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Introduction
Around the world, the power generation portfolio has increased the share of renewableenergy resources in the total energy mix [1]. The factors behind this growth are increasingdemand, increasing fossil fuel prices, and the necessity of reducing greenhouse gas emis-sions [2]. It is predicted that these reasons will not disappear in the forthcoming yearseven with the best of intentions to increase energy efficiency and decrease fossil-basedenergy production. Solar, wind, geothermal, and nuclear energy are among the highlycultivated resources.In the real world it is both cost-effective and time-saving to construct a model for acomplex concept. A model can be deemed as being a near-real-world symbolic represen-tation of the eventual real-world concept. A model can be further classified into an ab-stract or concrete. The difference is that the former is more generalized and is thereforeeasier to adapt, while the latter is specific to the peculiarities of the concept. Amathemat-ical optimization model, therefore, is a streamlined algebraic formulation which containsparameters and variables expressing relations and concepts. Optimization models in turnare a type of mathematical model. Note that the complexity of the models grows withthe volume of input information. Therefore, depending on the intended purpose behindthe models, the priorities are set a priori by means of assumptions.The following sections introduce the power systemplanning process and themodellingapproach. Following that, the main contributions of the thesis are outlined.
Modern Power Distribution System Planning
Electrical power is typically transmitted from the point of generation to the point of con-sumption. Note that this can involve one of the three processes: a) centralized b) decen-tralised c) the transactive model of the flow. A power system in which the power flowsfrom a set of large-scale generator units in one location to the source of the demand, isa termed as centralized. Opposed to this is the decentralized mode in which the powerflows frommultiple large and/or small generation units, usually non-dispatchable genera-torswhich are situated in close proximity, to the source of the demand. Transactive energyrefers to the flow of energy among and across producers, with this being classed as beinga decentralized and distributed mode of supply. Power distribution can be understood asthe final stage in the delivery of electric power from the transmission system to individualconsumers. The modern power distribution system (PDS) can be referred to the distri-bution system wherein the power is produced locally and consumer participation. Theobjective of modern PDS planner is to optimally maintain the energy balance in the mosteconomical, reliable and secure manner. The contours of modern power distribution sys-tem planning include intelligent distribution management system, coordinated planning,consideration of uncertainties, decomposition, and advanced optimization methods [3].Therefore, planning for modern power distribution network is an integrated and coordi-nated decision-making process.When considering a power network as shown in fig. 1, it can be observed that it has,as an example, fifty nodes and seventeen load demands. The network has twelve non-dispatchable power generation units (such as wind power) and four dispatchable gener-ation units. It illustrates a section of a power distribution network with various transmis-sion line capacities. PDS planning for the presented power network includes decisions inrelation to the following:

• the sizing and siting of generation units and energy storage units
• the capacity expansion of PDS
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• scheduling the non-dispatchable production units and maintenance
• flexibility in the PDS through demand side management
• the restructuring of the PDS
Optimal planning for such a network involves the challenge faced by the need for thenear-accurate prediction of variables such as load demand and wind power production.Wind, being a form of local energy production, is crucial in order to avoid energy curtail-ment and to better utilize the power production. For example, an accurate wind powerpredictionwould lead to optimal planning for the expansion of transmission capacity. Pre-dicting natural phenomena is often more challenging than that of the dispatchable gen-eration units. However, identifying significant events, such as events that involve high orlow power production levels, leads to the better control of the wind power plant. Subse-quently, modelling PDS planning becomes highly complex owing to the variables, uncer-tainties, scale (granularity) and context all having to be considered. For instance, the vari-ability of wind energy production and the inherent uncertainty are examples of elementsin that complexity. In chapter 1 the variability of wind power production is characterizedand the developed model is presented. Solving a PDS planning model with hourly gran-ularity becomes more computationally intensive with the volume of data that needs tobe processed. When consider the capacity expansion model, the context of a distributionsystem planner can vary from that of a production system.

line length > 0.7 km

line length > 0.3 km

line length 0.3 km

 load demand (kW)
dispatchable generator (kW)
non-dispatchable generator (kW)

Figure 1 – A cross-section of power network

Note that the line capacities pose the problem of network congestion. The congestionrefers the hindering of power supply from the point of generation to the point of load de-mand along the path of least resistance. However, the congestion as shown in the diagramcan happen both in terms of new non-dispatchable energy production units and dispatch-able ones. In order to obtain optimal results, such a problem needs to be addressed with
13



high degrees of resolution. In addition, the local energy production and line capacitiesshould also be considered when it comes to devising a both feasible and optimal powersystem plan.
The Generation Expansion Planning (GEP) model deals with the investments into theexpansion and operation of power generation systems. The deteriorating power genera-tion units and growing levels of demand are the two primary motivations for modellingthe GEP models with assumptions of the transmission capacity of the existing power net-work. In particular, with an existing portfolio for the generation units from dispatchableand non-dispatchable resources, the production planner can determine optimal and fea-sible investments in terms of sizing, operational strategy (such as economic dispatch andunit commitment), siting (involving the optimal selection of locations for the installationof the generation units) and a resourcemix of generation units which are able tomeet thefuture demand forecast, along with topological changes in the electrical energy system.The Generation and Transmission Expansion Planning (GTEP) models are combination ofgeneration and transmission expansion planning models. Expansion planning can be adecision for a long or short-term time horizons, depending upon the type of generationunits being used. For a dispatchable energy resource, a short-term planning horizon ismore relevant, whereas for a non-dispatchable a long term one is more suitable.
Transmission Expansion Planning (TEP) models are a subclass of the power system ca-pacity expansion model with the objective of confirming the power transmission capacityof the network in terms of supplying power to meet the demand at any point in time.The objective is to ensure that demand will be met even in critical circumstances suchas: peak demand situations and a failure of any of the generation units. The TEP has twodimensions in the model, namely the economical transaction of energy and the reliabilityof the network. When considering themathematical formulation from a central planner’sperspective, the GEP is formulated either as a profit maximization model within a marketframework in which the trading of energy takes place among agents, or as a cost min-imization model. The TEP is formulated either as a centralized or regulated competitiveplanningmodel. The objective function for a TEPmodel considers optimal network expan-sion in order to achieve economic objectives (such as a reduction in load shedding costsand generation costs) and an increment in system reliability for demandmitigation. A longterm planning horizon is adopted for a TEP by considering the growth rate of demand, andthe existing generation portfolio.
Any inherent randomness in the natural phenomena and/or incomplete informationin terms of the systems give rise to uncertainty. For example, demand is dependent uponweather patterns, as is wind and solar energy production. In the decision theory, GTEPinvolves variables such as demand, prices and wind which all serve to introduces un-certainty. Computational techniques that can be used to manage uncertainties can bebroadly characterized either as sensitive or less sensitive. The latter consists of a prioryassumption to restrain the variables and the former includes the quantification of pos-sible scenarios. Essentially the model can be classified by basing it on a single scenarioand multiple scenarios. With uncertainty comes the dimension of risk in terms of deci-sions. To elaborate, the optimal expansion plan which derives the highest levels of profitfor a given set of scenarios may, be prone to generating higher profit levels but may aswell change significantly in another set of scenarios. Conditional value-at-risk (CVar) andchance-constrained techniques are one of the prominent risk management metrics whenit comes to hedging the risk that can be associated with uncertainties in the energy do-main [4].
The energy market is an environment in which energy transactions can be carried out
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while ensuring the system’s balance and reliability. Energy markets can be regulated orderegulated. The proposed GTEP model in chapter 2 has a nodal pricing scheme for mar-ket cleaning, similar to [5]. The Nodal pricing scheme ensures a Nah-equilibrium for en-ergy prices. The regulation ensures market equilibrium where no producer would changetheir position given the information. Note that incomplete information leads to the pos-sibility of the existence of multiple equilibrium. The emergence of intelligent and respon-sive tools which are driven by techno-economical advancements with environmentallyconscious practices, has highlighted the distributed energy systems as the better solutionover the traditional hierarchical power network structures. This work considers a networkenvironment with distributed energy nodes, one which permits interactive energy and in-formation transactions at all levels of generation and consumption. An example of thisis demand-side participation which refers to interactions between the price signals andenergy consumption. Value added energy transactions among agents within and acrosspower systems via economic and control signals is defined as transactive energy. Noticethat the complexity of such a transactive energy-based system grows exponentially dueto increase in control points in contrast to traditional ones. This in turn invokes decision-making with the importance of considering detailed system information, granularity, andactors becoming key to the process. In addition, partial information based energy trans-actions in an energy market in which the energy prices are revealed following the sub-mission of bids with quantity, gives rise to uncertainties. Similarly, the lapse between thetime frame involved in physical transactions and that for virtual transactions adds up touncertainty and complexity.
The context of a decisionmakingmodel is central to the formulation and interpretationof the model results. For example a market regulatory body with an intention of policymaking is more inclined towards avoiding market inflation by ensuring healthy compe-tition and environmental concerns. At the national level in a developed economy (suchas in OECD countries) a central regulatory body, typically governments, determines theadequate policies for optimal system welfare. The power infrastructure in a country con-stitutes transmission system operators (TSO), distribution system operators (DSO), con-sumers and prosumers. Although there is quite often only onemajor TSO, there are signif-icantly more numbers of regional DSOs. The emergence of transactive energy platformsand associated new actors (for instance prosumers, plug-in electric vehicles) is bringingwith it increased levels of attention to the distribution network. It is clear that the shiftswill have to take place in the power distribution network space. For instance one aspect ispeer-to-peer energy transactions among and across prosumers. One practical applicationappeared as the first start-up on block-chain based peer-to-peer energy transaction by theBrooklyn-MG initiative from the LO3 Energy in New York, USA [6]. Depending upon thesize and structure of the power network, the central power grid is followed by the micro,nano and pico grids. One of the clear advantages at a central grid level is power systemstability. However the past few decades entails many stability improvements in terms ofdecentralized control architectures that help to tackle the engineering issue. Note thatthe history registers the economy as being the driver of technological advancements, forexample the communication industry.
The fig. 2 depicts a power distribution network. This distribution network is dividedinto zones of various sizes and capacities of load demands and power productions. Split-ting the network into zones has the following effects: a) reduces the total complexity ofthe overall system, b) facilitates the tracking of minute changes and impacts, c) is compu-tationally less expensive to solve smaller instances of the problem, d) the optimal solutionmay be a local one rather than a global one, e) it is arguably more practical in terms of the
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Figure 2 – Power distribution network divided into multiple zones

local network and power system elements and f) makes it possible to consider in moredetail the properties of the network (e.g, adequacy and reliability).In this scenario the problem is a decentralized and distributed one. The granularity ofthe problem increases however more practical and applicable results. A generation andtransmission expansion problem in this case considers multiple zones in the region. TheDSO owns the network and facilitates both the energy flow and ancillary services suchas demand side participation and prosumers. Consequently an optimal solution that canbe obtained from such an approach is feasible on a local level. Considering the contextexplained, the model proposed in chapter 2.1 focuses on the distributed and decentral-ized energy infrastructure (DDEI) using transactive energy flow. Chapter 2.2 focuses onemploying a decision support system for interactive visualization of the results. In a DDEIpower distribution system, networks becomesmore relevant with any significant increasein the number of power generation entities, prosumers, community grids. A zone, in thiscontext, consists of modular energy production, dynamic load demand and smart con-trol mechanisms which all serve to form a local power distribution system. Note that azone can both be grid integrated and isolated. In this context there are many zones andtherefore, even individual decisions are more interdependent or in other words there isa tractable and cause-effect mechanism that is present. Be it a zone or microgrid (MG), acommunity grid or a prosumer each actor has an individual profit maximization objectivethat may overlap with those of its neighbours.In this context a best-of-both-worlds decision would be to coordinate the decisionsso as to maintain the system stability. Note that each MG has controls and informationthat are limited to its region. Getting a unanimous consensus among the actors in thiscontext is a somewhat perilous undertaking that could lead to ambiguity. This work isan initial step towards understanding and therefore solving this multi-dimensional deci-sion problems. A multi-dimensional model often requires an inter-disciplinary approachto the solution. The coordinated information is limited to information that is of mutualinterest for instance, for non-dispatchable generation and any increase in load demand.The internal system information can cover areas such as the remaining utilization lifetimeof power apparatus, power outages, and substation-wise power consumption which arenot shared or owned by the local distribution network operator. The acquisition of suchdata has became more accurate owing to significant developments in information and
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communication techniques, such as smart energy meters. However, it is not within thescope of this research to investigate the associated privacy issues that may be related tothe use of such data - that is something for future investigation. Furthering the coordi-nated decision making in chapter 2, the system reliability and investment within the zoneis explored in chapter 3. Power system reliability refers to the operational state of a powersystem. Power system adequacy is associated with static conditions and the facilities thatare needed in order to meet the load demand. Therefore an optimal system plan includes(but not be limited to) the components that include: optimal power flow, remaining uti-lization life span of power system apparatus and consumer satisfaction. A framework toevaluate the reliability and adequacy and amathematical optimizationmodel formulationwhich serves to address optimal investment in power network restructuring for the powerdistribution network with alternating current optimal power flow (AC-OPF) are both pre-sented in chapters 3.1 and 3.2 respectively.
Methodology Used for Modelling in the Thesis
This section provides a brief introduction to the methods, and mathematical program-ming that are, used for modelling in the thesis. The objective is to provide a comprehen-sive background on the following: Mixed Integer Linear Programming (MILP), Non-LinearProgramming (NLP) and stochastic programming.
Linear and Mixed Integer Linear Programming ModelsLP is arguably the most widely used constrained optimization model. The reason beingefficient solution algorithms, applicability and presence of extensive theory [7–9].A LP model can be expressed as

minimize
X

T∑

t=1

M∑

i

cixt (1a)
subject to:

T∑

t=1

M∑

i=1

aitxt ≥ bi ∀ t ∈ T, i ∈M (1b)
xt ≥ 0 ∀ t ∈ T (1c)

In (1) T,M,N are interpret as scalars withinR and ci,xt ,bi are vectors withinRm. More-over ait is a matrix within Rm,t . Here xt is a decision variable. In LP decision variables are
continuous in nature. The above formulation has a linear objective function as in (1a) anda set of inequality constraints as in (1b) and (1c). Consider that objective function can bechanged from minimize to maximize, in this case the inequalities become ≤. Standardalgebraic solution techniques are inapplicable in the presence of inequalities and thusmethods such as Simplex algorithm is utilized to solve.Let us consider a change as xt ∈ Z ∀ t ∈ T; in this case the LP becomes an ILP (IntegerLinear Programming) formulation. Thereby a MILP is a combination of LP and ILP whereina subset of variables are integers. For instance xt ∈ {0,1} ∀ t ∈T restricts xt to be binary.Note that the complexity of the model is increased with an integer variable as opposedto continuous since the variable can only take an integer type value and not decimal. Forexample it can not take a value of 1.1. This has a wide range of use in practice in caseof energy sector, such as scheduling of dispatchable generation units used in chapter 2.Semi-continuous variables are those that can take the value zero or any value between its
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lower bound and its upper bound. Note that the semi-continuous upper bound need notbe finite but the lower bound need to be finite.This is used in chapter-2 to restrict the power flows in the power transmission lineswithin the line capacities. LP models are Polynomial models meaning ∃ an ensured poly-nomial time solution. While MILP are NP-hard models meaning @ ensured polynomialtime solution. The objective function contours and boundaries of the feasible region arenecessarily straight lines that is y = mx+b: where y is stating how far up, x how far along,
m = slope or gradient implying how steep is line and b is intercept stating where the lineintersects the y-axis.The (1) is also a deterministic model because it satisfies the properties: proportion-ality, additivity and certainty. Proportionality refers to the contribution of each decisionvariable both in objective function and constraints. Additivity requires the sum of of theindividual contributions of each variable to be same as the contribution of all the variablesin the objective function. Certainty means that the formulation has known constants oraverage value approximations of the probabilistic distributions. Note that it is usual prac-tice to make such assumption under the criterion that the standard deviations of thesedistributions are sufficiently small. If the standard deviation is large then a sensitivity anal-ysis is performed to record the variations.
Non-Linear Programming
In chapter 1 and 2 the models developed are Non-Linear Programming (NLP) models. Thissection introduces the fundamental concepts for a NLP.A NLP model consists of an algebraic objective function and constraints. The algebraicrefers to operations of addition, subtraction, division, multiplication and exponentiation,etc are applicable to the variables excluding differentiation and integration. The objectivefunction contours and constraint boundaries are need not be straight lines that make itvery difficult to solve. A NLP can be classified as convex or non-convex. A region of spaceis deemed to be convex if the portion of the straight line between any two points in theregion also lies in the region. Convexity can be expressed as

f : ψ → R ∀ x1,x2 . . . ∈ ψ (2)
∀ i ∈ [0,1] : f (ix1 +(1− i)x2 . . .)≤ i f (x1)+(1− i) f (x2) (3)

Thus any point x∗ ∈ ψ , satisfies f (x∗) ≤ f (x) ∀ x ∈ ψ . A convex model maintains theproperties of a LP. The primary difference between convex and non-convex optimizationmodel is that
• A convex model has a unique solution that is the global optimal or @ a feasible solu-tion to themodel. In addition, the local solution is both locally and globally optimal.
• A non-convex optimization might have multiple locally optimal solutions and it istime consuming to distinguish if ∃ no solution or global one.
• Convex models are easier to solve and very efficient solution algorithms exist tosolve it in linear times.
• If a convex problem is solved multiple times to the optimality using different solu-tion algorithms or solvers the solution would always be the same. However for anon-convex problem it is not guaranteed. In fact, it highly dependent on the algo-rithm and initial guess.
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Consider the following formulation:

minimize
X

T∑

t=1

M∑

i

cix2
t (4a)

subject to:
T∑

t=1

M∑

i=1

aitxt ≥ bi ∀ t ∈ T, i ∈M (4b)
xt ≥ 0 ∀ t ∈ T (4c)

The change from xt to x2
t in (4a) turns it a NLP. A NLP is inherently more difficult to obtainoptimal solution. Because it is hard to distinguish between global and local optimal, opti-mal points are not restricted to extreme points, there might exist multiple disconnectedfeasible regions, different starting points may lead to different final solutions, difficulty toidentify feasible starting point, different algorithms can arrive at different solutions for agiven model. Vast literature exists on the NLP model and solution strategies as in [8, 10].The heuristic technique is a process to reach a near optimal, feasible and practical solu-tion. The heuristic begins with an educated guess to reduce the feasible region. The RBAmodel presented in chapter 1 is a heuristic technique to identify singnificant events in atime-seris data.

Stochastic modelIn real world uncertainty ismore practical, even in daily life decisions. Stochastic program-ming (SP) is a mathematical optimization structure that considers the underlying uncer-tainty in the real world. Uncertainty in this context indicates the absence or incompleteinformation. In general the uncertainty in future events. The cause of uncertainty canbe partial observations, stochastic environment. Stochastic scenarios are forecasts basedon past trend with probability of occurrence. In general, they are divided into three cat-egories: most probable, least probable and remaining scenarios. The objective of SP isto find a feasible solution that is optimal to the case (i.e, optimal for the considered sce-narios). In many cases the probability distribution of the data is either known or can beexpected. This presents an advantage to generate scenarios with certain probabilities ofoccurrence.Consider a two-stage SP which is convex in nature as follows:
minimize

X

T∑

t=1

M∑

i

ci
∑

s

Ωs(xts) (5)
Where Ωs is the probability distribution for scenario s. Note that SP maximizes the ex-pectation of the objective function and the random variable. The advantage being therecourse action in second stage as a response to compensate any bad decisions taken inthe first stage. Further literature available at [11].In chapter 1 the heuristic technique based RBA model is presented. A novel stochasticmulti-variate scenario generationmethod using ARIMA and copula is presented in chapter2. The CoMG model discussed in chapter 2 of the thesis is a two-stage stochastic, riskneutral, MILP formulation to address generation and transmission expansion models forpower distribution network. In this case the uncertainty in power demand, energy utilityprice and wind power production are considered as stochastic variables. In the chapter 3
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RNR model is a NLP model formulation that takes in to account the Alternating Current-Optimal Power Flow (AC-OPF) model of the power system.
Tools, Software and Solvers for Modelling
Variousmathematical optimizationmodels are solved usingmathematical algorithms. Forexample, a branch-and-bound technique is a mathematical algorithm that is used to solvethe MILP model. The model is solved through iterations and continuous relaxation withthe suppression of integer constraints. When it comes to solving the MINLP model inchapter 3, an outer approximation algorithm is utilized. The outer approximation tech-nique utilizes the principles of decomposition, outer-approximation and relaxation. Thenthe original MINLP model becomes relaxed MILP sub-problems. In this technique a so-lution is reached through iterations. A detailed explanation of the outer approximationtechnique is presented in [12–14].AIMMS (Advanced Interactive Multidimensional Modeling System) is a tool which isused to formulate and solve large scale mathematical optimization models. It providesan easy interpret-able graphical user interface with an integrated development environ-ment for mathematical optimization models. AIMMS provides a combination of declar-ative and imperative programming styles. Not only it contains a range of pre-installedsolvers but also it automatically chooses best solver with additional model specific tac-tics. It was primarily developed by Johannes J. Bisschop and currently available underlicence from Paragon Decision Technology [15]. AIMMS was selected with the objectiveof being easy-to-use in development, primarily for prototyping both the CoMG and RNRmodels discussed in chapter 2,3 respectively. GAMS (General AlgebraicModelling System)is a mathematical programming tool. It is used to develop prototype of the RNR modelpresented in chapter 3.Guido van Rossum developed the open-source python programming language. It isa high-level programming language for general-purpose programming. It is easy to readwith a clear syntax and is object oriented. A range of packages along with a large supportbase are backing up the project. Pyomo is an open-source python package which was de-veloped by William Hart, Jean-Paul Watson and David Woodruff as an algebraic languagefor formulating optimizationmodels [15–17]. The Python based Pyomo is used with an ob-jective of enabling an open-resource and open research strategy for modelling the RBA,CoMG, and RNR models.
Contributions by the Thesis
The primary research area of this thesis is optimal planning of modern power distributionnetwork. The planning issues addressed in this investigation concerns both technical andeconomic aspects for making an optimal decision. An inter-disciplinary approach (math-ematical optimization, data science, energy economics, electrical power system, multiagent system) has been taken to formulate the models. This thesis contributes throughdevelopment of novel models and framework for the optimal planning of modern powerdistribution systems. Specifically, the optimal network capacity expansion of decentral-ized and distributed power system. The developed models are tested with real-life dataand scenarios for practical decision making. A selection of models are included in thethesis. The chapter-wise contributions are outlined as follows:
Classification and Modelling of Wind Power Variations

• A novel concept to classify the Wind power swings into a series of significant
20



events.
• A ramping behaviour analysis (RBA) algorithm is developed and applied towind power generation from a wind farm.
• An evolutionary genetic algorithm is used to combine the time-series data.The extracted events are studied to practical implications for wind farm oper-ator are outlined.

