
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Karl-Erik Hein 221339IAPM

Abstract Syntax Tree-Based Tooling For Java
Framework Migration

Master’s Thesis

Supervisor: Gert Kanter

PhD

Tallinn 2025

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Karl-Erik Hein 221339IAPM

Abstraktsel süntaksipuul põhinev tööriist Java
raamistike migreerimiseks

Magistritöö

Juhendaja: Gert Kanter

PhD

Tallinn 2025

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that this thesis has not been

presented for examination or submitted for defense anywhere else. All used materials,

references to the literature, and work of others have been cited.

Author: Karl-Erik Hein

20.05.2025

3

Abstract

Modernizing enterprise services often involves legacy framework migrations - like moving

an older Dropwizard-based system to a newer and more comprehensive Spring Boot. This

thesis evaluates the effective automation of such migrations through AST-based refactoring

using OpenRewrite, with an emphasis on designing modular, production-ready migration

recipes. To benchmark the AST-driven approach, we compare it against an LLM-assisted

refactoring (using OpenAI’s o3-mini model) and traditional manual rewriting. Two case

studies underpin the evaluation: one moderately complex open-source service and one

proprietary closed-source system, each migrated from Dropwizard 1.3 to Spring Boot 2.7.x.

Our assessment examines the time required and the extent of automation achieved, while

ensuring functional correctness through automated test suites and manual verification.

The results indicate that AST-based methods yield faster and more comprehensive con-

versions but require significant up-front effort to develop robust recipes. LLM-based

refactoring accelerates simpler tasks yet shows inconsistent reliability, particularly with

proprietary code, often requiring iterative developer guidance. Manual migration remains

the most reliable approach but is also the most time-intensive.

We observed common technical hurdles across the automated approaches, including

adapting types and annotations, managing dependencies and configuration properties, and

automating complex syntax changes. Key contributions of this work include a detailed

methodology for crafting AST-based migration recipes, an empirical comparison of three

distinct migration strategies, and the release of the resulting recipe framework as an

open-source resource for the community. Overall, the findings suggest that a blended

strategy—combining AST automation for core refactoring tasks, selective LLM assistance,

and careful manual validation—may provide the most effective balance of efficiency and

reliability in such framework migrations.

The thesis is in English and contains 66 pages of text, 7 chapters, 20 figures, 5 tables.

4

Annotatsioon
Abstraktsel süntaksipuul põhinev tööriist Java raamistike

migreerimiseks

Tarkvara kaasajastamisel tuleb sageli teha raamistikuvahelist üleviimist, nagu näiteks

Dropwizardi raamistikust ulatuslikumasse Spring Booti. Käesolev töö käsitleb, kuidas

seda protsessi automatiseerida, rakendades abstraktse süntaksipuu põhist refaktoriseerimist

OpenRewrite’iga ning kujundades tootmiskõlblikke retsepte. Lähenemisviisi võrreldakse

nii suurte keelemudelite (OpenAI o3-mini) toel tehtud kui ka täielikult käsitsi läbiviidud

migreerimisega. Analüüs rajaneb kahel uuringul: ühel keskmise keerukusega avatud

lähtekoodiga teenusel ja ühel suletud lähtekoodiga rakendusel. Hinnanguprotsessis ar-

vestati ajakulu, automatiseerituse määra ja funktsionaalset vastavust, mida kontrolliti nii

automaatsete testidega kui ka käsitsi valideerimisega.

Tulemused osutavad, et kuigi abstraktse süntaksipuu põhine meetod võimaldab kiireimat

raamistikuvahetust, nõuab see põhjalikku retseptide ettevalmistust. Suur keelemudel

kiirendab lihtsamaid ümberkirjutamisetappe, kuid osutub ebaühtlaseks, jäädes hätta suure-

mate klasside, puuduvate detailide ja privaatse koodiga, mistõttu vajab see märkimisväärset

käsitsi juhendamist ja parandamist. Mõlema automatiseeritud lähenemise puhul olid

peamisteks raskusteks tüüpide ja annotatsioonide kohandamine, sõltuvuste ja konfigurat-

sioonifailide haldamine ning keerukate süntaksistruktuuride automaatne ümberkirjutamine.

Kokkuvõtvalt võib öelda, et AST-põhine meetod oli kõige efektiivsem, pakkudes parimat

tasakaalu kiiruse ja töökindluse vahel, ent vajas siiski käsitsi viimistlemist, eriti keeruka-

mate loogikaosade ja testide kohandamisel. Loodud siirderetseptid on avalikustatud avatud

lähtekoodina, et soodustada kogukonna laiemat kasutust ja panust.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 66 leheküljel, 7 peatükki, 20

joonist, 5 tabelit.

5

List of Abbreviations and Terms

API Application Programming Interface - allows communication be-

tween different software.

AST Abstract Syntax Tree – A tree representation of the abstract syntactic

structure of source code.

DAO Data Access Object – A design pattern that provides an abstract

interface to a database or other persistence mechanism, decoupling

the data access logic from business logic.

Dropwizard A Java framework for building RESTful web services.

DSL Domain Specific Language – is a computer language specialized

to a particular application domain.

Framework A collection of pre-built code that provides structure for application

development.

IoC Inversion of Control – A design pattern where frameworks manage

object dependencies.

Kubernetes (K8s) An open-source platform for automating the deployment, scaling,

and management of containerized applications.

Library A collection of reusable code that developers can include in their

projects.

LLM Large language model - A machine learning model trained on

large text datasets for language tasks.

LST Lossless Semantic Tree – A modified version of Abstract Syntax

tree, which preserves syntactic details of the code.

Native Images Compiled application images that run directly as machine code.

OpenRewrite An open-source framework to change code based on recipes.

ORM Object-Relational Mapping - A programming technique that allows

database access via objects instead of writing queries.

RESTful An architectural style for designing web services using HTTP.

Spring A framework for building Java enterprise applications.

Spring Boot A Spring framework extension for easier, standalone Java applica-

tions.

6

Table of Contents

1 Introduction... 12

1.1 Research Questions .. 13

1.1.1 Contributions.. 13

1.2 Research Design .. 14

2 Background ... 15

2.1 Automated Code Transformation Tools ... 16

2.1.1 Codemod &jscodeshift .. 16

2.1.2 Refaster.. 17

2.1.3 Spoon .. 17

2.1.4 OpenRewrite: The Selected Tool... 17

2.2 Leveraging Large Language Models for Code Migration............................. 17

2.2.1 Developer Usage of LLMs ... 18

2.2.2 Challenges and Limitations .. 18

2.2.3 Effective Usage Strategies .. 18

2.2.4 Security and Privacy Considerations.. 19

2.2.5 Model Selection .. 19

2.2.6 Conclusion ... 19

2.3 Comparative Analysis of Dropwizard and Spring Boot 20

2.3.1 Design and Configuration Philosophies.. 20

2.3.2 General capabilities ... 20

2.3.3 Support and Community .. 21

2.3.4 Conclusion ... 22

3 Migration .. 23

3.1 Overall Approach... 23

3.1.1 Framework Version Selection ... 23

3.1.2 Git Branch Management Strategy.. 23

3.1.3 Target Services for Migration.. 24

7

3.1.4 Strategy, Principles and Validation .. 25

3.2 Manual Migration .. 25

3.2.1 Open-Source Service ... 26

3.2.2 Closed-Source Service... 27

3.2.3 Overall Migration Analysis and Transition ... 28

3.2.4 Future Considerations .. 30

3.3 LLM-assisted Migration ... 31

3.3.1 Open-Source Service ... 32

3.3.2 Closed-Source Service... 33

3.3.3 Key Findings and Recommendations ... 34

3.3.4 Overall Assessment ... 36

3.4 AST-based Migration ... 36

3.4.1 Recipe Structure.. 37

3.4.2 Dependency Management and Exclusions .. 40

3.4.3 Configuration ... 43

3.4.4 Rewiring the Main Entry Point and Configuration Classes.................... 44

3.4.5 Security ... 47

3.4.6 Hibernate and Data Access Layer .. 47

3.4.7 Tests .. 49

3.4.8 Class Hierarchy Transformations... 52

3.4.9 Annotation Migration Strategy.. 56

3.4.10 Cleanup ... 57

3.5 Conclusion.. 58

4 Analysis .. 60

4.1 Methodology Overview .. 60

4.1.1 Data Collection Workflow .. 60

4.1.2 Tools ... 60

4.1.3 Quantitative Comparison Metrics .. 61

4.2 Example Service Migration Results.. 63

4.3 Proprietary Service Migration Results .. 66

4.4 Discussion .. 68

4.5 Conclusion.. 72

8

5 Threats To Validity ... 73

6 Future Work .. 75

7 Conclusion .. 77

References .. 78

Appendix 1 – Non-exclusive Licence for Reproduction and Publication of a Gradua-

tion Thesis... 83

9

List of Figures

Figure 1. Relative comparison of Dropwizard vs Spring Boot................................ 21

Figure 2. Distribution of changes for open-source service migration....................... 27

Figure 3. Distribution of changes for closed-source service migration 29

Figure 4. Comparison of migration scale between open and closed-source projects .. 29

Figure 5. Distribution of time spent during migration process 30

Figure 6. Example zero-shot starting prompt ... 31

Figure 7. Composite recipe structure: featuring core, domain and cleanup recipes ... 37

Figure 8. Example OpenRewrite recipe actions adding placeholder properties for

Spring Data JPA... 39

Figure 9. Adding security configuration scaffolding via recipe............................... 40

Figure 10. Adding a new Spring Boot dependency ... 41

Figure 11. Excluding an unused Dropwizard dependency 41

Figure 12. Jersey-annotated Controllers initialization file .. 42

Figure 13. Example Dropwizard resource initialization .. 43

Figure 14. Dropwizard resource conversion to Spring Bean 45

Figure 15. Partial Dropwizard Configuration file example....................................... 46

Figure 16. Example Dropwizard DAO test using inTransaction lambda. 50

Figure 17. Example method stub generation.. 53

Figure 18. Recipe to change superclass with different available options 54

Figure 19. Health check implementation... 55

Figure 20. Recipe development effort distribution by tier .. 69

10

List of Tables

Table 1. Comparison of code transformation tools.. 16

Table 2. Key differences influencing migration from Dropwizard to Spring Boot 22

Table 3. Example service migration metrics (showing Initial vs Finalized components) 63

Table 4. Proprietary service migration metrics (showing Initial vs Finalized com-

ponents) ... 66

Table 5. High-level recipe metrics .. 70

11

1 Introduction

We consistently face significant challenges in maintaining legacy systems—critical in-

frastructures that grow increasingly brittle, costly, and insecure with age [1]. Despite

being fundamental to many business operations, these systems are often built on outdated

technologies that demand substantial maintenance. Their rigidity impedes integration

with modern platforms, resulting in technological stagnation. Nonetheless, legacy sys-

tems remain valuable because they encapsulate years of organizational knowledge and

investment.

Migrating an application within the same framework already carry considerable cost and

complexity [2], and rewriting systems from scratch can be riskier and more expensive than

anticipated [3]. Manual migration methods are especially time-intensive, prone to human

error, and poorly suited for large-scale transitions. Tools that leverage Abstract Syntax Trees

for structured code refactoring [4, 5] have emerged to assist in automating these migrations

by enabling precise code analysis and transformation, thus reducing the likelihood of

human error. At the same time, Large Language Models offer a complementary approach

by adaptively interpreting and generating code, potentially facilitating translation across

different frameworks with varying degrees of success [6, 7].

However, while AST-based and LLM-driven techniques show promise for cross-framework

Java migrations, their real-world applicability remains underexplored—particularly in

transitions between frameworks such as Dropwizard [8, 9] and Spring Boot [10, 11].

Dropwizard, a popular Java framework, is increasingly overshadowed by Spring Boot’s

greater flexibility, richer feature set, and more active community support. In an anonymized

company, most of the technology stack is built on Spring Boot, yet numerous older services

continue to run on Dropwizard. For stack unification and system longevity, the organization

seeks to migrate these services from Dropwizard to Spring Boot without losing accumulated

business logic. Such a migration is a labor-intensive and error-prone process if done

entirely by hand.

12

Industry experience suggests that automating repetitive migration steps can significantly

enhance developer productivity and reduce modernization costs [12, 13]. Accordingly, this

thesis examines how advanced tooling—ranging from AST-based refactoring techniques to

LLM-assisted code generation—can streamline the Dropwizard to Spring Boot migration

process by minimizing manual effort and improving reliability. Our goal is to bridge this

methodological gap and deliver both insights and practical tools to support more effective

modernization of legacy systems.

1.1 Research Questions

This investigation is guided by the following research questions:

RQ1: How should we design and structure a proof-of-concept migration recipe to address

the specific challenges of cross-framework transitions, with minimal developer

intervention?

RQ2: How extensively can we automate the migration from Dropwizard to Spring Boot

using AST-based tools, ensuring minimal changes and preserving functional parity?

RQ3: Where do AST-based tools like OpenRewrite fit on the spectrum between fully

manual migrations and LLM-driven transformations, and what are the trade-offs

between these approaches?

By addressing these questions, we aim to provide valuable insights into reducing both the

cost and complexity of Java framework migrations. In doing so, we aspire to contribute not

only to academic research on automated refactoring, but also to offer guidance for industry

practitioners seeking to modernize their software stacks more efficiently.

1.1.1 Contributions

This thesis makes three principal contributions. First, it proposes a modular, AST-based

recipe methodology that (partially) automates the migration of Dropwizard services to

Spring Boot while retaining existing business logic. Second, it presents an empirical compar-

ison of three migration strategies—fully manual, LLM-assisted, and AST-driven—across

13

two different case studies. Third, it releases the resulting recipe framework as an open-source

library1, thereby enabling other practitioners to replicate and extend our work.

1.2 Research Design

To address our research questions, we conduct two complementary case studies that reflect

distinct migration scenarios. The first focuses on a publicly accessible, moderately complex

Dropwizard application, whereas the second examines a proprietary service that embeds

specialised business logic and bespoke integrations. In both studies we migrate the code

base from Dropwizard 1.3 to Spring Boot 2.7.x.

Each migration proceeds in two stages. We begin with a purely manual port to establish a

baseline for effort and correctness; this baseline is then compared against two automated

approaches—AST-driven refactoring with OpenRewrite and LLM-assisted refactoring

with o3-mini. Comparing the three pathways highlights the unique challenges and benefits

of each strategy under realistic conditions.

Evaluation relies on explicit quantitative indicators defined in Section 4.1. The Automation

Completeness Score measures how much of the migration is achieved automatically,

considering line changes, dependency updates, and structural refactorings. The Time

Factor records the speed-up of each automated approach relative to the manual baseline.

The Total Score combines the previous two, presenting an overall score.

Finally, functional parity is ensured through automated tests in addition to manual validation

— ensuring that the migrated service functions equivalently to its Dropwizard predecessor.

Taken together, these case studies and metrics enable a rigorous, quantitative comparison

of AST-based and LLM-assisted migration techniques, clarifying both the degree of

automation each approach affords and the contexts in which each one proves most

effective.

1Dropwizard to Spring Boot Recipe Repository, Accessed: 2025-04-13, URL: https://github.com/

Fossur/openrewrite-dropwizard-springboot-recipe

14

https://github.com/Fossur/openrewrite-dropwizard-springboot-recipe
https://github.com/Fossur/openrewrite-dropwizard-springboot-recipe

2 Background

Legacy software systems underpin critical business operations but increasingly pose

significant challenges due to aging technologies, accumulated technical debt, and evolving

business requirements [1, 14]. The scale of this issue is reflected in public sector spending;

for example, in 2019, the U.S. government allocated over $90 billion to IT, nearly 80% of

which was dedicated to maintaining legacy systems [15].

Organizations grappling with legacy systems face multiple interconnected challenges,

including high maintenance costs due to obsolete technology and a scarcity of skilled

personnel, security vulnerabilities stemming from outdated protective measures, and

integration difficulties with modern platforms [1]. Additionally, maintaining legacy

systems becomes increasingly complex as knowledge gaps widen when original developers

retire or move on [16].

To address these challenges, several modernization strategies exist. Basic migration methods

include the Lift-and-Shift approach, which relocates applications to cloud platforms without

altering their original architectural design [17]. More comprehensive strategies outlined by

Marchezan et al. include Replace (adopting off-the-shelf solutions), Maintain (minimal

updates), Evolve (incremental improvements), Re-engineer (systematic refactoring), and

Migrate (transition to modern technology stacks) [1].

