

20

2.1.6 Serveri ehitamine

Tulenevalt vabriku eripärast on serveri ehitamiseks vaja käivitada ainult üks käsk

(koodilõik 2.11), millel tuleb määrata ehitatava serveri nimi ja tüüp, mille märkimine on

informatsiooniallikaks süsteemiadministraatorile andes märku, kas tegu on arendus- või

toodangukeskkondadega. Serveri ehitamise protsess on enamjaolt automaatne kui välja

arvata protsessi lõpp, kus operatsioonisüsteemi ehitamise skript küsib kasutajalt, kas

on soov asendada kasutuses oleva virtuaalmasina operatsioonisüsteem uuega. Uus

operatsioonisüsteem võetakse kasutusele alles peale virtuaalmasina taaskäivitamist.

./build ekoolikott dev

Koodilõik 2.11. Operatsioonisüsteemi ehitamine

 Virtuaalmasina käivitamine ja VIPS

Virtuaalmasina käivitamiseks on tarvis läbida mitmeid tegevusi, esimeste sammude

seas on operatsioonisüsteemi kasutavate programmide ja seadistuse kirjutamine

konstruktorisse ning OSi kokku ehitamine. Lõppliku serveri käivitamiseks on vaja teha

tegevusi nii käsureal kui ka graafilistes liidestes (võimalus on teha kõik käsurealt, kuid

see raskendab ülesehitust ning graafilisel liidesel korduvalt sama nupu vajutamine on

mugavam ja kiirem.

EENetis on virtuaalmasinate haldamiseks kasutusel Virtuaalprivaatserveri teenus VIPS,

mis põhindeb Proxmox vabavaral [13]. Virtualiseerimisklastris on kokku 23 serverit ning

281 virtuaalserverit. Süsteemiadministraatoril on vaja kindalt ülevaadet, kui palju on

kindel virtualiseerimisserver parasjagu koormatud ning Proxmox võimaldab tabelitena

jägida ressursikasutust ning seeläbi leida parim server, kuhu uus infosüsteem või

virtuaalserver paigutada. Iga server on piiratud ressurssidega, mistõttu on oluline

jälgida, et ühtegi serverit ei koormataks liigselt üle. Kui süsteemiadministraator peaks

näiteks andma virtuaalmasinale rohkem mälu, kui serveril jagada on, siis võib olukord

lõppeda serveris probleemidega. Protsessori tuumade jagamisega võib olla leebem,

kuna on väga vähe virtuaalmasinaid, mis kasutavat reaalsuses üle 80% neile määratud

jõudlusest. Sellest tulenevalt võib olla ühes virtualiseerimisklastris kasutuselolevate

virtuaalmasinate protsessorite tuumade arv suurem kui füüsiline kogus kuni

kahekordselt. Kergemaks jälgimiseks on joonisel värvikoodid, must viitab vabale

21

ruumile, sinine on hoiatav (kasutus on piiril peal või juba üle) ning punane viitab

kriitilisele olukorrale, mis vajaks sekkumist (joonis 2.12). Süsteemiadministraator peab

jagama ressursside kasutust mõstulikult ning arvestama teiste virtuaalmasinatega, mis

on samas klastris – mõni klaster jäetakse teadlikult tühjemaks, kuna seal võib olla

majutatud mõni tähtis infosüsteem, mida ei tasukus koormata teiste masinatega või

mille ressursid langevad ja tõusevad hooajaliselt (näiteks Eksamite Infosüsteem, või

Sisseastumiste Infosüsteem, mis saavad suurt koormust kas eksamite ajal paar korda

aastas või sisseastumiste hooajal).

Joonis 2.12. Klastri koormustabel

22

Peale VIPS keskkonnas virtuaalserveri loomist (ressursside määramist) määrab

Proxmox virtuaalmasinale automaatselt sisevõrgu MAC-aadressi, mis on põhiliseks lüliks

virtuaalmasina ressursside sidumisel operatsioonisüsteemiga. Server, mis ühendatakse

avaliku võrguga vajab lisategevusi kasutajaliideses, et lisada peale sisevõrgu seadmele

tugi välisvõrgu vastuvõtmiseks võrguseade. IP-aadressid seadistatakse DHCP abil

samas serveris, kus ehitati operatsioonisüsteem. Lisaks märgitakse kasutuses olevale

operatsioonisüsteemi fail kõvaketta ülesehitusest ja vajadusel lisatakse väline IP-

aadress. Peale vajalike linkide loomist operatsioonisüsteemi ja virtuaalmasina

ressursside vahel tuleb masin taaskäivitada. Viimaseks tegevuseks seadistatakse ketas

ning tehakse viimane taaskäivitus.

