
DOCTORAL THESIS

Partial and Relational Algebraic 
Theories

Chad Mitchell Nester

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY 
TALLINN 2024



TALLINN UNIVERSITY OF TECHNOLOGY 
DOCTORAL THESIS

4/2024

Partial and Relational Algebraic 
Theories

CHAD MITCHELL  NESTER



TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

The dissertation was accepted for the defence of the degree of Doctor of Philosophy on 
5 January 2024

Supervisor:

Opponents:

Professor Paweł Sobociński,
Department of Software Science 
School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Dr Paul Levy,
University of Birmingham
Birmingham, United Kingdom

Professor Marino Miculan,
University of Udine
Udine, Italy

Defence of the thesis: 1 February 2024, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement, 
submitted for the doctoral degree at Tallinn University of Technology, has not been 
submitted for any academic degree elsewhere.

signature
Chad Nester

Copyright: Chad Nester, 2024 
ISSN 2585-6898 (publication) 
ISBN 978-9916-80-102-4 (publication) 
ISSN 2585-6901 (PDF)
ISBN 978-9916-80-103-1 (PDF)
DOI   https://doi.org/10.23658/taltech.4/2024

Nester, C. (2024). Partial and Relational Algebraic Theories [TalTech Press]. 
https://doi.org/10.23658/taltech.4/2024

Printed by Koopia Niini & Rauam 

https://digikogu.taltech.ee/et/Item/696327ea-955a-45ad-bf93-bca34084131f


TALLINNA TEHNIKAÜLIKOOL 
DOKTORITÖÖ

4/2024

Osalised ja relatsioonilised algebralised 
teooriad

CHAD MITCHELL  NESTER





Contents

List of Publications 7

Author’s Contribution to the Publications 9

Abbreviations 11

1 Introduction 13

1.0.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.0.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.0.3 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Background Material 23

2.1 Symmetric Monoidal Presentations . . . . . . . . . . . . . . . . . . . 23

2.2 Splitting Idempotents . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Equivalence and Adjunction of 2-categories . . . . . . . . . . . . . . 30

2.3.1 Idempotent Splitting Biadjunctions . . . . . . . . . . . . . . . 32

2.4 Algebraic Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Finite Products and Fox’s Theorem . . . . . . . . . . . . . . 37

2.4.2 Algebraic Theories and Classical Presentations . . . . . . . . 41

2.4.3 Cartesian Monoidal Presentations . . . . . . . . . . . . . . . 44

2.4.4 Varieties and Morita Equivalence . . . . . . . . . . . . . . . . 46

3 Partial Algebraic Theories 49

3.1 Cartesian Restriction Categories . . . . . . . . . . . . . . . . . . . . 50

3.2 DCR Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Partial Algebraic Theories . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Finite Limits and Partial Maps . . . . . . . . . . . . . . . . . . . . . 79

3.5 Relating DCR Categories and Finite Limits . . . . . . . . . . . . . . 84

3.6 Varieties and Morita Equivalence . . . . . . . . . . . . . . . . . . . . 93

5



4 Relational Algebraic Theories 99

4.1 CW Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Relational Algebraic Theories . . . . . . . . . . . . . . . . . . . . . . 116

4.3 Regular Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4 Categories of Relations . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.5 Relating CW Categories and Regular Categories . . . . . . . . . . . 137

4.6 Varieties and Morita Equivalence . . . . . . . . . . . . . . . . . . . . 150

Bibliography 158

Acknowledgements 159

Abstract 161

Kokkuvõte 163
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for Partial Theories. In Proc. ACM Program. Lang., 5(POPL), 2021.

3. C. Nester. The Structure of Concurrent Process Histories. In International

Conference on Coordination Models and Languages, pages 209-224, 2021.

4. C. Nester. Situated Transition Systems. In Proceedings of the Fourth Inter-

national Conference on Applied Category Theory, pages 103-115, 2022.

5. C. Nester. A Variety Theorem for Relational Universal Algebra. In Relational

and Algebraic Methods in Computer Science, pages 362-377, 2021.

6. G. Boisseau, C. Nester, and M. Román. Cornering Optics. In Proceedings of

the Fifth International Conference on Applied Category Theory, pages 97-110,

2023.

7. C. Nester. Concurrent Process Histories and Resource Transducers. In Logi-

cal Methods in Computer Science, volume 19, issue 1, 2023.

8. C. Nester and N. Voorneveld. Protocol Choice and Iteration for the Free

Cornering. In Journal of Logical and Algebraic Methods in Programming,

100942, 2023.

7





Author’s Contribution to the

Publications

1. I was the sole author. The results of the paper are my own, I wrote the paper,

and I presented the paper at the corresponding conference. This paper is

unrelated to the monograph contained herein.

2. I contributed the main result characterising varieties of partial algebraic the-

ories, wrote the corresponding part of the paper, and presented the paper at

the corresponding conference.

3. I was the sole author. The results of the paper are my own, I wrote the paper,

and I presented the paper at the corresponding conference. This paper is

unrelated to the monograph contained herein.

4. I was the sole author. The results of the paper are my own, I wrote the

paper, and presented the paper at the corresponding conference. This paper

is unrelated to the monograph contained herein.

5. I was the sole author. The results of the paper are my own, and I presented

the paper at the corresponding conference.

6. I attribute the main result characterising categories of optics equally to my-

self, Guillaume Boisseau, and Mario Román. I wrote the paper, and presented

it at the corresponding conference. This paper is unrelated to the monograph

contained herein.

7. I was the sole author. The results of the paper are my own, and I wrote the

paper. This paper is unrelated to the monograph contained herein.

8. I attribute the results concerning protocol choice and iteration in the free cor-

nering equally to myself and Niels Voorneveld. We wrote the paper together.

This paper is unrelated to the monograph contained herein.

9





Abbreviations

DCR Category Discrete Cartesian Restriction Category

CW Category Carboni-Walters Category

11





Chapter 1

Introduction

Universal algebra studies kinds of algebraic structure, such as groups and rings, by

algebraic means. The central idea of universal algebra is that of a theory, which

serves to describe a kind of structure. The models of a given theory are the concrete

instances of that kind of structure. Initially, universal algebra was concerned only

with what are called algebraic theories. To the category theorist, an algebraic

theory X is simply a small category with finite products, with a model of X being

a functor X→ Set that preserves the finite product structure.

Contrast this to the algebraist, who typically works with algebraic theories in

the form of a classical presentation. Classical presentations (Σ, E) begin with a set

Σ, called the signature, which has elements f/n consisting of a function symbol f

together with an arity n ∈ N. The set of terms over Σ is constructed as follows:

i ∈ N

xi term

f/n ∈ Σ t1 term · · · tn term

f(t1, . . . , tn) term

That is, we assume a countably infinite supply of variables xi, each of which is a

term, with more complex terms constructed by applying a function symbol of the

signature to a number of terms specified by its arity. In addition to a signature

Σ, each classical presentation comes with a set E of equations over Σ, which has

elements t1 = t2 of pairs of terms over Σ.

An interpretation of signature Σ consists of a set X, called the carrier, together

with a function JfK : Xn → X for each f/n ∈ Σ. Given an interpretation of Σ, each

assignment of variables xi to elements JxiK ∈ X, extends uniquely to an assignment

of terms over Σ to elements of X as in Jf(t1, . . . , tn)K = JfK(Jt1K, . . . , JtnK) ∈ X.

Now an interpretation of Σ is said to satisfy an equation t1 = t2 over Σ in case

Jt1K = Jt2K for all possible variable assignments. A model of a classical presentation

(Σ, E) is an interpretation of Σ that satisfies all of the equations in E.

13



For example, one classical presentation of the theory of monoids consists of the

signature ΣMon = {m/2, e/0} and the set EMon of equations containing:

m(x1,m(x2, x3)) = m(m(x1, x2), x3) m(e(), x1) = x1 m(x1, e()) = x1

Then an interpretation of ΣMon consists of a set X together with a binary operation

JmK : X × X → X and a distinguished element JeK : 1 → X. For such an

interpretation to satisfy the equations of EMon is for the binary operation to be

associative, and to have the distinguished element as a left and right unit. That

is, models of the classical presentation (ΣMon, EMon) are precisely monoids.

Upon encountering a classical presentation (Σ, E) the category theorist per-

forms an act of mental substitution. Any signature Σ defines a category with

finite products: the objects are natural numbers n,m ∈ N, and the morphisms

⟨t1, . . . , tm⟩ : n → m are m-tuples of terms ti over Σ restricted to the variables

x1, . . . , xn. Composition of ⟨s1, . . . , sm⟩ : n → m and ⟨t1, . . . , tk⟩ : m → k is

defined by parallel substitution as in:

⟨t1[s1,...,sm/x1,...,xm
], . . . , tk[s1,...,sm/x1,...,xm

]⟩ : n→ k

Now the product of n and m is n + m with projections ⟨x1, . . . , xn⟩ : n + m → n

and ⟨xn+1, . . . , xn+m⟩ : n + m → m, and the pairing of ⟨f1, . . . , fn⟩ : k → n and

⟨g1, . . . , gm⟩ : k → m is given by ⟨f1, . . . , fn, g1, . . . , gm⟩ : k → n + m. Next,

the equations of E determine equations between tuples of terms, and we quotient

our category by these equations. For the category theorist this category — call

it T(Σ, E) — is the content of the classical presentation (Σ, E). Validating this

perspective is the fact that to specify a model of (Σ, E) is precisely to specify a

functor T(Σ, E)→ Set that preserves the finite product structure.

The perspectives of the category theorist and the algebraist complement each

other. It is the work of the algebraist concerning individual algebraic theories that

motivates the category theorist’s interest in the notion of theory itself. Conversely

the algebraist ought to be encouraged by the categorical perspective, which gives a

robust mathematical account of the basic machinery underlying algebraic theories.

A sensible notion of theory must support both perspectives, providing a perspicuous

syntax for working with individual theories as well as a solid categorical foundation.

In this thesis I propose two notions of theory. First, partial algebraic theories

allow the specification of algebraic structures involving partial functions — which

are like functions save that they need not be defined on their entire domain. Next,

relational algebraic theories allow the specification of algebraic structures involving

binary relations. Partial algebraic theories are strictly more expressive than the

classical notion of algebraic theory, and relational algebraic theories are strictly
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more expressive than partial algebraic theories. Each of these notions of theory

admits both intuitive syntactic presentation to please the algebraist, and robust

categorical semantics to please the category theorist.

The syntax of both partial and relational algebraic theories is based on string

diagrams for symmetric monoidal categories. Suppose that we represent any given

morphism f : A→ B of some category as a box labeled f which has wires labeled

A and B protruding from its top and bottom respectively. It is then natural to

represent the composite fg : A → C of f : A → B and g : B → C as two such

boxes, one above the other, with the two wires labeled B merged into a single wire

connecting the boxes. Identity morphisms are simply represented as labeled wires.

f ↭ fg ↭ 1A ↭

One way to understand the axioms of a category is to notice that they allow us

to interpret these diagrams unambiguously. A monoidal category is a category

equipped with tensor products. It is easiest to explain what this means in terms of

our box-and-wire scheme for representing morphisms. First, in a monoidal category

the boxes corresponding to morphisms may have zero or more wires protruding

from the top and bottom, each wire labeled with an object of the category. Multiple

wires indicates that the domain/codomain is a tensor product of objects A ⊗ B,

while zero wires indicates the unit I of the tensor product operation. Next, for

any two morphisms f and g we may construct their tensor product f ⊗ g, which

we represent by placing the diagrams representing f and g beside one another.

Composition is represented by connecting wires as before. A symmetric monoidal

category also has braiding morphisms σA,B , which allow wires to cross.

f ↭ f ⊗ g ↭ σA,B ↭

The axioms of a symmetric monoidal category can be summarized by saying that

they allow us to interpret these diagrams unambiguously. For example, the follow-

ing diagrams would all represent the same morphism:
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While the details have been elided here, these string diagrams are a precise and

rigorous method of representing morphisms of a symmetric monoidal category.

It so happens that categories with finite products are symmetric monoidal cate-

gories in which each object A is equipped with a copying morphism δA : A→ A⊗A
and discarding morphism εA : A→ I. We represent δA and εA with the following

string diagrams:

δA ↭ εA ↭

The copying and discarding morphisms must be natural, in the sense that for any

morphism f : A → B we have fδB = δA(f ⊗ f) and fεB = εA. Intuitively, the

naturality axiom for the copying morphisms tells us that performing f and then

copying the output is the same as copying the input and then performing f on each

copy. The naturality axiom for the discarding morphisms tells us that performing

f and then discarding the output is the same thing as discarding the input.

fδB = δA(f ⊗ f) ↭ fεB = εA ↭

Now finite products can be expressed in terms of the copying and discarding mor-

phisms. The terminal object is the unit I of the tensor product operation, with

εA : A → I the unique such morphism. The product of A and B is A ⊗ B, with

projections 1A ⊗ εB : A⊗B → A and εA ⊗ 1B : A⊗B → B and with the pairing

map for f : C → A and g : C → B given by δC(f ⊗ g) : C → A⊗B.

1A ⊗ εB ↭ εA ⊗ 1B ↭ δC(f ⊗ g) ↭

These string diagrams give an alternative method of presenting algebraic theo-

ries. Given a signature Σ we represent f/n ∈ Σ as a diagram with n input wires

and one output wire. We omit the wire labels, as in this case they would all be

the same. Then string diagrams built from these component diagrams together

with the copying and discarding morphisms correspond to tuples of terms over Σ.

Each input wire corresponds to a variable xi, and each output wire corresponds

to a term. For example, recall the signature ΣMon = {m/2, e/0} from our classical

16



presentation of the theory of monoids. Let us represent m and e as follows:

m/2 ↭ e/0 ↭

Then for example the following string diagrams correspond to the tuples of terms

that label the output wires, in the variables that label the input wires:

Now the equations EMon may be expressed string-diagrammatically as follows:

I will call this sort of thing a Cartesian monoidal presentation. We construct mod-

els of Cartesian monoidal presentations much as we construct models of classical

presentations. We must choose a set X to be the carrier, and for each f/n ∈ Σ

we must specify a function Xn → X. Then each string diagram over Σ defines

a function Xn → Xm, and we have a model in case the equations are satisfied.

As with classical presentations, models of Cartesian monoidal presentations are

equivalently functors into Set that preserve the finite product structure.

The syntax of partial and relational algebraic theories is obtained by modifying

the notion of Cartesian monoidal presentation. For partial algebraic theories, we

assume an additional string-diagrammatic component µA : A⊗A→ A which is to

be understood as a partial equality test. That is, an abstract version of the partial

function which, given x and y, returns x if x = y and is otherwise undefined.

µA ↭

17



While for partial algebraic theories we retain the assumption that the copying

morphisms are natural in the sense that fδB = δA(f⊗f), we no longer ask that the

discarding morphisms are natural. To obtain the corresponding notion of model

we interpret our string diagrams in the category of sets and partial functions,

proceeding much as before. For relational algebraic theories we assume yet another

component ηA : I → A which we can think of as existential quantification.

ηA ↭

For relational algebraic theories, the naturality axioms are replaced by the assump-

tion that δA(f ⊗ f)µB = f for all f : A→ B. To obtain the corresponding notion

of model we interpret our string diagrams in the category of sets and relations.

In the same way that algebraic theories correspond to categories with finite prod-

ucts, partial algebraic theories correspond to discrete Cartesian restriction (DCR)

categories, and relational algebraic theories correspond to Carboni-Walters (CW)

categories. I further characterise the varieties of partial and relational algebraic

theories, being those categories that arise as the category of models of a given the-

ory. For partial algebraic theories, the varieties turn out to be the locally finitely

presentable (LFP) categories, and for relational algebraic theories one obtains the

definable categories. This leads to a result concerning Morita equivalence of theo-

ries, being the situation in which two theories present the same variety. We obtain

that for all of classical, partial, and relational algebraic theories, two theories are

Morita equivalent if and only if they have equivalent idempotent splitting comple-

tions.

From a technical perspective, the primary novelty in all of this consists of two

strict 2-equivalences of 2-categories. First, a 2-category of DCR categories and

structure-preserving functors is shown to be equivalent to the usual 2-category of

categories with finite limits. Second, a 2-category of CW categories and structure-

preserving functors is shown to be equivalent to the usual 2-category of regular cat-

egories. Crucially, to obtain these equivalences one must take monoidal lax trans-

formations as 2-cells both in the 2-category of DCR categories and the 2-category

of CW categories. The development also contains significant results concerning

DCR and CW categories in and of themselves.

1.0.1 Contributions

The notion of partial algebraic theory presented in this thesis is novel, although it

has certainly been influenced by the work of Bonchi et al. [7], in which the notion of

relational algebraic theory presented in this thesis originates. The central technical
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contributions of the thesis are Theorem 3.5.12 and Theorem 4.5.12. Significant

corollaries of these results include Theorem 3.6.5, Theorem 4.6.14, Theorem 3.6.6,

and Theorem 4.6.15, which characterise varieties and Morita equivalence in the

setting of partial and relational algebraic theories.

Other significant contributions include the string-diagrammatic characterisation

of DCR categories in Theorem 3.2.4, The alternative axiom scheme for CW cat-

egories in Lemma 4.1.6, the characterisation of partial monics in DCR categories

in Lemma 3.2.10, and the technical result in Lemma 4.3.9, which is useful for

reasoning about relations in regular categories.. The various idempotent splitting

biadjunctions, being Lemma 2.3.6, Lemma 2.3.9, Lemma 2.4.27, Lemma 3.2.15 and

Lemma 4.1.26 might together be seen to constitute a minor contribution.

Section 4.5 recapitulates a number of known results concerning CW categories

and regular categories as necessary ingredients for Theorem 4.5.12. In this I have

loosely followed the path taken by Freyd and Scedrov [32], but have avoided the

concept of tabulation, instead preferring to work with split coreflexives in CW

categories directly. The result is that many of the proofs in Section 4.5 are different

than those in the literature, which may also constitute a minor contribution.

1.0.2 Related Work

CW categories were introduced as “cartesian bicategories of relations” by Carboni

and Walters [14]. Much of the theory of CW categories originates in the work of

Freyd and Scedrov on allegories, in which the CW categories are present as the

“unitary pre-tabular allegories”. Bonchi, Pavlovic and Sobocinski were the first to

frame CW categories as relational algebraic theories [7].

Restriction categories were developed by Cockett and Lack [21, 22, 24]. DCR

categories arise in the work of Cockett, Hofstra and Guo on range categories [17,

18]. The theory of restriction categories builds on a long history of approaches

to categorifying partial functions, including [25, 46] and in particular [11], which

anticipates the development of DCR categories and their connection to categories

with finite limits.

The original variety theorem in universal algebra is due to Birkhoff [6]. That cat-

egories with finite products can be seen as algebraic theories is due to Lawvere [41],

and the associated syntax-semantics adjunction (categorical variety theorem) is due

to Adámek, Lawvere and Rosickỳ [2]. The standard reference for LFP categories

and Gabriel-Ulmer duality is the monograph of Adámek and Rosickỳ [3]. Definable

categories and their analogue of Gabriel-Ulmer duality were introduced by Kuber

and Rosickỳ [38], although here I follow the presentation of Lack and Tendas [40].

String-diagrammatic presentation of algebraic theories is made possible by a re-

sult of Fox [30]. A contribution of this thesis is an analogous result (Theorem 3.2.4)
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enabling string-diagrammatic presentation of DCR categories, which is inspired by

the work of Giles on discrete inverse categories [33]. The string-diagrammatic pre-

sentation of CW categories — used here to present relational algebraic theories —

is due to Carboni and Walters [14].

Partial algebraic theories are equivalent in expressive power to a number of ex-

isting notions of theory, including essentially algebraic theories [31, 1], partial Horn

theories (which include quasi-equational theories) [45], and finite limit sketches [3].

In each case theories correspond to categories with finite limits. Relational alge-

braic theories will be equivalent in expressive power to any notion of theory in

which theories correspond to regular categories.

The relationship between CW categories and regular categories has also been

treated at the level of 2-categories in a recent preprint of Fong and Spivak [28].

Therein, the authors claim to show that the 2-category of regular categories, regular

functors, and regular transformations is equivalent to the 2-category of CW cat-

egories, CW functors, and natural transformations whose components are maps.

Although it is not too far from the truth, this claim is incorrect. To obtain an

equivalence of 2-categories one must work with CW categories, CW functors, and

lax transformations whose components are maps, as in Theorem 4.5.12.

The central results of this thesis have been published separately. Specifically

the results concerning partial algebraic theories appear in [26], and the results

concerning relational algebraic theories appear in [42].

1.0.3 Organisation

The thesis is divided into three chapters following this introduction. In Chap-

ter 2 certain background material necessary for the remainder of the thesis is re-

capitulated. This material includes: a brief introduction to string diagrams for

symmetric monoidal categories with a particular emphasis on symmetric monoidal

categories constructed from a monoidal signature (Section 2.1); a treatment of the

idempotent splitting completion of a category and some of its elementary proper-

ties (Section 2.2); a very brief account of certain 2-categorical ideas (Section 2.3);

a treatment of Fox’s theorem characterising categories with finite products (Sec-

tion 2.4.1); a treatment of the classical method of presenting algebraic theories

(Section 2.4.2); an exposition of the alternative method of presenting algebraic

theories by string diagrams (Section 2.4.3); and finally a review of the variety theo-

rem for algebraic theories and the associated characterisation of Morita equivalence

(Section 2.4.4).

Chapter 3 is concerned with the development of partial algebraic theories. It be-

gins by introducing the notions of cartesian restriction (CR) category (Section 3.1)

and discrete cartesian restriction (DCR) category (Section 3.2) together with some
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of their properties. Of particular importance is Theorem 3.2.4, which is a new

result that allows the string-diagrammatic presentation of DCR categories. Sec-

tion 3.3 introduces partial algebraic theories, gives a method of presenting them,

and illustrates the idea with a number of examples. The remainder of the chapter

builds towards the variety theorem for partial algebraic theories with the interme-

diate goal of Theorem 3.5.12, which establishes a correspondence between DCR

categories and categories with finite limits. More precisely, Section 3.4 sets up

the necessary results about finite limits and categories of partial maps, Section 3.5

contains the proof of Theorem 3.5.12, and Section 3.6 contains the variety theorem

for partial algebraic theories along with the associated characterisation of Morita

equivalence.

Chapter 4 is concerned with the development of relational algebraic theories. It

begins with Section 4.1, which introduces Carboni-Walters (CW) categories and

establishes a number of elementary results concerning such categories. This is

followed by Section 4.2, which contains the notion of relational algebraic theory,

a method of presenting relational algebraic theories, and a number of examples.

The remainder of the chapter builds towards the variety theorem for relational

algebraic theories with the intermediate goal of Theorem 4.5.12, which establishes

a correspondence between CW categories and regular categories. More precisely,

Section 4.3 and Section 4.4 contain necessary results about regular categories and

categories of relations, Section 4.5 contains the proof of Theorem 4.5.12, and Sec-

tion 4.6 contains the variety theorem for relational algebraic theories along with

the associated characterisation of Morita equivalence.
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Chapter 2

Background Material

Before we begin, let us briefly discuss notation and conventions. All categories in

the thesis are assumed to be locally small. Composition of arrows f : A→ B and

g : B → C is written fg : A→ C. We may also write g ◦ f : A→ C, but will never

write gf : A → C. Moreover, we will work only with strict monoidal categories

as it greatly simplifies the presentation. In this thesis “monoidal category” means

“strict monoidal category”. In keeping with this assumption we work with strictly

associative finite product structure. The category Set — along with the closely

related categories Par and Rel — will be an exception to this rule. The cartesian

monoidal structure on Set is not strict. Nonetheless, we will pretend that it is.

There is little risk in doing so, given that every monoidal category is equivalent to

a strict one. Moreover, the results of this thesis also hold for monoidal categories

in general. It is hoped that the assumption of strictness will make the development

herein more approachable. In this section we make some small effort to distinguish

arrows of a given monoidal category from the associated string diagrams, but in

general we treat the two interchangeably. For the uninitiated, a good reference on

string diagrams for monoidal categories is [47].

2.1 Symmetric Monoidal Presentations

In this section we review the basic concepts involved in presenting a symmetric

monoidal category by generators and equations. Write X∗ for the free monoid on

a set X. X1⊗ · · · ⊗Xn ∈ X∗ are sequences of elements X1, . . . , Xn ∈ X. The unit

I ∈ X∗ denotes the empty such sequence, and the monoid operation is given by

concatenation: (X1⊗ · · · ⊗Xn)⊗ (Y1⊗ · · · ⊗Ym) = X1⊗ · · · ⊗Xn⊗Y1⊗ · · · ⊗Ym.

We may now begin with the appropriate notion of signature:

Definition 2.1.1. A monoidal signature Γ consists of a set s(Γ) of sorts, a set |Γ|
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of generators, and two functions δ0, δ1 : |Γ| → s(Γ)∗. We call δ0(γ) the arity of γ

and δ1(γ) the coarity of γ. We write γ : X → Y ∈ Γ to mean that γ ∈ |Γ| with

δ0(γ) = X and δ1(γ) = Y .

Given such a signature, we can construct a symmetric monoidal category as

follows:

Definition 2.1.2. Let Γ be a monoidal signature. The symmetric monoidal cate-

gory S(Γ) of symmetric monoidal terms over Γ is constructed as follows:

objects are elements of s(Γ)∗.

arrows are generated by:

γ : A→ B ∈ Γ

γ : A→ B

f : A→ B g : B → C

fg : A→ C

A ∈ s(Γ)∗

1A : A→ A

f : A→ B g : C → D

f ⊗ g : A⊗ C → B ⊗D
A,B ∈ s(Γ)∗

σA,B : A⊗B → B ⊗A □ : I → I

These arrows are subject to a number of equations. First, equations concerning

coherence:

1I = □ 1A⊗B = 1A ⊗ 1B σI,A = 1A σA,I = 1A

σA⊗B,C⊗D = (1A ⊗ σB,C ⊗ 1D)(σA,C ⊗ σB,D)(1C ⊗ σA,D ⊗ 1B)

With the remaining equations being:

1Af = f f1B = f □⊗ f = f f ⊗□ = f

(fg)h = f(gh) (f ⊗ g)⊗ h = f ⊗ (g ⊗ h) (f ⊗ g)(h⊗ k) = fh⊗ gk

σA,BσB,A = 1A⊗B σA,A′(g ⊗ f) = (f ⊗ g)σB,B′

This defines a symmetric monoidal category with the evident composition, iden-

tities, and symmetric monoidal structure.

It is convenient to specify symmetric monoidal presentations using string dia-
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grams. We recall the diagrammatic conventions:

γ ∈ Γ ↭ fg ↭ 1A ↭

f ⊗ g ↭ σA,B ↭ □ ↭

Then the equations concerning coherence become:

Of the remaining equations, the first seven ensure that our diagrams are not am-

biguous, and the final two equations become:

For example, consider the monoidal signature ΓMon with sorts s(ΓMon) = {X}
and generators m : X ⊗ X → X and e : I → X ∈ Γ. We adopt the following

diagrammatic notation for m and e:

m ↭ e ↭

Then the arrow (m ⊗ (1 ⊗ e)) ; ((m ⊗ 1) ;σ) : X ⊗ X ⊗ X → X ⊗ X of S(Γ) is

depicted as:

where the dashed line boxes correspond to parentheses, serving to illustrate the

connection between parts of the expression and parts of the string diagram.

Two parallel arrows of S(Γ) are equal if and only if it is possible to continuously
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deform the corresponding string diagrams into each other [37]. For example in

S(ΓMon) we know that (m⊗ e)(m⊗ 1X)(σX,X) = (m⊗ 1X)m(e⊗ 1X) as in:

The notion of equation between string diagrams over a monoidal signature works

the same way that and equations of terms does classically:

Definition 2.1.3. Let Γ be a monoidal signature. A symmetric monoidal equation

over Γ is a pair (f, g) where f, g : A→ B in S(Γ). We often write f = g instead of

(f, g).

When packaged together, we call a signature together with equations a presen-

tation:

Definition 2.1.4. A symmetric monoidal presentation (Γ, E) consists of a monoidal

signature Γ together with a set E of symmetric monoidal equations over Γ.

We consider a presentation to present the category of terms over the associated

signature, modulo the associated equations:

Definition 2.1.5. Let (Γ, E) be a symmetric monoidal presentation. Write S(Γ, E)

for the symmetric monoidal category obtained by quotienting S(Γ) by the equations

of E. We say that S(Γ, E) is presented by (Γ, E), and similarly we say that (Γ, E)

presents S(Γ, E).

For example, consider the symmetric monoidal presentation (ΓMon, ECMon) where

ECMon consists of the following equations:

which in turn express the associativity, commutativity, and unitality of m. Then

S(ΓMon, ECMon) is the prop of commutative monoids [39].

String diagrams are susceptible to equational reasoning, sometimes called dia-

grammatic reasoning in this context. If f = g in S(Γ, E) then substituting the

corresponding string diagrams for each other is sound in any context. For example

in ECMon we only ask for the right unit law. As an illustration of diagrammatic

reasoning we show that the left unit law holds in S(ΓMon, ECMon) as well:
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Observe that it is possible for different symmetric monoidal presentations to

present the same symmetric monoidal category. For example, if (ΓMon, ECMon′)

is such that ECMon′ contains the associativity, commutativity, and left unitality

axioms then S(ΓMon, ECMon) ∼= S(ΓMon, ECMon′).

Structure preserving functors between monoidal categories are given as follows:

Definition 2.1.6. Let (X,⊗, I) and (Y,⊗, I) be monoidal categories. A monoidal

functor F : (X,⊗, I) → (Y,⊗, I) is a functor F : X → Y together with a family

of natural isomorphisms ϕFX,Y : FX ⊗ FY → F (X ⊗ Y ) and an isomorphism

ϕFI : I → FI such that for all objects X,Y, Z of X we have:

(i) (1FX ⊗ ϕFY,Z)ϕFX,Y⊗Z = (ϕFX,Y ⊗ 1FZ)ϕFX⊗Y,Z

(ii) (1FX ⊗ ϕFI )ϕFX,I = 1FX

(iii) (ϕFI ⊗ 1FX)ϕFI,X = 1FX

where naturality of the ϕFX,Y simply means that for all f : X → X ′ and g : Y → Y ′

of X we have ϕFX,Y F (f ⊗ g) = (F (f)⊗ F (g))ϕFX′,Y ′ .

Definition 2.1.7. Let (X,⊗, I) and (Y,⊗, I) be symmetric monoidal categories. A

monoidal functor F : (X,⊗, I)→ (Y,⊗, I) is called symmetric in case ϕFX,Y F (σX,Y ) =

σFX,FY ϕ
F
Y,X .

Definition 2.1.8. Let (X,⊗, I) and (Y,⊗, I) be symmetric monoidal categories,

and suppose that F,G : (X,⊗, I) → (Y,⊗, I) are symmetric monoidal functors.

Then a monoidal natural transformation α : F → G is a natural transformation

such that ϕFX,Y αX⊗Y = (αX ⊗ αY )ϕGX,Y and ϕFI αI = ϕGI .

In this thesis we will systematically omit the coherence isomorphisms ϕFX,Y and

ϕFI for the sake of readability. That is, we will behave as though for monoidal

functors F we have FX ⊗ FY = F (X ⊗ Y ) and FI = I with ϕFX,Y and ϕFI
identity arrows, and as though for monoidal natural transformations α we have

αX ⊗ αY = αX⊗Y . Strictly speaking, the coherence isomorphisms should be

included. However, we will not be doing anything particularly technical with

monoidal functors in this thesis, and omitting the coherences does not lead us

astray.

2.2 Splitting Idempotents

In this section we recapitulate a few details surrounding split idempotents and the

idempotent splitting completion, which will be used heavily in our development. In
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particular Lemma 2.3.6 will later be specialized in a number of different directions,

and plays a key role in the characterisation of varieties and Morita equivalence for

the theories we consider. Those familiar with the idempotent splitting completion

may safely skip ahead to the next section, referring back to Lemma 2.3.6 as needed.

We begin by recalling the basic definitions:

Definition 2.2.1. An arrow f : A → A in a category is said to be idempotent in

case ff = f .

Definition 2.2.2. An idempotent f : A → A in a category C splits in case there

exist arrows s : X → A and r : A→ X of C such that:

X A

X A

s

s

r
f

Notice that in this case s is a section, and is therefore monic. Dually, r is a

retraction.

Notice that splittings of a given idempotent are unique up to isomorphism:

Lemma 2.2.3. Suppose that an idempotent f : A→ A splits in two different ways:

X A

X A

sX

sX

rX
f

Y A

Y A

sY

sY

rY
f

Then sXrY : X → Y and sY rX : Y → X define an isomorphism X ∼= Y .

Proof. We have:

X A Y

X A

X

sX

rX

rY

f
sY

sX

rX

and

Y A X

Y A

Y

sY

rY
f

rX

sX

sY

rY

as required.

In any category we may formally split any collection of idempotents to obtain a

new category in which those idempotents split. The procedure of formally splitting

the class of all idempotents is also known as the Cauchy completion [8] and Karoubi

envelope of a category. While any collection of idempotents can be split, the

construction is better-behaved when that collection of idempotents contains all the
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identity morphisms of the category in question. We will build this assumption into

our terminology:

Definition 2.2.4. Let X be a category. A species of idempotent in X is a set E of

idempotents in X such that for all objects A of X, 1A ∈ E .

We may formally split a species of idempotent in a given category as follows:

Definition 2.2.5. Let X be a category, and let E be a species of idempotent in X.

Define the category SplitE(X) as follows:

objects are pairs (X, a) where X is an object of X and a : X → X is in E .

arrows f : (X, a)→ (Y, b) are arrows f : X → Y of X such that afb = f .

composition is given by composition in X.

The identity on (X, a) is given by a : X → X.

In case E is the species of all idempotents in X, we write Split(X) = SplitE(X).

First, we observe that X embeds into SplitE(X):

Lemma 2.2.6. Suppose E is a species of idempotent in X. Then there is an

embedding J−K : X → SplitE(X) defined by JAK = (A, 1A) on objects and by JfK =

f : (A, 1A)→ (B, 1B) on arrows f : A→ B.

Proof. J−K preserves composition since composition in SplitE(X) is given by compo-

sition in X, and preserves identities since 1A is the identity on (A, 1A). Thus, J−K is

a functor. It remains to show that J−K is an embedding, i.e., is faithful and injective

on objects. This is straightforward: if JfK = JgK then we have f = JfK = JgK = g

as required, as morphisms in SplitE(X) are given by morphisms of X. It follows

that J−K is faithful. For injectivity on objects, if we have JAK = JBK then imme-

diately we have (A, 1A) = JAK = JBK = (B, 1B), and so A = B as required. Thus,

J−K : X→ SplitE(X) is an embedding.

Now, the key property of the idempotent splitting completion SplitE is that in

it, the idempotents of E split:

Lemma 2.2.7. Let E be a species of idempotent in a category X, and let e : A→
A ∈ E. Then JeK : (A, 1A) → (A, 1A) splits in SplitE(X) via e : (A, e) → (A, 1A)

(the section) and e : (A, 1A)→ (A, e) (the retraction).

Proof. e : (A, e) → (A, 1A) and e : (A, 1A) → (A, e) are well-defined since ee1A =

e = 1Aee. Recall that e is the identity on (A, e) → (A, e), and then since ee = e :

(A, e)→ (A, e) we have that e : (A, 1A)→ (A, 1A) splits as required.

Lemma 2.2.6 specialises to symmetric monoidal categories:

29



Lemma 2.2.8. Let X be a symmetric monoidal category and E be species of idem-

potent in X. Then:

(i) SplitE(X) is a symmetric monoidal category.

(ii) There is an embedding

J−K : X ↪→ SplitE(X)

defined by JXK = (X, 1X) on objects JfK = f on arrows f : X → Y . Further,

J−K is a symmetric monoidal functor.

Proof. (i) The tensor product is defined on objects as in (X,A) ⊗ (Y, b) =

(X ⊗ Y, a ⊗ b) with unit I = (I, 1I), and the tensor product of arrows in

SplitE(X) is given by their tensor product in X. The braiding maps are given

by σ(X,a),(Y,b) = (a⊗b)σX,Y (b⊗a). Then for the inverse property of the braid-

ing we have σ(X,a),(Y,b)σ(Y,b),(X,a) = (a ⊗ b)σX,Y (b ⊗ a)(b ⊗ a)σY,X(a ⊗ b) =

(aa ⊗ bb)σX,Y σY,X(aa ⊗ bb) = (a ⊗ b) = 1(X,a)⊗(Y,b). For naturality, if

f : (X, a)→ (X ′, a′) and g : (Y, b)→ (Y ′, b′) we have (f ⊗ g)σ(X′,a′),(Y ′,b′) =

(f ⊗ g)(a′⊗ b′)σX′,Y ′(b′⊗ a′) = (a⊗ b)σX,Y (g⊗ f)(b′⊗ a′) = (a⊗ b)σX,Y (b⊗
a)(g ⊗ f) = σ(X,a),(Y,b)(g ⊗ f) as required. The claim follows.

(ii) We have that J−K is an embedding by Lemma 2.2.6. That it is symmetric

monoidal is immediate.

This concludes our discussion of idempotent splitting for now, although we will

shortly return to these ideas when we split idempotents at the 2-categorical level

to obtain a biadjunction. First, we take a brief detour into 2-category theory.

2.3 Equivalence and Adjunction of 2-categories

The core technical results of this thesis consist of a number of adjunctions and

equivalences between strict 2-categories. While a full treatment of the theory of

2-categories is out of scope, in this section I briefly recall the relevant notions of

equivalence and adjunction. One need not necessarily know anything about 2-

categories to appreciate the notions of partial and relational algebraic theory, but

a surface-level understanding of the basic concepts is necessary if one is to engage

with the related technical content. A good reference that covers the basics of 2-

category theory is the recent monograph of Johnson and Yau [36]. Less basic but

more relevant to the subject at hand is the work of Gurski on biequivalence [35].

What does it mean for two mathematical objects to be the same? For sets a

good answer is that two sets are the same in case there is a bijection between them.

Then anything we can do with one set can be transported to the other by working
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across the bijection. More generally it is usually reasonable to consider objects A

and B of a category to be the same when they are isomorphic, which is to say that

there are morphisms f : A → B and g : B → A with fg = 1A and gf = 1B . We

write A ∼= B to indicate the existence of an isomorphism. This kind of sameness is

sensitive to the ambient category. For example, it is a very different thing for two

groups to be isomorphic in the category of groups and group homomorphisms than

for them to be isomorphic in the category of sets and functions. The important

thing to remember is that isomorphism is a notion of sameness relative to some

ambient category.

If we instead work relative to an ambient 2-category the situation is more com-

plicated. The source of this complexity is of course the 2-cells. In particular it is

now possible for morphisms (i.e., 1-cells) f and g to be isomorphic to each other via

2-cells α : f → g and β : g → f such that αβ = 1f and βα = 1g. This leads to the

notion of an equivalence between two objects (i.e., 0-cells) of a 2-category, which

can be understood as “isomorphism up to isomorphism”. Explicitly, two 0-cells A

and B are equivalent in case there are 1-cells f : A→ B and g : B → A such that

fg ∼= 1A and gf ∼= 1B . The point being that the composites are now isomorphic

to identities instead of being literally equal. We write A ≃ B to indicate the exis-

tence of an equivalence. Equivalence turns out to be a good notion of sameness in

2-categories. For example the prototypical 2-category is Cat, which has categories

as 0-cells, functors as 1-cells, and natural transformations as 2-cells. The resulting

notion of equivalence of categories is the standard one.

In fact this notion of equivalence makes sense in any bicategory, which is a

slightly weaker sort of 2-category. The pattern outlined above repeats, and to

find a good notion of sameness for bicategories (and therefore 2-categories) one

must work in a tricategory. The resulting notion of sameness is called biequivalence

and has been considered in detail by Gurski [35]. A lot of knowledge surrounding

biequivalence, and bicategories (including 2-categories) more generally seems to be

mathematical folklore. The main idea is that we want to work up to isomorphism

as far as possible. At some point between bicategories and tricategories it becomes

impressively tedious and error-prone to keep track of the details involved in this,

but for our purposes all we need is the resulting notion of sameness between 2-

categories that results from the process. For our purposes we need only work

explicitly with what I will call a strict 2-equivalence of strict 2-categories. This is

an instance of the more general notion of biequivalence of bicategories, in which

many of the coherence isomorphisms are identities.

A brief aside: what we will call a 2-functor is often called a strict 2-functor, in

keeping with our earlier terminological choices. We give an elementary definition:

Definition 2.3.1. Let C and D be 2-categories. A 2-functor F : C→ D consists of
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mappings F0 sending 0-cells of C to 0-cells of D, F1 sending 1-cells of C to 1-cells of

D, and F2 sending 2-cells of C to 2-cells of D such that composition and identities

are preserved at the level of both 1-cells and 2-cells:

F1(f)F1(g) = F1(fg) F1(1A) = 1F0(A)

F2(α)F2(β) = F2(αβ) F2(1f ) = 1F1(f)

and further that horizontal composition of 2-cells is preserved:

F2(α ⋆ β) = F2(α) ⋆ F2(β)

We drop the subscripts when they are clear in context. As with functors, we may

also sometimes omit the parentheses, as in F (A) = FA. Similarly, what we will call

a 2-natural transformation what is often called a strict 2-natural transformation

Definition 2.3.2. A 2-natural transformation λ : F → G for 2-functors F,G :

C→ D consists of a family λA : FA→ GA of 1-cells in D such that for any 1-cell

f : A → B of C we have λAG(f) = F (f)λB and, moreover, such that for any

1-cells f, g : A → B and 2-cell β : f → g of C, we have F (β) ⋆ 1λB
= 1λA

⋆ G(β).

A 2-natural transformation is said to be invertible in case its components λA are

invertible.

Now by strict 2-equivalence of 2-categories we mean:

Definition 2.3.3. Suppose that C and D are 2-categories. A strict 2-equivalence

C ≃ D consists of 2-functors F : C → D and G : D → C together with invertible

2-natural transformations η : 1C → FG and ε : GF → 1D.

While we will only be constructing strict 2-equivalences in our development, the

related notion of strict 2-adjunction is not general enough for our purposes. Instead

we must use the more general notion of biadjunction, which is to biequivalence of 2-

categories as adjunctions are to equivalence of categories. We will use the following

formulation of biadjunction, found in [43], seemingly adapted from Gurski [35]:

Definition 2.3.4. A pair of 2-functors L : C → D and R : D → C form a

biadjunction L ⊣ R in case there is an equivalence of categories D(L(C), D) ≃
C(C,R(D)) which is natural1 in both C and D.

2.3.1 Idempotent Splitting Biadjunctions

Let Cats be the full sub 2-category of Cat on the 0-cells X in which the idempotents

of X split. Splitting idemoptents yields a 2-functor mapping each category to its

idempotent splitting completion:

1In fact one only needs to ask for a pseudo-natural equivalence of hom-categories, but for the
purposes of this thesis we can get away with insisting that the equivalence be strictly natural.
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Lemma 2.3.5. Splitting idempotents defines a 2-functor Split : Cat→ Cats.

Proof. On 1-cells F : X→ Y of Cat we take Split(F ) : Split(X)→ Split(Y) to be the

functor defined on objects by Split(F )(X, a) = (FX,F (a)) and defined on arrows

f : (X, a) → (Y, b) of Split(X) by Split(F )(f) = F (f). We have that Split(F ) is

well defined as in F (a)F (f)F (b) = F (afb) = F (f), and it preserves composition

and identities because F does. Clearly Split preserves composition and identities

at the level of 1-cells. On 2-cells α : F → G of Cat we define Split(α) : Split(F )→
Split(G) by Split(α)(X,a) = F (a)αXG(a) : (FX,F (a)) → (GX,G(a)). The com-

ponents are well-defined as in F (a)Split(α)(X,a)G(a) = F (a)F (a)αXG(a)G(a) =

F (a)αXG(a) = Split(α)(X,a), and Split(α) is a natural transformation as follows:

for each arrow f : (X, a) → (Y, b) of Split(X) we have Split(F )(f)Split(α)(X,a) =

F (f)F (b)αYG(b) = F (a)F (f)αYG(b) = F (a)αXG(f)G(b) = F (a)αXG(a)G(f) as

in:

Split(F )(X, a) Split(G)(X, a)

Split(F )(Y, b) Split(G)(Y, b)

Split(F )(f)

Split(α)(X,a)

Split(G)(f)

Split(α)(Y,b)

Now Split(1F )(X,a) = F (a)F (a) = F (a) = 1F (X,a) and for α : F → G and

β : G→ H we have (Split(α)Split(β))(X,a) = F (a)αXG(a)G(a)βXH(a)

= F (a)αXβXH(a)H(a) = F (a)(αβ)XH(a) = Split(αβ)(X,a). It follows that Split

preserves composition and identities at the level of 2-cells. For horizontal composi-

tion of 2-cells, suppose α : F → F ′ and β : F → F ′ are 2-cells of Cat. Then Split(α⋆

β)(X,a) = G(F (a))βFXG
′(F (a))G′(F (a)αXF

′(a)) = (Split(α) ⋆ Split(β))(X,a), and

it follows that Split is a 2-functor.

Moreover, this 2-functor is part of a biadjunction:

Lemma 2.3.6. There is a biadjunction

Cat Cats⊥
Split

where the right adjoint Cats ↪→ Cat is the evident inclusion.

Proof. We must exhibit a natural equivalence of categories

Cats(Split(X),C) ≃ Cat(X,C)

for any category X and category with split idempotents C. To that end, we define a

functor (−)♯ : Cats(Split(X),C) → Cat(X,C) as follows: on objects F : Split(X) →
C of Cats(Split(X),C) let F ♯ : X → C be defined by F ♯(X) = F (X, 1X) and on
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arrows by F ♯(f) = F (f). Clearly F ♯ is a functor, so the object mapping of (−)♯

is well-defined. For arrows α : F → G of Cats(Split(X),C) let α♯ : F ♯ → G♯

be the natural transformation with components α♯X = α(X,1X). This is natural

as in F ♯(f)α♯Y = F (f)α(Y,1Y ) = α(X,1X)G(f) = α♯XG
♯(f). We have that (−)♯ is

a functor as in (α♯β♯)X = α♯Xβ
♯
X = α(X,1X)β(X,1X) = (αβ)(X,1X) = (αβ)♯X and

(1F )♯X = (1F )(X,1X) = 1F (X,1X) = 1F ♯(X) = (1F ♯)X .

We proceed to show that (−)♯ is full, faithful, and essentially surjective, begin-

ning with the latter. To that end, suppose F : X → C is an object of Cat(X,C).

Define F̂ : Split(X) → C to be the functor that maps objects (X, a) of Split(X) to

the carrier2 of the splitting of F (a) : FX → FX in C, as in:

F̂ (X, a) FX

F̂ (X, a) FX

sa

sa

ra
F (a)

with F̂ defined on arrows f : (X, a) → (Y, b) of Split(X) by F̂ (f) = saF (f)rb.

Now F̂ is a functor: for identities we have F̂ (1(X,a)) = F̂ (F (a)) = saF (a)ra =

sarasara = 1F̂ (X,a) and for composition we have F̂ (f)F̂ (g) = saF (f)rbsbF (g)rc =

saF (f)F (b)F (g)rc = saF (fg)rc = F̂ (fg) for any f : (X, a) → (Y, b) and g :

(Y, b) → (Z, c) in Split(X). In particular, this means that F̂ is an object of

Cats(Split(X),C). Now, consider (F̂ )♯. On objects we have (F̂ )♯(X) = F̂ (X, 1X) is

the carrier of the splitting of 1FX , as in:

F̂ (X, 1X) FX

F̂ (X, 1X) FX

s1X

s1X

r1X
F (1X)=1FX

Notice in particular that this means s1X : F̂ (X, 1X)→ FX is an isomorphism with

inverse s−1
1X

= r1X . These sections give the components ϕX = s1X of a natural

isomorphism ϕ : (F̂ )♯ → F . For naturality we have F̂ ♯(f)ϕY = s1XF (f)r1Y s1Y =

s1XF (f) = ϕXF (f) for any f : X → Y in X, as required. Thus F ∼= (F̂ )♯ in Cat.

It follows that (−)♯ is essentially surjective.

Next, we show that (−)♯ is full. To that end, suppose that F,G are objects

of Cats(Split(X),C) and that α : F ♯ → G♯ is an arrow of Cat(X,C). Define

α̂ : F → G by α̂(X,a) = F (a)αXG(a). Now α̂ is natural as in F (f)α̂(X,a) =

F (f)F (b)αYG(b) = F (a)F (f)αYG(b) = F (a)αXG(f)G(b) = F (a)αXG(a)G(f) =

2Here we are using the axiom of choice to choose a splitting of each idempotent in C. Another
approach is to work with categories in which idempotents have distinguished splittings, in which
case the axiom of choice is not needed.
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α̂(Y,b)G(f) for any f : (X, a) → (Y, b) of Split(X), and so in particular α̂ is an

arrow of Cats(Split(X),C). Consider (α̂)♯ : F ♯ → G♯. We have (α̂)♯X = α̂(X,1X) =

F (1X)αXG(1X) = αX , and so α̂♯ = α and (−)♯ is full.

Finally, we show that (−)♯ is faithful. To that end, let α, β : F → G be arrows

of Cats(Split(X),C) and suppose that α♯ = β♯. Notice that we have the following

idempotent splitting in C:

G(X, a) G(X, 1X)

G(X, a) G(X, 1X)

G(a)

G(a)

G(a)
G(a)

so in particular we have that G(a) : G(X, a) → G(X, 1X) is monic. Now we have

α(X,a)G(a) = F (a)α(X,1X) = F (a)α♯X = F (a)β♯X = F (a)β(X,1X) = β(X,a)G(a),

and then since G(a) is monic we have α(X,a) = β(X,a) which gives α = β. Thus,

(−)♯ is faithful. It follows that (−)♯ is an equivalence of categories. Clearly this

equivalence is natural in X and C, and the claim follows.

A version of the above argument also holds for symmetric monoidal categories.

Definition 2.3.7. The 2-category SMC has 0-cells symmetric monoidal categories,

1-cells symmetric monoidal functors, and 2-cells monoidal natural transformations.

Our idempotent splitting 2-functor extends to the symmetric monoidal setting:

Lemma 2.3.8. Let SMCs be the full sub 2-category of SMC on the 0-cells in which

the idempotents split. Then splitting idempotents yields a 2-functor Split : SMC→
SMCs.

Proof. The 2-functor Split is defined the same way it is in Lemma 2.3.5. We

must show that for any symmetric monoidal functor F : X → Y the functor

Split(F ) : Split(X) → Split(Y) is symmetric monoidal, and that for any monoidal

natural transformation α : F → G the natural transformation Split(α) : Split(F )→
Split(G) is monoidal. For the former, we have Split(F )((X, a)⊗ (Y, b)) =

Split(F )(X ⊗ Y, a ⊗ b) = (F (X ⊗ Y ), F (a ⊗ b)) = (FX ⊗ FY, F (a) ⊗ F (b)) =

(FX,F (a)) ⊗ (FY, F (b)) = Split(F )(X, a) ⊗ Split(F )(Y, b) as required. For the

latter, we have Split(α)(X,a)⊗(Y,b) = Split(α)(X⊗Y,a⊗b) = F (a ⊗ b)αX⊗YG(a ⊗
b) = (F (a) ⊗ F (b))(αX ⊗ αY )(G(a) ⊗ G(b)) = Split(α)(X,a) ⊗ Split(α)(Y,b) and

Split(α)(I,1I) = F (1I)αIG(1I) = 1I . The claim follows.

This 2-functor is also left biadjoint to the evident forgetful functor:

Lemma 2.3.9. There is a biadjunction:

SMC SMCs

Split

⊥
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where the right adjoint SMCs ↪→ SMC is the evident inclusion.

Proof. The proof is largely identical to the proof of Lemma 2.3.6, but we must deal

with a number of proof obligations arising from the monoidal structure. As before,

we define a functor (−)♯ : SMCs(Split(X),C) → SMC(X,C) and show that it gives

a natural equivalence of categories. To show that (−)♯ is essentially surjective we

assume an object F of SMC(X,C) and define an object F̂ of SMCs(Split(X),C). On

objects (X, a) of Split(X) we again take F̂ (X, a) to be the carrier of the splitting

of F (a) : FX → FX in C, as in:

F̂ (X, a) FX

F̂ (X, a) FX

sa

sa

ra
F (a)

and on arrows f : (X, a) → (Y, b) we again define F̂ (f) = saF (f)rb. In do-

ing so we have used the axiom of choice to choose a splitting for each idem-

potent F (a) in C. While this is enough to yield a functor F̂ , we now require

F̂ to be symmetric monoidal. To obtain this we must impose additional condi-

tions on our choice of splittings3. Specifically, we ask that our choice of splittings

be coherent with respect to the monoidal category structure in the sense that

F̂ ((X, a)⊗ (Y, b)) = F̂ (X, a)⊗ F̂ (Y, b) with sa⊗b = sa ⊗ sb and ra⊗b = ra ⊗ rb and

further F̂ (I, 1I) = I with s1I = r1I = 1I . Clearly a coherent choice of splittings

always exists. Then F̂ preserves the monoid structure on objects by assumption.

For f : (X, a) → (X ′, a′) and g : (Y, b) → (Y ′, b′) we have F̂ (f ⊗ g) = sa⊗bF (f ⊗
g)ra′⊗b′ = (sa⊗sb)(F (f)⊗F (g))(ra′⊗rb′) = saF (f)ra′⊗sbF (g)rb′ = F̂ (f)⊗ F̂ (g),

and we have F̂ (σ(X,a),(Y,b)) = sa⊗bF (σX,Y )rb⊗a = (sa ⊗ sb)σFX,FY (rb ⊗ ra) =

(sara ⊗ sbrb)σF̂ (X,a),F̂ (Y,b) = σF̂ (X,a),F̂ (Y,b), and it follows that F̂ is a symmetric

monoidal functor.

The only other difference from the proof of Lemma 2.3.6 appears in the proof

that (−)♯ is full. Again we assume an arrow α : F ♯ → G♯ of SMC(X,C) and define

an arrow α̂ : F → G of SMCs(Split(X),C) by α̂(X,a) = F (a)αXG(a). We have

already seen that this defines a natural transformation, but must now show that

it defines a monoidal natural transformation. As required, we have α̂(X,a)⊗(Y,b) =

α̂(X⊗Y,a⊗b) = F (a⊗b)αX⊗YG(a⊗b) = F (a)αXG(a)⊗F (b)αYG(b) = α̂(X,a)⊗α̂(Y,b)

and α̂(I,1I) = F (1I)αIG(1I) = 1I . The claim follows.

3Again, we can avoid the axiom of choice by working with categories in which idempotents
have distinguished splittings, in which case we can impose our coherence axioms directly.
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2.4 Algebraic Theories

In this section we recapitulate the basic definitions surrounding the notion of alge-

braic theory and state a number of related results. We follow the modern approach

of Adamek et al. [4]. We pay an unusual amount of attention to presentations of

algebraic theories via the usual term syntax, which we will call classical presenta-

tions in order to contrast them with the Cartesian monoidal presentations of the

next section.

2.4.1 Finite Products and Fox’s Theorem

To begin, let us recall the notion of binary product in a category:

Definition 2.4.1. Let X be a category, and let A,B be objects of X. A binary

product of A and B in X is a diagram:

A A×B B
πA,B
1πA,B

0

with the property that for any arrows f : C → A and g : C → B of X there exists

a unique arrow ⟨f, g⟩ : C → A×B such that:

C

A A×B B

gf ⟨f,g⟩

πA,B
1πA,B

0

We refer to πA,B0 and πA,B1 as projections and refer to ⟨f, g⟩ as the pairing of f

and g. We write πA,B0 = π0 and πA,B1 = π1 when confusion is unlikely. We write

∆A = ⟨1A, 1A⟩ : A→ A×A for the diagonal map.

For example, in the category Set of sets and functions the binary product of

sets A and B is given by their Cartesian product A × B = {(a, b) | a ∈ A, b ∈ B}
with the evident projections and pairings. Another elementary example arises in

the theory of posets, viewed as skeletal categories in which the hom-sets contain at

most one element. Here a binary product of x and y is precisely their meet x ∩ y,

with the projections giving x ∩ y ≤ x and x ∩ y ≤ y and pairing giving that when

z ≤ x and z ≤ y we have z ≤ x ∩ y.

Closely related to the notion of binary product is that of a terminal object:

Definition 2.4.2. Let X be a category. A terminal object in X is an object 1 such

that for each object A of X there exists a unique arrow !A : A→ 1 in X.

For example, in Set any singleton set {∗} is a terminal object. In a poset, a

terminal object is the greatest element of the poset, with the unique arrow giving
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x ≤ 1 for all x.

Definition 2.4.3. A category X is said to have finite products in case X has a

terminal object and X contains a binary product of all pairs A,B of objects in X.

For example, Set has finite products in the manner discussed above. Posets with

finite products, being those posets with a greatest element that admit all binary

meets, are called bounded meet-semilattices.

Catgories with finite products may be characterised in terms of commutative

comonoid structure:

Definition 2.4.4. Let X be a symmetric monoidal category. A commutative

comonoid in X consists of a triple (X, δX , εX) where X is an object of X, δX :

X → X ⊗X, and εX : X → I such that:

δX(1X ⊗ δX) = δX(δX ⊗ 1X) δXσX,X = δX δX(1X ⊗ εX) = 1X

We say that X is the carrier of (X, δX , εX).

We adopt the following string-diagrammatic notation for such commutative

comonoid structure (X, δX , εX):

δX ↭ εX ↭

Then for example the equations of a commutative comonoid become:

The connection between commutative comonoids and categories with finite prod-

ucts is known as Fox’s Theorem, given as follows:

Theorem 2.4.5 ([30]). A category with finite products is the same thing as a

symmetric monoidal category (X,⊗, I) such that:

1. Each object X of X is the carrier of a commutative comonoid (X, δX , εX).

2. The commutative comonoid structure is coherent. That is,

(X ⊗ Y, δX⊗Y , εX⊗Y ) is determined by (X, δX , εX) and (Y, δY , εY ) in the

sense that:

δX⊗Y = (δX ⊗ δY )(1X ⊗ σX,Y ⊗ 1Y ) εX⊗Y = εX ⊗ εY
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Diagrammatically:

and further εI = 1I = δI .

3. The commutative comonoid structure is natural. That is, for each arrow

f : X → Y of X, we have:

fδY = δX(f ⊗ f) fεY = εX

Diagrammatically:

Put another way, we require every morphism f : X → Y to be a comonoid

homomorphism from (X, δX , εX) to (Y, δY , εY ).

Proof. If X has finite products then (X,∆X = ⟨1X , 1X⟩, !X) defines coherent and

natural commutative comonoid structure on X. Conversely, if X is a symmetric

monoidal category with coherent and natural commutative comonoid structure,

then A
1A⊗εB← A ⊗ B εA⊗1B→ B is a product: for f : C → A and g : C → B the

arrow ⟨f, g⟩ : C → A⊗B is given by δC(f ⊗ g), as in:

We have ⟨f, g⟩π0 = f and ⟨f, g⟩π1 = g as in:

For uniqueness, let h : C → A⊗B. Then h = ⟨f, g⟩ as in:

Further, I is a terminal object with !A = εA. If f : A→ I then f = fεI = εA, and

so !A is the unique arrow A → I. The claim follows. Moreover, the construction
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of commutative comonoid structure from finite product structure and construction

of finite product structure from commutative comonoid structure are mutually

inverse.

In order to emphasize this perspective we will sometimes call such categories

cartesian monoidal. That is:

Definition 2.4.6. A cartesian monoidal category is a symmetric monoidal cat-

egory with coherent and natural commutative comonoid structure. That is, a

category with finite products.

The appropriate notion of structure-preserving functor between Cartesian monoidal

categories (that is, functor that preserpves finite product structure) is as follows:

Definition 2.4.7. Let X,Y be Cartesian monoidal categories. A Cartesian monoidal

functor F : X→ Y is a symmetric monoidal functor that preserves the commutative

comonoid structure in the sense that F (δA) = δFAϕ
F
A,A and F (εA) = εFAϕ

F
I .

When working with cartesian monoidal functors we will continue to omit the

coherence isomorphisms, behaving as though F (δA) = δFA and F (εA) = εFA.

Conveniently, natural transformations between Cartesian monoidal functors are

automatically monoidal:

Lemma 2.4.8. Let X,Y be Cartesian monoidal categories, let F,G : X → Y be

Cartesian monoidal functors, and let α : F → G be a natural transformation. Then

α is monoidal.

Proof. Since α is natural we have:

F (A⊗B) G(A⊗B)

FA GA

F (π0)=π0

αA⊗B

G(π0)=π0

αA

Then (αA ⊗ αB)π0 = ⟨π0αA, π1αB⟩π0 = π0αA = αA⊗Bπ0. Similarly we have

(αA ⊗ αB)π1 = αA⊗Bπ1, and so we have αA ⊗ αB = αA⊗B by the universal

property of binary products.

Next, we have αI = !I = 1I because !I : I → I is the unique arrow of I → I.

Thus, α is a monoidal natural transformation.

We assemble the above notions into a 2-category:

Definition 2.4.9. CM is the 2-category with small Cartesian monoidal categories

as 0-cells, Cartesian monoidal functors as 1-cells, and (necessarily monoidal) nat-

ural transformations as 2-cells.
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2.4.2 Algebraic Theories and Classical Presentations

We begin with the definition of algebraic theory:

Definition 2.4.10. An Algebraic Theory is a small cartesian monoidal category.

Models of a theory are given by structure-preserving functors:

Definition 2.4.11. A model of an algebraic theory X is a cartesian monoidal

functor X→ Set.

And model morphisms correspond to natural transformations:

Definition 2.4.12. Let X be an algebraic theory and let F,G : X→ Set be models

of X. Then a model morphism α : F → G is a natural transformation.

While it has many advantages, this notion of algebraic theory is rather more ab-

stract than the one typically encountered. The systems of generators and equations

that one usually uses to present a theory are what we call classical presentations.

We proceed to develop this notion now. Following this, we will give an alternative

method of presenting algebraic theories in terms of string diagrams, building on

the contents of Section 2.1. We begin with the appropriate notion of signature:

Definition 2.4.13. A classical signature Σ consists of a set s(Σ) of sorts, a set |Σ|
of generators, and functions δ0 : |Σ| → s(Σ)∗ and δ1 : |Σ| → s(Σ). For γ ∈ |Σ| we

call δ0(γ) the arity of γ and call δ1(γ) the coarity of γ. Notice that in a classical

signature the coarity is an element of s(Σ), not of s(Σ)∗. We write γ : X → Y ∈ Σ

to mean that γ ∈ |Σ| with δ0(γ) = X and δ1(γ) = Y .

The classical notion of term over a signature will be familiar from universal

algebra:

Definition 2.4.14. Let Σ be a classical signature. The category T(Σ) of classical

terms over Σ is given as follows:

objects are elements of s(Σ)∗.

arrows are tuples of terms. Terms are given as follows:

A ∈ s(Σ) n ∈ N

xAn : A

γ ∈ |Σ| δ0(γ) = A1 ⊗ · · · ⊗An δ1(γ) = A t1 : A1, . . . , tn : An

γ(t1, . . . , tn) : A

Arrows ⟨f1, . . . , fm⟩ : A1 ⊗ · · · ⊗ An → B1 ⊗ · · · ⊗ Bm are m-tuples of terms in

variables xA1
1 , . . . , xAn

n . We write xn = xAn when the typing is clear from context.
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composition is given by substitution. Given ⟨f1, . . . , fh⟩ : A1⊗ · · ·⊗An → C1⊗
· · ·⊗Ch and ⟨g1, . . . , gm⟩ : C1⊗· · ·⊗Ch → B1⊗· · ·⊗Bm where f1, . . . fh are defined

in variables xA1
1 , . . . , xAn

n and g1, . . . , gm are defined in variables xC1
1 , . . . , xCh

h , we

define the composite as follows:

⟨f1, . . . , fh⟩⟨g1, . . . , gm⟩ ≜ ⟨g1[f1,...,fh/x1,...,xh
], . . . , gm[f1,...,fh/x1,...,xh

]⟩

the identity on A1 ⊗ · · · ⊗An is given by:

⟨xA1
1 , . . . , xAn

n ⟩ : A1 ⊗ · · · ⊗An → A1 ⊗ · · · ⊗An

It is straightforward to verify that T(Σ) does indeed form a small category.

Perhaps the most important property of T(Σ) is that it has finite products:

Proposition 2.4.15. Let Σ be a classical signature. Then T(Σ) has finite products.

Proof. We show that T(Σ) has binary products and a terminal object. The terminal

object is I, the unit of the object monoid s(Σ)∗, where the unique arrow !A = ⟨⟩ :

A → I is given by the empty tuple for all objects A of T(Σ). For any A =

A1 ⊗ · · · ⊗ An and B = B1 ⊗ · · · ⊗Bm with A1, . . . , Bm ∈ s(Σ) there is a product

diagram:

A A⊗B B
π1 = ⟨xA1

1 ,...,xAn
n ⟩ π2 = ⟨xB1

n+1,...,x
Bm
n+m⟩

Given C = C1⊗· · ·⊗Ch and arrows f = ⟨f1, . . . , fn⟩ : C → A and g = ⟨g1, . . . , gm⟩
of T(Σ) we define ⟨f, g⟩ = ⟨f1, . . . , fn, g1, . . . , gm⟩ : C → A⊗B. Then we have:

⟨f, g⟩π1 = ⟨f1, . . . , fn, g1, . . . , gm⟩⟨xA1
1 , . . . , xAn

n ⟩
= ⟨x1[f1,...,fn,g1,...,gm/x1,...,xn+m ], . . . , xn[f1,...,fn,g1,...,gm/x1,...,xn+m ]⟩
= ⟨f1, . . . , fn⟩ = f

and similarly ⟨f, g⟩π2 = g. For any h = ⟨h1, . . . , hn+m⟩ : C → A ⊗ B satisfying

hπ1 = f and hπ2 = g we have:

⟨f1, . . . , fn⟩ = f = hπ1 = ⟨h1, . . . , hn+m⟩⟨x1, . . . , xn⟩
= ⟨x1[h1,...hn+m/x1,...xn+m ], . . . xn[h1,...hn+m/x1,...xn+m ]⟩
= ⟨h1, . . . , hn⟩

and similarly we have ⟨g1, . . . , gm⟩ = ⟨hn+1, . . . , hn+m⟩. It follows that

⟨f, g⟩ = ⟨f1, . . . , fn, g1, . . . , gm⟩ = ⟨h1, . . . , hn+m⟩ = h

as required. We conclude that T(Σ) has finite products.
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An equation is again a pair of terms:

Definition 2.4.16. Let Σ be a signature. Then a classical equation over Σ is a

pair (f, g) where f, g : A→ B in T(Σ). We often write f = g instead of (f, g).

And a presentation is again given by a signature together with equations:

Definition 2.4.17. A classical presentation (Σ, E) consists of a classical signature

Σ together with a set E of classical equations over Σ.

Finally, a presentation is again taken to present the category of terms over the

associated signature, modulo the associated equations:

Definition 2.4.18. Let (Σ, E) be a classical presentation. Write T(Σ, E) for the

category with finite products obtained by quotienting T(Σ) by the equations of E.

We call T(Σ, E) the algebraic theory presented by (Σ, E), and similarly we say that

(Σ, E) presents T(Σ, E).

Example 2.4.19. Consider the classical presentation (ΣMon, ECMon) with a single

sort s(ΣMon) = {X}, with generators |ΣMon| = {m : X ⊗ X → X, e : I → X},
and with equations ECMon = {m(x1,m(x2, x3)) = m(m(x1, x2), x3),m(x1, x2) =

m(x2, x1),m(x1, e()) = m(x1)}. Now, consider the algebraic theory T(ΣMon, ECMon)

presented by (ΣMon, ECMon).

Recall that a model of T(ΣMon, ECMon) is precisely a functor F : T(ΣMon, ECMon)→
Set that preserves finite products. Observe that since F preserves finite products

the object mapping is determined by a set FX and the arrow mapping is deter-

mined by functions F (m) : FX × FX → FX and F (e) : 1 → FX. For F to be

well-defined we must also have that terms made equal by ECMon are equal in the

image of F . That is, a model of T(ΣMon, ECMon) is precisely a commutative monoid

(FX,F (m), F (e)).

Recall further that for F,G : T(ΣMon, ECMon) → Set a model morphism α :

F → G is a natural transformation. Now s(ΣMon) = {X} and since F,G are

Cartesian, we know that α is necessarily monoidal. It follows that any α : F → G

is determined by the component αX : FX → GX. Thus, to give a model morphism

α : F → G is precisely to give a function αX : FX → GX satisfying

FX × FX GX ×GX

FX GX

F (m)

αX×αX

G(m)

αX

1 1

FX GX

F (e)

11

G(e)

αX

This is precisely to say that αX : (FX,F (m), F (e)) → (GX,G(m), G(e)) is a

monoid homomorphism. Thus, the category of models and model morphisms of

T(ΣMon, ECMon) is the category of commutative monoids and monoid homomor-

phisms. That is, (ΣMon, ECMon) presents the theory of commutative monoids.
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2.4.3 Cartesian Monoidal Presentations

Theorem 2.4.5 gives us a way to present algebraic theories (i.e., Cartesian monoidal

categories) string-diagrammatically, by adapting the approach of Section 2.1. The

appropriate notion of signature is again a monoidal signature, and for terms we

define:

Definition 2.4.20. Let Γ be a monoidal signature. The small Cartesian monoidal

category C(Γ) of Cartesian monoidal terms over Γ is constructed the same way

S(Γ) is, but with additional generating arrows:

A ∈ s(Γ)∗

δA : A→ A⊗A
A ∈ s(Γ)∗

εA : A→ I

Additional equations concerning coherence:

δI = □ εI = □ δA⊗B = (δA ⊗ δB)(1A ⊗ σA,B ⊗ 1B) εA⊗B = εA ⊗ εB

And a few remaining additional equations:

δA(δA ⊗ 1A) = δA(1A ⊗ δA) δA(1A ⊗ εA) = 1A δAσA,A = δA

fδB = δA(f ⊗ f) fεB = εA

It is convenient to specify cartesian monoidal presentations using string dia-

grams. We recall the diagrammatic convention for cartesian monoidal categories:

δA ↭ εA ↭

Then the equations concerning coherence become:

and the remaining additional equations become:

Equations are again pairs of terms:
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Definition 2.4.21. Let Γ be a monoidal signature. A Cartesian monoidal equation

over Γ consists of a pair (f, g) where f, g : A→ B ∈ C(Γ) are Cartesian monoidal

terms over Γ. We typically write f = g instead of (f, g).

And a presentation is again a signature together with equations:

Definition 2.4.22. A Cartesian monoidal presentation (Γ, E) consists of a monoidal

signature Γ together with a set E of Cartesian monoidal equations over Γ.

As before, a presentation is taken to present the category of terms over the

associated signature, modulo the associated equations:

Definition 2.4.23. Let (Γ, E) be a Cartesian monoidal presentation. Write C(Γ, E)

for the small Cartesian monoidal category obtained by quotienting C(Γ) by the

equations of E. We say that C(Γ, E) is the algebraic theory presented by (Γ, E).

Example 2.4.24. Recall the symmetric monoidal presentation (ΓMon, ECMon), and

notice that it is also a Cartesian monoidal presentation via the evident inclusion

S(Γ)→ C(Γ) for any monoidal signature Γ. Then C(ΓMon, ECMon) ∼= T(ΣMon, ECMon)

of Example 2.4.19. That is, (ΓMon, ECMon) presents the algebraic theory of commu-

tative monoids.

Classical and Cartesian monoidal presentations of algebraic theories are equiva-

lently expressive. Intuitively, the input (top) wires of a term (string diagram) over a

monoidal signature correspond to variables, and each output wire describes a term

in those variables. For example, terms in the classical presentation of the theory

of monoids and the Cartesian monoidal presentation correspond to the following

terms in variables x1 and x2:

m(x1, x2) ↭ e ↭ m(m(x1, x2), x1) ↭

The variables of the term in question correspond to the input wires, and the term

itself to the output wire. Substitution of terms for variables is replaced by compo-

sition. For example:

m(m(x1, x2), x1)[e,m(x1,x2)/x1, x2] ↭

where the result of performing the substitution is equivalently the result of dia-

grammatic manipulation:

m(m(e,m(x1, x2)), e) ↭
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A difference between Cartesian monoidal and classical presentations is that in the

former terms may have arbitrary co-arity, while in the latter the co-arity must

be singleton. This difference is a superficial one, since the Cartesian structure

allows us to represent generators γ : X → B0 ⊗ B1 as γ0 = γπ0 : X → B0 and

γ1 = γπ1 : X → B1, with γ being constructible from γ0 and γ1 as in γ = ⟨γ0, γ1⟩.

