

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

Service management metrics for a large-scale

Engineering Services Team

Master Thesis

Student: Märten Ester

Student code: 090202IAPM

Supervisor: Deniss Kumlander

Tallinn

2015

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem

kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad,

kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

(kuupäev) (allkiri)

Abstract

The thesis studies how data and metrics can be used to drive improvements in a large scale

Engineering Services Team. Decision making based on metrics is examined. The main goals

of the thesis are the following:

 To understand the role of data and metrics in the service management and software

development process.

 To establish Key Performance indicators and other metrics for Skype Engineering

Services Team. One of the purposes of the metrics is to support the planning process.

The second purpose is to understand the progress made towards the goals set by the

team and the company.

 To find the best means for gathering, surfacing and using data to manage and support

an Engineering System.

The thesis starts by examining the role of metrics in the software development and service

management process in general. The practices and benefits of incorporating metrics into daily

workflows are explored. The introductory part finishes by giving and overview of the Skype

Engineering Services Team and how data and metrics are used.

Rest of the thesis continues by examining possibilities for improvements to Skype

Engineering Services Team. Based on the business goals of the Skype Engineering Services

Team, several metrics to measure the impact of the daily work are proposed. By analysing the

data around the incident management process proposals for improvements are suggested. Key

Performance indicators are established for the Build and Third Party Software area.

The outcomes of the work are suggestions and actual implementations in the following areas

 Service instrumentation.

 Processes and tools for data gathering, storing, visualisation and analytic.s

 Metrics for planning and understanding the impact of the work done in the Skype

Engineering Service Team.

In addition to the outcomes listed above the work reveals side effects that a data and metrics

project can have. The owner’s lack of deeper understanding or misconceptions of the domain

can be viewed as the biggest risk to the success of establishing Key Performance Indicators.

In the other hand the exercise of measuring the impact of ones actions provides a good

opportunity to get deeper insights in to business domain resulting in actions that otherwise

would not have taken place.

Annotatsioon

Magistritöö uurib andmete ja meetrikate kasutamist suuremahulises tarkvaraarenduse

tugiteenuste meeskonnas. Vaadeldakse meetrikate poolt toetatavaid otsustusprotsesse.

Magistritöö põhieesmärgid on järgnevad:

 Mõista andmete ja meetriakte rolli teenuse opereerimisel ja arendusprotsessis.

 Välja töötada Skype arenduse tugiteenuste meeskonna jaoks tulemusindikaatorid.

Selliste meetrikate üheks eesmärgiks on planeerimisprotsessi toetamine. Teiseks

eesmärgiks on meetrikate abil mõista meeskonna ja ettevõtte eesmärkide täitmise

ulatust

 Leida parimad vahendid andmete kogumiseks ja presenteerimiseks.

Magistritöö algab meetrikate rolli uurimisega tarkvara arenduses ja teenuste opereerimises.

Vaadeldakse meetrikate kasutamise praktikaid ja sellest saadavat kasu. Sissejuhatav osa

lõppeb ülevaatega Skype tarkvaraarenduse tugiteenuste meeskonnast ja kirjeldusega sellest,

kuidas seal andmeid ja meetrikaid kasutatakse.

Järgnevalt keskendub magistritöö võimalustele Skype’i Tarkvaraarenduse tugiteenuste

meeskonna töös erinevaid parandusi sisse viia. Lähtuvalt meeskonna ärilistest eesmärkidele

pakutakse välja mitmed meetrikad igapäeva töö mõõtmiseks. Intsidentide haldus protsessi

analüüsi käigus pakutakse välja mitmed parandused. Tulemusindikaatorid töötatakse välja

Buildi ja Kolmanda osapoole tarkvara haldamise protsessi kohta.

Töö tulemusteks on ettepanekud ja rakendused järgnevates valdkondades:

 Teenuste instrumenteerimine.

 Protsessid ja vahendid andmete kogumiseks, salvestamiseks, visualiseerimiseks ja

analüüsiks.

 Meetrikad Skype’i Tarkvaraarenduse tugiteenuste meeskonna töö tulemuste

hindamiseks.

Lisaks ülal mainitud tulemustele toob magistritöö esile andmete ja meetrikate projekti

kõrvalmõjud. Omanike sügavams arusaama puudumine või valearusaamad

tegevusvaldkonnast on ühed suurimad riskid tulemusindikaatorite sisseviimisel. Teisalt pakub

enda tegevuse tulemuste mõõtmine võimaluse saada sügavamaid teadmisi ärivaldkonna kohta,

mille tulemuseks võivad olla teod, mis muul juhul ei oleks toimunud.

Definitions and Abbreviations

Third-party software (TPS) - A Third Party Software component is a software product

developed by an entity other than the original vendor of the development platform. A Third

Party Software component can be sold or distributed without a fee.

Key Performance Indicator (KPI) - Key Performance Indicators measure the success of a

company in the most crucial areas of their business.

Service Level Agreement (SLA) - A service level agreement is a contract between the

service provider and the user of the service. Service level agreement defines the requirements

that the service provider must fill including those regarding performance and reliability. A

service level Agreement might also include functional definitions of the service

Jira ticket – Also referred as Jira issue. Jira
1
 is a service developed by Atlassian meant for

carrying out product planning and development related tasks including requirements and

defect tracking. A Jira ticket is a work item created in the system by any user. A Jira ticket has

an associated workflow with a pre-defined lifecycle including start and end states.

 (Software) Build - A Build is the end product of a process that turns source code into a

working component. It includes preparing the right environments, managing and fetching the

correct source code and dependencies, compiling the source code, running a set of tests

needed to verify the build, and making the component and its documentation available for the

users.

Software Process Improvement (SPI) – In this thesis Software Process Improvement is

referenced as the initiative that introduces mature development process in Phillips.

Balanced Scorecard (BSC) – Balanced Scorecard is a widely used tool for strategic planning

and performance management. In addition to the financial perspective, learning and growth,

internal business processes and the customer perspective is taken into account.

Capability Maturity Model (CMM) – A model used to assess the level of predictability and

reliability of a software development process.

1
 https://www.atlassian.com/software/jira

Table of figures

FIGURE 1 - ES CONCEPTUAL ARCHITECTURE ... 22

FIGURE 2 - TRACKED INCIDENTS ... 31

FIGURE 3 - CHANGE IN ALERT COUNT .. 32

FIGURE 4 - ALERTS, INCIDENTS AND COMMUNICATION HANDLED IN SEPARATE THREADS 33

FIGURE 5 - WORKFLOW BASED ON JIRA TICKETS ... 34

FIGURE 6 - THE % OF TICKETS APPROVED IN LESS THAN 14 DAYS ... 38

FIGURE 7 – THE NUMBER OF TICKETS APPROVED AND WAITING FOR APPROVAL .. 40

FIGURE 8 - RELIABILITY TOTAL PER DAY ... 46

FIGURE 9 - RELIABILITY BREAKDOWN PER MONTH ... 46

FIGURE 10 - SPEED TOTAL PER DAY .. 47

FIGURE 11 - SPEED BREAKDOWN BY MONTH ... 47

FIGURE 12 - CI EXPERIENCE ON 09.01.2015 ... 48

FIGURE 13 – METRICS INFRASTRUCTURE .. 52

FIGURE 14 - ETL MODEL ... 60

FIGURE 15 - RESULTS FOR IMPROVEMENT DRIVES FROM PHILIPS [1] ... 61

FIGURE 16 - THE % OF INTERNAL TPS TICKETS APPROVED IN LESS THAN 14 DAYS .. 62

FIGURE 17 - THE NUMBER OF INTERNAL TPS TICKETS APPROVED AND WAITING FOR APPROVAL 63

FIGURE 18 - EXAMPLE OF FIXED VS ROLLING SLA .. 64

FIGURE 19 - ALERT AND INCIDENT REVIEW PROCESS ... 65

FIGURE 20 - RELIABILTY BREADOWN BY DAY ... 66

FIGURE 21 - RELIABILITY TOTAL PER MONTH .. 66

FIGURE 22 - BUILD SPEED TOTAL PER MONTH ... 67

FIGURE 23 - SPEED BREAKDOWN BY DAY ... 67

file:///C:/Users/mester/OneDrive/Kool/Master_saatmiseks%20-%20%20new.docx%23_Toc418515900
file:///C:/Users/mester/OneDrive/Kool/Master_saatmiseks%20-%20%20new.docx%23_Toc418515901

Table of tables

TABLE 1 - METRICS: LEVEL OF ACTIVITY IN PHILIPS ... 16

TABLE 2 - TOTAL NUMBER OF ALERTS IN ES .. 30

TABLE 3 - CRITICAL ALERTS PER SERVICE ... 30

TABLE 4 - CRITICAL ALERTS PER ITEM .. 30

TABLE 5 - EXPLANATIONS FOR TPS KPI COLUMNS ... 36

TABLE 6 - THE PERCENTAGE OF TICKETS APPROVED IN LESS THAN 14 DAYS .. 37

TABLE 8 - THE TOP RESOURCES ORDERED BY THEIR TOTAL USAGE TIME .. 44

TABLE 9 - THE % OF INTERNAL TPS TICKETS APPROVED IN 14 DAYS OR LESS ... 62

TABLE 10 - AUGUST AND SEPTEMBER FOR DISTRIBUTED TPS TICKETS BROKEN DOWN BY DAY 63

TABLE 11 - DATA FOR THE EXAMPLE OF USING A FIXED PERIOD VS USING A ROLLING AVERAGE SLA 64

file:///C:/Users/mester/OneDrive/Kool/Master_saatmiseks%20-%20%20new.docx%23_Toc418501611
file:///C:/Users/mester/OneDrive/Kool/Master_saatmiseks%20-%20%20new.docx%23_Toc418501612