For organizations whose legacy systems retain high strategic value, migration and re-

engineering often emerge as the most viable approaches [1, 3]. Transitioning to microservice

architectures is a notable example of these modernization strategies [18, 19, 20]. While

rewriting legacy systems from scratch might initially seem appealing for providing a clean

slate, this approach frequently incurs higher costs, longer timelines, and potential risks

including the loss of embedded business logic and institutional knowledge [3]. Therefore,

migration strategies typically offer a more balanced solution, preserving existing business

functions and minimizing disruption [15, 16].

15

While manual migration has been traditionally prevalent, it is often found to be inconsistent,

complex, and expensive in both time and resources [3]. Danske Bank’s recent large-scale

modernization, for instance, involving thousands of servers and workloads, was estimated

to take five to eight years if performed manually [21]. By integrating automation, they

successfully cut program costs and timelines by 50% [21]. Consequently, organizations

are increasingly exploring automated migration approaches to effectively mitigate these

challenges.

2.1 Automated Code Transformation Tools

When undertaking large-scale software refactoring, automated code transformation tools

can dramatically streamline the process. These tools programmatically parse, modify, and

rewrite code, reducing manual effort, ensuring consistency, and mitigating risks inherent in

migration projects. Below in Table 1, we compare five prominent tools with a focus on

their suitability for Java-based migration from Dropwizard to Spring Boot.

Criteria OpenRewrite Spoon Refaster Codemod jscodeshift

Supports Java ✓ ✓ ✓ × ×

Large existing

recipe-base

✓ × × ✓ ✓

Handles complex

refactorings

✓ ✓ × × ×

Widespread

popularity

✓ × × ✓ ✓

Table 1. Comparison of code transformation tools

2.1.1 Codemod & jscodeshift

Codemod [22] was initially developed for Python codebase modifications using regular ex-

pressions. Its JavaScript counterpart, jscodeshift [23], provides AST-based transformations

specifically tailored for JavaScript. However, neither Codemod nor jscodeshift supports

Java directly or offers ready-to-use recipes for Java framework migrations. Therefore, these

tools are unsuitable for our specific migration needs.

16

2.1.2 Refaster

Refaster [24, 25, 26] extends Google’s Error Prone framework with template-based code

transformations. While useful for targeted, small-scale refactorings, Refaster lacks the

flexibility required for extensive architectural changes, making it insufficient for our complex

Dropwizard to Spring Boot migration. In addition, OpenRewrite already supports Refaster

style recipes out-of-the-box [27], making it unnecessary to use this tool.

2.1.3 Spoon

Spoon [4] enables fine-grained AST manipulation for Java, providing robust control

over transformations at the class, method, and expression levels. Although Spoon is

powerful, it offers minimal pre-built, community-made recipes, requiring significant

upfront development effort. Consequently, while viable, Spoon would demand substantial

custom implementation for handling the nuances of our framework transition.

2.1.4 OpenRewrite: The Selected Tool

For this project, we selected OpenRewrite [28] to automate the Dropwizard to Spring Boot

migration because it offered key advantages over other tools. It uses a Lossless Semantic

Tree [29], which preserves type changes and formatting information – allowing for complex

refactorings. OpenRewrite provides many ready-made recipes for common Java tasks

and upgrades [30], which saves considerable development time. The tool benefits from a

strong, active community that provides helpful support and documentation. Taken together,

OpenRewrite’s precise LST, extensive recipe library, and strong community support made

it the most promising foundation for the AST-based migration approach.

2.2 Leveraging Large Language Models for Code Migration

Alongside automated code transformation tools, we independently explore Large Language

Models due to their distinctive ability to understand nuanced programming contexts, generate

flexible transformations, and handle ambiguous migration scenarios. In this section, we

evaluate how LLMs can complement existing tools, acknowledge their limitations, and

propose effective strategies for their usage in migrating our Java-based applications from

Dropwizard to Spring Boot.

17

2.2.1 Developer Usage of LLMs

The adoption of tools such as ChatGPT [31] and GitHub Copilot [32] has significantly

impacted software engineering by enabling intuitive natural language interactions and

intelligent code generation. Almeida et al. [6] demonstrated the potential of LLMs in

library migration tasks, highlighting their usefulness but also noting that developers must

still manage issues like missing imports.

Barke et al. [33] identified two primary ways developers utilize LLMs:

1. Acceleration mode: Employing LLMs for straightforward tasks, such as generating

boilerplate code, significantly speeding up repetitive migration efforts.

2. Exploration mode: Using LLMs as interactive collaborators to navigate complex,

uncertain transitions, particularly useful in migration scenarios involving new design

patterns and frameworks.

In this thesis, our primary focus will be on leveraging the exploration mode, as it aligns

closely with the uncertainties and complexities inherent in migrating between two distinct

Java frameworks.

2.2.2 Challenges and Limitations

LLMs introduce several challenges, most notably hallucinations and biases. Liu et al. [34]

identified three types of hallucinations that can impact code quality:

1. Intent Conflicting: Generated code deviates from intended functionality.

2. Context Deviation: Inconsistent, unnecessarily repetitive and dead code.

3. Knowledge Conflicting: Incorrectly utilizing variables or invalid API usage.

Additionally, Huang et al. [35] warned about biases embedded in LLM-generated code,

which could propagate discriminatory or unfair outcomes, particularly within decision-

critical systems.

2.2.3 Effective Usage Strategies

Success with LLMs relies heavily on effective prompt engineering. Almeida et al. [6]

outlined three key prompting techniques:

18

1. Zero-Shot Prompting: Direct task instructions, effective for simple or well-known

migration patterns.

2. One-Shot Prompting: Providing specific examples to guide transformations,

increasing the accuracy of LLM outputs.

3. Chain-of-Thought Prompting: Structuring prompts step-by-step, particularly

effective in reducing logical and functional errors.

2.2.4 Security and Privacy Considerations

Recent incidents, such as Samsung’s data breach through ChatGPT usage [36], underscore

critical security and privacy concerns. Organizations must enforce rigorous data manage-

ment protocols and provide training to mitigate risks, particularly when using LLMs with

proprietary code [37].

2.2.5 Model Selection

When selecting an appropriate LLM for our migration tasks, we considered various

benchmarks and leaderboards, such as those provided by Aider [38] and the LiveBench

benchmark by White et al. [39]. Based on these evaluations, we chose OpenAI’s o3-mini

model with high reasoning [40] due to its very good performance in reasoning-intensive

coding tasks, directly addressing the complexities involved in our framework migration

scenario.

2.2.6 Conclusion

While LLMs offer powerful capabilities for code migration, their effective use requires

balancing automation benefits against potential risks. Success depends on understanding

their limitations, employing strategic prompt engineering, and maintaining strong security

practices. As these tools evolve, continued research into best practices and robust governance

frameworks will be essential for their successful integration into software engineering

workflows.

By utilizing the exploration mode and zero-shot prompting, we specifically aim to effectively

navigate the uncertainty and complexity encountered in real-world migration contexts,

where predefined examples are rarely available. The choice of the o3-mini model further

19

supports our strategy, given its proven strengths in managing nuanced programming

challenges.

2.3 Comparative Analysis of Dropwizard and Spring Boot

To provide context for our migration, we briefly analyze Dropwizard [8] and Spring

Boot [41]. Both frameworks facilitate developing standalone, production-ready Java web

applications, but they differ significantly in philosophy and capabilities. Understanding

these differences clarifies our motivation to migrate from Dropwizard to Spring Boot.

2.3.1 Design and Configuration Philosophies

Spring Boot emphasizes developer productivity via convention over configuration. It

leverages autoconfiguration, reducing setup effort [41], and relies on Spring Framework’s

IoC container for managing dependencies [42]. Its layered configuration approach (YAML,

properties files, environment variables, etc.) offers flexibility across deployment scenar-

ios [41]. Additionally, type-safe binding with @ConfigurationProperties enhances

robustness.

Dropwizard, in contrast, favors explicitness and minimalism [8]. It integrates mature

libraries (Jetty, Jersey, Jackson) but requires explicit component wiring, usually within an

Application subclass [8, 43]. Its simpler YAML configuration mapped directly to Java

classes ensures clarity but provides limited flexibility compared to Spring Boot [8, 43].

2.3.2 General capabilities

A primary driver for migration involves each framework’s broader capabilities, especially

in modern architectures. Spring Boot offers comprehensive support through starters [41],

integrating seamlessly with many Spring projects and third-party libraries. For microservice

scenarios, Spring Cloud provides solutions for service discovery, load balancing, distributed

tracing, and more [44], bolstered by production-ready Actuator endpoints and GraalVM

native image support [45]. Although Spring Boot’s JVM startup may be slower due to

autoconfiguration [46, 43], its runtime performance is comparable, and native compilation

significantly improves startup times [45].

20

Dropwizard focuses on core RESTful services [8], offering fewer out-of-the-box integrations

for complex microservice patterns [43, 8]. Implementing advanced features like service

discovery and circuit-breaking frequently relies on external platforms or custom extensions.

Its main performance advantage is a faster JVM startup and lower footprint [46, 43], but

the lack of native compilation support hampers certain modern deployment use cases.

2.3.3 Support and Community

Figure 1. Relative comparison of Dropwizard vs Spring Boot GitHub metrics [9, 11]

Spring Boot benefits from VMware’s corporate backing, commercial support options,

and a thriving global user base [47, 10]. As seen in Figure 1, it also shows significantly

higher GitHub metrics (forks, stars, contributors, and release frequency) than Dropwizard,

reflecting frequent releases, extensive documentation, and an active developer community

that helps ensure long-term viability.

Dropwizard, by contrast, is community-maintained without corporate sponsorship. It has a

smaller yet dedicated user community [9, 8], which limit available resources and extensions

compared to the far broader Spring ecosystem.

21

2.3.4 Conclusion

Table 2 provides our summarized view of the key differences influencing the decision to

migrate.

Feature Spring Boot Dropwizard

Philosophy Convention over config,

Auto-configuration

Explicit config, Curated

libraries

Ecosystem Vast & Integrated (Spring

projects, Starters)

Focused & Limited (Core

libs, Bundles)

Cloud-Native

Features

Strong (Config flexibility, Native

Images, K8s alignment)

Capable, less integrated

Extensibility High via starters & auto-config Moderate via bundles &

manual integration

Support Model Commercial option, large

community

(small) community-driven

Learning Curve Easy start, potentially complex

mastery

Steeper start (explicit),

simpler scope

Performance (JVM) Slower startup, higher footprint Faster startup, lower

footprint

Performance

(Native)

Supported (fast startup, low

footprint)

Not natively supported

Table 2. Key differences influencing migration from Dropwizard to Spring Boot

Spring Boot offers a more comprehensive set of tools that better support modern software

development, especially for cloud-based applications. The framework provides a broader

ecosystem, stronger community support, and more flexible features. While Dropwizard

has its merits, Spring Boot’s extensive capabilities and industry-wide adoption make it a

more attractive choice for long-term development needs.

22

3 Migration

3.1 Overall Approach

This section details our strategy for migrating legacy Dropwizard services to Spring

Boot. The primary drivers for this undertaking are reducing technical debt, enhancing

maintainability, and improving integration with our modern infrastructure stack.

3.1.1 Framework Version Selection

We selected Spring Boot version 2.7.18 for this migration due to its compatibility with Java

8 [48]. Given Java 8’s continued prevalence in enterprise environments [49], this choice

avoids the immediate need to upgrade the Java version for older services, which would

introduce significant overhead to the migration effort. Spring Boot versions beyond 2.7.x

require Java 17 or higher [48].

3.1.2 Git Branch Management Strategy

To manage and analyze the migration process effectively, each migration task (corresponding

to a specific service and approach – manual, LLM, or AST) will be performed in dedicated

Git branches, originating from the baseline commit of the original service. Each migration

will proceed in two main stages, captured distinctly within the branch structure to isolate

effort. The Initial Stage represents the code immediately after applying the primary

migration method (e.g., the raw output from LLM/AST tooling, or the initial manual

porting effort). Subsequently, manual fixes and adjustments needed to meet the validation

criteria constitute the Finalized Stage. This work will be performed on a separate branch

forked from the initial state. This two-stage branching facilitates a clear comparison of

the code differences (diffs) between the initial automated/assisted output and the final,

functional state, which will be examined in Section 4.

23

3.1.3 Target Services for Migration

We are focusing on two distinct services to evaluate the migration process, characterized

by the following key features relevant to the migration.

Open-Source Example Service

This publicly available example service1 comprises approximately 1 293 lines of Java code

across 32 classes. Key features include REST endpoints implemented with JAX-RS (Jersey),

data persistence using Hibernate ORM, database schema initialization via Liquibase, use

of Dropwizard’s built-in authentication/authorization mechanisms, implementation of the

Data Access Object (DAO) pattern, and a comprehensive testing setup (unit, integration)

using Dropwizard’s test rules. The main anticipated migration challenges involve rewriting

configurations, resource endpoints, adapting the data layer, and updating the extensive test

suites.

Validation Strategy: For this service, migration success is validated primarily by the

successful execution of its adapted preexisting test suite (approx. 20 tests covering

controller, security, and DAO functionality). All adapted tests must pass. Successful

database initialization via Liquibase is confirmed by the application starting correctly, and

migrated health check functionality will be verified manually.

Closed-Source Proprietary Service

This internal service consists of roughly 3,500 lines of Java code spread across 27

classes. Its relevant characteristics include complex, domain-specific business logic

services and custom integrations with caching mechanisms. Furthermore, it utilizes

specialized logging infrastructure via private libraries and integrates metrics reporting

with tools like Datadog and Rollbar, also using private libraries. The service also features

asynchronous API implementations and employs custom exception handling and health

check patterns. Migration complexity here is expected to be high due to intricate business

logic, domain-specific constraints, and proprietary dependencies.

Validation Strategy: Migration validation relies on its preexisting suite of integration

tests, which must pass after adaptation. These tests cover core APIs, business logic, and

caching integrations. Additionally, the correct functioning of metrics reporting integrations
1Example service, Accessed: 2025-04-13, url: https://github.com/Fossur/

dropwizard-13-example-project

24

https://github.com/Fossur/dropwizard-13-example-project
https://github.com/Fossur/dropwizard-13-example-project

(e.g., Datadog, Rollbar) will be validated manually.

3.1.4 Strategy, Principles and Validation

Our migration strategy involves three distinct phases to allow for comparison:

1. A manual migration to establish baseline performance and effort metrics.

2. An LLM-assisted migration using o3-mini with high reasoning.

3. An AST-based migration using OpenRewrite.

This process adheres to two core principles. The primary principle is No Functionality

Regression, meaning the migrated service must maintain functional parity with the original

Dropwizard implementation. The second principle is the Path of Least Resistance,

prioritizing the quickest route to an operational Spring Boot service and deferring major

optimizations.

To ensure adherence to the No Functionality Regression principle, validation is key.

Finalization of a migration attempt hinges on achieving functional parity, which requires

the migrated application to compile and start cleanly, exhibit correct core functionality,

and crucially, pass its existing automated test suite. Specific validation criteria for each

target service are provided in their respective descriptions (Section 3.1.3).

By analyzing the migration outcomes—validated according to these criteria—for both

services across the different approaches, we aim to identify the relative advantages and

disadvantages of each tooling method.

3.2 Manual Migration

This section establishes the baseline for our migration analysis by detailing the manual

process of migrating two distinct Dropwizard 1.3 services to Spring Boot 2.7.x. The

objective was to achieve functional parity while identifying key challenges and effort sinks

inherent in the manual approach.

25

3.2.1 Open-Source Service

The migration of the open-source example service (32 classes, ~1 293 LOC), which used

standard Dropwizard features like Hibernate, Liquibase, and JAX-RS, involved addressing

several key areas.

Core Refactoring: A primary task involved replacing Dropwizard’s Application class

and its manual environment registrations within the run method. This was necessary due

to Spring Boot’s reliance on annotation-driven component scanning and configuration.

We addressed this by eliminating the Dropwizard Application class and creating a new

main entry point annotated with @SpringBootApplication. Components previously

registered manually were converted to Spring Beans using annotations like @Component

or defined in @Configuration classes. The main HelloWorldApplication.java file

required a significant rewrite (93 lines modified).

