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Abstract 

IMUs (Inertial Measurement Units) are widely spread. Off-the-shelf, low-cost, precise 

modules, which are easily connectable to a PC are rarely found.  

This thesis represents the development and evaluation of 3D orientation IMU module. 

During the thesis hardware, firmware and demo software design processes are described. 

Also an economical overview is given and some testing is covered.  

In the beginning of the thesis a market overview is represented, which is followed by 

specifications for the system. According to the specifications hardware and firmware are 

developed. In the center of the design is a Bosch BNO055 integral circuit, which 

internally calculates orientation data. The firmware serves as bridge between the IC and 

the communication interface. The designed demo software represents an interactive 3D 

virtual object and displays measured angles in degrees according to the physical device.  

As a result of this thesis a fully functional system was developed. The device was 

evaluated and the correct functionality verified. The accordance to specification was 

largely met with small exceptions. Thorough testing and some future development is yet 

to be done.  

This thesis is written in English language and is 63 pages long, including 6 chapters, 36 

figures and 8 tables. 
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Annotatsioon 

Soodne ja täpne 3D orientatsiooni määramise seade 

IMU’d ehk Inertsiaalsed andurid on laialt levinud. Valmiskujul on soodsaid, täpseid ja 

lihtsalt arvutite külge integreeritavaid mooduleid vähe pakkumisel. Töös kirjeldatakse 

OEM seadme projekteerimist, mis autori hinnangute kohaselt rahuldab robootika, VR 

(virtuaalreaalsuse), videomängu juhtimisseadmete ja drooni valdkondade vajadusi. 

Antud töös käsitletakse 3D orientatsiooni mooduli väljatöötamist ja esialgset katsetamist. 

Töö jooksul antakse ülevaade riistvara, püsivara ja demo tarkvara arendamisest. Samuti 

tuuakse välja majanduslikud kalkulatsioonid ja räägitakse testimisest ning selle 

tulemustest.  

Pärast sissejuhatust räägitakse kõigepealt 3D orientatsiooni mõõtmise rakendustest, 

seejärel antakse ülevaade turu hetkeseisust ja sealt liigutakse süsteemi spetsifikatsioonide 

juurde.  Vastavalt nõuetele töötatakse välja riistvara ja seadme püsivara. Riistvara 

keskmeks on Bosch BNO055 integraalskeem, mis on sisemiselt võimeline arvutama 

ruumi nurki ja väljastama neid Kvaternioonide või Euleri nurkadena. Püsivara peamiseks 

ülesandeks on töötada „sillana“, edastades BNO055’st välja loetud infot arvutile (või 

mõnele muule arvutusplatvormile). „9DoF Smart Board“ moodul võimaldab edastada nii 

ruumi nurkade kui ka töötlemata 9-telje infot. Arendatud demo tarkvara representeerib 

interaktiivset 3D objekti, mille pöörlemine järgib füüsilise seadme rotatsiooni ruumis. 

Lisaks kuvab tarkvara iga ruumi nurga info numbrilisel kujul.  

Magistritöö tulemusel valmis täisfunktsionaalne süsteem. Katsetest võib järeldada, et 

seade toimib nii nagu projekteeritud ja vastab enamjaolt väljatöötatud nõutele. 

Põhjalikum testimine ja mõningane arendus ootavad veel ees.  

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 63 leheküljel, 6 peatükki, 36 

joonist, 8 tabelit. 
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List of abbreviations and terms 

6DoF 6 Degrees of Freedom 

9DoF Nine Degrees of Freedom 

AHRS Attitude and Heading Reference System 

ASF Atmel Software Framework 

BOM Bill of Materials 

CAD Computer-aided Design 

CDC Communication Device Class 

DFU Device Firmware Upgrade 

ESD Electrostatic Discharge 

IC Integrated Circuit 

IMU Inertial Measurement Unit 

LDO Low-dropout Regulator 

LED Light-emitting Diode 

LUFA Lightweight USB Framework for AVRs 

mA milliampers 

MARG Magnetic, Angular Rate, and Gravity 

MAX Maximum 

MCU Microcontroller Unit 

MEMS Microelectromechanical Systems 

MIN Minimum 

PCB Printed Circuit Board 

PDI Program and Debug Interface 

PLL Phase Locked Loop 

PPM Parts Per Million 

PSRR Power Supply Rejection Ratio 

PTC Positive Temperature Coefficient 

SoC System On a Chip 

TUT Tallinn University of Technology 
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TYP Typical 

UART Universal Asynchronous Receiver/Transmitter 

uF / µF microFarads 

USB Universal Serial Bus 

VI Virtual Instrument 
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1 Introduction 

IMUs (Inertial Measurement Units) are practically surrounding us in every step of the 

way nowadays. You can find these devices in your mobile phone, in your car, in your 

game controller etc. When talking about IMUs we mostly think about accelerometer, 

gyroscope and magnetometer (or in other words electronic compass). Many of these 

devices have been in use for hundreds of years. Historically they have been large 

mechanical or electromechanical systems. Only recently, from the beginning of the 90’s, 

they have developed into MEMS which are small and can be fit almost anywhere. MEMS 

are often produced in a very small packages which surface area can be measured in square 

millimeters. Although it is quite easy to measure one precise parameter in a short amount 

of time (acceleration, rotational speed or strength of a magnetic field) a problem arises 

when you want to measure an object’s exact orientation in 3D space.  

Practice shows that 2 or 3 of these sensors have to be combined to get usable orientation 

data. This is done by using sensor fusion algorithms. There are basically 3 types of 

products on the market. The main shortcoming of lower end is a need for hardware and 

software development. The high-end devices that already output 3D orientation data are 

really expensive (starting from 800€) and are not very user friendly. 

Not finding a plug-and-play type of 3D orientation device which would be inexpensive, 

ELIKO decided to create one their own. The goal was to have a small device that can be 

used for robot navigation and other use cases where 3D orientation or precise angle 

measurement in 3D space is needed.  

The goal of this thesis is to give an overview and describe the development process of an 

absolute orientation module by the author when working in ELIKO Competence Center.   
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1.1 Applications of the 3D Orientation Sensing 

There are many applications for 3D Orientation Sensing. Most of the fields of use are 

listed below. 

UAVs; Spacecraft; VR and head tracking; Robot navigation systems; Mobile phones; 

Sports Technology; Motion Capture; Music Technology (wah-wah pedal, volume control 

etc.); Pedometer; Smart Watch; Sports Watch;  

1.2 Products on the Market 

There are many IMU products available on the market – in a form of integrated circuits, 

platforms, evaluation kits, ready to use systems etc. Although there are many IMUs 

available there are far less products which output 3D orientation data. The latter are the 

main interest regarding to this thesis. Mentioned systems basically fall into two different 

categories – modules which already output 3D orientation data or combined hardware 

and software solutions which deliver 3D orientation as an end result. 

There are many products which output 6-axis or 9-axis sensor data. These are usually 

PCB’s which incorporate accelerometer and a gyroscope in the first case or 

accelerometer, gyroscope and magnetometer alternatively (9DoF). Measured 6DoF or 

9DoF sensor data can be combined into 3D orientation information using the appropriate 

algorithms. These algorithms are usually called sensor fusion or orientation filter 

algorithms.   

 
 

 

(a) Sparkfun LSM9DS1 Breakout (b) Adafruit’s 9DoF IMU Breakout (c) Tindie’s “Ultimate 

Sensor Fusion Solution” 

Figure 1. Examples of IMU Breakout Boards. 
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Some of the products have sensors onboard and do not incorporate any microcontroller 

(or DSP). These can be called “breakout” style boards. For example Sparkfun’s 

LSM9DS1 Breakout [Figure 1(a)], Adafruit’s “9DoF IMU Breakout” [Figure 1 (b)], 

Tindie’s “Ultimate Sensor Fusion Solution” [Figure 1 (c)] [1] [2] [3] . There are of course 

more of similar products available on the market (these are just a few examples). The 

breakout board style products need an external computational platform, which can 

communicate with the onboard sensors, collect the data and calculate orientation 

information based upon the measurements.  

The drawbacks for such “breakout” board products are: 

 Need for external computational platform 

 Need for sensor fusion algorithms 

 May need extra communication “bridge” (for example I2C to USB or other) 

 Cost around 15 - 40€ 

 May need knowledge of electronics  

 May need knowledge of embedded programming  

The second type of products are the ones that involve onboard computational device 

(usually microcontroller or DSP), but still need to be programmed by the user – for 

example Sparkfun’s 9DoF Razor IMU [4] or Tindie’s 9 DOF IMU with LSM9DS1 and 

Atmega328p [5] (Figure 2).  