23

3. UUENDUSE LÄBIVIIMINE

Enne uuenduste läbiviimist suheldi aktiivselt projektijuhi ja arendajaga, kõik eelnevad

testimised sai läbi mängitud arenduskeskkondades, mis tagas võimaluse luua

uuendusjuhendi, et uuendamise ajal läheks töö sujuvamalt ning süsteemi töö

katkestuse kestvus oleks minimaalne. Kogu süsteemi kolimise vältel peavad nii

arendaja(d) kui ka projektijuht olema kättesaadavad. Arendaja olemasolu on oluline

siis, kui süsteemi kolimisel peaks tekkima tarkvarade rakendamisel probleeme ning

projektijuhi poolt on otsustada olukorrad, kui kolimise käigus ei peaks mõned

komponendid töötama eesmärgipäraselt ning tuleb langetada otsus, kas liikuda vanale

operatsioonisüsteemile tagasi ja proovida uuendust mõnel teisel ajahetkel või jätta

süsteem probleemselt tööle ning üritada neid jooksvalt parandada.

 Testkeskkonna ehitamine

E-koolikoti uued masinad koosnevad kahest serverist – mõlemal keskkonnal (test ja

toodang) on eraldi rakendus ja andmebaas. Sellest lähtudes tuleb luua kaks

konstruktorit ehk Buildfile’i, kus on süsteemile ette kirjutatud kõik vajalikud

komponendid. Rakenduse ja andmebaasi ainukeseks sarnasuseks on

süsteemiadministraatorite kasutajate lisamine ja serveri varunduse seadistamine.

Nii test- kui ka toodangusüsteemi jaoks kasutatakse ühte konstruktorit, mille tõttu on

kohati vaja kasutada if ehk kui lauseid, et määrata ära millised tegevused tehakse testis

ja millised toodangus (koodilõik 3.1). Sellist tegevust on kasutatud kui on mingeid

määravaid kõrvalekaldeid test- või toodangusüsteemi vahel (näiteks kui peaks olema

vaja määrata spetsiifiline varunduse tegemise kellaaeg või kasutada lisatarkvara ühes

keskkonnas).

24

Kui tegemist on TEST süsteemiga

if ["$SF_SERVER_XNAME" = 'ekoolikotttestdb']; then

 # Käsud mis käivitatakse kui on tegu test süsteemiga

fi

Kui tegemist on LIVE süsteemiga

if ["$SF_SERVER_XNAME" = 'ekoolikottdb']; then

 # Käsud mis käivitatakse kui on tegu live süsteemiga

fi

Koodilõik 3.1. Kui-lause (if-lause) ülesehitus

3.1.1 Proxy

Vanad Apache’i seadistusfailid olid pikad ja koosnesid mitmetest failidest, mistõttu oli

nende lugemine ja haldamine keerukas. Parema ülevaate saamiseks oli tarvis

seadistusfailid ebavajalikust ja võimalikust turvaohtlikust sisust puhastada, tarvilik osa

üheks failiks sobitada ning ülesehitus arusaadavaks ja loogiliseks seada.

Apache’i seadistusfaili korrastamine kujunes ajakulukaks. Vältimaks korduvaid ridu

monteeriti failide kogum üheks suureks failiks, mis paigutati ilma muudatusteta uude

prooviserverisse. Seadistusfail jäi algul puutumata, et tagada võimalikult väike erinevus

algse klooniga, sest kui oleks asutud kohe muudatusi sisse viima oleks võinud

tahtmatult juhtuda mõne olulise rea kustutamine, mis oleks toonud kaasa lisatööd

hiljem vea otsimisel. Suurem osa muudatustest tulenesid süsteemi kolimisest uude

operatsioonisüsteemi, mis töötab ainult lugemisõigustes. Sellest tulenevalt toimus faili

korrastamine järk-järgult ning viimased muudatused said paika paar nädalat peale

tootekeskkonna uuendust. Muudatuste sisseviimisel oli kõige olulisem jälgida, et veebi

kaustapuu ei satuks välismaailmale nähtavaks, sest kaustapuus asuvad failid, mis

annavad informatsiooni süsteemi ülesehituse ning kasutavate skriptide kohta.