Configuration: The transition from Dropwizard’s YAML/Configuration subclass model

to Spring Boot’s application.properties and @ConfigurationProperties annota-

tions required careful manual mapping. We created a new @ConfigurationProperties

annotated class, removed Dropwizard-specific fields like DataSourceFactory, and manu-

ally added corresponding entries to application.properties to bind the configuration

values.

Data Access: We adapted DAOs from using Dropwizard’s AbstractDAO and Session-

Factory to utilize Spring’s EntityManager, a core component of Spring Data JPA.

This involved replacing the @UnitOfWork annotation with Spring’s @Transactional for

transaction management. These changes necessitated significant modifications, particularly

to the base AbstractDAO.java implementation.

Security: The security model migration involved mapping JAX-RS security annota-

tions (@RolesAllowed, @Auth) to their Spring Security equivalents (@PreAuthorize,

@AuthenticationPrincipal). The overall security configuration also had to be reimple-

mented from scratch to provide the same functionality.

Testing: Overhauling the test framework was a complex step. Dropwizard’s JUnit

4 Rules (DAOTestRule, ResourceTestRule) were replaced with Spring Boot’s test

26

annotations (@DataJpaTest, @SpringBootTest, @AutoConfigureMockMvc). Helper

methods like Dropwizard’s inTransaction lambdas were unwrapped and removed, with

@Transactional applied at the class level where appropriate. HTTP resource tests using

rule chains were manually rewritten using Spring’s MockMvc and RestTemplate. Finally,

tests were migrated from JUnit 4 to JUnit 5 syntax and assertions.

Outcome: The manual migration of the open-source service affected 39 files, resulting in

876 line insertions and 751 deletions. As illustrated in Figure 2, the distribution of these

changes showed the largest impact concentrated on test resources (33.4%) and the core

application/configuration components (18.0%), reflecting the significant effort required in

adapting tests and the application’s core structure.

Figure 2. Distribution of changes for open-source service migration

3.2.2 Closed-Source Service

Migrating the proprietary service (27 classes, ~3,500 LOC) presented distinct challenges

due to its complex business logic and custom integrations.

Proprietary Integrations: A key challenge was the careful migration of custom interfaces

and implementations for caching, logging, and metrics (using private libraries for Datadog,

Rollbar) to ensure compatibility with Spring Boot. This involved integrating seven

27

distinct metric beans and configuring Micrometer appropriately without disrupting existing

functionality or internal contracts.

Configuration: In addition to the standard Dropwizard YAML-to-properties conversion,

proprietary configuration interfaces required careful migration. Lombok’s @Data annota-

tions were introduced to configuration classes to simplify property binding in the Spring

Boot context.

Complex Logic Handling: Managing complex business logic concentrated within a single

large file (~900 lines) was particularly challenging. This demanded careful, step-by-step

refactoring and extensive validation to ensure functional equivalence, as automated tools

might struggle with nuanced domain logic.

API Migration: APIs and resource controllers featuring custom exception handling were

adapted to Spring MVC (e.g., using @RestController). The testing framework required

a similar overhaul to the open-source service, migrating from Dropwizard rules to Spring

Boot test annotations and utilities.

Outcome: This migration affected 19 files, with 317 insertions and 354 deletions. The

distribution of changes, shown in Figure 3, was concentrated in the entry point/configuration

(29.0%) and resources/controllers (20.2%), along with significant effort in dependency and

properties management (combined 28.6%). The relatively lower file count compared to

the open-source service, despite having more lines of code overall, highlights the targeted

nature of changes required around specific proprietary components and complex logic

areas.

3.2.3 Overall Migration Analysis and Transition

The manual migration of both services provided a crucial performance and effort baseline,

with detailed comparisons presented in Chapter 4. Several cross-cutting observations

emerged from this process.

First, common challenges were encountered across both projects, particularly involving the

intricate mapping of configuration paradigms and the correct management of dependencies

between the distinct Dropwizard and Spring Boot ecosystems. A deep understanding of

framework-specific nuances proved essential throughout.

28

Figure 3. Distribution of changes for closed-source service migration

Second, the migration scale differed significantly, as shown in Figure 4. The open-source

service required broader changes across 42 files (1 047 insertions, 751 deletions), whereas

the closed-source migration involved more focused modifications within 18 files (341

insertions, 395 deletions). This difference indicates that Lines of Code (LOC) is not the

sole driver of complexity; rather, code complexity and proprietary integrations significantly

influence the scope and nature of the required changes.

Figure 4. Comparison of migration scale between open and closed-source projects

29

Third, regarding effort allocation (depicted in Figure 5), a substantial portion of time was

dedicated to research and investigation (55%). This involved understanding framework

differences and resolving non-obvious integration issues, outweighing the time spent on

purely mechanical code changes (30% syntax modifications) and subsequent debugging

(15%).

Figure 5. Distribution of time spent during migration process

Fourth, verification of functional parity was achieved through iterative compilation, testing,

debugging, and manual checks. The specific validation approach varied; the open-source

service relied heavily on adapting its comprehensive existing Unit and Integration tests,

while the closed-source service used its more limited unit tests complemented by external

integration test suites simulating real-world usage. Both approaches confirmed the viability

of manual migration but underscored its labor-intensive nature.

Finally, these observations collectively highlight the need for automation. The considerable

time investment, particularly in research and resolving framework differences, alongside

the requirement for deep framework-specific expertise, strongly motivated the exploration

of the automated methods detailed in subsequent sections. The challenges identified during

manual migration directly informed the development goals and evaluation criteria for the

LLM and AST-based techniques.

3.2.4 Future Considerations

While our manual migration provided valuable insights, the process highlighted the

potential for leveraging automated tools such as OpenRewrite for future transitions. The

complexity and time investment required for manual migration suggest that automation

30

could significantly streamline future framework migrations.

Based on these findings, the subsequent sections delve into two distinct automated

migration strategies aimed at mitigating the challenges and reducing the effort observed in

the manual process: LLM-assisted migration (Section 3.3) and AST-based migration using

OpenRewrite (Section 3.4).

3.3 LLM-assisted Migration

In addition to manual refactoring and AST-based transformations, we explored whether a

large language model could reduce developer effort when migrating Dropwizard applications

to Spring Boot. The goal was to determine if an LLM could perform a minimally invasive

refactor—targeting only Dropwizard-specific logic while preserving existing architecture

and domain code. This scenario is especially relevant for organizations lacking deep

Spring Boot expertise or wishing to accelerate migrations via high-level prompts rather

than detailed manual rewrites.

For the LLM-assisted migration tasks, we utilized OpenAI’s o3-mini model (configured

for high reasoning effort), based on the selection rationale detailed in Section 2.2.5. We

performed each migration in a single interactive session, allowing the model to retain

context and build upon previous conversions.

The zero-shot prompt can be seen in Figure 6:

Hi , I want t o m i g r a t e t h i s Dropwizard c l a s s t o Sp r i ng Boot .

P l e a s e remove a l l Dropwizard−s p e c i f i c l o g i c and impor t s ,

c o n v e r t i n g i t t o a Sp r i ng Boot e q u i v a l e n t .

Keep e v e r y t h i n g e l s e a s unchanged as p o s s i b l e .

I f you need dep endenc i e s o r p r o p e r t i e s , l e t me know .

\ \ Code he r e

Figure 6. Example zero-shot starting prompt

When the generated output introduced compilation errors or functional regressions, we

31

applied focused follow-up prompts, such as These imports do not exist or Can we

do it in any other way? until we got to a satisfactory result or decided that we needed

to handle it manually.

3.3.1 Open-Source Service

We first tested the LLM on the open-source Dropwizard application (detailed in Sec-

tion 3.1.3).

Initial Quality of Results

The initial results showed promise but also immediate challenges. The LLM effectively

stripped Dropwizard imports and inserted standard Spring Boot features, such as adding

spring-boot-starter-actuator for health checks. However, a recurring issue was its

tendency to habitually replace existing DAO classes with Spring Data’s JpaRepository,

despite explicit instructions in the prompt to preserve the existing DAO pattern.

Iterative Prompts

Further interaction was necessary to refine the output. We had to specifically guide the

LLM through follow-up prompts to maintain the existing @PersistenceContext DAOs

rather than converting them to JpaRepository. Additionally, the initial security migration

was incomplete; while the model generated an ExampleAuthorizer class, it omitted the

core Spring Security configuration. A subsequent targeted prompt was required to elicit

the necessary code implementation.

Manual Corrections

Despite iterative prompting, several manual corrections were still required. Key Spring

annotations, including @Configuration and @Component, were frequently absent, neces-

sitating repeated prompts or manual addition to resolve compilation issues. The LLM also

occasionally introduced duplicate bean definitions (e.g., providing both an @Bean method

and a @Component annotation for the same class), which we manually consolidated. Test

configuration proved problematic initially; the model failed to enable the correct Spring

Boot test contexts (@SpringBootTest, @DataJpaTest, etc.) until we provided specific

stack traces as input. Finally, some references to Dropwizard’s YAML configuration

lingered in the generated application.properties file, requiring additional instructions

or manual edits to remove or update them.

32

Ultimately, the open-source migration using this LLM-assisted approach took roughly

10 hours. While the LLM demonstrated efficiency in handling boilerplate conversion,

consistent human oversight and an average of 2–5 follow-up prompts per file were necessary

to address overlooked annotations, incomplete feature migrations like security, and test

configuration oversights.

3.3.2 Closed-Source Service

We then tested the same LLM approach on the proprietary Dropwizard application (detailed

in Section 3.1.3).

Initial Observations

Initially, the LLM correctly replaced known Dropwizard references like io.dropwizard.-

Configuration with partial Spring Boot configurations, including @SpringBootAppli-

cation and @ConfigurationProperties. However, it also attempted to replace the

service’s proprietary metrics implementations with standard Micrometer or Actuator

beans, requiring multiple corrective prompts to reinstate the original library usage and

configuration.

Over-Invasive Changes

A significant challenge was the LLM’s tendency towards over-invasive refactoring, de-

spite prompts requesting minimal modifications. It frequently renamed classes without

instruction, reorganized method structures, and, in some files, removed nearly all existing

comments, losing potentially valuable context. Defaulting perhaps to perceived best

practices, the model sometimes generated code that was more idiomatic to Spring Boot but

diverged significantly from the original application’s logic or established domain approach.

Corrections and Workarounds

Addressing the LLM’s output for the closed-source service required numerous corrections.

The model repeatedly removed or replaced the existing metrics framework configuration,

forcing us to manually revert these changes or provide highly specific prompts. Several

references to Dropwizard classes persisted in the code, necessitating iterative prompting

for their complete removal.

A significant issue arose with migrating JAX-RS resource definitions. Two primary paths

exist: 1) utilizing Spring Boot’s Jersey integration (spring-boot-starter-jersey)

33

to reuse existing JAX-RS annotations with minimal changes, or 2) performing a full

migration to Spring MVC annotations (@RestController, @GetMapping, etc.). The

LLM defaulted to the more invasive Spring MVC migration path. While this approach

is valid, it failed dramatically on a large, complex resource file (~900 lines), generating

unusable code with missing method parameters, comments and general necessary bits

of business logic. Even when prompted for alternatives (e.g., Is there any other

optimal way?), the model did not suggest the simpler Jersey compatibility approach until

explicitly directed towards spring-boot-starter-jersey. Consequently, we ultimately

reverted the LLM’s changes to the large resource file, opting for the Jersey compatibility

setup which required significantly less modification, highlighting the LLM’s difficulty in

identifying the path of least resistance for complex components.

Furthermore, default Dropwizard exception mappers were replaced by Spring’s

@ExceptionHandler mechanism which, while functionally valid, conflicted with existing

business-specific error handling flows, necessitating a reversion to a custom scheme. Lastly,

the LLM discarded comments present in the original code, which had to be reinstated

manually.

3.3.3 Key Findings and Recommendations

Our experiences with LLM-assisted migration across both services highlighted several key

strengths, limitations, and practical considerations.

Strengths of LLM Migration

The primary strengths observed were the LLM’s ability for rapid Dropwizard removal,

quickly eliminating references to framework-specific classes and attempting rewrites

in a Spring Boot context. It also proved efficient at boilerplate generation, producing

initial versions of entry-point files, configurations, and potential pom.xml modifications.

Furthermore, the LLM demonstrated good prompt responsiveness; when presented with

specific compile-time errors or short clarification requests, it could typically correct its

mistakes in subsequent attempts.

Recurring Limitations

Several limitations recurred throughout the process. Hallucinations and over-refactoring

were common issues, where the LLM might rename classes, rearrange code unnecessarily,

34

or strip comments without explicit instruction. Migrations involving partial security

and DAO implementations were frequent, often requiring additional prompts or manual

intervention to preserve specialized patterns like @PersistenceContext over the default

suggestion of JpaRepository. Handling proprietary libraries proved challenging, as

domain-specific or private code often confused the LLM, yielding incomplete or incorrect

solutions. Dependency handling, in general, was unreliable; while the LLM could add

obvious Spring dependencies, it often missed necessary project-specific or transitive

dependencies, and incorrectly handled proprietary ones, meaning dependency management

still required thorough manual review and completion. Finally, the quality of migration

degraded significantly for large files (approx. 500+ lines), which suffered more frequently

from missing logic, invalid constructors, incorrectly altered method parameters, removed

comments, and incomplete import statements. Our observations suggest this is likely due

to context window limitations or processing difficulties with larger inputs, as providing

the LLM with smaller, more focused code chunks generally yielded better, more complete

results.

Practical Recommendations

Based on these findings, we recommend several practical strategies for effectively using

LLMs in similar migration tasks. Process code in smaller, manageable chunks rather than

feeding entire large files to the model, especially for complex classes, to improve the quality

and completeness of the output. Employ an iterative prompt strategy, providing an initial

high-level prompt for broad changes, then using short, targeted follow-up prompts to address

specific errors or refine outputs (e.g., “Only fix the test configuration”). When dealing

with proprietary code, provide example classes demonstrating typical usage if possible,

or explicitly instruct the model not to remove or replace specific dependencies. Maintain

version consistency by double-checking the LLM’s recommended library versions, as these

can sometimes vary between prompts. Crucially, perform final verification by always

compiling, running tests, and conducting code reviews after LLM generation; providing

compile errors back to the LLM can sometimes allow it to self-correct. Lastly, anticipate

manually adjusting logging and properties, especially environment-specific or proprietary

logging configurations, as these are often handled inaccurately by current models.

35

3.3.4 Overall Assessment

Both the open-source and closed-source migrations demonstrably benefited from LLM

assistance in terms of migration speed, primarily through the reduction in effort required for

repetitive or boilerplate transformations. The open-source service migration was completed

in approximately 10 hours, which we estimate is about half the time a purely manual

approach might have taken without prior Spring Boot expertise. The closed-source service

migration, finished in 7.5 hours, was similarly accelerated despite the challenges posed by

extensive proprietary logic, including a large resource file that ultimately required manual

restoration.

In summary, a large language model can substantially speed up certain stages of a framework

migration by handling routine conversions and reacting intelligently to iterative corrections.

Nevertheless, our experience underscores that it must be closely guided and its output

rigorously verified to avoid over-modification, omitted parameters and comments, or

erroneous replacements of existing logic. Organizations evaluating LLM-based migrations

should carefully balance the model’s ability to rapidly remove old framework code against

the critical need to preserve proprietary libraries, specific domain logic, and carefully tuned

architectural structures through diligent oversight and targeted prompting.

3.4 AST-based Migration

In this chapter, we describe how we used OpenRewrite to automate a Dropwizard 1.3–to–

Spring Boot migration. We wanted to determine how much of it could be replicated by

purely AST-based refactoring tools and what are the most effective ways to use this tool.

Our core question was how reasonably we could automate the transition, striking a balance

between the following factors:

Specifically, we needed to consider cost-efficiency, as we did not want to spend excessive

time writing custom transformation logic for potentially unique cases, while also aiming

for reusability by generalizing the recipes for use across other projects beyond just a single

service. Furthermore, we acknowledged the coverage limitations, recognizing that while

some framework aspects map neatly, others (like Security implementations) might still

require extensive manual intervention. Ultimately, we set out to create a proof-of-concept

36

that demonstrates how developers could script a large portion of Dropwizard’s features

into an idiomatic Spring Boot application.