2.4.4 Varieties and Morita Equivalence

In this section we recall the variety theorem for algebraic theories. The variety

theorem concerns categories which arise as the models and model morphisms of

some algebraic theory X, which are called varieties. The theorem takes the form of

a biadjunction between the 2-category CM of algebraic theories and a 2-category

Varop of varieties. One way to think of algebraic theories is as a kind of syntax,

with the associated varieties being the corresponding semantics. Because of this the

biadjunction of the variety theorem is sometimes called a syntax-semantics duality.

We also recall a related characterisation of Morita equivalence for algebraic theories,

which is what it is called when two theories present the same variety. Specifically,

two algebraic theories present the same variety (i.e., are Morita equivalent) if and

only if they have equivalent idempotent splitting completions.

We begin by specialising Lemma 2.2.8 to the cartesian monoidal case:

Lemma 2.4.25. Let X be a Cartesian monoidal category. Then

(i) Split(X) is a Cartesian monoidal category.

(ii) The embedding J−K : X ↪→ Split(X) preserves the Cartesian monoidal struc-

ture.

Proof. (i) We know from Lemma 2.2.8 that Split(X) is symmetric monoidal. The

comultiplication δ(X,a) and counit ε(X,a) of the Cartesian monoidal structure

in Split(X) are, respectively:

and it is straightforward to verify that this satisfies the axioms of a Carte-

sian monoidal category. For example, we have that δ(X,a) is coassociative as

follows:
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(ii) Immediate.

The 2-functor of Lemma 2.3.8 specialises as well:

Lemma 2.4.26. Let CMs be the full sub 2-category of CM on the 0-cells X in which

the idempotents split. Then splitting idempotents defines a 2-functor Split : CM→
CMs.

Proof. As in Lemma 2.3.5, on 1-cells F : X → Y define Split(F ) : Split(X) →
Split(Y) on objects by Split(F )(X, a) = (FX,F (a)) and on arrows by Split(F )(f) =

F (f). On 2-cells define Split(α)(X,a) = F (a)αXG(a). The proof that this defines a

2-functor Split : CM → CMs is largely the same as the proof of Lemma 2.3.8. We

need only show that if F : X → Y is a cartesian monoidal functor then Split(F ) :

Split(X)→ Split(Y) is also cartesian monoidal. We have Split(F )(δ(X,a))

= Split(F )(aδX(a ⊗ a)) = F (a)F (δX)(F (a) ⊗ F (a)) = F (a)δFX(F (a) ⊗ F (a)) =

δ(FX,F (a)) = δSplit(F )(X,a) and Split(F )(ε(X,a)) = Split(F )(aεX) = F (a)F (εX) =

F (a)εFX = ε(FX,F (a)) = εSplit(F )(X,a), as required.

And finally the biadjunction from Lemma 2.3.9 also specialises to the cartesian

monoidal case:

Lemma 2.4.27. There is a biadjunction:

CM CMs⊥
Split

where the right adjoint CMs ↪→ CM is the evident inclusion.

Proof. The proof is similar to the proof of Lemma 2.3.9. As before, we define

(−)♯ : CMs(Split(X),C) → CM(X,C) which is natural in X and C, and show that

it is full, faithful, and essentially surjective.

The proof that (−)♯ is essentially surjective is almost identical to the corre-

sponding part of Lemma 2.3.9. The only difference is that now we must also show

that our F̂ is always a cartesian monoidal functor. We have already seen that it

is symmetric monoidal. For the cartesian monoidal structure, we have F̂ (δ(X,a)) =

saF (a)F (δX)(F (a)⊗F (a))(ra⊗ra) = saδFX(ra⊗ra) = saraδF̂ (X,a) = δF̂ (X,a) and

F̂ (ε(X,a)) = saF (a)F (εX) = saεFX = εF̂ (X,a). It now follows by corresponding

argument from Lemma 2.3.9 that (−)♯ is essentially surjective. The argument that

(−)♯ is full and faithful in Lemma 2.3.9 gives that it is full and faithful here as

well.

We will compose this biadjunction with a biequivalence due to Adamek, Rosickỳ

and Lawvere [2] in order to obtain the variety theorem. First, let Var be the 2-
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category with 0-cells the varieties4 CM(X,Set) for some algebraic theory X, with

1-cells given by functors that both admit a left adjoint and commute with sifted

colimits (see e.g., [4]), and with 2-cells given by natural transformations. The

relationship between algebraic theories and varieties is as follows:

Theorem 2.4.28 ([2]). There is a biequivalence:

CMs Varop≃
CM(−,Set)

Var(−,Set)

where CMs is the 2-category of small Cartesian monoidal categories in which all

idempotents split, Cartesian monoidal functors, and natural transformations.

Now we compose our idempotent splitting biadjunction with the above biequiva-

lence to obtain a biadjunction relating arbitrary algebraic theories to the associated

variety:

Theorem 2.4.29 ([2]). There is a biadjunction:

CM Varop⊥
Mod

Th

Proof. Combining Lemma 2.4.27 and Theorem 2.4.28 gives:

CM CMs Varop⊥
Split

≃
CM(−,Set)

Var(−,Set)

Considered alone the biequivalence CMs ≃ Varop gives:

Theorem 2.4.30 ([2]). Two algebraic theories X and Y present equivalent varieties

CM(X,Set) ≃ CM(Y,Set) if and only if Split(X) ≃ Split(Y).

That is, two algebraic theories are Morita equivalent if and only if splitting the

idempotents yields equivalent categories.

4Strictly speaking it does not make sense to write CM(X,Set), since the 0-cells of CM are
the small cartesian monoidal categories and Set is not small. Nonetheless, there is a category
of cartesian monoidal functors X → Set and natural transformations between them, which we
denote CM(X, Set).
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Chapter 3

Partial Algebraic Theories

The aim of this chapter is to develop a notion of partial algebraic theory analogous

to the algebraic theories treated in the previous section, but with the important

difference that the operations are interpreted as partial functions, as opposed to

total functions. More precisely, while models of algebraic theories are valued in the

category Set of sets and (total) functions, models of partial algebraic theories will

be valued in the category Par of sets and partial functions. To begin, recall:

Definition 3.0.1. The category Par of sets and partial functions is given as follows:

objects are sets.

arrows f : X → Y are partial functions. That is, pairs (dom(f), def(f)) where

dom(f) ⊆ X is the domain of definition of f and def(f) : dom(f)→ Y is a (total)

function. Given a partial function f : X → Y and some X ′ ⊆ X we write f |X′

for the partial function (dom(f) ∩X ′, f ′) where f ′ : dom(f) ∩X ′ → Y is def(f)

restricted to the (potentially smaller) domain of definition dom(f)∩X ′. Similarly,

given Y ′ ⊆ Y , write f−1(Y ′) = {x ∈ dom(f) | def(f)(x) ∈ Y ′}.

composition of f : X → Y and g : Y → Z is given by

fg = (f−1(dom(g)), (def(f) |f−1(dom(g)) def(g))

The identity on X is (X, 1X).

It is straightforward to verify that this data makes Par a category. Further, there

is a natural partial order on the hom-sets Par(X,Y ) given by:

f ≤ g ⇔ dom(f) ⊆ dom(g) ∧ g |dom(f) = f.

and in fact Par is enriched in the category of posets and monotone functions.
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Algebraic theories correspond to Cartesian monoidal categories, which describe

the behavior of the Cartesian product of sets in Set. Analogously, partial algebraic

theories will describe the behavior of the Cartesian product of sets in Par. We

proceed to develop the categorical structure that will play this role.

3.1 Cartesian Restriction Categories

Restriction categories are abstract categories of partial maps. Instead of working

with sets and functions, we will impose axioms on a category to the effect that it

admits a notion of partiality. Let us begin with a brief introduction to the theory of

restriction categories. More details can be found in [21, 22, 24, 17]. The immediate

goal is the notion of a Cartesian restriction category (CR category), which captures

part of the behavior of the Cartesian product of sets in the category Par. We begin

as follows:

Definition 3.1.1 ([21, 2.1.1]). A restriction category is a category in which every

arrow f : A→ B admits a domain of definition f : A→ A satisfying:

[R.1] ff = f

[R.2] f g = gf where g : A→ C

[R.3] fg = fg where g : A→ C

[R.4] fg = fgf where g : B → C

Intuitively, f is a sort of partial identity map which represents the domain of

definition of f , in that f is defined precisely when f is defined, in which case it acts

as the identity. Arrows of the form f are called restriction idempotents. Arrows

f : A→ B with f = 1A are called total, and form a subcategory Total(C).

Example 3.1.2. Par is a restriction category where for f = (dom(f), def(f)) :

X → Y we define f = (dom(f), dom(f)) : X → X. The subcategory Total(Par) of

total maps in Par is precisely Set. Here we have written dom(f) : dom(f)↣ X to

indicate the subobject witnessing the inclusion of sets dom(f) ⊆ X.

We recapitulate a few elementary properties of restriction idempotents:

Lemma 3.1.3 ([21, 2.1]). Let X be a restriction category. Then:

(i) f f = f where f : A→ B.

(ii) fg f = fg where f : A→ B, g : B → C.

(iii) fg = fg where f : A→ B, g : B → C.
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(iv) f = f where f : A→ B.

(v) f g = f g where f : A→ B, g : A→ C.

(vi) If f : A→ B is monic, then f = 1A and so f is total.

Proof. (i) By [R.3] and [R.1] we have f f = ff = f .

(ii) By [R.2], [R.3], and [R.1] we have fg f = f fg = ffg = fg.

(iii) By [R.4], [R.3], and (ii) we have fg = fgf = fg f = fg.

(iv) Using (iii) we have f = 1f = 1f = f .

(v) Using [R.3] and (iv) we have f g = f g = f g.

(vi) If f is monic then 1f = f = ff which gives f = 1.

An analogue of the poset-enrichment of Par is present in any restriction category:

Lemma 3.1.4 ([21, 2.1.4]). Any restriction category is enriched in the category of

posets and monotone functions, with the ordering on hom-sets given by:

f ≤ g ⇔ fg = f

Proof. The ordering is reflexive in case ff = f for all f , which follows from [R.1].

For transitivity, if fg = f and gh = g then we have fh = fgh = f gh = fg = f

as required. For antisymmetry, if fg = f and gf = g then f = fg = f gf =

g ff = gf = g as required. It follows that in a restriction category X each hom-set

X(A,B) is a poset. It remains to show that composition is monotone. If fg = f

and hk = h then we have fhgk = fhgk = fh fgk = fh fgk = fhfk = fhk = fg,

and the claim follows.

There is an evident notion of structure-preserving functor between restriction

categories:

Definition 3.1.5 ([21, 2.2.1]). Let X,Y be restriction categories. A restriction

functor F : X → Y is a functor that preserves domains of definition, in the sense

that Ff = Ff .

Restriction categories, restriction functors (which are automatically poset-enriched),

and lax natural transformations (Definition 3.1.15) form a 2-category RCat. Any

category is a restriction category with f = 1X for all f , which we call the trivial

restriction structure on that category. The usual notion of limit diagram has un-

fortunate consequences when considered in a restriction category. For example in
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a restriction category with finite products where the projection maps are total, we

have:

f = ⟨f, 1⟩π0 = ⟨f, 1⟩π0 = ⟨f, 1⟩π1 = ⟨f, 1⟩π1 = 1 = 1

meaning that the restriction structure is the trivial one. Instead, one works with

restriction limits, which are formal limits in RCat [24]. Following Cockett and

Hofstra [19], an explicit definition of the resulting notion of terminal object is:

Definition 3.1.6 ([19, 2.2]). A restriction terminal object in a restriction category

is an object 1 such that for any object A there is a unique total map !A : A → 1

and, moreover, for any f : A→ B the inequation f !B ≤!A holds.

and an explicit definition of the resulting notion of binary product is:

Definition 3.1.7 ([19, 2.2]). In a restriction category, a diagram of the form

A A×B B
π0 π1

in which π0 and π1 are total is called a restriction product in case for any two

arrows f : C → A and g : C → B, there is a unique arrow ⟨f, g⟩ : C → A×B such

that ⟨f, g⟩π0 = gf and ⟨f, g⟩π1 = fg.

A consequence of this definition is that ⟨f, g⟩π0 ≤ f and ⟨f, g⟩π1 ≤ g. One

obtains a lax version of the usual diagram characterizing products:

C

A A×B B

f g⟨f,g⟩

π0 π1

≥ ≤

Categories with finite products are sometimes called “Cartesian categories”. This

motivates the following terminology for categories with finite restriction limits:

Definition 3.1.8 ([19, 2.2]). A restriction category with a restriction terminal ob-

ject and a restriction product for every pair of objects therein in called a Cartesian

restriction category (CR category).

Example 3.1.9. Par is a CR category. Any singleton set is a restriction terminal

object, and the restriction product is given by the Cartesian product of sets.

An important difference between Cartesian monoidal categories and CR cate-

gories is that the same symmetric monoidal category may be a CR category in

more than one way, but may be a Cartesian monoidal category in at most one way.

For example, Par is a restriction category both with the trivial restriction structure

and the one discussed in Example 3.1.2. However, once a restriction structure is
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chosen on a category the resulting restriction category can be a CR category in

at most one way [21]. A potential point of confusion is that while Par does have

binary products, they do not correspond to the Cartesian product of sets. The

categorical product of A and B in Par is (A+{⋆})× (B+{⋆})−{(⋆, ⋆)}. This can

be seen via the equivalence 1/Set ≃ Par. Limits in the coslice category 1/Set are

calculated pointwise, and the functor 1/Set→ Par removes the point. For more on

this see [23].

CR categories have appeared in the literature under a variety of different names,

including p-category with a one-element object [46] and partially Cartesian cate-

gory [25]. Our development rests on the fact that CR categories admit a monoidal

presentation analogous to the presentation of categories with finite products given

by Theorem 2.4.5. Specifically, we have:

Theorem 3.1.10 ([24, Theorem 5.2]). A CR category is the same thing as a

symmetric monoidal category where every object is equipped with a commutative

comonoid structure that is coherent and has natural comultiplication. That is, for

any f : A→ B we have fδB = δA(f ⊗ f).

Proof. If X is a Cartesian restriction category, then it is straightforward to show

that (A,∆A = ⟨1A, 1A⟩, !A) is a cocommutative comonoid, and that the resulting

structure is coherent. Naturality holds by f∆ = f⟨1, 1⟩ = ⟨f, f⟩ = ∆(f × f).

For the converse, suppose C is a symmetric monoidal category equipped with a

coherent commutative comonoid structure in which the comultiplication is natural.

We must show that C is a Cartesian restriction category. Define f as follows:

This satisfies the restriction axioms as follows:

We have ff = f as in:

We have fg = gf as in:
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For fg = fg notice that fg is:

which is equal to fg as in 2.

We have fg = fgf as in:

So C is a restriction category. Next, define the restriction product of A and B to

be A⊗B with projection maps:

and

Now, for any f : C → A and g : C → B, define the pairing map ⟨f, g⟩ by:

Then we have ⟨f, g⟩π0 = gf and ⟨f, g⟩π1 = fg immediately, each denoting the

same string diagrams as in:

and

as required.

In order to show that the pairing operation is unique, suppose that h : C → A⊗B
is such that hπ0 = gf and hπ1 = fg. Then we have h = ⟨f, g⟩ as follows:

We have shown that C has restriction products. The restriction terminal object

of C is I, with !A = εA. For any f : A→ B we have f !B !A = δA(f !B⊗!A) = f !B as
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in:

It follows that f !B ≤!A as required. Thus, C is a CR category. Moreover, the

construction of CR category structure from commutative comonoid structure and

the construction of commutative comonoid structure from CR category structure

are mutually inverse.

From this perspective a CR category is very similar to a Cartesian monoidal

category. The only difference is that the counit of the comonoid does not need to

be natural. In fact, the total maps of a CR category are precisely those which are

natural with respect to the counit:

Lemma 3.1.11. Let C be a Cartesian restriction category, and let f : A → B in

C. Then f is total (in the sense that f = 1A) if and only if fεB = εA.

Proof. If fεB = εA then f = 1A as in:

Conversely, if f = 1A then fεB = εA as in:

For example, the comultiplication morphisms δA are necessarily total. Notice

that as a consequence of Theorem 2.4.5 we obtain:

Corollary 3.1.12. Let C be a Cartesian restriction category. Then Total(C) is

Cartesian monoidal.

This presentation of the Cartesian restriction category structure suggests a no-

tion of structure-preserving functor:

Definition 3.1.13. A CR functor between two CR categories F : X → Y is a

symmetric monoidal functor that preserves the CR category structure in the sense

that F (δA) = δFAϕ
F
A,A and F (εA) = εFAϕ

F
I .

As with the other sorts of monoidal functors considered in this thesis, we omit

the coherence isomorphisms, behaving as though F (δA) = δFA and F (εA) = εFA.

CR functors are restriction functors:
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Lemma 3.1.14. If X,Y are CR categories and F : X → Y is a CR functor then

F is a restriction functor. That is, F (f) = F (f) for all f : A→ B of X.

Proof. We have F (f) = F (δA(1A ⊗ fεB)) = F (δA)(F (1A)⊗ F (f)F (εB)) =

δFA(1FA ⊗ F (f)εFB) = F (f).

While there are many interesting notions of transformation between restriction

functors (see e.g., [20]), the one that is relevant here is that of monoidal lax trans-

formation. Monoidal lax transformations make sense at the more general level

of poset-enriched categories, where in the case of restriction categories the poset

enrichment is the one from Lemma 3.1.4.

Definition 3.1.15. Let X,Y be poset-enriched categories and let F,G : X→ Y be

poset-enriched functors, meaning that f ≤ g ⇒ Ff ≤ Fg and Gf ≤ Gg. Then a

lax transformation α : F → G consists of a morphism αX : FX → GX of Y for each

object X of X such that for all arrows f : X → Y of X we have F (f)αY ≤ αXG(f).

That is, such that the usual naturality square commutes up to ≤ as in:

FX GX

FY GY

Ff

αX

Gf

αY

≤

Definition 3.1.16. Let X,Y be poset-enriched monoidal categories, and let F,G :

X → Y be poset-enriched monoidal functors. A lax transformation α : F → G is

called monoidal in case (αX ⊗ αY )ϕGX,Y = ϕFX,Y αX⊗Y and ϕFI αI = ϕGI .

As with monoidal natural transformations, we will systematically omit the co-

herence isomorphisms when working with monoidal lax transformations. That is,

we behave as though αX ⊗ αY = αX⊗Y and αI = 1I .

Curiously, the components of a monoidal lax transformation between CR func-

tors are always total:

Lemma 3.1.17. Let F,G : X → Y be CR functors and let α : F → G be a

monoidal lax transformation. Then the components of α are necessarily total in

the sense that αX = 1FX for all objects X of X.

Proof. We have εFX = F (εX)αI ≤ αXG(εX) = αXεGX . We have αXεGX ≤ εFX

because I is a restriction terminal object, so εFX = αAεGX . Now by Lemma 3.1.11

the components of αA of α are total.

Conversely, lax transformations of CR functors with total components are always

monoidal:
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Lemma 3.1.18. Let α : F → G be a lax transformation of CR functors whose

components are total in the sense that αX = 1FX for all X of X. Then α is

necessarily monoidal.

Proof. It follows from lax naturality of α that π0αX ≤ αX⊗Y π0, but both sides of

this inequation are total so we have π0αX = αX⊗Y π0. Similarly we have π1αY =

αX⊗Y π1. It follows by the universal property of the restriction product that αX ⊗
αY = ⟨π0αX , π1αY ⟩ = αX⊗Y . The fact that αI : I → I is total means that it must

be the identity.

Monoidal lax transformations are the more generally applicable notion, but we

will frequently use the fact that components of such transformations between CR

functors are necessarily total.

3.2 DCR Categories

Cartesian restriction categories do not capture all the behavior of the Cartesian

product of sets in Par that is involved in our notion of partial algebraic theory. In

particular, we will require CR categories with the following extra structure:

Definition 3.2.1 ([17, 2.18]). A discrete Cartesian restriction category (DCR

category) is a CR category in which for each object A there is an arrow µA :

A⊗A→ A that is partial inverse to δA. That is, δAµA = δA = 1A and µAδA = µA.

Example 3.2.2. Par is a DCR category. For any set A, µA : A ⊗ A → A is the

partial function that maps (x, y) to x in case x = y, and is otherwise undefined.

DCR categories admit presentation in terms of their symmetric monoidal struc-

ture, extending Theorem 3.1.10. An important component of this result is a notion

of commutative special Frobenius algebra in which the monoid does not have a

unit, which we call a non-unital Frobenius algebra. More precisely:

Definition 3.2.3. A non-unital Frobenius algebra (X, δX , µX , εX) in a symmetric

monoidal category consists of a commutative comonoid (X, δX , εX) and a com-

mutative semigroup (X,µX) such that (X, δX , µX) is a semi-Frobenius algebra.

Diagrammatically, this is the comonoid structure we have already seen together

with µX , which is depicted in string diagrams as:
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subject to the following additional equations:

Note that there is some redundancy in the equational presentation above, as

discussed in [12]. We are now ready to extend Theorem 3.1.10 to DCR categories:

Theorem 3.2.4. A DCR category is the same thing as a symmetric monoidal

category where every object A is equipped with a coherent non-unital Frobenius

algebra structure (A, δA, εA, µA) with natural comultiplication. That is, for any

f : A→ B we have fδB = δA(f ⊗ f).

Proof. Suppose X is a CR category in which each δA : A → A ⊗ A has a partial

inverse µA : A ⊗ A → A. Then it is straightforward to show that µ is coherent

with respect to the monoidal structure, and that µA is always associative and

commutative. The special equation holds because δAµA = δA = 1A, and for the

Frobenius equations we use that µA = µAδA to obtain:

From which both Frobenius identities follow. For the converse, the special equa-

tion gives that δAµA = 1 = δA, and further we have µAδA = µA as in:

meaning that µA is a partial inverse for δA.

Note that Theorem 3.2.4 owes much to the work of Giles [33] on discrete in-

verse categories. There the relevant notion is that of a commutative special semi-

Frobenius algebra, which is obtained by removing both the unit and counit from a

commutative special Frobenius algebra. The difference, of course, is that for DCR

categories we retain the counit.
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Theorem 3.2.4 suggests that a functor of DCR categories should be a CR functor

with the additional property that F (µA) = µFA. This is true for every such functor,

since partial inverses are unique and are preserved by restriction functors [21]. As

such, we will take CR functors as our notion of morphism of DCR category. Taking

monoidal lax transformations as 2-cells gives a 2-category:

Definition 3.2.5. DCR is the 2-category of small DCR categories, CR functors,

and monoidal lax transformations.

This 2-category plays an important role in our development of partial theories,

analogous to the role of the 2-category CM in the context of algebraic theories.

The difference between CR categories and DCR categories is succinctly captured

by the useful notion of meets in a restriction category:

Definition 3.2.6 ([17, 2.8]). A restriction category C is said to have meets in

case each hom-set C(X,Y ) has meets with respect to the ordering of Lemma 3.1.4,

which are further preserved by precomposition in the sense that h(f ∩g) = hf ∩hg
for any f, g : X → Y and h : Z → X.

In particular notice that we do not ask for meets to be unital, or for meets to

be preserved by postcomposition. We then have:

Lemma 3.2.7 ([17, 2.20]). Let C be a CR category. Then C is a DCR category if

and only if C has meets.

Proof. If C is a DCR category then the meet of f, g : X → Y is given by f ∩ g =

δX(f ⊗ g)µY . In string diagrams:

Conversely if C has meets them µX : X ×X → X is given by πX,X0 ∩ πX,X1 .

The ordering on hom-sets in a DCR category is expressible via the meet:

Lemma 3.2.8. Let X be a DCR category and let f, g : X → Y in X. Then f ≤ g

if and only if f ∩ g = f .

Proof. Suppose that f ∩ g = f . Then we have fg = f as in:
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For the converse, suppose that fg = f . Then we have f ∩ g = fg = f as in:

In a DCR category all arrows are natural with respect to δ, and we have al-

ready seen that arrows that are natural with respect to ε are the total ones

(Lemma 3.1.11). Theorem 3.2.4 raises the question of what property the arrows

that are natural with respect to µ have. The answer is that they are precisely the

partial monics, as in:

Definition 3.2.9 ([17, 2.1]). Let C be a restriction category, and let f : A → B

in C. We say that f is partial monic in case for all g1, g2 : C → A in C, g1f = g2f

implies g1f = g2f .

For example, the partial monics in Par are precisely the partial injective func-

tions. Partial monics play an important role in the development of range cate-

gories [17]. Notice also that f is partial monic and total if and only if f is monic.

Now, as promised, we have:

Lemma 3.2.10. Let C be a DCR category, and let f : A → B in C. Then f is

partial monic if and only if µAf = (f ⊗ f)µB.

Proof. Suppose (f ⊗f)µB = µAf , and suppose g1f = g2f for some g1, g2 : C → A.

Then we have g1f = (g1 ∩ g2)f as in:

Similarly, we have g2f = (g1 ∩ g2)f , and so g1f = g2f and f is partial monic.

For the converse, suppose that f is partial monic. For any f : A → B we have

µAf(f ⊗ f)µB = µAf as in:

and so µAf ≤ (f ⊗ f)µB . Thus it suffices to show that (f ⊗ f)µB ≤ µAf . To do
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this, first notice that (f ⊗ f)µB(1A ⊗ εA)f = (f ⊗ f)µB(εA ⊗ 1A)f as in:

Since f is partial monic this gives (f ⊗ f)µB(1A ⊗ εA)f = (f ⊗ f)µB(εA ⊗ 1A)f .

Reducing both sides of this equation yields:

It follows that (f ⊗ f)µBµAf = (f ⊗ f)µB as in:

and so (f ⊗ f)µB = µAf , as required.

Since our attention is already focused on DCR categories, let us take the oppor-

tunity to discuss DCR categories with split restriction idempotents. Recall that

restriction idempotents in a restriction category are those morphisms e : X → X

which occur as the domain of definition of some arrow f : X → Y in the sense

that e = f . Equivalently, e is a restriction idempotent in case we have e ≤ 1X

or, also equivalently, in case e = e. Split restriction idempotents are important to

the theory of restriction categories more broadly, and in the specific case of DCR

categories enjoy a remarkable property:

Lemma 3.2.11 ([16, Lemma 5.32]). Let X be a DCR category. Then restriction

idempotents split in X if and only if all idempotents split in X.

Proof. If all idempotents split then the restriction idempotents do. For the con-

verse, suppose that all restriction idempotents split, and let e : A → A be an

arbitrary idempotent. Then (1 ∩ e) = (1 ∩ e) is a restriction idempotent, so we

know that it splits as in:

X A

X A

s

s

1∩e
r
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for some r, s. Now we have (1 ∩ e)e = (1 ∩ e) as in:

which in turn gives that re and s split e as in:

ser = srser = s(1 ∩ e)er = s(1 ∩ e)r = srsr = 1X

and

ers = e(1 ∩ e) = (e ∩ ee) = (e ∩ e) = e

as required.

Splitting the restriction idempotents in a DCR category is well-behaved:

Lemma 3.2.12 ([17, 2.12]). Let X be a DCR category and R be the collection of

restriction idempotents e = e in X. Then:

(i) SplitR(X) is a DCR category.

(ii) X is a sub-DCR category of SplitR(X) in the sense that there is an embedding:

J−K : X ↪→ SplitR(X)

that preserves the Cartesian restriction structure.

Proof. (i) The symmetric monoidal structure on SplitR(X) is given as in

Lemma 2.2.8. For the DCR category structure we define δ(X,a), ε(X,a) and

µ(X,a) as, respectively:

It is straightforward to verify that this structure satisfies the axioms of a DCR

category. The commutative comonoid identities hold the same way they do

for Lemma 2.4.25. For the remaining identities notice that any restriction

idempotent a = a : X → X is trivially partial monic since fa = ga implies

fa = fa = ga = ga. Then by Lemma 3.2.10 we have µXa = (a⊗ a)µX , and

the remaining identities of a DCR category follow easily.

(ii) As in Lemma 2.2.6, The inclusion is defined by JXK = (X, 1X) on objects and

sends f : X → Y to f : (X, 1X) → (Y, 1Y ). Clearly this preserves the DCR
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structure.

A restriction category is called split in case every restriction idempotent therein

splits. Note that as a consequence of Lemma 3.2.11 we have that SplitR(X) is split,

and moreover we may drop the subscript R when working with DCR categories:

Corollary 3.2.13. Let X be a DCR category. Then SplitR(X) ≃ Split(X).

Let DCRs be the full sub 2-category of DCR on the 0-cells with split idempotents.

Splitting idempotents in DCR categories extends to a 2-functor:

Lemma 3.2.14. There is a 2-functor Split : DCR→ DCRs given as follows:

On 0-cells Split sends X to the idempotent splitting completion Split(X).

On 1-cells F : X→ Y we define Split(F ) : Split(X)→ Split(Y) by Split(F )(X, a) =

(FX,F (a)) on objects and by Split(F )(f) = F (f) on arrows.

On 2-cells α : F → G the components of Split(α) : Split(F ) → Split(G) are given

by Split(α)(X,a) = F (a)αXG(a).

Proof. We must show that Split(F ) is a DCR functor, and that Split(α) is a

monoidal lax transformation. For the former, Split(F ) preserves composition as

in Split(F )(f)Split(F )(g) = F (f)F (g) = F (fg) = Split(F )(fg) and identities as in

Split(F )(1(X,a)) = Split(F )(a) = F (a) = 1(FX,Fa) = 1Split(F )(X,a). That Split(F )

preserves the DCR structure is immediate. Next, Split(α) is lax natural as in

Split(f)Split(α)(Y,b) = F (f)F (b)αYG(b) = F (a)F (f)αYG(b) ≤ F (a)αXG(f)G(b) =

F (a)αXG(a)G(f) = Split(α)(G,y)Split(G)(f) for any f : (X, a)→ (Y, b) of Split(X).

To show that Split(α) is monoidal, it suffices to show that it has total components.

We have Split(αX) = F (a)αXG(a) ≥ F (a)F (a)αX = F (a)αX = F (a) = F (a) =

1Split(F )(X,a) as required, and the claim follows.

Using Lemma 2.3.9 we obtain:

Lemma 3.2.15. There is a biadjunction:

DCR DCRs

Split

⊥

where the right adjoint DCRs ↪→ DCR is the evident inclusion.

Proof. The proof is similar to the proof of Lemma 2.3.9. As before, we define

(−)♯ : DCRs(Split(X),C)→ DCR(X,C) which is natural in X and C, and show that

it is full, faithful, and essentially surjective.
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The proof that (−)♯ is essentially surjective is almost identical to the correspond-

ing part of Lemma 2.3.9. The only difference is that now we must also show that our

F̂ is always a DCR functor. We have already seen that it is symmetric monoidal.

For the DCR structure, we have F̂ (δ(X,a)) = saF (a)F (δX)(F (a)⊗F (a))(ra⊗ra) =

saδFX(ra⊗ ra) = saraδF̂ (X,a) = δF̂ (X,a) and F̂ (ε(X,a)) = saF (a)F (εX) = saεFX =

εF̂ (X,a). It now follows by corresponding argument from Lemma 2.3.9 that (−)♯ is

essentially surjective.

We proceed to show that (−)♯ is full. To that end suppose that F,G are objects

of DCRs(Split(X),C) and that α : F ♯ → G♯ is an arrow of DCR(X,C). Define

α̂ : F → G by α̂(X,a) = F (a)αXG(a). Now α̂ is lax natural as in F (f)α̂(Y,b) =

F (f)F (b)αYG(b) = F (a)F (f)αYG(b) ≤ F (a)αXG(f)G(b) = F (a)αXG(a)G(f) =

α̂(X,a)G(f) for f : (X, a) → (Y, b) of Split(X). We have that the components of

α̂ are total as in α̂(X,a) = F (a)αXG(a) ≥ F (a)αX = F (a),and so α̂ : F → G is

monoidal, and is thus a morphism of DCRs(Split(X),C). Consider α̂♯ : F ♯ → G♯.

In particular, α̂♯X = α̂(X,1X) = F (1X)αXG(1X) = αX and so we have α̂♯ = α. It

follows that (−)♯ is full.

Finally, we must show that (−)♯ is faithful. To that end suppose that α, β :

F → G are morphisms of DCRs(Split(X),C), and that α♯ = β♯ in DCR(X,C).

Observe that this means α(X,1X) = α♯X = β♯X = β(X,1X). Now, notice that F (a) :

F (X, 1X)→ F (X, 1X) and G(a) : G(X, 1X)→ G(X, 1X) split in C as:

F (X, a) F (X, 1X)

F (X, a) F (X, 1X)

F (a)

F (a)=1F (X,a)

F (a)

F (a)
F (a)

G(X, a) G(X, 1X)

G(X, a) G(X, 1X)

G(a)

G(a)=1G(X,a)

G(a)

G(a)
G(a)

and so in particular F (a) : F (X, a) → F (X, 1X) and G(a) : G(X, a) → G(X, 1X)

are both monic because they are sections. Next, lax naturality of α gives

F (a)α(X,1X) ≤ α(X,a)G(a) as in:

F (X, a) G(X, a)

F (X, 1X) G(X, 1X)

≤F (a)

α(X,a)

G(a)

α(X,1X )

In a restriction category every monic is total (Lemma 3.1.3), and the components of
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a monoidal lax transformation of CR functors are necessarily total (Lemma 3.1.17),

and so we have F (a)α(X,1X) = α(X,a)G(a) since total morphisms related via

≤ are equal. Since G(a) : G(X, a) → G(X, 1X) is monic this gives α(X,a) =

F (a)α(X,1X)G(a) : F (X, a)→ G(X, a) via F (a)α(X,1X)G(a)G(a) =

α(X,a)G(a)G(a)G(a) = α(X,a)G(a). A similar argument gives β(X,a) =

F (a)β(X,1X)G(a), and so α(X,a) = F (a)α(X,1X)G(a) = F (a)β(X,1X)G(a) = β(X,a).

Thus α = β, and it follows that (−)♯ is faithful.

It follows that (−)♯ : DCRs(Split(X),C)→ DCR(X,C) is an equivalence of cate-

gories. Clearly this is natural in X and C, which is enough to establish the promised

biadjunction.

3.3 Partial Algebraic Theories

This section introduces partial algebraic theories, gives a method of presenting

them, and gives a number of examples. In presenting the notion of partial alge-

braic theory we will echo the abstract approach to classical algebraic theories of

Section 2.4.2. Just as small categories with finite products play the role of classical

algebraic theory, small DCR categories will play the role of partial algebraic the-

ory. Following this we will develop partial term presentations of partial algebraic

theories, analogous to the Cartesian monoidal presentations of classical algebraic

theories developed in Section 2.4.3. Note in particular that this method of pre-

senting partial algebraic theories by means of equations on a monoidal signature is

made possible by Theorem 3.2.4. Following this, we will illustrate partial algebraic

theories and partial term presentations thereof with a number of examples. Let us

begin with the notion of partial algebraic theory:

Definition 3.3.1. A partial algebraic theory is a small DCR category.

In the same way that models of a classical algebraic theory are given by structure-

preserving functors into Set, models of a partial algebraic theory are given by

structure-preserving functors into Par. Explicitly:

Definition 3.3.2. A model of a partial algebraic theory X is a CR functor F :

X→ Par.

Model morphisms are monoidal lax transformations between the underlying func-

tors:

Definition 3.3.3. Let F,G : X → Par be models of a partial algebraic theory X.

A model morphism α : F → G is a monoidal lax transformation.

Thus, the 2-category DCR (Definition 3.2.5) occupies the same position in relation

to partial algebraic theories that the 2-category CM (Definition 2.4.9) occupies in

relation to classical algebraic theories.
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In our presentations of partial algebraic theories, arrows of the free DCR category

over a given monoidal signature will play the role of terms. Explicitly:

Definition 3.3.4. Let Γ be a monoidal signature. The small DCR category P(Γ)

of partial terms over Γ is constructed the same way S(Γ) is, but with additional

generating arrows:

A ∈ s(Γ)∗

δA : A→ A⊗A
A ∈ s(Γ)∗

µA : A⊗A→ A

A ∈ s(Γ)∗

εA : A→ I

additional equations concerning coherence:

δI = □ µI = □ εI = □ δA⊗B = (δA ⊗ δB)(1A ⊗ σA,B ⊗ 1B)

µA⊗B = (1A ⊗ σA,B ⊗ 1B)(µA ⊗ µB) εA⊗B = εA ⊗ εB

and remaining additional equations:

δA(δA ⊗ 1A) = δA(1A ⊗ δA) δA(1A ⊗ εA) = 1A δAσA,A = δA

(1A ⊗ µA)µA = (µA ⊗ 1A)µA σA,AµA = µA (δA ⊗ 1A)(1A ⊗ µA) = µAδA

(1A ⊗ δA)(µA ⊗ 1A) = µAδA δAµA = 1A fδB = δA(f ⊗ f)

It is convenient to specify partial term presentations using string diagrams. We

recall the diagrammatic convention for DCR categories:

δA ↭ εA ↭ µA ↭

Then the additional equations concerning coherence become:

and the remaining additional equations become:
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Equations over a signature are pairs of terms:

Definition 3.3.5. Let Γ be a monoidal signature. A partial term equation over Γ

is a pair (f, g) where f, g : A→ B in P(Γ). We often write f = g instead of (f, g).

A presentation of a partial theory is a signature together with a collection of equa-

tions between terms over that signature:

Definition 3.3.6. A partial term presentation (Γ, E) consists of a monoidal sig-

nature Γ together with a set E of partial term equations over Γ.

To construct the theory presented by some presentation, we quotient the category

of terms by the equations:

Definition 3.3.7. Let (Γ, E) be a partial term presentation. Write P(Γ, E) for

the small DCR category obtained by quotienting P (Γ) by the equations of E. We

say that P(Γ, E) is presented by (Γ, E), and similarly we say that (Γ, E) presents

P(Γ, E).

The rest of this section is dedicated to a series of examples of partial algebraic

theories. We begin with a partial version of the theory of pointed sets, which

serves to illustrate a difference between partial algebraic theories and their classical

counterpart:

Example 3.3.8 (Possibly Pointed Sets). Consider the partial term presentation

(ΓPoint, ∅) with a single sort s(ΓPoint) = {X}, a single generator e : I → X written

as in:

and with no generating equations. Models F : P(ΓPoint, ∅)→ Par of the associated

partial algebraic theory consist of a partial function F (e) : I → FX from the

one-element set I = {∗} into the carrier FX. Of course there will be a model

I → FX for each element of FX, but it is important to note that the partial

function I → FX which is undefined on ∗ is also a model. Intuitively, models of

this theory consist of a set together with an optional point of that set. Let us call

these possibly pointed sets.
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A morphism α : F → G of models F,G : P(ΓPoint, ∅) → Par consists of a total

function αX : FX → GX with the property that F (e)αX ≤ G(e). That is, if

F (e)(∗) is defined then so is G(e)(∗) and moreover F (e)(∗) = G(e)(∗). Thus, a

morphism of possibly pointed sets is a function that preserves the point if it exists.

A subtlety here is that if F (e)(∗) is defined then G(e)(∗) must be defined, and so for

a morphism of possibly pointed sets to exist the point in the codomain must be at

least as defined as the point in the domain. That is, there cannot be a morphism

of possibly pointed sets whose domain is truly pointed and whose codomain is not.

If we were to add the following equation to our presentation of possibly pointed

sets:

then the resulting partial algebraic theory would have pointed sets (in the usual

sense) as models and functions preserving the point as model morphisms.

Example 3.3.9 (Collapsible Sets). Consider the partial term presentation

(∅X , ECollapse) with a single sort s(∅X) = {X}, no generators, with ECollapse consist-

ing of a single generating equation to the effect that µX is total:

Models F : P(∅X , ECollapse) → Par of the associated partial algebraic theory are

then sets FX with the property that for all x, y ∈ FX, x = y. Let us call such

sets collapsible. It is easy to see that a collapsible set is either empty or singleton.

A morphism of models is simply a function between the carriers.

Example 3.3.10 (Partial Monoids). Consider the partial term presentation

(ΓMon, EpMon) with ΓMon as in Example 2.1 and EpMon consisting of equations:

Then P(ΓMon, EpMon) is the partial algebraic theory of partial monoids. A model

of this theory F : P(ΓMon, EpMon) → Par corresponds to a set FX together with a

partial function F (m) : FX×FX → FX and a unit element F (e) ∈ FX satisfying

the equations of EpMon.

These differ from models of the algebraic theory C(ΓMon, EMon) of monoids in that

the binary operation need not be defined on all pairs of elements of the carrier.
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A morphism of models α : F → G of P(ΓMon, EpMon) is a total function αX :

FX → GX such that for all a, b ∈ FX, αX(F (m)(a, b)) ≤ G(m)(αX(a), αX(b))

and αX(F (e)) = G(e). Explicitly, αX must preserve the unit, and if F (m)(a, b)

is defined, then so is G(m)(αX(a), αX(b)), and further we have αX(F (m)(a, b)) =

G(m)(αX(a), αX(b)).

If we also impose equations to the effect that the binary operation is total:

then we obtain the partial algebraic theory of monoids. That is, models are monoids

(in the usual sense), and model morphisms are monoid homomorphisms.

This method of representing an algebraic theory as a partial algebraic theory

works for any cartesian monoidal presentation:

Example 3.3.11 (Cartesian Monoidal Presentations). Let (Γ, E) be a cartesian

monoidal presentation. Notice that every cartesian monoidal equation can also be

interpreted as a partial term equation. Define E′ to be the union of E with the set

of equations:

{fεB = εA | f : A→ B ∈ Γ}

Now models and model morphisms of the partial algebraic theory P(Γ, E′) coincide

with models and model morphisms of the classical algebraic theory C(Γ, E). The

extra equations of E′ ensure that all of the operations in a model are total in spite

of the fact that they inhabit Par.

There is also a presentation-independent version of this:

Example 3.3.12 (Classical Algebraic Theories). Let X be a classical algebraic

theory. Then Par(Xeq) — see Definition 3.4.10 — is a partial algebraic theory,

where (−)eq is the equaliser completion of a category with finite limits [9]. The

models and model morphisms of the algebraic theory X and the corresponding

partial algebraic theory Par(Xeq) then coincide.

It is possible to express properties of relations, modeled as domains of definition,

using partial algebraic theories. To illustrate this we give a partial algebraic theory

of equivalence relations:

Example 3.3.13 (Equivalence Relations). Consider the partial term presentation

(ΓBinRel, EEq) with a single sort s(ΓBinRel) = {X}, a single generator R : X ⊗X →
I ∈ ΓBinRel, written as in:
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and with EEq consisting of equations expressing the symmetry and reflexivity of R:

and either the equation below on the right or the inequation below on the left, each

of which express the transitivity of R. Recall that inequations of partial terms, as in

Lemma 3.1.4, may be expressed as equations by using the meet as in Lemma 3.2.8.

As such, we may use them freely when specifying partial algebraic theories.

Now a model F : P(ΓBinRel, EEq) of the resulting partial algebraic theory consists of

a set FX together with an equivalence relation =F⊆ FX×FX corresponding to the

domain of definition of F (R) : FX ⊗ FX → I. A morphism α : F → G of models

of P(ΓBinRel, EEq) is a function αX : FX → GX with a =F b ⇒ αX(a) =G αX(b),

which arises from the requirement that α is a lax transformation:

Thus, the category of models and model morphisms of P(ΓBinRel, EEq) is the

category of Bishop sets (setoids) [44].

In particular we note that partial monoids show up in the computer science liter-

ature in the form of separation algebras. The partial algebraic theory of separation

algebras is particularly instructive as it show how to formulate the cancellation

property.

Example 3.3.14 (Separation Algebras). A separation algebra [10] is a partial

commutative monoid that is cancellative in the sense that if m(a, b) = m(a, c) then

b = c. We can capture separation algebras as a partial algebraic theory with the

partial term presentation (ΓMon, ESep) where ESep contains the equations EpMon of

a partial monoid (Example 3.3.10) along with the following equations expressing

cancellativity and commutativity:
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Then models of P(ΓMon, ESep) are separation algebras and model morphisms are

partial monoid homomorphisms.

Example 3.3.15 (Effect Algebras). An effect algebra [29] is a partial commutative

monoid with a unary operator (−)⊥ satisfying the orthocomplementation axioms

m(a, a⊥) = e⊥ and m(a, b) = e⊥ ⇔ a⊥ = b in which the zero-one law m(a, e⊥) ↓⇔
a = e holds (e⊥ plays the role of “one”). We can capture effect algebras as a partial

algebraic theory with the partial term presentation (ΓEff , EEff) with a single sort

s(ΓEff) = {X}, generators ΓEff = ΓMon ∪{(−)⊥ : X → X} with (−)⊥ written as in:

and equations EEff consisting of the equations for partial commutative monoids

EpMon together the commutativity equation and:

Then models of P(ΓEff , EEff) are effect algebras, and model morphisms αX : FX →
GX are partial monoid homomorphisms with the additional property that αX(a⊥) =

αX(a)⊥ for all a ∈ X.

Example 3.3.16 (Partial Combinatory Algebras). A partial combinatory algebra

(PCA) is a set A with a binary partial operation −•− : A×A→ A, and elements

s, k ∈ A s.t. for any x, y, z ∈ A:

(i) (k • x) • y ≃ x

(ii) ((s • x) • y) • z ≃ (x • z) • (y • z)

(iii) (s • x) • y is defined

where “≃” is Kleene equality. We can capture PCAs as a partial algebraic theory

with the partial term presentation (ΓPCA, EPCA) with a single sort s(ΓPCA) = {X},
generators as in:

where EPCA consists of equations that ensure the totality of k and s (so that they
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give elements of the carrier), and an equation corresponding to (iii):

as well as equations corresponding to (i) and (ii):

Then models of P(ΓPCA, EPCA) are partial combinatory algebras and model mor-

phisms are functions that preserve all of −•− , k, and s in the sense that α(k) = k,

α(s) = s, and if a • b is defined then α(a • b) = α(a) • α(b) for all a, b.

Example 3.3.17 (Pairing Functions). Consider the partial term presentation

(ΓPair, EPair) with a single sort s(ΓPair) = {X}, with two generators — pictured

below left – which we think of as pairing and unpairing respectively, where EPair

consists of the equation below on the right:

Then models of P(ΓPair, EPair) are sets equipped with a surjective pairing, and model

morphisms map pairs to pairs. For example, N and Cantor’s pairing function, or

Λ – the set of untyped λ-terms – with the usual pairing and projection functions.

Note that our equation makes pairing a section, and so it is total. Note also that

this axiomatisation allows the domain of unpairing to be larger than the range of

pairing.

Thus far, our examples have mostly been single-sorted. Next we develop a

progression of multi-sorted examples of partial algebraic theories, culminating in

the partial algebraic theory of cartesian closed categories.

Example 3.3.18 (Directed Graphs). Consider the partial term presentation

(ΓGraph, EGraph) where s(ΓGraph) = {O,A} contains a sort O of vertices and a sort

A of edges, ΓGraph contains generators s : A → O and t : A → O (pictured below

left), and EGraph contains equations to the effect that t and s are total (pictured

below right).
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Then models of P(ΓGraph, EGraph) are directed graphs. For such two models F,G :

P(ΓGraph, EGraph) → Par, a model morphism α : F → G is given by functions

αO : FO → GO (mapping vertices to vertices) and αA : FA → GA (mapping

edges to edges) which satisfy:

and so model morphisms are directed graph homomorphisms.

Example 3.3.19 (Reflexive Graphs). Consider the partial term presentation

(ΓRGraph, ERGraph) where ΓRGraph is the result of adding an extra generator id : O →
A (pictured below left) to ΓGraph (see Example 3.3.18), and ERGraph is the result of

adding the equations pictured below right to EGraph.

Then models of P(ΓRGraph, ERGraph) are reflexive graphs, and model morphisms are

graph homomorphisms that preserve the identity edge in the sense that α1(id(v)) =

id(α0(v)) for all edges v.

We remark that Example 3.3.19 and Example 3.3.18 could also be presented as

classical algebraic theories, since all the operations are total. We next give a partial

algebraic theory of categories, in which the composition operation is not total, and

as such cannot be presented as an algebraic theory.

Example 3.3.20 (Categories). Consider the partial term presentation (ΓCat, ECat)

obtained by extending ΓRGraph with a generator m : A ⊗ A → A representing

composition of arrows (pictured below left), and extending ERGraph with an equation

to the effect that the composite of two arrows is defined when the target of the

first arrows matches the source of the second arrow (below right):

along with equations to the effect that composition is associative and unital:
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and finally equations concerning the source and target of composite arrows:

Models of P(ΓCat, ECat) are (small) categories. For two such models

F,G : P(ΓCat, ECat) → Par a model morphism α : F → G consists of functions

αO : FO → GO (mapping objects to objects) and αA : FA → GA (mapping

arrows to arrows) which must satisfy the equations from Examples 3.3.18 and

3.3.19 as well as the following inequation:

This states that if f and g are composable then so are αA(f) and αA(g), and

further that αA(fg) = αA(f)αA(g). If this were an equality, it would insist also

that if αA(f) and αA(g) are composable, then so are f and g, which is not always

the case. Thus, model morphisms are precisely functors.

Example 3.3.21 (Strict Monoidal Categories). Consider the partial term pre-

sentation (ΓMCat, EMCat) obtained by extending ΓCat with additional generators

corresponding to the tensor product operation and unit object:

and extending ECat with additional equations as in:

as well as equations to the effect that the tensor product is associative and unital:
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Models of P(ΓMCat, EMCat) are strict monoidal categories and model morphisms are

strict monoidal functors.

Example 3.3.22 (Symmetric Strict Monoidal Categories). Consider the partial

term presentation (ΓSMCat, ESMCat) obtained by extending ΓMCat with an additional

generator σ : O ⊗O → A for the braiding:

and extending EMCat with additional equations as in:

Models of P(ΓSMCat, ESMCat) are symmetric strict monoidal categories, and model

morphisms are symmetric strict monoidal functors.

Example 3.3.23 (Cartesian Restriction Categories). Consider the partial term

presentation (ΓCRCat, ECRCat) obtained by extending ΓSMCat with generators δ :

O → A and ε : O → A for the comonoid structure:

and extending ESMCat with additional equations as in:

75



along with equations insisting that δ and ε are coherent with respect to the

monoidal structure:

And finally equations for the commutative comonoid axioms, and naturality of δ:

Then (using Theorem 3.1.10) we have that models of P(ΓCRCat, ECRCat) are CR

categories, and that model morphisms are CR functors.

Example 3.3.24 (Discrete Cartesian Restriction Categories). Consider the partial

term presentation (ΓDCRCat, EDCRCat) obtained by extending ΓCRCat with a generator

µ : O → A:
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and extending ECRCat with additional equations as in:

Models of P(ΓDCRCat, EDCRCat) are discrete cartesian restriction categories, and

model morphisms are CR functors.

Example 3.3.25 (Cartesian Monoidal Categories). Consider the partial term pre-

sentation (ΓCRCat, ECCat) where ECCat is obtained by extending ECRCat with a single

equation:

Models of P(ΓCRCat, ECCat) are cartesian monoidal categories (using Theorem 2.4.5),

and model morphisms are cartesian monoidal functors.

Example 3.3.26 (Cartesian Closed Categories). Consider the partial term pre-

sentation (ΓCCC, ECCC) obtained by extending (ΓCRCat, ECCat) with generators exp :

O ⊗O → O, ev : O ⊗O → A, and λ : O ⊗O ⊗O ⊗A→ A:

The idea is that exp(A,B) represents the internal hom [A,B], that ev gives the

evaluation maps, and that λ gives the “name” maps of the cartesian closed struc-

ture. ECCC is obtained by extending ECCat with the necessary equations relating

the internal hom and the evaluation maps:
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We also require equations governing the domain of definition, source, and target

of our morphism names. In particular we must have that λ(X,A,B, f) is defined

precisely in case f : X×A→ B, in which case it yields a morphism λ(X,A,B, f) :

X → [A,B]. Diagrammatically:

Further, we must ask that evaluating names works as intended, in the sense that

f : X ×A→ B then (λ(X,A,B, f)× 1)ev = f . Diagrammatically:

Finally, we ask that when g : X → [A,B] we have λ(X,A,B, (g × 1)ev) = g holds:

Models of P(ΓCCC, ECCC) are strict cartesian closed categories, and model mor-

phisms are strict cartesian closed functors (preserving both hom-objects and names

in addition to the cartesian monoidal structure).

This presentation of cartesian closed categories is due to Freyd: a version of it is

given immediately after the first appearance of the notion of essentially algebraic

theory in [31], albeit somewhat informally, and using very different syntax.
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3.4 Finite Limits and Partial Maps

Our next goal will be to characterise the categories of models and model morphisms

of partial algebraic theories (the varieties). In doing so we will also obtain a char-

acterisation of Morita equivalence for partial algebraic theories, which is what we

will call the situation in which two different partial algebraic theories determine

equivalent categories of models and model morphisms (i.e., present the same vari-

ety).

Remark 3.4.1. In what follows we will write f : A↣ B when we wish to empha-

size that the arrow f : A→ B is monic.

To this end, we recall certain elementary facts concerning categories with finite

limits, and in particular the construction of categories of partial maps internal

to such categories. Ultimately, we will show that DCR categories and categories

with finite limits are the 0-cells of equivalent 2-categories. This will allow us to

connect DCR categories to the wider literature. It will be convenient for us to

place equalisers at the center of our discussion. Recall:

Definition 3.4.2. Let X be a category, and let f, g : A → B be morphisms of X.

An equaliser of f and g is a diagram1:

E A Be +

f

g

such that for any k : C → A with kf = kg, there exists a unique h : C → E

satisfying he = k, as in:

E A B

C

e
f

g

+

k
h

A category in which an equaliser exists for any two parallel morphisms is said to

have equalisers. For example, Set has equalisers, with the equaliser of two functions

f, g : A→ B given by the set E = {a ∈ A | f(a) = g(a)} together with the inclusion

E → A.

Definition 3.4.3. A Cartesian monoidal category X that has equalisers is said to

have finite limits.

While finite limits admit a number of elementary characterisations, the definition

above lines up nicely with the notion of DCR category. We will also work with

categories of spans, which are naturally presented in terms of pullbacks. Recall:

1Here the “+” inside the diagram indicates that that sub-diagram need not commute — a
convention we adopt from Freyd and Scedrov [32] — so that while the diagram states ef = eg, it
does not state that f = g.
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Definition 3.4.4. Let f : A → C and g : B → C be arrows of a category X. A

pullback of f and g is a diagram:

A×C B B

A C

p1

p0 g

f

such that for any a : D → A and b : D → B with af = bg there exists a unique

h : D → A×C B such that:

D

A×C B B

A C

h

b

a

p1

p0 g

f

Say that a category has pullbacks in case it contains a pullback of any two mor-

phisms f : A→ C and g : B → C. Given a pullback diagram labeled in the above

manner, we refer to p1 as the pullback of f along g and, dually, refer to p0 as the

pullback of g along f .

For example, in Set the pullback of two functions f : A → C and g : B → C is

given by A×C B = {(a, b) | a ∈ A, b ∈ B, f(a) = g(b)}. More generally:

Lemma 3.4.5. Let X be a category with finite limits. Suppose f : A→ C, g : B →
C are arrows of X with equaliser:

E A×B Ce +

π0f

π1g

Then the following diagram is a pullback:

E B

A C

⌟
eπ1

eπ0 g

f

So in particular, if X has finite limits then it has pullbacks.

Proof. Suppose f : A→ C and g : B → C in X. Let

E A×B Ce +

π0f

π1g
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be an equaliser. Then

E B

A C

eπ1

eπ0 g

f

is a pullback as follows: suppose we have a : D → A and b : D → B such that:

D B

A C

b

a g

f

Then we have:

E A×B C

D

e +

π0f

π1g

⟨a,b⟩

and so there exists a unique h : D → E such that:

E A×B C

D

e +

π0f

π1g
h

⟨a,b⟩

We show that this h : D → E is also the unique arrow such that:

D

E B

A C

h

b

a

eπ1

eπ0 g

f

To that end, suppose we have k : D → E such that keπ0 = a and keπ1 = b.

Then ke = ⟨a, b⟩ by the universal property of binary products. Recall that h is the

unique morphism D → E such that he = ⟨a, b⟩. It follows that h = k. Thus, our

diagram is indeed a pullback. Since f and g were arbitrary, it follows that X has

pullbacks.

In the presence of a terminal object, pullbacks can be used to construct equalis-

ers, giving a sort of converse to the above lemma. An important fact about pull-

backs is that the pullback of a monic along any arrow is again monic:

Lemma 3.4.6. Let m : B → C be monic, and suppose the following diagram is a
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pullback:

A×C B B

A C

p1

p0 m

f

Then p0 is monic.

Proof. Suppose we have a, b : D → A ×C B such that ap0 = bp0. We must show

that in this case a = b. First, notice that we have ap1m = ap0f = bp0f = bp1m,

and so since m is monic we have ap1 = bp1. Now, we have both of:

D

A×C B B

A C

ap1=bp1

ap0=bp0

a

p0

p1

m

f

D

A×C B B

A C

ap1=bp1

ap0=bp0

b

p0

p1

m

f

and it follows from the universal property of our assumed pullback that a = b.

Thus, p0 is monic.

There is an evident notion of structure-preserving functor between categories

with finite limits, and an evident 2-category of categories with finite limits:

Definition 3.4.7. A Cartesian monoidal functor F : X → Y between categories

X,Y with finite limits is said to preserve finite limits in case it maps equalisers in

X to equalisers in Y.

Definition 3.4.8. Lex is the 2-category of small categories with finite limits, finite

limit preserving functors, and natural transformations.

In any category with finite limits, spans with a monic left leg can be understood

as a kind partial morphism. If f : M → Y is any morphism and m : M ↣ X is

monic, then the span:

M

X Y

m f

represents a partial morphism (m, f) : X → Y . The left leg plays the role of

dom(m, f), exhibiting A as a subobject of X, and the right leg plays the role of

def(m, f).

Here we work with a slight modification of the usual construction, in which the

left leg of our spans in required to be regular monic, as in:
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Definition 3.4.9. A morphism m : M → X is called regular monic in case for

some f, g : X → Y the diagram:

M X Ym +

f

g

is an equaliser.

Notice in particular that every regular monic is monic and that the pullback of

a regular monic along any arrow is again a regular monic. Further, each identity

morphism is a regular monic, and the composite of two regular monics is again a

regular monic.

In any category with finite limits these partial morphisms define a category:

Definition 3.4.10. Suppose that C is a category with finite limits. Then the

category Par(C) of partial morphisms in C is defined as follows:

objects are objects of C.

arrows (m, f) : X → Y are equivalence classes of spans X
m←− A

f−→ Y where m

is regular monic. Two spans (m, f) and (m′, f ′) are equivalent if and only if there

is an isomorphism α such that:

A A′

X Y.

m

f

α

m′
f ′

composition is defined by pullback. Explicitly, the composite of (m, f) : A→ B

and (m′, g) : B → C is the outer span of the diagram below on the left

X ×B X ′

X X ′

A B C

π0 π1

m f m′ g

X ×B X ′ X ′

X B

⌟
π0

π1

m′

f

where the diagram above right is a pullback. Note that it doesn’t matter which

pullback, since any two choices will give isomorphic spans, and therefore equal

morphisms.

identities are diagonal spans (1A, 1A) : A→ A.

We obtain an analogue of the partial order on hom-sets of Par by relaxing the

notion of equivalence in the above definition. Specifically, given (m, f) and (m′, f ′)
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in Par(C)(X,Y ) we say that (m, f) ≤ (m′, f ′) in case we have:

A A′

X Y.

m

f

α

m′
f ′

for any α : A → A′. In this way, Par(C) is also enriched in the category of posets

and monotone functions.

This notion of partial morphism coincides with the usual notion of partial func-

tion when considered in the category of sets:

Observation 3.4.11. There is an isomorphism of categories Par ∼= Par(Set). Fur-

ther, the partial orders on Par(X,Y ) and Par(Set)(X,Y ) coincide.

These categories of partial morphisms are always split DCR categories:

Lemma 3.4.12. If C has finite limits then Par(C) is a DCR category. Further,

idempotents in Par(C) split.

Proof. The monoidal structure in Par(C) is given by the monoidal structure in C,

in the sense that the tensor product of two objects A,B is A⊗B and the unit is I.

The tensor product of arrows is given by (f0, f1)⊗ (g0, g1) = (f0⊗ g0, f1⊗ g1), and

the braiding is given by σA,B = (1A⊗B , σA,B) = (σB,A, 1B⊗A). The DCR structure

is given as in δA = (1A, δA), εA = (1A, !A), and µA = (δA, 1A). The restriction

idempotents in Par(C) are those arrows of the form (m,m) : A → A. Any such

idempotent splits as in:

A A

A A

(1,m)

(1,m)

(m,1)
(m,m)

Then by Lemma 3.2.11 we have that all idempotents in Par(C) split.

3.5 Relating DCR Categories and Finite Limits

In this section we establish a strict 2-equivalence between the 2-category DCRs of

split small DCR categories and the 2-category Lex of small categories with finite

limits.

We have already seen that when C has finite limits Par(C) is a split DCR category

(Lemma 3.4.12). Clearly Par(C) is small if C is. We show that this extends to a

2-functor Par : Lex → DCRs. If C and D are small categories with finite limits

and F : C → D is a finite-limit preserving functor, then we obtain a CR functor
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Par(F ) : Par(C)→ Par(D), defined on objects by Par(F )(A) = F (A), and on arrows

by

X

A B

m f
Par(F )7→

FX

FA FB

Fm Ff

Since F preserves finite limits, we have that Par(F )(δA) = (F1A, F∆A) =

(1FA,∆FA) = δFA = δPar(F )(A) and Par(F )(εA) = (F1A, F !A) = (1FA, !FA) =

εPar(F )(A), so Par(F ) preserves the CR structure. This defines the action of Par on

1-cells. We present the action of Par on 2-cells as a lemma:

Lemma 3.5.1. If F,G : C → D are finite limit preserving functors between

categories with finite limits and α : F → G is a natural transformation, define

Par(α) : Par(F )→ Par(G) by defining the component of Par(α) at A in C to be:

FA

FA GA

Par(α)A
1FA αA

Then Par(α) : Par(F )→ Par(G) is a monoidal lax transformation.

Proof. First, we show that for any arrow (m, f) of Par(C) we have

FA GA

FB GB

Par(α)A

Par(F )(m,f) Par(G)(m,f)

Par(α)B

≤

To that end, let the following two diagrams define, respectively,

Par(α)APar(G)(m, f) = (π0, π1Gf) and Par(F )(m, f)Par(α)B = (Fm,FfαB):

FA ∧GX

FA GX

FA GA GB

π0 π1

1FA αA Gm Gf

FX

FX FB

FA FB GB

1FX Ff

Fm Ff 1FB αB

From this, we obtain a morphism h : FX → FA ∧ GX by the universal property

of the first pullback:

FX

FA ∧GX GX

FA GA

αX

Fm

h

π1

π0 Gm

αA
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which gives a morphism of spans

FX FA ∧GX

FA GB.

Fm

FfαB

h

π0

π1Gf

Thus, Par(α) is a lax transformation. Obviously the components of Par(α) are

total, and so it is a monoidal lax transformation as required.

It remains only to show that Par preserves composition and identities at the

level of 1-cells and 2-cells, and that preserves horizontal composition of 2-cells, all

of which are immediate. We therefore have:

Lemma 3.5.2. Par : Lex→ DCRs is a 2-functor.

Recall that for any restriction category X the total maps, being those f with

f = 1 – equivalently with fε = ε – form a subcategory Total(X) of X. We have:

Proposition 3.5.3 ([17, 2.14]). If X is a split DCR category then Total(X) has

finite limits.

Proof. The comonoid structure is always total, and the total maps are precisely

the comonoid homomorphisms. It follows that Total(X) has finite products. We

must show that it also has equalisers. To that end suppose f, g : A → B are

parallel arrows in Total(X). Let the splitting of the restriction idempotent f ∩ g =

δA(f ⊗ g)µB : A→ A in X be as in:

E A

E A

s

1E

s

r
f∩g

Then the equaliser of f, g is as follows:

E A Bs
f

g

In any DCR category we have that f ∩ gf = f ∩ gg. It follows that s equalises f

and g as in:

sf = srsf = sf ∩ gf = sf ∩ gg = srsg = sg

Next, for any total h : X → A with hf = hg the arrow hr : X → E is total

as in hr = hrs = hf ∩ hg = hf = 1X . Further, since f, g are total we have

86



hrs = h f ∩ g = hf ∩ hgh = hfh = h f = h. To see that h is the unique such

map, suppose we have k : X → A with ks = h. Then ks = h = hrs which means

that k = hr as s is monic. It follows that Total(X) has equalisers, and thus finite

limits.

There is an important connection between regular monics in Total(X) and the

restriction monics of X, as in:

Definition 3.5.4 ([21, 2.3.1]). An arrow m : M → X of a restriction category X
is a restriction monic in case it splits a restriction idempotent. That is, in case

there exists some w : X →M such that

M X

M X

m

m

w
f

for some arrow f : X → Y of X. In this case we say that m splits f . Notice that

in this case wm = f = f = wm.

Specifically, since equalisers in Total(X) are constructed by splitting restriction

idempotents we have:

Lemma 3.5.5 ([17, 2.16]). Let X be a DCR category. If m : M → X is regular

monic in Total(X) then m : M → X is a restriction monic in X.

Notice that a given restriction monic splits at most one restriction idempotent,

as in:

Lemma 3.5.6 ([21, 2.25]). In any restriction category:

(i) if mw = 1 and mk = 1 with wm = wm and km = km then w = k

(ii) if mw = 1 and nw = 1 with wm = wm and wn = wn then n = m

Proof. (i) w = wmkmw = wmkmw = kmwmw = kmwmw = k

(ii) m = mwnwm = mwnwm = mwmwn = mwmwn = n

Now the assignment of X to Total(X) extends to a 2-functor Total : DCRs →
Lex. If X and Y are split DCR categories and F : X → Y is a CR functor then

restricting F to the categories of total maps defines a finite limit preserving functor

Total(F ) : Total(X) → Total(Y). Similarly F,G : X → Y are CR functors between

DCR categories X and Y and α : F → G is a monoidal lax transformation then α

restricts to a natural transformation α : Total(F) → Total(G). Naturality follows
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from lax naturality together with the fact that all components of α are total maps:

for any f : A → B of Total(X) we know F (f)Total(α)B = F (f)αB ≤ αAG(f) =

Total(α)AG(f), but since both composites are total this is an equality, as required.

It is easy to see that Total preserves composition and idenitities for both 1- and

2-cells and preserves horizontal composition of 2-cells. We therefore have:

Lemma 3.5.7. Total : DCRs → Lex is a 2-functor.

Having two 2-functors Total : DCRs → Lex and Par : Lex → DCRs it remains to

show that there are invertible strict 2-natural transformations 1Lex → Total ◦ Par
and 1DCRs → Par ◦ Total. We begin with the former, which has components as in:

Lemma 3.5.8. Let X be a small category with finite limits. Then there is an

isomorphism ϕX : X → Total(Par(X)) defined on objects by ϕX(X) = X and on

arrows f : X → Y by ϕX(f) = (1X , f).

Proof. For f : X → Y and g : Y → Z in X we have ϕX(f)ϕX(g) = (1X , f)(1Y , g) =

(1X , fg) = ϕX(fg). Further, we have ϕX(1X) = (1X , 1X) = 1X = 1ϕX and so

ϕX is a functor. Define ϕ−1
X : Total(Par(X)) on objects by ϕ−1

X (X) = X and on

arrows (m, f) : X → Y by ϕ−1
X (m, f) = f . This is well-defined because an arrow

(m, f) : X → Y of Par(X) is total if and only if (m, f) = (1X , f), which also gives

immediately that ϕ−1
X and ϕX are inverses, as required.

Now the required strict 2-natural transformation is given as follows:

Lemma 3.5.9. There is an invertible strict 2-natural transformation ϕ : 1Lex →
Total ◦ Par with components ϕX : X→ Total(Par(X)).

Proof. We show that this defines a strict 2-natural transformation. To that end,

suppose F : X→ Y is a 1-cell of Lex. Then we have:

X Total(Par(X))

Y Total(Par(Y))

ϕX

F Total(Par(F ))

ϕY

as follows: for objects X of X, Total(Par(F ))(ϕX(X)) = Total(Par(F ))(X) =

Par(F )(X) = FX. For arrows f : X → Y , Total(Par(F ))(ϕX(f)) =

Total(Par(F ))(1X , f) = Par(F )(1X , f) = (F (1X), F (f)) = (1FX , F (f)) = ϕY(F (f)).

Thus ϕXTotal(Par(F )) = FϕY. Moreover for any 1-cells F,G : X → Y and 2-cell

β : F → G of Lex we immediately have β ⋆ 1ϕY = 1ϕX ⋆ Total(Par(β)). It follows

that ϕ : 1Lex → Total ◦ Par is a strict 2-natural transformation. We have already

seen that each component ϕX of ϕ is an isomorphism (Lemma 3.5.8), and the claim

follows.
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Next, we give the components of the other strict 2-natural transformation that

forms our equivalence:

Lemma 3.5.10. Let X be a small DCR category. Then there is an isomorphism

ψX : X→ Par(Total(X)) defined on objects by ψX(X) = X and on arrows f : X → Y

by ψX(f) = (m,mf) where m splits f .

Proof. For ψX(f) = (m,mf) to be well-defined we must have that mf is total. Let

m be part of the following splitting:

M X

M X

m

m

w
f

Then we have mf = mf = mwm = m = 1M as required. To see that ψX preserves

identities, let ψX(1X) = (p, p1X) = (p, p) where p splits 1X = 1X as in:

P X

P X

p

p

b
1X

Then b : X → P is an isomorphism of spans as in:

X P

X X
1X

1X

b

p

p

and so we have ψX(1X) = (p, p) = (1X , 1X) = 1ψX(X). To see that ψX preserves

composition, suppose f : X → Y , g : Y → Z in X and let ψX(f) = (m,mf) and

ψX(g) = (n, ng) with m and n part of splittings:

M X

M X

m

m

f
w and

N Y

N Y

n

n

g
u

Now, let n′ : N ′ →M split mfg as in:

N ′ M

N ′ M

n′

n′

mfg
u′
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We show that the following square is a pullback in Total(X)

N ′ N

M Y

n′

n′mfu

n

mf

The square commutes as in n′mfun = m′mfg = n′mfgmf = n′u′n′mf = n′mf

and n′mfu : N ′ → N is total as in n′mfu = n′mfg = n′mfg = n′u′n′ = n′ = 1N ′ .

Suppose we have arrows k : Z → M and h : Z → N of Total(X) such that

kmf = hn. Then for ku′ : Z → N ′ we have kun′ = kmfg = kmfgk = hngk =

hngk = hk = k and ku′n′mfu = kmfgmfu = kmfuhnu = h. We show that ku′

is the unique such arrow Z → N ′. To that end, suppose we have α : Z → N ′ with

αn′ = k and αn′mfu = h. Then α = αn′u′ = ku′ as required. Thus, we have our

pullback:

X

N ′ N

M Y

h

k

ku′

n′mfu

n′ n

mf

In particular this means that ψX(f)ψX(g) is given by the span:

N ′

M N

X Y Z

n′ n′mfu

m mf n ng

and we have n′mfung = n′mfgg = n′mfg, so ψX(f)ψX(g) = (n′m,n′mfg). Now,

let ψX(fg) = (m′,m′fg) with m′ part of the splitting:

M ′ X

M ′ X

m′

m′

w′
fg
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Notice that n′m : N ′ → X also splits fg, as in:

N ′ M X

M

N ′ M X

n′ m

u′
mfg

n′ m

w
fg

where the rightmost square commutes via wmfgm = wmfg = f fg = ffg = fg.

It follows that n′mw′ : N ′ → M ′ and m′wu′ : M ′ → N ′ define an isomorphism,

which is in fact as isomorphism of spans:

N ′ M ′

X Z

n′m

n′mfg

n′mw′

m′

m′fg

via n′mw′m′ = n′mfg = n′mwu′n′m = n′m. Thus ψX(f)ψX(g) = (n′m,n′mfg) =

(m′,m′fg) = ψX(fg), and it follows that ψX is a functor.