3.1.2 Rakendus

Et tagada rakenduse kõige turvalisem ülesehitus, paigaldati rakendused eraldiseisva

kasutaja alla töötama (koodilõik 3.2). Kui rakendus töötab root ehk juurkasutaja

õigustes, võib see iseendale anda liigseid volitusi ning kui rakendusele peaks rünnaku

tagajärjel ligi pääsema kolmas osapool, oleks tal maksimaalsete õiguste tõttu võimalus

liikuda serveris vabamalt ringi ja saada ligipääs konfidentsiaalsetele failidele.

25

[Unit]

Description=e-Koolikott

[Service]

User=kott

WorkingDirectory=/srv/kott

ExecStart=/usr/bin/java -Xmx2048M -jar kott.jar --spring.config.location=custom.yaml

ExecStop=/bin/kill -9 $MAINPID

[Install]

WantedBy=multi-user.target

Koodilõik 3.2. Kott teenuse ülesehitus

Rakenduse piiramine ei hoia ära andmete lekke kui see peaks juhtuma, kuid kõige

tähtsamaks on säästa edasist kahju. Tänu piiratud õigustele ei saa rakendus kontrollida

teiste protsesside tööd nagu veebiserver, SSH server ja palju muud.

3.1.3 Solr

Solr tarkvara rakendamine oli uute serverite ehitamisel kõige keerulisemaks

protsessiks. Keerukus tulenes enamasti asjaolust, et uus operatsioonisüsteem on

kasutuses ainult lugemisõigustes ning Solr üritab kirjutada asukohtadesse, kuhu

tarkvara kirjutada ei saa. Operatsioonisüsteemi eripärast tulenevalt tuli tarkvara jaoks

luua palju erinevaid nimeviite kaustade ja failide vahel, mis võimaldas vajalikud failid

suunata kaustadesse, kuhu Solr sai kirjutada

Serverite kolimise hetkel ei olnud Solri võimalik leida ametlikust Archi pakihoidlast, kuna

tarkvara oli eemaldatud kasutuslitsentside rikkumise tõttu kuu aega varem. Seetõttu

oldi kohustatud kasutama AURi. Solri päritolus AURist tähendas seda, et programm

töötas hoopis teistsugustes kaustades võrreldes Debiani operatsioonisüsteemiga, mis

raskendas rakenduse seadistamist märkimisväärselt.

Rakenduse kolimise tegi veelgi keerukamaks tarkvara esialgne seadistus ja

andmebaasiga liitmine. Luues uue sissekande ei suutnud tarkvara ühenduda

andmebaasiga ning tuues üle seadistusfaili vanast serverist edastas programm vigu.

26

Ainsaks lahenduseks oli iga võimaliku ülesehituse läbikatsetamine, mis oli ajakulukas.

Takistavaks teguriks osutus ka arendaja poolt loodud juhis, mis erines oma ülesehituse

poolest omakorda aktuaalse ja uue operatsioonisüsteemi ülesehitusest.

3.1.4 Andmebaas

Andmebaasid paigaldatakse rakendusserverist eraldi virtuaalmasinasse (koodilõik 3.3),

et tagada parem jõudlus, käideldavus ja monitoorimine [12]. Avalikku liidest

andmebaasidele ei seata, kuna baasile vajab ligipääsu ainult rakendus läbi sisevõrgu

ning kolmandatele osapooltele ei pea andmebaas avalikul liidesel kättesaadav olema.

Kuna server on sisevõrgus, siis on võimalik lubada rakenduse ja andmebaasi vahel

krüpteerimata liiklus, kuid see ei tähenda, et ei rakendataks turvameetmeid.

Andmebaasidele on piiratud IP-aadresside vahemikkudega ligipääs ning baasi kasutajad

on parooliga kaitstud.