3.4.1 Recipe Structure

In order to systematically transform our Dropwizard application into a Spring Boot–based

service, we composed a series of modular OpenRewrite recipes. At the highest level,

the migration logic is centered around a primary composite recipe, ee.taltech-

.CompositeDropwizardToSpringBoot. This recipe declares a set of recipeList

entries referencing the subordinate modules, each targeting a specific functional area of the

Dropwizard to Spring Boot transition, as depicted in Figure 7.

Figure 7. Composite recipe structure: featuring core, domain and cleanup recipes

The primary modules included in the composite recipe’s recipeList, orchestrating the

migration from configuration and core infrastructure to specific features like security and

testing, were:

1. Core Setup: Handles the fundamental application structure, including entry point

setup and main dependencies.

2. Configuration Migration Converting the main Dropwizard configuration file

to Spring format.

3. Monitoring and Health Checks: Adapting Health checks and actuators to

Spring Boot.

37

4. Security Framework: Migrating various annotations, adding a scaffolding file

that is ready to be implemented.

5. Hibernate: Updates the existing DAO interface to be able to handle Spring’s

Hibernate injection mechanisms.

6. Resource: Adapts REST endpoints and resources to Spring’s Jersey-starter, which

allows to maintain compatibility with existing JAX-RS annotations.

7. Tasks and Commands: Converts background processes and administrative com-

mands to equivalent Spring Boot mechanisms.

8. Tests: Updates the testing infrastructure to use Spring Boot’s testing mechanism

like RestTemplate.

9. Metrics: (Closed-source service only) Updates types and dependencies for metrics.

10. General Cleanup: Handles general code cleanup like removing leftover variables

or methods, changing miscellaneous classes.

This layered organization, built upon the composite recipe structure, makes the migration

procedure highly customizable. Developers can run the entire composite script for a full

migration attempt or invoke specific child recipe modules selectively if they prefer to

validate each area of refactoring step by step. The structure also inherently lends itself to

easy extension; introducing additional transformations—for example, specialized security

refinements or advanced resource conversions—can be done by adding new modules

without modifying the rest of the established pipeline.

A key challenge was migrating configuration values from Dropwizard’s flexible YAML

structure to Spring Boot’s property-based system. We determined that automatically

parsing the existing Dropwizard YAML files exhaustively to map every possible key and

value permutation reliably within a general-purpose OpenRewrite recipe was impractical

due to the potential complexity and variability of YAML structures.

Therefore, we adopted a strategy focused on scaffolding and manual value transcription.

Instead of parsing the old YAML, we opted to include starter configuration recipes (e.g.,

AddHibernateConfiguration, AddSecurityConfiguration) designed to append es-

sential Spring Boot properties to the target application.properties file. These recipes

add critical property keys using placeholder or sensible default dummy values, ensuring

the migrated application has the necessary configuration structure. This allows developers

38

to subsequently fill in their environment-specific values manually, often referencing their

old YAML file, without needing to recreate the property keys from scratch. An example

snippet from a recipe adding Hibernate-related properties is shown in Figure 8.

1 recipeList:

2 - org.openrewrite.properties.AddProperty:

3 property: spring.datasource.url

4 value: jdbc:h2:mem:mydb # Default/placeholder value

5 delimiter: "="

6 - org.openrewrite.properties.AddProperty:

7 property: spring.datasource.driverClassName

8 value: org.h2.Driver # Default/placeholder value

9 delimiter: "="

10 - org.openrewrite.properties.AddProperty:

11 property: spring.jpa.hibernate.ddl-auto

12 value: validate # Default/placeholder value

13 delimiter: "="

Figure 8. Example OpenRewrite recipe actions adding placeholder properties for Spring Data JPA

These helper property additions were bundled logically within the relevant recipe modules;

for instance, the MigrateHibernate module included the actions shown above to add

standard Spring Data JPA properties, potentially with comments guiding the developer on

where to find original values.

Separately, for instances where migrating the syntax of certain Java classes or features

proved too complex or extensive to transform reliably via AST manipulation alone,

we created template source files using the org.openrewrite.text.CreateTextFile

recipe instead. Figure 9 illustrates this approach, showing how a minimal skeleton

SecurityConfig.java class was generated. This class provides the necessary Spring

annotations (@Configuration, @EnableWebSecurity, etc.), but project-specific authen-

tication and authorization logic must be implemented manually.

The parametrized values are filled out using built-in Gradle property substitution be-

fore compiling the recipe. Although the file includes key Spring annotations (e.g.,

39

1 - org.openrewrite.text.CreateTextFile:

2 relativeFileName: ←↩

"${sourcePath}/${classPath}/configuration/SecurityConfig.java"

3 fileContents: |

4 package ${mainPackage}.configuration;

5

6 # imports omitted for clarity

7

8 @Configuration

9 @EnableWebSecurity

10 @EnableMethodSecurity

11 public class SecurityConfig {

12

13 }

Figure 9. Adding security configuration scaffolding via recipe

@EnableWebSecurity), it remains a template that must be adjusted for project-specific

logic. If multiple services share the same security requirements, one could instead package

this class in a dedicated library.

In some cases, where to add newly created files (e.g., SecurityConfig.java) was

not obvious. We as humans intuitively place controllers, services, or configurations

in logical package structures, but scripts instead can only rely on placeholders or user-

supplied configuration paths. We resolved this by making the package name configurable,

acknowledging that the final code arrangement might require manual refinement.

3.4.2 Dependency Management and Exclusions

Reducing Dropwizard dependencies within the project was another priority. OpenRewrite

provides for dependency management, which makes it easy to codify addition (Figure 10)

and removal (Figure 11).

40

1 - org.openrewrite.maven.AddDependency:

2 groupId: org.springframework.boot

3 artifactId: spring-boot-starter-actuator

4 version: "${springBootVersion}"

5 onlyIfAbsent: true

Figure 10. Adding a new Spring Boot dependency

1 - org.openrewrite.maven.ExcludeDependency:

2 groupId: io.dropwizard

3 artifactId: dropwizard-jersey

Figure 11. Excluding an unused Dropwizard dependency

Such changes might seem straightforward, but they encapsulate the decisions about which

Dropwizard packages require removal and which Spring Boot counterparts should replace

them, effectively saving the developer valuable research time. By parameterizing the Spring

Boot version (e.g., ${springBootVersion}), we ensure that developers can override this

value externally if they prefer a different Spring Boot release.

Migrating Dropwizard applications to Spring Boot often involves handling JAX-RS

resources, typically defined using annotations like @Path, @GET, and @Produces. To

avoid an immediate requirement to rewrite these endpoints using Spring MVC annotations,

we incorporated the spring-boot-starter-jersey dependency. This starter allows existing

JAX-RS resources to function within the Spring Boot environment.

Spring Boot’s JAX-RS auto-configuration aids this integration by detecting classes annotated

with @Path. For these resources to be managed by Spring’s IoC container, they also need

to be recognized as Spring components.

One method to bridge Jersey and Spring is through explicit configuration. A configu-

ration class extending Jersey’s ResourceConfig, such as the example in Figure 12, can

programmatically register Spring beans annotated with @Path. This class injects the Spring

41

ApplicationContext, retrieves all beans carrying the @Path annotation, and registers them

with Jersey.

Jersey Configuration Example

1 @Configuration

2 public class JerseyConfig extends ResourceConfig {

3

4 public JerseyConfig(ApplicationContext applicationContext) {

5 Map<String, Object> beans =

6 applicationContext.getBeansWithAnnotation(Path.class);

7 beans.values().forEach(this::register);

8 }

9 }

Figure 12. Jersey-annotated Controllers initialization file

There are two primary ways to incorporate this JerseyConfig class into target projects.

Our implementation embedded it within a shared helper library, allowing easy reuse across

multiple microservices. Alternatively, an OpenRewrite recipe could be employed to add

the JerseyConfig.java source file directly into each project’s codebase. However, using

AddFile might necessitate manual adjustments to the file’s target path, especially within

complex multi-module repositories, to ensure it resides in the appropriate module and

package.

To automate and further streamline the migration, we also developed a recipe that adds

the Spring @Component annotation to any existing class already annotated with JAX-RS’s

@Path - which would allow the configuration in Figure 12 to pick it up. By marking these

JAX-RS resources as Beans, they become automatically discoverable via Spring Boot’s

component scanning mechanism.

These configuration-based and automated annotation approaches ensure that JAX-RS

resources are seamlessly integrated into the Spring container. While resources could

still be registered manually, adopting these techniques significantly reduces the migration

effort compared to the traditional Dropwizard pattern of individual registrations (e.g.,

environment.jersey().register(...)).

42

Future Migration to Spring MVC

Eventually, teams might wish to replace JAX-RS annotations with native Spring MVC

constructs like @RestController and @GetMapping. Because these changes often demand

rewriting method signatures, path definitions, and response-handling logic, we decided that

a separate recipe (or a purely manual pass) would be more realistic than trying to handle

all possible JAX-RS constructs in a single automated script. Nonetheless, the flexible

design of our composite script means that such a specialized recipe could be appended if

necessary.

3.4.3 Configuration

Although Dropwizard and Spring Boot each rely on externalized configuration, their

methods differ considerably. Where Dropwizard reads a YAML file into a subclass of

Configuration, Spring Boot typically uses a combination of application.properties

(or application.yml) and annotation-driven property binding. We approached this

reorganization in two parts: refactoring the main entry point file, and migrating the main

configuration class.

Dropwizard set-up

In a typical Dropwizard project, the Application<T> class provides a run(...) method

that registers bundles, commands, tasks, or resources (Figure 13).

1 public class HelloWorldApplication extends

Application<HelloWorldConfiguration> {

2 @Override

3 public void run(HelloWorldConfiguration configuration,

4 Environment environment) {

5 environment.healthChecks().register("template",

6 new TemplateHealthCheck(configuration.getTemplate()));

7 environment.jersey().register(new PeopleResource(...));

8 environment.admin().addTask(new EchoTask());

9 }

10 }

Figure 13. Example Dropwizard resource initialization

43

3.4.4 Rewiring the Main Entry Point and Configuration Classes

Migrating the application’s core structure requires bridging the gap between Dropwizard’s

inheritance-based model (io.dropwizard.Application) and Spring Boot’s composi-

tion model (@SpringBootApplication, component scanning, auto-configuration). Our

OpenRewrite migration transforms the main Dropwizard application class itself into the

primary Spring Boot entry point, modifying the existing class directly through several

automated steps:

First, the extends io.dropwizard.Application clause and related method overrides

(like initialize) are removed from the existing Dropwizard application class (e.g.,

HelloWorldApplication). Notably, the original run method signature, while no longer

an override, is temporarily preserved for analysis in a subsequent step. This initial change

decouples the class from Dropwizard framework’s lifecycle specifics.

Second, the @SpringBootApplication annotation is added directly to the modified class

(HelloWorldApplication). This single annotation conveniently enables core Spring Boot

features by implicitly including @Configuration, @EnableAutoConfiguration, and

@ComponentScan, marking the class as the primary configuration and component-scanning

hub.

With the class now acting as a Spring @Configuration source, the logic previously

contained within the original Dropwizard run method body is processed. Our

recipes parse this body to identify Dropwizard-specific component registrations (e.g.,

environment.admin().addTask(...), environment.healthChecks().register-

(...), environment.jersey().register(...)). These registrations are then au-

tomatically translated into corresponding @Bean methods defined directly within this

same @SpringBootApplication annotated class. This step effectively converts the

application’s component wiring from Dropwizard’s imperative style to Spring’s declarative

bean definitions (seen in Figure 14).

The final step for completing the structure of this entry point class is adding the stan-

dard public static void main(String[] args) method. This method invokes

SpringApplication.run(...), providing the necessary mechanism to bootstrap the

now Spring-native application - the class name does need to be manually adjusted here

44

1 // Dropwizard explicit resource definition

2 MyTask myTask = new MyTask(configuration.getSomeSetting());

3 environment.admin().addTask(myTask);

4

5 // Spring Boot Bean equivalent

6 @Bean

7 public MyTask myTaskBean(HelloWorldConfiguration appConfig) {

8 // Instantiation logic is preserved in the Bean definition

9 return new MyTask(appConfig.getSomeSetting());

10 }

Figure 14. Dropwizard resource conversion to Spring Bean

after.

As a concluding cleanup phase for this class transformation, dedicated cleanup recipes are

executed (in the General Cleanup module). These recipes specifically target and remove

remnants of Dropwizard framework by identifying code elements based on Dropwizard

package names (e.g., io.dropwizard.*). This ensures that any now-unused variables and

methods related to Dropwizard classes—particularly those involved in the old initialization

process—are cleanly removed, leaving a more idiomatic Spring Boot entry point class.

This parallel transformation approach—adding stereotype annotations (@Component) to

discovered classes while also translating explicit registrations from the run method into

@Bean methods can lead to bean definition conflicts detected by Spring. Simply removing

the explicit @Bean declarations automatically is risky, as it might omit necessary wiring or

configuration from the original run method. We tried to resolve bean-definition conflicts

automatically by first detecting any existing @Component (or equivalent) annotations; the

strategy worked in some cases, but proved only partly reliable because the underlying type

system did not always expose the necessary metadata.

Migrating the Dropwizard Configuration Class

Dropwizard configuration typically uses a class extending io.dropwizard.Configuration

with fields mapped to YAML entries (seen in Figure 15).

45

1 public class HelloWorldConfiguration extends Configuration {

2 @NotEmpty

3 private String template;

4

5 @Valid

6 @NotNull

7 private DataSourceFactory database; // Dropwizard-specific type

8

9 // ...other configuration fields with getters and setters

10 }

Figure 15. Partial Dropwizard Configuration file example

Our recipes refactor this class for Spring Boot property binding through a sequence

of automated steps. Initially, a custom recipe removes the extends io.dropwizard.-

Configuration clause and any now-invalid @Override annotations. Subsequently, the

class is prepared for Spring Boot property binding by adding @ConfigurationProperties

and Lombok’s @Data for the main class and all inner classes - this will generate

set and get methods, which will allow Spring Boot to assign the properties. The

@ConfigurationProperties annotation enables type-safe binding from external sources

like application.properties, while @Data auto-generates the getters and setters required by

Spring’s binding mechanism. Using a distinct prefix helps namespace application-specific

settings.

Finally, fields, getters, and setters tied to Dropwizard-specific types (like DataSourceFactory

or ViewRendererConfiguration) are removed in the end with package matching and

equivalent properties are assigned in the application.properties. The result is a standard

Spring Boot @ConfigurationProperties bean.

This automated refactoring process transforms the core Dropwizard Application

and Configuration classes into their Spring Boot equivalents, establishing the stan-

dard @SpringBootApplication entry point and utilizing @Configuration and

@ConfigurationProperties for bean management and settings, respectively. While the

approach streamlines the migration, potential challenges like bean definition conflicts may

46

necessitate manual review and adjustments to ensure correctness and optimal configuration.

3.4.5 Security

Migrating the security model from Dropwizard to Spring Security required transforming

relevant annotations, as the underlying framework mechanisms differ significantly (custom

Dropwizard Authenticators/Authorizers vs. Spring Security filters). Our OpenRewrite

recipes focused on automating the common annotation changes involved.

Specifically, the recipes handled key security annotation migrations by mapping

Dropwizard/JAX-RS annotations to their Spring Security equivalents, leveraging

the strategies outlined in Section 3.4.9. Common transformations included convert-

ing @RolesAllowed("ROLE") expressions to @PreAuthorize("hasRole(’ROLE’)"),

changing @PermitAll to @PreAuthorize("permitAll()"), and replacing Dropwiz-

ard’s @Auth annotation on method parameters with Spring Security’s @Authentication-

Principal. While these recipe steps addressed the straightforward annotation replace-

ments, we noted during the process that the logic within the method bodies using these

annotations often required subsequent manual review and updates to fully align with Spring

Security’s principal object and authorization context conventions. The setup of the basic

Spring Security configuration class itself was handled via the file generation approach seen

in Figure 9.

We deliberately kept this configuration minimal, providing only the essential annotations

(@EnableWebSecurity and @EnableMethodSecurity) without prescribing specific au-

thentication rules or user stores. This approach allows teams to implement their own

authentication logic while ensuring the basic security infrastructure is in place.

3.4.6 Hibernate and Data Access Layer

A significant part of the migration involved transforming Dropwizard’s Hibernate integration

to Spring’s Data JPA approach. This required changes to both dependencies and code

structure, particularly around Dropwizard’s commonly used AbstractDAO pattern.