Table of contents

Autorideklaratsioon .. 2

Abstract ... 3

Annotatsioon ... 5

Definitions and Abbreviations .. 7

Table of figures ... 8

Table of tables .. 9

Table of contents .. 10

1. Introduction .. 12

1.1 Scope and motivation ... 12

1.2 Goals ... 13

1.3 Methodology ... 13

1.4 Overview .. 14

2. Best practices for implementing metrics .. 15

2.1 The characteristic and number of metrics ... 15

2.2 Success Factors ... 17

2.3 Technical infrastructure .. 18

2.4 Benefits of using KPIs and metrics .. 18

2.5 Summary ... 19

3. Overview of the Skype Engineering Services .. 21

3.1 Description of Skype Engineering Services Team ... 21

3.2 Engineering Services data management and usage .. 24

3.2.1 AW stats .. 24

3.2.2 Log Stash ... 25

3.2.3 Nagios .. 25

3.2.4 Other .. 26

3.3 Summary ... 26

4. Metrics for alerts and Incidents .. 28

4.1 Background ... 28

4.2 Alerts and Incident Data ... 29

4.3 Learnings and improvements .. 31

4.4 Summary ... 34

5. A Key Performance Indicator for Third Party Software management process 35

5.1 Approval time as a KPI .. 36

5.2 Implementation of the KPI ... 38

5.3 Usage of the KPI... 40

6. Key Performance Indicators for Build Systems ... 42

6.1 Methodology for Build KPI .. 43

6.2 Build reliability KPI ... 45

6.3 Build speed KPI .. 46

6.4 Learnings .. 48

7. Technical infrastructure .. 50

8. Conclusion .. 53

What can be done next? .. 55

Kokkuvõte .. 56

Järgmised sammud ... 58

Bibliography ... 59

Appendixes ... 60

Appendix A: Extraction, Transformation, Loading .. 60

Appendix B: Full table for improvement drivers ... 61

Appendix C: Tables and charts for TPS tickets .. 62

Appendix D: Additional tables and charts for alerts and incident management process 65

Appendix E: Build Reliability Charts ... 66

Appendix F: Build speed charts.. 67

12

1. Introduction

1.1 Scope and motivation

Huge amount of data is generated when people use online services. The data exist in the form

of log files, text documents, reports from finished tasks either by people or machines. Are

these records used? Most companies do store a lot of the available information. However

rather often not much attention is paid to how the data is managed. As the activities around

data are not very well thought through, gathered information will not offer much support to

the business needs of the company. Only a small amount of the stored data gets structured

and used to support decision making process. “Understanding the whole process helps to

structure data mining projects so they are closer to systematic analyses rather than heroic

endeavours driven by chance and individual acumen” (F. Provost and T. Fawsett, 2013,p.19).

The systematic usage of data and metrics to describe teams’ goals improves the quality of the

service and increases the benefits that the system can offer.

The thesis is based on the example of Skype Engineering Services Team. The author himself

is a member of that unit. The data generated in the Skype Engineering Systems can be

separated into two groups.

 The data that can be used to understand and improve the service by its owners. This

includes the statistics regarding the usage of the systems: who and when use the

system? The performance of the system: how long does it take for the system to

respond to customers’ requests? The reliability of the system: how often does the

system have unpredictable outages that render the functionality unusable?

 Skype Engineering Systems contain a huge amount of data describing the work

process and quality of the products being developed. The available data includes

various test reports, descriptions of dependencies to other products, overviews of

different workflows etc. This kind of data would allow the customers to optimize their

workflows and improve the quality of their products.

13

The thesis focuses mainly on the data from the first category. The work producing the thesis is

carried out during the time span of almost one year from June 2014 until April 2015.

1.2 Goals

The purpose of the thesis is to make the data generated in the Skype Engineering systems

useful for the owners and the users of the services. The main goals of the thesis are the

following.

 To understand the role of data and metrics in the service management and software

development process.

 To establish Key Performance indicators and other metrics for Skype Engineering

Services Team. One of the purposes of the metrics is to support the planning process.

The second purpose is to understand the progress made towards the goals set by the

team and the company.

 To find the best means for gathering, surfacing and using data to manage and support

an Engineering System.

Based on the work carried out in the thesis, Skype Engineering Services Team will be able to

objectively measure the impact of their everyday efforts. The metrics can be used for

unambiguous conversations within the team. Also the metrics can be communicated out the

user of the Skype Engineering Services.

1.3 Methodology

The main goal of the thesis is to suggest and implement improvements in the Skype

Engineering Services Team. Getting to understand the best practices and the current system

support that goal. Therefor several combined methodologies are used in the thesis.

 An analysis is carried out to understand the data usage in Skype Engineering

Services Team.

 Research is done regarding the role of metrics in software development

lifecycle.

 Different tools and methods for gathering and analysing data are compared.

14

 Real live sets of data are analysed.

 New process and tools are implemented.

1.4 Overview

1. Chapter – Introduction to the thesis. Establishes the scope and goals. Gives an

overview of the used methodology.

2. Chapter – Examines best practises regarding the usage of data and metrics in different

organizations. Advice and benefits regarding the implementation of KPIs is studied.

3. Chapter - Gives an overview of the role and setup of the Skype Engineering services.

Provides an summary how data was gathered and used in Skype Engineering Services

Team when the work on the thesis was started in June 2014.

4. Chapter – Examines the monitoring and incident management process in Skype. The

relevant data and metrics to measure the effectiveness of the incident management

process are gathered. Suggestions for improvements are made and their

implementation is described.

5. Chapter – Gives an overview of the Third Party Software management process in

Skype. Metrics for understanding the status of the process are established.

6. Chapter – Gives an overview of the Build Systems in Skype. KPIs and other metrics

for understanding the status of the process are established.

7. Chapter – Gives an overview of the technical infrastructure supporting the metrics in

the Skype Engineering Services Team.

8. Chapter - Conclusion.

Kokkuvõte

Bibliography

Appendixes

15

2. Best practices for implementing metrics

Computer science and software development industry are growing in a very rapid pace. The

problems that modern large scale software development companies face did not exist 10 or

even 5 years ago. A lot of research, methodologies, practices and models are produced to turn

software development and maintenance process into a more predictable and manageable

process. There are various best practices and tools that support these goals. This chapter

examines the recommendations for implementing KPIs and other metrics. Naturally no

perfect solution exists that fits the needs of all businesses. Balanced Scorecard is one of the

most widely known and used tools. It provides a holistic view of the organization.

Implementing a whole strategic vision and performance monitoring system is too large

undertaking to fit the scope of this thesis. The target of this chapter is to establish viable goals

and strategy for the rest of the thesis.

2.1 The characteristic and number of metrics

The first thing to do when establishing KPIs is to understand the real purpose of the proposed

metrics. Establishing a few characteristics while forming the metrics is useful for making a

correct choice.

“From extensive analysis and from discussions with over 1,500 participants in my KPI

workshops, covering most organization types in the public and private sectors, I define seven

KPI characteristics:

1. Nonfinancial measures (not expressed in dollars, yen, pounds, euros, etc.)

2. Measured frequently (e.g., daily or 24/7)

3. Acted on by the CEO and senior management team

4. Understanding of the measure and the corrective action required by all staff

5. Ties responsibility to the individual or team

6. Significant impact (e.g., affects most of the core critical success factors [CSFs] and

16

more than one BSC
2
 perspective)

7. Positive impact (e.g., affects all other performance measures in a positive way)” (D.

Parmenter, 2007, p.5)

These characteristics will be taken under consideration when implementing KPIs for the

Skype Engineering Services Team.

One of the papers used as a reference is a survey conducted in Philips. „The paper presents

and discusses improvement targets, improvement drivers, and metrics, and the degree to that

they are being recognized in the software groups. “(J. J. Trienekens et al, 2007,p.135). The

study looks at the level of metrics activity and the usage of resulting data presented in “Table

1 - Metrics: level of activity in Philips”

Table 1 - Metrics: level of activity in Philips

The table shows that the average number of metrics used by a team varies from 7 to 11 for the

groups that have a metrics program. This is in accordance with the suggestions and references

by (D. Parmenter, 2007). Another interesting note from “Table 1 - Metrics: level of activity in

Philips” is the percentage of teams on each CMM level that has a formal metrics program.

According to (J. J. Trienekens et al) the average time required to move up a level is between

one and a half and two years. This shows that the time it takes to implement up to 6

functioning KPIs in practice is measured in years rather than months. Based on these studies it

is reasonable to set the target for Skype Engineering Services to establish 1-3 KPIs and up to

10 other useful metrics in the course of 1 year.

2
 Balanced Scorecard

17

2.2 Success Factors

Setting up a successful data and metrics project can be separated into 3 main Tiers. The most

technical activities are carried out by BI experts. They set up an infrastructure to obtain and

store the data. These activities are also known as Extract, Transform and Load. The second

group of people are analysts who help to present the data in a meaningful way to the end-

users. They create models and defined strategies how the data should be used. The last level is

made up by the consumers of the data. They are the people who use the inforamtion to shape

their decisions and strategies.

The activities carried out on the first 2 levels are complex and require expert knoweldge.

However they are rather technical in their nature. Fairly standard procedures are applicable in

majority of BI projects. The most valuable and also the most critical input is added on the

consumer level. If the data is not used for decision making and the models are not adjusted to

the companies needs the metrics initative is sure to fail. “It has been argued that, perhaps

due to the lack of integration of BI into the decision making process, more than 50% of BI

implementations fail to influence the decision-making process in any meaningful way” (A.

Pourshahid et al, 2014, p.3)

Many interesting aspects to observe while carrying out a metrics projects were highlighted by

(J. J. Trieneken et al.) when the question “what are considered to be important improvement

drivers for software groups?” was asked. The survey established the following 7 drivers as the

most of import for the success of the metrics program.

1. "Commitment of engineering management

2. Commitment of development staff

3. Sense of urgency and perceived need to improve

4. Availability of engineers time for SPI

5. Commitment of business management

6. Availability of qualified SPI resources

7. Clear/quantifiable improvement targets” (J. J. Trieneken et al.,2007,p.144)

The results received in their survey are in accordance with the argument by (D.Parmenter,

2007) presented in the previous section. Understanding risks in important to maximise the

value delivered with the metrics program. As illustrated previously the most critical link in the

18

chain is the actual usage of the data to support the decision making. Based on the conclusions

drawn from (J. J. Trieneken et al., 2007) and (D.Parmenter, 2007) a very big emphasis will be

put on facilitating and monitoring the relevance and usage of the surfaced data in this thesis.

The steps of gathering, storing and analysing records will be carried out iteratively to validate

the relevance of the data and models by the customer.

2.3 Technical infrastructure

When a metrics project is carried out it is necessary to have the tools in place to gather, store

and visualise the data. The focus of this thesis is on establishing and using the correct metrics

rather than building a full scale data mining solution. “The project team should promote the

use of existing in-house applications for the collection and reporting of the performance

measures for at least the first 12 months. Much can be done with standard applications such

as Excel, PowerPoint, SharePoint Team Services, and Access.” (D. Parmenter, 2007, p.32)

Two principles regarding the technical infrastructure will be kept in mind while writing this

thesis. For the first implementations of the ideas presented in this thesis very lightweight tools

will be used. The main focus will be put on the interpretation of the metrics and getting fast

feedback. Based on the feedback changes will be made to the metrics to fit the needs of the

organization. Even thou currently the main focus is not on the technical implementation a

scaling architecture is the second thing to keep in mind. Once we have established the metrics

we want to use within the organisation we need to be able to provide a scalable, reliable and

maintainable platform for everyday usage.

