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Introduction

Today our lives are unimaginable without internet access and web based
applications. Our everyday work, shopping, banking, social networking and many
other daily activities are done online. Due to this the demand for wireless internet
connections is growing. Wireless connections are mostly preferred due to comfort
or low cost-efficiency. In rural areas wireless connection may be the only option.

Rapid increase in the use of smart phones and personal digital assistants places
available wireless networks under increasing load. Relief is hard to find because
the electromagnetic spectrum available is strictly licensed. Studies have shown that
often those licensed spectrum parts are strongly underutilized. This means that in
reality many bandwidths are physically available but legal restrictions make them
unavailable. To overcome this restriction, the cognitive radio concept was proposed
by Joseph Mitola III in 1998.

The basic idea of cognitive radio states that a licensed but unused spectrum
resource should be used opportunistically on a need-to-use basis. When a licensed,
or so called primary user, is not using its dedicated spectrum resources, then others
may use it. Those others are called secondary users and they are always listening.
When they need to transfer data, they find a channel unoccupied by the primary
user and take it temporarily into use. When the primary user becomes active during
the transfer, then the secondary user finds another unoccupied channel and
continues communication over it. In such a manner, the primary user’s right to its
dedicated resources is not violated while others can still use its resources when
they are currently available.

Cognitive radio is a complex device containing many vital sub-circuits necessary
for its work. One of them is the detector — a device that can detect presence or
absence of the primary user at some part of the frequency spectrum. As secondary
users should not disturb the primary one, the correct detection of the primary signal
is of high importance. On the other hand, for successful work the secondary user
must be able for correct detection of the absence of the primary signal. Both of
those decisions must be made correctly even at low signal-to-noise ratio. Thus, the
detector is a vital part of a cognitive radio system. There are many known detector
types that can be used in cognitive radio applications. Most popular and widely
used amongst them are: an energy detector, a cyclostationary feature detector and a
matched filter.

All of those detectors are derived on the basis of the assumption of Gaussian
background noise. As usually background noise is influenced by numerous factors,
due to the law of large numbers, this assumption is usually valid. But in urban
areas this Gaussian background assumption is not valid anymore. Manmade



background noise is commonly impulsive in nature. For example, impulsive noise
can be produced by electric motors, switches and fluorescent lamps.

An explanation here is that detectors designed for Gaussian background noise will
suffer considerably from reduced performance under the influence of impulsive
noise. Reduction in performance affects mostly secondary users. Detectors tend to
interpret impulsive noise falsely as a signal from the primary user, telling the
cognitive radio that the given channel is occupied and cannot be used. Such false
alarms are thus reducing the throughput of the secondary system.

The aim of the present work is to deal with the described problem. A new
mathematical model of impulsive noise is introduced. Effects of impulsive noise on
ordinary detectors are studied, as results, three new detectors, robust to impulsive
noise, were worked out.

Use of those new robust detectors allows more effective utilization of radio
spectrum in urban areas where new spectrum resources are needed most. When the
background noise is Gaussian only, the introduced detectors will work as well as
conventional ones. But when the background noise contains also an impulsive
component, robust detectors are outperforming others in many orders of
magnitude.

On this basis, robustness use of the proposed detectors decreases false alarm rate
and thus allows secondary users to utilize the spectrum to the full. Thus, the
detector resulting from this thesis research is of high practical value.
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simulations and their presentation were done by the author of the thesis.
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Abbreviations

ACF  Autocorrelation function

ACS  Almost-cyclostationary

CAF cyclic autocorrelation function
CFAR Constant false alarm probability
CDF  Cumulative distribution function
CLT Central limit theorem

CR Cognitive radio

ED Energy detector

FFT  Fast Fourier transform

MC  Multicycle detector

ML  Maximum likelihood

11D Independent and identically distributed
PDF  Probability density function
QoS  Quality of Service

ROC Receiver operating curve

SC Single-cycle detector

SCF  Spectral correlation function
SNR  Signal to noise ratio

SSS  Strict sense stationary

WSCS Wide-sense cyclostationary
WSS Weak-sense stationary

Symbols

complex conjugate

[ logical conjunction
o cycle frequency
S Normalization coefficient

I'c) gamma function
v(:,))  lower incomplete gamma function

At time duration of signal

o() Dirac delta function

€ contamination factor

1y intersection border between Gaussian and impulsive noise
Ny noise spectral density

A decision threshold

A decision statistic

u mean

B mean vector
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correlation coefficient

distance function

standard deviation

rms value of signal

function tail

decision

standard Gaussian CDF
noncentrality parameter

angular frequency

lower limit of impulsive noise value
upper limit of impulsive noise value
bandwidth

probability of noise impulse
covariance matrix

estimate of covariance matrix

element of inverse matrix of covariance matrix

error

energy of signal

expected value

frequency

probability density function of sum of Gaussian and impulsive noise
probability density function of Gaussian noise

probability density function of impulsive noise
cumulative distribution function

saturation nonlinearity

impulse response

hypothesis corresponding to the absence of primary signal
hypothesis corresponding to the presence of primary signal
frequency response

modified Bessel function of the first kind with order zero
interference

n™ order unity matrix

imaginary unit

sample number (in time)

index of hypothesis

likelihood function, likelihood ratio

sample number (in frequency)

signal subsets

number of samples

length of FFT

Computational complexity

dimension of covariance matrix

probability

probability of detection
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probability of false detection
probability of missed detection
index

autocorrelation function
cyclic autocorrelation function
correlation matrix

spectral correlation function
signal of interest

power spectral density
Fourier transform of signal
scatter matrix

time

duration

signal period

matrix transpose

noise vector

noise

Gaussian noise

impulsive noise

parameter of PDF

received waveform

discrete time waveform

sample mean

sample mean vector
random vector
output signal
observation vector
saturated variable

weighted sum of saturated variables

projection vector
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1 The Problem and Task Statement

1.1 Overview of Cognitive Radio

The rapid growth in wireless communication has led us to problems with spectrum
utilization. Usable frequency spectrum is a limited precious natural resource and its
demand is increasing. The solution how to deal with this problem is to share
available bandwidths between licensed users. But in practice this solution leads to
significant underutilization, resulting in spectrum wastage. For example, studies by
the Federal Communications Commission (FCC) show that the spectrum utilization
in the 0—-6 GHz band varies from 15% to 85% [1]. The same report states: “In
many bands, spectrum access is a more significant problem than physical scarcity
of spectrum, in large part due to legacy command-and-control regulation that limits
the ability of potential spectrum users to obtain such access.” In other words, there
are users who have license for some frequency band but they do not use it. At the
same time other users are in need for a bandwidth to use but none are available.
Figure 1.1 illustrates density and strictness of modern day spectrum allocation.

75.200-87.500 MHz Land mobile:

FIXED 75.20-77.70 MHz Du

MOBILE except aeronautical mobile (+9.8 MHz)

5.175 Alternative allocation in Bussia - §3-73 MHz T7.70-77.80 MHz 34

broadcasting on a primary basis. In Latvia: 658-73 broadcasting | 77.80-7%2.00 MHz Du (-.8 MHz)

anid mobile, except aeronautical mobile on a primary basis §1.75-24.60 MHz Du (-2.8 MHz)
84.60-85.00 MHz 8i

3.179 Additional allocation: in Bussia 73.2-75.4 MHz §5.00-37.50 MHz Du (-9.8 MHz)

alzo allocated tothe aeronautical radio-navigation service on a | 72.00-81.73 MHz
primary basis, for ground-based transmitters only (WERC-07)  |Governmental use type 1
87.500-108.000 MHz §7.500-108.000 MHz
EROADCASTING FMM-broadeasting

Wireless Audio Applications

Fig. 1.1 Example of Estonian radio frequency allocation plan [2]

Cognitive radio was born as the solution for such a contradiction. The concept
was first proposed by Joseph Mitola III at a seminar at the Royal Institute of
Technology in Stockholm in 1998 and published in an article by Mitola and Gerald
Q. Maguire, Jr. in 1999 [3]. Cognitive radio is basically a software defined radio
with a cognitive engine brain. Full cognitive radio or so called Mitola radio is
observing and adjusting every possible parameter of a transceiver in order to
maximize its performance. Those parameters include operating frequency, power,
waveform, protocol and networking. Concept of full cognitive radio can be
summarized as “reading the radio’s meters and tuning the radio’s knobs*.
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The first phone call over a cognitive-radio network was made on Monday, 11
January 2010 in the Centre for Wireless Communications at the University of Oulu
using CWC's cognitive-radio network, CRAMNET (Cognitive Radio Assisted
Mobile Ad Hoc Network), which was developed by CWC researchers [4].

Most of today’s research, including the current thesis, is focused on spectrum-
sensing cognitive radio, in which only the radio-frequency spectrum is considered
[5]. This type of cognitive radio allows dynamic spectrum management on the
following basis. When a licensed (primary) user is not using its allocated resources,
then others — so called secondary users are allowed to use it. When a primary user
starts to use its frequency band, a secondary user must be able to detect it and
release the resource to its dedicated owner. The secondary user then has to find
another unused part of the frequency spectrum, so called spectrum hole or white
space, and continues the communication process there. In such a way primary
user’s rights to the licensed spectrum are not violated and also spectrum
underutilization is reduced significantly.

White space

AL

S

f

Fig. 1.2 lllustration of white space in spectrum

In the literature, the unused portions of the spectrum are often referred to as
spectrum holes or white spaces. Those white spaces contain only white thermal
noise and are free to be used for secondary user communication. In a similar
fashion gray spaces are also occupied by interference but not by a primary user.
They can additionally be used for secondary transmission only by reduced
performance caused by interference. Areas that are fully utilized by primary or
other secondary users are called black spaces that cannot be used.

14



White spaces can be divided into three categories. White space in the spectrum
(Fig. 1.2) occurs when some parts of the spectrum are permanently unused. Figure
1.2 shows three occupied channels separated from each other by unused parts of
the spectrum. Cognitive radio must be able to find those unused spectrum areas and
use them for its own purposes. White space in time means that the part of the
spectrum that is normally occupied is temporarily available for use (Fig. 1.3).
Under such circumstances cognitive radio must be able to detect white space as
quickly as possible. Additionally, it must continue spectrum monitoring to detect
when the primary user comes back online in order to release an occupied resource
and move on to some other currently available frequency band.

White space

Fig. 1.3 lllustration of white space in time

Spatial white space means that some locations or areas are not reached by the
primary signal. Simplified concept of a spatial white hole is demonstrated in Figure
1.4. Outside of the coverage area of primary transmitters is one form of the spatial
white hole where other ones can be formed in the shadows of large obstacles. In the
latter case a danger exists that the primary transmitter signal is not detected by a
cognitive user due to shadowing. In that case the cognitive user may erroneously
assume absence of a primary user and start to transmit, which will cause unwanted
interference to primary receivers.

The idea of cognitive radio described in this section is simple and
straightforward. However, to implement it in practice, many novel signal
processing techniques need to be developed. According to [6] any cognitive radio
(CR) network that can be deployed in practice must have the following minimal
features:

15



* a unified cross-layer cognitive network architecture equipped to handle
diverse QoS requirements;

« efficient spectrum sensing techniques that provide continuous monitoring of
the presence of multicarriers in the CR network;

* dynamic spectrum access methods that adapt to the fluctuating nature of the
CR network and allocate bandwidth accordingly;

* adaptive spectrum sculpting at the transmitter end that causes minimal or no
interference to the primary users occupying adjacent bands.

Pritmaty coverage area

ahstacle

!

White space

l

Pritvaty
transmitter

Fig. 1.4 lllustration of spatial white space

In order to work out necessary techniques, the IEEE has formed a working group
(IEEE 802.22) to develop an air interface for opportunistic secondary access to the
TV spectrum via the cognitive radio technology [6,7]. On July 1%, 2011, a standard
for Cognitive Wireless Regional Area Networks (RAN) for Operation in TV Bands
was published as an Official IEEE Standard (IEEE 802.22-2011(TM)).

One of those features mentioned above in this section was an efficient spectrum
sensing technique. The secondary user of cognitive radio must be able to correctly
detect the presence or the absence of a primary user. If the presence of a primary
user is left undetected, then the primary user cannot access its own frequency
resources and such scenarios have to be avoided at any cost. On the other hand,
incorrect detection of the absence of a primary user decreases QoS for secondary
users. Because of radio effects like shadowing and fading the signal of the primary
user may be rather weak at the position of the secondary user. This leaves the
secondary user with the requirement of detecting a potentially weak primary user
signal in unknown noise. For instance, the IEEE 802.22 suggests that the cognitive
radio needs to detect the primary signals with a probability P, = 0.9 when the
signal-to-noise ratio is -21dB [7].

16



1.2 Robust Detection

Several detectors have been proposed for this purpose [8, 9], the most popular
probably being the energy detector. The reason is partly in the simplicity of the
energy detector as well as in no need of any assumptions on the waveforms emitted
by the primary users.

The noise is usually assumed to be white and Gaussian but in reality this is often
not the case [71]. In particular, one has to consider the presence of impulsive noise,
both man-made and natural. Non-Gaussian ambient noise is a major impairment to
signal processing techniques that are based on a Gaussian assumption [10, 11]. The
examples of the impulsive noise include man—made noise like car ignition,
emissions from the microwave ovens or natural impulsive noise due to, e.g.
lightning. Measurement results concentrating on impulsive noise are reported in
[12, 13]. In brief, detection algorithms designed to work in the environment of
Gaussian noise will perform poorly in urban environments where much impulsive
noise is present. The main effect of noise impulses will be manifested in the
increase of false detections, thus leading into the decrease of QoS for the secondary
users.

A common approach to model the impulsive component of noise is to use some
probability density functions with heavy “tails”. Noise under such distributions has
frequently a higher value than that in the Gaussian case. Those high values are
taken as impulsive components. The model that is probably used most often is &-
Contaminated Gaussian Noise with PDF [54, 67, 70]

1-¢

[, = ﬂaeszw), (1.1)

where ¢ is the contamination factor, o is the standard deviation of Gaussian noise
and f'(v) is some other PDF. Often the second PDF is also Gaussian but with higher
standard deviation. Such models are known as the Contaminated Gaussian Noise.
Other models containing weighted sum of more than two Gaussian distributed
noises are known as the Gaussian Mixture Noise and the Generalized Gaussian
noise [15]. Sometimes noise is also modeled as some single heavy “tailed”
distribution. For example, as double exponential noise with PDF

M

JAQ) =gef" : (1.2)
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or Cauchy noise with PDF[70]

(e
J‘V(V)—W. (1.3)

The described impulsive noise has been studied in [10], [14], [15], [54], [67]-[70].
Focus is mainly on the so-called robust M-estimators proposed by J.P Huber in
1964 [11]. An M-estimator or a generalizing maximum likelihood estimator for a
parameter w is obtained through the minimization

D p(x, W), (14)
k=1

where x; are samples of observed waveform with length # and p(-,) is the distance
function. Distance function must be a symmetric, positive-definite function with a
unique minimum at zero, and it is chosen to be increasing less than square. The
solutions

W= argmin(i p(xk,w)} (1.5)

w k=1

are called M estimators [11]. Robustness of those estimators depends substantially
on the chosen cost function. The Huber function is used in [10] to detect
asynchronous multi-users in non-Gaussian noise. L,-norm estimator is used in [15]
for spectrum sensing in non-Gaussian noise. Among other methods, [54] proposes
use of the M-estimator to estimate cyclic correlation. In [67] — [69] Huber’s
minimax estimator for the detection of signal in non-Gaussian noise is suggested.

Other approaches are available for robust detection. For example, in [14] the
Kolmogorov-Smirnov test for robust spectrum sensing is used. In [54] a trimmed
mean is suggested to guarantee robustness of a cyclic correlation estimator. In the
final part of this thesis we will compare some of those proposed robust detectors
with our obtained results.

As the author found none of the earlier models of impulsive noise intuitively
satisfying, in the current thesis we model impulsive noise explicitly by a uniform
distribution. We allow impulses to occur only with certain probability and preserve
the usual Gaussian noise component for most of the time.

The uniform distribution is selected because of its maximum entropy property, i.e.

nothing is assumed to be known about the origin of the impulses. This noise model
takes into account that the impulses that disturb the detection based on Gaussian

18



assumption occur only with certain probability c. As such, the noise model is more
intuitively satisfying than other popular models for impulsive noise like Laplacian
or other ones mentioned above.

1.3 Task statement

The objective of the current thesis is to work out a set of three robust detectors for
cognitive radio. This set includes a robust energy detector, a robust
cyclostationary detector and a robust matched filter. An additional condition to
those robust detectors is that in the case of Gaussian background noise singly, they
must work almost as well as regular detectors. However, when impulsive noise is
added to the scene, they must perform almost as well as before.

The following three considerations about the objective of the thesis must be
taken into account:

1. Cognitive radio has strong potential for future, i.e. research work on the given
topic is of high value.

2. In practical applications the impulsive nature of background noise must be
considered.

3. As choice of a detector depends on a specific application, it is sensible to work
out robust analogues to all three most common detectors. This allows future
designers to choose the most suitable robust detector for their design.

In order to fulfill the given task the following work must be conducted.

Three most common detectors suitable for cognitive radio applications will be
introduced in Chapter 2. An energy detector, a cyclostationary detector and a
matched filter are introduced and their noise performance is analyzed. Theoretical
results are confirmed by computer simulations.

Chapter 3 covers the derivation of the noise model under which our robust
detectors must work. First, Gaussian noise will be briefly described. Our model of
impulsive noise, briefly described before, will be introduced in detail. Focus is on
the derivation of the sum of impulsive and Gaussian noise — both for one- and
multidimensional cases.

As the robust detectors to be worked out need information about some parameters

of background noise, Maximum Likelihood Estimators for those parameters will be
derived in Chapter 4.
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Chapter 5 will demonstrate clearly that impulsive noise has a strong effect on the
performance of the detectors derived under the assumption of Gaussian background
noise only.

Center of gravity of the current thesis will lies in Chapter 6 where robust analogues
to all three detector types will be derived. For all three, the theoretical noise
performance is analyzed and computer simulated. Good compliance between those
results will indicate that proposed detectors are working well both under Gaussian
only and also in additive impulsive noise conditions.

Chapter 7 analyzes the influence of estimation uncertainty of noise parameters on

the performance of the derived robust detectors. The final chapter summarizes the
results of the thesis research.

20



2 Known Detection Algorithms for Cognitive Radio

Spectrum sensing in cognitive radio involves deciding whether the primary
signal is present or not from the observed signals. It can be formulated as the
following hypotheses testing problem with [6]:

H, 2 x(6) = v, (6) +i(1)

o, (2.1)
H, :x(t)=s(t)+v, () +i(1)

where x(#) is the received waveform, s(¢) is the primary signal, i(f) is interference
and v,(?) is additive white Gaussian noise (AWGN). To simplify the analysis, we
assume from now on that the interference i(¢) is included in the noise as a part of it,
if not stated otherwise. H, and H; denote the hypotheses corresponding to the
absence and presence of the primary signal, respectively. Thus from the
observation x(7), the cognitive radio user needs to decide between H, and H,[6]. To
decide between the two hypothesis, the decision statistic A is calculated from the
received waveform x(f) and compared against a threshold 4. If the decision statistic
A is above the threshold A, we can decide in favor of the hypothesis H;, the
presence of the primary signal, and vice versa

A= A:H, —s(t)is present 22)

A<A:H,—s(t)is absent '
As the received waveform x(7) is a random process, the decision statistic 4 is also a
random variable which can be described with its conditional PDFs f{A|H,) and
fU4|Hy) (Fig 2.3). When the received waveform contains no primary signal but the
decision device makes an incorrect decision in favor of the presence of such signal,
then we have a false detection. Probability of false detection Pr is equal to the area
of filA4|H,) from the decision threshold A to infinity

P =

F

f(AJH,)an =1-F(AH,), (2.3)

N— 3

where F(A|Hp) is a conditional cumulative distribution function of the decision
statistic. A case where the primary signal is present and correctly detected is called
detection. Probability of detection Pp is equal to the area of fl4|H,) from the
decision threshold A to infinity

P, = T f(A[H Jan=1-F(A|H,), (2.4)
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Receiver operating characteristic or ROC curve (Fig 2.1) illustrates the relationship
between the probability of detection Pp and the probability of false detection Pr as
the function of signal-to-noise ratio SNR.

F,=f(P.) (2.5)

The larger the area between the line Pp = Pr and ROC, the better is the given
decision device.

)
f”

Fig. 2.1 Example of an ROC curve

Three common solutions to detect the presence of the primary signal are: an
energy detector, a cyclostationary or feature detector and a matched filter detector.
Each of the three will be analyzed briefly in the following chapter. Also, less
common detection methods are reviewed at the end of the chapter.

The literature review in Chapter 1 covers the working principles of the
mentioned detectors. Author’s main contribution here is the derivation of correct
detection probability for a specific case of a cyclostationary feature detector. The
reason is lack of literature on this topic. The author also performed computer
simulation of the performance of all three detector types.
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2.1 Energy detector

Energy detection is the simplest spectrum sensing technology. An energy
detector treats the primary signal simply as a random process and decides its
presence or absence based on the energy of the received waveform. Since an
energy detector needs no a priori knowledge of the primary signal, it makes energy
detection robust to the parameters of the primary signal, which is beneficial for
cognitive radio. Another advantage of energy detection is in its low complexity —
no complicated signal processing is needed.

. decision
4)—<ADC el | | _,_a‘,ernage_,_ ZA = g

Fig. 2.2 Implementation of an energy detector in time domain

(2]

x(t)
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&

An implementation of an energy detector is depicted in Figure 2.2. The figure
shows that for a given signal bandwidth B, a pre-filter matched to the bandwidth of
the signal has to be applied. This implementation is quite inflexible, particularly at
narrowband signals and sine waves. The decision statistic for an energy detector
[16]is

A=) x; 2.1.1)

Received waveform is the AWG noise X ~ N(0,0) with PDF

2
X
1 )

e_ 20

fx(x) = \/E(T >

And the decision statistic 4 has an unscaled central chi-square distribution with n
degrees of freedom. The cumulative distribution function of unscaled central chi-
square distribution with n degrees of freedom is [17]

A
F(A[H,) = ; y(g 202} , 2.1.3)
f3)

(2.1.2)

where I'() and y(:,") denote the gamma function and the lower incomplete gamma
function, respectively. Probability of a false alarm Pr (2.3) of the energy detector in
[18]is
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n A
Ppl—r[njyb,zgzj. (2.1.4)

When the primary signal is present, the probability of detection is

1

n A
P, l_r(”)y(5’2(02+03)j' (2.1.5)
2

A two hypotheses case for an energy detector (2.1.1) is illustrated in Figure 2.3.
Solid line shows the PDF of decision statistic A for the hypothesis H, where the
signal s(7) is absent. Dashed curve in the figure is the PDF of decision statistic A
for the hypothesis H,; where the signal s(¢) is present.
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Fig. 2.3 PDFs of an energy detector for both hypotheses (o, =1,n=100, SNR = 0dB )

Since the number of required samples # is large, one can use the central limit
theorem to approximate the test statistic 4 (2.1.1) as Gaussian [19]. In order to find
the mean and the variance of this new Gaussian variable, we need the probability
density function of variable ¥ = X*. When no primary signal is present, X ~ N(0,,),
we can state that

24



F(3)= P(Y < )= P < )=

=Pl <y )= ()R E)

The probability density function is a derivate of the cumulative distribution
function

(2.1.6)

10)=F0) =Sl

dy

S AR

, (2.1.7)

because the PDF of a variable X is an even function, we can write

:fx(\/;): L o >0 2.18
f,(») N (2.1.8)

The mean and variance of a variable Y can be calculated as

_r
27y = o (2.1.9)

\/\/_Jj(y\/%) e dy =267, (2.1.10)

In a similar fashion, when the primary signal is present, we obtain u, = ¢° + a,> and

= \/5 (02 + asz). Thus, at sufficiently large », the test statistic 4 can be described
as

H,:A~ N(naz, 2n0'2)

H A~ N(n(O'2 +GS2),\/E(02 +0s2)).

The probability of a false alarm and detection can be expressed through a
complementary error function

@2.1.11)

25



In the low SNR << [ regime, the number of samples required for the detection that
meets specified Pp and Pr, scales as O(I/SNR’). This inverse quadratic scaling is
significantly inferior to the optimum matched filter detector whose sensing time
scales as O(1/SNR) [20]. Threshold value can be evaluated as

l:\/;0'2[2erfc’1(2PF)+\/;J. (2.1.14)

Time domain implementation of the energy detector is quite inflexible,
particularly at narrowband signals and sine waves. An alternative approach could
be devised by using a periodogram to estimate the spectrum via a squared
magnitude of the FFT, as depicted in Figure 2.5 [19]. Our interest in the frequency
domain energy detector results from the fact that the cyclostationary detector
described in the next chapter is also based on FFT.

] Theoretical
S O LT ] bbbl Simulated

10* 107 107 107 iy

Fig. 2.4 Theoretical and simulated ROC of an energy detector (n=2080, SNR = -23dB)
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Fig. 2.5 Implementation of an energy detector using a periodogram
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The decision statistic for an energy detector in the frequency domain is

1 2
A_ﬁ;;pq , (2.1.15)

where X(m) is N-point FFT of x; defined as

—j2mmk

N-1
X,=Yxe V . (2.1.16)
k=0

If input is white noise with a uniform spectrum, its power will be equally
distributed between all frequency bins in (2.1.16). As FFT is a complex transform,
both real and imaginary parts of X,, will carry half of the energy of the input
realization. Frequency bin with an index m is a weighted sum of N random
Gaussian variables x;. When only zero mean noise is present, all x4, = 0, thus also
mean of frequency bin X, equals zero. Variance of the m™ frequency bin by
definition is

N-1 —j2mmk \( N-1 —j2mmi \*
DXm:E[XmX;]:E(Zxke v j{lee v ) =
=

0
(2.1.17)

1 N= j2
N—-1 N-1 . J]\;Zm(k*l)
= Zxkx,e

Due to the assumption on uncorrelated white noise (2.1.17) is reduced into

v

N-1 . J2mn
DX, =E Y x.xe ¥ |=No,. (2.1.18)
Because the phase of noise v(¢) has uniform distribution, both the real and the

imaginary parts of X, have equal variance

2
D(Re X, )=D(mx, )=

(2.1.19)

As both components have equal variances and zero mean, the square of the module
X, follows unscaled chi-squared distribution with two degrees of freedom. As we
average n-times over M frequency bins, the decision statistic follows unscaled chi-
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squared distribution with 2nM degrees of freedom. If nM is sufficiently large, we
can approximate the PDF of the decision statistic 4 as normal

H,: A~ N(nNJz,‘/;—nNJZ]. (2.1.20)

From here we obtain a probability of false detection as

1 {W(ﬂ—nNJz)}

(2.1.21)

P. =—erfc
) 2/nNo?

If the input of a FFT energy detector consists signal s(f) too, the decision
statistic 4 follows unscaled noncentral chi-squared distribution with 2nM degrees
of freedom [6,21]

2M , (2ny 2MA
A~ , . 2.1.22
No* XzM"[NO'2 No* ) ( )
Noncentrality parameter y is defined as
ud 2
W=Z|Sm , (2.1.23)
m=1

where |S,,* is the power of the m™ spectral line of the primary signal. One can see
that the noncentrality parameter is actually the signal power o,” within the given
bandwidth M. Probability of correct detection can be found by the Marcum Q
function Oy(*,")

2n 2MA
P, = QnM[W/N—Ol_/;’W/ No? J (2.1.24)

When nM is large enough, we can also here approximate the PDF of the decision
statistic as Gaussian. However, it is worth mentioning that noncentral chi-square
distribution converges into Gaussian distribution much slower than central chi-
square distribution. Thus, at large nM, the test statistic 4 can be described as
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H,:A~N| nNo’, 21 N o?
M

i (2.1.25)
H:A~N o No*+ V| N g+ 2V
M No
Threshold value can be evaluated as
A=2 | No’erfe (2P.)+nNo”. (2.1.26)
M

Figure 2.6 compares time and frequency domain energy detectors having the same
parameters. At first glimpse it seems that a time-domain detector has slightly better
performance than a frequency domain detector. Comparison of the theoretical and
experimental performance of a frequency domain energy detector in Figure 2.7
shows that experimental results indicate a better performance than expected by
theoretical approximation (2.1.25). Thus, the performance of both detectors is
practically equal and differences witnessed here are caused by slow convergence of
noncentral chi-square distribution into Gaussian.
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Fig. 2.6 Comparison of time and frequency domain energy detectors
Increased sensing time mentioned above is not the only disadvantage of an

energy detector. Previous derivations are based on two assumptions. Firstly, we
assume that additive noise is white and Gaussian and secondly, we assumed that
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the exact value of noise variance o° is known. Neither of those assumptions is true
in real life situations — noise variance is not constant in time and its value is not
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If now the power of our primary signal o’ is smaller than noise uncertainty

(2.1.28)

2
L to,,

2

0,20

then the primary signal remains undetected. If there is noise uncertainty x dB, the

detection is impossible below [6, 12]

(2.1.29)

===== Experimental

10°

10

=128 M =2 n=128 SNR =-10dB)

Fig. 2.7 ROC of the FFT energy detector (N
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2.2 Cyclostationary feature detector
A random process {X,} is stationary in strict sense (SSS) if its cumulative

distribution function of joint distribution of {X;} at time instances ¢,+z,..., f+7
satisfies

FX(xt]H,xtN,...,xtﬁ,)z FX(xtl,xtz,...,xtA ), (2.2.1)

for all ¢;, t5, ...t, k and 7. Since 7 does not affect Fx(), it is not a function of time. In
signal processing it is often satisfactory if only 1% and 2™ moments of random
process do not vary in time. Such processes are called weak-sense stationary
(WSS). A WSS continuous-time random process has time invariant mean

E{x())}=u, ()= u,(t+7), 7€R (2.2.2)

and autocorrelation function

E{x(t)x(t,)} = R (1,,1,) =

. (2.2.3)
=R.(t,-1,)=R.(r) 7€R

Common analyses of a WSS random signal are based on the autocorrelation
function and power spectral density [22]. Two of them are related through Wiener-
Khinchin theorem which states that the power spectral density of the WSS random
process is the Fourier transform of the corresponding autocorrelation function