Modelling Generation and Transmission Expansion Planning

• A novel stochastic multi-variate scenario generation technique is developedand applied to stochastic variables- wind, demand and price.
• A novel bottom-up two-stage chance constrained stochastic model is devel-oped and presented for addressing GTEP (CoMG).
• A coordinateddecisionmaking frameworkwithmulti-agent-systems for strate-gic decision making is developed and applied to distribution network.
• Adecision support system is developed andpresented that interactively presentsthe results of the model for industrial applications.

Reliability Oriented Network Restructuring and Expansion Planning

• Power distribution system reliability and adequacy components for a powerdistribution network are discussed.
• Anovel reliability orientednetwork restructuring (RNR) framework is proposedconsidering power system adequacy and reliability aspects.
• A non-linear AC-OPF model (RNR) is developed with the objective of enablingpower distribution network restructuring taking into account any investmentinto maintenance costs.
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1 Classification and Modelling of Wind Power Variations

"A scientist who learns one [field of]science alone can not be sure of hisown science and, for this reason, thescientist has to be versed in manysciences."
Sushruta Samhita [18]

Wind energy is stochastic in nature due to wind flow being the product of multiple nat-ural phenomena. When the intermittent wind power is introduced to the power system,the inherent uncertainty in the resource introduces challenges to maintain the demand-supply balance. Moreover, the dispatchable power generation units or energy storageunits which cover this variability, require additional capacity to be able to do so. In addi-tion, the optimal utilization of power produced from a non-disputable resource such aswind is a key challenge. Forecasting is one of the many possible solutions to this prob-lem, as well as an interconnected grid, energy storage technologies, demand-side man-agement such as electric vehicles. Forecasting aims to model the uncertainties inheritedby the grid through wind power production and thus is a necessary and cost-effective ele-ment for the optimal integration ofwind power into energy systems. However, forecastingis never accurate and literature suggests providing bounds for the forecasts or confidenceintervals [19–21].
A wind power ramp event can be termed as a sudden change in the output powerover a predetermined threshold. Mathematically, the absolute difference between powerproduced Pt in time t and (t +∆ t) that is above the set threshold P is a ramp event as in(6). However the threshold value is subjective.

|P(t+∆ t)−Pt |> P (6)
The system operator (SO) has to keep the system balanced meaning that power gen-eration must meet the demand at each point in time. Wind ramp events can be eitherpositive or negative based on the generation swings. If it is positive, then the wind tur-bine has to shut down to avoid accidents or damage to the system whereas if the swingis negative the SO has to find a replacement to mitigate the demand. From the economicpoint of view, both energy not used and energy from an alternative resource are crucial.
Wind farm planners predict the wind speed and power production levels by using his-torical data over time, with an objective to determine potential investment and opera-tions. In long-term forecasting, events become insignificant due to the stretch of timebeing looked at, while the short-term forecasting of events is usually more accurate. Fur-thermore, the time interval ∆ t, is typically ten minutes for ramp events. The P is eitherset to an absolute value for a wind park or a certain percentage of the quantity of powerproduced depending on the installed capacity. The problem with this practice is that thepeak generation capacity varies through seasons, additionally being mitigated by factorssuch as turbine maintenance or new installations. Although the threshold is subjectiveto the peculiarities of a wind park, the methods being used to classify ramp events aregeneric. This thesis places its focus on the procedure being used to detect ramp events.In addition, it demonstrates the application when it comes to real-world data from a windpark.
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1.1 Classification of Wind Power Variations
The wind power variations are classified by means of wind ramp events. To capture thevariations a mathematical model is developed. The RBA (Ramping Behaviour Analysis) ismodel containing distinct and inter-related functions. Each function has a distinct objec-tive and the model is sequential and linear time. The sequential means that the functionsmust be executed in the same order as ramp events that are based on peak power. Thisalgorithm has four components: rise time, fall time, ramp-up rate and ramp-down rate.The graphical representation in fig. 3 describes a ramp event and the associated compo-nents. The angle (θ ) references the peak point for both ramp-up and ramp-down events.The persistence presents the amount of time over which the peak event persists. The
∆wup

s ,∆wdown
s refers to the change in amplitude during a significant event.

Time (t)

Power (kW)

Figure 3 – Wind ramp event classification

The data is procured from the wind park with a time resolution of ten minutes. Allof the data points coincide with each other date-wise and time-wise for each turbine.Fig. 4 presents the power production levels from the wind park for the winter season. Itcan be observed that the data has many power swings while preserving the a time-wisecorrelation between turbine power generation.Wind production of a turbine is expressed through capacity factor: the ratio between
the net power generation and the calibrated as in Pnet

Prated
. The data are registered with a

time stamp, however the relation between two subsequent observation is not. Again, thedegree of noise content that is inherent in the data is substantial for event detection pur-pose. For example one outlier could either be a significant event or a noise. Therefore theraw data is smoothed out through various smoothing techniques so that any significantevents can be extracted.Exponential moving average filter technique is used for smoothing the data as in (7).Here f ,c, p,w stands for exponential moving average, current value, previous value and
w = 2/(N+1)weight factor wherein N is number of periods respectively. The results arepresented in the subsequent publication [22].

f (c) =
[
{c− f (p)}w

]
+ f (p) (7)

A given function or signal can be transformed from the time to the frequency domain
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Figure 4 – Wind power generation from wind farm

and the other way round. The frequency domain transforms the linear differential to alge-braic equations which are easy to solve. Furthermore, the latter provides the qualitativebehavior of the system: such as in terms of bandwidth, frequency response, gain, phaseshift, power spectral density, and eigenvalues to name but a few. The focus in this thesisis limited to spectral density and (FFT) Fast Fourier transformation. The Fourier trans-form of a function contains all of the information about the original signal, and with thisinformation, it is possible to reconstruct the function entirely by an inverse Fourier trans-formation. This information includes the amplitude and phase of each frequency that ispresent in the function.
The Fourier transformation of a discrete-time signal x[n],n = 0, . . . ,N is called thediscrete-time Fourier transformation (DTFT), which provides a mathematical approxima-tion of the full integral solution, and yields a periodic frequency spectrum. The DTFT ofthe sequence x[n] denoted in (8a) is a function of a continuous frequency variable ω and

X(e jω) and is always periodic with period 2π . And (8b) represents the inverse DTFTof x[n]. DFT (Discrete Fourier Transform) can be obtained from the DTFT by evaluatingthrough a discrete set of equally spaced frequencies [23].

X(e jω) =

∞∑

n=−∞

x[n]e− jωn (8a)
x[n] =

1
2π

∫
π

−π

X(e jω)e− jωndω (8b)

A finite number of samples are selected in order to determine the spectrum. Then awindow is generated by a multiplication of x[n] by another sequence w[n]. A Blackmanwindow is selected for the study. A time-domain representation of the same is presentedin (9) where N is the length of the Blackman window.
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Figure 5 – Joint plot of original data and data with 0.2 Hz cut-off frequency

w(n) = 0.42−5cos
(

2πn
N−1

)
+0.88cos

(
4πn

N−1

)
∀ 0≤ n≤ (M−1) (9)

M =

{
N/2 if N is even
(N +1)/2 if N is odd

The data processing or filtering is implemented to separate the noise content from thedata-set. The next section covers the detection of wind ramp events using RBA. The origi-nal data in frequency domain is filtered using Blackman filterwith 0.2 Hz cut-off frequency.To demonstrate the relationship between the two variables, a linear regression model y xis invoked with 95% confidence interval. Fig. 5 presents a joint plot where the variablesare drawn through a scatter plot, followed by a linear regression and the correspondingdistributions. It is evident from the picture that in frequency domain with 0.2 Hz cut-offfrequency the original property of the data is preserved. Moreover, in frequency domainthe data is filtered using Blackman window to separate the noise content and smooththe data while reataining the original pattern. More investigation is required to explorevarious other filtering methods such as low-pass and band-pass.
1.2 Model for Wind Power Ramp Events Detection
RBA (Ramping Behvaiour Analysis) is a model to detect wind ramp events. Consider thewind power generation wt at discrete time t and the consecutive measurement as wt+1where the balance is w∆ t . A finite variation ∆ w therefore denoted as a ramp. Positivevalue of ∆ w becomes a positive ramp and otherwise is denoted as a negative ramp. Thusa ramp event ∆ ws is defined as an event where a significant change in power generationtakes place in a time period ∆ t. The significance is determined through the parameter T
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that stands for an adjustable threshold to neglect ∆ w values that are smaller than a setthreshold T as in ∆ ws = ∆ w |∆ w > T . A detailed explanation of RBA is presented inthe [22,24]. The mathematical expression for identification of peak points is presented in(10a).

Figure 6 – Wind ramp detection with 10% threshold

The angle between the interval and the change in amplitude is denoted as θ . It can beformulated as in (10). An algorithmic description of the RBAθ is presented in algorithm1. The algorithm takes the input of time varying wind data (vector), the total length ofthe time period (scalar). Then the events are identified with respect to peak points andevent characteristics: ramp-up, ramp-down, rise-time, fall-time, angle of the peak withrespect to adjacent minima and persistence values are the results. The angle θ betweentwo significant changes ∆ ws and ∆ t is presented in (10b).

mean (∆ws) =

(
ws,t +ws,(t+∆ t)

2

)
(10a)

θ(∆ws) = arctan (∆ws,∆ t) (10b)
The threshold T was set to 0.01 or 10% of the nominal capacity of the wind turbine.Fig. 6 presents the resulting ramp event detection. The power production are markedwith x marks and ramp-up and ramp-down events are highlighted through blue and pur-ple. Arrows present the scheme used to classify the events, for instance a long red arrowdescribes a long ramp-up event wherein there are two peak points considered as onesignificant up event. Note that the first ramp up event persisted for longer period in com-parison to the second and third. Similarly the third ramp event persisted for longer periodthan the other. Clearly persistence values explain the length of an event and thereby indi-cates the severity. The frequency of occurrence is a measure to count these ramp eventsin the time horizon of the wind power data. Since this method identifies local peaks inthe data with respect to the adjacent minimum point, the first ramp-up event ignores thefirst peak (at 0.16) and considers the peak at 0.20 in y-axis. Consequently the adjacentminimum point 0.13 is ignored and 0.12 is recorded. There is an overlap of the eventsat the meeting point this is because the event length includes both the starting and endpoint of the wind power data. In this way, events are aligned end-to-end. With that, RBAθidentifies and counts the events while recording the event details at all stages.
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Algorithm 1: RBAθ algorithm pseudo code
Result: ws,t ,ws,(t+∆ t),(t +∆t),∆ws,θ(∆ws),mean(∆ws)

1 function RBAθ ;
Input : T,wt ∈ R+

2 ∆w = wt+∆ t −wt ;
3 for i← 1 to length( ∆w ) do
4 if sign( ∆w[i] ) == sign( ∆w[i+1] ) then
5 concatenate( ∆w )
6 end
7 end
8 for i← 1 to length( ∆w) do
9 if ∆w > T then
10 ∆ws← ∆w
11 end
12 end
13 for i← to length( ∆ws ) do
14 if sign( ∆ws[i] ) == sign ( ∆ws[i+1] ) then
15 concatenate( ∆ws )
16 end
17 end

A genetic algorithm (GA) is a local search optimization technique primarily applied tooptimization problems that are highly non-linear, non-differential or discontinuous. Con-ceptually GA is based on the biological evolution process. The process randomly selects apair out of the total population and crossover takes place to produce successors for nextgeneration. This process of evolving toward an optimal solution classifies GA as an evo-lutionary technique [25]. The fitness function f f of the GA is (11). The f f considers thetime horizon t, the turbine w, month m and y as the current data point.

f f =
|w|∑

w=1

|t|∑

j=1

yw
j ∗
(

yw
j −m j

)2 (11)
Through application of GA the total volume of data to be processed is reduced to fourfolds. The results are elaborated in the publication [24].The K-means clustering algorithm, also known as Lloyd’s algorithm is used for classifi-cation of objects into K number of groups based on attributes. In case of wind ramps, theramping behaviour analysis uses 7 attributes for each event, which can be used for clas-sifying the wind ramps to groups. The algorithm is based on the minimization of squaredEuclidean distance between the objects and centers of the assigned clusters [26]:

min (E) = min




K∑

i=1

∑

x∈Ci

d(x,zi)


 (12)

where zi is the center of clusterCi and d(x,zi) is the Euclidean squared distance betweenpoint x and cluster center zi. Clustering is applied to group the events with an objective todistinguish the significant attributes in ramp events. Optimal weight is allocated to RBAattributes using optimal cluster formulation. Clustering of identified ramp events based
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on different combinations of RBA parameters was conducted are the results are describedin the publication [24].
Summary
Wind is an intermittent energy resource. The power system planner need to ensure thepower balance and system reliability. Better understanding of the wind ramp events in-creases the preparedness for the power swings. The wind power ramp events are clas-sified and significant events are extracted using developed ramping behaviour analysis(RBA) model. RBA is modelled as a heuristic technique. When it comes to heuristic tech-niques, an educated guess significantly increases accuracy and solution time. In case ofRBA, determining an optimal threshold value is the starting point. The events extractedas further classified using clustering method to understand the significance of events.An evolutionary technique is applied to combine the time-series data. In particular RBAapplications to wind power swings is discussed and presented in more details publica-tions [22, 24]. During the investigation, the authors have used the nominal capacity ofwind turbine as the threshold value. The setting of threshold value for wind ramp eventextraction remains a challenge and more studies are needed in this direction. Predictionof RBA events in place of time-series data is a future scope of the work. A good researchdirection is to apply RBA in to identify events in current and voltage variations, rate ofcharging anddischargingwith respect to heat generation on cables is to be explored. Apartfrom that RBA can also be applied to other research disciplines such as growth of cancercells.
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2 Modelling Generation and Transmission Expansion Planning

"Power concedes nothing withoutdemand. It never did and it never will."
Frederick Douglass [27]

This chapter provides a broad and concise overview in order to address the main con-cepts behind coordinated decision making that are thoroughly illustrated in a forthcom-ing publication. Generation and transmission expansion planning models are inherentlyintertwined. For example, the sizing of generation units or the siting of new units dependsupon the existing power network capacities for energy transmission. As a further exam-ple, the renewable resources such as wind are located far from the point of consumption.Moreover the decisions of aforementioned independent planning models are thereforesub-optimal. Thus GTEP (otherwise referred as G&TEP) has attracted more research inthe literature. GTEP offers a significant advantage for optimal system control through con-gestion management addressing the bottle-necks in the transmission infrastructure andenergy curtailment from non-dispatchable resources. For instance the unit commitmentfor hydro power units for prolific usage in terms of wind power generation incurs signifi-cant economic and environmental benefits. Typically this utilizes a node-arc formulationwith a mass balance constraint which concerns the total power generated being equal tothe energy being consumed. There are multiple versions of the model namely: consid-ering the circuit theory (an Alternating Current (AC) version, Direct Current (DC)) version,a higher granularity version which considers the hourly resolution and the details inher-ent in the network topology, and a low granularity based version which considers a largernetwork [28–30].
2.1 Model for Multivariate and Stochastic Scenario Generation

Inmathematical optimization uncertainty is expressed through scenarios. The auto-regressiveintegratedmoving average (ARIMA) is one established practise when it comes to generatescenarios.The ARIMA Model is a widely used model for modeling in stochastic program-ming for generating scenarios for uncertain variables like wind, prices [31].
ARIMA(φ ,ϕ) a quasi-contemporaneous stochastic process price (ya

s,t ), demand (yb
s,t )and wind (yc

s,t ) as in 13(a-c). The residuals εa
t,s,ε

b
t,s,ε

c
t,s are statistically dependent. Thus thedependency structure of the stochastic processes can be stated as ε{εa

t,s ·εb
t− j,s ·εc

t− j,s} 6=
0. εa

s ,ε
b
s ,ε

c
s are the series of errors simulated to produce residual cross-correlogram ofstochastic process. In 13(d) the error correlation between stochastic process a & b, a &c are presented and finally reduced to a product of an orthogonal matrix B and iden-tity matrix ψ(E[ψ ·ψT ] = I) . The cross correlation between εa

t,s and εb
t,s can be repre-sented through variance-covariance matrix G. G is essentially a positive semi-definiteand symmetric matrix. This matrix is further decomposed using Cholesky decomposition

(G = LLT ) [32–34]. L is the upper triangular matrix that is also the orthogonal matrix(B = L).

ya
s,t =

ηa∑

j=1

φ
a
j · ya

t− j,s + ε
a
s,t −

τa∑

j=1

ϕ
a
j · εa

t− j,s (13a)
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yb
s,t =

ηb∑

j=1

φ
b
j · yb

t− j,s + ε
b
s,t −

τb∑

j=1

ϕ
b
j · εb

t− j,s (13b)

yc
s,t =

ηc∑

j=1

φ
c
j · yc

t− j,s + ε
c
s,t −

τc∑

j=1

ϕ
c
j · εc

t− j,s (13c)

ε
1
s,t =

(
εa

s,t

εb
s,t

)
ε

2
s,t =

(
εa

s,t

εc
s,t

)
=⇒ ε =

(
ε1

s,t

ε2
s,t

)
=⇒ ε = Bψ (13d)

G = cov(ε,εT ) = BBT (13e)
G = LLT = BBT (13f)

The residuals of the ARIMAModel are fitted to a R-vine Copula Model in order to cap-ture time varying dependence of the data.The general theory for copulas is Skalars Theorem (1959), based on this Theorem,Skalar shows that a every multivariate distribution can be written as a multivariate copulafunction. Equation (2) shows Skalars Theorem applied to a three dimensional dataset.Variables with joint density function:
f (a,b,c) = f (a) · f (b|a) · f (c|b,a) · ... · f (a|b,c) (14)

Following Skalar (1959) this density function is uniquely represented by the followingform, if it is continuous.
F(a,b,c) =C(Fa(a),Fb(b),Fc(c)) (15)