 

 

(a)  Sparkfun’s “9DoF Razor IMU” (b) Tindie’s 9 DOF IMU with LSM9DS1 and 

Atmega328p 

Figure 2. Examples of IMU + MCU Type Products 
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These boards have higher integration as they include sensors and a microcontroller 

onboard. Some of similar products come with firmware examples and some do not. So 

ultimately it is still a user responsibility to have some level of knowledge about embedded 

programming and electronics. Hardware wise there are all the components on these 

platforms to create 3D absolute orientation device.  

The drawbacks of IMU + MCU type of products products: 

 May need firmware (user / client responsibility) 

 May need knowledge of electronics from user / client 

 May need knowledge of embedded programming from user / client 

 Higher cost than “breakout” board style products. Around 60 - 300€. 

The last category are the readymade solutions. These products incorporate all the needed 

hardware and software, and output 3D orientation data in a form of Euler [6] angles or 

quaternions [7] . Another difference to the devices mentioned above is that they are 

usually put into specially designed enclosures making them a completely finished 

products. Such systems are manufactured by Xsens, MicroStrain, VectorNav, Intersens, 

PNI and Crossbow etc. Figure 3 represents some examples.  

 

The drawbacks of the readymade 3D orientation modules: 

 High price. 800 - 5000€ (or more) 

 Some modules need manual calibration 

 Custom communication interfaces, not easily usable 

  

 

(a) MicroStrain’s 3DM-GX4 -25 (b) Xsens’ MTi-10-IMU (c)  VectorNav’s VN-100 

Rugged 

Figure 3. Examples of Readymade 3D Orientation Modules 
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The most important setback of the complete modules is their high price, starting from 

800€ and going up to 5000€ or more. And still some of them need manual calibration or 

are very sensitive to magnetic distortions. Regardless of the high price some 

measurements have shown that the accuracy of such modules may be comparable to the 

solutions which integrate sensors + MCU or even worse.  

1.3 The Problem 

One of the research and development projects in ELIKO is aiming to create an 

autonomous vehicle. This vehicle uses mainly GPS and image processing for navigation. 

To increase the accuracy and make the navigation still operational, if GPS signal is lost, 

an AHRS (Attitude and Heading Reference Systems) is needed. This was the main 

motivator for researching the available solutions on the market. After doing the market 

research and knowing the drawbacks of the existing systems ELIKO decided to create its 

own product. Although the motivation came mainly from the autonomous vehicle project 

it was kept in mind that the end solution could be sold as a separate product and used for 

other applications.  

1.4 Solution and Specifications for the System 

After knowing the requirements of the autonomous vehicle and the setbacks of the 

existing solutions on the market, the main criteria for were put on a paper.  

General specifications for the product. 

 Output’s 3D orientation data, in quaternion or Euler angle format 

 Low price. In the range of 20 - 50€ 

 Small physical size 

 Should be as accurate as possible 

 Small or no angular drifting in time 

Technical Specifications. 

After working out the general requirements specific technical details were established.  

 Communication 

a) Virtual COM port (USB 2.0) 
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b) UART / Regular COM port (115200 baud) 

 Simultaneous communication over USB and UART. If not possible, can be chosen 

with a jumper 

 Timestamp resolution: at least 1ms 

 Jumper selectable output formats 

a) Quaternion 

b) Raw Data 

 Quaternion 

o Data output format: q1, q2, q3, q4, timestamp 

o Sample rate: at least 100Hz  

o q1...q2 - quaternion 

 Raw Data 

o Data output format: ax, ay, az, gx, gy, gz, mx, my,mz, timestamp 

o Sample rate: at least 1kHz 

o ax...az – raw acceleration (g) 

o gx...gz – raw gyroscope (deg / sec) 

o mx...mz – raw magnetometer 

 COM to Sensor bridge for changing settings 
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2 Hardware Design 

This section gives an overview of the overall hardware design and components. The 

hardware was designed according to the specification presented in section 1.4 and consists 

of 2 mature parts – electrical schematic and PCB layout. Both parts were designed using 

Altium Designer software.  

The system hardware is composed of the following parts (Figure 4): Absolute Orientation 

IMU; Microcontroller; Connector for PDI programming and user configurations; Micro 

USB Connector; UART Connector; Automatic power selector; Voltage Regulator (LDO) 

and LED Indicators.  

 

 

Figure 4. Hardware Block Diagram Developed for the Project  
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2.1 Electrical Specifications for the Device 

The main application for our device was foreseen as a part of a bigger system which can 

communicate with the module over USB or UART connection and also produce enough 

power. Although the board can be used with battery power it was not considered when 

designing the 9DoF Absolute Orientation Module. Therefore the current consumption is 

specified mostly by the USB 2.0 specification [8] .which is up to 500mA. The supply 

voltage also follows the USB 2.0 specification. The requirements were produced so that 

it would be possible to supply the board from any other external power source. Table 1 

lists all the electrical specifications.  

Table 1 Electrical Specification of USB2.0 interface 

Parameter Symbol Min Typ Max Units 

Supply Voltage VDD 4.4 5.0 5.25 V 

Total Supply Current IDD - - 500 mA 

      

During hardware design there were 3 main aspects that were considered in every step of 

the way: 

 The device should be as cheap as possible 

 The device should be as small as possible 

 The device should consume reasonable amount of power 

As we were not designing a special low power device the power consumption was not 

optimized to minimum possible value.  

2.2 Electrical Schematic Design 

The electrical schematic was designed using Altium Designer Software. The whole 

system was built around the Bosch BNO055 absolute orientation sensor. In the time of 

creating this system it was one of a kind IC available on the market. The SoC contains 

Bosch Sensortec sensor fusion software, in a single package outputting already pre-

calculated orientation information, which is not available in other IMU ICs. The electrical 

environment surrounding the sensor was basically created just to support the BNO055 

functionality. Although the BNO055 [9] incorporates 32-bit ARM cortex M0+ 

microcontroller and UART connection, the system does not output measurement 
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information automatically nor with a given frequency. It is also not possible for a user to 

program the ARM cortex M0+ MCU which is integrated into the BNO055 system in 

package. Furthermore the sensor needs to be configured first and after that the 

measurement information can be read from corresponding output registers [9] . This 

basically leaves the user 2 choices – use an MCU or any other external computing 

platform (like PC) which can communicate with the BNO055 and run needed algorithms. 

In our case the goal was to create a small plug-and-play type of product that is very easy 

to use for a customer, making an MCU the obvious choice. 

2.2.1 9DoF IMU 

The Bosch BNO055 datasheet [9] includes application diagrams for using the IC. The 

schematic was created following these guidelines.  

Under this sub-task the biggest decision was choosing the interface type for MCU 

communication. According to the specifications the speed for reading the raw data had to 

be as fast as possible- at least 1 kHz. The possible protocols were I2C and UART. After 

reading the datasheet and completing the calculations it was clear that I2C can produce 

faster data rates than UART. Therefore I2C was used to communicate with the MCU.  The 

created electrical schematic is given in Figure 5.  
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2.2.2 Microcontroller 

The MCU was picked according to the following criteria: 

 Inexpensive 

 Widely available off-the-self product 

 Atmel Microcontroller 

 Widely available off-the-self product 

 USB 2.0 Interface 

 UART Interface 

 Hardware I2C controller 

 

Figure 5. Circuit for BNO055 IMU 
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 Some general purpose I/O pins for user configurations 

When choosing the microcontroller unit the processing speed and power were not very 

critical because most of the processing is already done inside the BNO055 chip. The 

microcontroller serves more like a “bridge” between IMU and corresponding 

communication interfaces – USB 2.0 and / or UART. Atmel microcontroller was chosen 

because of the pre-existing in-house knowledge and experience in ELIKO. The cheap 

price and low processing power requirements lead to 8-bit solution as this was enough 

for our application.  

Considering all the requirements ATxmega16C4 [10] was chosen for our solution, which 

is an 8-bit, 32MHz, 16KB flash, 44 pin, TQFP microcontroller. Although the same MCU 

is available in smaller packages, TQFP was the cheapest one and gives and extra value as 

 

Figure 6. Schematic Diagram Created for the ATxmega16C4 Microcontroller 
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it is easier to solder by hand for prototyping. Some key features of the chosen 

microcontroller are listed below. 

 16K - 32KB of In-System Self-Programmable Flash 

 USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant 

 Three USARTs with IrDA support for one USART 

 Two two-wire interfaces with dual address match (I2C and SMBus compatible) 

 Operating Voltage 

o 1.6 – 3.6V 

 Operating frequency 

o 0 – 12MHz from 1.6V 

o 0 – 32MHz from 2.7V 

The end result containing the microcontroller part for the Absolute Orientation Module 

is given in Figure 6.  

One more thing worth mentioning here is the external crystal which was chosen to 

generate the clock frequency for the ATxmega16C4 MCU. Atmel AVR XMEGA C4 

devices have a flexible clock system supporting a large number of clock sources (Figure 

7). It incorporates both accurate internal oscillators and external crystal oscillator and 

resonator support. A high-frequency phase locked loop (PLL) and clock prescalers can 

be used to generate a wide range of clock frequencies. 