SJJ)==TRArkﬂ”WdT. (2.2.4)

Function x(¢) is periodic with period T if
x(t)=x(t+T,)), Vt. (2.2.5)

Periodic functions can be represented as Fourier series

x()=Y ae™, (2.2.6)
k=—0

where w, is angular frequency of a periodic signal x(¢)

w, =" (2.2.7)
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and a; are Fourier coefficients

a, = Tijx(t)e_"'k”"‘dt. (2.2.8)

07,

Many processes encountered in nature arise from periodic phenomena. These
processes, although not periodic functions in time, give rise to random data whose
statistical characteristics vary periodically with time and are called a
cyclostationary process [23]. Causes of periodicity in telecommunications are
sampling, coding, modulation and multiplexing operations. Random process is
wide-sense cyclostationary (WSCS) if there is a period T that satisfies both

ﬂx(t):ﬂx(t+To) (229)
R (t,7)=R (t+T,,7). (2.2.10)

Thus, the autocorrelation function of a cyclostationary process is periodic in nature.
It is important to notice that the autocorrelation function is periodic in time ¢ not in
lag 7. As mentioned above (2.2.5), any periodic function can be represented as a
Fourier series. Thus, also our periodic autocorrelation function (2.2.10) can be
represented as

k Jj2nkt

R(t,)= Y R (n)e ", 22.11)
k

=—0

where the Fourier coefficients

Iy

2
R“(r)= TL [ R0 2.2.12)
0o 7,

2

are referred to as cyclic autocorrelation functions and the frequencies a = k/T; are
called cycle frequencies. A more general class of stochastic processes is obtained if
the autocorrelation function R,(#,7) is almost periodic in ¢ for each 7. A continuous-
time real-valued stochastic process x(¢) is said to be almost-cyclostationary (ACS)
in the wide sense if its autocorrelation function R,(#,7) is almost periodic function
of ¢ [24]. Autocorrelation function R.(¢,7) is almost periodic if it is the limit of a
uniformly convergent sequence of trigonometric polynomials in 7 [25]:
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R.(t,7)=) RI(r)e™™, (2.2.13)

acA

where A4 is a countable set, the frequencies a are possibly incommensurate, and the
coefficients are given by

T
a 1 1 t —j2nmat
Ri(7)=lim jT R.(t,7)e ™ dt. (2.2.14)
2

The last equation is usually a basis for practical implementations of a
cyclostationary detector and for practical use it can be written as

R? (r)—hml jx( j [t_Ej R (2.2.15)

2

If x(¢) is cyclostationary with period 7, then the cycle autocorrelation has a
component at o = 1/7y. Wiener-Khinchin theorem can be applied also for
cyclostationary processes resulting in a spectral correlation function (SCF) or
simply a cyclic spectrum

ST = TRi(r)e"”’dr : (2.2.16)

Substituting (2.2.15) into (2.2.16) will result in

s (f)—itlilllopilg——j)( t f+ )X @ f- )dz, (2.2.17)

2

where At is the duration of the whole analyzed waveform and

T
+—
2

X, (t,f)= j x(u)e ™ du (2.2.18)

t,,
2

is the spectral component of x(7) at frequency f with the bandwidth B = 1/T. The

spectral correlation function is a two dimensional complex transform on a support
set (f,a). SCF can be used for feature detection. Power spectral density (2.2.4) is a
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special case of a SCF for a = 0. To illustrate the concept we have plotted the cyclic
spectrum of the 4-FSK modulated signal in Figure 2.8.

it [Hz]

Fig. 2.8 Cyclic spectrum of the 4-FSK modulated signal

Signal analysis in the cyclic spectrum domain preserves phase and frequency
information related to timing parameters in modulated signals. As a result,
overlapping features in the power spectrum density are non-overlapping features in
the cyclic spectrum. Different types of modulated signals that have identical power
spectral density functions can have highly distinct SCFs. Furthermore, a stationary
white noise exhibits no spectral correlation [26].This statement is well illustrated
by comparing Figures 2.8 and 2.9. AWG has influence only where o = 0, anywhere
else features of the 4-FSK signal are still easily distinguishable. Due to its noise
rejection property, cyclostationary detection works even in very low SNR region
where the traditional signal detection method such as the energy detector fails [6].
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Fig. 2.9 Cyclic spectrum of the 4-FSK modulated signal in AWG noise

A spectral correlation receiver can be realized (Fig. 2.10) by correlating two
frequency components of signal x(¢) separated in frequency by a. The final result is
obtained by averaging correlation over time. When the correlation time 7T
approaches to infinity and the bandwidth B to zero, we obtain SCF (2.2.17) [24].
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Fig. 2.10 Spectral correlation analyzer

Most attractive implementation solutions for a spectral correlation analyzer are
digital frequency smoothing algorithms. Given n samples divided in blocks of N
samples, SCF is estimated as



$7(f) =%2X (k. f + 50X, (k. -5, (22.19)

where Xy(k,f) is (2.1.16) the N point FFT around sample & [22]. Direct algorithms
first compute the spectral components of the data through FFT and then perform
the spectral correlation directly on the spectral components (Fig. 2.9).

[rd
Se ()
x(t) . Spectral correlation : decision
. N-pt. average Featre
4,<ADC | FFT _).X(f—%})(*(f- %)_} over T| " |detect [ @

Fig. 2.11 Implementation of a cyclostationary feature detector [22]

Estimates can be improved by applying windows for smoothing at the cost of
additional processing. The computational complexity of a SCF estimator is easily
estimated. For a stream of N samples, it requires a computation of N point FFT,
which requires O(NogN) multiplications, and O(N?) multiplications for cross
multiplications. This algorithm is extremely parallel so that the computation of the
SCF can be organized across the frequency or across the cycle plane
independently. Also, this method could be employed to compute SCF for smaller
parts of bi-frequency plane and save the area and power [22].

When the spectral correlation function has been obtained, the last step towards a
cyclostationary detector is detection of features. Features at zero cycle frequency
are corrupted by noncyclical noise and interference making feature detection hard
especially at low SNR regime. To detect a feature at (nonzero) cycle frequency o,
the optimal processing is the projection of the estimated SCF onto the ideal SCF of
a known primary user signal [22, 26]

Poe) = [ STCYS2 @ (2:2.20)

The detector (2.2.20) is referred to as a single-cycle detector (SC) or just a cycle
detector [26, 27]. Single-cycle detectors are able to detect the presence of
cyclostationarity at only one cyclic frequency at a time. They partly ignore the rich
information present in the signals [27]. The device that takes into account all
available information at different cyclic frequencies is known as a multicycle
detector (MC) [26]

1 oy oo oo
) [se0ySeiefr . (2.2.21)

a & —x

Ve (®) =
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The two detectors above are in the frequency domain, i.e. based on the cyclic
spectrum. It is also possible to realize single- or multicycle detectors in the time
domain, based on the cyclic autocorrelation function.

Comparison of the energy detector in Figure 2.2 to the cyclostationary feature
detector in Figure 2.6 shows clearly that both of them start processing by finding
an N point FFT of the input waveform x(f). While the energy detector finds only
the estimate of power spectral density, the cyclostationary feature detector finds
correlation between separated frequencies. While calculating probabilities of false
detection and detection in the case of the energy detector, we are dealing with a
square of normally distributed random variables. In the case of the cyclostationary
feature detector we are dealing with the product of two normally distributed
random variables.

Next, we derive the probability of false detection for a single cycle detector for
fixed a and f. Our decision statistic will be

(2.2.22)

Our derivation is based on the FFT implementation depicted in Figure 2.11. When
the input waveform x(¢) is AWGN noise only, each frequency bin Xy(k,f) contains
zero mean Gaussian noise with variances (2.1.19), as demonstrated in the previous
section. The next step in the calculation of SCF is the multiplication of two
frequency bins separated in frequency by a

X, (k,f+%>X; (k,f-%)- (2.2.23)

As both multiplicands are complex, the result of (2.2.23) is

g o5
st e-5])
ik o (k’f—%ﬂ
o] -
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Thus, both real and imaginary parts of (2.2.23) contain the products of two zero
mean Gaussian variables. From [28] it is known that the PDF of the product of two
Gaussian variables can be described by the second kind zero-order Bessel function.
As the multiplication (2.2.24) is followed by averaging over n sample, the exact
shape of the resulting PDF is actually unimportant because the PDF of the
averaging filter output is Gaussian anyway. We only need to know the mean and
standard deviation of the product of two random variables with zero mean
Gaussian PDF. If two variables X and Y are independent, the variance of their
product is given by [29]

D(XY)=(EX) DY) +(EYD(X)+D(X)D(Y). (2.2.25)

As the mean of both multiplicands is zero, D(XY) = D(X)D(Y). From (2.1.20) we
obtain that a standard deviation of every single product in (2.2.24) is

_ No*
2

o, (2.2.26)

As we are averaging (2.2.23) 2n times according to (2.2.19), the resulting PDF of
both imaginary and real parts at the output is Gaussian when # is sufficiently large.
Standard deviation of both real and imaginary parts of the output PDF is

2
O

O, = ——. (2.2.27)

7n

Non-multiplicativity property of the expected value states that the mean of the
product of two random variables is

E(XY)=EXEY +cov(X,Y). (2.2.28)

As we assume our random variables to be independent and with zero mean, then
according to the last equation the mean of the product is zero.

To decide if the primary signal is present or absent, the detector compares the
module of the SCF estimate (2.2.19) against the decision threshold A. It is well
known that with random complex numbers whose real and imaginary components
are Gaussian, the module of the complex number is Rayleigh-distributed. Thus, in
the case of noise only, the decision statistic 4 (2.2.22) follows the Rayleigh
distribution

nA?

IRGEAE ’;—/}esz A>0. (2.2.29)
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From the CDF of the Rayleigh distribution it is easy to derive that the probability
of false detection equals the probability of A being larger than A

i

P. = T fo(A|H,)dA = > (2.2.30)
A

and from it a threshold value for desired P must be

A= az‘/_zl—nPF : (2.2.31)
n

When the primary user signal is present, the means of multiplicities (2.2.23) are not
zero anymore. They depend on the amplitude and the initial phase of signal and
noise. When we square such a signal, there is an analytical solution for the PDF of
the result (2.1.23). But there is no known analytical solution for the PDF of the
product of two Gaussian variables if one or both of them have nonzero mean. In
literature [30] a moment generating function for such a product is given. Thus
known expressions for the mean and variance of such a product exist. But a
problem arises when a signal is also present, and then the distribution of the
frequency bin corresponding to the signal frequency is usually not Gaussian. In
such cases no known analytical solutions either for the PDF or values of
parameters are available. Thus, no closed-form expressions of correct detection Pp
for a cyclostationary detector exist [30, 31]. Therefore, an approach should be used
where the threshold value (2.2.31) for a given false alarm probability is calculated
and ROC curves are found experimentally.

However, in some specific cases it is possible to find an analytical expression
for the probability of detection Pp. For example, when a pair (a, /) = (2f;,0), where
f; is the signal frequency and if FFT is done coherently - with constant initial phase
@ of signal s(f). The mean value of Xy(k,f £ a/2) in the given case is determined by
the Fourier transform Sy of signal s(¢) and it can be expressed as

E[XN(k,f+%ﬂ = SN(k,f+%j =ATN(COS¢+jSin(D)

(2.2.32)
E{X,{k,f—%ﬂ = SN(k,f—gj = %(cosgo—jsinq))

2

If no spectral leak occurs, the means of all other spectrum bins are zero. Variances
of all spectrum bins are still determined by Gaussian noise at the input and they are
equal to (2.1.19)
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Thus, in our case output signals at the spectrum bins under interest are Gaussian
random processes with the mean determined by the signal s(f) (2.2.32) and variance
determined by the noise w(¢) (2.1.19). In our case, the multiplication of two
frequency bins separated in frequency by o is equal to the square of one
multiplicand. This results from the fact that bins at frequencies f; and —f; are
complex conjugates of each other, thus (2.2.23) becomes

Yy = X (k, )X (ki f) = [X (k. £OF (2.2.33)

As both multiplicands are complex, expanding the square in (2.2.33) results in

¥, = Relx, (k£ )] ~ {1, (s, £)]F +

(2.2.34)

+2jRe[XN(k’f;)]Im[XN(k’f;)]
Both summands in the real part of the product are following noncentral chi square
distribution with one degree of freedom. PDF of the imaginary part has no
analytical form, as mentioned above. But the moment-generating function of the
two correlated normally distributed variables is known [30] and it can be used to
calculate the mean and variance of products. If we have two correlated Gaussian
variables with means u;, u, standard deviations o;, o, and with correlation p, then
the mean and variance of their product are accordingly [30]

E(X1X2)= Mt + pO,O, (2.2.35)
D(X1X2)=1U12022+1U22012+(1+p2)0-12022+2ﬂ1,u20_102. -

As imaginary and real parts are by definition orthogonal, correlation between them
is zero. Thus, the imaginary part of our product Yy has the mean

2
E(ImY, )= (%j sin(2¢) (2.2.36)
and the variance

273 2
D(ImY, )= $+ N’o*. (2.2.37)
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The square of a random Gaussian variable can be viewed as the product of this
variable with itself. Correlation between the multiplicands in this case is 1. The
means of squares of the real and the imaginary part of Xy are accordingly

2
E[(ReXN )2]= (gj cos’ ¢+§02
(2.2.38)

, .
E[(ImXN)Z]: (ATNJ sin’ ¢+%O‘2

As the real part of product Yy is equal to the difference between the square of real
and imaginary parts of Xy (2.2.34), due to the linearity of an expectation operator,
the mean of the real part of Yy is equal to the difference between the means of
squares (2.2.38)

2

2
E(Re YN) = (ATNJ (cos2 @ —sin’ (/)) = (ATNJ cos2¢ .(2.2.39)

Variances of squares of the real and the imaginary part of Xy according to (2.2.35)
are

2A73 2 2
D[(ReXN)Z]=$cos2 o+ N204

e s (2.2.40)
D[(ImXN)zlzTO-sin2¢)+ 20

Variance of the real part of product Yy is equal to the sum of previously found
variances

A*N'o?

D(ReY, )= +No*. (2.2.41)

Now the final step in the calculation of the estimate of the cyclic spectrum (2.2.19)
is averaging n times and dividing the result with N. If » is sufficiently large, the
real and imaginary parts of the estimate (2.2.19) are following Gaussian
distribution with parameters
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N sin(2¢)

E[ImS‘f ( f)]: 4 ai

2

E[Reﬁf(f)]: 4 Ncos(2go)

and

2 2 4
ANo” o (2.2.43)
2n n

p[im$¢(7)]= Dl (1) =

Thus, under the given conditions our decision statistic 4 (2.2.22) will follow the
Rice distribution A~Rie(o,,r) with parameters

2 2 4 2
ANo” oo, M (2.2.44)
2n n 4

O, =

The cumulative distribution function of the Rice distribution is [17]

A
F(A)=1- Q{Gi,a—j, (22.45)
A A

where Q(:,) is the Marcum Q function. Through identity (2.4) we can now find the
probability of correct detection

P, =1-F(A)=0, (lij (2.2.46)

Op On

Figure 2.12 shows the comparison between the theoretical PDF of the Rice
distribution [17]

/\Z-Hy2
A > (A
f(A|l//,O'A):?e 29 IO( Z’J (2.2.47)

A Oy

and the simulated histogram, where /y(-) is the modified Bessel function of the first
kind with order zero. Simulation was carried out with N = 64 point FFT and
averaging over n =32 samples. Signal-to-noise ratio at the detector’s input was
17dB. Simulation was repeated for million times in order to construct the
histogram shown in Figure 2.12. We can easily see that compliance between the
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The theoretical and experimental

curves are fitting well around high Pr values. When Pr decreases, the difference
between the two lines increases. The reason probably is that the value n = 32 is not
large enough to the tail of averaged realizations PDF to follow normal distribution

theoretical and simulated curves is very good. ROC curves in Figure 2.13 were
precisely.

obtained for the same values of parameters.
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Fig. 2.13 Theoretical and simulated ROC of a cyclostationary detector



In order to calculate the necessary values of the number of samples # and threshold
A for a given operating point (Pr, Pp) at ROC we need to know the inverse function
of the Marcum’s Q function. To the best of the author’s knowledge no direct
solution to the inverse problem exists. However, in [32] the Newton-Raphson
iteration algorithm is described for numerical solution of the inverse of the
Marcum’s Q function. Furthermore, for the constant false alarm probability
(CFAR), the threshold 4 can be set without description of the solution.

2.3 Matched filter

Matched filter is an optimal coherent detection method for cognitive radio. An
input signal given,

x(t)=s(t)+v(¢), (2.3.1)

where s(7) is the known primary user signal and v(¢) is additive stationary noise, the
matched filter /(7) (Fig. 2.14) is designed to maximize the peak SNR at its output.

:c(_r')} h(t) _LJE)

sey+ve)| @ |30 +v,0)

Fig. 2.14 Matched filter

Output of the matched filter is a convolution of the input signal x(¢) and filter’s
impulse response 4(?)

y(t) = x(t)*h(t) . (2.3.2)

Because the matched filter is linear, we can regard its response to signal and noise
as two additive components y(¢) and v,(¢) at the filter’s output

y@&) =y, )+v,(t)=s@)*h(@®)+v(t)*h(t). (2.3.3)

Output signal-to-noise ratio at the time instant 7 is defined here as the peak signal
power to the average noise power

SNR, = @) (2.3.4)

2
V|

It is well-known that convolution in the time domain is multiplication in the
frequency domain, thus we can write the output signal also as
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y.(t)=s(t)* h(t) = i js(a))H(w)ef‘“'da) , (2.3.5)

—o0

where S(w) is the spectrum of the primary user signal and H(w) is the frequency
response of the matched filter.

Peak output power at the time instant 7 then is

2

v = IS H(w)e™ do . (23.6)

Average noise power at the filter output is

e 17 1 7 )
v =gIV0(w)dw=§_LV (@)H (o) do, 2.3.7)

—0

where V,(w) and V(w) are spectra of the output and input noise, respectively. Now
we can write signal-to-noise ratio (2.3.4) through (2.3.6) and (2.3.7) as

2

L [tttk do

SNR, = (2.3.8)

—JV@]H@X do

Cauchy—Schwartz inequality for integrals [25] states that for two complex
functions f{x) and g(x) integrable over [a,b]

[ £()g(x)ax

< I|f(x)|2dxj|g(x)|2dx. (2.3.9)

Two sides of (2.3.9) are equal if and only if g(x) = k /'(x), where k is an arbitrary
real constant. If g(x) # k £ (x), then the left side of inequality is smaller than the
right side. For further derivation, we will use the following notations:

f(x)z% g(x)=V(0)H(w)e™" . (2.3.10)
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We write SNR (2.3.8) using the above notations for f{x) and g(x)

Ao

2”:[0‘ V(o)H(w)e™

2 [ (o ho|

2

do

SNR, = (2.3.11)

For the next step, the numerator of the last result will be written in the form of
Cauchy—Schwartz inequality, resulting in

;Tm H‘/_H”)ew

SNR, < . (23.12)

Z .UWH (a))ej”’T do

The right term of the numerator cancels out with the denominator, leaving only

©

SNR, < lﬁ j

—o0

(2.3.13)

The resulting inequality (2.3.13) is maximized if g(x) = k f'(x)

W (@)H(w)e™" { S(w) } (2.3.14)

V()

Thus, the filter that maximizes the signal-to-noise ratio at its output on the time
instance 7T has the frequency response

(2.3.15)

Impulse response /() can be derived through an inverse Fourier transform. In the
case of white noise with the constant V(w) = #,/2

H(w )=f7ks (@) . (2.3.16)

The inverse transform gives an impulse response
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h(t)=2—ks*(T—t). (2.3.17)

v

Thus, in the case of white noise, impulse response of the matched filter is a time
inversed complex conjugate of the primary user signal s(7).

The main advantage of the matched filter is that due to coherency, it requires
minimal time to achieve high processing gain, since only ~ O(1/SNR) samples are
needed to meet a given probability of detection constraint. However, a matched
filter effectively requires demodulation of a primary user signal. This means that
the CR has a priori knowledge of the primary user signal at both physical layer
(PHY) and MAC layers, e.g., modulation type and order, pulse shaping, packet
format, etc. Such information might be stored in a memory, but the cumbersome
part is that for demodulation the CR has to achieve coherency with the primary
user signal by performing timing and carrier synchronization, even channel
equalization. This is still possible, since most primary users have pilots, preambles,
synchronization words, or spreading codes that can be used for coherent detection
[22].

Next, we derive the probability of detection and false detection for a discrete
time real system with a discrete impulse response

h(k)=s(n—k). (2.3.18)

When the input waveform of the matched filter is Gaussian noise, only then the
output of the filter is also Gaussian noise with mean and standard deviation

o, = ,uvzn:h(k) o,=0 /Zn:hz(k) =onol,  (23.19)
k=1 k=1

where g’ is the power of the signal. Generally, the mean of the input noise is zero
and thus the output noise of the matched filter is also zero. When a signal s(n) is
also present in the input waveform, the standard deviation remains the same as in
the previous case but the mean of output is

w, =[s*hn)=no’. (2.3.20)
Thus, the test statistic for the matched filter case can be described as

Hy: A~ N(O,x/;ovs)

H,: A ~Nlno? Nnoo, ) (2321)
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Probability of false detection and detection can be expressed through the

complementary error function

— "9, (2.3.22)
2noo,

fc( A

The number of samples n necessary to reach the given operating point (Pr, Pp) at

ROC can be found from (2.3.22) and it is

—er
2

5 PD=
O-S

—erfc A
2 2noc

1

(2.3.23)

n=2SNR [erfe™ (2P, )—erfc™ (2P, )f .

%/ ¢*. Threshold value can be evaluated as

where SNR is signal-to-noise ratio o;

(2.3.24)

“(2p,)].

erfc

(2P, erfc (2P, )-

-1

207 erfe

A=

e e Ll
RS [N -
1 1

Theoretical
===== Simulated

2080, SNR =-23dB)

Fig. 2.15 Theoretical and simulated ROC of the matched filter (n

2.4 Other detection methods

Besides energy and feature detector and matched filter, some other possible
detectors are described in literature. Jun, Geofrey and Biing [6] have introduced a

method based on covariance.
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The key idea behind the covariance-based primary signal detection is that the
primary signal received at the CR user is usually correlated because of the
dispersive channels, the utility of multiple receive antennas, or even oversampling.
Such correlation can be utilized by the CR user to differentiate the primary signal
from white noise. Specifically, covariance-based detector determines the presence
or absence of the primary signal based on the covariance matrix of the received
signal [6]. Based on the sample covariance matrix of the received signal, various
test statistics have been developed to detect the primary signal, including the ratio
of its maximum and minimum eigenvalues [14, 33], the ratio of its diagonal and
off-diagonal elements [34], and its maximum eigenvalue [35].

Moghimi, Nasri and Schober have proposed the so-called L,—norm spectrum
sensing for cognitive radio [15]. Suboptimal decision statistic for L diversity
branches is

1 L 5 N pr
Ay :ﬁgah];|xlk| : (2.4.1)

where p; ,1 <[ < L, are tunable parameters and oy, is the standard deviation of
channel gain. If p;=2,1 </< L, we obtain an energy detector (2.1.3).

This thesis concentrates on three main detector types and thus the other detector
types are not analyzed here in detail.

2.5 Comparison of detectors

This chapter introduced three main types of detectors used to determine the
presence or the absence of the primary user signal in cognitive radio applications.

An energy detector is easy to implement and it needs a minimal amount of a
priori information about the primary user signal. Basically, only knowledge of
energy and approximate frequency of the primary signal is required. An energy
detector can be implemented both in the time and frequency domain. A frequency
domain energy detector has some common basis with a cyclostationary feature
detector. This was the reason here to take some interest in the topic. As both energy
detectors had similar performance but the time domain detector is easier to
implement, from now on it is sufficient to proceed with the time domain detector
only.

If the number of samples # used in sensing is not limited, an energy detector can
theoretically meet any desired P, and Pr simultaneously. In practice we may never
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know the exact value of noise variance o” and this noise uncertainty sets limits to
the lowest value of SNR under which correct detection is still possible.

]

10

3
f”

— Matched filter
----- Cyclostationary detector
—4— energy detector

107 10" 10

Pr

Fig. 2.16 Comparison of the presented detectors’ performance (SNR =-23dB)

A cyclostationary feature detector uses periodicities hidden into the primary
user signal for detection. In contrast to the energy detector, we need more
information about the primary user signal. We need to know some or all
periodicities in this signal, for example, carrier, synchronization or pilot
frequencies, symbol or coding rates. Implementation and analysis of a
cyclostationary detector is more complex than it was in the previous case. It was
found that there is no closed-form expression of correct detection Pp for a
cyclostationary detector [30, 31]. Therefore, CFAR approach is commonly used
where we calculate threshold value for a given false alarm probability and find
ROC curves experimentally.

Fortunately, we can take advantage of some special cases and find analytical
expressions of Pp and ROC curves. One of those cases was analyzed in section 2.3.

The third option, a matched filter, is an optimal coherent detection method for
cognitive radio. The main advantage of a matched filter is that due to coherency, it
requires minimal time to achieve high processing gain. However, an effectively
matched filter requires demodulation of a primary user signal. This means that the
CR needs all information about the primary user, e.g., modulation type and order,
pulse shaping, packet format. Also, CR has to achieve coherency with the primary
user signal by performing timing and carrier synchronization, even channel
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equalization. This means that practical implementation of a matched filter is a
complicated task.

Figure 2.16 compares the performance of those three filter types. Curves in the
figure are based on the theoretical results derived earlier in this chapter. Length of
the input waveform, 2080 samples, is the same for all three. The primary user
signal is modeled as a sine wave and signal-to-noise ratio is -23dB. The figure
illustrates a well known fact that under the same circumstances a matched filter has
the best performance and an energy detector has the worst one. On the other hand,
the energy detector is the simplest to build and it needs only minimal a priori
information about the primary user signal. Choice of the detector depends on three
aspects: amount of information known about the primary signal, desired
performance and complexity of the receiver.
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3. Noise Model

This chapter presents the derivation of our noise model. The same model will be
used in the following chapters. The first part introduces the Gaussian noise model.
In the second part the one-dimensional impulsive noise model (3.2.1) [45] is
extended into the p-dimensional form. The third part presents the calculation of the
one- and two-dimensional joint PDF of the Gaussian and impulsive noise
component. The author shows that in theory we can calculate such a joint PDF for
an arbitrary number of dimensions. But the complexity of the solution and the
length of the result grow exponentially with the number of dimensions. To
overcome this problem the author has suggested a satisfactory approximation for
the p-dimensional joint PDF of Gaussian and impulsive noise.

3.1 Multivariate Gaussian noise

Most common model for noise in telecommunication systems is an additive white
Gaussian noise v, with the probability density function (PDF) in the form of

1 (V’/‘)Z
f,, () =———e ¥, 3.1.1)

(272')2 loj

where o is standard deviation and u is the mean of the distribution. For further
simplification we assume that the mean y is equal to zero if not stated else way.
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Fig. 3.1 Probability density function of zero-mean normal distribution
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For several reasons, Gaussian distribution is one of the most suitable techniques
for modeling real life signals. First, the reason is that normal distribution arises as
the outcome of the central limit theorem. CLT states that under mild conditions the
sum of a large number of random variables is distributed approximately normally,
even if different variables have different distribution functions. Gaussian
distribution is also very tractable analytically, allowing results involving this
distribution to be derived in explicit form. Equation (3.1.1) describes the simplest
one-dimensional case of uncorrelated (white) Gaussian noise. During future work
we need to handle random noise vectors v described by multivariate Gaussian noise
with PDF

£ ()= %exp[—l(v (v u)} NERE)
Coenq L2
where v is a p-dimensional vector
V=[v1,v2,...,vp]T, (3.1.3)
p is the mean vector, assumed to be a zero vector if not stated anyway else

B =Lty gt T (3.1.4)

and C is a nonsingular covariance matrix

CoV,, COV,, - COV,,
cov,, cov - cov
2.1 2,2 2,
C= " (3.1.5)
cov,, Ccov,, cov, ,

Covariance between the two vectors v; and v; is defined as

cov,; = E[(Vi -u) (V JTH )] =0,0,p (3.1.6)

where o0, and o; are standard deviations of vectors v; and v; accordingly and p;; is
the correlation coefficient between those vectors

pi; = S (3.1.7)

We note here that covariance matrix is symmetric by the definition p;; = p; ;.
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For example, in the two-dimensional case (p = 2) mean and covariance matrixes
are defined as

p={ﬂl} C:{ % pa‘%] (3.1.8)

2
H, PO,0, o,

In order to evaluate the PDF (3.1.2), we first find the determinant of the covariance
matrix

2
0, PO0,

C|= =00, - ploio;, =ojo;(1-p") (3.1.9)
PO,0, o,
thus
1 1
== . (3.1.10)
eoyld  2700,41-p°
0154
T 0.1
=
" 0.05-
0-d

iy B
-3 2

Fig. 3.2 Probability density function of zero-mean bi-variate normal distribution (p=0)
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Next, we need to find a matrix inverse for C, the task that is easy for 2x2 matrixes

C—l _ i 022 — pP0O,0, _
|C| - pOo,0, o}
_ 1 { o) - palaﬂ
612022(1_,02) — PO,0, 0-12

Now we can calculate the argument of the exponent for equation (3.1.2)

_l[v —u v, —u ]; 0-22 —POo, | VI~ H _
27! 1 ’ ’ 6120-22(1_;02) — PO,0, 012 Vo m Ky
_ 1 |:(V1_:u1)2 _Zp(vl_ﬂl)(vz_/lz)+(vz_ﬂz)2:|

o 2(1_,02) 0-12 0,0, 0-22

(3.1.11)

(3.1.12)

Substituting (3.1.10) and (3.1.12) into (3.1.2) we obtain PDF for bi-variate (p = 2)
normal distribution

1 _ 1 l—(V1*ﬂ1)2 _ 2p(—)(va—45) , (=t )2}
2 2 2
S (V)= e 2L e 772 2 1 (3.1.13)
Ve 2
2ro,0, \/1 -p

The shape of this distribution for an uncorrelated case can be seen above in Figure
3.2.