The R-vine (regular vine) model is chosen to model the multivariate dependence inthis empirical application. Fitting multivariate data to a copula is a challenging task, sincecommonly used copula models, like the normal copula, the t copula or the gumbel copulaare either symmetric or have only one parameter to estimate the entire copula, which de-creases the flexibility of the distribution. Bivariate copulas have awider variety of choices.Thus R-vine copula models that fit multiple bi-variate copulas to the multivariate dataset.Subsequently able to capture the dependence structure of the multivariate dataset. R-vine’s are represented by a hierarchical tree structure, where the first tree is estimated byn-1 bivariate copulae and the second by n-2 conditional on a single variable. For a threedimensional dataset two copulae need to be estimated directly and one conditional cop-ula. In order to estimate the R-vine a sequential search approach, they first estimate thefamily and parameters of the first tree via the AIC criterion. Then they use this result to es-timate the second tree. Additionally they employ a maximum spanning tree algorithm tochoose an appropriate edge weight. the proposed multivariate scenario generation tech-nique ARIMA is used for forecasting and copula for adjusting the residuals. Themodel andresults are elaborated in the publication [35].
2.2 Coordinated Decision Making for strategic expansion planning
Microgrids (MG) are small geographical areas with self-sufficient local production to mit-igate consumption of energy. MG are becoming smart, smart-Microgrid (SMG), due tothe integration of emerging smart information and communication technologies such assmart metering, lighting and thermostats. Meanwhile, the one of the biggest retail util-ity infrastructure, energy utility, is undergoing a reformation to accommodate alternativeenergy sources.
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The coordinated microgrid (CoMG) is a novel GTEP formulation that is implementedfor investments under uncertainty in network capacity expansion decisions. In addition tothat, the value of coordination and interactive decision making is reported. The tests areperformed on data from islands near Trondheim (Norway) and illustrate that the CoMG isa time efficient, tractable and scalable model for optimal grid expansion planning. CoMGis a math-heuristic based two-stage stochastic mixed integer linear programming (MILP)model. The inter-operation of heuristic algorithms with mathematical programming canbe defined as a math-heuristic technique [36, 37]. The heuristic offers an advantage oncomputational time by means of compromising the exact solution. Contrary to this, themathematical model offers an exact solution. Combining them results in "best of bothworlds". CoMG is a collaborative strategy based math-heuristic model: in a collaborativestrategy algorithms exchange information but are not part of each other (i.e, they can beexecuted independently). The advantage is that bothmodels can be executed sequentiallyor in parallel At the top layer of CoMG, a novel evolutionary heuristic algorithm called evo-lutionary vertical sequencing algorithm (EVS) is implemented. Meanwhile, at the bottomlayer a two-stage multi-period stochastic investment model is developed.
Transmission and generation expansion problems are one of the fundamental yet in-teresting research areas [38, 39]. The contemporary power system primarily operates ina top-down hierarchy. This means that the power flows in a unidirectional way from theproducer to the consumer. Meanwhile, distributed energy resources (DER) are increas-ingly gaining importance and changing the paradigm of top-down and unidirectional flowof power. In fact when DER are involved, individual energy communities will feed in asand when they produce creating a bottom-up system. DER and smart grid help balanceand enable the existing central grid. Stochastic optimization models for MG expansionthrough investment decisions appear in literature [28,40–46]. A comprehensive analysisof multi-MG system is performed and the permeability of the individual MG found to beimproved [47, 48]. However, the efficient and reliable co-ordination of the multi-MG isexpressed as a concern. In [49] a mesh of networked smart grids are presented to be thefuture power system. Multi-Agent-System (MAS) is extensively studied as the solution toautomatize the grid operation [50, 51]. Furthermore MAS based control schemes for MGare found to be effective [52, 53]. A real time framework for SMG control using MAS ispresented in [54]. These studies clearly outlines that the synchronization and coordina-tion among agents are important issues in the shared and connected information powerinfrastructure.
In the previous paragraph some of the existing GTEP formulations are discussed. Nev-ertheless, distribution systems are different from transmission systems. For example inone country there is one transmission network operator while there are several distribu-tion system operators. While existing GTEP formulations can be applied to transmissionsector, they do not fit the contemporary distribution sector. The investment planning fora distribution system operator very much depends on the surrounding environment andthus MG coordination. Besides that, there is a growing interest in demand side participa-tion (DSM) that increases the number of stakeholders. In contrast a centralized decisionmaking no longer serves such a problem with conflicting interests. The CoMG introducesfor the first time the CDM (coordinated decision making) approach in a GTEP context fordistribution systems under uncertainties. The proposed CDM is amethodology to take op-timal decision considering the surrounding environment. The key contributions of this in-vestigation on expansion planning is the inclusion of a two-stage stochasticmath-heuristicmodel within a CDMmethodology. This results in a coordinatedmicrogrid (CoMG) expan-sion planning formulation. Furthermore, the value of coordination and interactive deci-
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Figure 7 – An instance demonstrating the coordination protocol for four microgrids- k,h,i,j

sion making is reported. CoMG has been tested with real-world data from islands nearTrondheim (Norway) and turned out to be a tractable and scalable model for optimal gridexpansion planning. To the best of the knowledge of authors, this is the first time that theMG GTEP problem is addressed by integrating a two-stage stochastic MILP model witha heuristic CDM methodology. The inter-operation of heuristic algorithms with mathe-matical programming can be defined as a math-heuristic technique [36,37]. The heuristicoffers an advantage on computational time by means of compromising the exact solu-tion. Contrary to this, the mathematical model offers an exact solution. Combining themresults in "best of both worlds". CoMG is a collaborative strategy based math-heuristicmodel: in a collaborative strategy, algorithms exchange information but are not part ofeach other (i.e, they can be executed independently). The advantage is that both modelscan be executed sequentially or in parallel. At the top layer of CoMG, a novel evolutionaryheuristic algorithm called evolutionary vertical sequencing protocol is implemented. Atthe bottom layer a two-stage multi-period stochastic investment model is implemented.In fig. 7 a coordination protocol is presented. The protocol follows sequential enumera-tion meaning the models are ordered in a sequence and solved. The solutions are thencompared and the best solution is determined through comparison. There are fourmicro-grids namely k,i,h,j with different capacities and demand are presented in fig. 7. Individualmicrogrid is solved to optimality before the final decisions on capacities are passed on tothe subsequent microgrid in the order.
The manuscript describing the detailed mathematical model formulation and the re-sults are presented in the manuscript that is currently under processing for publication.In this section the expansion planning model for distribution network is discussed. Thefollowing chapter introduces a decision support system (DSS) that facilitates the decisionmaking process.
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Decision Support System
The decision support system (DSS) is merged with cloud computing to avoid the barrierof software installation and maintenance inside the companies computers. Moreover, acloud-based service can perform software updates seamlessly and can deliver a genericproduct that can be used by everyone independently of the knowledge in data-science.Therefore, the DSS proposed in this work is designed as a Software-as-a-Service (SAAS).The client is the visual part of the application; where the decision-makers interact withuploading the parameters, performing executions and exploring results. The client hasbeen implemented using a trendy technology, Angular 5 [55]. Then, the server or thebusiness logic is implemented using different technologies such as Node.js [56] to interactwith the client, Python 3 [57] scripts to automate the integration tasks, the resolution ofthe model and also the interaction with the mathematical model.
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Figure 8 – Decision Support System architecture.

To begin with, the DSS has a data layer to integrate public and private data. Thesedata are merged and integrated to obtain a model very close to the real processes of thecompany and also very similar to the current context. The data integration is made usingpython scripts to extract data and adapt to the Pyomo mathematical model. Next, thedata processing stage is about data cleaning, filtering and data transformation to makethe prescriptions feasible. After that, a parallel framework runs the method and solvethe GTEP model. Fig. 8 depicts the main parts of the architecture described. To keepthe focus of the project, the application offers the main results obtained and required tosupport decision making using charts and an interactive network to explore the solution.This information is of great interest to power industry either power suppliers and cus-tomers. The optimal network allows power suppliers to knowwhich are the best clients tosatisfy. Otherwise, clients can evaluate if they want to make a connection to a supplier orinvest in installing new generators. This information has a clear strategical focus for bothcompanies and clients. Furthermore, knowing the status of the batteries and generatorscan help distribution operator centre in their daily tasks in the maintenance of the mi-crogrid. Finally, from a tactical point of view, the power supplier can evaluate how manyenergy the should produce at each period to maintain the service available.The main features of the decision support system designed can be summarized as fol-lows:
• Data integration: The DSS proposed can be fed with public and private data comingfrom sensors, databases, or indeed current software tool.
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• Optimal prescriptions: One of the novel features of the DSS presented in this workis the capability of making recommendations. These recommendations are basedon the execution of a complexmathematicalmodel that is able to obtain the optimalnetwork taking into account real conditions.
• Scenario Analysis: Another important contribution of this work is the capability ofsimulating and analyzing different scenarios. The distribution system operator canevaluate what is going to happen if new links or nodes are introduced to the systemand how the system evolves from this point. Besides, strategical decisions of choos-ing the right place to build new generators can be evaluated using this function. Thisfeature helps to anticipate and mitigate the undesired effects of some decisions.

Figure 9 – Decision support system work flow

Fig. 9 illustrates the three stages of the decision making process. The arrow marksshows the sequence of actions in order. The preliminary step is pre-processing wherethe input data is gathered from different sources and process to feed the mathematicalmodel. First of all, the information is collected to build the power network. Once thepower network is built, is time to smartly break-down to multiple sub-networks. At thesame time, public real-time data is obtained from APIs and Web Scrappers to model thecurrent context. For instance, weather data or data related to renewable production. Af-ter that, all this data is integrated into the mathematical model. In addition, the data isalso transformed and manipulated.
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Summary
A novel multivariate scenario generation model using ARIMA and copula is developedand applied to three uncertain variables: wind, demand and energy market prices. Thesescenarios are used for uncertain variables in the stochastic programming expansion plan-ning model discussed in this chapter. The generated scenarios are used as input for thestochastic CoMG model. A novel math-heuristic model with a two-stage stochastic MILPon bottom and heuristic coordination protocol on top, coordinated microgrid (CoMG),is formulated. Evolutionary vertical sequencing protocol is developed and implementedsimulating the coordinated decision making process in a multi-agent environment. Thecoordinated decision making process bears multiple advantages over conventional mod-elling techniques as it enhances the power security and grid resiliency through:

a. improvement in minimization of cost for by avoiding an upfront investment cost
b. investment and operational synchronization through information exchange
c. reduced power generator and reserve requirements through nested generators
d. reduced power threats due to system status synchronization
e. optimal utilization of renewable power production (i.e, avoid curtailment)
f. A "bottom-up" approach considering higher autonomyof small scale power systems(microgrids) with peer to peer interaction (local market clearing)
The presented CoMG formulation is employed to solve a future power distributionnetwork model in Norwegian islands. The data-set are procured in collaboration with thelocal distribution company in Trondheim through NTNU. RBA, presented in chapter 1 ofthe thesis, is used to generate the scenarios for the decision variables. With introductionof the real data, the model grew in exponential scale, thus a high-power cluster computerat NTNU is used to solve the instances and the results are illustrated in the manuscriptunder review.A further investigation about the value of coordination would follow based on the co-operative game theory approach. A direction for future investigation could be to recordthe energy transactions and facilitate smart contracts among agents in a blockchainmech-anism. A possible improvement to CoMG can be synchronization of responsive loads andpower apparatus within a microgrid. Specifically, the information shared across is alsoabout the responsive load signals. EVS can be improved in a future work by incorporatingweather, geographical and network topology factors to be even more accurate in selec-tion of permutations. A further investigation could to be lead to parallelize the CDM toinvestigate the tractability.
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3 Power Distribution System Expansion planning andNetwork
Restructuring

"The task is, not so much to see whatno one has yet seen; but to think whatnobody has yet thought, about thatwhich everybody sees."
Erwin Schrödinger [58]

Power distribution system operator has to ensure the power flow on demand andmaintain stability of power system. To avoid interruptions or power quality issues, theDSO monitors and plans maintenance of the network. The plan includes system reliabil-ity and adequacy. Power system reliability refers to the state of network to sustain flowof energy from point of generation to demand at any point in time. Power system ade-quacy refers to the condition of a power network considering generation, transmissionand distribution units. In the modern power distribution network, an optimal investmentdecision has to include both the reliability and adequacy aspects. An integrated decisionmaking process needs a framework to classify the network into zones based on operatingconditions from critical to normal. In this chapter the reliability framework and reliabil-ity oriented network restructuring model are presented. The former generates inputs inform of weights for the later model. The developed model utilizes the weights to derivenear optimal decisions for PDS expansion with reconfiguration.The relationship between network reliability and cost is presented in fig. 10. The fig-ure outlines that with increase in number of outages or otherwise power interruptionsthe reliability reduces. Consequently, the investment increases along with total invest-ment cost. The cross section of investment and outage is the optimal point of operation.Moving left increases the cost, so does moving right. Moving left refers to post-outagescenario and moving right refers to pre-outage scenario where a significant investmentis needed to avoid an outage. Considering the node-arc representation for the electricalpower distribution network where nodes represent substations and arcs represent trans-mission lines the framework is formulated. The proposed reliability framework has fivecategories of reliability parameters: life cycle of power apparatus, environmental and so-ciological, node reliability, arc reliability and node reliability concerning losses. The table1 presents the reliability parameters and the individual components or indicators that in-dicate the condition of a given network. The reliability parameters directly or indirectlyinfluence the network performance. The network performance is directly related to thecost of maintenance and new investments. For this investigation, the maintenance costvalues are derived from distribution company. Note that these values are specific to apower network and therefore sensitive in nature. All the maintenance cost values pre-sented in this work are normalized. The investment costs for new installations are subjectto the market price during the analysis.Life cycle assessment (LCA) is a method which helps to determine the environmentalimpacts that can be suffered due to the use of a product, a process, or an activity. It isalso used to assess remaining utilization life. Throughout the product’s lifetime any im-pact shouldmainly originate from power losses suffered during the usage phase, althoughinstallation, maintenance, and dismantling also contribute to it. Transmission and distri-bution assets have comprised power lines, cables, transformers, substations, and otherelectrical components in order to generate a wide range of environmental impacts, suchas equipment emissions and material weight value. The life cycle stages being viewed are
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Figure 10 – Relationship between power network reliability and cost

Table 1 – RNR Parameters for power distribution network components

Parameters LCA Environmental & Node reliability Arc reliability Node reliabilitySociological concerning lossesComponents1 Cable Terrain SAIFI AIT LOLE2 OHL Weather SAIDI AIF LOEE3 Transformer Consumption ENS AID EIR4 Switchgear Generation Availability – –5 Emissions – – – –

interpreted as the production or manufacturing phase of a product or its usage phase.The usage life cycle inventory consists of material requirement for grid components andtheir environmental impact. For all of the components, the functional unit is one piece ofequipment which is operational during the lifetime of that piece of equipment.The supplied reliability indices combine factors that are related to outage duration orresponse time, the frequency of any outage, the number of customers who are involved inan interruption or the power and energy that has been lost. The system average interrup-tion frequency index (SAIFI), system average interruption duration index (SAIDI), energynot supplied (ENS), average service availability index (in terms of availability), average in-terruption time (AIT), average interruption frequency (AIF), and average interruption du-ration (AID) are among the various measures which hep in evaluating interruptions andtheir potential impacts.The formulation for any probability of failure Ωn for bus n can be presented as in (16).In (17) frequency of failure Ω
f
n is presented.

Ωn =
∑

i

[P(O j)(Pi,gPl,i−Pg,iPl,i)] (16)
Ω

f
n =

∑

i

[O f
j (Pi,gPl,i−Pg,iPl,i)] (17)

Where O j is the condition of outage in the power transmission network. Pi,g is theprobability of occurrence of capacity outage beyond reserves. And probability of unin-terrupted power supply. The availability (γ) is calculated as γ = 1− 60∗ENS∑
i Pi

where Pi isaverage power supplied by the total system and ENS (Energy not supplied because of in-terruption) and Pi stands for power interruption for incident i. The total cost is a product
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of component capital cost times availability. The repair cost is calculated as a product ofrepair time and the total cost. Similarly the maintenance cost is cost of the fault times therepair costs.
3.1 Framework for Determining Power System Reliability and Adequacy

In this subsection, the power system reliability parameters and corresponding indicatorsare listed and subsequently elaborated. These indicators are used to evaluate the con-dition of power distribution network. The distribution network operator monitors thecondition and plans accordingly to ensure an uninterrupted power supply and maintainpower quality. The consumer satisfaction indicators are as follows: SAIDI, SAIFI, ENS andavailability. SAIDI depicts how often an average customer experiences a sustained inter-ruption over defined period of time (year). SAIFI Shows the total duration of the inter-ruption for the average customer during a predefined period of time. (per minute;hour).ENS explains the total amount of energy that would have been supplied to the interruptedcustomers if there would not have been any interruption. Availability refers to the timeperiod that a customer has received power during the defined reporting period (durationof the interruption) AIT address the total time the supply is interrupted AIF explain thenumber of times when the supply is interrupted annually. AID indicates the duration ofan interruption. LOLE is defined as the expected number of days in the specified periodin which the daily peak load will exceed the available capacity. LOEE represents the ratiobetween the probable load energy curtailed due to deficiencies in available generating ca-pacity and the total load energy required to serve the system demand. EIR represents thetime period that a customer has not received the energy load during a defined reportingperiod (expected loss of energy). Terrain-type influence is assumed to have an impact onthe probability of a fault occurring. For this, nine terrain types are listed to give a weightevaluation based on the land-use. The impact of weather to the probability of fault isbased on the annual normal and adverse weather conditions. Furthermore, probabilityof fault due to weather effects are assumed to be based on the component failure rate,repair rate and the forced outage rate due to weather.
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A coefficient or weight is assigned to each transmission line considering the reliabil-ity factors: RUL, consumer satisfaction factors and terrain. In fig. 11 a bus-line diagramfor IEEE 14-bus system with zones for weight evaluation are demonstrated. These zonesor districts in a microgrid are evaluated based on the buses and transmission line types,for instance residential, forest, dense residential. The zones account for failure rates, fre-quency of faults and duration of faults. These factors are summarized as maintenanceand repair costs for the zones or districts in the existing network. If a new transmissionline is to be installed between two zones an average value for costs is considered. Thusthe total cost for capacity expansion of a transmission line becomes Ctot = (capital costof equipment * availability* reliability factor) + (maintenance cost*availability*LCA fac-tor * reliability factor). Reliability factor is derived from the LCA, remaining utilizationtime(efficiency of the equipment), terrain, consumer type, weather pattern, repair time.The costs are assumed to be increasing linearly with respect to time. The ELNS (expectedload not served) measures the average amount of energy that is not supplied to loads asa result of load-shedding events. As its name indicates, the expected load not served isa weighted average energy value which accounts both for the probability of contingen-cies and the damage that these contingencies cause to the system in terms of lost load.The LOLP (loss-of-load probability) is computed as the probability that failure events willlead to load-shedding. In opposition to the ELNS, however, is the fact that the loss-of-load probability is a dimensionless number that does not provide any information on theseverity of the disturbance - on the energy not supplied. This lack of a clear physicalmean-ing makes the LOLP a less intuitive metric to work with on the part of system operators.The LOLE (loss-of-load expectation) assesses the expected number of hours during whichloss-of-load events could happen. As with the LOLP, the loss-of-load expectation fails toprovide an estimation of the damage done to the system by contingencies. From a math-ematical viewpoint, both the LOLE and the LOLP require the use of binary variables to beconsidered within a mixed-integer linear programming problem.
This subsection has presented the RNR framework and various indicators for evaluatingthe condition of the power distribution network. The evaluated weights segregates thenetwork into zones which are based on the parameter values as in fig. 11. The frameworkis further explained by a case study on generation outage in the paper listed in appendix 4.Subsequent chapter presents non-linear AC-OPF model with the objective of expandingthe power distribution network with reconfiguration.