Custom AbstractDAO Implementation

To decouple projects completely from the dropwizard-hibernate dependency and its

numerous transitive dependencies, we recreated a compatible AbstractDAO helper class

47

within our migration support library. We maintained the same public method signatures and

core functionality (like persist(), get(), named queries) familiar to developers using

the Dropwizard pattern, but its internal implementation was rewritten using Spring’s JPA

EntityManager instead of Dropwizard’s SessionFactory. This strategy allowed existing

DAO implementations extending the original Dropwizard AbstractDAO to function with

minimal code changes after migration, while successfully eliminating the underlying

Dropwizard dependency.

The migration process leveraging this custom base class involved three main automated

transformations performed by our recipes:

1. Changing the superclass of existing DAOs from io.dropwizard.hibernate.-

AbstractDAO to our custom, Spring-based implementation.

2. Adding @Repository annotations for Spring to be able to pick it up.

3. Adding the necessary Spring JPA EntityManager field, typically injected via

@PersistenceContext or constructor injection, to the DAOs.

4. Updating the constructors of the implementing DAO classes to remove the original

SessionFactory parameter and accept the EntityManager if using constructor

injection.

Transaction Management

We replaced Dropwizard’s method-level @UnitOfWork annotation, used for defining

transactional boundaries, with Spring’s standard @Transactional annotation. Our

recipes performed this replacement on relevant service or DAO methods. We also added

@Transactional at the class level to existing DAO implementation classes (often annotated

with @Repository) to ensure consistent default transaction behaviour across all data access

methods, aligning with common Spring practices.

This overall transformation, centered around the custom AbstractDAO, preserved the

familiar DAO pattern while fully integrating data access operations with Spring’s transaction

management and JPA infrastructure, generally requiring minimal manual intervention for

basic functionality. It is worth noting that a full migration to Spring Data JPA repositories

(using interfaces extending JpaRepository) is another valid approach for simpler services

or those with few existing complex DAO implementations. However, that alternative

path would require completely rewriting existing DAO classes into repository interfaces,

48

potentially necessitating significant manual effort to recreate custom queries and logic

currently embedded within the DAOs. Our chosen approach prioritized minimizing

invasive changes to existing data access logic, aligning with the Path of Least Resistance

principle, particularly beneficial for services with numerous or complex pre-existing DAO

implementations.

3.4.7 Tests

Migrating the Dropwizard test framework to Spring Boot’s testing model frequently proved

to be one of the more intricate tasks during our migration efforts. Dropwizard relies heavily

on JUnit 4 rules such as DAOTestRule, ResourceTestRule, and DropwizardAppRule,

each providing specialized logic for setting up test environments like in-memory databases

or partial server initialization, which needed replacement with Spring Boot equivalents.

Replacing Rules with Spring Boot Annotations

Our script analyzed class-level fields annotated with @Rule to detect common Dropwizard

test rules. Migrating these involves mapping them to suitable Spring Boot test annotations.

Spring Boot offers various annotations designed to load different slices of the application

context, potentially allowing tests targeting specific layers (like the web layer or data layer)

to run faster by not initializing the entire application. Common conceptual mappings

include:

■ DropwizardAppRule→ @SpringBootTest (Full application context)

■ ResourceTestRule→ @SpringBootTest + @AutoConfigureMockMvc (Full con-

text + MockMvc for web testing) or potentially @WebMvcTest (MVC slice only)

■ DAOTestRule→ @DataJpaTest (Data JPA slice only)

■ DropwizardClientRule→ @WebMvcTest (MVC slice only, for client-side testing

against mocked MVC)

However, the optimal choice depends critically on the application’s architecture

and the overall migration strategy. Since we opted to maintain JAX-RS compat-

ibility using spring-boot-starter-jersey (Section 3.4.2) rather than migrating

fully to Spring MVC, annotations focused on the Spring MVC stack (@WebMvcTest,

@AutoConfigureMockMvc) were generally unsuitable for testing our Jersey-based re-

sources. While using test slices can improve test execution speed, ensuring functional

49

parity within the integrated Jersey environment necessitated loading the full application

context.

Therefore, our primary automated strategy involved mapping the broader integration test

rules (e.g., DropwizardAppRule, ResourceTestRule) directly to @SpringBootTest-

(webEnvironment = WebEnvironment.RANDOM_PORT). Although this approach boots

the entire context and may run slower than a focused slice test, it ensures the full application

environment, including the deployed Jersey resources, is available for testing via HTTP client

calls (like TestRestTemplate), guaranteeing functional correctness. For tests focused

solely on the data layer (DAOTestRule), mapping to the more efficient @DataJpaTest slice

remained the appropriate strategy. We implemented this logic using a custom, extendable

recipe that inspected the rule type and inserted the corresponding primary Spring annotation

(@SpringBootTest or @DataJpaTest).

Adapting Test Logic

Beyond replacing the rules, adapting the test logic itself involved several automated steps.

Many Dropwizard DAO tests utilize the inTransaction helper method provided by

DAOTestRule to manage transaction boundaries within a test method (Figure 16).

1 \\ Before

2 daoTestRule.inTransaction(() -> {

3 personDAO.create(new Person("Jeff", "The plumber"));

4 // ... assertions or other operations within transaction ...

5 });

6

7 \\ After

8 personDAO.create(new Person("Jeff", "The plumber"));

9 // ... assertions or other operations within transaction ...

Figure 16. Example Dropwizard DAO test using inTransaction lambda.

Under Spring Boot testing, particularly with @DataJpaTest, transaction manage-

ment is typically handled automatically or via the @Transactional annotation,

rendering the inTransaction lambda unnecessary. To handle this, we wrote a

custom Java visitor, MethodLambdaExtractor, specifically designed to find these

50

daoTestRule.inTransaction(...) calls, extract the code from within the lambda

body, and place it directly into the containing test method, effectively removing the obsolete

wrapper.

We also included recipe steps to migrate common Mockito mocking patterns. Fields

initialized via Mockito.mock(SomeClass.class) were transformed where appropriate to

use Spring Boot’s @MockBean annotation, integrating mocking with the Spring application

context used in the tests.

Migrating the HTTP request invocations within resource tests, typically expressed

as chain-of-method calls on the Dropwizard test rule instance (e.g., RULE.target-

("/someEndpoint").request().post(...).getStatus()), required translation to

use Spring’s TestRestTemplate API interacting with the @SpringBootTest-managed

application context. Due to the complexity and variability in the original invocation patterns

(including different ways of setting paths, headers, entities, and asserting responses), a

perfect AST-based transformation proved highly challenging. As a pragmatic solution, we

developed a converter that parsed the original Dropwizard rule invocation syntax,

partially using regular expressions, to extract key information. This converter was

designed to generate equivalent TestRestTemplate calls, capable of mapping common

request methods, adding standard headers (like authentication or JSON content types), and

handling basic input/output entity types. This approach provided a good enough level of

automation for many standard test cases. However, its reliance on specific syntax patterns

meant that some original invocations were left unchanged by the automated process due to

OpenRewrite’s parser matching issues and required subsequent manual migration to the

TestRestTemplate API.

Migrating the HTTP request invocations within resource tests [. . .] proved difficult within

the project’s scope. While our recipes could handle some simple patterns, complex

test logic involving chained client calls and specific assertions often required manual

rewriting to use the TestRestTemplate API effectively. Determining the exact beans

needed for injection (like TestRestTemplate or ObjectMapper for @SpringBootTest,

or TestEntityManager for @DataJpaTest) was generally straightforward based on the

primary test annotation, but sometimes required manual additions depending on the

specifics of the adapted test logic.

51

JUnit 4 to JUnit 5 Migration

Lastly, we leveraged existing standard OpenRewrite (org.openrewrite.java.testing.-

junit5) recipes to convert tests from JUnit 4 constructs (e.g., @Test(expected = ...),

@Before, @After, Assert.assertEquals) to their modern JUnit 5 equivalents (e.g.,

assertThrows, @BeforeEach, @AfterEach, Assertions.assertEquals). This step,

while not strictly part of the Dropwizard to Spring Boot framework migration itself, was

included because it frequently accompanies such modernizations, and Spring Boot’s testing

support integrates seamlessly with JUnit 5.

We observed that this combined testing migration approach successfully automated many of

the mechanical tasks, such as removing Dropwizard rules, adopting the primary Spring test

annotations (@SpringBootTest, @DataJpaTest), converting common mocking patterns,

inlining inTransaction calls, and updating JUnit syntax. However, the intricate logic

within test bodies, especially HTTP resource test invocations and assertions requiring

the TestRestTemplate, frequently remained a significant component requiring manual

implementation or adjustment.

3.4.8 Class Hierarchy Transformations

We developed two key recipes for managing class hierarchies during migration:

ChangeSuperclassRecipe and RemoveSuperclassRecipe. For the latter, we also

made a modified version to be able to remove superclasses by package for easier cleanup.

ChangeSuperclassRecipe Parameters

1. targetClass: Specifies the fully qualified name of the class to transform

2. newSuperclass: Defines the fully qualified name of the new parent class

3. keepTypeParameters: When true, preserves generic type parameters during the

transformation

4. convertToInterface: Changes inheritance from extends to implements, useful

when migrating to interface-based designs

5. addAbstractMethods: Automatically generates stub implementations for new

abstract methods, throwing UnsupportedOperationException to mark areas

needing attention

6. removeUnnecessaryOverrides: Removes method overrides that become redun-

dant after the superclass change

52

Migration Examples

Basic Method Scaffolding: The addAbstractMethods parameter proved useful for

automatically generating required method stubs, as shown in Figure 17.

1 // Original abstract class

2 abstract class AbstractParent {

3 abstract void doSomething(String input);

4 }

5

6 // Original child class

7 class Child extends AbstractParent {

8 }

9

10 // After transformation with addAbstractMethods=true

11 class Child extends AbstractParent {

12 @Override

13 public void doSomething(String input) {

14 throw new UnsupportedOperationException();

15 }

16 }

Figure 17. Example method stub generation

In summary, the development of the ChangeSuperclassRecipe and RemoveSuperclass-

Recipe provided essential tooling for managing structural changes related to class inheri-

tance during the migration. The configurable parameters, particularly addAbstractMethods,

offered a pragmatic approach to handling methods with significantly altered signa-

tures or logic, balancing automation (stub generation) with the need for manual re-

finement where overly complex recipe logic would be cost-prohibitive or generally

not feasible. These recipes were instrumental in adapting core Dropwizard pat-

terns like ConfiguredCommand and HealthCheck to their Spring Boot equivalents

(CommandLineRunner and HealthIndicator, respectively), and also facilitated the

cleanup or complete reimplementation of classes better suited to native Spring patterns,

contributing significantly to the overall framework transition.

53

Command Line Migration

When migrating Dropwizard commands to Spring Boot, we used the recipe in Figure 18.

1 - ee.taltech.general.ChangeSuperclassRecipe:

2 targetClass: io.dropwizard.cli.ConfiguredCommand

3 newSuperclass: org.springframework.boot.CommandLineRunner

4 convertToInterface: true

5 keepTypeParameters: false

6 addAbstractMethods: true

7 removeUnnecessaryOverrides: true

Figure 18. Recipe to change superclass with different available options

This transformation converted Dropwizard command classes into Spring Boot’s

CommandLineRunner interface, with the original command logic moving into the

run(...) method.

54

Health Check Migration

For health checks, we opted for manual method migration rather with various methods -

this worked well because all the inner method invocations and return types mapped well

to Spring Boot equivalents, and thus there was no need to generate existing method stubs

(Figure 19).

1 // Dropwizard version

2 class CustomHealthCheck extends HealthCheck {

3 @Override

4 protected Result check() {

5 return Result.healthy();

6 }

7 }

8

9 // Spring Boot version (manual migration)

10 class CustomHealthCheck implements HealthIndicator {

11 @Override

12 public Health health() {

13 return Health.up().build();

14 }

15 }

Figure 19. Health check implementation

Class Removal with RemoveSuperclassRecipe

In some cases, rather than transforming classes directly, it made more sense to remove their

Dropwizard inheritance entirely and subsequently reimplement their functionality using a

more idiomatic Spring pattern. For instance, Dropwizard’s PostBodyTask functionality,

often used for administrative actions, was generally better suited to implementation as a

standard Spring @RestController endpoint. The RemoveSuperclassRecipe facilitated

the cleanup of such classes targeted for reimplementation.

1. Removes the target class’s superclass relationship

2. Cleans up associated override methods

3. Allows developers to reimplement functionality using framework-appropriate pat-

terns

55

This approach strategically avoided creating complex, project-specific transformations that

might not generalize well across different codebases.

3.4.9 Annotation Migration Strategy

Converting annotations represented a central challenge in our Dropwizard to Spring

Boot migration. While Dropwizard relies on JAX-RS standards and annotations like

@RolesAllowed and @AuthSpring Boot uses its own ecosystem including @Rest-

Controller, @PreAuthorize, and @AuthenticationPrincipal. We established three

key principles for this migration: minimize repetitive work, preserve existing project

conventions, and focus on widely-used transformation patterns.

Core Migration Patterns

Our annotation migration strategy employed three main techniques:

1. Inheritance-Based Detection We identified migration candidates through their

class hierarchy. For example, classes extending io.dropwizard.Configuration

received Spring Boot’s @ConfigurationProperties, while HealthCheck imple-

mentations were converted to Spring’s HealthIndicator. This approach proved

most effective when a superclass definitively indicated the need for specific Spring

Boot annotations.

2. Annotation-Based Detection We used existing annotations as migration triggers.

Classes marked with @Path received Spring’s @Component annotation to maintain

their discoverability in the new framework. Similarly, we transformed security anno-

tations like @RolesAllowed into equivalent @PreAuthorize("hasRole(...)")

expressions.

3. Direct Replacements Some annotations required straightforward substitutions -

for instance, replacing @Auth with @AuthenticationPrincipal. More com-

plex cases, such as converting javax.annotation.security.PermitAll to

@PreAuthorize("permitAll()"), required additional transformation logic or

metadata.

Advanced Annotation Processing and Serialization

To handle complex annotation parameters, we implemented specialized Java visi-

tors that enabled sophisticated value transformations. For example, when converting

@RolesAllowed("ADMIN") to @PreAuthorize("hasRole(’ADMIN’)"), we needed to

56

account for Spring Security’s role naming conventions. While this approach supported com-

prehensive annotation migrations with parameter transformations, it required custom Java

classes rather than simple YAML declarations. To address OpenRewrite’s serializability

requirements, we developed classes implementing SerializableFunction<T, R>, al-

lowing for complex transformations (like converting "BASIC_GUY" to "ROLE_BASIC_GUY")

while maintaining recipe serializability.

3.4.10 Cleanup

After completing the core migration steps, we apply a comprehensive cleanup recipe

that addresses both general code quality and framework-specific remnants. The recipe

combines standard static analysis tasks (like removing unused imports and fixing common

anti-patterns) with specialized cleanup operations that remove lingering Dropwizard

references. For framework cleanup, we systematically remove Dropwizard package

references, unnecessary method overrides, and unused variables, while also shortening

fully qualified type references for better readability. Although these automated cleanup

steps handle most common cases, a final manual review ensures all framework migrations

achieve their intended outcomes and verifies that the codebase remains functional after

cleanup.

57

3.5 Conclusion

The development of the AST-based migration tooling using OpenRewrite, detailed through-

out Section 3.4, culminated in a comprehensive and modular set of recipes designed to

automate significant portions of the Dropwizard to Spring Boot transition. Our primary

accomplishment was creating a flexible toolkit capable of handling complex refactorings

specific to this framework change. This involved building a composite recipe struc-

ture (ee.taltech.CompositeDropwizardToSpringBoot) that orchestrated numerous

custom and standard OpenRewrite recipes.

A core focus of our development effort centered on tackling challenging transformations

frequently required in framework migrations. We invested significantly in creating robust

recipes for handling complex type changes (Section 3.4.8), developing sophisticated removal

scripts (Sections 3.4.2, 3.4.8, 3.4.10), and implementing improvements in annotation

processing (Section 3.4.9). While developing these targeted solutions, our experience also

highlighted recurring challenges inherent in this type of automated migration, including

the difficulties in reliably handling diverse YAML configuration structures (Section 15),

managing potential bean definition conflicts (Section 3.4.4), and fully automating complex

test logic (Section 3.4.7).