Let us now consider the three-dimensional case (p = 3). To simplify the matter
we assume that the mean vector is a zero vector p = 0. According to (3.1.6)
covariance matrix is

2

< 0,0,P,, 0,030
_ 2
C=|o,0p,, 0, 0,03P5 |- (3.1.14)
2
030,05, 030,0;, O3

Due to the symmetric nature of covariance (3.1.6) p;>=p2;, p23; =ps32 and p;; =
ps.; thus, the determinant of the three-dimensional covariance matrix (3.1.14) is

|C| = 0-120-220-32 (l - p12,2 - p22,3 _:012,3 + 2p1,2p2,3p|,3)- (3.1.15)
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Matrix inverse for C equals

0-220-32 (1 _p22,3) 0-10-20-32 (p2,3p1,3 _pl,Z) 510-220-3 (p1,2p2,3 _p1,3)
0102032 (,02,3,01,3 - pl,z) 0120-32 (1 - ,012,3) 0_120203 (,01,3,01,2 - p2,3)
0-10220-3 (p1,2p2,3 - pl,3) 0-120203 (,01,3,01’2 - ,02,3) 0120-22 (1 - ,012,2)

ool
c

Now we can calculate the argument of the exponent for equation (3.1.2) as

—-w

Ly -

,(3.1.17)
2 20—120-220-32 (1 - p12,2 - p22,3 - p12,3 + 2p1,2p2,3p1,3)

where

w=v0,05(1- p;;) +v;0705 (1= py) +vio7 0y (1= ) +
+20,0,0, [v1v20-3 (P23P13 = Pr2) T30, (PaPrs = Pis)+ - (3.1.18)
+V,1301(P13P = /02’3)]

Thus, PDF for tri-variate (p = 3) centralized normal distribution can be written as

-w

20i0303 (1_012.2_/’:2.3 _P|2.3 201202301 )

e
S (V=" —— .(3.1.19)
(277)2 0,0,0;, \/1 P2 TPz Pzt 2p1,2p2,3p1,3

The given examples show that a general expression for the p-variate normal
distribution can be expanded analytically for any value of p. But it is also clear that
the complexity of those expressions increases rapidly with p.

3.2 Multivariate impulsive noise

By far the most important artificial source of noise in mobile communications is
man-made noise, which is radiated by different kinds of electrical equipment across
a frequency band extending from about 2 to about 500 MHz [36]. Unlike thermal
noise, man-made noise is impulsive in nature; hence the reference to it as impulsive
noise. In urban areas, the impulsive noise generated by motor vehicles is a major
source of interference to mobile communications. [8]

As the main focus of the present dissertation is on spectrum sensing algorithms
robust against impulsive noise, it is essential to describe our model of impulsive
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noise here. We start with one-dimensional impulsive noise and then progress to a
p-dimensional case as we did with Gaussian noise above.

The impulsive noise component v; is assumed not to be present most of the time
but appears with a certain probability ¢ so that the impulsive component obeys the
PDF

[, =——+(1-0)5(), (3.2.1)
' b—a

with 0 < ¢ < 1 and a and b being the lower and upper limits on the values that the
impulsive noise can take and J(-) denotes the Dirac delta function. In practice, a
and b may, for instance, be the smallest and largest numbers that can be
represented at the output of analogue to digital (A/D) converter. In the following
we assume that @ = -b if not stated otherwise, so (3.2.1) is simplified to

c
S, ()= 57" (I=c)o(v). (3.2.2)

The uniform distribution is selected because of its maximum entropy property,
i.e. there is nothing assumed to be known about the origin of the impulses. For

instance, the impulses may be due to failures of the A/D converter or some
interferences that are not well modeled by a Gaussian noise process [72].

T £
(1)

c

=
-b 0 bV
Fig. 3.3 Probability density function of one-dimensional impulsive noise

We can assume that values of impulsive noise are uncorrelated, so the probability
density function of multivariate impulsive noise can be written as

£ =T1/00= ﬁ[§+ (=80, )} | (3.23)

For a bi-variate case (p = 2) we can write (3.2.3)
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f‘ v, v,) = I:_ +(1-c)o(v, )j||: +(1-c)o(v, ):|
(3.24)

(%j +c(12bc) [60)+8()]+(1-¢)*(0v)6(v,)

The given two-dimensional PDF is shown in Figure 3.4. As indicated by equation
(3.2.4) and depicted in the figure, the PDF of 2D impulsive noise contains four
parts. The first plane is with width 25 times 25 and with weight ¢*. This plane is
divided into four equal parts by two “walls” with length 25 and weight c¢(1-¢), with
the Dirac delta pulse with weight(1-¢)? in the centre.

-100 -100

Fig. 3.4 Probability density function of two-dimensional impulsive noise
An example of impulsive noise realization is depicted in Figure 3.5. Most of the

time the value of the noise there is equal to zero and with probability ¢, pulses with
larger values appear.
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Fig. 3.5 Example of impulsive noise realization (b = 100, ¢ = 5107

3.3 Gaussian noise with additive impulsive component
Next, two previously viewed noise models will be combined. From now on we

assume that the noise v(¢) comprises a sum of zero mean additive Gaussian noise
process Vo(#) and an additional impulsive noise component v,(£) [73]

V(1) =v, (D) +v,(1). (3.3.1)
It is well known that the probability density function of the sum of two
independent random variables is the convolution of their respective density

functions [17: 358]. In our case we can calculate the PDF of the sum (3.3.1) as the
convolution

L0 = [f.@f-0)dr. (33.2)

The PDF of the centered normal distribution is (3.1.1) with condition x = 0, and the
PDF of impulsive noise is described by (3.2.2), thus, our convolution according to
the above is
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£.(v) :;1 Ie“2{;—b[®(v—r+b)—@(v—T—b)]+(1—c)5(v—r)}d‘r

(27r 20—

Due to the linearity property of the integral we can divide the previous equation
into two parts

v+b T

S =—"— [ e dr+
2627 )20 v

: (3.3.4)

l1-c¢

+ 1

J.eiﬁé'(v —7)drt
(27[)50' o

both of which can be solved separately. Using properties of the Dirac delta
function, we can solve the second part of equation (3.3.4) as

© 72 v?

je'ﬁa(v—r)dr e 27, (3.3.5)

—0

The first part can be solved using the definition of the error function

e dt (3.3.6)

v

erf(x) =

which gives

el S R R R

Thus, the PDF of the sum (3.3.1) is

fi(v)=— { (j/i:j erf(‘:/%iﬂ+(l_)lc e (3.3.8)
27 ) o

The shape of the probability density function of the sum of Gaussian and
impulsive random variables is depicted in Figure 3.6. We have selected the
difference between b and o to be small and the probability of impulses ¢
unrealistically high to make the shape of the achieved PDF clearly visible. In real
life, scenario b is in the order of hundreds or thousands and c is at least thousands
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of times smaller. In such cases, the shape of the PDF would resemble a narrow
peak at v =0 and equals almost zero all around the rest of abscissa.

It is also important to note that the first part of (3.3.8) changes its value only
around +b and is practically constant, with its value ¢/2b between those limits.

0.06

0.05

0.04

50

0.03

0.02

0.01

Fig. 3.6 PDF of the sum of Gaussian and impulsive noise (b = 50, ¢ = 0.3, 0 = 5)

To be exact, we must note that (3.3.8) corresponds to a case where the amplitude of
impulsive noise only is limited within a range [-b,b]. In real systems it is logical to
assume that the sum of Gaussian and impulsive noise (3.3.1) is limited to the
interval [-b,b]. In such a case (3.3.8) it is valid only in the range [-b,b] and limiting
adds two delta impulses with amplitudes

va(v)dv = Tf‘, (v)dv (3.3.9)

to the positions v =-b and v = b, as depicted in Figure 3.7.
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Fig. 3.7 PDF of a limited sum of Gaussian and impulsive noise (b = 50, ¢ = 0.3, 0 = 5)

From the exact solution in the one-dimensional case, we can move to cases with
more dimensions. In a two-dimensional case, we need to calculate convolution also
in two dimensions

fv(vlavz) = T ]C.fg(v1 TV, _Tz)fi(Tlst)dTldz-z . (3.3.10)

—0—00

Before going further, we should make one additional assumption to help
simplify further derivations. We are assuming that random variables v; and v, have
zero mean p = 0 and their standard deviations of the Gaussian components are
equal to o; = 0, = 0. Both assumptions are realistic taking into account our signal
model. For a simpler case of white Gaussian noise, when the two variables are
uncorrelated (p = 0), we need to calculate the following convolution integral:

£,V =

w0 (-7 Y+, =1,)°

[[e {é[@(rﬁb)—@(rl—b)h

—00—00

2
2m0 (3.3.11)

+(1-0)5(7))}- {% [O(z, +b)—O(z, —b) |+ (1 - 0)5(12)}drldr2

Let us group the terms depending on 7; and 7, of equation (3.3.11) leading to
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*Q (Vz Tz)

L= L [e {—[@(T +b)=O(z, —b)|+ (1-)8(z, )}
o —

. . (3.3.12)
j e {—[@(r +b)—0(r, - )|+ (1-)5(z, )}dr

Now we can calculate both of the one-dimensional multiplicands similarly to
equation (3.3.3), resulting in

o falofizh ot 25|
bt o

T
2 pogso
0-L

-0 20
V2 P

1
Fig. 3.8 PDF of 2D the sum of uncorrelated Gaussian and impulsive noise

The result is shown in Figure 3.8 for the following values of parameters: b = 25,
¢ = 0.45 and ¢ = 2. Again, parameter values are chosen to be unrealistic in order to
enhance details in the figure.

In a more general case of colored noise, Gaussian variables v; and v; may be

correlated. In such a case, the two-dimensional PDF of a centralized normal
distribution (3.1.12) is
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v,2 =2 pvv, +sz

1 - o (1-p?
ﬁg(V)zme 20°0=p7) . (3314)

Further, we use the commutative property of the convolution, thus (3.3.10) can be
also expressed in a more suitable form for future derivations

f.(v,v,) = ]: ]c.fg(rl,z'z)fi(vl -7,,v,—7,)drdr, . (3.3.15)

—00—00

Thus, the convolution integral for a bi-variate case becomes

~ 1 2;,:(:11]r;+r2 " ~ ~
T = He {2b[®(v1 7, +b)
—OW, -7, -b)|+(1-)5(v, —TJ}{%[@(\/Z —7,+b)—. (3.3.16)

—O®v, —1, - b) |+ (1-c)8(v, —1,)}dr,dz,

We can rearrange the last equation to obtain

ey >{ib[®(v2 — 7, +b)—

9= 27[02\/1 o’ J.

O, -7, -b)|+ (1= )8(v, - 7,)} j e 270 .(3.3.17)

—0

2
0 7 -2p17,

{é[(a(vl -7 +b) _®(V1 -7 —b)]+(l—c)5(vl —Tl)}dz'ldz-z

In order to calculate (3.3.17), we start from solving the inner integral

) 7qz—2pr112
J.e 202 (1-p%) {é [@(vI -7,+b)-0OW, -1, - b)]+ (1-0)8(v, - 7|)}dz-l —
c v+b 7m 0 flz‘zpflfz . (3318)

=— | e " dr, +(1—c)je 2P0 5y, — 1)),

vi—b

The first half of it is
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vt+b 7712’2/”19 2 _ 2 o2}
¢, ) gy 270’ (1-p )ezﬂz(,,pz) ‘

27, 4b
(3.3.19)
| erf v, +b-pr1, —erf v, —b—-pr,
V202 (1= p*) V202 (1= p?)
and the second half'is
o -2p77, _ Vi-2puz,
(1-¢) j e S, —r)dr, =(1-c)e 27, (3.3.20)

Now our two-dimensional convolution obtains the following form:

_ 1 e 72#3— %)
fv(V)—mH%e O, -1, +b) -0, —7, —b)]+

_ ZTZ2 . _ VE:ZPVliz 2 2 1 A2 P23 ]
=) TS, ‘TZ)HU e 2w N2HOAZPT) TS 5301y

4b

v, +b—pr v, —b—pr
| erf] A—L—=_— |—erf| ——=||{dr
[ [\/202(1—p2)J (\/202(1—& }] 2
The result can be divided into six parts; each solved separately and then the results

are added back together afterwards. The first out of the six parts is the following
equation:

vtb Tzz 2 2 P22
C I e 257 (1-p%) Cﬂ27ZO' (l_p )esz“i,z) .

4no’\1-p°b .7, 4b
_ 2 vy +b 7i _
orf| D= PT dr, =—< J. ¢ 2 erf| AP PT dr,
V267 (1-p?) 82707 b> 0, 20°(1- p?)

As it can be seen, this part has no result in terms of standard mathematical
functions, but the result can be easily computed numerically. Very close solution is
achieved also for the second part — and here no result in terms of standard
mathematical functions is available

.(3.3.22)
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wib 0O 2 2 e
—c J- o 270 ey 270" (1-p )ehzufpz) .

4rc’\1-p°b .7, 4b

) erf{u d

2 v, +b 72
-c -5 v, —b—pt
T, =—F e 2o erf 72 dT
1/202(1—,)2)J © 82t VJ,, { 202(1—,)2)} ’

Due to linearity of the integral we can take the first two parts (3.3.22) and (3.3.23)
together into one more compact form

.(3.3.23)

2 vy+b 3

c aEy v +b—pr v, —b—pr
€ [e|erf| DI2TPT | o] NTOPTPT g (3.3.24)
8270 ZVL [ (,/202(1—,32)} [,/202(1—p2)ﬂ ’

This sum is also solvable numerically, and the result is shown in Figure 3.9 for
values b =25, ¢ = 0.45, 0 =2 and p = 0.6. The result is approximately shaped as a
rectangular prism with sides 2b times 2b.

The third part of (3.3.21) has more compact solution than the two previous ones

witb 0 _i-2pur,
242 22
— J. e P (A=c)e 2 dr, =
4o \1-p°b .7
2

c

(3.3.24)
__c(l-0) e*% erf] 2 +b—pv, —erf] 22 —b—pv,
4270’ b V207 (1-p?) V20 (- p?)
Graphical representation of (3.3.24) is shown in Figure 3.10. The equation
describes a wall with a length 2b along the v, axis The height of the wall is about

three orders larger than that of the rectangular prism (3.3.23) shown in the previous
figure.
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Fig. 3.10 Graphical representations of the third summand of the 2D convolution
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The fourth part equals

e s erf[—v‘ th-pt, Jé(vz —7,)dr, =

42767 b =,

(3.3.25)
_c(l-c) ei%erf v, +b—pv,
442707 b VJ2oi(l-p?)
and in a similar fashion also the fifth part can be solved
—c(l-c¢) e b-pr,
o erf A2 10(v,—1,)d7, =
4270° bI [,/20 W-ph ) T (3326

_ —C(l ) erf v —b—p\/2
4270 T V2ol (- p?)

The last two parts can be combined

c(l-c) . v, +b—pv b—pv
e 2| erf| g 2 3.3.27
wamo'h [er {\/202(1—,02)} {\/20 (1= p? )J] (320

When comparing the result obtained with the third part (3.3.24) of the convolution
integral, the results are exactly the same except the places of v; and v, are switched.
Thus, (3.3.27) has the same shape as in Figure 3.10 only turned n/2 radians around
the origin. Sum of those two walls forms a cross-shaped body shown in Figure
3.11.

The final sixth part of our long equation gives the following result:

1 2
rz 2pv]r2+1| v =2pyvy vy

_ 2 —_ 2 2 2
(12 c) J 207 (1-p%) 5(v, —1,)dr, _&e 2000 (3.3.28)
20 \1-p* =,

This final result is scaled PDF of a two-dimensional correlated normal distribution
(3.1.12) the shape of which is similar to that represented in Figure 3.2. Putting
together all six parts of (3.3.21), we finally obtain the two-dimensional PDF of the
sum of Gaussian and impulsive random variables
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2 2 2
2 v =2 pvvy+v5 v, +b Nz
P P (0 2 e
v 2 2 2 \/— 2
o A1-p 8N27mo°b”

Jerf| tb=pty | d wZbopn f,
{ L/zoza—/f) J20ra-p1 )]
o - (3329

+ c=¢) e 27| erf v th-py —erf b

42767 b 25 (1= p?) V202 (1-p?)

+ cl=¢) e 2| erf v b pv, —erf Wb pv,

N 27o*b 20 (1-p?) V262 (1-p?)

The two-dimensional PDF described by the last equation looks almost as that for a
non-correlated case shown in Figure 3.8. Difference between those two is
illustrated by contour plots in Figure 3.12 When the correlation between the
random variables is zero, the PDF is symmetric across both axes, as shown on the
left. On the right side, the correlation p = 0.6 and the distribution have lost its
symmetry.

1 0 -

m\m\m\\\\\\ "! ﬂmm,;;ﬂmﬁa
“ l\l\\\\\l\ i I i

o ) ””i”’”ﬂ‘?ﬁffﬂf

-20 20

1
Fig. 3.11 Graphical representations of summands 3-5 of the 2D convolution
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Fig. 3.12 Comparison of the 2D PDF for an uncorrelated (left) and a correlated case
(right)

We would obtain similar solutions also for a higher number of dimensions p. It
can be seen that even in the 2D case, our result is too complicated for practical use,
thus further simplification is required in order to progress with work. Thus, the
next question that arises is how to approximate the sum (3.3.1) to enable further
analysis to be done without a major loss of accuracy.

Impulses occur only seldom, so most of the time a small-amplitude Gaussian
noise has much higher value. On the other hand, when an impulse appears, it has
usually much larger value than Gaussian noise samples, so in both cases one noise
component is much larger than the other. Therefore, noise v(f) can be modeled such
that the largest component out of the two determines the outcome at each time
instant.

v(t) =v, () +v,(t) * max[v, (1), v,(1)]. (3.3.30)

The probability density function of noise v(¢) for the one-dimensional case (p = 1)
can be approximated as

S max 208 ¢ cl 6;7) -b<v<d

0, otherwise

If there is no noise impulse which happens with a probability 1-c, then the PDF of
noise is fully determined by Gaussian noise. In the case of impulsive noise, with a
probability ¢, the outcome is determined by the larger of the two distributions
(3.3.30). If the amplitude of the impulse is larger than the value of Gaussian noise,
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the PDF is determined by uniform distribution and by Gaussian distribution
otherwise. For further simplification, we consider the fact that impulsive noise with
low amplitude is undistinguishable from Gaussian noise (Figures 3.13 and 3.14).
Thus, we can simplify (3.3.31) into the following form:

2
—v*

S max 1_1 e“z,i -b<v<bd
f.v)= Qrpo 2P . (3.3.32)

0, else

Strictly speaking, a variable ¢ in equation (3.3.32) is not the probability of the
impulse anymore but instead, the probability of the impulsive noise having larger
value than Gaussian one

¢ =Py, (t)> v (D)]. (3.3.33)

For practical considerations, ¢ is smaller than ¢ by amount of o/b. In real life
scenarios it means that difference is in order of one tenth of percent.

3 - 3 :
dhstinguishable

| e

‘N

, undistmzushahle
0 50 100 0 50 100
I I
Fig. 3.13 Example of mutual masking of Gaussian and impulsive noise
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Fig. 3.14 Explanation of masking impulsive noise by Gaussian noise

The normalization factor £ can be found by solving
b
[£.myav=1, (3.3.34)
-b

this results in

B = [(l —c)erf (%} c(l —%ﬂ_ (33.35)

2ro
= =202 - 3.3.36
h \/ 7 n{l—c ij ( )

is the intersection point of the Gaussian and uniform distributions [72]. In
practice, the value of §; is very close to 1.

and

The PDF of v (3.3.32) in the interval [-b,b] can be given a more convenient
form for the future derivation [73]

-1 (3 o
fny=Pl=<) - ) g t). (3.3.37)

@ﬁﬁa
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Fig. 3.15 Comparison of the exact PDF and its approximation

The approximation is illustrated in Figure 3.15 with b = 50, ¢ = 0.3, ¢ = 5. Note
that we have selected difference between b and o to be small and the probability of
impulses unrealistically high to make the difference between the lines clearly
visible. It can be seen that the approximation is very close to the true probability
density function. The differences appear in the area where the Gaussian PDF goes
over to the uniform tail and at the ends of the interval [-b,b]. The larger the
difference between the standard deviation of Gaussian noise from one side and the
impulsive noise interval from the other side, the better is the invoked
approximation. The main benefit from the approximation is that it leads to tractable
mathematics.

In a similar fashion we need to find suitable approximation for the p — dimensional
sum of Gaussian and impulsive noise. In order to find out which parts of the
complete model are important and which ones can be discarded, we must analyze
each part separately. The first summand in our model (3.3.29) corresponds to
Gaussian noise and this is definitely an important one. The second part has the
largest area but also the smallest magnitude in order of (¢/b)*. In order to our noise
vector v to be placed on this plane we need that two succeeding noise samples v,
and v, both be corrupted with impulsive noise with values larger than Gaussian. In
our model we assume impulsive noise not to be correlated, so the probability of
such an event is very small. This is well illustrated by the fact that even with
parameter values b = 25 and ¢ = 0.45 we cannot see the second part of our noise
model in Figure 3.8.
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Additionally, we can see that if a dimension p increases, the influence of the
second part of our noise model decreases rapidly. Thus, we can discard the second
summand from our noise model without suffering a great loss of accuracy.

Two last parts of the noise model (3.3.29) are two “walls” that are forming cross
the shape at the base of Gaussian “bell” in Figure 3.8. Although at first glimpse it
seems that the magnitude of those walls is much smaller than the Gaussian part and
thus we can discard them as well, this is not the case. Let us look at the PDF of one
dimensional sum of Gaussian and impulsive noise (3.3.8). As mentioned earlier it
changes its value only around +b and is practically constant, with the value ¢/2b
between those limits.

At a closer look at the “wall” (3.3.24) now, we can also observe similar facts.
Along the v, axis, the value of the function is mostly constant and only decreases
near the values +b. The cross-section of the function is shaped as a centered
Gaussian curve with its shape and magnitude not depending on the correlation p
except again near the maximal values +b. As we are actually only interested in
the area where the Gaussian PDF has higher values than impulsive ones, we are not
interested in what happens at the far ends around +b. Thus, we will consider the
following simplification for the two last parts of our noise model inside the interval
-b<v;<b:

=9 e (3.3.38)

242702 b

and in a similar fashion for v, inside the interval —b <v, <b:

2
_M
c(l1-c¢) o 207

2\276%h

Thus, the first step of our simplification was to discard the second summand from
the noise model (3.3.29). The second step was the simplification of the two last
summands. Next, we should also replace here the sum of Gaussian and impulsive
noise components with the larger of the two as we did in the one- dimensional case
(3.3.30). Thus, our approximate model of two-dimensional noise is (inside square -
b< v ,<Db)

(3.3.39)

B vlz—valszrv%
20%(1-p? v v
’Bz(l_c)max (I-c)e *707)  cf -5 -2

= . 20 20
£, (v) N N e 2 te (3.3.40)
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Further, we will obtain the p-dimensional model of the sum of Gaussian and
impulsive noise. The model will be defined as the maximum of p-dimensional
hyper cross and p-dimensional Gaussian noise multiplied by the factor (1-cY.
Correctness of this model is demonstrated by the results obtained in the following
chapters. An exact and an approximate PDF for a two-dimensional case are
illustrated in Figure 3.16.

Exact PDF Approximate PDF
30 30 . . .
20 i : 20
10 1 10

Vo
=
)
L)
Yo
[
L)
b

-10 1 -10

20 § . -20 |

-30 : : : -30 : :
-20 0 20 -20 0 20

Fig. 3.16 Comparison of an exact PDF and its approximation in a 2D case

3.4 Conclusion

Current mathematical models used to describe impulsive noise [10, 14, 15] are
intuitively unsatisfactory. Based on impulsive noise measurements [12, 13] a new
mathematical model for impulsive noise is introduced (3.2.3).

As noise at the input of the detector is an additive sum of Gaussian and impulsive
noise, joint PDF was found for both one- and two-dimensional noise. It was shown
that theoretically we can find an analytical PDF for the sum of Gaussian- and
impulsive noise for any number of dimensions p. But such tasks are time-
consuming. For example, calculations for a one-dimensional joint PDF (3.3.8)
takes one and half pages but for a two-dimensional case (3.3.29) seven pages are
needed to write down the derivation. Also, the number of the components in the
resulting p- dimensional joint PDF is increasing with p.

75



Clearly, for practical use some approximations must be made. First, the sum
operator was replaced by the maximum operator under assumptions that the sum of
two noises is mostly determined by the value of the larger of the two. Secondly, we
eliminated the components of the joint PDF that were too small to have any real
influence. Due to those simplifications we obtained a noise model suitable for
further use.
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4. Maximum Likelihood Estimators of Noise Parameters

This chapter covers the derivation of the maximum likelihood estimator (MLE) for
Gaussian noise with an additive impulsive component. First, the concept of MLE is
introduced, demonstrated on the example of p-dimensional Gaussian noise. Next, a
likelihood function for the p-dimensional sum of Gaussian and impulsive noise is
derived. The nose model derived in the previous chapter is used here. ML
estimators are found both for the impulse probability ¢ and the covariance matrix
C.

4.1 Maximum Likelihood Estimator

Suppose that we have a sample of » independent and identically distributed (IID)
observations vy, v, ..., v, of some ergodic random process with an unknown PDF
fo(*). However, it is surmised that the function f; belongs to a certain family of
distributions

Ulpwhwew), (4.1.1)

called the parametric model, so that fo = /(). The true value of the parameter wy is
unknown and so it is desirable to find the estimator W as close to the true value wy

as possible. Both the observed variables v, and the parameter w can be either
scalars or vectors.

To use the maximum likelihood (ML) method, first, the joint probability density
function must be specified for all observations. For an IID sample, this joint PDF is

fv(vl,vz,...,vn w)zfvl (v1|w)-]"v2(v2|w)-...ﬁ” (vn W). (4.1.2)

If the described joint PDF parameter w is fixed and v,...v, are variables, thus
(4.1.2) is a function of the data given a particular set of parameter values defined
on the data scale [37]. We can look at this function from a different perspective
considering the observed values v;...v, to be fixed parameters of this function
whereas w will be a variable allowed to vary freely. This function is called
likelihood

vl,vz,...,vn)zfv(vl,vz,...,vn

L(w

w):ﬁ £ w).  @13)

The likelihood function is a function of the parameter given a particular set of
observed data defined on the parameter scale [37]. The logarithm of likelihood is
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monotonically related to the likelihood function itself. Because that it is often
more convenient to work with a so-called log-likelihood

In L(W

vl,vz,...,v,,)zilnfw (v, Iw). (4.1.4)
k=1

The principle of maximum likelihood estimation (MLE) states that the desired
probability distribution is the one that makes the observed data ‘‘most likely,”’
which means that one must seek the value of the parameter w that maximizes the
likelihood function L(w|v) [37]. For the sake of compactness, we will use from now
on vector v instead of notation v, v,...v,. Assuming that the log/likelihood function
In L(wlv) is differentiable and the ML estimator exists, it must satisfy the following
partial differential equation known as the likelihood equation [37]

Oln L(W|V)
————==0. (4.1.5)
ow,

The likelihood equation represents a necessary condition for the existence of the
MLE estimate. An additional condition must also be satisfied to ensure that In
L(w|v) is a maximum and not a minimum, since the first derivative cannot reveal
this. To be a maximum, the shape of the log-likelihood function should be convex
(it must represent a peak, not a valley) in the neighborhood of the estimate. This
can be checked by calculating the second derivatives of the log-likelihoods and
showing whether they are all negative [37]

0’ In L(w|v)

————7<0. (4.1.6)

ow,

In the above exposition it is assumed that the data is IID, but the method can be

applied in a broader setting as long as it is possible to write the joint PDF

Alvlw) and its parameter w has a finite dimension which does not depend on the
sample size 7.

For some cases, MLE can be found as an explicit function of the observed data
v, but in many cases no closed-form solution to the maximization problem is
known or available. In such cases MLE has to be found by numerical optimization
methods. For some problems there may be many estimates that maximize
likelihood and for some cases no maximum likelihood function exists at all.
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4.2 ML estimator for Gaussian noise

Parameter vector for a normal family of distributions contains two elements
w = {p, C}. Likelihood function for the p-variate normal distribution (3.1.2) is

L(n,Clv) = ]L[+exp[—%(vk -w)'C(v, - u)} : (4.2.1)

k=1 (27[) \/ﬂ
The previous equation can be simplified into the following form:
_mp n 1 n .
L(pn.Clv) =(27) 2|C| > exp{—EZ(Vk -n)'Cl(v, - p)} . (4.2.2)
k=1
Log-likelihood for the p-variate normal distribution is

§1n|c| —%Z(vk —p)'Cl(v, —p). (4.2.3)

k=1

_npln(27)

In L(u,C|V) = 5

Maximum likelihood estimate of p is obtained by computing the derivate of log-
likelihood with respect to p. Using equation (11.6) from [38] we obtain

%u,ch):_%i[_ 207 (v, —p)]:C’IZn:(Vk —p). (4.2.4)
1) k=1 k=1

From the above we obtain that the ML estimator of the mean vector p is the sample
mean vector

L1 _
BP=—)> v, =V (4.2.5)
1=

Using (11.7) and (11.8) from [38] we can compute the ML estimate for the
covariance matrix C

oInL(nCv) ., 1, S
A __ T+ = v, —p)v, —n)' C" .(4.2.6
C 5 5 ;:1(  — vV, —p) (4.2.6)

Substituting p =V , we obtain the ML estimator
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n

. Z(Vk _V)(Vk _V)T
o= =2, (4.2.7)
n n

where S is the scatter matrix

S= i(vk -V)(v, -V)" eR"™. (4.2.8)

k=1

4.3 MLE estimator for Gaussian noise with an additive impulsive
component

Development of robust detectors in the following chapters requires knowledge
about the parameters of noise. Thus, we will find maximum likelihood estimators
for additive Gaussian and impulsive noise parameters needed in the chapters
below. Noise models derived in section 3.3 are used for the analysis.