Our functor ψX : X→ Par(Total(X)) is identity-on-objects, so to show that ψX is

an isomorphism it suffices to show that it is full and faithful. We begin by showing

that ψX is full. To that end, suppose (m, f) : X → Y in Par(Total(X)). Now m is

a regular monic in Total(X) and so by Lemma 3.5.5 we have that m is a restriction

monic in X. That is, for some w we have:

M X

M X

m

m

w
wm

Now, let ψX(wf) = (m′,m′wf) where m′ is part of the splitting:

M ′ X

M ′ X

m′

m′

w′

wf =wf =w=wm

Then since m and m′ both split wm we have that m′w : M ′ → M is an isomor-

phism. In fact, it is an isomorphism of spans:

M ′ M

X Ym′wf

m′

m′w

f

m
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via m′wm = m′wm = m′w′m′ = m′. Then we have ψX(wf) = (m′,m′wf) =

(m, f) and so ψX is full.

To see that ψX is faithful, suppose ψX(f) = (m,mf) = (n, ng) = ψX(g) with m

and n as in:

M X

M X

m

m

f
w and

N Y

N Y

n

n

g
u

Then our assumption that (m,mf) = (n, ng) is the assumption that there is an

isomorphism of spans α : M → N as in:

M N

X Y

m

mf

α

n

ng

Notice that this gives mf = αng = mg and ng = α−1mf = nf . Then we have

f ≤ g via f = ff = wmf = wmg = fg and g ≤ f via g = gg = ung = unf = gf .

Thus f = g, and so ψX is faithful. It follows that ψX is an isomorphism, as

required.

Now the transformation itself is given as follows:

Lemma 3.5.11. There is an invertible strict 2-natural transformation ψ : 1DCRs →
Par ◦ Total with components ψX : X→ Par(Total(X)).

Proof. We show that this is strict 2-natural. To that end, suppose F : X→ Y is a

1-cell of DCRs. Then we have:

X Par(Total(X))

Y Par(Total(Y))

F

ψX

Par(Total(F ))

ψY

as follows: for objects X of X we have Par(Total(F ))(ψX(X)) = Par(Total(F ))(X) =

Total(F )(X) = FX = ψY(F (X)). For arrows f : X→ Y of X, let ψX(f) = (m,mf)

and let ψY(F (f)) = (m′,m′F (f)) with m and m′ as in:

M X

M X

m

m

w
f

and

M ′ FX

M ′ FX

m′

m′

w′
F (f)

92



Notice that F (m) also splits F (f) as in:

FM FX

FM FX

F (m)

F (m)

F (w)
F (f) = F (f)

It follows that m′F (w) : M ′ → FX is an isomorphism. In fact, it is an isomorphism

of spans:

M ′ FM

FX FY

m′F (w)

m′

m′F (f)

F (mf)

F (m)

via m′F (w)F (m) = m′F (f) = m′w′m′ = m′ and m′F (w)F (mf) = m′F (f)F (f) =

m′F (f). That is, we have (m′,m′F (f)) = (F (m), F (mf)). In turn this gives

ψY(F (f)) = (m′,m′F (f)) = (F (m), F (mf)) = Par(F )(m,mf) = Par(Total(F ))(ψX(f))

as required. Moreover, for any 1-cells F,G : X → Y and 2-cell β : F → G we im-

mediately have β ⋆1ψY = 1ψX ⋆Par(Total(Y)). Thus ψ : 1DCRs
→ Par ◦Total is strict

2-natural. We have already seen that each component ψX of ψ is an isomorphism

(Lemma 3.5.10), and the claim follows.

Now the promised equivalence of 2-categories follows immediately:

Theorem 3.5.12. There is strict 2-equivalence:

DCRs Lex
Total

≃
Par

3.6 Varieties and Morita Equivalence

In this section we assemble our results to obtain a variety theorem for partial

algebraic theories in the form of a syntax-semantics adjunction. Specifically, we

briefly recall locally finitely presentable (LFP) categories and the Gabriel-Ulmer

duality, which connects LFP categories to categories with finite limits. Our variety

theorem then follows immediately: the categories that arise as the models and

model morphisms of some partial algebraic theory are precisely the LFP categories.

This gives an analogue of Theorem 2.4.28 for partial algebraic theories. We end with

a discussion of Morita equivalence for partial algebraic theories, in which we find

that two partial algebraic theories present the same category of models and model
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morphisms if and only if they have equivalent idempotent splitting completions.

This gives an analogue of Theorem 2.4.30 for partial algebraic theories.

A consequence of Theorem 3.5.12 is that the categories that arise as the models

and model morphisms of some partial algebraic theory correspond to those cate-

gories of the form2 Lex(X,Set). Fortunately, categories Lex(X,Set) are well-studied

in categorical algebra, and turn our to be precisely the locally finitely presentable

categories [3]. The precise formulation of this correspondence is known as Gabriel-

Ulmer duality. We briefly recall the Gabriel-Ulmer duality, beginning with a reca-

pitulation of the machinery involved.

The objects of a category can often be equipped with a natural notion of size.

For example: the size of a set is its cardinality, and the size of a group is the

cardinality of its smallest presentation. For our purposes the important objects

will be those of finite size. Remarkably, there is an element-free notion of finite

object:

Definition 3.6.1 ([3, 1.1]). In a category C, an object X is said to be finitely

presentable if the hom-functor C(X,−) preserves directed colimits.

While this notion of finiteness may appear to be an obscure one, it is quite

robust. For example: the finitely presentable objects of Set are precisely the finite

sets, and the finitely presentable groups are those admitting a finite presentation.

A category is locally finitely presentable if it can be reconstructed from the

collection of finitely presentable objects therein:

Definition 3.6.2 ([3, 1.9]). A locally finitely presentable (LFP) category K is a

cocomplete category such that:

(i) the full subcategory of K on the finitely presentable objects therein is small.

(ii) every object of K is a directed colimit of finitely presentable objects.

LFP categories enjoy a number of satisfying categorical properties [3]. Much

as the appropriate notion of morphism for varieties (Section 2.4.4) is that of right

adjoints that preserve sifted colimits, the appropriate notion of morphism for LFP

categories is that of right adjoints that preserve directed colimits. This leads to

the following 2-category of LFP categories:

Definition 3.6.3. LFP is the 2-category of LFP categories, right adjoints that

preserve directed colimits, and natural transformations.

Gabriel-Ulmer duality may now be stated as follows:

2Strictly speaking it does not make sense to write Lex(X, Set), since the 0-cells of Lex are small
and Set is not small. Nonetheless, there is a category of finite limit preserving functors X → Set,
which we denote Lex(X, Set).
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Theorem 3.6.4. There is a biequivalence:

Lex LFPop≃
Lex(−,Set)

LFP(−,Set)

A classical reference for the proof is [15].

The promised variety theorem follows easily from the foregoing machinery:

Theorem 3.6.5. There is a biadjunction

DCR LFPop⊥
Mod

Th

Proof. We promote the strict 2-equivalence of Theorem 3.5.12 to a biequivalence

and compose it with the biadjunction of Lemma 3.2.15 on the left and with the

Gabriel-Ulmer duality on the right to obtain a biadjunction:

DCR DCRs Lex LFPop⊥
Split Total

≃
Par

Lex(−,Set)
≃

LFP(−,Set)

It may not be immediately clear what this tells us about the category of models

and model morphisms of a particular partial algebraic theory, so let us briefly

discuss. Consider an arbitrary partial algebraic theory X. Par is a split restriction

category, so models of X and models of Split(X) coincide since the image of any

restriction idempotent of X already splits in Par. Thus the category of models of

X and model morphisms thereof is DCRs(Split(X),Par). Transporting this across

the equivalence of Theorem 3.5.12 yields Lex(Total(Split(X)),Set), which is LFP.

Conversely for any LFP category C we know that Par(LFP(C,Set)) is a partial

algebraic theory with C as its category of models. We may conclude that the

categories of models of partial algebraic theories correspond to the LFP categories.

Dropping the idempotent splitting biadjunction from our syntax-semantics dual-

ity yields a biequivalence DCRs ≃ LFPop, which in particular characterizes Morita

equivalence of partial algebraic theories:

Theorem 3.6.6. Let X and Y be partial algebraic theories. Then X and Y present

equivalent categories of models and model morphisms if and only if Split(X) and

Split(Y) are equivalent.

This is rather encouraging, in that Morita equivalence works the same way for

partial algebraic theories that it does for algebraic theories. Consider for example
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the difference between the two-sorted theory of categories given in Example 3.3.20

and the single sorted theory of categories:

Example 3.6.7 (Categories, Again). Consider the partial term presentation

(ΓCat′ , ECat′) over a single sort s(ΓCat′) = {C} representing the arrows of the cat-

egory, and generators ΓCat′ corresponding to the source, target, and composition

operations:

In the single-sorted presentation of categories objects are represented by their iden-

tity morphisms. The source and target operations must be total, and again we ask

that the composite of two morphisms is defined if and only if the target of the first

matches the source of the second. As such, we ask that ECat′ contain the following

equations:

Additionally, we require equations to the effect that the composition operation is

associative and unital:

and finally we require equations to the effect that the source (target) of an identity

map is the object it represents, and that the source (target) of a composite is the

source (target) of the first (second) component:

It is well known that the single-sorted presentation of the theory of categories

is equivalent to the two-sorted one, so we already know that splitting idempotents

in the two partial algebraic theories will yield equivalent categories. Nonetheless,

we feel that it is instructive to consider this in some detail. Notice that in the

single-sorted theory of categories the source and target operations are idempotent

as in ss = sts = st = s and tt = tst = ts = t.

Further, there is an isomorphism (C, s) ∼= (C, t) in the idempotent splitting com-

96



pletion given by s : (C, s) → (C, t) and t : (C, t) → (C, s). Now (C, t) ∼= (C, s)

correspond to the sort of objects in the two-sorted presentation, and (C, 1C) corre-

sponds to the sort of arrows. The generator id : A→ O that maps each object to

its corresponding identity morphism in the two-sorted presentation is represented

in the single-sorted presentation by t : (C, t) → (C, 1C) and s : (C, s) → (C, 1C).

Constructing an equivalence of categories between the idempotent splittings of

our two theories is now routine, giving an alternate proof that the two differ-

ent presentations of the theory of categories are Morita equivalent. That is, that

Split(P(ΓCat′ , ECat′)) ≃ Split(P(ΓCat, ECat)). It is intriguing that the two-sorted

presentation of the theory of categories is the more canonical one in this sense.
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Chapter 4

Relational Algebraic

Theories

The aim of this chapter is to develop a notion of relational algebraic theory anal-

ogous to the algebraic theories and partial algebraic theories treated in previous

sections, but with the important difference that the operations are treated as rela-

tions, as opposed to functions or partial functions. More precisely, while models of

algebraic theories are valued in the category Set of sets and (total) functions, and

models of partial algebraic theories are valued in the category Par of sets and par-

tial functions, models of relational algebraic theories will be valued in the category

Rel of sets and relations. To begin, we recall:

Definition 4.0.1. The category Rel of sets and relations is given as follows:

objects are sets.

arrows f : X → Y are subsets of X × Y .

composition of f : X → Y and g : Y → Z is given by:

fg = {(x, z) ∈ X × Z | ∃y ∈ Y.(x, y) ∈ f ∧ (y, z) ∈ g}

The identity on X is 1X = {(x, x) | x ∈ X}

It is straightforward to verify that Rel is a category. Further, notice that there

is a partial order on the hom-sets Rel(X,Y ) given by subset inclusion. In fact, Rel

is enriched in the category of posets and monotone functions.

In the same way that Cartesian monoidal categories (algebraic theories) describe

the behavior of the Cartesian product of sets in Set and DCR categories (partial

algebraic theories) describe the behavior of the Cartesian product of sets in Par,
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relational algebraic theories will describe the behavior of the Cartesian product of

sets in Rel. We proceed to develop the categorical structure that will play this role.

4.1 CW Categories

We have seen that symmetric monoidal categories with certain additional structure

capture the behavior of the Cartesian product of sets in the category Set of sets

and functions (Cartesian monoidal categories), and in the category Par of sets and

partial functions (DCR categories). We proceed to show how this scheme extends

to the category Rel of sets and relations. Specifically, we introduce what we will

call Carboni-Walters categories (CW categories), which capture the behavior of

the Cartesian product of sets in Rel. We note that our CW categories are more

commonly called “Cartesian bicategories of relations”, following the terminology

of the paper in which they first appear [14]. In the context of modern category

theory this name is misleading, and so we adopt the alternative proposed in [7].

Much as Cartesian monoidal categories are characterised by commutative

comonoid structure, CW categories will be characterised by commutative special

Frobenius algebra structure:

Definition 4.1.1. Let X be a symmetric strict monoidal category. A commutative

special Frobenius algebra in X is a 5-tuple (X, δX , µX , εX , ηX), as in

δX ↭ µX ↭ εX ↭ ηX ↭

such that

(i) (X, δX , εX) is a commutative comonoid:

(ii) (X,µX , ηX) is a commutative monoid:
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(iii) µX and δX satisfy the special and Frobenius equations:

An intermediate notion is that of a hypergraph category, in which objects are

coherently equipped with commutative special Frobenius algebra structure:

Definition 4.1.2 ([27, 2.12]). A symmetric monoidal category X is called a hy-

pergraph category in case:

(i) Each object X of X is equipped with a commutative special Frobenius algebra.

(ii) The Frobenius algebra structure is coherent, i. e., for all X,Y we have:

Now a CW category is a poset-enriched hypergraph category satisfying certain

additional equations:

Definition 4.1.3 ([14, 2.1]). A CW category is a poset-enriched hypergraph cat-

egory X such that:

(i) The comonoid structure is lax natural. That is, for all arrows f of X:

(ii) Each of the Frobenius algebras satisfy:

Example 4.1.4. The category Rel is a CW category with

δX = {(x, (x, x)) | x ∈ X} µX = {((x, x), x) | x ∈ X}

εX = {(x, ∗) | x ∈ X} ηX = {(∗, x) | x ∈ X}
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where ∗ is the unique element of the singleton set I = {∗}.

In a CW category every hom-set admits binary meets:

Lemma 4.1.5 ([7, 4.14]). Every CW category has meets of parallel arrows, with

the meet of f, g : X → Y defined by f ∩ g = δX(f ⊗ g)µX . As a string diagram:

Further, the meet determines the poset-enrichment in that f ≤ g ⇔ f ∩ g = f .

We have defined CW categories by taking the ordering on hom-sets as primitive

and imposing axioms to govern its behavior (Definition 4.1.3). We point out that

it is also possible to axiomatise the meet operator directly, deriving the ordering.

This way of presenting the axioms is simpler, requiring only one family of equations

beyond those of a hypergraph category. Specifically, we have:

Lemma 4.1.6. A CW category is precisely a hypergraph category in which for each

arrow f : X → Y we have δX(f ⊗ f)µY = f , as in:

Proof. Let X be a hypergraph category, and suppose that for all arrows f of X
we have δX(f ⊗ f)µY = f . Define f ∩ g and f ≤ g as in Lemma 4.1.5. It is

straightforward to verify that this is a preorder-enrichment of X. We show that

the conditions of Definition 4.1.3 are satisfied, beginning with lax naturality: For

any arrow f of X we have

and also

and so f is lax natural. Next, we show that the Frobenius algebra structure satisfies
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the required inequations:

Thus, X is a CW category. Conversely, if X is a CW category then X is a hypergraph

category, and we have immediately that f ∩ f = f , as required.

It should come as no surprise that the notion of structure-preserving functor

between CW categories is the one that preserves the Frobenius algebra structure:

Definition 4.1.7. A CW functor F : X→ Y of CW categories X,Y is a symmetric

monoidal functor that preserves the Frobenius algebra structure as in:

F (δX) = δFXϕ
F
X,X F (εX) = εFXϕ

F
I

F (µX) = ϕ
F (−1)
X,X µFX F (ηX) = ϕ

F (−1)
I ηFX

When working with CW functors we will continue to systematically omit the

coherence isomorphisms. Like DCR categories, the correct notion of 2-cell be-

tween CW functors turns out to be that of a monoidal lax transformation (Def-

inition 3.1.15 and Definition 3.1.16). Small CW categories, CW functors, and

monoidal lax transformations form a 2-category CW. This 2-category will play an

important role in our development of relational algebraic theories, analogous to the

role of CM for algebraic theories and DCR for partial algebraic theories.

Definition 4.1.8. CW is the 2-category of small CW categories, CW functors, and

monoidal lax transformations.

CW categories have a lot of structure. A good place to start exploring this

structure is with the analogue of the relational converse. In Rel, for any f ⊆ X×Y
we may define its converse f◦ ⊆ Y ×X by f◦ = {(y, x) | (x, y) ∈ f}. What follows

is an abstract version of this that makes sense in any CW category:

Lemma 4.1.9 ([14, 2.4]). Every CW category X has an identity-on-objects con-

travariant involution (−)◦ : Xop → X which maps f : X → Y to f◦ = (ηXδX ⊗
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1Y )(1X ⊗ f ⊗ 1Y )(1X ⊗ µY εY ) : Y → X as in:

Proof. We have 1◦X = 1X as in:

We have (fg)◦ = g◦f◦ as in:

and finally we have f◦◦ = f as in:

Notice in particular that this is indeed the relational converse when specialised

to Rel. This generalised converse operation is well-behaved. For example, we have:

Lemma 4.1.10. Let X be a CW category. Then:

(i) (f ⊗ g)◦ = f◦ ⊗ g◦

(ii) (f ∩ g)◦ = g◦ ∩ f◦

(iii) If f ≤ g then f◦ ≤ g◦

(iv) δ◦X = µX and ε◦X = ηX

(v) µXf ≤ (f ⊗ f)µY and ηXf ≤ ηY for all f : X → Y

(vi) f ≤ ff◦f
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Proof. (i) We have (f ⊗ g)◦ = f◦ ⊗ g◦ as in:

(ii) We have (f ∩ g)◦ = g◦ ∩ f◦ as in:

(iii) f ≤ g if and only if f ∩ g = f , but then we have f◦ ∩ g◦ = (f ∩ g)◦ = f◦ and

so f◦ ≤ g◦.

(iv) We have δ◦X = µX as in:

and we have ε◦X = ηX as in:

(v) The axioms of a CW category give fδY ≤ δX(f ⊗ f) and fεY ≤ εX directly.

Then we have (µXf) = (f◦δX)◦ ≤ (δY (f◦ ⊗ f◦))◦ = (f ⊗ f)µY and ηXf =

(f◦εX)◦ ≤ ε◦Y = ηY as required.

(vi) We have ff◦f ≥ f as in:

We pay special attention to the arrows in a CW category that are natural with

respect to one or more of the generators of the Frobenius algebra structure. Specif-

ically:
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Definition 4.1.11 ([7, Section 4]). An arrow f : X → Y in a CW category is

called:

(i) simple in case fδY = δX(f ⊗ f) (if and only if δX(f ⊗ f) ≤ fδY ))

(ii) total in case fεY = εX (if and only if εX ≤ fεY )

(iii) surjective in case ηXf = ηY (if and only if (ηY ≤ ηXf)

(iv) injective in case µXf = (f ⊗ f)µY (if and only if (f ⊗ f)µY ≤ µXf)

Notice that in Rel an arrow f : X → Y is simple in case each x ∈ X is related

to at most one y ∈ Y . Similarly, f is total in case each x ∈ X is related to at

least one y ∈ Y , is surjective in case every y ∈ Y is related to at least one x ∈ X,

and is injective in case each y ∈ Y is related to at most one x ∈ X. It is useful to

consider the meaning of the above properties in Rel to form an intuition about their

behavior in a general CW category, since that intuition will usually be correct.

Perhaps surprisingly, the properties named in Definition 4.1.11 all admit char-

acterisations in terms of the generalised converse operation. We first require a

technical lemma:

Lemma 4.1.12 ([14, 2.4]). Let f : X → Y be an arrow in a CW category. Then:

(i) δX(f ⊗ 1X) ≤ fδY (1X ⊗ f◦)

(ii) (f ⊗ 1Y )µY ≤ (1X ⊗ f◦)µXf

Proof. (i) We have:

(ii) (f ⊗ 1Y )µY = (δY (f◦ ⊗ 1Y ))◦ ≤ (f◦δX(1X ⊗ f))◦ = (1X ⊗ f◦)µXf .

Technical lemma in hand, we obtain the promised characterisation of Defini-

tion 4.1.11 in terms of the generalised converse:

Lemma 4.1.13 ([7, 4.4]). Let f : X → Y be an arrow in a CW category. Then:

(i) f is simple if and only if f◦f ≤ 1Y

(ii) f is total if and only if 1X ≤ ff◦

(iii) f is surjective if and only if 1Y ≤ f◦f

(iv) f is injective if and only if ff◦ ≤ 1X
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Proof. (i) If f is simple then f◦f ≤ 1Y as in:

Conversely, if f◦f ≤ 1Y then we have δX(f ⊗f) ≤ fδY (1Y ⊗f◦f) ≤ fδY and

so f is simple.

(ii) If f is total then ff◦ ≥ 1X as in:

Conversely, if 1X ≤ ff◦ then f is total via εY ≤ ff◦εY ≤ fεY .

(iii) Similar to (ii).

(iv) Similar to (iii).

In Rel, the arrows that are both simple and total are the functions. The class of

simple and total arrows in a CW category will be of particular importance to our

development, warranting a name:

Definition 4.1.14 ([14, 1.5]). An arrow f : X → Y in a CW category is called a

map in case it is both simple and total.

A good analogy is that the maps of a CW category are like the total arrows of a

restriction category (Definition 3.1.1). Like total arrows in a restriction category,

the maps in a CW category form a subcategory:

Lemma 4.1.15 ([14, 1.6]). The maps of a CW category X form a subcategory

Map(X). Moreover, this category is Cartesian monoidal.

Proof. It is clear that maps compose, and that identity morphisms are maps. That

Map(X) is Cartesian monoidal then follows immediately from Theorem 2.4.5.

For example, we have Map(Rel) ∼= Set since the maps in Rel are precisely the

functions.

As an aside, we acknowledge that the word “map” is commonly used alongside

“morphism” and “arrow” as a generic term for a morphism in a category. We must

be careful to avoid this usage when working with CW categories, since the maps

enjoy a number of properties that arbitrary arrows do not. Specifically, we have:

Lemma 4.1.16 ([32, 2.1]). For f and g maps in a CW category X, we have:
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(i) f = ff◦f

(ii) If f ≤ g then f = g

(iii) If f◦ is a map then f is an isomorphism in Map(X) with f−1 = f◦

(iv) A map f : X → Y is monic if and only if it is injective

(v) A map f : X → Y is epic if and only if it is surjective

Proof. (i) f simple gives ff◦f ≤ f and f total gives f ≤ ff◦f , so f = ff◦f by

antisymmetry.

(ii) f ≤ g gives f◦ ≤ g◦ and we have g ≤ f as in g ≤ ff◦g ≤ fg◦g ≤ f , which

gives f = g by antisymmetry.

(iii) f : X → Y simple and total gives f◦f ≤ 1Y and 1X ≤ ff◦. Then since f◦

is a map so are ff◦ and f◦f , and so both of these inequations are in fact

equations.

(iv) Suppose f : X → Y is monic. Then f = ff◦f gives 1X = ff◦, which gives

that f is injective. For the converse, suppose that f is injective and that

g0f = g1f . Since f is total and injective we have ff◦ = 1X which gives

g0 = g0ff
◦ = g1ff

◦ = g1, and it follows that f is monic.

(v) Suppose f : X → Y is epic. Then f = ff◦f gives 1Y = f◦f , which in turn

gives that f is surjective. For the converse, suppose that f is surjective and

that fg0 = fg1. Since f is surjective and simple we have 1Y = f◦f which

gives g0 = f◦fg0 = f◦fg1 = g1, and it follows that f is epic.

The components of monoidal lax transformations between CW functors are nec-

essarily maps:

Lemma 4.1.17 ([7, 4.17]). If X,Y are CW categories, F,G : X → Y are CW

functors, and α : F → G is a monoidal lax transformation, then each component

αX : FX → GX of α is necessarily a map.

Proof. We have δFA(αA ⊗ αA) ≤ αAδGA and εFA ≤ αAεGA as in:

FA GA

FA⊗ FA GA⊗GA
δFA =F (δA) ≤

αA

δGA =G(δA)

αA⊗αA

FA GA

I I

εFA =F (εA) ≤

αA

εGA =G(εA)

αI =1I

The converse of each of these inequalities holds for any arrow of a CW category,

and it follows that αA is a map.
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Much as with lax transformations of CR functors, asking lax transformations of

CW functors to have components that are maps is equivalent to asking that they

are monoidal:

Lemma 4.1.18. Let F,G : X → Y be CW functors, and let α : F → G be a lax

transformation with components that are maps, in the sense that αX is a map for

each X of X. Then α is necessarily monoidal.

Proof. As in the proof of Lemma 3.1.18.

Notice the similarity to Lemma 3.1.17, in which it is shown that the components

of a monoidal lax transformation between CR functors are necessarily total. While

it is not directly related to our development, we point out a further connection

between CW categories and DCR categories:

Lemma 4.1.19. Let X be a CW category, and let Sim(X) be the subcategory of

simple arrows in X. Then Sim(X) is a DCR category.

Proof. Immediate from Theorem 3.2.4.

In fact, it is straightforward to verify that Sim(X) is a regular restriction category,

as defined in [18]. We will see later on how maps in a CW category are related

to regular categories (without the restriction structure), pointing to a larger story

about regularity that we will not pursue in this thesis.

As in the case of algebraic theories and partial algebraic theories, our results con-

cerning relational algebraic theories involve splitting certain species of idempotent.

We introduce the relevant notions now:

Definition 4.1.20 ([32, 2.1]). An arrow f : X → X in a CW category is called:

(i) reflexive if 1 ≤ f

(ii) symmetric if f◦ ≤ f

(iii) transitive if ff ≤ f

(iv) coreflexive if f ≤ 1

(v) a partial equivalence relation (PER) if it is symmetric and transitive

(vi) a equivalence relation if it is reflexive, symmetric, and transitive

These notions are connected in a straightforward way:

Lemma 4.1.21. Let f : X → X in a CW category. Then:

(i) If f is coreflexive then it is idempotent
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(ii) If f is reflexive and transitive then f is idempotent

(iii) If f is symmetric and transitive then f is idempotent

(iv) f is symmetric and idempotent if and only if f is a PER

(v) f is coreflexive if and only if it is a simple PER

Proof. (i) We have ff ≤ f immediately and ff = f(1 ∩ f) = f ∩ ff ≤ f , so by

antisymmetry ff = f as required.

(ii) 1 ≤ f gives 1 ∩ f = 1 and ff ≤ f gives ff ∩ f = ff . Then we have

f = f(1 ∩ f) = f ∩ ff = ff .

(iii) f ≤ ff◦f ≤ fff ≤ ff .

(iv) If f is a PER then it is symmetric and transitive, and so is also idempotent as

shown above. Conversely, if f is a symmetric idempotent then it is trivially

transitive, and is therefore a PER.

(v) If f is coreflexive then immediately f◦ ≤ 1 and so f◦f ≤ 1 and f is simple.

Further f ≤ ff◦f ≤ f◦ gives f = f◦ so f is symmetric. We have already

seen that all coreflexives are idempotent, and it follows that f is a PER.

Conversely, if f is a simple PER then we have f = ff = f◦f ≤ 1 as required.

Splittings of coreflexives in a CW category behave very well:

Lemma 4.1.22 ([32, 2.163]). Let a : X → X be coreflexive in a CW category X,
and suppose that a splits as in:

M X

M X

m

m

w
a

Then w = m◦, and m is an injective map.

Proof. First a ≤ 1 gives a◦ ≤ 1◦ = 1 and we have w◦ = mww◦ ≤ mm◦mww◦ =

mm◦w◦ = m(wm)◦ = ma◦ ≤ m and conversely m◦ = m◦mw ≤ m◦mww◦w =

m◦w◦w = (wm)◦w = a◦w ≤ w, and so m = m◦◦ ≤ w◦ which gives w◦ = m by

antisymmetry, and of course we also have m◦ = w.

Notice that mm◦ = 1M gives that m is total and injective. For m simple we

have m◦m = wm = a ≤ 1X , and it follows that m is a map.

PERs in a CW category have a useful property:
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Lemma 4.1.23. Let a : X → X be a PER in a CW category X. Then we have

aδX(a⊗ a) = aδ(1X ⊗ a) and (a⊗ a)µXa = (1X ⊗ a)µXa as in:

and

Moreover we have aδX(a⊗ a) = aδX(a⊗ 1X) and (a⊗ a)µXa = (a⊗ 1X)µXa.

Proof. Lemma 4.1.12 gives aδX(a ⊗ a) ≤ aaδX(1X ⊗ a◦a) = aδX(1X ⊗ aa) =

aδX(1X ⊗ a). Conversely we have aδX(1X ⊗ a) = aaδX(1X ⊗ a) ≤ aδX(a⊗ aa) =

aδX(a ⊗ a), and so by antisymmetry we have aδX(a ⊗ a) = aδX(1X ⊗ a). The

proof that (a⊗ a)µXa = (1X ⊗ a)µXa is similar, as is the proof that aδX(a⊗ a) =

aδX(a⊗ 1X) and (a⊗ a)µXa = (a⊗ 1X)µXa.

This allows us to prove a version of Lemma 2.2.8 for CW categories:

Proposition 4.1.24 ([32, 2.169]). Let X be a CW category and E be a collection

of PERs in X such that 1X ∈ E for all objects A of X. Then:

(i) SplitE(X) is a CW category.

(ii) There is an embedding

J−K : X ↪→ SplitE(X)

that preserves the CW category structure.

Proof. (i) For the CW structure, δ(X,a),ε(X,a),µ(X,a), and η(X,a) are, respectively:

and it is straightforward to verify that this structure satisfies the axioms of

a CW category by using Lemma 4.1.23. For example, we have that δ(X,a) is

coassociative as in:

(ii) The inclusion is defined by JXK = (X, 1X) on objects and by JfK = f on

arrows. Clearly this preserves the CW structure.
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Let CWper be the full sub 2-category of CW on the 0-cells X in which the PERs

split. In the same way that splitting idempotents extends to a 2-functor Cat →
Cats, splitting PERs extends to a 2-functor CW→ CWper as follows:

Lemma 4.1.25. There is a 2-functor Splitper : CW→ CWper given as follows:

On 0-cells Splitper sends X to Splitper(X).

On 1-cells F : X→ Y we define Splitper(F ) : Splitper(X)→ Splitper(Y) by

Splitper(F )(X, a) = (FX,F (a)) on objects and by Splitper(F )(f) = F (f) on arrows.

On 2-cells α : F → G the components of Splitper(α) : Splitper(F )→ Splitper(G) are

given by Splitper(α)(X,a) = F (a)αXG(a).

Proof. That each Splitper(F ) is a CW functor is immediate. We must show that each

Splitper(α) is a monoidal lax transformation. Then for any f : (X, a) → (Y, b) in

Splitper(X) we have Splitper(F )(f)Splitper(α)(Y,b) = FaFf αY Gb ≤ FaαX GaGf =

Splitper(α)(X,a)Splitper(G)(f), and so Splitper(α) is lax natural. It remains to show

that the components of Splitper(α) are maps. We have Splitper(α)(X, a)εG(X,a) =

F (a)αXG(a)εGX ≥ F (a)αXεGX = F (a)εFX = εF (X,a) and Splitper(α)(X,a)δG(X,a) =

F (a)αXG(a)δGX(G(a)⊗G(a)) ≥ F (a)αXδGX(G(a)⊗G(a)) = F (a)δFXαX(G(a)⊗
G(a)) ≥ F (a)δFX(F (a)⊗F (a))(F (a)αXG(a)⊗F (a)⊗G(a)) = δF (X,a)(Splitper(α)X⊗
Splitper(α)X) as required. It follows that Splitper(α) is a monoidal lax transforma-

tion. It is straightforward to verify that Splitper preserves composition and identities

for 1-cells and 2-cells, and preserves horizontal composition of 2-cells. The claim

follows.

We also obtain a version of Lemma 2.3.9 for CW categories:

Lemma 4.1.26. There is a biadjunction:

CW CWper⊥
Splitper

where the right adjoint CWper ↪→ CW is the evident forgetful functor.

Proof. The proof is similar to the proof of Lemma 2.3.9. As before, we define

(−)♯ : CWper(Splitper(X),C) → CW(X,C) which is natural in X and C, and show

that it is full, faithful, and essentially surjective.

The proof that (−)♯ is essentially surjective is almost identical to the corre-

sponding part of Lemma 2.3.9. The only difference is that now we must also

show that our F̂ is always a CW functor. We have already seen that it is sym-

metric monoidal. For the CW structure: since sa is simple we have F̂ (δ(X,a)) =

saF (a)F (δX)(F (a) ⊗ F (a))(ra ⊗ ra) = saδFX(ra ⊗ ra) = δF̂ (X,a)(sara ⊗ sara) =

δF̂ (X,a); since sa is total we have F̂ (ε(X,a)) = saF (a)F (εX) = saεFX = εF̂ (X,a);
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since sa is injective we have F̂ (µ(X,a)) = (sa ⊗ sa)(F (a) ⊗ F (a))F (µX)F (a)ra =

(sa ⊗ sa)µFXra = µF̂ (X,a)sara = µF̂ (X,a); and finally since ra = s◦a is surjective

we have F̂ (η(X,a)) = F (ηX)F (a)ra = ηFXra = ηF̂ (X,a). It follows that F̂ is a CW

functor, and that (−)♯ is essentially surjective.

To see that (−)♯ is full, suppose F,G are objects of CWper(Splitper(X),C) and that

α : F ♯ → G♯ is an arrow of CW(X,C) Define α̂ : F → G by α̂(X,a) = F (a)αXG(a).

Now α̂ is lax natural as in F (f)α̂(Y,b) = F (f)F (b)αYG(b) = F (a)F (f)αYG(b) ≤
F (a)αXG(f)G(b) = F (a)αXG(a)G(f) = α̂(X,a)G(f) for f : (X, a) → (Y, b) of

Splitper(X). The components of α̂(X,a) are maps as in α̂(X,a)εG(X,a) =

F (a)αXG(a)εGX ≥ F (a)αXεGX = F (a)εFX = εF (X,a) and α̂(X,a)δF (X,a) =

F (a)αXG(a)δGX(G(a)⊗G(a)) ≥ F (a)αXδGX(G(a)⊗G(a)) = F (a)δFX(αXG(a)⊗
αXG(a)) ≥ F (a)δFX(F (a) ⊗ F (a))(αX ⊗ αX)(G(a) ⊗ G(a)) = δF (X,a)(α̂(X,a) ⊗
α̂(X,a)). So α̂ : F → G is a monoidal lax transformation, and is thus a mor-

phism of CWper(Splitper(X),C) Consider α̂♯ : F ♯ → G♯. We have α̂♯X = α̂(X,1X) =

F (1X)αXG(1X) = αX , and so α̂♯ = α. It follows that (−)♯ is full.

Finally, to see that (−)♯ is faithful suppose that α, β : F → G are morphisms

of CWper(Splitper(X),C) such that α♯ = β♯ in CW(X,C). Notice that in this case

we have α(X,1X) = α♯X = β♯X = β(X,1X), and further that for any object (X, a)

of Splitper(X) we have that F (a) : F (X, 1X) → F (X, 1X) and G(a) : G(X, 1X) →
G(X, 1X) split as in:

F (X, a) F (X, 1X)

F (X, a) F (X, 1X)

F (a)

F (a)=1F (X,a)

F (a)

F (a)
F (a)

G(X, a) G(X, 1X)

G(X, a) G(X, 1X)

G(a)

G(a)=1G(X,a)

G(a)

G(a)
G(a)

In particular this means that F (a) : F (X, a) → F (X, 1X) and G(a) : F (X, a) →
F (X, 1X) are both injective maps. Lax naturality of α gives F (a)α(X,1X) ≤
α(X,a)G(a) as in:

F (X, a) F (X, a)

F (X, 1X) G(X, 1X)

≤F (a)

α(X,a)

G(a)

α(X,1X )

The components of α are necessarily maps, and so in fact we have F (a)α(X,1X) =
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α(X,a)G(a). But then F (a)α(X,1X)G(a)G(a) = α(X,a)G(a) and so

F (a)α(X,1X)G(a) = α(X,a) since G(a) : F (X, a) → F (X, 1X) is monic. A similar

argument gives F (a)β(X,1X)G(a) = β(X,a). Then we have α(X,a) =

F (a)α(X,1X)G(a) = F (a)α♯XG(a) = F (a)β♯XG(a) = F (a)β(X,1X)G(a) = β(X,a) and

so α = β. It follows that (−)♯ is faithful.

This argument also works if, instead of splitting the PERs in a CW category,

we split the coreflexives or the equivalence relations. Specifically, let CWcor and

CWeq be the full sub 2-categories of CW on the 0-cells with in which coreflexives

and, respectively, equivalence relations split. Then as above we have 2-functors

Splitcor : CW→ CWcor and Spliteq : CWcor → CWeq. The argument of Lemma 4.1.26

then gives:

Corollary 4.1.27. There are biadjunctions:

CW CWcor⊥
Splitcor

CW CWper⊥
Splitper

CWcor CWeq⊥
Spliteq

Where the right biadjoints are the evident forgetful functors.

It turns out that splitting all the PERs in a CW category is equivalent to splitting

all the idempotents, much in the way that splitting all the restriction idempotents

in a DCR category is equivalent to splitting all of the idempotents (Lemma 3.2.11).

The proof is somewhat more involved, and our next goal will be to establish this

fact. We begin with a definition:

Definition 4.1.28 ([32, 2.16(11)]). Two idempotents a, b : X → X in a CW

category X are said to be neighbours in case a = aba and b = bab.

Next, a technical lemma:

Lemma 4.1.29 ([32, 2.16(11)]). Let a : X → X be idempotent in a CW category

X. Then we have:

(i) a ∩ a◦ is a PER.

(ii) If a splits, then a and a ∩ a◦ are neighbours.

(iii) If b : X → X is idempotent and a and b are neighbours, then a splits if and

only if b splits.

Proof. (i) We must show that a∩ a◦ is symmetric and transitive. For symmetry

we have (e ∩ e◦)◦ = e◦ ∩ (e◦)◦ = e◦ ∩ e = e ∩ e◦, and for transitivity we have

(e∩ e◦)(e∩ e◦) ≤ (e∩ e◦)e∩ (e∩ e◦)e◦ ≤ ee∩ e◦e◦ = e∩ e◦. The claim follows.
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(ii) Suppose that a splits as in:

M X

M X

m

m

m◦
a

Then we have (a∩a◦)a(a∩a◦) = (wm∩m◦w◦)wm(wm∩m◦w◦) ≤ m◦(mwm∩
w◦)wm(wmw∩m◦)w◦ ≤ m◦mwmwmwmww◦ = m◦w◦ = a◦ and (a∩a◦) ≤ a,

so by the universal property of the meet we have (a∩ a◦)a(a∩ a◦) ≤ (a∩ a◦).

Conversely, we have (a∩a◦) = (a∩a◦)(a∩a◦)(a∩a◦) ≤ (a∩a◦)a(a∩a◦), and

so a∩ a◦ = (a∩ a◦)a(a∩ a◦). Next, we have a = wm = w(mwmw ∩ 1M )m ≤
wm(wmw∩m◦)m ≤ wm(wm∩m◦w◦)wm = a(a∩ a◦)a and conversely a(a∩
a◦)a ≤ aaa = a, so we have a = a(a ∩ a◦)a. It follows that a and a ∩ a◦ are

neighbours.

(iii) Suppose that a splits as in:

M X

M X

m

m

m◦
a

Then we have bm◦mb = bab = b and also mbbm◦ = mm◦mbm◦mm◦ =

mabam◦ = mam◦ = mm◦mm◦ = 1M , so b splits as in:

M X

M X

mb

mb

bm◦
b

Similarly, if b splits then a splits. The claim follows.

Then, as promised, we have:

Lemma 4.1.30 ([32, 2.16(11)]). Let X be a CW category. Then PERs in X split

if and only if all idempotents in X split.

Proof. If all idempotents in X split then PERs split, since PERs are idempotent.

For the converse, suppose that PERs in X split and let a : X → X be idempotent

in X. Now a : (X, 1X)→ (X, 1X) splits in Split(X), and so we know a : (X, 1X)→
(X, 1X) and a ∩ a◦ : (X, 1X) → (X, 1X) are neighbours in Split(X). Recall that

there is a faithful functor J−K : X→ Split(X) defined by JXK = (X, 1X) on objects

and by JfK = f on arrows. We have Ja(a ∩ a◦)aK = a(a ∩ a◦)a = a = JaK and

J(a∩ a◦)a(a∩ a◦)K = (a∩ a◦)a(a∩ a◦) = (a∩ a◦) = J(a∩ a◦)K in Split(X), but then
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since J−K is faithful we have that a and a ∩ a◦ are neighbours in X. Now a ∩ a◦ is

a PER, so by assumption it splits in X, which means that a splits in X. The claim

follows.

Corollary 4.1.31 ([32, 2.16(11)]). Let X be a CW category. Then Splitper(X) ≃
Split(X).

Another consequence of this is that our three idempotent splitting biadjunctions

are related:

Lemma 4.1.32 ([32, 2.169]). Let X be a CW category. Then we have:

Splitper(X) ≃ Spliteq(Splitcor(X))

Proof. It suffices to show that all idempotents split in Spliteq(Splitcor(X)), for which

it suffices to show that all PERs split therein, for which it suffices in turn to

show that any PER a : X → X of X splits in Spliteq(Splitcor(X)). We have that

1X ∩ a : X → X is coreflexive, so (X, 1X ∩ a) is an object of Splitcor(X). Moreover,

we have (1X ∩ a)a(1X ∩ a) = (a ∩ a)a(a ∩ a) = aaa = a by Lemma 4.1.23, which

means that a : (X, 1X ∩ a) → (X, 1X ∩ a) is an arrow of Splitcor(X). Now clearly

1X ∩ a ≤ a, and so a : (X, 1X ∩ a)→ (X, 1X ∩ a) is in fact an equivalence relation

in Splitcor(X). It follows that a splits in Spliteq(Splitcor(X)), as required.

This extends to a result about our biadjunctions:

Corollary 4.1.33. The following diagram of left biadjoints commutes:

CW CWcor

CWper

Splitper

Splitcor

Spliteq

4.2 Relational Algebraic Theories

We begin with the notion of relational algebraic theory:

Definition 4.2.1 ([7, 4.1]). A relational algebraic theory is a small CW category.

Much as models of classical algebraic theories are given by structure-preserving

functors into Set and models of partial algebraic theories are given by structure-

preserving functors into Par, models of relational algebraic theories are given by

structure-preserving functors into Rel:

Definition 4.2.2 ([7, 4.1]). A model of a relational algebraic theory X is a CW

functor F : X→ Rel.
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As with partial algebraic theories, model morphisms are monoidal lax transfor-

mations between the underlying functors:

Definition 4.2.3 ([7, 4.1]). Let F,G : X→ Rel be models of a relational algebraic

theory X. A model morphism α : F → G is a lax transformation.

Thus, the 2-category CW (Definition 4.1.8) occupies the same position with

respect to relational algebraic theories that CM and DCR occupy with respect to

classical and partial algebraic theories, respectively.

In our presentations of relational algebraic theories, arrows of the free CW cat-

egory over a given monoidal signature will play the role of terms. Explicitly:

Definition 4.2.4. Let Γ be a monoidal signature. The small CW category R(Γ)

of relational terms over Γ is constructed the same way S(Γ) is, but with additional

generating arrows:

A ∈ s(Γ)∗

δA : A→ A⊗A
A ∈ s(Γ)∗

µA : A⊗A→ A

A ∈ s(Γ)∗

εA : A→ I

A ∈ s(Γ)∗

ηA : I → A

additional equations concerning coherence:

δI = □ µI = □ εI = □ ηI = □

δA⊗B = (δA ⊗ δB)(1A ⊗ σA,B ⊗ 1B)µA⊗B = (1A ⊗ σA,B ⊗ 1B)(µA ⊗ µB)

εA⊗B = εA ⊗ εB ηA⊗B = ηA ⊗ ηB

and remaining additional equations:

δA(δA ⊗ 1A) = δA(1A ⊗ δA) δA(1A ⊗ εA) = 1A δAσA,A = δA

(1A ⊗ µA)µA = (µA ⊗ 1A)µA (ηA ⊗ 1A)µA = 1A σA,AµA = µA

(δA ⊗ 1A)(1A ⊗ µA) = µAδA (1A ⊗ δA)(µA ⊗ 1A) = µAδA

δA(f ⊗ f)µB = f ∀f : A→ B

Note in particular that the final family of equations gives δAµA = 1A.

It is convenient to specify relational term presentations using string diagrams.

We recall the diagrammatic convention for CW categories:

δA ↭ εA ↭ µA ↭ ηA ↭
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Then the equations concerning coherence become:

and the remaining additional equations become:

Equations over a signature are again pairs of terms:

Definition 4.2.5. Let Γ be a monoidal signature. A relational term equation over

Γ is a pair (f, g) where f, g : A→ B ∈ R(Γ). We may write f = g instead of (f, g).

A presentation of a relational algebraic theory is a signature together with a

collection of relational term equations over that signature:

Definition 4.2.6. A relational term presentation (Γ, E) consists of a monoidal

signature Γ together with a set E of relational term equations over Γ.

To construct the theory presented by a presentation, we quotient the category

of terms by the equations:

Definition 4.2.7. Let (Γ, E) be a relational term presentation. Write R(Γ, E) for

the small CW category obtained by quotienting R(Γ) by the equations of E. We

say that R(Γ, E) is presented by (Γ, E), and similarly we say that (Γ, E) presents

R(Γ, E).

Example 4.2.8 (Nonempty Sets). Let (∅X , Enonempty) be the relational term pre-

sentation with a single sort s(∅X) = {X} and no generating symbols, in which

Enonempty consists of the following equation:
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Models of the associated relational algebraic theory R(∅X , Enonempty) are sets X

such that the generating equation is satisfied in Rel:

ηXεX = {(∗, ∗)} = □I

where ηX and εX are defined as in Definition 4.0.1. If we calculate the relational

composite, we find that:

ηXεX = {(∗, ∗) | ∃x ∈ X.(∗, x) ∈ ηX ∧ (x, ∗) ∈ εX} = {(∗, ∗) | ∃x ∈ X}

and so models are nonempty sets. Model morphisms are simply functions. Con-

trast this to the category of pointed sets, in which morphisms must preserve the

distinguished point.

Recall that inequations of arrows in CW categories may be expressed as equa-

tions using the meet. We use inequations in our presentations of relational algebraic

theories as syntactic sugar. That is, f ≤ g corresponds to the equation f ∩ g = f .

For example:

Example 4.2.9 (Posets). Consider the relational term presentation (Γ⊑, E⊑) with

a single sort s(Γ⊑) = {X}, a single generator ⊑: X → X (below left), and equations

E⊑ to the effect that ⊑ is reflexive, transitive, and antisymmetric (below right).

Models F : R(Γ⊑, E⊑) → Rel of the associated relational algebraic theory are

precisely posets FX. Model morphisms are monotone functions.

Example 4.2.10 (Regular Semigroups). A semigroup is a set equipped with an

associative binary operation, denoted by juxtaposition. A semigroup S is regular

[34] in case:

∀a ∈ S.∃x ∈ S.axa = a

Consider the relational term presentation (Γrsg, Ersg) with a single sort s(Γrsg) =

{X} a single generator Γrsg = {m : X⊗X → X} (below left), in which Ersg consists

of equations to the effect that m is simple, total, and associative (below right)
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together with an equation expressing the regularity condition:

Then models of R(Γrsg, Ersg) are regular semigroups and model morphisms are

semigroup homomorphisms thereof.

Example 4.2.11 (Von Neumann Regular Rings). A ring R is said to be Von

Neumann regular [49] in case the multiplication monoid is a regular semigroup.

The theory of rings is algebraic, and so adding the regularity axiom from Example

4.2.10 to the set of equations allows us to capture Von Neumann regular rings as

a relational algebraic theory.

Example 4.2.12 (Effectoids). An effectoid [48] is a set A equipped with a unary

relation �ε 7→ ⊆ A, a binary relation ⪯ ⊆ A × A, and a ternary relation

; 7→ ⊆ A×A×A satisfying:

(Identity) For all a, a′ ∈ A,

∃x ∈ A.(�ε 7→ x) ∧ (x ; a 7→ a′)⇔ a ⪯ a′ ⇔ ∃y ∈ A.(�ε 7→ y) ∧ (a ; y 7→ a′)

(Associativity) For all a, b, c, d ∈ A,

∃x.(a ; b 7→ x) ∧ (x ; c 7→ d)⇔ ∃y.(b ; c 7→ y) ∧ (a ; y 7→ d)

(Reflexive Congruence 1) For all a ∈ A, a ⪯ a.

(Reflexive Congruence 2) For all a, a′ ∈ A, (�ε 7→ a) ∧ (a ⪯ a′)⇒ (�ε 7→ a′)

(Reflexive Congruence 3) For all a, b, c ∈ A, ∃x.(a ; b 7→ x) ∧ (x ⪯ c)⇒ (a ; b ⪯ c)

Effectoids admit a nice presentation as a relational algebraic theory. Consider

the relational term presentation (Γeffect, Eeffect) with a single sort s(Γeffect) = {X},
generators Γeffect corresponding respectively to the unary, binary, and ternary re-

lations as in:

and with equations in Eeffect corresponding to the identity and associativity axioms

as in:
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along with equations corresponding the the reflexive congruence axioms as in:

The models of R(Γeffect, Eeffect) are precisely effectoids.

Example 4.2.13 (Generalized Separation Algebras). A generalized separation al-

gebra [5] is a partial monoid satisfying the left and right cancellativity axioms,

which further satisfies the conjugation axiom:

∀x, y.(∃z.x ◦ z = y)⇔ (∃w.w ◦ x = y)

We give a relational algebraic theory of generalized separation algebras. Consider

(Γgsa, Egsa) where Γgsa = {X} and Γgsa contains generators corresponding to the

monoid operation and the unit as in:

Both are required to be simple, and the unit is required to be total. Thus Egsa

must contain equations as in:

along with equations corresponding to the associativity and unitality axioms:

For the sake of convenience we define upside-down versions of the generators as in:

This allows us to state the rest of the equations in Egsa more compactly, corre-

sponding to left cancellativity, right cancellativity, and conjugation, respectively:

Then models of R(Γgsa, Egsa) are generalized separation algebras and model mor-
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phisms are partial monoid homomorphisms.

Example 4.2.14 (Algebraic Theories). Let X be an algebraic theory, and let

(Xeq)reg/lex be the regular completion of X [9, 13]. Rel((Xeq)reg/lex) — see Def-

inition 4.4.1 — is a relational algebraic theory. Further, its models and model

morphisms (as a relational algebraic theory) coincide with the models and model

morphisms of X (as an algebraic theory). Conversely, if X is a relational algebraic

theory, then the maps of X form a subcategory Map(X). Map(X) has finite prod-

ucts, and so defines an algebraic theory in the usual sense. Further, the notions of

model and model morphism for relational algebraic theories restrict to the usual

notions for algebraic theories on the category of maps.

Example 4.2.15 (Essentially Algebraic Theories). An essentially algebraic the-

ory [45] is (among many equivalent presentations) a category X with finite limits.

Models are the finite-limit preserving functors X→ Set, and model morphisms are

natural transformations. For X an essentially algebraic theory let Xreg/lex be the

regular completion of X [13]. Then Rel(Xreg/lex) — see Definition 4.4.1 — is a

relational algebraic theory. Further, its models and model morphisms (as a rela-

tional algebraic theory) coincide with the models and model morphisms of X (as

an essentially algebraic theory).

Example 4.2.16 (Partial Algebraic Theories). Let X be a partial algebraic theory.

Then Total(Split(X)) is a category with finite limits, and so Rel(Total(Split(X))reg/lex)

— see Definition 4.4.1 — is a relational algebraic theory. Further, its models and

model morphisms coincide with the models and model morphisms of X as a partial

algebraic theory.

Example 4.2.17 (Cartesian Monoidal Presentations). Let (Γ, E) be a cartesian

monoidal presentation. Notice that every cartesian monoidal equation can also be

interpreted as a relational term equation. Define E′ to be the union of E with the

following set of equations:

{fεB = εA | f : A→ B ∈ Γ} ∪ {fδB = δA(f ⊗ f) | f : A→ B ∈ Γ}

Now models and model morphisms of the relational algebraic theory R(Γ, E′) co-

incide with models and model morphisms of the classical algebraic theory C(Γ, E).

The extra equations of E′ ensure that all of the operations are total functions in

spite of the fact that they inhabit Rel.

Example 4.2.18 (Partial Term Presentations). Let (Γ, E) be a partial term pre-

sentation. Notice that every partial term equation can also be interpreted as a

relational term equation. Define E′ to be the union of E with the following set of

equations:

{fδB = δA(f ⊗ f) | f : A→ B ∈ Γ}
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Now models and model morphisms of the relational algebraic theory R(Γ, E′) co-

incide with models and model morphisms of the partial algebraic theory P(Γ, E).

The extra equations of E′ ensure that all of the operations are partial functions in

spite of the fact that they inhabit Rel.

4.3 Regular Categories

Our next goal will be to characterise the categories of models and model morphisms

of relational algebraic theories (the varieties). In doing we will also obtain a char-

acterisation of Morita equivalence for relational algebraic theories, which is what

we will call the situation in which two different relational algebraic theories deter-

mine the same category of models and model morphisms (i.e., present the same

variety).

To this end we recall the definition and elementary properties of regular cate-

gories. Ultimately we will show that CW categories and regular categories are the

0-cells of equivalent 2-categories. This will allow us to connect CW categories to

the wider literature. We begin with the notion of subobject:

Definition 4.3.1. Let X be a category, and let A be an object of X. A subobject

of A consists of a pair (B,m) where B is an object of X and m : B → A is monic

in X.

Subobjects of A form a preorder: for (B,m) and (C, n) subobjects of A we say

that (B,m) ≤ (C, n) in case there is an arrow f : B → C of X such that:

B C

A

m

f

n

Notice that there can be at most one such morphism: if we have g : B → C

with gn = m then fn = m = gn and so f = g since n is monic. Consequently,

if (B,m) ≤ (C, n) and (C, n) ≤ (B,m) then this is realised by the components

of a (necessarily unique) isomorphism B ∼= C. Transitivity of ≤ is realised by

composition in X and reflexivity of ≤ is realised by the identity arrows. When we

speak of subobjects of A we are often truly speaking of elements of the posetal

reflection of this preorder, tacitly identifying (B,m) and (C, n) when (B,m) ≤
(C, n) and (C, n) ≤ (B,m).

Reasoning about subobjects in an arbitrary category by analogy to subsets in

Set is remarkably robust. For example, in the category of groups and group homo-

morphisms a subobject of a group G is precisely a subgroup of G.
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Central to the notion of regular category is the notion of regular epic, which is

simply an arrow that arises as a coequaliser:

Definition 4.3.2. A morphism e : Y → E is called regular epic in case for some

f, g : X → Y the diagram:

X Y E

f

g

+ e

is a coequaliser. Note in particular that every regular epic is epic. We write

e : Y ↠ E to indicate that the arrow e is regular epic.

Next, we introduce the notion of kernel pair. We will see later on that in a

regular category any regular epic is in fact the coequaliser of its own kernel pair,

which makes it easier to check whether or not something is regular epic.

Definition 4.3.3. The kernel pair of an arrow f : X → Y , if it exists, consists of

a pair of arrows f0 and f1 such that the diagram:

Ker(f) X

X Y

f1

f0

f

f

is a pullback. Note in particular that in a category with pullbacks every morphism

has a kernel pair.

In a regular category the regular epics interact with the monics. We recall a few

facts about monics that will be required in our development:

Lemma 4.3.4. (i) if fg is monic then f is monic

(ii) For any arrow f : X → Y in a category with finite products, ⟨f, 1X⟩ : X →
X × Y and ⟨1X , f⟩ : X → Y ×X are both monic.

(iii) m : X → Y is monic if and only if the following square is a pullback:

X X

X Y

m

m

(iv) If m : X → Y and m0,m1 : Ker(m) → X is the kernel pair of m, then m is

monic if and only if m0 = m1.

Proof. (i) If hf = kf then hfg = kfg which gives h = k since fg is monic.
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(ii) If h⟨f, 1X⟩ = k⟨f, 1X⟩ then h = h⟨f, 1X⟩π1 = k⟨f, 1X⟩π1 = k and so ⟨f, 1X⟩
is monic. Similarly, ⟨1X , f⟩ is monic.

(iii) If m is monic and we have hm = km for h, k : Z → X then h = k since m is

monic, which gives the unique map Z → X making the square in question a

pullback. Conversely, if the square is a pullback and fm = gm for f, g : Z →
X then the arrow α : Z → X given by the universal property of the pullback

has f = α = g, and so m is monic.

(iv) If m is monic then we have m0m = m1m and so immediately m0 = m1. For

the converse, suppose m0 = m1. Then for any f, g : Z → X with fm = gm

we have:

Z

Ker(m) X

X Y

α

f

g ⌟
m0

m1 m

m

which gives f = αm0 = αm1 = g, and so m is monic.

Now the definition of regular category is as follows:

Definition 4.3.5. A category C with finite limits is called regular in case:

(i) Coequalisers of kernel pairs exist, and

(ii) The pullback of a regular epic along any arrow is regular epic.

The regular epics in a regular category enjoy many properties, including:

Lemma 4.3.6. In a regular category C, we have:

(i) Any regular epic is the coequaliser of its own kernel pair.

(ii) A regular epic that is also monic is an isomorphism.

(iii) The composite of two regular epics is regular epic.

(iv) If f and fg are regular epic, so is g.

Proof. (i) Suppose that we have a coequaliser:

X Y E

f

g

+ e
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and let e0, e1 : Ker(e) → Y be the kernel pair of e : Y → E. Now let

e′ : Y ↠ E′ be the coequaliser of e0 and e1. Of course, e also equalises e0

and e1, so we obtain h : E′ → E as in:

Ker(e) Y E′

E

e0

e1

+

e

e′

h

Now, let α : X → Ker(e) be the morphism given by the universal property of

the kernel pair pullback as in:

X

Ker(e) Y

Y E

f

g

α

e0

e1 e

e

Then we have fe′ = αe0e
′ = αe1e

′ = ge′, from which we obtain k : E → E′

as in:

X Y E

E′

f

g

+

e′

e

k

Then we have e′hk = ek = e′ ⇒ hk = 1E′ since e′ is epic. Similarly ekh =

e′h = e ⇒ kh = 1E since e is epic, and so k and h are mutually inverse and

e is the coequaliser of its kernel pair e0, e1.

(ii) Let e : X → Y be both regular epic and monic, and let e0, e1 be the kernel

pair of e. Then e0e = e1e⇒ e0 = e1 since e is monic, and we have h : X → Y

as in:

Ker(e) X Y

X

e0

e1

e

h

So in particular we have eh = 1X . We also have ehe = e ⇒ he = 1Y since e

is epic. Thus, e is an isomorphism.

(iii) Suppose that we have regular epics f : X ↠ Y and g : Y ↠ Z. Pasting
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pullback diagrams gives:

Ker(fg) X0 X

X1 Ker(g) Y

X Y Z

(fg)0

(fg)1

⌟ ⌟
f

⌟
g0

g1
⌟

g

f g

where (fg)0, (fg)1 : Ker(fg) → X gives the kernel pair of fg. Let α :

Ker(fg)→ Ker(g) as in:

Ker(fg)

Ker(g) Y

Y Z

(fg)0f

(fg)1f

α

⌟
g0

g1 g

g

Notice in particular that α is epic since it is a composite of (regular) epics

Ker(fg) ↠ X0 ↠ Ker(g). Let f0, f1 : Ker(f) → X be the kernel pair of f .

Then we have an arrow β : Ker(f)→ Ker(fg) as in:

Ker(f)

Ker(fg) X

X Y

f0

f1

β

⌟
(fg)0

(fg)1 fg

fg

Now (fg)0fg = αg0g = αg1g = (fg)1fg and for any h : Z → W with

(fg)0h = (fg)1h we have f0h = β(fg)0h = β(fg)1h = f1h, and so since f is

the coequaliser of its kernel pair we obtain k : Y →W as in:

Ker(f) X Y

W

f0

f1

+
f

h
k

Next, we have g0k = g1k since αg0k = (fg)0fk = (fg)0h = (fg)1h =
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(fg)1fk = αg1k and α is epic. Since g is the coequaliser of its kernel pair we

obtain w : Z →W as in:

Ker(g) Y Z

W

g0

g1

+
g

k
w

Now fgw = fk = h and we have:

Ker(fg) X Z

W

(fg)0

(fg)1

+

h

fg

w

where w is the unique such morphism since for any w′ : Z →W with fgw′ = h

we have w = w′ because fgw = h = fgw′ and fg is epic (being the composite

of two epic arrows). Thus, fg is the coequaliser of its kernel pair, and is

therefore regular epic.

(iv) Suppose we have f : X → Y and g : Y → Z with f and fg regular epic. Let

g0, g1 : Ker(g)→ Y be the kernel pair of g, and let (fg)0, (fg)1 : Ker(fg)→ X

be the kernel pair of fg. Then as before we have:

Ker(fg)

Ker(g) Y

Y Z

(fg)0f

(fg)1f

α

⌟
g0

g1 g

g

Now, suppose we have h : Y → W such that g0h = g1h. Then (fg)0fh =

αg0h = αg1h = (fg)1fh and we obtain w : Z →W as in:

Ker(fg) X Z

W

(fg)0

(fg)1

+
fg

fh
w
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Then we have gw = h since f is epic, which gives:

Ker(g) Y Z

W

g0

g1

+

h

g

w

where w is the unique such arrow because for any w′ : Z →W with gw′ = h

we have fgw′ = fh = fgw which gives w = w′ since fg is epic. Thus g is the

coequaliser of its kernel pair, and is therefore regular epic.

One of the most important properties of regular categories is that in them, the

regular epics and monics form a stable factorisation system.

Proposition 4.3.7. In a regular category C each arrow factors as a regular epic

followed by a monic. Moreover, for each commutative diagram:

X Y

Z W

f

e

g

m

in C there exists a unique arrow t : Y → Z such that:

X Y

Z W

f

e

gt

m

That is, every regular category has a stable factorisation system (L,R) with L the

class of regular epics and M the class of monics.

Proof. We first show that each arrow of C factors as a regular epic followed by a

monic. To that end, suppose f : X → Y in C. Let f0, f1 : Ker(f) → X be the

kernel pair of f , and let e : X ↠ E be the coequaliser of f0 and f1. Now we have

m : E → Y as in:

Ker(f) X E

Y

f0

f1

+

f

e

m

It remains to show that m is monic. Let m0,m1 : Ker(m) → E be the kernel pair

129



of m. Pasting pullback diagrams gives:

Ker(f) Y0 Y

Y1 Ker(m) E

Y E Y

⌟

f0

f1

⌟
e

f

⌟ ⌟
m0

m1 m

f

e m

It follows that α : Ker(f)→ Ker(m) as in:

Ker(f)

Ker(m) E

E Y

f0e

f1e

α

⌟
m0

m1 m

m

is epic, since it is a composite of (regular) epics Ker(f)↠ Y0 ↠ Ker(m). This gives

m0 = m1 via αm0 = f0e = f1e = αm1. Then by Lemma 4.3.4 we have that m is

monic, as required.

Next, suppose that we have a commutative diagram:

X Y

Z W

f

e

g

m

Let e0, e1 : Ker(e)→ X be the kernel pair of e. Then e0fm = e0eg = e1eg = e1fm

and so e0f = e1f since m is monic. We obtain t : Y → Z as in:

Ker(e) X Y

Z

e0

e1

+

f

e

t
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Further, etm = fm = eg and so tm = g since e is epic. Thus we have:

X Y

Z W

f

e

gt

m

where the universal property of the coequaliser e : X ↠ Y ensures that t is the

unique such arrow. The claim follows.

The monic part of the factorisation of f : X → Y in a regular category defines

a subobject of Y , which we call the image of f .

We require a few more minor facts about regular categories before moving on.

First, we have:

Lemma 4.3.8. In a regular category any regular epic is extremal. That is, if

e = gm for some g and some monic m, then m is an isomorphism.

Proof. We have seen that in every regular category the regular epics and monics

form an orthogonal factorisation system. In particular this means that any regular

epic is left orthogonal to all monics. Suppose e : Y ↠ E is regular epic, that

m : M ↣ E is monic, and that e = gm for some g : Y → M . Then we have a

unique diagonal filler h : E →M for the following square:

Y E

M E

g

e

h

m

Notice that we immediately have hm = 1E . But then we have mhm = m = 1Mm

which gives mh = 1M since m is monic. It follows that m is an isomorphism.

While the following result may at first seem to be overly specific, it will be useful

in the sequel for reasoning about internal relations in a regular category.

Lemma 4.3.9. In a regular category two spans ⟨f, g⟩ : R→ A×B and ⟨h, k⟩ : S →
A×B are such that the image of ⟨f, g⟩ is a subobject of the image of ⟨h, k⟩ if and
only if there exists a regular epic a : X → R along with any morphism b : X → S

such that
R

A X B

S

f g
a

b
h k
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Proof. Suppose we have a commutative diagram of the appropriate form. We must

show that the image IR of ⟨f, g⟩ : R → A× B is isomorphic to IR ∩ IS . Begin by

constructing the meet, then we have:

X S

R ∩ S IS

R IR A×B

x

b

a ⟨h,k⟩⌟
m

⟨f,g⟩

And since regular epics are left-orthogonal to monics we have:

X R

R ∩ S IR

x

a

m

But then since R ↠ IR is extremal epic we have that m : R ∩ S ∼→ R is an

isomorphism, as required.

Conversely, suppose that there is an isomorphism α : IR
∼→ R ∩ S. Then the

following diagram is a pullback:

IR R ∩ S IS

IR A×B

⌟
1 ∼

α
∼

Now, define a, b by repeated pullback as in:

X Q S

P IR R ∩ S IS

R IR A×B

b

a

⌟ ⌟

⟨h,k⟩
⌟

1 ∼
⌟

α
∼

⟨f,g⟩
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and the outer commutative square gives the required diamond shape.

The notion of functor between regular categories is straightforward:

Definition 4.3.10. A functor F : X → Y between regular categories X and Y is

itself called regular if it preserves finite limits and regular epics.

Finally, we define a 2-category of regular categories:

Definition 4.3.11. REG is the 2-category of small regular categories, regular func-

tors, and natural transformations.

4.4 Categories of Relations

To begin, we recall the category Rel of sets and relations, which will serve as the

universe of models for relational theories in the same way that the category Set of

sets and functions is the universe of models for classical algebraic theories.

In any regular category we can construct an abstract analogue of Definition 4.0.1.

Instead of subsets R ⊆ A × B, we represent relations as subobjects R ↣ A × B.

This approach to categorifying the theory of relations has a relatively long history

[32], and integrates well with standard categorical logic due to the ubiquity of

regular categories there.

Definition 4.4.1. Let C be a regular category. The associated category of internal

relations, Rel(C), is defined as follows:

objects are objects of C

arrows f : X → Y of Rel(C) are monics ⟨f0, f1⟩ : F ↣ X × Y in C modulo

equivalence as subobjects of X × Y . We write m ↬ f : X → Y to indicate that

m : R↣ X × Y in C gives f : X → Y in Rel(C).

composition of two arrows ⟨f0, f1⟩ ↬ f : X → Y and ⟨g0, g1⟩ ↬ g : Y → Z of

Rel(C) is defined by first constructing the pullback below on the left. This defines

an arrow ⟨g′0f0, f ′1g1⟩, and the composite fg : X → Z is given by the monic part

of the image factorization of this arrow, as pictured below right.

F ×Y G G

F Y

⌟
g′0

f ′
1

g0

f1

R×B S X × Z

FG

⟨g′0f0,f ′
1g1⟩

⟨(fg)0,(fg)1⟩

identities are as in ∆X = ⟨1X , 1X⟩↬ 1X : X → X.
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Remark 4.4.2. While the above definition is the standard one, it introduces a

novel piece of notation that will be used heavily in the sequel. Specifically, the

expression:

m↬ f : X → Y

indicates that the arrow f : X → Y of Rel(C) is given by the subobject m : R↣
X × Y in C. It is hoped that reiterating this explicitly will help to head off any

notational confusion going forward.

That internal relations in a regular category are themselves a category is non-

trivial:

Lemma 4.4.3. If C is a regular category then Rel(C) is a category.

Proof. We must show that composition is associative and unital. We begin with

associativity. Suppose that we have arrows ⟨f0, f1⟩ ↬ f : X → Y , ⟨g0, g1⟩ ↬ g :

Y → Z, and ⟨h0, h1⟩ ↬ h : Z → W of Rel(C). We will show that both (fg)h

and f(gh) are given by the monic part of the image factorisation of the arrow

⟨m0p0f0,m1q1h1⟩ : M ↣ X ×W defined by repeated pullback as in:

M

P Q

F G H

X Y Z W

m0 m1

p0 p1 q1q0

f0 f1 g0 g1 h1h0

To begin, recall that ⟨(fg)0, (fg)1⟩↬ fg : X → Z as in the image factorisation:

P X × Z

FG

e0

⟨p0f0,p1g1⟩

⟨(fg)0,(fg)1⟩

Now we construct ⟨((fg)h)0, ((fg)h)1⟩ ↬ (fg)h : X → W by constructing the

pullback of h0 along (fg)1 (below left) and taking the the image of the resulting
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arrow N → X ×W (below right):

N H W

FG Z

X

⌟
n0

n1

h0

h1

(fg)0

(fg)1

N X ×X

(FG)H

e1

⟨n0(fg)0,n1h1⟩

⟨((fg)h)0,((fg)h)1⟩

Then we obtain k : M → N as in:

M

P N H

FG Z

k

m1q1

m0

e0

⌟
n1

n0 h0

(fg)1

Now, we have:

M N H

P FG Z

m0

k n1

n0

⌟
h0

e0 (fg)1

and

M Q H

P G Z

kn1

m1

m0

⌟
q1

q0
⌟

h0

e0(fg)1

p1 g1

And so the left-hand square in the diagram above left is a pullback (by the pull-

back pasting lemma). In particular, this means that k : M ↠ N is regular epic.

Now let ⟨(fgh)0, (fgh)1⟩ ↬ fgh : X → W be the arrow given by the image of

⟨m0p0f0,m1q1h1⟩ : M → X ×W , as in:

M X ×W

FGH

e2

⟨m0p0f0,m1q1h1⟩

⟨(fgh)0,(fgh)1⟩
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Now, we have:

M X ×W

M N X ×W X ×W

(FG)H

FGH

⟨m0p0f0,m1q1h1⟩

k

e2

⟨n0(fg)0,n1h1⟩

e1

α∼=

⟨((fg)h)0,((fg)h)1⟩

⟨(fgh)0,(fgh)1⟩

That is, we have that ⟨((fg)h)0, ((fg)h)1⟩ : (FG)H ↣ X×W and ⟨(fgh)0, (fgh)1⟩ :

FGH ↣ X×W are both the image of ⟨m0p0f0,m1q1h1⟩ : M → X×W . It follows

that they are equal as subobjects (via the induced isomorphism α in the above

diagram), which gives fgh = (fg)h : X → W in Rel(C). A similar argument

gives that fgh = f(gh), from which we conclude that composition in Rel(C) is

associative.

For unitality, observe that for any ⟨f0, f1⟩ ↬ f : X → Y the composite 1Xf is

given by the image of the outer span of:

F

F Y

X Y Y

f1

f0 f1

since the operation of pulling back along an identity arrow is itself the identity.

That is, 1Xf is given by the monic part of the image of ⟨f0, f1⟩, but this is already

monic and is therefore its own image. Thus 1Xf = f . Similarly, we have f = f1Y .

It follows that Rel(C) is a category.

Example 4.4.4. Set is a regular category, and the category of internal relations

in Rel(Set) is precisely the usual category of sets and relations Rel.

Lemma 4.4.5 ([14, 1.4]). Let C be a regular category. Then Rel(C) is a CW

category with split coreflexives.

Proof. Rel(C) is a CW category with the Frobenius algebra structure given by:

⟨1X ,∆X⟩↬ δX : X ↣ X ×X ⟨∆X , 1X⟩↬ µX : X ×X → X

⟨1X , !X⟩↬ εX : X → I ⟨!X , 1X⟩↬ ηX : I → X

Suppose ⟨f0, f1⟩ ↬ f : X → X is coreflexive. Then f ≤ 1X gives a morphism of
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spans α : F → X as in:

F X

X X
f1

f0

α

In particular, this gives f0 = α = f1, which means ⟨α, α⟩ ↬ f . Now α : F → X

is monic since ⟨f0, f1⟩ = ⟨α, α⟩ = α∆X is monic. Let ⟨1F , α⟩ ↬ m : F → X and

⟨α, 1F ⟩ ↬ m◦ : X → F in Rel(C). Since α is monic we have ⟨1F , 1F ⟩ ↬ mm◦ =

1F and ⟨α, α⟩ ↬ m◦m = f in Rel(C). Thus, f splits in Rel(C) and the claim

follows.