2.4 Benefits of using KPIs and metrics

There are numerous benefits of using data and metrics to understand your business. First of all

it is very difficult to control a process that is not sufficiently understood. Without adequate

information it is difficult to take decisions. Also the impact of the decisions will not be

known. “14% of the respondents answered the access to a common pool of accurate, timely

information which allows decision makers to monitor progress and take corrective actions

promptly. In this way, 13% of respondents argued that KPIs’ mechanism contributes to the

minimization of errors. Furthermore, 10% of respondents consider that KPIs are necessary

tools for decision makers.” (K. Konsta, 2012, p.152) Therefor correctly using KPIs gives the

19

business manager the opportunity to exercise insightful control over the processes he is

responsible for.

In addition, using metric creates a good platform for meaningful and unambiguous

communications. “By using KPIs the company’s objectives are translated into, and measured

by, a set of targets for the manager to be achieved. Moreover, 6% of respondents consider

that KPIs contribute to the proper implementation of company’s programmes and 12% of

respondents think that KPI measurements conduce to the improvement of internal

organization.” (K. Konsta, 2012, p.152). KPIs work as powerful means for sharing vision and

goals with the organisation. Influence of properly shared vision on Financial Performance,

Staff satisfaction, Customer satisfaction, Productivity and Staff/Manager Tenure were studied

by (F. F. Jing et al., 2013). The research found positive impacts to all of the mentioned

attributes. “Vision-communication and -sharing were significantly related to retaining both

managers and staff, which in turn enhances the bottom line, not only through direct savings,

but also by retaining an understanding of the organization and its customers. Performance

and productivity increase under both long-term managers and staff” by (F. F. Jing et al.,

2013.) KPIs help to reduce the misunderstandings and increase the cohesion within the

organisation. When communicated properly KPIs also help to improve the communication

with external stakeholders. “Furthermore, 12% of respondents think that the KPI

measurements conduce to the minimisation of disputes as well as to the improvement of

competitiveness. In addition, 10% of respondents argued that KPIs lead to improvement of

customer relationships.” (K. Konsta, 2012, p.152).

2.5 Summary

The following list will summarise the main learnings that will be followed during the rest of

the thesis.

 A chosen KPI needs to be something that is understandable and approved by the

whole team. This includes the management, developers and the people that operate the

services. One of the success criteria for the KPI is whether people can act based on it.

20

 It takes time to introduce functioning KPIs. The number of KPIs used in a team should

be smaller rather than bigger. In the context of Skype Engineering Services it is

reasonable to introduce 3-5 in an iterative process during a 12-18 month period.

 While introducing new metrics and KPIs the main focus should be on the actual usage

of the data. Tools used for data mining and Business Intelligence are important. Also

the scalability of the infrastructure should be kept in mind. However the main effort

should be applied to defining the correct metrics.

21

3. Overview of the Skype Engineering Services

This chapter gives and overview of the role and structure of the Skype Engineering Services

Team. The provided description is from June 2014 when the work on the metrics was started.

In this chapter the word “current” refers to the same interval when used in this chapter.

3.1 Description of Skype Engineering Services Team

Skype Engineering Services is a team supporting Skype and Lync Engineering organisation

within Microsoft. There are close to 4000 users for the services located in 10 bigger and

numerous smaller offices around the world on many different continents.

The size of the Skype Engineering Services Team is around 40 people divided into smaller

sub teams. Some sub teams have specialized functions. The functions include system

administration, providing level 1 support to end users, developing or maintaining some

specific service. The following list describes a conceptual overview of the services by their

function.

 Agile workflow tools support work item and defect tracking and reporting.

These services help developers, testers, engineering managers, product managers and

other interested parties to plan and track product development and maintenance.

 Source code management tools help developers and testers to maintain and

share their source code.

 Source code analyses tools support quality assurance activities on the source

code and object code level. Examples of such tools are Static code analyses and code

review tools.

 Artefact management provides the framework for producing and consuming

binaries and executables. Artefacts are the outcomes of a software build. The end

result of one team is often used as the input for another team. Artefact management is

also a key starting point for live deployments.

22

 Build Services provide an automatic infrastructure for developers to share

their work results with their team and with the rest of the company by building and

sharing their software. They also use the artefacts from other developers and teams in

their build process. Technically the Build Services consist of a Build orchestrator and

of more than 500 build machines. The Build orchestrator helps to set up and schedule

the necessary Builds machines which carry out the build tasks. Source code

management and artefact management tools are also very tightly integrated into the

Build infrastructure.

 Test tools provide a unified set of tools for quality engineers to maintain test

cases, run some of the generic tests and gather feedback from the beta testing process.

 Other. Not all the tools fit exactly into the current classification. One of those

tools Third Part Software management tool, which deserves to be mentioned. The aim

of the tool is to support developers’ efforts to be compliant with the legal and technical

requirements associated with the usage of third party software.

Figure 1 - ES conceptual architecture

Skype engineering services has evolved over the past 10 years. The requirements for the

services have changed and will continue to change rapidly in the future. As technology

23

progresses and various legacy systems have to be merged there is a need to support a large

selection of different technologies. The main reasons for this complexity are the following:

 A very wide variety of technologies that need to be supported due to the nature of

developing multiplatform software.

 Merger of two Engineering organizations (Skype and Microsoft Lync) with legacy

systems that cannot be directly replaced by one another.

 The need to implement new technologies with a limited negative impact to the

organization during the adoption period.

 The need to unify different services and processes with a limited negative impact to

the organization while the changes are being made.

Due to the reasons mentioned above there are several duplicated functions that need to be

supported in parallel. Also considering the size of the organization the implementation of the

model depicted on “Figure 2 - ES conceptual architecture” is rather complex.. The following

list of similar services gives a better understanding of the complexity of the implementation of

the architecture.

 There are currently 5 source code systems that are being used.

 There are 5 bigger artefact types that need their own management tool (or at least a

very advanced management capability within another tool).

 There is a transition happening to adopt a new build Management system. How long

the full system migration takes is not yet known. It can be up to several years. Until

then both systems need to be supported.

 The same applies to Agile Workflow tools. There is a plan to start a migration to a

new system, but the timelines are not clear and there will be a long period during

which several systems need to be supported in parallel.

The need to integrate different systems with one another adds also adds a new layer of

complexity.

24

3.2 Engineering Services data management and usage

The data management and usage inside the Skype Engineering Services Team was analysed.

Two groups of persons were interviewed: the people operating the services on a daily bases

and the people responsible for planning the future developments. The tools for gathering and

presenting the data were also examined. The goal was to find an answer to the following

questions:

 What tools are used for gathering data from engineering services?

 How is the data currently used?

 What are the obvious gaps and problems of the data usage?

 What improvements should be done to instrumentation and data usage to support the

decision making for engineers and managers?

The next section will give an overview of the main data gathering and analytic systems that

are currently used within the Skype Engineering Services Team. The general purpose of the

tool and the actual usage by the team members is described.

3.2.1 AW stats

AWStats
3
 is one of the most widely used Web analytics tools in the world. It is distributed

under the GNU General Public License (GPL)
4
. AWstats generates reports based on

application log files. The main functionality includes the usage of different web resources

broken down by criteria such as dates, regions etc.

Most of the tools in Skype Engineering services have AWstats enabled. The systems provide

the information of their usage which can be accessed and viewed online by any interested

party. However the data from AWstats is not used very often. An example use case is the

identification of accounts (usually automated service accounts) with abnormally large activity

when the systems in questions have performance issues.

When talking to the Product Management team there was no indication that the data from

AWstats is used to support the planning of the future development and maintenance efforts of

3
 http://www.awstats.org/.

4
 http://www.gnu.org/copyleft/gpl.html

25

the services or to monitor and understand the impact of developed functionality. In addition

some of the data shown in AWstat is very obviously incorrect. For an example for some

periods of time the records indicated no activity at all. Second example is that in some cases

the numbers in AWstats showed very high level system usage that clearly could not have

happened.

3.2.2 Log Stash

For storing and analysing logs the Skype Engineering Services Team has just started to use 2

tools: Logstash
5
 and Kibana

6
. Both of the applications are third party software and distributed

under Apache 2.0 license.
7
 Logstash is a tool for storing and analysing log files. Logstash is

designed to be easily integrated with other tools. One of those tools is Kibana, an application

used for visualising the data output from Logstash. Some of the sub teams in Skype

Engineering Services Team use Kibana and Logstash for searching logs. Some rules and

alerts are created based on anomaly detection. Current rules are not very reliable when it

comes to defining the overall status of the application. Logstash and Kibana are mostly used

for resolving some very specific problem with a special search created to address a particular

question.

3.2.3 Nagios

Nagios
8
 is one of the most widely used monitoring and alerting systems in the world. The

components of the software are distributed under different licenses. These licenses include

Nagios Open Software License
9
, Nagios Software License

10
 and GPL

11
. Nagios provides

functionality to sample the state of an application or its component. Based on the results,

Nagios can send alerts to interested parties. The checks can be done either by a Nagios

standard function or by a custom script written by the service owner. The functions under

monitoring can be roughly divided into two categories.

 Infrastructure related checks such as CPU, disk, bond and network access.

5
 http://logsatsh.org

6
 https://www.elastic.co/products/kibana

7
 http://www.apache.org/licenses/LICENSE-2.0.html

8
 http://www.nagios.org/about/overview

9
 http://assets.nagios.com/licenses/nagios_open_software_license.txt

10
 http://assets.nagios.com/licenses/nagios_software_license.txt

11
 http://www.gnu.org/licenses/gpl.html

26

 Accessing the application in the same fashion as regular user would. Sending several

http requests to the services and analysing the received answer.

The main working principle of Nagios is simple. An agent runs one of the checks and reports

back the results. Nagios can be configured to run many checks before reporting that the

system has problems.

Nagios is enabled for a large majority of tools in Engineering Services. The alerts are

delivered by e-mail. System administrators also check Nagios dashboards on daily bases to

get an overview across the services under their supervision.

The Nagios data is used differently across the sub teams in Skype Engineering Services. Some

teams make use of it; some teams take practically no benefit. The volume of the alerts is in

hundreds per day, suggesting that majority is being ignored. Some teams do react to some of

the alerts. None of the teams are able to use the data to prevent problems. The data generated

by Nagios and its usage across the Skype Engineering Services Team will be covered in more

depth in Chapter 4.