For energy and matched filter detectors, it is sufficient to look at our noise as a
one-dimensional process. The probability density function for a one- dimensional
case was (3.3.37)

pli=c) vt
Qﬁﬁa

()=

b

where f is the normalization coefficient (3.3.35), ¢ is the probability of impulse, o
is standard deviation for the Gaussian process and #; is (3.3.36) the intersection
point of the Gaussian and uniform distributions

1
c (2n)*o

= |[-26%In
g 1—¢  2b

To find the ML estimator for w = {¢°, ¢}, we must first find the likelihood function
(4.1.3). In order to make our work easier we can assume to have n IID variables,
thus likelihood can be written as

n ;lminv,g,lz
v):Hﬂ(l—_lc)ezaz ki), 43.1)

= (27 )20

L(c’,c
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For the log-likelihood we obtain then

InL(c?,c

k=1 2 20
(27)?

The above can be rewritten as

InL(c’,c

1

_ 2
V=28 e LS S B0 (455
(27[)5 20 M, M, l1-¢ 2b

where M, and M, are subsets that contain all noise samples that satisfy accordingly

M, v <n’
Y @. (4.3.4)
M, v, zn,
The derivative of the log-likelihood function with respect to o is
GlnL(az,c|V) n 1 . N,
=— + Vv, + s 4.3.5
oo’ 26° 20* ;. Y200 ( )

where #n, is the number of elements in the subset M,. Equating (4.3.5) to zero, the
ML estimator for variance results

Lo
&=—>v, (4.3.6)

nl M,

where n; is the number of elements in the subset M; and n; + n, = n. The result
(4.3.6) shows that the ML estimator of variance can be calculated similarly to that
in case of only Gaussian noise by (4.2.7), using only samples uncorrupted by the
impulsive noise v;.

Let us take the derivative of the log-likelihood function (4.3.3) with respect to ¢

alnL(O'z,CV)_ n n,

oc c—l_c(c—l)'

(4.3.7)
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Equating (4.3.7) to zero yields the ML estimator for the probability of an impulse
c=—*%, (4.3.8)

The result is intuitively satisfying, as it shows that in order to estimate the
probability of impulses ¢ one must count how many noise samples n, out of all »n
samples cross the intersection point #; (3.3.36) between the Gaussian and the
impulsive noise distributions. A problem with the estimate (4.3.8) lies in the fact
that at small probability ¢ the number of noise samples » must be very large in
order to obtain a precise estimation.

Our future approach to a cyclostationary feature detector requires that input
noise has to be handled as p-dimensional. To calculate the cyclic spectrum we need
an estimate of the covariance matrix C, thus in the following sections we will find
the ML estimator for this matrix, first in two-dimensions and then in a general p-
dimensional case.

A starting point for the bi-variate analysis would be a general PDF (3.3.40) for the
case p =2 viewed only inside the square -b < v;,<bh

2 2
_Vi—2pyntv)

pl-o) [d-ce 7 of 5
\/27[0'2 \/27zo-2(1—p2) 2b

fu(v)=

As the aim is to find the estimate of the covariance matrix C, we should rewrite
(3.3.40)

1 71

— =V v 2 2
1— 2 A
(1=ce ¢ e 2 +e ?° (4.3.9)

_ pr(1-c) <
S 270 e \/ 27Z'|C| "2b

Having n 11D observations of v we can write the likelihood function as

L(C,clv) = ﬁM

i 270

| B %VICAV,{ 2, W2, . (43 . 10)
-max (1=c)e ,L e 2 4o 2
prd
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Next, we move the common multiplier (1-¢)(2m|C|)™” out of brackets and then the
multiplicand from the previous equation can be rewritten as

pa-op | e o2 i

20" Lo 2 | 43.11)
27:0\/7 "(1-¢)2b

In view of the geometry of our PDF, we should be able to divide our problem into
two separate parts — along v; and v, axes. First, we look along v, axis. By use of the
identity €™ = x, we obtain

-2 2
1 In C\/z”‘ct VA[ ;mm|:kal —21[1‘ ”C+V’(1:l

—7V7C \7: —c o?
max| e ? e (9 20t g (e (4.3.12)
Thus, the likelihood (4.3.10) along the v, axis can now be written as
—mm{vTC vi,—21In c\/EC;_‘_v,fl]
1— n (1-¢)2b o2
L(C,qv) ['32( 2 } | He ,(4.3.13)
from which we can derive the log-likelihood
1 _ 2
—nln A=) —£1n|C|—
2o 2
1 (4.3.14)
LS inl v eN2x|CP v,
——me v,Cv, 2In——+—
2 k=1 (1 - C)2b G

Let us define again the two subsets M; and M, containing all noise samples that
satisfy

2k 2

M,:viC'v, <-2In

(1-c)2b  o°
1 (4.3.15)
N27|Cl2 2
M,:v.C'v, > —2lnﬂ+ V_ké
(1-¢)2b o
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and use them to rewrite the log-likelihood function

V)=n ln{ﬂz(l—_c)z} - gln|C| -

InL(C,c
2ro

1 (4.3.16)

1 oo eN2z|Cl W,
——kaC Vk+z In -
24 (1-c)2b 20

M,

The maximum likelihood estimate of C can now be found through the derivative of
the obtained log-likelihood. It is useful to remind that the covariance matrix C is
symmetric, so C' = C and the inverse of the transposed covariance matrix is the
same as the transpose of the inverse matrix

(c)'=(c). (4.3.17)
The two properties above show that in the case of symmetric matrix C
c’=(c)' =(c"=c". (4.3.18)

According to [39], the derivative of the matrix determinant with respect to the same
matrix is

i

= qlc) =[cjc. (4.3.19)

We are now ready to find the derivate of the log-likelihood (4.3.16). Using (4.3.19)
we can find the derivative of the second summand of log-likelihood as

i(_ﬁlnm - " Liger=-"c. (4.3.20)
ac\ 2 21C| 2

Equation (55) from [39] and (4.3.18) can be used to find the derivatives

%(v,{c‘vk )=—CTv,vIC" =—C'v,vIC" (4.3.21)

and
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0| ercr v | 1
In - K==

oC|  (I-c)2b 20°| 2

c. (4.3.22)

Derivative of the log-likelihood function in respect to the covariance matrix C
along the v, axis then is

Oln L(C,c|v) n

1 1
=——C'+=)ClvviIC'"+=>C", 4323
2; Vi 2; (4.3.23)

oC 2

from which we obtain the ML estimator

C =i2vkv§ : (4.3.24)
n

1 M,

Next, let us take the derivative of the log-likelihood function (4.3.16) with
respect to the impulse probability ¢

611’1L(C,C V) B 2n n,

oc c—l_c(c—l)'

(4.3.25)

Equating (4.3.25) to zero yields the ML estimator for the probability of impulse
c=—=. (4.3.26)

A value reduced by one half to be compared with the one dimensional case (4.3.8)
results from looking only at the direction of v, axes. If we have the probability of
impulse ¢, then about half times the first element of the vector is corrupted by the
impulsive noise and the other half times the second element is the one that is
corrupted.

To obtain a complete solution to (4.3.11), we also need to analyze this equation
along the v, axes in a similar way as we did before along the v, axes. First, as
another half of the ML estimator of the impulse probability c, this gives

n, n, n
2%

c = —= == 43.27
2n 2n  n ( )

it is now compatible with the result (4.3.8) for p =1.
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Secondly, if values of v, are also limited along the v, axis

1
N27z|Cl2 )P
M, :v,Cv, <—2lnﬂ+v"—2

(1-c)2b o
1 (4.3.28)
N27|Cl2 2
M,:v,Clv, > _2lnﬂ+"_/€
(1-¢)2b o

Then the final result shows again that the ML estimator of the covariance matrix
can be calculated in the same way as in the case of only Gaussian noise by (4.2.7)
using only samples uncorrupted by the impulsive noise v;. To determine which
noise sample belongs to the subset M; and which does not, we need to find
intersection borders between the Gaussian and the impulsive region

1
c\/27r|C|5 v
Tl R
(1-¢)2b o

ek,

t—>
(1-¢)2b o

viClv, =2

(4.3.29)

v;C'v, ==2In

First, we find this border again along the v, axis by solving the first equation in
(4.3.29) that results in

Nersed
Inf ———

-Id (1-c)2b

=p v =2pvv, +V; . (4.3.30)

Expressing in (6.11) v, as roots of the quadratic equation, we obtain

4.3.31)

Comparing the result with (3.3.36) shows that in the case of zero correlation both
one- and two-dimensional cases have exactly the same intersection point as
expected. Also, in case p = 2, intersection borders are a straight line. When we
solve the second equation of (4.3.29), we obtain a similar result for variable v;.
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Thus, noise samples v = (vi,1,) should be used to estimate the covariance of
Gaussian noise according to (4.3.24) if

(Vz <P +772)/\(V2 > P _772)/\(V1 <PV +772)/\(V1 > PV, _772): (4.3.32)

where

e\2r(ch

= 2 o2

(4.3.33)

Derived intersection border (4.3.31) between the impulsive and the Gaussian noise
is depicted in Figure 4.1.
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Fig. 4.1 Intersection borders (c = 107, b =128, 6 = 1)

The figure shows that the intersection border between the Gaussian and the
impulsive noise forms a rhombus which at zero correlation decays into a square. If
vector v = (vy,»,) falls inside the rhombus, we can assume that we deal with the
Gaussian noise and if it falls outside it, then we have impulsive noise included.

In order to induce the PDF for a general p dimensional case, we should have some

idea about a look of 3D PDF of the sum of impulsive and Gaussian noise.
According to (3.2.3), a three-dimensional impulsive noise is
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fv,("1aV2,V3)=[§j ( j(l c)Zé'(vk) C(l C)

'[5(V1)5(V2)+5(V1)5(V3)+5(V2)5(V3)]+(1—0) 5(V1)5(V2)5(V3)

(4.3.34)

A three-dimensional Gaussian PDF in the form suitable for the calculation of 3D
convolution is as follows:

_ v (1-p33)+73 (1= p1 )+v3 (1= p )+ 2[vvs (P P13 =Pin ) +Wivs (P12P13=P13 V293 (P13pP1a=P23)]
2067 |_1*P122*P223*P123+2P12P23:013 J

e
f,(v) = — —— . (4.335)
(27[)2 o \/1 = P = P~ Pzt 20u05P1

Now we can calculate the PDF of the three-dimensional sum by the convolution

o0
ﬂ,(Vl,Vz,V3 J‘
—00—!

8‘—.8

J-fg(vl,vz,\g)fi(v1 —T,V, = T,,V; —0;)dr,dr,d7;, (4.3.36)

Actual computation of such an integral is a time-consuming task, therefore we
should seek ways to make things simpler. First, we can leave out two first
summands in the impulsive noise PDF because both of them have very small
influence. Last summand in the impulsive noise PDF provides the PDF of the
Gaussian noise multiplied by the coefficient (1-c)’, as it did in one- and two-
dimensional cases before. Thus, it is necessary to calculate only the convolution of
the Gaussian and the third summand of the impulsive noise PDF. The third
summand is composed of three parts, each of them similar to other parts but
centered on another axis. Thus, we can only calculate the result for one of the three
and other ones can be found through switching of variables, as we did already in
the 2D case. Thus, the convolution to be calculated is as follows:

c(1-c)’

3
— 3 2 2 2
2b(277)2 o \/1 — P = Py — Pis F 20005015
V (1=p35)+v3 (1= o7 )+v3 (1-p1)+2[viv (Pa315= P12 FW1vs (12 Pa3=P13 )+ Vavs (P13 Pia—Pi3)]

00 00 00
J.J.je 202|_1*P|22*P223*P123+2p12p23/713J . (4337)
—00—00—00

5, —7,)8(v, — 7, )dr,dr,dr,

The part under the integrals can be rearranged similarly to the two-dimensional
case in Chapter 3

88



_ 3 (1-pp) w _ B(=pB)+207 (AP —P)
202 |l-ph—ph—pis+2 202 |l-ph—ph—pis+2
J.e |_ Pi2=P13=Pi3 Plzpz3p13J e |_ Pr2=P13=Pi3 Plzpz_zplzjé‘(vz _2-2),

—00

—00
. (4.3.38)
w _° (1*/723)*2{7173(Plzpzrpls)”172(/723/]13*/712)]
207 1—P122_P223—P123+2/312p23/713 ( ﬁ

-Je o\, -t Mrdr,dr,

—o0

The innermost integral equals
o 7 (1=p3)+2[5173 (P12 P13 —P13) 017 (P3P —P12) ]
26 |l-ph—ph—pi+2

Ie o [ Pi2=P13~P13 p12p23p13J é‘(vl _lez-l —
—00

_ v (1=p3)+v1 2[5 (12023 -£13)+ 72 (023813~ P1 )]

202 |l-ph—ph—pi+2
e o =P P3P P12P23P13J — (4339)
_ Vlz(l—Pzzs) _ V12[T3§P12P23—P13)+Tz(stpls_Plz)]
—e 2(72ll—Plzz—Pzzs—Plzz*'ZPlszzPlsJe 20'2ll—plzz—p223—p123+2p12p23p13J
Taking the second integral, we obtain
o _ Tzz(1*/3123)*27213(/013/312*/323) _V1z[fsﬁplzpzrpls)*fz(stplrplz)]
Y] R R N 262 1= p2— o2 2t
Ie o l Pr2=P3=P13 p12p23p13J5(V2 _Tzk o l P12=P3=P13 Plzpzzﬂlzj de —
—00
_ V273(P12P3—Pi3) o 7722(1—P123)+27273(P13P12—P23)+V1272(P23P13—p12)
26 |1-ph—ph—pi+2 26 |1-ph—ph—-pi+2
=e Ul_ Pi27P237P13 ,012,023P13] e 0'|_ Pi27P237P13 ,012,023P13] (4340)
—00

_ V3 (1=p53 )+ 23 (023013~ P12) ) 2[v (P1P23=P13) V2 (Pi3P=P23)]
262 |l-ph—ph—pi+2 262 |l-ph—ph—-pi+2
5(‘)2 _TZ )d’l'z —e l Pi2=P3~P13 P12P23P13Je [ Pi2=P13~P13 P12P23P13J

Then we can calculate the third, the final integral:

o _ 732(1*P122)+T[ 2["1(Plzpzrpls)*vz(P13/31]2*/323)]

267 |I-pfy— P33 PE+2 PPy s
Ie dr,
—00

[Vl (P12P1—P13) V2 (P3P P23 )]2
e (1-p}) 20> 1= P =3~ P +2 PraPaspis ) .(4.3.41)

_ 270° |1 - ,0122 - ,0223 - ,0123 +201,02P:3
41— ,0122)

0

cerf (1= p5) 75 + V(P Pss = P13) + Vo (PP — Pa)
O-\/(l - p122)2[1 - ,0122 - p223 - ,0123 + 2,012/023,013J
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If the interval of the last integral really were [-o0,00], then the error function in
(4.3.41) would decay into constant 2. But in our case the interval is limited [vs+b,
v3-b]. We have now reached a complete solution for (4.3.37)

B (I*sz)[vf(I*P223 )+v3 (I=pfy)+2vy (/723/713*/’12)]“["1 (P12P3=P13)+V2 (P3P2—P2) T
2 1-p3)20° [1-ph—ph—pi+2
C(I—C) e (I-pi2) [ Pr2=P3=Pi3t2P12P23P13

4770'2\/ 1-p,2b

—h
[

Ler (1- ,0122 )(V; +0) +vi (PP — Piz) + V2 (PisPra — Pos) (4.3.42)

U\/(l - ,0122 )2|_1 - ,0122 - ,0223 - p123 + 2p12p23p13J

(I- /7122 Y3 =D) + v (P, 025 = Pi3) + v, (301, — Po3)
o1 p2)2)1= P~ P2~ Ph+2PnPuprs )

—erf

To find the intersection border between the Gaussian bell and the impulsive “wall®,
we need to solve

_ V|2(1*P223 )+V§(1*P123 )+V32(1*P122 )*2["1"2 (Pzzplfplz)+V1V3(P12P23*P13)+V2"3(Plaplzfpzz)]
3 262 |l-pL—p—pi+2
C(l _ C) e [ Pr2=P3=P13 P12P23P13J

3
(2”)E o’ \/1 - ,0122 - ,0223 - ,0123 + 20102515

B (1—P122)[V12(1—P223 )+v3 (1= p )+ 2y (Pzzﬂlz—ﬂlz)]‘[Vl(Plzpza—Pls)‘*’Vz(PlzPlz—st)]z
2 1-pp)26 |I-ph—ph—ph+2
C(I—C) e (I-pi2) [ Pr2=P13=Pi3t2P12P23P13

27rc72\/ 1-p,2b

(4.3.43)

After canceling out common terms in (4.3.43), we take logarithm from both sides
of the equation and the result is

(=) (1= p2) +V2 (1= P2) + 20V, (PP — i)
F (1= P2 A= p2) + 20, [0 (P = £1) V2 (PP — )]} =
= (1= PR p2) V2= )+ 200 (P — P
+ W (PP — £13) +92 (P13 — P2)] — . (43.44)
~26°[1- P}~ P~ PEs 4 2P Pmp1s)
n C\/EO'\/I — P = PYy — Pis + 201053015
(1=c)1-pi, 2b
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The first summand from both sides of the equation is the same, so we can cancel
them out. The result is a quadratic equation of variable v,
2 242 2

vi(l=p5)" +v;2(1- pf, )[Vl (PP = Pi3) V2 (P13 012 — :023)] +

+20° [1 — Pl = Py = P+ 2P0 PP ]

'lnCv27Z'O'\/l—p122 = P2~ P +2PuPasPis _ : (4.3.45)

(1= 01— pL2b
2
- [Vl (PP = Pi3) V(P13 1 — p23)]

Expressing in it v; as the roots of a quadratic equation, we obtain limits for it as

N (L1223 = Pi3) + V2 (P13 P12 — P3)
2
P =1

v, 7, (4.3.46)

where

- 2|c|% c«/27z|C|%
> In
(1=p3)"  (1-c)1-p32b

Ny = (4.3.47)

Thus, the threshold value is independent of dimension p and when the variables are
uncorrelated pi; = py; = p13 = 0, the result (4.3.47) is the same as for a one- or two-
dimensional case. Equation (4.3.46) states that the values of variable v; must lie
between two planes. Similarly, we can find interception borders for variables v,
and v,. Thus, to be used to estimate covariance, our three-dimensional sample
vector v = {vy, v, v3} must satisfy all the following conditions:
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% —pPp)+V -
v, < 2 (PP ,012)2 (PP :013)_'_7731
Py —1
% —pPp)+V -
v, > 2 (PP p12)2 (PP~ Pis) —
pr—1
V(P3P = Pia) V3 (P3P — Pr3)
y, < WPnPis 1;2 _31 1P = Pos) 4 gy
" . (4.3.48)
V> V(PP = P) V(PP = Pr) _
2 2 UEY
P 1
v - +Vv -
v, < (PP p13)2 > (PP p23)+7733
P —1
vV — +v -
v, > L (P12Pa3 /013)2 2 (P3P0 = Pas) T
P —1

where 73, and 73, are calculated as 73, (4.3.47) only (I- p1,°) is replaced with
(1- po3°) or (1- p13°) accordingly.

We could continue in a similar fashion with higher dimensions. Results would
be p-1 dimensional hyper plains forming 2p sided hyper rhomboids. But it is clear
that computing those results will be increasingly complex. In general, an ML
estimator of the p-dimensional covariance matrix is

C =i2vkv§ , (4.3.49)
n

1 M,

where v; is the sample vector with length p and subset M| contains samples not
contaminated by the impulsive noise. In a special case when noise samples are
uncorrelated, the p-dimensional intersection border is p-dimensional hyper cube

with a side length of 2\/7771 . The ML estimator for impulse probability is always the

same as in a one-dimensional case (4.3.8).

92



5 Performance of known detection algorithms in the presence
of impulsive noise

This chapter presents the results of computer simulations to show that all three
main types of detectors described in Chapter 2 are sensitive to the impulsive noise.

Three common detection algorithms for cognitive radio were described in
Chapter 2. This chapter studies the effects of the impulsive noise v; (3.2.2) on those
detectors.

To estimate the influence of impulsive noise v; on different detectors, computer
simulation is used. First, operating curves of the simulated receiver for different
values of impulsive noise parameters are found and the results are compared. The
comparison involves also the theoretical ROC for a case of Gaussian noise only.
The following set of parameters was used for all the following simulations: length
of input waveform n = 2080 samples; primary user signal modeled as a sine wave;
signal-to-(Gaussian)-noise ratio -23dB and the amplitude of impulsive noise
limited by » = 128. Thus, all the results are comparable with the theoretical curves
in Figure 2.13.
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Fig. 5.1 Experimental ROC of an energy detector

The thick line in the figure is the theoretical ROC of the time domain energy
detector (2.1.1) with the length n = 128, noise power ¢, = 1 and signal-to-noise
ratio SNR = -10dB. Experimental curves in the same figure are obtained when the
impulsive noise has a maximum value of b = 64 with different probabilities of
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impulse c. As expected, an additional impulsive noise decreases the performance of
the energy detectors. The smaller the impulse probability ¢, the more close is the
experimental ROC to the theoretical value.

The second measure of performance is the experimental curve of Pr = f(c) for the
fixed threshold value A. The threshold value A is computed for a fixed false
detection probability Pr in the case of Gaussian noise only. In Figure 5.2 this a
priori probability is marked with a dashed line.

n = 2080

LY

0.8 — — aprion P,
o
e
N

Fig. 5.2 Experimental curve PF = f{c) for a time domain energy detector

Results in Figure 5.2 show that a false detection rate climbs quickly with the
probability of an impulse. Comparison of the two curves in the figure shows that
the longer the detector, the more sensitive it is to the impulsive noise. Figure 5.3
shows that the rate of false detection increases monotonically with the length n.
When the length of the receiver grows, the probability of an impulse appearing
inside the input waveform increases also.

Simulations indicated that the value of b had almost no effect on the shape of the
curves presented. As we assumed b to be much larger than the variance of
Gaussian noise, the appearance of a noise impulse always causes false detection.
There is little difference if the decision threshold A is surpassed with the decision
statistic two or ten times. In both cases false detection is still made.
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the influence of impulsive noise is

The next three figures illustrate the performance of a cyclostationary detector under

only slightly smaller than it was in the case of an energy detector where all of the

energy from impulses is consumed in decision statistic 4. A cyclostationary

detector spreads this energy all along the spectrum, thus only part of it influences
95

Fig. 5.4 Experimental ROC of a cyclostationary detector
the influence of impulsive noise. As illustrated



the decision statistic. This is the reason why the influence of impulsive noise on a

cyclostationary detector is lower.
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Fig. 5.8 Experimental curve PF

The last three figures clearly show that the influence of impulsive noise on a

matched filter is smaller than on previously viewed filters.

Figures 5.8 and 5.9

illustrate an interesting fact that at first the probability of false detection Pr
increases with a length n of the filter. The reason here is basically the same as

described under the energy detector. On the other hand, the longer the filter, the

more it averages the impulsive noise out.

As shown clearly in Figure 5.9, those
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two effects tend to cancel each other out, thus from some point further an increase
of n has almost no influence on a false detection probability Pr. For this reason,
both curves in Figure 5.8 are almost totally covering each other.
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Fig. 5.9 Probability of false detection as a function of matched filter length

In conclusion, first, it is clear that impulsive noise has a strong influence on the
detectors based on the assumption of Gaussian background noise. An energy
detector is the most sensitive and a matched filter is less sensitive. This is
explained by the circumstance that the more we know about the received signal, the
easier it is to distinguish noise from this signal. In all three cases, false detection
rate increases together with the probability of impulse appearance c.

When the signal-to-noise ratio decreases, then in order to maintain the probability
of correct detection, detectors must use more samples for decision making.
Increase in a detector length # increases its sensitivity to the impulsive noise. This
means that the more sensitive the detector meant to work in Gaussian background,
the more sensitive it is also to the influence of the impulsive noise.

Results obtained here clearly suggest that robust detectors are needed to make

cognitive radio work under the influence of impulsive noise. Therefore, in the next
chapter robust detectors for all three cases are introduced.
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6 Robust detectors

In this chapter three robust detectors are derived. A robust energy detector is a
robust analogue to a regular energy detector. A robust feature detector is similarly a
robust analogue to a cyclostationary detector and a robust detector for a known
primary signal can be viewed as a robust matched filter.

The noise model and estimators for its parameters used in this chapter were
derived in Chapters 3 and 4. Some results from Chapter 2 are used to derive a
robust feature detector.

Derivation of each detector is divided largely into two parts. The first part is
detector derivation and the second contains asymptotic performance analysis.
Obtained results are compared against regular detectors and between robust
detectors themselves.

The results obtained are also compared with other robust detection methods
proposed in various articles.

Author’s contribution in this chapter is as follows. The first subdivision is based on
the work presented in articles [45], [72] and [73]. Author’s main contribution:
derivation of expressions for parameters n and A, derivation of a theoretical
expression for the ROC curve and computer simulations, including comparison
with other robust detection methods.

The whole second subdivision of this chapter is author’s work, both theoretical
analysis and computer simulations.

In the third subdivision, computer simulations and comparison with Huber sense
Neyman-Pearson detector is purely the contribution of the author. Naturally
comparison of detectors and the conclusion were written by the author.

6.1 Robust Energy Detector

Robust energy detector considers the problem of detecting the presence of primary
users in a given frequency band without any prior knowledge of primary
transmissions and in the presence of impulsive noise. The detection problem we
need to solve is similar to (2.1)

H, :x(t)=v(t)

. (6.1.1)
H, :x()=s()+v(t)
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Received waveform x(f) may be noise v(¢) only or it may also consist of a signal of
interest s(f). The detector has to decide which of the hypotheses is more likely
given the received waveform x(¢). We assume that noise v(¢f) comprises a sum of
zero mean additive white Gaussian noise v, and additional impulsive noise
component v; (3.3.1)

v(t) =v, (1) +v,(2) .

The impulsive noise component v; is assumed to obey PDF (3.2.2)
[0 =+ 1=0)5()
" 2b '

As explained in section 3.3, noise v(f) can be modeled as consisting of two
components with the largest component determining the outcome entirely at each
time instant (3.3.30)

v(t) =v, () +v,(t) » max[v, (¢),v,(1)].

As we have no prior information about the primary signal s(f), we regard it as a
noise with a standard deviation o, . Let us also denote a common variance as

, |o? [=0
o =y, , (6.1.2)
o' +o. [=1

where o is the standard deviation of Gaussian noise. With this notation we can
express the conditional PDFs corresponding to our two hypotheses H, for / = 0,1.
From (3.3.32) we obtain

200 C ||

fGH) ="\ 2zo, 26

0, otherwise

(6.1.3)

The normalization factors f; can be found by solving (3.3.34) for previous
b
[ 1.y =1, (6.1.4)
-b

this results in
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ﬂ{(l—C)erf[\/gl;z}c( —%ﬂ (6.1.5)

where

7711=\/ 20 1(1 C*/;G’] (6.1.6)

is the intersection point of the Gaussian and uniform distributions [66]. In practice
the value of £, is very close to 1. As shown in section 3.3, we can give PDF (6.1.3)
of x in the interval [-b,b] a more convenient form (3.3.37) for further derivation

-1
1 _ — min (xz ,7712,)
f.(:4H) = %em . (6.1.7)
/

As focus is on the energy detector here, we need the probability density function of
variable ¥ = X * as in Chapter 2. Our PDF is not Gaussian anymore but a mixture
of Gaussian and impulsive instead. Using equations (2.1.6)-(2.1.8) we obtain

L,
_Ali=c) i) 6.1.8)

f,0lH) = oo

Suppose that we have made n observations of the variable y and have collected
these observations into a vector y. Also, assume that the observations at different
time instances are statistically independent of each other. Then the joint probability
density function (4.1.2) is a product of the individual probability densities

LOHE) =TT/ 0lH), 1=0.1. (6.1.9)

Likelihood ratio for the above hypothesis (6.1.1) reads

;lmm(,\/k T 1)

Hﬂlo-o
i oy oo

20_5 mm()’k ’710) .

(6.1.10)

Taking the logarithm of both sides of (6.1.10) and simplifying it, we readily obtain
the log-likelihood ratio
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lnL—nln(ﬁl%j > Zmln(J’k’nll)"‘z me(yka??lo) (6.1.11)

001 lkl ()kl

Our detector thus needs to decide in favor of H; if the log-likelihood ratio is larger
than threshold. Otherwise, the hypothesis H, is selected.

If there is no impulsive noise, i.e. ¢ — 0, we have

limz, = 207 In(0) = 0
limpg, =1

c—0

llm{nln[ Boy H = nln[ﬁ]
0 By, O

and the test is reduced to an ordinary energy detector [66].

Parameter 7, (6.1.6) depends on the Gaussian noise variance o, signal variance
o,” and the impulse probability c¢. Those parameters may not be known in advance
and if they are not, they must be estimated from the input signal x(¢). In some
applications it is known for certain that during some time the primary user is silent
and during some other time it is working. The question is about all the other times.
In Chapter 4 we have derived maximum likelihood estimators for ¢ (4.3.6) and ¢
(4.3.8). Now we only need an MLE estimator for signal variance o,”. If the signal
of interest s(f) is also present, then the log-likelihood function (4.3.3) can be
written as

InL(c?

%—nln,/ax2 +o’ -
T
! (Zxk +”27711J

2(0‘ +07)

(6.1.12)

The derivative of the log-likelihood function with respect to o,” equals

dInL(c7|x) —n 1
= +
oo’ 20’ +0%) 20! +0)

s

Ci—" 6113
2 ;1 k 2(0_2_'_0_2) ( )

s

Equating (6.1.13) to zero results in an estimator
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N 1 N
6l=—)Y x.-6". (6.1.14)

—a= 171111 —:-%HZ - 2;[% ?1
_|_

Y >
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T2

Fig. 6.1 Proposed structure of a robust energy detector

Next we perform the asymptotic analysis of the detector at large n. We first note
that the detector computes if

1 . N S )
—>» min(y,, ———— > min(y,, > A, (6.1.15
20_5 n; (Vi) 2012 n; Yesm1) ( )
where
z:m—L—ln(@J. (6.1.16)
n ﬁOGI

We thus need to find a difference between weighted arithmetical means of
saturated variables and compare the result to a threshold in order to perform the
detections. Proposed structure of a robust energy detector (6.1.15) is depicted in
Figure 6.1.