4.5 Relating CW Categories and Regular Cate-

gories

In this section we establish a strict 2-equivalence between the 2-category CWcor of

small CW categories with split coreflexives and the 2-category Reg of small regular

categories.

We have already seen that if C is a regular category then Rel(C) is a CW category

with split coreflexives (Lemma 4.4.5). Clearly Rel(C) is small if C is. We show

that this extends to a 2-functor Rel : Reg → CWcor. If C and D are regular

categories and F : C → D is a regular functor, then we obtain a CW functor

Rel(F ) : Rel(C)→ Rel(D). This functor is defined on objects by Rel(F )(X) = FX,

and sends arrows m ↬ f : X → Y in Rel(C) to Fm ↬ Rel(F )(f) : FX → FY

in Rel(D). We have that Rel(F ) is a functor since F is a regular functor. In

particular, Rel(F ) preserves composition because F preserves images. Further,

Rel(F ) is a CW functor because F preserves the Cartesian monoidal structure of

C. For 2-cells α : F → G : C → D of Reg, define Rel(α) : Rel(F ) → Rel(G) by

⟨1FA, αA⟩↬ Rel(α)A. We must show that Rel(α) is a monoidal lax transformation.

To that end, let ⟨f0, f1⟩↬ f : X → Y in Rel(C) and consider that:

Rel(α)XRel(G)(f) and Rel(F )(f)Rel(α)Y

are defined by first constructing pullbacks

P GR

FX GX

p1

p0

⌟
Gf0

αX

and

Q FY

FR FY

q1

⌟
q0 1FB

Ff1
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and then taking images as in

P FX ×GY

IP

⟨p0,p1G(f1)⟩

and

Q FX ×GY

IQ

⟨q0F (f0),q1αY ⟩

Thus, it suffices to show that IQ is a subobject of IP . Since α is natural we have

q0αRG(f0) = q0F (f0)αX , which induces an arrow h : Q→ P as in:

Q FR

FR P GR

FX GX

h

q0

q0
αR

Ff

⌟
p0

p1

Gf

αX

and then we have h⟨p0, p1Gg⟩ = ⟨q0Ff, q1αB⟩ immediately in the first component,

and for the second component as in:

P GR

Q FR GB

FB FB

p1

Ggh

q1

q0

αR

Fg

1

αB

and then we have
IQ

FA Q QB

IP

↠◦h

so by Lemma 4.3.9 IQ is a subobject of IP , as required, and we may conclude that

Rel(α) : Rel(F ) → Rel(G) is a lax transformation. To see that Rel(α) is monoidal

it suffices to show that each component is a map, which is straightforward. Thus

Rel(α) is a monoidal lax transformation. Clearly Rel preserves composition and

identities at the level of 1- and 2-cells as well as horizontal composition of 2-cells.

We record:

Lemma 4.5.1. Rel : Reg→ CWcor is a 2-functor.
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This 2-functor is the first half of our 2-equivalence. Our next goal will be to

construct the second half of our 2-equivalence, which will be a 2-functor Map :

CWcor → Reg. This will take some doing. We begin by introducing a notion of

domain of definition for CW categories, which will play an important role.

Definition 4.5.2 ([32, 2.122]). For f : X → Y in a CW category define the domain

of definition of f to be dom(f) = (1 ∩ ff◦) : X → X. Note that the domain of

definition of any arrow is coreflexive.

We establish some elementary properties of this domain of definition:

Lemma 4.5.3. (i) dom(f) = 1X if and only if f : X → Y is total

(ii) dom(f)f = f

(iii) If f is simple then dom(f◦) = f◦f

(iv) If f is simple then dom(f ∩ g)f = f ∩ g

(v) If f and g are simple then dom(f ∩ g)f = dom(f ∩ g)g

Proof. (i) Note that we always have dom(f) = 1 ∩ ff◦ ≤ 1X . If f is total then

1X ≤ ff◦ and we have dom(f) = 1X ∩ ff◦ ≥ 1X ∩ 1X = 1X and so by

antisymmetry dom(f) = 1X . Conversely, if dom(f) = 1X then 1X ∩ ff◦ =

dom(f) = 1X and so 1X ≤ ff◦, which means that f is total.

(ii) We have dom(f)f = (1 ∩ ff◦)f = f as in:

(iii) We have dom(f◦) = 1 ∩ f◦f = f◦f as in:

(iv) First, we have dom(f ∩ g)f = (1X ∩ (f ∩ g)(f ∩ g)◦)f ≥ f ∩ g as in:
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Conversely dom(f ∩ g) = (1 ∩ (f ∩ g)(f ∩ g)◦)f ≤ (f ∩ g)(f ∩ g)◦f = (f ∩
g)(f◦ ∩ g◦)f ≤ (f ∩ g)f◦f ≤ (f ∩ g), and so we have f ∩ g = dom(f ∩ g)f by

antisymmetry.

(v) We have dom(f ∩ g)f = f ∩ g = g ∩ f = dom(g ∩ f)g = dom(f ∩ g)g.

Our 2-functor Map will send 0-cells of CWcor to their category of maps. We show

that this results in a category with finite limits, and characterise its regular epics.

Lemma 4.5.4 ([32, 2.147]). Let X be a CW category with split coreflexives. Then:

(i) Map(X) has finite limits

(ii) A map f : X → Y in X is surjective if and only if it is regular epic in Map(X)

(iii) Regular epics are stable under pullback in Map(X)

(iv) Coequalisers of kernel pairs exist in Map(X)

Proof. (i) We have already seen that Map(X) has finite products (Lemma 4.1.15).

We show that it also has equalisers. To that end, suppose f, g : X → Y are

arrows of Map(X), and let dom(f ∩ g) split as in:

E X

E X

e

e

e◦
dom(f∩g)

Then Lemma 4.1.22 gives that e is a map. We show that the following diagram

is an equaliser in Map(X):

E X Ye
f

g

+

If we have h : Z → X with hf = hg then he◦ : Z → E is such that he◦e =

hdom(f∩g) = h(1∩(f∩g)(f∩g)◦) = h∩h(f∩g)(f∩g)◦ = (hf∩hg)(f◦∩g◦) =

hff◦hgg◦ ≥ h∩h = h and also he◦e = hdom(f ∩ g) ≤ h, so by antisymmetry

he◦e = h. We have that he◦ is simple as in (he◦)◦he◦ = eh◦he◦ ≤ ee◦ = 1E

and total as in he◦(he◦)◦ = he◦eh◦ = hh◦ ≥ 1X , and so he◦ is a map.

We must show that for any map k : Z → E with ke = h we have k = he◦. In

this case we have ke = h = he◦e but then k = he◦ because e is monic. Thus

e : E → X is the equaliser of f and g, from which it follows that Map(X) has

finite limits.

140



(ii) Suppose that f : X → Y is a surjective map in X. Let e : E → X ×X be the

equaliser of π0f, π1f : X ×X → Y in Map(X). In particular this means that

e is the monic part of the splitting of dom(π0f ∩ π1f) (below left), and that

the square below right is a pullback in Map(X) (see Lemma 3.4.5):

E X ×X

E X ×X

e

e

e◦
dom(π0f∩π1f)

E X

X Y

eπ1

eπ0

⌟
f

f

Thus the kernel pair of f is eπ0, eπ1. We must show that f is the coequaliser

of eπ0 and eπ1. To that end, suppose we have h : X → Z with eπ0h = eπ1h.

Then we have f◦h : Y → Z as in:

E X Y

Z

eπ0

eπ1

+
f

h
f◦h

To see that ff◦h = h, first notice that dom(π0f ∩ π1f) = dom((f ⊗ f)µY ) =

(1 ∩ (f ⊗ f)µY δY (f◦ ⊗ f◦)) may be written as follows:

Then using that e◦e(h ⊗ εX) = e◦eπ0h = e◦eπ1h = e◦e(εX ⊗ h) we have

ff◦h = h as in:

It follows that f◦h is simple via (f◦h)◦f◦h = h◦ff◦h = h◦h ≤ 1Z and that

f◦h is total via f◦h(f◦h)◦ = f◦hh◦f ≥ f◦f = 1Y , so it is an arrow of Map(X).

For any other map k : Y → Z with fk = h we have k = f◦h since f is epic

(because it is surjective) and fk = h = ff◦h. Thus, f coequalises its kernel

pair, and is regular epic. For the converse, if f is regular epic in Map(X) then

f is epic, and so f is surjective.
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(iii) Let f : X ↠ Y be regular epic in Map(X), and let g : Z → Y be another map.

Then Lemma 3.4.5 tells us that the pullback of f along g given by mπ0 and

mπ1 (below left), where m : M → X ×Z is the monic part of the splitting of

dom(π0f ∩ π1g) (below right):

M X

Z Y

⌟
mπ0

mπ1 f

g

M X × Z

M X × Z

m

m

m◦
dom(π0f∩π1g)

So our goal is to show that mπ1 : M → Z is regular epic. It suffices to

show that mπ1 is surjective. Using that f is surjective and that f and g are

maps, we have (mπ1)◦mπ1 = π◦
1m

◦mπ1 = π◦
1dom(π0f∩π1g)π1 = π◦

1dom((f⊗
g)µY )π1 = π◦

1(1 ∩ (f ⊗ g)µY δY (f◦ ⊗ g◦))π1 = 1Z as in:

Thus mπ1 is surjective, and it follows that regular epics are stable under

pullback in Map(X).

(iv) Suppose f : X → Y in Map(X), and let e : E → X ×X be the equaliser of

π0f, π1f : X ×X → Y . In particular this means that e splits dom(π0f ∩π1f)

(below left) and that the square below on the right is a pullback in Map(X):

E X ×X

E X ×X

e

e

e◦
dom(π0f∩π1f)

E X

X Y

⌟
eπ0

eπ1 f

f

Thus eπ0, eπ1 is the kernel pair of f . Let dom(f◦) split as in:

M Y

M Y

m

m

dom(f◦)
m◦
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We will show that the following diagram is a coequaliser in Map(X):

E X M
eπ0

eπ1

+
fm◦

First, that f is total gives that fm◦ is total as in fm◦(fm◦)◦ = fm◦mf◦ =

fdom(f◦)f◦ = ff◦ ≥ 1X . Moreover, since f is simple we have that fm◦ is

simple and surjective as in 1M = mm◦mm◦ = mdom(f◦)m◦ = mf◦fm◦ =

(fm◦)◦fm◦. In particular, we have shown that fm◦ is regular epic in Map(X).

Now, suppose we have h : X → Z with eπ0h = eπ1h as in:

E X M

Z

eπ0

eπ1

+
fm◦

h

Notice that dom(π0f ∩ π1f)π0h = e◦eπ0h = e◦eπ1h = dom(π0f ∩ π1f)π1h,

which gives ff◦h as in part (ii) of this lemma. Then we have fm◦mf◦h =

fdom(f◦)f◦h = ff◦h = h as in:

E X M

Z

eπ0

eπ1

+
fm◦

h
mf◦h

We show that mf◦h : M → Z is the unique such map. To that end, suppose

that for some k : M → Z in Map(X) we have fm◦k = h. Then fm◦k =

h = ff◦h = fdom(f◦)f◦h = fm◦mf◦h, which gives k = mf◦h since fm◦

is regular epic. It follows that our diagram is indeed a coequaliser, and we

conclude that coequalisers of kernel pairs exist in Map(X).

As a consequence of our lemma we have:

Theorem 4.5.5 ([32, 2.147]). Let X be a CW category with split coreflexives. Then

Map(X) is regular.

We show that the assignment of X to Map(X) extends to a 2-functor Map :

CWcor → Reg. On 1-cells F : X → Y we define Map(F ) : Map(X) → Map(Y) on

objects by Map(F )(X) = FX and on arrows f : X → Y by Map(F )(f) = F (f) :

FX → FY . That Map(F ) preserves finite limits and regular epics is immediate,

and so it is a regular functor. For 2-cells α : F → G, Map(α) is defined by

Map(αX) = αX : FX → GX. Now if f : X → Y in Map(X), we use the fact that
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α is a monoidal lax transformation to obtain

Map(F )(f)Map(α)Y = Ff αY

≤ αX Gf = Map(α)XMap(G)(f)

By Lemma 4.1.17 we have that both sides of this inequation are maps, so Lemma

4.1.16 tells us that it is in fact an equation. Then we have that Map(α) is a natural

transformation. Clearly Map preserves composition and identities at the level of 1-

and 2-cells as well as horizontal composition of 2-cells. We record:

Lemma 4.5.6. Map : CWcor → Reg is a 2-functor.

This will be the second half of our strict 2-equivalence. To construct the required

natural isomorphisms we require an intermediate result:

Lemma 4.5.7. Let C be a regular category, and let ⟨f0, f1⟩ ↬ f : X → Y in

Rel(C). Then f is a map in Rel(C) if and only if f0 is an isomorphism in C.

Proof. Let the kernel pairs of f0 and f1 be a0, a1 : Ker(f0) → F and b0, b1 :

Ker(f1)→ F respectively, as in:

Ker(f0) F

F X

⌟
a0

a1 f0

f0

and

Ker(f1) F

F Y

b1

b0

⌟
f1

f1

So in particular f◦f is given by image of ⟨a0f1, a1f1⟩ : Ker(f0)→ Y × Y and ff◦

is given by the image of ⟨b0f0, b1f0⟩ : Ker(f1)→ X ×X.

Suppose f is a map. Then f is simple and total, and so we have f◦f ≤ 1Y and

1X ≤ ff◦. Then Lemma 4.3.9 gives:

Ker(f0)

Y N Y

Y

a0f1 a1f1

u

n

and

X

X M X

Ker(f1)

w

m

b0f0 b1f0

Now a0f1 = a1f1 since na0f1 = u = na1f1 and n is epic. Then we have a0⟨f0, f1⟩ =

⟨a0f0, a0f1⟩ = ⟨a1f0, a1f1⟩ = a1⟨f0, f1⟩, and so a0 = a1 since ⟨f0, f1⟩ is monic.

Then by Lemma 4.3.4 we have that f0 is monic. Now since m is regular epic it is

extremal epic (Lemma 4.3.8), which in particular gives that f0 is an isomorphism

since m = wb0f0 and f0 is monic.
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For the converse, suppose that f0 is an isomorphism. Then since f0 is monic it

follows that ⟨f1, f1⟩↬ f◦f . We have:

F

Y F Y

Y

f1f1

f1

and then by Lemma 4.3.9 we have f◦f ≤ 1Y , and so f is simple. To see that f

is total, recall that ⟨1X , !X⟩ ↬ εX in Rel(C). Then fεY in Rel(C) is given by the

image of ⟨f0, !F ⟩, and we have:

X

X F 1

F

!Xf0

f0 !F

where f0 is regular epic because it is an isomorphism. Then Lemma 4.3.9 gives

that εX ≤ fεY . Thus f is total, and so f is a map. The claim follows.

Now for the components of the first required natural isomorphism we have:

Lemma 4.5.8. Let C be a regular category. Then there is an isomorphism ϕC :

C → Map(Rel(C)) defined to be the identity on objects, and defined on arrows

f : X → Y of C by ⟨1X , f⟩↬ ϕC(f) : X → Y in Map(Rel(C)).

Proof. It is immediate that ϕC is a functor. Since ϕC is identity-on-objects it suffices

to show that it is full and faithful. To see that ϕC is full, suppose ⟨f0, f1⟩↬ f : X →
Y in Map(Rel(C)). Then since f is a map we know that f0 is an isomorphism and

then ⟨f0, f1⟩ and ⟨1X , f−1
0 f1⟩ are equal as subobjects of X ×Y , so f = ϕC(f−1

0 f1).

It follows that ϕC is full. To see that ϕC is faithful suppose that ϕC(f) = ϕC(g) for

f, g : X → Y in C. Then ⟨1X , f⟩ and ⟨1X , g⟩ are equal as subobjects of X × Y ,

which means there is an isomorphism α : X → X with 1X = α1X and f = αg.

Then g = 1Xg = αg = f , and it follows that ϕC is faithful. Thus, ϕC is an

isomorphism.

With the natural isomorphism itself given as in:

Lemma 4.5.9. There is an invertible strict 2-natural transformation ϕ : 1REG →
Map ◦ Rel with components ϕC : C→ Map(Rel(C)).
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Proof. We show that this defines a strict 2-natural transformation. To that end,

suppose that F : C→ D is a 1-cell of Reg. Then we have:

C Map(Rel(C))

D Map(Rel(D))

F

ϕC

Map(Rel)(F ))

ϕD

as follows: both composites send X in C to FX in D. On arrows f : X → Y

of C, Map(Rel(F ))(ϕC(f)) = Map(Rel(F ))(⟨1X , f⟩ ↬ ϕC(f)) = Rel(F )(⟨1X , f⟩ ↬
ϕC(f)) = ⟨1FX , F (f)⟩↬ F (ϕC(f)) = ϕD(F (f)). For any 1-cells F,G : C→ D and

2-cell β : F → G it is straightforward to verify that β ⋆ 1ϕD = 1ϕC ⋆Map(Rel(β)).

The claim follows.

The components of the second required natural isomorphism are given by:

Lemma 4.5.10. Let C be a CW category with split coreflexives. Then there is an

isomorphism ψC : C→ Rel(Map(C)) which maps f : X → Y in C to m↬ ψC(f) :

X → Y in Rel(Map(C)) where m : M ↣ X × Y splits 1 ∩ π0fπ◦
1 in C, as in:

M X × Y

M X × Y

m

m

m◦
1∩π0fπ

◦
1

Proof. We first show that ψC is a functor. We begin by showing that ψC preserves

identities. Consider ψC(1X) : X → X given by the monic part m : M ↣ X ×X of

the splitting of 1 ∩ π0π◦
1 , as in:

M X ×X

M X ×X

m

m

m◦
1∩π0π

◦
1

Notice that 1 ∩ π0π◦
1 = µXδX as in:
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This means that δX also splits 1 ∩ π0π◦
1 , as in:

X X ×X

X X ×X

δX

δX

µX

1∩π0π
◦
1=µXδX

And so δX : X ↣ X × X and m : M ↣ X × X equal as subobjects of X × X.

Then ⟨1X , 1X⟩↬ 1X = ψC(1X) in Rel(Map(C)), as required.

Next, we show that ψC preserves composition. To that end, suppose we have

arrows f : X → Y and g : Y → Z of C. Suppose further that m ↬ ψC(f) such

that m and n split 1 ∩ π0fπ◦
1 and 1 ∩ π0gπ◦

1 respectively, as in:

M X × Y

M X × Y

m

m

m◦
1∩π0fπ

◦
1

N Y × Z

N Y × Z

n

n

n◦
1∩π0gπ

◦
1

and let p↬ ψC(fg) such that p splits 1 ∩ π0fgπ◦
1 as in:

P X × Z

P X × Z

p

p

p◦
1∩π0fgπ

◦
1

Now, let e : E ↣ M × N split dom(π0mπ1 ∩ π1nπ0) (below left). It follows that

the square below right is a pullback:

E M ×N

E M ×N

e

e

e◦
dom(π0mπ1∩π1nπ0)

E N

M Y

⌟
eπ0

eπ1

nπ0

mπ1

Then we have q ↬ ψC(f)ψC(g) where q : Q↣ X × Z is the image of

⟨eπ0mπ0, eπ1nπ1⟩ = e(mπ0 ⊗ nπ1) : E → X × Z, as in:

E X × Z

Q
i

e(mπ0⊗nπ1)

q

Now, notice that e◦e = dom(π0mπ1∩π1nπ0) = 1∩(π0mπ1∩π1nπ0)(π0mπ1∩π1nπ0)◦
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may be written as follows:

It follows that q splits 1∩π0fgπ◦
1 : we have qq◦ = 1Q because q is total and injective

(being a monic map), and then since i is a surjective map we have i◦i = 1E ,

which gives q◦q = q◦i◦iq = (iq)◦iq = (e(mπ0 ⊗ nπ1))◦e(mπ0 ⊗ nπ1) = (π◦
0m

◦ ⊗
π◦
1n

◦)e◦e(mπ0 ⊗ nπ1) = 1 ∩ π0fgπ◦
1 as in:

Then since q and p both split 1∩π0fgπ◦
1 we know that they are the same subobject

of X × Z, which means that ψC(f)ψC(g) = ψC(fg). Thus, ψC is a functor.

It remains to show that ψC is full and faithful. To see that ψC is full, suppose

n ↬ f : X → Y in Rel(Map(C)). Consider (nπ0)◦nπ1 : X → Y in C, and let

m↬ ψC((nπ0)◦nπ1) with m as in:

M X × Y

M X × Y

m

m

m◦
1∩π0(nπ0)

◦nπ1π
◦
1

Now nn◦ = 1N because n is a monic map, and we have n◦n = 1∩π0(nπ0)◦nπ1π◦
1 =

m◦m as in:

It follows that m and n are the same subobject of X×Y , and so ψC((nπ0)◦nπ1) = f

and ψC is full.

To see that ψC is faithful, suppose that we have f, g : X → Y in C with
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ψC(f) = ψC(g), where m↬ ψC(f) and n↬ ψC(g) with m and n as in:

M X × Y

M X × Y

m

m

m◦
1∩π0fπ

◦
1

N X × Y

N X × Y

n

n

n◦
1∩π0nπ

◦
1

Now since ψC(f) = ψC(g) we know that n and m are the same subobject of X×Y ,

which is to say that there is an isomorphism α : M → N with αn = m. But then

1 ∩ π0fπ◦
1 = m◦m = (αn)◦αn = n◦α◦αn = n◦n = 1 ∩ π0gπ◦

1 . As an equation of

string diagrams, this is:

But then we have f = g as in:

and so ψC is faithful. Thus, ψC is an isomorphism.

With the natural isomorphism itself as in:

Lemma 4.5.11. There is an invertible strict 2-natural transformation ψ : 1CWcor →
Rel ◦Map with components ψX : X→ Rel(Map(X)).

Proof. We show that this defines a strict 2-natural transformation. To that end,

suppose F : X→ Y is a 1-cell of CWcor. Then we have:

X Rel(Map(X))

Y Rel(Map(Y))

ψX

F Rel(Map(F ))

ψY

as follows: on objects both composites map X in X to FX in Rel(Map(Y)). On

arrows f : X → Y of X, let 1 ∩ π0fπ◦
1 split as follows:

M X × Y

M X × Y

m

m

m◦
1∩π0fπ

◦
1

Then Rel(Map(F ))(ψX(f)) = Rel(Map(F ))(m ↬ ψX(f)) = F (m) ↬ F (ψX(f)).
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Now, let n↬ ψY(F (f)) : FX → FY . That is, let n split 1 ∩ π0F (f)π◦
1 as in:

N FX × FY

N FX × FY

n

n

n◦
1∩π0F (f)π◦

1

Then we have F (m)F (m)◦ = 1 and F (m)◦F (m) = F (m◦m) = F (1 ∩ π0 ∩ π◦
1) =

1 ∩ π0F (f)π◦
1 , so m and n are equal as subobjects of FX × FY , which gives

Rel(Map(F ))(ψX(f)) = ψY(F (f)) as required. For any 1-cells F,G : C → D and

2-cell β : F → G it is straightforward to verify that 1ψX ⋆ Rel(Map(β)) = β ⋆ 1ψY .

The claim follows.

The promised strict 2-equivalence between CWcor and Reg is thus established.

We record:

Theorem 4.5.12. There is a strict 2-equivalence:

CWcor Reg≃
Map

Rel

4.6 Varieties and Morita Equivalence

In this section we construct a variety theorem for relational algebraic theories. We

first recall the notion of exact category, which is a regular category satisfying a

condition. Next, we recapitulate the main results surrounding definable categories

and their connection to regular and exact categories. Specifically there is an ana-

logue of Gabriel-Ulmer duality in which exact categories are seen to correspond to

definable categories. Our variety theorem then follows immediately from our devel-

opment up to this point: the categories that arise as models and model morphisms

of relational algebraic theories are precisely the definable categories. This gives an

analogue of Theorem 2.4.28 for relational algebraic theories. We end with a discus-

sion of Morita equivalence for relational algebraic theories, in which we find that

two relational algebraic theories present the same category of models and model

morphisms if and only if they have equivalent idempotent splitting completions.

This gives an analogue of Theorem 2.4.30 for relational algebraic theories.

We begin by recalling the closely related notions of effectivity and exactness:

Definition 4.6.1 ([32]). A CW category X is effective in case all partial equivalence

relations in X split.
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Definition 4.6.2 ([13]). A regular category C is exact in case Rel(C) is effective.

Let EX be the full 2-subcategory of Reg on the exact 0-cells.

It is straightforward to verify that Theorem 4.5.12 restricts to the effective case:

Proposition 4.6.3. If X is an effective relational algebraic theory, then Map(X) is

exact. Conversely, if C is an exact category, then Rel(C) is effective. This extends

to a strict 2-equivalence:

CWper EX

Map

≃
Rel

We may therefore give the exact completion of a regular category as follows:

Proposition 4.6.4 ([13, 40]). If C is regular, define the exact completion of C by

Cex/reg = Map(Spliteq(Rel(X)))

Then Cex/reg is exact. This extends to a biadjunction:

Reg EX⊥
ex/reg

where the right adjoint is the evident forgetful 2-functor.

We summarize the relationship of regularity and exactness to CW categories:

Corollary 4.6.5. The following diagram of left biadjoints commutes:

CWcor Reg

CWper EX

Map
∼

Spliteq ex/reg

Map

∼

where the arrows marked with ∼ are part of a biequivalence.

The final idea involved in our variety theorem is that of a definable category

[38]. Definable categories come from categorical universal algebra. If we take

regular categories as our notion of theory, regular functors into Set as our notion

of model, and natural transformations as our model morphisms, then definable

categories are the corresponding varieties. We follow the exposition of [40], and in

particular we formulate definable categories via finite injectivity classes:

Definition 4.6.6 (Finite Injectivity Class). Let h : A → B be an arrow of X.

Then an object C of X is said to be h-injective in case the function of hom-sets

X(h,C) : X(B,C) → X(A,C) defined by X(h,C)(f) = hf is injective. If M is a

finite set of arrows in X, write inj(M) for the full subcategory on the objects C of X
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that are h-injective for each h ∈M . We say that each inj(M) is a finite injectivity

class in X.

Definable categories are defined relative to an ambient locally finitely presentable

category. It is an open problem to give a free-standing characterization [38].

Definition 4.6.7. A category is said to be definable if it arises as a finite injec-

tivity class in some locally finitely presentable category. Every definable category

has products and directed colimits [38]. If X and Y are definable categories, a

functor F : X → Y is called an interpretation in case it preserves products and

directed colimits. Let DEF be the 2-category with definable categories as 0-cells,

interpretations as 1-cells, and natural transformations as 2-cells.

For example, any locally finitely presentable category is a definable category,

and in particular this means that Set is definable. From any definable category we

can obtain an exact category by considering its interpretations into Set.

Proposition 4.6.8 ([40]). If X is a definable category then the functor cate-

gory DEF(X,Set) is an exact category. This extends to a 2-functor DEF(−,Set) :

DEFop → EX.

Similarly, for any regular category the associated category of regular functors

into Set is definable.

Proposition 4.6.9 ([40]). If C is a regular category then the functor category1

Reg(C,Set) is definable. This extends to a 2-functor Reg(−,Set) : Reg→ DEFop.

If the category in question is exact, then considering interpretations of the re-

sulting definable category into Set yields the original exact category. This lifts to

the 2-categorical setting.

Proposition 4.6.10 ([40]). There is a biadjunction:

Reg DEFop⊥
Reg(−,Set)

DEF(−,Set)

Which specializes to a biequivalence:

EX DEFop≃
Reg(−,Set)

DEF(−,Set)

This gives another way to describe the exact completion of a regular category:

1Strictly speaking it does not make sense to write Reg(C, Set), since the 0-cells of Reg are
small and Set is not small. Nonetheless, there is a category of regular functors C → Set, which
we denote Reg(C, Set).
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Proposition 4.6.11 ([40]). If C is regular then Cex/reg ≃ DEF(Reg(C ,Set) ,Set).

Thus, we may summarize the relationship between definable, regular, and exact

categories as follows:

Corollary 4.6.12 ([40, Section 9,10]). The following diagram of left biadjoints

commutes.
Reg

EX DEFop

Reg(−,Set)
ex/reg

Reg(−,Set)
∼

where the arrow marked with ∼ is part of a biequivalence.

The ingredients of our variety theorem for relational algebraic theories are now

assembled. Together, Corollary 4.1.33, Corollary 4.6.5, and Corollary 4.6.12 give:

Corollary 4.6.13. The following diagram of left biadjoints commutes:

CW CWcor Reg

CWper EX DEFop

Splitper

Splitcor Map
∼

Spliteq ex/reg
Reg(−,Set)

Map

∼
Reg(−,Set)

∼

where the arrows marked with ∼ are part of a biequivalence.

Now our variety theorem is an immediate consequence of Corollary 4.6.13:

Theorem 4.6.14. There is a biadjunction:

CW DEFop⊥
Mod

Th

It may not be immediately clear what this tells us about the category of models

and model morphisms of a relational algebraic theory, so let us briefly discuss. Con-

sider an arbitrary relational algebraic theory X. Our universe of models Rel has split

idempotents, so models of X and models of Splitcor(X) are the same thing since the

image of any coreflexive in X already splits in Rel. Then the category of models of

X and model morphisms thereof is CWcor(Splitcor(X),Rel). When we transport this

across the 2-equivalence Map : CWcor
∼→ Reg it becomes Reg(Map(Splitcor(X)),Set),

a definable category. Thus, categories of models and model morphisms of regular

algebraic theories are definable categories.

Now, Set is exact, so Rel is effective, which means that much like the models of X
and Splitcor(X), the models of X and Splitper(X) are the same. We have shown that

CWper ≃ EX ≃ DEFop, and so the question of when two relational algebraic theories
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generate the same category of models and model morphisms can be answered as

follows (using Corollary 4.1.31):

Theorem 4.6.15. Two relational algebraic theories X and Y present equivalent

definable categories if and only if Split(X) and Split(Y) are equivalent.

This is encouraging, given that Morita equivalence for algebraic theories and

partial algebraic theories is characterised in the same way.
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Abstract

Partial and Relational Algebraic Theories

This thesis introduces notions of partial algebraic theory and relational algebraic

theory, in which operations are interpreted as partial functions and as relations, re-

spectively. The development focuses on the monoidal category structure of partial

functions and relations. In particular, partial and relational algebraic theories are

both intuitively presentable by means of string diagrams for monoidal categories,

which play the role of terms. The varieties — those categories that arise as the

category of models of a given theory — are rigorously characterised for both partial

algebraic theories and relational algebraic theories. Specifically, the varieties asso-

ciated with partial algebraic theories are precisely the locally finitely presentable

categories, while the varieties associated with relational algebraic theories are pre-

cisely the definable categories.
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Kokkuvõte

Osalised ja relatsioonilised algebralised teooriad

Käesolev doktoritöö toob sisse osalise ning relatsioonilise algebralise teooria mõisted,

kus tehete interpretatsiooniks on vastavalt osalised funktsioonid ning relatsioonid.

Töö põhiosa keskendub osaliste funktsioonide ning relatsioonide kategooriate

monoidilisele struktuurile. Osalisi ning relatsioonilisi algebralisi teooriaid saab

kumbagi näitlikult esitada monoidiliste kategooriate nöördiagrammide abiga, mis

täidavad siin termide rolli. Muutkondadele — kategooriatele, mis on mingi teooria

mudelite kategooriaks — on leitud karakterisatsioonid nii osaliste kui ka

relatsiooniliste algebraliste teooriate juhtumil. Selgub, et osalistele algebralistele

teooriatele vastavad muutkonnad on täpselt lokaalselt lõplikult esitatavad

kategooriad, samas kui relatsioonilistele algebralistele teooriatele vastavad

muutkonnad on täpselt defineeritavad kategooriad.
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A Foundation for Ledger Structures
Chad Nester
Tallinn University of Technology, Estonia

Abstract
This paper introduces an approach to constructing ledger structures for cryptocurrency systems
with basic category theory. Compositional theories of resource convertibility allow us to express
the material history of virtual goods, and ownership is modelled by a free construction. Our notion
of ownership admits an intuitive graphical representation through string diagrams for monoidal
functors.
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Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.7

Funding Chad Nester : This research was supported by the ESF funded Estonian IT Academy
research measure (project 2014-2020.4.05.19-0001).

1 Introduction

Modern cryptocurrency systems consist of two largely orthogonal parts: A consensus protocol,
and the ledger structure it is used to maintain. While consensus protocols have received a
lot of attention (see e.g. [10, 7]), the design space of the accompanying ledger structures
is barely explored. The recent interest in smart contracts has led to the development of
sophisticated ledger structures with complex behaviour (see e.g. [1, 13]). These efforts have
been largely ad hoc, and the resulting ledger structures are difficult to reason about. This
difficulty also manifests in the larger system, which has contributed to several unfortunate
incidents involving blockchain technology [2].

A strong mathematical foundation for ledger structures would enable more rigorous
development of sophisticated blockchain systems. Further, the ability to reason about the
ledger at a high level of abstraction would facilitate analysis of system behaviour. This is
important: users of the system must understand it in order to use it with confidence. The
formalism we propose has an intuitive graphical representation, which would make this kind
of rigorous operational understanding possible on a far wider scale that it would otherwise
be.

Blockchain systems are largely concerned with recording the material history of virtual
objects, with a particular focus on changes in ownership. The resource theoretic interpretation
of string diagrams for symmetric monoidal categories gives a precise mathematical meaning
to this sort of material history. Building on this, we consider string diagrams augmented with
extra information concerning the ownership of resources. We give these diagrams a precise
mathematical meaning in terms of strong monoidal functors, drawing heavily on the work of
[9], where our augmented diagrams originated. We show that an augmented resource theory
has the same categorical structure as the original, in the sense that the two corresponding
categories are equivalent. Finally, we give a simple example of a ledger structure using our
machinery.
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7:2 A Foundation for Ledger Structures

2 Monoidal Categories as Resource Theories

We assume familiarity with some basic category theory, in particular with symmetric monoidal
categories. A good reference is [8]. Throughout, we will write composition in diagrammatic
order. That is, the composite of f : X → Y and g : Y → Z is written fg : X → Z. We
may also write g ◦ f : X → Z, but we will never write gf : X → Z. We will make heavy
use of string diagrams for monoidal categories (see e.g. [11]), which we read from top to
bottom (for composition) and left to right (for the monoidal tensor). Our string diagrams
for ownership are in fact the string diagrams for monoidal functors of [9].

2.1 Resource Theories

We begin by observing (after [4]) that a symmetric strict monoidal category can be interpreted
as a theory of resource convertibility: Each object corresponds to collection of resources with
A⊗B denoting the collection composed of both A and B and the unit I denoting the empty
collection. Morphisms f : A→ B are then understood as a way to convert the resources of
A to those of B.

For example, consider the free symmetric strict monoidal category on the set

{bread, dough, water, flour, oven}

of atomic objects, subject to the following additional axioms:

mix : water⊗ flour→ dough knead : dough→ dough

bake : dough⊗ oven→ bread⊗ oven

This category can be understood as a theory of resource convertibility for baking bread.
The morphism mix represents the process of combining water and flour to form a bread
dough, knead the process of kneading the dough, and bake the process of baking the dough
in an oven to yield bread (and an oven). While this model has many failings as a theory of
bread, it suffices to illustrate the idea. The axioms of a symmetric strict monoidal category
provide a natural scaffolding for this theory to live in. For example, consider the morphism

(bake⊗ 1dough)(1bread ⊗ σoven,doughbake)

where σA,B : A⊗B ∼−→ B ⊗A is the braiding. This morphism has type

dough⊗ oven⊗ dough→ bread⊗ bread⊗ oven

and describes the transformation of two pieces of dough into two loaves of bread by baking
them one after the other in an oven. We obtain a string diagram for this morphism by drawing
our objects as wires, and our morphisms as boxes with inputs and outputs. Composition is
represented by connecting output wires to input wires, and we represent the tensor product
of two morphisms by placing them beside one another. Finally, the braiding is represented
by crossing the involved wires. For the morphism in question, we obtain:
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We will think of our ledger systems in terms of such string diagrams: The state of the
system is a string diagram describing the material history of the resources involved, the
available resources correspond to the output wires, and changes are effected by appending
resource conversions to the bottom of the diagram. From now on we understand a resource
theory to be a symmetric strict monoidal category with an implicit resource-theoretic
interpretation.

2.2 How to Read Equality
Suppose we have a resource theory X, and two resource transformations f, g : A → B.
Each of f and g expresses a different way to transform an instance of resource A into an
instance of resource B, but these may not have the same effect. For example, consider
knead : dough → dough and 1dough : dough → dough from our resource theory of bread.
Clearly these should not have the same effect on the input dough. This is reflected in our
resource theory in the sense that they are not made equal by its axioms. For contrast, we
can imagine a (somewhat) reasonable model of baking bread in which there is no difference
between kneading the dough once and kneading it many times. We could capture this in our
resource theory of baking bread by imposing the equation

knead = knead ◦ knead

In this new resource theory, our equation tells us that kneading dough once has the same
effect as kneading it twice, or three times, and so on, since the corresponding morphisms of
the resource theory are made equal by its axioms. Of course, the material history described
by knead◦knead is not identical to that described by knead. In the former case, the kneading
process has been carried out twice in sequence, while in the latter case it has only been
carried out once. That these morphisms are equal merely means that the effect of each
sequence of events on the dough involved is the same.

We adopt the following general principle in our design and understanding of resource
theories: Two transformations should be equal precisely when they have the same effect on
the resources involved.

We further illustrate this by observing that, by the axioms of a symmetric monoidal
category (specifically, by naturality of braiding), the following two transformations in the
resource theory of baking (expressed as string diagrams) are equal. The transformation
on the left describes baking two loaves of bread by first mixing and kneading two batches
of dough before baking them in sequence, while the transformation on the right describes
baking two loaves of bread by mixing, kneading, and baking the first batch of dough, and
then mixing, kneading, and baking the second batch. Thus, according to our resource theory
the two procedures will yield the same result – not an entirely unreasonable conclusion!

Tokenomics 2020



7:4 A Foundation for Ledger Structures

3 String Diagrams for Ownership

Ledgers used by blockchain systems are largely concerned with ownership. For example, in
the Bitcoin system, each coin is associated with a computable function called the validator,
which is used to control access to it. Anyone who wishes to use the coin must supply input
data, called a redeemer, and the system only allows them to use the coin in question in case
running the validator on the redeemer terminates in a fixed amount of time. If the validator
is defined only on the data that results from Alice digitally signing a nonce generated by
the system, then that coin can only be used by Alice, who then effectively owns it.

Different use cases call for different authentication schemes. For example, a proposed
application of blockchain technology is to improve supply chain accountability by requiring
participants to log any transfers and transformations of material on a public ledger (see e.g.
[5, 12]). Here ownership implies responsibility, and so for Alice to log the transfer of, say, a
ton of steel to Bob, both Alice and Bob must ratify the transfer via digital signature.

What different use cases have in common is that the resources of the ledger system are
associated with ownership data. We leave the interpretation of this ownership data, including
the specific details of the authentication scheme unspecified, instead giving a structural
account of resource ownership. We develop our account of resource ownership intuitively,
and somewhat informally, by introducing addtional features to string diagrams. This is made
fully formal in the next section.

3.1 Ownership and Collection Management
Begin by assuming a theory of resources X, and a collection C of potential resource owners,
each of which we associate with a colour for use in our diagrams. Suppose for the remainder
that Alice, Bob, and Carol range over C, and are associated with colours as follows:
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Our goal will be to construct a new theory of resources in which resources and
transformations are associated with (owned and carried out by) elements of C. The objects
of our new resource theory will be collections of owned objects of X. That is, for each object
X of X and each Alice ∈ C we have an object XAlice, which we interpret as an instance of
resource X owned by Alice, along with the empty collection I and composite collections
XAlice ⊗ Y Bob, in which Alice’s instance of X exists alongside an instance of Y owned by
Bob.

Similarly, for each transformation f : X → Y in X, we ask for transformations fAlice :
XAlice → Y Alice and fBob : XBob → Y Bob for all Alice, Bob ∈ C, whose presence we interpret
as the ability of each owner to effect all possible transformations of resources they own. We
draw these annotated transformations as, respectively:

Since we are building a theory of resources we must end up with a symmetric monoidal
category, so we also assume the presence of the associated morphisms, such as fAlice ⊗ gBob

and σXAlice,Y Bob .
Next, we account for the formal difference between XAlice Y Alice and (X Y )Alice.

In both situations Alice owns an X and a Y , but in the former they are formally grouped
together, while in the latter they are formally separated. We understand this formal grouping
of Alice’s assets by analogy with physical currency. The situation in which Alice’s assets
are separated is like Alice having two coins worth one euro, while the situation in which they
are grouped together is like Alice having one coin worth two euros. In both cases, Alice
posesses two euros, but the difference is important: Alice cannot give Bob half of the two euro
coin, but can easily give Bob one of the two one euro coins. This distinction is also present
in cryptocurrency systems, where there is an operational difference between having funds
spread across many addresses and having them collected at one address. Reflecting both the
reality of such systems and the principle that one ought to be able to freely reconfigure the
formal grouping of things that they own, we ask that for each X,Y objects of X and each
Alice ∈ C our new resource theory has morphisms φX,Y : XAlice ⊗ Y Alice → (X ⊗ Y )Alice

and X,Y : (X ⊗ Y )Alice → XAlice ⊗ Y Alice. We draw these morphisms, respectively, as
follows:

These changes of formal grouping should not interact with the resource transformations
of our original theory X, since it ought not matter whether Alice combines (splits) her
resources before or after transforming them. That is, we we require:
[G.1] φAlice

X,Y (f ⊗ g)Alice = (fAlice ⊗ gAlice)φAlice
X′,Y ′

[G.2] (f ⊗ g)AliceψAlice
X′,Y ′ = ψAlice

X,Y (fAlice ⊗ gAlice)
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As it stands, there are many non-equal ways for Alice to reconfigure the formal grouping
of their assets. Since these should all have the same effect, we need them all to be equal as
morphisms in our resource theory. It suffices to ask that the φAlice and ψAlice maps give,
respectively, associative and coassociative operations, and that they are mutually inverse.
That is (associativity and coassociativity):
[G.3] (φAlice

X,Y ⊗ 1Alice
Z )φAlice

X⊗Y,Z = (1Alice
X ⊗ φAlice

Y,Z )φAlice
X,Y⊗Z

[G.4] ψAlice
X⊗Y,Z(ψAlice

X,Y ⊗ 1Alice
Z ) = ψAlice

X,Y⊗Z(1Alice
X ⊗ ψAlice

Y,Z )

and (mutually inverse):
[G.5] ψAlice

X,Y φAlice
X,Y = 1Alice

X⊗Y
[G.6] φAlice

X,Y ψAlice
X,Y = 1Alice

X ⊗ 1Alice
Y

To complete our treatment of these formal resource groupings, we must deal with the
empty case IAlice. We insist that Alice may freely create and destroy such empty collections
via morphisms φAlice

I : I → IAlice and ψAlice
I : IAlice → I:

subject to the following axioms, which state that adding or removing nothing from a group
or resources has the same effect as doing nothing, and that φI and ψI are mutually inverse,
which together ensure that even with φI and ψI in the mix, any two formal regroupings with
the same domain and codomain are equal.
[G.7] (φAlice

I ⊗ 1Alice
X )φAlice

I,X = 1Alice
X = (1Alice

X ⊗ φAlice
I )φAlice

X,I

[G.8] ψAlice
I,X (ψAlice

I ⊗ 1Alice
X ) = 1Alice

X = ψAlice
X,I (1Alice

X ⊗ ψAlice
I )

[G.9] φAlice
I ψAlice

I = 1I
[G.10] ψAlice

I φAlice
I = 1Alice

I
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Finally, we ask that φ and ψ behave coherently with respect to the symmetry maps. It
suffices to require that
[G.11] φAlice

X,Y σAlice
X,Y = σXAlice,Y AliceφAlice

Y,X

3.2 Change of Ownership
Of course, ownership is not static over time. We require the ability the change the owner of
a given collection of resources. To this end we add morphisms γAlice,Bob

X : XAlice → XBob to
our new resource theory for each object X of X, each Alice, Bob ∈ C. We depict these new
morphisms in our string diagrams as follows:

As with regrouping, change of ownership should not interact with resource transformations,
in the sense that:
[O.1] fAliceγAlice,Bob

Y = γAlice,Bob
X fBob

Further, change of ownership must behave coherently with respect to the regrouping
morphisms in the sense that:
[O.2] φAlice

X,Y γAlice,Bob
X⊗Y = (γAlice,Bob

X ⊗ γAlice,Bob
Y )φBob

X,Y

[O.3] γAlice,Bob
X⊗Y ψBob

X,Y = ψAlice
X,Y (γAlice,Bob

X ⊗ γAlice,Bob
Y )
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For completeness, we axiomatize the interaction of change of ownership with empty
collections by requiring that:
[O.4] φAlice

I γAlice,Bob
I = φBob

I

[O.5] γAlice,Bob
I ψBob

I = ψAlice
I

Finally, we insist that if Alice gives something to Bob, and Bob then gives it to Carol,
this has the same effect as Alice giving the thing directly to Carol. Similarly, if Alice gives
something to Alice, we insist that this has no effect.
[O.6] γAlice,Bob

X γBob,Carol
X = γAlice,Carol

X

[O.7] γAlice,Alice
X = 1Alice

X

We end up with a rather expressive diagrammatic language. For example, if we begin
with the resource theory of bread, then our new resource theory is powerful enough to show:

which captures the fact that the sequence of events on the left in which Carol gives Alice
and Bob each a portion of dough to bake in their ovens, after which they give the resulting
bread to Carol has the same effect as the sequence of events on the right in which Alice
and Bob give their ovens to Carol, who bakes the portions of dough herself before returning
the ovens to their original owners. Notice that our diagrammatic representation of this is
much easier to understand than the corresponding terms in linear syntax!
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4 Categorical Semantics

In this section we show how our augmented string diagrams can be given precise mathematical
meaning. Specifically, from a resource theory and a set whose elements we think of as entities
capable of owning resources, we construct a new resource theory in which all resources are
owned by some entity. We finish by showing how to model a simple cyrptocurrency ledger
with our machinery.

4.1 Interpreting String Diagrams with Ownership
If X is a theory of resources and C is our set, we treat C as the corresponding discrete category,
writing A : A → A for the identity maps, and form the product category X × C. Write
objects and maps of this product category as XA = (X,A) and fA = (f,A) respectively.
Now, define C(X) to be the free strict symmetric monoidal category on X× C subject to the
following additional axioms:

A ∈ C X,Y objects of X
φAX,Y : XA ⊗ Y A → (X ⊗ Y )A in C(X)

A ∈ C
φAI : I → IA in C(X)

A ∈ C X,Y objects of X
A
X,Y : (X ⊗ Y )A → XA ⊗ Y A in C(X)

A ∈ C
A
I : IA → I in C(X)

A,B ∈ C X an object of X
γA,BX : XA → XB in C(X)

and subject to equations [G.1–11] and [O.1–7] for Alice, Bob, Carol ∈ C, X,Y, Z objects
of X, and f, g morphisms of X.

Clearly, C(X) is the new resource theory our coloured string diagrams live in. We think
of objects XA and morphisms fA as being owned and carried out, respectively, by A ∈ C.
The free monoidal structue gives us the ability to compose such transformations sequentially
and in parallel, and the additional axioms ensure our ownership interpretation of C(X) is
reasonable.

We can characterize the category-theoretic effect of axioms [G.1–11] and [O.1–5] as
follows:

I Proposition 1. For any symmetric monoidal category X and any set C, there is a strong
symmetric monoidal functor

A : X→ C(X)

for each A ∈ C. Further, there is a monoidal and comonoidal natural transformation

γA,B : A→ B

between the functors corresponding to any two A,B ∈ C.
Proof. Define A : X→ C(X) by A(X) = (X,A) on objects, and A(f) = (f,A) on maps. For
identity maps, A(1X) = (1X , A) = 1(X,A) = 1A(X) since (1X , A) is the identity on (X,A)
in X × C. For composition, A(fg) = (fg,A) = (f,A)(g,A) = A(f)A(g).Thus A defines a
functor. A is strong symmetric monoidal via the φA and ψA maps together with [G.1]
through [G.11]. Consider A,B : X→ C(X) corresponding to A,B ∈ C. Define γA,B : A→ B

to have components γA,BX . Then γA,B is a monoidal and comonoidal via [O.1] through
[O.5]. J
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Notice that we did not use [O.6–7] above. These axioms are motivated by our desire to
model resource ownership, but they have an important, if subtle, effect on the theory: they
allow us to show that X and C(X) are equivalent as categories. This means that any suitably
categorical structure is present in X if and only if it is present in C(X) as well. For example,
products in X manifest as products in C(X), morphisms that are monic in X remain monic
in C(X), and so on. We may be confident that our addition of ownership information has not
broken any of the structure of X, or added anything superfluous!

I Proposition 2. There is an adjoint equivalence between X and C(X) for each functor
corresponding to some A ∈ C.

Proof. We show that each A : X→ C(X) is fully faithful, and essentially surjective, beginning
with the latter. To that end, suppose that P is an object of C(X). We proceed by structural
induction: If P is I, then φ0 witnesses I ' A(I). If P is an atom (X,A), then (X,A) = A(X).
If P is Q R for some Q,R, then by induction we have that Q ' A(X1) and R ' A(X2) for
some objects X1, X2 of X. We may now form

Q⊗R ' A(X1)⊗A(X2)
φA

X1,X2// A(X1 ⊗X2)

which witnesses P ' A(X1 ⊗ X2). Thus, A is essentially surjective. To see that A is
fully faithful, let U : C(X) → X be the obvious forgetful functor. The required bijection
X(X,Y ) ' C(X)(A(X), A(Y )) is given by A in one direction and U in the other. It sufffices
to show that any morphism h : A(X)→ A(Y ) with U(h) = f is such that h = A(f). Notice
that since each γA,B is a monoidal and comonoidal natural transformation, there is a term
equal to h in which all γ morphisms occur before all other morphisms (in the sense that
f occurs before g in fg). Since h : A(X) → A(Y ) we know that in this equal term the
composite of the γ must have type A(X) → A(X), and must therefore be the identity by
repeated application of [O.6] and [O.7]. This gives a term h′ containing no γ maps with
h′ = h. Similarly, since the various φ and ψ morphisms are natural transformations, we
may construct a term h′′ by collecting all instances of φ and ψ terms at the beginning of h′.
Once collected there, the composite of all the φ and ψ must have type A(X)→ A(X), and
is therefore equal to the identity. At this point we know that h′′ : A(X)→ A(Y ) is such that
h′′ = A(f1) · · ·A(fn) for some f1, . . . , fn in X. By assumption f = U(h) = U(h′′) = f1 · · · fn,
and therefore h′′ = A(f). J

4.2 A Simple Example
In this section we attempt to demonstrate the relevance of the above techniques to the
cryptocurrency world by building a resource theory that models a simple ledger structure
along the lines of Bitcoin [10]. Let 1 be the trivial category, with one object, 1, and one
morphism, the identity 11. Define N to be the free symmetric strict monoidal category on 1,
write 0 for the monoidal unit of N, and n for the n-fold tensor product of 1 with itself for all
natural numbers n ≥ 1. Notice that n + m is n ⊗m. We will think of the objects n of N
where n ≥ 1 as coins. Of course, 0 = I represents the situation in which no coin in present.

Define Nν to be the result of formally adding a morphism ν : 0 → 1 to N, write
ν0 = 10 : 0 → 0, and νn : 0 → n for the n-fold tensor product of ν with itself for n ≥ 1.
These morphisms confer the ability to create new coins, so we imagine their use would be
restricted in practice. We will not ask for the ability to destroy coins, although there would
be no theoretical obstacle to doing so.

Now, let C be a collection of colours, which we can think of as standing in for cryptographic
key pairs, or simply entities capable of owning coins. Consider C(Nν). Objects are lists
nc1

1 ⊗· · ·⊗nck

k , which we interpret as lists of coins, where nci
i is a coin of value ni belonging to
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ci ∈ C. The morphisms are either νcn for some c ∈ C, the structural morphisms of a monoidal
category, or the φ, ψ, and γ morphisms added by our construction. For n,m ∈ N and
Alice, Bob ∈ C, the maps φAlice

n,m : nAlice⊗mAlice → (n+m)Alice and ψAlice
n,m : (n+m)Alice →

nAlice ⊗mAlice allow users to combine and split their coins in a value-preserving manner,
and the γAlice,Bob

n maps allow them to exchange coins.
Now, a ledger is a (syntactic) morphism a : I → A of C(Nν). A transaction to be

included in a consists of a transformation f : X → Y of C(Nν) along with information
about which outputs of a are to be the inputs of the transformation, which we package as
t = πt(1 ⊗ f ⊗ 1) : A → B. The result of including transaction t in ledger a is then the
composite ledger t◦a : I → B. Put another way, a ledger is given by a list of transformations
in C(Nν):

I
t1−→ A1

t2−→ · · · tk−→ Ak

For the purpose of illustration, we differentiate between m+ n and m n in our string
diagrams for Nν . We do so by means of the string diagrams for (not necessarily strict)
monoidal categories (see e.g. [3]), as in:

Now, suppose we have a ledger a : I → νCarol
7 ⊗ νAlice

5 :

and resource transformations f1, f2, f3 defined, respectively, by:

Now, form transaction t1 = (1Carol
7 ⊗ f1) and append it to a to obtain t1 ◦ a

Next, form transaction t2 = (1Carol
7 ⊗ f2) and append it to obtain t2 ◦ t1 ◦ a
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Finally, form transaction t3 = (f3 ⊗ 1Bob
3 ) and append it to obtain t3 ◦ t2 ◦ t1 ◦ a

In this manner, we capture the evolution of the ledger over time. Of course, we can
also reason about whether two sequences of transactions result in the same ledger state by
comparing the corresponding morphisms for equality, although in the case of C(Nν) there
isn’t much point, since all morphisms A→ B are necessarily equal.

5 Conclusions and Future Work

We have seen how the resource theoretic interpretation of monoidal categories, and in
particular their string diagrams, captures the sort of material history that concerns ledger
structures for blockchain systems. Additionally, we have shown how to freely add a notion
of ownership to such a resource theory, and that the resulting category is equivalent to the
original one. We have also shown that these resource theories with ownership admit an
intuitive graphical calculus, which is more or less that of monoidal functors and natural
transformations. Finally, we have used our machinery to construct a simple ledger structure
and show how it might be used in practice.

While we do not claim to have solved the problem of providing a rigorous foundation
for the development of ledger structures in its entirety, we feel that our approach shows
promise. There are a few differnt directions for future research. One is the development of
categorical models for more sophisticated ledger structures, with the eventual goal being to
give a rigorous formal account of smart contracts. Another is to explore the connections of
the current work with formal treatments of accounting, such as [6].
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1 INTRODUCTION
Mathematicians interested in, say, the theory of monoids or the theory of groups work in an
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Fig. 1. Elements of classical functorial semantics on the left, and our contribution on the right.

at hand. Most spectacularly, a class of sets-with-structure can be determined to be a variety through
purely structural means; this is often referred to as Birkhoff’s Variety Theorem or the HSP Theorem.

The resulting field is known as universal algebra. Its mathematical objects of study are equational
theories and varieties. Given its goal of uncovering methodological and technical similarities of a
large swathe of contemporary algebra, universal algebra is in the intersection of mathematics and
mathematical logic. It has influenced computer science, especially programming language theory,
as a formal and generic treatment of syntax, terms, equational reasoning, etc.
Lawvere [Lawvere 1963], and the subsequent development of categorical universal algebra,

addressed some of the perceived shortcomings of the classical account. It is well known that a
single variety can have many different axiomatic presentations, and in this sense the choice of
a particular presentation may seem ad hoc. The requirement that models be sets-with-structure
is also restrictive, since algebraic structures appear in other mathematical contexts as well. A
Lawvere theory is a category L that serves as a presentation-independent way of capturing the
specification of a variety. A central conceptual role is played by cartesian categories, i.e. categories
with finite products. The free cartesian category on one object often appears in the very definition
of a Lawvere theory ś the “one objectž here capturing single-sortedness. Finite products track
arities and ensure that operations are total functions. Functorial semantics gives us the correct
generalisation of varieties: a model is cartesian functor L → Set. This point of view is flexible (e.g.
Set can be replaced with another cartesian category) and leads to a rich theory [Adámek et al. 2003;
Hyland and Power 2007; Lawvere 1963], where the study of varieties and their specifications can
take place at a high level of generality.

The beautiful abstract picture painted by Lawvere can be used to give a post-hoc explanation of
the elements of classical equational theories. Every equational theory yields a Lawvere theory. Free
equational theories, i.e. those where 𝐸 = ∅, are Lawvere theories whose arrows can be concretely
described as (tuples of) terms. Indeed, it is well-known that terms are closely connected to the
universal property of products. The abstract mathematics, therefore, explains the structure of terms
and justifies the use of ordinary equational reasoning. The elements of Lawvere’s approach to
universal algebra are illustrated in the left side of Fig. 1.

In this paper we are concerned with partial algebraic structures, i.e. those where the operations
are not, in general, defined on their whole domain. Partiality is important in mathematics: the very
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notion of category itself is a partial algebraic structure, since only compatible pairs of arrows can be
composed. Even more so, partiality is an essential property of computation, and partial functions
play a role in many different parts of computer science, starting with initial forays into recursion
theory at the birth of the subject, and being ever present in more recent developments, for example
arising as an essential ingredient in the study of fixpoints [Bloom and Ésik 1993]. From the start it
was clear that additional care is necessary for partial operations, the terms built up from them, and
the associated principles of (partial) equational reasoning. An example is the principle of Kleene
equality: using 𝑠 = 𝑡 to assert that whenever one side is defined, so is the other, and they are equal,
or the use of notation −|𝑋 to restrict the domain of definition of a function. In general, reasoning
about partially defined terms can be quite subtle.

Our contribution is summarised on the right hand side of Fig. 1 and follows Lawvere’s approach
closely. A key question that we address is what replaces the central notion of cartesian category.
This turns out to be the notion of discrete cartesian restriction (DCR) category, which arose from
research on the structure of partiality [Cockett et al. 2012]. Just as the free cartesian category
on one object plays a central role in the definition of Lawvere theory, the free DCR category on
one object plays a central role in the definition of partial Lawvere theory that we propose. In our
development, the category of sets and partial functions Par replaces Set as the universe of models.
Much of the richness of the classical picture is unchanged: e.g. we obtain free models just as in
the classical setting. Moreover, we prove a variety theorem that characterises partial varieties as
locally finitely presentable (LFP) categories.

Props [Lack 2004; Mac Lane 1965] and their associated string diagrams, play a crucial technical
role. Props are a convenient categorical structure that capture generic monoidal theories. Monoidal
theories differ from equational theories in that, roughly speaking, in that we are able to consider
more general monoidal structures other than the cartesian one. String diagrams are the syntax
of props, and they are a bona fide syntax not far removed from traditional terms. For example,
they can be recursively defined and enjoy similar properties as free objects, e.g. the principle of
structural induction. The connective tissue between the classical story and string diagrams is Fox’s
Theorem [Fox 1976], which states that the structure of cartesian categories can be captured by the
presence of local algebraic structure: a coherent and natural commutative comonoid structure on
each object. This implies several things: (i) that classical terms can be seen as particular kinds of
string diagrams, (ii) that classical equational reasoning can be seen as diagrammatic reasoning on
these string diagrams and (iii) that the prop induced from the monoidal theory of commutative
comonoids Ð well-known to coincide with F op, the opposite of the prop of finite sets and functions
Ð is the free cartesian category on one object. The correspondence goes further: as shown in [Bonchi
et al. 2018], Lawvere theories are particular kinds of monoidal theories.
We are able to identify the nature of the free DCR category on one object by proving a result

similar to Fox’s Theorem, but for DCR categories instead of cartesian categories. Instead of com-
mutative comonoids, we identify the algebraic structure of interest as partial Frobenius algebras.
The free DCR category on one object is the prop induced from this monoidal theory, and it can be
characterised as Par(F op): the prop of partial functions in F op. This informs our definition of partial
Lawvere theory. Crucially, just as the mathematics of ordinary Lawvere theories serves as a post
hoc justification for equational theories, we identify the precise class of string diagrams that serve
as partial terms, which lets us define a partial equational theory in a familiar way as pair of signature
and equations. We give several examples, from partial commutative monoids, to several examples
important in computer science, notably the theory of partial combinatory algebras [Bethke 1988],
the theory of pairing functions, and the theory of cartesian closed categories.

To summarise, the original contributions of this paper are:
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• A “Fox theoremž for DCR categories, which uses the notion of partial Frobenius algebra and
leads to the characterisation of the free DCR category on one object as Par(F op);
• The definitions of partial Lawvere theory and partial equational theory, which use string
diagrammatic syntax informed by the aforementioned Fox theorem;
• The coupling of these notions into a comprehensive framework for partial algebraic theories,
analogous to the work of Lawvere on classical algebraic theories, as illustrated in Fig. 1;
• The existence of free models, andÐmore generallyśa variety theorem, building on known
results about DCR categories, and the Gabriel-Ulmer duality.

Related work. There are a number of formalisms in the literature that aim at providing a rigorous
way of specifying partial algebraic structure. Freyd’s essentially algebraic theories [Freyd 1972] were
introduced informally, but were subsequently formalised and generalised in various ways [Adamek
and Rosickỳ 1994; Adámek et al. 2011; Palmgren and Vickers 2007]. A different, but equally ex-
pressive approach is via finite limit sketches [Adamek and Rosickỳ 1994]. Nevertheless, none of
these approaches can claim to have the foundational status of classical equational theories - e.g.
they do not, per se, provide a canonical notion of syntax to replace classical terms, nor a calculus
for (partial) equational reasoning about the categories of models they define. Tout court, none
of them can claim to be equational. Interestingly, the semantic landscape (i.e. the corresponding
notion of partial variety) is better understood than the syntax. The class of models of essentially
algebraic theories and finite limit sketches are closely related to Gabriel-Ulmer duality [Centazzo
2004], which asserts a contravariant (bi)equivalence between the category of categories with finite
limits and the category of locally finitely presentable (LFP) categories.
Partial Frobenius algebras, which arise in our characterisation of DCR categories, are spe-

cial/separable Frobenius algebras without units. The version with units was originally studied
in [Carboni and Walters 1987], is deeply connected to the relational algebra [Freyd and Scedrov
1990], characterises 2-dimensional TQFTs [Kock 2003], and has been used extensively in categor-
ical approaches to the study of quantum information and quantum computing, such as the ZX
calculus [Coecke and Duncan 2008]. In a similar way to the use of partial Frobenius algebras in
this paper, they are used in the recently proposed Frobenius theories [Bonchi et al. 2017], which are
algebraic theories that take their models in the category of relations Rel, and are guided by the
structure of cartesian bicategories of relations [Carboni and Walters 1987].
Restriction categories were introduced in [Cockett and Lack 2002] as a general framework for

reasoning about categories of partial maps. Cartesian restriction (CR) categories are those with a
certain sort of formal finite product structure ś restriction products ś introduced in [Cockett and
Lack 2007]. Notably, the p-categories of [Robinson and Rosolini 1988] arise as restriction categories
with restriction products. Discrete cartesian restriction (DCR) categories ś named for a similarity to
categories of discrete topological spaces ś arise in [Cockett et al. 2012] as the restriction categories
with finite latent limits ś again a sort of formal limit. DCR categories are closely connected to the
discrete inverse categories considered in [Giles 2014] which are presentable in terms of semi-Frobenius
algebras, being those special/separable commutative Frobenius algebras with neither a unit nor a
counit.

Structure of the paper. In S2 we lay the foundations by recalling the basic concepts of universal
algebra, props and string diagrams, Fox’s theorem, and functorial semantics. In S3, after recalling
the basics of restriction category theory, we prove Theorem 3.6, which is to DCR categories what
Fox’s theorem is to cartesian categories. In S4 we propose our original definitions: partial Lawvere
theories and their varieties. Next, S5 is devoted to the associated notion of partial equational theory,
and several examples, continued in S6 with multi-sorted examples. Our variety theorem is in S7
where we also treat other semantic aspects, e.g. the existence of free models.
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2 BACKGROUND MATERIAL
2.1 Overview of Classical Universal Algebra
Universal algebra is the study of equational theories and of their semantics, varieties. In this section
we recall the basic concepts and definitions.

Definition 2.1. A signature is a pair (Σ, 𝛼) where Σ is a set and 𝛼 a function Σ→ N that assigns
to every element 𝑡 : Σ a natural number 𝛼 (𝑛) : N called the arity of the function symbol 𝑡 .

Notation 2.2. The arity “slicesž the set Σ of function symbols. The slice Σ𝑛 ⊆ Σ contains operations
of arity 𝑛, and 𝑡 : Σ𝑛 is a synonym for “𝑡 is a 𝑛-ary operationž. We will sometimes write 𝑡𝑛 for a
generic element of Σ𝑛 . We shall refer to the signature as just Σ if the arity function is understood
from the context. For example the signature ΣM of monoids is {𝑚, 𝑒}, with 𝛼 (𝑚) = 2 and 𝛼 (𝑒) = 0.
Definition 2.3. An Σ-algebra is a pair (𝐴, J−K𝐴) where 𝐴 is a set and J−K𝐴 is
a function sending function symbols 𝑡 : Σ𝑛 to functions J𝑡K𝐴 : 𝐴𝑛 → 𝐴. The
function J𝑡K𝐴 is called the𝑛-ary operation on𝐴 associated to the function symbol
𝑡 : Σ𝑛 . We refer to𝐴 as the carrier of the Σ-algebra. A Σ-algebra homomorphism
from (𝐴, J−K𝐴) to (𝐵, J−K𝐵) is a function 𝑓 : 𝐴→ 𝐵 that respects the Σ structure:
i.e. for every 𝑛 ∈ N and 𝑡𝑛 : Σ𝑛 , the diagram on the right commutes:

𝐴𝑛

J𝑡𝑛K𝐴
��

𝑓 𝑛 // 𝐵𝑛

J𝑡𝑛K𝐵
��

𝐴
𝑓
// 𝐵.

Remark 2.4. Σ-algebras and their homomorphisms define a categoryVΣ.

Of course, an algebraic structure isn’t just about operations, but also about properties enjoyed by
those operations. To express this we first need the notion of term. Fixing a signature Σ, we recall
the usual recursive construction of the set of terms 𝑇𝑉

Σ , for some set of variables 𝑉 :

𝑇𝑉
Σ ::= 𝑉 | 𝑡0 | 𝑡1 (𝑇𝑉

Σ ) | 𝑡2 (𝑇𝑉
Σ ,𝑇

𝑉
Σ ) | . . . | 𝑡𝑛 (𝑇𝑉

Σ , . . . ,𝑇
𝑉
Σ ) | . . .

In the above, each 𝑡𝑖 ranges over the function symbols in Σ𝑖 . For any 𝑉 , 𝑇𝑉
Σ carries a canonical

Σ-algebra structure: J𝑡K(𝑡1, 𝑡2, . . . , 𝑡𝑛𝑡 )
def
= 𝑡 (𝑡1, 𝑡2, . . . , 𝑡𝑛𝑡 ). We call this the term Σ-algebra over 𝑉 .

Observation 2.5. The term Σ-algebra𝑇𝑉
Σ enjoys a universal property: given a Σ-algebra (𝐴, J−K𝐴)

and function 𝑣 : 𝑉 → 𝐴, there is a unique extension to a homomorphism of algebras 𝑣 : 𝑇𝑉
Σ → 𝐴.

This is just the induction principle associated to the recursive definition of terms.

Definition 2.6 (Σ-equation). Fixing 𝑉 , a Σ-equation is a pair (𝑠, 𝑡) ∈ 𝑇𝑉
Σ ×𝑇𝑉

Σ ; we usually write
‘𝑠 = 𝑡 ’. A Σ-equation 𝑠 = 𝑡 holds in Σ-algebra (𝐴, J−K𝐴) if for all 𝑣 : 𝑉 → 𝐴 we have 𝑣 (𝑠) = 𝑣 (𝑡) in 𝐴.

Given the signature of monoids, we can express properties such as associativity:𝑚(𝑥,𝑚(𝑦, 𝑧)) =
𝑚(𝑚(𝑥,𝑦), 𝑧); or commutativity: 𝑚(𝑥,𝑦) = 𝑚(𝑦, 𝑥); etc. The idea is that a set of Σ-equations
constrains the choice of algebras (𝐴, J−K𝐴) to those where every equation holds.

Definition 2.7 (Equational Theory and Variety). A pair (Σ, 𝐸) where Σ is a signature and 𝐸 a set of
Σ-equations is called an equational theory. A model of (Σ, 𝐸) is a Σ-algebra where every 𝑒 : 𝐸 holds.
The class of models for an equational theory is called a variety.

Example 2.8. The equational theory of commutative monoids is
( {𝑚, 𝑒}, {𝑚(𝑚(𝑥,𝑦), 𝑧) =𝑚(𝑥,𝑚(𝑦, 𝑧)), 𝑚(𝑥,𝑦) =𝑚(𝑦, 𝑥), 𝑚(𝑒, 𝑥) = 𝑥 } ).

The corresponding variety is the class of commutative monoids.

Some of the most famous results of universal algebra characterise varieties. For example:

Theorem 2.9 (Birkhoff [Birkhoff 1935]). A class of Σ-algebras is a variety if and only if it is closed
under homomorphic images, subalgebras and products.
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2.2 Props and Monoidal Theories
Our development is informed by the differences between the algebraic structure of total functions
and partial functions. Given the focus on algebra, the notion of prop is useful as a categorical gadget
on which to hang an algebraic structure. Moreover, the associated notion of string diagram will
lead us to a syntax with which to express partial equational theories by appropriately generalising
classical terms. Here we recall the basic definitions of props [Lack 2004], string diagrams and some
of the algebraic structures that are prominent in subsequent sections.

Definition 2.10 (Prop [Mac Lane 1965, Ch. 5]). A prop is a symmetric strict monoidal category
with set of objects the natural numbers N, where the monoidal product on objects is addition:
𝑚 ⊗ 𝑛 := 𝑚 + 𝑛. A homomorphism of props is an identity-on-objects symmetric strict monoidal
functor.

Example 2.11. An important example is the prop F of finite ordinal numbers. In the following,
[𝑚] def= {1, 2, . . . ,𝑚}. The F -arrows𝑚 → 𝑛 are all functions [𝑚] → [𝑛]: composition is function
composition, and the monoidal product is “disjoint unionž; i.e. for 𝑓1 : 𝑚1 → 𝑛1 and 𝑓2 : 𝑚2 → 𝑛2,

(𝑓1 ⊗ 𝑓2) (𝑖) : 𝑚1 +𝑚2 → 𝑛1 + 𝑛2 def
=

{
𝑓1 (𝑖) if 𝑖 ≤ 𝑚1

𝑓2 (𝑖 −𝑚1) + 𝑛1 otherwise.

Free props generated from some signature of operations are of particular importance.

Definition 2.12 (Monoidal signature). A monoidal signature Γ is a collection of generators 𝛾 : Γ,
each with an arity 𝑎𝑟 (𝛾) : N and coarity 𝑐𝑜𝑎𝑟 (𝛾) : N.

Concrete terms can be given a BNF description, as follows:

𝑐 ::= 𝛾 ∈ Γ | | | | 𝑐 ⊗ 𝑐 | 𝑐 # 𝑐 (1)

Arities and coarities are not handled in the BNF but with an associated sorting discipline, shown
below. We only consider terms that have a sort, which is unique if it exists.

𝛾 : (𝑎𝑟 (𝛾 ), 𝑐𝑜𝑎𝑟 (𝛾 )) : (0, 0) : (1, 1) : (2, 2)
𝑐 : (𝑛, 𝑧) 𝑑 : (𝑧,𝑚)

𝑐 #𝑑 : (𝑛,𝑚)

𝑐 : (𝑛,𝑚) 𝑑 : (𝑟, 𝑧)

𝑐⊗𝑑 : (𝑛+𝑟,𝑚+𝑧)

The idea is that the sort 𝑐 : (𝑚, 𝑛) counts the number of “dangling wiresž of each term. Every
sortable term generated from (1) has a diagrammatic representation. The convention for 𝛾 : Γ is to
draw it as a box with 𝑎𝑟 (𝛾) “dangling wiresž on the left and 𝑐𝑜𝑎𝑟 (𝛾) on the right:

𝑎𝑟 (𝛾)
{

𝛾...
...