3.2 Model for Power System Expansion with Reconfiguration
The traditional power network expansion problem is centralized, and it often pays no con-sideration to network reconfiguration. In other words, any investment decisions oftencome without considering network restructuring. However, distribution system expan-sion or, in this case, MG expansion, is an optimum investment which considers both in-ternal and external expansion. The work being presented here considers the reliabilityaspects of a power network with some network planning insight being added. Reliability-orientated network restructuring, abbreviated as RNR, considers the remaining utilizationlife of power apparatus, the consumer satisfaction index, and environmental factors. Inthis study the distribution network has been divided into five main components: aeriallines, cables, transformers, and switches. For each component the main reason behindpermanent faults and auto re-closings are determined. Separate failure rates for eachcomponent type are based on the reasons for any such failure, such as the transformeroverall failure rate being dependent upon lightning, animal interference, or other faultcauses. For all of those reasons, the main stress factors which affect the failure rate have
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been determined. All of the stress factors are classified into appropriate classes such as,for instance the location being a forest location which is near a road or a field. For allclasses a weight has been deemed, one which represents the effect of a certain class onthe failure rate. For the total failure rate, permanent and temporary faults can be calcu-lated. A practical approach in component modelling is to use the idea that it should bepossible to affect the parameters being used in failure rate modelling, with selected plan-ning strategies being added to the process. The weather pattern is not considered directlyin failure rate evaluation, but is included in the apparatus condition such as, for instance,in terms of stress tolerance. The age factor is included in condition weight information.Voltage dip analysis is also used for examining short interruptions, where each componentis classified based on permanent or temporary short circuit failures. Dip rates are used todefine the number and depth of dips in the network. A voltage dip can be analyzed byadding information regarding the total short circuit ratio to every separate failure rate.Failure rate parameters must be determined before modelling methods can be used.
The general failure rate for components was calculated as a weighted mean from thefailure rates that hadbeen loggedby individual companies. Thedeemedparameter groupsare used to calculate the separate failure rates. The basic input data set is the compo-nent information, specifically the type, failure rate, and network topology, as well as someother areas of information which are needed and which can affect the results of the anal-ysis, such as repair times and automation equipment that has been installed. In the en-hanced radial reliability analysis, the network is analyzed in terms of feeders and zones,where the use of ’zone’ refers to part of a feeder. In the given analysis, the expected num-ber of permanent and temporary failures and voltage dips within a zone are calculatedas a sum of the individual network component failures. A determination of repair timeis made by analyzing the options when it comes to isolating load points from the faultedcomponent and then restoring the load points with dis-connectors. For a temporary fault,the whole feeder will be experiencing the same short interruption. In the given analysis,permanent and temporary faults that are experienced, along with voltage dips, are cal-culated for each load point. Cost-related information is based on total interruption timesin certain area, permanent and temporary faults, and voltage dip occurrences which aredeemed to have taken place when using the radial network reliability analysis [59]. Utilityoutage cost is based on the value of non-distributed energy and fault repair costs. Othercosts, such as losses in production, are considered from the point of view of defining in-convenience costs for the customer. The expected annual costs for permanent outagesare the result of a fault occurring in the zone that is being studied. Therefore the RNRframework can be expressed as an asset management model when considering the LCAfor power system equipment. When combined with OPF, this forms a complete one-stopsolution network management and planning platform. The reliability of reconfigurationwhen replacing overhead lines and underground cables is evaluated by considering envi-ronmental, consumer preference, n-1 contingency, and DSO objectives while minimizingthe investment cost.
The optimization models in power system can be broadly classified into operationaland planning. The optimal power flow is an example for operation problem, while capac-ity expansion planning is a planning problem. The distribution system operator need toensure uninterrupted supply of power on demandwhilemaintaining the quality of power.Therefore, determining optimal capacity expansion considering network restructuring isproblem that corresponds to both the operation and planning. Power flow problems canbe either DC or AC. The optimal power flow models has an objective of minimizing theoperating costs while maintaining the operational variables voltage level and power gen-
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eration. The DC-OPF models are usually linear or MILP type, therefore can be solved us-ing classic solution strategies. However, the AC-OPF models formulated as MINLP arenon-convex and therefore heuristic techniques are used to solve these models. The dis-tribution network has a AC power flow. This leads to the modelling choice of a non-linearAC-OPF model over a DC-OPF.
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Figure 12 – Flow chart demonstrating the process for (a) expansion planning considering reconfigu-
ration (b) Outer Approximation algorithm

The RNR model presented in appendix 5 is a MINLP formulation and an outer approx-imation technique is used to solve the model. The work flow of the model is presentedthrough a flowchart in fig. 12(A). The RNR formulation considers both active and reactivepower flow and associated losses to ensure the power quality in the distribution network.TheMILP formulation is solved using Outer Approximation algorithm [12]. The steps takenby the algorithm to solve the problem is presented in form of a flow-chart in fig. 12(B). Theouter approximation is a iterative method. The iteration limit is set as a termination cri-teria in instances where the problem takes very long time to solve. The restructuring isdescribed by four terms: the cost of installation of new potential cables where a con-nection still do not exist, the cost of replacing existing obsolete cables with new ones, arepresentative cost of keeping existing cables as they are and the cost of installing SVCdevices in certain nodes. The cost of existing cables is a representative cost that incorpo-rates all the costs that a company should face to keep a cable as it is: this cost is calculatedaccording to the history of the cable, its maintenance requirements, failures and issuesand represented by the parameter maintenance cost. The detailed mathematical modelis presented in the manuscript at appendix 5.

41



Summary
In this chapter, A methodology has been presented for analyzing how the process of con-necting emerging districts to existing microgrids can affect the reliability of the whole sys-tem. The technical aspects of AC-OPF have been thoroughly taken into account and thereliability-orientated Network Restructuring RNR framework has been developed and im-plemented. The results showed that reliability aspects are crucial when evaluating newinvestments in grid expansion: new connections should always be coupled with a moreholistic evaluation of the conditions of the existing networks as they may require furtherinvestment in terms of upgrades so that they can properly fulfill their new requirements.When the system operator is considering the required investment levels for a power net-work expansion, it should also consider the restructuring of the existing network at thesame time. The RNR model being presented is able to address both decisions holisticallyand, therefore,more investigation is required in this area. In summary the results are elab-orated in the publication. Moreover, the RNR expands the dimension of decision makingfor an power distribution network expansion model.
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Conclusions and Outlook for Further Exploration
This thesis is a collection of researchworks carried out in developing state-of-the-artmod-els for improving modern power distribution system planning during the doctoral studies.This work contributes to two areas- modern power distribution system planning, mathe-matical optimization modelling. The motivation behind the formulation of research ob-jectives and background for model building in mathematical modelling is presented in theintroductory chapter.

In introduction the modern power distribution system and associated planning prob-lems are presented. A brief overview of power system planning problems and an intuitiveillustration is provided to better understand the problems. Following that optimal invest-ment planning for capacity expansion in modern power distribution network is elabo-rated. An introduction tomathematicalmodel building is presented providing an overviewon different types of models. Next to that the tools used to develop the models are pre-sented.
In first chapter a novel model for classification of power variations into significantevents is presented. The ramping behaviour analysis model is discussed in detail and theresults are elucidated. The model is tested with real world data from the wind farm. Afurther detailed investigation of ramp events and implications are outlined in the associ-ated publications [22, 24]. Identifying ramp events is an important issue specifically forsudden power swings. A better understanding of these events would be an advantagein planning capacity expansion. Further investigation is needed to determine an optimalthreshold value for ramp events identification. In a further investigation on prediction oframp events would be studied.
In second chapter a novel two-stage stochastic, chance constrained math-heuristicmodel for generation and transmission expansion planning in power distribution networkwith multiple network operators is presented. The strategic investment planning for ex-pansion in modern power distribution network with multiple system operators can besolved with the coordinated decision making protocol. Coordination among different en-tities is essential to render an optimal decision. In this chapter a brief discussion aboutcoordinated decision making protocol with the model is discussed. For illustration an in-stance demonstrating the coordination among four microgrids is presented. The detailedmodel and the results are in the related manuscript is under review. The scenarios for thestochastic model are generated through a novel stochastic multi-variate ARIMA and cop-ula model. The scenario generation and the model is presented in details in the publica-tion [35]. The correlation between the stochastic parameters- wind, demand and price iscaptured. In realworld these parameters influence each other, thus the correlation amongthem is essential for optimal decisionmaking. Following that, the decision support systemthat translates the model results into an interactive visual platform is discussed. Furtherinvestigation is required on the classification of microgrids from the power network.
In third chapter a framework for monitoring the condition of power network basedon five primary factors: life cycle, environmental and sociological, node reliability, arc re-liability, node reliability with losses is presented. The framework is applied to modifiedIEEE 14 bus network. The resulting weights leads to input parameter for the reliability ori-ented restructuring model. This is a Non-Linear AC-optimal power flow formulation fordetermining optimal expansion with reconfiguration. The reliability and adequacy frame-work is presented in details in the publication [60]. The reliability oriented network re-structuring (RNR) model formulation is presented with the analysis on modified IEEE 14bus system is illustrated in publication [61]. For a distribution network planner determin-ing optimal investment strategy considering the condition of the existing network is an
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important problem. Expansion in one part of the network may have a significant effectin rest of the network. Such a scenario can arise when upgrading the capacity of onetransmission line would create a bottleneck if the adjacent capacities are not upgradedaccordingly. Thus expansion with reconfiguration is practical and optimal decision mak-ing process. The model presented addresses this issue and further research is needed totest the framework and the model in different network conditions to obtain a balance be-tween reliable and adequate power supply in the modern power distribution network. Inaddition whether an expansion is still optimal and practical considering both the currentcondition and required additional capacity.
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Abbreviations
RES Renewable Energy ResourcesPS Power systemPDS Power Distribution SystemTSO Transmission System OperatorDSO Distribution system operatorPDN Power Distribution NetworkGEP Generation Expansion PlanningTEP Transmission Expansion PlanningGTEP Generation and Transmission Expansion PlanningOR Operations ResearchOPF Optimal Power FlowAC Alternating CurrentMG Microgrid(s)LP Linear ProgrammingMILP Mixed Integer Linear ProgrammingNLP Non-Linear ProgrammingMINLP Mixed Integer Non-Linear ProgrammingSP Stochastic ProgrammingFFT Fast Fourier TransformationGA Genetic AlgorithmRBA Ramping Behaviour AnalysisARIMA Auto-Regressive Integrated Moving AverageCDM Coordinated Decision MakingCoMG Coordinated MicrogridEVS Evolutionary Vertical SequencingDSS Decision Support SystemRNR Reliability Oriented Network Restructuring

45



References
[1] Hans-Wilhelm Schiffer, Tom Kober, and Evangelos Panos. World energy council’sglobal energy scenarios to 2060. Zeitschrift für Energiewirtschaft, 42(2):91–102,2018.
[2] Birol Fatih. World energy outlook 2018. Technical report, International EnergyAgency(iea), 2018.
[3] Pavlos S Georgilakis and Nikos D Hatziargyriou. A review of power distributionplanning in the modern power systems era: Models, methods and future research.Electric Power Systems Research, 121:89–100, 2015.
[4] Peter Burgherr and Stefan Hirschberg. Comparative risk assessment of severe acci-dents in the energy sector. Energy Policy, 74:S45–S56, 2014.
[5] Klaus Skytte. The regulating power market on the nordic power exchange nord pool:an econometric analysis. Energy Economics, 21(4):295–308, 1999.
[6] EstherMengelkamp, Johannes Gärttner, Kerstin Rock, Scott Kessler, Lawrence Orsini,and Christof Weinhardt. Designing microgrid energy markets: A case study: Thebrooklyn microgrid. Applied Energy, 210:870–880, 2018.
[7] Wayne L Winston, Munirpallam Venkataramanan, and Jeffrey B Goldberg.Introduction to mathematical programming, volume 1. Thomson/Brooks/ColeDuxbury; Pacific Grove, CA, 2003.
[8] H PaulWilliams. Model building inmathematical programming. JohnWiley and Sons,2013.
[9] A TahaHamdy andA TahaHamdy. Operations research: an introduction. Printice-Hallof India Private Limited, 2003.
[10] Philip Wolfe. A duality theorem for non-linear programming. Quarterly of appliedmathematics, 19(3):239–244, 1961.
[11] John R Birge and Francois Louveaux. Introduction to stochastic programming.Springer Science & Business Media, 2011.
[12] Marco A Duran and Ignacio E Grossmann. An outer-approximation algorithm for aclass of mixed-integer nonlinear programs. Mathematical programming, 36(3):307–339, 1986.
[13] Marco A Duran and Ignacio E Grossmann. An outer-approximation algorithm for aclass of mixed-integer nonlinear programs. Mathematical Programming, 39(3):337–337, 1987.
[14] Stefan Vigerske and Ambros Gleixner. Scip: Global optimization of mixed-integernonlinear programs in a branch-and-cut framework. Optimization Methods andSoftware, 33(3):563–593, 2018.
[15] Johannes Bisschop. AIMMS optimization modeling. Lulu. com, 2006.
[16] William E Hart, Carl Laird, Jean-Paul Watson, and David L Woodruff.Pyomo-optimization modeling in python, volume 67. Springer, 2012.

46



[17] William E Hart, Jean-PaulWatson, and David LWoodruff. Pyomo: modeling and solv-ing mathematical programs in python. Mathematical Programming Computation,3(3):219–260, 2011.
[18] Priyadaranjan Ray, Hirendra Nath Gupta, and Mira Roy. Susruta Samhita:(a ScientificSynopsis). Indian National Science Academy, 1980.
[19] Mingjian Cui, Deping Ke, Yuanzhang Sun, Di Gan, Jie Zhang, and Bri-Mathias Hodge.Wind power ramp event forecasting using a stochastic scenario generation method.IEEE Transactions on sustainable energy, 6(2):422–433, 2015.
[20] Xi-Yuan Ma, Yuan-Zhang Sun, and Hua-Liang Fang. Scenario generation of windpower based on statistical uncertainty and variability. IEEE Transactions onSustainable Energy, 4(4):894–904, 2013.
[21] J Wang, A Botterud, R Bessa, H Keko, L Carvalho, D Issicaba, J Sumaili, and V Mi-randa. Wind power forecasting uncertainty and unit commitment. Applied Energy,88(11):4014–4023, 2011.
[22] S.Mishra,M. Leinakse, and I. Palu. Wind power variation identification using rampingbehavior analysis. Energy Procedia, 141:565–571, 2017.
[23] James H McClellan, Ronald W Schafer, and Mark A Yoder. Signal processing first.Pearson education Upper Saddle River, NJ, 2003.
[24] S. Mishra, M. Leinakse, I. Palu, and J. Kilter. Ramping behaviour analysis of windfarms. EEEIC2018, 1(1):1–7, 2018.
[25] David E Goldberg and John H Holland. Genetic algorithms and machine learning.Machine learning, 3(2):95–99, 1988.
[26] John A Hartigan andManchek AWong. Algorithm as 136: A k-means clustering algo-rithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.
[27] Frederick Douglass and Rayford Whittingham Logan. The life and times of FrederickDouglass. Courier Corporation, 2003.
[28] Antonio J Conejo, LB Morales, S Jalal Kazempour, and Afzal S Siddiqui. Investmentin electricity generation and transmission. Decision Making Under Uncertainty.Springer, New York, 2016.
[29] C Munoz, E Sauma, J Contreras, J Aguado, and S de La Torre. Impact of high windpower penetration on transmission network expansion planning. IET Generation,Transmission & Distribution, 6(12):1281–1291, 2012.
[30] Tohid Akbari andMohammad Tavakoli Bina. A linearized formulation of acmulti-yeartransmission expansion planning: A mixed-integer linear programming approach.Electric Power Systems Research, 114:93–100, 2014.
[31] Javier Contreras, Rosario Espinola, Francisco J Nogales, and Antonio J Conejo. Arimamodels to predict next-day electricity prices. IEEE transactions on power systems,18(3):1014–1020, 2003.

47



[32] Martin Haugh. Generating random variables and stochastic processes. Monte CarloSimulation: IEOR EA703, 2004.
[33] Alex Schwarzenberg-Czerny. On matrix factorization and efficient least squares solu-tion. Astronomy and Astrophysics Supplement Series, 110:405, 1995.
[34] Doug Hakkarinen and Zizhong Chen. Algorithmic cholesky factorization fault recov-ery. In Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposiumon, pages 1–10. IEEE, 2010.
[35] S. Mishra, C. Würsig, and I. Palu. Multivariate scenario generation an arima andcopula approach. International Journal of Modeling and Optimization, 2018.
[36] Marco Caserta and Stefan Voß. A math-heuristic algorithm for the dna sequencingproblem. In International Conference on Learning and IntelligentOptimization, pages25–36. Springer, 2010.
[37] Fady Youssef Melhem, Olivier Grunder, Zakaria Hammoudan, and Nazih Moubayed.Energy management in electrical smart grid environment using robust optimizationalgorithm. IEEE Transactions on Industry Applications, 2018.
[38] Antonio J Conejo and Luis Baringo. Power systems. In Power System Operations,pages 1–15. Springer, 2018.
[39] Antonio J Conejo, Luis Baringo, S Jalal Kazempour, and Afzal S Siddiqui. Transmissionexpansion planning. In Investment in Electricity Generation and Transmission, pages21–59. Springer, 2016.
[40] Sérgio Haffner, Luís Fernando Alves Pereira, Luís Alberto Pereira, and Lucio San-gio Barreto. Multistage model for distribution expansion planning with distributedgeneration—part i: Problem formulation. IEEE Transactions on Power Delivery,23(2):915–923, 2008.
[41] Amin Khodaei and Mohammad Shahidehpour. Microgrid-based co-optimization ofgeneration and transmission planning in power systems. IEEE transactions on powersystems, 28(2):1582–1590, 2013.
[42] EhsanHajipour,Mokhtar Bozorg, andMahmud Fotuhi-Firuzabad. Stochastic capacityexpansion planning of remote microgrids with wind farms and energy storage. IEEETransactions on Sustainable Energy, 6(2):491–498, 2015.
[43] Manijeh Alipour, BehnamMohammadi-Ivatloo, and Kazem Zare. Stochastic schedul-ing of renewable and chp-based microgrids. IEEE Transactions on IndustrialInformatics, 11(5):1049–1058, 2015.
[44] Iman Goroohi Sardou and Ehsan Azad-Farsani. Network expansion planning withmi-crogrid aggregators under uncertainty. IET Generation, Transmission & Distribution,2018.
[45] Luis Baringo and Ana Baringo. A stochastic adaptive robust optimization approachfor the generation and transmission expansion planning. IEEE Transactions on PowerSystems, 33(1):792–802, 2018.

48



[46] Miguel Asensio, Pilar Meneses de Quevedo, Gregorio Munoz-Delgado, and JavierContreras. Joint distribution network and renewable energy expansion planningconsidering demand response and energy storage —part i: Stochastic programmingmodel. IEEE Transactions on Smart Grid, 2016.
[47] Zhirong Xu, Ping Yang, Chengli Zheng, Yujia Zhang, Jiajun Peng, and Zhiji Zeng. Anal-ysis on the organization and development of multi-microgrids. Renewable andSustainable Energy Reviews, 2017.
[48] PanWu,Wentao Huang, Nengling Tai, and Shuo Liang. A novel design of architectureand control for multiple microgrids with hybrid ac/dc connection. Applied Energy,2017.
[49] Bo Zhao, Meidong Xue, Xuesong Zhang, Caisheng Wang, and Junhui Zhao. Anmas based energy management system for a stand-alone microgrid at high altitude.Applied Energy, 143:251–261, 2015.
[50] Thillainathan Logenthiran, Dipti Srinivasan, and Ashwin M Khambadkone. Multi-agent system for energy resource scheduling of integratedmicrogrids in a distributedsystem. Electric Power Systems Research, 81(1):138–148, 2011.
[51] Vitor N Coelho, Miri Weiss Cohen, Igor M Coelho, Nian Liu, and Frederico GadelhaGuimarães. Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids. Applied Energy, 187:820–832, 2017.
[52] Chun-Xia Dou and Bin Liu. Multi-agent based hierarchical hybrid control for smartmicrogrid. IEEE transactions on smart grid, 4(2):771–778, 2013.
[53] Runfan Zhang and Branislav Hredzak. Distributed finite-time multi-agent control fordc microgrids with time delays. IEEE Transactions on Smart Grid, 2018.
[54] Roberto S Netto, Guilherme R Ramalho, Benedito D Bonatto, Otavio AS Carpinteiro,AC Zambroni de Souza, Denisson Q Oliveira, and Rodrigo AS Braga. Real-time frame-work for energy management system of a smart microgrid using multiagent systems.Energies, 11(3):656, 2018.
[55] AngularJS — Superheroic JavaScript MVW Framework. https://angular.io//.Online; Accessed: September, 2018.
[56] Node.js. https://nodejs.org/en/. Online; Accessed: September, 2018.
[57] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum voor Wiskunde enInformatica Amsterdam, The Netherlands, 1995.
[58] Ludwig VonBertalanffy. Problems of life; an evaluation ofmodern biological thought.Wiley, 1952.
[59] Rajesh Karki, Roy Billinton, and Ajit Kumar Verma. Reliability Modeling and Analysisof Smart Power Systems. Springer, 2014.
[60] S. Mishra, C. Bordin, J. Fornes, and I. Palu. Reliability framework for power networkassessment. E3S Web of Conferences, 2018.
[61] S. Mishra, C. Bordin, and I. Palu. Rnr: Reliability oriented network restructur-ing. International Scientific Conference on Power and Electrical Engineering of RigaTechnical University (RTUCON), 2018.

49



Acknowledgements

"To everyone who, ∃ in my life, truly loves me and fills my life with friendship, love andkindness. To everyone who will come into my life."