3.2.4 Other

.All of the system managed by Skype Engineering Services Teams store data related to the

functions carried out in the application by the end users. Often this data is can be viewed

within the tool or retrieved by API. Applications provide easy ways to create dashboards and

heat maps with data specific to the given application. These reports are very helpful but they

are mostly used to provide information on very specific problem and each report is used by a

small amount of people. In addition several sub teams of Skype Engineering Services Team

have tried to implement dashboards for getting quick status update across the systems under

their control. These efforts have so far either failed or have no significant usage.

3.3 Summary

Two diverse points characterise the data usage in the Skype Engineering Services Team.

Firstly, several systems have been set up to gather data. The aim of these systems is to provide

insights and awareness. On the other hand, the data initiatives are rather incoherent. The data

usage usually takes place based on very specific needs by a small group of people

disconnected from the rest of the team. Therefor the impact and benefits obtained are very

27

limited. The following list summarises the findings around the data usage in Skype

Engineering Services Team:

 A fair amount of data is generated and stored by the Skype Engineering Services

Team. However the data is mostly unstructured and under used.

 Data is mainly used to support operational decision making and not product planning.

 Relevant data is mostly obtained when the specific need arises.

 Using data is expensive and the return on investment is considered to be too low to

depend more on data during the planning process.

As the previous section pointed out, there are very obvious gaps in data management and

usage. However the current situation in the Skype Engineering Services Team does

provide a platform for building a more structured and beneficial working model. By

providing a more structured approach to data usage and management a lot more

operational and managerial decisions can be based on data in a lot more coherent fashion.

28

4. Metrics for alerts and Incidents

The purpose of KPIs and other metrics is to provide support for decision making. During the

time of writing the implementation of new Incident Management process was in focus for the

Skype Engineering Services Team. The reasonable thing to do was to align the work done on

metrics with the efforts from the rest of the team. Therefor the author gathered, structured,

and analysed records related to incidents. The purpose of the data was to quantify the impact

of the new Incident Management process. Two sources of data were available:

 Records of manually tracked occurrences of incidents. This data was manually entered

and kept in the issue tracking tool Jira.

 Data saved by automatic monitoring service Nagios. The monitoring and alerting had

been set up by the members of Skype Engineering Services Team.

Current chapter will give an overview of the incident management process and automatic

service monitoring in Skype Engineering Services Team. Several views of the captured data

are presented. Some of the problem areas are surfaced and several proposals for

improvements are made. Also the results from the implemented improvements are shown.

4.1 Background

In the beginning of May 2014 a new Incident Management process was implemented within

the Skype Engineering Services Team. The new process had two main goals:

 Assure that customers are informed of ongoing incidents. Process was sending out

updates on recovery progress was put in place.

 Formally track and analyse existing incidents. The goal was to understand the root

cause of the problems and improve the service based on the learnings.

According to the new process, an event is considered to be an incident if the service is

affected in such a way that it is visible to the end-user and prevents them from carrying out

their tasks within the system. Alternative definitions do exists. One of them states that an

incident is “an unplanned interruption to an IT service or reduction in the quality of an IT

29

service. Failure of a configuration item that has not yet impacted service is also an incident,

for example failure of one disk from a mirror set.” (ItilFoundations, 2014). In this chapter the

word incident is used as it is defined in the Incident Management Process by the Skype

Engineering Services Team. The alternative definition is presented to demonstrate a strong

link between incident management and application monitoring. “In the fields of information

technology and systems management, Application Performance Management (APM) is the

monitoring and management of performance and availability of software applications. APM

strives to detect and diagnose application performance problems to maintain an expected

level of service” (Wikipedia). Alerting based on monitoring is an automatic and objective

activity carried out by another application. It is not based on human perception, but an actual

measured response by the system under monitoring. The results, both positive and negative

are automatically captured and stored.

4.2 Alerts and Incident Data

There is no finite and strict list of service definitions in the Skype Engineering Services Team.

In order to support the incident management process a table listing the services was

assembled. In addition to listing the services the following questions were answered regarding

each area:

 What is considered to be the normal state of the service?

 How to understand if service is experiencing an incident? What priority does the

incident have?

 How is the performance of different services measured?

The list is operational but not complete. Not all the services provided by Skype Engineering

service team are correctly defined. Also some of the associated data is missing. However the

table can be used as a starting point for understanding how services are monitored. Based on

the list it can be said that there a roughly 20 different services. In this chapter 5 bigger and

most important services are analysed.

The incident management process was put in place in the beginning of May 2014. The data

gathered during the first 2 months of the process was examined. “Table 2 - Total number of

alerts in ES” gives a broad overview of the data captured and sent out by Nagios.

30

Table 2 - Total number of alerts in ES

First of all the great number of alerts strikes out from the table. The total number of alerts is

incredible large. The big number of critical alerts is even more interesting. 1343 alerts per

month equals roughly 65 critical alerts per each working day. The number indicates either a

very unusable service or a fact that service monitoring is configured in such a way that it

provides a lot of noise. While talking to the service owners it is agreed that the second

hypothesis is in fact true. The services were not abnormally unstable during those 2 months.

The misconfiguration of alerting was creating a constant stream of noise irrelevant of the

actual service level. “Figure 2 - Tracked incidents” suggests the same. It is visible that the

number of manually tracked Incident was between 17 and 27 which differ greatly from the

number of alerts.

Period Gitorious Jira Nexus Pam Quickbuild SVN
Grand
Total

2014 117 886 59 4 64 1336 2466

May 96 382 17 3 44 801 1343

June 21 504 42 1 20 535 1123

Grand Total 117 886 59 4 64 1336 2466

Table 3 - Critical alerts per service

Period cpu createissue disk https java load ntp qb_queue quicksearch
Grand
Total

2014 2161 142 44 41 2 7 4 51 14 2466

May 1255 11 14 21 2 3 31 6 1343

June 906 131 30 20 7 1 20 8 1123

Grand Total 2161 142 44 41 2 7 4 51 14 2466

Table 4 - Critical alerts per item

“Table 3 - Critical alerts per service and “Table 4 - Critical alerts per item” give a more

detailed overview of the alerts. The tables indicate that 88% of the alerts are caused by CPUs.

When talking to service owners it came out that the current CPU alerts are not used at all.

Single CPUs are being monitored on multicore machines with more than 20 CPUs. In this

setup a single CPU alone does not define the performance of the application. Therefor the

Period
SERVICE CRITICAL
(HARD)

SERVICE
UNKNOWN
(HARD)

SERVICE WARNING
(HARD) Grand Total

2014 2466 20 1960 4446

May 1343 8 990 2341

June 1123 12 970 2105

Grand Total 2466 20 1960 4446

31

alerts do not give any information at all. Instead of being redefined the CPU checks are

currently simply being ignored.

Figure 2 - Tracked incidents

4.3 Learnings and improvements

The initial objective for analysing the alerts and incident data was to understand the impact of

the incident management process. While gathering and analysing the first set of monitoring

data, it became evident that the objective cannot be met. There are too many alerts that a

meaningless and do not indicate the level of system health. The definitions of useless “Critical

alerts” are not being changed, they are simply being ignored. The number of alerts that are

being ignored has created such amount of noise that the useful alerts simply get lost.
12

12

 The level of relevance and usefulness of alerts differs as the alerting is not set up and used by one group of

people. Alerts are managed and used by different sub teams in Skype Engineering Services Team.

32

Even though the main objective was not met, the visualisation of the monitoring data gave the

following results.

 Awareness was created in the Skype Engineering Services Team of what and how is

currently being monitored.

 Main source of noise was discovered.

Based on these insights the following actions need to be taken in order to make better use of

the automatic monitoring

 The amount of noise needs to be reduced.

 The process of managing alerts and alert definitions needs to be included into the daily

workflow of the service teams.

The data indicated that around 88% of alerts came from monitoring CPUs. The service

owners indicated that none of the alerts associated with CPU monitoring was used. The

solution was to either stop monitoring CPUs altogether or improve the process to minimize

0

200

400

600

800

1000

1200

1400

1600

May June July August

2014

quicksearch

qb_queue

ntp

load

java

https

disk

createissue

cpu

Figure 3 - Change in alert count

33

the number of false positive alerts. The task of improving the CPU monitoring turned out to

be a lot easier than thought. The improvements were implemented during the month of July.

The resulting change in overall number of alerts can be seen on “Figure 3 - Change in alert

count” The number of alerts in May has dropped by 86% compared to the number in May.

While the reduction of noise does not directly improve the service quality it does provide the

following positive outcomes:

 Increases drastically the percentage of relevant alerts. This makes it a lot more

probable that alerts are used.

 Makes it a lot easier in the future to analyse the incoming alerts due to the reduction of

their volume.

“Figure 4 - Alerts, incidents and communication handled in separate threads” describe the

work flow where Nagios alerting, incident management in Jira, and communication to the end

users is handled in three parallel threads. According to this model alerting and incident

manmanagement

management is not integrated in way. Efforts are duplicated but alerting has no impact on the

incident management process. The author proposed a model depicted on “Figure 6 -

Workflow based on Jira tickets”. The purpose of the model is to tie the three processes

together. Incidents should be managed based on automatic alerts. Communication should be

automatically generated based on Incident reports and status changes in Jira. During the

incident review process, monitoring and alerting should be improved. False positive alerts

Figure 4 - Alerts, incidents and communication handled in separate threads

34

should be amended or removed. Incidents that were not created by automatic monitoring help

to point out the areas were monitoring should be enhanced. During the writing of the thesis

the integration between alerting and incident management process was implemented and

piloted for a few services.

Figure 5 - Workflow based on Jira tickets

4.4 Summary

The objective of this chapter was to quantify the impact that the new Incident Management

process had on the performance of the services. This goal was not met. The assumption had

been that the change in the number of alerts is an indication of the change in the application

performance. This assumption proved to be invalid as the monitoring and alerting system was

not used properly. The monitoring and alerting needed to be changed so that the data would

reflect the actual state of the systems. Therefor the focus shifted to improving the alerting

process. The solution consisted of two parts. Firstly, the alerts that obviously were the biggest

source of the noise were removed. In addition a process was implemented that tied the

alerting into the incident management process. Having these processes coupled assured that

alerts were used to get notifications about occurring incidents. In addition the change enforced

that alerting was constantly reviewed during the incident review sessions.