}
𝑐𝑜𝑎𝑟 (𝛾)

The conventions for the (1) operations are: 𝑐 # 𝑐 ′ is drawn c c0...
...

... and 𝑐 ⊗ 𝑐 ′ is drawn c

c0 ...

...
...

...

.

The sorting discipline ensures that the convention for # makes sense.

Example 2.13. Consider the following signature, where the (co)arities are apparent from the

Γ
def
=

{
,

}
(CMG)

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 57. Publication date: January 2021.



Functorial Semantics for Partial Theories 57:7

glyphs. The term ( ⊗ ( ⊗ )) #(( ⊗ ) # ) has sort (3, 2) and diagram:

where the “dotted linež boxes serve the role of parentheses.

Terms of (1) are quotiented by the laws of symmetric strict monoidal categories. We do not go
into the details here, but these are closely connected with the diagrammatic conventions. Indeed,
they allow us to discard the “dotted linež boxes and focus only on the connectivity between the
generators. For example the following two diagrams are in the same equivalence class of terms:

=

We refer to equivalence classes [𝑐] : 𝑚 → 𝑛 as string diagrams.

Definition 2.14. The free prop XΓ on Γ has as arrows𝑚 → 𝑛 string diagrams [𝑐] : (𝑚, 𝑛).
String diagrams can be used to specify additional equations that specify algebraic structure.

Definition 2.15 (Monoidal theory [Lack 2004]). For a monoidal signature Γ, a Γ-equation is a pair
( [𝑐], [𝑑]) of equally-sorted string diagrams; we usually write ‘[𝑐] = [𝑑]’. A monoidal theory is a
pair (Γ, 𝐹 ) where 𝐹 is a set of Γ-equations.

Given a monoidal theory (Γ, 𝐹 ), the induced prop X(Γ,𝐹 ) can be obtained by taking a coequaliser
in Cat. It can alternatively be given an explicit description as follows: as arrows [𝑚] → [𝑛] it has
arrows of XΓ quotiented by the smallest congruence containing 𝐹 .

Example 2.16. Consider the signature (CMG) and the following set of equations:

𝐸
def
=

{
= , = , =

}
. (CM)

The resulting prop CM is the prop of commutative monoids. The equations, from left to right,
express associativity, commutativity and unitality.

Remark 2.17. String diagrams in X(Γ,𝐹 ) are amenable to equational reasoning, often referred
to as diagrammatic reasoning in this context: if ( [𝑐], [𝑑]) ∈ 𝐹 then substituting 𝑐 for 𝑑 inside any
context is sound. For example in CM the set of equations contains only one of the unit laws. The
other may be derived:

= = =

= = = =

We typically omit the “dotted linež boxes in such chains of reasoning.

Interestingly, CM can be seen as the algebraic characterisation of F .
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Observation 2.18 ([Lack 2004]). As props, F � CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functionsž. For

example, the function 𝑓 : 2→ 2 where 𝑓 (1) = 𝑓 (2) = 1 is drawn

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:

(CCMG)

= = = (CCM)

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).

Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:

Observation 2.21. As props, F op � CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s Theorem
Equational and monoidal theories are linked by Fox’s theorem ([Fox 1976]), recalled here ś this will
be explained in S2.6. Cartesian categories are categories with finite products, and cartesian functors
preserve them. Fox showed that cartesian categories are exactly those that have a certain algebraic
structure.
A commutative comonoid on an object 𝑋 of a symmetric monoidal category X is a triple
(𝑋, 𝛿𝑋 , 𝜀𝑋 ) s.t. 𝛿𝑋 : 𝑋 → 𝑋 ⊗ 𝑋 and 𝜀𝑋 : 𝑋 → 𝐼 , depicted as and respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects 𝑋,𝑌 :

𝑋⊗𝑌
𝑋⊗𝑌

𝑋⊗𝑌

𝑋

𝑌

𝑋

𝑋

𝑌

𝑌

= 𝑋⊗𝑌
𝑋

𝑌

= (coherent)

Further, we say that the 𝛿 and 𝜀 are natural if for any arrow 𝑓 : 𝑋 → 𝑌 of X, we have:

𝑓𝑋

𝑌

𝑌 𝑓

𝑓
𝑋

𝑌

𝑌

= 𝑓𝑋 = (natural)

Theorem 2.22 ([Fox 1976]). A cartesian category is the same thing as a symmetric monoidal
category where every object is equipped with a (coherent) and (natural) commutative comonoid
structure.

In light of Observation 2.21, we know that a commutative comonoid structure on𝑋 is equivalently
a cartesian functor X : F op → X where X[1] = 𝑋 . The action of X on objects is determined by its
action on 1, and the generators give arrowsX( ) = 𝛿𝑋 : 𝑋 → 𝑋 ⊗𝑋 andX(𝑋 ) = 𝜀𝑋 : 𝑋 → 𝐼

of X which satisfy (CCM). Thus we may specialize Theorem 2.22, to props as follows:
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Corollary 2.23. A prop X is cartesian (with categorical product the monoidal product) if and only
if there is a homomorphism of props F op → X and the picked out comonoid structure is (natural).

It is easy to show that a coherent and natural commutative comonoid structure, if it exists, is
unique. An easy consequence of Theorem 2.22 is that a cartesian functor is precisely a symmetric
monoidal functor that preserves the comonoid structure. This, combined with Corollary 2.23, gives:

Proposition 2.24. The prop F op is the free cartesian category on a single object.

2.4 Lawvere Theories
We recall Lawvere’s approach [Lawvere 1963] of functorial semantics of algebraic theories in the
rest of the section. Lawvere’s approach is centered on the theory of cartesian categories.

Definition 2.25 (Lawvere theory). A Lawvere theory is a cartesian prop. A morphism of Lawvere
theories is a cartesian prop homomorphism. Lawvere theories and homomorphisms define the
category Law.

Finite products do two jobs: they keep track of arities of operations, andÐless obviouslyÐthey
ensure the totality and single-valuedness of the interpretation of function symbols in any model.
Free categories with products play a leading role. Recall from Proposition 2.24 that F op is the

free category with products on one object. Spelled out, a Lawvere theory is a cartesian category
L and an identity-on-objects cartesian functor F op → L. A morphism of Lawvere theories is a
functor ℎ : L →M s.t. the following triangle commutes:

F op

L M .

𝑞𝑝

ℎ

Remark 2.26. Every equational theory gives rise to a Lawvere theory. For the case of no equations
(Σ,∅), this Lawvere theory LΣ is the free category with products on Σ. It also has a simple, concrete
description that uses Σ-terms. An arrow𝑚 → 𝑛 is an 𝑛-tuple

(𝑡1, 𝑡2, . . . , 𝑡𝑛) where each 𝑡𝑖 : 𝑇 [𝑚]Σ (2)
i.e. where each term in the tuple may use formal variables from the set {1, . . . ,𝑚}. Composition of
(𝑠1, . . . , 𝑠𝑘 ) : 𝑚 → 𝑘 with (𝑡1, . . . , 𝑡𝑛) : 𝑘 → 𝑛 is via substitution:

(𝑡1 [𝑠1/1, . . . 𝑠𝑘/𝑘], . . . , 𝑡𝑛 [𝑠1/1, . . . , 𝑠𝑘/𝑘]) : 𝑚 → 𝑛.

Given a set of equations 𝐸, ordering the variables in each 𝑠 = 𝑡 : 𝐸 induces pairs of arrows
𝑠, 𝑡 :𝑚 → 1 (where𝑚 is the number of variables appearing in 𝑠 and 𝑡 ). Then L (Σ,𝐸) is obtained by
“equatingž 𝑠 and 𝑡 śthis can be computed via a coequaliser, or directly as in (2) where terms are
taken modulo the smallest congruence containing the required equations. We omit the details.

The Lawvere theory induced from the empty equational theory (∅, ∅) is F op.

2.5 Semantics For Algebraic Theories
Here we recall some of the basic elements of functorial semantics.

Definition 2.27 (Model of a Lawvere theory). Amodel for a Lawvere theory L is a cartesian functor
𝐿 : L → Set. A model homomorphism 𝐿 → 𝐿′ is a natural transformation 𝛼 : 𝐿 ⇒ 𝐿′. This defines
the category of modelsModL of a Lawvere theory L.

Remark 2.28. There are forgetful functors𝑈 : ModL → Set, given by evaluating on the terminal
object 𝐹 ↦→ 𝐹 (1). Intuitively,𝑈 forgets the algebraic structure, returning the underlying carrier set.
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Definition 2.27 is compatible with its classical counterpart: the data required to give a model
of (Σ, 𝐸), in the sense of Definition 2.7, is precisely that required to give a functor L (Σ, 𝐸) → Set.
The functorial approach lends itself to generalisations: e.g. replacing Set with another cartesian
category. Moreover, it allows for further structural analysis.

Observation 2.29. ModL is closed under limits computed in the category of all functors [L, Set],
because limits commute with limits. For a similar reason it is closed under sifted colimits. Thus the
inclusion ModL ↩→ [L, Set] creates limits and sifted colimits1.
Remark 2.30 (Multi-sorted, unsorted). The codomain of 𝑈 : ModL → Set betrays that our pre-

sentation is single sorted. Indeed when L is 𝑆-sorted we obtain a functor 𝑈 : ModL → [𝑆, Set].
Historically, syntactic aspects are single sorted, while categorical variety theorems are most crisp
in the unsorted case. It is thus worthwhile to focus on these concepts in more detail.

An 𝑆-sorted Lawvere theory is a cartesian 𝑆-coloured prop. Spelled out, it is an identity-on-objects
cartesian functor F (𝑆) → L, where F (𝑆) is the free cartesian category on 𝑆 .

An unsorted Lawvere theory is simply a (small) category with products.
In the remainder of this section we focus on the unsorted version, because the treatment is

notationally and technically simplified. Nevertheless, much of the following is sort-agnostic.
Observation 2.31. A theory morphism ℎ : L → L ′ induces a (contravariant) functor

Modℎ : ModL′ → ModL
taking 𝐹 : L ′ → Set to 𝐹 · ℎ : L → Set. The functor Modℎ always admits a left adjoint: Modℎ
preserves limits and sifted colimits because they are computed in the underlying functor category.
The special adjoint functor theorem can now be used to obtain a left adjoint 𝐿ℎ : ModL → ModL′ .

Example 2.32. For intuition, we consider a concrete example. Consider the inclusion 𝑖 of the
theory of monoids in commutative monoids. ThenMod𝑖 is the functor that “forgetsž commutativity.
Its left adjoint takes a monoid and “forcesž commutativity by quotienting the underlying carrier set.
Observation 2.33. Lawvere theories have free models. Let 𝑝 : F op → L be a Lawvere theory.

Observation 2.31 gives an adjunction
𝐹 : ModF op ⇆ ModL : Mod𝑝 .

ThenMod𝑝 coincides with the forgetful functor of Remark 2.28. The left adjoint 𝐹 gives free objects.
Because of Observation 2.31, it is natural to take adjunctions as the notion of variety morphism.

Below, by unsorted-variety we mean a category equivalent to ModL for L with finite products.
Definition 2.34. Let V,W be two (unsorted) varieties; a morphism of varieties is a functor

𝑅 : V →W satisfying the following:
mv1) 𝑅 admits a left adjoint 𝐿 :W →V;
mv2) 𝑅 commutes with sifted colimits.
Given that adjunctions compose, this data yields a category Var.

Let Prod be the 2-category whose objects are small cartesian categories, morphisms are cartesian
functors and 2-cells are natural transformations. Then Observation 2.31 boils down to defining a
2-functor Mod : Prodop → Var. The following captures the relationship between Law and Var.
1Sifted J-indexed colimits satisfy the following property: given a functor 𝐸 : 𝐼 × J → Set, s.t. the category 𝐼 is discrete
(namely, it is just a set), the following isomorphism holds:

colimJ lim𝐼 𝐸 (𝐼 , 𝐽 ) � lim𝐼 colimJ 𝐸 (𝐼 , 𝐽 ) .
In other words, sifted colimits are those that commute with finite products in Set.
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Theorem 2.35 ([Adámek et al. 2003, Theorem 4.1]). There exists a 2-adjunction whose unit is an
equivalence:

Th : Var⇆ Prodop : Mod

Remark 2.36. One obtains the 𝑆-sorted version of Theorem 2.35 by slicing on both sides over the
free category with products on 𝑆 . This is given in more detail for partial Lawvere theories in S7.2.

2.6 Equational Theories as Monoidal Theories
Given that Lawvere theories are cartesian props, Theorem 2.22 suggests how to consider them
as monoidal theories. We recall the recipe from [Bonchi et al. 2018]: the idea is to characterise
Σ-terms as certain string diagrams, and thenÐthrough this lensÐturn any equational theory into a
monoidal theory.

Recipe 2.37. Fix a signature Σ. A Σ-term 𝑡 : 𝑇 [𝑛]Σ is the same thing as a string diagram 𝑛 → 1 in
the prop induced by the monoidal theory with

• generators Γ def
= Σ + (CCMG)

• (CCM) together with equations that ensure naturality with respect to the comonoid structure.
The latter can be easily added as two additional equations for each 𝜎 : Σ:

𝜎
𝜎

𝜎
= 𝜎𝑚 𝑚 𝑚 𝑚= (SN𝜎)

The Lawvere theory induced by equational theory (Σ, 𝐸) can now be seen as the prop induced
by the monoidal theory (Γ, 𝐹 ) where 𝐹 is the set of equations obtained by translating the equations
in 𝐸 to string diagrams, together with (CCM), and (SN𝜎) for each 𝜎 : Σ.

It is important to build an intuition behind this translation. An obvious difference between terms
and string diagrams is that the latter do not have named variables. The translation ensures that
wires play the role of variables, and the comonoid structure plays the role of “variable managementž.
We illustrate this with an example below.

Example 2.38. The prop corresponding to the Lawvere theory induced by the equational theory
of commutative monoids (Example 2.8) is the same as the prop of commutative bialgebra. For
example, the term𝑚(𝑚(𝑥, 𝑥), 𝑦) in the theory of commutative monoids can be depicted as

𝑚
𝑚

In the term we have considered, the variable 𝑥 appears twice. In the corresponding diagram, the
wire corresponding to 𝑥 starts with a comultiplication that witnesses the “copying of 𝑥ž.

3 ALGEBRA OF PARTIAL MAPS
We have seen that finite products are central in classical universal algebra. It is therefore natural to
begin our development of its partial analogue by identifying the corresponding universal property
in the partial setting. We will see that this amounts to replacing the class of cartesian categories
with the class of discrete cartesian restriction categories (DCR categories) [Cockett et al. 2012]. Next,
we characterise DCR categories in terms of algebraic structure, analogous to Theorem 2.22 for
cartesian categories.
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3.1 Partial Functions
The starting point of our journey is the (2-)category Par of sets and partial functions. Just as Set
was the semantic universe for ordinary equational theories, Par is the semantic universe for partial
equational theories. We first recall an elementary, set theoretic presentation:

Definition 3.1. Par has sets as objects and partial functions 𝑓 : 𝑋 ⇀ 𝑌 as arrows, where a
partial function 𝑓 is a pair (dom𝑓 , def 𝑓 ) where dom𝑓 ⊆ 𝑋 is the domain of definition of 𝑓 and
def 𝑓 : dom𝑓 → 𝑌 is a (total) function. Given a partial function 𝑓 : 𝑋 ⇀ 𝑌 , and some 𝑋 ′ ⊆ 𝑋 we
write 𝑓 |𝑋 ′ for the partial function (dom𝑓 ∩𝑋 ′, 𝑓 ′) where 𝑓 ′ : dom𝑓 ∩𝑋 ′→ 𝑌 is def 𝑓 restricted to
the (potentially smaller) domain of definition dom𝑓 ∩ 𝑋 ′. Similarly, given 𝑌 ′ ⊆ 𝑌 , write 𝑓 −1 (𝑌 ′) =
{𝑥 ∈ dom𝑓 | def 𝑓 (𝑥) ∈ 𝑌 ′}. Given 𝑓 : 𝑋 ⇀ 𝑌 and 𝑔 : 𝑌 ⇀ 𝑍 , their composite is defined by
𝑓 #𝑔 = (𝑓 −1 (dom𝑔), (def 𝑓 | 𝑓 −1 (dom𝑔) # def𝑔). The identity on 𝑋 is (𝑋, id𝑋 ).
There is a natural partial order between partial functions 𝑋 ⇀ 𝑌 :

𝑓 ≤ 𝑔 def
= dom𝑓 ⊆ dom𝑔 ∧ 𝑔 |dom𝑓 = 𝑓 .

It is straightforward to verify that this data makes Par a category, and with ≤, a 2-category.
Categorifying partiality has long history (see e.g., [Cockett and Lack 2002; Robinson and Rosolini

1988]). We recall a classical approach:

Definition 3.2. Suppose that C has finite limits. Its 2-category of partial maps, Par(C) has:
1) objects are objects of C.
2) arrows are equivalence classes [𝑚, 𝑓 ] : 𝑋 → 𝑌 of spans 𝑋 𝑚←− 𝐴 𝑓−→ 𝑌 where𝑚 is monic. We

equate (𝑚, 𝑓 ) ∼ (𝑚′, 𝑓 ′) iff there is an isomorphism 𝛼 s.t. the following diagram commutes:

𝐴 𝐴′

𝑋 𝑌 .

𝑚

𝑓

𝛼

𝑚′
𝑓 ′

3) 2-cells: [𝑚, 𝑓 ] ≤ [𝑚′, 𝑓 ′] when there exists any 𝛼 that makes the diagram commute.
4) composition is defined by pullback. Explicitly, the composite of (𝑚, 𝑓 ) : 𝐴 → 𝐵 and
(𝑚′, 𝑔) : 𝐵 → 𝐶 is the outer span of the diagram on the left

𝑋 ∧ 𝑋 ′

𝑋 𝑋 ′

𝐴 𝐵 𝐶

𝜋0 𝜋1

𝑚 𝑓 𝑚′ 𝑔

where the square with top 𝑋 ∧ 𝑋 ′ is a pullback in C. Note that it doesn’t matter which
pullback, since any two choices will give isomorphic spans, and therefore equal morphisms.

5) Identities are diagonal spans (1𝐴, 1𝐴) : 𝐴→ 𝐴.

Given a morphism (𝑚, 𝑓 ) : 𝐴→ 𝐵 in Par(C), we think of the monic𝑚 : 𝑋 → 𝐴 as a subobject,
specifying which part of 𝐴 the morphism is defined on, and then 𝑓 : 𝑋 → 𝐵 tells us what it does.

The following is a straightforward sanity check:

Observation 3.3. There is an isomorphism of (2-)categories Par � Par(Set).
Just as a model of a total operation of arity 𝑛 is a function 𝐴𝑛 → 𝐴 (an arrow in Set), a model of

a partial operation ought to be a partial function 𝐴𝑛 ⇀ 𝐴 (an arrow in Par). For this reason, it is
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important to understand the mathematical status of the cartesian product in Par. Interestingly, Par
has categorical products, but these do not correspond to the cartesian product of sets.2

3.2 Cartesian Restriction Categories
It is by focusing on the universal property of the cartesian product in Par that we are able to identify
a generalisation of Lawvere’s approach to partial operations. This is the goal of this section.

Restriction categories were devised to study partial phenomena in an axiomatic setting. Here we
give a whirlwind tour, more details can be found in [Cockett et al. 2012; Cockett and Lack 2002,
2007]. In a restriction category, every arrow 𝑓 : 𝐴→ 𝐵 has an associated idempotent 𝑓 : 𝐴→ 𝐴,
thought of as the identity function restricted to the domain of definition of 𝑓 . We call them domain
idempotents. Arrows where 𝑓 = 1𝐴 are called total, and form a subcategory. Further, we have:

Remark 3.4. Any restriction category is poset-enriched, with the ordering defined by

𝑓 ≤ 𝑔⇔ 𝑓 #𝑔 = 𝑓

Functors 𝐹 that preserve domain idempotents (𝐹 𝑓 = 𝐹 𝑓 ) are called restriction functors. Restriction
categories and restriction functors form a category. This extends to a 2-category in which the 2-cells
are lax transformations. A lax transformation 𝛼 : 𝐹 → 𝐺 of restriction functors 𝐹,𝐺 : X → Y

consists of a family of total maps 𝛼𝐴 : 𝐹𝐴→ 𝐺𝐴 in Y indexed by the objects 𝐴 of X s.t. for every
𝑓 : 𝐴→ 𝐵 of X the usual naturality square commutes up to inequality:

𝐹𝐴 𝐺𝐴

𝐹𝐵 𝐺𝐵

𝐹 𝑓

𝛼𝐴

𝐺𝑓

𝛼𝐵

≤

where ≤ is the ordering introduced above. Call this 2-category RCat≤ . Just as categories with finite
products enjoy a universal property in the 2-categoryCat, those with finite restriction products have
a universal property inRCat≤ . In general, formal limits inRCat≤ are called restriction limits [Cockett
and Lack 2007]. A cartesian restriction (CR) category is a restriction category with finite restriction
products.

Observation 3.5 ([Cockett and Lack 2002]). Par is a CR category, with the cartesian product as
restriction product.

CR categories have appeared in the literature under a variety of different names, including
p-category with a one-element object [Robinson and Rosolini 1988] and partially cartesian cate-
gory [Curien and Obtułowicz 1989]. For our development, it is crucial that the data of CR categories
can be equivalently captured as follows:

Theorem 3.6 ([Cockett and Lack 2007]). A CR category is the same thing as a symmetric monoidal
category where every object is equipped with a commutative comonoid structure that is (coherent)
and the comultiplication is natural. That is, for any 𝑓 : 𝐴→ 𝐵 we have 𝑓 #𝛿𝐵 = 𝛿𝐴 #(𝑓 ⊗ 𝑓 ).

From this perspective a CR category is very close to a cartesian category viewed as a monoidal
category through Theorem 2.22. The difference is that we do not ask for the counit of the comonoid
to be natural. This has profound consequences: for instance, the same symmetric monoidal category
may have more than one such chosen comonoid structure, thus definining different CR categories.

2The categorical product of 𝐴 and 𝐵 in Par is (𝐴 + {★}) × (𝐵 + {★}) − {(★, ★) }. This can be seen via the equivalence
1/Set ≃ Par. Limits in the coslice category 1/Set are calculated pointwise, and the functor 1/Set→ Par removes the point
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Given the algebraic data, the domain idempotent 𝑓 : 𝐴 → 𝐴 of an arrow 𝑓 : 𝐴 → 𝐵 in a CR
category is recovered as:

𝑓

𝑓 =

and so in particular the subcategory ofX for which the counit is natural is precisely the subcategory
of total maps. Notice that this means the subcategory of total maps of a CR category is cartesian.

Definition 3.7. A CR functor between two CR categories 𝐹 : X→ Y is a functor that preserves
the algebraic structure. That is, 𝐹 (𝐴 ⊗ 𝐵) = 𝐹𝐴 ⊗ 𝐹𝐵, 𝐹1 = 1, 𝐹𝛿𝐴 = 𝛿𝐹𝐴 and 𝐹𝜀𝐴 = 𝜀𝐹𝐴.

Remark 3.8. A lax transformation of CR functors may be equivalently specified as a family of maps
𝛼𝐴 : 𝐹𝐴→ 𝐺𝐴 indexed by the objects 𝐴 of X s.t. for every 𝑓 : 𝐴→ 𝐵 we have 𝐹 𝑓 #𝛼𝐵 ≤ 𝛼𝐴 #𝐺𝑓 .
We do not need to ask that each 𝛼𝐴 is total, since if 𝐹 and 𝐺 preserve the cartesian restriction
structure, then they are automatically total. In particular the diagram on the left gives the inequality
on the right, which gives that 𝛼𝐴 is total:

𝐹𝐴 𝐺𝐴

𝐹𝐼 𝐺𝐼

𝐹𝜀𝐴

𝛼𝐴

𝐺𝜀𝐴

𝛼𝐼

≤
FA

<latexit sha1_base64="RrBy5BiJ7QR+JNjOe58xSCaWr+E=">AAACDnicbVDLSsNAFL2pr1pfVZduBovgqiRSUHcVQVxWsQ9oQ5lMJu3QmSTMTMQQ+gcu3OinuBO3/oJf4tZpm4VtPXDhcM693HuPF3OmtG1/W4WV1bX1jeJmaWt7Z3evvH/QUlEiCW2SiEey42FFOQtpUzPNaSeWFAuP07Y3up747UcqFYvCB53G1BV4ELKAEayNdH9z1S9X7Ko9BVomTk4qkKPRL//0/IgkgoaacKxU17Fj7WZYakY4HZd6iaIxJiM8oF1DQyyocrPppWN0YhQfBZE0FWo0Vf9OZFgolQrPdAqsh2rRm4j/ed1EBxduxsI40TQks0VBwpGO0ORt5DNJieapIZhIZm5FZIglJtqEM7dFaYFlKv25T7KndGySchZzWSats6pTq17e1Sr1Wp5ZEY7gGE7BgXOowy00oAkEAniGV3izXqx368P6nLUWrHzmEOZgff0CBWOdPA==</latexit>

≤ αA
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FA
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GA
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3.3 Discrete Cartesian Restriction Categories
Restriction products do not quite capture all the properties of Par needed for partial universal
algebra. In particular, we require CR categories with the following extra structure:

Definition 3.9. A CR category is said to be discrete (DCR category [Cockett et al. 2012]) if for each
object 𝐴 there is an arrow 𝜇𝐴 : 𝐴 ⊗ 𝐴→ 𝐴 that is partial inverse to 𝛿𝐴. That is, 𝛿𝐴 # 𝜇𝐴 = 𝛿𝐴 = 1𝐴
and 𝜇𝐴 #𝛿𝐴 = 𝜇𝐴.

We give a novel presentation of DCR categories, inspired by the work of [Giles 2014]. Central to
our presentation is the notion of a commutative special Frobenius algebra in which the monoid
does not have a unit, which we call a partial Frobenius algebra. More precisely:

Definition 3.10. A partial Frobenius algebra (𝐴, 𝛿𝐴, 𝜇𝐴, 𝜀𝐴) in a symmetric monoidal category
consists of a commutative comonoid (𝐴, 𝛿𝐴, 𝜀𝐴) and a commutative semigroup (𝐴, 𝜇𝐴) s.t. (𝐴, 𝛿𝐴, 𝜇𝐴)
is a semi-Frobenius algebra. Diagramatically, this is the comonoid structure we have already seen
together 𝜇𝐴, which we depict as in our string diagrams, subject to the following equations:

= = (MCA)

= = = (SFROB)

Note that there is some redundancy in the equational presentation above, as discussed in [Carboni
1991]. We now extend the characterisation of CR categories given in Theorem 3.6 to DCR categories:

Theorem 3.11. A DCR category is the same thing as a symmetric monoidal category where every
object 𝐴 is equipped with a coherent partial Frobenius algebra structure (𝐴, 𝛿𝐴, 𝜀𝐴, 𝜇𝐴) s.t. the
comultiplication is natural. That is, for any 𝑓 : 𝐴→ 𝐵 we have 𝑓 #𝛿𝐵 = 𝛿𝐴 #(𝑓 ⊗ 𝑓 ).
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DCR categories are intimately connected to categories with finite limits [Cockett et al. 2012]. In
particular:

Proposition 3.12. If C is a category with finite limits, Par(C) is a DCR category.
Definition 3.13 (the 2-category DCRC≤). It follows that for any CR functor 𝐹 : X→ Y between

DCR categories, we have 𝐹𝜇𝐴 = 𝜇𝐹𝐴. CR functors therefore give the notion of morphism between
DCR categories. We consider the strict 2-category of DCR categories, restriction functors, and lax
transformations, which we call DCRC≤ .

4 PARTIAL LAWVERE THEORIES
In this section we develop a Lawvere-style approach to partial algebraic theories, where operations
may be partial. Ordinary Lawvere theories are determined by the free cartesian category on a single
object F op; we are thus interested in the analogue of F op in the world of DCR categories.

4.1 The Free DCR Category on One Object
Given Theorem 3.11, we have an explicit description for the DCR category on one object: it is the
prop PF induced from the monoidal theory of partial Frobenius algebras. That is, it has generators
{ , , } and equations (MCA), (CCM) and (SFROB).
It turns out that one can gain a precise intuition on what PF looks like by mimicking the way in

which the props F and its opposite F op describe familiar algebraic structures. In fact, the prop CM

of commutative monoids is isomorphic to the prop F (see Observation 2.18), and similarly, the prop
CC of commutative comonoids is isomorphic to F op (Observation 2.21).
The prop PF of partial Frobenius algebras that we want to describe here can be given a sim-

ilar “combinatorialž characterisation relying on the insights of Lack [Lack 2004]. First, we note
that the prop CAM induced by the monoidal theory of commutative semigroups ({ } and
equations (MCA)) is isomorphic to sub-prop F𝑠 ⊂ F of finite sets and surjective functions.

Observation 4.1. As props, CAM � F𝑠 .
This is intuitive: as observed in Remark 2.19, string diagrams of CM allow one to “drawž all

functions [𝑚] → [𝑛]. Doing without the unit means that we can express exactly the surjective
ones.

Next, we know from [Lack 2004] that the prop FROB induced by the monoidal theory of special

Frobenius algebras with generators { , , , } and equations (CM), (CCM) and

(SFROB) is isomorphic to the prop of cospans of finite sets Cospan(F ). An arrow𝑚 → 𝑛 here is (an
isomorphism class of) a cospan of functions [𝑚] 𝑓−→ [𝑘] 𝑔←− [𝑛], and composition is by pushout.

Proposition 4.2 ([Lack 2004]). As props, FROB � Cospan(F ).
Given that surjective functions are closed under composition and pushouts in F , we can consider

the subprop Cospan𝑠 (F ) of Cospan(F ) with arrows those cospans where the left leg is surjective.
Now, combining Observation 4.1 and Proposition 4.2 yields:

Proposition 4.3. As props, PF � Cospan𝑠 (F ).
This gives us a combinatorial characterisation of PF . But there is a more familiar and satisfactory

way of describing Cospan𝑠 (F ). Given that cospans in C are spans in Cop, and epimorphisms in C
are monomorphisms in Cop, we see that Cospan𝑠 (F ) = Par(F op), since a cospan in F with left leg
surjective is the same thing as a span in F op with left leg a monomorphism. Therefore, we obtain:
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Proposition 4.4. As props, PF � Par(F op).

4.2 Partial Lawvere Theories
We have seen that F op is central to the definition of Lawvere theories, being the free cartesian cate-
gory on one object. The prop Par(F op), being the free DCR on one object, plays the corresponding
role in the definition of partial Lawvere theories.

Definition 4.5. A partial Lawvere theory L is a DCR prop.

Spelled out, a partial Lawvere theory is a DCR category L for which there is an identity-on-
objects CR functor Par(F op) → L. A morphism of partial Lawvere theories is a functor ℎ : L →M
s.t. the following triangle commutes:

Par(F op)

L M .

𝑞𝑝

ℎ

This defines the category pLaw of partial Lawvere theories.
Mimicking also the definition of model of a Lawvere theory, we obtain at once the notion of

model of a partial Lawvere theory:

Definition 4.6 (Model of a partial Lawvere theory). A model for a partial Lawvere theory L is a
CR functor 𝐿 : L → Par. A homomorphism 𝐿 → 𝐿′ is a lax natural transformation 𝛼 : 𝐿 ⇒ 𝐿′.

Definition 4.7. The category of models and homomorphisms of a partial Lawvere theory L is
denoted pModL . As explained in Remark 3.8, the homomorphisms are total functions.

5 PARTIAL EQUATIONAL THEORIES
In order to consider interesting examples of partial Lawvere theories, we need to introduce the
notion of partial equational theory. For partial structures, these are the syntactic analogue of
equational theories, and yield partial Lawvere theories in a similar way to how equational theories
yield Lawvere theories.

Monoidal signatures (Definition 2.12) Γ have unrestricted arities and coarities. Instead, a signature
Σ of an equational theory (Definition 2.1) has function symbols of arbitrary arities, butÐconsidered
as a monoidal signatureÐall coarities are 1. Partial signatures are an intermediate concept: as for
equational theories, coarities > 1 are redundant, but we need to admit symbols of coarity 0.

Definition 5.1. A partial signature Δ def
= Δ0 + Δ1, where Δ0 is the set of operations of coarity 0,

and Δ1 is the set of operations of coarity 1. Each 𝛿 : Δ𝑖 comes with an arity 𝑎𝑟 (𝛿) : N.
Differently from ordinary equational theories, we cannot use classical terms, whichÐas discussed

in Remark 2.26Ðare tied to an underlying cartesian structure. Instead, we adapt Recipe 2.37 to DCR
categories, obtaining partial terms as particular string diagrams. Before we launch into formal
definitions, and illustrate them with a variety of examples, let us establish some intuitions for how
to read the string diagrams.
• string diagrams represent partial terms, obtained through composing partial operations,
• equalities and inequalities between them are understood in the sense of Kleene,
• the comonoid structure { , } plays a similar role to that described in S2.6.

Recipe 5.2. Given a partial signature Δ, the free DCR prop LΔ on Δ is the prop induced from the
monoidal theory with
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• generators (Δ + { , , })

• equations (MCA), (CCM) and (SFROB), together with 𝛿
𝛿

𝛿

𝑚𝑚
= for each

𝛿 : Δ1, where 𝑎𝑟 (𝛿) =𝑚.

Definition 5.3 (Partial Equational Theory). A partial equation is a pair (𝑠, 𝑡) where 𝑠, 𝑡 : LΔ (𝑚,𝑛)
for some𝑚,𝑛 : N; we usually write ‘𝑠 = 𝑡 ’. A partial equational theory is a pair (Δ,𝐺) where Δ is a
partial signature and 𝐺 is a set of partial equations.

We first return to a familiar example.

Example 5.4 ((Partial) Commutative Monoids). We start with the monoidal theory of commutative
monoids (Example 2.16), where the multiplication and unit generators are re-coloured to red to
avoid a clash. In models, the multiplication operation may be partially defined and the unit may be
undefined. To define the partial theory of total commutative monoids, we’d need to add equations:

= = (3)

Example 5.5 (Equational Theories). Any equational theory (Σ, 𝐸) is an example. One follows
Recipe 5.2, adding equations analogous to (3) to specify that every generator in Σ is total. The
category of models of this partial theory then agrees with that of the Lawvere theory L (Σ,𝐸) .
The following elementary examples illustrate the novel features of partial Lawvere theories,

highlighting the way in which they differ from classical (i.e., total) Lawvere theories.

Example 5.6 (Equivalence Relations). Consider the partial Lawvere theory consisting of a single
binary operation 𝑅 with coarity 0, together with equations expressing symmetry and reflexivity:

𝑅 : 𝑅 𝑅= 𝑅 =

Note that inequations of terms, as in Remark 3.4, do not add expressivity. As such, we may use
them freely when specifying partial Lawvere theories. Transitivity is intuitively captured by the
inequation on the left, which, unfolding the definition of ≤, is precisely the equation on the right:

𝑅

𝑅

𝑅≤
𝑅

𝑅

𝑅

𝑅

𝑅

=

A model A of this theory consists of a set 𝐴 together with an equivalence relation =𝐴⊆ 𝐴 × 𝐴
corresponding to the domain of definition ofA(𝑅). A morphism 𝐹 : A → B is a function 𝐹 : 𝐴→ 𝐵
with 𝑎 =𝐴 𝑏 ⇒ 𝐹𝑎 =𝐵 𝐹𝑏, which arises from the requirement that 𝐹 is a lax transformation:

𝑅
𝐴

𝐴

𝐹

𝐹

𝐴

𝐴
𝑅≤

Thus, the variety corresponding to this theory is the category of Bishop sets (setoids) [Palmgren
2009].
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Example 5.7 (Partial Combinatory Algebras). A partial combinatory algebra (PCA) is a set 𝐴 with
a binary partial operation _ • _ : 𝐴 ×𝐴→ 𝐴, and elements s, k ∈ 𝐴 s.t. for any 𝑥,𝑦, 𝑧 ∈ 𝐴:

(i) (k • 𝑥) • 𝑦 = 𝑥
(ii) ((s • 𝑥) • 𝑦) • 𝑧 = (𝑥 • 𝑧) • (𝑦 • 𝑧)
(iii) (s • 𝑥) • 𝑦 is defined

where “=ž is Kleene equality. The partial Lawvere theory of PCAs has three generators:

𝑘 𝑠

and equations that ensure the totality of 𝑘, 𝑠 , i.e. they define elements of the carrier, and (𝑖𝑖𝑖):

𝑘 = 𝑠 =

𝑠

=

as well as equations for (𝑖) and (𝑖𝑖):

𝑘
=

𝑠

=

The variety here is the category of PCAs and homomorphisms preserving the applicative structure.

Example 5.8 (Pairing Functions). Consider the partial Lawvere theory with two operations which
we think of as pairing and unpairing respectively, subject to the equation on the right:

=

Models are sets equipped with a pairing function, and model morphisms map pairs to pairs. For
example, N and Cantor’s pairing function, or Λ ś the set of untyped 𝜆-terms ś with the usual
pairing and projection functions. Note that our equation makes pairing a section, and so it is total.

6 MULTI-SORTED EQUATIONAL THEORIES
In this section we present a progression of multi-sorted partial Lawvere theories for categories
with different kinds of structure. While our development of partial Lawvere theories has thus far
focused on the single-sorted case, the move to multi-sorted theories contains no surprises, so we
omit the details. The short version is that props are replaced with coloured props, and the sorting
discipline changes accordingly. The examples that follow are developed incrementally: Each step
adds more categorical structure to the models by adding the appropriate operations and equations
to the theory, culminating in the partial Lawvere theory of cartesian closed categories.

Example 6.1 (Directed Graphs). We begin with the partial Lawvere theory of directed graphs,
which has a sort 𝑂 of vertices and a sort 𝐴 of edges, together with source and target operations:

𝑠𝐴 𝑂 𝑡𝐴 𝑂 𝑠 =𝐴 𝐴 𝑡 =𝐴 𝐴
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The associated variety is the category of directed graphs, as model morphisms 𝐹 must satisfy:

𝑠 𝐹 𝐹 𝑠= 𝑡 𝐹 𝐹 𝑡=

Example 6.2 (Reflexive Graphs). Extending Example 6.1, we ask that each vertex has a self-loop:

id𝑂 𝐴 id =𝑂 𝑂 id 𝑠𝑂 𝑂 𝑂 𝑂= = id 𝑡𝑂 𝑂

then morphisms of models are required to preserve the self-loop, so the associated variety is the
category of reflexive graphs. Notice that along with Example 6.1, this could also be presented as a
(total) 2-sorted Lawvere theory, since all the operations are total.

Example 6.3 (Categories). To capture categories we extend Example 6.2 with a composition
operator, which is defined when the target of the first arrow matches the source of the second:

𝐴

𝐴

𝐴

𝑡

𝑠
=

and equations insisting composition is associative and unital, with identities given by the self-loops:

𝐴

𝐴

𝐴
𝐴 =

𝐴

𝐴
𝐴

𝐴
𝑠 id

𝑡 id
𝐴 𝐴 𝐴 𝐴 𝐴 𝐴= =

Model morphisms are precisely functors. It is worth noting that this involves an inequality:

𝐹
𝐹

𝐹
≤

This states that if 𝑓 and 𝑔 are composable then so are 𝐹 𝑓 and 𝐹𝑔, and in particular 𝐹 (𝑓 #𝑔) = 𝐹 𝑓 # 𝐹𝑔.
If this were an equality, it would insist also that if 𝐹 𝑓 and 𝐹𝑔 are composable, then so are 𝑓 and 𝑔,
which is not always the case. Of course, the associated variety is the category of small categories.

Example 6.4 (Strict Monoidal Categories). Next, we extend Example 6.3 by asking for a functorial
binary operation ⊗ on 𝑂 and 𝐴 together with a unit constant ⊤ of 𝑂 :

⊤ 𝑂 : ⊤ = ⊗𝑂

𝑂
𝑂 : ⊗𝑂

𝑂

𝑂

𝑂
=

⊗𝐴

𝐴

𝐴

𝐴
= ⊗𝐴

𝐴
𝑂𝑠

𝑠

𝑠
⊗𝐴

𝐴
𝑂=

⊗𝐴

𝐴
𝑂𝑡

𝑡

𝑡
⊗𝐴

𝐴
𝑂=

⊗

⊗
⊗𝐴

𝐴

𝐴

𝐴

𝐴
𝐴

𝐴

𝐴

𝐴

𝐴 =

Additionally, we require equations to the effect that ⊗ is associative and unital:

⊗ ⊗
𝑂
𝑂

𝑂

𝑂 ⊗ ⊗
𝑂

𝑂
𝑂

𝑂
=

⊗ ⊗
𝐴
𝐴

𝐴

𝐴 ⊗ ⊗
𝐴

𝐴
𝐴

𝐴
=
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⊤ id ⊗
𝐴

𝐴 =
⊤ id

⊗𝐴
𝐴

⊤
⊗𝑂

𝑂 𝑂 𝑂
⊤ ⊗

𝑂
𝑂= =

Now the associated variety is the category of strict monoidal categories and strict monoidal functors.

Example 6.5 (Symmetric Strict Monoidal Categories). To capture symmetric monoidal categories,
we extend Example 6.4 with a binary operation 𝜎 : 𝑂 ⊗ 𝑂 → 𝐴 for the braiding maps, subject to:

𝜎
𝑂

𝑂
𝐴 : 𝜎

𝑂

𝑂
= 𝜎 𝑠

𝑂

𝑂
𝑂 ⊗𝑂

𝑂
𝑂=

𝜎 𝑡
𝑂

𝑂
𝑂 ⊗𝑂

𝑂
𝑂=

𝜎

𝜎

𝑂

𝑂

𝐴 = ⊗ id

𝑂

𝑂

𝐴

⊗
𝑡

𝑡
𝜎 ⊗

𝑠

𝑠
𝜎

=

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

This gives the variety of strict monoidal categories and symmetric strict monoidal functors.

Example 6.6 (Cartesian Restriction Categories). In light of Theorem 3.6, we can capture CR
categories by extending Example 6.5 with operations 𝛿 : 𝑂 → 𝐴 and 𝜀 : 𝑂 → 𝐴 corresponding to
the comultiplication and counit of the comonoid structure:

𝛿𝑂 𝐴 : 𝛿= 𝛿 𝑠 = 𝛿 𝑡 ⊗=

𝜀𝑂 𝐴 : 𝜀 = 𝜀 𝑠 = 𝜀 𝑡 ⊤=

along with equations insisting that 𝛿 and 𝜀 are coherent with respect to the monoidal structure:

⊗ 𝛿
𝛿

𝛿

id
𝜎

id

⊗

⊗

⊗
= ⊗ 𝜀

𝜀

𝜀
⊗=

And finally equations for the commutative comonoid axioms, and naturality of 𝛿 :

𝛿

𝛿

id
⊗

𝛿

id

𝛿
⊗

=
𝛿

𝜎

𝛿=
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𝛿

𝜀

id
⊗

𝛿

id

𝜀
⊗

=

𝑠

⊗

𝛿

𝑡 𝛿
=

The associated variety is the category of CR categories and CR functors.

Example 6.7 (Discrete Cartesian Restriction Categories). Theorem 3.11 makes it easy to capture
DCR categories by extending Example 6.6 with 𝜇 : 𝑂 → 𝐴 satisfying the Frobenius and special
equations: there is a 𝜇𝑂 𝐴 such that

𝜇𝑂 𝑂= 𝜇 𝑠𝑂 𝑂 ⊗𝑂 𝑂=

𝜇 𝑡𝑂 𝑂 𝑂 𝑂=
𝛿

𝜇
𝑂 𝐴 = id𝑂 𝐴

𝜇

id

id

𝛿

⊗

⊗
𝑂 𝐴

𝛿

𝜇

𝑂 𝐴
id

𝜇

𝛿

id

⊗

⊗
𝑂 𝐴= =

The variety is the category of strict DRC categories and strict CR functors (since they preserve 𝜇).

Example 6.8 (Cartesian Categories). To capture cartesian categories instead, we can extend Exam-
ple 6.6 with one equation, ensuring that 𝜀 is natural:

𝑡 𝜀
𝐴 𝐴 𝑠 𝜀𝐴 𝐴=

Then by Theorem 2.22, this gives the variety of strict cartesian categories and strict cartesian
functors.

Example 6.9 (Cartesian Closed Categories). Finally, to capture cartesian closed categories we extend
Example 6.8 with an operator exp : 𝑂 ⊗ 𝑂 → 𝑂 , the idea being that exp(𝐴, 𝐵) is the internal hom
[𝐴, 𝐵], along with an operator ev : 𝑂 ⊗ 𝑂 → 𝑂 that gives the corresponding evaluation map:

exp
𝑂

𝑂
𝑂 : exp = 𝑒𝑣

𝑂

𝑂
𝐴 : 𝑒𝑣 =

𝑒𝑣 𝑠
exp

⊗=
𝑒𝑣 𝑡 =

along with an operation 𝜆 and equations stating, intuitively, that 𝜆(𝑋,𝐴, 𝐵, 𝑓 ) is defined precisely
in case 𝑓 : 𝑋 ×𝐴→ 𝐵, and yields a map 𝜆(𝑋,𝐴, 𝐵, 𝑓 ) : 𝑋 → [𝐴, 𝐵] as in:

𝜆 𝐴
𝑂
𝑂
𝑂

𝐴

𝜆

⊗
𝑠

𝑡
=
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𝜆 𝑠 = 𝜆 𝑡 exp=

also equations insisting that if 𝑓 : 𝑋 ×𝐴→ 𝐵 then (𝜆(𝑋,𝐴, 𝐵, 𝑓 ) × 1) # ev = 𝑓 holds:

id

𝜆

𝑒𝑣

⊗ =

⊗
𝑠

𝑡

and that if 𝑔 : 𝑋 → [𝐴, 𝐵] then 𝜆(𝑋,𝐴, 𝐵, (𝑔 × 1) # ev) = 𝑔 holds:

ex
p

𝑠

𝑡 =

id

𝑒𝑣

⊗

𝜆

Now the associated variety is the category of strict cartesian closed categories and strict cartesian
closed functors: these preserve hom-objects and, when 𝜆(𝑋,𝐴, 𝐵, 𝑓 ) is defined, satisfy 𝐹𝜆(𝑋,𝐴, 𝐵, 𝑓 ) =
𝜆(𝐹𝑋, 𝐹𝐴, 𝐹𝐵, 𝐹 𝑓 ). This presentation of cartesian closed categories is essentially due to Freyd: a
version of it is given immediately after the first appearance of the notion of essentially algebraic
theory in [Freyd 1972], albeit somewhat informally, and using very different syntax.

7 THE VARIETY THEOREM FOR PARTIAL THEORIES
Here we classify the categories of models of partial Lawvere theories. These turn out to be exactly
the locally finitely presentable (LFP) categories [Adamek and Rosickỳ 1994, 1A]. LFP categories
have an important position in categorical algebra, due to deep connections with model theory
[Adamek and Rosickỳ 1994, Ch. 5] and [Makkai and Paré 1989], homotopy theory [Dugger 2001],
and universal algebra [Adamek and Rosickỳ 1994, Ch. 3].

7.1 The Unsorted Case
Definition 7.1. In a category C, an object 𝐶 is finitely presentable if the hom-functor C(𝐶, )

preserves directed colimits (see [Adamek and Rosickỳ 1994, 1.1] for the definition).

This notion might appear obscure to the reader unfamiliar with categorical logic; [Adamek and
Rosickỳ 1994, 1.2] contains lots of examples to help the reader build their intuition: for instance, an
object of the category of sets is finitely presentable if and only if it is finite, and a (commutative)
monoid is finitely presentable if and only if it admits a presentation ⟨𝐺 | 𝑅⟩ where both 𝐺 (set of
generators) and 𝑅 (set of relations) are finite sets: this happens for many other algebraic structures,
and thus motivates the definition.

Definition 7.2 (Locally finitely presentable category). [Adamek and Rosickỳ 1994, Def. 1.9] A
locally finitely presentable (LFP) category K is a cocomplete category s.t. there is a small full
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subcategory A ⊂ K of finitely presentable objects, and such that every object of K is a directed
colimit of objects of A.

As in the classical case (Remark 2.30), the most crisp statement of the variety theorem is for the
unsorted case. Just as an unsorted Lawvere theory is exactly a (small) cartesian category, we define
an unsorted partial Lawvere theory to be a (small) DCR category, and the corresponding notion of
morphism to be a CR functor. Then:

Categories of models of partial theories are exactly LFP categories.
Indeed, we have a similar contravariant adjunction to that of Theorem 2.35, if LFP is a 2-category
having 1-cells 𝑅 : K → K ′ the right adjoint functors 𝑅 preserving directed colimits, and 2-cells all
natural transformations 𝛼 : 𝑅 ⇒ 𝑅′. A motivation for this apparently peculiar choice of 1-cells can
be found in our Observation 2.31; it is exactly as our Definition 2.34, provided one replaces “siftedž
colimit with “directedž.

Theorem 7.3. There is a 2-adjunction
Th : LFP⇆ (DCRC≤)op : Mod, (4)

where DCRC≤ is the 2-category of DCR categories of our Definition 3.13 and LFP is the 2-category
of LFP categories. Moreover, the unit of this adjunction is an equivalence, namely there is a natural
equivalence of categories between K ∈ LFP and Mod(Th(K)), i.e. each LFP category is equivalent
to the category of models of its induced theory.

The proof of Theorem 7.3 is split into two parts, as illustrated below:

(DCRC≤)op (Lex)op

LFP

1

2 (5)

1) we show that Lex śthe 2-category of categories A with finite limits, functors A → A ′
preserving finite limits, and natural transformationsś is reflective in the 2-category DCRC≤ .
This is the original, technical core of Theorem 7.3.

2) we connect Lexop and LFP with a contravariant biequivalence of 2-categories. This is a
classical result called Gabriel-Ulmer duality.

Composing the two, we obtain Theorem 7.3.
We will start from the first of the two tasks, providing an adjunction of 2-categories as follows.

𝐾𝑡 : DCRC≤ ⇆ Lex : Par
We first describe the left adjoint 𝐾𝑡 , then the right adjoint Par, and conclude by showing that

they define an adjunction.

Splitting Domain Idempotents. The functor 𝐾𝑡 arises via a modified Karoubi envelope, also called
Cauchy completion in [Borceux and Dejean 1986]. Recall that an idempotent 𝑎 : 𝐴→ 𝐴 in a category
splits if there is a commutative diagram

𝑋 𝐴

𝑋 𝐴

𝑠

𝑠

1𝑋 𝑟
𝑎

Restriction categories in which all of the domain idempotents split are called split restriction
categories. An example is Par(C): for any arrow (𝑚, 𝑓 ) : 𝐴 → 𝐵, (𝑚, 𝑓 ) = (𝑚,𝑚) : 𝐴 → 𝐴 splits

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 57. Publication date: January 2021.



57:24 Ivan Di Liberti, Fosco Loregian, Chad Nester, and Paweł Sobociński

with 𝑠 = (1,𝑚) and 𝑟 = (𝑚, 1). Notice that this means the domain of definition of (𝑚, 𝑓 ) is a
subobject of 𝐴. This is a good way to think of split domain idempotents in general: for 𝑓 to be split
in a restriction category is for the domain of definition of 𝑓 : 𝐴→ 𝐵 to be a subobject of 𝐴.

For any restriction category X we can construct a split restriction category 𝐾 (X) that contains
X as a subcategory. Its subcategory of total maps 𝐾𝑡 (X) is of particular interest.

Definition 7.4. Let X be a DCRC. Then 𝐾𝑡 (X) is the category where
1) objects are pairs (𝐴, 𝑎) with 𝐴 an object of X and 𝑎 : 𝐴→ 𝐴 a domain idempotent in X;
2) arrows 𝑓 : (𝐴, 𝑎) → (𝐵,𝑏) are arrows 𝑓 : 𝐴→ 𝐵 of X such that 𝑓 = 𝑎 and 𝑓 #𝑏 = 𝑓 ;
3) composition is given by composition in X;
4) The identity on (𝐴, 𝑎) is given by 𝑎.

It is routine to verify that this forms a category. Crucially, if X is a DCRC, then the subcategory
𝐾𝑡 (X) of total maps of 𝐾 (X) has finite limits [Cockett et al. 2012]:

Lemma 7.5. For any DCRC X, 𝐾𝑡 (X) has finite limits.
We now show that this extends to a 2-functor 𝐾𝑡 : DCRC≤ → Lex. If X and Y are DCRCs

and 𝐹 : X → Y is a CR functor, then there is a functor 𝐾𝑡 (𝐹 ) : 𝐾𝑡 (X) → 𝐾𝑡 (Y ) defined by
𝐾𝑡 (𝐹 ) (𝐴, 𝑎) = (𝐹𝐴, 𝐹𝑎) on objects and𝐾𝑡 (𝐹 ) (𝑓 ) = 𝑓 on arrows. It follows from our characterization
of CR functors in terms of the partial Frobenius algebra structure that 𝐾𝑡 (𝐹 ) preserves finite limits,
giving the action of our 2-functor 𝐾𝑡 on 1-cells. The action of 𝐾𝑡 on 2-cells is given as follows:
Lemma 7.6. If 𝐹,𝐺 : X → Y are CR functors between DCR categories and 𝛼 : 𝐹 → 𝐺 is a lax

transformation, define 𝐾𝑡 (𝛼) : 𝐾𝑡 (𝐹 ) → 𝐾𝑡 (𝐺) by letting 𝐾𝑡 (𝛼) at (𝐴, 𝑎) in 𝐾𝑡 (X) be:
𝐾𝑡 (𝛼) (𝐴,𝑎) = 𝐹𝑎 #𝛼𝐴 : (𝐹𝐴, 𝐹𝑎) → (𝐺𝐴,𝐺𝑎)

Then 𝐾𝑡 (𝛼) is a natural transformation.
At this point we need only show that 𝐾𝑡 preserves composition and identities for 1-cells and

2-cells, which in both cases is straightforward.
Lemma 7.7. 𝐾𝑡 : DCRC≤ → Lex is a 2-functor.
Partial Functions Revisited. Here we show that the Par construction (S3.1) also extends to a

2-functor Par : Lex → DCRC≤ . If C and D are categories with finite limits and 𝐹 : C → D is a
finite-limit preserving functor, then we obtain a CR functor Par(𝐹 ) : Par(C) → Par(D), defined on
objects by Par(𝐹 ) (𝐴) = 𝐹 (𝐴), and on arrows by

𝑋

𝐴 𝐵

𝑚 𝑓
Par(𝐹 )↦−→

𝐹𝑋

𝐹𝐴 𝐹𝐵

𝐹𝑚 𝐹 𝑓

Since 𝐹 preserves finite limits, we have that Par(𝐹 ) (𝛿𝐴) = (𝐹1𝐴, 𝐹Δ𝐴) = (1𝐹𝐴,Δ𝐹𝐴) = 𝛿𝐹𝐴 =
𝛿Par(𝐹 ) (𝐴) and Par(𝐹 ) (𝜀𝐴) = (𝐹1𝐴, 𝐹 !𝐴) = (1𝐹𝐴, !𝐹𝐴) = 𝜀Par(𝐹 ) (𝐴) , so Par(𝐹 ) preserves the CR
structure. This defines the action of Par on 1-cells. We present the action of Par on 2-cells as a
lemma:
Lemma 7.8. If 𝐹,𝐺 : C→ D are finite limit preserving functors between categories with finite

limits and 𝛼 : 𝐹 → 𝐺 is a natural transformation, define Par(𝛼) : Par(𝐹 ) → Par(𝐺) by defining
the component of Par(𝛼) at 𝐴 in C to be:

𝐹𝐴

𝐹𝐴 𝐺𝐴

Par(𝛼)𝐴
1𝐹𝐴 𝛼𝐴
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Then Par(𝛼) : Par(𝐹 ) → Par(𝐺) is a lax transformation.

It remains only show that Par preserves composition and identities at the level of 1-cells and
2-cells, which is immediate in both cases. We therefore have:

Lemma 7.9. Par : Lex→ DCRC≤ is a 2-functor.

Adjointness. The following result is original, and builds on [Cockett and Lack 2002, Corollary
3.5]; however, there the 2-cells of the categories involved are different.

Theorem 7.10. There is a 2-adjunction 𝐾𝑡 : DCRC≤ ⇆ Lex : Par.

It is worth describing the unit and counit of our adjunction. The unit 𝜂 : 1→ Par ·𝐾𝑡 is given by
the canonical inclusion 𝜂X : X→ Par(𝐾𝑡 (X)) defined by

𝐴
𝑓→ 𝐵

𝜂X↦−→
(𝐴, 𝑓 )

(𝐴, 1𝐴) (𝐵, 1𝐵)

𝑓 𝑓

The counit 𝜀 : 𝐾𝑡 · Par→ 1 is defined in terms of the equivalence of categories 𝐾 (X) ≃ X between
any split restriction category X and the result of formally splitting its domain idempotents. In
particular, since Par(C) is always split, we obtain an equivalence of categories𝐾 (Par(C)) ≃ Par(C).
Restricting this to the subcategories of total maps gives defines our counit 𝜀C : 𝐾𝑡 (Par(C)) ≃ C. In
particular, the fact that the counit is a natural equivalence gives:

Lemma 7.11. Lex is a reflective (2-)subcategory of DCRC≤ .

Gabriel-Ulmer duality. To complete the triangle (5), we recall a theorem first shown by P. Gabriel
and F. Ulmer [Gabriel and Ulmer 1971], establishing a contravariant equivalence between the
2-category LFP of locally finitely presentable categories and the 2-category Lex of categories with
finite limits.
The duality asserts that a locally finitely presentable category K can be reconstructed from its

subcategory K𝜔 of finitely presentable objects. A good reference for the proof is [Centazzo and
Vitale 2002, Th. 3.1].

Theorem 7.12 (Gabriel-Ulmer duality). There is a biequivalence of 2-categories
Lexop ⇆ LFP

between Lex, the 2-category of small categories with finite limits, where 1-cells are functors
preserving finite limits and 2-cells are the natural transformations, and LFP, the 2-category of
locally finitely presentable categories, where 1-cells are right adjoints preserving directed colimits.

7.2 Sorted Gabriel-Ulmer Duality
A similar version of the above theorem holds if, instead of considering theories of all possible sorts,
we fix once and for all a single cardinality for the sorts𝔖. Such “relativež version of Gabriel-Ulmer
duality is useful to recover the classical Lawvere-style approach of single- and many-sorted theories.

Definition 7.13. We call 𝐿𝔖 the free category with finite limits over the discrete set𝔖. When𝔖
is the singleton we will use the shortened notation 𝐿1.

Definition 7.14. A𝔖-sorted category with finite limits (A, 𝑝) is an object in (Lex)op/𝐿𝔖 whose
specifying functor 𝑝 : 𝐿𝔖 → A is bijective on objects. (𝔖-Lex)op is the full 2-subcategory of
𝔖-sorted categories with finite limits.
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Definition 7.15. A𝔖-sorted locally finitely presentable category (K,𝑈 ) is an object in LFP/[𝔖, Set]
whose specifying functor𝑈 : K → [𝔖, Set] is conservative. (𝔖-LFP)op is the full 2-subcategory of
𝔖-sorted locally finitely presentable categories.

Theorem 7.16 (Sorted Gabriel-Ulmer duality). There is a biequivalence of 2-categories
Mod𝔖 : (𝔖-Lex)op ⇆𝔖-LFP : Th𝔖 .

We can use the sorted version of Gabriel-Ulmer duality to infer the sorted version of the syntax-
semantics duality for multi-sorted partial Lawvere theories.

Theorem 7.17. There is an 2-adjunction, whose unit is an equivalence,
𝔖-LFP⇆ (𝔖-pLaw)op,

where𝔖-pLaw is the 2-category of “𝔖-sorted partial Lawvere theoriesž, understood as the analogue
of Remark 2.30 for partial theories (see Definition 4.5), and𝔖-LFP is the 2-category of𝔖-sorted
locally finitely presentable categories.

Sketch of proof. The proof is divided into intermediate steps: each tag on the following two
diagrams indicates the section where the proof of the adjunction, or equivalence, is given.

(𝔖-pLaw)op (𝔖-Lex)op (DCRC≤)op (Lex)op

𝔖-LFP LFP

★ 7.10

7.16 7.12

The claim in (★) is the only one that needs to be proven. Yet it is also the most trivial one.
We will deduce it directly from Theorem 7.10. Indeed if Lex is reflective in DCRC≤ , (Lex)op/𝐿𝔖
is coreflective in (DCRC≤)op/Par(𝐿𝔖), now observe that Par(𝐿𝔖) is precisely the free discrete
cartesian restriction category over𝔖. The desired result follows passing to functors bijective on
objects in the slice. □

Observation 7.18. In analogy with 2.33, we can show that sorted partial Lawvere theories have
free models. For the single-sorted case, let 𝑝 : Par(F op) → L be a partial Lawvere theory. Indeed
we can look at it as a morphism in DCRC≤ , then the previous theorem produces an adjunction
𝐹 ⊣ Mod𝑝

𝐹 : ModPar(F op) ⇆ ModL : Mod𝑝 .

The functor Mod𝑝 coincides with the forgetful functor. Its left adjoint 𝐹 provides free objects.

8 CONCLUSIONS AND FUTURE WORK
We introduced partial Lawvere theories and their associated notion of partial equational theory.
Our definitions are guided by the appropriate universal property, replacing cartesian categories
with discrete cartesian restriction categories. Knowing the right universal property determines our
choice of syntax, isolating the correct class of string diagrams that replace classical terms. This
enables the standard methodology of presenting a theory by means of a signature and equations,
while avoiding ad-hoc notations and eliminating the subtleties of reasoning about partial structures.

The extension is conservative: every equational theory yields a partial equational theory such
that the categories of models coincide, even though our models are in Par rather than in Set. The
recently proposed Frobenius theories [Bonchi et al. 2017] take their models in the category of
relations Rel, and are guided by the structure of cartesian bicategories of relations [Carboni and
Walters 1987]. Every partial equational theory yields a Frobenius theory and again, the categories
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of models coincide. We feel that our notion is a sweet-spot. First, we have shown that our notion
of partial theories is expressive, capturing a number of important examples. Second, we retain
much of the richness of the semantic picture, via a canonical variety theorem and existence of free
models.

There is much future work. The fact that the syntax introduced here is inherently partial makes
it well-suited to applications in computing. In particular there is an evident notion of computable
model for partial Lawvere theories, namely those models valued in the category of sets and partial
recursive functions. The corresponding computable varieties seem to be interesting for programming
language semantics, and therefore worthy of study. A further step would be the lifting of this
situation to a more synthetic category of computable functions, such as a Turing category [Cockett
and Hofstra 2008] or monoidal computer [Pavlovic 2013].

An important part of categorical universal algebra is played by monads, a point of view that we
have not considered here. Indeed, Lawvere theories can be seen as finitary monads [Linton 1966],
with the category of algebras giving the associated variety. This connection has been a fruitful one,
relating areas of research that are, on the surface, very different, see e.g. [Cheng 2020; Loday and
Vallette 2012; Markl et al. 2002]. A natural question is whether there is an analogous approach for
partial algebraic theories. We conjecture that there is, with certain formal monads [Street 1972] in
the 2-category DCRC≤ playing the role of finitary monads. We expect that other constructions
of categorical universal algebra (e.g. [Freyd 1966; Power 2006]) will have corresponding partial
accounts.
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Abstract. We identify the algebraic structure of the material histories
generated by concurrent processes. Specifically, we extend existing cate-
gorical theories of resource convertibility to capture concurrent interac-
tion. Our formalism admits an intuitive graphical presentation via string
diagrams for proarrow equipments.

1 Introduction

Concurrent systems are abundant in computing, and indeed in the world at large.
Despite the large amount of attention paid to the modelling of concurrency in
recent decades (e.g., [1,10,16–18]), a canonical mathematical account has yet to
emerge, and the basic structure of concurrent systems remains elusive.

In this paper we present a basic structure that captures what we will call
the material aspect of concurrent systems: As a process unfolds in time it leaves
behind a material history of effects on the world, like the way a slug moving
through space leaves a trail of slime. This slime is captured in a natural way by
resource theories in the sense of [4], in which morphisms of symmetric monoidal
categories – conveniently expressed as string diagrams – are understood as trans-
formations of resources.

From the resource theoretic perspective, objects of a symmetric monoidal
category are understood as collections of resources, with the unit object denoting
the empty collection and the tensor product of two collections consisting of
their combined contents. Morphisms are understood as ways to transform one
collection of resources into another, which may be combined sequentially via
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composition, and in parallel via the tensor product. For example, the process of
baking bread might generate the following material history:

meaning that the baking process involved kneading dough and baking it in an
oven to obtain bread (and also the oven).

This approach to expressing the material history of a process has many
advantages: It is general, in that it assumes minimal structure; canonical, in
that monoidal categories are well-studied as mathematical objects; and relatively
friendly, as it admits an intuitive graphical calculus (string diagrams). However,
it is unable to capture the interaction between components of a concurrent pro-
cess. For example, consider our hypothetical baking process and suppose that
the kneading and baking of the dough are handled by separate subsystems, with
control of the dough being handed to the baking subsystem once the kneading
is complete. Such interaction of parts is a fundamental aspect of concurrency,
but is not expressible in this framework – we can only describe the effects of the
system as a whole.

We remedy this by extending a given resource theory to allow the decompo-
sition of material histories into concurrent components. Specifically, we augment
the string diagrams for symmetric monoidal categories with corners, through
which resources may flow between different components of a transformation.

Returning to our baking example, we might express the material history of the
kneading and baking subsystems separately with the following diagrams, which
may be composed horizontally to obtain the material history of the baking pro-
cess as a whole.
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These augmented diagrams denote cells of a single object double category
constructed from the original resource theory. The corners make this double cat-
egory into a proarrow equipment, which turns out to be all the additional struc-
ture we need in order to express concurrent interaction. From only this structure,
we obtain a theory of exchanges – a sort of minimal system of behavioural types –
that conforms to our intuition about how such things ought to work remarkably
well.

Our approach to these concurrent material histories retains the aforemen-
tioned advantages of the resource-theoretic perspective: We lose no general-
ity, since our construction applies to any resource theory; It is canonical, with
proarrow equipments being a fundamental structure in formal category theory
– although not usually seen in such concrete circumstances; Finally, it remains
relatively friendly, since the string diagrams for monoidal categories extend in a
natural way to string diagrams for proarrow equipments [11].

1.1 Contributions and Related Work

Related Work. Monoidal categories are ubiquitous – if often implicit – in theo-
retical computer science. An example from the theory of concurrency is [15], in
which monoidal categories serve a purpose similar to their purpose here. String
diagrams for monoidal categories seem to have been invented independently a
number of times, but until recently were uncommon in printed material due to
technical limitations. The usual reference is [12]. We credit the resource-theoretic
interpretation of monoidal categories and their string diagrams to [4]. Double
categories first appear in [6]. Free double categories are considered in [5] and
again in [7]. The idea of a proarrow equipment first appears in [22], albeit in a
rather different form. Proarrow equipments have subsequently appeared under
many names in formal category theory (see e.g., [9,20]). String diagrams for dou-
ble categories and proarrow equipments are treated precisely in [11]. We have
been inspired by work on message passing and behavioural types, in particular
[2], from which we have adopted our notation for exchanges.
Contributions. Our main contribution is the resource-theoretic interpretation
of certain proarrow equipments, which we call cornerings, and the observation
that they capture exactly the structure of concurrent process histories. Our
mathematical contributions are minor, most significantly the identification of
crossing cells in the free cornering of a resource theory and the corresponding
Lemma 2, which we believe to be novel. We do not claim the other lemmas of
the paper as significant mathematical contributions. Instead, they serve to flesh
out the structure of the free cornering.

1.2 Organization and Prerequisites

Prerequisites. This paper is largely self-contained, but we assume some familiar-
ity with category theory, in particular with monoidal categories and their string
diagrams. Some good references are [8,14,19].



212 C. Nester

Organization. In Sect. 2 we review the resource-theoretic interpretation of sym-
metric monoidal categories. We continue by reviewing the theory of double cat-
egories in Sect. 3, specialized to the single object case. In Sect. 4 we introduce
cornerings of a resource theory, in particular the free such cornering, and exhibit
the existence of crossing cells in the free cornering. In Sect. 5 we show how the free
cornering of a resource theory inherits its resource-theoretic interpretation while
enabling the concurrent decomposition of resource transformations. In Sect. 6 we
conclude and consider directions for future work.

2 Monoidal Categories as Resource Theories

Symmetric strict monoidal categories can be understood as theories of resource
transformation. Objects are interpreted as collections of resources, with A ⊗ B
the collection consisting of both A and B, and I the empty collection. Arrows
f : A → B are understood as ways to transform the resources of A into those of
B. We call symmetric strict monoidal categories resource theories when we have
this sort of interpretation in mind.

For example, let B be the free symmetric strict monoidal category with
generating objects

{bread, dough, water, flour, oven}

and with generating arrows

mix : water ⊗ flour → dough knead : dough → dough

bake : dough ⊗ oven → bread ⊗ oven

subject to no equations. B can be understood as a resource theory of baking
bread. The arrow mix represents the process of combining water and flour to form
a bread dough, knead represents kneading dough, and bake represents baking
dough in an oven to obtain bread (and an oven).

The structure of symmetric strict monoidal categories provides natural alge-
braic scaffolding for composite transformations. For example, consider the fol-
lowing arrow of B:

(bake ⊗ 1dough); (1bread ⊗ σoven,dough; bake)

of type
dough ⊗ oven ⊗ dough → bread ⊗ bread ⊗ oven

where σA,B : A ⊗ B
∼→ B ⊗ A is the braiding. This arrow describes the transfor-

mation of two units of dough into loaves of bread by baking them one after the
other in an oven.

It is often more intuitive to write composite arrows like this as string dia-
grams: Objects are depicted as wires, and arrows as boxes with inputs and
outputs. Composition is represented by connecting output wires to input wires,
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and we represent the tensor product of two morphisms by placing them beside
one another. Finally, the braiding is represented by crossing the wires involved.
For the morphism discussed above, the corresponding string diagram is:

Notice how the topology of the diagram captures the logical flow of resources.
Given a pair of parallel arrows f, g : A → B in some resource theory, both

f and g are ways to obtain B from A, but they may not have the same effect
on the resources involved. We explain by example: Consider the parallel arrows
1dough, knead : dough → dough of B. Clearly these should not be understood
to have the same effect on the dough in question, and this is reflected in B
by the fact that they are not made equal by its axioms. Similarly, knead and
knead ◦ knead are not equal in B, which we understand to mean that kneading
dough twice does not have the same effect as kneading it once, and that in
turn any bread produced from twice-kneaded dough will be different from once-
kneaded bread in our model.

Consider a hypothetical resource theory constructed from B by imposing the
equation knead ◦ knead = knead. In this new setting we understand kneading
dough once to have the same effect as kneading it twice, three times, and so on,
because the corresponding arrows are all equal. Of course, the sequence of events
described by knead is not the one described by knead ◦knead: In the former the
dough has been kneaded only once, while in the latter it has been kneaded twice.
The equality of the two arrows indicates that these two different processes would
have the same effect on the dough involved. We adopt as a general principle in
our design and understanding of resource theories that transformations should
be equal if and only if they have the same effect on the resources involved.

For the sake of further illustration, observe that by naturality of the braiding
maps the following two resource transformations are equal in B:
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Each transformation gives a method of baking two loaves of bread. On the left,
two batches of dough are mixed and kneaded before being baked one after the
other. On the right, first one batch of dough is mixed, kneaded and baked and
only then is the second batch mixed, kneaded, and baked. Their equality tells
us that, according to B, the two procedures will have the same effect, resulting
in the same bread when applied to the same ingredients with the same oven.