MariaDB

sf_build partial/mariadb

Koodilõik 3.3. Andmebaasi paki paigaldamine

3.1.5 Üle võrgu jagamine

Kõrvalise lisana on lisatud rakendusse Network File System (eesti k üle võrgu failide

jagamine) ehk NFS, mis on vajalik süsteemiadministraatoritele süsteemi uuenduste

läbiviimiseks (koodilõik 3.4). NFS võimaldab rakendusserveril ligipääsu andmebaasi

kettale, et teostada andmebaasi tõmmis enne iga uuenduse läbiviimist. Tõmmis on

vajalik eriti olukordades, kus uuendus ebaõnnestub ning on vaja minna tagasi vanemale

versioonile. Andmebaasi konstruktorisse tuleb lisada NFS pakk, et võimaldada vastava

kasuta väljajagamist rakendusele. Turvalisuse tagamiseks on kaust välja jagatud ainult

rakendusserverile piirates ligipääsu IP-põhiselt.

27

NFS, andmete vastuvõtmiseks

sf_install_pkg nfs-utils

NFS, andmete väljajagamiseks

sf_build partial/nfs-server

cat >> /etc/exports <<'EOT'

/srv/mysqldump x.x.x.x/32(rw,sync,no_root_squash,no_subtree_check)

EOT

Koodilõik 3.4. NFSi seadistamine

 Keskkondade kolimine

Test- ja tootekeskkonna uuendusjuhendid on peaaegu täielikult identsed, omades paari

erinevust kaustanimedes ja IP-aadressides (koodilõik 3.5). Testkeskkonna uuendusega

alustati hommikul kell üheksa, kui siseneti vanasse rakendusserverisse ja peatati veebi-

ning rakendusserver. Tootekeskkonna uuendus tehti infosüsteemi versiooniuuendusega

koos.

Vanasse serverisse sisse

ssh 193.40.55.130

sudo -i

/etc/init.d/apache2 stop

/etc/init.d/dop stop

Koodilõik 3.5. Vanades serverites teenuste peatamine

Andmebaasi tõmmis on vajalik uue baasi ülesseadmiseks (koodilõik 3.6). Kõige

riskivabama tõmmise saavutamiseks peab seiskama nii rakenduse kui ka veebiserveri,

et andmebaasi suunas poleks avatud ühtegi ühendust ning rakendus ei oleks

samaaegselt kasutuses. Kui kasutaja peaks tõmmise loomise ajal infosüsteemis

sissekanded tegema, võivad sisestatud andmed jääda puudu uuest keskkonnast või

mõjutada edaspidist süsteemi tööd. Lisaks hõivab tõmmis suure osa kasutatavast

ressursist endale muutes süsteemi kasutaja jaoks ebameeldivalt aeglaseks.

DB dump käima (võtab aega ~15 min)

mysqldump --all-databases > /srv/mysqldump/$(date +%Y%m%d)-dump.sql

Koodilõik 3.6. Andmebaasi tõmmise loomine

28

Uus server oli eelnevalt liivakast infosüsteemi tööle saamiseks, kus katsetati läbi

süsteemi uuendamine ja komponentide koostöö. Selleks, et uude serverisse saaks

hakata andmeid ja faile üle tooma, oli oluline eelnevad testimisel kasutatud failid

eemaldada ja rakenduse programmid peatada (koodilõik 3.7).

Uue serveri asjad seisma

ssh 193.40.55.70

sudo -i

sc stop kott

sc stop httpd

Uues serveris vanade kaustade eemaldamine

rm -r /srv/kott/reviews /srv/kott/uploads

rm -r /srv/kott/frontend

rm /srv/kott/kott.jar

Koodilõik 3.7. Uute serverite puhastamine

Uute failide liigutamiseks oli eelnevalt uuritud millised kaustad on vajalikud ning suureks

abiks oli siinkohal eelseadistatud seadistusfailil, tänu millele sujus uuendus kiiremini.

Uude serverisse toodi üle Java rakendus, veebiliidese kaustas olev kasutajaliides ning

uploads ja reviews kaustad, kus asuvad infosüsteemis laetud ja salvestatud failid

(koodilõik 3.8).

Uute kaustade kopeerimine plus .jar

scp -r kristi@10.40.0.130:/var/www/dop/uploads /srv/kott

scp -r kristi@10.40.0.130:/var/www/dop/reviews /srv/kott

scp -r kristi@10.40.0.130:/var/www/dop/frontend /srv/kott

scp kristi@10.40.0.130:/var/www/dop/kott.jar /srv/kott

Koodilõik 3.8. Failide migreerimine

Kopeerimise käigus võivad muutuda failide ja kaustade õigused, kuid kuna rakendus ja

veebiserver töötavad ainult kindlate kasutajate õigustes, siis on tarvis need taas paika

saada kasutades chown käsku (koodilõik 3.9). Nii veebiserver kui ka rakendus peavad

olema võimelised ligi pääsema neile etteantud kohtadele failide salvestamiseks või

kasutajale sisu väljastamiseks, kuid õiguste jagamisega peab olema ettevaatlik, et

vastavad süsteemi osad saaksid ligi ainult neile ettenähtud kaustadele/failidele, vastasel

juhul võivad lekkida näiteks rakenduse seadistusfailid või logid.