35

5. A Key Performance Indicator for Third Party Software

management process

When software is produced, a lot more components are used than just the source code

developers themselves write. Third party libraries are used from the first party code. Tools

written by other companies are used to test, analyse or otherwise manipulate first party

components. Code snippets implementing some useful algorithms written by other people get

embedded to source code.

Third party components are accompanied by a license describing how the component can or

cannot be used. There are tens of different communal licenses used for software components.

In addition everyone is allowed to make up their own proprietary licence as they see fit. There

are still many caveats using a software component that comes with a free license such or

when a fee is paid for using the component. Even though a seemingly free or already paid for

license is used, negative legal and financial consequences might follow from the misuse of the

component. The use of a licensed component might have restrictions, not covered by the

obtained rights. Utilisation of the licensed component might set demands to how the first

party product itself can be licensed.

In addition quite often the due diligence that has to be done for using a third party component

is not limited to understanding and correctly handling just the license of the component under

question. A component obtained by a dependency management tool such as ivy or maven

might be in turn using other dependencies that are hidden from the maintainer of the original

product. Also the license for one version of the component might not be valid for the next

version of the same component, while the upgrade process might be seamless and go

unnoticed by the involved parties.

Third party software management is complex and risky process. Especially for a company the

size and prominence of Microsoft. In order to reduce the effort to correctly attribute Third

party software in Skype and to increase the compliance to various legal requirements a special

TPS process has been put in place. In addition, a custom developed tool called iTPS has been

implemented to accommodate the process. The tool offers an easy entry point for a user who

wishes to declare his TPS usage. The tool facilitates the component impounding and license

36

review process. The system returns an answer in case the component in question is already fit

for use or a new impounding process has to be started. iTPS is integrated with other tools,

one of them being Jira where the tickets for new TPS requests are handled.

One of most important attributes of the TPS process is the time it takes for the requester to get

his ticket approved. The SLA is provided by the TPS process manager and the head of Skype

Engineering Services. At least 85 % of the TPS tickets need to be approved in less than 14

days. The next sections will describe how such metric can be obtained. The learnings from the

statistics will also be reviewed.

5.1 Approval time as a KPI

The Service Level Agreement “at least 85 % of the TPS tickets to be approved in less than 14

days” is a straightforward metric to measure. The data can be obtained straight from the issue

tracking system Jira where the tickets are stored. Jira does have detailed history of the tickets

and provides relatively easy means to query the information. It is possible to get the ticket

created date and the ticket approved date for each of the tickets.

“Table 6 - The percentage of tickets approved in less than 14 days” and “Figure 6 - The % of

tickets approved in less than 14 days” show the data regarding the TPS KPI. Both the table

and the graph have the same data depicted in a different format. The columns for the table are

explained in “Table 5 - Explanations for TPS KPI columns”.

% approved

under 14 days

This column shows the % of the tickets closed in less than 14 days. It takes

into account the tickets that were closed on a given day or during a given

period.

Status The colour indicates whether less than 80% of the tickets were closed in

14 days or not.

Total Approved The total number of issues closed on a given day or period

Open over 14

days

The average number of tickets open on a given day or a period and already

open for more than 14 days

Table 5 - Explanations for TPS KPI columns

37

The tables presented in this chapter do not show the data for all the KPI tickets. The requests

are classified by TPS, to be either used internally or to be distributed. The reasoning for such

a separation is the different nature of their use.

For an example the internal consumption of TPS is less complex and risky to handle. Therefor

obtaining the approval can be a faster process. The data sets for internal and distributed TPS

are rather similar in nature and the same conclusions can be drawn from both.

Therefor only the data for Distributed TPS is presented in this chapter. The tables and graphs

with the statistics for internal TPS is presented in “Appendix C: Tables and charts for TPS

tickets”

% approved <14

Days

Status Total

Approved Open over 14 d

2014 62.4 359 52

Q1 2014 71.4 63

January 66.7 9

February 81.8 22

March 65.6 32

Q2 2014 27.3 55

April 29.2 24

May 40.0 5

June 23.1 26

Q3 2014 71.1 180

July 72.2 18

August 84.4 77

September 58.8 85

Q4 2014 59.0 61 52

October 73.3 45

November 9.1 11

December 40.0 5 52

2015 54.5 11 80

Q1 2015 54.5 11 80

January 54.5 11 80

Grand Total 62.2 370 71

Tickets for Distributed TPS

Table 6 - The percentage of tickets approved in less than 14 days

38

It is visible from the charts that the SLA set for the TPS program is not met. The percentage

of the tickets approved in less than 14 days rose from 23 % in June to 72% in July and 84% in

August but declined to 58 % in September. Therefor the service level did not show a

sustainable improvement over a longer period of time. The next chapter will give a deeper

insight of the learnings obtained from compiling and interpreting the TPS statistics.

Figure 6 - The % of tickets approved in less than 14 days

5.2 Implementation of the KPI

The purpose of the TPS KPI data is to understand the performance of the service during a

given period of time. This aspect raised 2 interesting question. How long should the time

period be? Should the tickets be chosen based on the start or the end date? The SLA definition

given by the ES management: “at least 85 % of the TPS tickets to be approved in less than 14

days” did not define the time range that the KPI should target. In general there are 2 ways to

specify the time period. Firstly, it can be a fixed period in the Calendar such as the month of

January or the third Quarter of the year 2014. The second option is to use a rolling period of

time. So the SLA becomes “at least 85 % of the TPS tickets to be approved in less than 14

days for any given consecutive 90 days” where the start date can be arbitrarily chosen and the

end date is simply 90 days after the start date. As the time range for the SLA was not defined

by the management it left a lot of room for interpretation. While discussing the SLA with the

people involved in the TPS management process it came out that there was a will to measure

0.0

20.0

40.0

60.0

80.0

100.0

% of Approved
 Under 14 Days

Total

39

the SLA for all the TPS tickets starting from the very first request made. However such

methodology does not give a very good insight on the impact of the improvements made

during a particular time period. In addition it does not show the true state of the service for the

present time, preventing the service owners to make informed decisions regarding the

investments that the service might need. The tables presented in the “Appendix C: Tables and

charts for TPS tickets” shows the SLA for the time range of 1 day in addition to the monthly,

quarterly and yearly numbers shown in the charts and tables included in this chapter. The

“Figure 17 - Example of fixed vs rolling SLA” presents an illustrative example of a SLA

measured over a fixed period of time versus using a rolling average from starting with the

very first ticket. It is clear from the chart that the SLA has been met for the past quarter while

the rolling average for the SLA is below 70 %. The author is in the opinion that a quarterly

range should be used to measure the overall service level of the TPS process. Three months is

a period long enough to minimize the impact of random events that might take place. On the

other hand a quarter is short enough range to enable the service owners to understand and

react to problems and changes in business requirements in a timely manner. In addition one

quarter is the cadence for planning in the Skype Engineering Services Team.

Each ticket has 2 important dates being used for the SLA: the date of creation and the date of

approval. When we are looking at a given date or time period, the question is which tickets

should be presented? One option is to present the tickets created during a given period. In this

case there is a possibility that the numbers will change in the future as more tickets from that

period get approved A better option is to present the tickets approved during the given period.

The previous question raises a new problem. We do know how fast the closed tickets were

approved, but we have no way of knowing how fast the tickets, that are still open, will be

closed. This statement might seem obvious, but it presents a need to understand the context of

the SLA numbers. An additional metric shown on “Figure 7 – The number of tickets

approved and waiting for approval” can be used. The red line represents the number of tickets

in the open state that have not been approved in more than 14 days. This metric is shown as a

red line on the chart. It is not trivial to obtain historic data from Jira for this metric. Therefor

the number is shown since December, when the process of storing such data started. Having

this metric next to the number of approved tickets gives us an understanding how sustainable

the current pace of approval is.

40

The SLA “at least 85 % of the TPS tickets to be approved in less than 14 days” suggests that

the speed of getting a TPS request approved is important for the requestor. It might also be

important to get a negative answer back in timely manner. In this case the requestor can seek

other alternatives to resolving his problem. This aspect is not covered by the SLA.

Figure 7 – The number of tickets approved and waiting for approval

5.3 Usage of the KPI

The KPI tables and graphs charts clearly and unambiguously show that the SLA has not been

met. From the 4 quarters of the year 2014 the highest percentage of approved tickets in less

than 14 days, was in the 1
st
 quarter with the rate of 71.4 %. The lowest rate was 27.3% in the

2
nd

 quarter. And the rates for the 3
rd

 and 4
th

 quarter were 71.1% and 59% respectively. None

of the quarters meet the SLA criteria, nor is there a significant trend towards an improved

approval rate. In addition, the amount of requests that have not yet been approved, but have

been waiting in the queue for more than 14 days is rather big in comparison to the amount of

tickets that is usually approved in a month. The median amount of tickets approved in a

month was 22 while the number of tickets that have been waiting for approval for more than

14 days was 80 in the month of January.

The metrics were reviewed with the people responsible for TPS management process in the

Skype Engineering Services Team. The fact that the team is so not close to meeting the SLA

0

20

40

60

80

100

Number of issues

Total Number of approved tickets

Nr of tickets open over14 days

41

and the trend is also negative was treated as a surprise. It was believed that the

implementation of the automatic impounding tool iTPS would speed up the impounding and

approval process. To an extent that was the case. Adding automation to the process, removed

a lot of semi-manual work from the members of the Engineering Service team. Automation

also helped to discover a lot of hidden dependencies turning the TPS management process..

The increased amount of impounded dependencies during July and August 2014 is also

visible from table. Even though the process has been made more efficient and reliable there

are still some bottlenecks. Most of the blockers come from dependencies to other teams, such

as the legal department. Therefor no immediate action can be taken to influence the SLA

metric. The main conclusions from reviewing the usage of the KPI are the following.

 Having a well-defined and presented metric helps to surface the problems and

supports discussions that can lead to further improvements.

 Meeting the SLA is important. The ROI for fully meeting the SLA is not big enough

compared to other improvements and functionality that can be delivered to the

company related to the TPS process.

The proposed SLA is a useful metric to follow. It also seems like a natural candidate for a

KPI. Unfortunately this is not enough to treat the SLA as a KPI.

42

6. Key Performance Indicators for Build Systems

A build process turns source code into a working software component. The build process can

be divided into 6 bigger steps. Firstly, the right environments for the build process need to be

prepared. Secondly, the correct source code needs to be checked out. The third step is fetching

the dependencies, other components and specific tools needed for the build process. Then the

code is compiled. Compilation is followed by quick unit and verification tests. The last step is

the publishing of the components and the documentation.