The external crystal oscillator was chosen because it can generate more accurate clock 

for the MCU than the internal ones. A cheap, small-size and quite accurate crystal was 

chosen for the task – Epson TSX-3225. It is a 3.2 X 2.5mm, 16MHz crystal oscillator. 

Internal oscillators’ accuracy varies from ± 0.5% to ± 30% (specific information can be 

found from datasheet [10] page 76) as the external crystal accuracy is ± 10ppm or ± 

0.001%, it is 500 times more accurate than the most accurate clock built inside the 

microcontroller. C9 and C10 are load capacitors for the crystal oscillator.  
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The other connections to the microcontroller are covered in the upcoming chapters.  

2.2.3 Communication Interfaces 

Two interfaces were chosen for communication with external devices – USB 2.0 and 

UART (1.4).  

As one of the criteria was the device to be as small as possible a micro USB connector 

was a logical choice. After making some research about USB hardware design [11] a 

schematic seen in Figure 8 was created. R1 and R3 are termination resistors for USB 

impedance matching. The USB specification requires a USB device to have a 45 Ω single-

ended or 90 Ω differential impedance. This impedance includes the impedance of the 

USB transceiver. As the impedance of the USB transceiver is lower than the requirement 

 

Figure 7. ATxmega16C4 Clock System, Clock Sources, and Clock Distribution [10]  
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of the USB specification, 22 Ω resistors (R1, R3) are used to bring the device impedance 

within the required specification limits. 

USB allows the application to have an open connection to the external environment, 

which could expose the entire system to ESD. Even though Atmel AVR XMEGA 

Microcontroller embed on-chip ESD protection [12] , it is recommended to increase ESD 

protection on the USB D+ and D- lines using dedicated transient suppressors, Z1 and Z2 

are specifically used for that purpose [13] . These devices protect equipment to 

IEC61000-4-2, Level 4 (±8 kV Contact / ±15 kV Air Discharge) ESD specifications and 

are especially targeted to protect USB and similar data communication lines.  

According to the USB specifications mentioned in 2.12.2 the maximum current is 

500mA. Therefore to protect circuitry from both sides a 500mA holding current PTC 

resettable fuse was used – F1 [14] . The D_N and D_P lines are defined as differential 

pair and are connected to dedicated MCU pins (Figure 6).  

A 2.54mm pin header was chosen for UART connections (Figure 9). This kind of solution 

is widely used in the industry. Resistors R12 and R13 are protecting the microcontroller 

I/O pins from excessive current if short should take place. Pin 5 is for external power 

connection. 

 

Figure 8. USB Interface Schematic Developed for the Device 
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An extra pin was added to the connector for starting the MCU in USB boot loader mode. 

This USB boot loader [15] allows performing in-system programming (ISP) from a USB 

host controller without removing the part from the system, and without any external 

programming interface other than the USB connector. Once the part is configured with 

USB DFU boot loader application, the boot loader execution can be forced at power-on 

by connecting a specific pin to ground. By default for ATxmega16C4 this pin is PC3.  

Later in the process (when the physical device was ready) it was discovered that the 

UART Tx and Rx pins were connected to wrong pins, because during the hardware design 

process outdated MCU datasheet was used. The outdated datasheet did not affect other 

MCU connections or functionality.  

2.2.4 Inputs / Outputs and Configuration 

The only external option for programming the ATxmega16C4 MCU (if the USB DFU 

boot loader is not flashed in) is the Program and Debug Interface or simply PDI. It is an 

Atmel 2-wire proprietary interface. The pins required for programming via the PDI 

interface are detailed in Table 2. 

Table 2. Pins Required for Program and Debug Interface [15]  

PDI Signal 
Name 

Signal description Direction from 
programmer 

Pin name on XMEGA 
device 

PDI_CLK  PDI Clock Signal Output RESET 
PDI_DATA  PDI Data Signal (bi-directional) Bi-directional TEST 

GROUND (0V) Target / Programmer Signal GROUND Passive GND 
Vcc  Target / Programmer Vcc Supply Passive VCC 

 

 

Figure 9. UART Connector Schematic Diagram 
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The PDI connector was created according to XMEGA application note [16]  seen in 

Figure 10.  

 

As seen in Figure 11 two pins are unused in the example schematic. These “unused” pins 

were connected to MCU in purpose to cleverly create user configuration pins. One of the 

requirements in the specification was the device to be as small as possible and reusing the 

 

Figure 10. Example Schematic for PDI Interface [16]  

 

Figure 11. PDI Interface and User Configuration Pins 
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pins from 2 x 3 header reduces the needed board area. By using a jumper over pins 2 - 4, 

4 - 6 or 1-3, 3-5 it is possible to create different combinations.  

Three LEDs were added to schematic to indicate different events to the user - Figure 12. 

At this point it was clear that the supply voltage is 3.3V, which also means that the high 

level for MCU outputs is 3.3V. The supply voltage selection process is described in 

chapter 2.2.5 which talks about power. Microcontroller pins PA0, PA1 and PA2 were 

chosen for the LED connections (Figure 6), because they did not have any other special 

functions that would be needed for the system.  

A 0603 package red, green and yellow color LEDs were picked for the task. The typical 

forward voltage for these LEDs varies from 2.0 - 2.2V.  

Applying Kirchhoff's voltage law and Ohm's law one can simply calculate the value for 

needed resistors. According to the Kirchhoff's voltage law: 

 𝑉𝐶𝐶 = 𝑉𝑅 + 𝑉𝐿𝐸𝐷 (1) 

 

Therefore the voltage which will remain on the resistor can be found from the following 

equation: 

 𝑉𝑅 = 𝑉𝐶𝐶 − 𝑉𝐿𝐸𝐷 (2) 

 

 

Figure 12. LED Indicators Circuit Diagram 
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Where: 

VCC – Supply Voltage 

VLED – Voltage Drop on the LED 

VR – Voltage Drop on the Resistor 

 

As ICC = IR = ILED the Ohm's law can be written in the following form: 

 𝐼𝑅 = 𝐼𝐿𝐸𝐷 =
𝑉𝑅

𝑅
 (3) 

 

Where: 

IR – Current through the Resistor 

ILED – Current through the LED 

VR – Voltage Drop on the Resistor 

R – Resistor resistance 

Combining the equations (2) and (3): 

 𝑅 =
𝑉𝐶𝐶 − 𝑉𝐿𝐸𝐷

𝐼𝐿𝐸𝐷
 (4) 

 

LED voltages vary from 2.0 - 2.2V. As this is pretty small difference it can be considered 

that VLED = 2.0V. It is known that the VCC = 3.3V and the forward current for LEDs is a 

schematic designer choice. The LEDs datasheets only specify the maximum DC Forward 

Current which is for different colors in the range of 25mA - 30mA. Very often a 10mA 

current is chosen for LEDs, but based upon authors experience and taking account the 

fact that it is a good idea to minimize the current consumption a 3mA current was chosen. 

MCU I/O pin source/sink current [10] has to be taken account also, which is -20mA to 

+20mA (Figure 13) in our case, therefore exceeding the needs.  

After knowing all values for every variable resistance is calculated as follows. 

 

 

Figure 13. MCU I/O pin source/sink current capability 
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 𝑅 =
3.3 − 2.0

0.003
=

1.3

0.003
= 433.33Ω (5) 

 

The closest nominal resistor value is 430Ω for the calculated resistance. Although there 

are slight differences between the red, green and yellow LEDs a resistor with a same value 

was chosen for all of them to minimize the components base.  

It was taken into account that if after testing the LED brightness will be found too dim 

the resistance value can be changed to a smaller one.  

2.2.5 Power 

In this chapter the power electronics part of the schematic will be covered. The first 

question regarding power was the supply voltage selection.  

There are only 2 critical parts which dictate the voltage selection – Atxmega16C4 and 

BNO055. To choose supply voltage the datasheets [9] [10] of these 2 components had to 

be taken into account. Figure 14 and Figure 15 are extracts of the operating supply voltage 

ranges from ICs datasheets.  

 

As 2 constraints for the device were inexpensiveness and a small size - 2.1 - it made sense 

to optimize the voltage to 1 value for both devices. Later means that only one voltage 

source is needed, translating into 1 component and less room on the board. It can be seen 

from the Tables (Figure 14 and Figure 15) that the maximum operating voltage for both 

devices is the same – 3.6V, but it is wise to use lower value if possible. The minimum 

possible value would be 2.4V. A 3.3V level is very commonly used and as there are many 

devices also communicating with UART with this level it was logical to use this voltage 

 

Figure 14. ATxmega16C4 Operating Voltage Conditions 

 

Figure 15. BNO055 Operating Voltage Conditions 
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value for supplying the MCU and IMU.  Another condition taken from the MCU datasheet 

was the clock frequency which can have maximum value, only if the supply voltage is 

2.7V or higher (Figure 16).  

