
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Software Science

Jubril Gbolahan Adigun

182486IVSM

Ground Truth Data for Object Detection in Autonomous
Vehicle from a Driving Simulator

Master’s thesis

Supervisor: Priit Järv, PhD

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia Teaduskond

Tarkvarateaduse Osakond

Jubril Gbolahan Adigun

182486IVSM

Autonoomsete sõidukite objektituvastuse

valideerimisandmete loomine sõidusimulaatoriga

Magistritöö

Jubril Gbolahan Adigun

182486IVSM

Juhendaja: Priit Järv, PhD

Tallinn 2020

iii

Declaration

I hereby certify that I am the sole author of this thesis. All the used materials, references to the

literature and the work of others have been referred to. This thesis submitted for master’s degree

at Tallinn University of Technology has not been presented for examination anywhere else.

Author: Jubril Gbolahan Adigun

04.08.2020

 iv

Acknowledgement

It is my greatest pleasure to offer salutations to my supervisor, Priit Järv (PhD). He was

extremely helpful and supportive all through the course of my thesis. I would not have been

able to complete the thesis without his guidance and mentorship.

I will also appreciate my program coordinator at Tallinn University of Technology, Associate

Professor Juhan-Peep Ernits who was always the go to person for all study related concerns and

showed genuine interest in seeing his students grow. I especially appreciate his help with

making the simulator used in this thesis, available.

I wish to also appreciate Professor Jüri Vain (Tallinn University of Technology) for facilitating

the platform for me to attend the Summer School on the Development of High-Assured

Autonomous Systems at Åbo Akademi University (Åbo Akademi) in Finland.

At the same degree, I would like to thank the University of Tartu, the IT Academy and Institute

of Computer Science, University of Tartu and the Department of Software Science of Tallinn

University of Technology as well as the Estonian Government for the different scholarships and

support rendered during the course of my studies.

At the home front, I express my profound gratitude to my family members; my parents and my

siblings (The Adiguns), my wife (Dr. Amina Farayola), my relatives, and friends, particularly

Tek Raj Chhetri (whose insights were very helpful) for supporting me with their kind words,

encouragement and continuous checkups. Above all, I return all praises and salutations to Allah,

the Most Beneficent, the Most Merciful who granted me the wherewithal to accomplish this

feat.

 v

Table of Contents

Declaration .. iii

Acknowledgement ... iv

Table of Contents .. v

Abstract ... vii

Annotatsioon ... viii

List of Figures .. ix

List of Tables ... ix

List of Acronyms .. x

1 INTRODUCTION ... 1

 Overview .. 1

 The development of Autonomous Vehicles ... 1

 Autonomous Vehicle Architecture ... 2

 Motivation .. 3

 Thesis goal .. 6

 Thesis Outline .. 6

2 BACKGROUND AND RELATED WORKS .. 7

 Related works ... 7

 Relevant theory and Concepts .. 11

 Ground truth data .. 11

 Object detection .. 12

 Object detection metrics ... 14

3 METHODOLOGY .. 17

 Architecture .. 17

 Technical platform and tools .. 18

 BeamNG.reseacrh ... 18

 BeamNGPy ... 21

 ROS ... 23

 Autoware ... 24

 System requirements .. 25

 Summary .. 26

4 EXPERIMENT .. 27

 vi

 Ground truth data from BeamNG.research .. 30

 Images and LIDAR points .. 31

 Images ... 31

 Point cloud .. 32

 Visualization of data in RViz ... 32

 ROSBAG conversion ... 33

 Summary .. 34

5 VALIDATION .. 35

 Validating with Object Detection ... 35

 Performance Measures (Precision and Recall) ... 37

 Summary .. 38

6 FUTURE WORK .. 39

7 CONCLUSION ... 41

References .. 43

Appendix .. 47

 vii

Abstract

Automotive technology is seeing tremendous application in the emerging field of autonomous

vehicles (AV). With the prevalence of autonomous vehicles in our world today, driven by

advances in computer vision algorithms on large amount of data, it is important to look for more

efficient ways for development working models with high level of reliability. For us to achieve

better and accurate development of algorithms, we need to get results that reflect ground truth

information about pose of objects around the vehicle. Although, low-level, object detection and

tracking are crucial for the buildup of many higher level functionalities of AVs. This has proven

to be challenging because, it requires laborious accurate sensors’ calibration, annotations of

images and semantic segmentation of image pixels.

In this thesis, we adopt an open approach to explore the generation of ground truth data that

would be useful for object detection using a driving simulator called beamng.research

(beamng). This is important because sensors for generating training data for AVs and other

autonomous systems can be expensive and many of the stack in autonomous vehicles are

proprietary. We introduce a method of creating the ground truth data with a simulator. The

simulator gives the true location of objects in the simulation and sensor data streams. The

proposed method, can help us address the problem of annotation of ground truth data that is

otherwise, difficult with real life data. We made a prototype that can generate annotated images

and point cloud data. The prototype allows generation of training/validation data in an unlimited

amount with the existing beamng scenarios. We generated 200 frames of images and 200 sets

of point cloud data. We tested the data in practice by using it to validate YOLO v3 object

detection running on ROS platform.

Keywords: Autonomous vehicle, computer vision, object detection, simulation/simulator,

synthetic data, ground truth data, artificial intelligence, beamng

CERCS P170/P176: Computer science, numerical analysis, systems, control/ Artificial

Intelligence

This thesis is written in English, contains seven (7) Chapters across 60 pages, including 14

figures and 9 tables.

 viii

Annotatsioon

Autonoomsete sõidukite objektituvastuse valideerimisandmete loomine

sõidusimulaatoriga

Autonoomsed sõidukid (AS) on kiirelt laienev valdkond ja nende edukus sõltub tehisnägemise

algoritmidest. Seetõttu on oluline leida efektiivsemaid viise kõrge usaldusväärsusega mudelite

välja töötamiseks. Parema ja täpsema algoritmide arendustöö jaoks on vaja andmeid, mis

kajastavad tuvastatavate objektide tegelikke asukohti antud sensorandmete korral. See on

osutunud väljakutseks sensorite kalibratsiooni, piltide märgendamise ja nende semantilise

segmenteerimise töömahukuse tõttu.

Lõputöös kasutame avatud platvormidel põhinevat lähenemist valideerimisandmete loomisele

kasutades simulaatorit beamng.research (beamng). Avatud lähenemine on oluline, kuna sageli

on AS-ide platvormid suletud ja sensorite rakendamine kulukas. Simulaator annab meile nii

sensorite andmevood kui ka objektide tõelised asukohad simulatsioonis oleva sõiduki suhtes.

Väljapakutud meetod võimaldab lahendada valideerimise jaoks vajaliku märgendamise

probleemi, mis on päriseluliste andmete puhul keeruline. Koostasime prototüübi, mis väljastab

märgendatud pildifaile ja punktipilvi. Prototüüp võimaldab piiramatus koguses märgendatud

andmete genereerimist olemasolevate beamng stsenaariumite piires. Prototüübiga genereeriti

200 pildikaadrit ja 200 punktipilve. Andmete praktilise kasutuse testimiseks valideeriti nendega

YOLO v3 objektituvastuse algoritmi ROS platvormil.

Märksõnad: Autonoomne sõiduk, arvuti nägemine, objektide tuvastamine, simulatsioon /

simulaator, sünteetilised andmed, maapealsed tõeandmed, tehisintellekt, beamng.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 60 leheküljel, 7 peatükki, sealhulgas

14 joonist ja 9 tabelit.

 ix

List of Figures

Figure 1: Levels of Autonomy in Automobile. ... 2

Figure 2: Basic autonomous vehicle model .. 3

Figure 3: Iseauto 3D view .. 4

Figure 4: Illustration of Ground Truth Data generation from an input image and the output of from a prediction

model. ... 12

Figure 5: Illustration of Convolution network for object detection .. 13

Figure 6: Architecture ... 18

Figure 7: BeamNG environment .. 19

Figure 8: BeamNGpy usage ... 22

Figure 9: ROS basic concept .. 24

Figure 10: Minimap of west_coast_usa scenario .. 27

Figure 11: Different spawn points available in the west_coast_usa scenario. 1 L-R: Chinatown, Dirttrack; 2 L-R

Dockyard, Dragstrp; 3 L-R Highway, Industrial; 4 L-R Racetrack, Redwood_forest 29

Figure 12: Snapshot of file folder structure used in the project .. 31

Figure 13: Sample image captured visualized in Rviz .. 32

Figure 14: Sample point cloud data visualized in RViz ... 33

List of Tables

Table 1: ISEAUTO Design Specification ... 5

Table 2: Darknet-53 [23] .. 14

Table 3: BeamNG Requirements .. 20

Table 4: Requirements for BeamNGpy .. 21

Table 5: System requirements ... 25

Table 6: Specification of sensor parameters .. 28

Table 7: Summary of outputs and their purpose ... 34

Table 8: Table showing captured color image, annotated image of ground truth and object detection output. 36