Despite these inherent complexities, the AST-based approach enabled substantial automation

of mechanical tasks. We addressed specific difficult cases pragmatically, for instance by

recreating a compatible AbstractDAO base class (Section 3.4.6) or generating method stubs

via recipe parameters (Section 3.4.8) where full logic translation was impractical. Crucially,

the functionality and correctness of the developed recipes themselves were extensively

validated through dedicated unit tests within the recipe module and by repeatedly running

them against our target open-source and closed-source service repositories throughout the

development cycle.

Based on this development experience, we can address RQ1 concerning the effective design

and structure of proof-of-concept recipes for complex cross-framework migrations with

minimal intervention. Our findings suggest a modular, composite structure (Figure 7)

is paramount Breaking down the migration into distinct functional areas (Configuration,

Security, Data Access, Tests, etc.) managed by separate sub-recipes or modules allows for

58

customization, selective application, and easier maintenance and extension. This modularity

enabled us to tailor the migration effectively for both the Example and Proprietary services

by enabling or disabling specific modules.

Furthermore, effective recipe design should embrace pragmatism and balance automa-

tion with strategic manual effort, aligning with our Path of Least Resistance principle

(Section 3.1.4). Rather than attempting perfect automation for highly complex or vari-

able parts (like intricate test logic or parsing diverse YAML structures), recipes should

focus on automating the repetitive, mechanical tasks reliably. For complex transfor-

mations, generating placeholders (like default properties, Section 3.4.3), skeleton files

(like SecurityConfig.java, Figure 9), or method stubs (addAbstractMethods, Sec-

tion 3.4.8) proved more cost-effective, providing developers with the correct structure

while leaving the intricate logic for manual completion. Leveraging declarative YAML

recipes for simpler tasks (like dependency management) and reserving custom Java visitors

for complex AST manipulation (like advanced annotation processing) also optimizes

development effort. Finally, designing recipes with configurability (e.g., parameterized

versions, package names) enhances their reusability across different projects.

Recognizing the potential value of this work, the implementation and the core set of custom

recipes reside in our open-source repository2 (modules specific to proprietary components,

like the MigrateMetrics module, are excluded). Furthermore, collaborating with the Open-

Rewrite maintainers, we initiated the dedicated openrewrite/rewrite-dropwizard

module3, where these scripts will be shared. This overview summarizes the development

journey, emphasizing key technical accomplishments, challenges, and the derived recipe

design principles, which underpins the overall migration results analyzed in Chapter 4.

2Recipe repository, Accessed: 2025-04-13, URL: https://github.com/Fossur/

openrewrite-dropwizard-springboot-recipe
3OpenRewrite Dropwizard module, Accessed: 2025-04-13, URL: https://github.com/openrewrite/

rewrite-dropwizard

59

https://github.com/Fossur/openrewrite-dropwizard-springboot-recipe
https://github.com/Fossur/openrewrite-dropwizard-springboot-recipe
https://github.com/openrewrite/rewrite-dropwizard
https://github.com/openrewrite/rewrite-dropwizard

4 Analysis

4.1 Methodology Overview

In this chapter, we analyze and compare the three distinct migration approaches detailed

in Chapter 3 —Manual refactoring, LLM-assisted transformation (using OpenAI’s o3-

mini model), and AST-driven refactoring (via OpenRewrite recipes). To evaluate the

effectiveness and trade-offs of each method across varying complexities, we applied

these approaches to two different Dropwizard to Spring Boot migration scenarios. The

structured data collection process, analysis tools, and performance metrics employed for

this quantitative comparison are detailed below.

4.1.1 Data Collection Workflow

Separate Git branches were used for each migration approach (Manual, LLM Initial, LLM

Finalized, AST Initial, AST Finalized). This branching strategy allowed the isolation of

changes made during each phase and accurate tracking of the transformations applied during

the Initial automated or manual pass versus the subsequent Finalized manual corrections

and integration steps. Commits were made at each distinct stage to capture the state and

facilitate analysis.

4.1.2 Tools

To gather high-level quantitative data about the code modifications, we utilized Git Diff [50].

This tool provided metrics such as the number of lines and files changed between the

relevant commits established in our data collection workflow, offering a basic measure of

the extent of changes introduced by each migration approach.

For more granular insights into the structural transformations applied to the code, we

employed RefactoringMiner [51, 52, 53]. This tool allowed us to identify and count

specific types of code refactorings performed between commits, yielding a higher-level

understanding of the migration process beyond simple line counts. RefactoringMiner is

60

capable of programmatically detecting a substantial portion (40 out of 75 documented

types [54, 55]) of standard refactorings.

4.1.3 Quantitative Comparison Metrics

To quantitatively compare the migration approaches, the analysis focused on the total effort

required and a composite score reflecting overall effectiveness. The total effort is measured

by Time Spent (hrs), representing the total developer hours logged for each migration

stage (Initial, Finalized).

Overall migration effectiveness is assessed using the Overall Score. This composite score

combines the completeness achieved by the initial automated step (for the LLM and AST

methods) with the total time efficiency, measured relative to the manual baseline. It is

calculated in two stages: first determining the Automation Completeness Score (ACS),

which quantifies the proportion of the migration achieved automatically, as defined in

Equation 4.1:

ACS = 1
3

(
LInitial

LT otal

+ DInitial

DT otal

+ RInitial

RT otal

)
× 100 (4.1)

In Equation 4.1, the three components provide a multi-faceted view of automated changes

relative to the total effort required.

1. Line Change Automation (LInitial/LT otal): This ratio quantifies the proportion of

lines modified (added/deleted) in the Initial automated step compared to the total.

While a straightforward measure of raw volume that can be skewed by formatting or

large churn, it serves as a fundamental indicator of the extent of automated code

intervention.

2. Dependency Completeness (DInitial/DT otal): This ratio measures the comparison

of dependencies handled automatically (Initial step) against the total dependency

changes needed for the migration. This aspect is crucial for buildability and

fundamental migration success, although the metric focuses on the presence/absence

of dependencies rather than the complexity of their integration.

3. Structural Automation (RInitial/RT otal): This ratio represents the comparison of

structural refactorings detected by RefactoringMiner in the Initial phase versus the

61

total detected throughout the migration (Initial + Finalized). This offers insight

into the nature and complexity of automated changes beyond simple line counts,

though we acknowledge RefactoringMiner does not detect all refactoring types and

detection does not guarantee functional correctness.

By averaging these three distinct facets with equal weight, ACS aims to provide a balanced

perspective that mitigates the limitations inherent in any single metric, offering a useful

comparative measure of the upfront automated contribution (in terms of lines, dependencies,

and detected structures) across the different methods evaluated.

By definition, the Manual migration approach performs all work in the initial (and only)

step, thus it is assigned an Automation Completeness Score of 100.

Next, we calculate a Time Factor (TF) for each approach (LLM, AST, Manual). This factor

quantifies the time efficiency of a given migration method relative to the manual baseline,

calculated according to Equation 4.2:

TF = TManual

TMethod

(4.2)

Where:

1. TManual is the total time spent on the Manual migration.

2. TMethod is the total time spent on the specific migration method being evaluated

(Manual, LLM, or AST).

Note that for the Manual method, TMethod = TManual, resulting in a Time Factor of 1.

Finally, the Overall Score is computed by combining the Automation Completeness Score

(ACS) and the Time Factor (TF). This multiplication yields the final composite score, as

shown in Equation 4.3:

Overall Score = ACS × TF (4.3)

This calculation yields a composite score where the Manual method serves as the baseline

with an Overall Score of 100 (since ACS = 100 and TF = 1). Scores higher than 100

62

indicate methods that achieved a significant degree of automation (ACS > 0) in less time

than the manual approach (TF > 1), effectively rewarding both automation completeness

and time efficiency relative to the baseline. Conversely, scores below 100 might indicate

methods that were either less complete in their initial automated pass or took longer than

the manual refactoring.

4.2 Example Service Migration Results

The quantitative metrics in Table 3 clearly show the efficiency gains achieved through

automation for the Example Service compared to the purely manual effort.

Metric Manual LLM AST

Time Spent (hrs) 24 7.5 3.5

Line Changes Initial 1627 1572 1575

Line Changes Finalized 0 109 409

Line Changes Total 1627 1681 1984

Dependency Changes Initial 21 33 23

Dependency Changes Finalized 0 5 3

Dependency Changes Total 21 38 26

Structure Changes Initial 228 218 168

Structure Changes Finalized 0 2 132

Structure Changes Total 228 220 300

Automation Comp. Score (%) 100 93.15 74.6

Time Factor 1 3.2 6.86

Overall Score 100 298.1 511.7

Table 3. Example service migration metrics (showing Initial vs Finalized components)

LLM Approach Analysis

The LLM approach demonstrated significant benefits over manual work, achieving a high

Overall Score of 298.1 in 7.5 hours (Table 3). The high score was primarily due to its

excellent initial automation, reflected in a very high ACS of 93.15 (Table 3, Equation 4.1).

63

Evidence for this high ACS includes the minimal finalization needed: only 109 lines and

2 structural changes. Qualitatively, the LLM effectively handled boilerplate conversion

and often rewrote syntax holistically towards an idiomatic Spring Boot style, performing

particularly well on the smaller files of the Example Service.

While achieving good results in 7.5 hours, leading to a substantial TF of 3.2 (Table 3), this

required considerable interactive developer effort. The recorded time included significant

developer involvement in iterative prompting (estimated average 2-5 prompts per file),

constant oversight, error correction (e.g., identifying missing annotations), and debugging

generated outputs. This developer-intensive interaction model contrasts with the potentially

more predictable, albeit numerous, finalization tasks associated with the AST method.

Regarding the build configuration, the LLM approach replaced existing Dropwizard depen-

dencies with Spring Boot equivalent, but this adherence came at the cost of overreaching

by removing existing, critical code quality plugins (such as Checkstyle and Jacoco) from

the configuration. This necessitated subsequent manual effort to diagnose the omissions

and re-integrate these essential tools, partially offsetting the automation gains achieved

elsewhere.

AST Approach Analysis

The AST approach delivered the highest Overall Score (511.7, defined in Table 3). This

outcome was predominantly driven by its exceptional speed, completing the migration in

only 3.5 hours compared to 24 hours for the Manual baseline. This efficiency resulted in the

highest TF of 6.86 (Table 3), calculated as defined in Equation 4.2. The speed advantage

was partly attributed to effective automation of dependency setup, minimizing developer

research time (Figure 5).

However, this speed came with a trade-off in initial completeness. The AST method

achieved a moderate ACS of 74.6 (Table 3, definition in Equation 4.1). This is evidenced by

the relatively large volume of changes requiring manual finalization compared to the LLM

approach, specifically 409 lines and 132 structural changes. Even though many manual

changes were required, they were finished quickly. This indicates that the automated recipes

mostly left numerous small, targeted tasks—like implementing method stubs or adjusting

security details—that could be completed rapidly by hand.

64

The AST-based migration for the open-source service effectively automated much of

the dependency management. It successfully processed the majority of dependency

modifications in the initial automated pass, including adding required Spring Boot libraries

and removing obsolete Dropwizard ones. This efficient handling of dependencies was a

key factor in reducing developer research time for the example service’s migration.

A distinct advantage of the AST approach was its contribution to reusable assets. The

effort invested resulted in validated OpenRewrite recipes (analyzed in Section 4.4), offering

long-term value applicable to other migrations. This contrasts with the LLM’s interactive

session, which was specific to this single migration instance.

65

4.3 Proprietary Service Migration Results

The migration results for the more complex Proprietary Service (Table 4) show a stark

divergence in the effectiveness of the automated approaches compared to both the Manual

baseline and their performance on the simpler Example Service.

Metric Manual LLM AST

Time Spent (hrs) 16 10 3

Line Changes Initial 670 1425 713

Line Changes Finalized 0 2359 351

Line Changes Total 670 3784 1064

Dependency Changes Initial 30 6 16

Dependency Changes Finalized 0 14 2

Dependency Changes Total 30 20 18

Structure Changes Initial 107 430 51

Structure Changes Finalized 0 33 65

Structure Changes Total 107 463 116

Automation Comp. Score (%) 100 53.5 66.6

Time Factor 1 1.6 5.33

Overall Score 100 85.6 355.3

Table 4. Proprietary service migration metrics (showing Initial vs Finalized components)

AST Approach Analysis

The AST method again achieved the highest Overall Score (355.3, Table 4). This was

driven primarily by its exceptional speed (3 hrs) compared to the Manual baseline (16

hrs), resulting in a high Time Factor (TF) of 5.33 (Table 4, definition in Equation 4.2). Its

Automation Completeness Score (ACS) remained reasonable at 66.6% (Table 4, definition

in Equation 4.1), supported by high initial Dependency Completeness (approx. 89%),

although requiring significant finalization for Lines (approx. 67% initial automation)

and Structure (approx. 44% initial automation, requiring 65 finalized changes). This

success in the proprietary context underscores the effectiveness of the modular and targeted

application of the recipes.

66

As discussed in Section 4.4, we disabled some standard modules (Security, Hibernate, Tests)

not necessary for this service and added a custom MigrateMetrics module (composed

primarily of existing recipe types) alongside enhanced cleanup scripts. This tailoring

allowed the AST approach to efficiently automate the applicable parts while bypassing

proprietary complexities, aligning with the Path of Least Resistance principle.

LLM Approach Analysis

In stark contrast, the LLM approach struggled significantly with the Proprietary Service’s

specifics, resulting in an Overall Score of 85.6, substantially lower than the Manual baseline

(Table 4). This low score quantitatively reflects the challenges encountered: the ACS

was poor (53.5%, Table 4), particularly hindered by extremely low initial Dependency

Completeness (only 30%).

Qualitatively, this aligns with the LLM’s difficulties handling proprietary code: it sug-

gested unsuitable public libraries for metrics, failed to manage internal dependencies

(negating research time savings), and proposed conflicting exception handling patterns

(@ExceptionHandler vs. custom logic), all requiring manual correction. Furthermore,

the finalization metrics highlight a key failure mode. While the Structure Changes Finalized

count was relatively low (33), indicating high initial structural automation (approx. 93%),

the Line Changes Finalized count was extremely high (2359, Table 4). This large line

difference primarily resulted from the complete manual reversion of a single large (~900

lines) resource file that the LLM failed to migrate correctly (as detailed in Section 3.3.2).

This indicates that while the LLM might sometimes produce code appearing structurally

plausible, its functional correctness can degrade severely on large, complex inputs, leading

to significant line-level rework or wholesale reversion. It also underscores that the high

count of finalized line changes here is skewed by this single revert.

Despite these significant issues limiting its overall effectiveness score, the LLM approach

(10 hrs) was still faster than the purely manual one (16 hrs), achieving a Time Factor of 1.6

(Table 4).

67

4.4 Discussion

Applying the three migration methods across both the Example and Proprietary Service

allowed us to synthesize overarching trends, identify context-specific variations, analyze

the recipe development process, and draw conclusions addressing our research questions.

Consistently, a clear trade-off between development time and the resulting code state

emerged. The AST (OpenRewrite) approach demonstrated the fastest execution times,

achieving the highest Overall Scores (Tables 3 and 4), largely driven by significant

time efficiency compared to the manual baseline. LLM-assisted migration substantially

accelerated the process compared to manual efforts, serving as a valuable middle ground,

although its effectiveness diminished notably with the proprietary complexities of the

closed-source Service. Manual migration, while the most time-consuming, remained the

benchmark for predictable quality and reliably handling undocumented logic.

Dependency handling also revealed method-specific strengths and weaknesses. Both

the AST approach (when correctly configured with necessary recipes or exclusions) and

the Manual method reliably achieved near-total Dependency Completeness relative to

the finalized state in both scenarios. The LLM, conversely, showed variable reliability,

performing adequately with standard public dependencies but struggling significantly with

the proprietary libraries in the closed-source service, often requiring explicit guidance and

manual correction.

The viability and effectiveness of the AST approach, central to this investigation, are

intrinsically linked to the development and application of its recipe library. Our experience

underscored that building these recipes requires a significant upfront investment. To analyze

this systematically, we established a four-tier classification for recipe development effort:

Tier 0: Pre-existing recipes available in the OpenRewrite ecosystem that required no

additional development time, only configuration and integration effort.

Tier 1: Simple transformation recipes that could be developed and tested within a single

day, typically involving basic code structure changes.

Tier 2: Moderately complex recipes requiring one to three days of development time, often

involving multiple related transformations or more sophisticated refactoring patterns.

68

Tier 3: Complex recipes taking over three days to develop - sophisticated syntax generation.