3 Single Object Double Categories

In this section we set up the rest of our development by presenting the theory of
single object double categories, being those double categories D with exactly one
object. In this case D consists of a horizontal edge monoid DH = (DH ,⊗, I), a
vertical edge monoid DV = (DV ,⊗, I), and a collection of cells

where A,B ∈ DH and X,Y ∈ DV . Given cells α, β where the right boundary
of α matches the left boundary of β we may form a cell α|β – their horizontal
composite – and similarly if the bottom boundary of α matches the top boundary
of β we may form α

β – their vertical composite – with the boundaries of the
composite cell formed from those of the component cells using ⊗. We depict
horizontal and vertical composition, respectively, as in:
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and

Horizontal and vertical composition of cells are required to be associative and
unital. We omit wires of sort I in our depictions of cells, allowing us to draw
horizontal and vertical identity cells, respectively, as in:

and

Finally, the horizontal and vertical identity cells of type I must coincide – we
write this cell as �I and depict it as empty space, see below on the left – and
vertical and horizontal composition must satisfy the interchange law. That is,
α
β |γ

δ = α|γ
β|δ , allowing us to unambiguously interpret the diagram below on the

right:

Every single object double category D defines strict monoidal categories VD
and HD, consisting of the cells for which the DH and DV valued boundaries
respectively are all I, as in:

and

That is, the collection of objects of VD is DH , composition in VD is vertical
composition of cells, and the tensor product in VD is given by horizontal com-
position:
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In this way, VD forms a strict monoidal category, which we call the category
of vertical cells of D. Similarly, HD is also a strict monoidal category (with
collection of objects DV ) which we call the horizontal cells of D.

4 Cornerings and Crossings

Next, we define cornerings, our primary technical device. In particular we discuss
the free cornering of a resource theory, which we show contains special crossing
cells with nice formal properties. Tersely, a cornering of a resource theory A is a
single object proarrow equipment with A as its vertical cells. Explicitly:

Definition 1. Let A be a symmetric strict monoidal category. Then a cornering
of A is a single object double category D such that:

(i) The vertical cells of D are A. That is, there is an isomorphism of categories
VD ∼= A.

(ii) For each A in A0
∼= DH , there are distinguished elements A◦ and A• of DV

along with distinguished cells of D

called ◦-corners and •-corners respectively, which must satisfy the yanking
equations:

Intuitively, A◦ denotes an instance of A moving from left to right, and A• denotes
an instance of A moving from right to left (see Sect. 5).

Of particular interest is the free cornering of a resource theory:

Definition 2. Let A be a resource theory. Then the free cornering of A, written
�
�A�

�, is the free single object double category defined as follows:

– The horizontal edge monoid �
�A�

�H = (A0,⊗, I) is given by the objects of A.
– The vertical edge monoid �

�A�
�V = (A0 × {◦, •})∗ is the free monoid on the set

A0 × {◦, •} of polarized objects of A – whose elements we write A◦ and A•.
– The generating cells consist of corners for each object A of A as above, subject

to the yanking equations, along with a vertical cell �
�f

�
� for each morphism

f : A → B of A subject to equations as in:
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For a precise development of free double categories see [7]. In brief: cells are
formed from the generating cells by horizontal and vertical composition, subject
to the axioms of a double category in addition to any generating equations. The
free cornering is free both in the sense that it is freely generated, and in the
sense that for any cornering D of A there is exactly one double functor �

�A�
� → D

that sends corner cells to corner cells and restricts to the identity on A ∼= VD.
That is, diagrams in �

�A�
� have a canonical interpretation in any cornering of A.

Proposition 1. �
�A�

� is a cornering of A.

Proof. Intuitively V �
�A�

� ∼= A because in a composite vertical cell every wire
bent by a corner must eventually be un-bent by the matching corner, which by
yanking is the identity. The only other generators are the cells �

�f
�
�, and so any

vertical cell in �
�A

�
� can be written as �

�g
�
� for some morphism g of A. A more

rigorous treatment of corner cells can be found in [11], to the same effect.

��
Before we properly explain our interest in �

�A�
� we develop a convenient bit of

structure: crossing cells. For each B of �
�A�

�H and each X of �
�A�

�V we define a cell

of �
�A�

� inductively as follows: In the case where X is A◦ or A•, respectively, define
the crossing cell as in the diagrams below on the left and right, respectively:

in the case where X is I, define the crossing cell as in the diagram below on the
left, and in the composite case define the crossing cell as in the diagram below
on the right:

We prove a technical lemma:

Lemma 1. For any cell α of �
�A�

� we have
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Proof. By structural induction on cells of �
�A�

�. For the ◦-corners we have:

and for the •-corners, similarly:

the final base cases are the �
�f

�
� maps:

There are two inductive cases. For vertical composition, we have:

Horizontal composition is similarly straightforward, and the claim follows by
induction. ��

From this we obtain a “non-interaction” property of our crossing cells, similar
to the naturality of braiding in symmetric monoidal categories:

Corollary 1. For cells α of V �
�A�

� and β of H �
�A�

�, the following equation holds
in �

�A�
�:

These crossing cells greatly aid in the legibility of diagrams corresponding
to cells in �

�A�
�, but also tell us something about the categorical structure of �

�A�
�,

namely that it is a monoidal double category in the sense of [21]:

Lemma 2. If A is a symmetric strict monoidal category then �
�A�

� is a monoidal
double category. That is, �

�A�
� is a pseudo-monoid object in the strict 2-category

VDblCat of double categories, lax double functors, and vertical transformations.
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Proof. We give the action of the tensor product on cells:

This defines a pseudofunctor, with the component of the required vertical trans-
formation given by exchanging the two middle wires as in:

Notice that ⊗ is strictly associative and unital, in spite of being only pseudo-
functorial.

��

5 Concurrency Through Cornering

We next proceed to extend the resource-theoretic interpretation of some symmet-
ric strict monoidal category A to its free cornering �

�A�
�. Interpret elements of �

�A�
�V

as A-valued exchanges. Each exchange X1 ⊗ · · · ⊗ Xn involves a left participant
and a right participant giving each other resources in sequence, with A◦ indi-
cating that the left participant should give the right participant an instance of
A, and A• indicating the opposite. For example say the left participant is Alice
and the right participant is Bob. Then we can picture the exchange A◦ ⊗B• ⊗C•

as:

Think of these exchanges as happening in order. For example the exchange
pictured above demands that first Alice gives Bob an instance of A, then Bob

gives Alice an instance of B, and then finally Bob gives Alice an instance of C.
We interpret cells of �

�A�
� as concurrent transformations. Each cell describes a

way to transform the collection of resources given by the top boundary into that
given by the bottom boundary, via participating in A-valued exchanges along
the left and right boundaries. For example, consider the following cells of �

�B
�
�:
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From left to right, these describe: A procedure for transforming water into noth-
ing by mixing it with flour obtained by exchange along the right boundary,
then sending the resulting dough away along the right boundary; A procedure
for transforming an oven into an oven, receiving flour along the right bound-
ary and sending it out the left boundary, then receiving dough along the left
boundary, which is baked in the oven, with the resulting bread sent out along
the right boundary; Finally, a procedure for turning flour into bread by giving
it away and then receiving bread along the left boundary. When we compose
these concurrent transformations horizontally in the evident way, they give a
transformation of resources in the usual sense, i.e., a morphism of A ∼= V �

�A�
�:

We understand equality of cells in �
�A�

� much as we understand equality of
morphisms in a resource theory: two cells should be equal in case the trans-
formations they describe would have the same effect on the resources involved.
In this way, cells of �

�A�
� allow us to break a transformation into many concur-

rent parts. Note that with the crossing cells, it is possible to exchange resources
“across” cells.

Consider the category H �
�A�

� of horizontal cells. If the vertical cells V �
�A�

� are
concerned entirely with the transformation of resources, then our interpretation
tells us that the horizontal cells are concerned entirely with exchange. Just as
isomorphic objects in V �

�A�
� ∼= A can be thought of as equivalent collections of

resources – being freely transformable into each other – we understand isomor-
phic objects in H �

�A�
� as equivalent exchanges. For example, There are many ways

for Alice to give Bob an A and a B: Simultaneously, as A ⊗ B; one after the
other, as A and then B; or in the other order, as B and then A. While these are
different sequences of events, they achieve the same thing, and are thus equiv-
alent. Similarly, for Alice to give Bob an instance of I is equivalent to nobody
doing anything. Formally, we have:

Lemma 3. In H �
�A�

� we have for any A,B of A:

(i) I◦ ∼= I ∼= I•.
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(ii) A◦ ⊗ B◦ ∼= B◦ ⊗ A◦ and A• ⊗ B• ∼= B• ⊗ A•.
(iii) (A ⊗ B)◦ ∼= A◦ ⊗ B◦ and (A ⊗ B)• ∼= A• ⊗ B•

Proof. (i) For I ∼= I◦, consider the ◦-corners corresponding to I:

we know that these satisfy the yanking equations:

which exhibits an isomorphism I ∼= I◦. Similarly, I ∼= I•. Thus, we see
formally that exchanging nothing is the same as doing nothing.

(ii) The ◦-corner case is the interesting one: Define the components of our iso-
morphism to be:

and

then for both of the required composites we have:

and so A◦ ⊗ B◦ ∼= B◦ ⊗ A◦. Similarly A• ⊗ B• ∼= B• ⊗ A•. This captures
formally the fact that if Alice is going to give Bob an A and a B, it doesn’t
really matter which order she does it in.

(iii) Here it is convenient to switch between depicting a single wire of sort A⊗B
and two wires of sort A and B respectively in our string diagrams. To this
end, we allow ourselves to depict the identity on A ⊗ B in multiple ways,
using the notation of [3]:

Then the components of our isomorphism (A ⊗ B)◦ ∼= A◦ ⊗ B◦ are:

and
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and, much as in (ii), it is easy to see that the two possible composites are
both identity maps. Similarly, (A⊗B)• ∼= (A•⊗B•). This captures formally
the fact that giving away a collection is the same thing as giving away its
components.

��
For example, we should be able to compose the cells on the left and right

below horizontally, since their right and left boundaries, respectively, indicate
equivalent exchanges:

Our lemma tells us that there will always be a canonical isomorphism, as above
in the middle, making composition possible.

It is worth noting that we do not have A◦ ⊗ B• ∼= B• ⊗ A◦:

Observation 1. There is a morphism d◦
• : A◦ ⊗B• → B• ⊗A◦ in one direction,

defined by

but there is need not be a morphism in the other direction, and this is not in
general invertible. In particular, H �

�A�
� is monoidal, but need not be symmetric.

This observation reflects formally the intuition that if I receive some resources
before I am required to send any, then I can send some of the resources that I
receive. However, if I must send the resources first, this is not the case. In this
way, H �

�A�
� contains a sort of causal structure.

6 Conclusions and Future Work

We have shown how to decompose the material history of a process into con-
current components by working in the free cornering of an appropriate resource
theory. We have explored the structure of the free cornering in light of this inter-
pretation and found that it is consistent with our intuition about how this sort
of thing ought to work. We do not claim to have solved all problems in the
modelling of concurrency, but we feel that our formalism captures the material
aspect of concurrent systems very well.

We find it quite surprising that the structure required to model concurrent
resource transformations is precisely the structure of a proarrow equipment. This
structure is already known to be important in formal category theory, and we
are appropriately intrigued by its apparent relevance to models of concurrency
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– a far more concrete setting than the usual context in which one encounters
proarrow equipments!

There are of course many directions for future work. For one, our work is
inspired by the message passing logic of [2], which has its categorical semantics
in linear actegories. Any cornering defines an category – although not quite a
linear actegory – and we speculate that cornerings are equivalent to some class of
actegories, which would connect our work to the literature on behavioural types.
Another direction for future work is to connect our material histories to a theory
of concurrent processes – the slugs to our slime – with the goal of a formalism
accounting for both. The category of spans of reflexive graphs, interpreted as
open transition systems, seems especially promising here [13]. More generally,
we would like to know how the perspective presented here can be integrated into
other approaches to modelling concurrent systems.
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Situated Transition Systems
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Tallinn University of Technology, Tallinn, Estonia

We construct a monoidal category of open transition systems that generate material history as transi-
tions unfold, which we call situated transition systems. The material history generated by a composite
system is composed of the material history generated by each component. The construction is pa-
rameterized by a symmetric strict monoidal category, understood as a resource theory, from which
material histories are drawn. We pay special attention to the case in which this category is com-
pact closed. In particular, if we begin with a compact closed category of integers then the resulting
situated transition systems can be understood as systems of double-entry bookkeeping accounts.

1 Introduction

Graphs have been used to model the states and state changes (transitions) of systems for hundreds of
years [7]. Today, graphs can be found everywhere in the scientific literature, and entire fields of study
are concerned with specific kinds of graph models. In common practice, to model something as a graph
is to treat is as a closed system — that is, the surrounding context is ignored by the model. The closed
nature of these models is a failure of compositionality: it prevents us from explaining large systems as
the combination of smaller components. This sort of compositionality is all but required if our modelling
techniques are to apply to the complex systems we encounter in the world.

A promising compositional approach is the algebra of transition systems with boundary given by the
category Span(RGraph) of spans of reflexive graphs [14]. In this formalism, each transition manifests
as an event at the boundaries of a system, and composing systems along a common boundary constrains
their behaviour to be consistent with the events observed there. This allows us to consider graph models
of open systems, and to use these as components in the construction of a larger whole. For example, the
authors of [9] have constructed a simplified model of the heart system in the Span(RGraph) setting.

In an unpublished and — it seems — largely unknown paper [15], the category Span(RGraph) is
modified to give a category of systems of partita-doppia (double-entry bookkeeping) accounts. These
systems have an account balance, which may change as the result of vaule entering or leaving the system
during a transition. The resulting category Accounts allows us to model a system of partita-doppia
accounts in context, as one part of a notional system of all accounts. This is more exciting than may be
immediately apparent. From [15]:

”The aim of accounting is the measurement of a distributed concurrent system, and it is
our contention that it is one of the earliest and most successful mathematical theories of
concurrency.”

The present work arose from a desire to generalize the category Accounts. In a sense, models in
Span(RGraph) (indeed, graph models more generally) are detached from any sort of material reality.
The states and state transitions are specified, but the material effect of a given sequence of transitions is
left informal, specified as vague intuition. In the category of Accounts, transitions come equipped with a

*This research was supported by the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).
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material effect on the partita-doppia ledger associated with that system. The abstract, conceptual world
of graphs is thus situated in the world of accouting.

Our point of departure is to replace the theory of partita-doppia ledgers with an arbitrary resource
theory (symmetric strict monoidal category) in the sense of [3]. Augmenting our resource theories with
corners [19] allows us to assign material history to a transition in a compositional way: material history
generated by a composite transition system is the composite of material history generated by its compo-
nents. We call the resulting notion a situated transition system, and we show that for any resource theory
A the A-situated transition systems form a monoidal category.

We show that our formalism specializes to capture its inspiration: if we begin with a compact closed
category Z of integers, the category of Z-situated transition systems is a category of systems of partita
doppia accounts in the sense of [15]. Further, we show that for any compact closed category A, the
catgory of A-situated transition systems is also compact closed. This generalizes the main theorem of
[15], which is that Accounts is a compact closed category.

1.1 Contributions and Related Work

Related Work. We credit the resource-theoretic interpretation of monoidal categories and their string
diagrams to [3]. String diagrams for monoidal categories are dealt with rigorously in [12]. The use of
“corners” in single-object double categories to allow the concurrent decomposition of resource transfor-
mations is due to [19]. Double categories first appear in [5]. Free double categories are considered in
[4] and again in [8]. The corner structure we use is in fact the structure of a proarrow equipment. The
idea of a proarrow equipment first appears in [22], albeit in a rather different form. Proarrow equipments
have subsequently appeared under many names in formal category theory [20, 10]. String diagrams for
double categories and proarrow equipments are treated precisely in [17]. The original work on the cat-
egory of spans of reflexive graphs as a setting for modelling concurrent systems is [14]. Our work is
directly inspired by earlier efforts to eqiup such models with accounting information [15]. An excellent
mathematical exposition of double-entry bookkeeping is [6]. Compact closed categories were introduced
in [13], along with the compact closed category Z of integers. More on compact closed categories, and
specifically on compact closed categories of integers, can be found in [1].

Contributions. The main contribution of this paper is the notion of situated transition system, accom-
panied by the construction of the monoidal category S(A) of situated transition systems over an arbitrary
monoidal category A (Propositions 1, 2). Other contributions are our investigation into the effect of com-
pact closed structure in A on S(A) (Lemmas 1, 2, 3), and the observation that S(Z) captures the systems
of partita-doppia accounts of [15] (Corollary 1). To our knowledge the compact closed perspective on
double-entry bookkeeping is also novel, and so may be viewed as a modest contribution.

2 Preliminaries

2.1 Monoidal Categories as Resource Theories

Symmetric strict monoidal categories can be understood as theories of resource transformation [3]. Ob-
jects are interpreted as collections of resources, with A⊗B the collection consisting of both A and B,
and I the empty collection. Arrows f : A→ B are understood as ways to transform the resources of A
into those of B, or equivalently as parts of a larger material history involving those resources. We call
symmetric strict monoidal categories resource theories when we have this sort of interpretation in mind.
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For example, let B be the free symmetric strict monoidal category generated by:

{bread,dough,flour,oven}

knead : flour→ dough bake : dough⊗oven→ bread⊗oven eat : bread→ I

subject to no equations. B can be understood as a resource theory of bread. The arrow knead represents
the process of making dough from flour, bake represents baking dough in an oven to obtain bread (and
an oven), and eat represents the consumption of bread.

The structure of symmetric strict monoidal categories provides natural algebraic scaffolding for com-
posite transformations, with the associated string diagrams acting as a convenient syntax for expressing
material histories. For example in the following string diagram over B we see two units of dough made
into loaves of bread by baking one after the other in an oven.

Notice how the topology of the diagram captures the logical flow of resources.
Given a parallel pair f ,g : A→ B of material histories in some resource theory A, we understand

equality of f and g to mean that both have the same effect on the resources involved. For example,
suppose we add a generating morphism sift : flour → flour to our resource theory B, subject to the
equation sift◦sift = sift. Call the resulting resource theory Bsift. In this new theory the material histories
sift and sift ◦ sift express different sequences of events, with the flour being sifted once in the former,
but twice in the latter. They are made equal by our new equation, which means that in Bsift, sifting
flour twice has the same effect as sifting it once. Contrast this to 1flour and sift : flour→ flour. Identity
morphisms have no effect on the resources involved, so intuitively these two material histories should
not denote equal morphisms of Bsift, and indeed they do not. We adopt this understanding of equality as
a general principle in our design and understanding of resource theories.

2.2 Cornering and Concurrent Transformations

The resource theoretic interpretation of symmetric strict monoidal categories can be extended to allow
the decomposition of material histories into their concurrent components [19]. Specifically, we augment
the string diagrams for a given resource theory A with corners for each object A of A:

Corners allow us to express resources flowing into and out of a system. A◦ denotes an instance of A
flowing from left to right, and A• denotes an instance of A flowing from right to left. Our corners must
satisfy the yanking identities, which ensure that this movement has no effect on the resources themselves:
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For example, adding corners to our resource theory B allows the following decomposition of the baking
process. The transformation below on the left begins with no resources, then flour enters along the right
boundary and is kneaded into dough, which leaves along the right boundary. The transformation below
in the middle begins with an oven, then flour passes through from right to left, dough is received along
the left boundary and is baked, and the resulting bread leaves along the right boundary, with the oven
staying put. Finally, the transformation below on the right begins with flour, which leaves the system
along the left boundary, after which bread enters from the left, and is eaten.

These transformations may be composed horizontally to obtain a single transformation of resources:

Formally, these augmented string diagrams denote cells of a single-object double category pxAqy which
we call the free cornering of A. This double category has one object, so in particular the horizontal
and vertical edge categories are necessarily monoids (single-object categories). The horizontal edge
monoid (A0,⊗, I) is given by the monoidal structure on the objects of A. The vertical edge monoid
A◦• = (A0×{◦,•})∗ is the free monoid of polarized objects of A, written as in A◦ and A•. Elements of
A◦• are sequences of polarized objects of A, which we understand as A-valued exchanges. The monoid
operation is given by concatenation (denoted by ⊗) and the empty sequence (denoted by I) is the unit
of the monoid. Each exchange X1⊗ ·· · ⊗Xn ∈ A◦• involves a left participant and a right participant
giving each other resources in sequence, with A◦ indicating that the left participant should give the right
participant an instance of A, and A• indicating that the right participant should give the left participant an
instance of A. For example if Alice is the left participant and Bob is the right participant, then we can
picture the exchange A◦⊗B•⊗C• ∈ A◦• as

Alice  Bob

These exchanges happen in order. The exchange pictured above demands that first Alice gives Bob an
instance of A, then Bob gives Alice an instance of B, and then finally Bob gives Alice an instance of C.

The generating cells of pxAqy are the corners discussed above, subject to the yanking equations, together
with cells px f

q
y for each arrow f : A→ B of A, subject to the following equations:
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Now p
xAqy is the free double category generated by this data, with arbitrary cells of pxAqy being obtained by

vertical and horizontal composition of the generators, subject to the equations of a double category (see
[8, 4] for more on free double categories).

The double category pxAqy is more thoroughly investigated in [19]. For our purposes we need only
mention that pxAqy always contains crossing cells, pictured below on the left for an arbitrary B ∈ A0 and
X ∈ A◦•. These crossing cells make pxAqy into a monoidal double category in the sense of [21], with the
tensor product of cells given given below on the right.

This is all the resource-theoretic machinery we will need to give a compositional account of the
material histories generated by our transition systems. We turn now to the transition systems themselves.

2.3 The Algebra of Transition Systems with Boundary

For our purposes a transition system R consists of a collection of states, R0, and a collection of transitions
t : A→ B ∈ R1 where A,B ∈ R0. We ask further that for each A ∈ R0 there is a trivial transition εA : A→
A ∈ R1. In other words, a transition system is precisely a reflexive graph (states are vertices, transitions
are edges). A morphism F : R→ S of transition systems is a morphism of reflexive graphs: It consists
of a mapping of vertices F0 : R0→ S0 together with a mapping of edges F1 : R1→ S1 and must preserve
the source and target of edges in the sense that if t : A→ B then F1(t) : F0(A)→ F0(B). Further, it
must preserve the trivial edges in the sense that F1(εA) = εF0(A). Reflexive graphs and reflexive graph
morphisms form a cartesian category RGraph, which will play a supporting role in our development.

The algebra of transition systems with boundary is captured by the category Span(RGraph) of spans
in RGraph [14]. If U and V are reflexive graphs, then a morphism R : U →V of Span(RGraph) consists
of another reflexive graph R (the apex) with morphisms δ0 : R→U and δ1 : R→V of RGraph (the legs).
We understand this as a transition system R with boundaries U and V . Every transition t : A→ B of R
corresponds to an event at each boundary — δ0(t) at U and δ1(t) at V . Span composition is given by
pullback: If R : U →V and S : V →W in Span(RGraph), a transition of S◦R : U →W consists of a pair
of transitions (t, t ′) ∈ R1×S1 which correspond to the same event δ1(t) = δ0(t ′) at the shared boundary
V . In the composite each of the components constrains the behaviour of the other. We consider spans
modulo the equivalence relation generated by span isomorphism.

For example, let M be the reflexive graph with a single vertex and two nontrivial edges up and down,
pictured below on the left. The diagram below on the right indicates a morphism Gear : M → M of
Span(RGraph). The apex has a single vertex and two nontrivial edges cw and ccw, and the legs of the
span are indicated by the colouring. The idea is that our gear can rotate clockwise (cw), in which case the
teeth along the left and right boundary move up and down respectively, or may rotate counterclockwise
(ccw), with the boundary teeth moving in the opposite directions. We omit the trivial edges from our
diagrams but nonetheless consider them to be present, so our gear system can also do nothing via ε .

M = Gear : M→M =

Now the composite system Gear ◦Gear represents two interlocking gears. The teeth interlock at the
shared boundary, where they must move in unison. Our notion of composition captures this formally: the
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apex of our composite span has a single vertex and two nontrivial edges, one in which the gear on the left
rotates clockwise and the gear on the right rotates counterclockwise, and one representing the opposite
situation. The case where both gears rotate in the same direction is not present as it would be inconsistent
along the shared boundary. In fact Gear ◦Gear = 1M, reflecting a similar property of physical gears.

Gear ◦Gear : M→M =

Span(RGraph) is a symmetric monoidal category. The tensor product is defined on objects by U ⊗
V = U ×V , and the unit 1 is the graph with a single vertex and no nontrivial edges. On arrows R :
U → V and S : U ′→ V ′ the tensor product R⊗ S : U ⊗U ′→ V ⊗V ′ has apex R× S with left and right
leg given by the product of the left and right legs of R and S, respectively. A transition in the tensor
product of two systems is simply a transition from each component. Intuitively, the components function
independently of each other. Further, notice that the component systems may function asynchronously
via the ε transitions: If t ∈ R1 and t ′ ∈ S1 then (t, t ′),(t,ε),(ε, t ′), and (ε,ε) are all transitions of R⊗S.

There is also a lot of other structure in Span(RGraph). Relevant to our purposes here is the fact that
Span(RGraph) is compact closed. The dual of X is given by X itself, and the unit and counit are defined
in terms of the finite product structure on RGraph: ηX : 1→ X⊗X is given by the span with apex X , left
leg !X : X → 1, and right leg ∆X : X → X×X , with εX : X⊗X → 1 constructed similarly.

We conclude our discussion of Span(RGraph) with a bread-themed example. Define objects U,V of
Span(RGraph) as follows — again omitting the trivial edges from our diagrams:

U = V =

We understand the event x∈U1 to indicate that the system on the right is obtaining ingredients for baking
from the system on the left, and the y ∈ V1 indicates that the system on the left is selling bread to the
system on the right.

Let Baker be the morphism of Span(RGraph) pictured below on the left. The apex has two vertices,
one in which the system is open for business, and another in which it is closed. There are edges allowing
the system to transition from being open to being closed, and vice versa. When it is open, the system may
bake and sell bread. The legs of the span are indicated by the colouring: The bake transition corresponds
to the event x at the left boundary, and the transition sell corresponds to the event y at the right boundary.
An absence of colour indicates the trivial event ε , so for example the transition open corresponds to the
trivial event at both boundaries, and bake corresponds to the trivial event at the right boundary.

Baker : U →V = Eater : V → 1 =

Let Eater be the morphism of Span(RGraph) pictured above on the right. The apex has two vertices, one
in which the system is hungry, and another in which it is full. If hungry, the system may eat to become
full, and if full may digest to become hungry. Finally, when it is hungry the system may buy food. The
legs are again indicated by the colouring, with the right leg omitted entirely since in this case there is
nothing to indicate. The transition buy corresponds to event y at the left boundary, and that is all.
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Now, composing our two systems along their shared boundary V yields:

Eater ◦Baker : U → 1 =

The unlabelled transitions arise from combinations of open, close, eat, and digest — those transitions
corresponding to the trivial event at the boundaries. The bake transitions are those in which the Baker
system bakes, and the trade transition corresponds to the Baker subsystem selling bread and the Eater
subsystem buying it — activities which must be synchronised in the composite system. The legs of the
span are indicated by the colouring, and we see that every bake transition involves the event x along
the left boundary. The transition trade is coloured yellow to draw attention to the fact that it is the
coincidence of the two yellow transitions in the component systems, and it has trivial boundary events.

3 Situated Transition Systems

Given a resource theory A, in this section we show how transition systems with boundary can be equipped
to generate A-valued material histories as transitions occur. The double category pxAqy of concurrent
transformations plays an essential role, allowing us to combine the histories generated by component
spans into the history generated by their composite through horizontal composition in pxAqy.

We begin by situating the boundaries of our transition systems. In Span(RGraph) the possible events
(edges) along a boundary (reflexive graph) serve to synchronise and constrain the behaviour of the larger
system. From the material point of view, the relevant part of a boundary event is whether or not any
resources leave or enter the system, and if so which ones. This information is captured by the monoid
A◦• of A-valued exchanges, which is equivalently a reflexive graph with a single vertex where the unit I
of the monoid is the trivial edge.

Definition 1. Let A be a resource theory. Then an A-situated boundary (U,φU) consists of a reflexive
graph U together with a reflexive graph homomorphism φU : U → A◦•. Call φU the situation of U in A.

We understand φU(x) to describe the resources that cross the boundary as part of the event x, and
thus constitute its material effect. We will depict A-situated boundaries as graphs with edge labels drawn
from A◦•, defining the situation of the boundary in A. Since A◦• has only one vertex, we do not need
to label the vertices. Edges with no label are understood as having label I, and we continue to omit the
trivial edges from our depictions. For X ∈ A◦• we adopt the convention of writing X for the A-situated
boundary with a single vertex and a single nontrivial edge, which is mapped to X by the situation. For
example the B-situated boundary flour◦ is depicted below on the left. The boundary with two vertices
and two nontrivial edges — one from each vertex to the other — which are both mapped to I by the
situation is depicted below on the right.

Now to situate entire transition systems we associate each transition with a cell of pxAqy describing the
corresponding material effect. The left and right boundaries of this cell must match the labels in A◦• of
the left and right boundary events, respectively, so that any material exchanges entailed by those events
are present in the material history of the transition. In order to make this precise we view p

xAqy as a span
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of reflexive graphs. Specifically, define 〈A〉 to be the reflexive graph with vertex set A0 in which an edge
α : A→ B is a cell α of pxAqy with top boundary A and bottom boundary B. Then there is a span

A◦• 〈A〉 A◦•δ1δ0

where δ0(α) and δ1(α) are the left and right boundary of α , respectively. The trivial edges of 〈A〉 are
given by the vertical identity cells. Situated transition systems are now defined as follows.

Definition 2. Let A be a resource theory, and let (U,φU) and (V,φV ) be A-situated boundaries. Then
an A-situated transition system (R,φR) : (U,φU) → (V,φV ) consists of a morphism U ← R → V of
Span(RGraph) together with a reflexive graph homomorphism φR : R→ 〈A〉 that we call the situation of
R in A. We require φR to be coherent with respect to φU and φV in the sense that the following diagram
of reflexive graph homomorphisms commutes:

U R V

A◦• 〈A〉 A◦•
φU φR φV

δ0 δ1

We understand φR as assigning a collection of resources to each state of R, and assigning to each
transition of R a concurrent transformation of resources whose left and right boundary coincide with the
material effect of the left and right boundary events. We depict situated transition systems by giving the
underlying span of reflexive graphs as before, with the legs indicated by the colouring. We indicate the
action of φR by labelling the vertices (resp. edges) of the apex with the object of A (resp. cell of pxAqy) that
φR maps them to. For example we can refine our earlier bread-themed example to be B-situated, with
the new Baker system given by:

Baker : flour◦→ bread◦ =

where the edge labels are the following cells of pxB
q
y:

baken = selln = closen = openn =

The left boundary is given by the graph with a single vertex and one nontrivial edge, which is mapped to
flour◦ by the situation, indicating that flour enters the system as part of that event. The right boundary is
similar, with the single nontrivial edge mapped to bread◦ by the situation, indicating that bread leaves the
system. The apex has two vertices for each n ∈N which indicate whether the system is open for business
or not, and that it currently has n units of bread in stock. The two states in which the sytem has n units
of bread are mapped to oven⊗breadn by the situation. The edges are similarly indexed: the system may
open and close while retaining its stores of bread via openn and closen. When open the system may bake
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bread via baken, in which case we see that flour enters the system from the left, and may also sell any
bread it has via selln, in which case bread leaves from the right.

We continue by defining a B-situated Eater as follows:

Eater : bread◦→ I =

where the edge labels are the following cells of pxB
q
y:

buyn = eatn = digestn =

There are two states for each n ∈ N in which the system is hungry, and one in which it is full. In the nth
iteration of each of these states, the system posesses n units of bread. If in a hungry state and posessing
at least one bread, the eatn transitions allow it to eat and enter a full state. From a full state the digestn
transitions allow the system to become hungry, leaving the amount of bread unchanged, and finally if
the system is hungry then the buyn transitions allow it to acquire more bread along the left boundary,
with the legs of the span indicating that when this happens bread must enter the system along the left
boundary.

To compose A-situated transition systems (R,φR) : (U,φU)→ (V,φV ) and (S,φS) : (V,φV )→ (W,φW )
we compose the underlying spans by pullback as in Span(RGraph), and define the composite situation
φS◦R : S ◦R→ 〈A〉 by horizontal composition: φS◦R(t, t ′) = φR(t) | φS(t ′). This is well-defined because
the situations are coherent. In particular this means that δ1 ◦φR = δ0 ◦φS, which says precisely that the
right boundary of φR(t) is the left boundary of φS(t ′) for edges (t, t ′) of S ◦R. Composition of situated
transition systems is associative because composition in Span(RGraph) and horizontal composition in
p
xAqy are both associative. Notice also that paths in a situated transition system have vertically composable
material effects, with the composite giving the effect of the entire sequence of transitions.

Continuing our example, we may compose our B-situated Eater and Baker transition systems to
obtain Eater ◦Baker : flour◦→ I. This transition system has four vertices for each pair n,m of natural
numbers, being those states in which the Baker has n bread and the Eater has m bread. The transitions
of this new system are mostly pairs of transitions of the components, the exception being that when the
Baker sells the Eater must buy due to the fact that these transitions are assigned to the same event along
the shared boundary bread◦. Now, suppose that in our composite system the Baker begins with one bread
and that the Eater begins with none. Suppose further that events unfold as follows: First, the Baker sells
its bread to the Eater, which promptly eats it. Then, the Baker bakes more bread, and finally sells the
new bread to the Eater. This sequence of transitions corresponds to the following material history: below
on the left we see the history generated by the Baker, below in the middle the history generated by the
Eater, and below on the right we see the composite history generated by the system as a whole.
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Situated transition systems are now easily seen to form a category. We record:

Proposition 1. Let A be a resource theory. Then there is a category S(A) of situated transition systems,
defined as follows:

objects are A-situated boundaries.

arrows are A-situated transition systems, modulo coherent isomorphism of the underlying spans. That
is, for two A-situated transition systems (R,φR),(S,φS) : (U,φU)→ (V,φV ), say that (R,φR) ∼ (S,φS)
in case there exists a reflexive graph isomorphism α : R ∼→ S such that

(i) α : R ∼→ S is an isomorphism of spans, in the sense that the following diagram commutes:

R

U S V

α

(ii) α : R ∼→ S preserves material histories, in the sense that there is a natural isomorphism ι : φR
∼→

φS ◦α (see Remark 1).

Now an arrow of S(A) is a ∼-equivalence class of situated transition systems.

the identity arrow on (U,φU) is given by the identity span U 1U←U 1U→U and the situation map φ1U :
U → 〈A〉 sends t : A→ B in U to the horizontal identity cell for φU(t).

composition is as discussed above.

Remark 1. In the definition of S(A), an equilvalence (R,φR) ∼ (S,φS) requires a natural isomorphism
ι : φR → φS ◦α , where φR and φS ◦α are reflexive graph homomorphisms of type R→ 〈A〉. Natural
transformations are defined between functors, so the reader would be justified in thinking that we have
made a fatal mistake! All is in fact well, as we explain presently.

There is a well-known adjunction F : RGraph a Cat : U with F(G) being the category of paths in
a reflexive graph G, and U(C) being the underlying graph of a category C. Given two reflexive graph
homomorphisms f ,g : G→U(C) define a natural transformation ι : f → g to consist of a morphism
ιA : f (A)→ g(A) of C for each vertex A of G such that for every edge t : A→ B of G, ιB ◦ f (t) = g(t)◦ ιA

in C. Thus, the definition of natural transformation applies unchanged to reflexive graph homomor-
phisms whose codomain happens to be a category. Further, applying F to this situation yields a natural
transformation in the usual sense. Now 〈A〉 is clearly the underlying graph of a category, so in particular
it makes sense to ask for a natural isomorphism ι : φR→ φS ◦α . Every isomorphism in 〈A〉 has trivial
left and right boundary. We therefore require an isomorphism ιA : φR(A)

∼→ φS(α(A)) in A ∼= V pxAqy for
each vertex A of R such that φR(t)ιB = ιAφS(α(t)) in pxAqy for each edge t : A→ B of R.

Intuitively, isomorphic objects of A denote the same collection of resources, only orgainzed dif-
ferently. Understood this way, our notion of equivalence (R,φR) ∼ (S,φS) identifies situated transition
systems that differ only in the internal organization of their resources. More concretely, asking for strict
equality φR = φS ◦α does not result in a monoidal category. We would like S(A) to be monoidal, and our
notion of equality is just flexible enough to make this the case.

Proposition 2. If A is a resource theory then S(A) is a monoidal category.
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4 Compact Closure and Accounting

In this section we consider the case in which our resource theory A is compact closed. From the per-
spective of accountancy, string diagrams over a resource theory are like ledgers, recording the material
history of the resources they concern [18]. In the partita-doppia (double-entry) method of accounting ev-
ery change to a ledger must consist of a matching credit (positive change) and debit (negative change), so
that the ledger remains balanced. This serves as a kind of integrity check: given a ledger we may attempt
to balance it by matching credits with debits and cancelling them out, and the ledger is well-formed in
case all entries may be cancelled in this way.

While the credits and debits of partita-doppia accounting are usually positive and negative integers,
the technique applies in the context of any compact closed resource theory. The units ηA : I → A⊗A∗

create matching credits and debits, and the cancellative process of balancing is performed via the counits
εA : A∗⊗A→ I. The traditional setting [6] is captured by the compact closed category Z whose objects
are the group of differences construction of the integers and in which there is a morphism between two
objects if and only if the corresponding integers are equal [13, 1].

The cells of pxAqy with I as their top and bottom boundary are called horizontal cells. The horizontal
cells of pxAqy form a monoidal category H pxAqy, with composition given by horizontal composition in pxAqy
and the tensor product given by vertical composition in pxAqy. Think of H pxAqy as a category of exchanges
— a point of view is developed in [19]. Isomorphic objects of H pxAqy correspond to equivalent exchanges
([19], Lemma 3). If A is compact closed we encounter a formal version of the fact that if Alice gives
Bob negative five dollars, this is equivalent to Bob giving Alice positive five dollars. More generally,
that to get rid of a debit is in many ways the same thing as receiving a credit, and vice-versa.

Lemma 1. If A is compact closed then A◦ ∼= (A∗)• and A• ∼= (A∗)◦ in H pxAqy.

There is a kind of causal structure present in H pxAqy. The corners allow us to bend wires down, but
not up, a formal reflection of the fact that I cannot give something away unless I have it. In particular
this means that S(A) need not be symmetric monoidal: For any A,B there is always a morphism of type
A◦⊗B•→ B•⊗A◦, pictured below on the left, but this is not always an isomorphism.

If our resource theory A is compact closed, then H pxAqy is symmetric monoidal, with the inverse to the
problematic morphism given above on the right. This is a formal reflection of the way that debits allow
us to violate causality in everyday life: by incurring a debit I may give something away before I have it.
For similar reasons, H pxAqy need not be rigid, but if A is compact closed then it is.

Lemma 2. If A is compact closed then so is H pxAqy.

In fact, if A is compact closed, then S(A) is as well. While we might expect S(A) to be compact
closed for every A — inheriting the compact closed structure of Span(RGraph) — the geometry of
H pxAqy prevents this. Both Span(RGraph) and H pxAqy occur as subcategories of S(A), and it seems that
structure must be present in both of them in order to manifest in S(A). It is interesting that for compact
closed resource theories the more flexible compact closed geometry is also present in the category of
situated transition systems. Perhaps the use of partita-doppia style debits and credits allows more flexible
“wiring” of real-world accounting systems than would otherwise be the case.
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Lemma 3. If A is compact closed, so is S(A).

Now, the category S(Z) of Z-situated transition systems describes systems of partita-doppia accounts
in the sense of [15]. The situation maps each state to an integer-valued account balance, and similarly
each transition corresponds to a cell of pxZqy with top and bottom boundary the balance of the source
and target states, respectively. This ensures that any change in the account balance is reflected by value
entering or leaving the system along the boundaries, and vice-versa. Since Z is compact closed, we
obtain an analogue of the main theorem of [15] as a special case of Lemma 3, as promised:

Corollary 1. S(Z) is compact closed.

5 Conclusions and Future Work

We have introduced the idea of situating a transition system with boundary in a resource theory and
constructed a monoidal category S(A) of such systems over an arbitrary resource theory A. Further, we
have shown that when A is compact closed, S(A) is also compact closed, generalizing existing work
concering systems of partita-doppia accounts [15]. We feel that this in a promising new direction in the
study of concurrent systems, and have many ideas for future work.

If A is a model of a functional programming language, then an object of S(A) can be understood
as a very general sort of behavioural type. There is an extensive literature on behavioural types, and we
speculate that situated transition systems would be a good way to place this work in the wider context of
entire systems. If A is a model of a ledger system in the sense of [18], then the material history generated
by an A-situated transition system can be seen as a sequence of ledger transactions. It seems that this
is relevant to the study of smart contracts, since the ability to transact on the blockchain as they execute
is one of their defining features. More ambitiously, we wish to construct compositional models of the
systems one encounters in molecular biology, and we imagine that situated transition systems over a
resource theory of biomolecules would be a good setting for this.

It is currently rather painful to specify a situated transition system, and it would be worthwhile to
investigate various kinds of syntax that can be given semantics in S(A). A promising approach is interpret
arrows of H pxAqy as a sort of resource transducer using ideas developed in [2] — we hope to elaborate on
this in a future paper. Finally, “spancospans” of reflexive graphs allow us to talk about transition systems
with boundary in which the shape of the boundary may change over time [16]. It should be possible to
formulate situated transition systems with this capabilty, presumably by working with the intercategory
of spancospans [11].

References
[1] S. Abramsky (2005): Abstract scalars, loops, and free traced and strongly compact closed categories.

In: International Conference on Algebra and Coalgebra in Computer Science, Springer, pp. 1–29,
doi:10.1007/11548133 1.
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Abstract. We consider an analogue of universal algebra in which gen-
erating symbols are interpreted as relations. We prove a variety theorem
for these relational algebraic theories, in which we find that their cate-
gories of models are precisely the definable categories. The syntax of our
relational algebraic theories is string-diagrammatic, and can be seen as
an extension of the usual term syntax for algebraic theories.

1 Introduction

Universal algebra is the study of what is common to algebraic structures, such
as groups and rings, by algebraic means. The central idea of universal algebra is
that of a theory, which is a syntactic description of some class of structures in
terms of generating symbols and equations involving them. A model of a theory
is then a set equipped with a function for each generating symbol in a way
that satisfies the equations. There is a further notion of model morphism, and
together the models and model morphisms of a given theory form a category.
These categories of models are called varieties. Much of classical algebra can be
understood as the study of specific varieties. For example, group theory is the
study of the variety of groups, which arises from the theory of groups in the
manner outlined above.

A given variety will in general arise as the models of more than one theory. A
natural question to ask, then, is when two theories present the same variety. To
obtain a satisfying answer to this question it is helpful to adopt a more abstract
perspective. Theories become categories with finite products, models become
functors, and model morphisms become natural transformations. Our reward
for this shift in perspective is the following answer to our question: two theories
present equivalent varieties in case they have equivalent idempotent splitting
completions. Thus, from a certain point of view universal algebra is the study
of categories with finite products.

This point of view has developed into categorical universal algebra. For any
sort of categorical structure we can treat categories with that structure as theo-
ries, functors that preserve it as models, and natural transformations thereof as
model morphisms. The aim is then to figure out what sort of categories arise as
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models and model morphisms of this kind – that is, to determine the appropriate
notion of variety. For example, if we take categories with finite limits to be our
theories, then varieties correspond to locally finitely presentable categories [2].

The familiar syntax of classical algebra – consisting of terms built out of vari-
ables by application of the generating symbols – is inextricably bound to finite
product structure. In leaving finite products behind for more richly-structured
settings, categorical universal algebra also leaves behind much of the syntactic
elegance of its classical counterpart. While methods of specifying various sorts
of theory (categories with structure) exist, these are often cumbersome, lacking
the intuitive flavour of classical universal algebra.

The present paper concerns an analogue of classical universal algebra in which
the generating symbols are understood as relations instead of functions. The role
of classical terms is instead played by string diagrams, and categories with finite
products become cartesian bicategories of relations in the sense of [10] – an idea
that first appears in [7]. This allows us to present relational algebraic theories in
terms of generators and equations, in the style of classical universal algebra. In
fact, this approach to syntax for relational theories extends the classical syntax
for algebraic theories, which admits a similar diagrammatic presentation.

Our development is best understood in the context of recent work on partial
algebraic theories [11], in which the string-diagrammatic syntax for algebraic
theories is modified to capture partial functions. This modification of the basic
syntax coincides with an increase in the expressive power of the framework, cor-
responding roughly to the equalizer completion of a category with finite prod-
ucts [8]. The move to relational algebraic theories involves a further modification
of the string-diagrammatic syntax, corresponding roughly to the regular com-
pletion of a category with finite limits [9]. Put another way, in [11] the (string-
diagrammatic) syntax for algebraic theories is extended to express a certain kind
of equality, and the resulting terms denote partial functions. In this paper, we
further extend the string-diagrammatic syntax to express existential quantifica-
tion, and the resulting terms denote relations.

Contributions. The central contribution of this paper is a variety theorem char-
acterizing the categories that arise as the models and model morphisms of some
relational algebraic theory (Theorem 48). Specifically, we will see that these
are precisely the definable categories of [19]. As a consequence we obtain that
two relational algebraic theories present the same definable category if and only
if splitting the partial equivalence relations in each yields equivalent categories
(Theorem 49). We illustrate the use of our framework with a number of examples,
including the theory of regular semigroups [16] and the theory of effectoids [24].
Lemma 10 is also novel, and we consider it to be a minor contribution

Related Work. The study of universal algebra began with the work of Birkhoff [6].
A few decades later, Lawvere introduced the categorical perspective in his doc-
toral thesis [22]. A modern account of universal algebra from the categorical
perspective is [3]. A highlight of this account is the variety theorem for algebraic
theories [1], which our variety theorem for relational algebraic theories is explic-
itly modelled on. An important result in categorical algebra is Gabriel-Ulmer
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duality [15], which tells us that if we consider categories with finite limits as our
notion of algebraic theory, then the corresponding notion of variety is that of a
locally finitely presentable category [2]. Our development relies on the related
notion of a definable category [19,20], which recently arose in the development
of an analogue of Gabriel-Ulmer duality for regular categories.

We use cartesian bicategories of relations [10] as our notion of relational alge-
braic theory. Our development relies on several results from the theory of alle-
gories [14], in which cartesian bicategories of relations coincide with the notion
of a unitary pre-tabular allegory. We also make use of the theory of regular and
exact completions [9]. Of course, all of this relies on the theory of regular and
exact categories [5]. The idea of using string diagrams as terms in more gen-
eral notions of algebraic theories is relatively recent, and relies on the work of
Fox [13]. The present paper can be considered a generalisation of recent work
on partial theories [11] to include relations. The idea to treat cartesian bicate-
gories of relations as theories with models in the category of sets and relations
originally appeared in [7], although no variety theorem is provided therein.

Organization and Prerequisites. In Sect. 2 we introduce categories of abstract
relations. In Sect. 3 we give the definition of a relational algebraic theory, and
provide a number of examples. Section 4 contains the proof of the variety theo-
rem. We assume familiarity with category theory, including regular categories [5],
string diagrams for monoidal categories [17] and their connection to algebraic
theories [3], and some 2-category theory [18]. We will behave as though all
monoidal categories are strict monoidal categories, justifying this behaviour in
the usual way by appealing to the coherence theorem for monoidal categories [21].

2 The Algebra of Relations

In the context of algebraic theories, finite product structure serves as an alge-
bra of functions. In this section, we consider an analogous algebra of relations.
There are two perspectives from which to consider this algebra of relations: As
internal relations in a regular category, or through cartesian bicategories of rela-
tions. The two perspectives are very closely related, and we require both: it is
through regular categories that our development connects to the wider litera-
ture on categorical algebra, but our syntax for relational theories will be the
string-diagrammatic syntax for cartesian bicategories of relations.

To begin, we recall the category Rel of sets and relations, which will serve as
the universe of models for relational theories in the same way that the category
Set of sets and functions is the universe of models for classical algebraic theories.

Definition 1. The category Rel has sets as objects, with arrows f : X → Y
given by binary relations f ⊆ X × Y . The composite of arrows f : X → Y ,
g : Y → Z is defined by fg = {(x, z) | ∃y ∈ Y.(x, y) ∈ f ∧ (y, z) ∈ g}, and the
identity relation on X is {(x, x) | x ∈ X}.
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2.1 Categories of Internal Relations

In any regular category we can construct an abstract analogue of Definition 1.
Instead of subsets R ⊆ A × B, we represent relations as subobjects R � A × B.
This approach to categorifying the theory of relations has a relatively long his-
tory [14], and integrates well with standard categorical logic due to the ubiquity
of regular categories there.

Definition 2. Let C be a regular category. The associated category of internal
relations, Rel(C), is defined as follows:

objects are objects of C
arrows r : A → B are jointly monic spans r = 〈f, g〉 : R � A × B modulo
equivalence as subobjects of A×B. That is, r : R � A×B and r′ : R′ � A×B
are equivalent (and thus define the same arrow of Rel(C)) in case there exists
an isomorphism α : R → R′ such that αr′ = r.
composition of two arrows r : A → B and s : B → C given respectively by
〈f, g〉 : R � A × B and 〈h, k〉 : S � B × C is defined by first constructing
the pullback of h along g, pictured below on the left. This defines an arrow
〈h′f, g′k〉 : R ×B S → A × C. The composite rs : A → C is defined to be
the monic part of the image factorization of this arrow, pictured below on the
right.

R ×B S S

R B

�
h′

g′

h

g

R ×B S A × C

RS

〈h′f,g′k〉

rs

identities 1A : A → A are are given by diagonal maps ΔA : A � A × A.

Example 3. Set is a regular category, and the category of internal relations in
Rel(Set) is precisely the usual category of sets and relations Rel.

2.2 Cartesian Bicategories of Relations

It is difficult to work with relations internal to a regular category directly. Rou-
tine calculations often involve complex interaction between pullbacks and image
factorizations, and this quickly becomes intractable. A much more tractable set-
ting for working with relations is provided by cartesian bicategories of relations,
which admit a convenient graphical syntax.

Cartesian bicategories of relations are defined in terms of commutative special
frobenius algebras, which provide the basic syntactic scaffolding of our approach:

Definition 4. Let X be a symmetric strict monoidal category. A commutative
special frobenius algebra in X is a 5-tuple (X, δX , μX , εX , ηX), as in

δX � μX � εX � ηX �

such that
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(i) (X, δX , εX) is a commutative comonoid:

(ii) (X,μX , ηX) is a commutative monoid:

(iii) μX and δX satisfy the special and frobenius equations:

An intermediate notion is that of a hypergraph category, in which objects
are coherently equipped with commutative special frobenius algebra structure:

Definition 5. A symmetric strict monoidal category X is called a hypergraph
category [12] in case:

(i) Each object X of X is equipped with a commutative special frobenius algebra.
(ii) The frobenius algebra structure is coherent, i. e., for all X,Y we have:

Now a cartesian bicategory of relations is a hypergraph category enjoying
certain additional structure:

Definition 6. A cartesian bicategory of relations [10] is a poset-enriched hyper-
graph category X such that:

(i) The comonoid structure is lax natural. That is, for all arrows f of X:

(ii) Each of the frobenius algebras satisfy:

Example 7. The category Rel is a cartesian bicategory of relations with

δX = {(x, (x, x)) | x ∈ X} μX = {((x, x), x) | x ∈ X}

εX = {(x, ∗) | x ∈ X} ηX = {(∗, x) | x ∈ X}
where ∗ is the unique element of the singleton set I = {∗}.
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Example 8. If C is a regular category then Rel(C) is a cartesian bicategory of
relations with X ⊗ Y = X × Y , I = 1, and

δX = 〈1X ,ΔX〉 : X � X × (X × X) μX = 〈ΔX , 1X〉 : X � (X × X) × X

εX = 〈1X , !X〉 : X � X × 1 ηX = 〈!X , 1X〉 : X � 1 × X

Where ΔX is the diagonal morphism and !X is the unique morphism into the
terminal object 1 of C.

Cartesian bicategories of relations admit meets of hom-sets:

Lemma 9 ([7]). Every cartesian bicategory of relations has meets of parallel
arrows, with f ∩ g for f, g : X → Y defined by

Further, the meet determines the poset-enrichment in that f ≤ g ⇔ f∩g = f .

We point out this allows for a much simpler presentation, as in:

Lemma 10. A hypergraph category X is a cartesian bicategory of relations if
and only if for each arrow f :

We will require a 2-category of cartesian bicategories of relations in our devel-
opment. Our notion of 1-cell is a structure-preserving functor as in:

Definition 11. A morphism of cartesian bicategories of relations F : X → Y is
a strict monoidal functor that preserves the frobenius algebra structure:

F (δX) = δFX F (μX) = μFX F (εX) = εFX F (ηX) = ηFX

and the correct sort of 2-cell turns out to be a lax natural transformation:

Definition 12. Let X, Y be cartesian bicategories of relations, and let F,G :
X → Y be morphisms thereof. Then a lax transformation α : F → G consists of
an X0-indexed family of arrows αX : F (X) → G(X) such that for each arrow
f : X → Y of X we have F (f)αY ≤ αXG(f) in Y.

Definition 13. Let RAT be the 2-category with cartesian bicategories of rela-
tions as 0-cells, their morphisms as 1-cells, and lax transformations as 2-cells.

An important class of arrows in a cartesian bicateory of relations are the
maps, which should be thought of as those relations that happen to be functions.
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Definition 14 (Maps). An arrow f : X → Y in a cartesian bicategory of
relations is called:

(i) simple in case the equation below on the left holds.
(ii) total in case the equation below on the right holds.

(iii) A map in case it is both simple and total.

The maps of a cartesian bicategory of relations always form a subcategory
Map(X). For example, Map(Rel) ∼= Set. More generally:

Theorem 15 ([14]). For C a regular category, there is an equivalence of cate-
gories C � Map(Rel(C)).

Remarkably, the components of lax transformations are always maps:

Lemma 16 ([7]). If X, Y are cartesian bicategories of relations, F,G : X →
Y are morphisms thereof and α : F → G is a lax transformation, then each
component αX : FX → GX of α is necessarily a map.

3 Relational Algebraic Theories

In this section we define relational algebraic theories along with the models and
model morphisms, and consider a number of examples.

Definition 17. [7] A relational algebraic theory is a cartesian bicategory of
relations. A model of a relational algebraic theory X is a morphism of cartesian
bicategories of relations F : X → Rel. A model morphism α : F → G is a lax
transformation.

It is convenient to present relational algebraic theories somewhat informally
in terms of string-diagrammatic generators and (in)equations between them,
with the structure of a cartesian bicategory of relations implicitly present. A
more formal account would proceed in terms of monoidal equational theories,
from which the cartesian bicategory of relations giving the associated relational
algebraic theory may be freely constructed [7].

Example 18 (Sets). The relational algebraic theory with no generators and no
equations has sets as models and functions as model morphisms (see Lemma 16),
and so the associated category of models is Set.

Example 19 (Posets). Consider the relational theory with a single generator
(below left) which is required to be reflexive, transitive, and antisymmetric:

The associated category of models is the category of posets and monotone maps.



A Variety Theorem for Relational Universal Algebra 369

Example 20 (Nonempty Sets). Consider the relational theory with no generating
symbols and a single equation:

Models of the associated relational algebraic theory are sets X such that the
generating equation is satisfied in Rel:

ηXεX = {(∗, ∗)} = �I

where ηX and εX are defined as in Definition 1. If we calculate the relational
composite, we find that:

ηXεX = {(∗, ∗) | ∃x ∈ X.(∗, x) ∈ ηX ∧ (x, ∗) ∈ εX} = {(∗, ∗) | ∃x ∈ X}

and so models are nonempty sets. The theory of nonempty sets contains no
generating morphisms, and so model morphisms are simply functions. Contrast
this to the category of pointed sets, in which morphisms must preserve the point.

Example 21 (Regular Semigroups). A semigroup is a set equipped with an asso-
ciative binary operation, denoted by juxtaposition. A semigroup S is regular [16]
in case

∀a ∈ S.∃x ∈ S.axa = a

The relational theory of semigroups has a single generating symbol (below left)
which is required to be simple, total, and associative:

To capture the regular semigroups we include the following equation:

The associated category of models is the category of regular semigroups and
semigroup homomorphisms.

Example 22 (Effectoids). An effectoid [24] is a set A equipped with a unary
relation �ε �→ ⊆ A, a binary relation � ⊆ A × A, and a ternary relation
; �→ ⊆ A × A × A satisfying:

(Identity) For all a, a′ ∈ A,

∃x ∈ A.(�ε �→ x) ∧ (x ; a �→ a′) ⇔ a � a′ ⇔ ∃y ∈ A.(�ε �→ y) ∧ (a ; y �→ a′)

(Associativity) For all a, b, c, d ∈ A,

∃x.(a ; b �→ x) ∧ (x ; c �→ d) ⇔ ∃y.(b ; c �→ y) ∧ (a ; y �→ d)
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(Reflexive Congruence 1) For all a ∈ A, a � a.
(Reflexive Congruence 2) For all a, a′ ∈ A, (�ε �→ a) ∧ (a � a′) ⇒ (�ε �→ a′)
(Reflexive Congruence 3) For all a, b, c ∈ A, ∃x.(a ; b �→ x) ∧ (x � c) ⇒ (a ;
b � c)

To obtain a relational theory of effectoids, we ask for three generating symbols
corresponding respectively to the unary, binary, and ternary relation:

Then the identity and associativity axioms become:

And the reflexive congruence axioms become:

The models of this relational theory are precisely the effectoids.

Example 23 (Generalized Separation Algebras). A generalized separation alge-
bra [4] is a partial monoid satisfying the left and right cancellativity axioms,
which further satisfies the conjugation axiom:

∀x, y.(∃z.x ◦ z = y) ⇔ (∃w.w ◦ x = y)

To capture generalized separation algebras as a relational algebraic theory, we
require two generating symbols in the generating monoidal equational theory,
corresponding to the monoid operation and the unit:

Both are required to be simple, and the unit is required to be total:

The associativity and unitality axioms become:
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Now, define upside-down versions of the generators as in:

Then left cancellativity, right cancellativity, and conjugation are, respec-
tively:

The corresponding category of models is the category of generalized separation
algebras and partial monoid homomorphisms.

Example 24 (Algebraic Theories). Let X be an algebraic theory, and let
(Xeq)reg/lex be the regular completion of X [8,9]. Rel((Xeq)reg/lex) is a relational
algebraic theory. Further, its models and model morphisms (as a relational alge-
braic theory) coincide with the models and model morphisms of X (as an alge-
braic theory). Conversely, if X is a relational algebraic theory, then the maps of
X form a subcategory Map(X). Map(X) has finite products, and so defines an
algebraic theory in the usual sense. Further, the notions of model and model mor-
phism for relational algebraic theories restrict to the usual notions for algebraic
theories on the category of maps.

Example 25 (Essentially Algebraic Theories). An essentially algebraic the-
ory [23] is (among many equivalent presentations) a category X with finite limits.
Models are the finite-limit preserving functors X → Set, and model morphisms
are natural transformations. For X an essentially algebraic theory let Xreg/lex be
the regular completion of X [9]. Then Rel(Xreg/lex) is a relational algebraic the-
ory. Further, its models and model morphisms (as a relational algebraic theory)
coincide with the models and model morphisms of X (as an essentially algebraic
theory). Conversely, if X is a relational algebraic theory then the simple maps of
X are a partial algebraic theory in the sense of [11] – which turn out to be equiva-
lent to essentially algebraic theories. The notions of model and model morphism
for relational theories restrict to the corresponding notions for partial theories.

4 The Variety Theorem

In this section we prove the variety theorem for relational algebraic theories.
We do this in phases: first we introduce some necessary terminology concerning
classes of idempotents, and recall some details of the idempotent splitting com-
pletion. Next, we make the relationship between bicategories of relations and reg-
ular categories precise. We then show how the situation extends to include exact
categories, this being necessary because exactness is the difference between regu-
lar categories and definable categories. Finally, we introduce definable categories,
which end up being the varieties of our relational theories. This is structured
so that the variety theorem follows immediately. We end by showing precisely
when two relational theories present the same definable category.
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4.1 Flavours of Idempotent Splitting

We begin by introducing some important kinds of arrow in a relational theory:

Definition 26. An arrow f : A → A of a relational algebraic theory is called
reflexive in case 1 ≤ f , coreflexive in case f ≤ 1, a partial equivalence relation
in case it is symmetric and transitive as in:

and is called an equivalence relation if it is reflexive, symmetric, and transi-
tive.

Notice in particular that every partial equivalence relation is idempotent, that
every coreflexive arrow is a partial equivalence relation, and that every equiv-
alence relation is a partial equivalence relation. We also recall the idempotent
splitting completion relative to a class of idempotents in a category:

Definition 27. Let X be a category, and let E be a collection of idempotents in
X. Define a category SplitE(X) in which objects are pairs (X, a) where X is a
object of X and a : X → X is in E, and arrows f : (X, a) → (Y, b) are arrows
f : X → Y of X such that afb = f . Composition is composition in X, and
identities are given by a = 1(X,a) : (X, a) → (X, a).

Every member of E splits in SplitE(X). It turns out that splitting partial equiv-
alence relations works well with cartesian bicategories of relations:

Proposition 28 ([14]). If X is a relational algebraic theory and E is a class of
partial equivalence relations in X, then SplitE(X) is a relational algebraic theory.

4.2 Tabulation and Regular Categories

We begin our exposition of the correspondence between regular categories and
relational algebraic theories by recalling the notion of tabulation [10]. Intuitively,
a tabulation of an arrow represents it as a subobject in the category of maps.

Definition 29. A tabulation of an arrow f : X → Y in a relational algebraic
theory X consists of a pair of maps (h, k) such that the equation below on the
left holds in X, and the map below on the right is monic in Map(X):

X is tabular in case every arrow of X admits a tabulation. Further, define RATtab

to be the full 2-subcategory of RAT (Definition 13) on the tabular 0-cells.

The category of maps of a tabular relational algebraic theory is regular, and
conversely the category of internal relations in a regular category is tabular:
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Proposition 30. Let REG be the 2-category of regular categories, regular func-
tors, and natural transformation. Then:

(i) If X is a tabular relational algebraic theory then Map(X) is regular. This
extends to a 2-functor Map : RATtab → REG.

(ii) If C is a regular category, then Rel(C) is tabular. This extends to a 2-functor
Rel : REG → RATtab.

Tabular relational theories and regular categories are thus interchangeable:1

Theorem 31. There is an equivalence of 2-categories Map : RATtab � REG :
Rel.

Finally, any relational theory can be made tabular by splitting the coreflex-
ives:

Proposition 32. Let X be a relational algebraic theory, and let cor be the col-
lection of coreflexives in X. Then X is tabular if and only if every member of cor
splits. In particular, Splitcor(X) is always tabular. This extends to a 2-adjunction
Splitcor : RAT � RATtab : U where U is the evident forgetful functor.

4.3 Effectivity and Exact Categories

We begin by recalling the closely related notions of effectivity and exactness:

Definition 33 ([14]). A relational algebraic theory X is effective in case all
partial equivalence relations in X split. Let RATeff be the full 2-subcategory of
RAT on the effective 0-cells.

Definition 34 ([9]). A regular category C is exact in case Rel(C) is effective.
Let EX be the full 2-subcategory of REG on the exact 0-cells.

It is straightforward to verify that Theorem 31 restricts to the effective case:

Proposition 35. If X is an effective relational algebraic theory, then Map(X)
is exact. Conversely, if C is an exact category, then Rel(C) is effective. This
extends to an equivalence of 2-categories Map : RATeff � EX : Rel.

Splitting equivalence relations makes tabular relational theories effective:

Proposition 36. Let X be a tabular relational algebraic theory, and let eq be
the collection of equivalence relations in X. Then Spliteq(X) is effective. This
extends to a 2-adjunction SpliteqRATtab � RATeff : U where U is the evident
forgetful functor.

We may therefore give the exact completion of a regular category as follows:

1 We note that we restrict our attention to the 0- and 1-cells then this is proven in [10].
Our contribution is to extend this to include 2-cells.
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Proposition 37 ([9,20]). If C is regular, define the exact completion of C by

Cex/reg = Map(Spliteq(Rel(X)))

Then Cex/reg is exact. This extends to a 2-adjunction ex/reg : REG � EX : U
where U is the evident forgetful functor.

We summarize the relationship of regularity and exactness to relational theories:

Corollary 38. The following diagram of left 2-adjoint commutes:

RATtab REG

RATeff EX

Map
∼

Spliteq ex/reg

Map

∼

where the arrows marked with ∼ are part of a 2-equivalence.

Similarly, splitting partial equivalence relations allows us to summarize the
role of the idempotent splitting completion:

Proposition 39. Write per to denote the collection of partial equivalence rela-
tions in a relational algebraic theory. There is a 2-adjunction Splitper : RAT �
RATeff : U where U is the evident forgetful functor. Further, for any relational
algebraic theory X, we have Splitper(X) � Spliteq(Splitcor(X)), and so the following
diagram of left 2-adjoints commutes:

RAT RATtab

RATeff

Splitcor

Splitper

Spliteq

Proof. The proof that Splitper defines a 2-functor which is left adjoint to the for-
getful 2-functor is straightforward, and similar to Proposition 32. A proof that
Splitper(X) � Spliteq(Splitcor(X)) can be found in [14, 2.169], it follows immedi-
ately that our diagram of left 2-adjoints commutes.

4.4 Definable Categories

The final idea involved in our variety theorem is that of a definable category [19].
Definable categories come from categorical universal algebra. If we take regular
categories as our notion of theory, regular functors into Set as our notion of
model, and natural transformations as our model morphisms, then definable
categories are the corresponding varieties. We follow the exposition of [20], and
in particular we formulate definable categories via finite injectivity classes:
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Definition 40 (Finite Injectivity Class). Let h : A → B be an arrow of X.
Then an object C of X is said to be h-injective in case the function of hom-sets
X(h,C) : X(B,C) → X(A,C) defined by X(h,C)(f) = hf is injective. If M is
a finite set of arrows in X, write inj(M) for the full subcategory on the objects
C of X that are h-injective for each h ∈ M . We say that each inj(M) is a finite
injectivity class in X.

Definable categories are defined relative to an ambient locally finitely presentable
category. It is an open problem to give a free-standing characterization [19].

Definition 41. A category is said to be definable if it arises as a finite injec-
tivity class in some locally finitely presentable category. If X and Y are definable
categories, a functor F : X → Y is called an interpretation in case it preserves
products and directed colimits. Let DEF be the 2-category with definable categories
as 0-cells, interpretations as 1-cells, and natural transformations as 2-cells.

From any definable category we can obtain an exact category by considering its
interpretations into Set.

Proposition 42 ([20]). If X is a definable category then the functor category
DEF(X,Set) is an exact category. This extends to a 2-functor DEF( ,Set) :
DEFop → EX.

Similarly, for any regular category the associated category of regular functors
into Set is definable.

Proposition 43 ([20]). If C is a regular category then the functor category
REG(C,Set) is definable. This extends to a 2-functor REG( ,Set) : REG →
DEFop.

If the category in question is exact, then considering interpretations of the result-
ing definable category into Set yields the original exact category. This lifts to
the 2-categorical setting.

Proposition 44 ([20]). There is an adjunction of 2-categories REG(−,Set) :
REG � DEFop : DEF(−,Set) which specializes to an equivalence of 2-categories
REG(−,Set) : EX � DEFop : DEF(−,Set).

This gives another way to describe the exact completion of a regular category:

Proposition 45 ([20]). If C is regular then Cex/reg � DEF(REG(C ,Set) ,Set).

Thus, we may summarize the relationship between definable, regular, and exact
categories as follows:

Corollary 46 ([20, Sect. 9,10]). The following diagram of left 2-adjoints com-
mutes.

REG

EX DEFop

REG(−,Set)
ex/reg

REG(−,Set)

∼

where the arrow marked with ∼ is part of a 2-equivalence.
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The ingredients of our variety theorem for relational algebraic theories are
now assembled. Together, Proposition 39, Corollary 38, and Corollary 46 give:

Corollary 47. There following diagram of left 2-adjoints commutes:

RAT RATtab REG

RATeff EX DEFop

Splitper

Splitcor Map
∼

Spliteq ex/reg
REG(−,Set)

Map

∼
REG(−,Set)

∼

where the arrows marked with ∼ are part of a 2-equivalence.

Now our variety theorem is an immediate consequence of Corollary 47:

Theorem 48. There is an adjunction of 2-categories Mod : RAT � DEFop : Th

It may not be immediately clear what this tells us about the category of
models and model morphisms of a relational algebraic theory, so let us briefly
discuss. Consider an arbitrary relational algebraic theory X. Our universe of
models Rel is tabular, so models of X and models of Splitcor(X) are the same thing
since the image of any coreflexive in X already splits in Rel. Then the category
of models of X and model morphisms thereof is RATtab(Splitcor(X),Rel). When
we transport this across the 2-equivalence Map : RATtab

∼→ REG it becomes
REG(Map(Splitcor(X)),Set), a definable category. Thus, categories of models and
model morphisms of regular algebraic theories are definable categories.

Now, Set is exact, so Rel is effective, which means that much like the models
of X and Splitcor(X), the models of X and Splitper(X) are the same. We have
shown that RATeff � EX � DEFop, and so the question of when two relational
algebraic theories generate the same category of models and model morphisms
can be answered as follows:

Theorem 49. Two relational algebraic theories X and Y present equivalent
definable categories if and only if Splitper(X) and Splitper(Y) are equivalent.

Compare this to the case of algebraic theories, in which two theories present the
same variety in case splitting all idempotents yields equivalent categories [1].
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We show that the category of optics in a monoidal category arises naturally from the free cornering
of that category. Further, we show that the free cornering of a monoidal category is a natural setting
in which to work with comb diagrams over that category. The free cornering admits an intuitive
graphical calculus, which in light of our work may be used to reason about optics and comb diagrams.

Introduction

Optics in a monoidal category are a notion of bidirectional transformation, and have been something
of a hot topic in recent years. In particular lenses, which are optics in a cartesian monoidal category,
play an important role in the theory of open games [8], compositional machine learning [5], dialectica
categories [16], functional programming [17, 3], the theory of polynomial functors [21], and of course
in the study of bidirectional transformations [15, 6].

We recall the elementary presentation of the category OpticA of optics in a monoidal category A.
Objects (A,B) are pairs of objects of A. Arrows ⟨α | β ⟩M : (A,B)→ (C,D) consist of arrows α : A→
M⊗C and β : M⊗D→ B of A. It is helpful to visualize this as follows:

Arrows are subject to equations of the form ⟨α( f ⊗1C) | β ⟩N = ⟨α | ( f ⊗1D)β ⟩M for f : M→ N in A.
This is often visualized as a sort of sliding between components, as in:

Equivalently, the hom-sets of OpticA can be given as a coend of hom-functors of A:

OpticA((A,B),(C,D))∼=
∫ M

A(A,M⊗C)×A(M⊗D,B)

Composition is given by ⟨α | β ⟩M⟨γ | δ ⟩N = ⟨α(1M⊗ γ) | (1M⊗δ )β ⟩M⊗N . Visually:

*This research is supported by the EPSRC.
†This research was supported by the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).
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Identity arrows are given by 1(A,B) = ⟨1A | 1B⟩I .
Originally studied as an approach to concurrency by Nester [14], the free cornering of a monoidal

category is the double category obtained by freely adding companion and conjoint structure to it. The
usual string diagrams for monoidal categories extend to an intuitive graphical calculus for the free cor-
nering. The free cornering is the main piece of mathematical machinery in our development, and we give
a detailed introduction to it in Section 1.

Our main contribution is a characterisation of optics in a monoidal category in terms of its free
cornering. More exactly, in Theorem 1 we show that the category of optics is a full subcategory of the
horizontal cells of the free cornering. In addition to shedding some light on the nature of optics, this
allows us to reason about them using the graphical calculus of the free cornering. We demonstrate this
by using the graphical calculus to prove Lemmas 3, 4, 5, and 6, which are a series of results originally
due to Riley [18] concerning the lens laws. This occupies Section 3.

Optics in a monoidal category can be seen as a special case of comb diagrams in that category. Comb
diagrams arose in the theory of quantum circuits [2], and have since appeared in algebraic investigations
of causal structure [11, 10]. We suspect comb diagrams to be widely applicable, but there is not yet a
commonly accepted algebra of comb diagrams. In Section 4 we give a notion of (single-sided) comb
diagram in terms of the free cornering that coincides with the notion of comb diagram present in the
work of Román [19]. We demonstrate that the free cornering is a natural setting in which to work with
comb diagrams, and consider this a further contribution of the present work.

Our results are consequences of Lemma 2, which characterises cells of the free cornering with a
certain boundary shape in terms of coends. In particular, we make use of the soundness result for the
graphical calculus of the free cornering due to Myers [13]. The relevant definitions and the lemma itself
are presented in Section 2. The reader need not be familiar with coends to follow our development.
While coends connect the free cornering to the wider literature through Lemma 2, our work offers an
alternate perspective that is conceptually simpler.