Before choosing a voltage regulator type and voltage regulator itself, the whole current 

consumption of the schematic had to be calculated.  

Table 3. Summary of Current Consumption 

Device Maximum Current Consumption [mA] 

Atmel ATXmega16C4 12.0 

Bosch BNO055 12.3 

LED Indicator - Yellow 10.0 

LED Indicator - Red 10.0 

LED Indicator - Green 10.0 

Power LED - Green 10.0 

Overall Sum 64.3 

  

Table 3 contains summary of maximum current consumption of the components. The 

information for ATXmega16C4 and BNO055 are taken from the datasheets [9] [10]  and 

although the calculated current consumption for LEDs was 3mA, the possibility of 

increasing the LED currents was considered (in case they are not bright enough). When 

it is consider that the LEDs are consuming 3mA then the result is 36.3mA for the overall 

sum. But at this point the highest possible realistic current consumption had to be 

considered, therefore LED currents were theoretically increased up to 10mA, increasing 

the total current consumption up to 64.3mA.  

 

Figure 16. Relationship between MCU Operating Voltage and Clock Frequency 
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Linear regulators are recommended when the voltage of the source powering the regulator 

is near the regulator’s output voltage and the circuit being powered does not care about 

the efficiency of the regulator. In our case these conditions were met. Therefore LDO 

seemed to be a good option. Other criteria that were considered were: a small package; 

possible to solder by hand; cheap price. After search and filtering from Farnell by the 

latter criteria, Texas Instruments TLV71333 [17] was chosen for the power source.  

Here are some key features of the TLV71333: 

 Input Voltage Range: 1.4 V to 5.5 V 

 Maximum Output Current 150mA 

 5-Pin SOT-23 

 Accuracy: 1% 

 High PSRR: 65 dB at 1 kHz 

It can be seen from the specifications that the input voltage falls into the wanted range 

and the output current capability exceeds the maximum needed current. In the worst case 

there will be still 150 - 64.3 = 85.7mA headroom. It is always a good idea to have a 

reserve in your system.  

LDO circuit diagram is given in Figure 17. C6 and C7 are 10uF input and output 

capacitors needed mostly for LDO stable operation.  

The last thing that had to be solved for the schematic was the presence of 2 possible 

supply points – USB and external power pin. It is not a good practice to just connect 

power sources in parallel, this can create a number of different problems – reverse current 

flow into power supply output; unevenly distributed current consumption; potential 

differences between 2 load points etc.  

 

Figure 17. LDO Circuit Diagram 
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Input power OR-ing is a common practice to solve these issues. The simplest way is to 

use diodes which cathodes are tied together. OR-ing circuit created for the device can be 

seen in Figure 18.  

When using OR-ing:  

 The power supplies are isolated from each other  

 There is no backwards current flow 

 Only 1 supply source will be selected at once 

In real life 2 power sources do not have exactly the same voltage value – there will be a 

difference although it may be very small. This means that one of the diodes will be reverse 

biased at all times and the other one forward biased.  

A regular diode dual package was chosen for the job. It means that the max voltage drop 

can be up to 1.1V. This means that the LDO input voltage will be as low as 3.9V. 

According to the LDO datasheet the input voltage has to be at least 0.5V higher than the 

nominal output value, in our case 3.3V. 3.9 - 3.3 = 0.6V which is still acceptable. The 

positive side is that there will be less power dissipated as heat on the LDO.  

2.3 Layout Design 

This section describes the development process and the results of PCB layout design. The 

PCB was designed using Altium Designer Software. Mentioned CAD software has all the 

needed tools to create circuit boards and it was a logical choice to make the schematic 

and board design using the same tool.  

The PCB design process was guided by the same 3 main aspects presented in section 2.1: 

 The device should be as cheap as possible 

 

Figure 18. Automatic Power Selector for the Device 
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 The device should be as small as possible 

 The device should consume reasonable amount of power 

One more condition which was added to the list was the possibility to mount the 

developed module to some other device or system (using screws).  

The first decision that had to be made when starting the PCB design process was the layer 

count. 4-layer PCB prices can be 4-5 times higher than the 2-layer ones. Keeping in mind 

that the module under development had to be cheap and after evaluating the complexity 

of the schematic, it was clear that 2-layer PCB is enough and the right choice for this 

design.  

There was no reason to create 2-sided PCB therefore the components were placed on one 

side of the board. The board was developed around the BNO055 IC just like the 

schematic. The guidelines for creating circuit board for Bosch BNO055 are gathered into 

one document - Handling, soldering & mounting instructions [18] . When creating the 

printed circuit board these instructions were taken into account.   

The design rules have to follow the specific manufacturers’ capabilities and guidelines. 

In some cases it can be vice versa – if something very precise is needed then the designer 

has to find a manufacturer who is capable of producing this. In our case we chose Kamitra 

as the local manufacturer (in Estonia), but at the same time keeping in mind the possibility 

of producing the PCBs in China. There are many PCB manufacturers nowadays, located 

in China, who produce good quality circuit boards for a cheap price.  

After placing all the components and optimizing their position and orientation it was clear 

that the board measurements can be reduced down to 35 x 25mm. 4 screw wholes for 

M2.5 standard were added to the corners of the board.  

The selecting process of the components was already described in the schematic design 

section 2.2. This was derived mostly by 2 aspects – they needed to be small but also 

possible to solder by hand.  

The end result can be seen in Figure 19, Figure 20, which represent the top and bottom 

view of the designed circuit board.  
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Figure 19. PCB Top Layer 

 

Figure 20. PCB Bottom Layer 
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2.4 Hardware Development Results 

As a result of hardware development a fully functional platform was created according to 

the specifications listed in sections 1.4 and 2.1. In the core of the hardware design is the 

Bosch BNO055 9DoF sensor IC which is able to output pre-calculated orientation data. 

Remaining schematic supports this main functionality. PCB layout was created and a 

physical board was produced according to the design. The end result can be seen in Figure 

21. 

 

 

 

 

Figure 21. Hardware Development Result – Physical Device  
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3 Software Design 

This section of the thesis will give an overview of the software part of the project. The 

software is divided into 2 main parts – firmware and demo software. The firmware is the 

part of the software that is written and running on the microcontroller (ATXmega16C4 in 

our case). The demo software is demonstrating how a 3D virtual object can be 

manipulated based upon the data which the module outputs.    

The firmware is an essential part of the project and makes the device function as designed. 

The demo software on the other hand is demonstrating that the module itself is giving out 

usable and correct information about the orientation in 3D space.  

3.1 Firmware Design 

The firmware was designed according to the specifications listed in section 1.4 and was 

written in C programming language using AtmelStudio 6.2 as the programming 

environment. Below are the most important components of the firmware:  

 Main Function 

 Bosch BNO055 Driver 

 USB (LUFA) Driver 

 I2C / TWI (LUFA) Driver 

 GPIO Controller / Driver 

 Timer / Counter Driver 

3.1.1 The Main Function 

Let’s start by describing the firmware in a top-down manner. It is well-known that every 

C program has a primary (main) function. It is the core of every C program and a common 

custom. Below is the flowchart diagram representing the firmware main code 

functionality (Figure 22).  
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Figure 22. Flowchart of the Main Function 

SetupHardware(); 

GlobalInterruptEnable(); 

begin(OPERATION_MODE_NDOF); 

setExtCrystalUse(true); 

 

 

 

 

 GlobalInterruptEnable(); 

for (;;) 

 

state = 1; 

state != last_state 

setMode(OPERATION_MODE_AMG); 

SetupRawSensors(); 

last_state = state; 

 

lastTimestamp = timestamp; 

getVector(VECTOR_RAW, data); 

sprintf(data, timestamp); 

Send_To_USB(str, strlen(str)); 

 

state = 0; 

state != last_state 

setMode(OPERATION_MODE_NDOF); 

last_state = state; 

 

lastTimestamp = timestamp; 

getVector(VECTOR_QUATERNION, data); 

sprintf(str,data, timestamp) 

Send_To_USB(str, strlen(str)); 

 

 

START 

END 

(dt = timestamp - lastTimestamp) >= 

streamPeriod_Raw 

 

gpio_pin_is_high(CONF2) == true 

 

(dt = timestamp - lastTimestamp) >= 

streamPeriod_Quaterntion 

 

gpio_pin_is_high(CONF2) == false 
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The whole idea of the main function is to read either raw sensor data or pre-calculated 

quaternion data from Bosch BNO055 and send the data with timestamp to virtual serial 

port / USB host device.  