50



Abstract
Models for Modern Power Distribution System Planning
With an objective of cleaner and sustainable power production the electrical power sectoris experiencing a shift from centralized power flow to a decentralized and distributed one.Consequently Non-dispatchable (renewable) energy resources have gained an increasedshare in the total energymix. In addition, the grid ancillary services like demand sideman-agement where the consumer interacts with the energy network is reshaping the powerdistribution system. This transition introduces many technical and economic challengesin maintaining the balance between supply and demand of power. Apart from that thechallenges in reserve capacity allocation to meet the demand at all times. Moreover, thestrategic planning for power system security and balance is the focal point for a smoothtransition. The context therefore is from the distribution system planner’s strategic plan-ning problem for expansion. Expansion refers to capacity expansion of existing powerproduction units and transmission lines to meet the growing demand or better utilize theproduction from renewable (non-dispatchable) resources. This thesis presents a collec-tion of research works focused on optimal power system expansion planning for modernpower distribution system. The key challenges addressed are ranging from classification ofwind power variations to optimal power network expansion and power system adequacyand reliability. The mathematical models are developed and presented with applicationsfor each of the aforementioned challenges.The significant contributions and practical implications of this thesis can be summa-rized as follows: (a) Ramping behavior analysis (RBA) model for classification of windpower variations (b) multi-variate scenario generation (c) Coordinated microgrid (CoMG)model for optimal investment in power generation and transmission expansion planningconsidering uncertainty (d) Reliability framework to evaluate condition of power networkusing indicators (e) reliability oriented network restructuring (RNR) model to determineoptimal investment for power distribution systemexpansion andnetwork reconfiguration.The thesis has three chapters that discuss various aspects of the power network ex-pansion problem. For strategic planning an accurate and precise classification of stochas-tic variables such as wind is important. The thesis begins with the chapter on rampingbehaviour analysis (RBA) of wind power production. RBA is a novel algorithm that charac-terizes the time-series wind data to a series of ramp events. RBA is applied to time-seriesdata from wind farms to extract the ramp events. Each ramp event has a peak and valleythat shows the trajectory of each event. RBA improves the operational planning of windfarmswith themechanismof event detection. Successively amulti-variate scenario gener-ation model is developed capturing the correlation between the uncertain variables. Thevariables are wind, demand and price that are correlated to each other. These scenariosare input to the stochastic programming model(CoMG) presented in chapter two.The second chapter emphasizes on optimal investment decision making strategies forgeneration and transmission expansion planning. An innovative coordinateddecisionmak-ing process is introduced through a multi-agent-system on top level. And a stochasticmulti-periodmath-heuristicmodel at the bottom for optimal expansion under uncertaintyin demand, wind and prices. The novel math-heuristic model, coordinated microgrid ex-pansion planning, is applied to real-world planning for expansion.The third chapter further enhances the scope of planning problem by including powersystem adequacy and reliability. A power system reliability framework is proposed con-sidering the life-cycle of the power apparatus, consumer satisfaction index and geograph-ical terrain. Subsequently, reliability oriented power system restructuring model is for-mulated as a Non-Linear deterministic multi-period model. The model contains an AC-
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optimal power flow formulation with a grid reconfiguration based on the weights allo-cated through the proposed framework. The model evidently improves the expansiondecision through consideration of existing network condition.The models developed are applied to real-world planning problems for distributionnetwork operator. The models are validated with real data from industrial partners. As anopen-source initiative, a modified version of two models developed are made availablevia Github repository.

keywords: wind power swings, mathematical optimization, generation and transmis-
sion expansion planning, decision support system, power system reliability and adequacy,
network restructuring, energy informatics
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Lühikokkuvõte
Kaasaegsete jaotusvõrkude planeerimise mudelid
Puhtama ning jätkusuutlikuma elektrienergia toomise eesmärgi nimel toimub elektrisüs-teemi üleminek tsentraliseeritud tootmiselt hajatootmisele. Eelnevast tulenevalt on taas-tuvenergiaallikate kasutamine ning taastuvenergia osakaal lõpptarbimises kasvanud. Li-saks on hakatud tegelema tarbimise juhtmisega ning see avaldab mõju elektrijaotussüs-teemi ümberkujunemisele.Hajatootmisele üleminek toob endaga kaasa mitmeid tehnoloogilisi ja majanduslikkeväljakutseid, mis on seotud elektrienergia tarbimise ja tootmise tasakaaluga. Selleks, ettagada sujuv üleminek hajatootmisele ning samas säilitada süsteemis tasakaal ja varustus-kindlus, on väga oluline tegeleda süsteemi strateegilise planeerimisega. Arvestada tulebnii tarbimise kasvu kui ka taastuvenergiaallikate kasutamise suurenemisega.Käesolevas töös vaadeldakse optimaalset elektrisüsteemi laienemise planeerimist kaa-saaegsetes jaotusvõrkudes. Peamised väljakutsed on tuuleenergia muutlikkus, optimaal-ne elektrivõrgu laienemine ning elektrisüsteemi töökindlus ja piisavus. Iga eeltoodud väl-jakutse jaoks koostati matemaatiline mudel.Töö olulised panused ja praktilised tulemused on järgnevad: (a) võimsusmuutuste ana-lüüsi (Ramping behavior analysis - RBA) mudel tuuleenergia muutuste klassifitseerimiseks(b) mitmemõõtmelise stsenaariumi koostamine (c) koordineeritud mikrovõrgu (CoMG)mudel optimaalsete investeeringute jaoks elektrienergia tootmises ja jaotamises võttesarvesse ebamäärasust (d) töökindluse raamistik elektrisüsteemi kasutamise indikaatoritehindamiseks (e) Töökindlusele orienteeritud võrgu restruktureerimise (Reliability orientednetwork restructuring – RNR)mudel jaotusvõrgu rekonfigureerimise optimaalse inevstee-ringu tegemiseks.Töö on jaotatud kolmeks peatükiks, mis käsitlevad elektrisüsteemi laienemise problee-mi erinevaid aspekte. Töö algab peatükiga, mis käsitleb tuuleenergia tootmise võimsus-muutuste analüüsi. RBA on uudne algoritm, mis teisendab tuuleandmete aegrea sünd-muste reaks. Igal sündmusel on tipp ja põhi, mis näitavad sündmuse trajektoori. RBAparandab sündmuse tuvastamise abil tuuleparkide planeerimist. Mitmemõõtmelise stse-naariumi koostamise mudel on arendatud ebamääraste muutujate vahel seose määra-miseks. Muutujad on tuule tugevus, nõudlus ja hind ning kõik muutujad on omavahelsoetud. Need stsenaariumid on sisendiks stohhastilisele programmeerimise mudelile, mi-da käsitletakse teises peatükis.Teine peatükk keskendub tootmise ja ülekandmise edasiarenduse planeerimise opti-maalse investeerimisotsuse tegemise strateegiatele. Innovatiivset koordineeritud otsu-se tegemise protsessi tutvustatakse korrapärase kõrgema tasandi iseseisva arvutisüstee-mi abil. Uudset matemaatilis-heuristilist mudelit ja koordineeritud mikrovõrgu edasiaren-duse planeerimist rakendatakse reaalsete arenduste planeerimiseks.Kolmas peatükk tõstab esile planeerimisprobleemi ulatuse, mis keskendub energiasüs-teemi töökindlusele ja piisavusele. Pakutakse välja energiasüsteemi usaldusväärsuse raa-mistik, võttes arvesse energiaseadmete elutsüklit, tarbija rahulolu indeksit ja geograafilistmaastikku. Järgnevalt on RNR mudel formuleeritud nagu mittelineaarne ette määratudmitmeperioodiline mudel. Mudel sisaldab optimaalset vahelduvvoolu energiavoo formu-leerimist koos võrgu rekonfiguratsiooniga, mis põhineb kaalude jaotamisel läbi esitatudraamistiku. Mudel täiustab silmnähtavalt edasiarenduse otsust olemasoleva võrgustikutingimuse abil.Arendatud mudelid on kohaldatud reaalsete jaotuvõrgu planeerimise probleemide la-hendamiseks. Mudelid on valideeritud reaalsete partneritelt saadud andmetega. Kahemudeli muudetud versioonid on tehtud kättesaadavaks GitHub’i keskkonnas.
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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Harvesting energy from renewable sources has become prominent since the use of fossil fuels became unsustainable. Traditional 
practice for mitigating the energy demand around globe majorly consists of utilizing conventional sources and injection of 
renewables as and when available. The continuous and exponential growth in consumption alongside the need to reduce the 
carbon footprint and to counter the climate change has paved the way for Renewable Energy Sources (RES). Availability and 
maturity in technology made wind and PV (photo-voltaic) the most prominent among others. Per contra, the inherent variations 
in the weather in form of wind speed, solar irradiance act as a barrier in utilizing the full potential. The variations, ramp events, in 
case of wind energy have adverse effects on determining the reliability, economical profitability, and flexibility. Accurate 
recognition of the wind ramp events can improve energy management, forecasting and causality. This paper proposes a data 
analysis oriented approach exploring the pre-processing technique of wind power variations using moving average filter, 
followed by noise extraction and separating the power swings. Further clustering the power swings utilizing K-means clustering 
technique. The proposed technique improves the power swings identification process by reducing the noise content. 
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1. Introduction 

The systems are static, quasi-static or dynamic with respect to time. An event in a system can be a continuous or 
discrete time process. Ramp is used to explain an event where a sudden positive or negative swing occurs within a 
period. Harvesting energy from every possible source before the conventional sources run out of reserve pushed us 
for the change in regime. Now that the energy requirement is foreseeing a rapid growth over time, the challenge 
became multi objective – manage consumption, increase production from alternative sources and ICT (Information 
and Communication Technologies) integrated smart controlling of the overall system. Most renewable sources of 
energy are non-deterministic owing to the factor of random availability as in wind speed, solar irradiance. This 
unreliability acts as the major hindrance apart from the economic standpoint in wide scale implementation. Today’s 
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practice consists of majority of production and reserve from conventional sources and penetrative renewable energy. 
The ramp events in power conversion from RES have adverse effects on reliability, economical profitability and 
flexibility. Characterizing the ramp behavior of renewable sources fosters the chances for better management and 
thus improving the system operation. Inherently RES have multi-level time varying uncertainty. In wind energy, 
ramp-ups are usually caused by intense low pressure systems, low level jets, thunder storms, wind gusts, climatic 
variations [1]. Again, the statistical model presented providing insights to the ramping events- frequency of 
occurrences and severity levels. The study of ramp events are utilized in system control and day-ahead forecast. 
Sevlian and Rajgopal et. al. used a dynamic programming recursion to analyze ramp events by virtue of a statistical 
model [2]. Wherein Florita et. al. used swinging door algorithm and indicated the fine tune required to improve the 
ramping event analysis in solar and wind energy [3]. Ouyang et. al. illustrated the current forecast models based on 
ramping events. Then extended suggestions in contrast with numerical weather prediction [4]. Bianco et al. 
presented wind ramp detection, time forecast, observed ramp and impact of the up-down events on the grid operation 
[5]. In [6] ramping behavior analysis technique was elaborated for the ramp detection in RES. In [7] a time series 
simulation for the large wind farm in turbulent scenario was described. In [8] a spacio-temporal model for the short-
tern wind power forecast model was developed. However, the wind power variations are highly dependent on the 
precise peaks identification and a setting a proper threshold. The noise in the dataset often lead to misclassification 
or over-estimation of the ramp events. In this paper, the focus was on the pre-processing of wind power data that 
give rise to precise time-series data removing the noise content and preserving the swing property of the original 
data. Consecutively identifying the peaks and clustering the peaks into groups classified the variations accurately. 
This article is divided into four sections- first the wind power variations explaining the ramp events, second wind 
power data filtering method, followed by clustering the data sets to emphasize the significance and finally the 
conclusion. 

2. Wind power variations 

The Ramping Behavior Analysis (RBA) is a relatively recent field of study in the domain of RES. The causality 
of the ramp events are not clearly traced. In wind energy, sudden oscillation of output power from wind turbine and 
high input power injection with notable pace is an identifier of ramping. Performing the ramping analysis on both the 
input and output is a key point. There exists no particular increment in magnitude or oscillation ranges in literature 
for the RES to characterize the events. As a result, there are multiple ramp events in various sets of thresholds. The 
second fold of problem is based on reliability statement in agreement with magnitude and times of occurrences in the 
period of analysis. Various levels of system with multiple time steps, intermediate delays, and the instantaneous 
weather changes make the system highly random. Statistical model requires iterative investigations with multiple 
thresholds, data sets and time stamps to make an inference, setting aside the Hybrid Renewable Energy Sources 
(HRES). The traditional definitions for the wind ramp events are distinguished by the pre-determined threshold 
values. The four equations of threshold values below are widely used definitions in literature. [4]. 

thrPtPttP  )()(    (1) 

      thrPtttPtttP  ,min,max    (2) 

 
thr

m
n Nhtht P

N
PP

  1    (3) 

thrP
t

tPttP




 )()(
   (4) 

Where P, t, Δt, Pthr stand for power generated, time, time interval and power threshold respectively. The yardstick 
of the analysis depends on the threshold, and change in magnitude of wind power production over a period. 
Considering only the ends or difference between maximum or minimum power productions including end approach 
has a disadvantage in the form of special case inclusion or exclusion [3].  

Setting up a threshold depends on multiple factors as in grid topology, size of turbine, placement and region. 
Ramp refers to significant increase or decrease in wind power within a set time period. A swing can at times be a 
special case, as in the wind speed drops below the limit or sudden increase due to untraceable factors. RBA consists 
of a) ramp-up b) ramp-down c) rise-time d) fall-time e) ramp-up/down rate [6]. The objective is to identify the set of 
significant ramps considering the time as a reference and the difference between two consecutive high and low 
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practice consists of majority of production and reserve from conventional sources and penetrative renewable energy. 
The ramp events in power conversion from RES have adverse effects on reliability, economical profitability and 
flexibility. Characterizing the ramp behavior of renewable sources fosters the chances for better management and 
thus improving the system operation. Inherently RES have multi-level time varying uncertainty. In wind energy, 
ramp-ups are usually caused by intense low pressure systems, low level jets, thunder storms, wind gusts, climatic 
variations [1]. Again, the statistical model presented providing insights to the ramping events- frequency of 
occurrences and severity levels. The study of ramp events are utilized in system control and day-ahead forecast. 
Sevlian and Rajgopal et. al. used a dynamic programming recursion to analyze ramp events by virtue of a statistical 
model [2]. Wherein Florita et. al. used swinging door algorithm and indicated the fine tune required to improve the 
ramping event analysis in solar and wind energy [3]. Ouyang et. al. illustrated the current forecast models based on 
ramping events. Then extended suggestions in contrast with numerical weather prediction [4]. Bianco et al. 
presented wind ramp detection, time forecast, observed ramp and impact of the up-down events on the grid operation 
[5]. In [6] ramping behavior analysis technique was elaborated for the ramp detection in RES. In [7] a time series 
simulation for the large wind farm in turbulent scenario was described. In [8] a spacio-temporal model for the short-
tern wind power forecast model was developed. However, the wind power variations are highly dependent on the 
precise peaks identification and a setting a proper threshold. The noise in the dataset often lead to misclassification 
or over-estimation of the ramp events. In this paper, the focus was on the pre-processing of wind power data that 
give rise to precise time-series data removing the noise content and preserving the swing property of the original 
data. Consecutively identifying the peaks and clustering the peaks into groups classified the variations accurately. 
This article is divided into four sections- first the wind power variations explaining the ramp events, second wind 
power data filtering method, followed by clustering the data sets to emphasize the significance and finally the 
conclusion. 

2. Wind power variations 

The Ramping Behavior Analysis (RBA) is a relatively recent field of study in the domain of RES. The causality 
of the ramp events are not clearly traced. In wind energy, sudden oscillation of output power from wind turbine and 
high input power injection with notable pace is an identifier of ramping. Performing the ramping analysis on both the 
input and output is a key point. There exists no particular increment in magnitude or oscillation ranges in literature 
for the RES to characterize the events. As a result, there are multiple ramp events in various sets of thresholds. The 
second fold of problem is based on reliability statement in agreement with magnitude and times of occurrences in the 
period of analysis. Various levels of system with multiple time steps, intermediate delays, and the instantaneous 
weather changes make the system highly random. Statistical model requires iterative investigations with multiple 
thresholds, data sets and time stamps to make an inference, setting aside the Hybrid Renewable Energy Sources 
(HRES). The traditional definitions for the wind ramp events are distinguished by the pre-determined threshold 
values. The four equations of threshold values below are widely used definitions in literature. [4]. 
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Where P, t, Δt, Pthr stand for power generated, time, time interval and power threshold respectively. The yardstick 
of the analysis depends on the threshold, and change in magnitude of wind power production over a period. 
Considering only the ends or difference between maximum or minimum power productions including end approach 
has a disadvantage in the form of special case inclusion or exclusion [3].  

Setting up a threshold depends on multiple factors as in grid topology, size of turbine, placement and region. 
Ramp refers to significant increase or decrease in wind power within a set time period. A swing can at times be a 
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values give rise to peak points in both ascending and descending order. It is to be considered that the minute changes 
have to be ignored to catalogue only the significant variations. Fig. 1(a) explains the RBA in terms of a power swing 
above threshold. A threshold value is often set, above which the ramp events are significant for the system 
depending on the scenario. Ramp-up is an event of rise in positive number, where the ramp-down in opposite 
direction. Rise and fall time are successive time steps taken to reach the corresponding peak. Ramp up rate goes 
by Timestepslowestpeak /)(  . 

 

 

Fig. 1.(a) ramp event (b) wind power swings 

3. Wind Power data filtering 

The data sets considered for this analysis have 10 min time step and were measured in a wind park consisting of 
17 wind turbines, 2.5 MW each. The average wind speed in the region is 6 m/sec. Fig. 2 represents the wind park 
power generation of four months. It was observed that the aggregated output for four months shows continuous 
power swings and number of swings reduces upon stretching the data. Fig. 1(b) represents both power data from the 
wind turbine and aggregated wind park data. It can be observed from fig. 2 that the individual turbine data is more 
erratic than that of the wind park aggregated data that is causing the excess noise content. Exponential moving 
average filter technique is used for smoothing the data and presented in fig. 3(a) and 3(b) along with the extracted 
noise content. The equation 5 represents the calculation for moving average.  

  )())(()( pfpfccf      (5) 

Where f, c, p, ω stands for exponential moving average, current value, previous value and ω=2/(N+1) weight 
factor wherein N is number of periods respectively. 

Filters are data processing techniques that can smooth out high-frequency fluctuations in data or remove periodic 
trends of a specific frequency. Using the aforementioned filtering technique the noise is extracted from the original 
data and presented in fig. 3(a) and 3(b). Wherein A- Original wind power, B- smoothed power curve and C - noise 
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content in the data. Fig. 1(b) represent the wind power swing data evaluated from differentiation of the derived 
smooth data that refers to the peak points or local maxima. 

 

 

Fig. 2. Wind park power data. 

 

Fig. 3. (a) wind turbine power data; (b) wind park aggregated data. 

4. Clustering power swings 

In this section, the derived data is clustered to categorize the power swings. Clustering the data indicates the 
pattern in the swings by aggregating them into appropriate number of groups. K-means clustering technique was 
selected to perform the analysis due to simplicity and reasonable computational time. To determine optimal number 
of clusters, two different approaches have been combined. The number of clusters has been analyzed by the knee-
point of sum of distances and by using silhouette coefficient of the clustered data. 

4.1. K-means clustering algorithm 

The K-means clustering algorithm also known as Lloyd’s algorithm [9] is applied for classification of objects 
into K number of groups based on attributes. The algorithm is based on the minimization of squared Euclidean 
distance between the objects and centers of the assigned clusters [10]: 
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where zi, is the center of cluster Ci and d(x, zi) is the Euclidean squared distance between point x and cluster 
center zi. 

4.2. Data sets used for clustering 

Two data-sets were used for clustering: data set 1 includes single wind turbine data and data set 2 wind park data. 
Both data-sets include observations with four attributes, namely: original data, smoothed data, swing data, noise 
content. 

4.3. Optimal number of clusters 

Fig. 4(a) displays the total sum of Euclidean square distances as a function of K, number of clusters. The figure 
displays the results for both data-sets, which behave similarly. Based on the curve, the decrease rate of the sum of 
distances decreases rapidly until around 10 clusters. Thus, it is possible to conclude that for clustering, values above 
10 offer limited gains with respect to the sum of distances. 
 

 

Fig. 4. Number of clusters and (a) the sum of Euclidean squared distances; (b) silhouette coefficient. 

A second way to analyze the suitability of the value of K is to use the values of silhouette coefficient [10] – [11]: 
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and the silhouette values of points [11] Si are defined as:  
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where Si is the silhouette value for point i, bi is the minimum average distance from point i to points of other 
clusters; ai is the distance of point i to the other points of the same cluster. 