Table 9: TP, TN, FP, FN Derived Measures ... 37

 x

List of Acronyms

AV Autonomous Vehicle

CG Computer Graphics

CV Computer Vision

DIL Driver-in-the-Loop

Fast-RCNN Fast Region-based Convolutional Neural Network

GNSS Global Navigation Satellite System

GPS Global Positioning System

GUI Graphical User Interface

IMU Inertial Measurement Unit

INS Inertial Navigation System

LiDAR Light Detection and Ranging

NN Neural Network

OS Operating System

ROS Robot Operating System

SSD Single Shot Detector

VM Virtual Machine

YOLO You only Look Once

3D Three dimension

COVNET Convolutional Network

WIP Work-in-Progress

MIME Multipurpose Internet Mail Extensions

PNG Portable Network Graphics

JPEG Joint Photographic Experts Group

BMP Bitmap (Bitmap Image File)

TIFF Tagged Image File Format

GIF Graphics Interchange Format

GPU Graphics Processing Unit

RTK Real-time kinematic

fps Frames per second

rps rays per second

1

1 INTRODUCTION

 Overview

The automobile industry has grown over more than a century and the spate of

development in recent times has been unprecedented. The evolution has progressed

through many stages of trying to reduce human effort put into commuting from one

place to another. In the world today, we have car manufacturers in a stiff competition

to eliminate human involvement in the driving tasks, with the rise and popularity of

autonomous vehicles (AV/AVs). Although, we are yet to attain full autonomy in all

sense of autonomy, significant success has been recorded in autonomous systems.

 The development of Autonomous Vehicles

More than ever before, we can already see the transformation that has happened in the

automobile industry. In the wake of the sleekest environmentally friendly newer

generation cars, is the need to increase human efficiency and productivity by reducing

human effort put into commuting while ensuring the safest mobility of these vehicles

and their passengers alike [1, 2].

Automobiles are now increasingly moving from the old age fuel-based engines to

electrically powered designs with industry leaders putting aggressive effort into not

just manufacturing electric cars but cars that can also drive themselves (autonomous

driving). Following from the above, we shall look at the various levels of automation

that we have in the automotive space. Figure 1 below, shows an overview of the

different levels of autonomy that we have. This will help to better assimilate the need

for further development of autonomous vehicles in perspective [3]

 2

Figure 1: Levels of Autonomy in Automobile.1

Autonomy in robotics and vehicular systems are emerging in numerous areas of

endeavor so much so that during the coming years, it is postulated that cars that have

achieved full automation will be driving our streets, untarred roads, highways,

metropolises, cities and with no human intervention [4].

 Autonomous Vehicle Architecture

Autonomous systems and by extension, AVs require complex computations and

decisions. More so, in AVs, to ensure safety of both passengers and surrounding traffic,

advanced perception systems are employed to sense the environment, carry out scene

assimilation and for detection, mapping and obstacle tracking along and near the path

of the vehicle [5].

From Figure 2 above, we see that there are 3 main modules (Sensing, Computing and

Actuation) with which AVs operate. In this thesis, we are more concerned about the

first section and a part of the second. The second contains way much more details which

we are not able to deal with in one project task.

1 https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-
themselves-top-11automakers/

 3

Figure 2: Basic autonomous vehicle model

 Motivation

As we aim to achieve full autonomy in cars today, and object detection being a pivotal

process in this technology, it is essential that we get this aspect of the autonomous

systems and by extension, autonomous vehicles right. Popular autonomous vehicle

manufacturing companies today, still have to contend with failures, accidents and huge

fallouts every now and then associated with object/obstacle detection flaws.

Again, progress being made in the computer vision field has been steered by high-

capacity models trained on huge datasets. Creation of large datasets unfortunately, are

very costly due to the amount of human effort required [6]. More so, many of the

existing datasets for algorithm evaluation for object detection and other computer

vision tasks contain only visual imagery with no independent measurement of their

locations and trajectories [7].

 4

According to [8], it is mentioned that the key to success in design for modern

automobiles is early involvement of real drivers in virtual vehicles, sub-systems and

environments/scenarios via Driver-in-the-Loop (DIL) simulations. In the real sense,

this is a way of assessing ground truth about performance of such automobiles against

real life. If this is possible, we aim to adopt same strategies and such systems in

obtaining ground truth data for autonomous purposes.

In this project, we would explore the engineering problem of obtaining ground truth data

for computer vision objection detection purposes in self- driving context using a driving

simulator. The ISEAUTO project is a practical example of where the result of this study

can be useful. Iseauto, as the name implies in Estonian, is a pioneer self-driving car

project developed by Tallinn University of Technology (TTÜ) in collaboration with

Silberauto AS, in Estonia [9].

Figure 3: Iseauto 3D view2

The car has a speed limit of 10-20km/h because it is designed to operate as last-mile

means of transportation, availing alternative mobility in closed and diverse traffic

territories within smart and safe limits. With a vision of building interesting research

projects for future innovations, the university aims to develop competence in the

2 https://iseauto.taltech.ee/en/tehniline/

https://www.ansiblemotion.com/automotive-driver-in-the-loop-simulation-articles/topic/driver-in-the-loop
https://iseauto.taltech.ee/en/tehniline/

 5

autonomous field and provide interesting projects for the engineering students. As at the

time of this publication, the car runs Ubuntu version 16.04 operating system and uses

the following sensors during driving for perception, localization, motion planning and

navigation [10]:

Table 1: ISEAUTO Design Specification2

Technical

parameters
Dimensions Sensors Software Stack

• Up to 6

passenger/cargo

places

• Cruising speed

range - 10-20

km/h

• Turning circle - 9

m

• Main motor

power - 47 kW

• Battery 16 kWh

• Height - 2400

mm

• Length - 3500

mm

• Width - 1500

mm

• LiDAR

Velodyne VLP-

16 x2

• 8 Cameras

• 16 Ultrasonic

proximity

sensors

• A Near-ranged

radar

• An IMU sensor

• An RTK-GNSS

• Robot

Operating

System (ROS)

• Autoware

• Yolo

It is important to mention that driving simulators are now being used as an essential

player in the development, testing and validation of AVs. There is a continuous

exploration of different simulation platforms, some of which are mentioned in 2.1, in

the development of AVs because they have proven to provide flexibility in terms of

sensor and environmental conditions. The main area of study is the generation of

ground truth data from simulated sources. There has been some work in this field but

not very many when compared to instances where datasets are generated from real life

environments. While perception algorithms may have their own drawbacks from data

to data and from model to model. there’s an obvious concern about the quality about

quality of synthesized data. As such, there is a continuous need to explore different

options and alternatives as we strive to improve accuracy and confidence levels in AV

development.

 6

 Thesis goal

Enormous efforts have gone into determining and establishing ground truth data for

autonomous vehicles. On another hand, for many reasons more than object detection

and tracking, engineers have used driving simulators to get objective measurements of

what real life may look like [8]. This was posited as well in [11]. In the real world,

object detection proves difficult, because, objects and thence, their images are affected

by many constraints such as illumination, orientation, scale and occlusion [12].

In this thesis, however, we aim to develop synthetic data (LIDAR and camera) suitable

for evaluation of object detection algorithms. We introduce a method obtaining ground

truth data from a vehicular software platform called beamng.research3 (which provides

enough flexibility for altering the behavior of simulated vehicles thereby, resulting in

fast development iteration times).

 Thesis Outline

In this chapter, we had a brief introduction about autonomous vehicles, the importance

of data in its development and how we can adopt synthesized data as a means for

carrying out development of AVs. In Chapter 2, we discuss some works that have

been done on generating benchmarks for different computer vision assignments. In the

same vein, we will look at research works using simulated or synthesized data for

similar purposes. In Chapter 3, we document the different tools and mention

specifications of systems used for our project. Additionally, in Chapter 4 we describe

how the experiment was carried out. We share our methodology for validating our

results in Chapter 5. We mention ways by which the work presented in this thesis can

be improved in Chapter 6. In Chapter 7, we do a wrap up in the conclusion.

3 https://beamng.gmbh/research/

https://beamng.gmbh/research/

 7

2 BACKGROUND AND RELATED WORKS

Enormous efforts have gone into determining and establishing ground truth data for

autonomous vehicles. Also, for many reasons more than object detection and tracking,

engineers have used driving simulators to get objective measurements of what real life may

look like [8]. This is further strengthened by the comparative studies done by Nikolenko in

[11]. In the real world, object detection proves difficult, because, objects and thence, their

images are affected by many constraints such as illumination, orientation, scale and

occlusion [12].

 Related works

As opposed the simulator used in our thesis work, which is a more recently developed

video game engine, [13] introduced a novel simulator called CARLA for use in urban

driving simulation. The paper studied the performance of three ways of achieving

autonomous driving – end-to-end reinforcement learning trained model, end-to-end

imitation learning trained model, and the classical modular pipeline. On another end,

Nikolenko [11] presents an underlying basis for our thesis work. He attempted to do a

comprehensive analysis of the different directions that synthetic data can be developed

and applied. The survey discusses synthetic datasets for basic CV problems and ways

of improving and producing synthetic data, moving from synthetic-to-real domain and

privacy concerns.