29

Kaustadel panna omanikud paika

chown -r nimi:nimi /srv/kott/uploads

chown -r nimi:nimi /srv/kott/reviews

chown -r nimi:nimi /srv/kott/frontend

chown kott:kott /srv/kott/kott.jar

Koodilõik 3.9. Migreeritud failide kasutaja õigused paika

Andmebaasiserverit kasutati samuti eelnevalt süsteemiadministraatorite mängumaana,

kus katsetati läbi baasi taastamist, uuendamist ja kohendamist uuele keskkonnale,

seetõttu peab olema veendunud, et vana andmebaas oleks eelnevalt täielikult

eemaldatud (koodilõik 3.10).

DB kontroll (kui on testimisest jäänud dop DB tuleks see eemaldada)

ssh 10.40.10.76

sudo -i

mysql

drop database dop;

create database dop;

Koodilõik 3.10. Andmebaasi puhastamine

Andmebaasi kolimiseks peab kopeerima eelnevalt loodud tõmmise uude

andmebaasiserverisse sarnaselt nagu kopeeriti rakendusserverisse vajaminevad

kaustad. Peale tõmmise kopeerimist uude serverisse saab sooritada taastamise. Lisaks

tuleb täiendada andmebaasis olevaid väljasid uuele ülesehitusele vastavaks (koodilõik

3.11).

Andmebaasi taastamine

mysql < /srv/mysqldump/$(date +%Y%m%d)-dump.sql

Andmebaasi uuendamine

mysql_upgrade

Pisikohendus

update mysql.proc set definer = 'kott@%';

Koodilõik 3.11. Andmebaasi taastamine ja seadistamine

Kõige viimaseks tegevuseks on rakenduse ja veebiserveri taaskäivitamine uues

keskkonnas (koodilõik 3.12), seejärel saab kontrollida, kas esileht kuvab oodatut

ülesehitust veebilehes ning kas andmebaasi ühendused töötavad planeeritult, mõlemat

30

saab kontrollida liikudes lehel ringi. Samal ajal tuleb serveri seest jälgida rakenduste

logisid ning otsida veateateid või hoiatusi. Täispikk konstruktor asub lisas 1 ja lisas 2.

Kui DB tehtud, rakenduse osad käima

ssh 193.40.55.70

sudo -i

sc start kott

sc start httpd

Koodilõik 3.12. Teenuste käivitamine

Kontrollile järgneb informatiivse kirja kirjutamine arendajale ja projektijuhile eduka

uuendamise kohta, kus soovituslikult tuleb mainida nende edasised tegevused ja

versioonidega seotud muudatused, et hiljem oleks võimalik kirjade ajaloo põhjal teha

kokkuvõtte tegevustest. Loodud uued serverid tuleb lisada monitooringusse ning kõik

teadmised ja tegevused, mis said omandatud või tehtud, tuleb dokumenteerida EENeti

arendusveebi.

3.2.1 Õnnestumised ja ebaõnnestumised

Rakenduse töö kontrollimisest võtsid osa kõik osapooled - süsteemiadministraatorid,

projektijuht ja arendajad. Kontroll on süsteemiadministraatorite joaks pinnapealsem,

kuna osakond tegeleb paljude infosüsteemide haldamisega, kuid seda ainult serveri

sisupoolelt, seega ei ole administraatoritel teadmiseid hindamaks veebiliidese tööd. Kui

esileht tuleb üles, reageerib nupuvajutustele ning sisselogimine toimib, loeb osakond

süsteemi kasutuskõlblikuks ning järg antakse üle projektijuhile. Projektijuht haldab

üldjuhul vaid ühte infosüsteemi ning on seetõttu ka süsteemi tööga süvitsi kursis, tema

vaatab üle täpsemad funktsioonid ning soovi korral kaasab testrühma kontrollimaks,

kas kõik töötab vastavalt ülesehitusele, probleemide ilmnemisel kaasatakse arendajad.