Skype uses a central build model. Most of the builds are run on centrally managed build

infrastructure. The benefits of this type of setup include the possibility to retain the integrity

of the produced artefacts, reduction of time and effort it takes for the developers to set up their

build environments and the possibility to easily combine together end products of many

different workflows.

On a conceptual level the build infrastructure consists of a central build orchestrator and

over 500 build machines which carry out the actual builds. The source code management

systems and dependency management systems are very heavily integrated into the build

services. In addition, different build processes need to interact with various additional services

such as Jira, testing and code analyses tools and others.

Skype develops components that run on various platforms. The environments for compiling

different products have to be also rather assorted. Skype has been acquired by Microsoft and

the development organizations of the two companies need to be aligned. Therefor the Build

Infrastructure developed and maintained by the Skype Engineering Services Team needs to be

aligned with the engineering needs of rest of Microsoft.

Reliability and the speed of the Build feedback loop were established as the most important

attributes of the Build Systems. This conclusion was reached after several discussions with

the key stakeholders. The people involved were managers of the Skype Engineering Services,

the developers of the Build Systems and the end-users of the Build System.

43

6.1 Methodology for Build KPI

Getting a clear overview of the characteristics related to the build feedback loop is not a

straightforward process. There are more than 20 000 build jobs running inside the Build

Infrastructure every day. Two main aspects make it difficult to measure the speed of the build

correctly. Firstly there are lots of different types of build jobs. A common Continuous

Integration Build aims to give the developer fast feedback. He wants to know whether the

change he made was good or it broke the build. In addition to traditional CI Builds developers

have set up jobs to carry out different tasks. These tasks include running builds that do various

tests on top of building and verifying the change. These tests might be thorough and getting

fast feedback might not be a priority at all. The second aspect that makes it difficult to

correctly measure the change of the speed of the build process is the alternations made to the

Build configurations. There might be a well-founded need to add new steps to the Build or to

add content that make the current Builds longer. A developer might want to check out more

code or different dependencies, run more verification tests on top of the build or do other

tasks that add to the Build time. The two reasons mentioned in this paragraph make it difficult

to measure the impact that the changes made to Build Infrastructure have on the speed of the

feedback loop.

Changes that are not controlled by the Engineering Services Team make it difficult to collect

meaningful statistics about reliability. A developer is interested in knowing if a change made

by him caused the Build to break. A Build failure might also happen due to infrastructure

problems. In that case the information about a build failure is noise for the developer wasting

his time.

In order to get objective statistics about the performance of the Build infrastructure the author

made a proposal to use Benchmark Builds as a proxy to get information about the Build

Infrastructure. The Build Operations team set up 5 Build configurations that mimic real live

Builds. The Build configurations are under the control of Engineering Services team and the

changes made to the configurations are kept to minimal. Both the performance and the

reliability of the Build will be only influenced by the Build Infrastructure. There are 5

configurations producing 3 builds per hour each. Altogether 360 builds get produced every

day.

44

There are altogether more than 500 machines where the Build jobs are run. These machines

are divided into resources. Different types of builds run on different types of resources. This

causes variation in performance and reliability for different Benchmark builds. How heavily

the resource is used in real life varies greatly. “Table 8 - The top resources ordered by their

total usage time” presents the top of the most heavily used resources. The table is ordered by

the 3
rd

 column showing the total time the specific resource was in use during January. The

rows for the 5 resources used to run the 5 Benchmark builds are marked in bold. In total 22.3

% of the build time was spent on these resources. The resources ranking 2
nd

 and 4th are

covered by Benchmark Builds. The most heavily used resource flow-controllers is only used

to run jobs that provide help in orchestrating more complex Builds. The time spent on these

resources is considered irrelevant from the performance and reliability perspective. In

Resource Count Build Count Total time % of total time

flow-controllers 97085 1176399 24.9

w81-universal 50873 580861 12.3

tll-uxsts-qb1:8811 9447 244303 5.2

skylibwin 19771 239370 5.1

c2c-atm-cntrl 762 165401 3.5

w8-rtm-vs2012-update1 14385 151270 3.2

linux-skypekit 26480 126389 2.7

mac-mountainlion-5-xcode-5.0.1 31862 111587 2.4

linux-wheezy64-universal 28350 107849 2.3

azure_testers_2.3 14571 104667 2.2

azure_testers_2.2 18592 94545 2.0

azure_deployers_2.3 10368 92669 2.0

w8-universal 7173 82517 1.7

calling-skytest-win32 2392 68373 1.4

w81-experimental-staging 5623 65340 1.4

azure_deployers_2.2 3791 63755 1.4

calling-skytest-win32-ng 1454 56589 1.2

azure_testers_2.4 12444 49175 1.0

w2k8_universal 5497 41535 0.9

qik-backend-z3 3680 41479 0.9

linux-webapp 4664 36707 0.8

mac 6844 33459 0.7

linux-squeeze32-universal 6471 32961 0.7

skypechat-android-ubuntu64 635 30486 0.6

lync-build 1482 29949 0.6

w81-experimental 2554 29131 0.6

mc-win732-01:8811 1992 27170 0.6

mac-mavericks-2-xcode-5.1.1 4950 26106 0.6
Table 7 - The top resources ordered by their total usage time

45

addition there are many resources which are used for very specific configurations. There is a

lot of room for improving the representation of the user experience. In the other hand the

current set-up is satisfying to start measuring the performance and reliability of the Build

Infrastructure.

6.2 Build reliability KPI

The aim of a good Build System is to provide fast feedback to users. Developers want to

know if their commit was successful or it broke the build. The feedback that the developer

gets has to be reliable. This means that a build failure must indicate a problem in the change

made by the developer. On some occasions also problems in the Build Infrastructure can

cause build failures. There might be problems in the network, random malfunctions of the

Build machines or other problems. False failure reports are a huge distraction for the

developers using the Build Systems. The source code and dependencies used for the

Benchmark builds are fixed to known revisions. Therefor all failures can be attributed to

infrastructure problems. Keeping infrastructure relate failures to a minimum helps to improve

the quality of the feedback.

The reliability of the Build Infrastructure is measured by using the Benchmark builds. The

calculations on the charts depicted on “Figure 8 - Reliability total per day” and “Figure 9 -

Reliability breakdown per month” are simple. The lines show the percentage of builds that

finished in the “Successful” state.. The first chart shows the combined reliability for all the 5

Benchmark Builds broken down by day. The second chart has 5 lines, each of the lines

representing one of the Benchmark Builds. The values shown on the chart are monthly

averages. Two more views for Build Reliabilty are presented in the Chapter 10.5 Build

Reliability Charts.

46

Figure 8 - Reliability total per day

Figure 9 - Reliability breakdown per month

While putting together the proposals for KPIs, measuring the reliability of the Build

Infrstrucure was accepted by all the stakeholders.

6.3 Build speed KPI

The owners of the Build Infrastructure established 15 minutes to be a reasonable time that a

developer has to wait to get feedback on his commit. The charts on “Figure 10 - Speed Total

per day” and “Figure 11 - Speed breakdown by month” show the percentage of builds

finishing under 15 minutes. Only the successful builds are counted on this chart.

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

100.5

1 4 7 10 13 18 21 24 27 30 2 5 8 11 14 18 21 24 27 2 6 9 12 16 20 23 26 29 1

January February March April

2015

Total

Total

99.0

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100.0

January February March

2015

Total Success rate (All benchmark builds)

Total

47

Figure 10 - Speed Total per day

Figure 11 - Speed breakdown by month

The percentage of Builds finishing under 15 minutes is considered to be a Key Performance

Indicator for the build infrastructure. Similar information can be depicted in a bit different

fashion. “Figure 12 - CI experience on 09.01.2015” shows the duration of each individual

Benchmark Build. The time it took for the build to wait in the queue and the actual build time

are stacked. The total amount of time shows how long the developer had to wait from the time

the build request was made until he received the feedback about his Build. Only the

successful Builds are counted. Depicting data in the fashion that has been done on the Figure

12 shows that the time a build has to wait in the queue is a major bottleneck. Figure 12 also

points out the hour of the day when it takes longest to get feedback from the system.

80.0

82.0

84.0

86.0

88.0

90.0

92.0

94.0

96.0

98.0

100.0

January February March

2015

Speed Breakdown

benchmark 3POB Promotions
(Dev) Building

skylib-linux-debug

skylib-mac-release

skylib-win-debug

skylib-win-vs2013xp-x86-debug

48

Figure 12 - CI experience on 09.01.2015

6.4 Learnings

The aim of the Skype Engineering Services team is to improve the service and provide faster

feedback for the users. The KPIs show if a change made to the system had the desired impact.

On 21
st
 of March and the 7

th
 of April significant changes were made to the Build

Infrastructure aiming to make the Builds faster. “Figure 10 - Speed Total per day” shows a

distinct change after both of the changes. The first change was a success and the KPI for the

Build speed showed a significant improvement. The second change, made on 7
th

 of April had

the opposite effect
13

 and actually caused an increase to the Build feedback time. Build KPIs

gave a very precise indication of the changes made to the Infrastructure. In addition the

feedback received from the users confirmed the information shown by the KPIs.

One purpose of a KPI is to provide a common understanding for the whole team about the

important characteristics of the system. KPIs help to measure and communicate information

about the most significant aspects. One of the main difficulties while establishing the Build

KPIs was to get different stakeholders to agree on common KPIs. While people work towards

their targets a deeper understanding of a common goal is rather weak. In the beginning it was

even difficult for people to interpret one specific metric in the same way. In addition, while

discussing the KPIs with stakeholders, on many occasions the conversations would drift into

13

 A number of virtual machines were added to increase the number of build machine. The aim was to reduce the

time a Build had to wait in a queue before the work was started. The addition of the VMs had a signicant

negative impact on the performance of the machines.

49

details. Instead of discussing the importance of a given metric, the causes for specific values

were discussed. Therefor it took many iterations to implement metrics that are understood and

accepted by most of the team.

The KPIs were worked out in groups with a limited amount of active team members. In a

presetnation to a larger audience an interesting question was brought up. A system

administrator wanted to know the events that correlate to the drops in reliabilty and the speed

of the feedback loop. He believed this to be important for making future improvement. The

Head of Erngineering Services pointed out that the numbers indicating problems are not a

pathology. The KPI values are the results of the total amount of work done by the team. The

fact that this question was brought up demonstrates the gap between personal targets and the

the impact on companys goals.