While object detection models have their own limitations in use for real time

autonomous vehicles, the whole process of getting precisely-labeled datasets which are

favored more to support these models prove a tedious task on its own. They are

expensive, time-consuming and may also require both highly technical skills and

physical inputs to gather the data. For instance, at the University of Waterloo, they use

the Global Navigation Satellite System (GNSS) and the Inertial Navigation System

(INS) post-processing method to augment different weather condition data collected

over thousands of kilometers. Their goal was to use the data to create a driving dataset

for a new road that accounts for omni-weather autonomy challenges (e.g. 3D object

detection and tracking, precision in localization and mapping to semantic segmentation

 8

of the driving environment using omnidirectional vision and light detection and ranging

(LiDAR) data) [14].

In the same vein, there exists the widely used KITTI dataset, which is hugely used for

academic and research purposes in autonomous driving. Here, the team which comprises

individuals from Karlsruhe Institute of Technology (KIT), Max Planck Institute for

Intelligent Systems (MPI Tübingen) and University of Toronto used the Annieway

autonomous driving platform to develop new real-world computer vision benchmarks

for a vast range of vision related tasks including 3D object detection and 3D tracking.

To achieve this, they attached to a station wagon, cameras, LiDAR and GPS systems

and drove through rural areas and highways of the mid-sized city of Karlsruhe [15].

There is a growing number of research being done every day to improve existing

datasets used for autonomous driving. In a research titled “nuScenes: A multimodal

dataset for autonomous driving”, the authors pioneered the publishing of a dataset that

is obtained from the full AV sensor suite: this includes cameras (6), radars (5) and

LiDAR (1), with full 360-degree field of view. The dataset consists of a thousand 20s

long scenes, bounding boxes for 23 classes and 8 features and has 7 and 100 times as

many annotations and images as the groundbreaking KITTI dataset respectively [16].

The experiment involved well thought out driving plans, vehicular setups, careful

selection of interesting scenes, and dataset annotations. Furthermore, the driving routes

were carefully chosen in a bid to capture a diverse range of settings, times and even

weather conditions.

There is no doubt that AVs have attracted considerable amount of attention in the past

few years from the academic, commercial and general public entities. The reason for

this can be linked to the expectations of their societal benefits. The expectations are that

safety, mobility, and the environment would be tremendously affected and these have

captivated the interests of people all over the world. The key word here, is safety

particularly in light of recent accidents attributed to AVs. It has become evident that we

have a long way to go in order to meet the high standards and expectations associated

with AV [2].

Now, there’s the argument that an AV has to be test-driven many millions of miles in

difficult conditions to be able to demonstrate that fatalities and injuries are reduction to

a high degree of statistical reliability. Even with this, it could takes take several years of

 9

road tests under the most intensive evaluation strategies to achieve the desired

reliability. A possible solution that has been proposed, is to use of simulation systems,

which are already common in other sectors like manufacturing, medical training, law

enforcement and military. Simulations would help us to test and validate the capability

of AVs in the areas of environmental perception, control and navigation and also being

able to generate large amount of training data to train machine learning/computer vision

algorithms, such as a deep neural network (NN). The latter has more recently been

adopted in computer vision.

Following from the above, a common practice to generate simulated data is to come up

with combinations of computer graphics (CG) models and robot motion planning

methodologies to create synthesized environments wherein vehicles and other players

can be rendered and animated. Based on this technique, a number of simulators have

been developed by tech giants and a number of key players. Examples include as Intel’s

CARLA, Microsoft’s AirSim, NVIDIA’s Drive Constellation, Google/Waymo’s

CarCraft. They have all been proven to achieve qualitative rendering results. In an article

published on WARDSAUTO by Danny Atsmon, the author presents several arguments

to support the use of simulated technology for AVs. The author’s line of thought follows

the underlying demerits to favor simulated technology: software stack for telling the

location of a car with respect to the world alone is a serious bone of contention [17].

Furthermore, Atsmon iterates that the ability of the car to make decisions on the go

within the testing environment is questionable. Also, accuracy in real world tests is

undermined because they do not include ground truth while the controllability of data

more consistently and closely, will inevitably be of higher quality. On the angle of

economies of scale, AV manufacturers usually have to build test models manually and

single at a time, which keeps production costs on the high side. This also requires that

during a test run, a real driver, engineers, supervisors and safety coordinators may have

to be involved including securing permission from every region involved. As laws may

vary from one municipality to another, local regulations need to be engulfed and terrain

learned. Insurance is also expensive in this regard because of the high risk nature of

autonomous systems. As the use of simulators is a relatively new endeavor in AVs,

below, we shall see a snapshot of where simulation technologies have been employed

to support AV dataset.

 10

Based on an Advanced Driver Assistance Systems (AADS) manufacturer’s demand,

CVEDIA’s SynCity simulator was able to enable an environment that included custom

objects, such as city infrastructure and humans, and extreme weather conditions that

could be manipulated via its interface and API. The said manufacturer was having

difficulties with identification and classification of close-up objects also with creating

semantic segmentation of LiDAR. With the simulator, it was possible to generate

synthetic segmented LiDAR data within SynCity [18]. To scale up these kinds of

synthetic data, [19] designed an approach called the AADS. They use augmented real-

world images with a simulated traffic flow to create photo-realistic synthesized images

and renderings using Lidar and cameras as sensors. These renderings are then used to

generate some realistic traffic flows for cars and pedestrians in readiness for end-to-end

autonomous driving training and testing.

While it is clear that it will be impossible to capture every environmental and weather

condition in which real life use of autonomous driving may happen, it is glaring from

the above, the amount of physical and intellectual efforts that need to be put into

establishing reliable ground truth dataset or benchmarks. Interestingly, as driving

simulators for games and experimental purposes are becoming widely popular, they may

offer some opportunities for discarding this laborious and somewhat inefficient and

slightly unreliable way of gathering ground truth data for autonomous vehicles. This is

important for us because, we need to drive efficiency just as much as we aim to achieve

the goal of safe autonomous driving. Yet, challenges that current state-of-the-art

methodologies pose are that the simulation engines are either not open-source or simply

lack features that help us model closely real life environment and scenarios as we want

and are reliant on game engines or high-fidelity computer graphics (CG) models.

In our work, we shall make use of a combination of sensors, particularly LiDAR and

cameras to generate high-fidelity images and annotations within our simulator just as

[16] obtained better dataset generating a multimodal dataset using a combination of

sensors but in a real world driving context. Our work may set a good precedence to

explore multimodal dataset generation and eventually place simulated technology at the

core for AV development and testing.

To evaluate our results, we deployed an object detection model to validate our results.

In the context of TTÜ Iseauto project, [20] developed an evaluation model to analyze

 11

the performance of three (3) object detection models - Single-Shot Detector (SSD), Fast

Region-based Convolutional Neural Network (Fast-RCNN) and You Only Look Once

v2 (YOLO v2). Expectedly, a self-generated dataset containing relevant data was used.

He mentioned that, “annotating ground truth data for object detection is relatively

expensive task”. The outcome of his work is that, although YOLO v2 seemed to have

performed best, object detection reliability required for safety-critical applications was

not attained by any of the object detectors. The author postulated the use of YOLO v3

for better performance.

 Relevant theory and Concepts

 Ground truth data

Ground truth data helps us with data that has relevant and related features and objects on

the ground. With ground truth data, we can perform evaluation of different computer

vision algorithms. Just as ground truth data collection using data from calibrated state-

of-the-art sensors in real-world environments has evolved for many years, synthetic,

simulated or imitated data has been used for several years as point of reference for the

performance of algorithms for computer vision [7]. Previous works have established that

driving simulators especially those that rely on game engines and high-fidelity computer

graphics can be used to model real world driving scenarios.

The main goal of a ground-truth generation process is that at any instant, we are able to

accurately give details of the position, orientation and kinematics of an observed object

or obstacle as the case may be within the view reference of the ego-vehicle. Ground truth

data includes images, image labels (which may be added manually of automatically by

analysis) and a defined model for object detection [21].

 12

Figure 4: Illustration of Ground Truth Data generation from an input image and the
output of from a prediction model. [22]

 Object detection

We have established earlier that one of the computer vision (CV) tasks in AVs is Object

detection (OD). This follows simple logic because, human-driving requires perception

and control and similar assignments would be transferred to computers. Being able to

accurately identify objects in images and in real-time as in the case of continuous

image/video streams such as cars, traffic and road signs, pedestrians, dogs, forests etc.,

may speed up the development of autonomous cars with high level of safety borne as

human drivers.

While it is a relatively easy task for humans to detect and identify objects present in an

image, it proves a rather a more non-trivial activity for computers. There is a massive

biological computing power that the visual faculty of humans offers, making it fast and

accurate and can perform complex tasks like identifying multiple objects and even spot

obstacles with little consciousness. Owing to the availability of massive amount of data,

more refined machine vision algorithms and GPUs with faster computing speed today,

we are now able to train devices to detect and classify different objects from images with

higher accuracies.