Let us concentrate on the variables under the summations in (6.1.15) and define
anew variable z, as

z, = g(y) =min(y,7;,), ¢=0.l. (6.1.17)
The function g(y) is saturation nonlinearity. The probability density function of the

output of z, = g(») is given by [40]
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fz= )

hitl S

dy

(6.1.18)
r=g(z)
We need to investigate this PDF for four different cases — for both sums in (6.1.15),

g = 0,1 for both hypotheses / = 0,1. Substituting (6.1.8) into the above for those
four cases, we obtain the following four PDFs:

F(zalH,) = %e"é [Oz0) -0z, 72+

(6.1.19)
+cﬂo( 7710]5(20 7710)

if/=0and ¢ =0,

1zl = P29 o) - ez, - )+

V275 (6.1.20)
\/—[(“)(1 7710) O(z, - 7711)]“‘0:30( %)5(21_77121)

if/l=0andg=1,

S (ZO|H1) = %ew [®(Zo) -0(z, - 77120)]+

+|:ﬂ1(l—c)(erf\/%lo_l erf\/@;]+ (6.1.21)

+cﬂ1( it ):|§(Zo _77120)

if/=1and ¢ =0 and
l-c ‘%
S5 ]H) =%e 27t [@(z) -0z, 12|+
o (6.122)

+Cﬂ1( it J5(21 7711)
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if /=1 and g = 1. The cases are illustrated in Figures 6.2 and 6.3.
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Fig. 6.2 Conditional PDFs for variable z,
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Fig. 6.3 Conditional PDF's for variable z,

Combining results (6.1.19)-(6.1.22) we can reach a somewhat more compact
common expression covering all the four cases as
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ﬂ (1 C) 20'2 2
£ ) =209 oy e, - )+
‘ V27240 ,(6.1.23)

;";fi[@(z —12)-0(z, — %)+ 8(z, ~1,)0),,

where functions tail

hm,
0, = ﬂ{(l—c)m{erf \/%10'1 —erf \%; }Lc[l— lb H (6.1.24)

and variables m,- my are defined as follows: m; =1, if /=1 and ¢ = 1 and is zero
otherwise, m; =1, if/=0and g =1 and is zero otherwise, m; =1, if/=1and g=0
and is zero otherwise, m4 =0, if /=0 and ¢ = 0 and is one otherwise.

This distribution (6.1.23) has the mean

oo 22|

. (6.1.25)
2 20 |, My
—\/;szmle ’ 23b 0 (7711 77130)—'_7712(10(1,1
and the second moment
E2JH, )= 51-c) 307 ert]| —im |
V20,
.(6.1.26)

Tlim,
_\/%51771,"1@ i (7712ml +3‘712) e (7711 77150)"'7714q9q,1

5b

The cross correlation between z, and z, is perfect if z; < 5,5’ and in this case
E[zoz1|H,] = E[z,’|H;]. This happens with a probability

’710
P(z, <n,) = | £.(a|H, )z = B(1- c)erf[ 'ho J (6.1.27)
1 0 J. 1| 1 I \/EO',
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If z > 5/, then zo = n;y° and hence E[zozj|H)] = #:5°E. > 116°[21/H)], where
E. - 7, [z1|H)] is the mean of z; above #,/°. This happens with a probability
1-P(z < 77102) and the cross correlation therefore is

E[zozl|H,]= P(Zl < 77120)E[Z§|H1J+

. (6.1.28)
+ [1 - P(Zl < 77120) 120EZ|>77120 [Zl |Hl]

Examining (6.1.15) we see that to proceed we need the moments of the variable

1 1
W=——sz, ———2Z,. 6.1.29
20'5 0 20‘12 : ( )

The mean on w is

E[ZO|HI]_E[21|H1]

E[WH, |- o 20 (6.1.30)
and its second moment equals
_ E[Z§|H/] 2E[ZOZI|HI] E[212|H1]
E[w|, = e B (6.1.31)
The variance of w is equal to
o2 =E|w'|H,|-E*[wH,]. (6.1.32)

Let us now note that according to (6.1.15), the detector computes sample
average of n IID random variables w. According to the central limit theorem [17,
40], the distribution of such a sum approaches Gaussian with mean E[w|H)]
(6.1.30) and variance

2

oy,
— 120, (6.1.33)

n
when »n increases, independent of the shape of the original distribution of the

variables w. Therefore, we can evaluate the probability of false detection for large
value of n
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_f 1 |G —E[H, Nn
P, = { £y (A[H, Jaw = : erfc{ Tro, } (6.1.34)

Accordingly, the probability of correct detection is

_f 1 JG—ElwH Wa
P, = ! £+ (AJH, Jdw = 2erfc{ Voo, } (6.1.35)

The threshold A and required number of samples # to reach a given point Pp and
Pr can be found by solving a system of equations formed from (6.1.34) and
(6.1.35)

\/EO'HO erfc ' (2P,) = (A - E[W|HO Wa

. 6.1.36
V2o, erfc™(2P,) = (A - E[wH, Wn (6139

Solving the system for » and A we obtain that in order to reach the operating point
(Pr, Pp), we need

{UH erfc'(2P,)— o, erfc’ (2P,) }2
n=2— .
ElW|HoJ_ElW|H1J

. (6.137)
P oy erfc"l(2PD)E[w|HO]— Oy, erfc” (2P, )E[W|H 1]

oy erfc'(2P,) - Oy, erfc” (2P,)

Equations (6.1.34) and (6.1.35) can also be used to express the theoretical ROC
curve for the robust energy detector

P, = %erfc{ﬂerfc-l(zg) + */;(EMHO]' E[W|H1 D} . (6.1.38)

Oy, \/EO-HI

First, we investigate how many samples the detector should involve for our
analysis to apply. In the simulation example we have used the following
parameters to compute the probability of false detection Pr: 6 =1, g, = 2, ¢ = 0.01
and b = 100. Figure 6.4 shows that with n = 5, the simulation and theory vaguely
remember each other. The situation improves when we increase the number of
samples. Already with n = 30, the theoretical curve and simulation dots are rather

108



close to each other. Here we note that » = 30 is much smaller than actual values of
n found from (6.1.37) for cognitive radio applications.

1 . T T 1

Hﬁ?‘xg ! — — n =5, theory
: \% I : 2 p=h
e I L @(% ; n = 30, theory
: . ! & n=30
T oo R T P
04f-----m--- o emee o bomee-
0.2p---------- o emee o T RRREEE
0 i i
0.1 0 0.1

Fig. 6.4 Probability of false detection

Figure 6.5 presents the probability of missed detection Py, = 1 - Pp as the function
of SNR. Solid and dashed lines are theoretical results for ¢ = 10> and ¢ = 107,
accordingly. Circles and squares are representing corresponding experimental
results. A fast decrease of the curves can be observed as SNR increases,
furthermore, the intensity of impulsive noise ¢ does not influence the result much.

Figure 6.6 depicts the dependence of probability of false alarm on the number of
samples 7 for the ordinary energy detector if there is no impulsive noise (dashed
line). It also shows the curves corresponding to the ordinary energy detector (solid
thin line) and the proposed robust detector (solid bold line) in the presence of
impulsive noise with intensity ¢ = 0.001. As shown, the proposed detector operates
at those conditions almost as well as the ordinary energy detector in Gaussian
noise. A small rise occurs in false detection probability in the robust detector when
n increases. The reason is that we actually do not remove all impulsive noise but
only the part above the intersection border 7;.
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Fig. 6.5 Probability of missed detection as a function of SNR
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Fig. 6.6 Probability of false alarm as a function of n
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Fig. 6.7 Comparison of ROC for robust and regular energy detectors

To compare the performance of a regular energy detector and a derived robust
detector, we have plotted their operating characteristics in Figure 6.7. Both lines
are for SNR = -23dB and detector length n = 2080. In the case of a robust detector
we assume impulsive noise to have parameters ¢ = 10~ and b = 128. We can see
that theoretical performance of our robust detector with impulsive noise is only
slightly worse than the performance of a regular energy detector in Gaussian noise.
Simulated results are showing even better performance — almost as good as the
regular energy detector had in only Gaussian noise environment.

Several other robust energy detection methods are suggested in literature [10,
15], for example, so-called L; or so-called absolute value detector. Decision
statistic for such detectors is computed as a sum of absolute values of samples

A= Zn:|xk|. (6.1.39)
k=1

As compared to a regular energy detector, there is no need to take square of
outliers, thus not increasing their effect on the estimate. Neither do we take the
received waveform into square, which, in turn, means that our sensitivity is lower
than in the case of the energy detector. Both of those effects tend to cancel each
other out and the robustness obtained is only slightly better than that of the regular
energy detector. By combining advantages of the regular energy detector, in the
means of sensitivity and L;-norm detectors in the means of robustness, we obtain a
so-called Huber’s detector. This widely used popular detector has the following
decision statistic:

111



A= p(x,), (6.1.40)
k=1

where p(+) is Huber’s distance function [11] (see Figure 6.8)

2
%‘2, for |x|£kpa
p(x):k|x|k2 (6.1.41)
pT_Tp’ for |x| >k,o

and where the dependence k, = k,(¢) is tabulated in [11] p. 87. As our noise model
(3.3.8) can be viewed as e-contaminated Gaussian noise (1.1), where contaminating
impulsive noise is present, then for our case the probability of impulse ¢ is
equivalent to the contamination factor . Analysis of the last equation in Figure 6.8
shows that for the received waveform this detector works as an energy detector
adding up squares of input samples. But for impulsive noise, Huber’s detector
works as an L, detector adding only absolute values of outliers instead of squares
of them. Thus, on the one hand we have high sensitivity of an energy detector for a
received waveform and on the other hand we have decreased the influence of
impulsive outliers. But unlike our suggested robust detector the outliers are not
removed, they are only suppressed. Thus, we can assume that robustness of
Huber’s detector, although better than energy detectors, is still inferior to our
suggested robust energy detector.

In order to test this assumption, computer simulations were carried out to compare
robustness of a regular energy detector (2.1.1) against both Huber’s detector
(6.1.40) and our derived robust energy detector (6.1.15). Figure 6.9 shows false
alarm rate against the length of the detector when the probability of impulsive
noise (or contamination factor ) is ¢ = 10”. The figure shows that Huber’s detector
is indeed somewhat more robust against impulsive noise than a regular energy
detector but it is much inferior to robustness of our detector. Figure 6.10 depicts the
results of another simulation where the length of the detector is fixed n = 4160
and probability of false detection Pr as the function of c¢ is plotted on the graph.
This figure indicates exactly the same — Huber’s detector is slightly more robust
than an energy detector but still much worse than our energy detector. Our
detector’s performance starts to decrease only when every hundredth sample is
contaminated by impulsive noise.
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Fig. 6.9 Comparison of robustness of different energy detectors (c = 107)
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Asymptotic analysis of detection

In this chapter we have derived a robust energy detector. Its sensitivity in the
absence of impulsive noise is almost as good as that of regular energy detectors.
114

When impulsive noise is present, our robust detector outperforms a regular energy

detector in many orders of magnitude.
analytical expressions. Comparisons with other robust energy detection methods

performance was conducted and computer simulations have shown good fit with
show that our solution works better than many other ones.

Fig. 6.10 Comparison of robustness of different energy detectors (n = 4160)



6.2 Robust Feature Detector

In the case of a robust feature detector we also have to solve the detection problem
in the background of Gaussian and impulsive noise. As compared to the previous
case of the energy detector, we have more information about the primary user
signal. In fact, we assume that we have knowledge about periodicity in the primary
user signal. For example, this can be carrier or pilot frequency, symbol rate or
something similar. Due to this excess information we can now use a feature
detector to ascertain the presence or absence of the primary user signal.

In this chapter we assume that detection is carried out through the use of cyclic
spectrum S,“(f). For simplicity we use a single cycle detector, thus the primary
signal is detected at one point (f,a) on the cycle-frequency plane. A single
harmonic signal with known frequency is used as a model of the primary user
signal. Decision threshold A is based on the criterion of the constant false alarm rate
(CFAR).

Gaussian noise itself is assumed to be uncorrelated here also but an added periodic
signal causes samples of a received waveform to be periodically correlated. To
calculate the cyclic spectrum of the received waveform, we need a relatively long
input vector whereby correlation between signal elements must be preserved. Thus,
when we eliminate the influence of impulsive noise, we must do it such that the
correlation in the signal preserves. In other words, constructing an elimination
algorithm we should consider correlation of the signal.

To start our derivation of the robust feature detector, we will find the robust
estimator of the covariance matrix C. From there we will find threshold values 7,
for removal of the impulsive noise component v; and then by using the resulting
limited waveform we estimate cyclic spectrum or the cyclic autocorrelation
function (CAF) of the received waveform x(¢).

The algorithm for impulsive noise removal for a one-dimensional case was covered
above in section 6.1. As here we have to deal with multidimensional noise and
estimation of covariance matrix, we start with the ML estimator (4.3.49)

é:iZka,f. (6.2.1)

The equation above states that we can estimate covariance on the received
waveform x if we use only samples uncorrupted by the impulsive noise v;. As
demonstrated in Chapter 4, the border between the corrupted and the uncorrupted
waveform was the p — dimensional hyper-rhombus. To test if vector x; falls inside
this shape and thus can be used to estimate covariance is relatively simple. But it
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needs 2p comparisons to be done for each vector, thus computational load
increases with dimension p. In order to give some numerical value to the
performance of covariance estimating algorithms, we define a metric of estimation
error e through matrix trace of squared difference between the actual covariance
matrix C and our estimate of it as follows:

e= ﬁtr[(C—éXC—éﬂ . (622)

Error metric e in simple terms is the root mean average of difference between the
element of a matrix and its estimate. Experimental results for the MLE estimator
derived in section 4.3 are shown in Figure 6.11.

Fig. 6.11 Estimation error e as the function of impulse probability ¢ and dimension p

Clearly, both one- and two-dimensional cases provide almost equal estimation
accuracy. In the two-dimensional case we have to remove two samples if only one
of them is corrupted by impulsive noise. For this reason, the estimation error of the
two-dimensional result is slightly higher, around high values of c. In the three-
dimensional case, similarly, we have to remove three samples already if only one
of them is corrupted by impulsive noise. For this reason, p = 3 has even greater
estimation error than in the previous cases. As a result, the estimation error
increases with the number of dimensions p. Single noise impulse per realization
causes removal of a larger number of samples and thus smaller estimation accuracy
if p increases. This concept is illustrated in Figure 6.12. The figure depicts the
intersection border for p = 2 and four possible two-dimensional realization vectors
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X;...X4. Vector x; is uncorrupted by impulsive noise and it can be used to estimate
covariance in (6.2.1). All three other vectors have an impulsive noise component
and thus they all are discarded from the estimation of covariance. A closer look at
the image reveals that in the case of x, only its first x; coordinate in inflicted by
impulsive noise. Thus, throwing the second coordinate x, away is not a good idea
because it causes loss of estimation accuracy. Similarly, only one of the two
coordinates of vector x;3 is corrupted by impulsive noise and the second one is
actually appropriate for covariance estimation.

10} :
5. .
o0 :
51 i
Aot i
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Fig. 6.12 Cause of estimation error increase along with dimension p

In summary, our derived ML estimator works well. Figure 6.11 shows that the
estimation error is very small even at a high probability of impulse. On the other
hand, as dimension p increases, we need more computational resources to test if the
given vector X is suitable for the estimation of covariance or not. The second flaw
of our estimator is in the fact that again if dimension p increases, one single noise
impulse can cause discarding of the whole long x;. This, in turn, causes degradation
in the estimation accuracy because due to only one noise pulse much of useful
information is simply thrown away.

The estimator derived works as follows. It takes p samples from the input
realization x forming a vector x; with a length p. Then it compares the vector with
the intersection border. When no impulsive noise is present, the vector falls inside
the borders and it is used to estimate covariance. When one or more impulses are
present, the whole vector is discarded because of no information about the exact
location of impulsive noise inside this vector. For example, with the input
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realization x;,x,%3,X4,... for p = 2, first, we form vector x; = {x;,x,} and compare it
against the intersection border, the second vector would be x, = {x3,x4} and so on.
If now, for example, x; is corrupted by impulsive noise, then our algorithm discards
the whole vector x; because it knows that this vector is corrupted by impulsive
noise but it cannot identify the element. In order to remove this ambiguity, we must
form three vectors out of the same realization. Those vectors will be x; = {x1,x,}, X»
= {x,x3} and X3 = {x3.x4}. Now we compare all three vectors against the
intersection border. Let us now continue with an example where sample x, was
corrupted by impulsive noise. As now vectors x; and X, both indicate that at least
one of their coordinates is corrupted by impulsive noise but vector Xx; is
uncorrupted, then we can pinpoint that sample x, is indeed the one we must
remove. The approach described allows dealing with the problem of degradation of
estimation accuracy. But now we have to do 2p* comparisons to remove impulsive
noise, instead of 2p comparisons we had to do with the original ML estimator.
Thus, by solving one of our problems we enlarged another one.

Clearly, we need to do some approximations to simplify our estimator. Thus, let
us take another look at the PDF of the sum of impulsive and Gaussian noise
(Figure 6.13).

Fig. 6.13 2D PDF of the sum of impulsive and Gaussian noise

According to (3.3.29), the probability that the vector x; is positioned inside the
rhombus is in order of (1-¢y’, i.e. it is very high. As the PDF inside the rhombus is
Gaussian, in our figure vector x; is of much higher probability of appearance than
vector X,. Impulsive noise appears seldom with a probability ¢. Thus, the
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probability of vector x; appearance is in the order of ¢(1-cy’"'/b. As in our model,
impulsive noise is uncorrelated and has a relatively low probability of appearance,
the probability of vector x; appearance is in the order of (¢/b)’, which in practical
terms means that such an event is next to being impossible. In brief, the majority of
noise samples have actually been gathered relatively close to the axis. For
example, according to the properties of Gaussian noise, 99.7% of all samples lie
within £36 from the origin. As we assumed limits of impulsive noise value b to be
much larger than a standard deviation o, the following simplification can be made.
Thus, within the given range £36 we can approximate the intersection border as the
hyper-plane parallel to the origin. In a two-dimensional case this means that the
intersection border along the x, axis can be viewed to be parallel with the x; axis
and vice versa.

In mathematical terms our simplification means ignoring information about
correlation. In practical applications we usually lack such information anyway.
Thus, such approximation is reasonable also from this point of view. Disregarding
the dimension of the vector x; and the correlation amongst its elements, we
compare all its elements against the threshold (3.3.36)

L—”MGIJ =0,

= |-2671n
g / [l—c 2b

and discard all the elements that will cross this threshold. In other words, element
xi 1s valid for the estimation of covariance if

(x, <) A (x, >-1,) (6.2.3)

Variable g, is defined in previous section (6.1.2). To obtain an estimate of Gaussian
noise covariance, elements of x that do not pass the test should be discarded. But it
should be taken into account that primary user signal may also be present.
Discarding some samples of input realization causes changes in signal frequency
and thus affects the probability of detection. Thus, if sample x; does not pass the
test, it cannot be discarded but its current value must be replaced with zero or the
value of threshold #,. Option 1 gives a slightly smaller estimation error, while the
second one is compatible with other detectors and is easier to be implemented as
saturation nonlinearity similar to (6.1.17).

Simulation results for the simplified decision rule (6.2.3) are presented in Figure
6.14. When comparing the results to those obtained by the exact rule in Figure
6.11, we can see that the performance is almost as good as it was before. But the
number of operations required is highly reduced.
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Fig. 6.14 Estimation error for the simplified decision rule

As mentioned in Chapter 2, the probability of the correct detection P, for a
cyclostationary detector is not analytically tractable. For this reason we start by
finding an expression for the probability of false detection Pr and later find curves
for Pp using simulations.

Figure 6.15 shows the schematics of a robust feature detector. The first node is a
two-way comparator which compares input realization (6.2.3) with threshold +7#,.
This is followed by a spectral correlator to calculate the estimate of cyclic spectrum
S.(f), which is decision statistic for the given case. Decision A statistic is then
compared against threshold A and based on the result, decision @ is made in favor
of one of the two hypotheses H,.

Zy(f+5

X | N-pL 1 4 decision
— = FFT

5

S

E_\'E _%)

Fig. 6.15 Robust feature detector
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If the received waveform is noise only (/=0), both Gaussian and impulsive noise
are assumed to be white. PDF of the received waveform is then (3.3.8)

1-¢ *%
f.(x)= {erf{\/_o_j erf(\/_o_ﬂ+mo_e (6.2.4)

A two-way comparator performs the following nonlinear operation with the input
waveform x

={xaif|x|5771l (6.2.5)

0, if |x| >y '

This limited waveform is then used to calculate the estimate of SCF as
S“(f) —;—ZZN(k f+ )Z (k, f (6.2.6)

our decision statistic will be as in (2.2.22)

PDF of the limited waveform is then approximately

c l-c 7X722 n
—+ 207 4o =L 15 (%) |,
7= Vame c[ bj 2

0, otherwise

<
i (6.2.7)

As our waveform is limited symmetrically, the mean value of z is also zero. The
variance of the limited waveform is

2 Cﬁ177131 U 2 - ’71212
o =L 4 B(1-c)o| oerf 1/— e o |. 6.2.8
z 3b 1( ) ( i J ”771[ ( )

As the limiter acts most of the time in its linear region, we can fairly assume that its
output z is also white noise. This means that after N—point FFT each frequency bin
has an equal amount of input power. Thus, both real and imaginary parts of the
FFT output have variance
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2
ol ==, (6.2.9)

If N is sufficiently large, then the PDF of each frequency bin is due to the central
limit theorem Gaussian and the output of the following multiplier follows the
distribution described by the second kind zero-order Bessel function [28]. But
again our interest is in noise variance here not in the actual shape of its PDF. If two
variables X and Y are independent having zero mean, then the variance of their
product can be found [29]

D(XY)=DXDY . (6.2.10)
This means that noise variance at the output of the multiplier is

N’c!
2

: (6.2.11)

Next, we average 2n times and normalize with n/N, then the resulting PDF of both
the imaginary and the real part at the output are Gaussian when »n is sufficiently
large. Variance of both the real and the imaginary part of the output PDF is

(6.2.12)

Non-multiplicativity property of the expected value states that the mean of the
product of the two random variables is [30]

E(XY)=EXEY +cov(X,Y). (6.2.13)

As we assume our random variables to be independent and with zero mean and
according to the last equation the mean of their product, thus also the output of the
spectral correlator is zero.

The decision device compares the module of the SCF estimate (6.2.6) against the
decision threshold 4. It is well known that in the case of random complex numbers
whose real and imaginary components are Gaussian, the module of the complex
number is Rayleigh-distributed. Thus, the decision statistic 4 (2.2.22) in the case of
noise only follows the Rayleigh distribution
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nA\?

S(A[H,) = mA 2o A0, (6.2.14)
(o2

z

From the CDF of the Rayleigh distribution it is easy to derive the probability of
false detection

P, =e (6.2.15)

and from it the threshold value for the desired Pr

A= aj‘/_zl—nPF. (6.2.16)
n

As explained in section 2.2, there is no closed-form expression of correct detection
Pp for a cyclostationary detector [30,31]. Therefore, we must use an approach
where we calculate the threshold value (6.2.16) for a given false alarm probability
and find ROC curves experimentally. However, in the same section it was
demonstrated that in some specific cases it is possible to find an analytical
expression for the probability of detection Pp. Necessary conditions were for pair
(a, /) = (2£;,0) if FFT of the signal s(f) is done coherently. Thus, next we adapt
derivation from section 2.2 to be conforming to our robust detector.

As limiting takes into account the power of the received signal, the shape of the
waveform can be considered unchanged. Also, in a robust detector the mean value
of Xy(k,f £ o/2) is determined by signal s(¢) and it can be expressed as (2.2.32)

E{XN(k,f+gﬂ :A—N(cosgo+jsingo)
2 2
E{XN(k,f—%ﬂ =%(c05(p—jsin(p)

As stated before, we can assume limited noise to be also white. Due to that
variances of all spectrum bins are determined by the noise power ¢.%(6.2.8) at the
input and they are equal to

ol mtelnforsg)) -7
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Thus, in our case output signals at the spectrum bins under interest are still
Gaussian random processes with a mean determined by signal s(¢) (2.2.32) but
variance is now determined by the limited sum of impulsive and Gaussian noise
(6.2.7). The rest of the derivation is similar to that done for Gaussian noise only in
section 2.2. Thus, under the given conditions our decision statistic 4 will also
follow the Rice distribution 4~Ric(o,4,) with the parameters

2 2 4 2
o, = |ANo. (oo, N (2.2.17)
2n n 4

The equation for the probability of correct detection Pp is then again the same
(2.2.46)

B, =1—F(/1)=Q1(£»ij-

O\, O,

To calculate the necessary values of the number of samples #n and threshold 4 for a
given operating point (Pr, Pp) at ROC, we face the same problem as in section 2.2.
We need to know the inverse function of Marcum’s Q function which can only be
found through numerical iteration methods [32]. Thus, unfortunately we cannot
give analytical expressions for values n and 1 necessary to reach the operating
point (Pr, Pp) at the ROC curve. But fortunately those values can be found through
numerical methods.

1 T I

\ — —n =5, theory
' b n==5
08 F---%--- \\ ---- pTTTTTTTITes n = 30, theory |

q;b%‘% o n=130
06F------g------ \ ---------------------

o N e
L MR+~

1 S NERT T R CEREY EEEERERR

A
Fig. 6.16 Probability of false detection for a robust feature detector
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As in the previous section regarding to the robust energy detector, we
investigate here how many samples the detector should involve for our analysis to
apply. In the simulation example we have used the following parameters to
compute the probability of false detection Pr: ¢ = 1, SNR =-17dB, ¢ = 0.01 and
b = 100. Figure 6.16 shows that with n = 5, the simulation and theory vaguely
remember each other. The situation improves when we increase the number of
samples and already with n = 30 the theoretical curve and simulation dots are rather
close to each other. Here we note that » = 30 is much smaller than the actual values
of n used for cognitive radio applications.

10" ==
10”7
107
.-

10°

-4
10 c=10", theory

— — =107, theory [111II0IIIIINIIIIINIIIIINIIIIININ I

21 20 19 18 47 16 15 -4 13 12 -1
SNR [dB]
Fig. 6.17 Probability of missed detection as the function of SNR

Figure 6.17 presents the probability of missed detection Py, = 1 - Pp as the function
of SNR. Solid and dashed lines are theoretical results for ¢ = 10~ and ¢ = 107
accordingly. Circles and squares are representing corresponding simulation results.
A fast decrease of the curves occurs as the SNR increases. In addition, the intensity
of impulsive noise ¢ has only small influence on the results.

Figure 6.18 depicts the dependence of the probability of false alarm from the
number of samples n for the ordinary cyclostationary detector if there is no
impulsive noise (dashed line). It also shows the curves corresponding to the
ordinary cyclostationary detector (solid thin line) and the proposed robust detector
(solid bold line) in the presence of impulsive noise with intensity ¢ = 0.001. The
proposed detector operates at those conditions even slightly better than the ordinary
cyclostationary detector in Gaussian noise. The reason of this is that the removal of
impulsive noise contaminated samples also removes Gaussian noise value of this
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sample. The second reason is that also some high valued Gaussian noise samples

are removed by the comparator.
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To compare the performance of a regular and a derived cyclostationary detector we
have plotted their operating characteristics in Figure 6.19. Both lines are for
SNR = -23dB, FFT length N = 65 and detector length n = 32. In the case of a
robust detector we assume impulsive noise to have parameters ¢ = 10~ and b = 128.
Both theoretical and simulated performance of our robust detector with impulsive
noise is slightly better than the performance of a regular detector in Gaussian noise.

Literature about other robust feature detectors is scarce. Still in [54] trimmed
mean is suggested to guarantee robustness of a cyclic correlation estimator. Thus,
before computing cyclic autocorrelation (or cyclic spectrum), a number of the
largest values in the received waveform is eliminated. This method would work
well in theory but compared to our solution it has two flaws. First, when no
impulsive noise is present, trimmed mean still removes some part of the input
waveform, thus decreasing performance in Gaussian noise only. When no
impulsive noise is present, our robust detector passes all input samples — thus it has
better performance in Gaussian noise. Second, a trimmed mean robust feature
detector requires a large amount of computational resources. Finding one
maximum value among a long vector is a time consuming task, which becomes
even longer when the n,, largest values must be found.

In conclusion, we have derived a robust cyclostationary detector which works as
well as a regular one in the Gaussian noise background. When impulsive noise is
also acting in its input, the performance is still almost as good as without it.
Knowing and taking into account the correlation between the elements of the
received waveform, we can further increase the performance of our detector. It is
shown that even without knowledge about the correlation a well working detector
can still be built.

Asymptotic detection analysis and computer simulations were performed to test the
accuracy of those analytical results. Simulations showed good match with
theoretical results and slightly better performance than was predicted.

6.3 Known Primary Signal

Finally, we will describe the derivation of a robust detector for a case where the
primary signal s is known accurately. This can be described as a matched filter case

for our model.

The conditional probability density of the received waveform (6.1.1) being
noise only can be written as
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fymax] =2 | i<
f(H) ="\ V2re 26 (630

0, otherwise

and the conditional probability density of the received waveform being signal plus
noise as

pimax = o |y
[ GH) =" V2ze "2b |

0, otherwise

(6.3.2)

With this approximation the signal to be detected appears as the mean value of the
Gaussian process while the impulsive noise component is not affected by the
presence or absence of the signal. This sets a restriction that a signal cannot change
during the detection process. Fortunately, the matched filter is the fastest among
the viewed detectors. This means that the time needed for detection is shorter than
for any other detector. Thus, we can state that the primary signal cannot change
much during detection.