Testkeskkonna kolimisele kulus viis tundi, mille käigus vahetati välja baasserver

täielikult uue vastu. Keskkonna peatamine uuenduseks lepiti kokku üks päev enne ning

planeeritavaks katkestuse pikkuseks planeeriti neli tundi. Uuenduse ebaõnnestumise

puhuks oli valmis seatud tagavaraplaan vanadele serveritele tagasikolimiseks.

Keskkonna testimist tehakse kuni kõik osapooled nõustuvad, et süsteem töötab nii nagu

planeeritud ning seejärel hakatakse planeerima toodangukeskkonna uuendust.

31

Kehva kommunikatsiooni tõttu läks kaduma väga palju aega, kuna uuendus toimus

suvel ja varasügisel, siis paljud töötajad olid puhkusel ning alati ei olnud olemas

asendajat, kes teemaga kursis oleks. Lisaks tekkis ajapikku ka mitmeid arusaamatusi,

mis suurendasid ajakulu veelgi.

Palju aega kulus ajatsooni ülesehituse erinevusest tingitud probleemidele. Andmebaas,

operatsioonisüsteem ja indekseerija olid esmapilgul vaadates seadistatud samasse

ajatsooni, kuid kuvatav informatsioon oli tegelikkuses kohalikust ajast nihkes paar

tundi, millest tulenevalt ei käitunud süsteem nii nagu vaja. Lõplikuks lahenduseks

otsustati lisada Solri teenuse käivituslausele juurde ajatsooni ülesehituse informatsioon.

Toodangukeskkond sujus paigalduse poolest sujuvamalt ning ajakulu oli võrreldes

testserveri nelja ja poole tunniga kolm tundi. Küll aga ilmnes toodangu puhul välja palju

probleeme, mis testis jäid kõikidel osapooltel märkamata. Sellega seoses tuli

uuendusele järgevatel nädalatel nii test- kui ka toodanguserveritele suurtes kogustes

kiirpaiku (ingl k hotfix), mille abil parandati vigu alates visuaalsetest fondivärvidest kuni

Java süntaksite parandusteni.

32

KOKKUVÕTE

Käesoleva rakenduskõrgharidustöö eesmärgiks oli vahetada vanad infosüsteemi

baasserverid uuendatud ja ajakohastatud virtuaalmasinate vastu. Eesmärgi

saavutamiseks loodi uuendusplaan, arutati koostöös projektijuhi ja arendajatega

uuendamise võimalusi, tarkvaraversioonide sobivust ning eeldatavat aja- ja

ressursikulu. Kuigi süsteemiadministraatorite plaaniks oli kohe algusest peale minna uue

operatsioonisüsteemi teed, siis lõppude-lõpuks sai antud lõputöö valmida sellisel kujul

tänu projektijuhi ja arendusmeeskonna koostöövalmidusele.

Täielikult uute serverite ehitamine võimaldas jagada põhieesmärgi omakorda kolmeks

väiksemaks, kuid siiski väga olulisteks punktideks, mille tulemusena minimaliseeriti

turvaaukude olemasolu eemaldades vanu ja ebavajalikke faile/komponente, parandati

hallatavust failide asukohtade piiramise näol ning loodi oluline dokumentatsioon ja

mängiti reaalselt läbi taastetestimine.

Töö autor on tulemusega väga rahul. Tegemist oli tudengi jaoks teise ülesandega peale

praktikale asumist ning kuna tudeng asus praktikale põhimõtteliselt olematute Unixiga

seotud teadmistega, siis oli lõputöö kohati üsna keeruline, kuid andis palju väärtuslikke

teadmiseid mitmekülgsetel teemadel. Antud projekti raames õppis tudeng tundma

MariaDB andmebaase, Debiani ja Arch Linuxi operatsioonisüsteeme, veebiservereid ja

palju muud, mis tuli järgnevate ülesannete lahendamisel suureks kasuks. Kõike

dokumenteerides tekkis tudengil uus harjumus igat tegevust üles kirjutada, tänu millele

tekkis palju juhendeid (näiteks serverite ehitamine nullist, varunduse ja andmebaaside

initsialiseerimine), mida on võimalik kasutada tulevikus automatiseeritud skriptide

loomisel või lihtsalt korduvate ülesannete kiirema lahenduse nimel. Lisaks isiklikele

teadmistele suutis tudeng pakkuda asutusele kasu ehitades turvalised ja optimeeritud

serverid ning aidates läbi viia taastetestimist.