In the past, 2D methods of object detection were popular. These approaches involve

classifying objects based on some feature extract paradigm to predict the probabilities of

an object in an image. The correctness of these systems is poor because 2D image signals

are sensitive to altering imaging conditions such as brightness, darkness etc. 3D

information is more consistent because it holds shadow, as a consequence, more detailed

 13

results are obtained. Figure 5 shows an example of such a model, where a model is trained

on a dataset of closely cropped images of a car and the model predicts the probability of

an image being a car [22].

Figure 5: Illustration of Convolution network for object detection4

YOLO (latest stable version YOLO v3 and with new release YOLO v4) is one of the

fastest object detection models. It uses the Darknet-53 (i.e. 53 (3 X 3) and (1 X 1)

convolutional layers) feature extractor. Following from the 19 layered darknet extractor

in v1, darknet-53 with an extended network of 53, draws inspiration from the ResNet

idea of skipping connections within the convolution network without gradient

diminishment as the propagation to deeper layers ensue. Prediction of bounding boxes

is done in at 3 different scales based on the concept of feature pyramid networks.

4 https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

 14

Table 2: Darknet-53 [23]

Object detection is not limited to 2D methods on images alone. We now also have 3D

object detection models on images and methods that leverage LiDAR (Light Detection

and Ranging) point cloud information. Although, Lidar produces data in the form of

point cloud, it generally gives higher accuracy than camera-based approaches. It is a

faster, effective and highly accurate way of object detection and creates high-resolution.

Examples of 3D object detection methods are: PerspectiveNet, HGNet (Geo only),

SVGA-Net, IPOD, PV-RCNN, 3D-MPA, CenterPoint, ImVoteNet etc.

 Object detection metrics

Performance measurement is key in many tasks in computer vision. When you build an

object detector, you concern yourself about how well your model has performed. And

sure, while your model can identify objects within an image, there’s a need to be able to

quantify the performance. The objective of an object detection assignment is to;

(i) Spot if or not an object is present and determine the class of that object in an

image

(ii) Estimate the coordinates of bounding boxes placed around the objects within

images.

 15

When we use bounding boxes in images, these two outcomes are used for further

evaluation of performance. We use the concept of Intersection over Union (IoU) which

is a computation of the ratio of intersection and union of ground truth he bounding box

and the prediction bounding box.

For instance, assuming the box with red boundary is the ground truth and the other,

prediction, an IoU of ‘1’ will mean that both boxes coincide perfectly. We set a suitable

value for the IoU threshold to determine if the OD is valid or not. [24]

Based on this threshold, we can classify object detection into 2 categories and an

additional 2 that relate to undetected objects:

• True Positive (TP) – IoU ≥ threshold or correctly classified

• False Positive (FP) - IoU < threshold or wrong detection

• False Negative (FN) – ground truth not detected.

• True Negative (TN) – every part Not useful in OD task

Note that the threshold can be set to any arbitrary value as there is no justification for the

value.

Based on this, it means metrics gotten with these parameters are only for one setting. As

metrics to evaluate the performance of the model, we sometimes use precision and recall.

Precision and recall are quite familiar concepts.

Recall (sensitivity) is a probabilistic measure that a test will yield true positive for objects

classify an object to its correct class and is given by the formula:

Recall (Sensitivity) =
TP

TP + FN
 ˣ 100%

 16

Precision on the other hand, measure the degree of accuracy of positively determined

classification, given by the formula:

Precision =
TP

TP + FN
 ˣ 100%

Depending on the developer of a model, there are several other metrics that can be used

to evaluate the performance of a model within a specific area of application. Examples

of these other metrics include: Average Precision (AP), Interpolated AP, AP (Area under

curve AUC), mAP (mean Average Precision), Localization Recall Precision (LRP) etc.

 17

3 METHODOLOGY

In this section, we describe briefly the architecture showing how processes flow from setting

up the systems, data collection, processing and evaluation. We also describe the tools and

techniques employed with some explanation on why they are chosen. We used a vehicular

software platform that supports autonomous driving and provides functionalities for

sensors. Our principal computer runs on the Windows 10 Enterprise operating system while

we setup a virtual machine (VM) (Oracle Virtual Box) which runs the Ubuntu Xenial (16.04

LTS). The latter is the same as for the Iseauto project to maintain consistency. On the virtual

machine, we installed and configured the ROS and Autoware environment.

 Architecture

Figure 6 shows the architecture of the proposed method. We began by setting up the

BeamNG.research video game and test run for integrity. Note that the forked version

available on the project site5 does not provide as much functionality. So we got a more

upgraded version from the development team.

Although we considered two setup arrangement for the BeamNGpy interface – one is to

have it on the local machine and then connect it directly with the video game; the other

is to set it up within the VM together with the ROS+Autoware setup using a pipeline

and then another developing another interface to communicate with environment located

on the local computer, the former was used because of the challenges faced in trying to

work with the latter.

Once this setup is established, we can then extract relevant data for the purpose of our

work. Geometric resources in the gaming platform are communicated to the Graphics

Processing Unit (GPU) [7]. More specifically, we will use LiDAR and camera together

with the vehicle agent to scan street scenes. Simulated data provides for pixel, photo-

realistic and annotated data. Pixel-level annotations provide more accurate details about

ground truth objects. The color images can serve as training dataset while annotated

images as validation dataset. Later, we validate Yolo v3 with color images obtained

from the simulator to see how well the model performs.

5 https://projects.beamng.com/projects/research/repository

https://projects.beamng.com/projects/research/repository

 18

Figure 6: Architecture

 Technical platform and tools

 BeamNG.reseacrh

BeamNG.research [25] is BeamNG GmbH’s non-commercial, versatile and open source

platform for academic studies and research projects in development related to vehicles.

Its versatility in automotive industry is hinged on the several features it has - state-of-

the-art soft body physics, collision detection, interoperability with other standards, image

annotation, simulation, aerodynamics and hydrodynamics, sensor inclusiveness and

autonomous vehicle testing.

 19

Figure 7: BeamNG environment

Beamng.research and beamng are used interchangeably throughout this thesis. The

beamng simulator provides good physics support for crash and gaming activities. It also

avails some of the sensors. As of the time of working on this project, there was already

availability of LiDAR and camera sensors (two which were used in this thesis) although

not with sensor fusion capabilities. Other sensors, like GPS and Radar are a work in

progress.

Sensors

• Forces/Accelerations in high resolution on 2k points in the car

• LiDAR laser scanner currently equipped to capture 2.2million points at a rate of 30

FPS

• GPS positioning - WIP

• Ultrasound / Distance - WIP

• Radar - WIP

• Multiple cameras - WIP

• Sensor setup changeability and data re-extraction (Sensor fusion) – WIP

 20

Requirements

Table 3: BeamNG Requirements6

Recommended Minimum

Normal setting at 1080p Lowest setting at 720p

 OS: Windows 10 64-Bit

 CPU: AMD Ryzen 7 1700 3.0Ghz /

Intel Core i7-6700 3.4Ghz (or better)

 RAM: 16 GB RAM

 GPU: AMD R9 290 / NVidia GeForce

GTX 970

 DirectX: Version 11

 Storage: 20 GB available space

 OS: Windows 7 Service Pack 1

 CPU: AMD FX 6300 3.5Ghz /

Intel Core i3-6300 3.8Ghz

 RAM: 8 GB RAM

 GPU: Radeon HD 7750 / NVidia

GeForce GTX 550 Ti

 DirectX: Version 11

 Storage: 15 GB available space

The camera sensor provides various types of image data depending on the perspective

of the user. It can provide the following types of data:

• Colour images that can be converted to different formats within the MIME standard

e.g. PNG, JPEG, BMP, GIFF etc.

• Pixel-wise depth

• Pixel-wise object annotation

A single camera sensor can be configured to provide any or all of these data at once,

ensuring they all align to the same perspective. The camera sensor is set up with a fixed

offset position and directional vector to face relative to the vehicle. This means as the

vehicle moves and rotates, the camera is moved and rotated accordingly. Apart from the

position and orientation, the image can further be customized with the FoV angle the

camera should have, the resolution of the image(s) it outputs, and the near/far plane at

which objects get clipped from view. The type of camera sensor data to provide can be

indicated using boolean bit for the corresponding type. By default, they are all set to

“False” and one needs to specify what type when polling the sensors while driving.

6 https://wiki.beamng.com/Requirements

https://wiki.beamng.com/Requirements

 21

Parameters: pos (tuple): (x,y,z) this tuple represents the camera's position offset relative

to the vehicle it's attached to. direction (tuple): (x,y,z) tuple expressing the direction

vector the camera is facing. fov (float): The Field of View of the camera. resolution

(tuple): (width, height) tuple encoding the camera's output resolution. near far (tuple):

tuple of the distance beyond which and after which geometry gets truncated. colour,

depth and annotation are all (bool) flags and determine whether to output colour, depth

or annotation information respectively.

The Lidar sensor provides 3D point clouds representing the environment as detected by

an emitting laser pulse from the simulator vehicle. The lidar parameters provided in this

simulator are similar to those of the Velodyne HDL-64E lidar7. The position, range, and

refresh rate of this sensor can be modified as deemed suitable.