The distribution of the 63 distinct recipes used, depicted in Figure 20, shows that while

nearly a fifth (19.7%) were pre-existing recipes (Tier 0) that could be leveraged, the majority

of development time was concentrated on newly developed recipes. Specifically, recipes

falling into Tier 2 (requiring 1-3 days each) constituted 52.5% of the total, and complex

Tier 3 recipes (requiring over 3 days each) made up 11.5%. An additional 16.4% of the

recipes were simpler Tier 1 custom creations (requiring up to 1 day). Evidently, complex

cross-framework migrations demand significant custom recipe development, primarily to

address moderately complex, recurring patterns (Tier 2) and intricate transformations (Tier

3).

Figure 20. Recipe development effort distribution by tier

This concentration of effort in Tiers 2 and 3 stems from inherent challenges in automating

complex code transformations via AST manipulation. For instance, maintaining type

consistency across sequences of chained recipe applications proved difficult and error-prone,

requiring careful design and validation within the recipe logic itself. Similarly, reliably

converting longer or more complex method chains to an entirely different syntax (beyond

simple annotation or type changes) demanded sophisticated, often brittle, recipe logic.

Situations requiring complete method reimplementation presented a vast decision space

69

regarding functionally equivalent implementations, a task often ill-suited for deterministic

AST rules that excel at structured, predictable transformations. Furthermore, significant

code rearrangements—such as moving methods between classes or restructuring class

hierarchies beyond simple parent changes—proved particularly challenging for reliable

AST automation; these tasks are highly sensitive to the surrounding code context and

architectural intent. Moreover, the order in which recipes are applied is critical. Recipes

often build upon the code state (type information) created by previously executed ones, and

incorrect sequencing can lead to unexpected failures or incomplete transformations, adding

another layer of complexity to the migration process. These factors contribute significantly

to the development time required for higher-tier recipes.

Metric Value

Generally usable recipes 34

Created unique recipes 51

Total unique recipes used 63

Total recipes used in Open-Source service 105

Unique recipes used in Open-Source 61

Total recipes used in Closed-Source service 115

Unique recipes used in Closed-Source service 41

Table 5. High-level recipe metrics

Furthermore, this initial investment barrier is likely to decrease over time. As the open-

source ecosystem around tools like OpenRewrite matures, with more pre-existing recipes

becoming available and potentially covering more complex patterns, the effort required

to assemble effective migration scripts for common framework transitions, such as the

Dropwizard to Spring Boot path studied here, should diminish. This trend further improves

the cost-benefit analysis for adopting the AST approach in the future.

The AST approach’s modularity, demonstrated by the recipe library structure (Fig-

ure 3.4.1), proved crucial for its success on the Proprietary Service. By disabling inappli-

cable standard modules (MigrateSecurity, MigrateHibernate (with Liquibase),

MigrateTests) and composing a custom MigrateMetrics module largely from existing

Tier 0 recipes, the method efficiently achieved the highest Overall Score (355.3) despite

70

the service’s unique requirements. This showcases the approach’s adaptability with low

marginal effort through both module configuration and the reuse of foundational recipe

components for specialized tasks (Table 4).

The LLM’s limitations with complex, proprietary code were quantitatively evident in the

closed-source service migration. Beyond the poor ACS (53.5%) and dependency issues,

the extremely high count of finalized line changes (Table 4) — primarily due to reverting a

single large (~900 lines), incorrectly migrated file (Section 3.3.2)—highlights a critical

failure mode. This indicates that while the LLM might sometimes produce code appearing

structurally plausible (high initial structural automation of approx. 93%), its functional

correctness can degrade severely on large, complex inputs, leading to significant line-level

rework or wholesale reversion. This contrasts sharply with its minimal finalization needs

on the simpler Example Service (Tables 3). The developer-intensive interaction model

required for the LLM (iterative prompting, oversight, debugging) also contrasts with the

potentially more predictable finalization tasks associated with the AST method, even if

those tasks are numerous.

Regarding the extent to which the Dropwizard to Spring Boot migration could be automated

while preserving functional parity (RQ2), our findings indicate substantial but incomplete

automation is achievable. The initial automated steps using AST and LLM successfully

handled a substantial portion of the migration work, achieving significant automation

coverage and translating directly into considerable time savings compared to the manual

baseline (evidenced by Time Factors > 1, seen in Tables 3 and 4). However, the consistent

need for non-zero finalization across both services and methods underscores that manual

intervention remains essential. Handling complex business logic, nuanced configurations,

comprehensive test adaptation, and ultimately ensuring functional correctness met validation

criteria reliably required manual oversight, indicating that full, hands-off automation remains

challenging for complex, real-world migrations.

71

4.5 Conclusion

In conclusion, this analysis confirms the AST-based approach, supported by a well-structured

and tailored recipe library, offers superior execution speed and automation potential

compared to LLM-assisted and Manual methods for this specific Dropwizard to Spring

Boot migration context (RQ3). The experience highlighted both the significant upfront

investment required for recipe development and the considerable rewards in efficiency

derived from that effort. While limitations remain, particularly around automating highly

dynamic code transformations, the targeted and deterministic nature of AST transformations,

combined with modular configuration, proved highly effective. This was especially notable

in navigating proprietary complexities where the generalized LLM approach faltered

significantly. The recipe development effort yields reusable assets, enhancing the value

proposition, particularly in scenarios involving multiple similar migrations. Ultimately,

building upon the demonstrated effectiveness of the AST-based approach explored in this

work, a blended strategy could further enhance efficiency, particularly concerning the

upfront investment for complex migrations. This would involve utilizing AST recipes

for their precision in core, strategic transformations and ensuring reliable application of

recurring patterns, while leveraging LLMs specifically for the broader, more syntactically

demanding transformations. Such a division of labor could directly address the significant

upfront time and cost associated with developing complex (e.g., Tier 2 and Tier 3) AST

recipes, by having the LLM handle the heavy lifting for intricate syntax conversions that

are currently resource-intensive to automate via AST rules alone. This synergy has the

potential to make the migration process faster and more cost-effective to initiate, while

robust manual oversight and testing would, critically, remain essential for final validation

and addressing nuanced domain logic.

72

5 Threats To Validity

Several factors may limit the broader applicability of this thesis’s findings. The conclusions

are drawn from migrating only two specific services: one open-source and one proprietary

system. These services, while differing in complexity, might not fully represent the diversity

of Dropwizard applications used in industry. Variations in application size, complexity, or

architecture could influence the effectiveness and feasibility of the automation techniques

explored. Furthermore, the study specifically targets the migration from Dropwizard 1.3

to Spring Boot 2.7.x. Organizations using different framework versions or Java versions

might face unique challenges not covered in this research.

The generalizability of the LLM-assisted migration results is also influenced by the specific

model and prompting strategy used. This research utilized OpenAI’s o3-mini model with

zero-shot prompts. Employing different large language models, specialized LLM tools,

or more advanced prompting techniques could lead to substantially different outcomes,

especially when working with proprietary codebases or intricate domain logic.

It’s also important to recognize that multiple valid strategies exist for executing each

migration step. For example, JAX-RS resources could be integrated using Spring Boot’s

Jersey support or rewritten entirely using Spring MVC. Likewise, differing choices

regarding security configurations, transaction management, or data access strategies impact

the specific migration recipes required and their automation potential. Therefore, the

OpenRewrite recipes developed here represent one viable migration path, not an exhaustive

solution applicable to all situations.

The AST-based recipes themselves, being a proof-of-concept, have practical limitations.

Although designed for modularity, they do not encompass every possible Dropwizard

feature, third-party bundle, or unique architectural element found in large-scale production

systems. Services relying heavily on specialized integrations or less common Dropwizard

features might need significant customization of the provided recipes.

73

Finally, external validity is constrained by the reliance on developer judgment and the

necessity for manual finalization steps. This required manual effort, essential for handling

complexities and verifying LLM outputs, inherently reduces the level of complete automa-

tion and introduces variability depending on the specific context and developer expertise.

Consequently, the results should be interpreted with caution, underscoring the need for

further validation across a wider range of services and organizational settings.

74

6 Future Work

While this thesis demonstrates the feasibility of automating Dropwizard to Spring Boot

migrations, several research directions remain open. First, the AST-based approach

could be extended beyond a single language boundary, such as exploring cross-language

transformations within the broader JVM ecosystem. For instance, transforming Java-based

Dropwizard services into Kotlin-based Spring Boot applications may present additional

challenges and opportunities for advanced recipe design, particularly around language-

specific syntactic constructs and idioms. Investigating these cross-language scenarios

would help determine whether tools like OpenRewrite can effectively bridge linguistic gaps

or if specialized frameworks are needed.

Future studies could also delve deeper into automating migrations with more comprehensive

or specialized tooling. As LLMs continue to evolve, comparing different model providers,

both open-source and commercial, could highlight variations in performance, context

handling, or security/privacy trade-offs. Effective prompt-engineering techniques (such

as few-shot or chain-of-thought prompting) and specialized frameworks for interactive

code analysis might further refine or accelerate the migration process. More rigorous

experiments with proprietary code and domain-specific libraries could shed light on the

extent to which LLMs can generalize or require tailored context and examples.

An especially promising line of inquiry centers on a combined approach that unites

AST- and LLM-based automation in a single pipeline. Here, LLMs could dynamically

generate, refine, or customize OpenRewrite recipes by processing smaller chunks of

code—allowing them to handle context more effectively and reducing the up-front recipe-

development burden. The AST tooling would then execute these recipes at scale, retaining

the precision and predictability of structured transformations while benefiting from the

LLM’s adaptability.

Larger-scale industrial case studies, involving multiple Dropwizard services of varying

75

complexities, would lend stronger evidence to the comparative advantages and limitations

of each approach. Community-driven initiatives, such as dedicated OpenRewrite modules

for specialized migrations or curated prompt libraries, could foster ongoing collaboration

and promote the broader adoption of automated modernization techniques.

76

7 Conclusion

This thesis investigated the potential for automating the migration of legacy Java services

from Dropwizard to Spring Boot. We employed Abstract Syntax Tree-based refactoring with

OpenRewrite as the primary technique, and compared its efficacy against an LLM-assisted

transformation and the traditional manual migration process. The study evaluated the

efficacy, challenges, and trade-offs of each approach across two case studies: a moderately

complex open-source service and a proprietary closed-source system.

Beyond these comparative findings, a significant practical contribution of this work is the

development of a reusable library of OpenRewrite recipes tailored to the Dropwizard to

Spring Boot migration. These core recipes have been released as an open-source project to

benefit the wider community, lowering the barrier for other organizations facing similar

modernization challenges and encouraging further community-driven refinement of the

migration tools.

In conclusion, this study confirms that AST-based tooling (exemplified by OpenRewrite)

offers a highly effective strategy for accelerating Dropwizard to Spring Boot migrations.

It yields considerable time savings over manual migration and greater reliability than the

current generation of LLM approaches, especially for complex, structured refactoring

tasks where deterministic transformations are crucial. While the AST approach requires

an upfront investment in creating and tuning migration recipes, this investment provides

substantial returns, particularly in scenarios involving multiple similar migrations. Overall,

the most successful modernization efforts will likely combine the strengths of all approaches:

leveraging AST automation for core, repetitive refactoring tasks, utilizing LLMs for complex

syntactic transformations, and relying on essential manual oversight and validation to

ensure correctness and handle the nuanced complexities of real-world enterprise systems.

77

References

[1] Wesley K. G. Assunção et al. „Contemporary Software Modernization: Perspectives and
Challenges to Deal with Legacy Systems“. In: CoRR abs/2407.04017 (2024). doi: 10.
48550/ARXIV.2407.04017. arXiv: 2407.04017. url: https://doi.org/10.48550/
arXiv.2407.04017.

[2] Spring Framework 6: The Full Cost of Migrating from v5 to v6. HeroDevs. Nov. 2024. url:
https://www.herodevs.com/blog-posts/spring-framework-6-the-full-cost-
of-migrating-from-v5-to-v6 (visited on 03/20/2025).

[3] John Browne. Comparing the cost of migrating to rewriting. June 2016. url: https:
//www.mobilize.net/blog/comparing-the-cost-of-rewrite-to-migration
(visited on 03/20/2025).

[4] Renaud Pawlak et al. „SPOON: A library for implementing analyses and transformations of
Java source code“. In: Softw. Pract. Exp. 46.9 (2016), pp. 1155–1179. doi: 10.1002/SPE.
2346. url: https://doi.org/10.1002/spe.2346.

[5] Addo Zhang. OpenRewrite Learning (Part 1): Basics and Principles. Dec. 2024. url:
https://addozhang.medium.com/openrewrite-learning-part-1-basics-and-
principles-642c8c9fe645 (visited on 03/20/2025).

[6] Aylton Almeida, Laerte Xavier, and Marco Túlio Valente. „Automatic Library Migration
Using Large Language Models: First Results“. In: Proceedings of the 18th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, ESEM
2024, Barcelona, Spain, October 24-25, 2024. Ed. by Xavier Franch et al. ACM, 2024,
pp. 427–433. doi: 10.1145/3674805.3690746. url: https://doi.org/10.1145/
3674805.3690746.

[7] Olga Kundzich and Justine Gehring. Generative AI for Automating Code Remediation
at Scale. July 2023. url: https://www.moderne.ai/blog/generative-ai-for-
automating-code-remediation-at-scale (visited on 03/20/2025).

[8] Dropwizard Documentation. Dropwizard Team. 2025. url: https://www.dropwizard.
io/en/latest/ (visited on 03/26/2025).

[9] Dropwizard GitHub Repository. Dropwizard Team and Contributors. 2025. url: https:
//github.com/dropwizard/dropwizard (visited on 03/26/2025).

[10] Spring Boot Project Page. Spring. 2025. url: https://spring.io/projects/spring-
boot (visited on 03/26/2025).

[11] Spring Boot GitHub Page. Spring. 2025. url: https://github.com/spring-projects/
spring-boot (visited on 03/26/2025).

78

https://doi.org/10.48550/ARXIV.2407.04017
https://doi.org/10.48550/ARXIV.2407.04017
https://arxiv.org/abs/2407.04017
https://doi.org/10.48550/arXiv.2407.04017
https://doi.org/10.48550/arXiv.2407.04017
https://www.herodevs.com/blog-posts/spring-framework-6-the-full-cost-of-migrating-from-v5-to-v6
https://www.herodevs.com/blog-posts/spring-framework-6-the-full-cost-of-migrating-from-v5-to-v6
https://www.mobilize.net/blog/comparing-the-cost-of-rewrite-to-migration
https://www.mobilize.net/blog/comparing-the-cost-of-rewrite-to-migration
https://doi.org/10.1002/SPE.2346
https://doi.org/10.1002/SPE.2346
https://doi.org/10.1002/spe.2346
https://addozhang.medium.com/openrewrite-learning-part-1-basics-and-principles-642c8c9fe645
https://addozhang.medium.com/openrewrite-learning-part-1-basics-and-principles-642c8c9fe645
https://doi.org/10.1145/3674805.3690746
https://doi.org/10.1145/3674805.3690746
https://doi.org/10.1145/3674805.3690746
https://www.moderne.ai/blog/generative-ai-for-automating-code-remediation-at-scale
https://www.moderne.ai/blog/generative-ai-for-automating-code-remediation-at-scale
https://www.dropwizard.io/en/latest/
https://www.dropwizard.io/en/latest/
https://github.com/dropwizard/dropwizard
https://github.com/dropwizard/dropwizard
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot

[12] Curtis Johnson. Highlights From the 2024 Java Developer Productivity Report. Mar. 2024.
url: https://www.jrebel.com/blog/2024-java-report-highlights (visited on
03/20/2025).

[13] Patricia Johnson. Case study: Insurer improves developer productivity with code migra-
tion automation. Jan. 2024. url: https://www.moderne.ai/blog/case- study-
improving-developer-productivity-with-code-migration-automation (visited
on 03/20/2025).

[14] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. „Technical Debt: From Metaphor to
Theory and Practice“. In: IEEE Softw. 29.6 (2012), pp. 18–21. doi: 10.1109/MS.2012.167.
url: https://doi.org/10.1109/MS.2012.167.

[15] Information Technology: Agencies Need to Develop and Implement Modernization Plans for
Critical Legacy Systems. GAO-19-471. U.S. Government Accountability Office, 2019. url:
https://www.gao.gov/products/gao-19-471.