The main function’s logic is quite simple. The code starts by configuring ATXmega16C4 

hardware and initializing the Bosch BNO055 sensor. Then an endless FOR-loop is 

entered inside which there are 2 possible routes. The path which will be selected is 

determined by CONF2 pin, which can be high or low. The CONF2 value is configured 

by the user shorting appropriate pins with a jumper (J2 pins 2-4 or 4-6). After entering 

one of the possible IF-statements, the code checks if this is the first time for the code to 

enter (state != last_state) and if it’s true the BNO055 is reconfigured to output either 

quaternion or raw sensor data. Next the streaming period is checked and following code 

part is entered only if specific amount of time is passed. When period is true 

getVector() reads either raw sensors data or pre-calculated quaternion data from 

Bosch BNO055 and after that the data is formatted into string including timestamp and 

sent over USB to host device - Send_To_USB(). The latter continues until the device is 

powered off.  

3.1.2 Bosch BNO055 Driver 

There is an official driver available for BNO055 on Bosch page [25] . At least at the time 

of developing the project, the official driver code was overly complicated, hard to 

understand and not easily usable. Therefore other possible solutions were considered. 

This led to Adafruit BNO055 driver, which is written in C++ [26] .    

These 2 possible drivers were first tested on Arduino 9 Axes Motion Shield, which also 

uses BNO055 as an onboard sensor [28] There are examples from Arduino Corporation 

which are using the Bosch official driver and also Adafruit has developed examples which 

can be run on Arduino using 9 Axes Motion Shield. Testing on Arduino and Motion 

Shield gave us confidence about the orientation accuracy and usability, but on the other 

hand it was also noticed that the libraries do not support configuring and reading data 

from separate sensors – accelerometer, gyroscope and magnetometer. Moreover the 

functionality related to raw sensor data is partially or fully missing from these libraries. 

Therefore to test reading the raw sensor information one of the Adafruit’s examples was 

modified by the author. After knowing the drawbacks of existing libraries it was clear 

that a custom driver has to be written.  
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The BNO055 driver that was developed using C programming language like the rest of 

the code. It contains register definitions, configuration settings, BNO055 operating 

functions and I2C / TWI higher level functions.  Below is a list of functions which have 

been implemented in the driver (Figure 23). 

uint8_t begin (bno055_opmode_t mode); 
void setMode (bno055_opmode_t mode); 
void setExtCrystalUse (uint8_t usextal); 
int8_t getTemp(void); 
void getRawSensors(int16_t * buffer); 
void getEuler(int16_t * buffer); 
void getVector(bno055_vector_type_t vector_type, int16_t * buffer); 
uint8_t setAccMode(bno055_acc_opr_mode_t acc_mode); 
uint8_t setAccConf(bno055_acc_range_t range, bno055_acc_bw_t bw, 
bno055_acc_opr_mode_t acc_mode); 
uint8_t setGyroConf(bno055_gyro_range_t range ,bno055_gyro_bw_t bw 
,bno055_gyro_opr_mode_t gyro_mode); 
uint8_t setMagConf(bno055_mag_rate_t rate, bno055_mag_opr_mode_t mag_opr_mode, 
bno055_mag_pwr_mode_t mag_pwr_mode); 
uint8_t setUnits(bno055_unit_t ori, bno055_unit_t temp_unit, bno055_unit_t 
eul_unit, bno055_unit_t gyr_unit, bno055_unit_t acc_unit); 
void switchPage(bno055_page_t page); 
uint8_t BNO055_read_byte(uint8_t reg); 
uint8_t BNO055_write_byte(bno055_reg_t reg, uint8_t value); 
uint8_t BNO055_read_bytes(bno055_reg_t reg, uint8_t * packet, uint8_t len); 

Figure 23. Functions Developed for BNO055 Driver 

Many of these functions are used in the main code. Some functions incorporate the other 

functions that are listed above – i.e. the functions related to I2C / TWI communication.   

3.1.3 USB CDC (LUFA) Driver 

The firmware was built upon a USB virtual serial example. The virtual serial (also 

referred to as virtual COM port or virtual RS-232) belongs under USB CDC [19] [20]  

identifier. The functionality of USB devices is defined by class codes, communicated to 

the USB host to affect the loading of suitable software driver modules for each connected 

device. This provides for adaptability and device independence of the host to support new 

devices from different manufacturers. The virtual serial actually means that devices from 

both sides (the module and PC) emulate more or less RS-232 standard compliant 

communication. The virtual serial [21]  communication is very often used and it can make 

developing applications easier than using standard USB functions. The latter may be quite 

difficult and could mean going through a lot of documentation, especially from the USB 

host side. This eventually leads to longer development time and higher cost of the whole 

system.  
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As it is not wise to “reinvent the wheel” it was a good idea to see if there is already a 

library or driver existing for implementing virtual serial communication on 

ATXmega16C4. After doing the research, there were basically two good options – Atmel 

ASF USB or LUFA USB driver [22] , both supporting the XMEGA architecture. Going 

deeper and analyzing the code and ease of use a decision was made to employ the LUFA 

driver.   

The virtual serial code for ATXmega16C4 was mostly used according to the example and 

the only thing to point out here would be the Send_To_USB(char *buf, char len) function, 

which was organized into separate function by the author. 

3.1.4 I2C / TWI (LUFA) Driver 

There were 2 options for connecting BNO055 to ATXmega16C4 – UART and I2C 

communication interface. So the main question was which one would be faster. Therefore 

maximum possible data reading rate for raw (9-axis data) was calculated [39] [40] .  

According to the BNO055 datasheet [9] the maximum I2C clock frequency is 400kHz. 

This can be used reversibly with 400bits / s. There are 9-axis, for every axis there is and 

LSB and MSB register. In the beginning of I2C communication slave 7-bits address is 

sent. Also start, stop and acknowledgement bits have to be taken into account. Altogether 

data bits with overhead sums up to 182 bits per reading cycle.   

I2C: 𝑓𝑆 =
𝑅

𝑁
=

400𝑏𝑖𝑡/𝑠

182𝑏𝑖𝑡𝑠
= 2198𝐻𝑧 (6) 

 

UART: 𝑓𝑆 =
𝑅

𝑁
=

115200𝑏𝑖𝑡/𝑠

192𝑏𝑖𝑡𝑠
= 600𝐻𝑧 (7) 

 

The maximum bit rate for UART is 115200 bit / s. In case of calculating the real output 

data rate from the sensor, a command sequence, read response and read acknowledgment 

/ failure bits have to be taken into account. This all results in 192 bits per every reading 

cycle. Equations 6 and 7 were used to calculate the data output rate.  

Calculation proved that I2C interface would be the faster option and meeting the 1kHz 

requirement for reading raw data therefore it was chosen for communication between the 

MCU and BNO055 IC.
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After doing the research about available drivers which support XMEGA architecture, 

there were again two good options left – to use Atmel ASF official TWI driver [23]  or 

LUFA TWI driver [24] . Looking deeper into these alternatives it was more convincing 

to use LUFA TWI driver as it was understandable and easily usable. The LUFA library 

contains pre-written high level functions for initializing, reading and writing TWI 

packets. These high level functions were incorporated into the BNO055 driver.  

3.1.5 I2C Clock Stretching Issue 

During firmware development an I2C clock stretching issue was discovered which limits 

the raw data communication bandwidth down to 150Hz maximum instead 1 kHz. Thus a 

decision was made to lower the frequency down to the same rate as for quaternion output 

- 100Hz. An I2C slave is allowed to hold down the clock if it needs to reduce the bus 

speed [27] . This means that the raw data rate was not able to meet the specifications.  

3.2 Demo Software 

This section will give an overview about the demo software. The demo software was 

developed using LabVIEW (short for Laboratory Virtual Instrument Engineering 

Workbench), which is a system-design platform and development environment for a 

visual programming language from National Instruments [30] . LabVIEW is commonly 

used for data acquisition, instrument control, and industrial automation, but can be used 

for other tasks. LabVIEW ties the creation of user interfaces (called front panels) into the 

development cycle. LabVIEW programs/subroutines are called virtual instruments (VIs) 

or sometimes SubVIs. Each VI has three components: a block diagram, a front panel and 

a connector panel. The last is used to represent the VI in the block diagrams of other, 

calling VIs. The front panel is built using controls and indicators. 

The demo software is based on the open source LabVIEW project from Roger Isaksson 

[29] , which is, in turn adaption of Sebastian Madgwick's open source C# AHRS library. 

In 2009 Sebastian Madgwick developed an IMU and AHRS sensor fusion algorithm as 

part of his Ph.D research at the University of Bristol [37] . The original code by Roger 

Isaksson is presented in Figure 24. The code works in the following manner. First the 9-

axis (3-axis acceleration, 3-axis gyroscope and 3-axis of magnetometer) data is read in 

from COM port, then the data enters VI called ORIENT FILTER, which 

calculatesquaternions from the raw sensor data. After that the quaternion data is fed into 

3 subVIs – ORIENT TO EULER, QUATERNION TO R and QUATERNION TO 

ORTHO.  
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Figure 24. LabVIEW Block Diagram of Roger Isaksson’s Orientation VI  
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The ORIENT FILTER VI is the one that actually incorporates the Sebastian Madgwick’s 

algorithms and is used to calculate quaternions from raw sensors information. ORIENT 

TO EULER calculates Euler angles (yaw, pitch and roll) from quaternions, these angles 

are displayed to the user on the front panel of the virtual instrument. QUATERNION TO 

R takes quaternions as input and outputs x,y,z coordinates and an angle for drawing a 3D 

object. The x,y,z coordinates and an angle are connected to Set Rotation VI (as inputs) 

which uses axis–angle representation to manipulate 3D scene object in LabVIEW and 

performs an absolute rotation from the object's initial position (Figure 25). 