 BeamNGPy

Although beamng.research offers a GUI-based method for starting and configuring the

simulator, it still offers an interface to programmatically interact with the simulator. The

forked video game uses a Python interface called BeamNGpy, which is an official library

that allows make remote controlling of the simulation including the vehicles possible.

Vehicles (known as agents) and environment may be configured with different sensors

that facilitate simulated sensor data such as a feed from camera, that provide options for

pixel-perfect semantic annotation and depth values or a simulated LiDAR sensor [26].

Table 4: Requirements for BeamNGpy

Module Version

Click 7.0

Jinja2 2.10.1

msgpack-python 0.5.6

numpy 1.16.3

Pillow 6.0.0

PyOpenGL 3.1.0

scipy 1.2.1

7 https://velodynelidar.com/products/hdl-64e/

https://velodynelidar.com/products/hdl-64e/

 22

The package can be added to the python libraries existing in the computer by simply

installing the beamngpy package. After installation, the package can be simply imported

into the python code. This interface provides a pipeline for extracting data from sensors

– images, speed, direction, point cloud etc. and also a means for imputing loopback

closure for steering and control during simulation in real time.

Figure 8: BeamNGpy usage8

The game uses two virtual machines, one for the game engine and the other for each

vehicle (regarded as an agent each having its own operating system) in the simulator and

is written in the open-source software, Lua.

“Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports

procedural programming, object-oriented programming, functional programming,

data-driven programming, and data description.”9

We can change the behavior of the game by making a number of key presses with the

GUI and subtle alterations in the code using the python interface, making it possible to

run iterations during development faster [25]. We tried this all through our work

adjusting behavioral parameters until suitable. One can better appreciate the Lua

8 https://github.com/BeamNG/BeamNGpy
9 http://www.lua.org/about.html

Python interface Simulator

https://github.com/BeamNG/BeamNGpy
http://www.lua.org/about.html

 23

programming language as used for the development of beamng.research going through

the beamng.drive documentation10.

 ROS

The Robot Operating System (ROS) [27, 28] is a multi-platform framework which

provides a rich variety of packages, nodes, libraries and tools used for build robot

software and applications with the aim of simplifying the tasks related to build robust

and complex robot behaviors. This is also a good framework that support collaboration

of people working on the same project.

ROS packages created, reside in a workspace directory. The command for creating a

ROS package is:

catkin_create_pkg package-name

Package name in our case, is pointcloud. The building blocks of implementing a ROS

program includes nodes, messages, topics, and services. All of these resources are

collectively known as graph resources and individually, as graph resource name [29].

The main mechanism for interacting with the ROS system is with nodes. They are the

process objects that are able to perform computation.

From the programmer’s / user’s prospective, “ROS Computation Graph” is kind of

“front-end”. It is a peer-to-peer network of “nodes” and “services” processing the data

and exchanging it in the form of “messages”. A ROS node is an executable software

module that perform computation. Nodes help to maintain the modularity of ROS in the

sense that each node is, ideally, designed to perform single task. Nodes in ROS

communicate via passing “messages”. Each message has a type that is specified by the

type of data it carries. So simply put, a message is a data structure consisting of type

fields of integer, float and Boolean, etc.

Each message is shared among the nodes under a specific “topic”. The producer node

of the message “publishes” the topic and the user of that message “subscribes” to that

topic. Although the data sharing among the nodes via the publishers and subscribers

provide a flexible mode of communication, it is not very suitable for request / reply

10 https://documentation.beamng.com/index.html

https://documentation.beamng.com/index.html

 24

mode of communication. Because it is one-way data communication. This deficiency is

overcome by “services”. A service is a request/reply mode of communication. A

service node has both the “request message” and “reply message” structures. A client

which needs to “use” a service sends a request message and the waits for the “response

message” from the provider of the service [28].

Figure 9: ROS basic concept

Our choice for the ROS framework is because the framework is mature and large

community base. It is widely used across board from academics, to research and to

robotic development projects. ROS also provides other packages that facilitate

autonomous systems development e.g. RViz for 2D and 3D visualization e.g. images

and laser scan data and ROSBAG for summarizing topic messages into a bag that can be

replayed within a ROS computation graph.

 Autoware

Autoware is an open source research and development platform used for autonomous

driving technology by researchers, enthusiasts, developers, and students. It is built upon

ROS 1 and has evolved over the years to support future projects. In the Autoware

portfolio are, Autoware.AI, Autoware.IO and Autoware.Auto which is based on ROS 2

and has a redesigned architecture [30]. It offers a ROSBAG enabled simulation

environment for testing without using real time autonomous vehicles. This is useful for

 25

our thesis because both the driving setup and AV development stack reside in different

computers.

In a ROS-based computer, autoware can provide functions for object detection,

localization, path following, ego vehicle motion controls and 3D mapping. It also

provides interfaces for controlling autoware (Runtime manager) and for 3D visualization

of functions (RViz).

 System requirements

Table 5 shows different system requirements for the tools we used in this thesis. Note

that some of the tools normally have frequent updates which may have happened

during the course of our thesis.

Table 5: System requirements

Machine/Tool Specification

Host PC Memory: 256GB SSD

Processor: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz

1.80GHz

Installed RAM: 16.0 GB (15.9 GB usable)

Type: 64-bit Operating System, x64-based processor

DirectX: 12

Virtual Machine (VM) VirtualBox Graphical User Interface

Version 6.1.10 r138449 (Qt5.6.2)

Installed OS: Ubuntu 16.04 (Xenial)

Base Memory: 8 GB

Processors: 4

Acceleration: VT-x/AMD-V, Nested Pegging, KVM

Paravirtualization

Storage: 48.36 GB

ROS Distribution: kinetic

Version: 1.12.14

Autoware V 1.8/V1.12

Python Python 3.8.3 64-bit

 26

 Summary

In this chapter, we highlighted the different tools and the setup of the study. We

demonstrated the system requirements to ensure proper functioning of setup. At the

same time, we identified some key installation processes. In the next chapter, we look

at how we collected experimental data and the processes involved in data manipulation.

 27

4 EXPERIMENT

In this chapter, we demonstrate how we collected our data, the tools involved and how we

ordered our folder. We also attempted to identify key actions that aided our data collection

and data processing.

As we have identified in Chapter 3 earlier, the setup involved the use of two operating

systems (Windows 10 Enter on the host PC where the simulator is run and Linux Ubuntu

16.04 on the VM where our robot operating system and the autoware are housed). Although,

with the host being slightly below the specified system requirements, we were able to use it

to achieve the minimum results from data generation to object detection. A video

demonstration of the latter can be found in the link in the footnote section11. The whole

process is described in fuller details in the paragraphs below.

A python code that leverages the beamNGpy interface was used to interact with the game

as mentioned previously. Code can be found in link in the Appendix item 1. The vehicular

software platform offers a number of scenarios that correspond to typical settlement types

in the real world. E.g. east_coast_usa, port, island, canyons, west_coast_usa etc.

We opted for the west_coast_usa scenario because it is the default used by the software

providers and on inspection, appears to be quite sophisticated. The west_coast_usa map

offers a good variety of environmental scenery similar to where the ISEAUTO vehicle is

expected to operate – a metropolitan urban settlement with many elements that highlight

modern realities.

Figure 10: Minimap of west_coast_usa scenario

11 https://shorturl.at/desS2

https://shorturl.at/desS2

 28

We selected 2 sensors that will be attached to the ego vehicle in the game for getting data

from the game – a camera and a Lidar. We have presented in Table 6, some parameters

specified for each sensor used in the experiment.

Table 6: Specification of sensor parameters

Parameters Camera Lidar
*Position (tuple) [1,0,1.6] -
Direction (tuple) [0,1,0] [0,1,0]
*Offset (tuple)/(m) - [0,0,1.6]
fov (°) 60 -
Resolution (tuple)/pixel [1392, 512] -
Near_far (tuple)/m [0.01, 120] -
Vres - 64
Vangle (°) - 26.9
rps (real number) - 2200000
fps (hz)/refresh rate - 20
Angle (°) - 360
max_dist (m) - 120

* parameters are with respect to the position of the vehicle

 Guide to some parameters used in the table 5:

• offset - refers to coordinates specifying the position of the Lidar sensor relative to the

ego vehicle’s.

• fov – (field of view) refers to the range of view in the observable world around the

sensor.

• Vres (vertical resolution) indicates the number of vertical lines sampled by the Lidar

• Rps (rays per second) is similar to pulse per second for common lidar sensors

available.

• Fps (frames per second) – how many frames the sensor can shoot in one second, also

called the refresh rate

• Max_dist – (maximum distance) beyond which any ray of the sensor that falls within

with not be displayed in the sample data.

We had the liberty to choose from a number of spawn points as shown in the Figure 11 below.

Also, we modified the scenario parameters in the game to allow for scanning through every area

of the map automatically. This is done by setting the ai_set_mode() method which is an

inbuilt simulator's AI for the vehicle, to span.