In summary, we give a novel characterisation of optics and comb diagrams in a monoidal category
in terms of the free cornering of that category. The graphical calculus of the free cornering allows one to
work with these structures more easily. In addition to telling us something about the nature of optics and
comb diagrams, our results suggest that the free cornering is worthy of further study in its own right.

1 Double Categories and the Free Cornering

In this section we set up the rest of our development by presenting the theory of single object double
categories and the free cornering of a monoidal category. In this paper we consider only strict monoidal
categories, and in our development the term “monoidal category” should be read as “strict monoidal
category”. That said, we imagine that our results will hold in some form for arbitrary monoidal categories
via the coherence theorem for monoidal categories [12].

A single object double category is a double category D with exactly one object. In this case D
consists of a horizontal edge monoid DH = (DH ,⊗, I), a vertical edge monoid DV = (DV ,⊗, I), and a
collection of cells

where A,B ∈DH and X ,Y ∈DV . We write D(X
A
BY) for the cell-set of all such cells in D. Given cells α,β
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where the right boundary of α matches the left boundary of β we may form a cell α|β – their horizontal
composite – and similarly if the bottom boundary of α matches the top boundary of β we may form α

β –
their vertical composite – with the boundaries of the composite cell formed from those of the component
cells using ⊗. We depict horizontal and vertical composition, respectively, as in:

and

Horizontal and vertical composition of cells are required to be associative and unital. We omit wires of
sort I in our depictions of cells, allowing us to draw horizontal and vertical identity cells, respectively, as
in:

and

Finally, the horizontal and vertical identity cells of type I must coincide – we write this cell as □I and
depict it as empty space, see below on the left – and vertical and horizontal composition must satisfy the
interchange law. That is, α

β |
γ
δ = α|γ

β |δ , allowing us to unambiguously interpret the diagram below on the
right:

Every single object double category D defines strict monoidal categories VD and HD, consisting of
the cells for which the DH and DV valued boundaries respectively are all I, as in:

and

That is, the collection of objects of VD is DH , composition in VD is vertical composition of cells, and
the tensor product in VD is given by horizontal composition:

In this way, VD forms a strict monoidal category, which we call the category of vertical cells of D. Sim-
ilarly, HD is also a strict monoidal category (with collection of objects DV ) which we call the horizontal
cells of D.

Next, we introduce the free cornering of a monoidal category.
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Definition 1 ([14]). Let A be a monoidal category. We define the free cornering of A, written ⌜⌞A⌝⌟, to be
the free single object double category on the following data:

• The horizontal edge monoid ⌜⌞A⌝⌟H = (A0,⊗, I) is given by the objects of A.

• The vertical edge monoid ⌜⌞A⌝⌟V = (A0 ×{◦,•})∗ is the free monoid on the set A0 ×{◦,•} of
polarized objects of A – whose elements we write A◦ and A•.

• The generating cells consist of vertical cells ⌜⌞ f
⌝
⌟ for each morphism f : A→ B of A subject to

equations as in:

along with the following corner cells for each object A of A:

which are subject to the yanking equations:

For a precise development of free double categories see [4]. Briefly, cells are formed from the
generating cells by horizontal and vertical composition, subject to the axioms of a double category in
addition to any generating equations. The corner structure has been heavily studied under various names
including proarrow equipment, connection structure, and companion and conjoint structure. A good
resource is the appendix of [20].

We understand elements of ⌜⌞A⌝⌟V as A-valued exchanges. Each exchange X1⊗ ·· · ⊗Xn involves a
left participant and a right participant giving each other resources in sequence, with A◦ indicating that
the left participant should give the right participant an instance of A, and A• indicating the opposite.
For example say the left participant is Alice and the right participant is Bob. Then we can picture the
exchange A◦⊗B•⊗C• as:

Alice⇝ ⇝Bob

Think of these exchanges as happening in order. For example the exchange pictured above demands that
first Alice gives Bob an instance of A, then Bob gives Alice an instance of B, and then finally Bob gives
Alice an instance of C.

Cells of ⌜⌞A⌝⌟ can be understood as interacting morphisms of A. Each cell is a method of obtaining the
bottom boundary from the top boundary by participating in A-valued exchanges along the left and right
boundaries in addition to using the arrows of A. For example, if the morphisms of A describe processes
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involved in baking bread, we might have the following cells of ⌜⌞A⌝⌟:

The cell on the left describes a procedure for transforming dough into nothing by kneading it and
sending the result away along the right boundary, and the cell in the middle describes a procedure for
transforming an oven into bread and an oven by receiving dough along the left boundary and then using
the oven to bake it. Composing these cells horizontally results in the cell on the right via the yanking
equations. In this way the free cornering models concurrent interaction, with the corner cells capturing
the flow of information across different components.

The vertical cells of the free cornering involve no exchanges, and as such are the cells of the original
monoidal category:

Lemma 1 ([14]). There is an isomorphism of categories V ⌜⌞A⌝⌟ ∼= A.

In comparison, the horizontal cells of the free cornering are not well understood. In the sequel we
will see that H ⌜⌞A⌝⌟ contains OpticA as a full subcategory.

2 Alternation and Coends

In this section we prove a technical lemma characterizing certain cell-sets of ⌜⌞A⌝⌟ as coends.

Definition 2. An element of ⌜⌞A⌝⌟V is said to be •◦-alternating in case it is of the form A•1⊗B◦1⊗ ·· ·⊗
A•n⊗B◦n for some n ∈ N such that n> 0. The alternation length of a •◦-alternating element is defined to
be the evident n ∈ N. For example:

• B•⊗A◦ is •◦-alternating with alternation length 1.

• A•⊗B◦⊗C•⊗A◦ is •◦-alternating with alternation length 2.

• (A⊗B)•⊗ I◦ is •◦-alternating with alternation length 1.

• None of the following are •◦-alternating:

I A•⊗B◦⊗C◦ A•⊗B• A• (A⊗B)◦⊗B• A•⊗B◦⊗C•

Definition 3. A cell-set of the form ⌜
⌞A⌝⌟(I

I
I X) is said to be right-•◦-alternating in case X is •◦-alternating.

The alternation depth of a right-•◦-alternating cell-set is the alternation length of its right boundary.

Lemma 2. If ⌜⌞A⌝⌟(I
I
I X) is right-•◦-alternating with alternation depth n and X = A•1⊗B◦1⊗·· ·⊗A•n⊗B◦n

then
⌜
⌞A⌝⌟
(

I
I

I
X

)
∼=
∫ M1,...,Mn−1 n

∏
i=1

A(Mi−1⊗Ai,Mi⊗Bi)

where M0 = Mn = I.
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Proof. By inspecting the generating cells of ⌜⌞A⌝⌟ and making use of Lemma 1 we find that any cell of
⌜
⌞A⌝⌟(I

I
I X) is necessarily of the form:

Thus cells of ⌜⌞A⌝⌟(I
I
I X) may be written as n-tuples ⟨ f1 | · · · | fn⟩. As a consequence of Myers’ soundness

result for the graphical calculus [13], we know that two cells ⟨ f1 | · · · | fn⟩ and ⟨g1 | · · · | gn⟩ of ⌜⌞A⌝⌟(I
I
I X)

are equal iff they are deformable into each other modulo the equations of A. Consider that all local
deformations ⟨· · · | fi | fi+1 | · · · ⟩= ⟨· · · | gi | gi+1 | · · · ⟩ are of the form:

where fi = gi(m⊗1) and gi+1 = (m⊗1) fi+1. Now, the only way ⟨ f1 | · · · | fn⟩ and ⟨g1 | · · · | gn⟩ can be
equal is by (repeated) parallel local deformation of the associated diagrams, as in:

Thus, ⌜⌞A⌝⌟(I
I
I X) is the set of (appropriately typed) n-tuples ⟨ f1 | · · · | fn⟩ of morphisms of A, quotiented

by equations of the form:

⟨ f1(m2⊗1) | f2(m3⊗1) | · · · | fn⟩= ⟨ f1 | (m2⊗1) f2 | · · · | (mn⊗1) fn⟩

which is precisely to say that the claim holds.
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Remark 1. There is an obvious dual notion of left-◦•-alternating cell-set for which a version of Lemma 2
holds.

3 Optics and the Free Cornering

In this section we use Lemma 2 to show that OpticA is a full subcategory of H ⌜⌞A⌝⌟ for any monoidal
category A. We then briefly discuss lenses, and illustrate the power of the graphical calculus for ⌜⌞A⌝⌟
by reproving a correspondence between lenses satisfying the the lens laws and lenses that are comonoid
homomorphisms with respect to a certain comonoid structure. These results about lenses are originally
due to Riley [18], and were also used to demonstrate Boisseau’s approach to string diagrams for op-
tics [1]. We end with Observation 1, which discusses the relation of teleological categories [9] to the free
cornering.

Theorem 1. Let A be a monoidal category. Then OpticA is the full subcategory of H ⌜⌞A⌝⌟ on objects of
the form A◦⊗B• for A,B ∈ A0.

Proof. We begin by noticing that

H ⌜⌞A⌝⌟(A◦⊗B•,C◦⊗D•)∼= ⌜
⌞A⌝⌟(I

I

I
A•⊗C◦⊗D•⊗B◦)

via:

7→ and 7→

This cell-set is right-•◦-alternating of depth 2, and so we have:

⌜
⌞A⌝⌟
(

I
I

I
A•⊗C◦⊗D•⊗B◦

)
∼=
∫ M∈A

A(A,M⊗C)×A(M⊗D,B)

Now we already know that

∫ M∈A
A(A,M⊗C)×A(M⊗D,B)∼= OpticA((A,B),(C,D))

and so we have a correspondence between arrows of H ⌜⌞A⌝⌟ and arrows of OpticA:

H ⌜⌞A⌝⌟(A◦⊗B•,C◦⊗D•)∼= OpticA((A,B),(C,D))

In particular, we know that arrows in H ⌜⌞A⌝⌟(A◦⊗B•,C◦⊗D•) are equivalently optics ⟨α | β ⟩M as below
left, and that the equations between optics – below right – capture all equations in H ⌜⌞A⌝⌟(A◦⊗B•,C◦⊗
D•):
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Next, given arrows ⟨α | β ⟩M : (A,B)→ (C,D) and ⟨γ | δ ⟩N : (C,D)→ (E,F) of OpticA, we find that
composing the corresponding arrows of H ⌜⌞A⌝⌟ yields the arrow corresponding to ⟨α(1M ⊗ γ) | (1M ⊗
δ )β ⟩M⊗N = ⟨α | β ⟩M⟨γ | δ ⟩N as in:

Further, the identity on A◦⊗B• in H ⌜⌞A⌝⌟ corresponds to the 1(A,B) = ⟨1A | 1B⟩I in OpticA as in:

The result is thus proven.

Remark 2. Following Remark 1, a similar argument gives that if A is symmetric monoidal then H ⌜⌞A⌝⌟
op

also contains OpticA as the full subcategory on those objects of the form A•⊗B◦.

Remark 3. If A is a symmetric monoidal category then OpticA is itself monoidal [18]. We remark that
while OpticA remains a subcategory of H ⌜⌞A⌝⌟ in this case, it is not a monoidal subcategory. That is, the
tensor product of optics is not given by the tensor product in H ⌜⌞A⌝⌟.

As an illustration of our approach, we consider the characterisation of the lens laws given in [18].
Say that an optic is homogeneous in case it is contained in the full subcategory of OpticA on objects
(A,A) for some A ∈ A0. Notice that every object of this subcategory is a comonoid in H ⌜⌞A⌝⌟ , with the
comultiplication and counit given as in:

where the comonoid axioms hold as in:

Definition 4 ([18]). A homogeneous optic h : (A,A)→ (B,B) of OpticA is called lawful in case the
following equations hold in H ⌜⌞A⌝⌟:

That is, in case h is a comonoid homomorphism with respect to the comonoid structure given above.

Lemma 3 ([18]). If h = ⟨α | β ⟩M : (A,A)→ (B,B) in OpticA with α and β mutually inverse, then h is
lawful.
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Proof.

and

Recalling the algebraic characterisation of cartesian monoidal categories [7], we denote the commu-
tative comonoid structure in a cartesian monoidal category as follows:

This structure must satisfy the commutative comonoid axioms:

Must further be coherent with respect to the monoidal structure:

And every morphism f of the category in question must be a comonoid homomorphism:

Lemma 4 ([18]). Let A be a cartesian monoidal category, and let h = ⟨α | β ⟩M : (A,A)→ (B,B) be a
homogeneous optic in A. Then there exist arrows get : A→ B and put : A⊗B→ A of A such that:

Proof. We have:
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and so the claim follows via:

Homogeneous optics in cartesian monoidal categories are called lenses. We write [put | get] :
(A,A)→ (B,B) for the lens specified by appropriate put and get arrows in the above manner.

Definition 5 ([6]). A lens [put | get] : (A,A)→ (B,B) is is said satisfy the lens laws in case:

Lemma 5 ([18]). If a lens h = [put | get] : (A,A)→ (B,B) satisfies the lens laws then it is lawful.

Proof. For the counit we have:

And for the comultiplication:

Lemma 6 ([18]). If a lens h = [put | get] : (A,A)→ (B,B) is lawful and B is inhabited in the sense that
there is an arrow k : 1→ B in A, then it satisfies the lens laws.

Proof. The first lens law holds as in:
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The second lens law holds as in:

and the third lens law holds as in:

Observation 1 (Teleological Categories). H ⌜⌞A⌝⌟ contains structure reminiscent of teleological cate-
gories [9], which were introduced to allow well-founded diagrammatic reasoning about lenses. Analo-
gous to the dualizable morphisms of a teleological category are those of the form f ◦, defined as below
left, with duals f •, defined as below right:

Standing in for the counits of a teleological category we have the following cell for each A ∈ A:

We then obtain an analogue of the condition that the counits be extranatural as in:

Notice that all arrows A◦→ B◦ of H ⌜⌞A⌝⌟ are of the form f ◦ for some f : A→ B in A and that dually all
arrows B•→ A• are of the form f •, further characterising our analogue of the dualizable morphisms.

In light of this, we suggest that teleological categories are a shadow of the fact that A◦ is formally
left adjoint to A• in H ⌜⌞A⌝⌟. We also point out that teleological categories do not contain enough of the
relevant structure to prove Lemmas 5 and 6, which require the unit of the formal adjunction between A◦

and A• as well as the counit.
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4 Comb Diagrams

In this section we discuss comb diagrams in the free cornering. The basic idea is that we would like
to have higher-order diagrams for our monoidal categories, pictured below on the left. Supplying the
appropriate first-order string diagrams to a higher-order diagram results in a first-order diagram, pictured
below on the right:

These higher-order diagrams have been called (right) comb diagrams due to their appearance.
In the free cornering of a monoidal category A, elements of right-•◦-alternating cell-sets are a good

notion of right comb diagram, with the alternation depth corresponding to the number of gaps between
the teeth:

↭ ↭

Lemma 2 tells us that this notion of comb diagram coincides with the notion of comb diagram developed
by Román in the more general framework of open diagrams [19]. The free cornering admits common
comb diagram operations beyond inserting morphisms into the gaps. First, we may insert a comb diagram
into one of the gaps to form another comb diagram:

↭ ↭

Next, following Remarks 1 and 2 there is an dual notion of left comb diagrams in the free cornering
corresponding to the left-◦•-alternating cell-sets. In certain cases it makes sense to compose a right
comb diagram with a left comb diagram by interleaving their teeth. The free cornering supports this as
well:

↭ ↭

Thus, the free cornering is a natural setting in which to work with comb diagrams in a monoidal category.
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Abstract. We identify the algebraic structure of the material histories generated by
concurrent processes. Specifically, we extend existing categorical theories of resource
convertibility to capture concurrent interaction. Our formalism admits an intuitive graphical
presentation via string diagrams for proarrow equipments. We also consider certain induced
categories of resource transducers, which are of independent interest due to their unusual
structure.

1. Introduction

Concurrent systems are abundant in computing, and indeed in the world at large. Despite
the large amount of attention paid to the modelling of concurrency in recent decades
(e.g., [Hoa78, Mil80, Pet66, Mil99, Abr14]), a canonical mathematical account has yet to
emerge, and the basic structure of concurrent systems remains elusive.

In this paper we present a basic structure that captures what we will call the material
aspect of concurrent systems: As a process unfolds in time it leaves behind a material history
of effects on the world, like the way a slug moving through space leaves a trail of slime. This
slime is captured in a natural way by resource theories in the sense of [CFS16], in which
morphisms of symmetric monoidal categories — conveniently expressed as string diagrams —
are understood as transformations of resources.

!

From the resource theoretic perspective, objects of a symmetric monoidal category are
understood as collections of resources, with the unit object denoting the empty collection
and the tensor product of two collections consisting of their combined contents. Morphisms
are understood as ways to transform one collection of resources into another, which may be
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combined sequentially via composition, and in parallel via the tensor product. For example,
the process of baking bread might generate the following material history:

meaning that the baking process involved kneading dough and baking it in an oven to obtain
bread (and also the oven).

This approach to expressing the material history of a process has many advantages:
It is general, in that it assumes minimal structure; canonical, in that monoidal categories
are well-studied as mathematical objects; and relatively friendly, as it admits an intuitive
graphical calculus (string diagrams). However, it is unable to capture the interaction between
components of a concurrent process. For example, consider our hypothetical baking process
and suppose that the kneading and baking of the dough are handled by separate subsystems,
with control of the dough being handed to the baking subsystem once the kneading is
complete. Such interaction of parts is a fundamental aspect of concurrency, but is not
expressible in this framework — we can only describe the effects of the system as a whole.

We remedy this by extending a given resource theory to allow the decomposition of
material histories into concurrent components. Specifically, we augment the string diagrams
for symmetric monoidal categories with corners, through which resources may flow between
different components of a transformation.

!

Returning to our baking example, we might express the material history of the kneading
and baking subsystems separately with the following diagrams, which may be composed
horizontally to obtain the material history of the baking process as a whole.

These augmented diagrams denote cells of a single-object double category constructed
from the original resource theory. The corners make this double category into a proarrow
equipment, which turns out to be all the additional structure we need in order to express
concurrent interaction. From only this structure, we obtain a theory of exchanges — a sort
of minimal system of behavioural types — that conforms to our intuition about how such
things ought to work remarkably well.

Our approach to these concurrent material histories retains the aforementioned advan-
tages of the resource-theoretic perspective: We lose no generality, since our construction
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applies to any resource theory; It is canonical, with proarrow equipments being a funda-
mental structure in formal category theory — although not usually seen in such concrete
circumstances; Finally, it remains relatively friendly, since the string diagrams for monoidal
categories extend in a natural way to string diagrams for proarrow equipments [Mye16].

Every single-object double category defines two monoidal categories: one composed of
cells with trivial left and right boundary, and one composed of cells with trivial top and
bottom boundary. For the double category obtained by adding corners to a resource theory
the induced monoidal categories are, respectively, the resource theory itself and a category
of resource transducers — being an alternative interpretation of concurrent transformations
that neither begin nor end with any resources. This category of resource transducers is rich
in structure, exhibiting unusual features that make it an interesting object of study in its own
right. We establish some elementary properties of this category and axiomatize it directly

— that is, we give a monoidal signature and a collection of equations that characterize the
category of resource transducers.

This paper is an extended version of [Nes21b], including additional examples and an
exploration of the aforementioned categories of resource transducers.

1.1. Contributions and Related Work. Related Work. Monoidal categories are ubiqui-
tous — if often implicit — in theoretical computer science. An example from the theory of
concurrency is [MM90], in which monoidal categories serve a purpose similar to their purpose
here. String diagrams for monoidal categories seem to have been invented independently a
number of times, but until recently were uncommon in printed material due to technical
limitations. The usual reference is [JS91]. We credit the resource-theoretic interpretation of
monoidal categories and their string diagrams to [CFS16]. Double categories first appear
in [Ehr63]. Free double categories are considered in [DP02] and again in [FPP08]. The
idea of a proarrow equipment first appears in [Woo82], albeit in a rather different form.
Proarrow equipments have subsequently appeared under many names in formal category
theory (see e.g., [Shu08,GP04]). String diagrams for double categories and proarrow equip-
ments are treated precisely in [Mye16]. We have been inspired by work on message passing
and behavioural types, in particular [CP09], from which we have adopted our notation for
exchanges.
Contributions. The main contribution of this paper is the resource-theoretic interpretation
of the free cornering and the observation that it captures the structure of concurrent process
histories. Other contributions concern the categorical structure of the free cornering of a
resource theory: we show that it has crossing cells and is consequently a monoidal double
category in Lemma 4.5 and Lemma 4.7, argue that the vertical cells are the original monoidal
category in Proposition 4.4, show that the induced monoidal category of horizontal cells can
be understood as a category of resource transducers, and establish Lemma 6.2, Lemma 6.3,
Observation 6.4, Lemma 6.5, Lemma 6.6, and Proposition 6.8 — all of which concern the
structure of this category of horizontal cells. Finally, we give an axiomatization of the
category of horizontal cells in terms of equations over a monoidal signature in Section 7. The
original contributions of this paper over [Nes21b] are Lemma 6.2, Lemma 6.5, Lemma 6.6,
Proposition 6.8, and the axiom scheme of Section 7.
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1.2. Organization and Prerequisites. Prerequisites. This paper is largely self-contained,
but we assume some familiarity with category theory, in particular with monoidal categories
and their string diagrams. Some good references are [Mac71,Sel10,FS19].
Organization. In Section 2 we review the resource-theoretic interpretation of symmetric
monoidal categories. We continue by reviewing the theory of double categories in Section 3,
specialized to the single object case. In Section 4 we recall the notion of proarrow equipment,
introduce the free cornering of a resource theory, and exhibit the existence of crossing cells
in the free cornering. In Section 5 we show how the free cornering of a resource theory
inherits its resource-theoretic interpretation while enabling the concurrent decomposition of
resource transformations. In Section 6 we consider the category of resource transducers and
investigate its structure, and in Section 7 we give an axiom scheme for it. In Section 8 we
conclude and consider directions for future work.

2. Monoidal Categories as Resource Theories

Symmetric strict1 monoidal categories can be understood as theories of resource transforma-
tion. Objects are interpreted as collections of resources, with A⊗B the collection consisting
of both A and B, and I the empty collection. Arrows f : A→ B are understood as ways to
transform the resources of A into those of B. We call symmetric strict monoidal categories
resource theories when we have this sort of interpretation in mind.

For example, let B be the free symmetric strict monoidal category with generating
objects

{bread, dough, water, flour, oven}
and with generating arrows

mix : water⊗ flour→ dough knead : dough→ dough

bake : dough⊗ oven→ bread⊗ oven

subject to no equations. B can be understood as a resource theory of baking bread. The
arrow mix represents the process of combining water and flour to form a bread dough, knead
represents kneading dough, and bake represents baking dough in an oven to obtain bread
(and an oven).

The structure of symmetric strict monoidal categories provides natural algebraic scaf-
folding for composite transformations. For example, consider the following arrow of B:

(bake⊗ 1dough); (1bread ⊗ σoven,dough; bake)

of type

dough⊗ oven⊗ dough→ bread⊗ bread⊗ oven

where σA,B : A⊗B ∼→ B ⊗ A is the braiding. This arrow describes the transformation of
two units of dough into loaves of bread by baking them one after the other in an oven.

It is often more intuitive to write composite arrows like this as string diagrams: Objects
are depicted as wires, and arrows as boxes with inputs and outputs. Composition is
represented by connecting output wires to input wires, and we represent the tensor product
of two morphisms by placing them beside one another. Finally, the braiding is represented

1We work with strict monoidal categories for the sake of convenience and readability. We expect the
present development to apply equally well to the general case, and if pressed would appeal to the coherence
theorem for monoidal categories [Mac71].
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by crossing the wires involved. For the morphism discussed above, the corresponding string
diagram is:

Notice how the topology of the diagram captures the logical flow of resources.
Given a pair of parallel arrows f, g : A→ B in some resource theory, both f and g are

ways to obtain B from A, but they may not have the same effect on the resources involved.
We explain by example: Consider the parallel arrows 1dough, knead : dough→ dough of B.
Clearly these should not be understood to have the same effect on the dough in question,
and this is reflected in B by the fact that they are not made equal by its axioms. Similarly,
knead and knead ◦ knead are not equal in B, which we understand to mean that kneading
dough twice does not have the same effect as kneading it once, and that in turn any bread

produced from twice-kneaded dough will be different from once-kneaded bread in our model.
Consider a hypothetical resource theory constructed from B by imposing the equation

knead ◦ knead = knead. In this new setting we understand kneading dough once to have the
same effect as kneading it twice, three times, and so on, because the corresponding arrows
are all equal. Of course, the sequence of events described by knead is not the one described
by knead ◦ knead: In the former the dough has been kneaded only once, while in the latter
it has been kneaded twice. The equality of the two string diagrams indicates that these two
different processes would have the same effect on the dough involved. We adopt as a general
principle in our design and understanding of resource theories that transformations should
be equal as morphisms if and only if they have the same effect on the resources involved.

For the sake of further illustration, observe that by naturality of the braiding maps the
following two resource transformations are equal in B:
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Each transformation gives a method of baking two loaves of bread. On the left, two batches
of dough are mixed and kneaded before being baked one after the other. On the right, first
one batch of dough is mixed, kneaded and baked and only then is the second batch mixed,
kneaded, and baked. Their equality tells us that, according to B, the two procedures will
have the same effect, resulting in the same bread when applied to the same ingredients with
the same oven.

3. Single-Object Double Categories

In this section we set up the rest of our development by presenting the theory of single-
object double categories, being those double categories D with exactly one object. In this
case D consists of a horizontal edge monoid DH = (DH ,⊗, I), a vertical edge monoid
DV = (DV ,⊗, I), and a collection of cells

where A,B ∈ DH and X,Y ∈ DV . Given cells α, β where the right boundary of α matches
the left boundary of β we may form a cell α|β — their horizontal composite — and similarly
if the bottom boundary of α matches the top boundary of β we may form α

β — their vertical

composite — with the boundaries of the composite cell formed from those of the component
cells using ⊗. We depict horizontal and vertical composition, respectively, as in:

and

Horizontal and vertical composition of cells are required to be associative and unital. We
omit wires of sort I in our depictions of cells, allowing us to draw horizontal and vertical
identity cells, respectively, as in:

and

Finally, the horizontal and vertical identity cells of type I must coincide — we write
this cell as �I and depict it as empty space, see below on the left — and vertical and

horizontal composition must satisfy the interchange law. That is, α
β |
γ
δ = α|γ

β|δ , allowing us to

unambiguously interpret the diagram below on the right:
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Every single-object double category D defines strict monoidal categories VD and HD,
consisting of the cells for which the DH and DV valued boundaries respectively are all I, as
in:

and

That is, the collection of objects of VD is DH , composition in VD is vertical composition of
cells, and the tensor product in VD is given by horizontal composition:

In this way, VD forms a strict monoidal category, which we call the category of vertical cells
of D. Similarly, HD is also a strict monoidal category (with collection of objects DV ) which
we call the horizontal cells of D.

4. Cornerings and Crossings

In this section we introduce the free cornering of a resource theory, our primary technical
device, and show that the free cornering contains special crossing cells with nice formal
properties. We begin by recalling the notion of proarrow equipment, specialised to the case
of single-object double categories:

Definition 4.1. Let D be a single-object double category. D is called a proarrow equipment
in case for each A ∈ DH there are distinguished elements A◦ and A• of DV along with
distinguished cells of D:

called ◦-corners and •-corners respectively, which satisfy the yanking equations:

Tersely, the free cornering of a resource theory is the proarrow equipment obtained by
freely adding corner cells. Explicitly, we define:

Definition 4.2. Let A be a resource theory. Then the monoid A◦• of A-valued exchanges
is defined by A◦• = (A0 × {◦, •})∗. That is, A◦• is the free monoid on the set A0 × {◦, •}
of polarized objects of A, whose elements we write A◦ and A•. Intuitively, elements of A◦•
describe a sequence of resources moving between participants in the exchange, where A◦

denotes an instance of A moving from left to right, and A• denotes an instance of A moving
from right to left (see Section 5).

Now the free cornering is given as follows:

Definition 4.3. Let A be a resource theory. Then the free cornering of A, written pxAqy, is
the free single-object double category determined by the following data:



7:8 C. Nester Vol. 19:1

• The horizontal edge monoid pxAqyH = (A0,⊗, I) is given by the objects of A.

• The vertical edge monoid pxAqyV = A◦• is the monoid of A-valued exchanges.
• The generating cells consist of corners for each object A of A as in Definition 4.1, subject

to the yanking equations, along with a vertical cell pxf
q
y for each morphism f : A→ B of A

subject to equations as in:

For a precise development of free double categories see [FPP08]. In brief: cells are formed
from the generating cells by horizontal and vertical composition, subject to the axioms of a
double category in addition to any generating equations. We call this the “free” cornering
both because it is freely generated, and because we imagine there is an adjunction relating
proarrow equipments and arbitrary double categories under which pxAqy is “free” in a more
principled sense. We leave the construction of such an adjunction for future work.

An important property of the free cornering is that the vertical cells are the original
resource theory:

Proposition 4.4. There is an isomorphism of categories V p
xAqy ∼= A.

Proof. Intuitively V p
xAqy ∼= A because in a composite vertical cell every wire bent by a corner

must eventually be un-bent by the matching corner, which by yanking is the identity. The
only other generators are the cells pxf

q
y, and so any vertical cell in pxA

q
y can be written as pxg

q
y for

some morphism g of A. A more rigorous treatment of corner cells can be found in [Mye16],
to the same effect.

Before we properly explain our interest in pxAqy we develop a convenient bit of structure:
crossing cells. For each B of pxAqyH and each X of pxAqyV we define a cell

of pxAqy inductively as follows: In the case where X is A◦ or A•, respectively, define the crossing
cell as in the diagrams below on the left and right, respectively:

in the case where X is I, define the crossing cell as in the diagram below on the left, and in
the composite case define the crossing cell as in the diagram below on the right:

We prove a technical lemma:
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Lemma 4.5. For any cell α of pxAqy we have

Proof. By structural induction on cells of pxAqy. For the ◦-corners we have:

and for the •-corners, similarly:

the final base cases are the pxf
q
y maps:

There are two inductive cases. For vertical composition, we have:

Horizontal composition is similarly straightforward, and the claim follows by induction.

From this we obtain a “non-interaction” property of our crossing cells, similar to the
naturality of braiding in symmetric monoidal categories:

Corollary 4.6. For cells α of V p
xAqy and β of H p

xAqy, the following equation holds in pxAqy:

These crossing cells greatly aid in the legibility of diagrams corresponding to cells in
p
xAqy, but also tell us something about the categorical structure of pxAqy, namely that it is a
monoidal double category in the sense of [Shu10]:

Lemma 4.7. If A is a symmetric strict monoidal category then pxAqy is a monoidal double
category. That is, pxAqy is a pseudo-monoid object in the strict 2-category VDblCat of double
categories, lax double functors, and vertical transformations.

Proof. We give the action of the tensor product on cells:
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This defines a pseudofunctor, with the component of the required vertical transformation
given by exchanging the two middle wires as in:

Notice that ⊗ is strictly associative and unital, in spite of being only pseudo-functorial.

5. Concurrency Through Cornering

We proceed to extend the resource-theoretic interpretation of some symmetric strict monoidal
category A to its free cornering pxAqy. We interpret elements of pxAqyV = A◦• as A-valued
exchanges. Each exchange X1 ⊗ · · · ⊗Xn involves a left participant and a right participant
giving each other resources in sequence, with A◦ indicating that the left participant should
give the right participant an instance of A, and A• indicating the opposite. For example
say the left participant is Alice and the right participant is Bob. Then we can picture the
exchange A◦ ⊗B• ⊗ C• as:

Alice  Bob

Think of these exchanges as happening in order. For example the exchange pictured above
demands that first Alice gives Bob an instance of A, then Bob gives Alice an instance of
B, and then finally Bob gives Alice an instance of C.

We interpret cells of pxAqy as concurrent transformations. Each cell describes a way to
transform the collection of resources given by the top boundary into that given by the bottom
boundary, via participating in A-valued exchanges along the left and right boundaries. For
example, consider the following cells of pxB

q
y:

From left to right, these describe: A procedure for transforming water into nothing by
mixing it with flour obtained by exchange along the right boundary, then sending the
resulting dough away along the right boundary; A procedure for transforming an oven into
an oven, receiving flour along the right boundary and sending it out the left boundary,
then receiving dough along the left boundary, which is baked in the oven, with the resulting
bread sent out along the right boundary; Finally, a procedure for turning flour into bread

by giving it away and then receiving bread along the left boundary. When we compose
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these concurrent transformations horizontally in the evident way, they give a transformation
of resources in the usual sense, i.e., a morphism of A ∼= V p

xAqy:

We understand equality of cells in pxAqy much as we understand equality of morphisms
in a resource theory: two cells should be equal in case the transformations they describe
would have the same effect on the resources involved. In this way, cells of pxAqy allow us to
break a transformation into many concurrent parts. Note that with the crossing cells, it is
possible for cells that are not immediately adjacent to exchange resource across the cells in
between them. In the above example, flour is sent from the rightmost cell to the leftmost
cell across the middle cell. This makes the double-categorical structure less constraining
that it may seem at first. For example we might rearrange our previous example into the
following horizontally composable cells of pxB

q
y:

When composed, we obtain a similar morphism of A:

It is worth mentioning that the difference between oven ⊗ flour ⊗ water and water ⊗
oven ⊗ flour is negligible since any permutation of a collection of resources is naturally
isomorphic to the original collection as an object of A.

6. Horizontal Cells as Resource Transducers

If A is a resource theory, then the category H p
xAqy of horizontal cells of the free cornering

can be understood as a category of (A-valued) resource transducers.2 Specifically, recall
our interpretation of A◦• = (H p

xAqy)0 as A-valued exchanges, in which two parties Alice and
Bob must supply or retreive the resources involved in the exchange in the order specified,
with who gives whom what determined by the polarity of the resources (see Section 5). Let
h : X → Y be an arrow of H p

xAqy. We can understand h as a machine operated by a left and
right participant, again called Alice and Bob respectively. To operate the machine, Alice
must play the left hand role of the domain exchange X and Bob must play the right hand

2The word “transducer” is derived from the latin words trans — meaning “across” and ducere — meaning
“lead”. We feel this is a good fit for the horizontal cells of the free cornering, which can be understood as a
method of leading resources across the cell in question.
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role of the codomain exchange Y . The morphism h describes the internals of the machine.
For example, consider the following morphism of H p

xAqy:

Alice  Bob

To operate the transducer, Alice must supply water and then receive bread, while Bob must
supply flour, receive dough, and then supply bread. The effect of the machine is to mix the
flour and water initially supplied into the dough Bob receives, and then to send the bread
Bob supplies to Alice.

The transducer interpretation (along with our previous interpretation of the whole of
p
xAqy) makes H p

xAqy into a category of independent interest, and in this section we will study
it. Compounding our interest is the fact that H p

xAqy is rather unusual. It is of course a
monoidal category (see Section 3) but fails to have any of the properties common to monoidal
categories. Selinger’s survey paper [Sel10] lists many such properties, for example:

Definition 6.1 [Sel10]. A monoidal category is spatial in case for all objects X and arrows
h : I → I we have:

It is easy to see that H p
xAqy has the property of being spatial:

Lemma 6.2. H p
xAqy is spatial.

Proof. We use the fact that every symmetric monoidal category is spatial. The proof is by
induction on the type X of the wire. If X is A◦ we have:

and so the spatial axiom holds. Similarly the spatial axiom holds if X is A•. If X is I the
spatial axiom holds trivially, and the inductive case is immediate.

We note that H p
xAqy has no other property found in the aforementioned survey paper.

Much of the structure that H p
xAqy does have consists of isomorphisms formed of corner

cells. While isomorphic objects in V p
xAqy ∼= A can be thought of as equivalent collections of

resources — being freely transformable into each other — we understand isomorphic objects
in H p

xAqy as equivalent exchanges. For example, there are many ways for Alice to give Bob

an A and a B: Simultaneously, as A⊗B; one after the other, as A and then B; or in the
other order, as B and then A. While these are different sequences of events, they achieve
the same thing, and are thus equivalent. Similarly, for Alice to give Bob an instance of I is
equivalent to nobody doing anything. Formally, we have:

Lemma 6.3. In H p
xAqy we have for any A,B of A:

(1) I◦ ∼= I ∼= I•.
(2) A◦ ⊗B◦ ∼= B◦ ⊗A◦ and A• ⊗B• ∼= B• ⊗A•.
(3) (A⊗B)◦ ∼= A◦ ⊗B◦ and (A⊗B)• ∼= A• ⊗B•
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Proof. (1) For I ∼= I◦, consider the ◦-corners corresponding to I:

we know that these satisfy the yanking equations:

which exhibits an isomorphism I ∼= I◦. Similarly, I ∼= I•. Thus, we see formally that
exchanging nothing is the same as doing nothing.

(2) The ◦-corner case is the interesting one: Define the components of our isomorphism to
be:

and

then for both of the required composites we have:

and so A◦ ⊗B◦ ∼= B◦ ⊗A◦. Similarly A• ⊗B• ∼= B• ⊗A•. This captures formally the
fact that if Alice is going to give Bob an A and a B, it doesn’t really matter which
order she does it in.

(3) Here it is convenient to switch between depicting a single wire of sort A⊗B and two
wires of sort A and B respectively in our string diagrams. To this end, we allow ourselves
to depict the identity on A⊗B in multiple ways, using the notation of [CS17]:

Then the components of our isomorphism (A⊗B)◦ ∼= A◦ ⊗B◦ are:

and

and, much as in (ii), it is easy to see that the two possible composites are both identity
maps. Similarly, (A ⊗ B)• ∼= (A• ⊗ B•). This captures formally the fact that giving
away a collection is the same thing as giving away its components.

For example, we should be able to compose the cells on the left and right below horizontally,
since their right and left boundaries, respectively, indicate equivalent exchanges:
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Our lemma tells us that in cases like this there will be a mediating isomorphism, as above
in the middle, making composition possible.

It is worth noting that we do not have A◦ ⊗B• ∼= B• ⊗A◦:

Observation 6.4. There is a morphism d◦• : A◦ ⊗B• → B• ⊗A◦ in one direction, defined
by

but there need not be a morphism in the other direction, and this is not in general invertible.
In particular, H p

xAqy is monoidal, but need not be symmetric.

This observation reflects formally the intuition that if I receive some resources before
I am required to send any, then I can send some of the resources that I receive. However,
if I must send the resources first, this is not the case. In this way, H p

xAqy contains a sort of
causal structure.

Next, we find that H p
xAqy contains the original resource theory A as a subcategory in

two different ways, one for each polarity:

Lemma 6.5. There are strong monoidal functors (−)◦ : A→ H p
xAqy and (−)• : Aop → H p

xAqy
defined respectively on f : A→ B of A by:

and

Further, each of these functors is full and faithful.

Proof. (−)◦ is functorial as in:

It interacts with the tensor product in A as in:

and is therefore strong monoidal as a consequence of Lemma 6.3. Further (−)◦ is faithful
because pxAqy is freely generated. It is full because of the coherence theorem of [Mye16], which
implies that for any horizontal cell (morphism of H p

xAqy) h : A◦ → B◦ we may yank all of
the wires straight to obtain an equal morphism f◦ = h for some f : A→ B of A. Similarly,
(−)• is functorial, strong monoidal, full, and faithful.

There is also a contravariant involution (−)∗ : H p
xAqy

op → H p
xAqy. As an intermediate

step we define an operation on the cells of pxAqy as follows: For A ∈ A0 = V p
xAqy let A∗ = A.

For X ∈ A◦• = H p
xAqy define X∗ inductively: I∗ = I, (A◦)∗ = A•, (A•)∗ = A◦, and

(X ⊗ Y )∗ = X∗ ⊗ Y ∗. On cells of pxAqy we also define (−)∗ inductively: The base cases are
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p
xf
q
y
∗

= p
xf
q
y along with:

∗7→ ∗7→

∗7→ ∗7→

and the inductive cases are:

∗7→ ∗7→

Informally, α∗ is the mirror image of α. It is easy to see that we have α∗∗ = α for any cell α
of pxAqy. Thus, restricting (−)∗ to H p

xAqy gives:

Lemma 6.6. There is a contravariant involution (−)∗ : H p
xAqy

op → H p
xAqy with the property

that (f ⊗ g)∗ = f∗ ⊗ g∗.3

We discuss one final bit of structure in H p
xAqy, concerning the following arrows:

These are reminiscent of the string diagrams for rigid monoidal categories, these arrows
make A◦ into the left dual of A• (and so make A• into the right dual of A◦). However, H p

xAqy
is neither left nor right rigid: for example A◦ ⊗ B• has neither a left nor right dual. It is
natural to ask whether the arrows introduced above carry significant categorical structure.
We give one answer, and in doing so connect the present work to Cockett and Pastro’s
logic of message passing [CP09]. In particular, the categorical semantics of this logic of
message passing is given by linear actegories. If A is a symmetric monoidal category, a linear
A-actegory is given by a linearly distributive category X (see e.g., [CS17]) together with two
functors:

◦ : A× X→ X • : Aop × X→ X

such that ◦ is the paramaterised left adjoint of • — that is, for all A ∈ A0 we have
A ◦ − a A • − — along with nine natural families of arrows subject to a large number of
coherence conditions.

The category H p
xAqy exhibits similar, if much simpler, structure. In particular the strong

monoidal functors (−)◦ and (−)• of Lemma 6.5 allow us to define ◦ : A×H p
xAqy → H p

xAqy and
• : Aop ×H p

xAqy → H p
xAqy by f ◦ h = f◦ ⊗ h and f • h = f• ⊗ h. Echoing the definition of a

linear actegory, we have:

3It is tempting to call this a contravariant monoidal involution, but in the covariant case a monoidal
involution (−)ι has the property that (f ⊗ g)ι = gι ⊗ f ι, twisting the tensor product [Egg11]. We refrain
from coining any new technical terms lest a “contravariant monoidal involution” turn out to be better suited
to describing contravariant involutions that twist the tensor product instead of those that do not.
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Lemma 6.7. ◦ is the paramaterised left adjoint of •. That is, for all A ∈ A the functors
A ◦ − : H p

xAqy → H p
xAqy and A • − : H p

xAqy → H p
xAqy defined on h : X → Y by, respectively:

and

are such that A ◦ − a A • −.

Proof. Fix an object A ∈ A. We require natural families of morphisms ηA,X : X → A•(A◦X)

and εA,X : A ◦ (A •X)→ X in H p
xAqy that satisfy the triangle identities. Define ηA,X and

εA,X , respectively, by

and

Now the triangle identities hold by repeated yanking, as in:

and

We therefore conclude that A ◦ − a A • −, as required.

Now, every monoidal category is a linearly distributive category (with both monoidal
operations given by ⊗), and it turns out that H p

xAqy forms a (somewhat degenerate) linear
actegory. Of the nine natural families of arrows required by the definition, four are accounted
for by the isomorphisms of Lemma 6.3, a further four become identities in our setting, and
the final one is given by the d◦• morphisms from Observation 6.4. The coherence conditions
all hold trivially. We record:

Proposition 6.8. Let A be a resource theory. Then H p
xAqy is a linear actegory.

This is intriguing insofar as it exhibits a formal connection between the free cornering of
a resource theory and existing work on behavioural types. For example, the message-passing
interpretation of classical linear logic presented by Wadler in [Wad14] corresponds to the
message-passing interpretation of linear actegories in the special case of a *-autonomous
category acting on itself (Example 4.2(4) of [CP09]). There may be an even stronger
connection to the behavioural type interpretation of intuitionistic linear logic due to Caires
and Pfenning [CP10], although here the connection to the logic of message passing is weaker
(Example 4.2(1) of [CP09]). We leave the full investigation of these connections for future
work.

7. Axioms for Resource Transducers

We have seen that the category of horizontal cells of the free cornering of a resource theory
is an interesting object of study in its own right: it is a planar monoidal category that arises
naturally and is different from those typically considered. In this section we give a direct
presentation of H p

xAqy both to deepen our understanding of its structure and to facilitate its
use as an example (or counterexample) in the future. While there are many axioms, they are
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mostly intuitive, and are conveniently organized into pairs by the contravariant involution
(−)∗ of Lemma 6.6.

Let A be a resource theory. Define T(A) to be the free spatial strict monoidal category
with the generating objects as in:

A ∈ A0

A◦ obj

A ∈ A0

A• obj

and the generating morphisms given by:

f : A→ B ∈ A1

f◦ : A◦ → B◦
◦

f : A→ B ∈ A1

f• : B• → A•
•

A,B ∈ A0

/A,B : (A⊗B)◦ → A◦ ⊗B◦ /
A,B ∈ A0

IA,B : A• ⊗B• → (A⊗B)•
I

A,B ∈ A0

.A,B : A◦ ⊗B◦ → (A⊗B)◦
.

A,B ∈ A0

JA,B : (A⊗B)• → A• ⊗B• J

� : I → I◦
� ( : I◦ → I

(
� : I• → I

�
� : I → I•

�

A,B ∈ A0

σ◦A,B : A◦ ⊗B◦ → B◦ ⊗A◦ σ◦
A,B ∈ A0

σ•A,B : A• ⊗B• → B• ⊗A• σ•

A ∈ A0

ηA : I → A• ⊗A◦ η
A ∈ A0

εA : A◦ ⊗A• → I
ε

The rules ◦ and • correspond to the image of the functors from Lemma 6.5. All of
/, .,J,I,(,�,�,�, σ◦, σ• correspond to the isomorphisms of Lemma 6.3, and the η
and ε rules correspond to the morphisms considered at the end of Section 6 that lead to
Proposition 6.8.

Before presenting the equations for T(A) we give the following string-diagrammatic
conventions for our generators:

f◦ ! f• !

/A,B ! IA,B !

.A,B ! JA,B !

� ! ( ! � ! � !
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σ◦A,B ! σ•A,B !

ηA ! εA !

While it is initially difficult to keep track of the polarity of each wire, particularly in the
diagrams for the σ◦, σ•, η, and ε morphisms, this is alleviated by the fact that resources
may flow down but not up. Keeping this in mind allows us to omit any sort of directional
information from the wires of our diagrams, which we feel makes them more readable.

Now, we impose the following equations in addition to those of a spatial strict monoidal
category, and those inherited from A. First, concerning the interaction of the /, . and J,I
morphisms we require:

We note that this is a polarized version of the axioms for “dividers” and “gatherers” found
in the SZX calculus [CHP19]. We continue with axioms concerning the interaction of the
(,� and �,� morphisms:

For the remaining interactions of /, .,(,� and J,I,�,� we require:

Next, the interaction between σ◦, ◦ and σ•, • is captured by:

For the interaction between σ◦, /, . and σ•,J,I we require:
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and the interaction between σ◦,(,� and σ•,�,� is captured by:

For the interaction between η, ε, ◦, • we require:

The interaction between σ◦, σ•, η, ε is captured by:

And for the interaction between η, ε, /, .,J,I we ask that:

Finally, we require the following axioms concerning f◦ and f•:

f◦g◦ = (fg)◦ / (f◦ ⊗ g◦) . = (f ⊗ g)◦ (1A)◦ = 1A◦ . (σA,B)◦/ = σ◦A,B

g•f• = (fg)• J(f• ⊗ g•)I= (f ⊗ g)• (1A)• = 1A• I(σA,B)•J= σ•A,B
This concludes the presentation of T(A). We proceed to define a strict monoidal functor
M : T(A)→ H p

xAqy on objects by M(X) = X (since T(A) and H p
xAqy have the same objects)

and on the generators by:

M(f◦) = M(f•) =

M(/A,B) = M(IA,B) =

M(.A,B) = M(JA,B) =

M(�) = M(() = M(�) = M(�) =

M(σ◦A,B) = M(σ•A,B) =

M(ηA) = M(εA) =

It is straightforward to verify that M is a strict monoidal functor. Additionally, we have:

Proposition 7.1. M : T(A)→ H p
xAqy is full, faithful, and identity-on-objects.
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Proof. That M is full follows from the cohrerence theorem for string diagrams for proarrow
equipments [Mye16]. Intuitively, every arrow of H p

xAqy is either in the image of (−)◦ or (−)•,
or is built out of corner cells and crossing cells. Every horizontal cell of H p

xAqy that can be
built out of only corner cells and does not decompose into multiple such cells is the image of
one of the generators of T(A), and so we know that M is full. Perhaps surprising is that the
horizontal cell d◦• : A◦ ⊗ B• → B• ⊗ A◦ of Observation 6.4 decomposes in this way, being
the image under M of the following morphism in T(A):

To show that M is faithful is to show that the equations of T(A) capture all equations
between horizontal cells of pxAqy when taken together with the equations of a spatial strict
monoidal category. Recall that all of the equations of pxAqy are generated by the yanking
equations, along with any equations of A. The yanking equations are local, in that each
instance of one of the yanking equations involves exactly two cells of pxAqy, so we need only
consider local interactions of cells of H p

xAqy in our analysis. It is relatively straightforward to
verify that the defining equations of T(A) are precisely the equations that arise in this way,
and so M is faithful.4 Finally, M is clearly identity-on-objects.

It follows that our axiomatization of H p
xAqy is correct. We record:

Corollary 7.2. There is an isomorphism of categories H p
xAqy ∼= T(A).

8. Conclusions and Future Work

We have shown how to decompose the material history of a process into concurrent compo-
nents by working in the free cornering of an appropriate resource theory. We have explored
the structure of the free cornering in light of this interpretation and found that it is consistent
with our intuition about how this sort of thing ought to work. We do not claim to have
solved all problems in the modelling of concurrency, but we feel that our formalism captures
the material aspect of concurrent systems very well.

We find it quite surprising that the structure required to model concurrent resource
transformations is precisely the structure of a proarrow equipment. This structure is already
known to be important in formal category theory, and we are appropriately intrigued by its
apparent relevance to models of concurrency — a far more concrete setting than the usual
context in which one encounters proarrow equipments!

Further, we have considered categories of resource transducers that are induced by
our construction. We have identified some structure they do and do not exhibit, and have
provided a more direct axiomatization of them. We are not aware of any categories with
similar structure, which we feel makes these categories of resource transducers worthy of
further study, and of potential value as a counterexample.

There are of course many directions for future work. For one, it would be nice to
connect the development here to the wider literature on concurrent processes. An obstacle
to this is that the free cornering does not allow us to express branching or recursion, both of
which feature heavily in more general theories of process communication. If we assume that

4Given the large number of equations involved, it is of course possible that we have missed some. That
said, we are reasonably confident that the equations we have given are complete in this sense.
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our monoidal category A has binary coproducts then we may represent a limited sort of
branching computation in which (A+B)◦ and (A+B)• represent choices to be made by the
left and right participant respectively, but this is less flexible than the protocol-level choice
that one finds in e.g. session types or the nondeterminism of process calculi. We speculate
that this is best approached through the “situated transition systems” introduced in [Nes21a],
in which the concurrent resource transformations developed in [Nes21b] (which this paper
extends) are used to augment the category of spans of reflexive graphs — interpreted as
open transition systems [KSW97] — to generate material history over some resource theory
as transitions unfold in time. Alternatively, one might impose additional structure on the
free cornering to allow nondeterministic choice and repetition.

Another direction for future work is to pursue the connection with the message passing
logic of Cockett and Pastro [CP09] (established in Proposition 6.8) and the wider programme
of behavioural types influenced by linear logic including [Wad14] and [CP10]. Finally, the
presence of proarrow equipments here is rather mysterious, and we wonder if some deeper
reason for it might exist.
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Protocol Choice and Iteration for the Free Cornering

Chad Nester∗, Niels Voorneveld

Tallinn University of Technology, Akadeemia Tee 21/1, 12618 Tallinn, Estonia

Abstract

We extend the free cornering of a symmetric monoidal category, a double cat-
egorical model of concurrent interaction, to support branching communication
protocols and iterated communication protocols. We validate our constructions
by showing that they inherit significant categorical structure from the free cor-
nering, including that they form monoidal double categories. We also establish
some elementary properties of the novel structure they contain. Further, we
give a model of the free cornering in terms of strong functors and strong natural
transformations, inspired by the literature on computational effects.

Keywords: Category Theory, Concurrency, Double Categories,
Computational Effects

1. Introduction

While there are many theories of concurrent computation, none may yet
claim to be the canonical such theory. In the words of Abramsky [2]:

It is too easy to cook up yet another variant of process calculus or
algebra; there are too few constraints . . . The mathematician André
Weil apparently compared finding the right definitions in algebraic
number theory — which was like carving adamantine rock — to
making definitions in the theory of uniform spaces . . . which was
like sculpting with snow. In concurrency theory we are very much
at the snow-sculpture end of the spectrum. We lack the kind of
external reality . . . which is hard and obdurate, and resistant to our
definitions.

This motivates the search for categorical models of concurrency, with cat-
egory theory playing the role of a suitably stubborn external reality against
which to test our definitions. In this we adopt the perspective suggested by
Maddy [21] on the relationship of category theory to set theory. Loosely, set
theory serves among other things as a generous arena in which the full array of

∗Corresponding Author

Preprint submitted to Elsevier May 29, 2023

ar
X

iv
:2

30
5.

16
89

9v
1 

 [
m

at
h.

C
T

] 
 2

6 
M

ay
 2

02
3



mathematical construction techniques are permissible, but with no way of dis-
cerning the mathematically promising structures from the rest (sculpting with
snow). The role of category theory is to provide essential guidance, with the idea
being that the mathematically promising structures are precisely those which
fit smoothly into the category-theoretic landscape (carving rock). Whether or
not category theory can provide this sort of essential guidance in the theory of
concurrent computation has not yet been conclusively established, but the idea
is a compelling one, and we work under the assumption that it can and will.

This paper concerns the free cornering of a symmetric monoidal category,
a categorical model of concurrent interaction proposed by Nester [25, 27]. The
model builds on the resource-theoretic interpretation of symmetric monoidal
categories as a kind of process theory (see e.g., [10]) by defining the free corner-
ing of a given symmetric monoidal category to be a certain double category in
which the processes represented by the base are augmented with corner cells.
The cells of the free cornering admit interpretation as interacting processes, with
the corner cells embodying a notion of message passing. The corner cells are
precisely what is required to make the free cornering into a proarrrow equipment,
which is a kind structured double category that plays a fundamental role in for-
mal category theory. We remark that for the structure of a proarrow equipment
to coincide with a notion of message passing would seem to be essential guidance
of the highest quality. That said, the free cornering is currently far from being
a canonical model of concurrent computation. Much work remains to be done,
and many connections remain unexplored.

More specifically, this paper addresses the connection of the free cornering to
notions of session type. Roughly, session types are to communication protocols
what data types are to structured data. Much like the way that data types
constrain the possible data values a process operates on, session types constrain
the behaviour of a process so that it conforms to the corresponding communica-
tion protocol. In the free cornering of a symmetric monoidal category, process
interaction is governed by the monoid of exchanges, whose elements may be
understood as a basic sort of session type. The communication protocols ex-
pressible in this way are those in which messages of a predetermined type are
sent and received in a predetermined sequence. Viewed this way, the monoid
of exchanges is missing a number of features that systems of session types are
expected to have. In particular, branching protocols — in which one of the
participants chooses which of two possible continuations of the current protocol
will happen and the other participant must react — and iterated protocols, in
which all or part of the protocol is carried out some number of times based on
choices made by the participants.

In an effort to rectify the situation, we construct the free cornering with
choice and free cornering with iteration of a distributive monoidal category.
The free cornering with choice supports branching communication protocols in
addition to those of the free cornering, and the free cornering with iteration sup-
ports iterated communication protocols in addition to those of the free cornering
with choice. To ask that the base category is distributive monoidal is to ask
that it supports a kind of sequential branching, analogous to the “if then else”
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statements present in many programming languages. In the free cornering with
choice, this sequential branching structure interacts nontrivially with branching
communication protocols, and is what allows a process to decide which branch
of a protocol to select based on its inputs.

We prove some elementary results concerning the monoidal category of hori-
zontal cells of the free cornering with choice and the free cornering with iteration.
The objects of the category of horizontal cells correspond to communication pro-
tocols. We show that the category of horizontal cells of the free cornering with
choice has binary products and coproducts given by branching communication
protocols. Further, we characterize iterated communication protocols in the cat-
egory of horizontal cells of the free cornering with iteration by showing that they
arise as initial algebras (or dually, final coalgebras) of a suitable endofunctor,
and that process iteration forms a monad (or dually, a comonad).

An important feature of the free cornering is the existence of well-behaved
crossing cells, which among other things carry the structure of a monoidal double
category in the sense of Shulman [33]. We extend the construction of crossing
cells in the free cornering to construct crossing cells in the free cornering with
choice and the free cornering with iteration, and show that these crossing cells
remain well-behaved. It follows that the free cornering with choice and free
cornering with iteration also form monoidal double categories. We view the
presence of these well-behaved crossing cells as a kind of sanity check.

As an additional sanity check, we construct a model of the free cornering, and
extend it to give a model of the free cornering with choice and the free cornering
with iteration. Specifically, from a cartesian closed category we construct a
double category of stateful transformations, in which cells are given by strong
natural transformations between strong endofunctors on the base category (see
e.g. [22]). This double category is a model of the free cornering in the sense that
there is a structure-preserving double functor from the free cornering of the base
category into the category of stateful transformations. We show that under
additional assumptions on the base category, the double category of stateful
transformations gives a model of the free cornering with choice and the free
cornering with iteration in this sense. The existence of such a model is reassuring
in that it tells us the axioms of the free cornering with choice and free cornering
with iteration do not collapse. Strong functors play an important role in the
categorical semantics of effectful computations (see e.g,[23, 29]), and so the
double category of stateful transformations may be of independent interest.

Contributions. The central contributions of this paper are the construction of
the free cornering with choice (Definitions 9 and 10) and the free cornering with
iteration (Definitions 12 and 13). In this we include the results validating the
two constructions, specifically the contents of Sections 3.3,3.4,4.2, and 4.3. A
further contribution is the construction of the double category of stateful trans-
formations together with the fact that it models the free cornering (Section 2.4),
free cornering with choice (Section 3.5), and free cornering with iteration (Sec-
tion 4.4) in the presence of suitable assumptions on the base category. Finally,
Lemma 1 is a minor contribution to the theory of the free cornering (without
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choice or iteration): while in previous work on the free cornering it has been
part of the definition of the crossing cells, in recapitulating the material on
crossing cells we realised that it was in fact a consequence of the slightly weaker
definition used here.

Related Work. Double categories first appear in [12]. Free double categories
are considered in [11] and again in [13]. The idea of a proarrow equipment
first appears in [38], albeit in a rather different form. Proarrow equipments
have subsequently appeared under many names in formal category theory (see
e.g., [32, 15]). The string diagrams for double categories and proarrow equip-
ments that we will use without comment are given a detailed treatment in [24].
The free cornering was introduced in [25], and has been developed in [27, 26, 5].
Session types were introduced by Honda [17] and the idea has since been devel-
oped by a number of authors. While the purpose of this paper is to develop more
sophisticated session types in the free cornering, we are primarily influenced not
by the literature on session types after Honda but by the logic of message passing
of Cockett and Pastro [8], in which process communication is modelled categor-
ically by linear actegories (the semantics of a kind of augmented linear logic).
A particular point of difference between these two lines of research is that in the
logic of message passing, like in the free cornering, the protocols that our types
describe are two-sided, requiring a left and right participant. In the literature on
session types after Honda the protocol types are one-sided, and two participants
must each conform to a session type dual to that of the other if they wish to
interact. While this may seem like a large difference, it is purely formal. The
connection between session types and linear logic is explored from slightly dif-
ferent angles in [36] and [7], and all of this seems to have been heavily influenced
by the early work of Bellin and Scott [4]. In our use of distributive monoidal
categories to model branching programs and datatypes we follow Walters [37].
The definitions of protocols in the model of stateful transformations are based
on the theory of strong functors and monads for describing computational ef-
fects by Moggi [23]. Stateful transformations themselves are inspired by stateful
runners [34], and interaction laws as described in [18].

Organisation. In Section 2 we give an introduction to single-object double cat-
egories (Section 2.1); recapitulate the construction of the free cornering of a
symmetric monoidal category (Section 2.2); recall the construction of crossing
cells in the free cornering along with certain properties of crossing cells (Sec-
tion 2.3); and introduce the double category of stateful transformations and its
relationship to the free cornering (Section 2.4). Section 3 concerns the free cor-
nering with choice. We introduce distributive monoidal categories and discuss
the way in which they model branching sequential processes (Section 3.1); intro-
duce the free cornering with choice of a distributive monoidal category together
with its interpretation (Section 3.2); establish a few elementary properties of the
resulting single-object double category (Section 3.3); show that the construc-
tion of crossing cells in the free cornering extends to the free cornering with
choice, and that the attendant properties of crossing cells hold in the larger
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setting (Section 3.4); and show that when the base cartesian closed category is
distributive the category of stateful transformations gives a model of the free
cornering with choice (Section 3.5). Section 4 concerns the free cornering with
iteration, and its organisation is similar to that of Section 3. We introduce the
free cornering with iteration of a distributive monoidal category together with
its interpretation (Section 4.1); establish a few elementary properties of the re-
sulting single-object double category, in particular that our notion of iteration
is (co)monadic (Section 4.2); show that the construction of crossing cells in the
free cornering with choice extends to the free cornering with iteration, and that
the attendant properties of crossing cells conitnue to hold in the larger setting
(Section 4.3); and show that when we consider only the part of the double cate-
gory of stateful transformations given by certain container functors on the base
category Set this gives a model of the free cornering with iteration (Section 4.4).
We conclude and discuss a number of directions for future work in Section 5.

Prerequisites. We assume some familiarity with elementary category theory (see
e.g., [20]), cartesian closed categories (see e.g., [19]), and in particular with
symmetric monoidal categories and their string diagrams (see e.g., [31]). While
knowledge of the theory of double categories would certainly be helpful, it is not
strictly required, and we provide a brief technical introduction in Section 2.1 that
covers everything we will need for our development. The sections concerning
the double category of stateful transformations make heavy use of the notion of
tensorial strength and the associated notion of strong natural transformation.
We give the necessary definitions in Section 2.4, but prior familiarity would, of
course, be helpful (see e.g., [9]).

2. The Free Cornering

The aim of this section is to introduce the free cornering of a symmetric
monoidal category. We begin by recapitulating some basic double category
theory in the single-object case, which occupies Section 2.1. This done, in
Section 2.2 we recapitulate the free cornering construction and its interactive
interpretation. In Section 2.3 we recall the crossing cells of the free cornering.
We recall certain important properties of the crossing cells, the continuing valid-
ity of which will serve as a kind of litmus test for the soundness of our notions of
choice and iteration in the sequel. Finally, in Section 2.4 we construct a double
category of stateful transformations over a cartesian closed category, and more-
over show that it is a model of the free cornering of that category, possessing
corner cells and crossing cells in an interesting fashion. This will serve as a
running example throughout the paper.

Before we begin, we must briefly discuss strictness and notation. We write
composition of arrows in a category in diagrammatic order. That is, the com-
posite of f : A → B and g : B → C is written fg : A → C. While we
may write g ◦ f : A → C, we will never write gf : A → C. Moreover, in
this paper we consider only strict monoidal categories, and in our development
the term “monoidal category” should be read as “strict monoidal category”.
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That said, we imagine that our results will hold in some form for arbitrary
monoidal categories via the coherence theorem for monoidal categories [20].
Similarly, our double categories are what some authors call strict double cate-
gories. The braiding maps in a symmetric monoidal category will be written
σA,B : A ⊗ B → B ⊗ A. Further notational conventions will be introduced as
needed.

2.1. Single-Object Double Categories

In this section we set up the rest of our development by recalling the theory
of single-object double categories, being those double categories D with exactly
one object. In this case D consists of a horizontal edge monoid DH = (DH ,⊗, I),
a vertical edge monoid DV = (DV ,⊗, I), and a collection of cells

where A,B ∈ DH and U,W ∈ DV . We write D(U ABW) for the cell-set of all such

cells in D, and write α : D(U ABW) to indicate the membership of α in a cell-set.

When D is clear from context, we write (U ABW) instead of D(U ABW). Given cells

α : (U ABV ) and β : (V A
′

B′W) for which the right boundary of α matches the left

boundary of β we may form a cell α|β : (U A⊗A′

B⊗B′W) – their horizontal composite

– and similarly if the bottom boundary of α : (U ACW) matches the top boundary

of β : (U ′ C
BW

′) we may form α
β : (U⊗U ′ A

BW⊗W ′) – their vertical composite –
with the boundaries of the composite cell formed from those of the component
cells using the binary operation associated with the appropriate monoid (both
written ⊗). We depict horizontal and vertical composition, respectively, as in:

and

Horizontal and vertical composition of cells are required to be associative and
unital. We write idU : (U II U) and 1A : (I AAI) for units of horizontal and vertical
composition, respectively. We omit wires of sort I in our depictions of cells,
allowing us to depict horizontal and vertical identity cells, respectively, as in:

and
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Finally, the horizontal and vertical identity cells of type I must coincide – we
call this cell □I = 1I = idI : (I II I) and depict it as empty space, see below on
the left – and vertical and horizontal composition must satisfy the interchange

law. That is, α
β |
γ
δ = α|γ

β|δ , allowing us to unambiguously interpret the diagram

below on the right:

Every single-object double category D defines monoidal categories VD and
HD, consisting of the cells for which the DV and DH valued boundaries respec-
tively are all I, as in:

and

That is, the collection of objects of VD is DH , composition in VD is verti-
cal composition of cells, and the tensor product in VD is given by horizontal
composition:

In this way, VD forms a monoidal category, which we call the category of
vertical cells of D. Similarly, HD is also a monoidal category (with collection of
objects DV ) which we call the horizontal cells of D.

2.2. The Free Cornering

In this section we introduce the free cornering of a symmetric monoidal cat-
egory. It is useful to frame this construction in terms of the resource-theoretic
understanding of symmetric monoidal categories [10]. That is, objects are un-
derstood of as collections of resources. The tensor product A⊗B of two objects
is the collection consisting of A and B, and the unit I is the empty collec-
tion. Morphisms are understood as transformations, with f : A → B being
understood as a way to transform the resources of A to the resources of B. We
adopt this perspective here and use the associated vocabulary to elucidate our
development.

We begin with the monoid of exchanges over a symmetric monoidal category:
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Definition 1. Let A be a symmetric monoidal category. Define the monoid
A◦• of A-valued exchanges to be the free monoid on the set of polarized objects
of A, as in A◦• = A0 × {◦, •}∗. Explicitly, A◦• has elements given by:

A ∈ A0

A◦ ∈ A◦•
A ∈ A0

A• ∈ A◦• I ∈ A◦•
U ∈ A◦• W ∈ A◦•

U ⊗W ∈ A◦•

subject to the following equations:

I ⊗ U = U U ⊗ I = U (U ⊗W )⊗ V = U ⊗ (W ⊗ V )

We may omit brackets as in A◦ ⊗ B◦ ⊗ C•, as associativity of ⊗ ensures that
this denotes an element of A◦• unambiguously.

The A-valued exchanges are interpreted as follows: each X1⊗· · ·⊗Xn ∈ A◦•

involves a left participant and a right participant giving each other resources
in sequence, with A◦ indicating that the left participant should give the right
participant an instance of A, and A• indicating the opposite. For example say
the left participant is Alice and the right participant is Bob. Then we can
picture the exchange A◦ ⊗B• ⊗ C• as:

Alice⇝ ⇝Bob

These exchanges happen in order. For example the exchange pictured above
demands that first Alice gives Bob an instance of A, then Bob gives Alice an
instance of B, and then finally Bob gives Alice an instance of C.

The monoid of A-valued exchanges plays an important role in the free cor-
nering of A, which we introduce presently:

Definition 2 ([25]). Let A be a monoidal category. We define the free cornering
of A, written ⌜

⌞A⌝⌟, to be the free single-object double category with horizontal
edge monoid (A0,⊗, I), vertical edge monoid A◦•, and generating cells and
equations consisting of:

• For each f : A→ B of A a cell ⌜
⌞f

⌝
⌟ : ⌜

⌞A⌝⌟(I AB I) subject to equations:

⌜
⌞fg

⌝
⌟ =

⌜
⌞f

⌝
⌟

⌜⌞g⌝⌟
⌜
⌞1A

⌝
⌟ = 1A

⌜
⌞f ⊗ g⌝⌟ = ⌜

⌞f
⌝
⌟ | ⌜⌞g⌝⌟

One way to understand these is to notice that they allow us to interpret
string diagrams denoting morphisms of A as cells of ⌜

⌞A⌝⌟ unambiguously:

We write ⌜
⌞f

⌝
⌟ = f when it is clear in context that f denotes a cell of ⌜

⌞A⌝⌟.
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• For each object A of A, corner cells getAL : ⌜
⌞A⌝⌟(A◦ I

AI), put
A
R : ⌜

⌞A⌝⌟(I AI A
◦),

getAR : ⌜
⌞A⌝⌟(I IAA

•), and putAL : ⌜
⌞A⌝⌟(A•A

I I), which we depict as follows:

The corner cells are subject to the yanking equations:

Intuitively, the corner cells send and receive resources along the left and
right boundaries. The yanking equations allow us to carry out exchanges
between horizontally composed cells, and tell us that being exchanged has
no effect on the resources involved.

For a precise development of free double categories see [13]. Briefly, cells are
formed from the generating cells by horizontal and vertical composition, subject
to the axioms of a double category in addition to any generating equations.
The corner structure has been heavily studied under various names including
proarrow equipment, framed bicategory, connection structure, and companion
and conjoint structure. A good resource is the appendix of [32].

Cells of ⌜
⌞A⌝⌟ can be understood as interacting morphisms of A. Each cell

is a method of obtaining the resources of bottom boundary from those of the
top boundary by participating in A-valued exchanges along the left and right
boundaries in addition to using the resource transformations supplied by A.
For example, if the morphisms of A describe the procedures involved in baking
bread, we might have the following cells of ⌜

⌞A⌝⌟:

The cell on the left describes a procedure for transforming dough into nothing
by kneading it and sending the result away along the right boundary, and the
cell in the middle describes a procedure for transforming an oven into bread and
an oven by receiving dough along the left boundary and then using the oven to
bake it. Composing these cells horizontally results in the cell on the right via the
yanking equations. In this way the free cornering models process interaction,
with the corner cells capturing the flow of information across components.
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2.3. Crossing Cells

In this section we recall crossing cells, an interesting bit of structure that
exists in the free cornering of any symmetric monoidal category. We recall a few
results concerning the crossing cells, which are quite well-behaved. Our purpose
in doing so is mainly to extend these results later on when we add choice and
iteration to the free cornering. The crossing cells will remain well-behaved,
which is a sign that our notions of choice and iteration are formally coherent.

Definition 3 ([25]). Let A be a symmetric monoidal category. For each A ∈
⌜
⌞A⌝⌟H and each U ∈ ⌜

⌞A⌝⌟V we define a crossing cell χU,A, pictured as in:

inductively as follows: define χA◦,B and χA•,B as in the diagrams below on the
left and right, respectively:

further, define χI,A = 1A and χU⊗W,A =
χU,A

χW,A
, as in:

We note that this definition differs slightly from that given in [25, 27]. In
previous work on the free cornering, the definition of crossing cells included the
assumption that they were coherent with respect to horizontal composition. We
show that in fact, this can be derived:

Lemma 1. Let A be a symmetric monoidal category. For U ∈ A◦• and A,B ∈
A0 the following equations hold in ⌜

⌞A⌝⌟:

(i) χU,A⊗B = χU,A | χU,B
(ii) χU,I = idU

Proof. (i) By structural induction on U . In case U = C◦ we have:
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as required. The case for U = C• is similar. If U = I then we have:

χI,A⊗B = ⌜
⌞1A⊗B

⌝
⌟ = ⌜

⌞1A
⌝
⌟ | ⌜⌞1B⌝⌟ = χI,A | χI,B

For the inductive case U ⊗W we have

χU⊗W,A⊗B =
χU,A⊗B
χW,A⊗B

=
χU,A | χU,B
χW,A | χW,B

=
χU,A
χW,A

| χU,B
χW,B

= χU⊗W,A | χU⊗W,B

The claim follows.

(ii) By induction on the structure of U . If U = A◦ then we have:

as required. The case for U = A• is similar. If U = I then we have:

χU,I = χI,I = 1I = idI

For U ⊗W , we have:

χU⊗W,I =
χU,I
χW,I

=
idU
idW

= idU⊗W

The claim follows.