Lõputöö projekti tulemusena loodud serverid on praeguseks täismahus kasutusel.

Serverite ehitamise käigus loodud juhendeid kasutati uuendustele

automaatpaigaldusskripti kirjutamiseks. Alates 2020. aasta sügisest arendatakse E-

koolikotti uut visuaalset poolt ning muutuvad mõningad tarkvaranüansid, kuid autori

poolt ehitatud serverid jäetakse edasi kasutusele.

33

SUMMARY

The aim of this thesis was to replace old and outdated information system with new, up

to date virtual machines. To fulfill the thesis objective, a basic upgrade plan was made,

which was then presented to the project lead and developers to summarize student’s

intentions and to find the best way to make the upgrade process as smooth as possible,

figure out software limitations and plan an estimate necessity for time and resources.

Even though the student’s team had planned to switch out the old operating system

from the very beginning, then this thesis could be presented in this way only thanks to

the project lead’s and developer’s full readiness to cooperate.

Full upgrade for all servers allowed dividing the main objective into three smaller, yet

still very important goals - minimize the existence of vulnerabilities by removing old and

unnecessary files/components, improve manageability by limiting folders where files

can be written and disaster recovery was played through and all necessary

documentation was written.

The author is pleased with the outcome. This thesis was the student’s second project

since becoming an intern at Information Technology Foundation for Education. Student

started with an essentially nonexistent skillset for system administration, which made

this thesis occasionally quite challenging but gave a substantial amount of expertise in

various fields. During this thesis, student gained new experiences regarding MariaDB

databases, Debian and Arch Linux operating systems, web servers, and much more,

which all became beneficial in future tasks. During this long learning process student

also acquired a habit to document every step and command, which resulted in multiple

new manuals regarding building servers from the beginning and initialization of backups

and databases. These manuals can be applied to automated scripts or to make repetitive

tasks less challenging by copy-pasting required commands. Overall, the highlight of this

thesis was to provide new, secure, and optimized to the information system.

The servers that were made as the result of this thesis are currently fully in use. The

manuals that were made during the process were used to make an automatic script for

updating E-koolikott servers. As of autumn, 2020 a new visual side is being built and

some software is being switched out, but servers themselves will stay unchanged.

34

KASUTATUD KIRJANDUSE LOETELU

1. Infosüsteemide turvameetmete süsteem ISKE. [Online]

https://www.ria.ee/et/kuberturvalisus/infosusteemide-turvameetmete-susteem-

iske.html (10.07.2020)

2. Mark Kedgley. The problem with running outdated software. [Online]

https://www.newnettechnologies.com/whitepaper/Outdated-Software-Whitepaper.pdf

(07.11.2020)

3. E-koolikoti korduma kippuvad küsimused. [Online]

https://e-koolikott.ee/kkk (10.07.2020)

4. Meeting Minimum Hardware Requirements. [Online]
https://www.debian.org/releases/stretch/i386/ch03s04.html.en (28.08.2020)

5. Advice For New Users On Not Breaking Their Debian System. [Online]

https://wiki.debian.org/DontBreakDebian (07.18.2020)

6. Arch compared to other distributions. [Online]

https://wiki.archlinux.org/index.php/arch_compared_to_other_distributions

(07.12.2020)

7. Infosüsteemide talituspidevuse poliitika. [Online]

https://www.ria.ee/sites/default/files/content-

editors/ISKE/lisa1.03.infosusteemide_talitluspidevuse_poliitika.doc (02.09.2020)

8. Serverivabrik. [Online]

https://arendus.eenet.ee/w/arendusveeb/serverivabrik/ (30.06.2020)

9. Alpine Requirements. [Online]

https://wiki.alpinelinux.org/wiki/Requirements (08.12.2020)

10. Kernel Module Loading. [Online]

https://wiki.archlinux.org/index.php/Kernel_module#Loading (08.12.2020)