 29

Figure 11: Different spawn points available in the west_coast_usa scenario. 1 L-R: Chinatown,
Dirttrack; 2 L-R Dockyard, Dragstrp; 3 L-R Highway, Industrial; 4 L-R Racetrack,
Redwood_forest

 30

Once the beamng simulator is started, we can see the different communication messages on

the game console window. Furthermore, there is a logging library that enables functions and

variables be seen on the python compiler used in running the simulator program.

 Ground truth data from BeamNG.research

The path to the beamng simulator executable is set in the system variable. The

BeamNGpy instance runs the simulator from the given path and communicates over the

localhost server on port 64526 (localhost:64256).

Using the find_static_objects() method provided in the documentation, we

were able to determine that there are at least, 1567 static objects (members of the

TSStatic class) with their positions in the west_coast_usa scenario. In this thesis, we

focus only on stationary objects which the method provides for. Hence, there are no

instances of pedestrian and/or moving cars. The reason this is so, static objects within

the world readily provide ground truth information as they would not change no matter

the number of iterations we make in the simulator. We would consider pedestrians and

vehicles in future works. With the aforementioned, we can obtain ground truth

information about objects along the path of the ego vehicle.

As we drive around the road, we adopt a file system structure similar to that used in the

KITTI dataset for both the images and point cloud data gathered from our simulations.

We use the KITTI point cloud dataset (KITTI-PC) as a point of reference. The KITTI-

PC consists of 7481 and 7518 training and testing images respectively [31]. This dataset

provides benchmarks evaluation for 2D object detection and orientation estimation, 3D

object detection, and bird's eye view analyses.

We polled all the sensors in the game with the poll_sensors() method on every

iteration to capture data from each sensor attached to the vehicle in the shared memory.

We captured a total of 200 frames. The idea is to ensure that we get as many varied

scenes as possible, to diversify the difficulty level for the object detection. Each frame

instance, collects images from camera and point cloud data from the LIDAR. We also

stored information about the vehicle position at the instance frames are captured,

timestamps and sensor data.

 31

Figure 12: Snapshot of file folder structure used in the project

 Images and LIDAR points

As mentioned above, our ego vehicle is equipped with camera and LiDAR sensor. The

camera is the visual sensor providing the of images of the environment, from which we

convert to RGB format. The LiDAR provides the depth data in the form of point clouds.

In our ROS package pointcloud, we gather all the runtime processes in the launch file

called launcher.launch. This helped us to run multiple nodes at the same time like talker

(publisher node), listener (subscriber node), rviz and rqt_graph nodes.

 Images

The images are gotten with the invocation of the camera sensor object in the simulator.

The raw images are converted to RGB color format and stored as PNG files (we

attempted to store in the irreversible lossy compression format JPEG, in a bid to aid data

storage, handling and transmission bearing in mind trade-off for image quality but

encountered some challenges with the output being somewhat distorted). PNG graphics

support lossless compression of data.

We converted the same raw images to their annotated format and stored them likewise

as PNG files. The annotated images represent ground truth data about object boundaries

within image frames. In the ROS program, the publisher node (talker) images are being

 32

published under the /image_view topic. Images published on this node are first

converted to

 Point cloud

The Lidar points were collected in the form of xyz coordinates into an array variable.

This was then appended in a file as comma separated values (CSV). This is a practical

way of storing such data as csv files can be converted to other point cloud formats

including .xyz and .bin. In the publisher node in the ROS program, the point cloud data

is being published under the topic /pointcloud.

 Visualization of data in RViz

In our project, we used the in-built ROS visualization package called RViz to visualize

both the images produced by the camera sensors and the point cloud data generated by

the LiDAR. RViz comes as one of the packages accompanying ROS installed in the

Ubuntu OS on our virtual machine. It is a 3D visualization tool for ROS. RViz lets us

see what our robot is seeing, thinking or doing. Rviz understands sensors and state

information like Laser Scan, cameras, point clouds and coordinate frames. Rviz is

extensively used for debugging robot applications.

A sample image captured is provided in Figure 13 below. The corresponding point

cloud data of the image frame is also shown in Figure 14.

Figure 13: Sample image captured visualized in Rviz

 33

Figure 14: Sample point cloud data visualized in RViz

 ROSBAG conversion

To summarise the content of our package and ensure that we can easily reproduce the

collected data, we recorded the messages from the ROS topics /image_view for

images and /pointcloud for point cloud into a rosbag, This is used for further

processing while testing our object detection model in chapter 5. This was done by

running the following command in a the ~pointcloud/bagfiles folder within the

pointcloud ROS package.

rosbag record –b 0 -a

The ‘-b’ flag sets the buffer size (0 as infinite) and ‘–a’ (all) flag to record all incoming

topics. The rosbag file was played back and messages from both the /image_view

and /pointcloud topics were read to test object detection algorithms below.

 34

 Summary

In this chapter, we demonstrated how we collected our data, the tools involved, the data

formats and how we ordered our folder. We also attempted to identify key commands

that aided our data collection and processing such that same can be reproduced. In the

next chapter, we are going to show how we validated the object detection model for our

images and some performance metrics. Table below summarizes the outputs of our

method and the purpose of each.

Table 7: Summary of outputs and their purpose

Source Output Purpose

Camera color image (.png) To reproduce camera stream on
ROS/Autoware

Camera Pixel-wise annotated
image (.png)

validation object detection on
ROS/Autoware

Lidar Pointcloud (.csv)
Reproduce pointcloud data in
ROS/Autoware and for 3D visualization in
RViz

Time
(Python method) Timestamps

For us to inspect the time gap between
successive frames of data collection from
all the sensors.

Both image and
pointcloud data Bag file (.bag) Full recording of the data streams for

playback in ROS/Autoware

Darknet (Yolo
v3)

Bounding box images
(.jpg)

For us to compare the bounded objects and
the annotated images

 35

5 VALIDATION

To validate our prototype of the proposed method, we ensured that we are able to read data

by writing commands through the Python interface provided by the game engine and that

we are able to read collected via ROS (publish and subscribe) nodes. We were able to get

ground truth annotated data has been provided by the converted annotated we did not have

to manually mark the boundaries of target objects in the image.

 Validating with Object Detection

To test our method against image detection baseline, we examined image-based 2D

object detection algorithm, Yolo v3 (available in ros darknet package)12 on the images

being published. We have opted for Yolo v3 detector based on the outcome and

recommendation of the work from [20] on the ISEAUTO project and also the popularity

of the detector as a fast and more accurate object detection algorithm. We installed the

ROS darknet [32] folder into our workspace and built the project. We ran the yolo launch

file from inside the launch folder to read images from the /image_view topic by

modifying the yolo_v3 launch file suitably. We then played our previously recorded bag

file to publish saved image files. The darknet package offers a GUI for viewing the

outcomes of object detection. We saw that the outputs matched the input images without

any errors.

Annotation of objects within images helps us to accurately identify objects using a self-

driving car software. Examples of objects of concern are pedestrians, traffic lights, stop

signs, cars, animals, fire hydrants etc. This is the underlying concept for computer vision

technologies [33]. From our beamng simulation, we were able to generate pixel-wise

annotated images that provided ground truth information without the need for the usage

of bounding boxes that require much effort of tagging an image with a class. In Table

8, we identified some of the annotation objects. A qualitative comparison of the

annotated objects and the output of the Yolo v3 object shows that this proposed method

is suitable for generating ground truth data.

A sample of the results obtained is shown in Table 8 below.

12 https://github.com/leggedrobotics/darknet_ros

https://github.com/leggedrobotics/darknet_ros

 36

Table 8: Table showing captured color image, annotated image of ground truth and object
detection output.

 Sample 1 Sample 2

Color image

from

simulator

Annotated

image

obtained

from

simulator

Yolo v3

detection

output with

bounding

boxes

From qualitative check, we observed some slight shift in the frames between the color

images and annotated images. This was due to the split second difference in the time when

the data get stored in the computer. Although, the OD model was able to identify some

objects that coincide with the ground truth, not every object was identified in processed

frames.

 37

 Performance Measures (Precision and Recall)

Recall the formulas for precision and recall highlighted in section 2.2.3., we calculated

our recall and precision values based on the total number of images that were processed

by Yolo v3. These two measures are important because, recall helps us determine the

completeness of our results and precision tells us about the relevance of our results.

Assumptions

• IoU threshold is relatively small and any observable correctly determined object is

considered TP.

• Ground truth objects are those objects within all images that are also available in

object classes in the Yolo v3 Common Objects in Context (COCO) names e.g. traffic

light, stop sign, fire hydrant and potted plant

Since our ground truth is provided as pixel-wise annotations, it means detections that

closely conform to ground truth are treated as TP, and detections that do not conform to

observable ground truth (wrong classifications) are treated as FP. We also consider

bounding boxes with no observable object as FP. Similarly, FN relate to objects within

the processed images that should have been identified but were not.

The darknet_ros node topic /darknet_ros/bounding_boxes, publishes

messages about the performance of the OD like fps and confidence score. By writing a

subscriber node program to read messages from the topic, we were able to collect those

pieces of information. Out of 200 read frames, on an NVIDIA GeForce RTX 2070, with

93% GPU load and an average speed of 26.74 fps, the Yolo v3 algorithm processed 41

images. The two measures values were calculated based on the identifiable objects in

the images processed. We are able to do this manually because the number of frames

involved are minimal.