The factor £ is used in the above equations to scale f, to satisfy the requirements
for the probability density function and can be found by solving

b

[£.(JHYax =1, i=0,1 (6.3.3)

b
for f,. However, the particular value of £; does not affect the resulting detector
here and therefore the issue is not advanced further.
Instead, we proceed simplifying the expressions for probability densities fi(x|Hy)
and fi(x|H,). As the two differ just by the mean value of the Gaussian process, we

concentrate only on f.(x|H,) for the moment. An expression for f.(x|H,) will follow
by similar calculations. For f.(x|H;) we have
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fx(x|H1):,BlmaX \/2_7:0'6 20 ,i =

(6.3.4)

R e G ]

== ¢
\N2wo

With this result and assuming that we have received n samples of waveform x(¢)
that are statistically independent of each other, we can design the likelihood ratio
test as follows. The log-likelihood ratio can be written as

[1/.dH)
InL=In&H———=
fo(x|H0)
k=1
1 & . ) ,, CN2mo
— 20-2 Zmln{(xk _Sk) ,—20' lnm}ﬁ‘ . (635)
k=1 -

? (1-c)b

20713

+ 1 Z min{x,f ,—20"In ﬂ}

The hypothesis H, is selected if the log—likelihood ratio is greater than a threshold
and the hypothesis H, otherwise. Cancellation of the common terms in the above
equation results in the following detector. Select H, if

imin[(xk -5, )2,7712]—imin[x]f,7712]> A (6.3.6)
k=1 k=1

and H, otherwise. In the above, N1 is the intersection point (3.3.36)

n, = \/— 267 1n(cl_2% (6.3.7)

and 4 is the threshold selected in accordance with the a priori probabilities and
costs given to the different possible events [41]. The structure of the resulting
robust detector is shown in Figure 6.20.
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Fig. 6.20 Structure of a robust matched filter detector

We can analyze the performance of the derived detector by computing two
arithmetic means and comparing their difference against the threshold

—me[ sk o ]——me[xk,nl ]> A (6.3.8)

Ly

To perform our analysis, we assume that the signal s is small so that the
intersection points of Gaussian and uniform distributions 7, computed for the two
sums above are close to each other. Again, we have two sums ¢ = 0; 1 and two
hypotheses / = 0; 1 we need to consider (6.1.17). In the case ¢ = 0 and / = 0 the
received signal comprises noise only and hence the PDF is

N e
fz(Zo|H0)=%e 20° [®(Zo)_®(zo_7712)]+

(6.3.9)
+ cﬂl(l —%}5(20 - 7712)
Likewise, in the case ¢ = 1 and / = 0 we have
l1-¢) —5
falH) = PU= o) -0, - n))
V270 (6.3.10)

+ Cﬂl( —%)5(21 - 7712)
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In the case of H, the received signal x includes the signal component s in addition
to the noise. It turns out that the problem is symmetric, thus

f(zo|H)) = [.(z|Hy) (63.11)
and
fz(zl|H1):fz(Zo|Ho) (6.3.12)

Next we need to find the moments of the distributions. The mean in case g = 0 and
[=0 equals

el |- 2 ool o [t B e ]

(s . (6.3.13)
_ m=s) 7(771‘*'3)
26{(77#8)6 (g sl 2 ] +nfcﬂ1( —%)
and the second moment equals
/611 C) 4 ) 4
E|z;|H, 2rol\s” +6s°0” +30" )
) 20 o |
h— m
of 15 4 erf
[t
(’71*5
+207e [—771 771(s +30° )+771S+S +5s0 ]— (6.3.14)

_ (s
~20’e 72 [771 +771(S +30 )+771S+S +35so ]}

In case g =1 and /=0, we have
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Ez|H,]= 4, (1-c)o? erf(\/%aj _

1= - (6.3.15)
2B 1-c Sy
B esf1-2)
and
E zlz|H0] =38(1-c)o* erf(%) -
(6.3.16)

28(1-c) I '
——'8\‘/(2_7[6)07716 20 (7712 +302)+7714cﬂ1(1—%J

Naturally it holds for the first and second order moments that E[z¢|H] = E[z|Ho],
E[z1|H\] = E[zo|Ho], E[Z%|H.] = E[%1|H,] and E[z*|H,] = E[z%|Ho]: the noise is the
same in both sums while the signal s only appears in either one of the sums. As we
have assumed, the signal and noise to be independent, the cross correlation is

E[z,z )= E|22|H, | (6.3.17)
no matter which hypothesis we are looking for.

To proceed we need the moments of the variable
W=z, -2, (6.3.18)
The mean of w is
E[wH, |= Elz,|H,]-E[z|H,] (6.3.19)

Due to the symmetric nature of our detector, the expected values for the hypotheses
are each other’s opposites E[w|Hy] = - E[w|H,]. Before we continue we must
clarify the following. When there is no primary signal present, i.e. the hypothesis
H, is valid, then the upper channel (in Fig. 6.20) ¢ = 1 contains only noise v and
lower channel ¢ = 0 contains noise minus signal v — s. Due to this,
E[zo|Ho] > E[z1|H,], which means that the expected value E[w|H;] is positive. In an
opposite case, when the primary signal s is present, the upper channel ¢ = 1
contains noise plus signal v + s and the lower channel ¢ = 0 contains noise v only.
In such a case, E[zo|H] < E[z1|H;], thus the expected value E[w|H,] is negative.
Thus, to put this together, the mean of decision statistic is positive when the
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primary signal is absent and negative when it is present. This situation is illustrated
in Figure 6.21. Such a reversal of usual polarity is caused by subtracting the
known signal value s from the received waveform.
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Fig. 6.21 Conditional PDFs for a robust matched filter

The second moment of variable w is

E[w?|H, | = B|z2|H, |- 2E[z,z, |1, ]+ El22|H, | (6.3.20)
The variance equals

o2, =Ep’|H,|-E*wiH,]. (6.3.21)
Variances for both hypotheses are actually equal to &, = o7 -

Now, according to (6.1.15), the detector computes a sample average of n 11D
random variables w. According to the central limit theorem [17, 40], the
distribution of such a sum approaches Gaussian with mean E[w|H;] (6.3.19) and
variance (6.1.33)

2

o
—,1=0]1
n
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when »n increases, independent of the shape of the original distribution of the
variables w. Due to reversed polarity, expressions for the values of probability of
false and correct detection and thus also for the values of threshold and the number
of required samples are

P = ffA(AIHo)dw% 1+erf{(ﬂ_]f/[;(|yH°]W} (63.22)

The probability of correct detection correspondingly is

P, = i £ (A|H, Jaw :% 1+erf{(/1_lf/[;}lo_]—[l])\/;} (6.3.23)

The threshold 4 and the required number of samples » to reach a given point Pp and
Pr can be found by solving the system of equations formed from (6.3.22) and
(6.3.23)

V20, etf™' (2P, ~1) = (A—E[wH,Wn

. (6.3.24)
V2o, erf (2P, 1) = (A~ E[wlH, Nn
Taking into account that E[w|H,] = - E[w|H\] ,0, =0, and solving the system

we obtain that in order to reach the operating point (Pr, Pp) values of »n and A must
be

O et @B, —)-erf 2P, 1) ’

2 E[wH, |

L _EbiA, [ert" 2P, —1)+erf 2P, - 1)]
~ efQP. -1)—erf (2P, 1)

(6.3.25)

Similarly to the previous chapters, we investigate how many samples the
detector should involve for our analysis to apply. In the simulation example we
have used the following parameters to compute the probability of false detection
Pp: o=1,SNR =-17dB, ¢ = 0.01 and b = 100. The graph in Figure 6.22 shows
that with n = 30 the theoretical curve and simulation dots are closer to each other
than in case n = 5. In order to obtain a better match, we need to increase the
number of samples much above 30 because, as mentioned above with the FFT
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energy detector, chi-square distributed variables are converging into Gaussian
rather slowly.
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Fig. 6.23 Probability of missed detection as the function of SNR
Figure 6.23 presents the probability of missed detection Py, = 1 - Pp as the function

of SNR. Solid and dashed lines are theoretical results for ¢ = 10° and ¢ = 107
accordingly. Circles and squares represent simulation results. As compared to
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previous robust detectors, curves are decreasing here even at lower SNR values
than in previous cases. Also, the intensity of impulsive noise ¢ has almost no
influence on the results here.

Figure 6.24 depicts the dependence of the probability of false alarm on the number
of samples n for the ordinary cyclostationary detector if there is no impulsive noise
(dashed line). It also shows the curves corresponding to the ordinary
cyclostationary detector (solid thin line) and the proposed robust detector (solid
bold line) in the presence of impulsive noise with intensity ¢ = 0.001. It seems that
the proposed detector operates at those conditions even better than the ordinary
matched filter in Gaussian noise. In fact, it is the effect caused by the small
difference between the theoretical model and experimental results. A smaller value
of the decision threshold A should be used in order to achieve the desired a priori
probability of false detection.
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Fig. 6.24 Probability of false alarm as the function of n

To compare the performance of a regular and the derived robust matched filter,
their operating characteristics are plotted in Figure 6.25. Both lines are for
SNR = -23dB and detector length » = 2080. In the case of a robust detector we
assume impulsive noise to have parameters ¢ = 10° and » = 128. The theoretical
performance of our robust detector with impulsive noise is worse than the
performance of the regular energy detector in Gaussian noise. But simulated results
are showing much better performance, i.e. almost as good as with a regular energy
detector in only the Gaussian noise environment.
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For comparison Huber sense Neyman-Pearson detector was used, based on the
minimum distance between the signal and observations presented in [68]. As in
this article a detectable signal s is assumed to be known, we view it as a case of a
known primary signal.
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Fig. 6.25 Comparison of ROC for a robust and a regular matched filter
As we want to test the robustness of the proposed detector against our noise model,
the detector proposed for e-contaminated Gaussian noise is most suitable here. The

reason of this choice is demonstrated by the comparison of the PDF of
g-contaminated Gaussian noise (1.1)

l-¢ - i
f(v)=—=—e 2 +¢(v)
N2mo
With the PDF of the sum of Gaussian and impulsive noise (3.3.8) used in our work

2“+—efv+b vb

_ 1-c¢ ”
S0y = e 2o M\ T2

The comparison shows that our noise is actually a special case of e-contaminated
Gaussian noise where the probability of impulse ¢ acts as a contamination factor ¢.
For such distributions a Huber‘s detector with the distance function (6.1.41)
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is used, where the dependence k, = k,(¢) is tabulated in [11] p. 87. The detection
rule proposed in [68] is to compare the decision statistic

A=Y p(x)=D plx —s) (6.3.26)
k=1 k=1

Against the threshold 4. When the threshold 4 is exceeded, the decision is made in

favor of hypothesis H; and if it is not, then in favor of H,. The value of the
threshold is

A= (1-P,) \/(1—8)l2<1>(kp)—1JES (- o)k, - 1]E,

(6327
o 2072

where Pr is the desired false detection probability, @(:) is the standard Gaussian
CDF and E; is the energy of signal s.

When comparing this proposed Huber’s detector with our robust detector for the
known primary signal (6.3.8), the difference basically is in the used distance
function.

To test the influence of such a difference on the performance, we carried out
computer simulations. Simulations compared the robustness of the regular matched
filter against both Huber’s detector (6.3.26) and our derived robust energy detector
(6.3.8). Figure 6.26 shows the false alarm rate against the length of the detector
when the probability of impulsive noise is ¢ = 10~
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Fig. 6.26 Comparison of robustness of different matched filters (¢ = 107)

Results in Figure 6.26 show that at a relatively low probability of impulses, both
Huber’s detector and our robust detector perform well.

Figure 6.27 depicts the results of another simulation where the length of the
detector was fixed n = 4160 and the probability of false detection Pr as the function
of ¢ was plotted on the graph. This figure shows that in the region of low ¢ both
detectors work equally well, but when ¢ increases over 107, our detector starts to
outperform Huber’s detector proposed in [68]. Also, taking into account that our
detector’s computational complexity is somewhat smaller, we can conclude that the
robust matched filter proposed in this thesis is more efficient with less effort.
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In this chapter we have derived the robust matched filter. Its sensitivity in the
absence of impulsive noise is almost as good as that of a regular energy detector.
When impulsive noise is present, the performance of our robust matched filter is
the same as without impulses present. Asymptotic analysis of detection
performance was conducted and computer simulations show a good compliance
with analytical expressions. We demonstrated that our solution works slightly
better than the Huber sense Neyman-Pearson detector based on the minimum
distance between the signal and observations proposed in [68].

6.4 Conclusions

In the current chapter we derived robust analogues to three main types of detectors
used to determine the presence or absence of the primary user signal at cognitive
radio applications. Robustness here means that all derived detectors perform well
both in only Gaussian and in the sum of Gaussian and impulsive noise. Thus their
sensitivity to impulsive interference is very low.

Asymptotic analysis of detection performance was carried out for all three types.
Computer simulations gave test results satisfactorily close to analytical results,
indicating thus that the derived detectors are working as predicted. The derived
detectors and other robust detectors proposed in literature were compared. The
results showed that our solutions outperformed other proposed ones in robustness.

140



To compare those three derived robust detectors it is best to compare their ROC
curves, as shown in Figure 6.28. All the curves in this figure are derived for the
signal-to-noise ratio -23dB and impulse probability ¢ = 107. The result is very
similar to that between the three types of regular detectors in Figure 2.16.

An advantage of the robust energy detector is that it needs almost no
preliminary data in order to perform detection. However, a disadvantage of such a
lack of information is poorer performance than with other detection methods, as
illustrated in Figure 6.28.
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Fig. 6.28 Comparison of the performance of presented detectors (SNR =-23dB, ¢ = 1 0?)

A robust feature detector needs more preliminary information about the primary
signal. In order to perform detection, we need to know some or all periodicities in
the primary signal. Much better performance than that of an energy detector is an
advantage in this case, as shown in Figure 6.28.

A matched filter detector has shown the best performance. This superiority in
performance is only obtained through detailed information about the primary
signal, including its shape and timing information.

In conclusion, the task of the current thesis to derive robust analogues to three
most widely used detectors for cognitive radio was completed successfully. The
results obtained are of substantial practical interest as the need for opportunistic
spectrum sharing in urban areas is increasing daily.
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7 Sensitivity of the Detectors to the Errors in Parameter
Estimates

All robust detectors derived in the previous chapters need some a priori
information about the parameters of input noise and signal. Such information is
essential to their proper work. In our analysis in the previous chapters the
assumption was that we know the values of all needed parameters exactly, which is
not the actual case. In real life scenarios, we must estimate necessary parameters
from input realization. All the results presented in this chapter are the result of
author’s own work.

To characterize the input noise, we want to know the variance of the Gaussian
noise component o~ and the probabilities of impulses ¢. Estimators for both were
derived in Chapter 4. ML estimators for variance of the Gaussian noise component
is (4.3.6) and for the probability of impulse are (4.3.27)

Also, maximum amplitude of noise pulse b is required, but we assume that this
parameter is determined by the receiver architecture. Because of this the value of b
is known and we do not need to estimate it.

In addition, it is necessary to know some parameters of the primary signal. How
much and what kind of information we need depends strongly on the used detector
type. In the case of a robust energy detector we only need to know primary signal
power a,’, the estimate of which was derived in sixth chapter (6.1.14)

1
N 2 a2
g=Llye s
n, M,

For robust feature detector we need to have knowledge about periodicity in primary
user signal. For example, this can be carrier or pilot frequency, symbol rate or
something else similar. For an unknown signal, those values also must be estimated
from the cyclic spectrum but in the current thesis we assume that we already know
those necessary parameters of the signal under interest. It was shown in the second
part of Chapter 6 that our feature detector performance is better if we know the
correlation between the elements of the received waveform. For this reason we also
derived the ML estimator of the covariance matrix of input realization (4.3.49)

~_ T
C——kavk .

1
nl M,
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To build a robust matched filter detector, we need to know detailed information
about the primary signal, including its shape and timing information. In practice,
this information is usually too complex to estimate and it must be known. In all
cases we need to estimate the variance of the Gaussian noise component ¢ and the
probability of noise impulses c. In addition, for some scenarios we need to estimate
the power of the primary signal o, or the covariance C between the elements of the
received waveform. Other parameters needed are here assumed to be known a
priori.

As we need to estimate some necessary parameters and this process is never 100%
accurate, there will be errors in parameter estimates. Focus in this chapter is on the
influence of those errors on the work of our robust detectors. The Monte Carlo
method is used for this purpose here. The model of the detector for a predetermined
set of variables is generated and then the model is tested for input waveform
parameters that differ from those used in the model derivation. Results are depicted
on graphs and are analyzed to obtain information about the behavior of previously
proposed robust detectors.
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Fig. 7.1 Energy detector against noise power uncertainty

First, the robust energy detector (6.1.15) is dealt with. The situation in Figure 7.1 is
as follows. A robust energy detector with the length » = 2080 is tuned for the
parameter values: ¢ = 10°, b = 128, ¢ = 1, SNR = -10dB and a priori false
detection probability is set to Pr = 0.1. The thick line in the figure illustrates the
influence of noise power uncertainty. When the noise power has its assumed
value 1, also the probability of false detection has its desired value 0.1. But if the
actual value of noise power differs from its estimated value, then a dramatic change
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occurs in the false detection probability. Even a difference of 5% in the value of
noise power causes an increase of Pr by 0.5. Thus, our robust energy detector is
very sensitive to uncertainty of noise power. The influence of noise power
uncertainty on the ROC curve of thee robust energy detector is shown in Figure
7.2. Merely a 10% uncertainty has a clearly visible effect. When the actual noise
power is higher than that estimated, the ROC curve slides toward the lower right
corner of the graph, indicating loss of performance. On the other hand, when the
actual noise power is smaller than that estimated, the threshold will be crossed very
rarely and our detector stops working. Dashed line in Figure 7.1 shows the
influence of noise power uncertainty for the regular energy detector. Both curves
are overlapping showing that high sensitivity is the property of the energy detector,
it is not just caused by the robustness of our detector.

10°

3
f”

107

Fig. 7.2 Influence of noise power uncertainty on the ROC curve of the robust energy
detector

In the derivation of the robust energy detector we modeled the primary signal also
as the Gaussian random process with the variance o, equal to the signal power.
Due to this assumption, our model has symmetry between the power of the noise
and that of the signal. When the signal-to-noise ratio is low, the dependence on the
accuracy of noise power estimation is strong, as shown in Figure 7.1. If the signal
is small, then also the influence of the precision of its estimate is small and can be
discarded. In the opposite case, when the signal-to- noise ratio is large, then the
dependence of the accuracy of the signal power estimation is the same as the
dependence on the accuracy of noise power estimation at small SNR and vice
versa. As the value of SNR is unknown in advance, in a general case both the
signal and the noise power must be estimated as accurately as possible.
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All the parameters of the detector

are the same as previously, but now we change the actual value of impulse
probability and measure its effect on false alarm probability. Results are depicted

Next, we investigate the sensitivity of the robust energy detector to the precision of
in Figure 7.3.

the estimate of impulse probability ¢ (4.3.27).
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Results in Figure 7.3 show that sensitivity to impulse probability uncertainty is
smaller and its influence is asymmetric in nature. When the actual impulse
probability is higher than estimated, then its sensitivity is strong. In the opposite
case, when the actual probability is smaller than estimated, there is almost no
influence. This claim can be reassured when comparing ROC curves in Figure 7.4.
For the values of ¢ = 107, 10~ and 10, curves are practically overlapping, only
unrealistically high probability ¢ = 0.1 causes visible degradation of detector
performance. In conclusion, the estimation of impulse probability does not have to
be as accurate as the estimation of noise variance or signal power and we even may
bias the shift towards low values of c.

Next, we consider a robust feature detector in Figure 6.15. As we used the
CFAR approach here, we need no information about the primary signal power. It is
necessary to have only information about one or more cyclic frequencies. But this
information is assumed to be known previously and thus no estimation is needed.
Thus, here our interest is in the influence of noise parameters ¢* and c.

Graphs in Figures 7.5 and 7.6 show clearly that the robust feature detector is less
sensitive to noise variance uncertainty than the robust energy detector. The model
of the robust feature detector is tuned to exactly the same parameters as the robust
energy detector before, the only difference is in the signal-to-noise ratio that is
-23dB. This time the actual noise power must be more than twice of the estimated
value to achieve the same 0.5 increase in false detection probability that was
obtained with only 5% of uncertainty in the case of the robust energy detector.
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Fig. 7.5 Robust feature detector against noise power uncertainty
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Simulated ROC curves for different noise variance uncertainty are depicted in
Figure 7.6 for the robust feature detector. To show the difference clearly, the
uncertainties used are much greater than those in Figure 7.2. When the actual noise
variance is larger than that estimated, then the decision threshold is crossed much
more often than assumed. For that reason, the corresponding ROC curve in Figure
7.6 is so short. In order to lengthen this curve, we need to increace the simulation
time dramatically. As the feature detector uses the FFT in its implementation, then
on the one hand, smaller noise variance than the estimated results will decrease the
number of false detection, on the other hand, correct detection probability remains
almost the same. For that reason the corresponding curve shows better performance
in the figure. But if we had used proper threshold level for the given value of noise
variance, then even better performance would have been available.
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Fig. 7.6 Influence of noise power uncertainty on the ROC curve of the robust feature
detector

Now we will consider the influence of the uncertainty of impulse probability on the
robust feature detector. The graph in Figure 7.7 and ROC curves in Figure 7.8 can
answer that question. Two differences between Figures 7.3 and 7.7 can be noticed.
First, similarly to variance, much smaller influence of impulse probability
uncertainty occurs here than with the robust energy detector. Another difference is
in the behavior of the curves. When the actual impulse probability increases, the
curve in Figure 7.3 is increased but the curve in the second figure shows a small
decrease instead. The effect in the figure is caused by the difference in the
treatment of an impulsive noise by the robust feature detector. As the robust energy
detector limits impulses, replacing them with the threshold value 7, the feature
detector replaces impulses with 0. This means that when impulse probability rises,
more noise samples are removed and false detection probability decreases slightly.
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overlapping and only the case ¢ = 0.1 has somewhat poorer performance. Thus, in
general, the robust feature detector is less sensitive to noise parameter uncertainty

in Figure 7.8 where again ROC curves for ¢ = 107, 10 and 10* are practically
than observed in the case of the robust energy detector.

But this does not mean better performance of the detector, as also a useful signal
hidden in the noise is removed together with impulsive noise. This is clearly seen
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Fig. 7.8 ROC curve of the robust feature detector against impulse probability uncertainty
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Finally, we will discuss the robust matched filter or the known primary signal
case. Here we assume that we have complete information about the primary signal.

Thus again, only things that must be estimated are noise parameters as was the case

with the robust feature detector.
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Fig. 7.10 Influence of noise power uncertainty on the ROC curve of the robust matched
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Matched filter is tuned to exactly the same parameters as the two previous
detectors; the only difference here is again in the signal-to-noise ratio, which is
-23dB. Compared to the previous detectors, the robust matched filter has the lowest
sensitivity to noise variance uncertainty, as shown clearly in Figure 7.9. The
influence of uncertainty of impulse probability on our robust matched filter is
shown in Figure 7.11. It is approximately the same as on the robust feature
detector. But as here we also limit noise impulses instead of removing them, the
actual value of ¢ causes false detection probability to increase slightly. A similar
fact can be identified also in Figure 7.12 where only the ROC curve visibly
different from the other ones corresponds to the value ¢ = 0.1.
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Fig. 7.11 Robust matched filter against uncertainty of impulse probability

In conclusion, all the robust detectors proposed are sensitive to the estimation
error of the Gaussian noise variance o°. A robust energy detector is the most
sensitive; an error of a few percent only can cause very large changes in false
detection probability there. The robust feature detector has lower sensitivity to an
estimation error and the robust matched filter, in turn, has the lowest sensitivity to
such an error.

Regarding to sensitivity to the estimation error of the impulse probability c, this
is smaller than in all three detectors. When comparing detectors against each other,
the robust energy detector is the most sensitive to estimation errors. The robust
feature detector and the matched filter have both the same low sensitivity. The
dependence on the accuracy of the impulse probability estimation rises when the
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probability of impulses is unrealistically high, above 0.01. In the region of lower

impulse probability almost no dependence on estimation errors exists.
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8 Conclusion of the Thesis

The objective of the current thesis was to work out a set of three robust detectors
for cognitive radio. This objective has been achieved successfully. We have an
algorithm for each detector to be practically implemented. Theoretical analytical
performance of those detectors was verified by computer simulation experiments.

An additional condition was that in the case of Gaussian background noise only
their performance must be almost as good as that of regular detectors. However,
when impulsive noise is added to the scene, they must continue working at the
same performance level. This additional condition was also fulfilled for all three
detectors, as proved by both analytical and simulated results. Thus, all three
derived detectors are suitable for use in cognitive radio, selection of the detector
depends mainly on the information about the primary signal available a priori.

The main contributions of the thesis are:

1. Introduction of a new model for impulsive noise. Impulsive noise was
modeled explicitly by a uniform distribution. We allow impulses to occur only with
certain probability and preserve the usual Gaussian noise component for most of
the time.

The uniform distribution is selected because of its maximum entropy property, i.e.
nothing is assumed to be known about the origin of the impulses. This noise model
takes into account that the impulses that disturb the detection based on Gaussian
assumption occur only with certain probability c¢. As such, the noise model is more
intuitively satisfying than other popular models for impulsive noise.

2. Introduction of the robust energy detector. In the current thesis we derived a
robust energy detector analogue for use in cognitive radio. In the merely Gaussian
noise background the derived detector works almost as well as the regular energy
detector. When the impulsive noise component appears, our robust detector
continues to work as before without impulsive noise in its input. Asymptotic noise
analysis was carried out and comparison of achieved analytical results showed
good accordance with simulation results. Comparison with other robust energy
detectors showed superiority of our model. The robust energy detector is suitable
for applications where almost nothing is known about the primary user signal.

3. Introduction of the robust feature detector. We derived a robust
cyclostationary detector analogue for use in cognitive radio. In the merely Gaussian
noise background, the derived detector works almost as well as a regular
cyclostationary detector. When an impulsive noise component appears, our robust
detector continues to work almost as well as without impulsive noise in its input.
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Asymptotic noise analysis was carried out and comparison of achieved analytical
results showed good accordance with simulation results. It was shown that if we
know the correlation between input waveform samples, then we can achieve even
better performance but our detector still works quite well without such knowledge.

The robust feature detector achieves much better performance than the
previously introduced robust energy detector if we have some preliminary
information about the periodicity of the primary signal. Thus, such kind of detector
is suitable for applications where some information about the primary user signal is
available.

4. Introduction of the robust matched filter. We also derived a robust detector
for a known primary signal — or a robust matched filter. In the merely Gaussian
noise background, the derived detector works almost as well as a regular matched
filter. When an impulsive noise component appears, our robust detector continues
to work almost as well as without impulsive noise in its input. Asymptotic noise
analysis was carried out and comparison of achieved analytical results showed
good accordance with simulation results. Comparison with other robust matched
filters showed advantages of our model against those compared. A robust detector
for a known primary signal demands exact knowledge about the primary signal, on
the other hand, it offers far superior performance than the other two detector types.

In conclusion, the task of the current thesis — to derive robust analogues to three
most widely used detectors for cognitive radio was completed successfully. The
results obtained are of great practical interest, as the need for opportunistic
spectrum sharing in urban areas is increasing daily.

8.1 Directions for Further Research

During work with this thesis, many new questions and problems arose. Some topics
briefly described below provide for future research.

In this research, it appeared that there is no known analytical solution for the
PDF of the output noise of a cyclostationary detector in the presence of the primary
signal. Output noise PDF can only be derived when a noise only acts at a detector’s
input. Thus, a common solution for this type of a detector is to fix the decision
threshold for a constant false detection rate and then find the probability of correct
detection through computer simulation. The core of the problem is in the fact that
the joint PDF of the product of two noncentral Gaussian variables has no known
analytical solution. When those multiplicands were independent, then moments of
resulting variable and a solution could be found by help of the central limit
theorem. But as the cyclostationary detector finds a signal through its inside
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correlation, this is not the case. Thus, solving this problem would be of high
practical value.

In the current thesis we only analyzed a single-cycle feature detector. In the
future work also multi-cycle detectors should be studied.

Chapters 5 and 7 are based mostly on computer simulations. The author
believes that in most cases, also analytical expressions can be derived for the
performance of regular detectors in impulsive noise and the influence of noise
parameters uncertainty on the derived robust detectors.

This thesis focused on binary hypothesis. The detector had to make one out of
two decisions — the primary signal is present or absent. Another possibility, so-
called three-way detectors, exists. When the detector cannot make a decision in
favor of absence or presence of the primary signal, then it says, “I do not yet” and
collects more data to make a decision later. Such an approach used with robust
detectors would be interesting to study.

One of the most interesting problems to solve in future is to derive recursive
algorithms for noise parameter estimation. In brief, the problem is as follows. In
order to correctly estimate noise parameters we need to know intersection between
the Gaussian and the impulsive noise. But in order to calculate this threshold we
need to know estimates of noise parameters. Thus, there must be some initial
estimate of noise parameter values and recursive algorithm that moves towards
actual values themselves.
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Abstract

The thesis handles detectors in cognitive radio. The main goal of the research is to
derive robust analogues to three main detector types proposed for use in cognitive
radio applications. Those three are: an energy detector, a cyclostationary detector
and a matched filter.

License based radio spectrum allocation is unsuitable for increasing demand for
excess bandwidth for mobile users. Frequency channels dedicated for mobile users
or wireless access are under heavy load while at same time many licensed
frequency bands are highly underutilized. Cognitive radio technology can offer a
helping hand here allowing dynamic spectrum access. Licensed or so called
primary user can still use its dedicated radio resources. But when they happen to be
free, then secondary users are allowed to use this idle resource opportunistically for
their own purposes.

Correct detection of presence or absence of the primary user is very important for
cognitive radio. There are many well known solutions for this detection problem
but they all share the same problem. Those solutions are not meant to work in the
presence of impulsive background noise. Due to the man-made impulsive noise
component present today, such detectors would perform badly, thus degrading the
performance of whole cognitive radio system.

Three robust detectors are derived in the current work in order to solve the
problems described. All of them were found to work well both with and without
the presence of the impulsive noise component.

A new improved model for impulsive noise is proposed. Joint probability density
function is derived for the sum of Gaussian and proposed impulsive noise. Based
on the derived PDFs, Maximum Likelihood Estimators are derived for noise
parameters.

Robust detectors are derived and their asymptotic performance is presented.
Analytical results are compared with computer simulations, showing good
agreement between the two. Finally, our solutions are compared with the other
robust detectors proposed in order to demonstrate superiority of our work.
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Kokkuvote

Kéesolev doktoritod kasitleb kognitiivses raadios kasutust leidvaid detektoreid.
T66 pohieesmirgiks on vilja tootada impulssmiirade suhtes robustsed analoogid
kolmele enimkasutatavale detektoritiiiibile, milleks on energiadetektor,
tsiiklostatsionaarne detektor ja sobitatud filter.