Finally we have the QUATERNION TO ORTHO VI, which calculates orthogonal 

quaternion matrix from quaternion data. This VI has no importance in this context and 

therefore will not be considered.  

It is quite easy to convert quaternion data to axis-angle representation, using equations 

(8), (9), (10) and (11) which are represented below [31] [32] .  

 𝑞𝑤 = 𝑞1 = cos (
𝜃

2
) ⇔ 

𝜃

2
= cos−1 𝑞𝑤 (8) 

   

 𝑞𝑥 = 𝑞2 = 𝑥 ∙ sin (
𝜃

2
)  ⇔  𝑥 =

𝑞𝑥

sin (
𝜃
2)

 (9) 

   

 𝑞𝑦 = 𝑞3 = 𝑦 ∙ sin (
𝜃

2
) ⇔  𝑦 =

𝑞𝑦

sin (
𝜃
2)

 (10) 

   

 𝑞𝑧 = 𝑞4 = 𝑧 ∙ sin (
𝜃

2
) ⇔  𝑧 =

𝑞𝑧

sin (
𝜃
2)

 (11) 

   

The QUATERNION TO R is using exactly these equations to convert quaternions to axis-

angle representation. The internal block diagram is present in Figure 26.  

 

Figure 25. Set Rotation VI 
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The 
𝜃

2
 is replaced with 𝜌 for code simplification (in mathematical form 𝜌 =  

𝜃

2
). Below is 

the mathematical equivalents (equations (12), (13), (14), (15) and (16)) for the code seen 

in Figure 26.  

 𝜌 = cos−1 𝑞1 (12) 

 

 𝜃 = 2 ∙ 𝜌 (13) 

 

 𝑥 =
𝑞2

sin 𝜌
 (14) 

 

 𝑦 =
𝑞3

sin 𝜌
 (15) 

 

 𝑧 =
𝑞4

sin 𝜌
 (16) 

 

ORIENT TO EULER converts quaternion data into Euler angles (yaw, pitch, roll) using 

following equations [33] [37] : 

 [



𝜃

] =

[
 
 
 
 
 −𝑎𝑟𝑐𝑡𝑎𝑛

2(𝑞2𝑞3 − 𝑞1𝑞4)

2(𝑞1
2 + 𝑞2

2) − 1

𝑎𝑟𝑐𝑠𝑖𝑛(2(𝑞1𝑞3 − 𝑞4𝑞2))

𝑎𝑟𝑐𝑡𝑎𝑛
2(𝑞3𝑞4 − 𝑞1𝑞2)

2(𝑞1
2 − 𝑞4

2) − 1 ]
 
 
 
 
 

 (17) 

   

The block diagram for Orientation to Euler VI is presented in Figure 27.  

 

Figure 26. Internal Block Diagram of Quaternion To R 
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It can be seen from the figure that atan2 function is used instead of arctangent. The atan2 

is the arctangent function with two arguments. The purpose of using two arguments 

instead of one is to gather information on the signs of the inputs in order to return the 

appropriate quadrant of the computed angle, which is not possible for the single-argument 

arctangent function. It also avoids the problems of division by zero [34] . 

The LabVIEW block diagram of the demo software can be seen in Figure 29. The demo 

software starts by reading in quaternion from COM port. The read in data is formatted as 

string. “Spreadsheet String To Array Function” is used to convert the data into int16 type 

quaternion array.  

Next the 16-bit quaternions converted into floating point numbers by dividing them with 

16384 (which is 2^14).  The latter comes from BNO055 datasheet which states that 1 

quaternion = 2^14LSB (Figure 28). After the last step the floating point quaternion data 

is fed into ORIENT TO EULER and QUATERNION TO R SubVIs, which were 

described earlier.  

The QUATERNION TO R is again used to control the 3D object and ORIENT TO 

EULER calculates angles of the module. As in the original the angles were given in 

radians, the conversion into degrees was added for a better and quicker judgement of the 

angle.  

 

Figure 27. Block Diagram of Orientation To Euler VI 

 

Figure 28. Quaternion accuracy according to the BNO055 Datasheet 
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Figure 29. LabVIEW Block Diagram of 9DoF Smart Board Demo 
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All the functionality that is related to raw (9-axis) sensor data was removed in this version 

as the incoming data is already in quaternion format. QUATERNION TO ORTHO was 

also removed, because it was not needed.  

The front panel of the VI has a really simple design – in the heart of it is the 3D object 

which is rotated according to the physical module. Above the 3D object window there is 

a COM port selector. On the right Yaw, Pitch and Roll are displayed in degrees. Also 

some assisting information is displayed on the right hand side and finally a “STOP” 

button to turn off the program.  

3.3 Software Development Results 

A firmware and demo software were developed for the 3D Orientation Device. The 

firmware was designed according to the specification in section 1.4. As a result a custom 

driver was created for the BNO055 9DoF Sensor (for controlling and reading data). Also 

a main program was created which purpose is to read measurement results from BNO055 

and send the data to USB host device. The outcome is corresponding to the requirements 

excluding the UART connections which will be added in the future development. 

 

Figure 30. Front Panel of 9DoF Smart Board Demo 
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A LabVIEW based demo software was created to demonstrate the functionality of the 3D 

orientation module. It reads in the quaternion data from the device, convert it to axis-

angle representation, which is used to manipulate virtual 3D object on a PC screen.   

 



51 

4 Economic Overview 

Economically the goal was to create a product which would have a low price, comparable 

to breakout board style solutions, and functionality, which can be comparable to industrial 

grade devices. All the electronic components were picked so that their price-quality ratio 

would be optimal. Table 4 summarizes the cost of the components and the total amount 

spent for the electrical parts. 

Table 4. Simplified BOM with Prices 

# Description Comments Qty 
Price for 1 

piece, € 
Price per 
Board, € 

Percentage, 
% 

1 Capacitor 22pF,50V,0402 4 0.008 0.032 0.18% 

2 Capacitor 0.1uF,10V,0402 7 0.005 0.035 0.19% 

3 Capacitor 10uF,10V,0603 5 0.089 0.445 2.44% 

4 
FUSE, RESETTABLE 
PTC MF-FSMF050X-2 1 0.46 0.46 2.52% 

5 
MICRO USB, 2.0 
TYPE B USB_Micro_B_FCI 1 0.58 0.58 3.18% 

6 
Header, 3-Pin, Dual 
row CONF 1 0.46 0.46 2.52% 

7 
1 x 4 Header, 2.54mm 
pitch UART 1 0.26 0.26 1.42% 

8 
LED, 0603, RED, 
15MCD, 625NM KPT-1608EC 1 0.08 0.08 0.44% 

9 
LED, 0603, YELLOW, 
8MCD, 588NM KPT-1608YC 1 0.071 0.071 0.39% 

10 
LED, GREEN, 
12MCD, 568NM, 0603 KPT-1608SGC 2 0.075 0.15 0.82% 

11 Mounting Hole MH 4 0 0 0.00% 

12 resistor 22,0402 2 0.012 0.024 0.13% 

13 resistor 10k,0402 5 0.009 0.045 0.25% 

14 resistor 430,0402 4 0.004 0.016 0.09% 

15 resistor 100,0402 2 0.009 0.018 0.10% 

16 
Microcontroller AVR 
XMEGA ATxmega16C4-AU 1 1.71 1.71 9.37% 

17 
Absolute Orientation 
9-Axis Sensor BNO055 1 11.06 11.06 60.61% 

18 
LDO, FIXED, 3.3V, 
0.15A, SOT-23-5 TLV71333PDBVR 1 1.05 1.05 5.75% 

19 
Diode - Dual Common 
Cathode MMBD6100LT1G 1 0.077 0.077 0.42% 

20 

CRYSTAL, 
32.768KHZ, 12.5PF, 
SMD LFXTAL009678 1 0.73 0.73 4.00% 

21 
16MHz Crystal 
Oscillator 

16MHz, +/-10ppm, 
8pF 1 0.598 0.598 3.28% 

22 ESD Protection Device CG0402MLC-05 2 0.173 0.346 1.90% 

          18.247 100.00% 
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As it can be seen from Table 4, BNO055 is the most expensive component, forming about 

61% of the whole cost. At the same time it is the most important component and, as it is 

a unique product, can’t be replaced. MCU ATxmega is on the second place with 9.37%. 