Table 9: TP, TN, FP, FN Derived Measures

Definition Total Number Recall Precision

TP 66

0.6408 0.7952
FP 37

FN 17

TN NA

 38

 Summary

In this chapter, we validated Yolo v3 by our method. We determined the precision and

recall values of the object detection model as 0.7952 and 0.6408 respectively. These

results show that our method is suitable for the generation of ground truth data.

 39

6 FUTURE WORK

In our work, we used a monolithic weather condition all through. We did not explore

multiple environmental conditions in which may further strengthen the adequacy of the use

of purely synthetic ground truth data. Thankfully, the simulator offers features to modify

environment conditions like time of day, weather or even the spawn location. Further work

can be done in this regard, to determine what impact they would have on the outcome of

object detection algorithm(s) for autonomous driving. More work should be done to see how

synthesized image parameters play a part in the usefulness of the data.

Owing to limitations due time constraint, and the platform documentation, which made

referencing a bit challenging some aspects of the study can be further improved. For

instance, while we were able to get location of objects within map, we are unable to

determine what type of objects are located in those positions. This study also lacked the

computational requirement needed to get a smooth continuous stream of data from the

simulation. This would help us to process in our ROS system, data at a more accurate frame

rate thereby giving us a stream that can reflect real life driving. Also, since our ROS program

was written in Python, the program can be re-written in C language to provide a robust and

faster system.

As we have been able to establish the use of synthetic data from this new software platform,

we can do a comparative study of different simulators and game engines available (e.g.

LGSVL simulator13,14 (2020) available in Autoware, CARLA15 (2017) etc.) against some

set benchmarks in the future. In this study, our focus was ground truth data for object

detection and although this study was validated with object detection, we can adopt the

prototype method introduced to explore more complex autonomous vehicle tasks like

localization, path planning and even open area driving. The platform already has in built

functions for controls and waypoints following which can be explored in future studies.

In principle, we can extend the validation done, by running lidar based object detection.

Although it is more challenging task to deal with, they have proven to provide more accurate

result. We can also employ strategies for fusion of vision and point cloud data as

demonstrated in [34]. Furthermore, we validation using a bounding box annotation model;

13 https://content.lgsvlsimulator.com/
14 https://github.com/lgsvl/simulator
15 https://carla.org/

https://content.lgsvlsimulator.com/
https://github.com/lgsvl/simulator
https://carla.org/

 40

in future work, we can explore algorithms (MASK R-CNN and PANOPTIC FPN) that

identify objects at pixel-level for better comparison with the annotated ground truth. As a

result, we can improve iterations during development of autonomous vehicle by reducing

human-effort in setting up systems for and generation of ground truth data.

 41

7 CONCLUSION

The aim for this thesis is to generate ground truth from a simulator for object detection

algorithm in autonomous vehicles. This was done by exploring some commonly used

sensors in-built in the simulator. Furthermore, the implementation needs to be easy to

produce and be improvable. We did check out the camera and LiDAR agents within the

simulator and exploited the access we have to the game through the BeamNGPy python

interface.

We created a prototype method that gets data from beamng.research by controlling and

accessing the game via beamngpy. We generated 200 colored images and annotated images

in PNG format from the camera sensor and also generated 200 captures of pointcloud data.

We went further to visualize the images in RViz by converting them to OpenCV “bgr8”

format. For the point cloud, we generated 200 comma separated value files corresponding

to each capture of point cloud data. In a similar way, we transformed this point cloud data

in our ROS program to Pointcloud2 type for visualization in Rviz.

Data streams were recorded in a rosbag file for further simulations and validation tasks. We

used different metrics to specify system and detection performance. Our work shows that

this method is feasible for creating ground truth data. Although, we faced some challenges

with working with the simulator, with further exploration and support within the developer

community we will be able to achieve better and more practical results. The following

limitations were identified with use of the proposed method:

• The simulation has wavery driving compared to real-life which means that real time

driving may not be of desired quality.

• The game is currently only supported on the Microsoft Windows. Other Operating

System and Platforms, Virtual Machines, Emulators and compatibility layers are not

supported.6

• Multiple agents are not configurable at the moment.

• Documentation for this forked version does not provide enough detailed information.

• Ground truth bounding boxes of frames in the surrounding of the ego vehicle are not yet

included in the camera sensor functionalities.

In conclusion, we demonstrated a prototype method to achieve ground truth data using the

beamng.research simulator by having sample data generated and showing the plausibility

 42

with visualizations in the ROS environment using different ROS functionalities. We also

validated the Yolo v3 object detection model with our data and evaluated our results. With

the aforementioned, more studies need to be carried out to explore the use of simulated

environments data for the development of autonomous vehicles.

There are well founded prospects in the field of autonomous vehicles, ranging from sensing,

perception, decision making, sensor fusion, path planning to control and steering. We have

provided in the Appendix section, some very recent development in the autonomous and

computer vision space that may be of interest to the reader.

 43

References

[1] M. Jaafarnia and A. Bass, "Tracing the Evolution of Automobile design: Factors influencing the

development of aesthetics in automobiles from 1885 to the present.," in Proceedings of the

IMProVe International conference on Innovative Methods in Product Design, Venice, Italy,

2011.

[2] Dreamstime, "Automobile history: how the shape has evolved in one century," n.d. n.d. n.d..

[Online]. Available: https://www.dreamstime.com/royalty-free-stock-photo-automobile-history-

how-shape-has evolved-onecentury-image29995115. [Accessed May 2019].

[3] "The Self-Driving Car Timeline – Predictions from the Top 11 Global Automakers. Retrieved in

May 2019 from," [Online]. Available: https://emerj.com/aiadoption-timelines/self-driving-car-

timeline-themselves-top-11-automakers/. [Accessed May 2019].

[4] T. Litman, Autonomous vehicle implementation predictions, Victoria Transport Policy Institute,

2017.

[5] M. F. Kragh, "Lidar-Based Obstacle Detection and Recognition for Autonomous Agricultural

Vehicles," AU Library Scholarly Publishing Services, Aarhus, 2018.

[6] S. R. Richter, V. Vineet, S. Roth and V. Koltun, "Playing for Data: Ground Truth from

Computer Games," in European Conference on Computer Vision (ECCV), Amsterdam, the

Netherlands, 2016.

[7] Michigan Tech Research Institute, "Michigan Tech Research Institute (2019). Ground-Truth

Data Collection for Autonomous Vehicle Development," 2019. [Online]. Available:

https://mtri.org/multisensorevaluation.html . [Accessed 20 October 2019].

[8] P. Morse, "Use Cases for Automotive Driving Simulators," [Online]. Available:

https://www.ansiblemotion.com/automotive-driver-in-the-loop-simulation-articles/use-cases-for-

automotive-driving-simulators. [Accessed 16 October 2019].

[9] Taltech Autonomous Vehicles Lab, "Self-driving shuttle – ISEAUTO," [Online]. Available:

https://autolab.taltech.ee/portfolio/iseauto/. [Accessed 12 July 2020].

 44

[10] [Online]. Available: https://iseauto.taltech.ee/en/tehniline/. [Accessed 12 July 2020].

[11] S. I. Nikolenko, "Synthetic Data for Deep Learning," ArXiv, vol. abs/1909.11512, 2019.

[12] G. Liu, "Real-Time Object Detection for Autonomous Driving Based On Deep Learning,"

Master's Thesis. Texas A&M University-Corpus Christi, Corpus Christi, 2017.

[13] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez and V. Koltun, "CARLA: An Open Urban

Driving Simulator," in Conference on Robot Learning (CoRL), 2017.

[14] GPS WORLD, "Accurate ground truth for autonomous vehicles," North Coast Media and

NovAtel, [Online]. Available: https://www.gpsworld.com/sponsoredcontent/accurate-ground-

truth-for-autonomous-vehicles/. [Accessed 16 October 2019].

[15] A. Geiger, P. Lenz, C. Stiller and R. Urstasun, "Vision meets robotics: The KITTI dataset," The

International Journal of Robotics Research, vol. 32, no. 11, pp. 1231-1237, 23 August 2013.

[16] H. Ceasar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan

and O. Beijbom, "nuScenes: A Multimodal Dataset for Autonomous Driving," in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[17] D. Atsmon, "Autonomous-Driving Simulation Tackles Kangaroo Issue," Informatech, 03 April

2018. [Online]. Available: https://www.wardsauto.com/technology/autonomous-driving-

simulation-tackles-kangaroo-issue. [Accessed December 2019].

[18] CVEDIA, "CVEDIA. SYNTHETIC DATA FOR AUTONOMOUS VEHICLES. Simulated

environments, synthetic datasets, and machine learning solutions from CVEDIA.," CVEDIA,

[Online]. Available: https://www.cvedia.com/industry/autonomous-vehicle/. [Accessed 2019

October 17].