According to fig. 4(b), the silhouette coefficient value decreases with the increase of the number of clusters, 
indicating that in case of larger number of clusters the dissimilarity between the clusters decreases. An interpretation 
for the values of the silhouette coefficient was given in [12]. Values equal to and below 0.25 indicate that no 
substantial structure was found. The found structure can be considered to be weak and possibly artificial if the value 
of the silhouette coefficient is 0.50 or lower. Values above 0.50 and up to 0.70 indicate a reasonable structure. This 
value range is also achievable with the used datasets by using 8 or lower value for K, number of clusters. 
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Considering both aspects of the clustering, the sum of squared Euclidean distances and silhouette coefficient 
value, 8 can be chosen as a suitable number of clusters. This value offers a compromise between achieving minimal 
total distance of objects from cluster centers and describing a reasonable structure of the data. A lower value would 
strengthen the structure of the clusters, but would also increase the sum of Euclidian distance squares between the 
clustered objects and the centers of the clusters. This means that the ramps classified to the same clusters would 
have higher variance. 

4.4. Clustering Results 

Previously, the number of clusters were selected to be eight. With this number of clusters, the first set of data, 
wind turbine data was clustered according to the silhouette plot shown in fig. 5(a). The created clusters seem to be 
close to each other, indicated by the negative silhouette values and silhouettes with sharp tips. For comparison, the 
result of two clusters are presented in fig. 5(b). The clusters have flatter tips and lower number of objects have 
negative values, thus two clusters offer in this case better separation of created clusters. The second set of data, wind 
park data, clusters into two clusters according to fig. 5(c) and to eight according to fig. 5(d). Again, clustering the 
dataset into two clusters leads to more distinguishable clusters.  

 

 

Fig. 5. Silhouette plots of aggregated data: (a) wind turbine data and 2 clusters (b) wind turbine data and 8 clusters (c) wind park data and 2 
clusters (d) wind park data and 8 clusters. 

5. Conclusion 

The proposed analysis sheds light into identification of power swings from wind parks and individual turbines. 
Extracting the noise content by exponential moving average from the data prior to applying RBA provides accurate 
measure to the variations and computationally efficient. Clustering the variations to catalogue them provides 
required order of filtering. Optimal number of cluster selection through the total Euclidean distance measure and 
silhouette coefficients led to successful aggregation of the data. In continuation of the current work the event 
classification in multiple orders with relations, causality and novel clustering methods are being prepared. 
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Abstract—Wind power ramps are power swings induced by
the variations of wind speed. The ramp pattern of wind farms
and turbines differs. In this paper, the pseudo code of ramping
behaviour analysis with primary functionalities is presented. Ge-
netic algorithm is applied to aggregate turbine-wise wind power
data from the wind farm. This pre-processing is done to shrink
the volume of the data through a aggregated representative data.
The ramping behaviour analysis results are analysed by using K-
means clustering to identify patterns in the ramping behaviour
of the wind farm. The results indicate that for certain wind ramp
parameter combinations, the identified patterns are stronger. In
this paper, it is shown that the ramp energy values calculated
based on ramping behaviour analysis parameters provide a
strong cluster structure with low number of type events.

Keywords—wind energy; wind ramp; ramping behaviour anal-
ysis; genetic algorithm; clustering; renewable energy resources;

I. INTRODUCTION

Transition from conventional energy sources to renewable
energy sources (RES) has become one of the biggest tran-
sitions in the last decade. Climate change and utilization of
renewable resources are one of the primary reasons. Solar and
wind are by contrast the most prominent RES. Technologies to
extract energy from RES are mature enough and fast growth
in ICT has worked as the catalyst for the grid integration.
This transition of unidirectional flow of power from source to
demand is changing with distributed energy resources (DER).
DER in turn gives rise to micro and smart grids with small
and medium capacity of generation.

Wind, being a natural resource, is variable and unpredictable
by nature. As one goes further from the Mediterranean region,
the wind energy becomes more prevalent as the availability
of solar energy diminishes. A sudden wind power swing is
called a ramp. It could be up ramp or down ramp based on
the movement. Though the ramps are often swings that settle
down quite fast. Although near precise weather forecasts are
extremely helpful for operating the wind farms, frequent varia-
tions in the wind speed and intervals make the operation more
complex and motivate the use of energy storage technologies.
Nevertheless, battery banks are used as an intermittent source
to maintain uninterrupted energy supply.

A wind ramp of an individual wind turbine differs from the
ramp of the wind farm [1]. In [2] frequency regulation for the

This paper was funded by the European Union via the European Regional
Development Fund.

Fig. 1. Layout of the analysed wind farm.

wind power variation are discussed. In [3] ramp event identi-
fication is presented. In [4] a tool to characterize ramp events
is presented. A smoothing technique is applied to reduce the
noise content in the data [5], [6]. However, processing big-data
from a wind farm and identifying ramp events require high
computing power. Averaging the wind time series data looses
the time significance. For instance a significant ramp event at a
small window gets lost while looking at a bigger time window.
In this paper, a wind farm consisting of 17 wind turbines is
considered for the analysis. The layout of wind turbines in the
farm are presented in Fig. 1. The genetic algorithm (GA) is
used to optimally aggregate the data from 17 wind turbines.
The granularity of the precise ramp event identification is
preserved across hourly time resolution. Wind ramp events are
identified with the aggregated data. In order to identify type
events of the wind farm, ramping behaviour analysis results
are clustered. Different combinations of ramping behaviour
analysis parameters are used for detecting patterns.

The rest of this paper is organized as follows. In section
II-A, a method for aggregation of power data is presented.
Section II-B provides an overview of ramping behaviour anal-
ysis (RBA) and presents an algorithm for identifying the values
of RBA parameters. Section II-C ends with a description of
K-means clustering, which is used in section III for identifying
patterns in RBA results. The clustering was done with different
parameter weights and combinations to detect the patterns. The
results of the paper are summarized in section IV.

978-1-5386-5186-5/18/$31.00 c© 2018 IEEE



Fig. 2. Histograms of normalized and aggregated wind farm data.

II. WIND DATA AGGREGATION AND RAMP EVENT
IDENTIFICATION

A. Data Aggregation

A genetic algorithm (GA) is a local search optimization
technique primarily applied to optimization problems that are
highly non-linear, non-differential or discontinuous. Concep-
tually GA is based on the biological evolution process. The
process randomly selects a pair out of the total population
and crossover takes place to produce successors for next gen-
eration. This process of evolving toward an optimal solution
classifies GA as an evolutionary technique [10]–[14].

The fitness function ff of the GA is (1). The ff considers
the time horizon t, the turbine w, month m and y as the current
data point. In the present context m is the winter period:
September through December. Also w is 17 and t is 2920
hours. The power data is normalized by using the maximum
value, to obtain normalised values between 0 and 1 p.u. Fig. 2
presents the histogram of the month wise power data from the
wind farm and the optimized data. Typical month-wise power
data from wind farm is combined and using GA one optimal
representative array is generated for each turbine.

ff =

|w|∑

w=1

|t|∑

j=1

ywj ∗ (ywj −mj)
2 (1)

The data aggregation is applicable to identify and forecast
significant ramp events. Specifically in long-term forecasting
of the wind ramp events or building an event matrix. Wherein

the volume of data can be reduced using GA. The average
number of peaks identified individually from the raw data is
566 for wind turbine. Processing through GA the number of
events identified is 618. Thus, the number of events identified
is close to the original data. It means the frequency of ramp
events in the data is preserved while the data is reduced four
folds.

B. Ramping Behaviour Analysis

In paper [3], ramping behaviour analysis (RBA) was de-
scribed to identify the ramp events. The Algorithm 1 depicts
the pseudo code for the RBA algorithm. RBA consist of four
functions: peakval, risetime, falltime and ramprate. Function
peakval identifies the peak point through index values and
stores them in i+. Successively the valley points are stored in
i−. An example of peak value identification process in a data
array is presented in Fig. 3. The x stands for the input array
and D stands for the difference. The arrow sign denotes the
peak values: 8 and 5. The rectangle outlines the pair of values
compared to find the peak values: (1, -6) and (4, -2).

Fig. 3. Example of peak value identification algorithm



Functions risetime and falltime evaluate the time taken to
reach the peak point and valley point and stores the values
in trise, tfall successively. P (x) refers to the index value x
of input power data P . Finally, ramprate function calculates
the power change rate at which the peak or valley points
were reached. The calculated ramp-up and ramp-down rates
are stored in rrate+ , rrate−, respectively.

Algorithm 1: Ramping Behaviour Analysis (RBA)

input wind power data array x ;
Function peakval

n = |x|;
while i ≤ n do

Di = xi+1 − xi ∀ i ;
if Di < 0 ∀ i then

i+ = i ∈ x [index value of Di+1];
else

i− = i ∈ x [index value of Di];
end

end
Result: peak points identified

Function risetime
xmax = i+; xpeak = i+ ;
xmin = (xmax − 1) ;
if P (xmin) ≤ P (xmax) ;
then

P (xmax) = P (xmin);
P (xmin) = P (xmin − 1) ;

else
P (xmin) = P (xmax) ;
trise = tscale ∗ (P (xpeak)− P (xmin))

end
Result: rise time identified for each peak

Function falltime
if P (xmax) ≤ P (xmin) ;
then

P (xmin) = P (xmax);
P (xmax) = P (xmax − 1) ;

else
P (xmax) = P (xmin) ;
tfall = tscale ∗ (P (xmax)− P (xpeak))

end
Result: fall time identified for each peak

Function ramprate

rrate+ =

(
P (xmax)− P (xmin)

)
/trise ;

rrate− =

(
P (xmax)− P (xmin)

)
/tfall ;

Result: ramp-up and ramp-down rate identified
for each peak

C. K-means Clustering Algorithm

The K-means clustering algorithm, also known as Lloyd’s
algorithm [15] is used for classification of objects into K
number of groups based on attributes. In case of wind ramps,

the ramping behaviour analysis uses 7 attributes for each
event, which can be used for classifying the wind ramps to
groups. The algorithm is based on the minimization of squared
Euclidean distance between the objects and centers of the
assigned clusters [7]:

min(E) = min(
K∑

i=1

∑

x∈Ci

d(x, zi)) (2)

where zi is the center of cluster Ci and d(x, zi) is the
Euclidean squared distance between point x and cluster center
zi.

III. CLASSIFICATION OF WIND RAMPS

A. RBA Parameter Subsets and Normalization
In ramping behaviour analysis, the wind ramp events were

described by start Pmin1, peak Pmax and end Pmin2 value
of power variation; rise speed and time; fall speed and time.
Thus, for every significant variation, 7 parameter values are
available. Start, peak and end value are in kW, rise and fall
speed in kW/min, rise and fall time in minutes.

The clustering was applied to combinations of ramping be-
haviour analysis (RBA) parameters to determine the attributes
of wind ramps that are suitable for event classification. Firstly,
the RBA parameters were divided by the physical quantity, this
led to formation of data subsets 1..3, shown in Table I. These
subsets were not normalised, as within the subsets, the same
units were used for all values. Subsets 4 to 6 were formed to
test the impact of RBA parameter normalisation on clustering
results. Subset 4 was not normalised. The values in subset 5
were normalised using median value of Pmax, w1, and median
value of rise and fall times w2. For subset 6, the maximum
value of Pmax, w3, and maximum value of time were used.
In case of subset 6, all values in the subset were in the range
of 0 to 1. The ramp energy parameters used for subset 7 are
explained in section III-B.

TABLE I
NORMALISATION BASES USED FOR SUBSETS OF RAMPING BEHAVIOUR

ANALYSIS (RBA) ATTRIBUTES

RBA Attribute
Data Subset

1 2 3 4 5 6 7
Pmin1 1 - - 1 w1 w3 -
Pmax 1 - - 1 w1 w3 -
Pmin2 1 - - 1 w1 w3 -

Rise time - 1 - 1 w2 w4 -
Fall time - 1 - 1 w2 w4 -

Rise speed - - 1 - - - -
Fall speed - - 1 - - - -

Ramp energy - - - - - - 1

B. Evaluating the Strength of Clusters
The clustering results were evaluated in this study based on

the value of silhouette coefficient SC (3) [7], [8].

SC = 1/K
∑

j=1

KSj (3)



where Sj is the local silhouette coefficient

Sj = (1/nj)
∑

i=1

njSi (4)

and the silhouette values of points si are defined as

Si = (bi − ai)/max(ai, bi) (5)

where si is the silhouette value for point i, bi is the minimum
average distance from point i to points of other clusters; ai is
the distance of point i to the other points of the same cluster.
The following interpretation of silhouette coefficient SC val-
ues from [9] was used to evaluate the cluster strength and
choose the optimal number of clusters.
• ≤ 0.25: No substantial structure has been found
• 0.26 — 0.50: The structure is weak and could be artificial;

please try additional methods on this data set
• 0.51 — 0.70: A reasonable structure has been found
• 0.71 — 1.0: A strong structure has been found

C. Clustering Based on Subsets of Ramping Behaviour Pa-
rameters

Clustering results in Fig. 4 indicate that the ramping time
parameters (subset 2) offer better clustering results than peak
and valley points (subset 1) and ramp rates (subset 3). A
strong structure is obtained for subset 2 with at least 15
clusters. The marginal decrease of sum of squared Euclidean
distances, Fig. 5, is largest for small number of clusters.
Thus, with the increase of number of clusters, the benefit of
additional clusters decreases. Subset 2, which displayed good
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Fig. 6. Subset 1, 2 & 4: silhouette coefficient.

clustering characteristics, describes only the ramping duration
of the wind ramps. The combination of subset 1 and subset 2
would describe the key points of the wind ramp (start, peak
and end power) and also the duration of the event. Thus, a
combination of the two subsets would have significantly higher
value than subset 2. If subset 1 and 2 are combined without any
normalisation of values, subset 4 is acquired. The clustering
characteristics of subset 4 are similar to subset 1, as shown
in Fig. 6. Reason is the data normalisation, which was not
applied and due to large subset 1 values, subset 2 parameter
values had small impact on clustering results.

Comparing the non-normalised subset 4 results with the
normalised subsets 5 and 6, in Fig. 7, it is clear that subset
5 has different clustering characteristic. Reason is again the
obtained set of values. In case of ramping times, the use of
median value (subset 5) leads to value range 0 to 225, while
the power values normalised with median of peak power are in
range 0 to 2. In case of normalisation with maximum values,
the power dimension has larger impact due to larger spread of
values. Ramping times are mostly near 0 if the maximum value
is used for normalisation, thus the ramping time differences
are mostly smaller than the differences of normalised power
values.

D. Clustering Based on Ramp Energy

During the rise ramp, additional power, with maximum
value Ppeak−Pmin1, in comparison to the initial power Pmin1

is generated. Using the ramp time trise, it is possible to derive
equation for rise ramp energy Urise (6). Similarly, during
the fall ramp, the wind turbine power output increases up to
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Pmin2 − Ppeak, compared to the value of Ppeak. The energy
of the fall ramp can be described by (7).

Urise =
trise · (Ppeak − Pmin1)

2
(6)

Ufall =
trise · (Pmin2 − Ppeak)

2
(7)

Elements of subset 7 were calculated using (6) and (7). The
clustering results in Fig. 8 indicate that a strong structure can
be acquired with up to 17 clusters and with higher number of
clusters, the found structures have a reasonable strength.

IV. CONCLUSION

In this paper GA is applied to aggregate and shrink the
original data volume. Ramping behaviour analysis (RBA) is
used to identify the ramp events in the wind power data
from wind farm. The pseudo-code of RBA is presented with
individual functionalities. Optimal weight is allocated to RBA
attributes using optimal cluster formulation. Clustering of
identified ramp events based on different combinations of RBA
parameters was conducted.

It was shown that in case of the analysed data, the strongest
structure was found using the subset of ramping times. The
clustering of RBA parameters with different units is a chal-
lenging task due to the need of parameter normalisation. It
was shown in the paper, that one solution is to cluster the
wind ramps based on rise and fall energy.
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Abstract. In mathematical optimization uncertainty is expressed through scenarios. auto-regressive integrated
moving average (ARIMA) is one of the known practise to generate scenarios. This paper is about scenario
generation using multivariate data: electrical power demand, wind power generation and energy market price.
An ARIMA model along with Copula is implemented for scenario generation. The results are presented and
discussed.

1 Introduction

This work is about scenario generation using copula. Sce-
nario generation is an important part of stochastic pro-
gramming. The generated scenarios however should retain
the original statistical properties of the data. Auto regres-
sive inter grated moving average (ARIMA) has been used
extensively in literature [1] to generate scenarios. One of
the drawbacks of ARIMA is the applicability to multivari-
ate distributions. To overcome this Copula is used to gen-
erate scenarios as presented here [2, 3]. A regular vine
copula and the goodness of fit measures are discussed here
[4]. A Bayes theory based copula is presented here. [5]. A
comprehensive study of various copula models with real
world data is presented here [6]. A multivariate copula
based forecasting method is explained here [7].

Multivariate copula is gaining more importance due
to the nature and availability of data and relations among
them. In this paper wind, demand and price data are con-
sidered as the multivariate data. Copula is used to gen-
erate multivariate distributions. These are sampled using
ARIMA and the results are presented. The rest of the paper
is organized in four sections: scenario generation, compu-
tational experiments, discussion and conclusion.

2 scenario generation

This section describes the mathematical model for the sce-
nario generation using copula. This section is further di-
vided into two subsections: ARIMA model and copula.
The former presents a multivariate ARIMA formulation
considering three variables. The later states the copula to
sample the residuals.

∗e-mail: sambeet.mishra@ttu.ee
∗∗e-mail: wuersig@fmt.uni-hannover.de

2.1 ARIMA model

The ARIMA Model is a widely used model for modeling
[8]. We use the model, to capture the time series behavior
of the series.

The authors consider the statistically correlated scenar-
ios because the stochastic variables: wind, demand, and
price are co-related. Thus formulating the ARIMA(φ, ϕ)
a quasi-contemporaneous stochastic process price (ya

s,t),
demand (yb

s,t) and wind (yc
s,t) as in 1(a-c). The residuals

εa
t,s, ε

b
t,s, ε

c
t,s are statistically dependent. Thus the depen-

dency structure of the stochastic processes can be stated as
ε{εa

t,s·εb
t− j,s·εc

t− j,s} , 0. εa
s , ε

b
s , ε

c
s are the series of errors sim-

ulated to produce residual cross-correlogram of stochastic
process. In 1(d) the error correlation between stochastic
process a & b, a & c are presented and finally reduced to
a product of an orthogonal matrix B and identity matrix
ψ(E[ψ · ψT ] = I) . The cross correlation between εa

t,s and
εb

t,s can be represented through variance-covariance matrix
G. G is essentially a positive semi-definite and symmetric
matrix. This matrix is further decomposed using Cholesky
decomposition (G = LLT ) [9–11]. L is the upper triangular
matrix that is also the orthogonal matrix (B = L).

ya
s,t =

ηa∑

j=1

φa
j · ya

t− j,s + εa
s,t −

τa∑

j=1

ϕa
j · εa

t− j,s (1a)

yb
s,t =

ηb∑

j=1

φb
j · yb

t− j,s + εb
s,t −

τb∑

j=1

ϕb
j · εb

t− j,s (1b)

yc
s,t =

ηc∑

j=1

φc
j · yc

t− j,s + εc
s,t −

τc∑

j=1

ϕc
j · εc

t− j,s (1c)

ε1
s,t =

(
εa

s,t

εb
s,t

)
ε2

s,t =

(
εa

s,t

εc
s,t

)
=⇒ ε =

(
ε1

s,t

ε2
s,t

)
=⇒ ε = Bψ

(1d)

G = cov(ε, εT ) = BBT (1e)



G = LLT = BBT (1f)

2.2 Copula

The residuals of the ARIMA Model are fitted to a Cop-
ula Model in order to capture time varying dependence of
the data. The authors use for this purpose R-vine copulas
introduced by Bedford and Cooke (2001b,2002).

The general theory for copulas is Skalars Theorem
(1959), based on this Theorem, Skalar shows that a ev-
ery multivariate distribution can be written as a multivari-
ate copula function. Equation (2) shows Skalars Theorem
applied to a three dimensional dataset.

Variables with joint density function:

f (a, b, c) = f (a) · f (b|a) · f (c|b, a) · ... · f (a|b, c) (2)

Following Skalar (1959) this density function is
uniquely represented by the following form, if it is con-
tinuous.