The microcontroller was already picked by its low price and is not easily replaceable with 

cheaper alternatives. It can be considered to remove some of the components (which are 

not critical) or replace some of them with cheaper alternatives to reduce the self-cost.  

To calculate the consumer price of for the product materials, PCB production, PCB 

assembly, cost of labor (development cost), desired profit, reseller profit and taxes must 

be considered. In this case the price is calculated with very low volumes (10 - 20 pieces 

of components, PCB etc), giving the worst case estimation. The volume discounts will 

increase the profit margin, but the formation of the end price will be calculated from worst 

case scenario.  

Nowadays it is best practice to order PCB manufacturing from China, because the prices 

compared to local (Estonian) manufactures are about 10 times cheaper (or more). There 

are many different companies worldwide, PCB Shopper webpage [35] conveniently 

summarizes prices of most PCB manufacturers. Therefore it is a good source for getting 

comparison about the prices and reputation of the companies. The price estimation for 

calculating the consumer price of “9DoF Smart Board” was taken from PCB Shopper 

website. The author of this work is confident about the price estimations found from 

mentioned website, because he has used it before and also services of different China 

manufacturers which are listed on PCB shopper webpage - Itead Studio, ShenZhen2U, 

Elecrow etc. The lowest price with regular shipping is around 12€, with DHL shipping 

26€, thus making 1.2 - 2.5€ for the unit price.  

The components must be also assembled to the PCB, this is the next cost source. Low 

volumes can be hand soldered, larger amounts must be handled out of the house. This can 

be again ordered from Chinese companies, who offer PCB assembly as a service [36] . 

According to different sources this will cost around 200 - 800€, if 100 or more units are 

ordered. This means 2 - 8€ per device.  

Next and very important part of product end price is the desired profit, which is usually 

10 – 20% for electronics hardware, reseller or distributor adds another 30% and in Estonia 

20% turnover tax must be added. 
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Table 5 summarizes all the parts that form purchase price for end user. It can be seen that 

the purchase price comes around 53€, so we can say that the product can be safely sold 

for 55€. The overall price is little bit higher than expected. The desirable price range was 

Table 5. Summary of Purchase Price Formation for “9DoF Smart Board” 

Description Cost, € 

Materials 18.000 

PCB Production 2.500 

PCB Assembly 8.000 

Desired Profit (20%) 5.700 

Distributor profit (30%) 10.260 

Taxes 8.892 

Purchase price 53.352 

 

20 - 40€. If it is possible to lower some costs (for example the PCB Assembly from 8 to 

5€) then the price will be 47.77€. That number is much closer to the desired pricing and 

probably 49€ would be a good price for the 3D orientation device.   

The developer salary during the development was 1000€ net per month, which means 

1676€ payroll fund for the employer. The project development lasted about 2 months 

which makes 3352€ for the total labor cost. In case of 20% profit 3352 / 5.7 = 588 units 

must be sold to break even (that is when distributing the product through reseller). In case 

the devices are sold straight from the company to end-customers there will be 15.96€ 

profit per every unit, which means that the break-even point will come at 3352 / 15.96 = 

210 units. In reality it will be probably somewhere in-between, because some of the 

modules will be sold by distributers and some of them will be sold straight to the clients.  

4.1 Economic Results 

One of the main goals was to create a device which has a low cost. All the materials were 

chosen optimizing price-quality ratio. After adding production costs, profit and tax, the 

end price little bit exceeds the target. It is about 55€ instead of 20 – 40€ range. It is 

possible to lower the price by cutting some costs to 49€ or even less.  
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5 Evaluation 

This chapter will give an overview about the first evaluation of the 3D module. Advanced 

and systematic testing is yet to be done in the future.  

The verification of the orientation data was done by using the demo software. To verify 

if the output angles correlate with a physical object’s orientation a cuboid was used. The 

device was put inside a matchbox and rotated around every axes (Figure 31). The angles 

were checked from the calculated Euler data (pitch, roll, yaw) and from visual inspection 

of the virtual 3D object’s orientation to confirm the correlation.  

The module inside the matchbox was rotated by 90° steps, at each step the values were 

recorded and put into a table. After marking down the values, difference between steps, 

difference from the starting point, absolute distance and error from the target value was 

calculated (in degrees).  

Table 6. Measured and calculated values for Yaw-axis 

  0 to right, ° 90 to right, ° 180 to right, ° 270 to right, ° 

Yaw (measured) -122.0 145.8 54.2 -36.0 

Delta 0.0 92.2 91.6 90.2 

Diff 0.0 -267.8 -176.2 -86.0 

Abs dist. 0.0 92.2 183.8 274.0 

Error 0.0 2.2 3.8 4.0 

 

  

Figure 31. “9DoF Smart Board” Put Inside a Matchbox for Testing 
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Table 7. Measured and calculated values for Pitch-axis 

  0 to right, ° 90 to right, ° 180 to right, ° 270 to right, ° 

Pitch (measured) -2.2 85.4 3.9 -85.9 

Delta 0.0 87.6 81.5 89.8 

Diff 0.0 -87.6 -6.1 83.7 

Abs dist. 0.0 87.6 173.9 276.3 

Error 0.0 -2.4 -6.1 6.3 

 

 

Table 8. Measured and calculated values for Roll-axis 

  0 to right, ° 90 to right, ° 180 to right, ° 270 to right, ° 

Roll (measured) -0.3 83.7 176.1 -96.1 

Delta 0.0 84.0 92.4 87.8 

Diff 0.0 -84.0 -176.4 95.8 

Abs dist. 0.0 84.0 183.6 264.2 

Error 0.0 -6.0 3.6 -5.8 

 

Table 6, Table 7 and Table 8 represent the measured data for Yaw-, Pitch- and Roll-axis 

accordingly. The ranges for the axis are different and listed below.  

Yaw: -180…180° 

Pitch: -90…90° 

Roll: -180…180° 

As it can be seen from the tables above the measured values are generally close to desired 

values, differing from the target up to 6.3° (in absolute value). Also the visual inspection 

gives overall impression that the 3D object simulation is following the orientation of the 

physical device. Depending on the application up to 6.3° absolute error may be acceptable 

or it can be too large. The setup was not accurate enough to make any final conclusions 

about the errors. This was just to get a general estimation if the device is working 

correctly. It was discovered during testing that matchbox is not suitable for testing 

because it is differing quite a lot from ideal cuboid. Specifically the box is too soft and 

does not have angles that are firmly 90°. A minor movement (like bending of the sides) 

can change the angle several degrees. Therefore a better cuboid enclosure should be found 

for next testing.  
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A known issue for 3D orientation sensors is an angles drift. The gyroscope zero bias will 

drift over time, with temperature and with motion. The MARG implementation usually 

incorporates magnetic distortion and gyroscope bias drift compensation [37] . This drift 

was tested with specially made firmware which read out both gyroscope and Euler angles 

data from BNO055.  

The test was done as follows. Two devices were put laying on top of a foam, on a table 

to isolate modules from outside vibration noise. During test no one moved closer than 2m 

from the desk. There were two tests – first lasted 2 minutes and the second one 8 minutes. 

Below is the configuration information and equation (18) which was used to calculate the 

total gyroscope drift. Figures Figure 32, Figure 33, Figure 34 and Figure 35 below 

represent the test results for Test1 and Test2. 

Configurations 

Operation mode - OPERATION_MODE_NDOF (see BNO055 operation modes for more 

information)  

sample rate - 100Hz  

Gyroscope range – ± 2000°/s (default for MODE_NDOF) 

Acceleration range - ±4g (default for MODE_NDOF) 

 

Test Equations 

 
Total change in angle using gyroscope 

 

 ∑𝑥𝑘 ∗
2000

32767
∗ ∆𝑡

𝑛

𝑘=0

 (18) 

 
 

 N – sample count 

 𝑥𝑘 – Gyroscope sensor raw output data 

Δt – time difference between samples  

 



57 

Test 1 
 

Test duration 2min 

 

Module 1: 

 

Calculated Gyro bias for 1 hour 

Gx: -12.78°/h 

Gy: -8.92°/h 

Gz: 33.68°/h   

 

No change in Euler angles. 

 

 

 

Figure 32. Test1, Module 1: Gyro Bias Drift 
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Test 1 
 

Test duration 2min 

 

Module 2: 

 

 

Calculated Gyro bias for 1 hour 

Gx: 10.60°/h 

Gy: -2.91°/h 

Gz: 22.52°/h   

 

No change in Euler angles. 

 

Figure 33. Test1, Module 2: Gyro Bias Drift 
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Test 2 
 

Test duration 8min 

 

Module 1: 

 

 

Calculated Gyro bias for 1 hour 

Gx: -15.80°/h 

Gy: -2.00°/h 

Gz: 19.88°/h   

 

No change in Euler angles. 