Seoses mobiilsideseadmete jirjest suuremahulisema kasutamisega osutub senini
rakendust leidnud raadioeetri litsentsipdhine jagamine ebaefektiivseks. Mobiilside
jaoks eraldatud sageduskanalid todtavad suurel koormusel, kuid samas leidub
ohtralt muuks otstarbeks eraldatud kanaleid, mille reaalne kasutatavus on véga
madal. Lahendus seisneb kognitiivse raadio tehnoloogias, mis vodimaldab
raadioeetri diinaamilist jagamist kasutajate vahel. Raadiosagedusloa omanik, nn
primaarne kasutaja, saaks ka sellisel juhul alati kasutada talle eraldatud kanaleid.
Kuid juhul, kui viimane neid ise parajasti ei kasuta, oleks avatud voimalus koigile
teistele, sekundaarsetele kasutajatele vaba ressursi oportunistlikuks kasutamiseks.

Kognitiivse raadio juures on viga oluliseks aspektiks voimekus digesti tuvastada
primaarse kasutaja signaali olemasolu v&i puudumist. Selle {ilesande
lahendamiseks on vélja tootatud mitmeid tehnilisi lahendusi. Varasemate
lahenduste puudus seisneb selles, et nende véljatootamisel aluseks voetud
miramudel ei vasta tdnapdeval tihti enam tegelikkusele. Inimtekkeliste
impulssmiirade mojul ei todta sellised lahendused enam korrektselt, mistdttu nende
kasutamine tooks kaasa kognitiivse raadiosiisteemi t66 kvaliteedi markimisvadrse
languse.

Ulaltoodud pdhjustel on kiesolevas t60s vilja todtatud kolm robustse detektori
tiitipi. Koik kolm tootavad lihtemoodi hésti, olenemata sellest, kas taustamiirad
sisaldavad impulsskomponenti v3i mitte.

T606s on kirjeldatud enamlevinumaid detektoritiilipe ja nende sooritust nii Gaussi-
kui impulssmiira korral.

To606s esitatakse uus ja parem impulssmiirade mudel seni kasutusesolevate asemel.
Seejérel uuritakse impulss- ja Gaussi miira tihist jaotusseadust nii iihe- kui mitme-
mdodtmelisel juhul. Saadud jaotustiheduste pohjal leitakse maksimaalse toeparasuse
hinnangud miira parameetrite jaoks.

Uurimistulemusena esitatakse kolm robustset detektorit, leitakse nende
asiimptootiline sooritus ja vorreldakse saadud analiiiitilisi avaldisi arvuti-
simulatsioonide tulemustega. Teoreetiliste ja simuleeritud tulemuste kokku-
langevus on kdikidel juhtudel hea. Lisaks vorreldakse t66s meie detektoreid varem
viljapakutud robustsete detektoritega demonstreerimaks veel kord, et meie
tulemused on varasemast paremad.
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Abstract—In this paper we propose a robust energy detector
for spectrum sensing in cognitive radio systems. The detector
is derived by modelling the noise process as consisting of two
components, Gaussian noise and impulsive noise. The impulsive
noise is modelled using a uniform distribution that appears with
a certain probability. A convenient approximation using the max
operator is then applied to the resulting probability density
function to gain mathematical tractability. The performance of
the proposed detector is analysed theoretically and the results of
the theoretical analysis are verified in our simulation study.

Index Terms—Cognitive radio, spectrum sensing, robust detec-
tion

I. INTRODUCTION

Cognitive radio is a promising new technology that provides
a way for opportunistic and efficient reuse of radio spectrum
resources. The key enabler to this technology is reliable detec-
tion of spectral holes which could be used by the secondary
users. In the literature there are several detectors proposed for
this purpose [1], [2], most popular of them probably being the
energy detector. The popularity is partly because of simplicity
of the energy detector but also because it does not need any
assumptions on the waveforms emitted by primary users.

Spectrum sensing for cognitive radio has to work with
several impairments like fading, shadowing, and presence of
noise. Usually the noise is assumed to be white and Gaussian
but in real life situations this does not need to be the case.
In particular one has to consider the presence of impulsive
noise, both man-made and natural. Non-Gaussian ambient
noise is a major impairment to signal processing techniques
that are based on a Gaussian assumption [3]. To cope with the
impulsive noise one needs to build some robustness [4] into the
detector. For measurement results concentrating on impulsive
noise see e.g. [5], [6] and references therein. A robust detection
algorithm for spectrum sensing in cognitive radio applications
based on L, norm has recently been proposed in [7].

In this paper we will develop an energy-like detector that
is not sensitive to impulsive noise. The derivation is based
on modelling the impulsive component of the noise explicitly
by a uniform distribution and preserving the Gaussian noise
component as usual. The uniform probability density function
(PDF) have been used to model heavy tail noise before in e.g.
[8]. In the analysis part of the paper we derive the formulae
for probabilities of detection, Pp, and false alarm, P, of the

978-1-4577-1348-4/11/$26.00 ©2011 IEEE

proposed detector but also for the time required to reach a
given Pp and Pr level with certain signal and noise powers.

II. SYSTEM MODEL

We consider the problem of detecting the presence of
primary users in a given frequency band without any prior
knowledge of primary transmissions. The detection problem
we need to solve is [2], [9]

Hy: z(t) =v(t)

Hy :z(t) = s(t) +o(t), M

i.e. the received waveform z(¢) may be noise v(¢) only or
it may consist of a sum of signal of interest s(¢) and noise
v(t) and the variable ¢ denotes discrete time. The detector has
to decide which of the hypotheses is more likely given the
received waveform z(t). We assume that the noise v(¢) com-
prises a weighted sum of zero mean additive white Gaussian
noise process and an additional impulsive noise component.
The impulsive noise component is assumed not to be present
most of the time but appear with certain probability ¢ so
that the impulsive component obeys the probability density

function
c

“b—a

with 0 < ¢ < 1 and @ and b being the lower and upper limits
on the values that the impulsive noise can take and d(-) denotes
the Dirac delta function. In practice a and b may for instance
be the smallest and largest numbers that can be represented at
the output of analogue to digital (A/D) converter. We assume
that b = —a. The uniform distribution is selected because of
its maximum entropy property i.e. there is nothing assumed to
be known about the origin of the impulses. For instance the
impulses may be due to failures of the A/D converter or some
interferences that are not well modelled by a Gaussian noise
process.
Thus the noise v(¢) is a sum of two components

u(t) = vg(t) + vi(t). (€)

fi(x) + (1= e)d(x), @)

The noise model obtained this way is intuitively very satisfying
as most of the time the noise is Gaussian and in addition to
that there are relatively rare impulses. It is believed that this
model represents the actual situation rather accurately.
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The PDF of v(t) can be found as convolution of the
probability densities of its additive components.

/°° l—c _=2 { ¢

e 3?7 | —
oo V2TO b—a
—u(r—z—0b)+(1—c)d(r —x)dr
l—c _=2

202

= (u(t —x —a)

()

2o

*o—a) {f@f/;;)
()

where u(t) is the unit step function and erf(x) is the error

function
2 [T _ 2
erf(z) = —/ e ¥ dx.
VT Jo

Unfortunately this PDF is not convenient for designing a
detector and to continue we invoke some approximations. First
we assume that b—a is much larger that o and also much larger
than |s|. This is a reasonable assumption if we think of a and
b being the limits of the dynamic range that is available for
the waveform. Then the impulsive noise can take any value
inside these limits and in fact it is distinguishable from the
Gaussian noise component only if it takes on large values as
compared to the rest of the waveform components. In this case
the difference of the error functions is approximately constant

r+a—

in the range of [a, b].
s
~ 1.
V20 )>

1 z+b—s
3 (erf ( o )
Second, let us approximate the sum of two remaining
probability density functions, Gaussian and uniform, for any
given value of = by the one that has the largest absolute value.
In addition we assume again that the data is collected via an
A/D converter operating in the range a < z(t) < b so that
the Gaussian probability density function with infinite support
gets limited into the interval [a,b]. Another interpretation of
changing the summation with picking the one with largest
absolute value would be that if impulses are present, they
replace the original samples as it would in fact be in case

of A/D converter failures.

The approximation is illustrated in Fig. 1 with ¢ = 0.3,
b = —a = 50 and o 5. Note that we have selected
the difference between b and o to be relatively small and
the probability of impulses unrealistically high to make the
differences between the curves clearly visible. It can be seen
that the approximation is very close to the true probability
density function. The differences appear in the area where the
Gaussian PDF goes over to the uniform tail and at the ends
of the interval [a,b]. The larger is the difference between the
standard deviations of signal and the Gaussian noise from one
side and the impulsive noise interval b— a from the other side,
the better is the invoked approximation. The main benefit from
the approximation is that it leads to tractable mathematics.

“

erf(

T T T T T T T T T
exact
approximation

% 0.03+ /

[
/ !
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Fig. 1. Comparison of exact PDF and the approximation used in this paper

for a = —50, b =50, ¢ = 0.3 and o = 5.

The noise v(t) is thus modelled as consisting of two com-
ponents with the largest component determining the outcome
entirely at each time instant

[v(t)] = max[|vg (t)], |vi(t)]]-
III. LIKELIHOOD RATIO

Let us now continue with derivation of an energy-like
detector using the noise model just derived. The conditional
probability density of the received waveform being noise only
can with these approximations be written as

5

=2
202

C
L,E> a<z<b

otherwise

l1—c

p(a|Ho) = { Pomax <man€
07

and the conditional probablility density of the received wave-
form being signal plus noise as

1-c¢ ST
p(fﬁ‘Hl) = /)’1 max | ———¢€ 2(6£L+U§)7
V2n (02 +02) b—a
)
if @ < z < b and O otherwise. Let us denote the variances
appearing in the expressions for the two hypotheses as

=0
=1

2 Tn
oy =
l 2 2
{ on + 07
With this notation we can express the densities above as

_le)?
202

l7b‘;a> a<z<b

otherwise

l1—c

(x| H)) = [5; max (\/ﬁﬂz e

®

The normalization factors 3; can be found by solving

b
[ plaltian =1 ©)
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for ;. This results in

1 R YA
[)’l—{(l c)erf( 2012>+c<1 b—a>} (10)
and
2
m=—20%In (166 V;“;) an

is the intersection point of the Gaussian and uniform distribu-
tions.

We can give to PDF-s of z in the interval a < x < b a
more convenient form for future derivation as

a
3
/N
H
1o
S
23
Be
~—

1—¢ Nk
p(z|H) = sl =0 max |e >
27rUl2
1
_ ﬁl( C) (12)
\/271'012
7#min<\z|2 —2071In (L 27””2))
Py » [ T—c b—a
e ! .
PDFs of y = 22 are then p(y) = 22} and hence
1—¢) —5 min(ym)
p(ylHl) _ ﬁl( (,)e 2512 min(y,m ) (]3)

\V2myo? ’

Suppose that we have made N observations of the variable
y and we have collected these observations into a vector y.
Also assume that the observations at different time instances
are statistically independent of each other. Then the joint
probability density function is a product of the individual
probability densities

p(y | H) =Tz plyn | ), 1=0,1. (14)
The likelihood ratio for the above hypothesis reads
N ==L min(yn,m)
_ 11 B foge i
to =117 o g (Y

Taking the logarithm of both sides of (15) and simplifying we
readily obtain the log-likelihood ratio

N 20_2
ily) = 1(?”) (16)
0
N
1 .
Z min(yp, 7 ) +5.2 z min(yn, 7o)
n=1 0 n=1

Our detector thus needs to decide in favour of H; if the
log-likelihood ratio is larger than a threshold. Otherwise the
hypothesis Hj is selected.

IV. ASSYMPTOTIC ANALYSIS FOR LARGE N

The detector derived in the previous Section computes if

1 1
2N me Yns 7o) — 2N ;mm Ynom) >y (17)
where

1210 ()

We thus need to find a difference between weighted arithmeti-
cal means of saturated variables and compare the result to a
threshold in order to perform the detection.

Let us concentrate on the variables under the summations
in (17) and define a new variable zj, as

2 = h(y) = min(y, m), k=0,1. (18)

The function h(y) is a saturation nonlinearity. The probability
density function of the output of z, = h(y) is given by [10]

pa(en) = 22

dy ly=n;!

19)
(2k)
We need to investigate probability density functions in four
different cases, two sums in (17), k = 0, 1 and two hypothesis
[ = 0,1. Substituting the probability density functions of y
from (13) into above in those four cases and combining the
results we can reach a common expression covering all the
cases as
Bil—c) -3&
plze|H) = (72)6 202
V2moq 2
e I(no,m1) + 62k — M) Okt
2b./z ’

where II(c,d) is one between ¢ and d and is zero other-

wise, O, = [i(1 — c)mg {erf( 2’(’7‘2) — crf< 2’(1702)} +

/y’lc(l \/W ,mp =1,if l =1 and k£ = 1 and is zero
otherwise, m2 =1,if Il =0 and k£ = 1 and is zero otherwise
and mg = 1,if | = 1 and £ = 0 and is zero otherwise,
my =0, if I =0 and k = 0 and is one otherwise.

This distribution has mean

1L(0, 7m, ) (20)

+mo

7
Elz|H] = Bi(l1-c¢) {a?erf( 2”";) 21)
9]
201 T]ml 77"’1
c 3 3
+%( £ —ng )ma + bk,
and second moment
7,
E[Z2|H)] = Bi(1-c¢) {BUferf ( 2’2‘;) (22)
1

20} -
B l;lml e (1, + 3012)

5
— 03 )ma + 120k
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The crosscorrelation between zg and z; is perfect if 23 < 79
and in this case E[z9z1|H;] = E[22|H;]. This happens with
probability

Mo 7
P(Zl < 7]0) = / [)Z(Z1|Hl)d21 = ﬁl(l — c)erf < %) .
Jo 20
(23)
If 21 > no, 20 = 1o and hence E[zpz1] = 1noE., >n,l21],

where E ~p,[21] is the mean of z; above 7. This happens
with probability 1 — P(z1 < 19) and the cross-correlation is
therefore

Blaoz|Hi) = P(a1 <o) Elz3|Hi) 24

+[1 - P(Zl < 7]0)]7/0EZ1>7]!) [Zl‘Hl}

Examining (17) we see that to proceed we need the moments

of the variable
1 1

= —520— =—5Z%1- 25
W 53 T 527 (25)
The mean of w is
Elzo|H)] _ Elz1|H)]
Elw|H)| = 202 - 202 (26)
the second moment is
E[23|H)] 2E[z021|H)] E[23|H))
Elw?|H)] = =200 ; 27
Lw”} ] 4o 40202 4ot @7
The variance equals
oty = E[w’|Hi] — E*[w|H)] (28)

Let us now note that according to (17), the detector com-
putes a sample average of N i.i.d. random variables w.
According to the central limit theorem [10] the distribution

of such a sum approaches Gaussian with mean E|w|H;] and
2
9Hy

variance —*+, [ = 0,1 when N increases, independent of
the shape of the original distribution of the variables w. We
can therefore for large N evaluate the probability of correct
detection as

/fpw(w | Hy)dw
= N /oo exp (_—(w — Elw| HlDzN) dw

Pp = 29)

\/ﬂam 2”?{1
_ 1 (= Ew|H])VN
= ielfc <\/§UHII> )

The probability of false alarm is correspondingly
o0
/ pw(w | Ho)dw
~

[ (e B N,

Pr (30)

\/%UHO 20-?1’0
1, ((y=Elw| H)VN
= ierfc (\/%]) .

The receiver operating characteristic (ROC) of the proposed
detector is shown in Fig. 2. The characteristic is computed for

i B e e
- i /,//
Y - -
08 [ // |
( Vs B
y /
\ //
0.6 ~ -
a
-9
04 - -
|
| c=09 —
/ c=07
0277/ c=05
/ -
/ c=03
| c=0.1
0 ! ! ! !
0 02 04 0.6 08 1

Pp

Fig. 2. Receiver operating characteristic.

02=103,02=1,b= —a =100 and N = 1000. The blue
line corresponds to probability of impulses ¢ = 0.9, cyan to
c= 0.7, green to 0.5, magentatoc = 0.3 andred to c = 0.1. It
should be noted that the parameters have been selected to make
the curves clearly observable. If required, the ROC curves can
be moved toward the upper left corner by increasing N so that
the detector becomes more resistant to impulsive noise for the
price of increasing the detection time.

The threshold « and the number of samples N that are
required to reach given Pr and Pp can be found by solving
system of equations formed by (27) and (28)

{ \/EUHU erfc_l(ZPF) = [/Y - E(W‘HO)}\/N
V20p, erfc™ (2Pp) = [y — E(w|H)]VN ~

Solving the system for N and vy we obtain that in order to
reach the operating point (Pg, Pp) we need

(€Y

ou, erfc™! (2Pp)—op, erfc™ (2Pp) 2
N=2 { Bl — Bl
_ om, erfcT (2Pp)B(w|Hy)—ou, erfc 2Pr)E(w]|Hy)
B om, erfc™ ! (2Pp)—an, erfc™ (2Pp)

(32)

V. SIMULATION RESULTS

First we investigate how many samples should the detector
involve for our analysis to apply. In the simulation example we
have used the following parameters to compute the probability
of detection Pp(y) : 0, = l,05 = 2,¢ = 0.01 and
b = —a = 100. In Fig. 3 one can see that with N = 5,
the simulation and theory vaguely resemble each other. The
situation improves if we increase the number of samples to 15
and already with N = 30 the theoretical curve and simulation
dots are rather close to each other. The simulation points
are averages over 1 million independent trials. We note that
N = 30 is much smaller than N found from (32) for signal
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to noise ratios required for proper operation of the detector in
cognitive radio applications. A similar result can be obtained
for the probability of false alarm Pp.

Fig. 3. Probability of detection.

Fig. 4 depicts the dependence of the probability of false
alarm from the number of samples N for ordinary energy
detector if there is no impulsive noise (black dashed line). It
also shows the curves corresponding to the ordinary energy
detector (blue line) and the proposed robust detector (magenta
line) in the presence of impulsive noise with intensity ¢ =
0.001. For comparison we show the results of the robust L,
norm detector with p = 1 (red line) and p = 1.5 (green line)
of [7] in the same noise. The proposed detector operates in
these conditions almost as well as the ordinary energy detector
in Gaussian noise and outperforms all the others.

In Fig. 5 we present the probability of missed detection
P, = 1 — Pp as the function of SNR. The blue and
red lines are the theoretical results with ¢ = 1073 and

01201

Pfa

i i i ;
20 40 60 80 100 120 140
N [no. of samples]

Fig. 4. Probability of false alarm as function of N.

O ¢=10E-3, experimental

O ¢=10E-7, experimental

i - T S ¢ = 10E-3, theory
S e o ¢ = 10E-7, theory

Pm

i Y
-15 -14 -13 -12 =1 -10 £ -8 -7

SNR [dB]
Fig. 5. Probability of missed detection as function of SNR.

¢ = 1077 respectively and the circles and diamonds represent
the corresponding simulation results. One can observe a fast
decrease of the curves as SNR increases. One can also observe
that the intensity of impulsive noise ¢ does not influence the
result much.

VI. CONCLUSIONS

In this paper we proposed a robust energy detector for
cognitive radio applications. Error analysis of the algorithm
was carried out and the number of samples required for given
performance was analysed. It was shown that the proposed
algorithm outperforms the ordinary energy detector in the
presence of impulsive noise.
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ABSTRACT

This paper studies spectrum sensing in the context of cog-
nitive radio. The proposed detector is robust with respect
to disturbing impulses, that are in practice present in many
cases in addition to the Gaussian noise. The presence of im-
pulsive noise deteriorates the performance of the detectors
derived using Gaussian assumption. In the paper we model
the noise explicitly consisting of two components and derive
the proper detector. Asymptotic analysis of the detector is
then presented and formulae for probabilities of correct de-
tection and fault alarm are derived. The theoretical findings
are verified in our simulation study.

1. INTRODUCTION

Traditionally the spectral bands required for work by any ra-
dio equipment are licensed to the users and cannot be uti-
lized by anybody else even if the licensed users do not use
the spectrum at the given location and time by themselves.
This leaves a large amount of radio spectrum unused in prac-
tice. Recently the cognitive radio paradigm has emerged that
can overcome this problem by allowing unlicensed users op-
portunistically access the spectrum, given that they do not
interfere with the primary users. In order to do so the sec-
ondary users need first to detect if the primary users are using
the spectrum or not. Because of radio effects like shadowing
and fading the signal of the primary user may be rather weak
at the position of the secondary user. This leaves the sec-
ondary user with the requirement of detecting a potentially
weak primary user signal in unknown noise. For instance
IEEE 802.22 suggests that the cognitive radio needs to de-
tect the primary signals that have power level as low as -22
dB below the noise level [1].

In the literature there are several detectors proposed for
this purpose [2, 3], most popular of them probably being the
energy detector. The popularity is partly because of simplic-
ity of the energy detector but also because it does not need
any assumptions on the waveforms emitted by primary users.

The noise is usually assumed to be white and Gaussian
but in real life situations this does not need to be the case.
In particular one has to consider the presence of impulsive
noise, both man-made and natural. Non-Gaussian ambient
noise is a major impairment to signal processing techniques
that are based on a Gaussian assumption [4]. The examples
of the impulsive noise include man—made noise like car ig-
nition, emissions from the microwave ovens or natural im-
pulsive noise due to e.g. lightning. For measurement results
concentrating on impulsive noise see e.g. [5, 6] and refer-
ences therein.

In this paper we will develop an energy-like detector that
is not sensitive to impulsive noise. The derivation is based on
modelling the impulsive component of the noise explicitly

by a uniform distribution. We allow the impulses to occur
only with certain probability and preserve the usual Gaussian
noise component for most of the time. This results in an
intuitively rather satisfying noise model.

In the analysis part of the paper we derive the formulae
for probabilities of detection, Pp, and fault alarm, Pr, of the
proposed detector but also for the time required to reach a
given Pp and Pr level with certain signal and noise powers.
Finally we present some simulation results. The simulation
results are consistent with our theoretical findings.

2. ROBUST DETECTOR

‘We consider the problem of detecting the presence of primary
users in a given frequency band without any prior knowledge
of primary transmissions. The detection problem we need to
solve is [3, 7]

Hoy = x(t) = v(

)
H, :x( ) Ot(l‘

)s() +v(t), M

i.e. the received waveform x(7) may be noise v(¢) only or it
may consist of a sum of signal of interest s(¢) and noise v(z)
and the variable ¢ denotes discrete time. The signal of inter-
est, s(¢), is assumed to be passed through a slow Rayleigh
fading channel with attenuation ¢(z). The detector has to
decide which of the hypotheses is more likely given the re-
ceived waveform x(r). We assume that the noise v(¢) com-
prises a sum of zero mean additive white Gaussian noise
vg(t) process and an additional impulsive noise component
vi(t). The impulsive noise component is assumed not to be
present most of the time but appear with certain probability
¢ so that the impulsive component obeys the probability den-
sity function (PDF)

c
b—a

filx) = +(1-c)é(x), 3]
with 0 < ¢ < 1 and a and b being the lower and upper limits
on the values that the noise can take. In practice a and b may
for instance represent the smallest and largest numbers that
can be represented at the output of analogue to digital (A/D)
converter that is included at the input of the processing sys-
tem. Note that we have limited also the Gaussian noise com-
ponent to lay between a and b resulting in a minor deviation
from Gaussianity. The deviation is, however, small because
we assume that b — a is much larger than the standard de-
viation of the Gaussian noise. The uniform distribution is
selected because of its maximum entropy property i.e. there
is nothing assumed to be known about the origin of the im-
pulses. This noise model takes into account that most of the
time the noise is Gaussian and that the impulses that disturb
the detection based on Gaussian assumption occur only with



certain probability c¢. As such, the noise model is more in-
tuitively satisfying than other popular models for impulsive
noise like Laplacian.

The noise v(¢) is modelled as consisting of two compo-
nents with the largest component determining the outcome
entirely at each time instant [10]

v(t) = vg(t) +vi(r) =~ max[vg (1), vi(r)]. 3)

Let us denote the variances of primary user signal and
noise as 62 and G2. Let us also denote a common variance
as

2
2 O, [=0
GI*{G,%-FGSZ I=1

With this notation we can express the conditional PDF-s cor-
responding to our two hypotheses for / = 0,1 as

[x~
l—c 20, c
p(x|H) = ﬁ,max( T i 7a> a<x<b
0, otherwise

“

The normalization factors ff; can be found by solving
[? p(x|H;)dx = 1 for B;. This results in

-1
B = |:(l—c)erf< 2’1%)%(1—1{”2)} )

where erf(x) = f J5 exp(—t)dt and
\/27mo?
m=—-20m| < ! )
l—c b—a

is the intersection point of the Gaussian and uniform distri-
butions.

We can give to PDF-s of x in the interval @ < x < b a more
convenient form for future derivation

2
X
1—c - c

e 207
\/2ma?

1
"b—a
Bi(1—c) —szmin(ixem)
—— .
\/2mo?

PDFs of y = 22 are then p(y) = 2 and hence

Bil—c) -

2myo?

p(x|Hy) B max

-
E min(y,n;)

pOY|H) = )

Suppose that we have made N observations of the vari-
able y and we have collected these observations into a vec-
tor y. Also assume that the observations at different time in-
stances are statistically independent of each other. Then the
joint probability density function is a product of the individ-
ual probability densities

ply | H) =TI p(yn | H), 1=0,1. ®)

The likelihood ratio for the above hypothesis reads

1
E}f’"‘"(hx M)

H Ge M ©)

0'1 z‘fmlﬂ(vu o)
%

Taking the logarithm of both sides of (9) and simplifying we
readily obtain the log-likelihood ratio

ﬁ?@?)
71 10
(ﬁoo'l 10

207 Z min(y,,Mo)

InL =

2 2 Zmln ymnl

Our detector thus needs to decide in favour of H; if the log—
likelihood ratio is larger than a threshold. Otherwise the hy-
pothesis Hy is selected.

If there is no impulsive noise i.e. ¢ — 0 we have

limn, = —2067In(0)=o
c—0
1 =1
C%BI
o} oF
lim 7ln Bi 0 71 0
c—02 Bio? o}
and the test reduces to an ordinary energy detector
2 2 2
050 lo7
—):yn =L In (—%) (11
of — o5 o

3. ESTIMATION OF UNKNOWN PARAMETERS

Parameters 7y and 1; are dependent on the Gaussian noise
variance Oy, signal variance o, and the impulse probability c.
Those parameters may not be known in advance and if they
are not, they must be estimated from the input signal. In some
applications it is known for certain that during some times
the primary user is silent and during some other times it is
working. The question is about all the other times. For those
applications we derive the maximum likelihood estimators
for 0,, o; and ¢ below. For other applications we can use
the techniques outlined in e.g. [8]. In [9] it is shown that
if we can observe a length N noise only realization then the
maximum likelihood estimator of noise variance is

R 1 2

6, = — x(i). (12)
Ny €My

Here M, is a set that contains all signal samples that satisfy

X2 < —26,? (ln o, +1In %) and N is the number of

elements in set M. Let M, and N, denote the complementary
set. If signal of interest s(¢) is also present then the log—
likelihood function can be written as

N Bi(1=o)
InL = ;{IHW

1 .
— Iny/oZ+02— mmln(xzml)
n s

13)



Derivative of the log-likelihood function respect to o, equals

N
8@ o2+ o?
62+62 zz +Zcz+62' (14
Equating (14) to zero results in
1 A
o =+~ ) ¥()-6. (15)
1 ieM

In order to obtain estimate for ¢ let us compute the derivative
of log-likelihood with respect to ¢

0 cN—N,
—InL= 16
ac " c(le—1) (16)
Setting above to zero we get an estimate
N>
= —=. 17
=~ an

4. PERFORMANCE ANALYSIS

In this Section we perform the asymptotic analysis of the de-
tector in case of large N. We first note that the detector com-
putes if

11 Y
262 N Z min(y,, Mo) —
n=1

IR
20 g2 N L min0mm) >y (18)
0 1 n=1

2

-

We thus need to find a difference between weighted arith-
metical means of saturated variables and compare the result
to a threshold in order to perform the detection.

Let us concentrate on the variables under the summations
in (18) and define a new variable z; as

where

g =h(y)=

The function A(y) is a saturation nonlinearity. The probabil-
ity density function of the output of z; = h(y) is given by
[10].

min(y, ), k=0, 1. (19)

Yy
pe(z) = Li(k) (20)
Ay y=n"(z)
For sake of simplicity let us assume that b = —a. We need to

investigate PDF-s in four different cases, two sums in (18),
k= 0,1 and two hypothesis / = 0, 1. Substituting (7) into
above in those four cases we get the following four PDF-s:

(]
B=9) " 10, ) @1

272007

+cPo < - @) d(z0 — o)

p(zolHo) =

ifl=0and k=0,
_a
Boll—c) s

/ 2
277105

p(alHy) = (0,m0) (22)

=TI )+ (1 =516 —m)
ifl=0and k=1,
Bi1—o)

plaolH) = “e——=e 2°2n<o o) (23)

1/27(71061

+ [B1(lc) (erf l%.jlzferf /J’%)
+Bic <1 - @)} 8(20—100)

if /=1 and k = 0 and

l-¢) —1H
plzilH) = Mﬁ T I1(0,11) (24)
2771 67
(b —
+M5(ZI*UI)

if I =1 and k = 1. The function I1(c,d) equals one between
c and d and is zero otherwise. The cases are illustrated in
Figure 1.

@) 1=0,k=0 b) 1=0,k=1

0ot om
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Figure 1: Probability density functions of the four cases.

Combining the results we can reach a common expres-
sion covering all the cases as

1—¢) 2=
) = PUZD e, 05)
2072k
+my Poc II(no, M) + 6 (zx — M) Okt
2y

where 6 = Bi(1 — c)m3 {erf<\/%> —erf<\/%>}

+ﬁlc<l— vZm“>.,ml:1, if /=1 and k = 1 and is zero




otherwise, my = 1, if / =0 and k = | and is zero otherwise
and m3 = 1,if / = 1 and k = 0 and is zero otherwise, my4 = 0,
if I =0 and k = 0 and is one otherwise.