Additionally, the crossing cells carry interesting categorical structure. The
core technical lemma underpinning this structure is as follows:

Lemma 2 ([25]). For any cell α of ⌜
⌞A⌝⌟ we have

We recapitulate the proof of this, as we will refer to it later on, when we
extend the above lemma to the setting with choice and iteration.

Proof. By structural induction on cells of ⌜
⌞A⌝⌟. For the ◦-corners we have:

and for the •-corners, similarly:
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the final base cases are the ⌜
⌞f

⌝
⌟ maps:

There are two inductive cases. For vertical composition, we have:

Horizontal composition is similarly straightforward, and the claim follows by
induction.

A particularly interesting consequence of Lemma 2 is that for any symmetric
monoidal category A, ⌜

⌞A⌝⌟ is a monoidal double category in the sense of Shul-
man [33]. That is:

Lemma 3 ([25]). If A is a symmetric monoidal category then ⌜
⌞A⌝⌟ is a monoidal

double category. That is, ⌜
⌞A⌝⌟ is a pseudo-monoid object in the strict 2-category

VDblCat of double categories, lax double functors, and vertical transformations.

Proof. We give the action of the tensor product on cells:

This defines a pseudofunctor, with the component of the required vertical trans-
formation given by exchanging the two middle wires as in:

Notice that ⊗ is strictly associative and unital, in spite of being only pseudo-
functorial.

This concludes our treatment of crossing cells in the free cornering. We
proceed to give a model of the free cornering that we have recovered from the
mathematical wilderness.
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2.4. A Model: Stateful Transformations

In this section we construct a single-object double category of stateful trans-
formations, named for their resemblance to the stateful runners studied by
Uustalu in the context of monadic computational effects [34]. Our interest in
the double category of stateful transformations is that it gives a model of the free
cornering, exemplifying the corner cells and crossing structure in a more familiar
setting. Stateful transformations will serve as a running example throughout
our development. First, we require the notion of strong functor. Recall:

Definition 4. Let (C,⊗, I) be a monoidal category, and let F : C → C be a
functor. Then a tensorial strength for F consists of a natural transformation:

τFX,Y : FX ⊗ Y → F (X ⊗ Y )

satisfying τFX,I = 1FX and also:

FX ⊗ Y ⊗ Z

F (X ⊗ Y )⊗ Z F (X ⊗ Y ⊗ Z)

τF
X,Y ⊗1Z

τF
X,Y ⊗Z

τF
X⊗Y,Z

A strong functor (F, τF ) : C→ C consists of a functor F : C→ C together with
a tensorial strength τF for F .

Strong functors C→ C form a monoid (CC, ◦, I). Given two strong functors
(F, τF ), (G, τG) : C → C we define (F, τF ) ◦ (G, τG) = (G ◦ F, τG◦F ) where
τG◦F
X,Y = τGFX,YG(τFX,Y ). The unit I is given by the identity functor 1C with

strength τ1CX,Y = 1X⊗Y . We write F instead of (F, τF ) when confusion is unlikely.
The accompanying notion of natural transformation is:

Definition 5. Let C be a monoidal category, and let (F, τF ), (G, τG) : C→ C
be strong functors. A strong natural transformation α : (F, τF )→ (G, τG) is a
natural transformation α : F → G satisfying:

FX ⊗ Y GX ⊗ Y

F (X ⊗ Y ) G(X ⊗ Y )

αX⊗1Y

τF
X,Y τG

X,Y

αX⊗Y

We will be concerned with strong functors over a cartesian closed category
(C,⊗, I). We write XA for the exponential, evBA : BA⊗A→ A for the evaluation
maps, and λ[f ] : B → CA for the name of f : B ⊗ A → C. Given an object A
of C, we define endofunctors A◦ = (−⊗A) and A• = (−)A of C. The tensorial
strengths for A◦ and A• have components as in:

τA
◦

X,Y = 1X ⊗ σA,Y : X ⊗A⊗ Y → X ⊗ Y ⊗A

τA
•

X,Y = λ[(1XA ⊗ σY,A)(evAX ⊗ 1Y )] : XA ⊗ Y → (X ⊗ Y )A
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Note that A◦ is left adjoint to A•.
We may now assemble the double category of stateful transformations:

Definition 6. Let (C,⊗, I) be a cartesian closed category. The single-object
double category S(C) of stateful transformations in C has horizontal edge monoid
(C0,⊗, I) given by the cartesian product structure of C, and has vertical edge
monoid (CC, ◦, I) the monoid of strong endofunctors on C. The cells α :
S(C)(U ABW) are strong natural transformations:

α : (A◦ ◦ U, τA◦◦U )→ (W ◦B◦, τW◦B◦
)

so in particular the components are of the form:

αX : UX ⊗A→W (X ⊗B)

For horizontal composition, if we have α : (F ABG) and β : (GA
′

B′H) then their

horizontal composite (α | β) : (F A⊗A′

B⊗B′H) is given by:

(α|β)X = (αX ⊗ 1A′)(βX⊗B) : FX ⊗A⊗A′ → H(X ⊗B ⊗B′)

and the horizontal identity cells idF : (F II F) are given by:

(idF )X = 1FX : FX ⊗ 1 = FX → FX = F (X ⊗ 1)

For vertical composition, if we have α : (F ABG) and β : (HB
CK) then their

vertical composite α
β : (F◦HA

CG◦K) is given by

(
α

β

)

X

= αHXG(βX) : F (H(X))⊗A→ G(K(X ⊗ C))

and the vertical identity cells 1A : (I AAI) are given by:

(1A)X = 1X⊗A : 1C(X)⊗A = X ⊗A→ X ⊗A = 1C(X ⊗A)

We show that this is indeed a double category:

Lemma 4. S(C) is well-defined.

Proof. Horizontal and vertical composition are associative and unital because
both composition of natural transformations and the cartesian product structure
are associative and unital. The rest of the requirements on a double category
are easily seen to hold, with the most involved being interchange, which we show

holds explicitly. Given α : (F ABG), β : (GA
′

B′H), γ : (F ′B
CG

′) and δ : (G′B
′

C′H′),

14



then the interchange law (αγ |
β
δ ) = (α|βγ|δ ) holds as follows:

F (F ′(X))×A×A′

αF ′(X)×A′

��
(α|β)F ′X

��

(α
γ )X×A′

��
(
α|β
γ|δ )X

oo

(α
γ | βδ )X

//

G(F ′(X)×B)×A′

G(γX)×A′
vv βF ′X×B ((

G(G′(X × C))×A′

βG′(X×C)

((

( β
δ )X×C

((

H(F ′(X)×B ×B′)
H(γX×B′)

vv

H(γ|δ)
vv

H(G′(X × C)×B′)

H(δX×C)

��
H(H ′(X × C × C ′))

where the middle diamond commutes by naturality of β and the rest of the
diagram is obtained by unfolding definitions.

A first observation concerning S(C) is that for each f : A → B of C there
is a cell [f ] : S(C)(I AB I) given by [f ]X : (1X ⊗ f) : X ⊗ A → X ⊗ B, and that
this defines an embedding [−] : C → S(C). Moreover, the category of strong
endofunctors of C and strong natural transformations embeds into HS(C), since
a strong natural transformation α : (F, τF ) → (G, τG) is equivalently a cell
α : S(C)(F II G).

We define ◦-corner cells putAR : S(C)(I AI A
◦) and getAL : S(C)(A◦ I

AI) to have
identity maps as components, as in:

(putAR )X = 1X⊗A : 1C(X)⊗A = X ⊗A→ X ⊗A = A◦(X ⊗ I)

(getAL )X = 1X⊗A : A◦(X)⊗ I = X ⊗A→ X ⊗A = 1C(X ⊗A)

That the yanking equations hold is immediate. Next, we define •-corner cells
putAL : S(C)(A•A

I I) and getAR : S(C)(I IAA
•) using the closed structure, as in:

(putAL )X = evAX : A•(X)⊗A = XA ⊗A→ X = 1C(X ⊗ I)

(getAR )X = λ[1X⊗A] : 1C(X)⊗ I = X → (X ⊗A)A = A•(X ⊗A)

In other words, (putAL )X : A◦(A•X) → X is and (getAR )X : X → A•(A◦X) are
the unit and counit of the adjunction A◦ ⊣ A• given by the cartesian closed
structure. The yanking equations are then the triangle equations of this ad-
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junction. Explicitly:

(getAR | putAL )X = (λ[1X⊗A]⊗ 1A)evAX⊗A = 1X×A = (idA•)X

(
getAR
putAL

)

X

= λ[1XA⊗A](evAX)A = λ[1XA⊗Aev
A
X ] = 1XA = (1A)X

That the corner cells constitute strong natural transformations is straightfor-
ward, if slightly tedious, to verify.

The fact that S(C) is constructed from strong functors is closely connected to
the nature of crossing cells there. Given a strong functor (F, τF ) : C→ C and an
object A of C the tensorial strength of F defines a crossing cell χF,A : S(C)(F AAF)
with components (χF,A)X = τFX,A : FX ⊗A→ F (X ⊗A). These crossing cells
are coherent with respect to both horizontal and vertical composition in S(C)
in the sense that:

χF,I = idF χF,A⊗B = χF,A | χF,B χI,A = 1A χF◦G,A =
χF,A
χG,A

The crossing cells χB◦,A and χB•,A obtained in this manner are equal to those
defined in terms of the corner cells and braiding, as in Definition 3.

Moreover, the equation from Lemma 2 concerning crossing cells:

holds for all cells α of S(C) precisely because cells α are required to be strong
natural transformations.

We have seen that the double category of stateful transformations has corner
and crossing cells, much as the free cornering does. We have previously men-
tioned that stateful transformations give a model of the free cornering. What
we mean by this is that there is a structure-preserving double functor from
the free cornering of a cartesian closed category into the associated category of
stateful transformations, which moreover preserves the relevant structure. Ex-
plicitly, define a double functor D : ⌜

⌞C⌝⌟ → S(C) as follows: On the horizontal
edge monoid D acts as the identity. On the vertical edge monoid D sends A◦

and A• in A◦• to the strong functors A◦ and A•, and is defined inductively as
in D(I) = I and D(U ⊗W ) = DU ◦ DW to capture all elements of A◦•. On
cells, D(⌜⌞f

⌝
⌟) = [f ], and the corner cells of ⌜

⌞C⌝⌟ are sent to those of S(C). Clearly
D preserves the corner and crossing cells, and preserves the embedding of C
in the sense that D(⌜⌞f

⌝
⌟) = [f ]. The presence of well-behaved crossing cells in

S(C) makes it a monoidal double category (as in Lemma 3), and then because
D preserves the crossing cells it also preserves the monoidal double category
structure.

Remark 1. Strong functors, and in particular strong monads, are often used
to model computational effects (see e.g., [23, 29]). For example A• is sometimes
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called the reader monad : arrows f : B → C in the Kleisli category are given by
arrows f : B → CA = A•(C), which are understood as arrows B → C that read
input of type A. This input is understood to be provided by the environment of
the program. Moreover, A◦ is the writer comonad, A• ◦A◦ is the state monad,
and A◦ ◦A• is the store comonad.

One way to think of cells α of S(C) from the perspective of computational
effects is as follows: the right boundary of α represents its environment, that is,
the context in which α executes. For example if the right boundary of α is A•

then α will read a value (supplied by the environment). The left boundary of α
represents the interior of α, in the sense that α acts as the environment of its
interior. For example if the left boundary of α is A• then the interior of α will
read a value, which α must supply. Here effects are understood to be triggered
from the left, propagating outwards until resolved.

This concludes our discussion of S(C) for the time being. We proceed to
discuss the addition of choice to the free cornering.

3. Adding Choice to the Free Cornering

In this section we extend the free cornering of a symmetric monoidal category
with a notion of protocol choice. In addition to symmetric monoidal structure
we will require the base category to have distributive binary coproducts, which
we review in Section 3.1. We also discuss the way in which this sort of category
can be seen as an algebra of sequential branching programs. In Section 3.2
we construct the free cornering with choice over a suitable base and discuss its
interpretation. In Section 3.3 we establish a number of elementary properties
of the free cornering with choice. In Section 3.4 we define crossing cells in the
free cornering with choice, and show that they are well-behaved. This is mostly
an extension of Section 2.3 to the new setting, with the exception of Lemma 13.
Finally, in Section 3.5 we show that with additional assumptions on the base
category the double category of stateful transformations from Section 2.4 gives
a model of the free cornering with choice.

3.1. Distributive Monoidal Categories and Branching Programs

We begin by recapitulating the notion of a category with binary coproducts,
largely in order to establish our notation for them:

Definition 7. A category A is said to have binary coproducts in case for each
pair A,B of objects of A there is is an object A⊕B of A together with morphisms
σA,B0 : A → A⊕ B and σA,B1 : B → A⊕ B such that for any pair of morphims
f : A → C and g : B → C there exists a unique morphism [f, g] : A ⊕ B → C

with the property that σA,B0 [f, g] = f and σA,B1 [f, g] = g. We call A ⊕ B
the coproduct of A and B, and call [f, g] the copairing of f and g. We write

σA,B0 = σ0 and σA,B1 = σ1 when it is unlikely to result in confusion. Note that
a category with binary coproducts need not have an initial object.
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Next, we recall the notion of a distributive monoidal category, being a
monoidal category with distributive binary coproducts:

Definition 8. A distributive monoidal category (A,⊗,⊕, I) is a symmetric
monoidal category (A,⊗, I) with binary coproducts A ⊕ B such that ⊗ dis-
tributes over ⊕. That is, for all objects A,B,C of A the arrow µr = [(σ0 ⊗
1C), (σ1⊗1C)] : (A⊗C)⊕(B⊗C)→ (A⊕B)⊗C has an inverse δr : (A⊕B)⊗C →
(A⊗ C)⊕ (B ⊗ C). Diagrammatically:

Note that in any distributive monoidal category there is necessarily an inverse
δl : C ⊗ (A⊕B)→ (C ⊗A)⊕ (C ⊗B) to the arrow µl = [(1C ⊗σ0), (1C ⊗σ1)] :
(C ⊗A)⊕ (C ⊗B)→ C ⊗ (A⊕B).

The resource-theoretic understanding of symmetric monoidal categories ex-
tends to distributive monoidal categories, with A ⊕ B understood as the col-
lection consisting of the contents of A or the contents of B. Notice tha tthis
interpretation is only really coherent in the presence of distributivity.

Another way to understand distributive monoidal categories is that they
model branching programs. In any distributive monoidal category we may define
an object Bool = I ⊕ I of booleans with elements ⊤ = σ0 : I → Bool and
⊥ = σ1 : I → Bool given by the coproduct injections. Then for any f, g : A→ B
the morphism δr[f, g] : Bool⊗A→ B models the conditional statement:

if b then f(x) else g(x)

In particular we have both of (see Lemma 5):

(⊤⊗ 1A)δr[f, g] = σA,A0 [f, g] = f (⊥⊗ 1A)δr[f, g] = σA,A1 [f, g] = g

which we should think of as program equivalences:

if ⊤ then f(x) else g(x) = f(x) if ⊥ then f(x) else g(x) = g(x)

Before moving on we record a useful fact about coproduct injections in dis-
tributive monoidal categories for later use:

Lemma 5. In distributive monoidal category:

(σA,B0 ⊗ 1C)δr = σA⊗C,B⊗C
0 and (σA,B1 ⊗ 1C)δr = σA⊗C,B⊗C

1

Proof. We have:

σA⊗C,B⊗C
0 µr = σA⊗C,B⊗C

0 [(σA,B0 ⊗ 1C), (σA,B1 ⊗ 1C)] = σA,B0 ⊗ 1C

It follows immediately that:

σA⊗C,B⊗C
0 = σA⊗C,B⊗C

0 µrδr = (σA,B0 ⊗ 1C)δr

Similarly, we have (σA,B1 ⊗ 1C)δr = σA⊗C,B⊗C
1 .
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Distributive monoidal categories are also a good place to model datatypes.
For example, if A is distributive monoidal and A is an object of A, then we may
model stacks of type A as an object SA of A equipped with an isomorphism
SA ∼= I ⊕ (A⊗ SA) with components pop : SA → I ⊕ (A⊗ SA) and [nil, push] :
I ⊕ (A ⊗ SA) → SA. Then for example the object SI of stacks of type I is a
model of the natural numbers with nil = zero and push = succ. See [37] for a
more in-depth discussion.

3.2. The Free Cornering With Choice

In this section we extend the free cornering of a monoidal category with
a notion of protocol choice. We begin by extending the monoid of exchanges
(Definition 1) with binary operations −+− and −×− representing branching
protocols:

Definition 9. Let A be a symmetric monoidal category. The monoid A◦•
⊕ of

A-valued exchanges with choice has elements generated by:

A ∈ A0

A◦ ∈ A◦•
⊕

A ∈ A0

A• ∈ A◦•
⊕ I ∈ A◦•

⊕

U ∈ A◦•
⊕ W ∈ A◦•

⊕
U ⊗W ∈ A◦•

⊕

U ∈ A◦•
⊕ W ∈ A◦•

⊕
U ×W ∈ A◦•

⊕

U ∈ A◦•
⊕ W ∈ A◦•

⊕
U +W ∈ A◦•

⊕

subject to the following equations:

I ⊗ U = U U ⊗ I = U (U ⊗W )⊗ V = U ⊗ (W ⊗ V )

We extend the interpretation of A◦• from Section 2.2 to an interpretation of
A◦•

⊕ , interpreting −+− and −×− as choices. Specifically, For any U,W ∈ A◦•
⊕

we interpret U+W ∈ A◦•
⊕ as an exchange which begins with the left participant

choosing whether the rest of the exchange will be of the form U or of the form W ,
after which the exchange proceeds according to this choice. Dually, we interpret
U ×W ∈ A◦•

⊕ in the same way, except that the right participant chooses instead
of the left participant.

For example, suppose A,B ∈ A0. For each of the following exchanges,
call the left participant Alice and the right participant Bob, as before. Now,
consider:

• To carry out A◦×A•, first Bob chooses which of A◦ and A• will happen. If
Bob chooses A◦ then Alice sends him an instance of A and the exchange
ends. If Bob chooses A◦ then he sends Alice an instance of A and the
exchange ends.

• To carry our (A◦ × A•) ⊗ B•, first Alice and Bob carry out A◦ × A• as
above, and then Bob gives Alice an instance of B.

• To carry out A• + I, first Alice chooses which of A• and I will happen.
If Alice chooses A• the Bob sends her an instance of A and the exchange
ends. If Alice chooses I then the exchange ends immediately.
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• To carry out A◦ + (A◦ × B◦) ∈ A◦•
⊕ , first Alice chooses which of A◦

and (A◦ × B◦) will happen. If Alice chooses A◦, then she sends Bob an
instance of A and the exchange ends. If Alice chooses A◦ × B◦, then
next Bob chooses which of A◦ and B◦ will happen. If Bob chooses A◦ then
Alice sends him an instance of A and the exchange ends. If Bob chooses
B◦ then instead Alice sends an instance of B and the exchange ends.

We proceed to extend the rest of the free cornering construction with choice:

Definition 10. Let A be a distributive monoidal category. We define the free

cornering with choice of A, written ⌜
⌞A⌝⌟

⊕
, to be the free single-object double

category with horizontal edge monoid (A0,⊗, I), vertical edge monoid A◦•
⊕ , and

generating cells and equations consisting of:

• The generating cells and equations of ⌜
⌞A⌝⌟ (Definition 2).

• For each U,W ∈ A◦•
⊕ , horizontal projection cells π0 : (U×W I

I U) and

π1 : (U×W I
IW). Further, for each pair of cells α ∈ ⌜

⌞A⌝⌟
⊕

(V ABU) and

β ∈ ⌜
⌞A⌝⌟

⊕
(V ABW) a unique cell α× β ∈ ⌜

⌞A⌝⌟
⊕

(V ABU×W) satisfying:

• Dually, for each U,W ∈ A◦•
⊕ , horizontal injection cells π

0 : (U II U+W)

and π

1 : (W I
I U+W). Further, for each pair of cells α ∈ ⌜

⌞A⌝⌟
⊕

(U ABV ) and

β ∈ ⌜
⌞A⌝⌟

⊕
(W A

BV ) a unique cell α+ β ∈ ⌜
⌞A⌝⌟

⊕
(U+W

A
BV ) satisfying:

• Finally, for each pair of cells α : ⌜
⌞A⌝⌟

⊕
(U A

W C) and β : ⌜
⌞A⌝⌟

⊕
(U B

W C) a unique

cell [α, β] : ⌜
⌞A⌝⌟

⊕
(U A⊕B

W C) satisfying:

where ⌜
⌞σ0

⌝
⌟ and ⌜

⌞σ1
⌝
⌟ are given by the coproduct injections in A.

We extend our interpretation of cells of ⌜
⌞A⌝⌟ as interacting processes to cells

of ⌜
⌞A⌝⌟

⊕
. Recall that U × W is the exchange in which the right participant

chooses whether the exchange will be of the form U or W . The projection cells
π0 : (U×W I

I U) and π1 : (U×W I
IW) allow a cell, acting as the right participant

in the exchange U ×W , to make such choices. The corresponding cells α× β :
(V ABU×W) allow a cell, acting as the left participant in the exchange U ×W ,
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to react to such choices by specifying a response to each of the two possible
choices. Similarly, U +W is the exchange in which the left participant chooses
whether the exchange will be of the form U or W . The injections allow a cell,
acting as the left participant, to make such choices, and the corresponding cells
α + β : (U+W

A
BV ) to react to such choices by specifying a response to each

possibility.

Example 1. Suppose A contains a morphism bake : dough⊗ oven→ bread⊗
oven (as in Section 2.2), and define:

react =
(
getbreadL | 1C

)
+

(
getdoughL | 1C

bake

)
:

(
bread◦+dough◦

oven

bread⊗oven
I

)

Then react describes a procedure for obtaining bread, assuming one posesses
an oven, by participating in an exchange along the left boundary in which the
counterparty chooses whether to supply bread or dough. If they choose to
supply bread (via π

0), then the bread has been obtained. If they choose to
supply dough (via π

1), then we instead bake the dough to obtain bread. So for
example:

(putbreadR | π

0) | react = 1bread⊗oven (putdoughR | π

1) | react = bake

or, diagrammatically:

Example 2. Consider H : (dough◦×oven◦
I

bread⊗oven
dough•×oven•) defined by

H =

(
π1 | get

oven
L |getdoughR

σoven,dough

)
×
(
π0 | getdoughL | getovenR

)

bake

Then we have:

That is, if dough is supplied along the right boundary, then H chooses to obtain
an oven along the left boundary, and bakes bread. Otherwise an oven is supplied
along the right boundary, in which case H chooses to obtain dough along the
left boundary, and bakes bread anyway.

In this way, cells α+ β and α× β are understood as procedures that branch
according to choices made externally as part of the exchange along their left
an right boundary, respectively. We compare this to cells [α, β] : (U A⊕B

C W),
which we understand as procedures that branch according to their input, much
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as in Section 3.1. An important feature of ⌜
⌞A⌝⌟

⊕
is that when such a procedure

branches according to its input, this may be reflected in choices made along
the left and right boundary. Explicitly, let α : (U ACW) and β : (U ′B

CW
′), and

consider [(π0 | α | π

0), (π1 | β | π

1)] : (U+U ′A⊕B
C W+W ′). Then we have:

σ0
[(π0 | α | π

0), (π1 | β | π

1)]
= π0 | α | π

0

σ1
[(π0 | α | π

0), (π1 | β | π

1)]
= π1 | β | π

1

and in this way the choice a procedure makes as part of some exchange along
its left and/or right boundary may be determined by its inputs.

Example 3. Suppose our base category has both an object bread as well as an
object Sbread ∼= I ⊕ (bread⊗ Sbread) of stacks of bread as in Section 3.1). Then
consider the cell H : (bread◦×I Sbread

Sbread
I) defined as in:

H =
pop

[(π0|getbreadL |nil),(π1|1bread⊗Sbread
)]

push

Then we have:

That is, if the input stack of bread is empty then H chooses to obtain bread

along the left boundary. If the input stack of bread is nonempty then H chooses
to do nothing along the left boundary (presumably since it already has bread
and does not need any more).

3.3. Elementary Properties

In this section we establish a number of elementary properties of the free
cornering with choice. First, we observe that where our formation rule for cells

[α, β] in ⌜
⌞A⌝⌟

⊕
overlaps with the formation rule for copairing maps in A, the two

coincide:

Lemma 6. For any f : A → C and g : B → C in A,
[ ⌜
⌞f

⌝
⌟,

⌜
⌞g
⌝
⌟
]

= ⌜
⌞[f, g]⌝⌟ in

⌜
⌞A⌝⌟

⊕
.

Proof. We have:

σ0
⌜⌞[f, g]⌝⌟

= ⌜
⌞f

⌝
⌟ =

σ0
[ ⌜⌞f⌝⌟, ⌜⌞g⌝⌟ ]

σ1
⌜⌞[f, g]⌝⌟

= ⌜
⌞g
⌝
⌟ =

σ1
[ ⌜⌞f⌝⌟, ⌜⌞g⌝⌟]

and the claim follows.

Next, we find that cells [α, β] enjoy certain absorption properties in ⌜
⌞A⌝⌟

⊕
:
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Lemma 7. In ⌜
⌞A⌝⌟

⊕
:

(i) γ | [α, β] = δl

[(γ|α),(γ|β)]

(ii) [α, β] | γ = δr

[(α|γ),(β|γ)]

(iii) [α,β]
γ = [αγ ,

β
γ ]

Proof. (i) We have:

σ0
µl

γ|[α,β]
= γ | σ0

[α, β]
= γ | α =

σ0
[(γ | α), (γ | β)]

σ1
µl

γ|[α,β]
= γ | σ1

[α, β]
= γ | β =

σ1
[(γ | α), (γ | β)]

and so we have µl

γ|[α,β] = [(γ | α), (γ | β)]. Precomposing vertically with δl

on both sides proves the claim.

(ii) Similar to (i).

(iii) We have:

σ0
[α,β]
γ

=
α

γ
=

σ0

[αγ ,
β
γ ]

σ1
[α,β]
γ

=
β

γ
=

σ1

[αγ ,
β
γ ]

and the claim follows.

While (iii) is analogous to the naturality of the codiagonal map in a category
with finite coproducts, (i) and (ii) do not seem to admit similar analogies.

When restricted to the category of horizontal cells, the axioms concerning
cells α × β and α + β are precisely the axioms for binary products and binary
coproducts. That is, we have:

Lemma 8. We have:

(i) H ⌜
⌞A⌝⌟

⊕
has binary products U

π0← U ×W π1→W .

(ii) H ⌜
⌞A⌝⌟

⊕
has binary coproducts U

π

0→ U +W

π

1←W .

The category of horizontal cells H ⌜
⌞A⌝⌟ of the free cornering can be understood

as a category of exchanges, a perspective developed in [25, 27]. In particular,
isomorphic objects of H ⌜

⌞A⌝⌟ correspond to exchanges of A◦• that are morally

equivalent (Lemma 3 of [25]). We show that H ⌜
⌞A⌝⌟

⊕
contains two novel pairs of

such morally equivalent exchanges:

Lemma 9. In H ⌜
⌞A⌝⌟

⊕
:
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(i) (A⊕B)◦ ∼= A◦ +B◦ and (A⊕B)• ∼= A• ×B•

(ii) (A×B)× C ∼= A× (B × C) and (A+B) + C ∼= A+ (B + C)

Proof. (i) Let γ =
getAL
σ0

+
getBL
σ1

: (A◦+B◦ I
A⊕B I). That is, γ is the unique cell

such that:

Next, define δ =
[
putAR | π

0, put
B
R | π

1

]
: (I A⊕B

I A◦⊗B◦). That is, δ is the
unique cell such that:

Then we have

by the universal property of ⊕, since we have both of:

Similarly, we have:

by the universal property of +, as in:

Then the following arrows of H ⌜
⌞A⌝⌟

⊕
are mutually inverse:

and the claim follows. The proof that (A⊕B)• = A• ×B• is similar.
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(ii) Follows immediately from Lemma 8.

This makes intuitive sense: from the resource-theoretic perspective, an in-
stance of A⊕B is either an instance of A or an instance of B. Then it certainly
ought to be the case that Alice giving Bob an instance of A⊕B is the same as
Alice choosing whether to give Bob an instance of A or to give Bob an instance
of B. The above lemma tells us that this is indeed the case.

3.4. Crossing Cells

We extend Definition 3 to obtain crossing cells in the free cornering with
choice:

Definition 11. Let A be a distributive monoidal category. For each A ∈ ⌜
⌞A⌝⌟

⊕
H

and each U ∈ ⌜
⌞A⌝⌟

⊕
V we define a crossing cell χU,A : (U AAU) by induction on the

structure of U . The cases for A◦, A•, I, and U ⊗W are as in Definition 3. For
U +W we define χU+W,A = (χU,A | π

0) + (χW,A | π

1). That is, χU+W,A is the
unique cell satisfying:

Similarly, for U ×W we define χU×W,A = (π0 | χU,A)× (π1 | χW,A), so χU×W,A
is the unique cell satisfying:

We show that the crossing cells remain well-behaved. First, the crossing cells
remain coherent with respect to horizontal composition in the free cornering
with choice:

Lemma 10. For U ∈ A◦•
⊕ and A,B ∈ A0 we have

(i) χU,A⊗B = χU,A | χU,B
(ii) χU,I = idU

Proof. We provide the inductive cases necessary to extend the proof of Lemma 1
to account for the new structure.

(i) In the inductive case for U +W we have:

π

0 | χU+W,A⊗B = χU,A⊗B | π

0 = χU,A | χU,B | π

0 = π

0 | χU+W,A | χU+W,B

Similarly, we have π

1 | χU+W,A⊗B = π

1 | χU+W,A | χU+W,B . It follows
by the universal property of −+− that χU+W,A⊗B = χU+W,A | χU+W,B .
The inductive case for U ×W is similar.
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(ii) In the inductive case for U +W we have:

π

0 | χU+W,I = χU,I | π

0 = idU | π

0 = π

0 | idU+W

Similarly, we have π

1 | χU+W,I = π

1 | idU+W . It follows that χU+W,I =
idU+W , as required. The case for U ×W is similar.

Further, we find that the core technical lemma concerning crossing cells still
holds:

Lemma 11. For any cell α of ⌜
⌞A⌝⌟

⊕
we have

Proof. By structural induction on cells of ⌜
⌞A⌝⌟

⊕
. The base cases and the (induc-

tive) cases for cells α | β and α
β are as in the proof of Lemma 2. The remaining

inductive cases are as follows: For cells α+ β, we have:

and then by the universal property of + we have

as required. The case for cells α × β is similar. In the inductive case for cells
[α, β] we have:

by the universal property of ⊕ as in:
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with the case for σ1 being similar. Precomposing vertically with δr yields:

Consequently, ⌜
⌞A⌝⌟

⊕
is a monoidal double category with the tensor product

of cells and proof as in Lemma 3. We record:

Lemma 12. If A is a distributive monoidal category then ⌜
⌞A⌝⌟

⊕
is a monoidal

double category.

Further, we find that crossing cells in the free cornering with choice are
coherent with respect to ⊕ in the following sense:

Lemma 13. In ⌜
⌞A⌝⌟

⊕
, χU,A⊕B =

[
χU,A

σ0
,
χU,B

σ1

]
. That is, χU,A⊕B is the unique

cell such that:
σ0

χU,A⊕B
=
χU,A
σ0

σ1
χU,A⊕B

=
χU,B
σ1

Proof. By structural induction on U . In case U = C◦ we have σ0

χC◦,A⊕B
=

χC◦,A

σ0

as in:

Similarly σ1

χC◦,A⊕B
=

χC◦,B

σ1
, and an analogous argument can be made for U =

C•. If U = I then we have:

σ0
χI,A⊕B

=
σ0

1A⊕B
=

1A
σ0

=
χI,A
σ0

Similarly σ1

χI,A⊕B
=

χI,B

σ1
. For U ⊗W we have:

σ0
χU⊗W,A⊕B

=
σ0

χU,A⊕B

χW,A⊕B

=

χU,A

χW,A

σ0
=
χU⊗W,A
σ0

Similarly, we have σ1

χU⊗W,A⊕B
=

χU⊗W,B

σ1
. For U + W we have π

0 | σ0

χU+W,A⊕B
=

π

0 | χU+W,A

σ0
as in:

An analogous argument gives π

1 | σ0

χU+W,A⊕B
= π

1 | χU+W,A

σ0
, and so σ0

χU+W,A⊕B
=

χU+W,A

σ0
by the universal property of +. Similarly, we have σ1

χU+W,A⊕B
=

χU+W,B

σ1
.

The case for U ×W is similar to the case for U +W .
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3.5. A Model: Stateful Choice

In this section we return to the double category of stateful transformations
defined in Section 2.4 over a cartesian closed category C. We show that if C
has binary coproducts ⊕ which are distributive with respect to the cartesian
product ⊗ then we can define the branching protocols of the free cornering with
chocie in the double category S(C).

Let pX,Y0 : X ⊗ Y → X and pX,Y1 : X ⊗ Y → Y be the projection maps, and
note that they are natural in X and Y . For f : A → B and g : A → C, we
write ⟨f, g⟩ : A→ B⊗C to be the unique morphism such that ⟨f, g⟩p0 = f and

⟨f, g⟩p1 = g. We note that the injections σX,Y0 : X → X⊕Y , σX,Y1 : Y → X⊕Y
given by the coproduct structure are also natural in X and Y . Finally, both
⊗ and ⊕ give bifunctors C sending f : A → C and g : B → D to (f ⊗ g) =
⟨p0 f, p1 g⟩ : A⊗B → C ⊗D and (f ⊕ g) = [f σ0, g σ1].

Given two strong endofunctors (F, τF ) and (G, τF ), we define their product
(F × G, τF×G) as follows: the endofunctor F × G is given by (F × G)(X) =
FX ⊗GX and (F ×G)(f) = F (f)⊗G(f); and the strength τF×G is given by:

(F ×G)(X)⊗A ⟨(p0⊗A),(p1⊗A)⟩−−−−−−−−−−−→ FX⊗A⊗GX⊗A
τF
X,A⊗τG

X,A−−−−−−−→ (F ×G)(X⊗A)

Similarly, the endofunctor F +G is given by (F +G)(X) = FX ⊕GX and
(F +G)(f) = F (f)⊕G(f). Its strength τF+G is given by:

(F +G)(X)⊗A
δrFX,GX,A−−−−−−→ (FX ⊗A)⊕ (GX ⊗A)

τF
X,A⊕τG

X,A−−−−−−−→ (F +G)(X ⊗A)

These two constructions have the same universal properties as the corre-
sponding definitions of choice protocols in Definition 10. Specifically, we have 2-
cells πF,G0 : (F×G 1

1F) and πF,G1 : (F×G 1
1F) with components pFX,GX0 and pFX,GX1

respectively. Given α : (F ABG) and β : (F ABH), we define (α× β) : (F ABG×H) by:

(α× β)X = ⟨αX , βX⟩ : FX ⊗A→ (G×H)(X ⊗B)

Dually, we have 2-cells πF,G
0 : (F 1

1F+G) and πF,G
1 : (G 1

1F+G) with components

σFX,GX0 and σFX,GX1 respectively. Given α : (F ABH) and β : (GABH), we define

(α× β) : (F+G
A
BH) by using the distributivity natural transformation:

(α+ β)X = δr[αX , βX ] : (F +G)(X)⊗A→ H(X ⊗B)

Finally, we have vertical injection cells [σA,B0 ] : (I A
A⊕B I) and [σA,B1 ] : (I B

A⊕B I).

Given α : (F ACG) and β : (F BCG), we define the corresponding copairing cell

[α, β] : (F A⊕B
C H) as in:

[α, β]X = δl[αX , βX ] : FX ⊗ (A⊕B)→ G(X ⊗ C)

These constructions have universal properties inherited from the distributive
cartesian structure of C, and it is straightforward to show that the projections
and injections are strong. We show that these constructions are well-defined in
the sense that they give 2-cells of S(C):
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Lemma 14. If α and β are 2-cells of S(C), then α × β, α + β and [α, β] are
2-cells of S(C).

Proof. We show that the results of the operations are strong by showing that
they are a composition of strong natural transformations. First, note that the
pairing and copairing operations ⟨−,−⟩ and [−,−] when applied to strong nat-
ural transformations α, β create strong natural transformations, as in:

FX ⊗A (G×H)(X)⊗A

GX ⊗A⊗HX ⊗A

F (X ⊗A) (G⊗H)(X ⊗A)

⟨αX ,βX⟩⊗1A

τF
X,A

⟨αX⊗1A,βX⊗1A⟩ ⟨p0⊗1A,p1⊗1A⟩

τG
X,A⊗τH

X,A

⟨αX⊗A,βX⊗A⟩

(F +G)(X)⊗A HX ⊗A

(FX ⊗A)⊕ (GX ⊗A)

(F +G)(X ⊗A) H(X ⊗A)

[αX ,βX ]⊗1A

δr

τH
X,A

[τF
X,A,τG

X,A]

[αX⊗1A,βX⊗1A]

[αX⊗A,βX⊗A]

Secondly, given strong endofunctors F and G, and objects A and B, both of
the natural transformations δr : (FX ⊕GX)⊗A→ (FX ⊗A)⊕ (GX ⊗A) and
δl : FX ⊗ (A ⊕ B) → (FX ⊗ A) ⊕ (FX ⊗ B) are strong since their inverses
µr and µl can be constructed using σ0, σ1 and [−,−]. We conclude that α ×
β, α + β and [α, β] are strong since they are compositions of strong natural
transformations.

Now the structure-preserving double functor D : ⌜
⌞C⌝⌟ → S(C) of Section 2.4

extends to a double functor D : ⌜
⌞C⌝⌟

⊕ → S(C) with D(A ⊕ B) = DA ⊕ DB,
D(U + W ) = DU + DW , D(U ×W ) = DU ×DW , D([α, β]) = [D(α), D(β)],
D(α + β) = D(α) + D(β), and D(α × β) = D(α) ×D(β). Clearly this double
functor preserves the branching protocol structure in addition to the corner cells

and monoidal double category structure, and so gives a model of ⌜
⌞C⌝⌟

⊕
.

Remark 2. We consider the interpretation of branching protocols given by
− + − and − × − from the perspective of computational effects, extending
Remark 1. As a computational effect, F +G may be triggered by any program
which would trigger F or G. Dually, to resolve an effect F +G its environment
must be able to resolve both F and G independently. Similarly, to trigger F ×G
a program must be ready for the environment to resolve either of F or G, and
dually to resolve F ×G the environment must be able to resolve either F or G
independently. For F + G the choice comes from the interior, while for F × G
the choice comes from the environment.

This concludes our discussion of the free cornering with choice. We proceed
to add a notion of protocol iteration the the free

4. Adding Iteration to the Free Cornering

In this section we extend the free cornering with choice to include a notion
of protocol iteration. In Section 4.1 we construct the free cornering with iter-
ation over a distributice monoidal category and discuss its interpretation. In
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Section 4.2 we establish a number of elementary properties of the free cornering
with iteration, and in Section 4.3 we define crossing cells in the free cornering
with iteration, and show that they are well-behaved (extending Section 3.4 to
the new setting). Finally, in Section 4.4 we discuss iteration in terms of the
double category of stateful transformations.

4.1. The Free Cornering with Iteration

In this section we extend the free cornering with choice to include a notion
of protocol iteration. We begin by extending the monoid of exchanges with
choice (Definition 9) with unary operations (−)+ and (−)× representing iterated
protocols:

Definition 12. Let A be a symmetric monoidal category. The monoid A◦•
∗ of

A-valued exchanges with choice and iteration has elements generated by:

A ∈ A0

A◦ ∈ A◦•
∗

A ∈ A0

A• ∈ A◦•
∗ I ∈ A◦•

∗

U ∈ A◦•
∗ W ∈ A◦•

∗
U ⊗W ∈ A◦•

∗

U ∈ A◦•
∗ W ∈ A◦•

∗
U ×W ∈ A◦•

∗

U ∈ A◦•
∗ W ∈ A◦•

∗
U +W ∈ A◦•

∗

U ∈ A◦•
∗

U× ∈ A◦•
∗

U ∈ A◦•
∗

U+ ∈ A◦•
∗

subject to the following equations:

I ⊗ U = U U ⊗ I = U (U ⊗W )⊗ V = U ⊗ (W ⊗ V )

U× = I × (U ⊗ U×) U+ = I + (U ⊗ U+)

Notice in particular that A◦•
⊕ embeds into A◦•

∗ .

We extend our interpretation of elements of A◦•
⊕ to elements of A◦•

∗ . To do
so we must interpret U× and U+. We begin with U×. Our interpretation of
U× is informed by the equation U× = I × (U ⊗ U×). Recall that V ×W is
the protocol in which the right participant chooses whether to continue as V
or W . It follows that U× is the protocol in which the right participant chooses
whether to continue as I or U ⊗ U×. Thus, U× is the protocol in which the
right participant chooses whether to do nothing, or to do U and then U× again.
Put another way, U× is the iterated version of U , in which the right participant
decides when to stop iterating. Our interpretation of U+ is dual. Everything is
as above, except that the roles of the right and left participant are swapped.

For example, suppose A,B ∈ A0. For each of the following exchanges,
call the left participant Alice and the right participant Bob, as before. Now,
consider:

• To carry out (A◦)× = I×(A◦⊗(A◦)×) ∈ A◦•
∗ , first Bob chooses which of I

and A◦ ⊗ (A◦)× will happen. If Bob chooses I then the exchange ends. If
Bob chooses A◦ ⊗ (A◦)× then Alice sends Bob and instance of A and the
two of them carry out (A◦)× again from the beginning. In other words,
Bob can request any number of instances of A from Alice.
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• To carry out (A◦×B•)+ ∈ A◦•
∗ , first Alice chooses which of I and (A◦×

B•)⊗(A◦×B•)+ will happen. If Alice chooses I then the exchange ends.
If Alice chooses (A◦×B•)⊗(A◦×B•)+ then Bob chooses which of A◦ and
B• will happen, with Alice sending Bob an instance of A if Bob chooses
A◦ and Bob sending Alice an instance of B if he chooses B•. Then, the
two of them carry out (A◦ ×B•)+ again from the beginning.

The key idea in our notion of iteration is the equation U× = I × (U ⊗ U×),
which allows us to use π0 : U× → I and π1 : U× → U⊗U× to express properties
of U× . Dually, we will be able to use π

0 : I → U+ and π

1 : U ⊗ U+ → U+

to express properties of U+. We proceed to extend the free cornering with the
notion of iteration suggested by this:

Definition 13. Let A be a distributive monoidal category. We define the free
cornering with iteration of A, written ⌜

⌞A⌝⌟
∗
, to be the free single-object double

category with horizontal edge monoid (A0,⊗, I), vertical edge monoid A◦•
∗ , and

generating cells and equations consisting of:

• The generating cells and equations of ⌜
⌞A⌝⌟

⊕
(Definition 10).

• For each trio of cells α : ⌜
⌞A⌝⌟

∗
(V AAU), f : ⌜

⌞A⌝⌟
∗
(W A

BK), and g : ⌜
⌞A⌝⌟

∗
(W I

I V⊗W)

a unique cell α×
f,g : ⌜

⌞A⌝⌟
∗
(W A

BU
×⊗K) satisfying:

• Dually, for each trio of cells α : ⌜
⌞A⌝⌟

∗
(U AAV ), f : ⌜

⌞A⌝⌟
∗
(KA

BW), and g :
⌜
⌞A⌝⌟

∗
(V⊗W I

IW) a unique cell α+
f,g : ⌜

⌞A⌝⌟
∗
(U+⊗KA

BW) satisfying:

We extend our interpretation of cells of ⌜
⌞A⌝⌟

⊕
as interacting processes to cells

of ⌜
⌞A⌝⌟

∗
. Recall that U× = I × (U ⊗ U×) is the exchange in which the right

participant chooses whether the exchange is over (via π0), or is to continue as
U ⊗U× (via π1). The cells α×

f,g enable our procedures to be the left participant
of such exchanges, reacting to the choices of the right participant as specified
by the equations. Of course, α+

f,g is the dual version for exchanges U+, with the
roles of the left and right participants swapped.

Remark 3. In developing an intuition about this it is helpful to consider the
following, simpler forms of these cell formation rules: Let α : (U AAW). We define:

α× = α×
π0,π1

: (U×A

A
W×) α+ = α+π

0,

π

1
: (U+

A

A
W+)
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Then α× and is the unique cell such that:

α× | π0 = π0 | 1A α× | π1 = π1 |
α

α×

and similarly α+ is the unique cell such that:

π

0 | α+ = 1A | π

0

π

1 | α+ =
α

α+
| π

1

Interpreted as an interacting process, α× reacts to the choice (made along the
right boundary) to stop iterating by doing nothing to its inputs and propagating
this choice along its left boundary. Similarly, α× reacts the the choice to continue
iterating, performing U once before performing U× again, by acting as α once
and then continuing as α×, propagating this choice along its left boundary. The
interpretation of α+ is similar. We note that both (−)+ and (−)× give functors
H ⌜

⌞A⌝⌟
∗ → H ⌜

⌞A⌝⌟
∗
.

Remark 4. Before moving on we note that cells α×
f,g, and α+

f,g admit a coin-

ductive reasoning principle. For α×
f,g, we have that if γ satisfies:

γ | π0
id

= f γ | π1
id

= g | α
γ

then γ = α×
f,g, which we say holds by coinduction. The coinductive reasoning

principles for cells α+
f,g is similar.

Example 4 (Mealy Machines). Say that a mealy machine in a monoidal cate-
gory A consists of a morphism m : A ⊗ S → S ⊗ B. Then the classical notion
of mealy machine is recoverable by considering mealy machine in the category
of finite sets, with S the set of states, A the input alphabet, and B the output
alphabet. Mealy machines are usually understood to operate on a sequence of
inputs drawn from A, producing a sequence of outputs drawn from B. The
state of the machine is fed forward to future iterations.

If m : A⊗ S → S ⊗B in A then let M : (A◦ S
SB

◦) be the cell:

Then the cell M+ : ((A◦)+
S
S (B◦)+) exhibits the behaviour of the process that the

Mealy machine m is intended to define, as in:

that is, if the there is no more input then the machine produces no more output,
and if there is further input then the machine produces output accoring to m
and updates its internal state.
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Example 5 (Memory Cell). Consider the cell H = (
putAR
getAR

)× : (I AA (A◦⊗A•)×).

This cell behaves as follows:

Think of H as a simple sort of memory cell that stores a value of type A. When
called upon by the environment along its right boundary, the cells outputs
its contents, waits for its new contents to be supplied, and waits for further
instructions (above right). The cell can also be told to stop (above left).

Example 6. Suppose our base category A has objects bread and $, as well
as objects representing stacks of each: Sbread ∼= I ⊕ (bread ⊗ Sbread) and S$ ∼=
I ⊕ ($⊗ S$) as in Section 3.1. We construct a process that sells bread, sales :
⌜
⌞A⌝⌟

∗
(($◦⊗($•×bread))+

Sbread⊗S$
Sbread⊗S$

I) as follows: Let sale : ⌜
⌞A⌝⌟

∗
($◦⊗($•×bread)

Sbread⊗S$
Sbread⊗S$

I)
be the cell below on the left, with γ0 and γ1 the cells below on the right.

Then define sales = sale+1Sbread⊗S$ ,□I
. We have:

We imagine the left boundary of sales as aa sort of queue of customers, waiting
to purchase bread. If there are no more customers ( π

0) then sales simply
retains its stacks of bread and $. If there is at least one more customer (π1)
then sales receives $ from the first customer in line. If no bread is available
(the stack of bread is nil) then the money is returned. Otherwise the customer
receives the firs tpiece of bread on the stack. This process is repeated until no
customers remain.

4.2. Elementary Properties

We proceed to establish some elementary properties of the free cornering with

iteration. First we note that the properties of ⌜
⌞A⌝⌟

⊕
established in Section 3.3

all hold in the free cornering with iteration, specifically Lemmas 6,7,8, and 9 all
hold in ⌜

⌞A⌝⌟
∗
.

Moving on to elementary properties of ⌜
⌞A⌝⌟

∗
specifically, we show that U×

and U+ arise as (co)algebras of a functor on the category of horizontal cells:

Lemma 15. Consider the category H ⌜
⌞A⌝⌟

∗
of horizontal cells of the free corner-

ing with iteration. For all objects U of H ⌜
⌞A⌝⌟

∗
, we have:
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(i) (U×, idU× : U× → U× = I×(U⊗U×)) is the final coalgebra of the functor

I × (U ⊗−) : H ⌜
⌞A⌝⌟

∗ → H ⌜
⌞A⌝⌟

∗

(ii) (U+, idU+ : U+ → U+ = I+(U ⊗U+)) is the initial algebra of the functor

I + (U ⊗−) : H ⌜
⌞A⌝⌟

∗ → H ⌜
⌞A⌝⌟

∗

Proof. (i) Suppose (W,h : W → I × (U ⊗W )) is a coalgebra for (I × (U ⊗
−). We must show that there is a unique coalgebra morphism (W,h) →
(U×, idU×) in H ⌜

⌞A⌝⌟
∗
. Define α = (idU )×(h|π0),(h|π1)

: (W I
I U

×). We must

show that α gives a morphism of coalgebras. That is, we must show that
in H ⌜

⌞A⌝⌟
∗

we have:

W I × (U ⊗W )

U× U× = I × (U ⊗ U×)

α

h

(π0×π1| idUα )=(I×(U⊗−))(α)

idU×

This is because we have:

h | (π0 × π1 |
idU
α

) | π0 = h | π0

and

h | (π0 × π1 |
idU
α

) | π1 = h | π1 |
idU
α

and so by coinduction we have that h | (π0×π1 idUα ) = (1U )×(h|π0),(h|π1)
= α,

and so α : (W,h)→ (U×, idU×) is a morphism of coalgebras. It remains to
show that α is the unique such coalgebra morphism. To that end, suppose
that β : (W,h) → (U×, idU×) is a coalgebra morphism. That is, suppose
we have:

W I × (U ⊗W )

U× U× = I × (U ⊗ U×)

β

h

(π0×π1| idUβ )=(I×(U⊗−))(β)

idU×

Then we have:

h | (π0 × π1 |
idU
β

) | π0 = h | π0

and

h | (π0 × π1 |
idU
β

) | π1 = h | π1 |
idU
β

and so by coinduction we have that β = (1U )×(h|π0),(h|π1)
= α, as required.
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(ii) Similar to the proof of (i).

Further, we exhibit (co)monoid structures on our iterated protocol types and
show that they enjoy a kind of naturality:

Lemma 16. For all objects U of H ⌜
⌞A⌝⌟

∗
:

(i) (U×,∆×
U , π0) is a comonoid in H ⌜

⌞A⌝⌟
∗
where ∆×

U = (idU )×idU× ,π1
. Dually,

(U+,∇+
U ,

π

0) is a monoid in H ⌜
⌞A⌝⌟

∗
where ∇+

U = (idU )+idU+ ,

π

1
.

(ii) For any h : (U II W), ∆×
U | h

×

h× = h× | ∆×
W . Dually, ∇+

U | h+ = h+

h+ | ∇+
W .

Proof. (i) We must show that (U×,∆×, π0) is coassociative and counital. For
coassociativity, we have:

and then by coinduction we have:

as required. The first counitality axiom holds immediately:

For the second counitality axiom, we have:

and so, since idU× | π1 = π1 | idU×
idU×

, we have by coinduction that the

second unitality axiom holds, as in:

It follows that (U×,∆×
U , π0) is a comonoid. The proof that (U+,∇+

U ,

π

0)
is a monoid is similar.
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(ii) Suppose h : (U II W). Then we have:

h× | ∆×
W |

π0
idU×

= h× = ∆×
U |

π0
h×

= ∆×
U |

h×

h×
| π0
idU×

h× | ∆×
W |

π1
idW×

= h× | π1 |
idW

∆×
W

= π1 |
h

h×
| idW

∆×
W

= π1 |
h

h× | ∆×
W

∆×
U |

h×

h×
| π1
idU×

= ∆×
U |

π1 | h
h×

h×
= π1 |

h

∆×
U | h

×
h×

and so by coinduction ∆×
U | h

×

h× = h× | ∆×
W , as promised. The proof that

∇+
U | h+ = h+

h+ | ∇+
W is similar.

We end our discussion of the elementary properties of ⌜
⌞A⌝⌟

∗
by showing that

the functors (−)× and (−)+ of Remark 3 are (co)monadic:

Lemma 17. Consider the category H ⌜
⌞A⌝⌟

∗
. We have:

(i) The functor

(−)× : H ⌜
⌞A⌝⌟

∗ → H ⌜
⌞A⌝⌟

∗

is a comonad with counit ε× : (−)× → 1H ⌜⌞A⌝⌟∗ given by components ε×U =

π1 | idU
π0

: (U× I
I U) and comultiplication δ× : (−)× → (−)×× given by

components δ×U = (idU×)×
π0,∆

×
U

: (U× I
I U

××).

(ii) The functor

(−)+ : H ⌜
⌞A⌝⌟

∗ → H ⌜
⌞A⌝⌟

∗

is a monad with unit η+ : 1H ⌜⌞A⌝⌟∗ → (−)+ given by components η+U =
idUπ

0
| π

1 : (U II U
+) and comultiplication µ+ : (−)++ → (−)+ given by

components µ+
U = (idU+)+π

0,∇+
U

: (U++ I
I U

+).

Proof. (i) It is straightforward to verify that (−)× is a functor. In order to
prove that it is a comonad we first show that ε× and δ× are natural.
Explicitly, we require:

U× U

W× W

h×

ε×U

h

ε×W

U× U××

W× W××

δ×U

h× h××

δ×W

for any h : U →W of H ⌜
⌞A⌝⌟. For ε× we have:

h× | ε×W = h× | π1 |
idW
π0

= π1 |
h

h×
| idU
π0

= π1 |
h

π0
= ε×U | h
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as required. For δ× we have:

h× | δ×W | π0 = h× | π0 = π0 = δ×U | π0 = δ×U | h×× | π0

h× | δ×W | π1 = h× | ∆×
W |

idW×

δ×W
= ∆×

U |
h×

h×
| idW×

δ×W
= ∆×

U |
h×

h× | δ×W

δ×U | h×× | π1 = δ×U | π1 |
h×

h×× = ∆×
U |

idU×

δ×U
| h

×

h×× = ∆×
U |

h×

δ×U | h××

and then by coinduction we have h× | δ×W = δ×U | h×× as required.

It remains to show that the comonad axioms are satisfied. That is, we
require:

U× U××

U×× U×××

δ×U

δ×U

δ×
U×

(δ×U )×

U× U×× U×

U×

ε×
U× (ε×U )×

δ×U idU×idU×

Notice that by coinduction δ×U | ∆×
U× = ∆×

U |
δ×U
δ×U

although, somewhat

misleadingly, not as a consequence of Lemma 16. For coassociativity of
δ×, we have:

δ×U | δ×U× | π0 = δ×U | π0 = δ×U | (δ×U )× | π0

δ×U | δ×U× | π1 = δ×U | ∆×
U× |

idU××

δ×U×
= ∆×

U |
δ×U
δ×U
| idU××

δ×U×
= ∆×

U |
δ×U

δ×U | δ×U×

δ×U |(δ×U )× | π1 = δ×U |π1 |
δ×U

(δ×U )×
= ∆×

U |
idU×

δ×U
| δ×U

(δ×U )×
= ∆×

U |
δ×U

δ×U |(δ×U )×

and so by coinduction we have δ×U | δ×U× = δ×U | (δ×U )× as required. For the
first counit law, we have:

δ×U | ε×U× | π0 = δ×U | π1 |
π0
π0

= ∆×
U |

π0

δ×U | π0
= π0 = idU× | π0

δ×U | ε×U× | π1 = δ×U | π1 |
π1
π0

= ∆×
U |

π1

δ×U | π0
= π1 |

idU

∆×
U |

idu×
π0

= π1 =

idU× | π1

and then since idU× | π1 = π1 | idU
idU×

we have δ× | ε×U× = idU× by
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coindution. For the second counit law, we have:

δ×U | (ε×U )× | π0 = δ×U | π0 = π0 = idU× | π0

δ×U | (ε×U )× | π1 = δ×U | π1 |
ε×U

(ε×U )×
= ∆×

U |
idU×

δ×U
| ε×U

(ε×U )×

= ∆×
U |

π1 | idUπ0

δ×U | (ε×U )×
= π1 |

idU

∆×
U | π0

δ×U |(ε×U )×

= π1 |
idU

δ×U | (ε×U )×

and then since idU× | π1 = π1 | idU
idU×

we have that δ×U (ε×U )× = idU× by

coinduction. Thus, ((−)×, δ×, ε×) is a comonad on H ⌜
⌞A⌝⌟

∗
.

(ii) Similar to the proof of (i).

4.3. Crossing Cells

We extend Definition 11 to obtain crossing cells in the free cornering with
iteration:

Definition 14. Let A be a distributive monoidal category. For each A ∈ ⌜
⌞A⌝⌟

∗
H

and each U ∈ ⌜
⌞A⌝⌟

∗
V We define crossing a crossing cell χU,A : (U AAU) by induction

on the structure of U . The cases for A◦, A•, I, U ⊗W,U ×W , and U + W are
as in Definition 11. For U× we define χU×,A = (χU,A)× and for U+ we define
χU+,A = (χU,A)+. That is, χU×,A is the unique cell such that:

Similarly, χU+,A is the unique cell such that:

The crossing cells remain coherent with respect to horizontal composition:

Lemma 18. For U ∈ A◦•
∗ and A,B ∈ A0 we have

(i) χU,A⊗B = χU,A | χU,B
(ii) χU,I = 1U

Proof. We extend the proof of Lemma 10 with the necessary inductive cases:
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(i) For U× we have:

χU×,A⊗B | π0 = π0 | 1A⊗B = π0 | 1A | 1B = χU×,A | χU×,B | π0

χU×,A⊗B | π1 = π1 |
χU,A⊗B
χU×,A⊗B

= π1 |
χU,A | χU,B
χU×,A⊗B

χU×,A | χU×,B | π1 = π1 |
χU,A
χU×,A

| χU,B
χU×,B

= π1 |
χU,A | χU,B

χU×,A | χU×,B

and so χU×,A⊗B = χU×,A | χU×,B by coinduction. A similar argument
gives χU+,A⊗B = χU+,A | χU+,B .

(ii) For U× we have:

χU×,I | π0 = π0 | 1I = π0 = idU× | π0

χU×,I | π1 = π1 |
χU,I
χU×,I

= π1 |
idU
χU×,I

idU× | π1 = π1 = π1 | idU⊗U× = π1 |
idU
idU×

It follows that χU×,I = idU× . The case for U+ is similar.

Next, we show that the technical lemma concerning crossing cells holds in
the free cornering with iteration:

Lemma 19. For any cell α of ⌜
⌞A⌝⌟

∗
we have

Proof. We extend the proof of Lemma 11 with the necessary inductive cases.
For cells α×

f,g we have:
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which gives, using the proof technique of Remark 4:

as required. The case for cells α+
f,g is similar.

Consequently, ⌜
⌞A⌝⌟

∗
is a monoidal double category with the tensor product

of cells and proof as in Lemma 3. We record:

Lemma 20. If A is a distributive monoidal category then ⌜
⌞A⌝⌟

∗
is a monoidal

double category.

Further, the crossing cells remain coherent with respect to ⊕ in ⌜
⌞A⌝⌟

∗
:

Lemma 21. In ⌜
⌞A⌝⌟

∗
, χU,A⊕B =

[
χU,A

σ0
,
χU,B

σ1

]
. That is, χU,A⊕B is the unique

cell such that:

σ0
χU,A⊕B

=
χU,A
σ0

σ1
χU,A⊕B

=
χU,B
σ1

Proof. By structural induction on U . We supply the necessary inductive cases
to extend the proof of Lemma 13 to a proof of the present claim. For U× we
have:

and so by coinduction we have σ0

χU×,A⊕B
=

χU×,A

σ0
. Similarly, σ1

χU×,A⊕B
=

χU×,B

σ1
.

The case for U+ is analogous.

4.4. A Model: Iteration in Stateful Transformations

We return to the double category S(C) of stateful transformations over a
cartesian closed category with distributive binary coproducts. In order to ac-
commodate the iteration protocols in S(C) we require additional structure on
the base category as follows:

• If the final coalgebra over the functor Y 7→ (X ⊗ FY ) exists for a strong
F , we define F× to be the functor sending X to the carrier of that final
coalgebra. So there must be a final coalgebra c×F,X : F×X → X⊗F (F×X).
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• If the initial algebra over the functor Y 7→ X ⊕ FY exists for any strong
F , we define F+ to be the functor sending X to the carrier of that algebra.
So there must be an initial algebra a+F,X : X ⊕ F (F+X)→ F+X.

For example, container functors are strong and closed under these constructions
and the choice constructions. Moreover, A◦, A• can be given by container
functors too. So a possible model to work in would be the double category
using the category of sets as horizontal edges, container functors as vertical
edges, and the relevant container morphisms as 2-cells, which we call the double
category of stateful container transformations. See [1, 3] for more details on
container functors and their closure properties.

In any case, if the endofunctor F× as given above exists, it is strong. This can
be shown by constructing a coalgebra for (X⊗Y ⊗F (−)) with carrier F×X⊗Y ,

thereby constructing a coalgebra morphism: τF
×

X,Y : F×X ⊗ Y → F×(X ⊗ Y ).
The coalgebra is defined as follows:

F×X ⊗ Y c×⊗Y−−−−→ X ⊗ F (F×X)⊗ Y X⊗⟨p1,τF ⟩−−−−−−−→ (X ⊗ Y ⊗ F (F×X ⊗ Y ))

The endofunctor F+ is proven to be strong by defining an algebra for (X ⊕
F (−)) with carrier (F+(X ⊗ Y ))Y , thereby constructing an algebra morphism
m : F+X → (F+(X⊗Y ))Y which induces a natural transformation for strength

τF
+

X,Y = (m⊗ Y ) evY : F+X ⊗ Y → F+(X ⊗ Y ). The algebra is defined as

[λ[lX,Y ], λ[rX,Y ]] : X ⊕ F ((F+(X ⊗ Y ))Y )→ (F+(X ⊗ Y ))Y where

lX,Y : X ⊗ Y σ0−→ (X ⊗ Y )⊕ F (F+(X ⊗ Y ))
a+F,X⊗Y−−−−−→ F+(X ⊗ Y )

rX,Y : F ((F+(X ⊗ Y ))Y )⊗ Y τF F (evY )−−−−−−→ F (F+(X ⊗ Y ))
σ1 a

+
F,X⊗Y−−−−−−−→ F+(X ⊗ Y )

Given α : (GAAH), g : (F 1
1G◦F) and f : (F ABK), we define α×

f,g : (F ABH
×◦K)

as the unique coalgebra morphism α×
f,g,X : FX ⊗ A→ H×K(X ⊗B) from the

coalgebra ⟨f, (g ⊗A)α⟩ : FX ⊗A→ K(X ⊗B)⊗H(FX ⊗A) to c×H,K(X⊗B) .

The dual case is slightly more involved. Suppose given α : (F AAG), g :

(G◦H 1
1H) and f : (KA

BH). We construct the map:

h := F ((H(X ⊗B))A)⊗A αG(evAX⊗B)−−−−−−−−→ GH(X ⊗B)
gX⊗B−−−−→ H(X ⊗B)

Then λ[f ] : KX → (H(X ⊗ B))A and λ[h] : F ((H(X ⊗ B))A) → (H(X ⊗
B))A gives us an algebra: [λ[f ], λ[h]] : KX⊕F ((H(X⊗B))A)→ (H(X⊗B))A.
This gives us an algebra morphism from a+F,KX to [λ[f ], λ[h]], which we can

evaluate to α+
f,g = (a+F,KX ⊗A)evA : F+(KX)⊗A→ H(X ⊗B).

To show that the constructed natural transformations are strong, we show
that the components that they are constructed from are strong. Firstly, for a
constant A, the natural transformation evAX is strong by definition of strength
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of the (−)A functor. Similarly, c× and a+ are strong natural transformations
by definition of strength on F× and F+. It remains to be verified that λ[−]
preserves strength of its argument.

Lemma 22. Given a strong natural transformation αX : FX ⊗ A → GX, we
prove that λ[αX ] : FX → (GX)A is strong.

Proof. We show that the proper diagram commutes:

FX ⊗B (GX)A ⊗B

F (X ⊗B) G(X ⊗B)A

λ[αX ]⊗B

τF
X,B

τA•G
X,B

λ[αX⊗B ]

We use that if (f ⊗ A)evA = (g ⊗ A)evA, then f = λ[(f ⊗ A)evA] = λ[(g ⊗
A)evA] = g to show the above diagram commutes.

FX⊗B⊗A (GX)A⊗B⊗A (GX⊗B)A⊗A (G(X⊗B))A⊗A

FX⊗A⊗B (GX)A⊗A⊗B GX⊗B

FX⊗B⊗A F (X⊗B)⊗A G(X ⊗B)

λ[αX ]⊗B⊗A

FX⊗γB,A

τA•⊗A

(GX)A⊗γB,A

(τG
X,B)A⊗A

evA
(GX⊗B)A

evAG(X⊗B)

λ[αX ]⊗B⊗A

FX⊗γA,B

evAGX⊗B

τG
X,B

τF
X,B⊗A αX⊗B

For certain categories C there is model of ⌜
⌞C⌝⌟

∗
given by part of the double

category of stateful transformations. Specifically, this model exists when C
is a distributive cartesian closed category, and there is a collection of strong
endofunctors on C closed under composition, +, ×, final coalgebra and initial
algebra constructions, and this collection contains the identity functor and the
endofunctors A◦ and A• for each object A of C. The model is then given by
restricting S(C) to the part of the vertical edge monoid given by endofunctors
in the collection discussed above. For example if C is the category Set of sets,
then taking the collection to be the container endofunctors on Set gives a model
of ⌜

⌞Set
⌝
⌟
∗
.

Remark 5. We consider the interpretation of iteration protocols given by (−)+

and (−)× from the perspective of computational effects, extending Remarks 1
and 2. As a computational effect, F+ enables a program to trigger the effect F
any number of times it chooses. Dually, to resolve an effect F+ its environment
must be able to resolve F any number of times. Similarly, to trigger F× a pro-
gram must provide a method for triggering F any number of times, as required
by the environment. Dually, to resolve F× the environment must commit to
resolving F a number of times of its choosing, and then resolve those effects.
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5. Concluding Remarks

We have shown how to extend the free cornering of a symmetric monoidal
category to support both branching communication protocols and iterated com-
munication protocols, bringing it closer to existing systems of session types.
Specifically, we have constructed the free cornering with choice (Definition 10)
and the free cornering with iteration (Definition 13) of a distributive monoidal
category, shown that they inherit significant categorical structure from the free
cornering, and provided some evidence that they fit well into the categorical
landscape. Further, we have constructed the double category of stateful trans-
formations (Definition 6) — a model of the structure found in the free cornering,
free cornering with choice, and free cornering with iteration.

While our work constitutes a significant step, the path is long, and we envi-
sion our work here as a small part of a much larger research project surrounding
the free cornering. In this final section we elucidate this project by outlining a
number of directions for future work:

Active Iteration. There is a mismatch between our constructions of the free cor-
nering with choice and the free cornering with iteration. In the free cornering
with choice, we have a pair of dual operations −+− and −×− on cells corre-
sponding to reactive protocol choice, and a third operation [−,−] which allows
active protocol choice. In the free cornering with iteration we again have a pair
of dual operations (−)+ and (−)× corresponding to reactive protocol iteration,
but we are missing their active counterpart. That is, in the free cornering with
iteration we cannot model processes that choose whether or not to continue it-
erating a given protocol as a function of their input. Put another way, we ought
to be able to control the iteration of a communication process with a “while
loop”, but this would require a notion of “while loop” in the vertical direction.

We briefly speculate about the form that the axioms for active iteration
ought to take. For each quartet of cells α : ⌜

⌞A⌝⌟
∗
(U A

B⊕AW), f : ⌜
⌞A⌝⌟

∗
(SBCK),

g : ⌜
⌞A⌝⌟

∗
(S II U⊗S), and h : ⌜

⌞A⌝⌟
∗
(W⊗K I

I K) we seem to require a cell α∗
f,g,h :

⌜
⌞A⌝⌟

∗
(SB⊕A

C K) satisfying:

Significantly, asking for α∗
f,g,h to be the unique such cell is too strong, and

collapses the hom-sets of the resulting category of vertical cells. While this sort
of active iteration is convenient for constructing examples, it is unclear what sort
of properties we ought to ask for in order to obtain e.g., well-behaved crossing
cells. We speculate that a double-categorical analogue of the notion of uniform
trace operator (see e.g, [16]) will suffice, but how such an analogue should look
has not yet been fully worked out.

In the presence of cells α∗
f,g,h we may extend Example 6 as follows: let

buy : (I Sbread⊗$⊗S$
Sbread⊕(Sbread⊗$⊗S$)

bread•⊗bread•⊗$◦) be the cell below on the left, then
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define buys’ = buy∗1Sbread
,□I ,

π

1
: (I Sbread⊕(Sbread⊗$⊗S$)

Sbread
(bread•⊗bread•⊗$◦)+), and let

buys : (I Sbread⊗S$
Sbread⊗S$

(bread•⊗bread•⊗$◦)+) be the cell below on the right:

Now the behaviour of buys depends on how much money it has. Specifically,
we have:

so buys buys bread until it is out of money. Now, we may also consider sales
buys

,
the process which first sells bread until instructed to switch modes, and then
buys bread until it is out of money.

Abstract Definitions. In the free cornering, the corner cells carry the structure
of a proarrow equipment. A natural question is what structure is carried by the
cells of the free cornering with choice and free cornering with iteration. While
the structure of the free cornering with choice is clearly some sort of product or
coproduct on a single-object double category, it is not clear what sort of limit
this is. We remark that it does not seem to be directly related to the double-
categorical limits studied in [14]. Similarly, it is unclear what double-categorical
structure the cells of the free cornering with iteration carry. We suspect this to
be a fruitful direction for future work.

Term Logic for Cells. Any comparison of the free cornering (with or without
choice and iteration) to existing models of concurrent computation is made
somewhat awkward by the lack of a term calculus and accompanying term
rewriting system for the free cornering. Most existing process calculi and pro-
cess algebras are first and foremost term calculi, and do not tend to have an
accompanying categorical semantics. The free cornering exists only as categor-
ical semantics. Thus, in order to better situate our work in the literature on
concurrent computation we would seem to require a term calculus for the free
cornering.

While the terms of a rewriting system often form a category, we are not
aware of any rewriting systems in which the terms form a double category. In
particular, while systems of tile logic (see e.g., [6]) form double categories, there
the cells of the double category in question correspond to the rewrites, while for
us the cells must correspond to the terms. There is an evident notion of Cat-
enriched double category, in which the cell-sets of the double category in question
are in fact categories — in which morphisms correspond to rewrites — and the
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composition operations are given by functors. Cat-enriched categories are known
to model rewriting systems in which the terms form a category [30], and so we
expect that the rewriting systems appropriate to our setting will form Cat-
enriched double categories. This requirement should guide future developments
in in the direction of a term logic for the free cornering.

Coherence and Vertical Cells. An important property of the free cornering is
that the vertical cells are the base category:

Proposition 1 ([25]). Let A be a symmetric monoidal category. Then there is
an isomorphism of categories V ⌜

⌞A⌝⌟ ∼= A.

We think of this as a kind of coherence. We conjecture that the free cornering
with choice and free cornering with iteration are also coherent in this way:

Conjecture 1. Let A be a distributive monoidal category. Then:

(i) There is an isomorphism of categories V ⌜
⌞A⌝⌟

⊕ ∼= A.

(ii) There is an isomorphism of categories V ⌜
⌞A⌝⌟

∗ ∼= A.

While we believe it to be true, we currently lack the machinery necessary
to prove our conjecture. The most promising approach looks to be through
the sort of term calculus and rewriting system for the free cornering discussed
above, further motivating its development.

Additional Effects of Stateful Transformations. We have given a model of the
free cornering in terms of strong functors and strong natural transformations.
Besides the protocols in the image of the double functor from the free cornering
of C into S(C), other effects modelled by strong monads occur as protocols in
S(C) as well, such as monads for nondeterminism and probability. One direc-
tion for future work would be to axiomatise selected effects directly in the free
cornering. Furthermore, the representation of computational effects in the form
of a double category could help us describe both operational and denotational
semantics of effectful programs. On the operational side, double cells function
as a kind of effect handler [28], translating effects received from its interior into
effects invoked in its environment. On the denotational side, models related to
stateful nondeterministic runners [35] and other program-environment interac-
tion laws [18] seem particularly suitable for interpretation in this model.
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