 

Figure 34. Test2, Module 1: Gyro Bias Drift 
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Test 2 
 

Test duration 8min 

 

Module 2: 

 

 

Calculated Gyro bias for 1 hour 

Gx: 7.37°/h 

Gy: 0.25°/h 

Gz: 27.90°/h 

 

Euler angles 

 

Yaw: no change 

Pitch: -0.0625° 

Roll: 0.25° 

 

It can be concluded from the gathered data that Euler angles are quite stable, which is a 

positive result. Gyroscope Z value seem to have quite big offset drift (20°…34°). 

Gyroscope X and gyroscope Y differ a lot comparing the tests. Therefore calculated gyro 

bias for 1 hour is not valid for X- and Y-axis and the result for these axis is inconclusive.  

Figure 36 represents Xsens’ summary of their products, listing gyro bias stability and 

Euler angles static and dynamic accuracy. Comparing the measurement results with 

 

Figure 35. Test2, Module 2: Gyro Bias Drift 
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Xsens data we can say that Z-axis gyro bias drift is higher (magnitude is similar, which 

again validates the information). According to the measurements “9DoF Smart Board” 

Euler angle accuracy is better having almost no change in angle values (has to be verified 

with more measurements).   

 

5.1 Evaluation Results 

The evaluation and tests for the device can be summarized as follows. Generally the 

module’s angular output correlates to physical object’s rotations in 3D room. 

Measurements and visual inspection of simulated cuboid verify this. The angular error 

was up to 6.3° in absolute value, which has to be checked, because may have been caused 

by test setup.  

Drift measurements resulted in very stable Euler angle output data, although at the same 

time gyroscope z-axis drift is about 20…30°/h. It was not possible to make conclusions 

for x and y-axis gyroscope drift as the tests gave very different results. 

Overall impression is positive, because the angular data correlates to the real world and 

is stable in time. More tests are yet to be made.  

 

Figure 36. Xsens Product’s Overview [38]  
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6 Summary 

The purpose of this thesis was to create a low cost high precision 3D orientation device. 

A fully functional systems was developed during the thesis. Special hardware and 

firmware were developed according to the specifications laid out in the beginning of the 

design process. Additionally a software was designed for demonstration and testing 

purposes.  

The created module has a Bosch BNO055 9DoF in its core, which pre-calculates 

orientation data. The module is able to output 3D orientation information in a form of 

quaternions or output raw 9-axis data, according to user configurations. The created 

hardware fulfills specification up to 95%, the shortfall being UART communication 

which pins are misplaced because of using an old datasheet version. The latter mistake 

will be fixed in the next version.  

A firmware was created which main purpose is to act as a “bridge” between the sensor 

IC and USB or UART communication ports. The developed firmware is working 

oraccording to the requirements sending the user selected information to communication 

ports.  Some future work is left to be done in this field – USB/UART to I2C bridge for 

example, LED indications. During testing an I2C clock stretching issue was discovered 

which limits the raw data communication bandwidth down to 150Hz max instead 1kHz. 

Thus a decision was made to lower the frequency down to 100Hz.  

One of the main goals was to create a device which has a low cost. All the materials were 

chosen optimizing price-quality ratio. After adding production costs, profit and tax, the 

end price exceeds the target. It is about 55€ instead of 20 – 40€ range. It is possible to 

lower the price by cutting some costs.  

After evaluation and some tests overall impression is positive, because the angular data 

correlates to the real world and is stable in time. The angular error was up to 6.3° in 

absolute value, which has to be checked, because it may have been caused by test setup. 

Drift measurements resulted in very stable Euler angle output data, although at the same 
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time gyroscope z-axis drift is about 20…30°/h. Generally more tests have to be made 

before making any final conclusions.  

Overall it can be said that most of the goals were met during this thesis. There are some 

minor mistakes that will be corrected. The module will be developed further and updated 

in future.  

I hereby thank my supervisor Alar Kuusik, co-supervisor Olev Märtens, coworker Arthur 

Randjärv, ELIKO, Thomas Johann Seebeck Department of Electronics and my family for 

assistance and support.  
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Appendix 1 – Electrical Schematic Design for the “9DoF Smart Board” 
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Appendix 2 – PCB Top and Bottom Layer Design 

 

Top Layer 

 

Bottom Layer 
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Appendix 3 – PCB Top and Bottom Silkscreen Overlay Design 

 

Top Silkscreen Overlay 

 

Bottom Silkscreen Overlay 
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Appendix 4 – PCB Top Pad Master and Top Solder Mask 

Design 

 

Top Pad Master 

 

Top Solder Mask 
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Appendix 5 – Main Function Program Code 

#include "VirtualSerial.h" 
 
static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0, 
                                           .CharFormat  = CDC_LINEENCODING_OneStopBit, 
                                           .ParityType  = CDC_PARITY_None, 
                                           .DataBits    = 8                            }; 
 
/** Main program entry point. This routine contains the overall program flow, including initial 
 *  setup of all components and the main program loop. 
 */ 
 
uint32_t timestamp = 0; 
uint32_t lastTimestamp = 0; 
int16_t data[9] = {0}; 
char str[100]; 
volatile uint8_t conf = 0; 
volatile uint8_t conf2 = 0; 
volatile uint8_t conf3 = 0; 
volatile uint8_t conf4 = 0; 
volatile uint8_t conf5 = 0; 
volatile uint8_t state = 2; 
volatile uint8_t last_state = 3; 
const uint8_t streamPeriod_Euler = 10;  
const uint8_t streamPeriod_Raw = 10; 
const uint8_t streamPeriod_Quaterntion = 10;   
uint8_t dt = 0; // time difference 
 
int main(void) 
{ 
 SetupHardware(); 
 GlobalInterruptEnable(); 
  
 /* EULER mode */ 
 Delay_MS(100); 
 begin(OPERATION_MODE_NDOF); 
  
 /* Use BNO055 external crystal oscillator */ 
 setExtCrystalUse(true); 
  
 for (;;) 
 { 
  USB_USBTask(); 
   
  /* Raw output */ 
  if(gpio_pin_is_high(CONF2) == false) 
  { 
   state = 1; 
   // be sure to write the configuration just once 
   if(state != last_state) 
   { 
        BNO055_write_byte(BNO055_SYS_TRIGGER_ADDR, 0x20); 
        while(BNO055_read_byte(BNO055_CHIP_ID_ADDR)!= BNO055_ID) 
        { 
         Delay_MS(10); 
        } 
        Delay_MS(50); 
     BNO055_write_byte(BNO055_SYS_TRIGGER_ADDR, 0x00); 
     Delay_MS(1000); 
      
     // setExtCrystalUse(true); 
      
    // Enter raw data mode 
    setMode(OPERATION_MODE_AMG); 
    conf2 = BNO055_read_byte(BNO055_OPR_MODE_ADDR); 
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    // Configure sensors 
    SetupRawSensors(); 
     
     
    last_state = state; 
     
       setExtCrystalUse(true); 
     
   } 
    
   if((dt = timestamp - lastTimestamp) >= streamPeriod_Raw) 
   { 
    lastTimestamp = timestamp; 
     
        ioport_set_pin_high(BOOT); 
      
     // get raw sensor values 
     getVector(VECTOR_RAW, data); 
      
     ioport_set_pin_low(BOOT); 
      
      
     sprintf(str, "%d %d %d %d %d %d %d %d %d %lu\r\n", 
data[0], data[1], data[2], data[6], data[7], data[8], data[3], data[4], data[5], timestamp); 
      
     Send_To_USB(str, strlen(str)); 
   } 
  } 
       
  /* Quaternion */ 
 
  if(gpio_pin_is_high(CONF2) == true) 
    { 
   state = 0; 
   // be sure to write the configuration just once 
   if(state != last_state) 
   { 
        BNO055_write_byte(BNO055_SYS_TRIGGER_ADDR, 0x20); 
        while(BNO055_read_byte(BNO055_CHIP_ID_ADDR)!= BNO055_ID) 
        { 
         Delay_MS(10); 
        } 
        Delay_MS(50); 
        BNO055_write_byte(BNO055_SYS_TRIGGER_ADDR, 0x00); 
        Delay_MS(1000); 
         
        setMode(OPERATION_MODE_NDOF); 
        conf2 = BNO055_read_byte(BNO055_OPR_MODE_ADDR); 
         
        setExtCrystalUse(true);     
 
    last_state = state; 
   } 
    
   if((dt = timestamp - lastTimestamp) >= streamPeriod_Quaterntion) 
   { 
    lastTimestamp = timestamp; 
        
    
   getVector(VECTOR_QUATERNION, data); 
   sprintf(str, "%d %d %d %d %lu\r\n", data[0], data[1], data[2], data[3], 
timestamp); 
    
   Send_To_USB(str, strlen(str)); 
    
   } 
    
  }  
   
 } 
} 
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Appendix 6 – LabVIEW Block Diagram of Developed Demo Software 
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Appendix 7 – Images of the Resulted Physical Device 
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