11. Nineveh Madsen. OpenVPN Study Reveals Employee Behaviors Have A Direct

Impact On Corporate Cybersecurity Effectiveness. [Online]

https://www.privatetunnel.com/news/employee-passwords-cybersecurity-study/

(14.07.2020)

https://www.ria.ee/et/kuberturvalisus/infosusteemide-turvameetmete-susteem-iske.html
https://www.ria.ee/et/kuberturvalisus/infosusteemide-turvameetmete-susteem-iske.html
https://www.newnettechnologies.com/whitepaper/Outdated-Software-Whitepaper.pdf
https://e-koolikott.ee/kkk
https://www.debian.org/releases/stretch/i386/ch03s04.html.en
https://wiki.debian.org/DontBreakDebian
https://wiki.archlinux.org/index.php/arch_compared_to_other_distributions
https://www.ria.ee/sites/default/files/content-editors/ISKE/lisa1.03.infosusteemide_talitluspidevuse_poliitika.doc
https://www.ria.ee/sites/default/files/content-editors/ISKE/lisa1.03.infosusteemide_talitluspidevuse_poliitika.doc
https://arendus.eenet.ee/w/arendusveeb/serverivabrik/
https://wiki.alpinelinux.org/wiki/Requirements
https://wiki.archlinux.org/index.php/Kernel_module#Loading

35

12. Jake Fellows. Is Splitting off Resources for Your Database Right for You? [Online]

https://www.liquidweb.com/blog/is-splitting-off-resources-for-your-database-right-

for-you/ (04.07.2020)

13. Virtuaalprivaatserveri teenus VIPS. [Online]

https://www.eenet.ee/EENet/VIPS.html (14.04.2020)

https://www.liquidweb.com/blog/is-splitting-off-resources-for-your-database-right-for-you/
https://www.liquidweb.com/blog/is-splitting-off-resources-for-your-database-right-for-you/
https://www.eenet.ee/EENet/VIPS.html

36

LISAD

37

Lisa 1 Rakendusserveri täispikkuses konstruktor

OS: arch

BUILD_VER: 3

Firehol and allow ssh access for tunnel for developers only

sf_build partial/firehol

cp -v $BD/ssh.conf /etc/firehol/public/

cp -v $BD/koolitaja.conf /etc/firehol/public/

Backup

sf_build partial/borg

Adminnid

sf_build partial/admins

Apache

sf_build partial/apache

cp -v $BD/httpd-kott.conf /etc/httpd/conf/

kott user

useradd -c Kott -d /srv/kott -U -o -u 501 -s /bin/bash kott

MariaDB clients

sf_install_pkg mariadb-clients

Git

sf_install_pkg git

JDK

sf_install_pkg jre8-openjdk

cp -v $BD/kott.service /etc/systemd/system/

systemctl enable kott.service

Solr

sf_arch_install_aur_pkg solr

ln -vs /srv/solr/logs /opt/solr/server/logs

ln -vs /srv/solr/dop /opt/solr/server/solr/dop

systemctl enable solr

echo 'SOLR_TIMEZONE="Europe/Tallinn"' >> /opt/solr/bin/solr.in.sh

38

Allow more files to be opened for solr

mkdir -vp /etc/systemd/system/solr.service.d/

cat <<EOT > /etc/systemd/system/solr.service.d/override.conf

[Service]

LimitNOFILE=65000

LimitNPROC=65000

EOT

NFS, andmete vastuvõtmiseks

sf_install_pkg nfs-utils

vajame mailcapi, et tekiks /etc/mime.types fail

sf_install_pkg mailcap

Motd

cat >> /etc/motd <<'EOT'

 e-Koolikott

EOT

39

Lisa 2 Andmebaasiserveri täispikkuses konstruktor

OS: arch

BUILD_VER: 3

Proxy

sf_build partial/proxy

Backup

sf_build partial/borg

cp -v $BD/pre-backup-mariadb.sh /root/borg/

Adminnid

sf_build partial/admins

MariaDB

sf_build partial/mariadb

Kui tegemist on TEST süsteemiga

if ["$SF_SERVER_XNAME" = 'ekoolikotttestdb']; then

NFS

sf_build partial/nfs-server

cat >> /etc/exports <<'EOT'

/srv/mysqldump 10.40.10.77/32(rw,sync,no_root_squash,no_subtree_check)

EOT

fi

Kui tegemist on LIVE süsteemiga

eif ["$SF_SERVER_XNAME" = 'ekoolikottdb']; then

NFS

sf_build partial/nfs-server

cat >> /etc/exports <<'EOT'

/srv/mysqldump 10.40.10.75/32(rw,sync,no_root_squash,no_subtree_check)

EOT

fi

Motd

cat >> /etc/motd <<'EOT'

 e-Koolikott DB

EOT