F(a, b, c) = C(Fa(a), Fb(b), Fc(c)) (3)

Joe (1996) makes this theorem usable for Vine Copu-
las, since he showed that Skalars Theorem can be decom-
posed to bivariate copulas. For a multivariate distribution
with three variables it thus follows that this decomposition
can uniquely identify the density function.

f (a|b, c) = cac|b(Fa|b(a|b), Fc|b(c|b)) · f (a|b) (4)

,where
f (a|b) = cab · (Fa(a), Fb(b)) · fa(a)

The R-vine (regular vine) model is chosen to model
the multivariate dependence in this empirical application.
Fitting multivariate data to a copula is a challenging task,
since commonly used copula models, like the normal cop-
ula, the t copula or the gumbel copula are either symmetric
or have only one parameter to estimate the entire copula,
which decreases the flexibility of the distribution. Bivari-
ate copulas have a wider variety of choices, thus Kurow-
icka and Cooke (2006) developed the R-vine copula mod-
els that fit multiple bivariate copulas to the multivariate
dataset and are thus able to capture the dependence struc-
ture of the multivariate dataset. "The modeling scheme is
based on a decomposition of a multivariate density into
a cascade of pair copulae" (Aas et al. p.1). R-vine’s are
represented by a hierarchical tree structure, where the first
tree is estimated by n-1 bivariate copulae and the second
by n-2 conditional on a single variable. For a three dimen-
sional dataset two copulae need to be estimated directly
and one conditional copula. In order to estimate the R-
vine, Dissmann et al. (2012) developed a sequential search
approach, they first estimate the family and parameters of
the first tree via the AIC criterion. Then they use this re-
sult to estimate the second tree. Additionally they employ
a maximum spanning tree algorithm to choose an appro-
priate edge weight. This paper implements their method
and estimation technique, in order to take advantage of the
benefits of the diversity of bivariate copulae.

2.3 ARIMA forecasting using Copula

The approach used in this paper is reminiscent of the
Copula GARCH model, introduced by Jondenau and
Rockinger (2006). First the ARIMA model is estimated,
with the standardized residuals of the ARIMA model the
R-vine copula model is estimated. The R-vine Model is
then estimated using the remaining errors terms from the
ARIMA model to capture dependencies between the vari-
ables that the time series model ARIMA cannot capture.
The Copula model is fitted to uniform [0,1] margins. Af-
terwards following Dissmann et al. (2012) we simulate
from the copula model and transform the thereby obtained
data using the not standardized residuals from the empir-
ical ARIMA model as an empirical density function. To
model the time series behavior, the simulation result is ob-
tained using the sampled residuals and the fitted ARIMA
model.

3 Implementation

In the following we present the implementation of our
method, this simulation is conducted on the logarithm of
wind, price and demand variables for 100 times. The
scripts are written in R programming language.

We estimate missing data, via linear interpolation for sin-
gle missing values. For wind we estimate the last month
via an ARIMA forecast due to the unaccounted data for
December. The ARIMA model is fitted based on the con-
ditional sum of squares to find the starting values. Follow-
ing that maximum likelihood to find the optimal parameter
estimates with respect to the AIC criterion.

We use the residuals and standardize them in order to fit
an R-Vine Copula onto the residuals. The tree structure is
determined via pair-copula families and estimated sequen-
tially. For the model families the AIC criterion is used,
parameter values are estimated using maximum likelihood
estimation.

Following [12] methods we simulate the uniform esti-
mates from the R-Vine Copula model.

We transform the uniform values using the trimmed em-
pirical quantile distribution of our residuals into simulated
observations.

We enter the simulated estimates into the ARIMA model
and obtain the results after taking the exponential function
of the values.

4 Computational experiments

The provided sample is hourly data for the year 2017,
with the Price in e/MWh, Wind in MWH and Demand
in MWH. The data contains two missing observations,
they are interpolated, additionally the last 263 observa-
tions for Wind data are missing, in order to model this
data an ARIMA model is fitted on the observed sample
and the 263 missing values are estimated. The approach



used is close to the GARCH Copula estimation, in place
for a ARMA(p,q)-GARCH model and ARIMA model is
used, since the data is unlikely heteroskedastic and it is
unnecessary to model GARCH effects for this time series.
This method enables us to fit the a copula approach easily
to the data and to model the time series behavior.

First the data is fitted to an ARIMA model, that is op-
timally chosen based on the AIC criterion. The ARIMA
process is required to be stationary and seasonal, this is
necessary because of the limited amount of data, we are
forecasting a year using only a year of data, trends cannot
be captured reliably. It might be a substantial increase in
wind production, but it is not clear if it is due to a windy
year or additional wind farms, that would increase next
year’s production as well. The seasonality is assumed be-
cause of the nature of the data, wind is seasonal, as well
as the demand, the price is seasonal as well. In order to
ensure positivity of the data, we are fitting the natural log-
arithm of the data and transform them for analysis later on.
In order to minimize extreme observations in our data set,
considering the large time frame we are trying to model,
we trim the residuals at 3% (we remove the 3% lowest and
the 3% highest values). With this value we have a near
normal kurtosis, before the kurtosis for the price and the
wind reached over 40. In order to ensure that our results
remain robust for different cutoff values, we used multiple
values, the results are not inconsistent, the variation of the
data increases as expected.

The estimated coefficients of the ARIMA model are
presented in table (2), the standard errors for the coeffi-
cients are low and the model fit seems to be reasonable.
In order to model serial dependence the innovations need
to be modeled, in order to model them we are standard-
izing the residuals and transforming them into uniform
[0,1] margins. The best R-Vine copula model is chosen
by optimizing the bi-variate copula models and choosing
the best fit with the AIC criterion. We sample the residu-
als from the trimmed series, we draw them based on their
assigned uniform [0,1] margins provided by the random
sampling from the copula. In the next step we find the best
R-Vine Copula using maximum likelihood estimation and
the AIC criterion. Simulations are conducted from this
R-Vine structure. The result are uniform [0,1] simulation
results of correlated seasonal innovations for wind, price
and demand. To transform the uniform margins into real-
istic values, we use the quantiles of the trimmed residual
series.

Using this series and the ARIMA model the simulation
is conducted using the simulated innovations. The expo-
nent of this result is combined with the new series to gen-
erate the plots (a)-(c), left from the red line is the original
series and right from it the simulated series. The model
clearly outperforms an ARIMA model with standard nor-
mal errors, that is not capturing any correlation between
demand, wind and price, that the copula innovations are
able to capture.

In table two the estimated ARIMA coefficients are
shown, the best ARIMA Model is chosen according to its
Aikaike estimation criteria. The model is assumed to be
seasonal and we allow for models with non-zero mean. In

order to achieve a positive simulation, we add the absolute
minimum to the series, this does not change the character
of the time series modeled but ensures consistent positive
values.

5 Discussion

Table one shows the kendall correlation of the empirical
sample. Demand and price is positively correlated as well
as demand and wind, we see a small negative relationship
between wind and price, likely because the wind barely
has influence on the price, outside of extremely windy cir-
cumstances. From the correlations themselves we cannot
make conclusions about the endogeneity. Surprising is the
large correlation between demand and wind and the lack
thereof in terms of prices. But maybe when it is windy it
is more likely cloudy, thus more energy is consumed for
heat and light.

The proposed model with copulas can model depen-
dencies, this benefit can be seen in table one, this table
displays the range of the kendall correlation for all sim-
ulations. The range is wide but it is reasonably close to
the sample and is capturing a large portion of the observed
sample correlation. The coefficients cannot be the same,
because there is likely a higher correlation for extreme ob-
servations, which we omit for the simulation in order o
receive more realistic simulations.

Table 1: Data correlation

correlation sample
Demand Price Wind

Demand 1
Price 0.4 1
Wind 0.2 -0.07 1
correlation simulation
Demand 1
Price 0.14-0.31 1
Wind 0.08-0.30 0-0.14 1

Table two shows the estimated ARIMA coefficients,
since we required the model to be stationary, a mean is
always estimated. This is reasonable here, because we at-
tempt to forecast a year of data, because we just have a
sample of one year length, assuming there is a trend in the
wind production would be likely overfitting the model in
sample. The model is fitted on logarithms, in order to en-
sure positive values after the simulation. Below the values
the standard errors are displayed.

The fig. 1 shows each time series, on the left side of
the vertical line is the original time series, on the right
side the simulation. The time series is standardized to 1
and for the simulation we trim the values at 3%, this re-
duces the kurtosis of the residuals substantially and thus
produces more reliable simulations over such a long time
frame. We tried different ranges and it produces still rea-
sonable results. The histograms display that the sample
properties are conserved, we can see more outliers, be-
cause we have more observations in 100 simulations. The
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Figure 1: Original data and generated scenarios for (a) wind power (MW/H) (b) demand (MW/H) (c) price (e) followed
by subsequent distributions



Table 2: ARIMA coefficients

ARIMA coefficient estimates Wind
ar1 ar2 ma1 mean
1.5544 -0.5705 0.1052 7.3758
0.0137 0.0136 0.0165 0.0558
ARIMA coefficient estimates Demand
ar1 ar2 ma1 mean
1.1107 -0.1455 -0.3716 6.9896
0.0681 0.0637 0.0652 0.0128
ARIMA estimates Price
ar1 ar2 ma1 ma2 ma3 mean
0.3117 0.493 1.1201 0.5782 0.2114 3.3671
0.0693 0.0624 0.0689 0.0381 0.0149 0.0073

histograms show that the distribution of the year in sample
and the simulations is reasonably close.

The model is able to capture correlation structures in
the data that traditional approaches, like an ARIMA simu-
lation with standard normal errors are not able to capture.

6 Conclusion

In this paper multivariate scenario generation based on
three variables: demand, wind and price is presented. In
the proposed multivariate scenario generation technique
ARIMA is used for forecasting and copula for adjusting
the residuals. The tail adjustment of the distribution and
the impact is also discussed. In future works a compar-
ative analysis of different statistical scenario generation
technique for multivariate data would be conducted.
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Abstract—This paper is about an application of optimal
power flow calculation for considering how interconnections of
microgrids affect the reliability of the system and the need of
network reconfiguration. For this purpose reliability indicators
for power system restructuring are presented. A reliability ori-
ented network restructuring (RNR) mathematical optimization
model is proposed for solving power grid expansion decisions with
non-linear AC-OPF. The microgrid structures are derived from
the standard IEEE-14 bus system architecture. The proposed
reliability framework is implemented with the set of reliability
indicators for measuring the system performance. The model
was solved using outer approximation algorithm. The analysis
is conducted to investigate the importance of restructuring in
an investment decision for the expansion. The results with a
comparison between investment and investment with restructur-
ing are outlined. Consequently, the expansion considering the
restructuring is found to be practical and feasible.

Index Terms—power system expansion, reliability and vul-
nerability, optimal power flow, microgrids, non-linear system of
equations, outer approximation algorithm

I. INTRODUCTION

THERE is an energy transition from “top-to-bottom” to
“bottom-to-top” flow of energy. The conventional gen-

erator is at the top in the former and multiple renewable
energy based generators are at the bottom in the latter. The
increased share of renewable energy resources (RES) in the
power generation mix is one of the primary reasons for the
transition. With this transition the macro-grid is sub-divided in
to multiple micro-grids with distributed and renewable energy
technologies. However integrated, intermittent and distributed
generations have increased the risk of security of supply as
their utilization grows in distribution networks. Micro-grid
(MG) is more sensitive to power quality issues when it is
maintained on local resources. Voltage imbalance, voltage
drops, between generation and load are serious issues which
are caused by connection of single-phase loads and sources.
The objective of the modern network operator is to employ the
smart grid technologies to plan, operate and maintain a modern
power system economically stable and with an acceptable level
of reliability.

Optimal power flow (OPF) is a central operational tool for
power systems. The direct current (DC) version is mostly
used for the high-voltage networks for transmission of bulk
power. The alternating current (AC) version is primarily used
in case of distribution networks, especially in the distribution
grid problems such as grid planning, optimal controls, reactive

This article was partially funded by the European Union via the European
Regional Development Fund.

power dispatch and unit commitment. Primary objective of
OPF is to maintain the system stability while minimizing
the cost of operations and maintenance. Investment decisions
considering power system constraints are closer to practical.
OPF in its original form is a highly non-linear problem. The
non-linearity of the system of equation is usually solved using
iterative Gauss-Siedel or Newton-Rapson method. Moreover
OPF is a non-convex optimization problem. It is also a NP-
hard problem (see [1], [2]) to find a solution for radial
networks. To solve such a problem literature suggests a)
approximation- with relaxed physical properties of OPF b)
non-linear optimization methods c) heuristics/meta-heuristics
d) convexification. The power system mostly consists of radial
networks. In literature a lot of work is done to linearise and
relax the constraints. The models can be broadly classified
as a) original OPF (O-ACOPF), b) augmented OPF (A-
ACOPF), c) augmented-relaxed (AR-ACOPF) OPF [3]. In
literature there are exact numerical solutions provided through
distributed optimization based on alternative direction method
of multipliers and semi-definite relaxations for radial and non-
radial networks [3]–[8]. However, only numerical proofs for
specific grids are portrayed in place of generalized exact proof
of the relaxation of the problem. In this paper we use a feasible
and near-optimal outer approximation algorithm to solve the
non-li/near ACOPF problem. Keeping the physical properties
of the power distribution system intact we focus on the OPF
in IEEE 14 bus network with power injection of intermittent
and non-dispatch able generations at multiple edges of the
distribution network. The model considers the two-port pi
network for the transmission line representation. The model
is tested over three microgrids with an IEEE-14 bus radial
network configuration.
Distribution system expansion or in this case MG expansion is
often an optimal investment and operational decision. However
most of the investment models lack power system aspect of
expansion. Treated problem on a high level prospective. The
contribution of this paper is to investigate how expansion
decisions affect the reliability of the system, and therefore
the importance of restructuring in power network expansion.
A reliability oriented network restructuring (RNR) framework
is presented.

II. RELIABILITY ORIENTED NETWORK DECISION-MAKING

Due to power system regulation power quality and relia-
bility issues, concerning many management businesses, many
utilities try to rationalize their network and optimize the total
life cycles costs of the components [9]. Many municipality



owned utilities have been privatized, where the new owners are
mainly considering profitable investments, therefore to avoid
power quality’s reduction, various regulation models have been
issued. Given models enforce network utilities to optimize
their operations without compromising the reliability nor the
safety of the network. Reliability analysis are one of the ways
to inspect the optimal asset management. Similar analysis
has been developed in Tampere University of Technology, in
the 1980’s, where the reliability analysis has been utilized
to evaluate optimal dis-connector locations. In the analysis
[10], the failure rates are constant for similar components,
where those components are influenced by many different
mechanical, environmental and electrical stresses. Usually in
component failure model’s reliability calculations are based
on exponent distribution and failure rates are considered as
constants. However the constant failure rate is an inadequate
approach, therefore many models for estimating component
failure rates have to be used. In some cases, Monte Carlo
simulation is utilized to take into account effects of the
surrounding or enhanced component failure models, which
are based on constant component failure rates to evaluate
environmental and component related aspects in reliability
analysis. Another modelling approach is done as a propor-
tional hazard method, where it can consider age and various
additional information, such as weather and the information
surrounding the components. These models require lots of
data to find essential dependencies affecting the component
reliability to fail, therefore these models are not commonly
used. Sometimes Markov Models are also used, where the
component failure modelling is done by estimating the effects
of the component faults for the system [11], [12]. Usually
complex system models are needed, because there is a large
amount of possible transitions needed for each component,
such as for different weather conditions. Main requirement
for RNR is to have estimates of failure rates considering
main stress factors and the possibility to have first estimates
from incomplete data and update values when more improved
data are available. Components of distribution networks must
be modelled separately, therefore component failure rate is
dependent on different factors.

In this study the distribution network has been divided
into five main components: aerial lines, cables, transformers
and switches. For each component it has been determined
the main reasons for permanent faults and auto re-closings.
Separate failure rates for each component types are based on
the failure reasons, e.g. transformers overall failure rate is
dependent on lightning, animals and other fault causes. For
all the reasons, the main stress factors which affect the failure
rate have been determined. All the stress factors are classified
into appropriate classes, for instance the location can be a
forest a place near the road or a field. For all classes a weight
has been defined, which represents the effect of a certain
class to on the failure rate. For total failure rate, permanent
and temporary faults can be calculated. A practical approach
in component modelling is to use the idea that it should be
possible to affect the parameters used in failure rate modelling,

with selected planning strategies. The weather pattern is not
considered directly in failure rate evaluation but included in the
apparatus condition, for instance in the stress tolerance. The
age factor is included in condition weight information. Voltage
dip analysis is also used for examining short interruption,
where each component is defined based on permanent and
temporary short circuit failures. Dip rates are used to define
number and depth of dips in the network. Voltage dip can be
analyzed by adding information of total short circuit ratio to
every separate failure rate. Failure rate parameters must be
determined before modelling methods can be used.

The statistics, in this paper, have been collected by Finnish
network companies, where the used statistics are based on
population and outages. The analyzed data consists of 2400
faults, where about 60% of those were aerial line faults.
The population covers about 11,000 km of cables and aerial
lines and about 12,500 transformers for several years’ time
period. General failure rate of components were calculated as
a weighted mean from failure rates of separate companies.
Defined parameter groups are used to calculate the separate
failure rates. The basic input data set is the component
information, i.e. type, failure rate, and the network topology,
also some other information are needed which are affecting
results of the analysis, such as repair times and automation
devices installed. In the enhanced radial reliability analysis,
network is analyzed with feeders and zones, where zone refers
to a part of feeder. In the given analysis, the expected amount
of permanent and temporary failures and voltage dips in a zone
are calculated as a sum of the individual network component
failures. Determination of repair time is done by analyzing the
possibilities to isolate load points from the faulted component
and then restore the load points with dis-connectors. For a
temporary fault, the whole feeder is experiencing the same
short interruption. In given analysis, experienced permanent
and temporary faults and voltage dips are defined for each load
point. Cost information is based on total interruption times
in certain area, permanent and temporary fault and voltage
dip occurrences defined with the radial network reliability
analysis [13]. Utility outage costs is based on the value of non-
distributed energy and fault repair costs. Other costs, such as
losses in production are considered in defining inconvenience
costs for the customer. The expected permanent outage annual
costs are caused by a fault in the zone under study. Thus
RNR framework can be expressed as an asset management
model considering the Life Cycle Assessment (LCA) of power
system equipment. Combined with OPF, it is a complete one-
stop solution network management and planning platform.
Reliability of reconfiguration by replacing overhead lines and
underground cables, is evaluated considering environmental,
consumer preference, n-1 contingency and DSO objectives
while minimizing the investment cost.

The reconfiguration of networks is primarily done to ac-
commodate new consumers. This is achieved by extending the
connection of an existing node through a new arc. Secondly
it is done by replacing some existing lines. Network utilities
can adjust the failure rate and reliability parameters with their



own network information. A Switch Gear (SG) can identify
the fault region of the feeder and update it with secure supply
of energy from the same power network. Reliability indices
mainly include measures of outage duration and its frequency,
the amount of power or energy which is not supplied, and the
number of customers involved in outages. IEEE has defined
reliability indices, such as System Average Interruption Fre-
quency Index (SAIFI), System Average Interruption Duration
Index (SAIDI), Customer Average Interruption Duration Index
(CAIDI), Energy Not Supplied (ENS) [14]–[17]. Such index
are system and customer average interruption of frequency and
duration, and energy-based index, referred to as energy not
supplied. Indicators are determined over a predefined period
of time.

III. RELIABILITY INDICES

A. Node reliability indices

1) Expected load not served (ELNS): The ELNS measures
the average amount of energy not supplied to loads as a
result of load shedding events. As its own name indicates, the
expected load not served is a weighted average energy value
accounting for both the probability of contingencies and the
damage that these contingencies cause to the system in terms
of lost load.

2) Loss-of-load probability (LOLP): The LOLP is com-
puted as the probability that failure events lead to load
shedding. As opposed to the ELNS, however, the loss-of-load
probability is a dimensionless number that does not provide
any information on the severity of the disturbance, i.e., on
the energy not supplied. This lack of a clear physical meaning
makes the LOLP a less intuitive metric to work with by system
operators.

ENS =
∑

e

Pere (1)

Where e interruption event, re- restoration time for interrup-
tion event e, and Pe average load interrupted by each event
e.

3) loss-of-load expectation (LOLE): The LOLE assesses
the expected number of hours during which loss-of-load events
could happen. As the LOLP, the loss-of-load expectation fails
to provide an estimation of the damage done to the system
by contingencies. From a mathematical viewpoint, both the
LOLE and the LOLP require the use of binary variables
to be considered within a mixed-integer linear programming
problem, [16, 57]. On the contrary, the ELNS can be expressed
linearly, without binary variables, as follows:

LOLE =
∑

o

Poto (2)

Where o is the capacity outage, po is individual probability
of the capacity outage, to is the time interval based on the
difference in the capacity outage magnitude due to loss of
load.

B. Arc reliability indices

The arc reliability indices are summarized in the table I.
This table presents the main properties of cables, overhead
lines, transformers, switch-gears, consumption, generation,
terrain, probability of fault and maintenance faults. In addition
product description with manufacturer references are provided.

IV. OPF WITH RESTRUCTURING MATHEMATICAL MODEL

This section will outline the mathematical model developed
for the reliability oriented network restructuring analyses
considering AC-OPF for a distribution network. The model
has been developed in AIMMS and solved using the Outer
Approximation Algorithm [27] that is suitable for solving non
linear non convex models like the OPF.