This distribution has mean

ElzlH] = Bi(1-c) {Gferf( ;’;/;) (26)

Nm
B 26721, e*ﬁ
T
oc , 3 3
+€7(7112 —1ng )ma+MkBy

and second moment

E[|H] =

Bi(1—c) 30'14erf< Z)’j}) @7

262 _my
-\ SO 3, 307)

5
+- (0] =g )ma+ 17 6.

The crosscorrelation between zg and z; is perfect if z; < 1
and in this case E[z0z1|H] = E[z3|H;). This happens with

probability
o
207 )

(28)
If z1 > Mo, 20 = Mo and hence E[zoz1] = NoE;, >, [21], Where
E; >nolz1] is the mean of z; above 1g. This happens with
probability 1 — P(z; < 1o) and the cross-correlation is there-
fore

*To
P(z1 < 1Mo) :/0 pe(z1|Hy)dz1 = Bi(1 C)eff<

= P(z1 < M0)Ez|H)) 29)
+[1 7P<Zl < no)]n0E21>710 [Zl ‘Hl]

E|[z0z1|H]]

Examining (18) we see that to proceed we need the mo-
ments of the variable
1 1
W= —520— =—521- 30
208 © 20’12Z1 50)
The mean of w is

Elz|H)] El[u|H)]

ElwlH] = 207 20 €1y}
and its second moment equals
E[w?|H)] = EZi?I] _ ZEAL[?(;;;‘;{I] E[ji\f/]_ 32)
The variance is equal to
op, = E[w*|H)) — E*[w|H)]. 33)

Let us now note that according to (18), the detector com-
putes a sample average of N i.i.d. random variables w. Ac-
cording to the central limit theorem [10] the distribution of

Probability of mise Pr
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Figure 2: Probability of missed detection as function of SNR.

such a sum approaches Gaussian with mean E[w|H;] and
2
O;
variance %, ! = 0,1 when N increases, independent of the
shape of the original distribution of the variables w. We can
therefore for large N evaluate the probability of correct de-
tection as

Py = /: pw(w | Hy)dw (34)
_ Ve [ Y= EW [ VN
= 2ertc < \/EGH] ) s

The probability of fault alarm is correspondingly

P — '/:pw(w\Ho)dw (35)
_ 1o ((r=Ew[H])VN
= 2erfc( \/EGHO )

The threshold ¥ and the number of samples N that are
required to reach given Pr and Pp can be found by solving
system of equations formed by (34) and (35)

V20, erfc™ ! (2PF) = [y— E(w|Ho)|VN
1 . (36)
V2o, erfe™ (2Pp) = [y— E(w|H)]VN
Solving the system for N and y we obtain that in order to
reach the operating point (Pr, Pp) we need

- _ 2
on, erfc™' (2Pp) oy, erfc™ (2pr)

N=2 E0wTHo)~EOw )

. (37
o, erfc” (2Pp)E(w|Ho) o, erfc (2Pr)E(wlH)) (7

on, erfc™' (2pp)-op, erfc™' (27r)

5. SIMULATION RESULTS

In Figure 2 we present the probability of missed detection
P,, = 1 — Pp as the function of SNR. The blue and black lines
are the theoretical results with ¢ = 1073 and ¢ = 10° respec-
tively and the circles and diamonds represent the correspond-
ing simulation results. One can observe a fast decrease of the
curves as SNR increases. One can also observe that the inten-
sity of impulsive noise ¢ does not influence the result much.
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Figure 3: Probability of fault alarm as function of N.

Figure 3 depicts the dependence of the probability of
fault alarm from the number of samples N for ordinary en-
ergy detector if there is no impulsive noise (black dashed
line). It also shows the curves corresponding to the ordinary
energy detector (blue line) and the proposed robust detector
(magenta line) in the presence of impulsive noise with inten-
sity ¢ = 0.001. For comparison we show the results of the
robust L, norm detector with p =1 (red line) and p = 1.5
(green line) of [11] in the same noise. The proposed detector
operates in these conditions almost as well as the ordinary
energy detector in Gaussian noise and outperforms all the
others.

Finally we investigate how many samples should the de-
tector involve for our analysis to apply. In the simulation ex-
ample we have used the following parameters to compute the
probability of miss P,(y) =1—Pp(y): 6, = 1,0, =2,c =
0.01 and b = —a = 100. In Figure 4 one can see that with
N =5, the simulation and theory vaguely remember each
other. The situation improves if we increase the number of
samples to 15 and already with N = 30 the theoretical curve
and simulation dots are rather close to each other. We note
that N = 30 is much smaller than N found from (37) for cog-
nitive radio applications. A similar result can be obtained for
the probability of fault alarm Pr.
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Figure 4: Probability of miss.

6. CONCLUSIONS

In this paper we proposed a robust energy detector for spec-
trum sensing in cognitive radio applications. The derivation
of our detector is based on a noise model that explicitly in-
cludes two components — clipped Gaussian distribution and
impulses with uniform distribution. Error analysis of the al-
gorithm was carried out. It was shown that the proposed al-
gorithm outperforms the existing similar algorithms in the
presence of impulsive noise.
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Introduction

The environment is constantly changing in case of
mobile systems and often there is lack of preliminary
information about the environment and objects. This
complicates the use of adaptation techniques because
initial values of system parameters are unclear. In this case
additional information must be acquired in real time about
the environment. This implies the use of cognitive signal
processing [1]. Cognitivity allows the data acquisition
system to adapt to particular objects and environment,
therefore increasing object detection probability and
measurement accuracy (distance to objects and resolution).

A cognitive signal processing algorithm in data
acquisition system can be divided into the following tasks:
intelligent signal processing; taking into account the
information gained about the environment to choose the
parameters of a sounding signal to be radiated; continuous

acquisition and storage of information about the
environment for basic adaptation of the sounding
system [1].

Cognitive radar is an actual research topic in radar
system engineering. Nevertheless, the cognition concepts
could be applied for sonars. To apply the cognitive
principle to the data acquisition systems three main stages
should be implemented:

o the transmitter should adjust the necessary parameters
in an intelligent manner, taking into account size of
the target, range and target velocity based on the
received information

e the system should include the feedback from the
receiver to the transmitter

o intelligent signal processing should be implemented
to gather all necessary information for the transmitter
adjustment.

Moreover, other relevant information on the
environment could be gathered by other sensors working
cooperatively with the acquisition system. The cognitive
system decision is based on signals gathered on the outside
environment on the fly as opposed to knowledge-based
(KB) systems [1] where the signal-processing is based on
prior information.

101

According to the location of transmitters and
receivers, cognitive monostatic and bistatic sonars can be

divided into  following  categories: = monostatic,
bistatic/multistatic, hybrid multistatic [2]. Every sonar
application  has  different optimum  performance
characteristics. For one system, it could be range

resolution, for the other Doppler tolerance or even a digital
beam steering. Rather than optimizing waveforms for a
single design criterion, the intelligent system should be
able to synthesize waveforms that provide a smooth
tradeoff between competing design criteria [3].

Firstly, this paper discusses possible criterions for some
sonar applications and proposes general solution.
Secondly, the structure of the flexible MATLAB model
will be presented. This model allows us include the
intelligent module for the future system development.
Finally, modeling of the Doppler effect and estimated
resolution of the real system with given sounding
waveforms would provide the input for the intelligent
signal processing in the prototype.

Sonar applications and possible solutions

Next, we take a closer look at the specific
applications and possible feedback solution concerning the
digital system, which could change the digital waveform
and appropriate reception. The performance should be
improved by other adjustments as the frequency and
bandwidth of the real system are difficult to change.

The goal of the hydrographic application is to
measure the bottom profile with maximum resolution and
accuracy within a given range. The environmental effects
and feedback values will be:

e in the case of the decreased signal-to-noise ratio
(SNR) the output power of the system could be
increased by the variable gain control at the
transmitter or by the use of phase-manipulated signals
[4]. Moreover, this leaves the range resolution value
unchanged
in the case of limited detectability due to the
unwanted reflections from fish, other biologic objects,
air bubbles, dust and dirt, target reflection registration



could be improved by multiple reflection registration,
filtering and tracking or beam steering

in the case of decreased bottom scattering strength it
would be necessary to choose different algorithm for

received signal processing; to select different
waveform; to use digital beam steering, and to change
frequency.

Imaging applications like Sidescan or Forward
Looking Sonars (FLS), used for large area efficient sea
floor imaging, require higher SNR values at the reception.
In this case adaptation could be accomplished as follows:

e increase in SNR by using variable output power or by
changing signal length or type
fading, reverberation and the Doppler effect could be
eliminated by proper waveform selection
sensitivity to the ship motion could be in some extent
decreased by beamforming.
In general, the efficient SNR increase and resolution
are achievable through appropriate waveform design.
However, selected waveforms have different Doppler
tolerance at the same range resolution. To study the
Doppler tolerance and range resolution of the specific
waveforms the MATLAB model was created.
Furthermore, this allows us implement additional signal
processing algorithms, beamforming and possible feedback
values of the cognitive system. The flexible model of the
cognition system and later the prototype should include
digital signal generation, reception with digital
beamforming and optimal filtering. Future development
will include the intelligent feedback decision making based
on tracking and processing information.

The research showed that previously studied binary
phase coded waveforms [4] (Barker and nested Barker
codes [5]) are efficient for hydrographic applications, but
at the same time Doppler tolerance of those signals is
limited. Desirable SNR increase would decrease the
Doppler tolerance significantly. Fig. 1 illustrates the
maximum target velocities for phase manipulated signals
Barker and nested Barker codes. Here, element length
corresponds to 4, 8, 16 and 32 carrier signal periods per
element and sonar frequency is 250 kHz.

“ T T T v T

velocity (km/h)

L i i
[X] (7] .16

element (chip) length (m)

Fig. 1. The maximum target velocities for Barker code signals
with 5 and 25 elements

In spite of the fact that phase manipulated codes are
more Doppler intolerant, they allow for increasing the
system resolution and application distance range could be
increased significantly at the same transmitted power level.
Thus, for Doppler tolerant cognitive applications further
waveform research would be needed [3, 6, 7].
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Digital beamforming is the most suitable approach to
phased array antenna pattern control. Therefore, it is
necessary to model signal reception at the critical target or
vessel velocities to determine the properties of the specific
waveforms. At the same time we can simulate real system
performance in the presence of the Doppler effect.

Wideband beamforming in sonar systems

The beam pattern of the sensor array is typically
calculated using harmonic vibrations of infinite duration at
a constant magnitude in the case of an electrical scanning,
but it is possible to use digital signal processing technology
and spread spectrum scanning signals. Derived from the
characteristics of this type of signal, the sensor array is not
able to use classical phase compensation for the purpose of
beam steering. Wideband beamforming algorithm should
be used to achieve a high resolution in all partial
directions.

The choice of wideband beamforming algorithm in
sonar system depends on exact situation, type and length of
the probe signal and available hardware. We observed that
the general behavioral model is the same and still related to
the duration of the shortest element of the signal regarding
the dynamics of the scanning signals in the sensor array
studied in the previous work [4]. Some differences
appeared when using very long nested codes (the average
amplitude of the output signal of the sensor array remained
somewhat higher for large angles than when using
traditional signals), but the choice of scanning signals is
not an essential factor with respect to the dynamics. The
choice of scanning signal is rather determined by the
operating range of sonar and the correlation features of the
signal (included the Doppler shift). Comparison of
theoretical results suggests that both FDFIB (Frequency-
Domain Frequency-Invariant Beamformer) and Block-
phase algorithms are realizable and provide very good
results. It is also essential that in the case of FDFIB
algorithm the amplitude weights only determine the shape
of the beam pattern. The level of the side lobes and the
beam patterns of any shape can be constructed independent
of the frequency. In principle, this method is an alternative
to the adaptive methods of forming beam patterns and can
be considered the most accurate variant. FDFIB algorithm
is based on the properties of the Fourier transform. When
switching to a complex envelope, we can find the output
signal M from sensor » at time / using the equation

0 KV-1KH-1

My, = % Y A(-kt,—round(fs-n-d-sinp, /c)k+
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where KH — the number of internal components; KV — the
number of external components; 4 — element function; z,

— signal initial delay;d — distance between sensors; ¢ —
wave speed; @, — support (centre) frequency; fs —
sampling frequency; f,— partial direction; ¢, — phase of p-
th external component ¢, € {00,180°}; @i — phase of k-th
internal component ¢ {0°,1 80"}.



For time delay compensation in frequency domain we will
2rq

use the weight
-1 -round[ ] , (@

where ¢ — sampled frequency; L — signal length [4].

By taking the inverse Fourier transform with respect
to frequency ¢, the output electrical signals in each channel
are now synchronous. These formulas are modeled in
MATLAB environment and sensor output signal and
corresponding ambiguity function in case of 5-element
Barker code and 5-element sensor array are shown in Fig.
2 and Fig. 3.

n-d- fs-cos(f,)

c

0(n,q) =

Fig. 2. Sensor output after FDFIB compensation

[

Fig. 3. Vertical cut of the ambiguity function of the optimal filter
after FDFIB compensation

As mentioned before, the Barker codes are very
intolerant to the Doppler shift. Fig. 4 and Fig. 5 illustrate
the matched filter output when objects move towards the
sonar system (9 km/h and 20 km/h).

[

5 -4
=10 g

Fig. 4. Receiver output with Barker code waveform affected by

the Doppler shift (9 km/h)

3

Fig. 5. Vertical cut of the ambiguity function affected by the
Doppler shift (20 km/h)
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Here vertical cut of the ambiguity function depends only
on code and the Doppler shift and modeling results reveal
that the Doppler shift can be disregarded when the speed of
the object is below 9 km/h. Then vertical cut of the
ambiguity function is quite similar to its original. In
practice we can obtain sufficient results with speed up to
4.5 km/h as shown in Fig. 6.

Fig. 6. Receiver output with Barker code waveform affected by
the Doppler shift (4.5 km/h)

Obviously, these results are valid for a certain
situation. Here we used carrier frequency 250 kHz and 16
signal periods inside one Barker code element. The
situation is different when we use longer codes, for
example nested code with 5x5 elements. Corresponding
ambiguity functions with and without the Doppler shift
equal to speed 9 km/h are shown in Fig. 7 and Fig. 8.

B

2 3
PRI
Fig. 7. Optimal filter output of nested Barker without the Doppler

shift

As it can be seen from Fig. 8, speed 9 km/h is too high
for 5x5 nested codes. Here the Doppler shift can be
disregarded if the speed of the object is below 1.7 km/h

(Fig. 9).

Fig. 8. Optimal filter output of nested Barker affected by the
Doppler shift (9 km/h)
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Fig. 9. Receiver output with Barker code waveform affected by
the Doppler shift (1.7 km/h)



The question arises: how the Doppler shift will affect ~ speed target applications are suitable because the binary
the FDFIB beamforming algorithm? It is clear that it has  phase coded waveforms are relatively sensitive to the
no effect when the signal arrives at the array from the  Doppler effect. Future research should include waveform
normal direction. In this case the vertical cut of the  design, intelligent signal processing, and feedback modeling
ambiguity function depends only from code and from the  and implementing.
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Abstract: This paper studies the detectors that can be used in responsive communication jamming systems against
radio—controlled improvised explosive devices. The roadside improvised explosive devices is a major treat, en-
countered in many war zones, in nowadays warfare. The device consists of an improvised bomb that can be
detonated remotely via a wireless control device. In this paper we study detectors that can be potentially used to
discover the radio signals that control the bombs. The most important requirement of the detector is that detection
of the control signals needs to be faster than the reaction time of the bomb is, so that the control signal could
effectively be disrupted by jamming. We examine four types of detectors in this paper with focus on their detection

speed.

Key—Words: Detector, Responsive Communication Jamming

1 Introduction

Roadside improvised explosive devices have become
one of the most important threats in today’s asymmet-
ric warfare. These devices are inexpensive, easy to
build or acquire, and difficult to trace and can be trig-
gered from long distances, keeping the operator safe
from any detonation or exposure to targeted military
forces. In many cases is the device simply explosive
material that is integrated with a handheld wireless ra-
dio or device that will trigger upon receipt of a signal
from a second wireless handheld device [1].

Thanks to the availability of cheap radio circuits
many of the road side bombs are nowadays radio con-
trolled meaning that they are detonated remotely via
some radio communication links. Such bombs have
become a real danger in several war zones e.g. Afgan-
istan. In order to protect vehicles against such radio
controlled bombs, vehicle mounted barrage jammers
have been used for some time. These jamming sys-
tems jam continuously in all the relevant bands thus
avoiding the control signals reach the bomb and ex-
plode it. Using such barrage jammers leads however
in a rather high energy consumption as all potential
frequency bands need to be jammed.

More recently the concept of responsive commu-
nication jamming [2] has been proposed to deal with
the problem. The responsive communication jamming
system regularly analyses the spectrum and only if
a potential bomb controlling signal is discovered in

Bomb control

Figure 1: Road side explosive device jamming.

some of the bands, the jamming of this band is per-
formed. This strategy has clear benefits in the amount
of consumed energy. On the other hand the responsive
system becomes more complex.

The road side explosive device jamming situation
is depicted in Figure 1.

As discussed in [3], there are several jamming
strategies which can be used against the improvized
explosive devices. However, if responsive commu-
nication jamming is used the detector has to find the
bomb triggering signal faster than the triggering time
of the bomb is. In addition, the detection has to occur



in multiple potential frequency bands simultaneously.

Responsive jamming is closely related to the con-
cept of cognitive radio [4] which has recently gained a
lot of attention. In cognitive radio systems secondary
users attempt to detect if the primary (or licensed) user
is present and occupy the band of interest only if it is
not, allowing thus opportunistic spectrum access. In
responsive jamming system on the other hand the jam-
mer attempts to sense the bomb control signals and
reacts by jamming it if it finds one.

The key challenge of both cognitive radio and re-
sponsive communication jamming is fast and reliable
spectrum sensing. In this paper we are going to ex-
amine several potential detection approaches. We will
investigate the detection times that are necessary to
reach a given probability of detection and probability
of false alarm rate with the varying detection strate-
gies. The detectors considered are energy detector,
matched filter, cyclostationarity based feature detec-
tor and detector based on eigenvalue spread of the re-
ceived signal covariance matrix.

We assume that the signal has been divided into
frequency bands before executing the detector algo-
rithms on the partial signals. The division can be ac-
complished using discrete Fourier transform or any
other filter bank algorithm. The requirement being
that the division algorithm should not introduce any
considerable delay.

As the responsive communication jamming sys-
tem is responsive for human lives we want the prob-
ability of missed detection to be as small as possi-
ble. This often implies a relatively large probability
of false alarm. However, jamming a frequency band
without a real threat in this band is a small price to
pay for not jamming the actual bomb steering signal
in most of the cases.

The problem we address is the typical detection
problem

Hy: x(n)=wv(n) (1)

where x(n) is the received waveform, s(n) is the sig-
nal, presence of what we want to detect, and v(n) is
the noise. We thus wish to determine whether the re-
ceived waveform consists of noise only or is there also
a signal component present.

The italic, bold face lower case and bold face up-
per case letters will be used for scalars, column vec-
tors and matrices respectively. The superscript * de-
notes complex conjugate, the superscript H denotes
Hermitian transposition of a matrix and the operator
E[] marks mathematical expectation.

2 Energy Detector

Energy detector or radiometer is the simplest possible
detector as it does not need any information about the
transmitted signal other than the band occupied by the
signal. It compares the energy of the received signal
to the energy of presumed white noise energy in the
band of interest. If the energy of the incoming signal
is significantly larger than the presumed energy of the
thermal noise, the energy detector decides in favour of
signal being present.

Energy detector, finds a sum of /N samples of the
incoming waveform and compares it with a threshold

7 [5] N
T(x) =) |z(n)]* >~? 2
n=1

It can be shown [6] that the probability of false alarm
Py (there is no signal but the detector decides in
favour of signal being present) of energy detector is

vaffﬁ)
P = .
! Q(a?,\/ZN

The probability of detection Py (there is signal and the
detector detects it) is

eY (et T 0
Jv\/2N03+4NpS

The probability of missed detection (there is signal but
the detector does not find it) is given by

3

Prna=1-Fy. (5)

Here 1o
Qz) = %/2 e~ T dA, (6)
o2 is the noise power, p is signal power, 7 is the

threshold of the detector and NV is the number of sam-
ples. We have assumed that the samples are statisti-
cally independent of each other.

The Receiver Operating Characteristic (ROC) for
the case when both the signal and noise powers equal
unity are shown in Figure 2. In the lower left corner
the threshold equals v = oo, and in this case noth-
ing will be detected but the probability of false alarm
equals zero. In the upper right corner the threshold is
v = 0, then the detection always occurs and the prob-
ability of false alarm equals unity. In practice we of
course want to be in some intermediate point on the
ROC curve dependent on what false alarm and missed
detection would cost us. In the responsive commnica-
tion jamming detection application we would like to
make sure that the probability of missed detection is



Figure 2: Receiver Operating Characteristic of energy
detector.

small and do not care that much about the probability
of false alarm. Therefore we select an operating point
close to the upper right corner of ROC curve.

Solving the system of equations that consists of
equations (3) ja (4) we get that the number of samples
required for given probability of detection and proba-
bility of false alarm is

[@7'(Py) = VI +2SNRQ™(Py)]®
SNR?

samples, where SNR = g—; and that for achieving
this we need to set the threshold at

v =[N+ V2NQ ! (Py)|o? 8)

N=2 )

To exemplify this we consider the requirement to
reach the probability of missed detection and proba-
bility of false alarm levels P,q = Py = 10~ for all
the detectors. With energy detector it is required to
process 338 samples to reach this operating point in
the condition where both signal and noise have unity
power.

As mentioned earlier, the samples should be sta-
tistically independent and for that the sampling fre-
quency should be no faster than fp < 2B, where B
is the bandwith of the filter forming the channel.

3 Matched filter

The matched filter is optimal detector of signals in
white Gaussian noise. The drawback being that the
detector needs a large amount of information about
the signal it attempts to detect. Most likely we do not

Figure 3: Receiver Operating Characteristic of
matched filter.

have all this information about a hostile bomb con-
trol device, however, the performance of matched fil-
ter would serve the limit of possibility.

The matched filter correlates the image of the
transmitted signal s(n) with the received signal x(n)
and compares the result with a threshold.

N

T(x) = Zz(n)s*(n) > 7 )

n=1

Under both hypothesis, the test statistic is normally
distributed. The probability of false alarm is

v
Pr=Q (7) 10)
! v/ Nps
and the probability of detection is
Y- Nps
P=Q <7) . (11)
o/ Nps

The ROC for matched filter is shown in Figure 3.
Comparing Figure 3 with Figure 2 one can see that the
curves have been moved towards the upper left cor-
ner of the figure indicating the better (P, Py) perfor-
mance of the matched filter detector as compared to
the energy detector. This is natural as the matched fil-
ter detector makes use of considerably more informa-
tion about the detected signal then the energy detector.

The number of samples to reach operating point
(P (N ! ) is

— _ 2
O i et L)




This will be achieved if the threshold is

_ 0Q7 () [Q7N(Py) — Q' (Pu)] _

13
SNR (3

With matched filter one requires 91 samples to
reach the Ppq = Py = 10~6 with both signal and
noise having unity power.

4 Feature detector

Feature detector can be viewed as compromise be-
tween energy detector and matched filter. In one hand
it needs less information about signal under interest
than matched filter. In other hand it has better sensi-
tivity than energy detector. Feature detector uses in-
formation about periodicities in signal for detection.
Those periodicities can be for example carrier- or pi-
lot frequencies, data rates and so on.

The feature detector correlates received signal
x(n) with frequency shifted version of itself resulting
in spectral correlation function (SCF)

S200) = e 3 (4 5) X (1 5).

(14)
Here X (n,f) is the K point FFT around sample n
and « is amount of frequency shift. If signal has no
periodical features, for example white noise, then cor-
relation between its spectrum and frequency shifted
spectrum is always zero. In other hand when sig-
nal has some periodical features then there is strong
correlation for a fixed values of «. Those correlation
peaks can be used to detect presence of signal of in-
terest. Because function (13) is a complex function
then decision statistic is module of this SCF and it is
compared against given threshold

T(x) = |S2(f)| > 7? (15)

It can be shown that the probability of false alarm of
feature detector is

72

_N
Py=c¢ 2. (16)

Unlike for previous two detection methods there is
no closed-form expression of correct detection Py for
cyclostationary detector [7], [8]. However there are
some specific cases when it is possible to find analyti-
cal expression for probability of detection Py. For ex-
ample when pair («, f ) = (2f,,0), where fs is signal
frequency, and if FFT is done coherently , then

&:Q(f~l), (17

O'T’ orT

where values of scale- and placement parameters are

_ psKU?) ‘773
or = N + N (18)
Kp,
y = =2 (19)

and Q1 (+) is the Marcum Q function

00 2 2
Q1(a,b) = / Z exp (7:10 ;a )Ig(ax)dx.
' 0)
Here Iy(-) denotes the modified Bessel function of or-
der 0.

Marcum Q function is not elementary function
and its inverse can only be found trough some approx-
imations or numerical calculations. So we cannot cal-
culate the number of samples required for given prob-
ability of detection in case of feature detector. Numer-
ical simulation methods must be used here instead.

The ROC curve for feature detector is shown in
Figure 3. As it could be expected the performance of
feature detector lies between those of energy detector
and matched filter. Curves displayed in figure 3 are
calculated numerically. Value of Py is changed from
0 to 1 and corresponding values of P, are calculated
numerically with equation (18).

In order to find the number of samples N required
for given probability of detection Py = 1 — 1075 and
probability of false alarm Py = 10~% when both sig-
nal and noise have unity power we must use numerical
simulation of (16). For given conditions equation (16)
becomes

K 721nPf
Py = N,/ @l
¢ Ql(s K+ 1 K+1> @b

Now we just have to calculate values of P; numeri-
cally for each value of N until we found N that gives
us desired value of P; = 1 — 107%. As it can be
seen our result here depends also on length of FFT.
For example if we use K = 8§ point FFT transform
then to achieve desired value of detection P; we need
to average over /N = 23 samples resulting that KN
= 184 samples is required to process to reach given
operating point at ROC curve. When we compare
this result with energy detector and matched filter we
see again that performance of feature detector lies be-
tween those two.

5 Eigenvalue detector

It was recently proposed to use the eigenvalues of the
covariance matrix of the received signal for detection
purposes [9]. It turns out that the ratio of maximum



Figure 4: Receiver Operating Characteristic of feature
detector.

and minimum eigenvalue can be used to detect the
signal. This is based on the fact that the eigenvectors
of the sample covariance matrix correspond to princi-
pal components of the data and the eigenvalues to the
variance explained by the principal components. The
eigenvectors of the covariance matrix provide thus an
orthonormal eigen basis for the space of the observed
data. In this basis, the largest eigenvalues correspond
to the principal-components that are associated with
most of the covariability among a number of observed
data. The first principal component has the largest
possible variance (that is, accounts for as much of the
variability in the data as possible), and each succeed-
ing component in turn has the highest variance pos-
sible under the constraint that it is orthogonal to the
preceding components. In other words if there is no
signal present the eigenvalues of the covariance ma-
trix tend to be approximately equal to each other. On
the other hand, if the signal is present, the energy of it
is contained in the largest eigenvalue.

Let us assume that the M vector of the signal re-
ceived is

x(n) = s(n) + v(n) (22)

The different entries in the vector can be signals at
different antennas in an array or they can be obtained
due to oversampling. The covariance matrix of the
received signal is

R, = E [x(n)x" (n)] (23)

The method thus examines the eigenvalues of the
received signal covariance matrix \;. The algorithm
consists of the following steps:

1. Compute the sample covariance matrix of the re-
ceived signal

1 N-1

RL(N) =+ 3 x()x" (n),

n=1

24

where N is the number of collected snapshots.

2. Compute the maximum and minimum eigen-
value Ayqz and Ap;p, of the matrix R, (N).

3. Decide that the signal exists if
T(l) = /\max//\min >, (25)
where 7 is the threshold of the test.

It is demonstrated in [9] that based on the theory
of random matrices [10] one can obtain the following
approximate expressions for the probability of false
alarm and probability of detection

(VN — VML)? — u) e

v

TN + N(’VP’NLin - pmaac)/a'g - ,LL>
v )
@7
where + is the detection threshold, p = (VN — 1 +

1
VML)?,v= (VN - 1+\/ML)(\/%+ gL
is the smoothing factor, p is an eigenvalue of the sig-
nal covariance matrix R; and F(-) is the cumulative
Tracy—Widom distribution of the first order [10].

As the analysis of the detector provided in [9]
is rather evolved and uses approximations that make
it difficult to use the results for computing the ROC
curves we provide herein simulation results instead
of the theoretical curves. In addition, as the small-
est eigenvalue of the received signal covariance ma-
trix can be rather small and thereby cause problems in
computing the ratio of maximum and minimum eigen-
value we have replaced the ratio with difference of the
eigenvalues of normalised covariance matrix in our
simulations as a practical approach.

The ROC curves of the detector for the case when
both the signal and noise powers equal unity and one
uses four element array to receive the signal are shown
in Figure 5.

Our simulations show that in order to reach the
operating point P,y = Py = 1075 one needs 75
samples, which is less than the matched filter requires.
One should note, however, that the eigenvalue based
detector uses four antennas to achieve this result com-
pared to the single antenna of matched filter.

szl—Fl(



Figure 5: Receiver Operating Characteristic of the re-
ceived signal covariance matrix eigenvalue based de-
tector.

6 Conclusions

In this paper we have investigated four detectors in an
attempt to ascertain their detection speed. The com-
parison is meant for clear what detector suits best for
discovery of roadside explosive device control signals
in war zones. We have compared the energy detec-
tor, the matched filter detector, the cyclostationarity
based feature detector and eigenvalue based detector.
The detectors require different amount of information
about the signals they attempt to detect.

Energy detector is simplest but it is also the slow-
est detecor among the studied ones and we cannot rec-
ommend it by that reason. The matched filter detec-
tor requires information about the waveform of the
bomb control signal. Vehicles on the road usually
do not have this information and we cannot recom-
mend the matched filter by that reason. It turns out
that the eigenvalue based detector can provide fastest
detection time but it needs several antennas or over-
sampling. The cyclostationarity based feature detec-
tor comes next in our comparison and it can do with
single antenna. Our recommendation is therefore to
use one of the two detectors in the responsive com-
munication jamming systems.
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