[19] W. Li, C. Pan, R. Zhang, J. Ren, Y. Ma, J. Fang, F. Yan, Q. Geng, X. Huang, H. Gong, W. Xu,

G. Wang, D. Manocha and R. Yang, "AADS: Augmented Autonomous Driving Simulation

using Data-driven Algorithms," Science Robotics, vol. 4, no. 28, 27 March 2019.

[20] A. Vainola, "Estimating object detection reliability for TTU "Iseauto" self-driving car," Master's

thesis. Tallinn University of Technology, Tallinn, Estonia, 2018.

 45

[21] S. Krig, "Ground Truth Data, Content, Metrics, and Analysis," in Computer Vision Metrics,

Apress Berkeley, CA, 2014, pp. 283 - 312.

[22] S. Gupta, "Introduction to Object Detection," 7 August 2018. [Online]. Available:

https://www.hackerearth.com/blog/developers/introduction-to-object-detection/. [Accessed 11

July 2020].

[23] E. Y. Li, "Dive Really Deep into YOLO v3: A Beginner’s Guide," Medium.com, 31 December

2019. [Online]. Available: https://towardsdatascience.com/dive-really-deep-into-yolo-v3-a-

beginners-guide-9e3d2666280e. [Accessed 02 August 2020].

[24] R. Khandelwal, "Evaluating performance of an object detection model," Medium.com, 06

January 2020. [Online]. Available: https://towardsdatascience.com/evaluating-performance-of-

an-object-detection-model-137a349c517b. [Accessed 04 August 2020].

[25] BeamNG, "BeamNG.Research," BeamNG GmbH, Bremen, Germany, 2018. [Online].

Available: URL: https://www.beamng.gmbh/research. [Accessed 16 October 2019].

[26] Palculator, "BeamNG / BeamNGpy," 03 June 2020. [Online]. Available:

https://github.com/BeamNG/BeamNGpy/blob/master/README.md. [Accessed 19 July 2020].

[27] Open Source Robotics Foundation, "About ROS," 2019. [Online]. Available:

https://www.ros.org/about-ros/. [Accessed 16 October 2019].

[28] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler and A. Ng,

ROS: an open-source Robot Operating System, vol. 3, ICRA Workshop on Open-Source

Software, 2009, p. 5.

[29] J. M. O’Kane, A Gentle Introduction to ROS, 2.1.6 ed., Columbia, South Carolina:

Independently Published, 2018.

[30] J. Becker, "Announcing the Autoware Foundation — Open Source for Autonomous Driving," 9

December 2018. [Online]. Available: https://medium.com/@jan_26255/announcing-the-

autoware-foundation-open-source-for-autonomous-driving-f340e9960eda. [Accessed May

2019].

 46

[31] G. Andreas, P. Lenz and R. Urtasun, "Are we ready for Autonomous Driving? The KITTI Vision

Benchmark Suite," in IEEE Conference on Computer Vision and Pattern Recognition,

Providence, Rhode Island, 2012.

[32] M. Bjelonic, YOLO ROS: Real-Time Object Detection for ROS, 2018.

[33] V. Petrosyan, "Why pixel precision is the future of the Image Annotation," Medium.com.

[34] H. Wang, X. Lou, Y. Cai, Y. Li and L. Chen, "Real-Time Vehicle Detection Algorithm Based on

Vision and Lidar Point Cloud Fusion," Journal of Sensors, vol. 2019, pp. 1 - 9, 2019.

[35] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda and T. Hamada, "An Open Approach

to Autonomous Vehicles in IEEE Micro," IEEE Micro, vol. 35, no. 6, pp. 60-68, 29 December

2015.

[36] Microsoft, "Visual Studio Code FAQ," Microsoft, 09 July 2020. [Online]. Available:

https://code.visualstudio.com/docs/supporting/faq. [Accessed 16 July 2020].

[37] H. Hajri, E. Doucet, M. Revilloud, L. Halit, B. Lusetti and M.-C. Rahal, "Automatic generation

of ground truth for the evaluation of obstacle detection and tracking techniques," arXiv preprint

arXiv:1807.05722, 2018.

[38] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero and Y. Bengio, "The One Hundred Layers

Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation," in IEEE Computer

Vision and Pattern Recognition Workshops, 2017.

[39] J. Hui, "Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3," [Online].

Available: https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-

28b1b93e2088. [Accessed 03 August 2020].

 47

Appendix

1. Link to repository containing code used in beamng python interface for interacting

with the simulator, ros-based code for reading collected images and LIDAR point

cloud data for visualization

https://gitlab.cs.ttu.ee/juadig/beamngresearch

or on https://bitbucket.org/ask4jubad/beamngresearch/

Access to repository granted upon request to ask4jubad@yahoo.com. The repository contains

a read me file for project description on how to use some parts of the code base. Please note

that the paths used in the code may not exist, so you would have to figure it out as it suits

appropriately for your use.

2. Useful links used during the thesis

a. BeamNGpy documentation

https://beamngpy.readthedocs.io/en/latest/api/beamngpy.html

b. BeamNGpy github repository

https://github.com/BeamNG/BeamNGpy

c. ROS Documentation

http://wiki.ros.org/Documentation

d. Autoware-AI repository

https://github.com/Autoware-AI/autoware.ai

3. Further reading and viewing

a. https://towardsdatascience.com/3d-object-detection-using-

lidar-data-for-self-driving-cars-ee0eb0e6389e

b. https://towardsdatascience.com/lidar-3d-object-detection-
methods-f34cf3227aea

c. https://www.youtube.com/watch?v=b5TZmefWNVM

https://gitlab.cs.ttu.ee/juadig/beamngresearch
https://bitbucket.org/ask4jubad/beamngresearch/
mailto:ask4jubad@yahoo.com
https://beamngpy.readthedocs.io/en/latest/api/beamngpy.html
https://github.com/BeamNG/BeamNGpy
http://wiki.ros.org/Documentation
https://github.com/Autoware-AI/autoware.ai
https://towardsdatascience.com/3d-object-detection-using-lidar-data-for-self-driving-cars-ee0eb0e6389e
https://towardsdatascience.com/3d-object-detection-using-lidar-data-for-self-driving-cars-ee0eb0e6389e
https://towardsdatascience.com/lidar-3d-object-detection-methods-f34cf3227aea
https://towardsdatascience.com/lidar-3d-object-detection-methods-f34cf3227aea
https://www.youtube.com/watch?v=b5TZmefWNVM

 48

d. https://towardsdatascience.com/yolo-v4-optimal-speed-

accuracy-for-object-detection-79896ed47b50

4. Computation graph of ROS nodes and topics

a. Without debug

 49

b. With Debug

5. Submodules currently available within the beamngpy package:

Submodules

.. automodule:: beamngpy

beamngpy.beamng module

beamngpy.beamngcommon module

beamngpy.scenario module

beamngpy.sensors module

beamngpy.test module

beamngpy.vehicle module

beamngpy.visualiser module

 50

6. NVIDIA System Information used for validation
+---+
| NVIDIA-SMI 440.100 Driver Version: 440.100 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce RTX 207... Off | 00000000:01:00.0 On | N/A |
| N/A 83C P0 79W / N/A | 2673MiB / 7982MiB | 93% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 2405 G /usr/lib/xorg/Xorg 499MiB |
| 0 2552 C ...space/devel/lib/darknet_ros/darknet_ros 1698MiB |
| 0 2582 G /usr/bin/gnome-shell 206MiB |
| 0 4142 G ...AAAAAAAAAAAACAAAAAAAAAA= --shared-files 112MiB |
| 0 13219 C /usr/lib/libreoffice/program/soffice.bin 97MiB |
| 0 15278 G ...uest-channel-token=16070837118886536314 42MiB |
| 0 31213 G /usr/bin/nvidia-settings 3MiB |
+---+

	Cover page
	Declaration
	Acknowledgement
	Table of Contents
	Abstract
	Annotatsioon
	List of Figures
	List of Tables
	List of Acronyms
	1 INTRODUCTION
	1.1 Overview
	1.2 The development of Autonomous Vehicles
	1.3 Autonomous Vehicle Architecture
	1.4 Motivation
	1.5 Thesis goal
	1.6 Thesis Outline

	2 BACKGROUND AND RELATED WORKS
	2.1 Related works
	2.2 Relevant theory and Concepts
	2.2.1 Ground truth data
	2.2.2 Object detection
	2.2.3 Object detection metrics

	3 METHODOLOGY
	3.1 Architecture
	3.2 Technical platform and tools
	3.2.1 BeamNG.reseacrh
	3.2.2 BeamNGPy
	3.2.3 ROS
	3.2.4 Autoware

	3.3 System requirements
	3.4 Summary

	4 EXPERIMENT
	4.1 Ground truth data from BeamNG.research
	4.2 Images and LIDAR points
	4.2.1 Images
	4.2.2 Point cloud

	4.3 Visualization of data in RViz
	4.4 ROSBAG conversion
	4.5 Summary

	5 VALIDATION
	5.1 Validating with Object Detection
	5.2 Performance Measures (Precision and Recall)
	5.3 Summary

	6 FUTURE WORK
	7 CONCLUSION
	References
	Appendix