50

7. Technical infrastructure

The main focus of the thesis is on the metrics with the right characteristics. However, there

has to be a technical infrastructure that supports the gathering, storing and presenting of the

metrics. “The project team should promote the use of existing in-house applications for the

collection and reporting of the performance measures for at least the first 12 months. Much

can be done with standard applications such as Excel, PowerPoint, SharePoint Team

Services, and Access.” (D. Parmenter, 2007, p.32). In the beginning, the technical setup was

kept very simple and flexible, so that changes could be implemented as fast as possible. The

correct metrics were worked out in iterations. Data was gathered and presented to the end

users. Based on the feedback, changes were introduced. This cycle was repeated several

times. In the other hand the usage of metrics should be as low-cost as possible. The

infrastructure for storing the data should be reliable and require minimal maintenance. It

should be scalable and the data should be easily accessible. Therefor the technical

infrastructure went through many iterations as well. Starting off with flexibility in mind and

moving in the direction of providing a scalable platform

In the first iteration of the metrics project, different systems were accessed by scripts running

on one laptop. The data was gathered in CSV files. Based on the files excel charts were

created. The charts were presented in meetings and distribute by e-mail. Such operating model

is highly manual and does not scale at all. However, this approach allowed to get very fast

feedback. It was possible to iterate very rapidly to find out useful metrics and candidates for

KPIs.

The second iteration of the technical infrastructure focused on the automatic presentation of

the metrics. One of the drivers was still flexibility. There was the need to get fast feedback

and make changes. However, the usability and scalability were now taken into account. A

simple SQL database was set up. Scripts that pulled data from different services were written.

The database and the scripts were set up on a central server. The data was pulled into Excel

using Power Query
14

. Data models and the presentation of the metrics were created using

14

 https://support.office.com/en-in/article/Introduction-to-Microsoft-Power-Query-for-Excel-6e92e2f4-2079-

4e1f-bad5-89f6269cd605

51

Power Pivot
15

. Charts were presented to the end user using a SharePoint
16

 site. This approach

allowed the end user to consume the KPIs in a very straightforward way. The setup was fully

automatic and the data got refreshed on a daily bases. The metrics could be used and

propagated in the Skype Engineering Services Team and also to their customers. The

infrastructure had been broken into several components. The components were mostly under

the control of the producers of the metrics. This allowed to make quick changes to data

models and left the possibility to easily switch components in the stack.

The infrastructure mentioned above had two flaws. Firstly it required a proprietary SQL

database. Someone had to maintain the database. He had to make sure that there is enough

storage; the database is backed up etc. In addition, every time a new event was added, a new

table had to be created. Every time an event was changed, the existing tables had to be altered.

15

 https://support.office.com/en-nz/article/Power-Pivot-Add-in-a9c2c6e2-cc49-4976-a7d7-40896795d045
16

 https://products.office.com/en-us/sharepoint/collaboration

Figure 13 – Metrics Infrastructure

52

Secondly, if someone wanted to access the raw data, he needed to have tools, such as

PowerPivot, installed on his laptop. Because of the reasons mentioned above, alternative

solutions were researched. An Internal Microsoft Big Data Solution
17

 was tried out. It is a

service that accepts and stores events. It allows querying of the events and the creation of

dashboards. It does have some limitation. There is a learning curve for the people who start

sending the events. The functionality of the dashboards is limited. The whole solution is

optimized towards bigger amount of data than the Skype Engineering Services Team has. The

interfaces for obtaining aggregated data are more advanced than the ones that provide raw

data.

The current infrastructure is depicted on “Figure 13 – Metrics Infrastructure”. It uses the SQL

database and the Big Data Solution in parallel. The next iteration will try to make more use of

the Big Data Solution as it is more scalable. There is a plan to deprecate the SQL database.

17

 Because the solution is propietort, it will not be covered in more detail

53

8. Conclusion

The thesis studies how data and metrics can be used to drive improvements in the Skype

Engineering Services Team. Three main objectives were set in the beginning of the thesis.

The first goal was to understand the role of data and metrics in the service management and

software development process. This objective was fulfilled in three parts. Firstly, existing

studies on the usage of metrics in different organisations, including large software

development companies, were examined. Based on the studies, it was decided that the

reasonable amount of Key Performance Indicators to be implemented was 3. Those KPIs

should be developed during 1-2 years in an iterative process. Following the recommendation

the most attention was put on agreeing on the metrics with the correct characteristics.

Secondly, the operational model of the Skype Engineering Services Team was analysed. It

came out that several efforts had already been made to use data and metrics to support

everyday operations and planning. However, the efforts had been disconnected from each

other. It was recognized that more systematic approach to metrics usage could help in

improving the service. The rest of the thesis describes and analyses the improvements

implemented based on the findings in Chapter 2 and Chapter 3.

The second bigger objective of the thesis was to find the best means to gather, surface and use

data to manage and support an Engineering System. The author followed the aspects

described in Chapter 2 to keep the initial technical infrastructure as simple as possible by

using known tools. This approach allowed keeping the focus on the meaning and usage of the

data. Nevertheless having the right tooling in place for gathering and presenting the metrics is

crucial. Chapter 7 gives an overview of the technical infrastructure used to gather and present

the metrics developed in the scope of the thesis. The possibilities for a more scalable

architecture are also described.

The third and the most important objective of the thesis, was to establish Key Performance

Indicators and other metrics for the Skype Engineering Services. The author worked on three

different fields within the Skype Engineering Services Team. The results turned out to be very

diverse for all of the three areas.

The first task was to understand how the new incident management process affects the

reliability of the services. It came out that the data gathered regarding the downtime of the

54

services was not valid. Therefor the data was unusable for creating an understanding of the

quality of the services and the objective could not be met. However, based on the learnings

the author proposed a new process to manage service alerts. The new process was

implemented for some of the services and these insights proved to be helpful in the

management of the systems. In addition the new process enabled the team to acquire reliable

data regarding the service health.

Secondly, a KPI was implemented for The Third Party Software Management Process. The

owners of the service had a clear understanding of what should be measured. Figuring out the

implementation details and doing a technical setup was needed. After the implemented

metrics were reviewed with the stakeholders, it came out that the metric was useful but could

not be considered a Key Performance Indicator. The stakeholders agreed that it was important

to follow the trend shown by the metric. Also they wanted to influence the metric as much as

possible. The downside was that there were significant aspects of the metric that were not

under the direct control of the Engineering Services Team. Therefor the metric was taken into

use, but not as a KPI.

The third sets of metrics that the author worked on were the KPIs for the Build Services.

After many iterations and discussions with different stakeholders two KPIs were established.

Measuring the percentage of the Builds that fail because of the problems in the Build

Infrastructure was recognized as the KPI for reliability. The second KPI was about measuring

the feedback loop speed of the Build process. The metric gives information how fast

developers get feedback on their commits. Benchmark Builds were implemented and used as

proxies to measure both the speed and the reliability. Today both of the Build KPIs are used

to understand the effect that different improvements, changes and other factors have on the

experience of the Build Infrastructure usage. The KPIs are used as bases of conversation

inside the team. The KPIs are also communicated to customers in order to illustrate the impact

that the work from the Skype Engineering Services Team has.

The following are the main tangible outcomes produced by the author:

 A Key Performance Indicator to describe the speed of the feedback loop.

 A Key Performance Indicator to describe the reliability of the Build Infrastructure.

55

 A process and tooling for automatically capturing and analysing data regarding

incidents related to Skype Engineering Services.

 Useful metrics for describing the TPS management process.

 Technical infrastructure for gathering and presenting the data and metrics.

The main objectives of the thesis were met. Of course not everything went as planned. Some

of the results differed from what was expected in the beginning. Some targets were not

achieved. Nevertheless the overall result was useful and satisfactory for the Skype

Engineering Services Team.

What can be done next?

The process of working out meaningful metrics takes years and keeping data up to date is an

ongoing work. This thesis focused on the first implementation of KPIs for the Skype

Engineering Services Team. The following list provides some suggestions for future

improvements.

 Work out new metrics and KPIs for the Skype Engineering Services Team.

 Improve the current KPIs for Build Infrastructure.

 Propagate the usage of metrics within Skype Engineering Services Team and the rest

of the Company.

 Improve the reliability and scalability of the technical infrastructure used to capture

and present the metrics.

 Find other ways to make use of the data available in the Skype Engineering Services

infrastructure.

56

Kokkuvõte

Magistritöö uurib andmete ja meetrikate kasutamist paranduste tegemiste juhtimisel Skype’i

tarkvaraarenduse tugiteenuste meeskonnas. Magistritöö alguses püsitati kolm põhilist

eesmärki. Esimeseks eesmärgiks oli andmete ja meetrikate rollist arusaamine tarkvarateenuste

opereerimis-ja arendusprotsessis. See eesmärk täideti kolmes osas. Esiteks uuriti meetrikate

kasutamise kohta läbiviidud töid erinevates organisatsioonides, sealhulgas suurtes

tarkvaraarendus ettevõtetes. Vastavalt uuringutes leitule otsustati, et 3 tulemuslikkuse

indikaatorit on mõistlik hulk, mille väljatöötamisele 1-2 aasta jooksul iteratiivses protsessis

keskenduda. Lähtudes soovitustest suunati enamus tähelepanu õigete karakteristikutega

meetrikate leidmisele. Teiseks uuriti Skype’i tarkvaraarenduse tugiteenuste meeskonna

toimimismudelit. Ilmnes et eelnevalt oli tehtud mitmeid jõupingutusi, et kasutada andmeid ja

meetrikaid igapäevaste toimingute ja planeerimise läbiviimiseks. Paraku olid need

jõupingutused olnud üksteisest eraldatud. Tuvastati, et süsteemsem lähenemine meetrikate

kasutamisele oleks abiks teenuste parandamisel. Ülejäänud töö kirjeldab ja analüüsib Peatüki

2 ja Peatüki 3 põhjal tehtud ettepanekute juurutamist. Magistritöö teine suurem eesmärk oli

parimate meetodite leidmine tarkvaraarenduse tugiteenuste meeskonda toetavate andmete

kogumiseks, esiletoomiseks ja kasutamiseks. Autor lähtus Peatükis 2 välja toodud aspektidest

kasutada esimestes iteratsioonides juba tuttavaid vahendeid ja hoida esialgne taristu tehniliselt

võimalikult lihtne. Õigete vahendite kasutamine andmete kogumiseks ja presenteerimiseks on

siiski ülioluline. Peatükk 7 annab ülevaate tehnilisest taristust, mida kasutati magistritöö

käigus väljatöötatud andmete kogumiseks ja presenteerimiseks. Samuti kirjeldatakse

võimalusi mastaabiga kohaneva arhitektuuri loomiseks.