A. Objective Function

minC
op

+ C
inv (3)

C
op

=
∑

t,i,g

(Pg,i,t +Qg,i,t) ∗ Cg ∀t, i, g (4)

C
inv

=
∑

i,j,c

CRFc ∗ Yi,j,c ∗ Cc +
∑

i,j,c

CRFc ∗ Ri,j,c ∗ Cc

+
∑

i,j,c

CRFc ∗ (1− Ri,j,c) ∗ Ci,j + C
SV C ∗Di (5)

The Objective function 3 minimises the total operational
costs and investment costs. Operational costs in 4 are related
to conventional generator costs due to fuel consumption. The
investment costs in 5 are described by four terms: the cost of
installation of new potential cables where a connection still do
not exist, the cost of replacing existing obsolete cables with
new ones, a representative cost of keeping existing cables as
they are and the cost of installing Static Var Compensator
(SVC) devices in certain nodes. The cost of existing cables
is a representative cost that incorporates all the costs that a
company should face to keep a cable as it is: this cost is
calculated according to the history of the cable, its mainte-
nance requirements, failures and issues and represented by the
parameter Maintenance cost listed in Table II.

B. Conventional Generators, Wind Plants and Batteries

Pg,i,t ≤ P g,t ∗Wg,i,t ∀g, i, t (6)

Qg,i,t ≤ Qg,t ∗Wg,i,t ∀g, i, t (7)

Pw,i,t ≤ Pw,i,t ∀w, i, t (8)

Qw,i,t ≤ Qw,i,t ∀w, i, t (9)

B
SOC
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cap
b ∀b, i, t (10)

B
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1
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b
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in
b,i,t ∀b, i, t (11)
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TABLE I: Explanation of relibility indicators in RNR

Cable In this study we concentrate on three different voltage levels, with each having one or two different types of cables, therefore
five different cables are evaluated. Cables are picked based on their suitable voltage level, cable diameter, and the conductor and
the insulation type. In the [18], [19] cable line weight parameters are evaluated as normalized values between 0. . . 1. The [18],
[19] gives the possibility to pick a certain transmission line type [18]–[23] with fixed parameters. There are proposed five types
of different cables and overhead-lines. For instance, for a transmission line of 6 kV or 10 kV with a length 9 km, a three-core
cable is proposed with diameter of 3 ∗ 70 mm2. This cable weights 5400 kg/km and as tables has proposed we may choose a
given conductor and the insulation, although steel conductors do not have insulation in this thesis. Cable indices in a network
recuntroction evaluation are the cable’s conductor and insulation. In the example, conductor weight is calculated as the diameter of
the conductor (i.e, Al conductor diameter = 9.8 mm) multiplied with conduction material density (Al density = 8.89 kg/km). i.e,
Cable, which weighs 5400 kg/km has an aluminium conductor which weighs 567 kg/km and insulation of 3699 kg/km [18], [19].

Overhaed lines As mentioned above, there are different types of transmission lines depicted and some of the named are overhead-lines (OHL).
The same evaluation planning in [18], [19] is used as in [18], [19] with the firstly mentioned being dependent also on [18], [19].
OHL indices as before mentioned line conductor and the insulation weight, with additional indices covering the OHL poles. The
poles are picked to be suitable for each voltage. For instance, 35 kV OHL usually uses poles which span across 80 m. The number
of poles needed are calculated by the tension and the sag of the line. After calculating the needed tension (tension at pole related
to tension at the maximum deflection) and sag (tension related to the span of the poles) the number of poles is found with relation
to line length (including the sag) and the span length of two poles.

Transformer Transformers (Trfo) used in this study are ideal and listed in [18]–[23] , without having to relate to the criterium N-1 (in case
one transformer is interrupted, the energy flow continues on). Therefore, only one transformer is depicted for a substation, with an
exception of two substations which have two transformers because there are four voltage levels, which are distributed. Furthermore,
the transformers used in this study are assumed to be almost equal to the ones provided by the companies. i.e. for a 110/10 kV
substation, 220/15,6 kV transformer is used. Transformers are depicted as such with transmission line types. The needed indices
are conductor (copper wire + profile) and insulation (transformer oil) weight at manufacturing and use phase.

Switch-gear Switch-gears (SG) used are described in [18]–[23] . In this network, in the node points combination of different switchgears are
used, based on their operating voltage levels. For this instance, 4 different combinations are made. SG indices are based on the
sum of their emissions per one transformer. Main emissions listed are Climate change (GWP, kg CO2/Trfo), Acidification (AP,
molh/Trfo), Eutrophication (NP, kg O2/Trfo), and SF6 % of all emissions. The needed indices’ values are calculated with the
minimum and the maximum emission values [18], [19].

Consumption The evaluated network consists of two main types of consumers, residential (0-25 kWh), and commercial (25-50 kWh). It is
assumed that around a substation there are 5-10 residential buildings and 1-3 commercial buildings, because the evaluated network
is put together mainly by the residential areas, rather than commercial. The needed weight value is comprised the sum of the total
energy demand in a node related to the minimum and maximum energy consumption in a node.

Generation A single distributed generation source is assumed to generate 1000 kWh of electrical energy, although the submarine cable is
assumed to have a smaller value because of the losses in transmission.

Terrain To differentiate the nodes and the arcs, additionally to electrical aspects, environmental indices are used to evaluate a network.
Probability of fault &
maintenance costs

As mentioned above not only electrical indices are used, also economical characteristics of a network are needed to be assessed.
For the total maintenance costs [24]–[26] , the repair costs and a probability of fault is needed to be assessed for the transmission
line and the substation. For this fault value is assumed based on the terrain influence on the probability of fault. Maintenance costs
= Cost of repair * Probability of fault value [24]–[26]

This group of constraints define the main properties of con-
ventional generators, wind plants and batteries. Upper limits
on active and reactive power from conventional generators and
wind plants are defined in constraints 6, 7, 8 and 9. While
constraints 10, 11, 12 and 13 control the battery operations in
terms of capacity, State of Charge (SOC), rating in and rating
out respectively.

C. Grid Restructuring

Pi,j,t ≤ (P
A − PB

+ P
C
) ∀i,j,t|Xi,j = 0;Ai,j = 0 (14)

Pi,j,t ≤
∑

c

(1− Ri,j,c) ∗ (PA − PB
+ P

C
)

+
∑

c

Ri,j,c ∗ (PD − PE
+ P

F
) ∀i,j,t|Xi,j = 1 (15)

Pi,j,t ≤
∑

c

Yi,j,c ∗ (PD − PE
+ P

F
) ∀i,j,t|Ai,j = 1 (16)

P
A

= Ki,j ∗
(Vi,t

T tr
i,j

)2
∀i,j,t (17)

P
B

=
(Vi,t

T tr
i,j

)
∗ Vj,t ∗Ki,j ∗ cos(δi,t − δj,t) ∀i,j,t (18)

P
C

= Si,j ∗ sin(δi,t − δj,t) ∀i,j,t (19)

The traditional OPF equations are defined in this group
of constraints in a way that incorporates the possibility to
reconfigure the network. Constraint 14 defines the active power
as the sum of three terms PA, PB and PC that contains the
power flow equations as described in constraints 17, 18 and
19. Constraint 15 defines how reconfiguration can happen: if
an existing cable is not replaced with a new one of type c,
then the binary variable Ri,j,c will be equal to 0, therefore
the second term of constraint 15 will be equal to zero and the
active power will be defined as in 14. On the other hand, if
an existing cable is replaced with a new one of type c, then
the binary variable Ri,j,c will be equal to 1, therefore the first
term of constraint 15 will be equal to zero and the active power
equation will be equal to the second term of constraint 15. The
terms PD, PE and PF are formulas equal to PA, PB and
PC respectively, where the parameters of existing cables Ki,j

and Si,j are replaced by the correspondent parameters of new
available new cables Kc and Sc. The model has therefore the
ability to choose if it is necessary to dismantle and replace an
existing cable by choosing a new one among a list of cables
with different properties and costs.

Constraint 16 defines how the installation of new cables
where no existing connections are available can happen. In



TABLE II: Reliability indices for RNR

Arc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Node x 1 2 3 3 6 6 12 7 9 7 9 10 13 4 4
Node y 2 4 4 5 11 12 13 9 14 8 10 11 14 7 9

Transmission length, km 2 3 2 5 4 8 3 3.00 5.00 6.00 3.00 3.00 3.00 2.00 2.00
Transmission voltage,kV 10 110 35 110 110 110 110 10.00 10.00 110.00 110.00 110.00 110.00 110.00 35.00

Line type[1,2,3,4,5] 1 3 4 5 5 3 5 1 1 5 3 5 5 5 2
Life expectancy value 0.1 0.1 1 1 1 0.1 1 0.10 0.10 1.00 0.10 1.00 1.00 1.00 1.00

Conductor type [1,2,3,4,5] 1 1 3 3+5 3+5 1 3+5 1 1 3+5 1 3+5 3+5 3+5 2
Line weight value, kg/km 0.36 0.81 0.33 0.00 0.00 0.36 0.00 0.36 0.36 0.00 0.81 0.00 0.00 0.00 0.43

Conductor weight value,kg/km 0.06 0.10 0.06 0.00 0.00 0.10 0.00 0.06 0.06 0.00 0.10 0.00 0.00 0.00 0.29
Insulation weight value,kg/km 0.38 1.00 0.40 - - 1.00 - 0.38 0.38 - 1.00 - - - 0.00

OHL pole value, pcs - - 0.00 0.60 0.60 - 1.00 - - 0.60 - 1.00 1.00 1.00 -
Climate change value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Fossil depletion value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12

Freshwater ecotoxicity value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Freshwater eutrophication value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12

Human toxicity value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Marine eutrophication value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12

Metal depletion value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Ozone depletion value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12

Particulate matter formation value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Photo-chemical oxidatnd formation value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12

Terrestrial acidification value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Terrestrial ecotoxicity value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12

Terrain 4 4 5 5 4 8 9 4 5 3 7 9 5 4 5
Terrain value 0.38 0.38 0.50 0.50 0.38 0.88 1.00 0.38 0.50 0.25 0.75 1.00 0.50 0.38 0.50
Fault value 0.75 0.75 0.88 0.88 0.75 0.25 1.00 0.75 0.88 0.63 0.50 1.00 0.88 0.38 0.88
AIT value 0.51 0.31 0.73 0.41 0.74 0.36 0.51 0.79 0.59 0.00 0.54 1.00 0.82 0.85 0.69
AIF Value 0.51 0.55 0.69 0.79 0.63 0.00 1.00 0.71 0.97 0.57 0.39 1.00 0.74 0.17 0.83
AID value 0.22 0.13 0.17 0.05 0.21 1.00 0.00 0.18 0.03 0.03 0.33 0.10 0.17 0.80 0.10

Availability value 0.78 0.87 0.83 0.95 0.79 0.00 1.00 0.82 0.97 0.97 0.67 0.90 0.83 0.20 0.90
Investment value 0.78 0.87 0.83 0.95 0.79 0.00 1.00 0.82 0.97 0.97 0.67 0.90 0.83 0.20 0.90

Repair costs value 0.25 0.28 0.93 0.98 0.91 0.00 1.00 0.26 0.31 0.99 0.22 0.96 0.93 0.66 0.29
Maintenance costs value 0.46 0.47 0.82 0.84 0.67 0.00 1.00 0.46 0.59 0.55 0.23 0.98 0.82 0.20 0.58

particular, if a new cable of type c is going to be installed
between two nodes, the binary variable Yi,j,c will be equal to
1 and the active power will be equal to the terms PD, PE and
PF that have been explained above. On the other hand, if no
cables are going to be installed, the binary variable Yi,j,c will
be equal to 0 and no power flow will be allowed between the
two nodes.

Similarly, for reactive power the same thoughts above can
be applied as shown in constraints 20, 21, 22, 23, 24, 25. In
this case QD, QE and QF are formulas equal to QA, QB and
QC respectively, where the parameters of existing cables Ki,j ,
Si,j and Sshi,j are replaced by the correspondent parameters of
available new cables Kc, Sc and Sshc .

Qi,j,t ≤ −QA −QB
+Q

C ∀i,j,t|Xi,j = 0;Ai,j = 0 (20)

Qi,j,t ≤
∑

c

(1− Ri,j,c) ∗ (−QA −QB
+Q

C
)

+
∑

c

Ri,j,c ∗ (−QD −QE
+Q

F
) ∀i,j,t|Xi,j = 1 (21)

Qi,j,t ≤
∑

c

Yi,j,c ∗ (−QD −QE
+Q

F
) ∀i,j,t|Ai,j = 1 (22)

Q
A

=
(
Si,j +

Ssh
i,j

2

)
∗
(Vi,t

T tr
i,j

)2
∀i,j,t (23)

Q
B

=
Vi,t

T tr
i,j

∗ Vj,t ∗Ki,j ∗ sin(δi,t − δj,t) ∀i,j,t (24)

Q
C

= Si,j ∗ cos(δi,t − δj,t) ∀i,j,t (25)

It is straightforward that the above formulation allows also
the possibility to simply dismantle existing cables without

replacing them. In this case it is enough to provide a list of
cables that contains also a type c with Kc, Sc and Sshc equal
to zero. If chosen, this will simply correspond to absence of
connection.

Reconfiguration and new potential connections can happen
only in those arcs that the operator is willing to check. Not all
the arcs of the grid will be subjected to such decision, therefore
binary parameters Xi,j and Ai,j are used to select which
arcs to reconfigure and which new connections to evaluate
respectively.

D. Grid General Management

∑

g

Pg,i,t +
∑

w

Pw,i,t −
∑

j

Pi,j,t +
∑

j

Pj,i,t

−
∑

s

P
out
b,i,t −

∑

s

P
in
b,i,t = P

L
i,t ∀i,t (26)

∑

g

Qg,i,t +
∑

w

Qw,i,t −
∑

j

Qi,j,t +
∑

j

Qj,i,t

−
∑

s

Q
out
b,i,t −

∑

s

Q
in
b,i,t = Q

L
i,t ∀i,t (27)

Zi,j,t =
1√
3
∗ Vi,t ∗

√
(Pi,j,t)2 + (Qi,j,t)2 ∀i,j,t (28)

Pi,j,t ≤ BigM ∗ diri,j,t ∀i,j,t (29)

Pj,i,t ≤ BigM ∗ (1− diri,j,t) ∀i,j,t (30)

Qi,j,t ≤ BigM ∗ diri,j,t ∀i,j,t (31)

Qj,i,t ≤ BigM ∗ (1− diri,j,t) ∀i,j,t (32)



∑

c

Yi,j,c ≤ 1 ∀i,j (33)

∑

c

Ri,j,c ≤ 1 ∀i,j (34)

V ≤ Vi,t ≤ V + V
SV C ∗Di ∀i,t (35)

δ ≤ δi,t ≤ δ ∀i,t (36)

Z ≤ Zi,t ≤ Z ∀i,j,t (37)

This set of constraints describe the main properties to take
into account for the grid management. In particular flow
balance for active and reactive power is defined in 26 and 27
respectively; the current is defined in 28; the flow direction is
described through constraints 29, 30, 31 and 32; constraints33
and 34 limit the choice of new cables to 1; finally constraints
35, 36 and 37 define limits on the voltage, phase angle and
current. Regarding constraint 36, the voltage upper limit is
linked to the decision of installing a SVC device. In particular,
when a SVC device is installed on a node i, the binary variable
Di is equal to 1 and the voltage upper limit increases of a
value V SV C . This can make a difference in the decision of
dismantling a cable or installing a SVC device.

V. COMPUTATIONAL EXPERIMENTS

Computational experiments have been performed on IEEE
14 bus system represented in fig. 1, using the data-set con-
tained in table II. It is assumed that the arcs 4 − 9, 4 −
7, 5 − 6, 11 − 10, 13 − 14 are non-existing and potential
connections should be evaluated. Therefore the system is now
split into three microgrids as highlighted in fig. 1. Microgrids
1 and 2 are equipped with conventional and renewable sources
respectively, while microgrid 3 is without any resource and can
be considered as an emerging district that has been created
and that needs to be connected to a neighbourhood area. The
microgrid 1 considers restructuring of the existing network
to accommodate the emerging district. It is straightforward
that restructuring is not considered for the emerging district,
because it is assumed that a new microgrid will have new
and up to date equipment. Hence the trade-off between the
maintenance cost of existing network and the replacement
costs to accommodate new emerging demand is analysed.
Moreover reconfiguration is allowed on arc 1 − 2, 2 − 4, 4 −
3, 2 − 3, 2 − 5, 1 − 5, 4 − 5 in order to verify how the
establishment of new connections are affecting the reliability
of the system.

As a result, new cables installations are created on arcs 4−
7, 4−9 and a cable 1−2 is replaced with a new cable provided
with higher sustenance. Note that microgrid 2 remains isolated
because it already has enough power from the renewable plant.

VI. CONCLUSION

A methodology to analyse how connecting emerging dis-
tricts to existing microgrids can affect the reliability of the
whole system has been presented. The technical aspects of
AC-OPF have been thoroughly taken into account and the
reliability oriented Network Restructuring RNR framework
has been developed and implemented. The results showed that
reliability aspects are crucial when evaluating new investments
in grid expansion: new connections should always be coupled
with a more holistic evaluation of the conditions of the existing
networks as they may require further investments in upgrades
to fulfill the new requirements. When the system operator
considers investments for power network expansion, it should
also consider restructuring of the existing network at the
same time. The presented model RNR is able to address
both decisions holistically and therefore more investigation is
required in this area.

NOMENCLATURE
Indexes
t time step
i, j nodes of the grid
c available new cables
g conventional generators
w wind plants
b batteries

Parameters
Cop Operational costs
Cinv Investment costs
Cg Operational cost of conventional generator g
P g,t Upper limit on active power from conventional generator g at time t
Qg,t Upper limit on reactive power from conventional generator g at time t
Pw,i,tUpper limit on active power from wind plants w on node i at time t
Qw,i,tUpper limit on reactive power from wind plants w on node i at time t
Bcap

b Capacity of battery b
Beff

b Efficiency of battery b
Brate

b Rating of battery b
T tr
i,j Tap ratio of transformer placed between nodes i and j
Ki,j Conductance of existing cables placed between nodes i and j
Si,j susceptance of existing cables placed between nodes i and j
Ssh
i,j shunt susceptance of existing cables placed between nodes i and j

Si,j Susceptance of existing cables placed between nodes i and j
Ssh
i,j Shunt suceptance of existing cables placed between nodes i and j
Ci,j Representative cost of existing cables due to their history of maintenance

operations
Ai,j Binary parameter defining if a new potential cable can be installed between

nodes i and j
Xi,j Binary parameter defining if an existing cable between nodes i and j should

be checked for possible replacement
Kc Conductance of new cables of type c
Sc Susceptance of new cables of type c
Ssh
c Shunt susceptance of new cables of type c
CRFcCapital recovery factor of new cables of type c
Cc Investment cost of new cables of type c
V SV CPossible incremental voltage due to installation of a SVC device
V , V Minimum and maximum limits for voltage
δ, δ Minimum and maximum limits for phase angle
Z,Z Minimum and maximum limits for current
CSV CInvestment cost of an SVC device
PL

i,t Active load in node i at time t
QL

i,t Reactive load in node i at time t
Variables
Pg,i,t Active power from conventional generator g in node i at time t
Qg,i,t Reactive power from conventional generator g in node i at time t
Wg,i,tBinary variable equal to 1 if the conventional generator g in node i is working

at time t
Pw,i,t Active power from wind plants w in node i at time t
Qw,i,tReactive power from wind plants w in node i at time t
BSOC

b,i,t State of charge of battery b in node i at time t
P out

b,i,t Active power from battery b in node i at time t
P in

b,i,t Active power into battery b in node i at time t
Qout

b,i,t Reactive power from battery b in node i at time t
Qin

b,i,t Reactive power into battery b in node i at time t



Fig. 1: The microgrid structures: (a) expansion (b) expansion with reconfiguration

Vi,t Voltage value in node i at time t
δi,t Phase angle value in node i at time t
Zi,j,t Current value between nodes i and j at time t
diri,j,tBinary variable equal to 1 if the power flow is from node i to node j, 0

otherwise
Yi,j,c Binary variable equal to 1 if a potential new cable of type c is installed

between nodes i and j, 0 otherwise
Ri,j,c Binary variable equal to 1 if an existing cable between nodes i and j is

replaced by a new cable of type c, 0 otherwise
Di Binary variable equal to 1 if an SVC device is installed on node i, 0 otherwise
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[14] M. Čepin, Assessment of power system reliability: methods and appli-
cations. Springer Science & Business Media, 2011.
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