[16] Jesus Bisbal et al. „Legacy Information Systems: Issues and Directions“. In: IEEE Softw.
16.5 (1999), pp. 103–111. doi: 10.1109/52.795108. url: https://doi.org/10.1109/
52.795108.

[17] Lift and Shift. IBM. 2025. url: https://www.ibm.com/topics/lift-and-shift
(visited on 04/09/2025).

[18] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. „Migrating Towards Microservice
Architectures: An Industrial Survey“. In: IEEE International Conference on Software
Architecture, ICSA 2018, Seattle, WA, USA, April 30 - May 4, 2018. IEEE Computer Society,
2018, pp. 29–39. doi: 10.1109/ICSA.2018.00012. url: https://doi.org/10.1109/
ICSA.2018.00012.

[19] Georg Buchgeher et al. „Adopting Microservices for Industrial Control Systems: A Five
Step Migration Path“. In: 26th IEEE International Conference on Emerging Technologies
and Factory Automation, ETFA 2021, Vasteras, Sweden, September 7-10, 2021. IEEE, 2021,
pp. 1–8. doi: 10.1109/ETFA45728.2021.9613622. url: https://doi.org/10.1109/
ETFA45728.2021.9613622.

[20] Janne Kauhanen. „Modernizing usability and development with microservices“. English.
Master’s Thesis. University of Helsinki, Faculty of Science, 2022. url: http://hdl.
handle.net/10138/352072.

[21] Danske Bank Halves Large-Scale Migration Timeline with Hyperautomation on AWS.
Amazon Web Services. 2024. url: https://aws.amazon.com/solutions/case-
studies/danske-bank-hyperautomation-case-study/ (visited on 02/23/2025).

[22] Codemod. Archived repository. Facebook. 2024. url: https : / / github . com /
facebookarchive/codemod (visited on 11/27/2024).

[23] jscodeshift. Facebook. 2024. url: https://github.com/facebook/jscodeshift
(visited on 11/27/2024).

79

https://www.jrebel.com/blog/2024-java-report-highlights
https://www.moderne.ai/blog/case-study-improving-developer-productivity-with-code-migration-automation
https://www.moderne.ai/blog/case-study-improving-developer-productivity-with-code-migration-automation
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1109/MS.2012.167
https://www.gao.gov/products/gao-19-471
https://doi.org/10.1109/52.795108
https://doi.org/10.1109/52.795108
https://doi.org/10.1109/52.795108
https://www.ibm.com/topics/lift-and-shift
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ETFA45728.2021.9613622
https://doi.org/10.1109/ETFA45728.2021.9613622
https://doi.org/10.1109/ETFA45728.2021.9613622
http://hdl.handle.net/10138/352072
http://hdl.handle.net/10138/352072
https://aws.amazon.com/solutions/case-studies/danske-bank-hyperautomation-case-study/
https://aws.amazon.com/solutions/case-studies/danske-bank-hyperautomation-case-study/
https://github.com/facebookarchive/codemod
https://github.com/facebookarchive/codemod
https://github.com/facebook/jscodeshift

[24] Louis Wasserman. „Scalable, example-based refactorings with refaster“. In: Proceedings
of the 2013 ACM Workshop on Refactoring Tools, WRT@SPLASH 2013, Indianapolis,
IN, USA, October 27, 2013. Ed. by Emerson R. Murphy-Hill and Max Schäfer. ACM,
2013, pp. 25–28. doi: 10.1145/2541348.2541355. url: https://doi.org/10.1145/
2541348.2541355.

[25] Rick Ossendrijver, Stephan Schroevers, and Clemens Grelck. „Automating Library Mi-
grations with Error Prone and Refaster“. In: SIGAPP Appl. Comput. Rev. 23.1 (Apr.
2023), pp. 5–19. issn: 1559-6915. doi: 10 . 1145 / 3594264 . 3594265. url: https :
//doi.org/10.1145/3594264.3594265.

[26] Refaster & ErrorProne. Google. 2024. url: https://github.com/google/Refaster
(visited on 11/27/2024).

[27] Refaster Recipes. Moderne Inc. 2025. url: https : / / docs . openrewrite . org /
authoring-recipes/refaster-recipes (visited on 04/18/2025).

[28] OpenRewrite. Moderne Inc. 2024. url: https://docs.openrewrite.org/ (visited on
11/27/2024).

[29] What is the Lossless Semantic Tree (LST) code model for automated refactoring and analysis?
Moderne Inc. 2024. url: https://www.moderne.ai/blog/lossless-semantic-tree-
the - complete - code - data - model - for - automated - code - refactoring - and -
analysis (visited on 11/27/2024).

[30] OpenRewrite Recipes. Moderne Inc. 2024. url: https://docs.openrewrite.org/
(visited on 11/27/2024).

[31] ChatGPT. OpenAI. 2025. url: https://openai.com/index/chatgpt/ (visited on
04/10/2025).

[32] GitHub Copilot. GitHub. 2025. url: https://github.com/features/copilot (visited
on 04/10/2025).

[33] Shraddha Barke, Michael B. James, and Nadia Polikarpova. „Grounded Copilot: How
Programmers Interact with Code-Generating Models“. In: Proc. ACM Program. Lang.
7.OOPSLA1 (2023), pp. 85–111. doi: 10.1145/3586030. url: https://doi.org/10.
1145/3586030.

[34] Fang Liu et al. „Exploring and Evaluating Hallucinations in LLM-Powered Code Generation“.
In: CoRR abs/2404.00971 (2024). doi: 10.48550/ARXIV.2404.00971. arXiv: 2404.00971.
url: https://doi.org/10.48550/arXiv.2404.00971.

[35] Dong Huang et al. „Bias Assessment and Mitigation in LLM-based Code Generation“. In:
CoRR abs/2309.14345 (2023). doi: 10.48550/ARXIV.2309.14345. arXiv: 2309.14345.
url: https://doi.org/10.48550/arXiv.2309.14345.

[36] TechRadar. Samsung Workers Leaked Company Secrets by Using ChatGPT. Accessed:
2024-12-05. Apr. 2023. url: https://www.techradar.com/news/samsung-workers-
leaked-company-secrets-by-using-chatgpt.

80

https://doi.org/10.1145/2541348.2541355
https://doi.org/10.1145/2541348.2541355
https://doi.org/10.1145/2541348.2541355
https://doi.org/10.1145/3594264.3594265
https://doi.org/10.1145/3594264.3594265
https://doi.org/10.1145/3594264.3594265
https://github.com/google/Refaster
https://docs.openrewrite.org/authoring-recipes/refaster-recipes
https://docs.openrewrite.org/authoring-recipes/refaster-recipes
https://docs.openrewrite.org/
https://www.moderne.ai/blog/lossless-semantic-tree-the-complete-code-data-model-for-automated-code-refactoring-and-analysis
https://www.moderne.ai/blog/lossless-semantic-tree-the-complete-code-data-model-for-automated-code-refactoring-and-analysis
https://www.moderne.ai/blog/lossless-semantic-tree-the-complete-code-data-model-for-automated-code-refactoring-and-analysis
https://docs.openrewrite.org/
https://openai.com/index/chatgpt/
https://github.com/features/copilot
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3586030
https://doi.org/10.48550/ARXIV.2404.00971
https://arxiv.org/abs/2404.00971
https://doi.org/10.48550/arXiv.2404.00971
https://doi.org/10.48550/ARXIV.2309.14345
https://arxiv.org/abs/2309.14345
https://doi.org/10.48550/arXiv.2309.14345
https://www.techradar.com/news/samsung-workers-leaked-company-secrets-by-using-chatgpt
https://www.techradar.com/news/samsung-workers-leaked-company-secrets-by-using-chatgpt

[37] TechCrunch. Samsung bans use of generative AI tools like ChatGPT after April internal
data leak. Accessed: 2024-12-05. May 2023. url: https://techcrunch.com/2023/05/
02/samsung-bans-use-of-generative-ai-tools-like-chatgpt-after-april-
internal-data-leak/.

[38] Leaderboards. Aider. 2025. url: https://aider.chat/docs/leaderboards/ (visited
on 02/23/2025).

[39] Colin White et al. „LiveBench: A Challenging, Contamination-Free LLM Benchmark“. In:
CoRR abs/2406.19314 (2024). doi: 10.48550/ARXIV.2406.19314. arXiv: 2406.19314.
url: https://doi.org/10.48550/arXiv.2406.19314.

[40] o3-mini. OpenAI. 2025. url: https://platform.openai.com/docs/models/o3-mini
(visited on 04/10/2025).

[41] Spring Boot Reference Documentation. Spring. 2025. url: https://docs.spring.io/
spring-boot/docs/current/reference/htmlsingle/ (visited on 03/26/2025).

[42] The IoC container (Spring Framework 3.2.x). Spring. 2013. url: https://docs.spring.
io/spring-framework/docs/3.2.x/spring-framework-reference/html/beans.
html (visited on 03/26/2025).

[43] B. Kanjarla. SpringBoot vs DropWizard: A developer Point of view. 2025. url: https:
//medium.com/@bhargavkanjarla01/springboot-vs-dropwizard-a-developer-
point-of-view-f67dad17c8d6 (visited on 03/26/2025).

[44] Spring Cloud Documentation. Spring. 2025. url: https://spring.io/projects/
spring-cloud (visited on 03/26/2025).

[45] GraalVM Native Images. Spring. 2025. url: https://docs.spring.io/spring-
boot/reference/packaging/native-image/index.html (visited on 03/26/2025).

[46] Shekhar Gulati. My take on libraries over framework (Spring Boot vs Dropwizard). May
2022. url: https://shekhargulati.com/2022/05/06/my-take-on-libraries-
over-frameworkspring-boot-vs-dropwizard/ (visited on 03/26/2025).

[47] Spring Runtime Support (VMware Tanzu). VMware. 2025. url: https://www.vmware.
com/products/app-platform/tanzu-spring (visited on 03/26/2025).

[48] Spring Boot Reference Documentation (2.7.18). Spring. 2024. url: https://docs.spring.
io/spring-boot/docs/2.7.18/reference/html/getting-started.html (visited
on 03/29/2025).

[49] 2024 State of the Java Ecosystem. New Relic. 2024. url: https://newrelic.com/
resources/report/2024-state-of-the-java-ecosystem (visited on 03/29/2025).

[50] git-diff Documentation. The Git Project. 2025. url: https://git-scm.com/docs/git-
diff (visited on 04/07/2025).

[51] Nikolaos Tsantalis et al. „Accurate and Efficient Refactoring Detection in Commit History“.
In: Proceedings of the 40th International Conference on Software Engineering. ICSE ’18.
Gothenburg, Sweden: ACM, 2018, pp. 483–494. isbn: 978-1-4503-5638-1. doi: 10.1145/
3180155.3180206. url: http://doi.acm.org/10.1145/3180155.3180206.

81

https://techcrunch.com/2023/05/02/samsung-bans-use-of-generative-ai-tools-like-chatgpt-after-april-internal-data-leak/
https://techcrunch.com/2023/05/02/samsung-bans-use-of-generative-ai-tools-like-chatgpt-after-april-internal-data-leak/
https://techcrunch.com/2023/05/02/samsung-bans-use-of-generative-ai-tools-like-chatgpt-after-april-internal-data-leak/
https://aider.chat/docs/leaderboards/
https://doi.org/10.48550/ARXIV.2406.19314
https://arxiv.org/abs/2406.19314
https://doi.org/10.48550/arXiv.2406.19314
https://platform.openai.com/docs/models/o3-mini
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/beans.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/beans.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/beans.html
https://medium.com/@bhargavkanjarla01/springboot-vs-dropwizard-a-developer-point-of-view-f67dad17c8d6
https://medium.com/@bhargavkanjarla01/springboot-vs-dropwizard-a-developer-point-of-view-f67dad17c8d6
https://medium.com/@bhargavkanjarla01/springboot-vs-dropwizard-a-developer-point-of-view-f67dad17c8d6
https://spring.io/projects/spring-cloud
https://spring.io/projects/spring-cloud
https://docs.spring.io/spring-boot/reference/packaging/native-image/index.html
https://docs.spring.io/spring-boot/reference/packaging/native-image/index.html
https://shekhargulati.com/2022/05/06/my-take-on-libraries-over-frameworkspring-boot-vs-dropwizard/
https://shekhargulati.com/2022/05/06/my-take-on-libraries-over-frameworkspring-boot-vs-dropwizard/
https://www.vmware.com/products/app-platform/tanzu-spring
https://www.vmware.com/products/app-platform/tanzu-spring
https://docs.spring.io/spring-boot/docs/2.7.18/reference/html/getting-started.html
https://docs.spring.io/spring-boot/docs/2.7.18/reference/html/getting-started.html
https://newrelic.com/resources/report/2024-state-of-the-java-ecosystem
https://newrelic.com/resources/report/2024-state-of-the-java-ecosystem
https://git-scm.com/docs/git-diff
https://git-scm.com/docs/git-diff
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
http://doi.acm.org/10.1145/3180155.3180206

[52] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. „RefactoringMiner 2.0“. In: IEEE
Transactions on Software Engineering 48.3 (2022), pp. 930–950. doi: 10.1109/TSE.2020.
3007722.

[53] Pouria Alikhanifard and Nikolaos Tsantalis. „A Novel Refactoring and Semantic Aware
Abstract Syntax Tree Differencing Tool and a Benchmark for Evaluating the Accuracy of
Diff Tools“. In: ACM Transactions on Software Engineering and Methodology (Sept. 2024).
Just Accepted. issn: 1049-331X. doi: 10.1145/3696002. url: https://doi.org/10.
1145/3696002.

[54] Martin Fowler. Refactoring: Improving the Design of Existing Code. 2nd. Addison-Wesley
Professional, 2018.

[55] Martin Fowler. Online catalog for Refactoring 2nd Edition. Accessed: 2025-04-12. url:
https://refactoring.com/catalog/.

82

https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/3696002
https://doi.org/10.1145/3696002
https://doi.org/10.1145/3696002
https://refactoring.com/catalog/

Appendix 1 – Non-exclusive Licence for Reproduction and Pub-
lication of a Graduation Thesis1

I Karl-Erik Hein

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for

my thesis “Abstract Syntax Tree-Based Tooling For Java Framework Migration”,

supervised by Gert Kanter

1.1. to be reproduced for the purposes of preservation and electronic publication

of the graduation thesis, incl. to be entered in the digital collection of

the library of Tallinn University of Technology until expiry of the term of

copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to

be entered in the digital collection of the library of Tallinn University of

Technology until expiry of the term of copyright

2. I am aware that the author also retains the rights specified in clause 1 of the

nonexclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

20.05.2025

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s

application for restriction on access to the graduation thesis that has been signed by the school’s dean, except

in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,

by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the

graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

licence shall not be valid for the period.

83

	Introduction
	Research Questions
	Contributions

	Research Design

	Background
	Automated Code Transformation Tools
	Codemod & jscodeshift
	Refaster
	Spoon
	OpenRewrite: The Selected Tool

	Leveraging Large Language Models for Code Migration
	Developer Usage of LLMs
	Challenges and Limitations
	Effective Usage Strategies
	Security and Privacy Considerations
	Model Selection
	Conclusion

	Comparative Analysis of Dropwizard and Spring Boot
	Design and Configuration Philosophies
	General capabilities
	Support and Community
	Conclusion

	Migration
	Overall Approach
	Framework Version Selection
	Git Branch Management Strategy
	Target Services for Migration
	Strategy, Principles and Validation

	Manual Migration
	Open-Source Service
	Closed-Source Service
	Overall Migration Analysis and Transition
	Future Considerations

	LLM-assisted Migration
	Open-Source Service
	Closed-Source Service
	Key Findings and Recommendations
	Overall Assessment

	AST-based Migration
	Recipe Structure
	Dependency Management and Exclusions
	Configuration
	Rewiring the Main Entry Point and Configuration Classes
	Security
	Hibernate and Data Access Layer
	Tests
	Class Hierarchy Transformations
	Annotation Migration Strategy
	Cleanup

	Conclusion

	Analysis
	Methodology Overview
	Data Collection Workflow
	Tools
	Quantitative Comparison Metrics

	Example Service Migration Results
	Proprietary Service Migration Results
	Discussion
	Conclusion

	Threats To Validity
	Future Work
	Conclusion
	References
	Appendix 1 – Non-exclusive Licence for Reproduction and Publication of a Graduation Thesis