Magisitiröö kolmas ja kõige tähtsam eesmärk oli Skype’i tarkvaraarenduse tugiteenuste

meeskonna jaoks tulemuslikkuse indikaatorite ja teiste meetrikate väljatöötamine. Autor

tegeles Skype’i tarkvaraarenduse tugiteenuste meeskonnas kolme eri valdkonnaga. Tulemused

olid kõigis kolme teenus puhul vägagi erinevad.

Esimeseks uuritavaks valdkonnaks oli uue intsidentide haldusprotsessi mõju teenuste

töökindlusele. Ilmnes, et andmed, mida oli kogutud süsteemide seisakute mõõtmiseks, ei

olnud paikapidavad. Seega ei olnud võimalik neid andmeid kasutada, et kirjeldada teenuste

kvaliteeti ja püstitatud eesmärk jäi täitama. Lähtudes omandatud teadmistest pakkus autor

57

välja uue protsessi, kuidas hallata teenuste häireteateid. Uus protsess võeti mõnede teenuste

puhul kasutusse. Uuest protsessist saadud kaemused osutusid kasulikeks süsteemide

haldamisel. Lisaks pakkus uus protsess võimaluse saada täpset infot teenuste seisukorra kohta.

Teiseks juurutati tulemusindikaator kolmanda osapoole tarkvara jaoks. Teenuse omanikel oli

selge arusaam sellest, mida tuli mõõta. Vaja oli välja töötada rakenduslikud detailid. Pärast

väljatöötatud meetrika ülevaatamist koos huvitatud osapooltega, ilmnes, et meetrika oli

kasulik, aga seda ei saanud pidada peamiseks tulemuslikkuse indikaatoriks. Nõustuti, et on

tähtis antud meetrikat jälgida. Samuti oli soov meetrikat võimalikult palju mõjutada.

Puuduseks osutus asjaolu, et antud meetrika juures oli mitmeid aspekte, mis ei olnud Skype’i

tarkvaraarenduse tugiteenuste meeskonna otsese kontrolli all. Seetõttu võeti meetrika küll

kasutusse, aga mitte tulemuslikkuse indikaatorina.

Teine grupp meetrikaid millega autor töötas, olid tulemuslikkuse indikaatorid Build teenuste

jaoks. Pärast mitmeid iteratsioone ja arutelusid huvitatud osapooltega töötati välja kaks

tulemuslikkuse indikaatorit. Veaga lõppenud tööde protsenti hakati kasutama töökindluse

tulemuslikkuse indikaatorina. Teine tulemuslikkuse indikaator oli Build protsessi tagasiside

tsükli kiiruse mõõtmise kohta. See meetrika annab näitab, kui kiiresti saavad arendajad

tagasisidet tehtud koodimuudatuste kohta. Näidis Build’e kasutati nii kiiruse kui töökindluse

mõõtmiseks. Antud hetkel kasutatakse mõlemat indikaatorit, et saada aru millist mõju

avaldavad erinevad parandused, muudatused ja teised faktorid Build teenuste taristu

kasutuskogemusele. Tulemuslikkuse indikaatoreid kasutatakse vestluse alusena meeskonna

sees. Samuti kommunikeeritakse tulemuslikkuse indikaatoreid klientidele illustreerimaks,

millist mõju Skype’i tarkvaraarenduse tugiteenuste meeskonna töö omab.

Järgnevalt on väljatoodud autori poolsed tulemused:

 Tulemusindikaator kirjeldamaks tagasiside tsükli kiirust.

 Tulemusindikaator kirjeldamaks tagasiside tsükli töökindlust.

 Protsess ja taristu Skype’i tarkvaraarenduse tugiteenuste meeskonna teenuseid

puudutavate intsidentide kohta andmete automaatseks salvestamiseks ja analüüsiks.

 Kasulik meetrika kirjeldamaks kolmanda osapoole tarkvara haldusprotsessi.

 Tehniline taristu andmete ja meetrikate kogumiseks ja presenteerimiseks.

58

Magistritöö peamised eesmärgid saavutati. Muidugi ei läinud kõik täpselt plaani kohaselt.

Mõned tulemused erinesid algsetest plaanidest. Mõned sihid jäid saavutamata. Siiski olid

üleüldised tulemused kasulikud ja rahuldasid Skype’i tarkvaraarenduse tugiteenuste

meeskonna vajadusi.

Järgmised sammud

Oluliste meetrikate väljatöötamine võtab aastaid ja andmete ajakohasena hoidmine on pidev

töö. Magistritöö keskendus Skype’i tarkvaraarenduse tugiteenuste meeskonna jaoks esimeste

tulemusindikaatorite väljatöötamisele. Järgnevalt on esitatud nimekiri võimalikust

edasiarendustest.

 Töötada välja uusi meetrikaid ja tulemusindikaatoreid Skype’i tarkvaraarenduse

tugiteenuste meeskonna jaoks.

 Täiustada olemasolevaid meetrikaid Build’i taristu jaoks.

 Propageerida meetrikate kasutamist Skype’i tarkvaraarenduse tugiteenuste

meeskonnas ja kogu ettevõttes.

 Täiustada kasutuses oleva taristu töökindlust ja mastaabiga kohanemise võimet.

 Leida uusi viise kuidas Skype’i tarkvaraarenduse tugiteenuste meeskonna poolt

hallatavas süsteemides eksisteerivaid andmeid ära kasutada.

59

Bibliography

[1] "Logstash," [Online]. Available: http://logsatsh.org. [Accessed 07 10 2014].

[2] "ItilFoundations," [Online]. Available: http://www.itilfoundations.com/processes/incident-

management/definition/. [Accessed 07 October 2014].

[3] F. Provost and T. Fawsett, Data Sciense for business, O’Reilly, 2013.

[4] D. Parmenter, Key Performance Indicators Developing, Implementing, and Using

Winning KPIs, John Wiley & Sons, Inc., 2007.

[5] "Wikipedia," [Online]. Available:

http://en.wikipedia.org/wiki/Application_performance_management. [Accessed 25 04

2015].

[6] K. Konsta and E. Plomaritou, "Key Performance Indicators (KPIs) and Shipping

Companies Performance Evaluation: The Case of Greek Tanker Shipping Companies," 16

May 2012. [Online]. Available:

http://www.ccsenet.org/journal/index.php/ijbm/article/viewFile/13633/11404. [Accessed

05 march 2015].

[7] F. F. Jing, G. C. Avery ja H. Bergsteiner, Enhancing performance in small professional

firms through vision communication and sharing, New York: Springer Science+Business

Media, 2013.

[8] J. J. Trienekens, R. J. Kusters, J. I. M. M. van Genuchten and H. Aerts, "Targets, drivers

and metrics in software process improvement: Results of a survey in a multinational

organization," Software Quality Journal, vol. 15, no. 2, pp. 135-153, 2007.

[9] A. Pourshahid, . I. Johari, G. Richards, D. Amyot and O. S. Akhigbe, "A goal-oriented,

business intelligence-supported decision-making methodology," Decision Analytics, vol.

1:9, 2014.

60

Appendixes

Appendix A: Extraction, Transformation, Loading

Figure 14 - ETL model
18

18

 http://www.imc.com/services/enterprise-data-warehousing/etl-process-management

61

Appendix B: Full table for improvement drivers

Figure 15 - Results for improvement drives from Philips

62

Appendix C: Tables and charts for TPS tickets

Table 8 - The % of internal TPS tickets approved in 14 days or less

Figure 16 - The % of internal TPS tickets approved in less than 14 days

% approved <14

Days
Status Total Approved

Open over 14 d

2014 51.1 5043 83

Q1 2014 86.3 656

Q2 2014 73.4 612

Q3 2014 31.0 2835

Q4 2014 73.0 940 83

October 83.9 461

November 55.6 248

December 69.7 231 83

2015 81.9 166 140

Q1 2015 81.9 166 140

January 81.9 166 140

Grand Total 52.1 5209 122

Tickets for Internal TPS

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

% of Approved
 Under 14 Days

Total

63

Figure 17 - The Number of internal TPS tickets approved and waiting for approval

Table 9 - August and September for distributed TPS tickets broken down by day

0

200

400

600

800

1000

1200

1400

Total number of closed tickets

Nr of tickets open over14 days

August 84.4 77

1.08.2014 100.0 1

2.08.2014 100.0 1

4.08.2014 88.7 71

5.08.2014 0.0 1

13.08.2014 0.0 1

19.08.2014 0.0 1

20.08.2014 0.0 1

September 58.8 85

1.09.2014 10.0 10

4.09.2014 0.0 2

5.09.2014 0.0 1

9.09.2014 0.0 4

11.09.2014 40.0 15

15.09.2014 0.0 1

16.09.2014 100.0 1

17.09.2014 0.0 1

23.09.2014 85.4 48

29.09.2014 0.0 1

30.09.2014 100.0 1

64

Nr of uarter 1 2 3 4 5 6 7 8

Rolling average 15 20 23 26 32 41 48 53

Value in the quarter 15 25 30 35 55 85 89 93

Table 10 - Data for the example of using a fixed period vs using a rolling average SLA

Figure 18 - Example of fixed vs rolling SLA

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

Exmple fixed vs rolling

Average per quarter SLA 85 %

65

Appendix D: Additional tables and charts for alerts and incident

management process

Figure 19 - Alert and Incident review process

66

Appendix E: Build Reliability Charts

Figure 20 - Reliabilty breadown by day

Figure 21 - Reliability total per month

97.0

97.5

98.0

98.5

99.0

99.5

100.0

100.5

1 4 7 10 13 16 19 22 25 28 31 3 6 9 12 15 19 22 25 28 3 7 10 13 17 21 24 27 30 2

January February March April

2015

benchmark
3POB
Promotions
(Dev)
Building
skylib-linux-
debug

skylib-mac-
release

99.0

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100.0

January February March April

2015

Total Success rate (All benchmark builds)

Total

67

Appendix F: Build speed charts

Figure 22 - Build Speed total per month

Figure 23 - Speed Breakdown by day

90.0

91.0

92.0

93.0

94.0

95.0

96.0

97.0

98.0

99.0

January February March April

2015

% completed < 15 mins (All benchmark builds)

Total

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

1 4 7 10 13 16 19 22 25 28 31 3 6 9 12 15 19 22 25 28 3 7 10 13 17 21 24 27 30 2

January February March April

2015

benchmark 3POB
Promotions (Dev)
Building
skylib-linux-debug

skylib-mac-release

skylib-win-debug

